COMPUTER
ARCHITECTURE

Fundamentals and
Principles of
Computer Design

JOSEPH D. Dumas I

COMPUTER ARCHITECTURE

Fundamentals and Principles of Computer Design

COMPUTER ARCHITECTURE

Fundamentals and Principles of Computer Design

Joseph D. Dumas Il

University of Tennessee
Chattanooga, Tennessee, USA

Taylor & Francis
Taylor & Francis Group

Boca Raton London New York

A CRC title, part of the Taylor & Francis imprint, a member of the
Taylor & Francis Group, the academic division of T&F Informa plc.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20110713

International Standard Book Number-13: 978-1-4200-5795-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Dedication

To Chereé, my best friend and life partner, who “always and forever”
makes this “a wonderful world.” IL YBATS.

Preface

Digital electronic computer systems have gone through several generations,
and many changes, since they wer e first built just before and during World
War II. Machines that wer e originally implemented with electr omechanical
relays and vacuum tubes gave way to those constr ucted with solid-state
devices and, eventually, integrated circuits containing thousands or millions
of transistors. Systems that cost millions of dollars and took up lar ge rooms
(or even whole floors of buildings) deceased in price by orders of magnitude
and shrank, in some cases, to single chips less than the size of a postage
stamp. CPU clock speeds increased from kilohertz to megahertz to gigahertz,
and computer storage capacity gr ew from kilobytes to megabytes to
gigabytes and beyond.

While most people have noticed the obvious changes in modern com-
puter system implementation, not everyone ealizes how much has emained
the same, architecturally speaking. Many of the basic design concepts and
even the advanced techniques used to enhance performance have not
changed appreciably in 30, 40, or even 50 years or longer . Most modern
computers still use the sequential, von Neumann pr ogramming paradigm
that dates to the 1940s, they accept har dware interrupts that have been a
standard system design feature since the 1950s, and they store programs and
data in hierarchical memories that are, at least conceptually, very similar to
storage systems built in the 1960s. While computing professionals obviously
need to stay abreast of today’s cutting-edge architectural breakthroughs and
the latest technical wizardry, it is just as important that they study historical
computer architectures, not only because doing so gives a valuable appr e-
ciation for how things were done in the past, but also because, in many cases,
the same or similar techniques ar e still being used in the pr esent and may
persist into the future.

Over several years of teaching the computer ar chitecture course to an
audience of mostly under graduate computer science students, I have
observed that few — if any — of the students in a typical computer science
(or even electrical or computer engineering) ppgram ever go to work design-
ing microprocessors, memory devices, or other integrated cir cuits, let alone
complete computer systems. Many, probably most, of them instead become
system administrators, pr ogrammer-analysts, technical managers, etc. In
these positions one is not generally called upon to design hardware, so there

is no need to know whete each transistor goes on a particular chip. However
it is quite likely that at some point almost every computing professional will
have to specify or pur chase a computer system to r un a particular applica-
tion. To do so, he or she must know enough about computer ar chitectures
and implementation technologies to be able to understand the characteristics
of the machines under consideration, see through manufacturer hype, intel-
ligently compare system performance, and ultimately select the best and
most cost-effective system for the job. A course designed ar ound this text-
book should prepare students to do exactly that, without getting them lost
in the myriad of technical details characteristic of other excellent, but lengthy
and involved, texts.

My philosophy in developing this book was to concentrate on the fun-
damental principles of computer design and performance enhancement that
have proven effective over time and to show how curr ent trends in archi-
tecture and implementation r ely on these principles while in many cases
expanding them or applying them in new ways. Because specific computer
designs tend to come and go quickly, this text does not focus on one partic-
ular machine or family of machines. Instead, important concepts and tech-
niques are explained using examples drawn fr om a number of dif ferent
computer architectures and implementations, both state-of-the-art and his-
torical. In cases where explanations based on r eal machines would include
too many “trees” for the reader to see the “for est,” simpler examples have
been created for pedagogical purposes. The focus is not on understanding
one particular architecture, but on understanding ar chitectural and imple-
mentation features that are used across a variety of computing platforms.
The author’s underlying assumption is that if students have a thor ~ ough
grounding in what constitutes high performance in computers, a good con-
cept of how to measure it, and a thorough familiarity with the fundamental
principles involved in making systems perform better , they will be able to
understand and evaluate the many new systems they will encounter in their
(hopefully long) professional careers.

This book is primarily designed to be used in a one-semester upper
(usually senior) level under graduate course in computer ar chitecture, as
taught in most traditional computer science pr ograms including the one
at the University of Tennessee at Chattanooga where I have been on the
faculty since 1993. It is also suitable for use in an undergraduate electrical
engineering or computer engineering curriculum at the junior or first
semester senior level, with the idea that it would likely be followed by
an additional hardware-oriented course covering topics such as advanced
microprocessor systems, embedded systems, VLSI design, etc. (Refer to
the chapter breakdown below for suggestions on how to incorporate the
text into courses based on the quarter system.) This book can also be
effectively used (perhaps with some supplementary materials pr ovided
by the instructor or an additional text chosen to meet specific needs) in
an introductory, master’s level graduate course. I believe it would be
particularly useful for what appears to me to be the incr easing number

of students seeking a master’s degree in computer science after obtaining
an undergraduate degree in another field.

To get the maximum benefit from this text, students should have had a
previous course(s) covering introductory topics in digital logic and computer
organization. While this is not a text for a ppgramming course, it is assumed
that the reader is quite familiar with computer pr ogramming concepts. Ide-
ally, students should not only be well versed in at least one high-level
programming language such as C, C++, or Java, but they should also have
had some exposure to machine-level pr ogramming in assembly language
(the specific architecture covered is not all that important, but the concepts
are highly relevant). Previous courses in operating systems and systems
programming would be helpful but ar e not essential in following the
material presented here.

To use computer architecture terminology, this textbook is a RISC design.
The idea is to help students achieve success in understanding the essential
concepts not by including a lot of extra bells and whistles, but by pr oviding
an easily understood, almost conversational text illustrated with simple,
clear, and informative figures. Each chapter begins with an introduction that
briefly lays out the ideas to be covered and the reasons why those topics are
important to the study of modern computer systems. The intr oduction is
followed by several sections explaining the material in detail, and then a
chapter wrap-up. This section briefly r eviews the key concepts that the
student should have gleaned from reading the material and participating in
class, placing them in context to help r einforce the student’s learning by
helping him or her see the big pictur e, or broader context, into which the
detailed material that has just been pr esented fits.

Finally, the end-of-chapter review questions include not only pr oblems
with concrete, numerical, right and wr ong answers, but also “fill in the
blank” items that r einforce key concepts and terminology as well as open-
ended short answer and essay-type questions. In past semesters, while using
other texts, my students have often complained about textbook exerises that
were either too trivial or too involved to be of much use in pr eparing for
exams (which, of course, is a major concern of students). One of my goals
in developing this book was to pr ovide review questions that would be
sufficiently thought-provoking to challenge students, but manageable within
a reasonable time frame (as they would have to be to serve as viable testing
items). To this end, many of the r eview questions are drawn from actual
exam questions used over the several years I have taught the computer
architecture course. By working out answers to a variety of pr oblems and
questions comparable to items that their instmctor would be likely to include
on a test, students should not only master the material thor oughly, but also
(of equal if not greater importance to them) be prepared to demonstrate their
mastery when called upon to do so.

Chapter 1 provides a background for the topics in the r est of the book
by discussing the dif ference between architecture and implementation and
the ways in which they influence each other . It also includes a brief history

of computing machines fr om the earliest, primitive computers up to the
present day. (To understand where the field is now and wher e it may go in
the future, it is important to know wher e it has been.) The various types of
single-processor and parallel, general- and special-purpose systems that will
be covered in following chapters are introduced. Then the reader, who will
likely at some point in the future be responsible for specifying and selecting
computer systems, is intr oduced to some concepts of ar chitectural quality
and other factors that may cause particular systems to succeed or fail in

the marketplace. Last, but certainly not least, methods for quantifying and
measuring the performance of computers and their major subsystems ar e
discussed.

Chapters 2, 3, 4, and 5 are the heart of the text; they cover, in appropriate
detail, the ar chitecture of traditional, single-pr ocessor computer systems,
which are still, after mor e than 60 years, the most widely used computing
machines. Chapter 2 deals with the important topic of memory systems. It
begins by explaining the characteristics of an ideal memory system (which
of course does not exist) and then discusses how various memory technol-
ogies approximate ideal behavior in some ways but not others. This naturally
leads to an explanation of how a hierar chical storage system may be used
to maximize the benefits of each type of device while hiding their less
desirable characteristics, thus enabling the overall memory system to keep
up with the demands of the pr ocessor (and the needs of the pr ogrammer).

Since CPU architecture and implementation are so complex and so crit-
ical to the performance of a system, both Chapters 3 and 4 ar e devoted to
this topic. Chapter 3 explains the basics, including the design of CISC and
RISC machine instruction sets, the datapath har dware that is used to carry
out those machine instr uctions by operating on integer and r eal number
values, and the control unit, which develops the control signals that operate
the datapath as well as the rest of the machine using either a micr oprogram
or hardwired logic. Chapter 4 then discusses techniques that can be used to
enhance the performance of the basic CPU design, with particular emphasis
on pipelining. Both arithmetic and instr uction-unit pipelines are covered;
since so many modern micr oprocessors make extensive use of pipelined
implementation, we pay particular attention to RISC, superpipelined, super-
scalar, and VLIW designs. Chapter 5 completes the coverage of single-pr o-
cessor system design considerations by discussing I/ O related topics includ-
ing basic interfacing appr oaches, exceptions and interr upts, and the use of
DMA and I/O processors to offload I/ O-related tasks from the main system
processor.

The final two chapters deal with appr oaches that may be adopted when
even the most advanced conventional, single-pr ocessor systems do not pr o-
vide the desired performance or are not well suited to the intended application.
Chapter 6 covers the most common types of high-performance systems, most
of which are parallel to varying degrees. Flynn’s venerable taxonomy of com-
puter architectures is discussed inr elation to vector and array pr ocessors,
shared-memory multiprocessors, and message-passing multicomputers such

as cluster systems. Since communication between pr ocessors is critical to the
performance of parallel systems, static and dynamic interconnection networks
are discussed at some length. Finally, Chapter 7 goes beyond Flynn’s classifi-
cations to explore the characteristics of unconventional ar chitectures of the
past, present, and future. From dataflow machines to artificial neural networks
to fuzzy systems to quantum computers, students will see that there are other
approaches, besides von Neumann'’s, that can be taken to solve particular
types of computational problems.

Most instructors and their students should be able to cover the entir e
contents of this book in a one-semester course, given satisfactory completion
of the prerequisites suggested above. If it is desir ed to spend mor e time
covering conventional ar chitectures at a leisur ely pace, Chapter 7 may be
omitted or left for outside reading. At institutions using the quarter system,
it is suggested that Chapters 1 to 5 might be cover ed in one quarter, while
Chapters 6 and 7, plus per haps some additional, advanced topics added by
the instructor — or a substantial r esearch or design pr oject — could be
reserved for a second quarter -long course.

Writing a textbook is a challenging task, and no matter how har d one
tries, it is impossible to avoid eror or to please every rader. I have, however,
done my best and I hope you enjoy the r esult. I would like to hear fr om
instructors and students alike about how you found this book useful and,
conversely, about any mistakes or misconceptions you may have encoun-
tered or any parts of the text that wer e less than clear. Please feel fr ee to
suggest any improvements that I might make in future revisions of the text.
I welcome your comments via e-mail at Joe-Dumas@utc.edu.

Joe Dumas
Signal Mountain, Tennessee

mailto:Joe-Dumas@utc.edu

Acknowledgments

No book, especially a first book, makes it to print without a lot of help fr om
knowledgeable people in the publishing industry . Stan Wakefield deserves
my thanks for encouraging me to write this book and for helping me find
the right people to publish it. Fr om the beginning, the folks at T aylor &
Francis/ CRC Press have been upbeat, personable, and most helpful to this
“newbie” author. I hope they didn’t find my questions too annoying! I would
particularly like to thank Nora Konopka for signing me up, Helena Redshaw
for guiding me through the process, and Amber Stein for bringing the project
to completion. Ladies, it has been a pleasur e working with you.

Many outstanding professors challenged and inspired me as I traveled
the long and winding r oad of higher learning on the way to becoming an
educator myself. Though (over the course of many years and thr ee degrees)
they number far too many to mention her e, Ilearned something fr om each
and every one. To those who r emember me (and even those who don't) I
express my sincere appreciation for your dedication to your pr ofession and
to your students. I particularly wish to thank T ed Bogart of the University
of Southern Mississippi, Jim Har den of Mississippi State University , and
Harry Klee of the University of Central Florida, who served as my advisors
and mentors. I couldn’t have made it this far without you.

My UTC colleagues and administrators at the department, college, and
university level have been incr edibly supportive of this pr oject. I would
especially like to thank the University of Chattanooga Foundation for sup-
porting the sabbatical leave during which much of this text was written. But,
most of all, it was my students who inspir ed me to undertake this pr oject,
so, I'd like to thank all the young (and some not so young) people who have
ever studied and worked hard to make it through a course with the infamous
“Dr. Doom.” I hope each of you found the time you spent in my classes
worthwhile. It has been my privilege to help you expand your knowledge
and understanding, and I have learned as much (or mor e) from you as you
have from me. I especially acknowledge the computer ar chitecture students
at UTC who used the first draft of this book. By r eading it thor oughly,
pointing out errors, and offering suggestions for improvement, you helped
me create a better text than would otherwise have been possible. On behalf
of my future readers, I thank you for your valuable input.

Last, but not least, one can never undertake a labor of love like this one
without having been given much love in the first place. For starting me out
on the right path in life I thank my par ents, who stressed the importance of
a good education and made many sacrifices to make sur e I got one. They
always encouraged me to pursue excellence and to follow my dreams wher-
ever they might lead me; their love and support will never be for ~ gotten. I
also thank my dear wife for enduring, with love and as much patience as
she could muster, my spending many long hours in fr ont of a computer
writing this book when I might otherwise have shaed them with her. Honey,
you're the best!

About the Author

Joe Dumas earned a Ph.D. in computer engineering
from the University of Central Florida, wher e he
received the first Link Foundation Fellowship in
Advanced Simulation and T raining in 1993. Pr evi-
ously, he earned an M.S. degr ee in electrical engi-
~ neering from Mississippi State University in 1989

| and a B.S. degree in electronics engineering technol-
ogy, with a minor in computer science, from the Uni-
versity of Southern Mississippi in 1984.

Dr. Dumas is a faculty member at the University
of Tennessee at Chattanooga’s College of Engineer -
ing and Computer Science, wher e he holds the rank of UC Foundation
Professor and serves as a faculty senator and as chair of the graduate council.
He was chosen Outstanding Computer Science T eacher in 1998 and 2002.
Dr. Dumas’ areas of interest include computer ar chitecture, virtual reality,
and real-time, human-in-the-loop simulation.

Dr. Dumas is a member of several academic honor societies including
Upsilon Pi Epsilon (computer science), Eta Kappa Nu (electrical engineer -
ing), Tau Beta Pi (engineering), and Tau Alpha Pi (engineering technology).
He was a founding member of the Chattanooga chapter of the IEEE Com-
puter Society and has served as faculty advisor for the UTC student chapter
of IEEE-CS since it was or ganized in 2000. An avid downhill skier, chess
player, and libertarian political activist, Joe Dumas lives in Signal Mountain,
Tennessee, with his wife Cher eé. This is his first published textbook.

Contents

Chapter 1 Introduction to computer architecture 1
1.1 What is computer ar chitecture?...........c.ccccocveviniciiciininicicnecce, 1
1.1.1 Architecture vs. implementation ..o 2
1.2 Brief history of computer SyStemsccccocvuviciinininininiiniinieecnne. 3
1.2.1 The first generationcccccceeueeririrciinnisiniicicscsccnens 5
1.2.2 The second generationcccceeueueruniniciiciicninieicscsieseenns 6
1.2.3 The third generation...........ccccovieiiiirniniiniiniiinisiceceans 7
1.2.4 The fourth generation...........cccoovuvucivnniniciciicncccecaes 9
1.2.5 Modern computers: the fifth generationccccooeuecivrivininnnc 12
1.3 Types of computer SYStEMScccceuevieueieiiiicieeice e 15
1.3.1 Single processor SYStemS.........ccoeeveruereieiincieieiiceie s 15
1.3.2 Parallel processing SyStems.............cccoeereiriceieieiccceieiiecee s 18
1.3.3 Special architectures............ccccovueiriiiiiniciiniscccecs 19
1.4 Quality of computer SyStemscccooeeeieiiiiceieiiiceec 19
1.4.1 Generality and applicabilityccccoovviiiiiiniiiiiiiiie, 20
1.42 Ease Of USE ..ot 21
1.4.3 Expandability ... 21
1.4.4 Compatibilityccccooviiiiiiiiiiiiiiiiiii 22
145 Reliabilityccoooieiiieiiiiiciicc e, 23
1.5 Success and failure of computer architectures and
IMPlementations..........coeeuiieiiicieec 24
1.5.1 Quality and the perception of qualitycccccoveviriciiriirninnnn 24
1.5.2 COStISSUES ..vvviiiicictinict e 25
1.5.3 Architectural openness, market timing, and other issues 26
1.6 Measures of performance ... 28
1.6.1 CPU performance.........cccoceueeeerueueieieereieieciee e 28
1.6.2 Memory system performancecoooeeoveeieieiecceieiciceeene. 30
1.6.3 I/O system performance..........ccccocvvurenieinuiemncsiniinnensieesenes 32
1.6.4 System benchmarks ..o 33
1.7 Chapter WIap-Up.....cccocccvieuriciricieiciciiieieieissieiseie s 36
1.8 Review qUeSHIONScccueviieiiicicicietctcccc e 37
Chapter 2 Computer memory systems 41
2.1 The memory hierarchy ... 41

2.1.1 Characteristics of an ideal MemMOryccccooovvviiiiiiviciiciicniines 42

2.1.2 Characteristics of real memory devices.........c..ccvveeuruvcurucueucnees 44

2.1.3 Hierarchical memory SyStems........c.cccceueueuiueuniuemriuemsieeereenreaennes 47

2.2 Main memory interleaving..........cccccceiiiiiiiiiiiecceccceeeeennes 50
221 High-order interleavingccooocveeenceenieenienieriereenreennes 50
2.2.2 Low-order interleavingcccocoeeeeieiciiiieiccccceeeenes 52

2.3 Logical organization of computer memorycccccceeueurvvuriririrrenennne 56
2.3.1 Random access MemOTIESccccceueueuemimeueuiiemimimcieieenereeeeneenenes 56
2.3.2 Sequential access MEMOTIESccceueuememiuiuiuimiminiiciiicereeeeennes 58
2.3.3 Associative MemOries........cccovuiuriiiiiiiiiiiiniiciee e 59

24 Cache MEMOTY ...t 62
2.4.1 Locality of reference..........ccccccoeeueuiiiiciicciiiiiccccceeeeceenes 63
2.4.2 Hits, misses, and performance...........ccccccecvuvurivirrrvnninnnnnnnnns 64
2.4.3 Mapping strategies.........cccoviiiiniiniiiiniiie 66
244 Cache Write POLICIESc.vucuiucuieciicieicieecie e 72
245 Cache replacement Strategies.........ccoceueueuiueeniueerieemricereenriaennes 74
24.6 Cache initialiZationccevceueecuricurecieeececeeeeeeie e 75

2.5 Memory management and virtual memorycccccocovuveruviciniciniennn. 76
251 Why virtual Memory?ccceceurieureeunerereeeieeeieeeeenreeeseeeneaenne 76
2.5.2 Virtual memory basics........cccccoceuiiiiiiiiiiiiiiiccces 77
2.5.3 Paged virtual MeMOTYcccceeuimimiiiiiiiiiiiicccccccccnes 78
254 Segmented virtual MEMOTYcccceueuiuimimimiuiiiiiiiccceccecennes 82
255 Segmentation With Paging.........ccccccoeveueereueenienienicnicreenreennes 84
25.6 The MMU and TLBccccoeiiniiiiiniiiiciiciciscsssceeeens 86
2.5.7 Cache and virtual MEMOTYccccevueuemeueeiueiniieierereeneienne 86

2.6 Chapter WIAD-UP....ccoueuriciriciricieieieieie et eses 89
2.7 Review qUESHIONS ...t 89
Chapter 3 Basics of the central processing unit 95
3.1 The inStrucCtOn Setceveuiiueiciricieieieieeieieee et eae 96
3.1.1 Machine language inStructions...........c.cceceeeueuniueiniennecureenreennes 96
3.1.2 Functional categories of instructions..........cccccceuvuvuvviviiiinirinnnns 98
3.1.3 Instruction addressing modes..........ccccccceuvurruriiiiiinnniniiiiinns 101
3.1.4 Number of operands per instr uction..........ccceceeueuvuriricicinnnnns 105
3.1.5 Memory-register vs. load-store architectures...........cccccoeuucen.e. 106
3.1.6 CISC and RISC instruction setsccccoevuvuvirirurveririricinnneens 109

3.2 The datapath.......c.cccoiiincccceceeee e 111
3.2.1 The 1e@iSter St ..coniueuiueuiuciiiciiciricie et 111
3.2.2 Integer arithmetic hardware........c.occcooveuivicinicnicnicccn. 113
3.22.1 Addition and subtraction...........ccccceceeuiiivviniiiiinninns 114

3.2.2.2 Multiplication and diviSionccccceevuvuruviriciiinnennne 122

3.2.3 Arithmetic with real numbers..........c.ccccoeuveueenicnicinicnicnicnnn. 131
3.2.3.1 Why use floating-point numbers?c.ccceeeureeucnes 131

3.2.3.2 Floating-point representationccccceceeurueicucurununne 132

3.2.3.3 Floating-point arithmetic hardwarecccceceuuee. 137

3.3 The cONtrol Unit......cccoccuricuriciricirieieiciecieieeeiee e 139

3.3.1 A simple example machine ..o, 139

3.3.2 Hardwired control Unit.......ccccoeieeeieeiiiiieeeeeee e 144

3.3.3 Microprogrammed control Unit...........ccccceevuviriiivnninicinnns 146
3.4 Chapter WIAP-UP....cceicuicuicirieieiceeiceeieeeeeieeesesese e saesnas 154
3.5 Review qUESHIONScccccviiiiriiiiicicciic s 155
Chapter 4 Enhancing CPU performance 161
4.1 PIPeliNingcccoooviiviiiiiiiiiiii s 162
4.2 Arithmetic PIPElINESc.ccoieuiuciiiciiciiciicircteceee e 167
421 Types of arithmetic pipelinescccooeeureueenicrnicunecrnicrnecnnne 169
422 Pipeline scheduling and control.........ccccceeeunicunicinicuniccrnincnnn. 171
4.3 Instruction unit Pipelinescccoevivivinininininininninn e 180
4.3.1 Basics of an instruction pipeline..........ccccceovuviivivnniinnnnns 181
432 Control transfers and the branch penaltyccccocccuvicuncnnce. 183
4.3.3 Branch prediCtion ... 186
434 Delayed control transfers...........ccccceevrivvnririiinnniiiciins 191
4.3.5 Memory accesses: delayed loads and storescccccueueunne. 193
4.3.6 Data dependencies and hazards.........cccccceeeunieinicenicinicrnicnnn. 194
4.3.7 Controlling instruction pipelines...........ccccccceeuiiiivrvniciinninns 197
4.4 Characteristics of RISC machines..........ccccoeuveuriniciiiniininicicicsies 202
4.5 Enhancing the pipelined CPUccccoocriircinicinncieeenneieeenseenneees 207
451 Superpipelined architectures............cococeuveueenecinicenicunecrnnennnn. 207
452 Superscalar architeCturesccococeeecueeneueineerneeenecneenseenene 208
4.5.3 Very long instruction word (VLIW) architectures................... 210
4.6 CRapter WIAP-UP.....ccceveeueeeueeiieeeieeeieneiesteesesseseseesessesessesessesensssesssessees 213
4.7 Review qUESHIONScoiviuiiiiiiiiiiiicccc s 214
Chapter 5 Exceptions, interrupts, and input/output systems 219
5.1 EXCEPHIONS ..ottt 220
51.1 Hardware-related exceptionsccocoeueveircieinieiccieieiccnnen, 220
5.1.1.1 Maskable interruptscccccooeeereieiiiiceicce, 222
5.1.1.2 Nonmaskable interrupts.........cccooeeveierceieiniceieieene, 224
5.1.1.3 Watchdog timers and resetc.ccccocveriruriicunieninnnes 225

5.1.1.4 Nonvectored, vectored, and autovectored
INEEITUPLS. .ottt 226
5.1.2 Software-related exceptions...........cococoeveueieieiicieieiciicece 229
5.2 Input and output device interfaces ..o, 231
5.3 Program-controlled I/O......ccocviiiiniiniininieineininieereisieeieieiseissiesenaes 233
5.3.1 Memory-mapped I/ O ... 234
5.3.2 Separate I/O....ccccvumieiciiiniiniccintieieie et 236
54 Interrupt-driven I/ O ... 237
5.5 Direct MemMOIY aCCESS.....cceueiiieieieriieieieteteie et 240
5.6 INput/output ProCESSOTS........ccimiuimiiieiiiiieieeieieicieeiseeese e 244
5.7 Chapter WIap-Up......cccocriueiciiiiciiicicicisisi st 245

5.8 Review qUESHIONSccccovviiieviiiiieiccecrcc s 246

Chapter 6 Parallel and high-performance systems 249

6.1 Types of computer systems: Flynn’s taxonomycccccccevueveuiurunnnns 250
6.1.1 VectOr ProCeSSOTS.......cccciviviiiiuiiiiiitcnciierene s 251
6.1.2 AITQY PIOCESSOTS....coiviviriniiiiininiiietencie s 254
6.1.3 Multiprocessor SYStemS...........cccuiiimimimiimiimeieiiiceeneencenenenens 257
6.1.4 Multicomputer SYStemS.........ccccvriimimiiiiiiiiicceeeeceenenes 271

6.2 Interconnection networks for parallel systemscccccceueueiiuiueunnnns 274
6.2.1 Purposes of interconnection networkscccccocccuiicennne. 275
6.2.2 Interconnection network terms and conceptsccccccuueeee. 275

6.2.2.1 Master and slave nodesccccevuvuvieiiinvvviniiiinnnne 276
6.2.2.2 Circuit switching vs. packet switchingccccc...... 276
6.2.2.3 Static and dynamic networkscccccevvviiiinnnne 279
6.2.2.4 Centralized control vs. distributed control................ 279
6.2.2.5 Synchronous timing vs. asynchronous timing.......... 280
6.2.2.6 Node connection degree..........cccceceuvururuiuiririririiicunnennne 281
6.2.2.7 Communication distance and diameter...................... 281
6.2.2.8 Cost, performance, expandability, and

fault tolerance..........cccoovvivevininininininininin e 282

6.3 Static interconnection NEtWOIKSccccceueuriiiiiciiininiiiiiiccccccrne 285
6.3.1 BUSES .ot 285
6.3.2 Linear and ring topologiesccccoeiiiiiiiiiiiiiiicnen 287
6.3.3 Star NEtWOTIKSccoiiiiiiiicicccccccc e 288
6.3.4 Tree and fat tree NetWoOrks........ccocoiiiiiiiiiiiiiicice 289
6.3.5 Nearest-neighbor meshccccccoecunicinicinivcnivcnicnccee 290
6.3.6 Torus and Illiac NEtWOTKSccccoimiimimiiiiiiiiicccccccce 291
6.3.7 Hypercube networks ..o 293
6.3.8 Routing in static NetWOrks ... 295

6.4 Dynamic interconnection networks..........ccccccceeivvniiiininiicinnns 300
6.4.1 Crossbar SWItChccovcuiiiiriiiciniciccccce s 300
6.42 Recirculating networks..........ccccceiiiiiiiiiiiiiccccccenes 304
6.4.3 Multistage NEtWOTIKSccccciuimiiiiiiiiiiicccccccccees 305

6.4.3.1 Blocking, nonblocking, and rearrangeable
NEtWOTKS ..o 306

6.5 Chapter WIAP-UP....ccoucuieuiciricieiceeieieieee e seae 311

6.6 Review qUESLIONS ...t 312

Chapter 7 Special-purpose and future architectures 317

7.1 Dataflow machinesccccocviueinieinicinicinicicccecc s 318

7.2 Artificial neural NEtWOTIKS ..o 326

7.3 Fuzzy logic architectures ..o 333

74 Quantum COMPULING......cccovviiiiiiiiiiiiieee e 340

7.5 Chapter WIap-Up......ccccoieieiciiiiiicicici s 346

7.6 Review qUESHONSccoveviiiiicicccc s 346

Appendix Reference and further reading materials with

web links 351
Chapter 1: Introduction to computer ar chitecture..........c..ccevccuvecuricunecnnne. 351
Chapter 2: Computer memory SYStEIMSc.ccuveueureuereremseeemreeenseeemseeenensennne 352
Chapter 3: Basics of the central pr ocessing unitccecccueeeurecuricunecnnnn. 353
Chapter 4: Enhancing CPU performanceccooeeveeuneeuieuneemneensecnnn. 354
Chapter 5: Exceptions, interrupts, and input/output systems 356
Chapter 6: Parallel and high-performance systemsccccoccuveeeuruvcunucnnce. 356
Chapter 7: Special-purpose and futur e architecturesccccoecuvuecurucunee. 359
Computer architecture (general)cccoveeuieinieinieinicnienieeeeeeeeenene 361

chapter one

Introduction to computer
architecture

“Computer architecture” is not the use of computers to design buildings
(though that is one of many useful applications of computers). Rather, com-
puter architecture is the design of computer systems, including all of their
major subsystems: the central pr ocessing unit (CPU), the memory system,
and the input/output (I/O) system. In this intr oductory chapter, we will
take a brief look at the history of computers and consider some general topics
applicable to the study of computer ar chitectures. In subsequent chapters
we will examine in mor e detail the function and design of specific parts of
a typical modern computer system. If your goal is to be a designer of com-
puter systems, this book will pr ovide an essential intr oduction to general
design principles that can be expanded upon with mor e advanced study of
particular topics. If (as is per haps more likely) your car eer path involves
programming, systems analysis or administration, technical management,
or some other position in the computer or information technology field, this
book will provide you with the knowledge equired to understand, compare,
specify, select, and get the best performance out of computer systems for
years to come. No one can be a tr ue computer professional without at least
a, basic understanding of computer architecture concepts. So let’s get under
way!

1.1 What is computer architecture?

Computer architecture is the design of computer systems, including all of
their major subsystems including the CPU and the memory and I/ O systems.
All of these parts play a major r ole in the operation and performance of the
overall system, so we will spend some time studying each. CPU design starts
with the design of the instr uction set that the pr ocessor will execute and
includes the design of the arithmetic and logichar ~ dware that performs
computations, the register set that holds operands for computations, the
control unit that carries out the execution of instr uctions (using the other

2 Computer Architecture: Fundamentals and Principles of Computer Design

components to do the work), and the internal buses, or connections, that
allow these components to communicate with each other . Memory system
design uses a variety of components with dif fering characteristics to form
an overall system (including main, or primary memory and secondary mem-
ory) thatis af fordable while having suf ficient storage capacity for the
intended application and being fast enough to keep up with the CPU’s
demand for instructions and data.

I/0O system design is concerned with getting pr ograms and data into
the memory (and ultimately the CPU) and communicating the computa-
tional results to the user (or another computing system) as quickly and
efficiently as possible. None of these subsystems of a modern computer is
designed in a vacuum; each of them af fects, and is af fected by, the charac-
teristics of the others. All subsystems must be well matched, and well suited
to the intended application, in or der for the overall system to perform well
and be successful in the marketplace. A system that is well designed and
well built is a powerful tool that multiplies the pr oductivity of its users; a
system that is poorly designed, or a poor implementation of a good design,
makes an excellent paperweight, doorstop, or boat anchor .

1.1.1 Architecture vs. implementation

It is important to distinguish between the design (or arhitecture) of a system
and the implementation of that system. This distinction is easily understood
through an analogy between computer systems and buildings.

Computer architecture, like building ar chitecture, involves first of all a
conceptual design and overall plan. Architects ask, “What is this building
(or computer) going to be used for , and what is the general appr oach we
will take to fulfill the requirements of that application?” Once these general
decisions are made, the architect has to come up with a more specific design,
often expressed in terms of drawings (blueprints) and other specifications
showing the general composition and layout of all the parts of the building
or computer. This tells how everything will fit together at the higher levels.

When the design gets down to the level of specification of the actual
components, the building or computer ar chitect needs to have engineering
knowledge (or enlist the help of a constr uction or computer engineer) in
order to make sure the paper design is feasible given available materials. A
construction engineer needs to make sue the building foundation and beams
will carry the r equired loads, that the heating and air conditioning units
have sufficient capacity to maintain the temperature of the building, and so
on. A computer engineer must make sure the electrical, mechanical, thermal,
timing, control, and other characteristics of each component are sufficient to
the job and compatible with the other components of the system. The r esult
of all this architectural and engineering effort is a design specification for a
building or for a computer system. However , this specification exists only
on paper — or, more likely, as computer aided design (CAD) files containing
the drawings and specifications.

Chapter one: Introduction to computer architecture 3

If one wants to have an actual building to occupy, or a computer system
to use, it must be built in the physical world. This, of course, is what we
mean by implementation. In the case of a building, the design documents
prepared by the ar chitect and engineer ar e given to a contractor who uses
components made of various materials (steel, wood, plastic, concr ete, glass,
etc.) to construct (implement) an actual building. Likewise, the design pr o-
duced by a computer architect or engineer must be put into production and
built using various electrical and mechanical components. The end result —
the implementation — is a working computer system.

It should be obvious that for the end poduct to be a poperly functioning
building or computer, both the ar chitectural plan and the physical imple-
mentation must be done well. No amount of attention to quality in constmc-
tion will turn an inadequate design into a building, or computer, that meets
the requirements of the intended application. However , even the best and
most well-thought-out design can be r uined by using substandard compo-
nents or shoddy workmanship. For a good end r esult, all aspects of design
and implementation must come together.

We should also recognize that while a clear distinction should be made
between architecture and implementation, they ar e intimately interrelated.
Neither architecture nor implementation exist in a vacuum; they are like two
sides of a coin. Architectural vision affects the type of technologies chosen
for implementation; new implementation technologies that ar e developed
can broaden the scope of arcchitectural design. Taking the example of building
architecture again, in the past all buildings wer e made of materials such as
stone and wood. When ir on was discovered and first used as a building
material, it allowed ar chitects to design new types of buildings that had
previously been impossible to build. The advent of steel and concr ete
enabled the design and constr uction of skyscrapers that could never have
existed before the invention of those materials. Modern materials such as
polymers continue to expand the possibilities available to building achitects.
Sometimes the desire to include certain ar chitectural features in buildings
has led to the development of new constr uction materials and techniques,
or at least to new applications for existing materials.

Building architecture and implementation have pogressed hand in hand
over the course of human civilization, and the vision of computer ar chitects
and the available implementation technologies have likewise (over a much
shorter time, but at a much faster pace) moved forwar d hand in hand to
create the computers we used in the past, the ones we use today , and the
ones we will use tomorr ow.

1.2 Brief history of computer systems

Computing devices of one type or another have existed for hundr eds of
years. The ancient Gr eeks and Romans used counting boar ds to facilitate
mathematical calculations; the abacus was intr oduced in China around A.D.
1200. In the seventeenth century Schickar d, Pascal, and Leibniz devised

4 Computer Architecture: Fundamentals and Principles of Computer Design

mechanical calculators. The first design for a ppgrammable digital computer
was the analytical engine pr oposed by Charles Babbage in 1837. Given the
technology available at the time, the analytical engine was designed as a
mechanical, rather than electr onic, computer; it presaged many of the con-
cepts and techniques used in modern machines but was never built due to

a lack of funding. Ada Augusta, Countess of Lovelace, developed “car ds”
(programmed instructions) to demonstrate the operation of the pr oposed
analytical engine, and to this day is r evered as the first computer pr ogram-
mer. Though Babbage’s machine was never commer cially successful,
mechanical punched-card data processing machines were later developed
by Herman Hollerith and used to tabulate the results of the 1890 U.S. census.
Hollerith’s company later mer ged with another to become International
Business Machines (IBM).

While Babbage’s design was based on the decimal (base 10) system of
numbering used by most cultur es, some of his contemporaries such as
George Boole and Augustus DeMorgan were developing a system of logical
algebra (today known as Boolean algebra) that pr ovides the theor etical
underpinnings for modern computers that use a two-valued, or binary, sys-
tem for representing logical states as well as numbers. Boolean algebra was
an intellectual curiosity without practical applications until a young math-
ematician named Claude Shannon recognized (in his 1937 master’s thesis at
the Massachusetts Institute of Technology) that it could be used in designing
telephone switching networks and, late; computing machines. Boolean alge-
bra is the logical basis for virtually all modern digital computer design.

Besides Babbage’s engine and Hollerith’s punched-car d machine,
another type of “computer” pr edated the existence of modern digital com-
puters. From the early twentieth century, mechanical and electrical “analog
computers” were used to solve certain types of pr oblems that could be
expressed as systems of differential equations with time as the independent
variable. The term computer is in quotes because analog computers are more
properly called analog simulators. They do not actually perform discrete com-
putations on numbers, but rather operations such as addition, subtraction,
integration, and dif ferentiation of analog signals, usually r epresented by
electrical voltages. Analog simulators are continuous rather than discrete in
their operation, and they operate onr eal values; numbers ar e measured
rather than counted. Thus, there is no limit, other than the tolerances of their
components and the resolution of the measuring apparatus, to the precision
of the results obtained. During the 1930s, 1940s, 1950s, and even into the
1960s analog simulators wer e widely used to simulate r eal-world systems,
aiding research in such fields as power plant contr ol, aircraft design, space
flight, weather modeling, and so on. Eventually, however, analog simulators
were rendered obsolete by digital computers as they became more powerful,
more reliable, and easier to pr ogram. Thus, in the r est of our discussion of
the history of computing devices we will r estrict ourselves to the electr onic
digital computing devices of the twentieth, and now the twenty-first,
centuries.

Chapter one: Introduction to computer architecture 5

1.2.1 The first generation

During the late 1930s and early 1940s, mostly as part of the Allied effort to
win World War II, digital computers as we know them today got their start.
The first generation (appr oximately late 1930s to early 1950s) of computer
systems were one-of-a-kind machines, each custom built for a particular
purpose. Computers of the early 1940s, such as the Mark-I (also known as
the IBM Automatic Sequence Controlled Calculator or ASCC) and Mark-II
machines built by Howard Aiken at Harvard University, were typically built
using electromagnetic relays as the switching elements. This made them very
slow. Later machines wer e built using vacuum tubes for switching; these
were somewhat faster, but not very reliable. (Tubes, like light bulbs, have a
nasty habit of burning out after a few hundr ed or a few thousand hours of
use.) Two of the first electronic computers built using vacuum tube technol-
ogy were the Atanasoff-Berry Computer (ABC) developed at Iowa State
University and the Electronic Numerical Integrator and Calculator (ENIAC)
built by John Mauchly and J. Pesper Eckert at the University of Pennsylvania
for the U.S. Army Ordnance Department’s Ballistic Resear ch Laboratories.
ENIAC, which was used to calculate bomb trajectories and later to help
develop the hydrogen bomb, was more similar to today’s pocket calculators
than to our general-purpose computers, as it was not a stor ed-program
machine. Connections had to be r ewired by hand in or der to program dif-
ferent calculations.

The first modern computer designed to r un software (program instruc-
tions stored in memory that can be modified to make the machine perform
different tasks) was the Electr onic Discrete Variable Computer (EDV AC)
designed by Mauchly, Eckert, and John von Neumann of Princeton Univer -
sity. EDVAC was designed to perform sequential pr ocessing of instructions
that were stored in memory along with the data, characteristics of what has
become known as the von Neumann architecture (to be discussed further in
Section 1.3.1). It is debatable whether von Neumann deserves primary credit
for the idea — the report outlining EDVAC'’s design mysteriously bore only
his name, though several other r esearchers worked on the pr oject — but
what is certain is that the stored-program concept was a major step forward
in computer design, making general-purpose machines feasible. To this day,
most computers ar e still basically von Neumann machines with some
enhancements.

While the original EDV AC design was never built (it was eventually
modified and built as Princeton’s Institute for =~ Advanced Studies [IAS]
machine), its concepts were used in many other machines. Maurice W ilkes,
who worked on EDVAG, built the Electronic Delay Storage Automatic Cal-
culator (EDSAC), which became the first operational stor ed-program com-
puter using the von Neumann ar chitecture. In 1951, the first commer cially
available computer was pr oduced by the Remington-Rand Corporation.
Based on the stored-program designs of the EDVAC and EDSAC, this com-
puter was known as the UNIV AC I (for Universal Automatic Computer).

6 Computer Architecture: Fundamentals and Principles of Computer Design

The first of 46 of these machines wer e delivered to the U.S. Census Bur eau
in 1951; the following year, another UNIVAC found the spotlight as it was

used to predict the outcome of the Eisenhower-Stevenson pr esidential race
on election night. With only 7% of the vote counted, the machine pr ojected
a win for Eisenhower with 438 electoral votes (he ultimately r eceived 442).

1.2.2 The second generation

The second generation (appr oximately, mid 1950s to early 1960s) of digital
computer systems were the first machines to make use of the new solid-state
transistor technology. The transistor, invented in 1947 by John Bar ~ deen,
Walter Brattain, and W illiam Shockley of Bell Laboratories, was a major
improvement over vacuum tubes in terms of size, power consumption, and
reliability. This new implementation technology paved the way for many
architectural enhancements, mainly by allowing the total number of switch-
ing elements in machines to incr ease.

Vacuum tube-based computers could never have more than a few thou-
sand switching elements because they wer e constantly malfunctioning due
to tube failures. The mean time between failures (MTBF), or average lifetime,
of vacuum tubes was only about 5,000 hours; a system containing 5,000 tubes
could thus be expected to have a haxdware-related crash about once per hour
on average, while a system with 10,000 of the same type of tubes would
average one failure every half hour of operation. If the machine was tor un
long enough to do any meaningful calculations, it could only contain a
limited number of tubes and (since all logic r equired switching elements) a
very limited set of featur es.

Then, along came the transistor with its much longer life span. Even the
earliest transistors had a typical MTBF of hundreds of thousands or millions
of hours — one or two orders of magnitude better than vacuum tubes. They
were also much smaller and generated less heat, allowing components to be
more densely packaged. The result of these factors was that second genera-
tion computers could be mor e complex and have mor e features than their
predecessors without being as large, expensive, or power-hungry and with-
outbreaking down as often. Some arhitectural features that were not present
in first generation machines but were added to second generation computers
(and are still used in modern machines) include har dware representation of
floating-point numbers (introduced on the IBM 704 in 1954), hardware inter-
rupts (used in the Univac 1 103 in 1954), general-purpose r egisters used for
arithmetic or addressing (used in the Ferranti Pegasus in 1956), and virtual
memory (introduced on the University of Manchester ’s Atlas machine in
1959). The IBM 709, released in 1958, featured asynchronous I/O controlled
by independent, parallel processors as well as indirect addressing and hard-
ware interrupts.

Another technology that came into use with the second generation of
computer systems was magnetic core memory. Core memory stor ed binary
information as the magnetized states of thousands of tiny, doughnut-shaped

Chapter one: Introduction to computer architecture 7

ferrite rings, or “cores.” This technology reduced the space and power equired
for large amounts of storage. While typical first generation computers had
only 1 to 4 KB of main memory in the form of delay lines, vacuum tubes, or
other primitive storage technologies, second generation computers could have
comparatively huge main memories of, for example, 16 KB up to 1 MB of coe.
This increase in the size of main memory af fected the types of instr uctions
provided, the addressing modes used to access memory, and so on.

Despite technological advances, second generation machines wer e still
very bulky and expensive, often taking up an entir e large room and costing
millions of dollars. The relatively small IBM 650, for example, weighed about
a ton (not counting its 3000-pound power supply) and cost $500,000 in 1954.
Of course, that would be several millions of today’s dollars! Cor e memory
cost on the or der of a dollar per byte, so the memory system alone for a
large computer could have a cost in the seven-figur e range.

With such large, expensive systems being built, no or ganization could
afford to run just one program, get an answer, then manually load the next
program and run it (as was done with the first generation machines). Thus,
during this time came the advent of the first batch processing and multipro-
gramming operating systems. Batch pr ocessing meant that pr ograms were
loaded and executed automatically by the system instead of the operator
loading them manually. Multiprogramming meant that more than one pro-
gram was resident in memory at the same time (this, of course, was made
possible by the lar ger main memory space). By keeping multiple pr ograms
ready to run and by allowing the system to switch between them automat-
ically, the expensive CPU could be kept busy instead of being idled, awaiting
human intervention. Programs were still executed one at a time, but when
one program was completed, or encounter ed an I/O operation that would
take some time to complete, another pr ogram would be started to occupy
the CPU’s time and get useful work done.

The first attempts to make human pr ogrammers more productive also
occurred during this time. Assembly language, as a shorthand or mnemonic
form of machine language, was first developed in the early 1950s. The first
high-level languages, Fortran (Formula T ranslation), Algol (Algorithmic
Language), and COBOL (Common Business-Oriented Language), came
along a few years later. It is interesting to note that computer pioneer John
von Neumann opposed the development of assemblers and high-level lan-
guage compilers. He pr eferred to employ legions of human pr ogrammers
(mostly low-paid graduate students) to hand-assemble code into machine
language. “It is a waste of a valuable scientific computing instr ument,” von
Neumann reportedly said, “to use it to do clerical work.” Fortunately his
point of view did not win out!

1.2.3 The third generation

The third generation (approximately mid 1960s to early 1970s) marked the
first use of integrated circuits in computers, replacing discrete (individually

8 Computer Architecture: Fundamentals and Principles of Computer Design

packaged) transistors. Integrated circuits (ICS) are semiconductor chips con-
taining multiple transistors — starting with one or two dozen transistors
comprising a few gates or flip-flops (small scale integration [SSI]) and later
increasing to a few hundred transistors (medium scale integration or [MSI]),
which allowed an entir e register, adder, or even an arithmetic logic unit
(ALU) or small memory to be fabricated in one package. Cor e memory was
still common in thir d generation computers, but by the 1970s cor e was
beginning to be r eplaced by cheaper, faster semiconductor IC memories.
Even machines that used a magnetic cor e for main storage often had a
semiconductor cache memory (see Section 2.4) to help impr ove performance.

Integrated circuits continued the trend of computers becoming smaller,
faster, and less expensive. All first and second generation machines wer e
what would come to be called mainframe computers. The third generation
saw the development of the first minicomputers, led by Digital Equipment
Corporation’s (DEC) PDP-8, which was introduced in 1964 and cost $16,000.
DEC followed it with the mor e powerful PDP-11 in 1970. Data General
brought the Nova minicomputer to market in 1969 and sold 50,000 machines
at $8,000 each. The availability of these small and r elatively inexpensive
machines meant that rather than an or ganization having a single, central
computer shared among a large number of users, small departments or even
individual workers could have their own machines. Thus, the concept of a
workstation computer was born.

Also during the thir d generation, the first of what came to be called
supercomputers were designed. Contr ol Data Corporation intr oduced the
CDC 6600, widely considered to be the first super computer, in 1964. A key
contributor to the machine’s design was Seymour Cray, who later left CDC
to form his own very famous super computer company. The 6600 was the
fastest computer in the world at the time — r oughly three times the speed
of the IBM Str etch machine, which pr eviously held that title. The main
processor operated at a 10-MHz clock fr equency (unheard of at the time)
and was supported by 10 parallel execution units. It could execute a
then-astonishing 3 million instructions per second and cost about $7 million
in mid-1960s dollars.

The 6600 was followed in 1968 by the even mor e powerful CDC 7600,
which topped out at 15 million instr uctions per second. The 7600 had a
heavily pipelined architecture and is considered the first vector processor (Mr.
Cray would go on to design many mor e). Other third generation vector
computers included the CDC Star -100 and Texas Instruments’ Advanced
Scientific Computer (TI-ASC), both announced in 1972. The third generation
also saw the development of some of the first high-performance parallel
processing machines, including W estinghouse Corporation’s SOLOMON
prototype and later the ILLIAC IV (a joint ventur e between the University
of Illinois, the U.S. Department of Defense, and Burr oughs Corporation).

The third generation also gave us the first example of a “family” of
computers: the IBM System /360 machines. IBM of fered multiple models of
the 360, fr om low-end machines intended for business applications to

Chapter one: Introduction to computer architecture 9

high-performance models aimed at the scientific computing market. Though
their implementation details, performance characteristics, and price tags
varied widely, all of the IBM 360 models could run the same software. These
machines proved very popular, and IBM sold thousands of them. Ever since,
it has become common practice for computer manufactur ers to offer entire
lines of compatible machines at various price and performance points.

Software-related developments during the thir d generation of comput-
ing included the advent of timesharing operating systems (including the first
versions of UNIX). Virtual memory became commonly used and new, more
efficient computer languages were developed. While third generation hard-
ware was becoming more complex, computer languages were being simpli-
fied. Combined Pr ogramming Language (CPL), developed cir ca 1964 at
Cambridge University and the University of London, was an attempt to
streamline the complicated Algol language by incorporating only its most
important features. Ken Thompson of Bell Laboratories continued the trend
of simplifying computer languages (and their names), intr oducing the B
language in 1970. Move to the head of the class if you can guess which
language he helped develop next!

1.2.4 The fourth generation

The fourth generation (approximately mid 1970s to 1990) saw the continuing
development of LSI (large-scale integration) and VLSI (very large-scale inte-
gration) integrated circuits containing tens or hundr eds of thousands, and
eventually millions, of transistors. For the first time, an entire CPU could be
fabricated on one semiconductor micr ocircuit. The first microprocessor, or
“CPU on a chip,” was Intel’s 4-bit 4004 pr ocessor, which debuted in 1971. It
was too primitive to be of much use in general-purpose machines, but useful
8-, 16-, and even 32-bit micr oprocessors followed within a few years; soon
essentially all computers had a single-chip micr oprocessor “brain.” Semi-
conductor main memories made of VLSI RAM and ROM devices became
standard, too. (Though cor e memory became extinct, its legacy lives on in
the term core dump, which refers to the contents of main memory logged for
diagnostic purposes when a crash occurs.) As VLSI components became
widely used, computers continued to become smaller , faster, cheaper, and
more reliable. (The more components that are fabricated onto a single chip,
the fewer chips must be used and the less wiring is equired. External wiring
is more expensive and more easily broken than on-chip connections and also
tends to reduce speeds.) The Intel 486 CPU, introduced in 1989, was the first
million-transistor microprocessor. It featured an on-chip floating-point unit
and cache memory and was in many ways the culmination of fourth gener -
ation computer technology.

The invention of the microprocessor led to what was probably the most
important development of the fourth generation: a new class of computer
system known as the microcomputer. Continuing the tr end toward smaller
and less expensive machines begun by the minicomputers of the 1960s and

10 Computer Architecture: Fundamentals and Principles of Computer Design

early 1970s, the advent of micr ocomputers meant that almost anyone could
have a computer in his or her home or small business. The first micr ocom-
puters were produced in the mid- to late 1970s and wer e based on 8-bit
microprocessors. The Altair computer kit, introduced in 1975, was based on
the Intel 8080 microprocessor. Over 10,000 Altairs were shipped to enthusi-
astic hobbyists, and the micr ocomputer revolution was under way . (Bill
Gates and Paul Allen of Micr osoft got their start in the micr ocomputer
software business by developing a BASIC interpreter for the Altair.) Califor-
nians Steve Wozniak and Steve Jobs quickly joined the wave, developing the
Apple I computer in W ozniak’s garage using a Mostek 6502 as the CPU.
They refined their design and cr eated the Apple II in 1977; it outsold its
competitors (the 6502-based Commodore Pet and the Radio Shack TRS-80,
based on a Zilog Z80 pr ocessor) and became a huge success.

IBM saw the success of the Apple II and decided to enter the microcom-
puter market as well. The IBM Personal Computer (or PC) was an immediate
hit, prompting other manufacturers to create compatible “PC clones” using
Intel’s 16-bit 8086 pr ocessor. (The IBM PC and PC/XT actually used the
cheaper 8088 chip, which was ar chitecturally identical to the 8086 but had
an 8-bit external interface). The availability of compatible machines fr om
competing manufacturers helped bring down the price of har dware and
make PCs a mass market commodity .

While IBM was enjoying the success of the original PC and its successor,
the PC/ AT (which was based on Intel’s faster 80286 CPU), Wozniak and Jobs
were developing new systems around Motorola’s 16/32-bit 68000 family of
microprocessors. Their ambitious Apple Lisa (the first micr ocomputer with
a graphical user interface [GUI]) cost too much (about $10,000) to gain wide
acceptance. However, its successor the Apple Macintosh (launched in 1984)
incorporated many of Lisa’s featur es at about one-fourth the price and
gained a large following that continues to the pr esent day.

Acceptance of microcomputers was greatly increased by the develop-
ment of of fice applications softwar e. Electric Pencil, written by Michael
Shrayer for the Altair, was the first miciocomputer word processing program.
Electric Pencil was not a big commercial success, but it was followed in 1979
by WordStar, which gained widespr ead acceptance. dBase, the database
management package, and V isiCalc, the first micr ocomputer spreadsheet
program (originally developed for the Apple II) also appear ed in 1979. In
particular, the spreadsheet program VisiCalc and its successor Lotus 1-2-3
(developed for the IBM PC) helped pr omote the use of micr ocomputers in
business. Microsoft, which got its start with Altair BASIC, won the contract
to develop the PC-DOS (later generically marketed as MS-DOS) operating
system and a BASIC interpr eter for the IBM PC. Soon Micr osoft branched
out into applications as well, intioducing Microsoft Works (a combined word
processor, spreadsheet, database, graphics, and communication program) in
1987. The Windows operating system and Microsoft Office (the successor to
Works) gained massive popularity in the 1990s and the r est, as the saying
goes, is history.

Chapter one: Introduction to computer architecture 11

While microcomputers were becoming smaller, less expensive, and more
accessible to the masses, supercomputers were becoming more powerful and
more widely used. The first new super computer of the fourth generation,
the Cray-1, was introduced in 1976 by Seymour Cray, who had left CDC to
form his own company, Cray Research, Inc. The Cray-1 cost about $8 million
and could execute over 80 million floating-point operations per second
(MFLOPS). Within a few years, Cray followed this machine with the X-MP
(Cray’s first multiprocessor supercomputer) in 1982, the Cray-2 in 1985, and
the Y-MP in 1988. The eight-processor Y-MP had a peak speed of over 2600
MFLOPS, about 30 times the performance of the Cray-1.

Cray Research was not the only company developing fourth generation
supercomputers. Most of Cray’s competition in the ar ea of high-end vector
machines came fr om Japanese manufactur ers. Some important Japanese
supercomputers of the 1980s included the Nippon Electric Company (NEC)
SX-1 and SX-2 systems, intr oduced in 1983; Fujitsu’s VP-100 and VP-200
machines (1983), followed by the VP-400 in 1986; and Hitachi’s S-820/80
supercomputer released in 1987. While the dominant supercomputers of this
period were mostly pipelined vector machines, the fourth generation also
saw the debut of highly parallel super computers. The massively parallel
processor (MPP), first proposed in 1977 and delivered in 1983 by Goodyear
Aerospace Corporation to NASA Goddard Space Flight Center , was a
one-of-a-kind machine constructed from 16,384 1-bit processors. A few years
later (1986-1987), Thinking Machines Corporation enter ed the super com-
puter market with its Connection Machine CM-1 and CM-2 systems. These
machines contained 65,536 processors each; with over 70 installations, they
were the first commercially successful massively parallel super computers.

While most of the new developments of the fourth generation of com-
puters occurred at the high and low ends of the market, traditional main-
frames and minicomputers were still in widespread use. IBM continued to
dominate the mainframe computer market, introducing a series of upgrades
(more evolutionary than revolutionary) to its System /370 line of machines,
which had replaced the System/360 in 1970. Among IBM’s workhorse fourth
generation mainframes wer e the 3030 series (1977-1981), the 3080 series
(1980-1984), the 3090 series (1985-1989), and the 4300 series (1979-1989). All
of these machines saw extensive use in a variety of medium to lage business
applications.

The dominant minicomputer of the fourth generation was Digital Equip-
ment Corporation’s VAX series, which was a successor to the popular
PDP-11. DEC’s VAX 11/780, released in 1977, was the first minicomputer
with a 32-bit architecture, allowing large amounts of memory to be addessed
at once by the pr ogrammer. It was also the first minicomputer to execute
one million instructions per second. (The V. AX acronym stood for V irtual
Address Extension and the operating system, VMS, stood for V irtual Mem-
ory System.) To address compatibility concerns, early VAX models incorpo-
rated a PDP-11 emulation mode to ease migration to the newer system. The
11/780 was followed by models 11/750 and 11/730, which had close to the

12 Computer Architecture: Fundamentals and Principles of Computer Design

same performance but were smaller and cheaper. Higher performance needs
were addressed by the dual-processor 11/782 and the 11/785. Largely due
to the success of these computers, by 1982 DEC was the number two com-
puter company in the world, behind only IBM. DEC remained a major force
in the market as it continued to expand the V. AX line through the 1980s,
developing the higher performance 8x00 series machines and the microVAX
line of microcomputers that were compatible with DEC’s lar ger and more
expensive minicomputers.

Characteristics of fourth generation machines of all descriptions include
direct support for high-level languages either in har dware (as in traditional
Complex Instruction Set Computer (CISC) ar chitectures) or by using opti-
mizing compilers (characteristic of Reduced Instuction Set Computer (RISC)
architectures, which wer e developed during the fourth generation). The
MIPS and SPARC architectures gave rise to the first RISC micr oprocessors
in the mid-1980s; they quickly rose to challenge, and in many cases r eplace,
dominant CISC microprocessors like the Motorola 680x0 and Intel x86 CPUs
as well as IBM’s mainframes and DEC’s minicomputers. We will study these
competing schools of ar chitectural thought and their implications for com-
puter system design in Chapters 3 and 4.

With the advent of har dware memory management units, timesharing
operating systems and the use of virtual memory (previously available only
on mainframes and minicomputers) became standar d on microcomputers
by the end of the fourth generation. By giving each program the illusion that
it had exclusive use of the machine, these techniques made pr ogramming
much simpler. Compilers were considerably improved during the 1970s and
1980s, and a number of new programming languages came into use. BASIC,
a language simple enough to be interpr eted rather than compiled, became
popular for use with microcomputers. In 1984, Borland’s inexpensive Turbo
Pascal compiler brought high-level language programming to the personal
computer mainstream. Meanwhile, C (developed in 1974 by Dennis Ritchie
of Bell Laboratories asar efinement of Ken Thompson’s B) became the
dominant language for systems (especially UNIX) programming. Fortran 77
was widely used for scientific applications, and Ada was adopted by the
U.S. military in 1983 for mission-critical applications. Finally, object-oriented
programming got its start during the fourth generation. C++ was developed
by Bjarne Stroustrup at Bell Laboratories during the early 1980s; the first
version of the new OO language was r eleased in 1985.

1.2.5 Modern computers: the fifth generation

The fifth generation (appr oximately 1990 to the pr esent) of computing sys-
tems can arguably be termed more evolutionary than revolutionary, at least
in terms of ar chitectural features. Indeed, consensus is so vague on what

constitutes a fifth generation machine that some authors contend we are still
in the fourth generation, while others proclaim current machines as the sixth
generation of computers. This just goes to show how dif ficult it is to write

Chapter one: Introduction to computer architecture 13

about history while one is living it. Modern machines, which at least in this
text will be r eferred to as the fifth generation, use VLSI and ULSI (ultra
large-scale integration) chips with tens or hundreds of millions of transistors
to perform many complex functions such as graphics and multimedia oper -
ations in hardware. Processors have become more internally parallel (using
techniques such as superscalar and superpipelined design to execute mor e
instructions per clock cycle), and parallelism using multiple piocessors, once
found only in mainframes and super computers, is now common even in
home and small business systems. Pr ocessor clock speeds that r eached the
tens of megahertz in fourth generation machines ar e now in the hundr eds
and thousands of megahertz (1 GHz = 1000 MHz.) Intel’s Pentium micr o-
processor, introduced in 1993, had two pipelined execution units and was
capable of executing 100 million instr uctions per second. Ten years later, its
successor the Pentium 4 r eached clock speeds of 3.2 GHz on a much mor e
highly concurrent internal ar chitecture, implying a micr oprocessor perfor-
mance improvement of roughly two orders of magnitude (100-fold) over
that time span.

With microprocessors becoming ever mor e powerful, microcomputers
are the story of computing in the fifth generation. Personal computers and
scientific and engineering workstations poweted by single or multiple micio-
processors, often coupled with lar ge amounts of memory and high-speed
but low-cost graphics car ds, have taken over many of the jobs once per -
formed by minicomputers (which ar e now practically extinct) and even
mainframes such as IBM's zSeries (which ae now mostly relegated to impor-
tant but “behind the scenes” applications in business transaction pocessing).
Even supercomputers are increasingly making use of standard microproces-
sor chips instead of custom-designed, special-purpose pr ocessors.

Supercomputing has undergone a transformation since the early 1990s.
The high-speed, pipelined vector processors of the late 1970s and 1980s only
proved cost-effective in a limited number of applications and have fallen out
of favor for all but extr emely numerically intensive computations done by
well-funded government agencies. By the 1990s Fujitsu and other manufac-
turers quit making vector computers, leaving NEC and Cray as the only
vendors of this type of system. Cray Computer Corporation was spun of ~ f
from Cray Research, Inc. to develop the Cray-3, but only one machine was
delivered before the company filed for Chapter 11 bankruptcy in 1995; plans
for the Cray-4 were abandoned. Tragically, supercomputer pioneer Seymour
Cray met the same fate as Cray Computer Corporation, perishing in an
automobile accident in 1996.

Cray Research, Inc. began to move toward nonvector, massively parallel,
microprocessor-based systems in the mid-1990s, producing its T3D and T3E
machines before being bought by Silicon Graphics, Inc. (SGI) in 1996. SGI’s
Cray Research division produced the SV1 vector supercomputer in 1998 but
was sold in March 2000 to Tera Computer Company and renamed Cray Inc.
Cray introduced the X1 (formerly codenamed the SV2) in 2002. Meanwhile,
in 2001 NEC signed an agreement with Cray Inc. to market its SX-5 and SX-6

14 Computer Architecture: Fundamentals and Principles of Computer Design

supercomputers, effectively combining all r emaining high-end vector
machines into a single vendor ’s product line.

By June 2005, only 18 of the top 500 super computers were vector pro-
cessors (including 9 Crays and 7 NEC machines). The other 482 were highly
parallel scalar machines, mostly built by IBM (259), Hewlett-Packar d (131),
and SGI (24). An increasing number of high-performance computer systems,
including 304 of the June 2005 top 500 super computers, are classified as
cluster systems composed of large numbers of inexpensive micr ocomputers
connected by high-speed communication networks. Many of these clusters
run the open-source Linux operating system, which has enjoyed a huge suge
in popularity in recent years for all classes of machines fr om PCs (where it
has begun to make inr oads into the popularity of Micr osoft’'s Windows
operating systems) to super computers.

Perhaps the most important characteristic of modern computer systems,
large or small, that distinguishes them from systems of previous generations
is the pervasiveness of networking. Up until a few years ago, virtually all
computers were designed as self-contained, stand-alone systems. The Inter -
net was virtually unknown outside of government installations and aca-
demia. Networking capabilities, if they existed at all, wer e separately
designed hardware and softwar e additions tacked onto a system not
designed with connectivity in mind. All this began to change in the fifth
generation. By the mid-1990s, modems had become fast enough to allow
reasonable dial-up connections between PCs (and their GUIs) and the Inter -
net. E-mail clients such as Eudora allowed easy electr onic communication,
and GUI browsers such as Mosaic (and later Netscape and Internet Explorer)
let users conveniently “surf” for hyperlinked information all over the World
Wide Web. Users quickly demanded mor e and better connectivity for even
low-end systems; ISDN (integrated services digital network) and eventually
DSL (digital subscriber line) and cable modem service wer e developed to
meet this demand.

Modern fifth generation computers and their operating systems ar e
designed “from the ground up” to be connected to wir ed and/or wireless
local area or wide area networks (LANs and WANSs) and the Internet. UNIX,
from which Linux was derived, has been network friendly for many years;
Apple and Microsoft have followed suit in integrating networking capabil-
ities into their operating systems as well. Even the newer pr ~ ogramming
languages such as Java are designed with a networked envionment in mind.
This focus on connectivity is not confined to traditional computer systems;
another characteristic of the latest generation of computing is the blurring
of distinctions between general-purpose computers and other communica-
tions devices such as cellular telephones, pagers, personal digital assistants
(PDAs), digital cameras and media players, and other devices with embed-
ded microprocessors. Users increasingly expect all of their electronic devices
to be able to conveniently exchange information, and modern fifth genera-
tion computer technology is meeting these demands in new ways every day.

Chapter one: Introduction to computer architecture 15

1.3 Types of computer systems

Many types of systems have been developed over the 60-plus year history
of modern computing machines. In the pr evious section, we encounter ed
several classifications of computers based on their size, speed, and intended
applications. The first lar ge computers, the descendants of which ar e still
used in demanding business applications, are referred to as mainframe com-
puters. (The name dates back to the days when the pr ocessor took up an
entire large frame, or mounting rack, str etching from the computer room’s
floor to the ceiling.) The somewhat less powerful (and considerably less
expensive) machines that came to be used by small gr oups or individuals
were smaller than mainframes and picked up the tag ofminicomputers. Micro-
computer is a very general classification; literally , it refers to any machine
using a microprocessor (or single-chip CPU) as its main processor. Common
types of microcomputers include personal computers (both desktop and laptop
or notebook machines), scientific and engineering workstations, which
include high-performance graphics har dware to support applications like
CAD and data visualization, handheld computers such as palmtops and
PDAs, which are designed to be easily carried or even worn by the user
microcontrollers, which are embedded inside other pr oducts from cellular
telephones to micr owave ovens to automobile transmissions, and digital
signal processors (DSPs), which are used to pr ocess digitized audio, video,
and other analog information. Even the most powerful scientific “num-
ber-crunching” machines known as supercomputers, which years ago wer e
always designed from custom hardware, are now often built of large clusters
of ordinary microcomputers. Ironically, the very r eason one seldom hears
the term microcomputer any more is its ubiquity — virtually all modern
computers are microcomputers.

As an alternative to classifying systems based on the descriptions above,
it is also sometimes useful to gr oup them not by size, speed, or application,
but by their underlying architectural design. The most fundamental distinc-
tion is between systems that have only one central processing unit and those
that use multiple (or parallel) processors. Individual CPUs may be described
as having a Princeton or Harvar d architecture; parallel systems may be
classified in several ways depending on the number and natur e of the pro-
cessing units and the means used to connect them. Some experimental or
special-purpose systems defy attempts at classification. We will briefly look
at some of the ar chitectural classifications of single and parallel systems
below, then examine them in mor e depth in the chapters to follow .

1.3.1 Single processor systems

Most general-purpose computer systems, even today , run programs on a
single CPU (or simply , “processor”). Although many enhancements have

been made over the years to the original idea, almost every pr ocessor avail-
able today is descended from — and owes much of its architecture to — the

16 Computer Architecture: Fundamentals and Principles of Computer Design

original von Neumann ar chitecture developed for the EDVAC and EDSAC

back in the 1940s. Thus, in order to understand the operation of present and

future architectures, it is important to first look back and consider the char -

acteristics of the first practical modern computing system: the von Neumann
machine.

The von Neumann architecture, also known as the Princeton arhitecture
because John von Neumann was a researcher at Princeton University’s Insti-
tute for Advanced Studies, was the first modern design for a computer based
on the stor ed program concept originally developed by Babbage. The
machine envisioned by von Neumann’s team was very simple by today’s
standards, but its main features are readily recognizable by anyone who has
studied the basic organization of most modern computer systems. The block
diagram of the von Neumann computer shown in Figur e 1.1 clearly shows
input and output devices as well as the single memory used to stor e both
data and program instructions. The control unit and arithmetic/logic unit
(ALU) of the von Neumann machine ar e key parts of the CPU in modern
microprocessors (internal registers were added later to provide faster storage
for a limited amount of data).

The goal of the original von Neumann machine was to numerically solve
scientific and engineering pr oblems involving differential equations, but it
has proven remarkably adaptable to many other classes of pr oblems from
weather prediction to word processing. It is so versatile that the vast majority
of computer systems today are quite similar, although much faster. The main
factor distinguishing the von Neumann ar chitecture from previous
machines, and the primary reason for its success and adoption as the dom-
inant computing paradigm, was the stor ed program concept. Because the
machine receives its instructions from an (easily modified) program in mem-
ory rather than from hard wiring, the same har dware can easily perform a
wide variety of tasks. The next four chapters will take a much more detailed
look at each of the major subsystems used in von Neumann-type machines.
Memory will be discussed in Chapter 2, the CPU in Chapters 3 and 4, and
I/0O in Chapter 5.

Control
----- unit -5

Output

Input i Memory

ALU

— Data/instruction flow
---» Control flow

Figure 1.1 Architecture of the von Neumann computer .

Chapter one: Introduction to computer architecture 17

Fetch
instruction

Decode
instruction

Generate address
of operand(s)

Fetch
operand(s)

Perform
operation

Store
result(s)

Figure 1.2 The von Neumann machine cycle.

The von Neumann machine cycle is illustrated in Figur e 1.2. This is the
process that must be carried out for each instr uction in a stor ed computer
program. When all the steps ar e complete for a given instr uction, the CPU
is ready to process the next instr uction. The CPU begins by fetching the
instruction (reading it from memory). The instr uction is then decoded —
that is, the hardware inside the CPU interprets the bits and determines what
operation needs to be done; the address (location) of the operand(s) (the data
to be operated on) is also determined. The operands ar e fetched from regis-
ters, memory locations, or an input device and sent to the ALU, where the
requested operation is performed. Finally, the results are stored in the spec-
ified location (or sent to an output device), and the pr ocessor is ready to
start executing the next instruction. We will examine the details of the hard-
ware required to carry out the von Neumann machine cycle when we discuss
the basics of CPU design in Chapter 3.

The Harvard architecture is an alternative computer or ganization devel-
oped by Howard Aiken at Harvard University and used in the Mark-I and
Mark-II machines. It aims to avoid the “von Neumann bottleneck” (the single
path to memory for accessing both instr uctions and data) by pr oviding
separate memories and buses for instructions and data (see Figure 1.3); thus,
instructions may be fetched while data ar e being read or written. Modern

Computer Architecture: Fundamentals and Principles of Computer Design

Main memory

I:;Z;%fj;n m?;tjr (holds instructions
Y Y and data)
Instruction Data “von Neumann | Memory
bus l l bus Bottleneck” bus
CPU CPU

Harvard architecture Princeton architecture

Figure 1.3 Harvard architecture vs. Princeton ar chitecture.

systems with Harvard architectures usually have a unified main memory ,
just like machines based on the Princeton ar chitecture, but achieve virtually
the same performance advantage as the original Harvar d architecture by
having separate cache memories (to be discussed in Section 2.4) for instr uc-
tions and data. With today’s emphasis on raw microprocessor speed and the
use of cache memories to bridge the CPU-memory speed gap, the Harvar d
architecture (which fell out of favor for years because of the extra complexity
and expense involved in building two memory interfaces) has once again
become widely used. It is particularly characteristic of modern, pipelined
RISC architectures, which we will discuss in Chapters 3 and 4.

1.3.2 Parallel processing systems

Systems that include more than one processor are considered to be parallel
systems. Here the term is not used in its strict geometrical sense (coplanar
lines that do not intersect), but rather to describe two or mor e pieces of
hardware that work together, being simultaneously engaged in the same (or
related) tasks. They are parallel in the sense of being independent but going
in the same direction. Perhaps a more accurate description of such a system
would be concurr ent or cooperative pr ocessing, but the use of the term
parallel processing is long established and unlikely to change. The first parallel
processing systems wer e produced in the late 1950s; they included the
Univac LARC, the Burroughs D825, and the IBM Sage machines.

There are many types of high performance computer architectures, most
of which are parallel to some greater or lesser extent. Some parallel systems
have only a few processors, for example, two or four; others are “massively
parallel,” employing hundreds or thousands of CPUs. There are multiproces-
sor systems, in which several processors share main memory modules, and
multicomputer systems, in which systems communicate over a network rather
than by sharing memory. Some high-performance systems (such as the Cray
and NEC systems described above) operate on vectors of data in a heavily
pipelined CPU; others, known asarray processors, use a large set of processing
elements to execute the same instr uction on all elements of lar ge arrays or

Chapter one: Introduction to computer architecture 19

matrices at once. All of these high-performance and parallel ar chitectures
will be discussed in gr eater detail in Chapter 6.

1.3.3 Special architectures

Some present and possible future computer systems are not easily classified
as Princeton or Harvar d architectures, nor do they r esemble any of the
parallel systems mentioned in the previous section and described in Chapter
6. The uniqueness of such ar chitectures means they ar e mostly used in
special-purpose machines rather than for general computing applications.
Some of these special ar chitectures include dataflow machines (to be dis-
cussed in Section 7.1), which avoid the sequential programming used in von
Neumann machines, artificial neural networks (Section 7.2), which are modeled
on the human brain and nervous system, and fuzzy logic architectures (Sec-
tion 7.3), which operate on values with a pr obability of being true or false,
rather than the absolute binary values 1 and 0.

Researchers are working to develop new computing devices based on
the principles of quantum physics rather than Boolean algebra. These
machines, if they prove to be practical, would use quantum effects to simul-
taneously perform vast numbers of calculations. Thus, quantum computers
of the future may be or ders of magnitude mor e powerful than the fastest
supercomputers of today and may possibly render other computer architec-
tures obsolete. Only time will tell whether the venerable von Neumann and
Harvard architectures, and their parallel descendants, will persist or go the
way of horse-drawn carriages. The possible characteristics of futur e
machines based on quantum principles will be discussed mor e fully in
Section 7.4.

1.4 Quality of computer systems

This section and the ones that follow deal with thr ~ ee concepts thatar e
mentioned frequently with regard to computer systems and that influence
their commercial success: quality, cost, and performance. Of course, high qual-
ity and high performance ar e good; no one wants to buy a system that is
low quality or that does not perform well. Conversely, lower cost is good —
as long as it does not compr omise quality or performance too much. But
what do these terms r eally mean? The main goal of the r est of this chapter
is to get the reader to think about what the termsquality, cost, and performance
mean in the context of a computer system. What does it mean to say that
one system has higher performance than another; by what yar dstick do we
measure performance? What, besides just the price tag on the system, could
be considered cost factors? What does it mean to say that one ar chitecture,
or one physical implementation of an ar chitecture, has higher quality than
another? What do we mean by the quality of computer systems, and might
different people have dif ferent definitions of it? What ar e some aspects of
quality? It is difficult to get people to agr ee on what is a good computer , a

20 Computer Architecture: Fundamentals and Principles of Computer Design

fast computer, or even an inexpensive computer — but we will explor e
possible answers to these questions.

1.4.1 Generality and applicability

Every type of computer system one might design, buy , or use is designed
with some application, or applications, in mind. Some computers, for exam-
ple, most desktop or notebook personal computers, ar e designed with the
idea of doing a variety of computing tasks at dif ferent times. You may use
the system at one moment to br owse the Web, then to balance your check-
book, then to draft a letter or memo, and then to r un a simulation for a
physics class or do a statistical analysis for a psychology experiment, or some
other application. We say that the PC you use to do all these things is a
general-purpose computer system, or that it has high generality. Unfortunately,
a computer that can do a variety of things r easonably well probably is not
exceptionally good at any of these tasks. As the old saying goes, “jack of all
trades — master of none.”

Special-purpose machines, however, are designed to do one type of task
very well. Often such machines are no better than average, and pethaps even
very poor, at doing other tasks. Microcontrollers such as Motorola’s 68HC12
series are very good for embedded contr ol processors in microwave ovens,
automobile transmissions, and the like, but would be abysmal at float-
ing-point number cr unching or even wor d processing. IBM’s mainframe
computers are good for pr ocessing large databases, but not so good for
real-time control. Cray supercomputers are excellent at large-scale scientific
computations but probably wouldn’t run an average-sized spreadsheet any
better than an Apple Power Macintosh (maybe not as well). If you need to
do one task very well, though, and ar e willing to pay for performance, a
special-purpose machine that is highly applicable — that is, tailored to your
specific application — is often the best way to go.

By now the reader has probably concluded that generality is a somewhat
problematic aspect of quality in that it is not always good, nor is it always
bad. The breadth of applications to be run on a particular system determines
how general its architecture and implementation should be. A more general
machine is more flexible, providing reasonable performance in many sce-
narios. Generality affects cost: a machine that appeals to a wider audience
is more marketable. Its design cost can be spread over more customers, and
economies of scale make implementing it less expensive; thus, each machine
can cost less. However, a more general architecture leads to a more complex
implementation — one in which the designers try to do a little of everything.
This may have a detrimental effect on quality, as the more complex a system
is, the more things can go wr ong. The main tradeof f is performance in a
specific area vs. performance on a general mix of applications. One should
always keep this in mind when specifying or pur chasing a system.

Chapter one: Introduction to computer architecture 21

1.4.2 Ease of use

Ease of use is an aspect of quality that is self-explanatory except for the
question of whose ease of use we ar e discussing. Fr om an ar chitectural
standpoint, ease of use is r eferenced from the system pr ogrammer’s point
of view rather than that of an applications pr ogrammer or the end user of
the system. In other words, ease of use and user friendliness ae two different
concepts. The systems programmers who write operating systems, compil-
ers, linkers, loaders, and so on need to know and use the details of a com-
puter architecture in order to extract the maximum performance fr om the
system. If these people do their jobs well, the end users and even the appli-
cations programmers do not need to know a gr eat deal about the details of
the architecture in order to realize good performance from the system. They
can just write, or r un, a high-level language pr ogram and let the compiler
and operating system optimize for performance. However , the job the sys-
tems programmers are able to do, and thus the performance attained by the
user’s applications, is influenced by the machine’s design and implementa-
tion. Some machines are easier to extract performance fiom than others. Does
the architecture make it easy to optimize applications, or do applications
have to fight the architecture to do what they need to do? Intel’s legacy 1A-32
(x86) architecture, for example, has been a challenge to systems pogrammers
for over 20 years. Excellent operating systems and compilers ar e available
for it, but there is some question as to whether they would have been even
better, and available sooner, if the x86 ar chitecture had more ease of use.

1.4.3 Expandability

Expandability answers the question, “how easy is it to incease the capabilities
of an architecture?” Over time, newer and bigger applications will always
make new demands on computer ar chitectures and the systems built using
those architectures. Will system designers be able tor espond to these
demands within the confines of the ar chitectural specifications? Can perfor-
mance be scaled up to incr ease capability — or down to save money? One
might ask a number of expandability-r elated questions: Is the memory size
specified explicitly or is it left to the system designer? Can memory system
performance enhancements such as the use of interleaving, cache size, and
control strategy be changed to fit changing cir cumstances, or are there hard
architectural limits? How easy or dif ficult (or impossible) is it to add CPUs
in such a way that they can be utilized by pr ograms?

Some architectures, by the way they are defined, are difficult to expand
to higher levels of performance. In that case, either higher performance is
difficult to realize or compatibility (see below) must be sacrificed. Other
architectures are based on more flexible specifications that allow for a wide
range of implementations with dif ferent performance characteristics. Sun
Microsystems’ scalable processor architecture (SPARC) is one example of an
architecture that has proven itself very expandable because it was designed

22 Computer Architecture: Fundamentals and Principles of Computer Design

that way. The architects’ original idea, which panned out very well, was to
have a wide variety of price and performance in computers available sharing
a common architecture and thus compatible with one another .

1.4.4 Compatibility

Compatibility is another important aspect of ar chitectural quality. Strictly
speaking, one could define compatibility as the ability of diferent computers
to run the same machine language, or object code, pr ograms. The physical
implementation of two systems may be somewhat or even completely dif-
ferent; even some ar chitectural elements such as the number and type of
buses, levels of the memory hierar chy, and exception handling techniques
may vary between them. The key point is that if the two machines have the
same instruction set architecture (ISA), then they will be able to mun the same
software. (It may run much faster on one machine than the other , but both
compatible machines understand the same machine language.)

As computer ar chitectures evolve, they may exhibit dif ferent types of
compatibility. Completely compatible computers are those that have identi-
cal instruction set architectures. Each machine understands and executes the
exact same set of machine language instr uctions — no more, no less. This is
usually because they ar e implemented by the same manufactur er at about
the same time, though sometimes one manufactur er goes out of its way to
maintain compatibility with another ’s architecture. Advanced Micro
Devices’ (AMD's) (and earlier , Cyrix’s) “cloning” of Intel x86 compatible
microprocessors is an example of essentially complete compatibility between
different manufacturers’ implementations of an ar chitecture.

The most usual type of compatibility, seen as new features and enhance-
ments are added toanar chitecture over time, is upward compatibility.
Upwardly compatible computers implement the complete original ar chitec-
tural specification plus additional instr uctions, addressing or operational
modes, and so on. A series of computers, each compatible with its predeces-
sors, is known as a computer family. The members of the family ar e either
completely or upwardly compatible. In upwardly compatible computer fam-
ilies, the newer machines can r un the programs written (or compiled) for
previous models without modification. However, these legacy programs do
not take advantage of the features available only on the newer machines. A
Pentium-class machine, for example, will un executable programs compiled
for an Intel 486, 386, or earlier pr ocessor, all the way back to the 8086 /8088
CPUs of the late 1970s. Only programs optimized for the additional features
of the newer processors will take advantage of all they have to offer, though.
Earlier members of a family ar e not generally downwardly compatible with
the later machines; in other words, you can run Intel 286 programs on a 486
processor, but you cannot r un programs explicitly written for a 486 on a
286-based machine.

Forward compatibility is upward compatibility carried to an extr eme.
Forward compatibility means that a later family of machinesr etains the

Chapter one: Introduction to computer architecture 23

ability (either through direct hardware implementation or emulation of the
instruction set ar chitecture) to run programs written and compiled for a
previous family. Perhaps the best historical example of forwad compatibility
is the several families of mainframe computers built by IBM during the 1960s
through the 1990s. The 9200 family machines sold in the early 1990s would
run, without recompilation, programs compiled for the IBM 360 and 370
families in the 1960s and early 1970s.

Is compatibility good or bad? As with generality, there is no universal
answer to that question. Rather , it depends onone’s cir cumstances and
reasons for buying a particular system. If an or ganization is heavily depen-
dent on the continuing use of legacy code that was written for an older
architecture, compatibility is a highly desirable — perhaps even essential —
attribute of a new system. However, compatibility has costs associated with
it. Retaining the ability to execute legacy code while designing a new instnc-
tion set ar chitecture significantly complicates the design pr ocess. DEC’s
32-bit VAX architecture was made more complex, and likely more expensive,
by the decision to implement a PDP-1 1 compatibility mode. Besides being
more costly, a complex ar chitecture is more likely to harbor hidden pitfalls
or even outright flaws; simply put, the more we try to do in a given design,
the more likely we ar e to make mistakes. Finally , compatibility may be at
cross purposes with ease of use. Motorola’s 68000 family architecture (which
made a complete br eak with its earlier 6800 series pr ocessors) is widely
considered to be “cleaner” than that of Intel’s x86 chips, whichr etained a
strong similarity if not complete compatibility with its 8-bit 8080 and 8085
CPUs.

1.4.5 Reliability

In order to get useful work done by a computer system, it has to be up and
functioning. Reliability, simply put, is the answer to the question, “does the
system stay up?” How often does it crash, and when it does, how dif ficult
is it to get it going again? Our natural inclination, when studying this subject,
is to concentrate on the r eliability of the computer har dware. This would
seem to be a question of implementation rather than ar chitecture; after all,
when considering the r eliability of a car, we might r easonably care more
about how well the assembly line workers, who put the car together , did
their jobs than how well the automotive designers did theirs. However ,
reliability is also influenced by the architectural design. A well-designed car
will be easier to assemble and to perform maintenance on, while a poorly
designed one will be more subject to errors in those operations. (It will likely
also be easier to drive.) A well-designed computer system will be imple-
mented with parts that do their jobs and (both logically and physically) fit
and work together well. The ar chitectural design of its instr uction set will
also give rise to softwar e that works well with the har dware, creating a
seamless system that gets the job done without crashes. Ultimatelyreliability

24 Computer Architecture: Fundamentals and Principles of Computer Design

is not just a feature or quality of the hardware, but of a complete system that
includes software as well.

Reliability, though we mention it as a separate aspect of qualityis related
to some of the other quality topics we have just discussed. Reliability (as
perceived by the user) may be partly a function of compatibility . If two
supposedly compatible architectures or machines are in reality not 100 per-
cent compatible, some software may run properly on one machine but not
the other; this will be per ceived by the user as a defect. PCs using AMD
processors, for example, might be judged inferior in reliability if due to some
subtle compatibility problem they could notr un an application that r uns
properly on a machine with an Intel pr ocessor — even though the design
and implementation of the AMD chip may be otherwise equal (or even
superior) to Intel’s. Ease of use can also af ~ fect reliability. If a machine’s
instruction set architecture is not clean and easy for systems pr ogrammers
to work with, operating systems and compilers ar e more likely to contain
subtle bugs that may show up down the line as an unstable system or
application.

1.5 Success and failure of computer architectures and
implementations

Why do some computer arcchitectures succeed, sometimes remaining popular
for years beyond the wildest expectations of their designers, while others
fail — falling quickly out of use, if they ar e adopted at all? The quality
considerations we introduced in the pr evious section are part of the story,
but by no means are they the only, or even the major, reasons why architec-
tures succeed or fail. In this section we will look at several factors that have
an effect on the success of computer ar chitectures.

1.5.1 Quality and the perception of quality

All of the quality factors we discussed may af fect the success of a computer
architecture. At least as important as the actual quality of an ar chitecture
(and its implementations) is the per ception of quality on the part of those
who buy and use computer systems. If users per ceive the quality of one
product as being higher than another, then all things being equal they will
buy and use that first product. In many cases they will even pay a premium
for the system they believe has higher quality .

To return to our automotive analogy , some years ago consumer advo-
cates (and eventually drivers) determined that certain vehicle manufactuers,
for example, Toyota and Honda, wer e producing higher quality cars than
some other manufacturers. This led other companies to follow their lead and
produce higher quality cars and trucks also. Today, one could argue that the
differences in quality between various makes of autos are much smaller, and
not always in favor of the manufactur ers that were once at the top of the

Chapter one: Introduction to computer architecture 25

list. However, those companies still have a widespead reputation for quality,
and many people still per ceive their products to be higher in quality than
others. As a result, their cars continue to sell well and drivers often pay moe
for those vehicles than comparable ones fr om other companies. The r eality
of present-day quality is in this case less important than the per ception of
quality from historical experience. The same sort of thinking is pr evalent
among buyers of computer systems and explains why people will pay more
for, for example, an IBM system than a comparable machine fr om another
manufacturer, or why some avoid PCs with AMD processors even though
their Intel compatibility pr oblems are years in the past. The per ception of
quality, or the lack ther eof, is a major factor in the success or failur e of
computer architectures.

1.5.2 Cost issues

If all things ar e equal, or nearly so, per ceived quality is a major factor in
determining whether people will buy a given computer system. In the r eal
world individuals and organizations have finite resources, so cost is always
a consideration. When we think of cost, we often (somewhat naively) con-
sider only the initial cost of pur chasing a system. It makes mor e sense to
consider the overall cost of continually operating the system over a period
of time. Many factors contribute to the monetary cost of operating a com-
puter system, and other cost factors may not dir ectly equate to money but
represent some other expenditur e of limited r esources. We will consider
some important aspects of the cost of computer systems below .

Hardware costs are what most people immediately think of when consid-
ering the purchase of a computer system. Admittedly, a system with too high
an initial cost can price itself out of consideration regardless of its quality or
other desirable attributes (r ecall our previous mention of the Apple Lisa).
However, computer hardware continues to become less expensive over time,
as it has for the past 50-plus years. The initial cost of the hardware (and even
the cost of subsequent har dware upgrades) is often dwarfed by the cost of
support contracts, software licensing, maintenance, support, and other items
over the life of the system.

Software costs are an important part of the overall cost of any computer
system. Licensing fees and upgrades for system softwar e and applications
often exceed the initial har dware cost and sometimes must be periodically
renewed, whereas once one has paid for the har dware it is typically owned
outright. It would seem that softwar e costs would be independent of the
hardware architecture, but this is not always the case. = Applications and
system software for widely used ar chitectures are often less expensive than
the same software packages tailored to less popular systems. Thus, a system
that has higher quality and performs better may not only have a higher
hardware cost, but its softwar e may in some cases be mor e expensive as
well. Conversely, in some cases higher har dware cost may be of fset by
available less expensive software or vice versa.

26 Computer Architecture: Fundamentals and Principles of Computer Design

It would be good if computer har dware and software never stopped
working, but anyone who has used computer systems knows that systems
inevitably crash (some more frequently than others). Thus, no comparison
of computer systems costs is complete without taking into consideration
not only the initial pur chase or licensing price for the har dware and soft-
ware, but also the maintenance and support costs. Just as some automobiles
cost more than others to maintain, some computer systems br eak down
more frequently than others, and the cost of the r eplacement parts (and
the labor to install them) varies greatly. Again, architectures that are widely
used tend to have lower maintenance costs (for r eplacement and upgrade
parts and sometimes labor, too) than those that are sold in smaller volume.
Support contracts are often available fr om a system’s manufacturer (or a
third party), but these are often prohibitively expensive for individuals or
small organizations.

Not all costs are monetary — at least, not diectly. Any system that makes
use of scarce resources incurs a cost. In many situations cost considerations
may include a system’s power consumption, its physical mass and volume,
or other factors. Any time a computer is embedded in a battery-operated
device, for example, power consumption is critical, per haps sufficiently so
that a tradeoff of performance for longer battery life is desirable. Any system
that is to be placed in a vehicle adds weight and thus af fects fuel consump-
tion; it also takes up space that could otherwise be used for passengers or
cargo.

A perfect example of a situation wher e nonmonetary costs are of para-
mount concern is a system that must go on boar d a spacecraft. The overall
monetary cost of a space mission is so high that the incr emental price of a
computer system may well be negligible. However , given the physics of
launching the craft into orbit (or even interplanetary space), every gram of
mass saved may be worth its earth weight, or more, in gold. Minimizing the
physical volume of the system may also be a major consideration, and with
operation depending on electricity fr om solar cells, batteries, or other
low-current sources, low power consumption may be even more important.
If one has to launch a space shuttle to r epair a faulty system (or worse, lose
the entire craft because it cannot be r eached to make repairs), reliability (or
the lack thereof) may be the biggest cost factor of all.

1.5.3 Architectural openness, market timing, and other issues

Another important factor af fecting the success of computer ar chitectures is
the openness of their specifications. In other wor ds, are those specifications
published and available so that others can build compatible har dware and
software? While the instr uction set ar chitecture is almost always widely

publicized, the details of a particular hardware system’s architecture and its
implementations are sometimes held closely by the manufactur er to thwart
competition. People want to be able to buy standard hardware and software
cheaply, so although some “closed,” or pr oprietary, architectures have been

Chapter one: Introduction to computer architecture 27

very successful, the tr end (especially in the past few years) is for systems
with open specifications to do well in the market. This principle was evi-
denced in consumer electr onics by the commer cial success of widely pr o-
duced VCRs using the open VHS format, adopted by many manufactur ers,
over the technically superior Beta machines pr oduced by only one or two
manufacturers.

There is perhaps no better illustration of this phenomenon in the com-
puter systems arena than the PC vs. Macintosh personal computer wars that
have been going on for over 20 years. Har dly anyone will ar gue that the
original IBM PC was as ar chitecturally elegant, as technically advanced, or
even as physically attractive as Apple’s Macintosh. Most of the Apple spec-
ifications, however, were proprietary, while the PC’s wer open and available
and became industry standar ds. As a result, PC-compatible “clones” wer e
made by a lar ge number of manufactur ers. Competition drove PC quality
up and prices down, while Macs (and Macintosh parts) r ~ emained more
expensive and less r eadily available for years. It also pr oduced technical
advances that have allowed the performance of PCs to catch and even
surpass that of Macs. Other open ar chitectures, such as Sun’s SPARC archi-
tecture, have also done well in the marketplace. W ith the increasing accep-
tance of open source software by the computing community, open standards
for hardware architectures may be even mor e important to their success in
the future.

Stand-up comedians say that the most essential quality of good comedy
is timing. The same could be said of many other aeas of endeavor, including
the marketing of computer systems. An architecture that comes to market
before its time — or worse, after it — may not succeed even though it, and
its implementations, are high in quality and low in cost. Conversely, inferior
or difficult to use architectures have sometimes prevailed because they were
in the right place at the right time. Many people have lamented IBM’s choice
of the Intel x86 ar chitecture for its PCs — a choice that has made Intel the
dominant manufacturer of microprocessors for over 20 years. Intel’s chief
competitor in the late 1970s and early 1980s, when PCs first hit the market,
was Motorola’s 68000 family of CPUs. The 68000 ar chitecture was arguably
better than the 8086 and its successors in terms of expandability and ease of
use, but it suffered from poor timing. Intel released its chips several months
prior to Motorola’s debut of the 68000. It was precisely during this time that
IBM’s engineers had to make the choice of a CPU for their upcoming PC.

Faced with the decision between Intel’s available, working silicon or
Motorola’s promise of a better and mor e powerful chip in a few months,
IBM chose to go with the “bir d in the hand.” Intel, which might not have
survived (and certainly would have been much less pr osperous) has been
in the driver ’s seat of micr oprocessor development ever since. Motor ola
survived (its 68000 family chips were used in Sun’s pre-SPARC workstations
as well as the first several generations of Apple Macintosh computers, and
their descendants are still widely used in embedded contr ol applications)
but never had another opportunity to dominate the market. Nor has Intel

28 Computer Architecture: Fundamentals and Principles of Computer Design

always been immune to bad timing: its iAPX 432 pr ocessor, developed dur-
ing the late 1970s, was a design so far ahead of its time (and the technology
available to implement its advanced ideas in silicon) that it failed fiom being
produced too soon. Sometimes an ar chitecture that works r easonably well
and is available at the right time is better than a wonderful design that takes
too long to produce and get to market or than an overly ambitious design
that is too costly to produce, demands too much of implementation technol-
ogy, or is just plain unappr eciated.

1.6 Measures of performance

Computer system performance depends on both the underlying architecture
and its implementation. It is clear that both the ar chitecture and implemen-
tation must be optimized in or der to get the maximum performance fr om a
system, but what do we mean by performance, and how do we measur e it?
Is it possible for two computer manufacturers to each claim that their system
has higher performance than the other and both be telling the truth (or both
be lying)? Probably so — ther e are many units for quantifying computer
system performance and many techniques for measuring it. As is the case
with quality, several different aspects of computer system performance may
contribute more or less to the overall performance of a given system when
running a given application. A system that performs well on a particular
application or benchmark may perform poorly on others. Beware of general
claims: what counts is how the system performs on your application.

1.6.1 CPU performance

CPU performance is the first, and unfortunately the only , aspect of perfor -
mance many people consider when comparing computer systems. Of course,
CPU performance is important, but memory and I/O performance can be
just as important, if not mor e so. It is important to consider all aspects of
performance when comparing systems. Even if the I/O and memory per -
formance of competing systems are essentially equal and CPU performance
is the deciding factor, there are many ways to measur e (and mis-measure)
it. In this section we will examine some of the ways to quantify , and thus
compare, the performance of modern pr ocessors.

Most of the standard measures of raw CPU performance begin with the
letter M, standing for the Gr eek prefix mega (or one million). It is common
to identify and compar e microprocessors based on their megahertz rating,
which is no mor e or less than the CPU’s clock fr equency. One megahertz
(MHz) is one million clock cycles per second. Many CPUs in use today have
clock speeds that ar e multiples of 1000 MHz, or 1 gigahertz (GHz), which
is 1 billion clock cycles per second. Clock cycle time, or period, t, is the
reciprocal of clock frequency f (t = 1/f), so a 100-MHz processor has a clock
cycle time of 10 nanoseconds (ns), while a 1000-MHz (1-GHz) pr ocessor has
a clock period of 1 ns.

Chapter one: Introduction to computer architecture 29

All else being equal, a higher megahertz (or gigahertz) number means
that a given processor is faster. However, all else is rarely equal. Clock speed
in megahertz or gigahertz only tells us how many CPU cycles occur each
second; it tells us nothing about how much work the CPU gets done each
cycle or each second. Dif ferent architectures, or even different implementa-
tions of the same ar chitecture, may vary gr eatly with regard to internal
structure and breakdown of computational operations. Thus, not only is it
not fair to compare, for example, an Intel Pentium 4 with a Silicon Graphics
MIPS R16000 based on clock speed alone, but it is nearly as unfair to compar
the Pentium 4 with a Pentium 3 solely on that basis. Even when we consider
two systems with the same type of processor, the one with the higher mega-
hertz or gigahertz pr ocessor is not necessarily faster . The intelligent buyer
will take a 2.7-GHz system with 1 GB of RAM over a 2.8-GHz machine with
only 256 MB of RAM.

A somewhat better measure of processor performance is its MIPS (mil-
lions of instructions per second) rating. It is better to compar e CPUs by
instructions, rather than clock cycles, executed per second because, after all,
it is instr uctions that do the work. Some CPUs have higher thr oughput
(instructions completed per clock cycle) than others, so by considering MIPS
instead of megahertz we can get a slightly better pictur e of which system
gets more work done. MIPS as a measur e of performance is not perfect; it
is only a fair comparison if the CPUs have the same (or a very similar)
instruction set. For example, any Intel, AMD, or Via/ Cyrix x86 family CPU
(IA-32 architecture, from a 386 all the way thr ough a Pentium 4) executes
basically the same instruction set, so it is reasonable to compare any of these
processors using their MIPS ratings. However, the instructions executed by
a processor designed using another ar chitecture, for example, the Sun
SPARC, are very different from x86 instructions, so MIPS would not give a
meaningful comparison of an x86 vs. a SP° ARC CPU. (For this r eason, one
sarcastic, alternative definition of the MIPS acr onym is Meaningless Indica-
tion of Processor Speed.)

Another caveat to keep in mind when comparing systems by MIPS rating
is to consider what type of instr uctions are being executed to achieve that
rating. Manufacturers like to quote the “peak” performance of their
machines, meaning the MIPS rate achieved under ideal conditions, while
executing only those simple instr uctions that the machine can pr ocess the
fastest. A machine may have a very high peak MIPS number, but if the code
itis executing is all NOPs (no-operation instmuctions), then that number does
not mean very much. If arithmetic computations ar e being tested, the peak
MIPS rating may include only addition and subtraction operations, as mul-
tiplication and division usually take longer. This may not be r epresentative
of many real-world applications. A more realistic comparison would involve
the MIPS rate sustained over time while executing a given mix of instr uc-
tions, for example, a certain per centage each of memory access, branching,
arithmetic, logic, and other types of instructions, that would be more typical
of real programs. Of course it would be even better to compar e the MIPS

30 Computer Architecture: Fundamentals and Principles of Computer Design

rate achieved while running one’s actual program of interest, but that is not
always feasible.

MIPS is normally a measur e of millions of integer instructions that a
processor can execute per second. Some programs, particularly scientific and
engineering applications, place a much heavier pr emium on the ability to
perform computations with real numbers, which are normally represented
on computers in a floating-point format. If the system is tobe used tor un
that type of code, it is much mor e appropriate to compare CPU (or float-
ing-point unit [FPU]) performance by measuring MFLOPS (millions of float-
ing-point operations per second) rather than MIPS. The same caveats men-
tioned with regard to MIPS measur ements apply her e. Beware of peak
MFLOPS claims; they seldom r eflect the machine’s performance on any
practical application, let alone the one youar e interested in. Vector- or
array-oriented machines may only be able to approach their theoretical max-
imum MFLOPS rate when r unning highly vectorized code; they may per -
form orders of magnitude worse on scalar floating-point operations. The
best comparison, if it is feasible, is to see what MFLOPS rate can be sustained
on the actual applications(s) of interest, or at least some code with a similar
mix of operations.

Many myths are associated with measur es of CPU performance, for e-
most among them being that any single number — megahertz, MIPS,
MFLOPS, or anything else — can tell you everything you need to know
about which system is best. An even more fundamental misconception is
that CPU performance alone, even if there were an exact way to measure it,
is a valid comparison of computer systems. A good comparison must also
consider memory and I/O performance. We will examine those topics next.

1.6.2 Memory system performance

Perhaps the most important factor af fecting the overall performance
of today’s computer systems is the memory system. Because the CPU and
I/0O devices interact with main memory almost constantly , it can become a
bottleneck for the entir e system if not well designed and matched to the
requirements of the rest of the machine. In general, the two most important
characteristics of a memory system ar e its size and speed. It is important
that secondary memory (typically disk drive(s) be lar ge enough to provide
long-term storage for all pr ograms and data, and likewise important that
main memory be sufficiently large to keep most, if not all, of the pr ograms
and data that ar e likely to be in simultaneous use dir ectly available to the
processor without the need for time-consuming disk accesses. The main
memory needs to be fast enough to keep up with the CPU and any other
devices that need to r ead or write information. While disk drives have no
hope of reaching processor speeds, they need to be as fast as practicable,
particularly in systems with lar ge applications or data sets that must be
frequently loaded. How do we quantify and compar e the size and speed of
computer memory systems? Let’s take a look.

Chapter one: Introduction to computer architecture 31

Table 1.1 Units of Memory Storage

Unit of

Storage Abbreviation Approximate Size Exact Size
Kilobyte KB 1 thousand (10°) bytes 1024 (21) bytes
Megabyte MB 1 million (10°) bytes 1,048,576 (2%) bytes
Gigabyte GB 1 billion (10°) bytes 1,073,741,824 (2%°) bytes
Terabyte TB 1 trillion (10'?) bytes 1.0995 x 10%2 (249) bytes

Memory size is the first, and often the only, measurement considered by
novice computer users. To be sure, memory size is important, and even most
naive users know that the more RAM or hard drive space one has, the better.
Even people who don’t know that a byte is a gr oup of eight bits are usually
aware that bytes, kilobytes (KB), megabytes (MB), and gigabytes (GB) ar e
the units of measur ement for memory size (see T able 1.1). In the futur e, as
disk drives grow ever larger, users will have to become familiar with tera-
bytes (TB) as well.

Memory speed is at least as important as memory size. The purpose of
memory is to store instructions and data for use by the CPU and to r eceive
the results of its computations. A main memory that cannot keep up with
the CPU will limit its performance. Ideally , the cycle time of main memory
(the time taken to complete one memory access and be r eady for the next)
should match the processor clock cycle time so that memory can be accessed
by the CPU every cycle without waiting. (If the CPU needs to access an
instruction plus an operand each clock cycle, a Harvar d architecture can be
used to avoid having to make memory twice as fast.) Synchr onous memory
devices such as SDRAM (synchr onous dynamic random access memory)
typically are rated for their maximum compatible bus speed in megahertz
rather than by cycle time, but it is easy to convert fr om one specification to
the other by taking itsr eciprocal. Access time is another memory speed
specification; it refers to the time r equired to read or write a single item in
memory. Because many types of main memory devices r equire some over-
head or recovery period between accesses, cycle time may be somewhat
longer than access time.

Most semiconductor ROM (r ead-only memory) and DRAM (dynamic
random access memory) devices typically used in computer main memory
applications have cycle times significantly longer than those of the fastest
CPUs. As we will see in Chapter 2, this speed gap between the CPU and
main memory can be bridged to a considerable extent by using devices with
shorter cycle times as a buffer, or cache, memory and by overlapping mem-
ory cycles in a technique known as memory interleaving.

Most semiconductor memories have constant access times (see the dis-
cussion of random access memories in Chapter 2). Secondary memory
devices such as disk and tape drives have access times thatar e not only
much longer, but variable. The time to r ead or write data from or to a disk,
for example, includes several components: a small amount of contr ~ oller

32 Computer Architecture: Fundamentals and Principles of Computer Design

overhead, the seek time required for the actuator to step the head in or out
to the correct track, the latency or rotational delay required for the disk to
get to the correct position to start accessing the information, and the transfer
time required to read or write the data (mainly a function of rotational delay
over the sector in question). The two pedominant components of disk access
time, namely the seek time and latency, vary considerably depending on the
relative initial and final positions of the head and the disk and thus usually
are given as averages; best and worst case timings may also be specified.
Average access times for disk storage are on the order of milliseconds, while
access times for semiconductor memories ar e on the order of nanoseconds
(roughly a million times faster). It is easy to see why disk drives ar e never
used as main memory!

Memory bandwidth, or the amount of information that can be transferr ed
to or from a memory system per unit of time, depends on both the speed of
the memory devices and the width of the pathway between memory and the
device(s) that need to access it. The cycle time of the memory devices (divided
by the interleave factor, if appropriate) tells us how frequently we can transfer
data to or from the memory. Taking the reciprocal of this time gives us the
frequency of data transfer; for example, if we can do a transfer every 10 ns,
then the frequency of transfers f=1/(10 x 10 s) = 100 MHz or 100,000,000
transfers per second. To compute the bandwidth of the transfers, however ,
we need to know how much information is transferr ed at a time. If the bus
only allows for 8-bit (or single byte) transfers, then the memory bandwidth
would be 100 MB/s. If the memory system wer e constructed of the same
type devices but or ganized such that 64 bits (8 bytes) of data could be r ead
or written per cycle, then the memory bandwidth would be 800 MB/s.

1.6.3 1/0 system performance

Just as there are many types of memory devices with different characteristics,
there are many dif ferent types of input and output devices with dif ~ferent
purposes and properties. Some are used to interface with human users, while
others are used to exchange data with other computing har dware. The fun-
damental purpose of all I/ O devices is the same: to move data and programs
into and out of the system. Since I/ O devices need to communicate data to
and from the CPU, or in the case of large block transfers, directly to and from
main memory, their transfer rates (the number of I/ O transfers completed
per second) and bandwidth ar e important performance characteristics.

I/O bandwidth (either for the entir e I/O system or a particular I/O
device) is defined in essentially the same way as memory bandwidth: the
number of bytes (or kilobytes, megabytes, or gigabytes) that can be trans-
ferred per unit of time (per second or fraction ther eof). The highest /O
bandwidth is usually achieved on dir ect transfers between main memory
and an I/ O device, bypassing the processor. Bandwidth may be specified as
a peak rate (to be taken with the usual grain of salt assigned to all peak
performance figures) or, more realistically, as a sustained figure under given

Chapter one: Introduction to computer architecture 33

conditions (e.g., for a certain quantity of data or over a certain period of
time). The conditions are important because the effective speed of I/O trans-
fers often depends heavily on the size and duration of transfers. A few large,
block transfers of data ar e typically much mor e efficient than a gr eater
number of smaller transfers. However, very large block transfers may over-
flow device buffers and cause the system to bog down waiting on I/O. Thee
is typically an optimum block size for data transfers between a particular
device and memory, which may or may not corr espond to the I/O charac-
teristics of your application. Read the fine print car efully.

I/O requirements vary greatly between applications — often much mowe
than do demands on the CPU and memorySome applications require almost
no interaction with the outside world, while others (for example printer
drivers and programs with extensive graphics output) may be “I/O bound.”
Thus, while I/O performance is per haps the most difficult aspect of overall
system performance to pin down, in some cases it may be the most important
to investigate and understand.

1.6.4 System benchmarks

We have noted that the best way to compare two or more computer systems
is the most dir ect way possible: r un one’s application of inter est on each
system and measure the time taken to compute a r esult (or perform typical
tasks associated with the application). The system that gets that specific task
or tasks done the fastest is the one that has the highest performance in the
only sense that matters. However, it is not always possible to mun one’s actual
code on every system that merits consideration. One may not have physical
access to the systems prior to making the decision, or it may not be possible
to compile and run the program on every platform of inter est, or one may
just not have enough time to do so. One may even be specifying a system

to run a future application that has not yet been developed. In this case, the
next best thing is to identify a standar ~ d benchmark program, or suite of
programs, that performs tasks similar to those of inter est.

A benchmark is a program, or set of pr ograms, chosen to be r epresen-
tative of a certain type of task. The idea is that if a system performs well on
the benchmark, it will likely perform well on other applications with similar
characteristics; if it performs poorly on the benchmark, it is not likely to be
well suited for applications with similar demands.

Though we discussed CPU, memory, and I/O performance separately,
it is extr emely rare that any of these alone is the determining factor in
performance on a real application. Real performance depends to some degee
on the behavior of all thr ee major subsystems, with the r elative importance
of each depending on the demands of a given application. Thus, many
benchmark programs have been developed that exer cise different parts of a
system to different degrees and in different ways. Some benchmarks are very
CPU-intensive, being dominated by the integer (or floating-point) perfor -
mance of the system pr ocessor. Others are very memory-intensive, heavily

34 Computer Architecture: Fundamentals and Principles of Computer Design

I/0O oriented, or well balanced between dif ferent types of operations. It is
important to choose a benchmark thatisr epresentative of your intended
application(s) if the results are to be meaningful. Using benchmark r esults
to compare systems will never be quite as good as comparing performance
directly on the application of interest, but if we choose the right benchmark,
it is much better than using the manufacturers’ peak MIPS or peak MFLOPS
ratings, or other suspect measur ements, to make the comparison.

A number of benchmarks have proven useful over the years and become
classics, more or less de facto standards for evaluating the performance of
systems intended for certain types of applications. Scientific application
performance, for example, is often benchmarked using LINP ACK, an adap-
tation of a Fortran linear algebra package (later translated into C) developed
by Dr. Jack Dongarra of the University of T ennessee at Knoxville. The LIN-
PACK benchmark solves alar ge system of simultaneous equations with
single or double precision floating-point coefficients set up in lar ge (100 by
100 or 1000 by 1000) matrices. If one is inter ested in matrix manipulation of
floating-point data, LINPACK provides a pretty good point of comparison.
Another benchmark, Livermor e Loops, is a set of 24 Fortran loops that
operate on floating-point data sets. The length of the loops is varied so that
the benchmark is r un on short, medium, and long vectors. Intr oduced in
1970, the Livermore Loops benchmark has been used to evaluate the perfor-
mance of several generations of super computers. Both LINPACK and Liv-
ermore Loops have been popular for evaluating vector -oriented machines
(pipelined and/or highly parallel systems that perform operations on an
entire vector, or row or column of a matrix, at once) because the matrix
computations and loop operations can be vectorized by a good compiler to
achieve top performance, so these benchmarks show vector machines at their
best.

If one is interested in floating-point performance in nonvector applica-
tions, particularly on minicomputers, workstations, PCs, and other machines
that have scalar floating-point units, the venerable Whetstones benchmark
may be useful. Developed in the early 1970s by Har old Curnow and Brian
Wichmann, Whetstones was originally #eleased in Algol and Fortran versions
but was later translated into several other languages. The Whetstones bench-
mark produces system speed ratings in thousands of Whetstone instructions
per second (KWIPS) or millions of Whetstone instr ~ uctions per second
(MWIPS). A similar benchmark without the emphasis on floating-point oper
ations is known by the obvious pun Dhrystones. Originally writtenin Ada
by Reinhold Weicker and later translated into Pascal and C, Dhrystones has
been used since 1984 to measure performance on tasks using a mix of integer
instructions. Dhrystones gives a better indication of general computing per -
formance and has been particularly popular for evaluating Unix systems.
The benchmark produces performance ratings in Dhrystones per second;
however, results were often converted to an appr oximate VAX MIPS rating
by dividing a machine’s rating by that of a DEC V AX 11/780, which was a

Chapter one: Introduction to computer architecture 35

popular minicomputer system (rated at 1 MIPS) at the time this benchmark
was introduced.

Systems used in business transaction pr ocessing tend to make mor e
intensive use of I/O than either floating-point or integer computations in
the CPU. Thus, none of the pr eviously mentioned benchmarks would be
particularly appropriate for evaluating systems to be used in this type appli-
cation. Instead, systems ar e often compared using four benchmarks devel-
oped by the Transaction Processing Performance Council (TPC). The TPC-A
benchmark simulates on-line processing of debit and cr edit transactions in
a banking environment; TPC-B is similar but operates in batch mode instead
of using ar emote terminal emulator. TPC-C is an updated benchmark
designed to address the shortcomings of TPC-A; it models a business or der
processing and distributed warehouse environment. TPC-D simulates a deci-
sion support system making complex queries of a lar ge database. None of
the TPC benchmarks ar e particularly CPU intensive, but they do place
heavier demands on a system’s I/O and scheduling capabilities.

Perhaps the best known and most popular benchmark suites for the past
several years have been the ones developed by the Open Systems Gr oup
(OSG) of the Standar d Performance Evaluation Corporation (SPEC), for -
merly known as the System Performance Evaluation Cooperative. The dis-
tinguishing feature of the SPEC benchmark suites is that they are composed
of actual application code, not synthetic or artificial code (like Whetstones
and Dhrystones) written just to exer cise the system. The SPEC CPU bench-
marks primarily evaluate the performance of the system pocessor and mem-
ory as well as the compiler; they ar e not very I/O intensive and make few
demands of the operating system. SPEC CPU includes both an integer bench-
mark suite (SPECint) and a floating-point suite (SPECfp). Each suite consists
of several programs (currently 14 floating-point applications written in For -
tran and C and 12 integer applications written in C and C++), withar esult
reported for each. The overall SPECfp or SPECint rating is a geometric mean
of a given system’s performances on each application.

Because SPEC requires system testers to report the results for individual
applications as well as the composite ratings and because all the r esults are
available to the public on SPEC’'s W eb site (www .spec.org), anyone can
compare systems of interest using the entire benchmark suite or any appli-
cable subset. It is also worth noting that thor ough documentation must be
provided for each system tested. This includes not only the number , type,
and clock frequency of system processor(s) and the amount and type of RAM
installed, but also the details of cache memory , the exact operating system
and compiler used (as well as the compiler optimizations switched on for
each application), and the disk type and file system used. W ith all this
information available, one can tell exactly what har dware and software are
being evaluated and thus differentiate between apples vs. apples and apples
Vs. oranges comparisons.

The original SPEC CPU benchmarks wer e introduced in 1989; as com-
puter systems have become mor e powerful, the SPEC suites have been

http://www.spec.org

36 Computer Architecture: Fundamentals and Principles of Computer Design

updated with more challenging applications. This periodic revision prevents
comparing systems with “toy” benchmarks. (Some of the original CPU89
programs would fit entirely in cache on some modern systems.) SPEC CPU89
was followed by CPU92, CPU95, and the mostr ecent generation, SPEC
CPU2000. The next version is scheduled to be SPEC CPU2005. As SPEC’s
Web page for CPU2000 states:

Technology evolves at a breakneck pace. With this in mind, SPEC
believes that computer benchmarks need to evolve as well. While
the older benchmarks (SPEC CPU95) still pr ovide a meaningful
point of comparison, it is important to develop tests that can
consider the changes in technology . SPEC CPU2000 is the
next-generation industry-standardized CPU-intensive bench-
mark suite. SPEC designed CPU2000 to pr ovide a comparative
measure of computationally intensive performance acr oss the
widest practical range of hardware. The implementation resulted
in source code benchmarks developed from real user applications.
These benchmarks measur e the performance of the pr ocessor,
memory and compiler on the tested system.

While SPEC’s CPU2000 integer and floating-point CPU suites ae its best
known and most widely used benchmarks, SPEC has also developed other
specialized test suites such as WEB99, which tests the performance of W eb
servers, JVM98, a benchmark for comparing the performance of Java virtual
machines, MAIL2001, which can be used to evaluate e-mail servers, and
several others. All of these benchmarks embody SPEC’s philosophy of being
realistic, application-oriented, and portable to all platforms and operating
systems, thus providing “a fair and useful set of metrics to dif ~ ferentiate
candidate systems.” While no benchmark can perfectly predict performance
on a particular r eal-world application, SPEC’s openness, industry-wide
acceptance, and continual development of new, relevant test suites make it
likely that SPEC benchmarks will continue to help computing pr ofessionals
choose systems for years to come.

1.7 Chapter wrap-up

An old saying goes, “The more things change, the more they stay the same.”
Perhaps no field exemplifies the truth of this aphorism more than computer
systems design. Yes, much has changed about the way we build computers.
Relays and vacuum tubes have given way to transistors and, ultimately
integrated circuits containing millions of tiny components. Magnetic drums,
punched cards, and core memory have been r eplaced by high-speed har d
drives, CD and DVD burners, and synchr onous DRAM. Computer imple-
mentation technologies of all sorts have become orders of magnitude smalley,
faster, and cheaper. Yet the basic ideas of computer ar chitectural design
have changed very little in decades. The original Princeton and Harvar ~ d

Chapter one: Introduction to computer architecture 37

architectures have been used with only selatively minor changes for 60 years.
Index registers and addressing modes conceived in the 1950s are still in use
today. The concept of virtual memory dates to the late 1950s, and cache
memory has been ar ound since the early 1960s. (Regar dless of the time
period, processors have always been faster than main memory) Overlapping
of operations in time by pipelining pr ocessors and interleaving memories
are decades-old concepts. RISC architectures and superscalar execution? The
CDC 6600 exemplified both concepts in 1964. T ruly, while new implemen-
tation technologies arrive every year to dazzle us, ther e is little new under
the sun, architecturally speaking. (A few notable exceptions will come to
light later in this text.) This is why the study of historical computer ar ~ chi-
tectures is still so valuable for computing pr ofessionals of the twenty-first
century.

Another common thread, all through the modern history of computers,
is that users have always sought the best and fastest computer system for
their money. Obviously, the system that is currently best or fastest for a given
application (at a given price) has changed and will change, rapidly , over
time. Even more fundamentally, the notions of what constitutes the best
system, the means for establishing which is the fastest system, and the
methods for establishing the overall cost of acquiring and operating a system,
have evolved over time. Ther e are many aspects of system quality , and
different ones are more or less important to dif ferent users. There are many
ways to measure system speed that yield dif ferent results, some of which
approximate the reality of a given situation mor e closely than others. Cost,
too, has many aspects and modes of estimation (it is dif ficult to know the
true cost of anything as complicated as a computer system), and while
quality, performance, and cost are all important, other factors are sometimes
just as crucial to the success or failur e of an architecture in the marketplace
(not to mention its desirability for a given application). In the end, each
person who is tasked with pur chasing or specifying a computer system is
faced with a different set of circumstances that will likely dictate a dif ferent
choice from that made by the next person. A thorough awareness of the
history of computer ar chitectures and their implementations, of important
attributes of quality and cost, and of performance measur es and evaluation
techniques, will stand every computer pofessional in good stead thoughout
his or her career.

1.8 Review questions

1. Explain in your own wor ds the differences between computer sys-
tems architecture and implementation. How ar e these concepts dis-
tinct, yet interrelated? Give a historical example of how implemen-
tation technology has affected architectural design (or vice versa).

2. Describe the technologies used to implement computers of the first,
second, third, fourth, and fifth generations. What were the main new

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

Computer Architecture: Fundamentals and Principles of Computer Design

architectural features that were introduced or popularized with each
generation of machines? What advances in software went along with
each new generation of har dware?

What characteristics do you think the next generation of computers
(for example, 5 to 10 years fr om now) will display?

What was the main ar chitectural difference between the two early
computers ENIAC and EDVAC?

Why was the invention of solid state electr onics (in particular, the
transistor) so important in the history of computer ar chitecture?
Explain the origin of the term core dump.

What technological advances allowed the development of minicom-
puters, and what was the significance of this class of machines? How
is a microcomputer different from a minicomputer?

How have the attributes of very-high-performance systems (a.k.a.
supercomputers) changed over the thir d, fourth, and fifth genera-
tions of computing?

What is the most significant difference between computers of the past
10 to 15 years versus those of pr evious generations?

What is the principal performance limitation of a machine based on
the von Neumann (Princeton) ar chitecture? How does a Harvar d
architecture machine address this limitation?

Summarize in your own wor ds the von Neumann machine cycle.
Does a computer system with high generality tend to have higher
quality than other systems? Explain.

How does ease of use r elate to user friendliness?

The obvious benefit of maintaining upward and / or forward compat-
ibility is the ability to continue to run legacy code. What are some of
the disadvantages of compatibility?

Name at least two things (other than har dware purchase price, soft-
ware licensing cost, maintenance, and support) that may be consid-
ered cost factors for a computer system.

Give as many reasons as you can why PC-compatible computers have
a larger market share than Macs.

One computer system has a 3.2-GHz pr ocessor, while another has
only a 2.7-GHz processor. Is it possible that the second system might
outperform the first? Explain.

A computer system of inter est has a CPU with a clock cycle time of
2.5 ns. Machine language instr uction types for this system include
integer addition/subtraction/logic instr uctions that r equire one
clock cycle to be executed, data transfer instuctions that average two
clock cycles to be executed, control transfer instructions that average
three clock cycles to be executed, floating-point arithmetic instr uc-
tions that average five clock cycles to be executed, and input/output
instructions that average two clock cycles to be executed.

Chapter one: Introduction to computer architecture 39

19.

20.

21.

22.

a. Suppose you are a marketing executive who wants to hype the
performance of this system. Determine its peak MIPS rating for
use in your advertisements.

b. Suppose you have acquired this system and want to estimate its
performance when running a particular program. You analyze the
compiled code for this program and determine that it consists of
40% data transfer instructions; 35% integer addition, subtraction,
and logical instr uctions; 15% control transfer instr uctions; and
10% I/ O instructions. What MIPS rating do you expect the system
to achieve while running this program?

c. Suppose you are considering pur chasing this systemtor un a
variety of programs using mostly floating-point arithmetic. Of the
widely used benchmark suites discussed in this chapter , which
would be the best to use in comparing this system to others you
are considering?

d. What does MFLOPS stand for? Estimate this system’s MFLOPS
rating. Justify your answer with r easoning and calculations.

Why does a hard disk that rotates at higher RPM generally outper -

form one thatr otates atlower RPM? Under what cir cumstances

might this not be the case?

A memory system can read or write a 64-bit value every 2 ns. Expess

its bandwidth in megabytes per second.

If a manufacturer’s brochure states that a given system can perform

I/O operations at 500 MB/s, what questions would you like to ask

the manufacturer’s representative regarding this claim?

Fill in the blanks below with the most appr opriate term or concept

discussed in this chapter:

The actual, physical r ealization of a computer system,
as opposed to the conceptual or block-level design.
This was the first design for a pr ogrammable digital
computer, but a working model was never completed.
This technological development was an important fac-
tor in moving from second generation to thir d genera-
tion computers.

This system is widely considered to have been the first
supercomputer.

This early micr ocomputer kit was based on an 8-bit
microprocessor; it introduced 10,000 hobbyists to (rela-
tively) inexpensive personal computing.

This type of computer is embedded inside another elec-
tronic or mechanical device such as a cellular telephone,
microwave oven, or automobile transmission.

A type of computer system design in which the CPU
uses separate memory buses for accessing instr uctions
and data operands.

40 Computer Architecture: Fundamentals and Principles of Computer Design

An architectural attribute that expr esses the support
provided for previous or other architectures by the cur-
rent machine.

A CPU performance index that measur es the rate at
which computations can be performed on real numbers
rather than integers.

A measure of memory or I/O performance that tells
how much data can be transferr ed to or from a device
per unit of time.

A program or set of programs that are used as standard-
ized means of comparing the performance of dif ferent
computer systems.

chapter two

Computer memory systems

People who know a little bit about computer systems tend to compar e
machines based on pr ocessor speed or performance indices alone. As we
saw in the previous chapter, this can be misleading because it considers only
part of the picture. The design and implementation of a computer’s memory
system can have just as gr eat, if not greater, impact on system performance
as the design and implementation of the pr ocessor. Anyone who has tried
to run multiple applications simultaneously under a modern operating sys-
tem knows this. In this chapter , we will examine important aspects of the
design of memory systems that allow modern computers to function at peak
performance without slowing down the CPU.

2.1 The memory hierarchy

Memory in modern computer systems is not one monolithic device or col-
lection of similar devices. It is a collection of many dif ferent devices with
different physical characteristics and modes of operation. Some of these
devices are larger and some are smaller (both in terms of physical size and
storage capacity). Some ar e faster and some ar e slower; some ar e cheaper
and some are more expensive. Why do we construct memory systems in this
way? The answer is simple: because no memory device possesses all the
characteristics we consider ideal. Every type of memory technology available
has certain advantages or aspects in which it is superior to other technolo-
gies, but also some disadvantages or drawbacks that ender it less than ideal,
such that we cannot use it everywher e we need storage. By intelligently
combining multiple types of memory devices in one system, we hope to
obtain the advantages of each while minimizing their disadvantages. Before
proceeding further, we should ask ourselves, “What would be the charac-
teristics of an ideal memory device, assuming we could get one?” In answer
ing this question we can gain a lot of insight into the design of computer
memory systems.

41

42

Computer Architecture: Fundamentals and Principles of Computer Design

2.1.1 Characteristics of an ideal memory

What would be the characteristics of an ideal memory device? As designers,
or at least potential users of a computer system, we could make a list of
attributes we would like our memory system to have. Several come quickly
to mind:

Low Cost: Ideally, we would like memory to be fr ee; failing that, we

would like it to be as inexpensive as possible so we can afford all we
need. In order to make a fair comparison of cost between memory
devices of different sizes, we generally refer to the price of memory
per amount of storage. Once upon a time it was common to r efer to
the cost of memory in terms of dollars per bit or byte of storage; now
it would be more appropriate to price memory in dollars per mega-
byte or even dollars per gigabyte. In any event, we would like this
cost to be as low as possible while meeting any other r equirements
we might have.

High Speed: Every type of memory has an associated access time (time

to read or write a piece of information) and cycle time (the time
between repetitive reads or writes; sometimes, due to over head or
device recovery time, the cycle time is longer than the access time).
Depending on the type of device, these times may be measur ed in
milliseconds, microseconds, nanoseconds, or even picoseconds. The
shorter the access and cycle time, the faster the device. Ideally , we
would like to be able to stor e information, or access stored informa-
tion, instantly (in zer o time), but this is not possible. Practically , in
order to keep our CPU busy rather than “sitting ar ound” waiting,
we need to be able to access information in memory in the same or
less time that it takes to perform a computation. This way, while the
current computation is being performed, we can stor e a previous
result and obtain the operand for the next computation.

High Density: An ideal memory device would have very high informa-

tion density. That is to say, we would like to be able to stor e a great
deal of information in a small physical space. W e might refer to the
number of megabytes or gigabytes that can be stored in a given area
of circuit board space or, more properly, in a given volume (e.g., cubic
inches or cubic centimeters). W e cannot store an infinite amount of
information in a finite amount of space, or any finite amount of
information in an infinitesimal space, but the closer a given memory
technology can come to appr oximating this, the better we like it.

Nonvolatile: Many memory technologies ar e volatile; they require con-

tinuous application of power (usually electrical) in or der to retain
their contents. This is obviously undesirable, as power outages ar e
an unavoidable fact of life (and according to Murphy’s Law, they will
always occur at the least desirable moment). Some types of memory,
for example the dynamic RAM that is used as main memory in most

Chapter two: Computer memory systems 43

computer systems, require not only continuous power but periodic

refresh of the stored information. Such a memory is volatile in mor e
ways than one. All else being equal, we would pefer to use a memory
technology that is nonvolatile, meaning it maintains its stor ed infor-
mation indefinitely in the absence of power and outside intervention.

Read/Write Capable: For maximum versatility, we would like to be able
to store or retrieve information in memory at any time. Memory
devices that allow the user to r eadily store and retrieve information
are called read/write memories (RWMs). The less desirable alternative
is a memory with fixed contents that can only be read; such a device
is called a read-only memory (ROM). Of course, a write-only memory
that allowed storage but not retrieval wouldn’t make much sense; it
would effectively be an information black hole. Ther e are also some
memory technologies that allow writes to occur, but in a way that is
more costly (in terms of time, over head, device life, or some other
factor) than reads. We might refer to such a device, such as a flash
memory, as a “read-mostly memory.” Again, all else being equal we
would usually prefer a RWM over other types.

Low Power: In an ideal world, memory would r equire no energy at all
to operate; once again, that is not achievable with r eal technologies
in the real world. Volatile memory devices require continuous appli-
cation of power. Even nonvolatile memories, which can maintain
their contents without power, require power for information to be
read or written. Sometimes this is ar elatively minor consideration;
in other applications, such as when heating is a pr oblem or when a
system must run off batteries, it is critical that our memory system
consume as little power as possible. All else being equal, memory
that consumes less power is always better (unless it is winter and
your computer is doubling as a space heater).

Durable: We would like our memory system to last for ever, or at least
until the rest of the system is obsolete and we ar e ready to retire it.
Based on historical data and knowledge of their manufacturing pr o-
cesses, memory device manufactur ers may provide an estimate of
the mean time between failures (MTBF) of their products. This is the
average time a given part is supposed to last. (Keep in mind, how-
ever, that the life of any individual device may vary quite a bit fr om
the average.) They may also expr ess the expected lifetime of the
product in other ways, for example, in terms of the total number of
read and write operations it should be able to perform before failing.
(For this information to be useful, one has to be able to estimate how
frequently the device will be accessed during normal operations.)
Durability may also be interpr eted in terms of a device’s ability to
survive various forms of abuse such as impact and, temperature and
humidity extremes. In general, memory technologies that do not
employ moving mechanical parts tend to last longer and survive
more mistreatment than those that do.

44 Computer Architecture: Fundamentals and Principles of Computer Design

Removable: In many instances, we consider it an advantage to be able
to transport memory (and preferably its contents) from one computer
system to another. This facilitates being able to shar e and back up
information. In rare situations, for example, where physical security
of information (e.g., government or trade secr ets) is extremely im-
portant, being able to r emove memory devices may be consider ed
undesirable. In most cases, though, it is a desirable featur e, and in
some cases it is essential.

You can probably think of other desirable characteristics that a com-
puter’s memory system might ideally have, but even fr om the above list, it
is obvious that no memory technology currently in use or likely to be devel-
oped in the near future has all of these ideal characteristics. In the next few
pages, we will explore some of the characteristics and limitations of popular
memory technologies. Then, in the remainder of this chapter, we will exam-
ine some of the techniques used in memory systems design to maximize the
advantages of each type of memory while minimizing or compensating for
the disadvantages. The goal, of course, is a memory system that is large and
fast, readable and writable, maintains its contents under as many scenarios
as possible, and yet is as inexpensive and convenient to use as possible.

2.1.2 Characteristics of real memory devices

Several types of memory devices are used in modern computer systems. The
most popular types of memory are semiconductor chips (integrated circuits)
and magnetic and optical media. Ther e are several subtypes using each of
these technologies, and each of these has some of the advantages mentioned
in the previous section, but also some disadvantages. As potential designers
or atleast users of computer systems, we need to be familiar with these
memory technologies.

Semiconductor memories in general possess the advantage of speed. This
is why the main memory space of virtually all modern computers is popu-
lated exclusively with semiconductor devices, while magnetic and optical
devices are relegated to the r ole of secondary or tertiary (backup) storage.
The CPU is built using semiconductor technology, and only a similar mem-
ory technology can keep up with pr ocessor speeds. In fact, not all semicon-
ductor memories can operate at the full speed of most modern CPUs; this
is why the vast majority of semiconductor main memory systems have an
associated cache memory (see Section 2.4) made up of the very fastest mem-
ory devices.

The semiconductor memory technology with the highest information
density is dynamic random access memory (DRAM). For this r eason, because
it is read / write memory, and because it has a r elatively low cost per mega-
byte, DRAM is used for the bulk of main memory in most computer systems.
A DRAM device consists of alar ge array of capacitors (electrical devices
capable of storing a char ge). A charged capacitor is interpreted as storing a

Chapter two: Computer memory systems 45

binary 1, and an unchar ged capacitor indicates binary 0. Unfortunately, the
capacitors in a DRAM device will dischar ge, or leak, over time; thus, to be
able to continue to distinguish the 1s fr om the 0s and avoid losing stor ed
information, the information must periodically be r ead and then rewritten.
This process is called dynamic RAM refresh. It adds to the complexity of the
memory control circuitry, but in most cases this is a worthwhile tradeoff due
to the low cost and high density of DRAM.

Given the desired main memory size in most computer systems as com-
pared to the amount of DRAM that can be fabricated on a single integrated
circuit, DRAM is not usually sold as individual chips. Rather , several inte-
grated circuits (ICs) are packaged together on a small printed cir cuit board
module that plugs into the system boar d, or motherboard. These modules
come in various forms and ar e known as single inline memory modules
(SIMMs), dual inline memory modules (DIMMs), or by proprietary acronyms
such as Rambus’ integrated memory modules (RIMMs). Some of these mod-
ules are faster (have lower access times) than others, and they have different
“widths” (number of bits r ead or written at a time) and plug into dif ferent
size sockets (thus it is important to buy the correct type for a given system),
but they all use DRAM devices as the basic storage medium.

While dynamic RAM offers relatively low cost and high density storage,
in general it is not capable of keeping up with the full speed of today’s
microprocessors. Capacitors can be made very small and ae easy to fabricate
on silicon, but they take time to charge and discharge; this affects the access
time for the device. The highest-speed semiconductor r ead/write memory
technology is referred to as static random access memory (SRAM). In an SRAM
device, the binary information is stor ed as the states of latches or flip-flops
rather than capacitors. (In other words, SRAM is built in a very similar way
to the storage r egisters inside a CPU.) SRAM is less dense than DRAM (it
takes more silicon “real estate” to build a static RAM cell than a capacitor)
and therefore is more expensive per amount of storage. SRAM, like DRAM,
is a volatile technology thatr equires continuous application of electrical
power to maintain its contents. However, since the bits ar e statically stored
in latches, SRAM does not require periodic refresh. Contents are maintained
indefinitely as long as power is applied. Compar ed to DRAM, SRAM cir -
cuitry requires more power for read / write operation, but some SRAMs, such
as the Complementary Metal Oxide Semiconductor (CMOS) static RAM
devices frequently used to retain system settings, require very little current
in standby mode and thus can maintain stor ed information for years under
battery power.

Semiconductor read-only memories (ROMs), including programmable
read-only memories (PROMs) and erasable/programmable read-only memories
(EPROMs), are roughly comparable to SRAM in cost and density , though
they generally operate at DRAM speeds or slower. They are nonvolatile, but
have the major limitation of not being writable (though EPROMs can be
reprogrammed in a separate cir cuit after erasur e with ultraviolet light).
Since they are not read/write memories, ROMs ar e only useful in limited

46 Computer Architecture: Fundamentals and Principles of Computer Design

applications such as single-purpose embedded systems, video game car -
tridges, and the BIOS (basic input/output system) that contains the bootstrap
code and low-level input/output (I/O) r outines for most typical computer
systems.

Semiconductor “read-mostly” memories include electrically erasable pro-
grammable read-only memories (EEPROMSs) and flash memories. These memories
are nonvolatile, but unlike ROMs ar e rewritable in-circuit. Writes, however,
can take significantly longer than r eads to perform and in some cases must
be done as “block” writes rather than individual memory locations. Also,
these devices are more expensive than most other semiconductor memories
and can only be rewritten a limited number (usually a few tens or hundreds
of thousands) of times, so they ar e not suitable for populating the entir e
main memory space of a computer. Instead, read-mostly memories are typ-
ically used for special-purpose applications such as digital cameras, portable
mini-drives, digital recorders, pagers, and cell phones.

Magnetic memories have been in use much longer than semiconductor
memories — almost as long as ther e have been electronic computers. Main-
frame computers of the 1950s often used r otating magnetic drums for stor-
age; a few years later, magnetic core memory became the standard technology
for main memory and remained so until it was replaced by integrated circuit
RAM and ROM in the 1970s. Magnetic core memory, like all magnetic mem-
ories, offered the advantage of nonvolatility (except in the pr esence of a
strong external magnetic field). Access times were on the order of microsec-
onds, however, and so this technology fell out of favor when faster semi-
conductor memories became cost-competitive. Another related (but slower)
technology, magnetic bubble memory, was once thought ideal for long-term
storage applications but could not compete with inexpensive disk drives,
battery-backed-up SRAMS, and EEPROM:s.

Magnetic storage in most modern computer systems is in the form of
disk and tape drives. Access times for magnetic disks (both floppy and hard
disks) are on the or der of milliseconds or longer, so these technologies ar e
useful only for secondary storage, not main memory . Tape drives are even
slower due to the fr equent necessity of traversing a long physical distance
down the tape in order to find the needed information. The chief advantages
of magnetic memories, besides their nonvolatility , are very low cost per
megabyte of storage and extr emely high information density (har d drives
can store many gigabytes of data in a few cubic inches of space). Removable
disks and tape cartridges (and some har d drives) also of fer the advantage
of portability.

While magnetic memories are currently relegated to secondary storage
applications, magnetic RAM (MRAM) is a new memory technology under
development that has the potential to replace DRAM in main memory appli-
cations in a few years. MRAM operates on the principle of magnetoresistance,
where an electric curr ent is used to change the magnetic pr operties of a
solid-state material. Pieces of this material ar e sandwiched between two
perpendicular layers of wires. A bit is stored at each point wher e one wire

Chapter two: Computer memory systems 47

Magnetic
material

Figure 2.1 Magnetic RAM construction.

crosses over another (see Figur e 2.1). To write a bit, a curr ent is passed
through the wires; changing the polarity of the magnet changes the electrical
resistance of the sandwiched material. Reading a bit is accomplished by
passing a current through the wires connected to a sandwich and detecting
its resistance; a high resistance is interpreted as a binary 1 and a low r esis-
tance as binary 0.

Because the bits ar e stored as magnetic fields rather than electrical
charge, MRAM (like other magnetic memories) is nonvolatile. If it can
achieve density, speed, and cost comparable to DRAM (no small feat, but a
reasonable possibility), MRAM will enable the development of “instant-on”
computers that retain the operating system, applications, and data in main
memory even while the system is turned of f. Several companies, including
IBM, Motorola, and Honeywell, have pr oduced prototype MRAM devices
and expect to be pr oducing chips in quantity by 2006 or so. If successfully
developed, MRAM could largely replace DRAM in computer main memory
applications within 5 to 10 years of its intr oduction.

Optical memories are becoming more and more common, all the way
down to low-end computer systems. Even the least expensive personal com-
puter has a compact disk read-only memory (CD-ROM) drive as an inexpensive
form of secondary storage, and many machines have CD r ecorders that can
“burn” data onto one-time r ecordable CD-R and r ewritable CD-RW disks
that can store several hundred megabytes of data. Incr easingly popular are
DVD-ROM drives that can r ead digital versatile disks and DVD writers that
can store several gigabytes of information on DVD-R or several other types
of writable DVD media. Optical disks of fer most of the same advantages
(portability, nonvolatility, low cost, and high density) as magnetic disks, and
in addition are immune to erasur e by magnetic fields. They ar e much too
slow to be used for main memory , though, and the writing pr ocess takes
considerably longer than writing to a magnetic disk.

2.1.3 Hierarchical memory systems

Having considered the characteristics of most of the available memory tech-
nologies, we can conclude that none of them are ideal. Each type of memory

48 Computer Architecture: Fundamentals and Principles of Computer Design

Most
expensive
Level 0 Smallest
capacity
Level 1 Fastest
Level 2
Level 3
. Least
. expensive
Highest
capacity
Leveln Slowest

Figure 2.2 Memory hierarchy (conceptual).

has certain advantages and disadvantages. It ther efore makes sense to use
a mixture of different types of devices in a system in or der to try to trade
off the advantages and disadvantages of each technology . We try to design
the system to maximize the particular advantages of each type of memory
while minimizing, or at least covering up, their disadvantages. In this way
the overall memory system can approximate our ideal system: large, dense,
fast, read/write capable and inexpensive, with at least some parts being
removable and the critical parts being nonvolatile. The typical solution is a
computer system design in which a hierarhy of memory subsystems is made
up of several types of devices. The general concept is depicted in Figure 2.2,
and the specific names of the levels found in most modern computer systems
are shown in Figure 2.3.

Notice that the upper levels of the hierarchy are the fastest (most closely
matched to the speed of the computational har dware) but the smallest in
terms of storage capacity . This is often due at least somewhat to space
limitations, but is mainly because the fastest memory technologies, such as
SRAM, are the most expensive. As we move down the hierarchy, lower levels
are composed of slower , but cheaper and higher density , components, so
they have lar ger storage capacities. This varying capacity of each level is
symbolized by drawing the diagram in the shape of a triangle.

Because the higher levels of the memory hierar chy have smaller capac-
ities, it is impossible to keep all the information (pr ogram code and data)
we need in these levels at one time. In practice, each higher level of the
hierarchy contains only a subset of the information from the levels below it.
The fundamental idea underlying the hierar chical memory concept is that
we want to make as many accesses (as a per centage) as we can to the upper
levels of the hierar chy, while only rarely having to access the lower levels,

Chapter two: Computer memory systems 49

Most
expensive
C‘PU Smallest
registers eapacity
Level 1 Fastest
cache
Level 2 cache
Main (primary) memory
Least
Disk (secondary) memory expensive
Highest
capacity
Backup storage Slowest

Figure 2.3 Memory hierarchy (typical of modern computer systems).

such that the r esulting, overall memory system (taking into account all
devices) approaches the speed of the highest levels while maintaining a
capacity and cost per megabyte approximating that of the lowest levels (the
secondary storage devices). This r equires a complex and well-thought-out
design of which, for best acceptance, the details should be hidden fr om the
end user. As much as possible, only the system designers should have to
deal with the details of managing the memory system for optimal perfor -
mance. However, if one is to be responsible for specifying computer systems
whose performance is important, or for developing code to r un in such an
environment, it is worthwhile to study the techniques used to optimize
memory systems.

Optimizing the performance of memory systems has always been a big
problem due to technological and cost limitations. For the vast majority of
tasks, computer systems tend to r equire much more code and data storage
than computational hardware; thus, it is generally not cost-effective to build
the memory system using the same technology as the pr ocessor. Over the
history of electronic computers, CPUs have increased in speed (or decreased
their clock cycle times) more rapidly than memory devices. Ther has always
been a performance gap between the CPU and main memory (and a much
bigger gap between the CPU and secondary memory), and these gaps have
only increased with time. Thus, design techniques that ef fectively close the
gap between CPU and memory system performance ar e more important
now than ever. The question has been, still is, and is likely to r emain, “How
do we fix things so that the memory system can keep up with the pocessor’s
demand for instructions and data?” The rest of this chapter examines several
techniques that have been, and still are, used to help achieve this ever -chal-
lenging goal.

50 Computer Architecture: Fundamentals and Principles of Computer Design

2.2 Main memory interleaving

We observed that the storage capacity of individual integrated cir cuit mem-
ory chips is such that a number of devices must be used together to achieve
the desired total main memory size. This is unfortunate fr om a packaging
and parts count standpoint but does have some advantages in terms of fault
tolerance (if one device fails, the others may still be usable) and flexibility
of organization. In particular, constructing main memory fr om several
smaller devices or sets of devices allows the designer to choose how the
addressed locations are distributed among the devices. This distribution of
memory addresses over a number of physically separate storage locations
is referred to as interleaving. Given a particular pattern of memory eferences,
the type of interleaving used can af fect the performance of the memory
system. We will examine alternative interleaving strategies and their perfor-
mance implications.

2.2.1 High-order interleaving

Most introductory digital logic and computer or ganization texts contain a
description of high-order interleaving. This is the simplest and most common
way to organize a computer’s main memory when constr ucting it from a
number of smaller devices. A simple example would be the design (see
Figure 2.4) of a 64-KB memory using four 16K x 8 RAM devices.

A memory with 64K (actually 65,536 or 2 ') addressable locations
requires 16 binary address lines to uniquely identify a given location. In this
example, each individual device contains 2'* = 16,384 locations and thus has
14 address lines. The low-order 14-address bits from the CPU are connected
to all four devices in common, while the high-or der 2-address bits are con-
nected to an address decoder to generate the four chip select inputs. Because
the decoder outputs ar e mutually exclusive, only one of the four memory
devices will be enabled at a time. This device willr espond to its addr ess
inputs and the read / write control signal by performing the desied operation
on one of its 2 '* byte storage locations. The data to be r ead or written will
be transferred via the data bus.

The operation of the memory system would not be materially alter ed if
smaller devices were used. If “narr ower” devices (say, 16K x 4 or 16K x 1)
were available, we would simply replace each 16K x 8 device with a “bank”
or “leave” of multiple devices, wher e each smaller device would be con-
nected to a subset of the data bus lines. If we wee to use “shallower” devices
such as 8K x 8 memory chips, each chip would equire fewer of the low-order
address lines (in this case 13 instead of 14), and we would need a lar ger
address decoder (3 to 8 instead of 2 to 4) to generate the additional chip
selects from the high-or der address lines. The basic theory of operation
would still be the same.

The distribution of memory addresses over the several devices (or banks
of devices) in this high-or der interleaved system is such that consecutively

Chapter two: Computer memory systems 51

R/IW 16 K x 8
Do- D, Dy-D, 0000 -
Ag-Ags M Ag— Ay 3FFF
Ay-A
(From CPU) 03 R/W CS
Au-Ags — /—,
16 Kx 8
¢{D,- D, 4000 -
2t04 | | &PHAg- A 7FFF
decoder
- R/W CS
=] L#—l
16 Kx 8
$+1D,- D, 8000 —
P Ag-Ap BFFE
R/W__ CS
_\?#
16 Kx 8
—Dy-D, C000 -
——Ag— Ay, FFFF
R/W CS
— |

Figure 2.4 Simple memory system using high-or der interleaving.

numbered memory locations ar e in the same device, except when cr ossing
a 16K boundary. In other wor ds, device 0 contains memory locations 0
through 16,383 (0000000000000000 through 0011111111111111 binary, or 0000
through 3FFF hexadecimal). Device 1 contains locations 16,384 thr ~ ough
32,767, device 2 contains locations 32,768 thr ough 49,151, and device 3 con-
tains locations 49,152 through 65,535.

This high-order interleaved memory or ganization is simple, easy to
understand, requires few external parts (just one decoder), and of fers the
advantage that if one of the devices fails, the others can r emain operational
and provide alar ge amount of contiguously addr essed memory. In our
example, if device 0 or 3 fails, we would still have 48 KB of contiguous
memory space, while if device 1 or 2 fails we would have one working 32-KB
block of memory and one 16-KB block. It also has the beneficial side ef fect
that if the memory system is to be dual- or multiported (accessible fr ~ om
more than one bus, as in a system with multiple pr ocessors), and if the
necessary hardware is added to support this, then much of the time accesses
may occur to separate banks simultaneously, thus multiplying the ef fective
memory bandwidth.

The disadvantage of high-or der interleaving (when used with a single
data/address bus) is that at any given time, all but one (three-fourths in our
example) of our memory devices or banks of devices ae idle. This one device

52 Computer Architecture: Fundamentals and Principles of Computer Design

or group of devices will r espond to a read or write request in its specified
access time. The memory system as a whole will be only as fast as any one
device. We might ask ourselves if ther e is some way to impr ove on this
situation; the following discussion of low-order interleaving will reveal how
this can be done under certain cir cumstances.

2.2.2 Low-order interleaving

High-order memory interleaving is so common — the default or ganization
for most main memory systems — that most textbooks do not even r efer to
it as a form of interleaving. What most computer ar chitecture texts refer to
as an interleaved memory system is the type of interleaving used to impove
bandwidth to a single processor (or any other device capable of reading and
writing memory). This is known as low-order interleaving.

The idea of low-or der interleaving is as simple as the concept of
high-order interleaving. In both cases we have a laiger main memory system
constructed from a number of smaller devices. The dif ference is in how we
map the memory addresses across the different devices or groups of devices.
Let us return to our example wher e we designed a 64-KB memory using
four 16K x 8 RAM devices, with one apparently minor but significant change
(see Figure 2.5): instead of connecting the low-order 14-address bits from the
CPU to all four devices in common, we connect the higher-order 14 bits, and
instead of connecting the high-order two-address bits to the external decodey
we generate the four -chip select inputs by decoding the two lowest-or der
address bits. The decoder outputs ar e still mutually exclusive, so still only
one of the four memory devices will be enabled at a time. What have we
accomplished by doing this?

The important difference between this example and the pr evious one is
in the permutation of memory addresses over the several devices. There are
still a total of 65,536 memory locations equally divided over the four chips,
but now consecutively numbered memory locations are always in different
devices. The addresses are assigned in rotation, such that device 0 contains
memory locations 0, 4, 8, 12,... thr ough 65,532 (all the ones whose binary
addresses end in 00). Device 1 contains all the locations with binary addasses
ending in 01 (1, 5,9, 13, ..., 65,533). Devices 2 and 3, r espectively, contain all
the locations with addresses ending in binary 10 and 1 1. Thus, if we access
sequentially numbered memory locations (which is a mor e frequent occur-
rence than one might think), the accesses will be distributed over all four
devices on a rotating basis.

The big advantage of this or ganization is that, given some extra har d-
ware (to allow separate latching of the addr esses and transfer of data for
each of the devices or banks of devices), it is possible to have several, in this
case up to four, memory accesses in progress at the same time. The likelihood
of being able to take advantage of this low-order interleaving scheme is very
high because computer systems fr equently access sequentially number ed
memory locations consecutively. For example, pr ogram instructions are

Chapter two: Computer memory systems 53

R/W 16 Kx 8

D,- D, Dy- D,

Ag- A5 —S A_A M Ao— Az
(From CPU) 27 s R'W CS

Ag- A, —pee— |

0,4,8, ..

15,9, ..
2to4

decoder

2,6,A, ..

)

r
&

I
g

3,7,B, ..

Figure 2.5 Simple memory system using low-or der interleaving.

stored and executed sequentially except wher e that order is modified by

control transfer instructions. Block I/O transfers (see Chapter 5) ae normally
done to or from sequential locations in a memory buf fer. Many data struc-
tures such as arrays, lists, and strings ar e stored consecutively in memory.
Even scalar variables are often grouped together by compilers into a contig-
uous block of memory.

In alow-or der interleaved system, any time we access consecutively
numbered memory locations for r eading or writing, each successive access
is to a different device or group of devices. This allows a significant perfor -
mance improvement over high-order interleaving, because it is not necessary
to wait for the curr ent memory access to complete befor e starting the next
one. Suppose that in our example we wanttor ead memory locations 0
through 63 in succession. W e initiate a r ead operation to location 0, which
is in device 0; say the cycle time for the memory deviceis ¢ nanoseconds.
After t/4 ns have passed, we initiate a r ead operation to location 1. (We can
do this because this location is in device 1, which is curr ently idle.) Another
t/4 ns later, we start a read operation on location 2, which is in device 2; after
another t/4 ns, we start ar ead of location 3, which is in device 3. At this
point we have four memory accesses in pr ogress simultaneously. After four
t/4 intervals, the data from the read of location 0 are placed on the bus and
transferred to the CPU. Device 0 is now fr ee again, and we can initiate the

54 Computer Architecture: Fundamentals and Principles of Computer Design

read of location 4 fr om that same device. In another #/4 ns we will transfer
the contents of location 1 and startr eading location 5; t/4 ns later we will
transfer the contents of location 2 and start the read of location 6, and so on,
rotating among the four devices until we transfer the contents of all 64
memory locations. By overlapping memory accesses and keeping all four
devices busy at the same time, we will get the entir e job done in appr oxi-
mately one-quarter the time that would have beenr equired if the system
had used high-order interleaving.

It is not necessary that the locations to be accessed be sequentially
numbered to realize a performance benefit fr om alow-or der interleaved
main memory. Any access pattern that is relatively prime with the interleav-
ing factor will benefit just as much. For example, in our fourway interleaved
system (the number of ways is the interleaving factor, generally a power of
two since addresses are binary numbers), if we wer e to access locations 0,
5,10,15, ...0r2,9, 16, 23, ... we could still get the full speedup ef fect and
have an average cycle time of #/4.

If we tried to access every second memory location (e.g., locations 3, 5,
7, 9, ...), we would lose some, but not all, of the potential speedup. The
accesses would be spread over two, but not all four , of the devices, so our
average steady-state cycle time would be #/2 (twice that of the best case
scenario, but still half that of the high-or der interleaved system). The worst
case scenario would occur if we tried to access every fourth memory location
(0, 4, 8,12, ...), or every eighth, or any interval composed of an integer
multiple of the interleaving factor (four in this case). If this occurs, we will
continually be accessing the same device, and low-or der interleaving will
give us no benefits at all. The ef fective cycle time will revert to f, that of an
individual device.

The obvious benefit of a low-or der main memory interleave is that,
when transferring data to or from a single device (for example, the CPU)
we can achieve a speedup appr oaching n (where n is the interleaving
factor). In the best case (sequential access), an n-way low-order interleave
using devices with a cycle time of t can give us the same performance as
a noninterleaved, or high-order interleaved, memory built using devices
with a cycle time of t/n (which would likely be much mor e expensive).
For example, an eight-way low-or der interleave of 10 ns DRAMs could,
under ideal conditions, appr oximate the performance of much costlier
1.25 ns SRAMs. Even in “r eal computing” wher e not all accesses ar e
sequential, we can often achieve enough of a performance incr ease for
low-order interleaving to be worthwhile.

Low-order interleaving must have some costs or disadvantages, else it
would be used universally. The most obvious disadvantage is an increase in
hardware cost and complexity. A high-order interleaved system (or a non-
interleaved system built from a monolithic device) can have a very simple,
inexpensive bus interface since only one memory access is in pr ogress at a
time. When low-order interleaving is used, it becomes necessary either to
have n separate data and addr ess buses (which is almost always cost

Chapter two: Computer memory systems 55

prohibitive) or to multiplex the addresses and data values for up to n simul-
taneous transactions across the same bus. This r equires very fast bus con-
nections and associated har dware (decoders, latches, transceivers, etc.), as
these have to don times the work in the same amount of time. The additional
hardware required, even if built using very fast components, has some
propagation delay that may cut into the potential speedup.

One other potential disadvantage of low-or der memory interleaving in
systems with multiple processors (or other devices that might need to access
memory) is that the memory system is designed to maximize the bandwidth
of transfers to or fr om a single device. In other wor ds, if one pr ocessor is
taking advantage of accessing sequentially number ed memory locations, it
is using up the full bandwidth of all the memory devices and ther e is no
time left for any other pr ocessor (or I/O contr oller, etc.) to access memory
without halting the first. A potential remedy for this situation, if main mem-
ory is quite lar ge with respect to the size of the individual devices, would
be to use both high- and low-or der interleaving in the same system. The
memory addresses would be divided into not two, but thr ee logical parts
(see Figure 2.6); both the upper and lower bits would be externally decoded.
The upper bits would select an addr ess range composed of sets of devices;
the low-order bits would choose a device or set of devices, permuted by
address, within this larger set; the middle bits would be decoded internally
by the devices to select a particular location. This combined interleaving
scheme is the most complex and costly to implement, but might be justified
in large systems where performance is at a pr emium.

Memory array
Memory address (data lines, common address lines, and
R/W control omitted for clarity)

| Bank |Address within device| Leave |

Leave 0 Leave Leave 2! — 1
b k 1
select select select
b to 2P To all device 1to 2! 0.2l 1 1,2+ —
decoder address decoder T L. o
connections 4 1)| Banko
| | | in common | | | select
25 bank 2 leave e [0 1 u
selects selects (D) ol k) | ..
2t 4 o NI
b 7] "]] Bank1
(each device select
21(:
locations) -~
B B " Bank2P-1
select

Figure 2.6 Memory system using both high- and low-or der interleaving.

56 Computer Architecture: Fundamentals and Principles of Computer Design

2.3 Logical organization of computer memory

The previous section on interleaving intr oduced the basic main memory
design common to most computer systems and showed a way that, under
certain conditions, access to the main memory can be made faster . The
underlying assumption of our discussion of main memory was the random
access property, though we have yet to discuss what random access means
or what other types of memory or ganization might be possible. W e know
that the bulk of main memory in most computer systems is semiconductor
RAM (though portions of memory that ar e required to be nonvolatile may
be constructed of ROV, flash, or other devices). However , certain types of
computer memory (including some that may be very important to system
performance) are not random access in their logical organization. Two other
important types of memories are known as sequential access memories and
associative memories. We discuss the differences between these logical orga-
nizations of memory in the following section.

2.3.1 Random access memories

Anyone who has worked with computers to any significant extent knows
that main memory, for the most part, is made up of RAM. Few people,
however, consider what the term r eally means. Computer programs do not
really access memory at random, but accor ding to some pr ogrammed
sequence in order to carry out a given task. When they access memory, they
do so by generating a number, called the address, of the location to be r ead
or written. The important property of a RAM is that all locations are created
equal when it comes tor eading or writing. In other wor ds, if a memory
location is to be read, any arbitrarily (or even randomly) chosen location can
be read in the same amount of time. Likewise, any location in a writable
RAM, no matter what its address, can be written in the same amount of time.
From this definition, it is clear that semiconductor DRAMs and SRAMs
are not the only random access memories in computer systems. Semicon-
ductor ROMs (and associated technologies such as PROM, EPROM, and
EEPROM), flash memories, and some other devices have the pr operty of
equal read access time for all locations and thus may corr ectly be referred
to as RAMs. In fact, a more correct term for semiconductor RAM is read/write
memory, to distinguish it from read-only or read-mostly memories, which are
also random access in their organization. However, the use of the term RAM
as a synonym for read / write memory has become so entrenched that using
the correct terminology is more apt to cause confusion than enlightenment.
In any RAM, whether it is a DRAM, SRAM, ROM, or some other type
of device, each memory location is identified by a unique, numerical (spe-
cifically binary) address. An addressed location may consist of an individual
bit, though more usually addresses are assigned to bytes (gr oups of 8 bits)
or words (groups of a specified number of bits, depending on the particular
architecture). Because of this, the term addressed memory is often used as a

Chapter two: Computer memory systems 57

synonym for RAM. Strictly speaking, some types of memory (such as mag-
netic bubble memories and char ge-coupled devices) are addressed but not
truly random access, but as these technologies have generally fallen out of
favor, the distinction has mostly been lost.

All of the RAMs we have discussed so far (except the ones with addsses
for individual bits) are accessed by what we call a word slice: all the bits in
a given numbered word are accessed at the same time. As shown in Figure
2.7, we present the address i of a word and can then r ead or write all the
bits of word i simultaneously. There is no mechanism for reading or writing
bits from different words in one operation. This is usually fine; however ,
some particular computer applications (graphics and certain types of array
processing come to mind) can benefit by being able to access information by
bit slice; that is to say, we may want tor ead or write bit j of all, or some
defined subset of, the memory locations (see Figur e 2.8).

Word 0
Word 1
Address of
desired ——»| Word i
word
Word 2% — 1
Figure 2.7 Memory access by word slice.
]? B B|B
i ifi
I
1 j 1|0
Address of desired bit

Figure 2.8 Memory access by bit slice.

58 Computer Architecture: Fundamentals and Principles of Computer Design

| Bit address |
A\
o -
r :
d t
a s
d
; |
r @
e
s e
8 L

\ B
| Word slice |

Figure 2.9 Orthogonal memory.

We could create a bit-slice-only memory easily enough by r earranging
the connections to a regular RAM; however, we would no longer be able to
access it by wor d slice. If we need to be able to access information by bit
slice or word slice, we could constr uct what is called an orthogonal memory
(Figure 2.9). Orthogonal is a term in geometry meaning perpendicular; the
name describes our perception of bit slices and word slices as being logically
perpendicular to each other , though they may or may not be physically
arranged that way on an integrated cir cuit. Orthogonal memories ar e not
seen very often in general-purpose computers, though they have been used
in special-purpose machines such as the GoodyearAerospace STARAN com-
puter (an array processor developed in the early 1970s). Our main purpose
in mentioning them is to point out that special pr oblems sometimes need
special solutions, and that thewe are other ways, besides word slice, to address
a RAM.

2.3.2 Sequential access memories

A second, frequently used, type of memory system is called asequential access
memory. The classic example of a sequential access memory is a magnetic
tape. (Or, if one is old enough to r emember, a punched paper tape.) Infor -
mation is stored by recording it on a physical medium that travels past a
read / write mechanism, or head. In order to read or write information in a
particular location, the tape must physically move past the head. It is obvious
that such a tape is not a random access memory; a location closer to the
present position of the read/write head can be accessed mor e quickly than
one that is far away . If the head is curr ently at position n and we want to
access location n + 5, for example, we must first advance sequentially past
locations n + 1, n + 2, n + 3, and n + 4. In other wor ds, we must move +5

Chapter two: Computer memory systems 59

positions from the current location. If instead we wanted to access location
n — 50, we would have to move 50 positions down the tape in the opposite
direction. With other types of sequential access memory , access may be
sequential in more than one dimension. In the case of magnetic and optical
disks, for example, both the radial distance the head must be stepped in or
out from the center and the angular distance ar ound the head’s path must
be specified and traversed to access the desir ed information.

In a sense, sequential access memories ae also addressed, but in a different
way from RAMs. Instead of finding the desir ed item using its absolute address
(its unique binary identifier), the important concept in a sequentially oganized
memory is the relative address of the information, which tells us not specifically
where it is, but rather how far away it is in a particular dir ection. Using
absolute addressing is analogous to telling “Scotty” of Star Trek fame to beam
someone to the building at 122 Main Str eet; relative addressing is like living
on Main Street and giving someone dir ections to walk to the sixth house to
the north. Either appr oach, if properly followed, will get the person to the
correct building, but the absolute addressing used for the transporter beam is
not dependent on one’s present location and will get us to the destination in
the same amount of time r egardless of the addr ess, without having to walk
past every building in between. When r elative addressing is used, not only
the location number but also the access time is pr oportional to the distance
between the current and desired locations.

Because of the uniformity of addr essing and access times, RAMs can
easily be interfaced in a synchonous or asynchronous fashion as the designer
prefers. Sequential access memories, practically speaking, can only use an
asynchronous interface since synchr onous transfers of data would always
have to allow for the worst case access time, which may be extr emely long.
Thus disk and tape drives never interface dir ectly to the CPU, but rather
connect indirectly through a drive controller. Because of their simplicity and
flexibility in interfacing with a (synchr onous) CPU, RAMs are preferred by
system designers and are essential for main memory. However, the advan-
tages of disk memories in terms of cost, density , and nonvolatility, coupled
with their physical characteristics that lend themselves mor e readily to rel-
ative addressing, ensures that sequential access memories will be used for
secondary storage for some time to come.

2.3.3 Associative memories

Associative memories are a third type of memory or ganization, radically dif-
ferent from the two just discussed. The operation of an associative memory
is best summarized by referring to it by its alternate name, content addressable
memory (CAM). Both random access and sequential access memories identify
stored information by its location, either in an absolute orr elative sense.
Associative memories identify stored information by the actual content that
is stored (or at least some subset of it). Rather than pr ovide an absolute or
relative address for a memory location and telling the har dware to store an

60 Computer Architecture: Fundamentals and Principles of Computer Design

item there, or asking it what is in that location, we specify the contents we
are looking for and in ef fect ask the memory system, “Got any of those?” A
lighthearted description of associative memory is that it is the “Go Fish”
approach to memory access.

The astute reader will probably have already posed the question, “If we
already know the contents of a memory location, why would we need to
look in memory for them? W ouldn’t that be a waste of time?” Indeed, in
most cases if we know the contents of an 8-bit memory location ae supposed
to be, for example, 01101101, it does not do us much good just to verify that
is the case. The real power and utility of an associative memory is the ability
to match on a selected part of the contents, which we do know , in order to
obtain the related information that we seek. In other wor ds, we might find
it more useful to ask the memory whether it contains any entries with bit 0
equal to 1 and bit 3 equal to zer o, or to provide us with the first entry that
starts with the bit pattern 011 or some other partial contents. This is directly
analogous to a softwar e database application that allows us to look up all
of a customer’s information if we know his or her name or telephone number
However, an associative memory does the same thing in hardware and thus
is much faster than a softwar e search.

In making an associative query (to use a database term) of a memory
system, we need to identify thr ee things. First, we need to pr ovide an arqu-
ment, or search term — in other words, the word we are trying to match the
memory contents against. We also need to specify a mask, or key, that iden-
tifies which bit positions of the argument to check for a match on and which
to ignore. Finally, we need some sort of contr ol over conflict r esolution, or
at least a way to detect conflicts (multiple matches). After all, any associative
search may produce no matches, a unique match, or several matches. When
extracting information from the memory, knowing which of these events has
occurred is often significant. If we desir e to update the stor ed information,
it is very important to detect the lack of a match so the write operation can
be aborted, and probably just as important to detect multiple matches so we
can determine which location(s) to update.

Figure 2.10 shows a block diagram of an associative memory array
Notice that there is an argument register A that holds the item to be sear ched
for and a key register K in which bits equal to 1 indicate positions to check
for a match and zer oes denote positions to be ignor ed. The results of the
search are found in the match register M, which contains one bit for each
word in the associative array. If the logical OR of all the match r egister bits
is zero, no match was found; if it is one, at least one match was found.
Examining the individual bits of M will allow us to determine how many
matches occurred and in what location(s).

The construction of the r egisters A, K, and M is straightforwar d, but
how can we constr uct the associative array itself? The memory cells could
be constructed of capacitors (like DRAM), flip-flops (like SRAM), or some
other technology. Since the main purpose of associative memory is to be able
to perform a high-speed sear ch of stored information, we will assume that

Chapter two: Computer memory systems 61

Argument register (A) Key register (K)
n n
Word 0
Word 1
Word 2™ — 1
2™ x n associative Match
memory array register

M)
Figure 2.10 Associative memory block diagram.

each bit of data is stor ed in a D flip-flop or similar device. The mechanism
for reading and writing these bits is the same as it would be in any static
RAM: to store a bit we place it on the D input and clock the device, and to
read a stored bit we simply look at the state of the Q output. However
additional logic is r equired in order to perform the sear ch and check for
matches. This logic will decr ease the density of the memory cells and add
considerably to the cost per bit of fabricating the memory but may be worth
it in terms of speeding up the sear ch for information.

Figure 2.11 shows the logic for an individual associative memory cell.
Q; stores the state of the ith bit of a wor d (obviously, to store all n bits of a
word will require n flip-flops, and an associative array with 2 " words will
require 2" x n flip-flops). A, is the corresponding bit of the ar gument to be
searched for; it must be compared to the Q, bit in every word simultaneously.
The equivalence (Exclusive — NOR or XNOR) gate outputs a logic 1 if the
stored bit matches the corresponding bit of the argument. This gate’s output
is logically ORed with the inverse of the corresponding key bit K; to indicate

a match m; in this bit position. This is because if K ; = 0, this bit position is
Input bit —D
Write | Corresponding bit of
control

match register M

Figure 2.11 Associative memory cell logic.

62 Computer Architecture: Fundamentals and Principles of Computer Design

a “don’t care” for the purposes of matching, so we do not want a mismatch

between A; and Q, to disqualify the word from matching. Bit m; will be 1 if
either A; = Q; or K; = 0. All of the individual bit position match bits m ; for
the word can be ANDed together to detect a match between the ar gument
and that word and generate the corresponding bit to be stored in the match
register M. If at least one bit of M is 1, the selected bits (accor ~ ding to the
key) of the argument are contained in memory.

The advantage of going to all the ef fort and expense of building an
associative memory is sear ch speed. All the bits of all the wor ds in the
memory are compared to the ar gument bits simultaneously (in parallel).
Rather than perform a sear ch sequentially in softwar e by examining one
word after another, we have ef fectively built the sear ch function into the
hardware. Finding a match in any wor d, whether the first, the last, or any-
where in between (or even in multiple words), takes the same (brief) amount
of time. Contrast this with a software search algorithm that takes a variable,
and generally much longer, time to complete.

Like many design choices in computing, the choice between a parallel
search using CAM and a sequential sear ch through the contents of a RAM
boils down to a trade-off of competing, mutually exclusive criteria. RAM is
much more dense, cheaper, and less complex to build, not to mention useful
for a much wider range of applications, but it takes a long time to sear ~ ch.
CAM gives much better performance for a particular application (sear ch)
but offers little, if any, assistance to most other computing functions and is
much higher in cost and complexity for the same storage capacity. Its use as
main memory would only be economically justified in systems tailor ed to
very specialized applications. However, as will be seen in the next section,
general-purpose machines can benefit fr om using a small amount of asso-
ciative memory in a particular way to impr ove overall main memory per -
formance.

2.4 Cache memory

Low-order interleaving, as discussed in Section 2.2, is one way to try to
improve the performance of a computer ‘s main memory. As we saw, how-
ever, interleaving has its limitations, and the performance improvement that
can be realized is highly dependent on the pr ecise ordering of memory
references. The technique of main memory caching is a somewhat mor e
general way of improving main memory performance that we will examine
in this section.

A cache memory is a high-speed buf fer memory that is logically placed
between the CPU and main memory . (It may be physically located on the
same integrated circuit as the processor core, nearby in a separate chip on
the system board, or in both places.) Its purpose is to hold data and instr uc-
tions that are most likely to be needed by the CPU in the near futur e so that
they may be accessed as rapidly as possible — ideally , at the full bus speed
of the CPU, with no “wait states,” which ar e usually necessary if data ar e

Chapter two: Computer memory systems 63

to be read from or written to main memory . The idea is that if the needed
data or instructions can usually be found in the faster cache memory , then
that is so many times that the pr ocessor will not have to wait on the slower
main memory. The concept of cache memory goes back at least to the early
1960s, when magnetic core memories (fast for the time) were used as buffers
between the CPU and main storage, which may have been ar otating mag-
netic drum.

The word cache comes from the French verb cacher, which means “to
hide.” The operation of the cache is transparent to, or in effect hidden from,
the programmer. With no effort on his or her part, the pr ogrammer’s code
(or at least portions of it) r uns “invisibly” from cache, and main memory
appears to be faster thanitr eally is. This does not mean thatno ef fort is
required to design and manage the cache; it just means that theef ~ fort is
expended in the design of the har dware rather than in pr ogramming. We
will examine aspects of this in the next sections.

2.4.1 Locality of reference

Typically, due to cost factors (modern cache is built fr om more expensive
SRAM rather than the DRAM used for main memory), cache is much smaller
in size than main memory . For example, a system with 256 MB of main
memory might have only 2 MB (or less) cache. One might ask how much
good this would do. Since cache is only 1/128 the size of main memory it
would appear that it would be of almost negligible benefit. Indeed, if mem-
ory references for code and data were uniformly distributed throughout the
address space, we would only expect one access in every 128 to occur to the
faster cache memory. In this case the additional expense of a cache could
hardly be justified.

Fortunately for the performance of computer memory systems, com-
puter programs do not access memory at random. Instead, most pr ograms
confine the vast majority of their memory r eferences for instructions and
data to small areas of memory, at least over any given limited stretch of time.
This observed, nearly universal behavior of computer programs exemplifies
the principle of locality of r eference. Simply put, this principle states that
programs tend to access code and data that have r ecently been accessed, or
which are near code or data that have recently been accessed. This principle
explains why a relatively small cache memory can have alar ge impact on
memory system performance. It is OK to have a cache that is 1% or less of
the size of main memory, as long as we make sur e it contains the right 1%
of the information — that which is most likely to be used in the near futur e.
Determining which 1% to keep in the cache at any given time is the chal-
lenging, but fortunately not impossible, task.

Aspects of locality of r eference include temporal, spatial, and sequential
locality. Temporal (time-related) locality says that if a given memory location
is accessed once, there is a high probability of its being accessed again within
a short time. Spatial locality means that locations near ar ecently accessed

64 Computer Architecture: Fundamentals and Principles of Computer Design

location are also likely to be r eferenced. Sequential locality is r elated to
spatial locality; locations that sequentially follow ar eferenced location are
extremely likely to be accessed in the very near futur e.

These aspects are readily illustrated by a variety of common pr ogram-
ming practices and data structures. Code, for example, is normally executed
sequentially. The widespread use of program loops and subroutines contrib-
utes to temporal locality. Vectors, arrays, strings, tables, stacks, queues, and
other common data structures are almost always stored in contiguous mem-
ory locations and ar e commonly referenced within program loops. Even
scalar data items are normally grouped together in a common block or data
segment by compilers. Obviously, different programs and data sets exhibit
different types and amounts of locality; fortunately almost all exhibit locality
to a considerable degr ee. Itis this pr operty of locality that makes cache
memory work as a technique for improving the performance of main mem-
ory systems.

2.4.2 Hits, misses, and performance

Because of the locality pr operty, even though cache may be much smaller
than main memory, it is far mor e likely than it would otherwise seem that
it will contain the needed information at any given point in time. In the
hypothetical case (256 MB main memory, 2 MB cache) presented above, the
cache is less than 1% of the size of main memory, yet for most programs the
needed instruction or data item may be found in the cache memory 90% or
more of the time. This parameter — the pr obability of avoiding a main
memory access by finding the desir ed information in cache — is known as
the hit ratio of the system. (A cache hit is any reference to a location that is
currently resident in cache, while a cache miss is any reference to a location
that is not cached.) Hit ratio may be calculated by a simple formula:

Hit ratio = p, = number of hits/ total number of main memory accesses
or, equivalently,
p, = number of hits/(number of hits + number of misses)

The hit ratio may be expressed as a decimal fraction in the range of 0 to
1, or equivalently (by multiplying by 100) as a per centage. For example, if
a given program required a total of 142,000 memory accesses for code and
data but (due to locality) 129,000 were hits and only 13,000 were misses, then
the hit ratio would be

p, = 129,000/(129,000 + 13,000) = 129,000/142,000 = 0.9085 = 90.85%

The hit ratio is never really a constant. It will vary from system to system
depending on the amount of cache pr esent and the details of its design. It

Chapter two: Computer memory systems 65

will also vary on the same system depending on what pr ogram is currently
running and the properties of the data set it is working with. Even within a
given run, hit ratio is a dynamic parameter, as the contents of cache change
over time. In the example above, most of the 13,000 misses pobably occurred
early in the run before the cache filled up with useful data and instr uctions,
so the initial hit ratio was pr obably quite low. Later on, with a full cache,
the hit ratio may have been much higher than 0.9085. (It still would have
varied somewhat as dif ferent routines containing different loops and other
control structures were encountered.) The overall value computed was just
the average hit ratio over some span of time, but that is suf ficient for us to
estimate the effect of cache on performance.

With a high hit ratio (close to 1.0 or 100%), dramatic gains in performance
are possible. The speed ratio between cache and main memory is often in
the range of 3:1 to as much as 10:1. Cache ideally operates at the full speed
of the CPU (in other wor ds, we can access cache in a single pr ocessor clock
cycle), while main memory access may take several times longer. Let us say
that in the preceding example (p, = 0.9085) the main memory access time is
10 ns and the cache can be accessed in 2.5 ns (a 4:1 speed ratio). What is the
effective time required to access memory, on average, over all r eferences?
We can compute this simply using the following formula for a weighted
average:

ta effective — t/z cache X (ph) + ttz main X (1 - ph)

t = (2.5 1ns)(0.9085) + (10 ns)(0.0915) = 2.271 ns + 0.915 ns = 3.186 ns

a effective
which is much closer to the speed of the cache than it is to the speed of the
main memory. The cache itself is four times the speed of the main memory;
the combined system with cache and main memory is 3.14 times as fast as
the main memory alone. That small, fast cache memory has bought us a lot
of performance, and this is a fairly conservative example; it is not uncommon
for cache hit ratios to be in the range of 97 to 98% in practice. A hit ratio of
0.98 would have brought the access time down to just 2.65 ns, or 3.77 times
the speed of main memory. By spending a relatively small amount to buy 2
MB of fast memory , we have achieved nearly as much impr ovement in
performance as we would have realized by populating the entire main mem-
ory space (256 MB) with the faster devices, but at a small fraction of the cost.
“Such a deal I have for you,” a system designer might say“A magic memory
upgrade kit! Just plug it in and watch performance soar!”

Of course, as we will shortly see, it’s not quite that simple. W e cannot
just plug these extra SRAM devices in on the CPU-memory bus and expect
them to work like magic, automatically choosing the right information to
keep while discar ding items that will not be needed any time soon. The
operation of the cache must be intelligently contolled in order to take advan-
tage of locality and achieve a high hit ratio. We need circuitry to decide such
things as which main memory locations to load into cache, wher e to load

66 Computer Architecture: Fundamentals and Principles of Computer Design

them into cache, and what information alr eady in the cache must be dis-
placed in order to make r oom for new information that we want to bring
in. The cache contr ol circuitry must also be able to handle issues such as
writes to locations that ar e cacheable. It must be able to detect whether a
location that is written is in cache, update that location, and make sur e the
corresponding main memory location is updated. We will explore the details
and ramifications of these contr ol issues next.

Before we begin our discussion of the details of cache design, we need
to make one observation r egarding typical cache operation. Though pr o-
grams normally interact with memory in the form of r eading or writing
individual bytes or wor ds, transfers of data or instr uctions into or out of
cache typically are done with less granularity . To put it more simply, most
caches are designed such that a block of data, rather than a single byte or
word, is loaded or displaced at a time. The unit of information that is moved
between main memory and cache isr eferred to asa refill line or simply a
line. Depending on system characteristics, line size may range fr om just a
few (e.g., 8 or 16) bytes to a fairly substantial chunk of memory , perhaps as
large as 256 bytes.

Cache may be partitioned into r efill lines rather than individual bytes
or words for several r easons. First, given the typical size and performance
characteristics of buses between the CPU and main memory , it is usually
more efficient to perform a small number of lar ger transfers than a lar ge
number of small ones. Also, because of the locality principle (which is the
basis of cache operation anyway), if a pr ogram needs a given byte or wor d
now, it will probably need the surrounding ones soon, so it makes sense to
fetch them all from main memory at once. Finally (this is especially tr ue for
the fully associative cache or ganization), it is generally less expensive to
build a cache with a small number of lar ge entries than vice versa. Thus,
while line size can (in the simplest case) equal one byte or one wor d, itis
usually somewhat larger and (like the size of most memories with binary
addresses) virtually always an integer power of two.

2.4.3 Mapping strategies

The most notable job of the cache contr oller, and the one with pr obably the
most significance in r egard to hit ratio, is the task of ~ mapping the main
memory locations into cache locations. The system needs to be able to know
where in cache a given main memory location is, so it can beetrieved rapidly
in the event of a hit. Even mor e basically, the system needs to be able to
detect a hit — to quickly determine whether or not a given main memory
location is cached. Thr ee strategies ar e widely used for performing this
mapping of main memory addr esses to cache locations. These mapping
strategies, also referred to as cache organizations, are known as associative
mapping, direct mapping, and set-associative mapping. Each has certain
advantages and disadvantages that we will explor e below.

Chapter two: Computer memory systems 67

Associative mapping is a cache or ganization that takes advantage of the
properties of associative (or content-addressable) memories that we studied
in the previous section. Associative mapping, often r eferred toasa fully
associative mapping to distinguish it from the set-associative mapping to be
discussed below, is the most flexible mapping scheme. Because of this, all
other things being equal, it will have the highest hit ratio and thus impr ove
performance more than the other mapping strategies. However , because it
relies on a CAM to stor e information, a fully associative cache is the most
expensive type to build.

Each entry, or refill line, in a fully associative cache is composed of two
parts: an address tag, which is the information to be matched on associatively
and one or more data or instruction words that are a copy of the correspond-
ingly addressed line in main memory . If a line is an individual memory
location, the tag is the complete memory addr ess of that location; if, as is
more usually the case, a line contains several memory locations, the tag
consists of the high-or der address bits that ar e common to all locations in
that line. For example, if the main memory uses 32-bit addr esses and each
refill line contains 2° = 32 bytes, then the associative tags will be the upper
(32 — 5) =27 address bits. Figure 2.12 shows the general layout of the fully
associative cache.

Note that the tag storage is all CAM, but the information that goes with
each tag is not needed in the matching pr ocess, so it can be stor ed in plain
old static RAM. Each tag is logically associated with one and only one line
of information stored in the SRAM.

Memory address (n bits)
| Tag | Byte |

(n — m bits) (m bits)
(Selects data within
line if a hit occurs)

| Argument register |

Cache memory

Tags Data
(All compared to argument tag
at once, in parallel-expensive!)

Figure 2.12 Fully associative cache.

68 Computer Architecture: Fundamentals and Principles of Computer Design

The power of a fully associative cache or ganization is that when a main
memory address is referenced, it is quick and easy to determine whether it
is a cache hit or a cache miss. The upper bits of the main memory addr ess
are checked against all the cache tags simultaneously . We never cache the
same main memory location in mor e than one place, so ther e will be either
one match or none. If no tag matches the supplied tag, the access is a miss
and main memory must be referenced (note that we will then place this line
into the cache, displacing another line if necessary , so that subsequent r ef-
erences to it will result in hits). If one tag is a match, then a hit has occurr ed
and the lower main memory addr ess bits will identify which byte or wor d
within the line is to be accessed. In this case (which, of course, is what we
hope for) the main memory access can be omitted.

Not only is the check for a hit very fast because all the tags ar e checked
at once, but this cache organization is the most flexible because there are no
limitations on where in the cache any given information from main memory
may be mapped. Any line from main memory may r eside in any line of
cache. Thus, any combination of main memory contents can r eside in cache
at any time, limited only by the total size of the cache. Because of this
flexibility, hit ratios tend to be high for a given cache size; however, the need
for a CAM to hold the tags makes this a costly strategy .

Direct mapping is the opposite extreme of fully associative mapping. The
idea is simple: since the cost of a fully associative cache is dominated by the
cost of the matching hadware required to associatively compare all the many
large tags at once, we could achieve considerable savings by r educing the
number of comparisons and/or the size of the tags. A direct mapping does
both of these things by sacrificing flexibility . Instead of an entry (a given
item from main memory) being able to r eside anywhere in the cache, it is
constrained to be in one particular line if it is in cache at all. The particular
line into which it may be mapped is determined by part of its main memory
address, referred to as its index.

Because it is only possible for a given item to be in one place, we only
have to compare the tag portion of the main memory addess with one stored
tag (the one with the same index) to determine whether or not a hit has
occurred. Also, because some of the memory address bits are used for index-
ing, while line size is independent of the mapping strategy (and thus could
be the same in a dir ect-mapped cache as it might be in a fully associative
cache), fewer bits are required for the tags. If main memory is 2 " bytes and
the line size is 2" bytes, then the tags in a fully associative cache ar e n —m
bits regardless of the number of lines in the cache. However |, ina
direct-mapped cache containing 2* lines, k bits are used for the index, so the
tags are only n —k —m bits long.

Figure 2.13 shows an example of a dir ect-mapped cache. Suppose a
system is to have 16 MB (2 > bytes) of main memory and 128 KB (2 7 bytes)
of cache, which is to be or ganized as 2" = 2048 lines of 2 ¢ = 64 bytes each.
The 24 address bits would be divided into 7 tag, 1 1 index, and 6 byte bits
as shown. To check for a cache hit on any given main memory access, the

Chapter two: Computer memory systems 69

Memory address (n bits)

Tag Index Byte
(n — k — m|(k bits) (m bits)
bits) (Selects data within line if hit occurs)
Cache memory
Line O
Line 1

(Selects a line
within cache)

Line 2K -1

Tags Data
(Only one comparison
must be done)

Argument tag Stored tag

Hit?

Figure 2.13 Direct-mapped cache.

index bits are used to uniquely choose one of the 2048 stor ed tags. That tag
(and that tag only) is checked against the tag bits of the supplied addr ess.
If they match, the access is a hit and the six low-or der bits can be used to
identify which location within the line is to be accessed. If they do not match,
the access is a miss and main memory must be accessed.

As an example, let’s say the CPU wants to r ead main memory location
16008A,, (000101100000000010001010,). While this addr ess is a monolithic
binary value as far as the CPU is concerned, for the purposes of the cache,
it is tr eated as thr ee separate values: a tag of 000101 1, an index of
00000000010, and a byte addr ess within a given line of 001010. Because the
index is 00000000010,, or decimal 2, the tag in position 2 is accessed and
checked. Since this tag is equal to 000101 1, the access is a hit and the data
at position 001010, (10 decimal) within that line ar e forwarded to the CPU.
If the contents of the tag in position 2 had been anything other than 0001011,
the access would have been a miss and a main memory r ead would have
been required to get the data. In that case, the pr evious contents of cache
line 2 would be replaced by the contents of main memory locations 160080,
to 1600BF,, (the 64-byte block including the r eferenced location) since, by
the principle of locality of reference, those memory contents would likely be
needed in the near future.

The key to cost savings using a dir ect mapping is that no associative
memory is required. Both the tags and data are stored in a fast, but otherwise
ordinary, static RAM, which is more expensive than DRAM but significantly
cheaper than a corresponding amount of CAM. Only one small comparator

70 Computer Architecture: Fundamentals and Principles of Computer Design

circuit (just seven bits in our example) is needed to check a single tag for a
match. The tradeoff is a potentially lower hit ratio, and thus lower overall
system performance, given the same size cache. Why is this the case? Let us
look at the last example. Suppose the pr ogram was processing two arrays:
one stored beginning at location 160080, including the location accessed in
the example, and another stor ed beginning at location 2E00AO .. The tag
portion of the addr ess for this second array would be 00101 11, instead of
0001011,, but it would have an index of 00000000010, just like the first array.
With a fully associative or ganization, caching both arrays at the same time
would be no problem; any subset of main memory contents can be cached
at the same time. If the dir ect mapping of the example is used, these two
arrays are mutually exclusive when it comes to caching. Any time elements
of either array are loaded into cache, they can only go in line 2, displacing
elements of the other array if they have alr eady been loaded.

It is easy to see that if the pr ogram frequently needs to access both of
these arrays, cache misses will become fr equent and performance will be
significantly degraded. Obviously, the system hit ratio will be lower than it
would be under other cir cumstances, so the apparent access time for main
memory as seen by the CPU will incr ease. There may also be a hidden
performance cost if other operations, such as I/O, ar e going on in the back-
ground. Even though the cache “fills” after each miss may be transpar ent to
the CPU, they still consume main memory bandwidth; thus, other devices
that may be trying to access main memory will have to wait.

This contention for a line of cache by multiple items in main memory is
not always a problem, but the laws of probability (not to mention Murphy’s
Law) tell us that it is likely to happen at least some of the time. For this
reason, a direct-mapped cache may not be the best choice due to performance
concerns. Conversely, due to cost constraints, a fully associative cache may
not be feasible. A popular solution that attempts tor ealize most of the
benefits of these two strategies while minimizing their disadvantages is
discussed next.

Set-associative mapping is a compr omise between the two extr emes of
fully associative and direct-mapped cache organization. In this type of cache,
a particular item is constrained to be in one of a small subset of the lines in
the cache, rather than in one line only (diect) or in any line (fully associative).
A set-associative cache can per haps be most conveniently thought of as a
group or set of multiple direct-mapped caches operating in parallel. For each
possible index there are now two or more associated lines, each with its own
stored tag and associated data fr om different areas of main memory. These
different lines from main memory will be ones that would contend with each
other for placement in a direct-mapped cache, but, due to the duplication of
the hardware, they can coexist in the set-associative cache.

The hardware for a set-associative cache is somewhat moe complex than
what is required for a direct mapping. For example, instead of one compar -
ator being used to check the supplied addr ess against the single tag with a
given index, the set-associative cache willr equire two, four, or more

Chapter two: Computer memory systems 71

comparators. (The cache is said to be as many “ways” associative as ther e
are different places to cache a given piece of information, so a cache with
four parallel sets and thus four comparators would be called a four -way
set-associative cache.) Also, when all of the lines with a given index ar e full
and another line needs to be loaded, some sort of algorithm must be
employed to determine which of the existing lines to displace. (In a
direct-mapped cache there is only one option and thus no similar choice to
make.) The hardware for a set-associative cache is not nearly as complex or
expensive as that required for a fully associative cache.

Let us go back to the dir ect-mapped example above and r eorganize it
as a two-way set-associative cache. W e still assume that ther e is 16 MB of
main memory space, so 24-bit addr essing is used. The 128-KB total cache
size is the same, but now we partition it into two subdivisions of 64 KB and
treat each as though it were an independent direct-mapped cache. Assuming
that each line is still 64 bytes, this means ther e are 21 = 1024 lines in each
half of the cache. There will thus be 10 index bits instead of 11, and the tags
will consist of the upper eight addr ess bits rather than seven (see Figur e
2.14). On each memory r eference, two 8-bit tags, rather than one 7-bit tag,
must be checked. The two hypothetical arrays we spoke of, at main memory
addresses 160080,, and 2E00AOQ,,, still both map to line 2. Since there are two
separate lines with index 2, however, it is possible for these items to coexist
in cache (though accessing a third area of main memory with the same index
would displace one of them).

Memory address

Tag | Index | Byte |

(Selects data within line
with hit, if hit occurs)

Cache memory

Set 0
Set 1

Set2k -1

Tags Data Tags Data

Comparator Comparator
Hit? Hit?

Figure 2.14 Two-way set-associative cache.

72 Computer Architecture: Fundamentals and Principles of Computer Design

If we were concerned about this latter possibility , we could divide the
cache into four 32-KB partitions and use a four -way set-associative design
with a 9-bit index and four 9-bit tags to check on each access. By extension,
it is not difficult to envision how an 8-way, 16-way, or even more associative
cache could be designed. These mor e highly associative or ganizations are
rarely used, as they add cost and complexity , while it is rar e for more than
two to four widely separated ar eas in memory to be in fr equent use at the
same time. Thus, considering benefits vs. cost, a two- or four -way set-asso-
ciative organization is often the best overall design for a data or mixed
instruction/data cache. (Where instructions are cached separately, a direct
mapping may do virtually as well as a set-associative one, as pr ogram flow
tends to be more localized than data access.)

By way of summing up, we might point out that the set-associative cache
is the most general of the thr ee organizational concepts. A direct-mapped
cache is really just a one-way set-associative cache by another name, while
a fully associative cache with 2¥ lines is the same as a 2 ¥-way set-associative
cache with one line per set. The dir ect-mapped cache will have the fewest
tag bits and the most index bits; as associativity increases for the same cache
size, the number of index bits decreases and the number of tag bits increases.
Ultimately, in the fully associative case, ther e are 0 index bits and the tags
are the maximum size, which is the entir e main memory address minus the
number of bits that identify a location within a line.

2.4.4 Cache write policies

Cache operation using any of the thr ee mappings just discussed is fairly
straightforward as long as memory accesses ar e limited to reads. This may
be possible in the case of an instr uction-only cache, as self-modifying code
is not a particularly good idea anyway . However, when we ar e designing
the data cache in a system with a split (Harvar ~d) cache ar chitecture or a
unified (Princeton or mixed instuction/ data) cache, we always have to allow
for writes to cached locations. Writes complicate the design process because
of what must happen when a line is displaced fr om cache. If the contents of
that line have only been r ead, they can simply be overwritten by the new
data. But if any location in that line has been modified, we must make sur e
main memory reflects the updated contents befor e loading the new data in
their place. This can be done in different ways, which we will discuss below.
Write-through cache is the simplest appr oach to keeping main memory
contents consistent with the cache. Every time we write to a location in cache,
we also perform a write to the corr esponding main memory location. These
two writes can usually be started at the same time, but the main memory write
takes longer and thus determines the overall time for the write operation.
One advantage of this method is that it is r elatively simple to build into
the hardware. In addition, because of the write-thr oughs, main memory
always has the most current data, identical to the contents of the cache. This
is not particularly important fr om the CPU’s standpoint, since subsequent

Chapter two: Computer memory systems 73

reads of the same location will hit the cache and get the mostr ecent data
anyway. However, if there are other devices (for example, Dir ect Memory
Access (DMA) controllers or I/O processors) in the system, always having
main memory updated with the latest data can simplify things quite a bit.

The obvious disadvantage of a write-through cache is that an item may
be accessed (for reading or writing) several times while it is in cache. (Indeed,
we are depending on this to happen if we ae to realize a performance benefit
from using cache.) We may spend the time required to write a value to main
memory, then turn ar ound and read it again, or write it again, or both —
possibly a number of times — befor e it is finally displaced fr om the cache.
All the extraneous writes (all of them, that is, except the last one, which
commits the final value to main memory) exact a performance penalty; it is
as though we never hit on a write, since all writes access main memory
While both reads and writes can nominally be hits in the sense of eferencing
a cached location, only read hits are beneficial in terms of performance. The
effective hit ratio will be lower than the actual hit ratio; exactly how much
lower depends on the behavior of a particular pr ogram, but the dif ference
can be significant.

Write-back cache is more complex to implement but can impr ove perfor-
mance if writes are done frequently. On a write that hits the cache, only the
cache location is updated. Main memory is only written when a line that
has been modified is displaced fr om the cache to make room for a new line
to be loaded. Implementing this policy r equires that we add a bit to each
tag to indicate whether or not the associated line has been written. This bit
is often called the “inconsistent bit” (or , more colorfully, the “dirty bit”; a
cache location that has been written to may be called a “dirty cell” or “dirty
word”). If this bit is 0, then this line has only been ead, and the cache control
hardware will know that a new line can simply be loaded over the existing
information. If the dirty bit is 1, then that line (or at least any modified
locations within it) must be copied or “written back” to main memory befoe
it is overwritten by new information. If this wer e not done, it would be as
though the write had never occured; main memory would never be updated
and the system would operate incorr ectly.

The advantages and disadvantages of a write-back strategy are the con-
verse of those for a write-through cache. Using the write-back approach will
generally maximize performance because write hits can be nearly as bene-
ficial as read hits. If we write to a cached location 10 times, for example, only
one write to main memory isr equired. Nine of the ten write hits did not
require a main memory access and thus took no mor e time than read hits.

With this approach data in main memory can be “stale”; that is, we ar e
not guaranteed that what is in main memory matches the mostecent activity
of the CPU. This is a potential problem that must be detected and dealt with
if other devices in the system access memory. In addition, the logic required
to do write-backs is mor e complex than thatr equired to perform
write-throughs. We not only need an extra bit added to every tag to keep
track of updated lines; we need logic to examine these bits and initiate a line

74 Computer Architecture: Fundamentals and Principles of Computer Design

write-back operation if needed. To do a write-back, the contwoller must either
hold up the r ead operation for filling the new line until the write-back is
complete, or it must buffer the displaced information in a temporary location
and write it back after the line fill is done.

2.4.5 Cache replacement strategies

Speaking of displaced information, when designing a cache we also need to
build into the contr ol hardware a means of choosing which entry is to be
displaced when the cache is full and a miss occurs, meaning that we need to
bring in the line containing the desired information. In a direct-mapped cache
there is only one place a given item can go, so this is simple, but in a set-asso-
ciative or fully associative cache, ther e are multiple potential places to load a
given line, so we must have some way of deciding among them. The major
criterion for this, as in other aspects of cache design, is that the algorithm
should be simple so it can be implemented in har dware with very little delay.
In order to maximize the hit ratio, we would also like the algorithm to be
effective, that is, to choose for r eplacement a line that will not be used again
for along time. Doing this perfectly would r equire foreknowledge of future
memory access patterns which, of course, our har dware cannot have unless
it is psychic. However, there are several possibilities that may approximate an
ideal replacement strategy well enough for our purposes.

One possible replacement strategy is a least frequently used (LFU) algo-
rithm. That is, we choose for replacement the line that has done us the least
good (received the fewest hits) so far , reasoning that it would be likely to
remain the least fr equently used line if allowed to r emain in cache. Lines
that have been frequently hit are “rewarded” by being allowed to remain in
cache, where we hope they will continue to be valuable in the futur e. One
potential problem with this approach is that lines that have been loaded very
recently might not yet have a high usage count and so might be displaced
even though they have the potential to be used more in the future. The main
problem, however, is with the complexity of ther equired hardware. LFU
requires a counter to be built for each entry (line) in the cache in or ~ der to
keep up with how many times it has been accessed; these count values must
be compared (and the chosen one reset to zero) each time we need to replace
a line. Because of this har dware complexity, LFU is not very practical as a
cache replacement algorithm.

Other replacement algorithms that may achieve r esults similar to LFU
with somewhat less har dware complexity include least recently used (LRU)
and first-in, first-out (FIFO). The LRU algorithm r eplaces the line that was
hit the longest time ago, r egardless of how many times it has been used.
FIFO replaces the “oldest” line; that is, the one that has been in cache the
longest. Each of these appr oaches, in its own way, attempts to r eplace the
entry that has the least temporal locality associated with it in hopes that it
will not be needed again soon.

Chapter two: Computer memory systems 75

Some studies have shown that once cache gets to the sizes that ar e
common in modern computers, performance is not particularly sensitive to
the particular replacement algorithm used. Therefore, to keep the hardware
as simple and fast as possible, some cache designers have chosen to use a
very basic round-robin algorithm (in which candidacy forr eplacement is
simply rotated among the cache lines) or even arandom replacement strategy,
in which some arbitrary string of bits is used to identify the line to be
replaced. Any algorithm that is simple and has little ef fect on performance
over the long term is a viable candidate. Designers typically make this choice,
as well as other design decisions such as the degr ee of associativity, by
running simulations of cache behavior with dif ~ferent memory r eference
sequences taken from logged program runs.

2.4.6 Cache initialization

One more topic that should be addressed before we conclude our discussion
of cache memory is cache initialization. Once a pr ogram has been r unning
for a while and the cache is full, its operation is fairly straightforwar d, but
how do we handle filling up the cache to start with, for example, after a
reset or when a new pr ogram is loaded? More to the point, on these occa-
sions, how do we make sur e that invalid data ar e not read from the cache
by the CPU?

It is important tor ealize that like any RAM, cache memory always
contains something — whether that something is meaningful data and
instructions or “garbage.” When the system is r eset, for example, the cache
will either contain r esidual information from before the reset or (if power
was interrupted) a more or less random collection of Os and 1s. In either
case, the contents of the cache ar e invalid and we need to keep addr esses
generated by the CPU from accidentally matching one of the (random) tags
and feeding it random, garbage data (or worse, instr uctions).

The simplest and most usual appr oach used to reinitialize and validate
the cache uses another bit associated with each tag (similar to the dirty bit
used in a write-back cache), which we call the “valid bit.” When ar eset
occurs, the cache contr ol hardware clears the valid bit of every line in the
cache. A tag match is not consider ed to be a hit unless the associated valid
bit is set, so this initially for ces all accesses to be misses. As misses occur
and valid lines ar e brought into cache fr om main memory, the cache con-
troller sets the corresponding valid bits to 1. Any tag match on a line with
a valid bit = 1 is a legitimate hit and the cached information can be used.
Eventually all valid bits will be set; at that point the cache is full and will
remain so until something happens to clear some or all of the valid bits again.

Many architectures support not only invalidating the cache in hardware
on a system reset, but also under supervisor softwar e control (by the oper-
ating system). This allows all or part of the cache to be “flushed” (for pur -
poses of protection) on an interrupt, context switch, or any time the operating
system deems it necessary, without a machine r eset having to occur. Other

76 Computer Architecture: Fundamentals and Principles of Computer Design

related cache control enhancements may include mechanisms to “freeze” the
contents of the cache or to lock certain entries in place and pr event them
from being evicted. The goal of all such design features is to make sure that,
as much as possible, the cache is kept full of valid, useful data that will
contribute to a high hit ratio and maximize memory system performance.

2.5 Memory management and virtual memory

The two major “speed gaps” in most modern computer memory systems
are the gap between the CPU and main memory speeds and the gap between
main and secondary storage speeds. We have seen how techniques like cache
memory and low-order interleaving can help main memory appear faster
than it really is and thus bridge the speed gap between the pr ocessor and
main memory. In this section, we will learn about appr oaches that are used
to make the main memory appear much lar ger than it is — mor e like the
size of the slower secondary memory . (Alternatively, we could say that we
are making the lar ge secondary memory space appear to be as fast as the
main memory — and dir ectly addressable.) In this way the overall system
will appear, from the processor’s (and the programmer’s) point of view, to
have one large, fast, homogeneous memory space rather than the hierar chy
of different types of devices of which it is actually composed.

2.5.1 Why virtual memory?

Computer programs and their associated data sets may be very lar ge. In
many cases, the code and data ar e larger than the amount of main memory
physically present in a given system. We may need to run the same program
on a variety of systems, some of which have moe memory than others. Since
most modern general-purpose computers have operating systems that sup-
port multitasking, other pr ograms may be (and usually ar e) resident in
memory at the same time, taking up part of the available space. It is generally
impossible to know in advance which pograms will be loaded at a particular
time and thus how much memory will be available for a given pr ~ ogram
when it runs.

It is possible to divide a lar ge program or data set into smaller chunks
or “overlays” and load the needed parts under pr ogram control, unloading
other parts as they ar e no longer needed. Each time the pr ogram needs to
load or unload information it must explicitly interact with the operating
system to request or relinquish memory. This is a workable scheme, but it
puts the burden on the application pr ogrammer to manage his or her own
memory usage. It would be preferable, from a programmer’s point of view,
to be able to assume that ther e will always be enough memory available to
load the entire application at once — and let the operating system handle
the problems if this is not the case. T o make this happen, it is necessary for
the addresses used by the program to be independent of the addresses used

Chapter two: Computer memory systems 77

by the main memory hardware. This is the basic idea behind memory man-
agement using the virtual memory approach.

2.5.2 Virtual memory basics

In a system using virtual memory, each program has its own virtual address
space (sometimes referred to as a logical address space) within which all mem-
ory references are contained. This space is not unlimited (no memory system
using addresses with a finite number of bits can pr ovide an infinite amount
of storage), but the size of the virtual addr esses is chosen such that the
address space provided exceeds the demands of any application likely to be
run on the system. In the past, 32-bit virtual addr essing (which provided a
virtual address space of 4 GB) was common. Mor e recently, as applications
have gotten larger and a number of systems have appr oached or exceeded
4 GB of RAM, lar ger virtual address spaces have become common. A 48-bit
address allows a program 256 terabytes (TB) of virtual space, while a 64-bit
address provides for a curr ently unimaginable 16 exabytes (EB). For the
foreseeable future, 64-bit virtual addressing should be adequate (remember,
though, that this was once said of 16- and 32-bit addr essing as well). The
purpose of this lar ge address space is to give the pr ogrammer (and the
compiler) the illusion of a huge main memory exclusively “owned” by his
or her program and thus free the programmer from the burden of memory
management.

Each program running on a system with virtual memory has its own
large, private address space for referencing code and data. However, several
such programs may have to share the same, probably much smaller, physical
main memory space that uses its own addr esses. Thus, before any actual
memory reference can proceed, there must be a translation of the virtual
address referenced by the program into a physical address where the infor-
mation actually resides. This process is symbolized in Figure 2.15.

Virtual-to-physical address translation is done by a combination of haxl-
ware and (operating system) software. Doing everything in hardware would
be expensive and inflexible, while doing most or all of the translation in
software would be intolerably slow. Typically, translation on a cycle-by-cycle

. Address cal
Virtual address translation Physica .address
(used by program) (mapping) (used by main memory)

(Done by memory
management unit
as set up by
operating system)

Figure 2.15 Address translation in a system with virtual memory .

78 Computer Architecture: Fundamentals and Principles of Computer Design

basis is handled by a har dware component called the memory management
unit (MMU), which can operate autonomously as long as translations ar e
routine. When a problem arises, such as a reference to a virtual location that
is not currently loaded in main memory, the MMU signals an exception so
the operating system can intervene and solve the pr oblem.

Even when translations are routine and accomplished completely in the
MMU hardware, there is some “over head,” or inefficiency, involved. Any
physical device, including the MMU, has an associated pr opagation delay
that adds to the delay of the main memory devices in determining the
memory cycle time. This must be compensated for by using faster (and moe
expensive) memory devices or by r estricting the bus speed to allow for the
greater delay. When the operating system has to intervene, the over head is
increased considerably, as the currently running program must be suspended
and then resumed after the pr oblem is corrected (for example, by loading
needed data into main memory fr om a disk drive). It takes time for the
operating system to determine what needs to be done and then do it. How-
ever, the hardware and software overhead inherent to virtual memory sys-
tems has been found to be worthwhile, as it is compensated for by eductions
in programming complexity and programmer effort.

Virtual memory systems ar e generally classified as either paged or seg-
mented, though it is possible to combine attributes of both in a single system.
We will examine the attributes, advantages, and disadvantages of each
approach below.

2.5.3 Paged virtual memory

A paged virtual memory system is also knownasa demand-paged virtual
memory system because the pages ar e loaded on demand, or as they ar e
requested. A paged system is har dware-oriented in the sense that the size
of the pages (the blocks that are moved between main and secondary mem-
ory) is fixed, based on a hardware consideration: the granularity of secondary
storage (disk sector size). Main memory is divided into ~ page frames of a
constant size, which is either equal to or an integer multiple of the sector
size. Different architectures and operating systems may have dif ferent page
sizes, generally in the range of 512 bytes to 16 KB (with 1 to 4 KB being
typical), but once this is chosen it is a constant for a given system.

A virtual address in a system that uses paging can be divided into two
parts, as shown in Figur e 2.16. The high-or der bits may be consider ed the
virtual page number, while the low-or der bits represent the of fset into a
page. The number of bits in the of fset of course depends on the page size.
If pages are 1 KB (21° bytes), for example, the of fset consists of the 10 least
significant address bits. Because the pages ar e always loaded on fixed page
frame boundaries, the physical of fset is the same as the virtual of fset; only
the virtual page number needs to be translated into a physical page frame
number. This process, which uses a lookup table in memory , is illustrated
in Figure 2.17. A page table base register points to the base of a lookup table;

Chapter two: Computer memory systems 79

Virtual Address used by program

Virtual page number Byte offset within page
Translation (Not translated)
process

Physical page frame number | Byte offset within page

Physical Address used by memory hardware

Figure 2.16 Address translation in a system with demand-paged virtual memory .

Virtual address

Virtual page number | Offset |
| (Not translated)

Page table

(Selects page

able entry) — Valid | Dirty | Protection | Page frame number

Page frame number Offset

Physical address
(To main memory hardware)

Figure 2.17 Table lookup for address translation in a paged system.

the virtual page number is used as an index into this table to obtain the
translation information.

To avoid having to maintain a single, huge page table for each program,
the virtual page number may be (and usually is) divided into two or mor e
bit fields. (See Figure 2.18 for an example with thr ee fields.) This allows the
lookup to be done in a stepwise fashion, whee the higher-level tables contain
pointers to the start of lowerlevel page tables, and the next bit field is usedto
index into the next lowerlevel table. The lowest-level table lookup completes

80 Computer Architecture: Fundamentals and Principles of Computer Design

Virtual page number Offset
Field 0 | Field 1 | Field 2 | Within page

Page table
base register

table

%Offset into

y
Page table descriptor

table

g}Offset into

Page table descriptor

Offset into
table

Page table entry

|Page frame number| Offset

Physical address
Figure 2.18 Multiple-level table lookup in paged system.

the translation. This multiple-level lookup pr ocedure takes longer than a
single-stage lookup, but the r esulting tables are smaller and easier to deal
with.

The information obtained fr om the lowest-level page table is called a
page table entry. Each entry includes the page frame number that tells wher e
in the physical main memory the page is located, if it is curr ently loaded.
Other information will include a validity bit, or presence bit, which tells
whether or not the page exists in main memory , and a dirty bit (similar to
that kept for a cache line), which tells whether the page has been modified
while in memory. Other page attribute bits may include protection bits, which
govern who or what may access the page and for what purposes (r ead only,
read /write, etc.). Assuming the reference is to a page that is present in main

Chapter two: Computer memory systems 81

memory and that the program has a right to access, the page frame number
bits are concatenated with the untranslated of fset bits to form the physical
address of the item in memory .

Sometimes, because the entire program is not loaded into main memory
at once, a reference is made to a page that is not pr esent in main memory.
This situation is known as a page fault. The memory access cannot be com-
pleted, and the MMU interr upts the operating system to ask for help. The
operating system must locate the requested page in secondary memory, find
an available page frame in main memory (displacing a pr eviously loaded
page if memory is full), communicate with the disk contr oller to cause the
page to be loaded, and then r estart the program that caused the page fault.
To keep the entire system from stalling while the disk is accessed, the oper -
ating system will generally transfer control to another process. If this second
process has some pages alr eady loaded in main memory, it may be able to
run (and thus keep the CPU busy) while the first pr ocess is waiting for its
page to load.

When a page fault occurs and main memory is full, a previously loaded
page must be displaced in order to make room for the new page to be loaded.
The good news is that paged systems ar e not subject to external fragmenta-
tion; since all the pages are the same size, equal to the size of a main memory
page frame, there is never a poblem achieving a fit for the page being loaded.
However, pages do suf fer from internal fragmentation; even if only a few
bytes of memory are needed, they take up an entire page frame in memory.
(As DRAMSs have become lar ger and less expensive, internal fragmentation
isless of a concern than it used to be.) If the displaced page has been modified
(if its dirty bit is set), it first must be copied back to disk. Otherwise it can
simply be overwritten with the new page.

Page replacement policies are typically similar to those used for replace-
ment of lines in a cache; however , since pages ar e replaced much less fr e-
quently than cache lines and since the r eplacement algorithm can be imple-
mented in software rather than har dware, the scheme can made be a bit
more sophisticated if desired. FIFO and LRU replacement schemes are com-
mon. The main concern in choosing a page tober eplaced is to maximize
the likelihood of it not being needed again soon. If it is, the system may find
itself in the situation of the same page, or the same small number of pages,
being repeatedly loaded and displaced. This condition, known as page
thrashing, results in a large number of page faults. This is a much moe costly
(in time) situation than the analogous behavior of a cache, as page faults
take on the order of milliseconds to process, while cache misses cost only a
few nanoseconds.

Another potential complicating factor exists in a system with paged
virtual memory where the processor uses a complex instruction set computer
(CISC) architecture. As we will discuss in sections 3.1.6 and 4.4 CISC pr o-
cessors often have machine language instr uctions that perform operations
on vectors or strings that occupy many contiguous memory locations. It
is possible that the vector or string being pr ocessed may overlap a page

82 Computer Architecture: Fundamentals and Principles of Computer Design

boundary; thus, a page fault may occur in the middle of the instr uction’s
execution, with part of the operand having been pr ocessed and the rest still
to be processed after it is loaded into memory . Such a page fault is known
as a delayed page fault. To handle it, the processor must either be able to handle
an exception occurring in the middle of an instr uction by later restarting the
instruction from the point wher e the fault occurr ed, or it must be able to
undo, or roll back, the effect of the faulting instr uction and then r e-execute
the entire instruction after the needed page is loaded. Both of these mecha-
nisms are nontrivial and significantly complicate the design of the processor.
Alternatively, the MMU could pr echeck all locations that will be accessed
by a given instruction to see if any of them will cause a page fault, but this
would complicate the design of the MMU and r equire its designers to have
specific knowledge of the CPU ar chitecture. Whatever the solution, the
delayed page fault pr oblem shows that no part of a computer system can
be designed in a vacuum. CPU design af fects memory system design, and
vice versa. The wise r eader will keep this in mind thr oughout his or her
course of study.

2.5.4 Segmented virtual memory

Another widely used virtual memory technique is called segmentation. A
demand-segmented memory system maps memory in variable-length seg-
ments rather than fixed-size pages. Though it obviously r equires hardware
for implementation, segmentation is softwar e-oriented in the sense that the
length of the segments is determined by the str ucture of the code and data
it contains rather than by har dware constraints such as disk sector size.
(There is always some maximum segment size due to har dware limitations,
but it is typically much lar ger than the size of a page in a demand-paged
system.) Because segments can vary in size, main memory is not divided
into frames; segments can be loaded anywher e there is sufficient free mem-
ory for them to fit. Fragmentation pr oblems are exactly the reverse of those
encountered with paging. Because segments can vary in size, internal frag-
mentation is never a pr oblem. However, when a segment is loaded, it is
necessary to check the size of available memory ar eas (or other segments
that might be displaced) to determine wher e the requested segment will fit.
Invariably, over time ther e will arise some ar eas of main memory that do
not provide a good fit for segments being loaded and thus r emain unused;
this is known as external fragmentation. Reclaiming these ar eas of memory
involves relocating segments that have already been loaded, which uses up
processor time and makes segmentation somewhat less eficient than paging.
Alogical address in a system that uses segmentation can be divided into
two parts, as shown in Figur e 2.19. The high-or der bits may be consider ed
the segment number, while the low-or der bits represent an offset into the
segment. The maximum size of a segment determines the number of bits
required for the of fset; smaller segments will not use the full addr essing
range. If the maximum segment size is 64 KB (2 '° bytes), the 16 least signif-

Chapter two: Computer memory systems 83

Logical address used by program

Logical segment number | Byte offset within segment

Translation
process

Segment starting address

©

Physical address used by memory hardware

Figure 2.19 Address translation in a system with demand-segmented virtual
memory.

icant address bits are reserved for addressing within a segment. The address
translation process, illustrated in Figure 2.20, uses a lookup table in memory;
which contains similar information to that found in page tables. A segment
table base register points to the base of a lookup table; the logical segment
number is used as an index into the table to obtain the segment table entry
containing the translation information, validity bit, dirty bit, protection bits,
etc. As in a paged system, it is possible and often mor e efficient to use a
hierarchy of smaller segment tables rather than one lar ge table.

The variable size of segments, as opposed to the fixed size of pages,
gives rise to a significant dif ference between the translation pr ocesses.
Because segments can be loaded beginning at any address in main memory,
rather than only on fixed page frame boundaries, the of fset cannot simply
be concatenated with the translated address. Rather than producing a phys-
ical page frame number that pr ovides only the upper bits of the physical
address, the segment table lookup pr oduces a complete main memory
address thatr epresents the starting location for the segment. The of fset
within the segment must be added to, rather than simply concatenated with,
this address to produce the correct physical address corresponding to the
logical address generated by the program.

The occurrence of segment faults is analogous to that of page faults in a
paged virtual memory system. If the memory access cannot be completed
because the requested segment is not loaded in main memory , the MMU
alerts the operating system, which locates the segment in secondary memory
finds available space in main memory (a mor e complicated task than in a
paged system), loads it, and then r estarts the program that caused the seg-
ment fault. Segment r eplacement algorithms are generally similar to those

84 Computer Architecture: Fundamentals and Principles of Computer Design

Logical address

Logical segment numberl Offset |

Segment table

(Selects segment

Valid | Dirty |Pr0tection Segment starting address
table entry)

@7

| Physical address |

(To main memory hardware)
Figure 2.20 Table lookup for address translation in a segmented system.

used in paged systems butar e complicated by the necessity to find not
merely an area of memory that has notr ecently been used, but one into
which the requested segment will fit. As in a paged system, if the displaced
information has been modified (if its dirty bit is set), it first must be copied
back to disk. Otherwise it can simply be overwritten with the new segment.
As segments can be considerably lar ger than pages, segment faults tend to
occur somewhat less frequently than page faults. However, because there is
usually more information to load on a segment fault, in addition to mor e
overhead, segment faults are more costly, in time, than page faults.

2.5.5 Segmentation with paging

Segmentation as a virtual memory technique of fers certain advantages over
paging as far as the softwar e is concerned. Since segments naturally shrink
or grow to accommodate the size and str ucture of the code and data they
contain, they better r eflect its organization. Protection and other attributes
can more readily be customized for small or lar ge quantities of information
as appropriate. Compared with paging, however, segmentation suffers from
external fragmentation and other inef ficiencies due to mismatches between
the characteristics of har dware and software. It is possible to combine seg-
mentation with paging in a single system in or der to achieve most of the
advantages of both systems. In such a system, segments can still vary in size
(up to some maximum), but not arbitrarily Instead of being sized to the level
of individual bytes or words, segments are composed of one or more pages
which are a fixed size. Because main memory is divided into fixed-size page

Chapter two: Computer memory systems 85

frames, segmentation with paging avoids the external fragmentation pr ob-
lems normally associated with paging. By keeping the page size fairly small,
internal fragmentation (which in any case is a less serious poblem in modern
systems) can be minimized.

In a system using segmentation with paging, virtual addr esses are
divided into (at least) thr ee fields (see Figur e 2.21). The upper part of the
address is consider ed the segment number and is used to index into a
segment table. From this table the system obtains the starting addr ess of a
page table; the next set of bits, the page number , is used to index into the
page table for that segment. The page table entry contains the same infor -
mation and is used in the same way it would be used ina pur ely paged
memory management scheme. In particular , the page frame number
obtained from the page table is concatenated with the offset within the page
to form the physical main memory addr ess of the r equested information.
Thus, at the hardware level this scheme behaves like a paged system, while
to the software it resembles a segmented implementation.

Segment Page Offset
number number | within page
Segment table
base register
I
Offset into
table
y

Page table descriptor

table

?Offset into

Page table entry

|Page frame numberl Offset |

Physical address

Figure 2.21 Address translation in a system using segmentation with paging.

86 Computer Architecture: Fundamentals and Principles of Computer Design

2.5.6 The MMU and TLB

Page and segment tables can be quite lar ge and thus have historically been
maintained in main memory. They are maintained by the operating system,
not by user code, so they mustbe in anar ea of main memory that is of f
limits to user programs. The MMU, which may be on a separate integrated
circuit but is usually fabricated on the same silicon chip as the CPU, typically
contains a page (or segment) table base register that points to the beginning
address of the top-level table for a given pr ocess. (It can be r einitialized by
the operating system when a task switch occurs.) It thus serves as a starting
point for the indexing of all tables in main memory .

The obvious problem with doing a “table walk” (traversing at least one
and possibly several levels of lookup tables to obtain a virtual-to-physical
address translation) through main memory is that it is a slow pr ocess. The
program needs to reference memory, which takes a certain cycle time, t . If
a three-level table walk is r equired to obtain the physical addr ess of the
desired location, the time to access this virtual location will be at least 4t .
Even if only a single table lookup is r equired, the memory cycle time will
at least double. This added delay will be intolerable in any system wher e
memory performance is critical.

To avoid having to access memory multiple times for each r eference to
a virtual memory location, modern MMU s incorporate a featur e known as
a translation lookaside buffer (TLB). The TLB, sometimes known by other
names such as anaddress translation cache (ATC), is a cache specially designed
to hold recently used page or segment table entries. Since most accesses to
a virtual page or segment ar e soon followed by a number of additional
accesses to the same area of memory, the TLB will be “hit” the vast majority
of the time, thus dispensing with the main memory table walk for addr ess
translation. The needed information is instead obtained fr om the TLB with
only a very small delay. Since the working set of pages or segments for most
programs is reasonably small, and since only the translations (rather than
the memory contents) are cached, it doesn’t take a very lar ge TLB to have a
very beneficial effect on performance.

2.5.7 Cache and virtual memory

Cache and virtual memory ar e two of the most widely used techniques to
improve the performance of memory in modern computer systems. Ther e
are many similarities, and a few important dif ferences, between these two
techniques. Some important issues should be taken into consideration when,
as is now usually the case, cache and virtual memory ar e used in the same
system. We will examine these issues as we conclude our study of memory
systems.

Virtual memory and cache are similar in several ways. Most fundamen-
tally, both cache and virtual memory exist for the ultimate purpose of pr o-
viding instructions and data to the CPU. Because they ar e used with

Chapter two: Computer memory systems 87

hierarchical memory systems, both of these techniques involve alar ger,
slower memory and a smalley, faster memory. The goal of each is to maximize
the advantages of two levels of the hierar chy, approximating the speed of
the smaller memory while making use of the capacity of the larger. To make
this happen, both the cache contr oller and the memory management unit
use hardware to map addresses. Both paged and segmented virtual memory
systems, as well as cache, operate on a demand basis; that is, they all replace
older information in the faster memory with newer information as it is
requested by the CPU, not by trying to predict usage in advance. Both cache
and paged virtual memory systems transfer fixed size blocks of data between
the faster and slower memories. (Segmented virtual memory implementa-
tions also transfer blocks of data, but they are variable in size.) The principle
of locality of reference is important to the operation of both cache and virtual
memory systems. Because of locality, the vast majority of accesses ar e satis-
fied by referring to the smaller, faster memory. When the needed information
is not found in the smaller memory , both techniques suf fer a significant
performance penalty.

The significant dif ferences between cache and virtual memory imple-
mentations are due to their dif ferent places within the hierar chy and the
relative speeds of the levels involved. While both transfer blocks of infor -
mation between levels, the size of the cache blocks (r efill lines) is generally
significantly smaller than the size of the blocks (segments or pages) trans-
ferred between main memory and disk in a system with virtual memory
Refill lines are generally only a few, up to a maximum of 128 to 256, bytes
in size, while pages may be 4 KB or more and segments may be even larger.
At least partially due to this size discr epancy, segment or page faults tend
to be much rarer than cache misses. Cache hit ratios ae typically in the range
of 90 to 98%, while referenced segments or pages are found in main memory
well in excess of 99% of the time. This is fortunate because the time penalty
for a page or segment fault is much gr eater than that incurr ed by a cache
miss. Often only three or four clock cycles (wait states) may be r equired to
access main memory on a cache miss, during which time the CPU can simply
idle and then immediately r esume executing instructions; at most, only a
few nanoseconds are wasted. By contrast, a segment or page fault r equires
one or more disk accesses, which may take several milliseconds each (an
eternity to a modern CPU), plus the over head of a task switch in or der to
run another process while the faulting one waits. Because of the speed
required at the uppermost levels of the memory hierar chy, cache control is
done solely in har dware; management of virtual memory is done partly in
hardware (by the MMU) and partly in softwar e (by the operating system).

The only purpose of cache is to incr ease the apparent speed of main
memory; virtual memory has several functions. The most important of these
is to provide each program with the appearance of alar ge main memory
(often the size of secondary memory or gr eater) for its exclusive use. Sec-
ondary goals include support for multipr ogramming (multiple pr ograms
resident in memory at the same time), pr ogram relocation, and memory

88 Computer Architecture: Fundamentals and Principles of Computer Design

space protection (so that one program does not access memory belonging to
another). All of these goals ar e realized at some cost in performance, but
ideally without slowing main memory access too much.

We have treated virtual memory and cache design as two separate topics,
but neither exists in a vacuum in modern computer system design. All but
the simplest systems incorporate one or mor e cache memories as part of an
overall memory system including virtual memory management. The cache
controller and MMU must interact on a cycle-by-cycle basis; they awe usually
designed together and both often r eside on the same integrated cir cuit as
the CPU itself. What ar e some of the design issues that must be dealt with
when designing a virtual memory system that includes cache memory?

The first, and most fundamental, cache design choice in a system with
virtual memory is whether to cache information based on virtual or physical
addresses. In other wor ds, do we use part of the untranslated (virtual)
address as the tag (and index, if the cache is not fully associative) r equired
to locate an item in cache, or do we translate the virtual addr ess first and
determine the cache tag and index fr om the physical addr ess? There are
advantages and disadvantages either way.

The main advantage of a virtually addressed cache is speed. Because the
cache controller does not have to wait for the MMU to translate the supplied
address before checking for a hit, the needed information can be accessed
more quickly when a hit occurs. Misses can likewise be detected, and the
required main memory access started almost immediately . (The addr ess
translation in the MMU can pr oceed in parallel with the cache contr oller’s
determination of hit vs. miss, with translation being aborted in the event of
a hit.) Another advantage is consistency of cache behavior Since cache access
patterns depend on the virtual addr esses used by the pr ogram, and since
these are the same fr om one run to the next, identical r uns will result in
identical cache usage patterns and thus identical hit ratios.

Physically addressed caches, however, may cause pr ograms to exhibit
performance variations between otherwise identical r uns. This is because
the operating system may load the same pr ogram at dif ferent physical
addresses depending on extraneous factors such as other pr ograms already
in memory. This means the cache tags and indices for dif ferent runs may be
different and may lead to a different pattern of hits, misses, and line replace-
ments. In a set-associative or (especially) a dir ect-mapped cache, different
addresses can result in dif ferent patterns of contention and significantly
affect the hit ratio (and overall performance). In addition to variations in
performance, physically addressed caches are not quite as fast in the best
case since the address translation must be completed befoe the cache lookup
can begin.

Do these disadvantages mean that physically addessed caches are never
preferable? Not at all: in some situations they may be preferable to virtually
addressed caches or even necessary . Because all the cache tags and indices
are based on a single, physical addr ess space rather than a separate virtual
address space for each pr ocess, information can be left in a physically

Chapter two: Computer memory systems 89

addressed cache when a task switch occurs. In a virtually addr essed cache
we would have to worry about addr ess n from one process matching the
cached address n of a dif ferent process, so the cache would have to be
“flushed” or completely invalidated on each change of context. However
since identical virtual addresses referenced by different processes must map
to different physical locations, ther e is no need to flush the physically
addressed cache. This pr operty may give a performance advantage in a
multithreaded, multitasking system where task switches are frequent. Phys-
ical cache addressing may be necessary in some applications, particularly
when an of f-chip, level 2 or 3 cache is being designed. If the MMU is
fabricated on the same package with the CPU, then address translation takes
place before off-chip hardware ever “sees” the addr ess, and there is no
alternative to a physical cache mapping.

2.6 Chapter wrap-up

Many nuances of memory system design are beyond the scope of this book.
As with any other highly specialized craft, one learns memory design best
by actually doing it — and curent knowledge has a way of quickly becoming
obsolete. As technology changes, approaches that were once in favor become
less attractive, and vice versa. However, the basic principles of a hierarchical
memory system design have been the same for at least the past 30 or 40
years and they ar e likely to r emain valid for some time. While the most
intricate details of memory system design ar e constantly changing (and
perhaps best left to specialists), an appeciation of the basic principles behind
these designs, as explained in this chapter, is important to any pr ofessional
in the computing field. Whether you ae an application programmer wanting
to extract the maximum performance from your code, a systems guru trying
to find the most efficient way to manage multitasking on a particular ar chi-
tecture, or a technical manager looking to pur chase the best-performing
system for your department’s applications, memory system performance is
critical to your goals. The better you understand how computer memory
systems work and why they ar e designed the way they ar e, the more
informed — and likely, more successful — will be your decisions.

2.7 Review questions

1. Consider the various aspects of an ideal computer memory discussed
in Section 2.1.1 and the characteristics of available memory devices
discussed in Section 2.1.2. Fill in the columns of the table below with
the following types of memory devices, in order from most desirable
to least desirable: magnetic hard disk, semiconductor DRAM, CD-R,
DVD-RW, semiconductor ROM, DVD-R, semiconductor flash mem-
ory, magnetic floppy disk, CD-R W, semiconductor static RAM, and
semiconductor EPROM.

Computer Architecture: Fundamentals and Principles of Computer Design

90

(191399 A[rensn st
arqeyrod azour)
$91qe}10J /dqesowdy

(19m32q
SI 9[qeanp
arour)
Aiqemg

(19m30q
ST I9MOJ)
uoniduwnsuod
IaMOJ

(19199
Arensn st 130q)

¢R1qRIIM /3[qepeRy

(191399 st
d[Ie[oAUOU)
Arejop

(19199
st 1oy81y)
Ayisua(q
uoTeuLIOJu]

(191394 st

12y31y)
paadg

(191394 ST T9MOJ)
1g /380D

Chapter two: Computer memory systems 91

2. Describe in your own wor ds what a hierar chical memory system is
and why it is used in the vast majority of modern computer systems.

3. What is the fundamental, underlying r eason that low-or der main
memory interleaving and/or cache memories ar e needed and used
in virtually all high-performance computer systems?

4. A main memory system is designed using 15-ns RAM devices using
a four-way low-order interleave.

a. What would be the effective time per main memory access under
ideal conditions?

b. What would constitute ideal conditions? (In other wor ds, under
what circumstances could the access time you just calculated be
achieved?)

c. What would constitute worst-case conditions? (In other wor ds,
under what circumstances would memory accesses be the slow-
est?) What would the access time be in this worst-case scenario?
If ideal conditions exist 80% of the time and worst-case conditions
occur 20% of the time, what would be the average time r equired
per memory access?

d. When ideal conditions exist, we would like the pr ocessor to be
able to access memory every clock cycle with no wait states (that
is, without any cycles wasted waiting for memory tor espond).
Given this requirement, what is the highest pr ocessor bus clock
frequency that can be used with this memory system?

e. Other than increased hardware cost and complexity , are there
any potential disadvantages of using a low-or der interleaved
memory design? If so, discuss one such disadvantage and the
circumstances under which it might be significant.

5. Isit correct to refer to a typical semiconductor integrated ciccuit ROM
as a random access memory? Why or why not? Name and describe
two other logical or ganizations of computer memory thatar e not
random access.

6. Assume that a given system’s main memory has an access time of
6.0 ns, while its cache has an access time of 1.2 ns (five times as fast).
What would the hit ratio need to be in oder for the effective memory
access time to be 1.5 ns (four times as fast as main memory)?

7. A particular program runs on a system with cache memory . The
program makes a total of 250,000 memory eferences; 235,000 of these
are to cached locations.

a. What is the hit ratio in this case?

b. If the cache can be accessed in 1.0 ns but the main memory
requires 7.5 ns for an access to take place, what is the average
time required by this program for a memory access, assuming all
accesses are reads?

c. What would be the answer to (b) if a write-through policy is used
and 75% of memory accesses ar e reads?

92

10.

11.

12.

13.

14.

15.

16.

Computer Architecture: Fundamentals and Principles of Computer Design

Is hit ratio a dynamic or static performance parameter in a typical

computer memory system? Explain your answer .

What are the advantages of a set-associative cache or ganization as

opposed to a direct-mapped or fully associative mapping strategy?

A computer has 64 MB of byte-addessable main memory. A proposal

is made to design a 1-MB cache memory with a refill line (block) size

of 64 bytes.

a. Show how the memory addr ess bits would be allocated for a
direct-mapped cache organization.

b. Repeat (a) for a four -way set-associative cache organization.

Repeat (a) for a fully associative cache or ganization.

d. Given the direct-mapped organization, and ignoring any extra
bits that might be needed (valid bit, dirty bit, etc.), what would
be the overall size (“depth” by “width”) of the memory used to
implement the cache? What type of memory devices would be
used to implement the cache (be as specific as possible)?

e. Which line(s) of the dir ect-mapped cache could main memory
location 1E0027A,; map into? (Give the line number(s), which will
be in the range of 0 to (n — 1) if there are n lines in the cache.)
Give the memory addr ess (in hexadecimal) of another location
that could not reside in cache at the same time as this one (if such
a location exists).

Define and describe virtual memory. What are its purposes, and what
are the advantages and disadvantages of virtual memory systems?
Name and describe the two principal appr oaches to implementing
virtual memory systems. How ar e they similar and how do they
differ? Can they be combined, and if so, how?
What is the purpose of having multiple levels of page or segment
tables rather than a single table for looking up addr ess translations?
What are the disadvantages, if any, of this scheme?
A process running on a system with demand-paged virtual memory
generates the following reference string (sequence of requested pag-
es):4,3,6,1,5,1,3,6,4,2,2, 3. The operating system allocates each
process a maximum of four page frames at a time. What will be the
number of page faults for this pr ocess under each of the following
page replacement policies?

a. LRU

b. FIFO

c. LFU (with FIFO as tiebr eaker)

In what ways are cache memory and virtual memory similar? In what

ways are they different?

In systems that make use of both virtual memory and cache, what

are the advantages of a virtually addressed cache? Does a physically

addressed cache have any advantages of its own, and if so, what ar e

they? Describe a situation in which one of these appr oaches would

have to be used because the other would not be feasible.

e

Chapter two: Computer memory systems 93

17. Fill in the blanks below with the most appr opriate term or concept
discussed in this chapter:

A characteristic of a memory device thatr efers to the
amount of information that can be stor ed in a given
physical space or volume.
A semiconductor memory device made up of alar ge
array of capacitors; its contents must be periodically
refreshed in order to keep them fr om being lost.
A developing memory technology that operates on the
principle of magnetoresistance; it may allow the devel-
opment of “instant-on” computer systems.
A type of semiconductor memory device, the contents
of which cannot be overwritten during normal opera-
tion, but can be erased using ultraviolet light.
This type of memory device is also known as a CAM.
A register in an associative memory that contains the
item to be searched for.
The principle that allows hierar chical storage systems
to function at close to the speed of the faster , smaller
level(s).
This occurs when a needed instuction or operand isnot
found in cache, so a main memory access is r equired.
The unit of information that is transferr ed between a
cache and main memory.
The portion of a memory addr ess that determines
whether a cache line contains the needed information.
The most flexible but most expensive cache or ganiza-
tion, in which a block of information fr om main mem-
ory can reside anywhere in the cache.
A policy wher eby writes to cached locations update
main memory only when the line is displaced.
This is set or cleared to indicate whether a given cache
line has been initialized with “good” information or
contains “garbage” because it is not yet initialized.
A hardware unit that handles the details of addr ess
translation in a system with virtual memory .
This occurs when a pr ogram makes reference to a log-
ical segment of memory that is not physically pr esent
in main memory.
A type of cache used to hold virtual-to-physical addess
translation information.
This is set to indicate that the contents of a faster mem-
ory subsystem have been modified and need to be cop-
ied to the slower memory when they ar e displaced.

94 Computer Architecture: Fundamentals and Principles of Computer Design

This can occur during the execution of a string or vector
instruction when part of the operand is pesent in phys-
ical main memory and the r est is not.

chapter three

Basics of the central
processing unit

The central processing unit (CPU) is the brain of any computer system based
on the von Neumann (Princeton) or Harvar d architectures introduced in
Chapter 1. Parallel machines have many such brains, but normally each of
them is based on the same principles used to design the CPU in ainiprocessor
(single CPU) system. A typical CPU has thr ee major parts: the arithmetic/
logic unit (ALU), which performs calculations; internal registers, which pro-
vide temporary storage for data to be used in calculations; and the contr ol
unit, which directs and sequences all operations of the ALU and registers,
as well as the rest of the machine. (A block diagram of a typical simple CPU
is shown in Figure 3.1.) The control unit that is responsible for carrying out
the sequential execution of the stor ed program in memory is the hallmark
of the von Neumann-type machine, using the r egisters and the arithmetic
and logical circuits (together known as the datapath) to do the work. The

{ i
e——— Clock

boonr
Registers Control !
. unit —T Control

le——— Signals

i
Datapath |

ALU

External
bus

Figure 3.1 Block diagram of a simple CPU.

95

96 Computer Architecture: Fundamentals and Principles of Computer Design

design of the control unit and datapath have a major impact on the perfor -
mance of the processor and its suitability for various types of applications.
CPU design is a critical component of overall system design. In this chapter,
we will look at important basic aspects of the design of a typical general-pus
pose processor; in the following chapter, we will go beyond the basics and
look at modern techniques for impr oving CPU performance.

3.1 The instruction set

One of the most important featur es of any machine’s ar chitectural design,
yet one of the least appr eciated by many computing pr ofessionals, is its
instruction set architecture (ISA). The ISA determines how all software must
be structured at the machine level. The hardware only knows how to execute
machine language instructions, but because almost all softwate is now devel-
oped in high-level languages rather than assembly or machine language,
many people pay little or no attention to what type of instr uction seta
machine supports or how it compar es to those used in other machines. As
long as the system will compile and r un a C++ program, or support a Java
virtual machine, is its native machine language r eally all that important? If
all you are concerned with is getting a given pr ogram to run, probably not.
Butif you are interested in making a system perform to the best of its abilities,
then it behooves you to know what those abilities r eally are, and the only
ability of a CPU that really matters is its ability to execute machine instr uc-
tions. What those instructions are, what they do, and how they support your
high-level task can have a great deal to do with how quickly and ef ficiently
that task will be done. Thus, it is worthwhile to study the similarities and
differences between ISAs in or der to be able to pick the best system for a
given application. We will examine important featur es of computer ISAs in
this section.

3.1.1 Machine language instructions

In order to appreciate the features of machine ISAs, it is important to realize
what a computer pr ogram is. You may think of it as a C, C++, Fortran, or
Java listing, but all that high-level syntax is left behind in pr ~ oducing an
executable file. In the end, r egardless of how it was originally specified, a
computer program is a sequence of binary machine language instr uctions
to be performed in or der (that order, of course, often being alterable based
on the outcome of tests performed and decisions made while the pr ogram
is running). Each machine language instruction is no more and no less than
a collection of bits that ar e decoded by logic inside the pr ocessor’s control
unit; each combination of bits has a unique meaning to the contr ol unit,
telling it to perform an operation on some item of data, move data from one
place to another, input or output data fr om or to a device, alter the flow of
program execution, or carry out some other task that the machine’s hadware
is capable of doing.

Chapter three: Basics of the central processing unit 97

op code Reg. 1 Mode 1 Reg. 2 Mode 2

4) ®3) ®3) ®3) ®3)
Figure 3.2 Simple machine instruction format with five bit fields.

Machine language instructions may be fixed or variable in length and
are normally divided into “fields,” or goups of bits, each of which is decoded
to tell the control unit about a particular aspect of the instr uction. A simple
machine might have 16-bit instructions divided into, for example, five fields
as shown in Figur e 3.2. (This example is taken fr om the instruction set of
DEC’s PDP-11 minicomputer of the early 1970s.)

The first set of bits comprise the operation code field (op code for short).
They define the operation to be carried out. In this case, since ther e are four
op code bits, the computer can have at most 2 # = 16 instructions (assuming
this is the only instr uction format). The contr ol unit would use a 4 to 16
decoder to uniquely identify which operation to perform based on the op
code for a particular instr uction.

The remaining 12 bits specify two operands to be used with the instr uc-
tion. Each operand is identified by two thr ee-bit fields: one to specify a
register and one to specify an addressing mode (or way of determining the
operand’s location given the contents of the r egister in question). Having
three bits to specify a register means that the CPU is limited to having only
2% =8 internal registers (or at least that only eight can be used for the purpose
of addressing operands). Likewise, allocating thr ee bits to identify an
addressing mode means there can be no mor e than eight such modes. One
of them might be r egister direct, meaning the operand is in the specified
register; another might be r egister indirect, meaning the r egister contains
not the operand itself but a pointer to the operand in memory . (We will
examine addressing modes more thoroughly in Section 3.1.3.) Each of the
three-bit fields will be interpreted by a 3 to 8 decoder, the outputs of which
will be used by the contr ol unit in the process of determining the locations
of the operands so they can be accessed. Thus, within the 16 bits of the
instruction, the CPU finds all the information it needs to determine what it
is to do next.

A machine may have one or several formats for machine language
instructions. (A processor with variable-length instructions will have multi-
ple machine language formats, but there may also be multiple formats for a
given instruction size. Sun’s SP ARC architecture, for example, has thr ee
32-bit instruction formats.) Each format may have dif ferent sized bit fields
and have different meanings for the fields. Figur e 3.3 shows an example of
an architecture that has fixed-length, 32-bit instr uctions with three formats.
Notice how the two leftmost bits ar e used to identify the format of the
remaining 30 bits. This would corr espond to a two-level decoding scheme
where the outputs of a 2 to 4 decoder driven by the two format bits would
determine which set of secondary decoders would be used to interpr et the

98 Computer Architecture: Fundamentals and Principles of Computer Design

00 |op code

) Displacement

01 op code 2 Reg. 1 Mode Reg. 2 Mode | Reg. 3 | Mode 3

Olnor opcode2 | Reg 1 M(;de Reg. 2 M;de Constant

Secondary op code (differs by format)

Primary (first level) op code determines decoding scheme for remaining bits
Figure 3.3 Architecture with multiple instruction formats of the same length.

remaining bits. This type of arrangement makes the control unit a little more
complex, but allows the machine to have a gr eater variety of instr uctions
than would be possible with just one instr uction format.

Because the types of instr uctions and number of operands r equired for
each sometimes vary considerably, it is often more space-efficient to encode
some types of instr uctions in fewer bits while others take up mor e bits.
Having instructions of variable lengths complicates the pr ocess of fetching
and decoding instructions (the first two steps in the von Neumann execution
cycle; see Figure 1.2) but may be justified if keeping executable code size
small is important. Figure 3.4 shows an example of an instr uction set with
some 16-bit instructions and some 32-bit instructions. One particular op code
(111111) from the shorter format is used to tell the CPU that the next 16 bits
are to be interpreted as the second part of the current instruction, rather than
the next instruction.

3.1.2 Functional categories of instructions

Computer architectures vary considerably in their design details and

intended applications. Some are intended for scientific computing, some for
business applications, some for networking, some for embedded contol, and
so on. Some are designed to maximize performance, while some ae intended
to minimize cost, power consumption, or other expenditur e of resources.

000000
through operand |operand
111110 1 2

111111 | opcode2 |operand1 | mode 1| operand 2 | mode 2

Figure 3.4 Architecture with multiple instruction formats of dif ferent lengths.

Chapter three: Basics of the central processing unit 99

Some are reduced instruction set computers (RISCs), some ar e complex
instruction set computers (CISCs), and some ar e somewhere in between.
Because of these dif ferences, computer ISAs vary widely in the types of
operations they support. However , there is a gr eat deal of commonality
between the instruction sets of almost every Princeton or Harvar d architec-
ture machine, going all the way back to the first generation. Though the
specifics vary gr eatly, virtually every computer ar chitecture implements
instructions to carry out a few general categories of tasks. Let us look at the
major classifications.

Data transfer instructions are the most common instr uctions found in
computer programs. To help operations proceed as quickly as possible, we
like to work with operands in the processor’s internal registers. (Some archi-
tectures — particularly RISCs — r equire this.) However, there are a limited
number of registers available, so programs spend much of their time moving
data around to get values wher e they are needed and store them back into
memory when they are no longer needed. Instr uctions of this type include
transfers from one internal r egister to another, from main memory to a
register, or from a register to a memory location. Typical assembly language
mnemonics for data transfer instr uctions include MOVE, LOAD, ST ORE,
XCHG, PUSH, POP, and so on.

Computational instructions are usually the second most numerous type in
a program. These are the instructions that “do the work” — that is, perform
manipulations (arithmetic, logical, shift, or other operations) of data. Some
texts separate computational instr uctions into the categories of arithmetic
operations and logical operations, but this is an arbitrary distinction. All of
these instructions, regardless of the specific operation they implement,
involve passing binary data thr ough the processor’s functional har dware
(usually referred to as the ALU) and using some combination of logic gates
to operate on it, pr oducing a result (and, in most cases, a set of condition
codes or flags that indicate the natur e of the r esult — positive/negative,
zero/nonzero, carry/no carry, overflow /no overflow, etc.). Typical assembly
language mnemonics for computational instr uctions include ADD, SUB,
MUL, AND, OR, NOT, SHL, SHR, etc.

Control transfer instructions are usually the thir d most frequently type
encountered in machine-level code. These are the instructions that allow the
normally sequential flow of execution to be alter ed, either unconditionally
or conditionally. When an unconditional transfer of contr ol is encountered,
or when a conditional transfer of contr ol succeeds, the next instruction exe-
cuted is not the next sequential instruction in memory, as it normally would
be in a von Neumann machine. Instead, the processor goes to a new location
in memory (specified either as an absolute binary addr ess or relative to the
location of the curr ent instruction) and continues executing code at that
location. Control transfer instructions are important because they allow pro-
grams to be logically organized in small blocks of code (variously known as
procedures, functions, methods, subroutines, etc.) that can call, or be called
by, other blocks of code. This makes pr ograms easier to understand and

100 Computer Architecture: Fundamentals and Principles of Computer Design

modify than if they wer e written as huge blocks. Even mor e importantly,
conditional control transfer instructions allow programs to make decisions
based on input and the r esults of prior calculations. They make it possible
for high-level control structures such as IF and SWITCH statements, loops,
and so on to be implemented at the machine level. W ithout these types of
instructions, programs would have to process all data the same way, making
code much less versatile and useful. Typical mnemonics for control transfer
instructions include JMP, BNZ, BGT, JSR, CALL, RET, etc.

The remaining, less commonly used instr uctions found in most com-
puter architectures may be lumped together or divided into groups depend-
ing on one’s taste and the specifics of a given instr uction set. These instruc-
tions may include inputfoutput (I/O), system, and miscellaneous instructions.
I/O instructions (typified by the Intel x86’s IN and OUT) ar e essentially
self-explanatory; they provide for the transfer of data to and fom I/O device
interfaces. Not all architectures have a distinct category of I/ O instr uctions;
they are only present on machines that employ separate I/O (to be discussed
in Chapter 5) rather than memory-mapped 1/O. Machines with mem-
ory-mapped I/ O use regular memory data transfer instructions to move data
to or from I/O ports.

System instructions are special operations involving management of the
processor and its operating envir onment. As such, they are often privileged
instructions that can only be executed when the system is in “supervisor”
or “system” mode (where the operating system runs). Attempts by user code
to execute such instr uctions usually result in an exception (see Chapter 5).
System instructions include such functions as virtual memory management,
enabling and freezing the cache, masking and unmasking interrupts, halting
the system, and so on. Such tasks need to be done in many systems, but not
all programs should be allowed to do them.

Finally, most systems have a few instr uctions that cannot easily be
categorized under one of the preceding classifications. This may be because
they perform some special function unique to a given ar chitecture or
because they perform no function at all. We may refer to these as miscella-
neous instructions. Perhaps the most ubiquitous such instr uction is NOP,
or no operation, which is used to kill time while the pr ocessor waits for
some other hardware (or a human user). An instruction with no function-
ality is difficult to categorize.

All, or almost all, of the functional categories of instr uctions presented
in this section ar e common to every type of computer designed ar ound a
Princeton or Harvard architecture. What differs considerably from one archi-
tecture to another is how many , and which, instr uctions of each type ar e
provided. Some architectures have very rich instr uction sets, with specific
machine instructions for just about every task a pr ogrammer would want
to accomplish, while others have a minimalist instr uction set with complex
operations left to be accomplished in softwae by combining several machine
instructions. The Motorola 68000, for example, has machine instr uctions to
perform integer multiplication and division. The Sun SP ARC architecture

Chapter three: Basics of the central processing unit 101

provides only basic building blocks such as addition, subtraction, and shift-
ing operations, leaving multiplication and division to be implemented as
subroutines. (The more recent UltraSPARC, or SPARC v9, architecture does
provide for built-in multiply and divide instr uctions.)

The point one should take fr om this variety of instr uction sets is that
hardware and software are equivalent, or interchangeable. The only machine
instructions that are required are either a NAND or NOR instr uction to do
all computations (remember, those two are the only universal logic functions
from which all other Boolean functions can be derived) plus some method
for transferring data from one place to another and some way of performing
a conditional transfer of control (the condition can be forced to true to allow
unconditional transfers). One or two shift instr uctions would be nice, too,
but we could probably get by without them if we had to. Once these most
basic, required hardware capabilities are in place, the amount of additional
functionality that is provided by hardware vs. software is completely up to
the designer. At various points in the history of computing, the pr evailing
wisdom (and economic factors) have influenced that choice mor e in the
direction of hardware, and at other times mor e in the direction of software.
Because hardware and software perform the same functions, and because
technological and economic factors ar e continually changing, these choices
will continue to be revisited in the future.

3.1.3 Instruction addressing modes

Regardless of the specific machine instructions implemented in a given com-
puter architecture, it is certain that many of them will need to access oper -
ands to be used in computations. These operands may r eside in CPU regis-
ters or main memory locations. In or der to perform the desir ed operation,
the processor must be able to locate the operands wher ever they may be.
The means, within a machine instr uction, that allow the pr ogrammer (or
compiler) to specify the location of an operand ar e referred to as addressing
modes. Some architectures provide a wide variety of addiessing modes, while
others provide only a few. Let us review some of the more commonly used
addressing modes and see how they specify the location of an operand.

Immediate addressing embeds an operand into the machine language
instruction itself (see Figure 3.5). In other wor ds, one of the bit fields of the
instruction contains the binary value to be operated upon. The operand is
available immediately because the operand fetch phase of instr uction exe-
cution is done concurrently with the first phase, instr uction fetch.

op code operand

Figure 3.5 Machine language instruction format using immediate addr essing.

102 Computer Architecture: Fundamentals and Principles of Computer Design

| op code | Address of operand ‘

Figure 3.6 Machine language instruction format using direct addressing.

This type of addr essing is good for quick access to constants that ar e
known when the program is written but is not useful for access to variables.
It is also costly, in terms of instruction set design, because the constant takes
up bits in the machine language instr uction format that could be used for
other things. Either the size of the instr uction may have to be incr eased to
accommodate a reasonable range of immediate constants, or the range of
values that may be encoded must be r estricted to fit within the constraints
imposed by instruction size and the need to have bit fields for other pur -
poses. These limitations have not pr oven to be a r eal deterrent; almost all
computer ISAs include some form of immediate addr essing.

Direct addressing (sometimes referred to as absolute addressing) refers to
a mode where the location of the operand (specifically , its address in main
memory) is given explicitly in the instuction (see Figure 3.6). Operand access
using direct addressing is slower than using immediate addr essing because
the information obtained by fetching the instr uction does not include the
operand itself, but only its addr ess; an additional memory access must be
made to read or write the operand. (Since the operand r esides in memory
rather than in the instr uction itself, itisnotr ead-only as in the case of
immediate addressing.) In other respects, direct addressing has some of the
same limitations as immediate addressing; like the immediate constant, the
memory address embedded in the instruction takes up some number of bits
(quite a few if the machine has a lar ge addressing range). This requires the
instruction format to be lar ge or limits the range of locations that can be
accessed using this mode. Dir ect addressing is useful for r eferencing scalar
variables but has limited utility for strings, arrays, and other data structures
that take up multiple memory locations.

Register addressing, where the operand resides in a CPU r egister, is log-
ically equivalent to direct addressing because it also explicitly specifies the
operand’s location. For this r eason, it is also sometimes known as register
direct addressing.

Indirect addressing is one logical step further r emoved from specifying
the operand itself. Instead of the instr uction containing the operand itself
(immediate) or the address of the operand (direct), it contains the specifica-
tion of a pointer to the operand. In other wor ds, it tells the CPU wher e to
find the operand’s addr ess. The pointer to the operand can be found in a
specified register (register indirect addressing, see Figure 3.7) or, in some archi-
tectures, in a specified memory location (memory indirect addressing, see
Figure 3.8).

The principal advantage of indir ect addressing is that not only can the
value of the operand be changed at r un time (making it a variable instead
of a constant), but, sinceitr esides in a modifiable r egister or memory

Chapter three: Basics of the central processing unit 103

Register

op code
P number

CPU register

Address of operand

Figure 3.7 Register indirect addressing.

Main memory
| op code | Address of pointer | .

Address of operand

Figure 3.8 Memory indirect addressing.

location, the address of the operand can also be modified “on the fly .” This
means that indirect addressing readily lends itself to the poocessing of arrays,
strings, or any type of data structure stored in contiguous memory locations.
By incrementing or decrementing the pointer by the size of an individual
element, one can readily access the next or previous element in the structure.
This coding structure can be placed inside a loop for convenient pr ocessing
of the entire structure. The only major drawback of indir ect addressing is
that determining the operand’s address takes time. The CPU must locate the
pointer, obtain its contents, and then use those contents as the addr ess for
reading or writing the operand. If the pointer is in a memory location (mem-
ory indirect), then memory must be accessed at least thr ee times: once to
read the instruction, a second time to r ead the pointer, and a third time to
read or write the data. (If the operand is both a sour ce and a destination, a
fourth access would be needed.) This is slow and tends to complicate the
design of the contr ol unit. For this r eason, many ar chitectures implement
indirect addressing only as register indirect, requiring pointers to be loaded
into registers before use.

Indexed addressing, also known as displacement addr essing, works sim-
ilarly to register indirect addressing but has the additional featur e of a
second, constant value embedded in the instr uction that is added to the
contents of the pointer register to form the effective address of the operand
in memory (see Figure 3.9). One common use of this mode involves encoding
the starting address of an array as the constant displacement and using the
register to hold the array index or of fset of the particular element being
processed — hence the designation of indexed addr essing.

Most computer ar chitectures provide at least a basic form of indexed
addressing similar to that just described. Some also have mor e complex
implementations in which the operand addr ess is calculated as the sum of
the contents of two or mor e registers, possibly in addition to a constant
displacement. (One example is the based indexed addressing mode built into
the Intel x86 architecture.) Such a mode, if provided, complicates the design

104 Computer Architecture: Fundamentals and Principles of Computer Design

on code Register Offset or
P number displacement
CPU Register

| Partial address |

)

Address of operand
Figure 3.9 Indexed addressing.

of the processor somewhat but pr ovides a way for the assembly language
programmer (or compiler) to easily access elements of two-dimensional
arrays or matrices stored in memory.

Program-counter relative addressing is used in many computer ar chitec-
tures for handling contr ol transfers such as conditional branches and sub-
routine calls. The idea is that an of fset (usually signed to allow forwar d or
backward branching) is added to the current program counter (PC) value to
form the destination address. This value is copied back to the PC, effectively
transferring control to that address (see Figure 3.10).

The advantage of using PC relative addressing, rather than simply spec-
ifying an absolute addr ess as the destination, is that the r esulting code is
position independent; that is, it can be loaded anywhere in memory and still
execute properly. The absolute address of a called r outine or branch tar get
may have changed, but it is still in the same place r elative to the instruction
that transfers control to it. For thisr eason, most computer ar chitectures
provide at least some subset of control transfer instructions that operate this
way. Some ar chitectures (the Motorola 680x0 family is a notable example)
also implement PC relative addressing for instructions that access memory
for operands. In this way, blocks of data can be r elocated along with code
in memory and still appear to the pr ogram logic to be in the same place.

| op code | Relative displacement |

Program counter

| Current instruction address

Destination (or operand) address

Figure 3.10 PC relative addressing.

Chapter three: Basics of the central processing unit 105

Stack addressing involves references to a last-in, first-out (LIFO) data
structure in memory. Nearly all architectures have “push” and “pop” instmc-
tions, or their equivalents, that facilitate storing items on, and r etrieving
them from, a stack in memory . These instructions use a given r egister as a
stack pointer to identify the curr ent “top of stack” location in memory
automatically decrementing or incrementing the pointer as items are pushed
or popped. Most ar chitectures only use stack addr essing for data transfers,
but some machines have operational instructions that retrieve an operand(s)
and store a result on a memory stack. This approach has the same problems
of complexity and sluggishness that are inherent to any manipulation of data
in memory, but it does reduce the need for CPU registers to hold operands.

3.1.4 Number of operands per instruction

One of the most significant choices made in the development of a computer
architecture, and one of the most obvious (evident as soon as one looks at

a line of assembly code) is the determination of how many operands each
instruction will take. This decision is important because it balances ease of
programming against the size of machine instructions. Simply put, the more
operands an instruction accesses, the mor e bits are required to specify the
locations of those operands.

From a programming point of view, the ideal number of operands per
instruction is probably three. Most arithmetic and logical operations, includ-
ing addition, subtraction, multiplication, logical AND, OR, NAND, NOR,
XOR, etc. take two sour ce operands and produce one result (or destination
operand). For complete flexibility, one would like to be able to independently
specify the locations (in r egisters or memory) of both sour ce operands and
the destination. Some architectures thus implement three-operand instructions,
but many do not. Reasons include the complexity of instr uctions (especially
if some or all of the operands can be in memory locations) and the need for
larger machine language instr uctions to have enough bits to locate all the
operands.

Many architectures, including some of the most popular, have adopted
the compromise of two-operand instructions. This maintains ar easonable
degree of flexibility while keeping the instr uctions somewhat shorter than
they would be with thr ee operands. The rationale is that many fr equently
used operations, such as negation of a signed number , logical NOT, and so
on, require only two operands anyway . Where two sour ce operands are
needed, one of them can double as a destination operand — being overwrit-
ten by the result of the operation. In many cases at least one of the operands
is only an intermediate result and may safely be discarded; if it is necessary
to preserve its value, one extra data transfer instr uction will be r equired
prior to the operation. If the ar chitects determine that an occasional extra
data transfer is worth the savings in cost and complexity fr om having only
two operands per instruction, then this is a r easonable approach.

106 Computer Architecture: Fundamentals and Principles of Computer Design

One-operand instructions were once fairly common but ar e not seen in
many contemporary architectures. In order for a single operand specification
to be workable for operations that r equire two source operands, the other
operand must reside in a known location. This is typically a special r egister
in the CPU called the accumulator. The accumulator typically pr ovides one
of the operands for every arithmetic and logical operation and also r eceives
the results; thus, the only operand that must be located is the second sour ce
operand. This is a very simple or ganizational model that was quite popular
in the days when pr ocessors could have few internal r egisters. However,
since a single r egister is involved in every computational instr uction, the
program must spend a gr eat deal of time (and extra machine instr uctions)
moving operands into, and results out of, that register. The resulting “accu-
mulator bottleneck” tends to limit performance. For this r eason, accumula-
tor-based architectures are seldom found outside of embedded contr ol pro-
cessors where simplicity and low cost ar e more important considerations
than speed.

Zero-operand instructions would seem to be an oxymor on. How can an
architecture have operational instr uctions without operands? It cannot, of
course; as in the case of an accumulator machine, the operand locations
must be known implicitly . A machine could have two accumulators for
operands and leave all r esults in one of the accumulators. This would be
workable but could result in even more of a bottleneck than using one-oper
and instructions.

More practically, zero-operand instructions could be used in a machine
with a stack architecture (one in which all computational operands come
from the top of a stack in memory and all r esults are left on the stack, as
described at the end of Section 3.1.3). A limited number of ar chitectures
have employed this approach, which has the virtue of keeping the machine
instructions as simple and short as possible (consisting only of an op code).
Compiler design is also simplified because a stack ar chitecture dispenses
with the problem of register allocation. However, stack architectures suffer
from a significant performance penalty because operands must be fetched
from and stored back to memory for each computation. (A register-based
machine allows intermediate results and repeatedly used values to be kept
in the processor for quicker access until a final answer is calculated and
returned to memory.) Because of this disadvantage, stack ar chitectures are
even less common than accumulator ar chitectures.

3.1.5 Memory-register vs. load-store architectures

Because of the limitations of stack and accumulatorbased architectures, most
modern CPUs are designed around a set of several (typically 8, 16, 32, or
more) general-purpose internal r egisters. This allows at least some of the
operands used in computations to be available without the need for a mem-
ory access. An important question to be answer ed by the designer of an
instruction set is, “Do we metely want to allow the programmer (or compiler)

Chapter three: Basics of the central processing unit 107

to use register operands in computations, or will we require all computations
to use register operands only?” The implications of this choice have mor e
far-reaching effects than one might think.

A memory-register architecture is one in which many, if not all, compu-
tations may be performed using data in memory andinr egisters. Many
popular architectures, such as the Intel x86 and Motorola 680x0 families, fall
into this category. The Intel pr ocessor has a considerable number of
two-operand instructions written in assembly language as “ADD destina-
tion, source.” (Subtraction and logical operations use the same format.) Both
operands are used in the computation, with the first being overwritten by
the result. It is allowable for both operands to be CPU r egisters; it is also
possible for either one (but not both) to be main memory locations, specified
using any addressing mode the ar chitecture supports. So “ADD AX, BX,”
“ADD AX, [BX],” and “ADD [BX], AX” are all valid forms of the addition
instruction. (AX and BX are the names of CPU registers, and square brackets
indicate register indirect addressing.) Both r egister-register and mem-
ory-register computations are supported. Most x86 instructions do not pro-
vide for this, but some other ar chitectures allow all of an instruction’s oper-
ands to be in memory locations (a memory—memory architecture).

The advantages of a memory—iegister (or memory-memory) architecture
are fairly obvious. First of all, assembly language coding is simplified. = All
of the machine’s addressing modes are available to identify an operand for
any instruction. Computational instructions such as ADD behave just like
data transfer instructions such as MOV. (Fortunately, Intel is better at CPU
design than it is at spelling.) The assembly language pr ogrammer and the
high-level language compiler have a lot of flexibility in how they perform
various tasks. To the extent that operands can r eside in memory, the archi-
tecture need not provide as many registers; this can save time on an interupt
or context switch since ther e is less CPU state information to be saved and
restored. Finally, executable code size tends to be smaller . A given program
can contain fewer instructions because the need to move values fr om mem-
ory into registers before performing computations is reduced (or eliminated
if both operands can reside in memory).

The disadvantages of a memory-register architecture (which are further
exacerbated in a memory—memory architecture) are a bit less obvious, which
helps explain why such ar chitectures were dominant for many years and
why they continue to be widely used today . The main disadvantage of
allowing computational instructions to access memory is that it makes the
control unit design more complex. Any instruction may need to access mem-
ory one, two, three, or even four or mor e times before it is completed. This
complexity can readily be handled in a microprogrammed design (see Section
3.3.3), but this generally incurs a speed penalty . Since the number of bits
required to specify a memory location is generally much gr eater than the
number required to uniquely identify a register, instructions with a variable
number of memory operands must either be variable in length (complicating
the fetch/decode process) or all must be the size of the longest instr uction

108 Computer Architecture: Fundamentals and Principles of Computer Design

format (wasting bits and making pr ograms take up more memory). Finally,
the more memory accesses an instr uction requires, the more clock cycles it
will take to execute. Ideally, we would like instructions to execute in as few
clock cycles as possible and — even mor e to the point — we would like all
of them to execute in the same number of clock cycles if possible. Variability
in the number of clock cycles per instuction makes it more difficult to pipeline
instruction execution (see Section 4.3), and pipelining is an important tech-
nique for increasing CPU performance. While pipelined, high-speed imple-
mentations of several memory-r egister architectures do exist, they achieve
good CPU performance in spite of their instr uction set design rather than
because of it.

The alternative to a memory—tegister architecture is known as aload—store
architecture. Notable examples of the load-stor e philosophy include the
Silicon Graphics MIPS and Sun SPARC processors. In a load—store architec-
ture, only the data transfer instructions (typically named “load” for reading
data from memory, and “store” for writing data to memory) ae able to access
variables in memory. All arithmetic and logic instr uctions operate only on
data in registers (or possibly immediate constants); they leave the r esults in
registers as well. Thus, a typical computational instruction might be written
in assembly language as ADD R1, R2, R3, while a data transfer might appear
as LOAD [R4], R5. Combinations of the two, such as ADD R1, [R2], R3, are
not allowed.

The advantages and disadvantages of a load—stoe architecture are essen-
tially the converse of those of a memory-r egister architecture. Assembly
language programming requires a bit more effort, and because data transfer
operations are divorced from computational instructions, programs tend to
require more machine instructions to perform the same task. (The equivalent
of the x86 instr uction ADD [BX], AX would require three instructions: one
to load the first operand fr om memory, one to do the addition, and one to
store the result back into the memory location.) Because all operands must
be in registers, more registers must be provided or performance will suffer;
however, more registers are more difficult to manage and mor e time-con-
suming to save and r estore when that becomes necessary .

Load-store machines have advantages to counterbalance these disad-
vantages. Because register addressing requires smaller bit fields (five bits are
sufficient to choose one of 32 registers, while memory addresses are typically
much longer), instructions can be smaller (and, per haps more importantly,
consistent in size). Thr ee-operand instructions, which are desirable from a
programming point of view but would be unwieldy if some or all of the
operands could be in memory, become practical in a load-store architecture.
Because all computational instructions access memory only once (the instric-
tion fetch) and all data transfer instr uctions require exactly two memory
accesses (instruction fetch plus operand load or stor e), the control logic is
less complex and can be implemented inhardwired fashion (see Section 3.3.2),
which may result in a shorter CPU clock cycle. The arithmetic and logic
instructions, which never access memory after they ar e fetched, are simple

Chapter three: Basics of the central processing unit 109

to pipeline; because data memory accesses ar e done independently of com-
putations, they do not interfer e with the pipelining as much as they other -
wise might. Do these advantages outweigh the disadvantages? Dif ~ ferent
CPU manufacturers have dif ferent answers; however, load—store architec-
tures are becoming increasingly popular.

3.1.6 CISC and RISC instruction sets

When we discuss computer instruction sets, one of the fundamental distinc-
tions we make is whether a given machine is a CISC or a RISC. Typical CISC
and RISC architectures and implementations differ in many ways, which we
will discuss more fully in Section 4.4, but as their names imply , one of the
most important differences between machines based on each of these com-
peting philosophies is the nature of their instruction sets. CISC architectures
were dominant in the 1960s and 1970s (many computing veterans consider
DEC’s VAX to be the ultimate CISC ar chitecture); some, like the Intel IA-32
architecture used in x86 and Pentium-class CPUs, have survived into the
new millennium.

CISCs tended to have machine language instr uction sets reminiscent of
high-level languages. They generally had many dif ferent machine instruc-
tions, and individual instructions often carried out relatively complex tasks.
CISC machines usually had a wide variety of addr essing modes to specify
operands in memory or registers. To support many different types of instruc-
tions while keeping code size small (an important consideration given the
price of memory 30 to 40 years ago), CISC ar chitectures often had vari-
able-length instructions. This complicated control unit design, but by using
microcode, designers were able to implement complex control logic without
overly extending the time and ef fort required to design a pr ocessor. The
philosophy underlying CISC ar chitecture was to support high-level lan-
guage programming by bridging the semantic gap — in other wor ds, by
making the assembly (and machine) language look as much like a high-level
language as possible. Many computer scientists saw this tr ~ end toward
higher-level machine interfaces as a way to simplify compilers and software
development in general.

RISC architectures gained favor in the 1980s and 1990s as it became moe
and more difficult to extract increased performance from complicated CISC
processors. The big, slow micr oprogrammed control units characteristic of
CISC machines limited CPU clock speeds and thus performance. CISCs had
instructions that could do a lot, but it took a long time to execute them. The
RISC approach was not only to have fewer distinct machine language
instructions (as the name implies), but for each instr uction to do less work.
Instruction sets were designed around the load—store philosophy, with all
instruction formats kept to the same length to simplify the fetching and
decoding process. Only instructions and addressing modes that contributed
to improved performance were included; all extraneous logic was stripped

110 Computer Architecture: Fundamentals and Principles of Computer Design

away to make the contr ol unit, and thus the CPU as a whole, lighter and
faster.

The main impetus for RISC architectures came from studies of high-level
language code compiled for CISC machines. Resear chers found that the
time-honored 80/20 rule was in effect: roughly 20% of the instructions were
doing 80% (or mor e) of the work. Many machine instr uctions were too
complex for compilers to find a way to use them and thus never appear ed
in compiled programs at all. Expert assembly language programmers loved
to use such instr uctions to optimize their code, but the RISC pioneers r ec-
ognized that in the futur e assembly language would be used less and less
for serious program development. Their real concern was optimizing system
performance while r unning applications compiled fr om high-level code.
Compilers were not taking full advantage of overly featue-rich CISC instruc-
tion sets, yet having the capability to execute these mostly unused instr uc-
tions slowed down everything else. (The CPU clock is limited by the slowest
logical path that must be traversed in a cycle.) Thus, RISC designers opted
to keep only the 20% or so of instr uctions that were frequently used by the
compilers. The few r emaining needed operations could be synthesized by
combining multiple RISC instructions to do the work of one, seldom used,
CISC instruction. RISC architectures required more effort to develop good,
efficient, optimizing compilers — and the compilation pr ocess itself might
take longer — but a compiler must only be written once, and a given pgram
must only be compiled one time once it is written and debugged, though it
will likely be run on a given CPU many times. TFading off increased compiler
complexity for reduced CPU complexity thus seemed like a good idea.

Two other motivating, or at least enabling, factors in the rise of RISC
architecture were the advent of better very lar ge-scale integration (VLSI)
techniques and the development of pr ogramming languages for har dware
design. With the availability of mor e standardized, straightforward VLSI
logic design elements such as pr ogrammable logic arrays, computer engi-
neers could avoid the haphazard, time-consuming, and error-prone process
of designing chips with random logic. This made har dwired control much
more feasible than it had been peviously. Of perhaps even more significance,
hardware description languages (HDLs) were devised to allow a softwae devel-
opment methodology to be used to design har dware. This ability to design
hardware as though it wer e software negated one of the major advantages
previously enjoyed by microprogrammed control unit design.

The reduced number and function of available machine instr uctions,
along with the absence of variable-length instuictions, meant RISC programs
required more instructions and took up mor e memory for pr ogram code
than would a similar program for a CISC. However, if the simplicity of the
control unit and arithmetic har dware were such that the pr ocessor’s clock
speed could be significantly higher, and if instructions could be completed
in fewer clock cycles (ideally, one) the end result could be — and often was
— anetincr ease in performance. This performance benefit, coupled with
falling prices for memory over the years, has made RISC ar chitectures more

Chapter three: Basics of the central processing unit 111

and more attractive, especially for high-performance machines. CISC ar chi-
tectures have not all gone the way of the dinosaurs, though, and many of
the latest architectures borrow features from both RISC and CISC machines.
This is why a course in computer ar chitecture involves the study of the
characteristics of both design philosophies.

3.2 The datapath

Having looked at factors that ar e important to the design of a machine’s
instruction set, we now turn our attention to the datapath — the hardware
that is used to carry out the instr uctions. Regardless of the number or type
of instructions provided, or the philosophy underlying the instr uction set
design, any CPU needs circuitry to store binary numbers and perform arith-
metic and logical operations on them. In this section, we will examine the
register set and computational hardware that make up a typical computer’s
datapath.

3.2.1 The register set

A machine’s programmer-visible register set is the most obvious featur e of
its datapath, because the register set is intimately intertwined with the ISA.
Another way of saying this is that the visible r egister set is an ar chitectural
feature, while the particulars of the r est of the datapath ar e merely imple-
mentation details. (This is not meant to imply that implementation is trivial.)
One machine may have two 64-bit ALUs while another has a single 32-bit
ALU that r equires two passes to perform 64-bit operations, but if their
register sets (and instr uction sets) are the same, they will appear ar chitec-
turally identical; the only dif ference will be in observed performance.

Registers do very little other than serve as temporary storage for data
and addresses. (It is possible to implement the pr ogrammer’s working reg-
isters as shift registers rather than as basic storage r egisters, but for reasons
of speed and simplicity , the shifting capability is usually located further
down the datapath, either as part of or following the ~ALU.) However, the
fact that registers are explicitly r eferred to by pr ogram instructions that
operate on data makes the egister set one of the most important achitectural
features of a given machine.

The most obvious and significant attributes of a machine’s r egister set
are its size (the number of r egisters provided and the width in bits of each)
and its logical organization. Assembly programmers like to have many reg-
isters — the more, the better. Compilers were once woefully inadequate at
efficiently using a lar ge register set but have become considerably better at
this over the years. However, for both compilers and human pr ogrammers,
there is a diminishing returns effect beyond some optimal number of r egis-
ters. The number and size of the CPU r egisters was once limited by such
simple but obvious factors as power consumption and the amount of avail-
able silicon “real estate.” Now, the determining factors of the number of

112 Computer Architecture: Fundamentals and Principles of Computer Design

registers provided are more likely to be the desired instruction length (more
registers means bigger operand fields), the over head required to save and
restore registers on an interr upt or context switch, the desir e to maintain
compatibility with previous machines, and the compiler ’s ability to make
efficient use of the registers.

The size of individual registers depends to a considerable extent on the
numerical precision required and the word width of the computational hard-
ware. (It makes little sense to stor e 128-bit numbers if the ALU is only 32
bits wide or if the machine’s intended applications donotr equire 128-bit
precision.) Since most ar chitectures allow (or even r equire) some form of
register indirect or indexed addr essing, register size also depends on the
amount of memory the ar chitects want to make addr essable by a program.
For example, 16-bit r egisters allow only 64 KB of addr ess space (without
resorting to some form of trickery like the segment egisters in the Intel 8086,
which allowed 20-bit addresses to be formed from two 16-bit values); 32-bit
registers allow 4 GB of addessable space, which used to be consideed plenty
for almost any application but has pr oven insufficient for some of today’s
extremely large data sets. The next logical step, addr essing using 64-bit
registers, allows 2% bytes (16,384 petabytes, or 16 exabytes) of virtual (and
perhaps one day, physical) space to be addr essed.

Given the range of integers (and double-precision floating-point values;
see Section 3.2.3) that can be represented in 64 bits, it is unlikely that 128-bit
registers will become common in the near futur e. (Of course, past pr edic-
tions, such as the “640K ought to be enough for anybody” attributed to Bill
Gates, have shown the folly of saying “never .”) In any case, most contem-
porary machines could have mor e and lar ger registers than they do, but
designers have found other, more profitable ways to use the available chip
area.

Whatever the size of ther egister set, its logical or ganization is very
significant. Designers have taken widely dif ferent approaches to allocating
(or in some cases, not allocating) r egisters for different uses. Some ar chitec-
tures, such as the Intel 8086, have special-purpose r egister sets in which
specific registers are used for specific functions. Multiplication r esults are
always left in AX and DX, for example, while CX is always used to count
loop iterations. Others, for example Motor ola’s 68000, divide the working
registers only into the two general categories of data r egisters and address
registers. All data registers are created equal, with the ability to pr ovide
operands for, and receive results from, any of the arithmetic and logical
instructions. Address registers only have the capability for simple pointer
arithmetic, but any of them can be used with any of the available addressing
modes. Some ar chitectures (such as V AX and MIPS) take the principle of
equality to its fullest extent, making few if any distinctions in terms of
functionality and allowing any CPUr egister to be used equally in any
operation. Perhaps the most interesting approach is the one used in SP ARC
processors. SPARC'’s general-purpose registers may be used interchangeably
for data or addr esses butare logically gr ouped based on whether they

Chapter three: Basics of the central processing unit 113

represent global variables, local variables within a given pr ocedure, inputs
passed to it from a caller, or outputs from it to a called subpr ogram.
Whatever the design of a machine’sr egister set, compilers must be

designed to be awar e of its featur es and limitations in or der to exploit the
full performance potential of the machine. This is particularly tr ue of RISCs
(or any machine with a load-stor e ISA). A compiler that can ef fectively
optimize code to take advantage of the featur es of a particular ar chitecture
is worth more than its figurative weight in megahertz.

3.2.2 Integer arithmetic hardware

Performing arithmetic on binary integers is per haps the most fundamental
and important capability possessed by digital computers. Numbers, after all,
are composed of digits (binary digits, in the case of essentially all modern
computers), and to compute is to perform arithmetic operations on data. So,
by definition, digital computers are machines that do arithmetic calculations.
In this section we will examine some of the ways in which computer har d-
ware can efficiently perform arithmetic functions on binary numbers.

The reader who has had a pr evious introductory course in digital logic
or computer organization has probably encountered a basic datapath design
including a simple arithmetic/logic unit. An elementary ALU can perform
addition and subtraction on binary operands as well as some subset of
standard, bitwise logic functions such as AND, OR, NOT, NAND, NOR,
XOR, etc. (A more advanced circuit might also be able to perform multipli-
cation, division, and possibly other functions.) The datapath may also pr o-
vide the capability to do bit shifting operations, either inthe ~ALU orasa
separate shifter block connected to the ALU outputs. A typical ALU is shown
in block diagram form in Figur e 3.11.

Notice that control inputs (which are output from the processor’s control
unit) are used to select which arithmetic or logical function the ~ ALU and
shifter perform at any given time. One of the ALU functions may be simply
to transfer one of the operand inputs to the output without modification;
this allows the shifter to operate dir ectly on register contents and provides
for simple register-to-register transfers via the datapath. The shifter has the
ability to pass bits thr ough unchanged or move them to the left or right,
either by one position or many (as in the case of a barr el shifter) at a time.
Also notice that the ALU typically develops “condition code” or status bits
that indicate the nature of the result produced (positive-negative, zero-non-
zero, the presence or absence of an overflow or carryetc.). The bitwise logical
functions of the ALU are trivial to implement, r equiring only a single gate
of each desired type per operand bit; shifting is not much more complicated
than that. The real complexity of the datapath is in the ciruitry that performs
arithmetic calculations. We will devote the rest of this section to a closer look
at integer arithmetic hardware.

114 Computer Architecture: Fundamentals and Principles of Computer Design

Operand 1 Operand 2

]

Adder/ [IIDl [T » Condition

subtractor Bitwise [I1122711I11r codes
(plus other |.___ - logic
functions?)

Control
signals

Shifter

J
Result

Figure 3.11 Basic ALU.

3.2.2.1 Addition and subtraction
Addition and subtraction are the simplest arithmetic operations and the ones
most frequently performed in most applications. Since these operations ar e
performed so frequently, it is often worthwhile to consider implementations
that improve performance, even if they add somewhat to the complexity of
the design, the amount of chip ar ea required, or other costs.

The reader should be familiar with the basic half adder and full adder
circuits (see Figure 3.12 and Figure 3.13), which are the building blocks for
performing addition of binary numbers in computers. The half adder is
normally useful only for adding the least significant bits 4, and b, of two
binary numbers, as it has no pr ovision for a carry in. It simply adds two
one-bit numbers and produces a sum bit s, and a carry out bit c;.

ta)g _ D— so (sum)

¢; (carry out)

Figure 3.12 Binary half adder cir cuit.

Chapter three: Basics of the central processing unit 115

3 b ¢ |cy s

3 00000
b; 00 1|0 1
. , Dfsi 01 0[0 1
i / 01 1|10
1 000 1

1 0 1]1 0

Cisl 1 1010

1 1 1)1 1

Figure 3.13 Binary full adder cir cuit.

The full adder cir cuit is useful for adding the bits (in any position) of
two binary numbers. The corr esponding bits of the two numbers, 4; and b,
are added to an input carry c¢; to form a sum bit s; and a carry out bit cj,;.
Any number of full adders can be cascaded together by connecting the carry
out of each less significant position to the carry in of the next moe significant
position to create the classic ripple carry adder (see Figure 3.14). The operation
of this circuit is analogous to the method used to add binary numbers by
hand using a pencil and paper. Like hand addition, a ripple carry adder can
be used to add two binary numbers of arbitrary size. However, since carries
must propagate through the entire chain of adders befor e the final result is
obtained, this structure may be intolerably slow for adding lar ge binary
numbers.

It is possible to design half and full subtractor cir cuits that subtract
one bit from another to generate a dif ference bit and a borr ow out bit. A
full subtractor is able to handle a borr ow in, while a half subtractor is not.
These blocks can then be cascaded together in the same fashion as adder
blocks to form a ripple borrow subtractor. However, in practice separate
circuits are rarely built to implement subtraction. Instead, signed arithmetic
(most frequently, two’s complement arithmetic) is used, with subtraction
being replaced by the addition of the complement of the subtrahend to the
minuend. Thus, one cir cuit can perform double duty as an adder and
subtractor.

a,; by an_y by a; b ay by

| Ho—L I I
] 1 Ll 1

Figure 3.14 Ripple carry adder.

n—

116 Computer Architecture: Fundamentals and Principles of Computer Design

A bn—l a2 bn—2 a bl 39 bO
Binary adder L
Co

Cn Sn—l Sn—Z Sl SO

Figure 3.15 Adder/subtractor circuit.

A combination adder—subtractor circuit may be built as shown in Figure
3.15. When input S = 0, the carry in is 0, and each XOR gate outputs the
corresponding bit of the second operand B, pr oducing the sum of the two
input numbers (A + B). When S = 1, each XOR gate poduces the complement
of the corresponding bit of B, and the carry in is 1. Complementing all bits
of B gives its one’s complement, and adding one to that value yields the
two’s complement, so the circuit performs the operation [A + (-B)] or simply
(A - B). Since this technique can be used to perform subtraction with a ripple
carry adder or any other circuit that will add two numbers, there is no need
for us to study subtractor cir cuits separately.

The question then r emains, “What other alternatives ar e available that
will allow us to add and subtract numbers mor e quickly than a ripple carry
adder?” A superior solution, in terms of computation speed, is pr ovided by
a carry lookahead adder (see Figure 3.16). The basic principle behind this
circuit’s operation is that the bits of the operands, which ar e available at the
start of the computation, contain all the information r equired to determine
all the carries at once. There is no need to wait for carries to ripple thr ough
the less significant stages; they can be generated dir ectly from the inputs if
one has room for the required logic.

The carry logic of this circuit is based on the fact that when we add two
binary numbers, there are two ways that a carry fr om one position to the
next can be caused. First, if either of the operand bits in that position (a; or
b,) are 1 and its carry in bit ¢; is also 1, the carry out bit c;,; will be 1. That
is, if the logical OR of the input bits is tr ue, this adder stage will propagate
an input carry (if it occurs) to the next more significant stage. Second, if both
input bits a; and b; are 1, the stage will produce a carry out c;,; of 1 regardless
of the value of c¢;. In other words, if the logical AND of 4, and b, is true, this
stage will generate a carry to the next stage. Each carry pr opagate function
P; requires a single OR gate (P; = a; + b;), and each carry generate function

Chapter three: Basics of the central processing unit 117

Q
i)
<
>~
5
g
B
=}
2
V]
=]
=1
=+
~
FA FA FA
FA
| T T
S, S, So
Cn Sn—l

Figure 3.16 Carry lookahead adder.

G, requires a single AND gate (G, = ab;). Each carry bit can be generated
from these functions and the pr evious function as follows:

i1 = G; + Pg

If we assume that a carry into the least significant bit position (¢,) is
possible (this would be convenient if we want to be able to cascade additions
to handle large numbers), then the logical expr ession for the first carry out
would be

¢; =Gy + Py

By substituting this expression into the evaluation of ¢, and then using the
expression for c, to develop c;, and so on, we can obtain logical expr essions
for all the carries, as follows:

¢, = Gy + P,G, + P,Py,
¢; = G, + P,G; + P,P,G, + P,P,Pc,
¢, = G; + P;G, + P;P,G, + P;P,P,G, + P;P,P,Pc,
and so on. Each P function is a single OR function of input bits available at
the start of the computation. Each G function is a single ~ AND function of
the same bits. Given a suf ficient number of AND and OR gates, we can

generate all the P and G functions simultaneously , within one gate pr opa-
gation delay time. Using additional AND gates, a second gate delay will be

118 Computer Architecture: Fundamentals and Principles of Computer Design

sufficient to simultaneously generate all the pr oduct terms in the above
expressions. These product terms can then be ORed, poducing all the carries
simultaneously in only thr ee gate delays. Full adders can be built with
two-level logic, so the complete sum is available in only five gate delays.
This is true regardless of the “width” of the addition (and thus the number
of carries required). For large binary numbers, this technique is much faster
than the ripple carry appr oach.

Of course, as the old truism goes, there is no such thing as a fr ee lunch.
The carry lookahead adder pr ovides superior speed, but the tradeof f is
greatly increased circuit size and complexity. Notice the trend in the carry
equations above. The first one, for ¢;, has two product terms, with the largest
term containing two literals. The second one has thr ee product terms, with
the largest containing three literals, and so on. If we were designing a 32-bit
adder, the final carry equation would have 33 terms, with 33 literals in the
largest term. We would need an OR gate with a fan-in (number of inputs)
of 33, plus 32 AND gates (the lar gest also having a fan-in of 33), just to
produce that one carry bit. Similar logic would be needed for all 32 carries,
not to mention the 32 AND gates and 32 OR gates r equired to produce the
carry generate and pr opagate functions. Logic gates with high fan-inar e
difficult to construct in silicon, and lar ge numbers of gates take up a gr eat
deal of chip space and incr ease power dissipation. It is possible to piece
together an AND gate with many inputs by using two-level ~AND/AND
logic (or to build a lar ger OR gate using two-level OR/OR logic), but this
increases propagation delay and does nothing to r educe the size or power
dissipation of the cir cuit. Now imagine using the carry lookahead logic
required to build a 64-bit adder . It would be fast but huge.

It is possible to compr omise between the higher speed of the carry
lookahead adder and the simplicity and r educed size of the ripple carry
adder by using both designs in a single cir cuit as shown in Figur e 3.17. In
this case, the designer has chosen to implement a 64-bit binary adder using
four 16-bit carry lookahead blocks connected in a ripple carry arrangement.
Because each block is much faster than a 16-bit ripple carry adderthe overall
circuit will be considerably faster than a 64-bit ripple carry adder Cascading
the carries from one block to the next makes their delays additive, rather
than simultaneous, so the cir cuit is roughly one-fourth the speed of a full
64-bit carry lookahead adder. However, it requires much less power and chip

agzbgz -+ asgbag ag7by; -+ agpbs ag by -+ abye ajsbys --- g by
[| [| [| [| [| [| [| [|

Cor CLA Cas CLA Caa CLA Ci6 CLA

Ses v Sag Siz S32 Sst S Si5. So

Co

Figure 3.17 64-bit adder design using 16-bit carry lookahead blocks.

Chapter three: Basics of the central processing unit 119

agibs; - .. ajebye agibs; .. ajebye ajsbys -+ ag by
[| [| [| [| [| [|
CLA -0 CLA 1 CLA
Multiplexer
C33 531 Si6 Si5 So

Figure 3.18 32-bit carry select adder.

area and thus may r epresent a reasonable compromise between cost and
speed for some applications.

A carry select adder (see Figure 3.18) is another way to speed up addition
by using additional har dware. As in the pr evious design, we consider the
implementation of a larger adder (for example, 32 bits) by cascading smaller
blocks (for example, 16 bits each) together . The output carry fr om the
lower-order block would normally be fed to the carry input of a single
high-order block; however, this would mean that after the first half of the
addition is done, the full propagation delay of the second block must elapse
before the answer is known to be corr ect.

In the carry select adder design, we completely replicate the logic of the
high-order block. This requires 50% more hardware (three blocks instead of
two) but gives an advantage in performance. The two redundant high-order
blocks both compute the sum of the upper halves of the operands, but one
assumes the carry in will be 0, while the other assumes it will be 1. Since
we have covered both possibilities, one of the two high-or der answers is
bound to be correct. The two possible high-order sums are computed simul-
taneously with each other and with the low-or der bits of the sum. Once the
carry out of the low-or der portion is determined, it is used to choose the
correct high-order portion to be output; the other, incorrect result is simply
ignored. As long as the propagation delay of a multiplexer is less than that
of an adder block (which is normally the case), the addition is performed
more quickly than if two blocks wer e cascaded together in ripple carry
fashion.

Which of these adder designs is the best? Ther e is no universal answer:
it depends on the performance r equired for a particular application vs. the
cost factors involved. This is just one example of a common theme in com-
puter (or any other discipline of) engineering: trading of f one aspect of a
design to gain an impr ovement in another. Short of a major technological
revolution such as practical quantum computing — and likely even then —
it will always be so.

Another good example of a design tradeof f, in this case a decision
between implementing functionality in har dware vs. software, is the

120 Computer Architecture: Fundamentals and Principles of Computer Design

ag bg a; by a; by ay by

4-bit adder

To

— 1|

4-bit adder

Figure 3.19 Binary coded decimal adder.

addition of binary coded decimal (BCD) numbers. BCD is often a convenient
representation because most human users pr efer to work in base 10 and
because character codes used for I/O, such as ASCII, are designed to make
conversion to and from BCD easy. However, it is dif ficult to perform arith-
metic operations on numbers in BCD form because of the logic r equired to
compensate for the six unused binary codes. Figure 3.19 shows a circuit that
could be used to add two BCD digits together to pr oduce a correct BCD
result and a carry, if any.

Notice that the circuit implements the correction algorithm of adding 6
(0110,) to the result if a binary carry out occurs (meaning the sum is 16 or
greater) or if the most significant sum bit (s;) and either of the next two bits
(s, or s;) are 1 (in other wor ds, if the sum is between 10 and 15, inclusive).
If the sum is in the range 0 to 9 then it is left unchanged by adding 0000 ,,
and the carry out is 0.

We could cascade any number of these adders to process BCD values of
arbitrary size. This takes up space on the chip and inceases power consump-
tion, but the designers of some systems (particularly those intended for
business applications) have found BCD adders, and machine instr uctions
that use them, to be worthy of inclusion in the CPU. The alternative is to
provide only normal, binary addition cir cuits in the datapath. In this case,
the designer could still pr ovide a BCD corr ection instruction in microcode
(see Section 3.3.3) or could choose not to support BCD addition in hardware
at all. Absent a machine instruction to implement BCD addition, one could
choose not to use BCD numbers (perhaps feasible if the machine is intended
only for scientific or other very specific applications) or implement BCD
addition as a software routine. All of these approaches have been tried and

Chapter three: Basics of the central processing unit 121

X5 Y5 Z5 X4 Y4 Z4 X3 Y3 Z3 X2 Y2 Zo X117 X0 Yo Zo
S 1 I I R O 6 O R U R
FA FA FA FA FA FA
R P
Ss S, Ss Sy Sy So
Ce Cs C, Cs G, C

Figure 3.20 6-bit carry save adder.

found worthwhile in one scenario or another , representing different hard-
ware—software tradeoffs.

One more type of binary addition cir cuit is worth mentioning at this
time: the carry save adder. A carry save adder is just a set of full adders, one
per bit position; it is similar to a ripple carry adder , with the important
exception that the carry out of each adder is not connected to the carry in
of the next more significant adder. Instead, the carry in is treated as another
input, so that three numbers are added at once instead of two. The output
carries are not propagated and added in at the next bit position; instead,
they are treated as outputs fr om the cir cuit. The carry save adder thus
produces a set of sum bits and a set of carry bits (see Figur e 3.20).

The separate sets of sum and carry bits must eventually be r ecombined,
with the carry bits added in one place to the left of wher e they were gener-
ated, before we can obtain a final r esult. The advantage of using carry save
adders comes when we want to add several numbers together , rather than
just two. We can do this using a tr ee structure of carry save adders (see
Figure 3.21 for a carry save adder tr ee that adds four 6-bit numbers). If we
are only interested in the overall sum of the four numbers and not the partial
sums, this technique is faster and mor e efficient than adding the numbers
two at a time. When we add two numbers at a time, we must pr opagate the
carries to the next position (either via ripple carry or by carry lookahead) in
order to produce the correct result, but when we are adding multiple num-
bers and do not care about the intermediate results, we can save the carries
to be added in at a later stage. This means that every stage of our adder tr ee
except the last one can be made of simple, fast carry save adders; only the
last one must be a egular two-operand binary adder with carry popagation.
This saves on logic, and since (compar ed to carry save adders) carry looka-
head adders require at least three additional gate delays for the carry logic
(and ripple carry adders ar e even slower), we compute the sum of all the
numbers in less time.

Where would such a cir cuit be useful? If you have done any assembly
language programming, you probably know that the ADD instruction in
most computers takes only two operands and pr oduces the sum of those
two values. Thus, the ALU that performs that operation pr obably uses a
carry lookahead adder; the normal ADD instruction would gain nothing
from using a carry save adder . In some applications it would be helpful to

122 Computer Architecture: Fundamentals and Principles of Computer Design

W5 X5 Y5 Wy Xg¥qy W3 X3¥3 Wy X3y Wi X3Y¥1 Wo Xo Yo

1 S 1 e O I I R O O

FA FA FA FA FA FA

00 Zs Zy Zs Z, Z, Zy | O

[| | | | | | | |
FA FA FA FA FA FA FA

CLA
C, Se S5 Sy S3 S, Sy So

Figure 3.21 Using a tree of carry save adders to add four 6-bit numbers.

be able to add a large column of numbers quickly. Calculations of averages,
as might be r equired for large spreadsheets, could benefit fr om this tech-
nique. It might also be useful for scientific applications that r equire taking
the “dot” or inner product of vectors, which involves a summation of partial
products. Digital filtering of sampled analog signals also r equires summa-
tion; thus, one type of special-purpose ar chitecture that definitely benefits
from the capability of quickly adding multiple values is a digital signal
processor (DSP). None of these, however , represent the most common use
of carry save adders in computers. Rather , general-purpose machines that
have no need for a multi-operand addition instr uction can and do use this
idea to speed up a different arithmetic operation, which we will discuss next.

3.2.2.2 Multiplication and division

Multiplication and division ar e considerably more complex than addition
and subtraction. Fortunately, most applications use these operations less
frequently than the others, but in many cases they occur suf ficiently often
to affect performance. One alternative, as in the case of BCD addition, is not
to implement binary multiplication and division in har dware at all. In this
case, if multiplication or division ar e required, we would have to write
software routines (in a high-level language, in assembly , or even in micr o-
code) to synthesize them using the mor e basic addition, subtraction, and
shift operations. This is workable but slow; and thus not desirable if we need
to multiply and divide numbers fr equently.

Let us suppose, then, that we want to build a hadware circuit to multiply
binary numbers. How would we go about it, and what would be r equired?

Chapter three: Basics of the central processing unit 123

ag a a; ag
* by by by by 1011
asby aby aby agh, (PPO) *11rot
1011
agb; ab; ab; agb; 0 (PP1) 0000
agb, ab, ajb, agh, 0 0 (PP2) 1011
ab; aby abs agby 0 0 0 (PP3) 1011
10001111
1‘)7 P6 PS P4 P3 P2 Pl PO

Figure 3.22 Multiplication of two 4-bit numbers.

Since the most basic addition cir cuit (the ripple carry adder) works analo-
gously to pencil-and-paper addition, let’s take a similar appr ~ oach to the
development of a multiplier cir cuit. Figure 3.22 shows, both in general and
using specific data, how we could multiply a pair of 4-bit numbers to pduce
their 8-bit product. (It is no coincidence that 8 bits must be allowed for the
product. In base 2, base 10, or any other base, multiplying a number of n
digits by a number with m digits yields a product that can contain up to n
+ m digits. Here n = m = 4, so we must allow for 2 n = 8 product bits.)

The binary operands A (the multiplicand, composed of bits a;a,a,4,) and
B (the multiplier, with bits b;b,b,b,) are used to generate four partial products
PPO through PP3. (There will always be as many partial pr oducts as there
are multiplier bits.) Each successive partial pr oduct is shifted one place to
the left as we do when multiplying numbers manually in any base; then the
partial products are summed to get the final pr oduct P = A x B.

The convenient thing about designing a multiplier cir cuit this way is
that it is very easy to generate the partial pr oducts. Each partial product bit
is the product of one of the multiplicand bits 4, times one of the multiplier
bits b;. The binary multiplication tables are trivial: 0 x 0=0;0 x1=0;1 x 0
=0; and 1x 1 =1. Notice that if you consider the two bits as Boolean variables
(which they are) then this is exactly the same as the logical AND function.
(Now you know why AND is sometimes called logical multiplication.) It so
happens that in binary, logical multiplication and multiplication of one-bit
numbers are the same thing, so each partial product bit can be produced by
a single AND gate with the appr opriate inputs.

Once the partial pr oducts are generated, the r emaining task is to add
them all together to pr oduce the final r esult. How can we best do this? If
the mention of carry save adders above rings a bell, congratulations! Multi-
plication is the number one application for a tr ee of carry save adders. (The
most efficient arrangement of carry save adders is known as a W allace tree
in honor of its inventor.) Figure 3.23 shows how we could use this approach
to compute the product of two 4-bit numbers.

This approach is not restricted to small numbers, though larger numbers
require more hardware. A bigger multiplicand would r equire more AND
gates to generate each partial product, and each carry save adder in the tree

124 Computer Architecture: Fundamentals and Principles of Computer Design

PP3 PP2 PP1 PPO

CSA

O
©n

Shift
carries
left 1
position

P=A=B

Figure 3.23 Block diagram of Wallace tree multiplier for 4-bit numbers.

(plus the final carry lookahead adder) would need to be lar ger. A bigger
multiplier would result in more partial products and thus require more carry
save adder stages in the tr ee. Multiplying lar ge numbers in this way can
take up a good deal of chip space butissoef ficient that it is a favorite
technique of computer engineers.

The astute reader will recall that computers ar e called on to perform
both signed and unsigned arithmetic. One of the reasons that two’s comple-
ment notation is widely pr eferred for representing signed numbers is that
the same circuit can be used to add and subtract both signed and unsigned
numbers. It is only the interpr etation of the results that is dif ferent. (In the
unsigned case, the result is always positive and it is possible to generate a
carry out, which r epresents an unsigned overflow . In the signed case, the
most significant bit of the r esult tells us its sign; the carry out of the Most
Significant Bit (MSB) is insignificant, but we must check for two’s comple-
ment overflow.) With multiplication, we are not so lucky. The sample calcu-
lation shown is the unsigned multiplication of 1 1 (1011,) times 13 (1 101,),
producing the product 143 (1000 1111,). Suppose we interpr et these same
numbers as signed, two’s complement values. Binary 101 1 now represents
-5, while binary 1101 represents —3. The product of these two numbers is
+15, or 00001111 in binary, but this is not the output from the circuit. Instead,
we obtain —113 as the “product.” Clearly this circuit is only good for unsigned
multiplication.

Chapter three: Basics of the central processing unit 125

How, then, can we handle the multiplication of signed values? If design-
ers only anticipate an occasional need for signed multiplication, they might
choose to implement only unsigned multiplication in har ~ dware, leaving
software to handle signed numbers. We could do this by checking the signs
of both numbers before multiplying. If both are positive, the unsigned result
will be correct. If both ar e negative, we know the pr oduct will be positive,
so we simply complement both numbers first and then perform an unsigned
multiplication. If one is positive and the other is negative, we would have
to first complement the negative operand, then multiply , then complement
the result to make it negative. It is easy to see that this appoach would work
but would be unwieldy if we have to do many signed multiplications.

One way to multiply signed numbers ef ficiently is to use Booth’s algo-
rithm. This approach handles two’s complement signed numbers dir ectly,
without any need to convert the operands to positive numbers or comple-
ment results to make them negative. The basic idea behind Booth’s algorithm
is that the multiplier , being a binary number , is composed of Os and 1s.
Sometimes an individual 0 is followed by a 1 (or vice versa); sometimes thee
are strings of several Os or 1s consecutively . Depending on whether we ar e
at the beginning, the end, or the middle of one of these strings, the steps
involved in accumulating the partial pr oducts are different.

When we are multiplying and the multiplier contains a string of consec-
utive zeros, we know that each partial pr oduct will be zer o; all that is
necessary is to shift the previously accumulated product by one bit position
for each zero in the string so the next partial pr oduct will be added in that
many places to the left. When the multiplier contains a string of ones, we
can treat this as a multiplication by the number (L- R), where R is the weight
of the 1 at the right (least significant) end of the string and L is the weight
of the zero to the left of the 1 at the left (most significant) end of the string.

For example, say we ar e multiplying some number times +12 (01 100
binary). The two Os at the right end of the multiplier , and the 0 at the left
end, contribute nothing to the esult because the partial pooducts correspond-
ing to them are zero. The string of two 1s in the middle of the number will
determine the result. The rightmost 1 has a weight of 2 2 = 4, while the zero
to the left of the leftmost 1 has a weight of 2 = 16. The value of the multiplier
is 16 — 4 = 12; we can achieve the ef fect of multiplying by +12 by taking the
product of the multiplicand with 16 and subtracting the pr ~ oduct of the
multiplicand with 4. Algebraically, 12x = (16 — 4)x = 16x — 4x.

Suppose instead that we want to multiply a number times —13 (10011 as
a two’s complement binary number). Once again, the string of two Os in the
middle of the number contributes nothing to the final r esult; we only need
to concern ourselves with the two 1s at the right end of the multiplier and
the 1 at the left end. The two 1s at the right end may be tr eated as 22 —2° =
(4 — 1) = 3. The leftmost 1 is in the 2 # = 16 position. There are no bits to the
left of this bit (it is the sign bit for the multiplier), so it simply has a weight
of —(2%) = —16. Thus we can tr eat multiplication by —13 as a combination of
multiplying by —16, +4, and —1.

126 Computer Architecture: Fundamentals and Principles of Computer Design

To take one more example, assume the multiplier is binary 10101, which
is =11 in two’s complement form. There are three strings of 1s, each just one
bit long. The rightmost is tr eated as 2! — 2° = 2 — 1 = 1; the middle string is
treated as 2° — 22 = 8 — 4 = 4; the leftmost is once again treated as —(2*) = -16.
Multiplying by —11 can thus be tr eated as multiplying by -16, +8, -4, +2,
and -1, with the signed partial pr oducts added together to pr oduce the
result. All partial products can be generated as positive numbers, but each
is either added or subtracted depending on whether its contribution is pos-
itive or negative. Alternatively, the partial pr oducts may be generated in
two’s complement form and simply added together .

This last numerical example illustrates the worst case for Booth's algo-
rithm, in which there are no strings of mor e than one bit equal to 1. In this
case, there is a positive or negative partial pr oduct generated for every bit
of the multiplier. However, when ther e are longer strings of 1s Booth's
algorithm may significantly r educe the number of partial pr oducts to be
summed. This is because a string of 1s of any length generates only one
positive and one negative partial pr oduct.

Given the basic idea outlined above, how could we implement Booth’s
multiplication technique in hardware? The key is that as we move thr ough
the multiplier from right to left, we consider every two adjacent bits (the
current bit and the bit to its right) to determine whether we ar e in the
beginning, middle, or end of a bit string, as shownin T able 3.1. Note that
an imaginary 0 is inserted to the right of the rightmost (least significant) bit
of the multiplier to get the pr ocess started.

We could build a har dware circuit to implement signed multiplication
in sequential fashion as shown in Figur e 3.24. To perform an n-bit by n-bit
multiplication, an n-bit adder is needed to add the partial pr oducts. The
multiplicand is stored in an n-bit register M; a 2 n-bit register P is used to
accumulate the product. (P must be capable of implementing the arithmetic
shift right operation, which is a shift to the right while maintaining the
leftmost or sign bit.) Initially, the lower half of P contains the multiplier and
the upper half contains zer oes.

Table 3.1 Using Bit Pairs to Identify Bit String Position in Booth’s

Algorithm
Current Bit | Bit to the Right
(bit 7) (bit i-1) Explanation Example
0 0 Middle of a string of Os 01111100
0 1 End of a string of 1s 01111100
1 0 Beginning of a string of 1s | 01111100
1 1 Middle of a string of 1s 01111100

Chapter three: Basics of the central processing unit 127

M (n-bit register)

___ Initialized
to multiplicand

R

n-bit Control
adder/subtractor logic
P (2n-bit shift register) C
! ! |
] i Initialized to | !
i © multiplier | Initialized
i ! to 0

i--- Initialized to all zeroes |

These bits determine next action

Figure 3.24 Sequential circuit for multiplying signed numbers using Booth’s
algorithm.

This circuit computes the product in 7 steps, with the action at each step
being determined based on which of the four possible scenarios fr om Table
3.1 applies. If the curr ent pair of bitsis 00 or 1 1 (the middle of a string),
nothing is added to or subtracted from P. If the current pair of bits is 01 (the
end of a string of 1s), the contents of M (the multiplicand) ar e added to the
upper half of P; if the curr ent pair of bits is 10 (the beginning of a string of
1s), the multiplicand in M is subtracted fr om the upper half of P (or, equiv-
alently, the two’s complement of M is added to the upper half of P). Follow-
ing the addition or subtraction, if any , the contents of P are arithmetically
shifted one place to the right. This pr ocess continues until all 7 bit pairs of
the multiplier have been considered. (Notice that the multiplier bits, which
originally occupy the right half of the product register P, are shifted out and
lost one at a time until the product occupies the entire width of P. One extra
flip-flop C is needed at the right end of P to hold the pr evious rightmost
multiplier bit until it can safely be discar ded after the next iteration.) At the
end, C can be ignored, and the 2n-bit signed product resides in P.

Figure 3.25 and Figure 3.26 show examples of multiplying 4-bit numbers
using Booth’s algorithm. In the first example, +2 (0010 binary) is multiplied
by -3 (1101) to produce a product of —6 (11111010). In the second, —4 (1100)
times —6 (1010) yields a product of +24 (00011000).

The circuit shown in Figure 3.24 is sequential, r equiring n clock cycles
to multiply two n-bit numbers to obtain a 2 n-bit product. Such a sequential
implementation may be intolerably slow if multiplications ar e to be per -
formed frequently. To speed the pr ocess, one can implement the logic of
Booth'’s algorithm in purely combinational form using a tr ee of carry save
adders similar to that used for unsigned multiplication, rather than a single

128 Computer Architecture: Fundamentals and Principles of Computer Design

P
0000 1101 0,
*r1110 Begin string of 1s
{ 1110 1101 add -M to upper bits of P
1111 0110 1, and shift right
*0010 End string of 1s; add
{ 0001 11 1 +M to upper bits of P
0000 10141 0, andshiftright
111
i 0 Begin string of 1s
{ 1110 1011 0 add-M toupper bitsofP
1111 01041 1, and shift right
{1111 1010 Middle string of 1s; just shift right
Product —I_— (Disregard)

Figure 3.25 Multiplication of (+2) * (=3) using Booth’s algorithm.

P € Middle string of Os
0000 1010 0, just shift right
foooo 0101 0, Begin string of 1s
*0100 add —M to upper bits of P
0100 0101 0 and shift right
{ 0010 0010 1
+1 100
1110 0010 1 End string of 1s ‘
{ 1111 000 1 0 add +M to‘ upper bits of P
+0100 — and shift right
Begin string of 1s
0011 0001 0 add-Mto upper bits of P
0001 1000 L and shift right
Product - (Disregard)

Figure 3.26 Multiplication of (—4) * (-6) using Booth’s algorithm.

adder used repetitively as in Figure 3.24. The shift egister, which was needed
to move the previously accumulated product one place to the right befor e
the next addition, is eliminated in the combinational cir cuit by adding each
more significant partial product one place to the left. The result is a Wallace
tree multiplier much like the one shown in Figure 3.23 except that the partial
products may be positive or negative.

It is also possible to r efine the basic Booth's algorithm by having the
logic examine groups of three or more multiplier bits rather than two. This
increases circuit complexity for generating the partial pr oducts but further
reduces the number of partial products that must be summed, thus decreas-
ing overall propagation delay. Once again, as in the case of the carry looka-
head adder, we note that cir cuit complexity can be traded of f for speed.

Division of binary integers is even more complex than multiplication. A
number of algorithms for dividing binary numbers exist, but none ar e

Chapter three: Basics of the central processing unit 129

analogous to Booth’s algorithm for multiplication; in other wous, they work
only for unsigned numbers. T o perform division of signed integers, the
dividend and divisor must be preprocessed to ensure that they are positive;
then, after the operation is complete, the quotient and r emainder must be
adjusted to account for either or both operands being negative.

The most basic algorithm for dividing binary numbers, known as restor-
ing division, operates analogously to long division by hand; that is, it uses
the “shift and subtract” appr oach. The bits of the dividend ar e considered
from left to right (in other words, starting with the most significant bit) until
the subset of dividend bits forms a number gr eater than the divisor. At this
point, we know that the divisor will “go into” this partial dividend (that is,
divide it with a quotient bit of 1). All previous quotient bits, to the left of
this first 1, are 0. The divisor is subtracted from the partial dividend, forming
a partial remainder; additional bits ar e brought down from the rest of the
dividend and appended to the partial remainder until the divisor can again
divide the value (or until no mor e dividend bits remain, in which case the
operation is complete and the partial remainder is the final remainder). Any
comparison showing the divisor to be gr eater than the current partial divi-
dend (or partial remainder) means the quotient bit in the current position is
0; any comparison showing the divisor to be smaller produces a quotient bit
of 1. Figure 3.27 shows how we would perform the operation 29/5 (1 1101/
101) using restoring division.

This algorithm is called restoring division because at each step the nec-
essary comparison is performed by subtracting the divisor fr om the partial

00101

1010011101

-101

Negative result
so enter 0 in quotient —— = 10 0
and add back divisor +101

0011
-101

Negative result
so enter 0 in quotient ——— > 110
and add back divisor +101

0111
-101

Positive result
so enter 1 in quotient

Negative result
so enter 0 in quotient ————— > 111
and add back divisor +101

1001
101

100

——FF 0100

-101

Positive remainder
enter 1 in quotient; done

Figure 3.27 Binary restoring division example.

130 Computer Architecture: Fundamentals and Principles of Computer Design

dividend or partial remainder. If the result is positive or zer o (that is, if no
borrow is required) then a 1 is enter ed in the quotient and we move on. If
the result is negative (meaning that a borr ow would be needed for the
difference to be positive), then we know the divisor was too lar ge to go into
the other number. In this case, we enter a 0 in the quotient and add back
(restore) the divisor to undo the subtraction that should not have been done,
then proceed to bring down the next bit fr om the dividend.

In the binary example of Figure 3.27, we first try 1 — 101 (1 — 5 decimal),
get a borrow, and have to add the 101 back to r estore the partial dividend..
Then we try 11 — 101 (3 — 5 decimal) and generate another borrow; this tells
us that the divisor is still gr eater than the partial dividend and r esults in
another restoration. At the next bit position we perform 1 11 — 101 =010,
giving us the first 1 in the quotient. The partial r emainder is positive and
thus no restoration is needed. We append the next dividend bit to the partial
remainder, making it 0100. Subtracting 0100 — 0101 requires another resto-
ration, so the next quotient bitis zer o. Finally we append the rightmost
dividend bit to the partial r emainder, making it 01001. Subtracting 1001 —
101 gives us the final r emainder, 100 (4 decimal), and makes the rightmost
quotient bit 1 for a final quotient of 00101 (5 decimal).

Restoring division is cumbersome and not very ef ficient because of the
need to add the divisor back to the partial dividend/r emainder for every
bit in the quotient that is 0. Other widely used appr oaches are also based
on the shift and subtract approach, but with some refinements that increase
speed at the expense of cir cuit complexity. These other division algorithms,
in particular nonrestoring division and the faster Sweeney , Robertson, and
Tocher (SRT) method (which generates two quotient bits per iteration instead
of one), eliminate the need to add back the divisor but complicate the design
in other ways such as having to handle negativer emainders and correct
quotient bits after the fact. (T o answer an unasked trivia question, an err or
in the implementation of the SRT algorithm — not in the algorithm itself —
was the cause of the widely publicized division bug discover ed in Intel’s
Pentium CPU in 1994.)

While the details of these advanced division algorithms ar e beyond the
scope of this text (they ar e typically cover ed in an advanced course on
computer arithmetic), it is worth pointing out that even the best techniques
for division are more expensive, in terms of time and har dware required,
than those used to perform the other three arithmetic operations. It is there-
fore usually worthwhile for an assembly language pr ogrammer (or a com-
piler) to try to generate code containing as few divide instr uctions as possi-
ble, especially within loops or fr equently called r outines. Tricks such as
replacing division by powers of two with right shifts, using lookup tables,
and precomputing divisions by constants can significantly speed execution.
In this as well as many other scenarios, well-written softwar e cannot elimi-
nate — but can certainly mitigate — the performance penalty incurr ed by
operations done in slow har dware.

Chapter three: Basics of the central processing unit 131

3.2.3 Arithmetic with real numbers

All of the arithmetic cir cuits discussed in the pr evious section operate on
binary integers. Many quantities in the r eal world may have both integer
and fractional parts. This is particularly tr ue of measurements of physical
attributes such as distance, mass, time, etc., which ar e frequently encoun-
tered in scientific and engineering calculations. When we want to use a
computer to automate such calculations, we must have some way of r epre-
senting and operating on these real values. The usual approach is to employ
a floating-point representation for real numbers.

3.2.3.1 Why use floating-point numbers?

Sometimes integers are just not practical; many real-world applications deal
with quantities that take on real values — numbers with both an integer and
a fractional part. It is possible to employ a fixed-point convention and use
integer arithmetic hardware to perform computations on numbers with both
integer and fractional parts, but this appr oach has its limitations, especially
when the range of values to be expressed is wide. Scientific calculations, for
example, must deal with both very large and very small numbers; it is hard
to handle both in a fixed-point system. For a given number of bits in a word,
the range of integer (or fixed-point) values is limited. Signed, 32-bit integers
cover a range of only +2,147,483,647 to —2,147,483,648 — hardly enough to
calculate the national debt or the number of stars in a galaxy . If some of the
bits are allocated for the fraction, the integer range is even smaller. Using 64
bits for integers allows a range of appr ~ oximately +9.223 x 10'® without
fractions, which is still not adequate for many purposes. Even going to
128-bit integer representation gives us only a range of about £1.701 x 10%,
which again would have to be r educed in a fixed-point format wher e some
integer bits are sacrificed to store the fractional part of numbers. A word size
of 128 bits is double that of today’s most advanced micr oprocessors, and
even larger word sizes would be required to make fixed-point representation
of very large and very small numbers feasible. Larger word sizes also waste
memory for most or dinary numbers and make computational har dware
larger, slower, and more expensive. “There must be a better way to handle
a wide range of numeric values,” the reader may be thinking — and there is.

Consider the way we handle decimal numbers in a science class. In oder
to be able to conveniently handle very laige and very small numbers without
writing many zeroes, we write numbers in scientific notation with a sign, a
mantissa (or set of significant digits), a base or radix (normally 10), and an
exponent or power of the base. A given number might be expiessed in scientific
notation as:

—4.127 x 1071

where the sign of the number is negative, the significant digits that give the
number its value are 4.127, the base is 10, and the base is raised to the positive

132 Computer Architecture: Fundamentals and Principles of Computer Design

15th power. Some scientific calculators would display the number as —4.127
E+15, where the E indicates the exponent, and the base is understood to be
10. Written in normal integer format, the number is —4,127,000,000,000,000.
In this case, by using scientific notation we save ourselves fom manipulating
12 zeros that serve only as place holders. Ther eader can easily see that
for very large or very small numbers, scientific notation is a wonderful
convenience.

3.2.3.2 Floating-point representation
Floating-point representation in computers is based on exactly the same idea
as the scientific notation we use for hand calculations. Rather than try to
store and manipulate an entir e number in a monolithic, fixed-point format,
we divide it into separate bit fields for the sign, mantissa, and exponent.
Since we are dealing with binary rather than decimal r epresentation, the
base is usually 2 rather than 10 (although other bases such as 4, 8, or 16 have
also been used). Other than the use of a dif ferent base, floating-point repre-
sentation of real numbers works exactly the same way as decimal scientific
notation. It of fers essentially the same advantage: the ability to stor e (and
process) very large and very small numbers with integer and fractional parts,
without having to stor e (and pr ocess) many bits that ar e either zer o or
insignificant.

Over the years, computer manufacturers have used many different float-
ing-point formats. (The first floating-point representation in hardware dates
back to the IBM 704, pr oduced in 1954.) They have dif fered in the base
chosen, the total number of bits used (fr om as few as 32 up to 48, 60, 64, or
even more bits), the size of the mantissa and the exponent, the format in
which the mantissa and exponent are represented (one’s complement, two’s
complement, sign-magnitude, and “excess” or biased notation have all been
used at one time or another), specifications for rounding and handling over-
flows and underflows, and so on.

As one can imagine, the wide variety of floating-point formats caused
many problems. Some manufacturers’ standards left quite a bit to be desied,
mathematically speaking. Many ar cane numerical pr oblems arose, often
causing loss of pr ecision or outright err ors in computations. It was not
uncommon for the same pr ogram to give dif ferent results on different sys-
tems (or even to crash on some while running just fine on others). The most
obvious problem was that binary data files containing floating-point values
were not portable between systems. In or der to transfer floating-point data
from one architecture to another, users had to convert the values and output
them to a text file, then copy the text file to the tar get system and reconvert
the data to that machine’s floating-point format. Much time, not to mention
precision, was lost in doing these conversions.

After many years of pr ogrammers fighting new pr oblems every time
they had to port a pr ogram with floating-point calculations over to a new
system, an industry consortium decided to ceate a single standard for binary
floating-point arithmetic. This standar d was endorsed by the Institute of

Chapter three: Basics of the central processing unit 133

Electrical and Electronics Engineers (IEEE), a pr ofessional organization to
which many computer engineers belong; it became officially known as IEEE
754-1985 (the year it was adopted) or simply IEEE 754. (A later standard,
IEEE 854-1987, generalized 754 to cover decimal as well as binary numbers.)
Most computers manufactured in the past 15 to 20 years have adopted the
IEEE standard for floating-point arithmetic. This change was inconvenient
at first but has allowed for more consistent operation of programs and easier
transfer of data, resulting in far fewer headaches all ar ound.

The IEEE 754 floating-point standar d is not just a specification for a
single floating-point format to be used by all systems. Rather , its designers
recognized the need for dif ferent formats for dif ferent applications; they
specified both single and double precision floating-point data formats along
with rules for performing arithmetic operations (compliant systems must
obtain the same r esults, bit for bit, as any other system implementing the
standard) and several rounding modes. The standard also defines represen-
tations for infinite values and methods for handling exceptional cases such
as overflows, underflows, division by zero, and so on. IEEE 754 is not meely
a floating-point number format, but a compehensive standard for represent-
ing real numbers in binary form and performing arithmetic operations on
them.

The two basic floating-point data formats provided in IEEE 754 are single
precision (32 bits) and double precision (64 bits). The standar d also provides
for single extended and double extended precision formats; these are intended
to be used for intermediate calculations so that final values expr essed in
single or double pr ecision will exhibit less r ounding error. The standard
strongly recommends that “implementations should support the extended
format corresponding to the widest basic format supported.” Since most
hardware floating-point units support both single and double pr ecision cal-
culations, the single extended precision format is rarely seen; most machines
support the single, double, and double extended (80-bit) pr ecision formats.
All IEEE numeric formats are set up according to the same basic plan; only
the sizes of the bit fields (and details dir ectly related to those sizes) ar e
different. Each format consists of a sign bit, a significand field, and a biased
exponent field. The two basic formats ar e depicted in Figure 3.28.

31,30 23,22 0
|S Exponent | Fraction (significand) |

o ©® (23)

63,62 52 51 0
| S| Exponent Fraction (significand)
(1 an (52)

Figure 3.28 1EEE standard floating-point formats.

134 Computer Architecture: Fundamentals and Principles of Computer Design

The leftmost bit in each format is the sign bit for the number. As in most
integer representations, a sign of 0 indicates a positive number, while a sign
of 1 means the number is negative. By placing the sign bit in the leftmost
position and defining it in the same way it is defined for integers, the
designers of the IEEE standar d ensured that the same machine instr uctions
that test the sign of an integer can be used to determine the sign of a
floating-point number as well.

The next field, the exponent (or power of two), is 8 bits long in the single
precision format and 11 bits long in the double pr ecision format. In each
case, exponents use a biased notation; that is, they ar e stored and treated as
unsigned values even though they represent a signed value. Single precision
exponents are expressed in excess-127 notation. This means that an exponent
of 0 would be stor ed as 01111111, (127,,). The smallest allowable exponent,
—126, would be stored as 00000001, (1,,); the largest, +127, would be stor ed
as 11111110, (254,,). The two r emaining exponent patterns ar e all zer os
(00000000) and all ones (11111111); these are used to handle special cases
including zero and infinity. Double precision exponents work the same way
except that they ar e stored in excess-1023 format, ranging fr om -1022
(00000000001,) to +1023 (11111111110,).

The remaining bits (23 in single precision format, 52 in double precision)
make up the significand (or fraction). The significand r epresents the frac-
tional portion of the normalized mantissa. What is normalization? It refers to
the process of expressing the mantissa so that the first digit is nonzer o and
the radix point (in this case, the binary point) is in a known location. Consider
the following representations of the decimal number 34,720:

34.720 x 103
3.4720 x 104
0.3472 x 105
0.03472 x 100

Although they are written differently, each of the above values in scien-
tific notation represent the same number . With a little practice, a person
performing hand calculations can learn to r ecognize that they represent the
same thing and easily convert from one representation to another. However,
when building computer har dware to process floating-point numbers, it
simplifies the design to adopt a single format for the mantissa. Just as with
most calculators that display decimal numbers in scientific notation, the
usual choice in floating-point systems (including IEEE 754) is to keep one
digit to the left of the radix point. The r emaining digits to the right of the
radix point represent the fraction. Thus, the decimal number 34,720 would
be written in normalized form as 3.4720 x 10% To take a binary example, we
could write the number 13 (1101,) as 11.01 x 22 or 0.1101 x 24, but its normal-
ized form would be 1.101 x 23.

Normalized form is the only form used to store values, and it is the form
in which the har dware expects to receive all operands. If any intermediate

Chapter three: Basics of the central processing unit 135

calculation yields a result that is not normalized, it is immediately renormal-
ized before further calculations are done. The only exception to this r ule in
the IEEE 754 standar d is for numbers that ar e nonzero but too small to be
normalized (that is, less than 1.0 times 2 to the smallest exponent). Special
procedures are defined for handling such denormalized numbers, which are
used to provide a gradual, rather than abrupt, reduction of precision for very
small but nonzero numbers.

Why is the IEEE 754 field containing significant digits called the signif-
icand rather than the mantissa? It is because the engineers who designed
the standard used a little trick to gain one extra bit of pr ecision for each
format. Consider the mantissa of a decimal number . The first digit (the one
to the left of the decimal point) can be any number fr om 1 to 9, inclusive. It
cannot be zero, because then the number would not be normalized. (0.8351
x 104, for example, would be r enormalized to 8.351 x 10%.) The same idea
applies to any base: normalized numbers never begin with a zer ~ o. That
means, in the case of binary numbers, that all normalized numbers begin
with the digit 1. (Ther €’s no other choice.) All normalized mantissas are in
the range 1.0000... <m < 1.1111... (in decimal, 1 m < 2).

Since all normalized mantissas begin with “1.,” there is no need to store
the leading 1 in a memory location or register; the hardware can just assume
it is there, inserting it into computations as r equired. Omitting, or eliding,
the leading 1 allows for one additional bit of pr ecision to be retained at the
least significant bit position and stor ed in the same number of bits. This
stored mantissa with the implied (or hidden) leading “1.” is known as the
significand. Because of this convention, single pr ecision numbers get 24 bits
of precision for the price (in storage) of 23; the double pecision format stores
53 significant bits in 52 bits of memory .

Putting it all together, the three bit fields (sign, exponent, and signifi-
cand) of a floating-point number stor ed in the IEEE 754 single pr ecision
format are mathematically combined as follows:

(_1)sign X (1.Signiﬁcand) X D (exponent —127)

The double precision format works the same way , except that 1023 is sub-
tracted from the stored exponent to form the actual exponent.

To illustrate the IEEE 754 floating-point format with an actual number ,
consider how we would r epresent the decimal number —0.8125 as a single
precision floating-point value. Our first step would be to represent the num-
ber in scientific notation, but using base 2 instead of base 10:

—0.8125,, = -0.1101, = —-0.1101 x 20 = -1.101 x 2!

The number is negative, so the sign bit would be 1. The exponentis -1, but
exponents are represented in the excess-127 format, so the stor ed exponent
would be (-1) + (+127) = +126 decimal, or 0 1111110 binary. The leading 1 of
the mantissa is elided, leaving the significand to be stoed as 10100...0 (23 bits

136 Computer Architecture: Fundamentals and Principles of Computer Design

S Exponent Fraction

Actual exponent Mantissa = 11010 - 0

-1+127 =126
omes Sign = 1 (negative)
Figure 3.29 Representing —0.8125 as a single pr ecision floating-point number.

total). Figure 3.29 shows how these parts would be stor ed in memory. The
bit pattern stored in memory would be 10 111111010100000000000000000000
binary or BF500000 hexadecimal.

Some special cases (see Table 3.2) in the IEEE 754 standar d are defined
differently from normalized numbers. Zero and positive and negative infin-
ity are numbers that cannot be normalized. Positive and negative infinity
have no definite values, while zer o contains no bits equal to 1. (Since nor -
malization is defined as adjusting the exponent until the most significant 1
is in the units position, a number with all bits equal to zer o cannot be
normalized.) Zero is represented in the IEEE format with the exponent and
significand bits all equal to zer o. If the sign bit is also 0, as is normally the
case, then floating-point zero is represented exactly the same way as integer
zero, making it simple to check whether any operand or result in any format
is zero. Numbers that ar e too small to be normalized ar e stored in denor-
malized form with an exponent field of all zeroes but a nonzero significand.
Infinity is represented by a significand with all bits equal to zer o0 and an
exponent with all bits set to one. The sign bit can be either 0 or 1, allowing
for the representation of both +oco and —ee.

There is also a special format for a computed r esult that is not a number
(NaN). Examples of computations where the result cannot be interpreted as
a real number include taking the squar e root of a negative number, adding
+eo to —eo, multiplying O times o, and dividing 0 by 0 or oo by eo. In each of
these cases, an IEEE compliant system will return NaN. (Note that dividing
a finite positive or negative number by 0 yields + e or —eo, respectively.)
Having a special, defined r epresentation for the results of undefined calcu-
lations avoids the need to ungracefully terminate a pr ogram when they

Table 3.2 Special Values in the IEEE 754 Format

Significand Exponent Meaning
Any bit pattern 00...01 through 11...10 | Normalized real number
00...00 (all bits zero) | 00...00 (all bits zero) Zero
Nonzero 00...00 (all bits zero) Denormalized real number
00...00 (all bits zero) | 11...11 (all bits one) Infinity
Nonzero 11...11 (all bits one) Not a Number (NaN)

Chapter three: Basics of the central processing unit 137

occur. Instead, programs can check for special conditions as needed and
handle them as appropriate.

As of this writing, work is under way onr evisions to IEEE 754, which
has been unchanged for nearly 20 years. Issues being consider ed by the
standard’s working group include mer ging IEEE 854 into 754, r esolving
certain ambiguities that have been discover ed in 754, and standar dizing on
a quadruple precision (128-bit) format that some computer manufactuers have
already begun to offer. With these modifications, IEEE 754 should be a useful,
widely accepted standard for floating-point arithmetic for a long time to
come.

3.2.3.3 Floating-point arithmetic hardware
Floating-point arithmetic har dware is somewhat mor e complex than (and
thus generally not as fast as) the cir cuitry used to pr ocess integers. Since
both the exponents and mantissas must be pr ocessed individually as
fixed-point values, floating-point arithmetic cir cuits make use of integer
addition, subtraction, multiplication, division, and shifting circuits as build-
ing blocks. (Floating-point arithmetic can be “emulated,” or implemented,
in software routines using only integer instr uctions, but such implementa-
tions tend to be very slow.) The main complicating factor is that operations
on the exponents can sometimes afect what must be done with the mantissas
(and vice versa).

Floating-point multiplication and division ar e fairly straightforward to
understand and implement once one has the capability to multiply and
divide integer and fixed-point numbers. T multiply two floating-point num-
bers (see Figure 3.30), all that is required is to add the exponents (checking,
of course, for overflows and underflows) and multiply the mantissas. If both
mantissas are normalized before the computation, we know that each satis-
fies the inequality 1 < m < 2. Thus, their product must satisfy the inequality
1 < m < 4. The last stage in a floating-point multiplication, then, involves
checking to see if the mantissais gr eater than or equal to 2 and, if so,
renormalizing it by moving the binary point one place to the left while
adding one to the exponent.

| Mantissa A || Mantissa B | | Exponent A || Exponent B |

| Multiplier | | Adder |

' '

| Renormalization |

' '

| Mantissa of product | | Exponent of product |

Figure 3.30 Block diagram of a floating-point multiplier .

138 Computer Architecture: Fundamentals and Principles of Computer Design

Floating-point division is similar to floating-point multiplication. Expo-
nents are subtracted rather than being added, and (the only dif ficult part)
the mantissa of the dividend is divided by the mantissa of the divisor
Renormalization, if it is r equired because of a quotient mantissa less than
one, involves moving the binary point to the right and subtracting one from
the exponent.

Floating-point addition and subtraction ar e actually somewhat mor e
complex than multiplication and division. This is because the mantissas must
be aligned, such that the exponents are the same, before addition or subtrac-
tion are possible. To take a decimal example, we can write the numbers 3,804
and 11.25 as 3.804 x 10° and 1.125 x 10, respectively, but it makes no math-
ematical sense to begin the pocess of adding these two values by performing
the operation 3.804 + 1.125. The esult, 4.929, is meaningless. Rather we must
express the second number as 0.01 125 x 10° (or the first number as 380.4 X
10") such that they have the same exponent befor e adding the mantissas.
The correct result, 3.81525 x 10°, is then obtained by adding the aligned
mantissas and leaving the exponent unchanged. Subtraction is done exactly
the same way except that we subtract the aligned mantissas instead of
adding.

As with multiplication and division, floating-point addition and sub-
traction (see Figure 3.31) may require renormalization after the initial com-
putation. For example, if we add 1.1 101 x 23 + 1.0110 x 23, we obtain the
result 11.0011 x 23, which must be r enormalized to 1.10011 x 24 before we
store it for later use. While adding two numbers of like sign cannot produce
a result that is much greater than the larger of the operands, subtracting (or
adding numbers of opposite signs) can produce a result that is much smaller
than either operand. For example, 1.110011 x 2° — 1.110010 x 23 = 0.000001 x
2% = 1.000000 x 273; in this case, a shift by six bit positions is necessary to

| Mantissa A | | Mantissa B | | Exponent A | | Exponent B
Alignment Comparator
Adder/subtractor

l

Renormalization

Mantissa of result | Exponent of result

Figure 3.31 Block diagram of a floating-point adder/ subtractor .

Chapter three: Basics of the central processing unit 139

renormalize the result. In the worst case, the operation could yield ar esult
mantissa that is all zeros except for a one in the rightmost position, requiring
a shift by the full width of the mantissa to r enormalize the number. This is
one more way in which a floating-point adder/subtractor is mor e complex
than a multiplier or divider.

While incremental improvements and refinements have been and con-
tinue to be made, the basics of integer and floating-point arithmetic hatware
described in this section have not changed much in quite a few years. The
changes we have seen, like those in memory systems, have been primarily
the results of reductions in the size and pr opagation delay of individual
circuit components. As transistors, and the gates built fr om them, have
become smaller and faster, manufacturers have been able to construct arith-
metic hardware with larger word widths (64-bit integers ar e now common,
and 128-bit floating-point numbers are coming into use as well). At the same
time, circuit speeds have incr eased considerably. Thus, even commodity
computers can now achieve integer and floating-point computational per -
formance that a few years ago was limited to super computers with
multi-million dollar price tags.

3.3 The control unit

Now that we have discussed computer instruction sets, the register sets used
to hold operands and addr esses for the instr uctions, and the arithmetic
hardware used to carry out the operations specified by the instr uctions, it is
appropriate to address the part of the CPU that puts everything else in
motion: the control unit. It is the control unit that determines which machine
instruction is to be executed next, fetches it fr ~ om memory, decodes the
instruction to find out which one it is, and activates the pr oper signals to
tell the datapath (and external har dware such as I/ O and memory devices)
what to do and when to do it in or der to carry out that instruction and save
the result. Since the control unit is the brains of the outfit, the prime mover
behind everything that happens in the processor and the rest of the system,
its design is a very important aspect of the overall system design and a key
factor in its performance. In this section we will examine the functions of
the control unit in a typical CPU and discuss different design methodologies
that have historically been used to r ealize those functions.

3.3.1 A simple example machine

In order to illustrate the operation of a pr ocessor’s control unit, it helps to
have an example to refer to. Contemporary CPUs are much too complex to
allow a thorough explanation of their contr ol units in a r easonable space;
there are far too many “trees” for us to be able to see the “for est” very well.
For illustrative purposes we will consider a hypothetical machine that is
simple enough to illustrate the important points without miring the r eader
in a myriad of details.

140 Computer Architecture: Fundamentals and Principles of Computer Design

CPU

]

R1
R2
R3
R4
R5
R6
R7

Control

A B
unit \/
-
ALU
PC
T MAR |
MAR

External address
bus (to memory)

External data bus

MDR (to/from memory)

Figure 3.32 Simple example CPU.

Consider the simple but functional CPU depicted in Figur e 3.32. It con-
tains a set of eight general-purpose r egisters and an ALU capable of per -
forming basic integer arithmetic and logical operations. Otherr egisters
include a program counter (PC) to keep track of instr uction execution, a
memory address register (MAR) used to place an addr ess on the external
address bus, a memory data register (MDR) used to send or receive data to or
from the external data bus, and an instruction register (IR), which holds the
currently executing machine instruction so its bits can be decoded and inter-
preted by the control unit. To keep things simple, we will assume the system
can address only 256 (2 8) memory locations. This means the PC and MAR
are 8 bits wide. The ALU, each memory location, all the general-purpose
registers, and the MDR ar e 16 bits wide. Machine instr uctions occupy one
word (16 bits) of memory, so the IR is 16 bits wide also.

Our example machine has two instr uction formats: one for instr uctions
that operate on a memory location and a egister and another for instructions
that operate only onr egisters. These instr uction formats ar e laid out as
shown in Figure 3.33.

Notice that the leftmost bit (bit 15) of each instr uction is used to distin-
guish the two formats. If it is 0, the r emaining 15 bits are interpreted in the
register—-memory format; if it is 1, the r emaining bits are interpreted in the
register—register format. The first format uses the eight low-or der bits (bits
0 through 7) as a memory addr ess and the next thr ee (bits 8, 9, and 10) to

Chapter three: Basics of the central processing unit 141

15 14 11 10 87 0

0| opcode | Reg. Memory address | Register/memory instructions
n @ ®3) ®)

15 14 98 6 5 32 0

1 op code Sr?;cle Src;;rcze ?:;t Register-only instructions

@ (6) ®3) ®3) ®3)
Figure 3.33 Instruction formats for example CPU.

specify the register involved. This leaves four bits (11 to 14) for the op code,
meaning there can be no more than 24 = 16 machine instructions of this type.
The second format uses the nine rightmost bits as thr ee 3-bit fields (bits 0 to
2, 3to 5, and 6 to 8) to specify a destination r egister and up to two sour ce
registers. Six bits (9 to 14) ar e available for op codes, implying that the
machine can have up to 2° = 64 register-only instructions. The total possible
number of machine instr uctions is 16 + 64 = 80, which is fewer than most
actual architectures have but many more than we need for illustrative pur -
poses.

The job of the control unit is, for every instruction the machine is capable
of executing, to carry out the steps of the von Neumann machine cycle shown
in Figure 1.2. That is, it must fetch the next instruction from memory, decode
it to determine what is to be done, determine wher e the operand(s) for the
instruction are and route them to the ALU (unless the operation is a simple
data or control transfer requiring no computation), perform the specified
operation (if any), and copy the r esult of the operation to the appr opriate
destination. To accomplish all this, the contr ol unit must develop and send
the necessary control signals at the pr oper times so that all these steps ar e
carried out in sequence.

Let us examine the specific steps that would ber equired to execute
certain machine instructions. First, consider that the ar chitecture specifies a
load instruction using direct addressing that performs a data transfer fr om
a specified memory location to a specified r egister. In assembly language,
loading a value fr om memory location 64 (01000000 ,) into register 3 (011,)
might be written like this:

LOAD [64], R3

Assuming that the op code for the load diect instruction is 0000, the machine
language instruction would appear as shown in Figur e 3.34.

What would be the sequence of steps r equired to carry out this instr uc-
tion? Figure 3.35 illustrates the flow of information to, fr om, and through
the CPU as the instruction is fetched and executed. Execution always starts
with the address of the instr uction to be executed in the PC. The sequence

142 Computer Architecture: Fundamentals and Principles of Computer Design

15 14 11 10 87 0
[o] 0000 | 011 [01000000 |

op code Reg. Address

Figure 3.34 Example machine language LOAD instr uction.

i
i Control unit i i
E ¥ r v
I 1
@ 1
[PC O ®
@,
MAR | @
@ Main
@ memory
MDR
@

Figure 3.35 Execution of the LOAD instr uction.

of required steps, in register transfer language (RTL) and in wor ds, would
be as follows:

1. MAR«PC: Copy the contents of the PC (the addr ess of the instruc-
tion) to the MAR so they can be output on the addr ess bus.

2. Read; PC«PC +1: Activate the read control signal to the memory
system to initiate the memory access. While the memory r ead is
taking place, increment the PC so that it points to the next sequential
instruction in the program.

3. MDR«[MAR]: When the memory read is complete, transfer the con-
tents of the memory location over the data bus and latch them into
the MDR.

4. IR<MDR: Transfer the contents of the MDR (the machine language
instruction) to the IR and decode the instr uction. At this point, the
control unit discovers that this is a load dir ect instruction.

5. MAR«IR,,,: Transfer the lower 8 bits fr om the IR (the operand ad-
dress) to the MAR to pr epare to read the operand.

Chapter three: Basics of the central processing unit 143

6. Read: Activate the read control signal to the memory system to ini-
tiate the memory access for the operand.

7. MDR«[MAR]: When the memory read is complete, transfer the con-
tents of the memory location over the data bus and latch them into
the MDR.

8. R3«MDR: Transfer the contents of the MDR (the operand) to the
destination register. Execution of the current instruction is now com-
plete and the control unit is ready to fetch the next instr uction.

As another example, let’s consider the steps that would be r equired to
execute the instruction ADD R2, R5, R7 (add the contents of r egister 2 to
those of register 5, storing the sum in r egister 7):

1. MAR«PC: Copy the contents of the PC (the addr ess of the instruc-
tion) to the MAR so they can be output on the addr ess bus.

2. Read; PC«PC +1: Activate the read control signal to the memory
system to initiate the memory access. While the memory r ead is
taking place, increment the PC so that it points to the next sequential
instruction in the program.

3. MDR«[MAR]: When the memory read is complete, transfer the con-
tents of the memory location over the data bus and latch them into
the MDR.

4. IR<MDR: Transfer the contents of the MDR (the machine language
instruction) to the IR and decode the instmuction. (Notice that the first
four steps are the same for this instuction as they would be for LOAD
or any other instruction.) After decoding is complete, the control unit
discovers that this is a r egister add instruction.

5. R2,a RS, Add: Transfer the contents of r egisters 2 and 5 to the
ALU inputs and activate the contol signal telling the ALU to perform
addition. Note that if there were only one bus (instead of two, marked
A and B in Figure 3.32) between the register file and the ALU, these
operations would have to be done sequentially .

6. R7«ALU: Transfer the output of the ALU (the sum of the operands)
to the destination register. Execution of the current instruction is now
complete, and the control unit is ready to fetch the next instr uction.

For each of these operations within a machine operation, or micro-oper-
ations, the control unit must activate one or more control signals required to
cause that action to take place, while deactivating others that would cause
conflicting actions to occur. Even a simple machine such as the one in our
example may r equire dozens of contr ol signals to allow all r equired
micro-operations to be performed. For example, each of the machine’s r eg-
isters must have one contwol signal to enable loading a new value and another
to enable it to output its curr ent contents (so they can be sent to another
register or the ALU). We might refer to these signals as R0,,, R4,,,, IR,,, PC

in/ outr in/ outr

etc. Some orall r egisters may have built-in counting (incr ementing and

144 Computer Architecture: Fundamentals and Principles of Computer Design

decrementing) capabilities; if so, the contiol unit will need to generate signals
such as PCiemenss ROecremeny €tc. (If this capability is not in place, r egisters
will have to be incr emented or decremented by using the ALU to add or
subtract one and then writing the r esult back to the same r egister.) Several
more signals may be needed to select an operation for the ALU to perform.
These may be in the form of separate, decoded signals for ~ Add, Subtract,
Nand, Xor, and so on, or an encoded value that is interpr eted by the ALU’s
internal logic to select a function. Memory contr ol signals such as Read and
Write must also be activated at the appropriate times (but never at the same
time) to allow the CPU to interact with memory .

To execute a single micro-operation (or step in the execution of a machine
language instruction), some of these contr ol signals must be made active
while the rest are inactive. (Signals may be active high, active low , or some
combination thereof; in our examples in this section, we will assume that
the active state is a logic 1 unless otherwise specified.) For example, to
perform step 1 for any instr uction (the micr o-operation MAR«PC), the
control unit would makePC,,,=1, MAR,, =1 and all other signals 0 (inactive).
This set of outputs would be maintained for as long as it takes to perform
the given micr o-operation (typically one clock cycle) and then would be
replaced by the set of contr ol signals needed to perform step 2. In this way
the control unit would cause the har dware to sequence thr ough the
micro-operations necessary to fetch and execute any machine instr uction.

How exactly does the contr ol unit develop and sequence the dozens
(likely hundreds in a more complex CPU) of contr ol signals needed to exe-
cute machine instr uctions and thus r un programs? Two principal design
approaches have been used over the modern history of computing. W e will
examine them in some detail in the following pages.

3.3.2 Hardwired control unit

The original method used to design contol units was simply to use standard
combinational and sequential logic design techniques. The control unit, after
all, is nothing mor e or less than a synchr onous, sequential state machine
with many inputs and outputs. Because of the lar ge number of inputs and
outputs, it is considerably mor e complex than the simple state machine
examples found in most intr oductory digital logic texts, but the same basic
principles and design techniques apply . A control unit designed by using
standard logic design techniques is called a hardwired control unit. (Because
this was the original approach used to design control unit logic in the 1940s
and 1950s, a hardwired control unit is also eferred to as aconventional control
unit.)

Figure 3.36 shows the basic layout of a har ~ dwired control unit. The
instruction register (IR) is used to hold the bits of the curr ently executing
machine instruction. Its outputs, particularly those that corr espond to the
op code bits, ar e connected to a decoder that generates a unique output
corresponding to that instruction. This is how the machine knows what it is

Chapter three: Basics of the central processing unit 145

Clock =1 Control step
counter
Decoder II'lStrl'.lCtIOI'l
register
------- op code bits
AND/OR .
logic . Instruction
. decoder
block

Control signals
Figure 3.36 Block diagram of a har dwired control unit.

supposed to be doing. The CPU’s clock signal is connected to a counter
(referred to as the control step counter); by decoding the current counter state,
the control unitis awar e of which step in the execution of the curr ent
instruction it is now performing. These decoder outputs, possibly in addition
to other machine state information, ar e input to a block of AND/OR com-
binational logic (in the early days, implemented as “random” logic; in mod-
ern designs, as a pr ogrammable logic array) that generates all the r equired
control signals.

Consider the subset of contr ol logic r equired to develop one of the
machine’s control signals, the memory Read control signal. This signal must
be activated (we will assume that means the logic 1 state) during any step
of any instr uction where the CPU must fetch an instr uction or load an
operand from memory. It should be deactivated (logic 0) at all other times.
In our example machine, instr uction fetch occurs during step 2 of every
instruction. Certain specific instructions, such as LOAD, ADDM (add mem-
ory to register), etc., also r equire subsequent reads to obtain a data value
from memory. In the case of LOAD and ADDM, this occurs during step 6;
one would have to analyze the operation of all other machine instr uctions
to see when memory reads would have to occur. Once the timing of memory
read operations is defined for every machine instuction, it is a fairly straight-
forward process to generate the logic for the Read contr ol signal (see Figure
3.37). All thatis r equired is to logically AND the appropriate instruction
decoder and control step decoder outputs identifying each case wher e this
signal needs to be active, and then OR all of these so that the signal is
activated when any one of these conditions is tr ue. In Boolean logic, one
could write a sum of pr oducts expression for the Read contr ol signal as

Read =T, + T, - LOAD + T, - ADDM + ... (additional terms depending on
other instructions)

146 Computer Architecture: Fundamentals and Principles of Computer Design

Control step
counter IR
Control step Instruction
decoder decoder
Tl| T T | Tn W
T, T, Qutputs for other

instructions

LOAD ADDM

(Possibly other
combinations)

Figure 3.37 Hardwired control logic for the example machine’s memory read signal.

where LOAD, ADDM, etc., represent the instruction decoder outputs corre-
sponding to those machine instr uctions.

The logic shown is only that r equired to produce one of the machine’s
many control signals. The same sort of design pr ocess would have to be
employed for all the other signals in or der to determine which instructions,
at which time steps, would need each signal to be activated. The r eader can
no doubt appreciate that while this pocess would not be particularly dificult
for a simple machine such as the one in our example, it could become quite
complex, tedious, and error-prone (especially without modern design tools)
for a processor with many machine instr uctions, addressing modes, and
other architectural features. Thus, while hardwired control unit design was
manageable and appropriate for the first and second generation machines
of the 1940s and 1950s, the incr easing complexity of the thir d and fourth
generation architectures of the 1960s and 1970s demanded a mor e flexible,
robust design technique (which we shall examine next). It would take
another 20 years (until the RISCr evolution of the 1980s and 1990s) for
performance concerns to dictate — and for advances in har dware design to
enable — the great comeback of hardwired control.

3.3.3 Microprogrammed control unit

Microprogramming as a control unit design technique was invented in the

early 1950s by computer pioneer Maurice Wilkes, who used it in the design
of the EDSAC 2. It gained widespead popularity among computer designers
in the 1960s and 1970s, which was not coincidentally the era of the gr ~ eat
CISC architectures. (The IBM 360 and 370 and the DEC PDP-1 1 and VAX
series machines were all microprogrammed.) It was microprogramming that

Chapter three: Basics of the central processing unit 147

made CISC processor design practical. CISC architectures were characterized
by large, complex, featur e-rich instruction sets r eminiscent of high-level
languages. Instructions were often variable in length and made use of many
addressing modes. As CPUs became more complex, the difficulty of imple-
menting all the required control logic directly in hardware became (for the
time, at least) insurmountable, and computer designers turned to micropro-
gramming to design control units.

What is microprogramming? In a nutshell, it is the “computer within a
computer” approach to developing contr ol signals for a pr ocessor. Wilkes’
basic idea was that if we can write a computer pr ogram as a sequence of
machine language instr uctions and have a CPU execute those machine
instructions to perform some task, why can we not tr eat each individual
machine language instr uction as a (mor e basic) task to implement using
software techniques? Designers would thus program each machine instruc-
tion using very simple, hardware-level microinstructions, which are executed
(a better term would be issued) by a very simple, low-level sequencing unit
inside the processor. In keeping with the analogy to higher -level software,
the collection of micr oinstructions containing the machine’s entir e control
strategy is considered its microprogram, while the subsets of micoinstructions
that carry out individual tasks, such as fetching a machine instr uction, han-
dling an interrupt request, or executing a particular operation, ar e referred
to as microroutines. Just as high- or machine-level computer instr uctions are
generically dubbed “code,” contr ol information in a micr oprogrammed
machine is often referred to simply as microcode.

Just as a CPU fetches machine instr uctions from main memory and
executes them, in a micr oprogrammed control unit the micr oinstructions
making up the microprogram must also be fetched fr om memory. Fetching
them from main memory would be intolerably slow; instead, they are stored
in a special memory inside the pr ocessor, known as the control store or
microprogram memory. In microprocessors, the control store is fabricated onto
the chip and is virtually always ar ead-only memory (often r eferred to as
microROM or uROM). The microprogram is written and burned into the chip
at the factory and cannot be altered by the end user, who may not even know
(or care) that the CPU uses micr oprogrammed control. Some past systems,
however (DEC’s VAX minicomputers of the late 1970s and early 1980s ar e
a notable example) actually implemented part or all of the contr ol store as
writable memory. This enabled field service technicians to load diagnostics
and patches to the micr ocode as needed. It also pr ovided the enterprising
end user with the ability to custom-tailor the machine language instr uction
set to his or her specific needs. If the machine did not have an instr uction
to do something, or if the end user did not like the way a given operation
was implemented, he or she could simply upload a new microroutine to the
control store and change the behavior of the CPU. Such field upgrades were
impossible on processors designed with hardwired control units.

Regardless of the specific technology used to implement the micr opro-
gram memory, a microprogrammed control unit generates contr ol signals

148 Computer Architecture: Fundamentals and Principles of Computer Design

| Instruction register (IR) | | Condition code bits |
op code bits -----1
i Microaddress : Microprogram Microprogram
i generator sequencer control circuit

Control

,—>. Signals
11 11l Ll ,_> g

Microprogram counter (uPC) | Microinstruction

Microinstruction address
Microprogram
memory
(control store)

Figure 3.38 Block diagram of a micr oprogrammed control unit.

by fetching microinstructions, in the pr oper sequence, from that memory.
The bits of each micr oinstruction may represent individual control signals
on a bit for bit basis or they may be or ganized into bit fields that r epresent
encoded values that are then decoded to produce groups of related control
signals. These control signals obtained from the control store are then output
to the controlled elements (registers, ALU, memory devices, etc.) just as they
would be output from a hardwired control unit. The function of the contr ol
signals is the same as it would be in a machine with conventional contr ol;
only the method of generating them is dif ferent.

A block diagram of a typical micr oprogrammed control unit is shown
in Figure 3.38. As with a hardwired control unit, the sequence of micro-oper-
ations to be carried out depends on the machine instr uction stored in the
instruction register. In this case, the instiuction op code bits are used to locate
the starting address, in the contr ol store, of the micr oroutine required to
carry out that machine operation. This addr ess is loaded into the micropro-
gram counter (WPC), which serves the same function within the contr ol unit
that the program counter does at the next higher level. Just as the PC is used
to determine which machine language instr uction to execute next, the uPC
is used to locate the next microinstruction to issue. Normally, within a given
microroutine, the uPC is simply incr emented to point to the next micr oin-
struction; however, in order to get into and out of a given microroutine (and
to implement some machine language operations that transfer contr ol), it is
necessary to be able to transfer control within the microprogram as well. All
useful machine languages include a conditional branching capability; to
implement this in a micr oprogrammed machine, conditional branching in
microcode must be supported. This is why the microprogram control circuit

Chapter three: Basics of the central processing unit 149

(shown in Figure 3.38 as including a micr oaddress generator and a micr o-
program sequencer) is connected to the machine’s condition code r egister
and the microprogram memory. The condition code bits may be needed to
determine whether or not a branch in the microprogram succeeds; if it does,
the destination address must be specified in (or calculated from information
encoded in) the microinstruction.

A microprogrammed control unit design may have some micr oinstruc-
tions that are only used for branching. (In other words, they contain a special
bit pattern that identifies the remaining bits as branching information rather
than control information.) This saves space but may slow execution since no
useful work will be done by branching micr oinstructions. Alternatively,
additional bits used to determine branch conditions and destination
addresses may be appended to the control word (the bits that specify control
signal values) to make wider micr oinstructions that can specify har dware
operations and control transfers simultaneously. This increases the width of
the microprogram memory but ensures that no clock cycles need be wasted
merely to transfer control within the microprogram.

Except for information needed to implement control transfers within the
microprogram, the bulk of the micr oprogram memory’s contents is simply
the information, for each step in the execution of each machine operation,
regarding which control signals are to be active and which are to be inactive.
Typically there would be one shared, generic microroutine for fetching any
machine instruction from main memory plus a separate, specific micr orou-
tine for the execution phase of each dif ferent machine instruction. The last
microinstruction of the instruction fetch microroutine would be (or include)
a microprogram branch based on the contents of the instruction register (the
new instruction just fetched) such that the next micr oinstruction issued will
be the first one in the corr ect execution microroutine. The last microinstruc-
tion of each execution microroutine would cause a branch back to the begin-
ning of the instr uction fetch micr oroutine. In this way , the machine will
continue to execute instructions indefinitely.

Horizontal microprogramming is the simplest and fastest, but least
space-efficient, approach to microprogrammed control unit design. A hori-
zontal microprogram is one in which each contr ol signal is represented as a
distinct bit in the micr oinstruction format. If a given machine r equires, for
example, 118 control signals, each control word will be 118 bits wide. (The
stored microinstructions will be somewhat wider if additional bits ar e
included to handle branching within the micioprogram.) If our simple exam-
ple machine requires 43 control signals, its contr ol words would be 43 bits
wide (see Figure 3.39).

The obvious advantage of horizontal micr oprogramming is (r elative)
speed: the control signals are available to be issued (output) as soon as a
given microinstruction is fetched from the control store. It is also the most
flexible approach, since any arbitrary set of contr ol signals may be active at
the same time. However, much microprogram memory is wasted because
usually only a few control signals are active during each time step and many

150 Computer Architecture: Fundamentals and Principles of Computer Design

RO; RO, £ ~

sE Fde .52 Y

R7, Riousp B = & & 3 0 % & o

N O I B
II
R0 I B B
S R - - B B
R7 = 0 =
outA m;gg<<z?§§§

= £

U

=

Figure 3.39 Horizontal control word for example machine.

sets of signals may be mutually exclusive. A large control store takes up
space that could be used for other CPU featur es and functions.

Vertical microprogramming saves microcode storage space by encoding
parts of the micr oinstruction into smaller bit fields. This is often possible
because in theory certain contr ol signals are (or in practice turn out to be)
mutually exclusive. One simple example is that the memory r ead and write
signals will never both be asserted at the same time. An even better illustra-
tion is that if there are several registers in the CPU with outputs connected
to a common bus, only one r egister may be designated to output data at a
time. Rather than having separate bits in the micr ~ oinstruction format for
RO, R1,44 R2,,., etc., a vertically micr oprogrammed control unit might
have a bit field designated as DataReg,,,. Eight register outputs could be
controlled with 3 bits, or 16 with 4 bits, and so on, thus saving several bits
in every microinstruction. A vertical microprogram for our example machine
(see Figure 3.40) could take advantage of this, r educing the number of bits
per control word from 43 to 19.

Given that a control unit might have thousands of micr oinstructions in
its microprogram, reducing the amount of memory required for each micro-
instruction could save quite a bit of chip ar ea. The tradeoff with vertical
microprogramming is that decoders ar e required to interpret the encoded
bit fields of a micr oinstruction and generate the r equired control signals.
Since the decoders introduce propagation delay, all else being equal, a ver -
tically microprogrammed processor will be slower than the same design
implemented with a horizontal micr oprogram. (Given that most memory
technologies are slower than hardwired logic, microprogrammed control in
general suffers from a performance disadvantage compare with conventional

N ——— N —— L —— '
DataReg;, DataReg,,;p SysReg,,.;

DataReg,,,. SysReg;,, PC,,, MemEnable

T
R/W

1 1
S—~——

ALU,,

Figure 3.40 Vertical control word for example machine.

Chapter three: Basics of the central processing unit 151

Microprogram counter (UPC) |

- Nanoinstruction address

Microinstruction

address Microprogram
memory

Nanoprogram | Memory

| Control word |

Control signals

Figure 3.41 Two-level microprogram for example machine.

control; vertical micr oprogramming exacerbates this pr oblem.) Also, once
encoded bit fields ar e determined, the various contr ol signals assigned to
them become mutually exclusive even if they wer e not inherently so. This
may take a certain amount of flexibility away fr om the designer.

Two-level microprogramming (or nanoprogramming) is another technique,
similar to vertical micr oprogramming, that can be used tor educe the
required size of microprogram memory. Instead of being a single, monolithic
microprogram memory, the control store is divided into two hierar chical
levels: micromemory and nanomemory (WUROM and nROM, assuming that con-
trol store is not writable). Some (if not all) of the bits of each micpinstruction
represent an address in the second level contr ol store (nROM). When the
microinstruction is r ead from the micr omemory, this address is used to
retrieve the required control information from the nanomemory. Figure 3.41
illustrates the process.

The reason two-level microprogramming can often save a gr eat deal of
space is that many machine instructions are similar. For example, every step
of the ADD and SUB instr uctions in most machines is identical, except for
the step where the actual operation is done in the ALU. Logical and shift
instructions may also be similar , as they generally obtain operands fr om,
and store results in, the same places as arithmetic instuctions. Memory reads
for operands require the same control signals as memory reads for instruc-
tions, and so on. In a machine with a single level micr oprogram, this means
the control store may contain a number of similar , but slightly dif ferent,
microroutines. If a number of machine instr uctions require, for example,
seven of eight identical steps, two-level microprogramming allows the seven
corresponding, common contr ol words to be stor ed only once in the

152 Computer Architecture: Fundamentals and Principles of Computer Design

nanomemory. Any number of microinstructions can point to a given stor ed
control word and cause it to be r etrieved when necessary. By storing com-
monly used control words only once and using micr oinstructions to point
to them, a considerable amount of chip ar ea can be saved. The savings in
silicon real estate obtained by using two-level microprogramming was a key
factor that allowed Motorola to implement its complex, ambitious 68000 CPU
on a single chip using 1980 technology .

Of course, the r eduction in on-chip contr ol memory size r ealized with
two-level microprogramming comes at a price. As in the case of vertical
microprogramming, there is an additional delay after a given micr oinstruc-
tion is fetched befor e the control signals can be issued. This delay may be
even longer in the case of a second level (nanomemory) lookup since ROM
generally has an access time in excess of the decoder delays inher ~ ent to
vertical microprogramming.

It is possible (and once was fairly common) to combine horizontal,
vertical, and two-level microprogramming in the same control unit. Control
signals that must be available early in a given time step (per haps because
of longer delays in the har dware they control or a need to send the r esults
somewhere else after they ar e produced) may be r epresented bit for bit
(horizontally) in the contr ol word, while other signals thatar e less tim-
ing-critical may be encoded (vertically) or even kept in a second level lookup
table. It is the longest total delay; from the beginning of a clock cycle through
the generation of a given contr ol signal and the operation of the element it
controls, that places a lower bound on the cycle time of the machine and
thus an upper bound on its clock fr equency. A chain is only as str ong as its
weakest link, and a pr ocessor is only as fast as its slowest logic path.

Hardwired control and micr oprogrammed control are two ways of
accomplishing the same task: generating all the contr ol signals required for
a computer to function. Each appr oach has its own set of advantages and
disadvantages. The main advantage of har dwired control is simple: all else
being equal, it almost always results in a faster implementation. Generating
control signals in less time, as is possible with two-level logic vs. a memory
lookup, yields a shorter clock cycle time (and thus a faster pr ocessor), given
the same datapath. The main disadvantage of conventional contr ol is the
complexity and dif ficulty of designing lar ge logic cir cuits. This dif ficulty
proved essentially insurmountable for the CISC machines of the 1960s and
1970s but was later overcome by innovations in hardware design (program-
mable logic), by the development of har dware design languages and other
software tools for chip design, and by taking much of the complexity out of
ISAs (in other words, the advent of RISC machines).

Microprogramming offers the advantage of relatively simple, systematic
control unit design. Since micr ocode may be r eused, it is easier to build a
family of compatible machines; the micr oroutines for added featur es can
simply be added to the pr eviously written microprogram. The additional
cost to add featur es incrementally is small, provided the additional micro-
code does not exceed the space available for contr ol store. If it is necessary

Chapter three: Basics of the central processing unit 153

or profitable to emulate the behavior of previous systems (as it was with the
IBM 360), it is easier to implement that emulation in microcode than directly
in logic. If the contr ol store is writable, it is possible to load diagnostic
microroutines or microcode patches in the field — an advantage that may
not be crucial, but is definitely nontrivial.

The main disadvantage of microprogramming (as seen by the end user)
is that, due to the over head of sequencing micr oinstructions and fetching
them from control store (plus decoding them if vertical micr ocode is used),
the resulting CPU is slower than a har dwired implementation built with
similar technology. Since the control store takes up a great deal of space on
a chip, microprogrammed control units are generally much larger than con-
ventional control units with an equivalent amount of logic. Thus, less chip
area remains for building registers, computational hardware, on-chip cache
memory, or other features. From a designer’s point of view, microprogram-
ming (while ideal for complex designs) has a high startup cost and may not
be cost-effective (in terms of design time and ultimately money) for simpler
systems. In addition, because CPU designs are generally unique and propri-
etary, very few design support tools were or are available to support micro-
program development. The micr ocode compilers developed for particular
projects were generally too specific to be of much use for other designs, while
the few that were more general tended to produce very inefficient microcode.

With the state of logic design as it was in the 1960s and 1970s, micr ~ o-
programming was the only viable response to users” hunger for more capa-
ble, feature-rich architectures. CISC was the prevailing architectural philos-
ophy of the day; given the available har dware and software technology, it
made perfect sense. Compilers we primitive; memory was expensive; had-
ware design tools consisted mainly of pencils and paper . There was a real
desire to bridge the semantic gap and make machine languages mor e like
high-level languages. By making one machine instmuction perform a complex
task, executable programs (and thus main memory) could be kept relatively
small. Microprogramming was a way — the only way , at the time — of
achieving these goals and of designing har dware using a software method-
ology. (Contrary to what many computer pr ogrammers think, software has
always been easier to design than har dware.)

By the 1980s and 1990s, har dware and softwar e technologies had
changed quite a bit. Compilers were considerably more sophisticated. Mem-
ory, while not dirt cheap, was much less expensive than it was 20 years
before. Disk drives and semiconductor memory devices had much lar ~ ger
capacities, and virtual memory was becoming ubiquitous, even in micropro-
cessor-based systems. The speed of CPUs with micr oprogrammed control
units was gradually impr oving, but not rapidly enough to satisfy user
demands. Gradually, the amount of memory taken up by pr ograms became
less important than the speed of execution. Thus, RISC was born. Designers
realized that stripping extraneous, seldom used featur es from the machine,
coupled with the use of pr ogrammable logic, har dware description

154 Computer Architecture: Fundamentals and Principles of Computer Design

languages, and other modern design tools, would enable them to r eturn to
the use of faster, hardwired control units.

Will microcode ever make a comeback? It certainly doesn’t appear that
way at present, but wise observers have learned never to say “never.” If the
main disadvantage of microprogrammed control, the relatively slow access
to the control store, could be eliminated, its advantages might once again
catapult it to prominence. In particular, if magnetic RAM (see Section 2.1.2)
proves to be fast, economical, and easy to integrate onto a chip with other
types of logic (admittedly an ambitious list of goals for a new and unproven
technology), then all bets ar e off. We could see a day in the not-too-distant
future when all processors have writable, magnetic control store as standard
equipment.

3.4 Chapter wrap-up

While all the subsystems of a modern computer ar e important, no part of
the machine is as complex as its central pr ocessing unit (or units; parallel
machines will be discussed in Chapter 6). Under the dir ection of a highly
specialized state machine known as the contr ol unit, computational har d-
ware must carry out arithmetic, logical, shifting, and other operations on
data stored in memory locations orr egisters, as specified by a machine
language program written (or compiled) in accor dance with the machine’s
native instruction set. This instr uction set may be very simple, extr emely
complex, or anywhere in between.

In order to understand and keep up with technical developments in their
field, it is important for all computer pr ofessionals to have a good under -
standing of the major ar chitectural and implementation considerations that
go into the design of a modern CPU. Any student of computer science or
computer engineering should learn about the wide variety of philosophies
embodied in various ISAs, the techniques for designing fast, ef ficient data-
path hardware to execute those instr uctions on integer and r eal number
values, and the different approaches to designing the control unit that over-
sees all activities of the system.

In Chapter 1, we discussed the differences between architectural design
and implementation technology while noting that neither exists in a vac-
uum. Perhaps in no other part of a computer system do ar chitecture and
implementation influence each other so much as they do inside the CPU.
Computer designers, who like to eat as much as anyone else (and who
therefore want their companies to sell as many CPU chips as possible), want
to make the processor as efficient as possible; they accomplish this by cr e-
atively implementing their architectural ideas using available implementa-
tion technologies.

In this chapter, we examined some of the basic CPU design concepts
mentioned above in their historical context and in a fair amount of detail
with regard to both ar chitecture and implementation. At this point, the
reader should have an appreciation of the history of CPU design and a good

Chapter three: Basics of the central processing unit 155

understanding of the general principles and key concepts involved in the
process of constr ucting a working, general-purpose digital pr ocessor. By
studying and understanding the basics of processor architecture and imple-
mentation covered in this chapter, we have created a firm foundation for the
more advanced, performance-enhancing appr oaches to be cover ed in the
next chapter.

3.5 Review questions

1.

Does an ar chitecture that has fixed-length instr uctions necessarily
have only one instr uction format? If multiple formats ar e possible
given a single instr uction size in bits, explain how they could be
implemented; if not, explain why this is not possible.

The instruction set architecture for a simple computer must support

access to 64 KB of byte-addr essable memory space and eight 16-bit

general-purpose CPU registers.

a. If the computer has three-operand machine language instructions
that operate on the contents of two dif ferent CPU registers to
produce a result that is stored in a third register, how many bits
are required in the instruction format for addressing registers?

b. If all instructions are to be 16 bits long, how many op codes ar e
available for the thr ee-operand, register operation instr uctions
described above (neglecting, for the moment, any other types of
instructions that might be r equired)?

¢. Now assume (given the same 16-bit instr uction size limitation)
that, besides the instructions described in (a), there are a number
of additional two-operand instr uctions to be implemented, for
which one operand must be in a CPU r egister while the second
operand may reside in a main memory locationorar egister. If
possible, detail a scheme that allows for at least 50 r egister-only
instructions of the type described in (a) plus at least 10 of these
two-operand instructions. (Show how you would lay out the bit
fields for each of the machine language instr uction formats.) If
this is not possible, explain in detail why not and describe what
would have to be done to make it possible to implement the
required number and types of machine language instr uctions.

What are the advantages and disadvantages of an instr uction set

architecture with variable-length instructions?

Name and describe the three most common general types (fr om the

standpoint of functionality) of machine instructions found in execut-

able programs for most computer ar chitectures.

Given that we wish to specify the location of an operand in mem-

ory, how does indir ect addressing differ from direct addressing?

What are the advantages of indir ect addressing, and in what cir -

cumstances is it clearly preferable to direct addressing? Are there

156 Computer Architecture: Fundamentals and Principles of Computer Design

10.

any disadvantages of using indir ect addressing? How is r egister

indirect addressing different from memory indir ect addressing,

and what are the relative advantages and disadvantages of each?

Various computer ar chitectures have featured machine instructions

that allow the specification of three, two, one, or even zero operands.

Explain the tradeoffs inherent to the choice of the number of operands

per machine instruction. Pick a current or historical computer ar chi-

tecture, find out how many operands it typically specifies per instuc-
tion, and explain why you think its ar chitects implemented the in-

structions the way they did.

Why have load-store architectures increased in popularity in r ecent

years? (How do their advantages go well with modern ar chitectural

design and implementation technologies?) What ar e some of their
less desirable tradeof fs compared with memory-r egister architec-

tures, and why are these not as important as they once wer e?

Discuss the two historically dominant ar chitectural philosophies of

CPU design:

a. Define the acronyms CISC and RISC and explain the fundamental
differences between the two philosophies.

b. Name one commercial computer architecture that exemplifies the
CISC architectural approach and one other that exemplifies RISC
characteristics.

c. For each of the two ar chitectures you named in (b), describe one
distinguishing characteristic not present in the other ar chitecture
that clearly shows why one is consider ed a RISC and the other a
CISC.

d. Name and explain one significant advantage of RISC over CISC
and one significant advantage of CISC over RISC.

Discuss the similarities and differences between the programmer-vis-

ible register sets of the 8086, 68000, MIPS, and SP ARC architectures.

In your opinion, which of these CPU r egister organizations has the

most desirable qualities and which is least desirable? Give r easons

to explain your choices.

A circuit is to be built to add two 10-bit numbers x and y plus a carry

in. (Bit 9 of each number is the Most Significant Bit (MSB), while bit

0 is the Least Significant Bit (LSB). ¢, is the carry in to the LSB

position.) The propagation delay of any individual AND or OR gate

is 0.4 ns, and the carry and sum functions of each full adder ar e

implemented in sum of pr oducts form.

a. If the circuit is implemented as a ripple carry adder , how much
time will it take to pr oduce a result?

b. Given that the carry generate and pr opagate functions for bit
position i are givenby g, = xy; and p;, = x; + y,, and that each
required carry bit (c;...c,o) is developed from the least significant
carry in ¢, and the appropriate g; and p; functions using AND-OR
logic, how much time will a carry lookahead adder cir cuit take

Chapter three: Basics of the central processing unit 157

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

to produce a result? (Assume AND gates have a maximum fan-in

of 8 and OR gates have a maximum fan-in of 12.)
Under what circumstances are carry save adders more efficient than
normal binary adders that take two operands and pr oduce one re-
sult? Where, in a typical general-purpose CPU, would one be most
likely to find carry save adders?
Given two 5-bit, signed, two’s complement numbers x = -6 = 11010,
and y = +5 =00101,, show how their 10-bit pr oduct would be com-
puted using Booth’s algorithm (you may wish to efer to Figures 3.24,
3.25, and 3.26).
Discuss the similarities and dif ferences between scientific notation
(used for manual calculations in base 10) and floating-point r epre-
sentations for real numbers used in digital computers.
Why was IEEE 754-1985 a significant development in the history of
computing, especially in the fields of scientific and engineering ap-
plications?
Assume that the IEEE has modified standar ~ d 754 to allow for
“half-precision” 16-bit floating-point numbers. These numbers ar e
stored in similar fashion to the single pr ecision 32-bit numbers, but
with smaller bit fields. In this case, there is 1 bit for the sign, followed
by 6 bits for the exponent (in excess-31 format), and the r emaining
9 bits are used for the fractional part of the normalized mantissa.
Show how the decimal value +17.875 would be r epresented in this
format.
Show how the decimal value—267.5625 would be represented in IEEE
754 single and double pr ecision formats.
Consider a simple von Neumann ar chitecture computer like the one
discussed in Section 3.3.1 and depicted in Figur e 3.32. One of its
machine language instructions is an ANDM instruction that reads
the contents of a memory location (specified by dir ect addressing),
bitwise ANDs this data with the contents of a specified CPU register,
then stores the result back in that same register. List and describe the
sequence of steps that would have to be carried out under the su-
pervision of the processor’s control unit in or der to implement this
instruction.
What are the two principal design approaches for the control unit of
a CPU? Describe each of them and discuss their advantages and
disadvantages. If you were designing a family of high performance
digital signal processors, which approach would you use, and why?
In a machine with a microprogrammed control unit, why is it impor-
tant to be able to do branching within the micr ocode?
Given the horizontal contr ol word depicted in Figur e 3.39 for our
simple example machine, develop the micioroutines required to fetch
and execute the NAND instr uction using the steps you outlined in
question 17.

158 Computer Architecture: Fundamentals and Principles of Computer Design

21.

22.

Repeat question 20 using the vertical control word depicted in Figure

Fill in the blanks below with the most appr opriate term or concept
discussed in this chapter:

The portion (bit field) of a machine language instuction
that specifies the operation to be done by the CPU.

A type of instr uction that modifies the machine’s pr o-
gram counter (other than by simply incr ementing it).
A way of specifying the location of an operand in mem-
ory by adding a constant embedded in the instr uction
to the contents of a “pointer” r egister inside the CPU.
These would be characteristic of a stack-based instr uc-
tion set.

This type of architecture typically has instructions that
explicitly specify only one operand.

A feature of some computer architectures where operate
instructions do not have memory operands; their oper -
ands are found in CPU registers.

Machines belonging to this ar chitectural class try to
bridge the semantic gap by having machine language
instructions that appr oximate the functionality of
high-level language statements.

This part of a CPU includes the r egisters that store op-
erands as well as the cir cuitry that performs computa-
tions.

This type of addition circuit develops all carries in logic,
directly from the inputs, rather than waiting for them
to propagate from less significant bit positions.

A structure composed of multiple levels of carry save
adders, which can be used to eficiently implement mul-
tiplication.

This type of notation stor es signed numbers as though
they were unsigned; it is used tor epresent exponents
in some floating-point formats.

In IEEE 754 floating-point numbers, a normalized man-
tissa with the leading 1 omitted is called this.

This is the r esult when the operation 1.0/0.0 is per -
formed on a system with IEEE 754 floating-point arith-
metic.

This holds the curr ently executing machine language
instruction so its bits can be decoded and interpr eted
by the control unit.

A sequence of microinstructions that fetches or executes
a machine language instruction, initiates exception pro-
cessing, or carries out some other basic machine-level
task.

Chapter three: Basics of the central processing unit 159

A technique used in microprogrammed control unit de-
sign in which mutually exclusive control signals are not
encoded into bit fields, thus eliminating the need for
decoding microinstructions.

This keeps track of the location of the next micr oword
to be retrieved from microcode storage.

chapter four

Enhancing CPU
performance

In the previous chapter we discussed the basics of instuction set architecture
and datapath and contr ol unit design. By now , the reader should have a
good understanding of the essentials of central processing unit (CPU) archi-
tecture and implementation; you may even feel (the author dar es to hope)
that, given enough time, you could generate the logical design for a complete,
usable CPU. Once upon a time, that would have been a good enough prduct
to sell. Now, however, to succeed in the marketplace apr ocessor (and the
system containing it) must not only work, but must perform extr emely well
on the application of inter est. This chapter is devoted to exploring imple-
mentation techniques that manufacturers have adopted to achieve the goal
of making their CPUs pr ocess information as rapidly as possible. The most
ubiquitous of these techniques is known aspipelining. As we shall see, almost
all high-performance computers utilize some form of pipelining.

Implementation technologies change rapidly over time. Transistors con-
tinue to become smaller and faster; cir cuits that were considered blindingly
fast 4 or 5 years ago ar e hopelessly slow today and will be completely
obsolete that far, or less, in the future. Over the history of computing devices,
technology has always improved and continues to improve, though at some
point, we must approach the ultimate physical limits. Whewe will more speed
come from when we have switching elements the size of individual atoms,
with signal propagation over such tiny distances still limited by the velocity
of light? Perhaps the unique approach of quantum computing will allow us
to do much mor e than is curr ently thought possible within the limits of
physics. Only time will tell wher e new innovations in technology will take
us, as designers and users of computer systems.

What is always true is that at any given time, be it 1955 or 1981 or 2006,
we (computer manufacturers, specifically) can only make a given piece of
hardware so fast using available technology. What if that is not fast enough
to suit our purposes? Then we must augment technology with clever design.
If a given hardware component is not fast enough to do the work we need

161

162 Computer Architecture: Fundamentals and Principles of Computer Design

to do in the time we have, we build faster har dware if we can; if we cannot,
we build more hardware and divide the pr oblem. This approach is known
as parallelism, or concurrency. We can achieve concurrency within a processor
and/or by using multiple pr ocessors in a system. The former appr oach is
the subject of the rest of this chapter; the latter will be addessed in Chapter 6.

4.1 Pipelining

The original digital computers, and their successors for a number of years,
were all serial (sequential) processors, not only in their architecture, but also
in their implementation. Not only did theyappear to execute only one instmuc-
tion at a time, as the von Neumann model suggests; they actuallydid execute
only one instr uction at a time. Each machine instr uction was pr ocessed
completely before the next one was started. This sequential execution pr op-
erty was the underlying assumption for our pr evious treatment of both
hardwired and microprogrammed control unit design.

The sequential execution approach that forms the basis of the von Neu-
mann machine cycle is very simple and very effective, but it has one obvious
flaw: it does not make very efficient use of the hardware. Executing a single
machine instruction requires several steps: fetch the instr uction from mem-
ory, decode it, retrieve its operands, perform the operation it specifies, and
store its result. (Slightly different breakdowns of the machine cycle are pos-
sible, but this will suf fice for discussion.) If the machine pr ocesses one
instruction at a time, what is the arithmetic/logic unit (ALU) doing while
the instruction (or an operand) is being fetched? Pr obably nothing. What
work are the instruction decoder, memory address register (MAR), memory
data register (MDR), and various other parts of the CPU accomplishing while
the ALU is busy performing a computation? Pr obably none.

For the most ef ficient use of all the system components in which we
have invested design time, chip ar ea, electrical power, and other valuable
resources, we would ideally like to keep all of these components as busy as
possible as much of the time as possible. A component that is unused part
of the time is not giving us our money’s worth; designers should sear ch for
a way to make mor e use of it. Conversely , a component that is over used
(needed more often than it is available) cr eates a structural hazard; it will
often have other components waiting on it and will thus become a bottleneck,
slowing down the entir e system. Designers may need tor eplicate such a
component to improve throughput. The art of designing a modern processor
involves balancing the workload on all the parts of the CPU such that they
are kept busy doing useful work as much of the time as possible without
any of them clogging up the works and making the other parts wait. As you
might expect, this balancing act is not a trivial exer cise. Pipelining, which
we are about to investigate, is an essential technique for helping bring about
this needed balance.

Pipelining, in its most basic form, means br eaking up a task into smaller
subtasks and overlapping the performance of those subtasks for dif ferent

Chapter four: Enhancing CPU performance 163

Iteration 1 Iteration 2 Iteration 3

Step 1|Step 2|Step 3 |Step 1|Step 2|Step 3|Step 1

Step 2 | Step 3

et £y ety

trask

——————— 3 iterations require 3 * tppgg ——————»

Figure 4.1 Subdividing a task into sequential subtasks.

instances of the task. (The same concept, when applied to the manufactur e
of automobiles or other objects, is called an assembly line.) T o use terms
more specifically related to computing, pipelining means dividing a compu-
tational operation into steps and overlapping those steps over successive
computations. This approach, while much mor e common in today’s com-
puters than it was 20 or 30 years ago, is hadly new. The first use of pipelining
in computers dates back to the IBM Str etch and Univac LARC machines of
the late 1950s. Pipelining, as we shall see, impr oves the performance of a
processor in much the same way that low-or der interleaving improves the
performance of main memory , while being subject to many of the same
considerations and limitations.

To understand how pipelining works, consider a task that can be broken
down into three parts, performed sequentially. Let us refer to these parts as
step 1, step 2, and step 3 (see Figur e 4.1). The time taken to perform step 1
is represented as t,, while f, and t; represent the times required to perform
steps 2 and 3. Since the thr ee steps (subtasks) ar e performed sequentially,
the total time to perform the task is given by

frask =t + 1, + 13

Without pipelining, the time to perform 3 iterations of this task is 3 X tyagx,
while the time to perform 50 iterations is 50 X tpysx. The time r equired is
directly proportional to the number of iterations to be performed; ther e is
no advantage to be gained by r epeated performance of the task.

Now suppose that we separate the har dware that performs steps 1, 2,
and 3 in such a way that it is possible for them to work independently of
each other. (We shall shortly see how this can be accomplished in computer
hardware.) Figure 4.2 illustrates this concept. W e begin the first iteration of
the task by providing its inputs to the har dware that performs step 1 (call
this stage 1). After t, seconds, step 1 (for the first iteration of the task) is done
and the results are passed along to stage 2 for the performance of step 2.
Meanwhile, we provide the second set of inputs to stage 1 and begin the
second iteration of the task before the first iteration is finished. When stage
2 is finished processing the first iteration and stage 1 is finished pr ocessing
the second iteration, the outputs fr om stage 2 are passed to stage 3 and the
outputs from stage 1 are passed to stage 2. Stage 1 is then pr ovided a new,

164 Computer Architecture: Fundamentals and Principles of Computer Design

tsTAGE

Step1 | Step2 | Step3

Stepl | Step2 | Step 3

Stepl | Step2 | Step 3

l——— [teration 1 ———1

Iteration 2 ———

+— Iteration 3 ——
Figure 4.2 Basic pipelining concept.

third set of inputs — again, before the first and second iterations ae finished.
At this point the pipeline is full; all thr ee stages are busy working on some-
thing. When all are done this time, iteration 1 is complete, iteration 2 moves
to stage 3, iteration 3 moves to stage 2, and the fourth iteration is initiated
in stage 1. This pr ocess can continue as long as we have mor e iterations of
the task to perform. All stages will remain busy until the last iteration leaves
stage 1 and eventually “drains” from the pipeline (completes through all the
remaining stages).

This approach works best if the thr ee stage times t,, t,, and t; are all
equal to tpy/3. Let us refer to this as the stage time, tgrpqe. If £, t,, and £,
are not all equal, then fg,c; must be set equal to the gr eatest of the thr ee
values; in other wor ds, we cannot advance the r esults of one stage to the
next until the slowest stage completes its work. If we try to make tsTaGE
smaller, at least one of the stages will be given new inputs befor e it finishes
processing its current inputs and the pr ocess will break down (generate
incorrect results).

What are the performance implications of this pipelined (or assembly
line) approach? Pipelining does nothing to enhance the performance of a
single computation. A single iteration of the task still r equires at least fp,g¢
seconds. In fact, it may take somewhat longer if the stage times ar e mis-
matched (we know that 3 X tgugp 2 + £, + t3). The performance advantage
occurs only if we perform two or mor e successive iterations of the task.
While the first iteration takes just as long as ever (or pehaps slightly longer),
the second and all subsequent iterations ar e completed in fgp,p rather than
the 3 X tgrpcp taken by the first iteration. Two iterations can be completed in
4 X tgrpcp three iterations in 5 X tgpagp, four in 6 X tgrage, and so on. In general,
we can define the time taken to perform # iterations of the task using this
three-stage pipeline as

trorar = [3 X tsragel + [(1 = 1) X tgpace]l = [(n + 2) X tgpacel

Chapter four: Enhancing CPU performance 165

If tsrage 1S equal (or even reasonably close) to trysx /3, then a substantial
speedup is possible compared with the nonpipelined case; lar ger values of
n lead to agr eater advantage for the pipelined implementation. Let us
suppose for the sake of simplicity that ts,ge equals 1 ns and fryg¢ equals 3
ns. Five iterations of the task would take (5 x 3) = 15 ns without pipelining,
but only (7 x 1) =7 ns using the pipelined appr oach. The speed ratio in this
case is 2.143 to 1 in favor of pipelining. If we consider 10 consecutive itera-
tions, the total times required are 30 ns (nonpipelined) vs. 12 ns (pipelined),
with pipelining yielding a speedup factor of 2.5. For 50 iterations the num-
bers are 150 ns and 52 ns, r espectively, for a speedup of 2.885. In the limit,
as n grows very large, the speedup factor of the pipelined implementation
vs. the nonpipelined implementation approaches 3, which is not coinciden-
tally the number of stages in the pipe.

Most generally, for a pipeline of s stages processing n iterations of a task,
the time taken to complete all the iterations may be expr essed as

trotar = [8 X tsracel + [(n = 1) X tgrace] = [(s + 1 = 1) X topacel

The [s X tgrace] term represents the flow-through time, which is the time for
the first result to be completed; the [(1n — 1) X fgr5ce] term is the time required
for the remaining results to emerge from the pipe. The time taken for the
same number of iterations without pipeliningis 7 X tyg¢. In the ideal case
of a perfectly balanced pipeline (in which all stages take the same time), fq¢
=5 X fgracp SO the total time for the nonpipelined implementation would be
1 X s X tsrace- The best-case speedup obtainable by using an s-stage pipeline
would thus be (1 x s)/(n + s — 1), which, as n becomes large, approaches s
as a limit.

From this analysis, it would appear that the mor e stages into which we
subdivide a task, the better. This does not turn out to be the case for several
reasons. First, it is generally only possible to break down a given task so far.
(In other words, there is only so much granularity inherent in the task.) When
each stage of the pipeline r epresents only a single level of logic gates, how
can one further subdivide operations? The amount of logic r equired to per-
form a given task thus places a fundamental limitation on the depth of
(number of stages in) a pipelined implementation of that task.

Another limiting factor is the number of consecutive, uninterr upted
iterations of the task thatar e likely to occur . For example, it makes little
sense to build a 10-stage multiplication pipeline if the number of multipli-
cations to be done in sequence rar ely exceeds 10. One would spend most of
the time filling and draining the pipeline, in other wor ds, with less than the
total number of stages doing useful work. Pipelines only impr ove perfor-
mance significantly if they can be kept full for ar easonable length of time.
Mathematically speaking, achieving a speedup factor appr oaching s (the
number of pipeline stages) depends on 7 (the number of consecutive itera-
tions being processed) being large, where large is defined relative to s. “Deep”

166 Computer Architecture: Fundamentals and Principles of Computer Design

Input

Register

il

Stage 1 logic

Clock

B B

te = typace + tr Stage 2 logic

Stage 3 logic

l

Output

Figure 4.3 Pipeline construction showing pipeline registers.

pipelines, which implementa fine-grained decomposition of a task, only
perform well on long, uninterr upted sequences of task iterations.

Yet another factor that limits the speedup that can be achieved by
subdividing a task into smaller subtasks is the r eality of hardware imple-
mentation. Constructing a pipeline with actual har dware requires the use
of a pipeline register (a parallel-in, parallel-out storage register composed of
a set of flip-flops or latches) to separate the combinational logic used in
each stage from that of the following stage (see Figue 4.3 for an illustration).
The pipeline registers effectively isolate the outputs of one stage fr om the
inputs of the next, advancing them only when a clock pulseisr eceived;
this prevents one stage from interfering with the operation of those preced-
ing and following it. The same clock signal is connected to all the pipeline
registers so that the outputs of each stage ar e transferred to the inputs of
the next simultaneously.

Each pipeline register has a cost of implementation: it consumes a certain
amount of power, takes up a certain amount of chip ar ea, etc. Also, the
pipeline registers have finite propagation delays that add to the propagation
delay of each stage; this reduces the performance of the pipeline somewhat,
compared to the ideal theoretical case. The clock cycle time f. of the pipeline
can be no smaller than tgp, ¢ (the longest of the individual stage logic delays)
plus t; (the delay of a pipeline r egister). The register delays represent an
extra cost, or “overhead factor,” that takes away somewhat from the advan-

Chapter four: Enhancing CPU performance 167

tage of a pipelined implementation. If t; is small compared to tgp,gs asis
usually the case, the pipeline will perform close to theor etical limits, and
certainly much better than a single-stage (purely combinational) implemen-
tation of the same task. If we try to divide the task into very small steps,
though, tsrags may become comparable to, or even smaller than, t;, signifi-
cantly reducing the advantage of pipelining. We cannot make t. smaller than
tr, no matter how finely we subdivide the task. (Put another way , the max-
imum clock frequency of the pipeline is limited to 1/ t; even if the stages do
no work at all.) Thus, ther e is a point of diminishing r eturns beyond which
it makes little sense to deepen the pipeline. The best design would probably
be one with a number of stages that maximizes the ratio of performance to
cost, where cost may be measur ed notjustin dollars butin chipar ea,
transistor count, wire length, power dissipation, and other factors.

CPU pipelines generally fall into one of two categories: arithmetic pipe-
lines or instruction unit pipelines. Arithmetic pipelines are generally found in
vector supercomputers, where the same numerical (usually floating-point)
computation(s) must be done to many values in succession. Instr uction unit
pipelines, which are used to execute a variety of scalar instr uctions at high
speed, are found in practically all modern general-purpose pr ocessors. We
will examine the characteristics of both types of pipelines in the following

pages.

4.2 Arithmetic pipelines

High-performance computers intended for scientific and engineering appli-
cations generally place a pr emium on high-speed arithmetic computations
above all else. In Chapter 3 we considered the design of circuitry to perform
the basic arithmetic operations on integer and floating-point numbers. The
circuits we discussed can be readily used to perform scalar arithmetic oper -
ations, that is, isolated operations on individual variables. Further optimi-
zation becomes possible (and highly desirable) when we perform computa-
tions on vectors. V ector manipulations generally involve performing the
same operation on each of a long list of elements; thus, they lend themselves
to pipelined implementation of those operations.

Recall the circuit of Figure 3.23 that used a tr ee of carry save adders to
multiply two 4-bit integers. This cir cuit was constructed from a set of AND
gates used to generate the partial poducts, plus two sets of carry save adders
and a final carry lookahead adder used to combine the sum and carry bits
to obtain the product. As shown in Figure 3.23, this is a “flow-thr ough,” or
purely combinational, logic cir cuit. The two numbers to be multiplied ar e
input, and after sufficient time elapses to satisfy the total propagation delay
of the components (specifically, the longest path from any input to an output
that depends on its value), the pr oduct is available. Once the pr oduct is
saved or used in another computation, new inputs can be pr ovided to the
circuit and another multiplication can be done.

168 Computer Architecture: Fundamentals and Principles of Computer Design

Input A Input B

l l

| Register | | Register | ---------------

! !

Logic to generate partial products Stage 1

PP3 l lPPZ l PP1 l PPO
| Register || Register | Register || Register |

i

CSA Stage 2

C(shifted left one
PP3 posmon S

| Register | Register | | Register

\—$‘—l

CSA

C——1 yS

| Register | | Register |

l Stage 4
CLA

l

Output P=A = B

Figure 4.4 Pipelined Wallace tree multiplier for 4-bit numbers.

Now suppose we have an application with ar equirement that a lar ge
number of 4-bit multiplications must be done consecutively . We could use
the circuit of Figure 3.23 to perform each multiplication sequentially , but
performing n multiplications would take n times the propagation delay of
the entire circuit. To speed things up, we could add pipeline r egisters and
convert the circuit to the four-stage pipelined implementation seen in Figure
4.4. At successive time steps, the first pair of numbers would go thr ough
partial product generation, carry save adder stage 1, carry save adder stage
2, and finally the carry lookahead adder stage. Once the pipeline is full, a
new result is produced every cycle, and the time for that cycle is much
shorter than the time to do a complete multiplication. In the limit, many
consecutive multiplications can be done with a speedup appoaching a factor
of 4 (the number of stages in the pipeline).

For another example, consider the floating-point adder/subtractor
depicted in Figure 3.31. This cir cuit consists of cir cuitry to compare expo-
nents, align mantissas, perform the addition or subtraction, and then r enor-
malize the results. By inserting pipeline r egisters we could subdivide the

Chapter four: Enhancing CPU performance 169

Mantissa A Mantissa B Exponent A Exponent B
| Register | | Register | | Register | | Register | —-——-
Alignment Comparator Stage 1

| Register | | Register | Register ————

Adder/subtractor Stage 2
Register Register -
Renormalization Stage 3
l l
Mantissa of result Exponent of result

Figure 4.5 Pipelined floating-point adder/subtractor.

function of this circuit into three stages as shown in Figure 4.5. Once again,
this could lead to a speedup of nearly 3 (the number of stages) in the best
case, which is equal delay for all stages and a long sequence of floating-point
additions and subtractions to be done.

4.2.1 Types of arithmetic pipelines

Virtually any arithmetic cir cuit can be pipelined in a similar manner to the
ones illustrated above. These ar e examples of unifunction pipelines, which
perform only a single type of operation. (Since subtraction is done using
two’s complement addition, it is r eally the same function as addition.) It is
also possible to build a multifunction pipeline, which can be reconfigured to
perform different operations at dif ferent times. For example, a machine
might have a floating-point add / multiply pipeline or a divide/squar e root
pipeline. As one might expect, while multifunction pipelines can save on
hardware and chip area, they are more complex to configure and control.
Static linear pipelines are the simplest pipelines and the only type we have
considered so far. A static pipeline is one in which the connections between
stages never change, and a linear pipeline is one with no “feedback” (or
“feed-forward”) connections. That is, a given operand or set of operands
passes through a given stage of the pipe once and only once. Unifunction

170 Computer Architecture: Fundamentals and Principles of Computer Design

Input

l

Register

l

Stage A

t—

Register

!

Stage B

Multiplexer

Output
Figure 4.6 Dynamic pipeline example.

pipelines are generally static, though some may use feedback connections
to save chip area by passing the operands through the same stage more than
once rather than building more stages. Static linear pipelines are the easiest
to control since all that is r equired is to advance the operands to the next
stage each cycle.

Nonlinear and dynamic pipelines are more complex because operands do
not simply flow from one stage to the next on every clock cycle. A dynamic
pipeline is a type of multifunction pipeline wher e the connections between
stages, and possibly even the number of stages used, ar e modified (as
directed by the control logic) to enable the cir cuit to perform different func-
tions. Figure 4.6 shows an example of a dynamic pipeline that has thr ~ ee
stages in one configuration and two in its other configuration.

Either a static or dynamic pipeline may be nonlinear, meaning the same
stage(s) are used more than once in the pr ocessing of a given operand. See
Figure 4.7 for an example of a nonlinear pipeline that r euses stages 2 and 3
while processing a given set of inputs (for simplicity, the registers and mul-
tiplexers between stages are not shown).

Pipelines that are nonlinear or dynamic are more difficult to control than
a simple, static, linear pipeline. The fundamental pr oblem is scheduling the
initiation of operations to make the most ef ficient use of the har dware pos-
sible, while not using any of it more than is possible (in other words, making

Chapter four: Enhancing CPU performance 171

Input

|

Stage 1

Stage 2

Stage 3

-

Output

Figure 4.7 Nonlinear pipeline example.

sure that any particular stage only r eceives one operand or set of operands
per clock cycle).

4.2.2 Pipeline scheduling and control

Scheduling and control are important factors in the design of nonlinear and
dynamic pipelines. Any time the hardware is reconfigured, or any time the
same stage is used mor e than once in a computation, a str uctural hazard
may exist, meaning ther e is the possibility of a collision in the pipeline. A
collision is an attempt to use the same stage for two or mor e operations at
the same time. If two or mor e sets of inputs arrive at the same stage simul-

taneously, at the very least the pipeline will compute err oneous results for
at least one set of inputs. Depending on the details of physical constr uction,
the outputs of dif ferent stages could even be short-cir cuited to a common
input, possibly causing damage to the cir cuitry. Thus, collisions ar e to be
avoided at all costs when contr olling a pipeline.

How can we determine when collisions might occur in a pipeline? One
graphical tool we can use to analyze pipeline operation is called a reservation
table. A reservation table is just a chart with ows representing pipeline stages
and columns representing time steps (clock cycles). Marks are placed in cells
of the table to indicate which stages of the pipeline ar e in use at which time
steps while a given computation is being performed. The simplest r eserva-
tion table is one for a static, linear pipeline. T able 4.1 is an example of a
reservation table for a five-stage static linear pipeline.

Notice that all the marks in this simple reservation table lie in a diagonal
line. This is because each stage is used once and only once, in numerical
order, in performing each computation. Even if we permuted the or der of

172 Computer Architecture: Fundamentals and Principles of Computer Design

Table 4.1 Reservation Table for
Static Linear Pipeline

| h | |t |h
Stage 1 | X
Stage 2 X
Stage 3 X
Stage 4 X
Stage 5 X

Table 4.2 Reservation Table for
Nonlinear Pipeline

Ll 6|64
Stage1 | X

Stage 2 X X
Stage 3 X X

the stages, there would be still be only one mark in eachr ow because no
stage would be used mor e than once per operation. As long as this is the
case, we will be able to initiate a new operation in the pipeline on each clock
cycle.

Suppose instead that we had a nonlinear pipeline like the one shown
in Figure 4.7. Some of the stages are used more than once per computation.
This pipeline would have a reservation table as depicted in Table 4.2. Notice
that in this case r ows 2 and 3 of the table contain mor e than one mark,
depicting the repeated use of the corresponding stages. This is very impor-
tant because any r ow containing multiple marks r epresents a potential
collision. To check for collisions, we take all the marks in any r eservation
table and copy them one, two, thr ee, or more places to the right. The new
set of marks r epresents another operation initiated into the pipeline that
number of clock cycles after the first. In T able 4.1, shifting all five marks
one place (or any gr eater number of places) to the right will never cause
one mark to overlap another. The marks X', X”, etc., in T able 4.3 illustrate
this. Thus, we can initiate two operations in that pipeline any number of

Table 4.3 Reservation Table for Static Linear
Pipeline Showing Repeated Task Initiations

b || b | B |t |t |t
Stagel | X | X' | X"

Stage 2 X | X | X"
Stage 3 X | X | X"
Stage 4 X | X | X"

Stage 5 X | X | X"

Chapter four: Enhancing CPU performance 173

Table 4.4 Reservation Table for Nonlinear
Pipeline Showing Possible Collisions

|t | b t, t, ts | f,
Stagel | X | X' | X"
Stage 2 X | X | XX | X X"
Stage 3 X | X XX | X | X

clock cycles apart (except zer o, which would r epresent two at the same
time) with no problem.

Now consider Table 4.2, with marks shifted to the right. Shifting by one
position does not cause a pr oblem (see Table 4.4), but shifting two places
causes marks to overlap at time step t; in row 2 and at time step t, in row
3. This indicates that if operations ar e started two clock cycles apart, they
will collide in stages 2 and 3 — clearly something we do not want to happen.

Initiating two operations in a pipeline n clock cycles apart is referred to
as initiating them with a latency of n. In this last example, while it is OK to
have a latency of 1, a latency of 2 would cause a collision to occur . Thus, for
this pipeline, 2 is called a forbidden latency. To determine the forbidden laten-
cies for a pipeline, it is not necessary to actually copy the marks in the
reservation table. Rather, all one has to do is note, for any row with multiple
marks, the distances between the marks. Rows2and 3 of T able 4.2 have
marks two columns apart, so 2 is a forbidden latency for the pipeline of
Figure 4.7. Zero is a forbidden latency as well; in fact, zer o is a forbidden
latency for any single pipeline configuration since we cannot start two oper-
ations zero cycles apart (at the same time).

It is possible for a pipeline to have mor e than one forbidden latency
besides zero. As an example, consider the reservation table, depicted in Table
4.5, for a static but nonlinear pipeline. Row 3 contains marks one column
apart, while row 2 has marks one, thr ee, and four columns apart. (We must
pairwise compare all marks in a r ow if there are more than two.) Thus, for
this pipeline the forbidden latencies are 0, 1, 3, and 4.

In speaking of forbidden latencies for a given pipeline, we may gr oup
them together in what is known as the forbidden list. This is just a parenthet-
ical notation listing all the forbidden latencies; in this case, the forbidden list
would be (0, 1, 3, 4). Another way of expressing the same information is to
form a collision vector corresponding to the forbidden latencies. A collision

Table 4.5 Example Reservation
Table for Pipeline with Multiple
Forbidden Latencies

b | b | | |t ts
Stage 1 | X
Stage 2 X X | X
Stage 3 X | X

174 Computer Architecture: Fundamentals and Principles of Computer Design

vector is simply a set of bits, with each bitr epresenting a given latency .
Forbidden latencies are represented by 1s in the appr opriate bit positions,
while allowable latencies (those that do not result in a collision) are represented
by 0s. The collision vector must have a bit for every clock cycle that a single
operation may exist in the pipeline. Fr om Table 4.5 we can see that an
operation takes six clock cycles to pass all the way thr ough the pipeline, so
our collision vector will be 6 bits long. W e write the collision vector C =
CniCpa---C1Co With the bit position corr esponding to zero latency at the right
and the bit representing the longest latency at the left. Once again r eferring
to our example, our forbidden list of (0, 1, 3, 4) corr esponds to a collision
vector C = c¢50,050,04¢, = 011011.

What do we accomplish by cr eating the collision vector for a pipeline?
The collision vector allows us to analyze the operation of the pipeline by
creating a state diagram. Once we obtain the state diagram, we can determine
which cycles, or sequences of latencies, ar e possible for the pipeline. These
cycles are important, as they must be known by the pipeline contr ol logic
to schedule the initiation of operations so that the pipeline operates optimally
but correctly, in other wor ds, so that we perform operations as quickly as
possible while avoiding collisions.

To create the state diagram, we start with an initial state r epresented by
the initial collision vector as determined above. Each of the bits equal to zeo
represents an allowable latency; each allowable latency is r epresented by a
transition arrow leaving the state and going to another state (or possibly
back to the same state). Repr esenting allowable latencies with the symbol i,
we see that in our example, from the initial state 011011, it is possible to have
i=2ori=>5. All latencies greater than 5 are also possible because the pipeline
will have completely emptied after six or mor e cycles and thus will r evert
to its initial state, so the allowable latencies can be epresented by two arrows
leaving the initial state, one for i =2 and one for i > 5.

To determine the next state for each transition, we take the binary r ep-
resentation of the current state and logically shift it right 7 places. This value
is then logically ORed with the initial collision vector to pr oduce the binary
value of the destination state. In our example, we ar e currently analyzing
transitions from state 011011. If we shift this value two places to the right,
we obtain 000110; logically ORing this value with the initial collision vector,
011011, yields a binary value of 011111. Thus, the arrow leaving state 011011
corresponding to i = 2 goes to the new state 011111 (see Figure 4.8). The other
possibility is a latency of 5 (or gr eater). Logically shifting the curr ent state
by five or more places to the right gives 000000, which when ORed with the
initial collision vector 011011 returns 011011. Thus the arr ow for i > 5 goes
back to the initial state.

Since analyzing transitions from the initial state has cr eated at least (in
this case, exactly) one new state, we must now analyze transitions from that
state. (The state diagram is not complete until all states ar e identified and
all transitions from each state point back to one of the existing states.) In our
example, state 011111 has an allowable latency only of 5 or gr eater. Shifting

Chapter four: Enhancing CPU performance 175

Figure 4.8 State diagram for static pipeline example.

the binary value of this state right by five or moe places gives 000000, which
when ORed with the initial collision vector 011011 yields 011011. Thus, there
is only one arrow leaving state 011111; it represents i = 5 and points to state
011011. Analysis of this second state pr oduced no new states, so since all
transitions are accounted for, the state diagram is now complete.

What does a state diagram like the one in Figur e 4.8 tell us? Remember,
each arrow indicates an allowable latency . Any continuous sequence of
arrows that we can follow within the diagramr epresents an allowable
sequence of latencies, or an allowable cycle of the pipeline. If we examine
the state diagram produced for this example, we see ther e are two possible
cycles formed by continuous paths. One cycle results from simply following
the i > 5 transition from the initial state back to itself and then repeating this
path indefinitely. This cycle has a constant latency of 5 and we will identify
it simply as (5). The other cycle is found by following the i = 2 transition
from the initial state to state 0 11111, then following its i > 5 transition back
to the initial state and repeating. This cycle has alternating latencies of 2 and
5, so we will represent it as (2, 5). Note that any other possible sequences of
latencies such as (5, 2, 5) or (5, 5, 2, 5) ar e simply combinations of these two
basic cycles and thus ar e not considered cycles in their own right.

For each cycle identified fr om the state diagram, we can compute an
average latency by simply summing the latencies involved in the cycle and
dividing by the number of latency values. For the cycle (5) the average
latency is simply 5/1 = 5. For the cycle (2, 5) the average latency is (2 + 5)/

2 =7/2=3.5. The average latency for each cycler epresents the average
number of clock cycles between initiations of an operation in the pipeline.

Since smaller latencies imply higher pipeline throughput (operations
completed per clock cycle) and thus higher performance, in choosing a
control strategy we ar e usually interested in identifying the cycle that has
minimum average latency (MAL). In this case the MAL is equal to 3.5, and this
is achieved by the cycle (2, 5). What this means is that for this particular
pipeline structure, the highest performance will be achieved by starting an
operation, waiting two clock cycles, starting another operation, waiting
another five clock cycles, then starting another operation, etc. On average
we will perform one operation per 3.5 clock cycles for a pipeline throughput
of 1/3.5 or approximately 0.286 operations per cycle.

176 Computer Architecture: Fundamentals and Principles of Computer Design

Table 4.6 Reservation Table for
Static Nonlinear Pipeline

tO tl t2 t3 t4 t5
Stage 1 | X X

Stage 2 X | X
Stage 3 X | X

Initiating a new operation at constant intervals would allow simplifica-
tion of the pipeline control logic. If we wished to do this, we would need to
determine the minimum latency of the pipeline — the smallest constant inter-
val at which new operations can be started. The minimum latency for the
pipeline in our example would be 5, corr esponding to the cycle (5). The
minimum latency may be gr eater than the MAL as in this example, or in
some cases equal to it, but will never be less than the MAL.

For an additional example of this process, consider a static pipeline with
reservation table as shown in Table 4.6. Examining each row of the table, we
find the forbidden list to be (0, 1, 5) and the collision vector C = 10001 1.
Allowable latencies from the initial statear e i =2,i=3,i=4,and i > 6.
Latencies i = 4 and i > 6 lead back to the initial state, while i=2and i = 3
transition to new states as shown in Figur e 4.9. We then analyze the transi-
tions from each of these new states and complete the diagram following the
procedure outlined above.

Examining the state diagram, we can find several cycles: (4), (6), (2, 4),
(2, 6), (2), (3,4), (3, 6), and (3) with average latencies of 4, 6, 3, 4, 2, 3.5, 4.5,
and 3 respectively. Note that the cycles (2) and (3) do not return to the initial
state but can still be sustained indefinitely and thus awe allowable. The MAL,
which in this case also happens to be the minimum latency , is 2 (based on
the cycle (2)). We can therefore initiate operations in this pipeline every other
clock cycle for a sustained thr oughput of 1/2 = 0.5 operations per cycle.

Suppose we wish to apply this appr oach to a dynamic pipeline — one
that has more than one har dware configuration. The same basic analysis

Figure 4.9 State diagram for static nonlinear pipeline.

Chapter four: Enhancing CPU performance 177

procedure can be used, but with a new twist: ther is not just one reservation
table, but one for every diferent pipeline configuration. Suppose the pipeline
can exist in either of two configurations X or Y. We must make two reserva-
tion tables and determine a forbidden list for each; we must also make two
more forbidden lists, one fr om table X to table Y and one fr om table Y to
table X. This is because fr om the instantiation of one operation to the next
we must cover all four possibilities: the pipeline may be in configuration X
for the first operation and r emain that way for the second; it may initially
be in configuration X and be r econfigured to Y before the next operation; it
may initially be in configuration Y and then be reconfigured to X; or it may
remain in configuration Y for both operations. We can symbolize these four
forbidden lists as XX, XY, YX, and YY respectively, and refer to their associ-
ated collision vectors as C yy, Cyy, Cyx, and Cyy. An example pipeline with
two configurations is illustrated in Figure 4.10; its two reservation tables are
shown in Table 4.7 and T able 4.8, and their superposition is shown as
Table 4.9.

The forbidden list XX can simply be determined fr om Table 4.7 to be (0,
3). Likewise, examination of Table 4.8 easily yields forbidden list YY = (0, 2,
3). The other two lists r equire the use of the superimposed information in
Table 4.9 and a consideration of which operation is initiated in the pipeline
first. If operation X goes first, it enters the pipeline at stage 3 and pr oceeds
to stages 2, 1, 3, and 2 in the following time steps. Any operation of type Y
will enter at stage 1 and pr oceed through stages 3, 1,2, and 3in turn. A

Configuration X Configuration Y

Input

Stage 1 Stage 1

Stage 2 Stage 2
Output
Input
Stage 3 Stage 3
Output

Figure 4.10 Dynamic pipeline example.

178 Computer Architecture: Fundamentals and Principles of Computer Design

Table 4.7 Reservation Table for
Dynamic Pipeline Configuration X

b | b | ||t
Stage 1 X

Stage 2 X X
Stage 3 X X

Table 4.8 Reservation Table for
Dynamic Pipeline Configuration'Y

bl | b B |t
Stage 1 Y Y

Stage 2 Y
Stage 3 Y Y

Table 4.9 Superposition of
Reservation Tables for Dynamic

Pipeline

tO tl t2 t3 t4
Stage 1 Y XY
Stage 2 X Y | X
Stage 3 X|1Y X1y

latency of 0 between X and Y is clearly forbidden, as the operations would
collide in stage 1. A latency of 1 is also forbidden because the operations
would collide in stage 2. A latency of 2 would r esult in collisions at both
stages 1 and 3, so it is forbidden. Latencies of 3, 4, or geater are collision-free,
so the forbidden list XY = (0, 1, 2).

A simple way to determine this forbidden list XY by inspection is to
look in each row of the composite r eservation table and note each instance
where an X is in a column with, or to the right of, a Y. If any X and Y are in
the same row and column (as in the ¢, column in Table 4.9), 0 is a forbidden
latency; if any Xis n columns to the rightofa Y, n is a forbidden latency.
Conversely, we can determine the forbidden list ~YX by noting eachr ow
where a Y coincides with or lies to the right of an X. Inr ow 1 of Table 4.9,
Y and X coincide in the , column, so 0 is a forbidden latency. In row 2, Y is
two positions to the right of X, so 2 is a forbidden latency . Finally, in row 3
each Y is one position to the right of an X, and the Y in the t, column is four
positions to the right of the X in thet, column; thus 1 and 4 are also forbidden
latencies, and the forbidden list YX = (0, 1, 2, 4). The four collision vectors
are therefore Cy = 01001, Cyy = 00111, Cyy = 10111, and C,y = 01101.

Chapter four: Enhancing CPU performance 179

The collision vectors for X and Y form the collision matrices My and My,
My is formed from Cyy and Cyy, and My is formed from Cyy and Cyy. Thus,
for the collision vectors from our example we obtain

01001 10111

X 100111 Y| 01101

The state diagram for a dynamic pipeline is developed in the same
general way as for a static pipeline, but it is much mor e complicated due to
the multiple types of collisions that may occur . In the example, since ther e
are two collision matrices, we start with two possible initial states (one for
each matrix). Each state has two associated binary values instead of one,
corresponding to the two elements of a state matrix. Allowable latencies for
either type of subsequent operation (X or Y) must be consider ed for each
state. For example, fr om the initial state corr esponding to M ,, we must
consider latencies iy = 1, iy = 2, and iy = 4 in addition to iy = 3 and iy > 4.
Each time we consider a latency to a subsequent X initiation, we must shift
the entire current state matrix (both elements) right iy places and then logi-
cally OR its elements with the initial collision matrix M to determine the
new state. Each time we consider a latency to a subsequent Y initiation, we
must shift the curr ent state matrix right iy places and OR withM . By
following this process, with some ef fort we could constr uct the complete
state diagram (see Figure 4.11) for the dynamic pipeline example.

ix=5
iy =4 01001 10111
00111 iy=3 01101 iy =4
. ix=3
x iy = ix=z4 fy=1 iy =4 ix=5
ix=4 =3
01101 01011 11111
00111 00111 01111
ix=3 x=2
ix=1
01111 iy=3
iy =4 00111

Figure 4.11 State diagram for dynamic pipeline example.

180 Computer Architecture: Fundamentals and Principles of Computer Design

In general, the number of collision matrices (and the number of elements
in each) for a dynamic pipeline is equal to the number of pipeline configu-
rations. The number of forbidden lists, and thus the number of collision
vectors, is the squar e of the number of pipeline configurations. Thus, a
dynamic pipeline with three configurations would have 9 collision vectors;
one with four configurations would have 16 collision vectors, and so on. It
should be clear that the design of dynamic pipelines is a very challenging
task. Fortunately, as transistors have become smaller , it is usually possible
to have separate, static (and usually linear) pipelines for different operations
instead of a single dynamic pipeline shar ed by several types of operations.
This approach of taking up mor e space in or der to simplify and speed up
arithmetic operations is just one mor e example of the many tradeof fs that
are made in computer systems design.

4.3 Instruction unit pipelines

Arithmetic pipelines like those described in the pr evious section are very
useful in applications wher e the same arithmetic operation (or some small
set of such operations) must be carried out r epeatedly. The most common
example of this is in scientific and engineering computations carried out on
vector supercomputers. While this is an important segment of the overall
computer market, itisar elatively small one. Arithmetic pipelines have
limited usefulness in the general-purpose machines thatar e much more
widely used in business and other applications. Does this mean only
machines intended for scientific number cr unching use pipelining? Not at
all; rather, almost all general-purpose machines being built today make use
of one or more instruction unit pipelines.

Instruction unit pipelines ar e pipelines that ar e used to execute a
machine’s scalar instruction set (the instructions that operate on only one or
two operands to produce a single r esult, which make up most if not all of
the instruction set of a typical general-purpose machine). As we discussed
in Section 3.3, the execution of each machine instr uction can be broken into
several steps. Often, particularly in a machine that has simple instr uctions,
most of these steps ar e the same for many (possibly most or all) of the
instructions. For example, all of the computational instructions may be done
with the same sequence of steps, with the only diference being the operation
requested of the ALU once the operands ar e present. With some effort, the
data transfer and control transfer instructions may also be implemented with
the same or a very similar sequence of steps. If most or all of the machine’s
instructions can be accomplished with a similar number and type of steps,
it is relatively easy to pipeline the execution of those steps and thus improve
the machine’s performance considerably over a completely sequential
design.

Chapter four: Enhancing CPU performance 181

4.3.1 Basics of an instruction pipeline

The basic concept flows fr om the principles that wer e introduced at the
beginning of Section 4.1. Pipelining as we defined it means br eaking up a
computational task into smaller subtasks and overlapping the performance
of those subtasks for dif ferent instances of the task. In this case, the basic
task is the execution of a generic, scalar instr uction, and the subtasks corre-
spond to subdivisions of the von Neumann execution cycle, which the
machine must perform in order to execute the instruction. The von Neumann
cycle may be broken into more or fewer steps depending on the designer ’s
preference and the amount of logic r equired for each step. (Remember that
for best pipelined performance, the overall logic delay should be divided as
equally as possible among the stages.)As an example, let us consider a simple
instruction unit pipeline with four stages as follows:

F: Fetch instruction from memory.

D: Decode instruction and obtain operand(s).
E: Execute required operation on operand(s).
W: Write result of operation to destination.

A sequential (purely von Neumann) processor would perform these four
steps one at a time for a given instr uction, then go back and perform them
one at a time for the next instr uction and so on. If each step r equired one
clock cycle, then each machine instr uction would require four clock cycles.
Two instructions would require 8 cycles, three would require 12 cycles, etc.
This approach is effective but slow and does not make very ef ficient use of
the hardware.

In an instruction-pipelined processor, we break down the required hard-
ware into smaller pieces, separated by pipeline r egisters as described pre-
viously. Our example divides the har dware into four stages as shown in
Figure 4.12. By splitting the har dware into four stages, we can overlap the
execution of up to four instr uctions simultaneously. As Table 4.10 shows,
we begin by fetching instruction I; during the first time step t,. During the
next time step (#;), I; moves on to the decoding/operand fetch stage while
simultaneously, instruction I, is being fetched by the first stage. Then, dur -
ing step t,, [, is in the execute (E) stage whileI , is in the D stage and I , is
being fetched by the F stage. During step t,, I, moves to the final stage (W)
while I, is in E, I is in D, and I, is in F. This process continues indefinitely
for subsequent instructions.

As in the nonpipelined case, it still takes four clock cycles to execute the
first instruction I;. However, because of the overlap of operations in the
pipeline, I, is completed one clock cycle later, I; is completed one cycle after
that, and likewise for subsequent instr uctions. Once the pipeline is full, we
achieve a steady-state throughput of one instruction per clock cycle, rather
than one instruction per four cycles as in the nonpipelined case. Thus, in the
ideal case, the machine’s performance may incease by nearly a factor of four

182 Computer Architecture: Fundamentals and Principles of Computer Design

From cache or
main memory

Stage 1

Instruction
fetch (F)

Stage 2
From registers, cache,

Instruction -
or main memory

decode/operand
fetch (D)

Stage 3

Instruction
execution (E)

Stage 4
Write result (W)

|

To register, cache,
or main memory

Figure 4.12 Stages of a typical instr uction pipeline.

Table 4.10 Execution of Instructions in a
Four-Stage Pipeline

t(] tl t2 t3 t4 t5 t6
Stage1(F) | L | L | L L | L I |1L

Stage 2 (D) L|L|L|L]|L|L
Stage 3 (E) L |L |[L L |1
Stage 4 (W) L|L|[L |1

Of course, the ideal case is not always the way things work out in the
real world. It appears from an initial examination that we can easily achieve
a pipeline throughput of one instruction per cycle. (This was the goal of the
original reduced instruction set computer [RISC] designers and is the goal

Chapter four: Enhancing CPU performance 183

of any pipelined processor design.) However, a sustained throughput of 1.0
instructions per cycle is never attainable in practice using a single instrction
pipeline (although in some cases we can come fairly close). Why not? For
the same reason we can never achieve maximum thoughput in an arithmetic
or any other type of pipeline: something happens tobr eak the chain or
temporarily interrupt the operation of the pipeline. For an arithmetic pipe-
line, this might be having to change a dynamic pipeline to another config-
uration or simply reaching the end of the curr ent vector computation (run-
ning out of operands). Anytime we miss initiating a new operation into the
pipe for even a single cycle, we will corr espondingly miss completing one
operation per cycle at some later time and thus not average one operation
per cycle.

Neither of the above scenarios applies dir ectly to an instr uction unit
pipeline. Though different instructions are executed, they all use the same
sequence of steps; thus, the pipeline str ucture is not r econfigured, and of
course the CPU is always executing some instr uctions. They may be part of
a user program or the operating system; they may be operational instr uc-
tions, data transfers, or even no-operation instr uctions (NOPs), but the pro-
cessor never stops executing instr uctions as long as itis “up.” (W e are
ignoring the special case of some embedded pr ocessors that have sleep or
standby modes where they halt execution to save power .) If these types of
situations are not the problem, what can — and does — happen to hold up
the operation of a pipelined instr uction unit and keep it fr om achieving its
theoretical throughput of one instruction per cycle? We shall explore several
possibilities, but the most fundamental difficulty is that execution of instruc-
tions is not always sequential.

4.3.2 Control transfers and the branch penalty

It is control transfer instructions, which are very important to all practical
programs, that cause the most obvious pr oblem with respect to pipelined
instruction execution. Pipelining instructions that are sequentially stored and
sequentially executed are relatively easy, but sooner or later in any useful
program, we must make a decision (based on data input or r etrieved from
memory or on the results of computations performed on data) as to what to
do next. This decision making process is typically done using a comparison
and conditional branching technique. The pr ogram performs a comparison
(or some other arithmetic or logic operation), and then a conditional branch
instruction is executed. This branch tests some condition related to the oper-
ation just performed and either succeeds or fails based on whether or not the
specified condition is tr ue. A conditional branch that succeeds means the
next instruction executed is the one at the specified tar get address, while
one that fails means the next instruction executed is the next one in program
sequence.

If it were possible to know in advance which of these events would
occur, handling the situation would pose few pr oblems for the pipelined

184 Computer Architecture: Fundamentals and Principles of Computer Design

instruction execution unit; but if it wer e possible to always know ahead of
time that a given branch would be taken or not, it would not have to be
encoded as a branch. In fact, the CPU often (particularly in the case of
program loops) encounters a particular branch r epeatedly over time, where
depending on the data being pr ocessed, it may succeed on some occasions
and fail on others. Conditional transfers of contr ol are an unavoidable fact
of life in the logic of useful pr ograms built on the von Neumann execution
model, and as we shall see, these control transfers do pose problems, known
as control hazards, for pipelined execution of instr uctions.

The problems we encounter with branching occur because a single pipe-
line can only process one sequence of instructions. There may indeed be only
one sequence of instructions leading up to a given conditional branch, but
there are always two possible sequences of instr uctions following it. There
is the sequence of instr uctions following the branch instr uction in memory,
to be executed if it fails; ther e is also the sequence of instr uctions beginning
at the branch tar get location in memory, to be executed if it succeeds. The
pipeline can only pr ocess one of these sequences of instr uctions at a time.
What if it is the wr ong one?

If the pipeline control logic assumes that a given conditional branch will
fail and begins working on the sequential instr uctions, and it turns out that
the branch actually fails, then ther e is no pr oblem, and the pipeline can
continue completing instructions at the rate of one per clock cycle. Likewise,
if the pipeline logic successfully pr edicts that the branch will succeed and
begins processing at the target location, the pipeline can be kept full or nearly
so. (Depending on the pipeline str ucture and the memory interface, ther e
may be a slight delay, as instructions must be obtained from a different part
of memory.) In either of the other two cases, where a branch succeeds while
sequential instructions have already started down the pipe or whee a branch
fails while the pr ocessor assumed it would be taken, ther e is a definite
problem that will interr upt the completion of instr uctions — possibly for
several clock cycles.

When any given conditional branch instr uction first enters a pipeline,
the hardware has no way of knowing whether it will succeed or fail. Indeed,
since the first stage of the pipeline always involves fetching the instr uction
from memory, there is no way the contr ol unit can even know yet that it is
a conditional branch instruction. That information is not available until the
instruction is decoded (in our example, this occurs in the second pipeline
stage). Even once the instruction is identified as a conditional branch, it takes
some time to check the appr opriate condition and make the decision of
whether or not the branch will succeed (and then to update the pr ogram
counter with the tar get location if the branch does succeed). By this time
one, two, or mor e subsequent instructions, which may or may not be the
correct ones, may have enter ed the pipe.

Table 4.11 illustrates a possible scenario wher e a branch that was
assumed to fail instead succeeds. Assume that instruction I, is a conditional
branch that implements a small pr ogram loop; its target is I;, the top of the

Chapter four: Enhancing CPU performance 185

Table 4.11 Pipelined Instruction Execution with
Conditional Branching

| b ||ttt t | t7 | I3
Stage1(F) | L, | L | L | L | L |L|L |L |L

Stage 2 (D) L L |L|L L] —L |5
Stage 3 (E) L | L|L|L | —|—1|1L
Stage 4 (W) L|L|L | |—|—

loop, while the sequential instr uction I will be executed on completion of
the loop. It is not possible to know ahead of time how many times the loop
will iterate before being exited, so either I, or I; may follow I, at any time.

I, is fetched by the first pipeline stage during cycle t;. During the fol-
lowing cycle, t,, it is decoded while the pipeline is busy fetching the following
instruction, I;. Sometime before the end of cyclet, the control unit determines
that I, is indeed a conditional branch, but it still has to test the branch
condition. Let us assume that this does not happen until sometime during
cycle t;, when the fetch of instruction I, has begun. At this point, the control
unit determines that the branch condition is tr ue and loads the addr ess of
I, into the program counter to cause the branch to take place. I ; will thus be
fetched during the next clock cycle, t,, but by this time two instr uctions (I
and I) are in the pipeline wher e they should notbe. Allowing them to
continue to completion would cause the pr ogram to generate incorr ect
results, so they ar e aborted, or nullified, by the control logic (meaning the
results of these two instr uctions are not written to their destinations). This
cancellation of the incorr ectly fetched instructions is known as “flushing”
the pipeline. While the correctness of program operation can be retained by
nullifying the effects of I; and I,, we can never recover the two clock cycles
that were wasted in mistakenly attempting to pocess them. Thus, this branch
has prevented the pipeline from achieving its maximum possible thoughput
of one instruction per clock cycle.

In this example, a successful conditional branch caused a delay of two
clock cycles in pr ocessing instructions. This delay is known as the branch
penalty. Depending on the details of the instr uction set architecture and the
way it is implemented by the pipeline, the branch penalty for a given design
might be greater or less than two clock cycles. In the best case, if the branch
condition could be tested and the pr ogram counter modified in stage 2
(before the end of cycle f, in our example) the branch penalty could be as
small as one clock cycle. If determining the success of the branch, modifying
the program counter (PC), and obtaining the first instruction from the target
location took longer, the branch penalty might be thr ee or even four cycles
(the entire depth of the pipeline, meaning its entir e contents would have to
be flushed). The number of lost cycles may vary fr om implementation to
implementation, but branches in a pr ogram are never good for a pipelined
processor.

186 Computer Architecture: Fundamentals and Principles of Computer Design

It is worth noting that branching in pr ograms can be a major factor
limiting the useful depth of an instr uction pipeline. In addition to the other
reasons mentioned earlier to explain the diminishing returns we can achieve
from pipelines with many stages, one canr eadily see that the deeper an
instruction-unit pipeline, the gr eater the penalty that may be imposed by
branching. Rather than one or two instr uctions, a fine-grained instr uction
pipe may have to flush several instr uctions on each successful branch. If
branching instructions appear frequently in programs, a pipeline with many
stages may perform no better — or even worse — than one with a few stages.

It is also worth mentioning that conditional branch instr uctions are not
the only reason the CPU cannot always initiate a new instr uction into the
pipeline every cycle. Any type of contr ol transfer instr uction, including
unconditional jumps, subprogram calls and returns, etc., may cause a delay
in processing. Though there is no branch condition to check, these other
instructions must still pr oceed a certain distance into the pipeline befor e
being decoded and recognized as control transfers, during which time one
or more subsequent instructions may have entered the pipe. Exception pro-
cessing (including internally generated traps and external events such as
interrupts) also requires the CPU to suspend execution of the sequential
instructions in the currently running program, transfer control to a handler
located somewhere else in memory, then return and resume processing the
original program. The pipeline must be drained and r efilled upon leaving
and returning, once again incurring a penalty of one or mor e clock cycles in
addition to other overhead such as saving and r estoring register contents.

4.3.3 Branch prediction

Branch prediction is one approach that can be used to minimize the perfor -
mance penalty associated with conditional branching in pipelined pr oces-
sors. Consider the example presented in Table 4.11. If the control unit could
somehow be made aware that instructions I, through I, make up a program
loop, it might choose to assume that the branch would succeed and fetch I
(instead of I;) after I, each time. With this approach, the full branch penalty
would be incurred only once, upon exiting the loop, rather than each time
through the loop. One could equally well envision a scenario wher e assum-
ing that the branch would fail would be the better course of action, but how,
other than by random guessing (which of course is as likely to be wr ong as
it is to be right) can the contr ol unit predict whether or not a branch will be
taken?

Branch prediction, which dates back to the IBM Str etch machine of the
late 1950s, can be done either statically (before the program is run) or dynam-
ically (by the control unit at run time) or as a combination of both techniques.
The simplest forms of static pr ediction either assume all branches succeed
(assuming they all fail would be equivalent to no pediction at all) or assume
that certain types of branches always succeed while others always fail. ~ As

Chapter four: Enhancing CPU performance 187

the reader might imagine, these primitive schemes tend not to far e much
better than random guessing.

A better way to do static prediction, if the architecture supports it, is to
let the compiler do the work. The SP ARC architecture provides a good
example of this appr oach. Each SPARC conditional branch instr uction has
two different op codes: one for “branch probably taken” and one for “branch
probably not taken.” The compiler analyzes the str ucture of the high-level
code and chooses the version of the branch it believes will be corr ect most
of the time; when the program runs, the processor uses the op code as a hint
to help it choose which instructions to fetch into the pipeline. If the compiler
is right most of the time, this technique will impwove performance. However,
even this more sophisticated form of static branch prediction has not proven
to be especially ef fective in most applications when used alone (without
run-time feedback).

Dynamic branch prediction relies on the contr ol unit keeping track of
the behavior of each branch encounter ed. This may be done by the very
simple means of using a single bit to r emember the behavior of the branch
the last time it was executed. For mor e accurate prediction, two bits may be
used to record the action of the branch for the last two consecutive times it
was encountered. If it has been taken, or not taken, twice in succession, that
is considered a strong indication of its likely behavior the next time, and
instructions are fetched accordingly. If it was taken once and not taken once,
the control unit decides randomly which way to pr edict the branch. (The
Intel Pentium processor used a two-bit history like this to predict branches.)
Another, even more sophisticated dynamic prediction technique is to asso-
ciate a counter of two or more bits with each branch. The counter is initially
set to a threshold value in the middle of its count range. Each time the branch
succeeds, the counter is incr emented; each time it fails, the counter is dec-
remented. As long as the current count is greater than or equal to the thresh-
old, the branch is predicted to succeed; otherwise, it is predicted to fail. (Note
that for this technique to work pr operly the counter must stick at its upper
and lower limits rather than r olling over from the maximum count to zer o
or vice versa.) Even mor e elaborate schemes ar e possible, but none have
been shown to perform appr eciably better than the counter appr oach on
typical compiled code.

While dynamic branch prediction requires more hardware, in general it
has been found to perform better than static prediction (which places greater
demands upon the compiler). Since dynamic pr ediction is dependent upon
the details of a particular implementation rather than the featur es of the
instruction set ar chitecture, it also allows compatibility with pr evious
machines to be mor e easily maintained. The two appr oaches can also be
used together, with the compiler ’s prediction being used to initialize the
state of the har dware predictor and as a tiebr eaker when the branch is
considered equally likely to go either way .

What are the performance effects of branch prediction? Performance is
very sensitive to the success rate of the pr ediction scheme used. Highly

188 Computer Architecture: Fundamentals and Principles of Computer Design

successful branch prediction can significantly impr ove performance, while
particularly poor prediction may do no better (or possibly even worse) than
no prediction at all. While a branch corr ectly predicted to fail may cost no
cycles at all, and one corectly predicted to succeed may incur only a minimal
penalty (if any), a branch that is mispr edicted either way will r equire the
machine to recover to the correct execution path and thus may incur a branch
penalty as severe as (or even mor e severe than) if the machine had no
prediction scheme at all.

For comparison, let us first consider mathematically the thr oughput of
a pipelined processor without branch prediction. Any instruction in a pro-
gram is either a branching instr uction or a nonbranching instruction. Let p,
be the probability of any instr uction being a branch; then (1 - p,) is the
probability of it not being a branch. Let Cj be the average number of cycles
per branch instruction and Cy; be the average number of cycles per non-
branching instruction. The average number of clock cycles per instruction is
thus given by

Cave = PoCs + (1 = pp)Crp

In a pipelined processor, nonbranching instructions execute in one clock
cycle, so Cy; = 1. C; depends on the fraction of branches taken (to the target)
vs. the fraction that is not taken and r esult in sequential execution. Let p, be
the probability that a branch is taken and (1 — p,) be the probability it is not
taken; let b be the branch penalty in clock cycles. Since no pr ediction is
employed, failed branches execute in 1 cycle while successful branches
require (1 + b) cycles. The average number of cycles per branch instr uction
is thus given by

Co=p(1+b)+A-p)D)=1+ppb

We can substitute this expression for Cy into the previous equation to deter-
mine the average number of cycles per instr uction as follows:

Cavg =P +pb) + (1 —p,)(1) =1+ ppb

The throughput of the pipeline (the average number of instr uctions com-
pleted per clock cycle) is simply the r eciprocal of the average number of
cycles per instruction:

H=1/ Cayc=1/ 1+ ppb)

The probabilities p, and p, will vary for dif ferent programs. Typical
values for p,, the fraction of branch instr uctions, have been found to be in
the range of 0.1 to 0.3. The pr obability of a branch succeeding, p, may vary
widely, but values in the 0.5 to 0.8 range ar e reasonable. As a numerical

Chapter four: Enhancing CPU performance 189

Instruction

Py, = V \Pb 0.78

Branch Non-branch
(1 cycle)
/ \— P,=03
Taken Not taken
(1 + 3 =4cycles) (1 cycle)

Figure 4.13 Probability tree diagram for conditional branching example.

example, suppose for a given pr ogram that the branch penalty is 3 cycles,
p, = 0.22, and p, = 0.7. The average number of cycles per instr uction would
be 1 +(0.22)(0.7)(3) = 1.462, and the pipeline thr oughput would be approx-
imately 0.684 instructions per cycle.

Another way to compute this r esult without memorizing the formula
for C,y is to construct a simple probability tree diagram as shown in Figure
4.13. To obtain C,y, it is simply necessary to multiply the number of cycles
taken in each case times the product of the probabilities leading to that case,
and then sum the results. Thus, we obtain C 4, = (0.22)(0.7)(4) + (0.22)(0.3)(1)
+ (0.78)(1) = 1.462 as befor e, once again giving H = 0.684.

Now suppose the pipelined pr ocessor employs a branch pr ediction
scheme to try to improve performance. Let p, be the probability of a correct
prediction and let ¢ be the reduced penalty associated with a corr ectly pre-
dicted branch. (If corr ectly predicted branches can execute as quickly as
sequential code, ¢ will be equal to zer 0.) Branches that ar e incorrectly pre-
dicted (either way) incur the full branch penalty of b cycles. In this scenario,
the average number of cycles per branch instr uction can be shown to be

Czg=1+b-pb+ppc

Substituting this into our original equation, C,; = p,Cs + (1 — p,)(1), we find
that with branch prediction, the average number of cycles per instr uction is
given by

Cavg =1+ pypb — popb + pupipcc

Returning to our numerical example, let us assume that b is still 3 cycles
and p, and p, are still 0.22 and 0.7, r espectively. Let us further assume that
¢ =1 cycle and the pr obability of a corr ect branch prediction, p,, is 0.75.
Substituting these values into the first equation, we find that the average
number of cycles per branch instruction is 1 + 3 — (0.75)(3) + (0.7)(0.75)(1) =
2.275. The second equation gives the overall average number of cycles per

190 Computer Architecture: Fundamentals and Principles of Computer Design

Instruction

Py = V Xph =0.78

Branch Non-branch
(1 cycle)
P ty \— P,=03
Taken Not taken

1-P,=025
P,=075
Correctly Incorrectly Correctly Incorrectly
predicted predicted predicted predicted
(1+1=2cycles) (1 + 3 =4 cycles) (1 cycle) (1 + 3 =4 cycles)

Figure 4.14 Probability tree diagram for example with branch pr ediction.

instruction as 1+ (0.22)(3) - (0.22)(0.75)(3) + (0.22)(0.7)(0.75)(1) = 1.2805.
The pipeline throughput H with branch prediction is 1/1.2805, or appr oxi-
mately 0.781, a significant impr ovement over the example without branch
prediction.

Again, if one does not want to memorize formulas, the same esult could
be obtained using the pr obability tree diagram shown in Figur e 4.14. Mul-
tiplying the number of cycles r equired in each case times the pr obability of
occurrence and then summing the r esults, we get C,,; = (0.22)(0.7)(0.75)(2)
+ (0.22)(0.7)(0.25)(4) + (0.22)(0.3)(0.75)(1) + (0.22)(0.3)(0.25)(4) + (0.78)(1) =
1.2805, the same result obtained from our equation.

The performance benefits derived fr om branch pr ediction depend
heavily on the success rate of the pr ediction scheme. To illustrate this, sup-
pose that instead of p. = 0.75, our branch pr ediction scheme achieved only
50% correct predictions (p, = 0.5). In that case, the average number of cycles
per instruction would be 1 + (0.22)(3) - (0.22)(0.5)(3) + (0.22)(0.7)(0.5)(1) =
1.407 for a thr oughput of appr oximately 0.711, not much better than the
results with no pr ediction at all. If the pr ediction scheme performed very
poorly, for example, with p, = 0.3, the pipeline thr oughput could be even
worse than with no prediction, in this case, 1/1.5082 = 0.663 instructions per
cycle.

To facilitate branch prediction, it is common for modern pr ocessors to
make use of a branch target buffer (also known as a branch target cache or target
instruction cache) to hold the addr esses of branch instr uctions, the corr e-
sponding target addresses, and the information about the past behavior of
the branch. Any time a branch instr uction is encounter ed, this buf fer is
checked and, if the branch in question is found, the r elevant history is

Chapter four: Enhancing CPU performance 191

obtained and used to make the prediction. A prefetch queue may be provided
to funnel instr uctions into the pipeline. T o further improve performance,
some processors make use of dual-instr uction prefetch queues to optimize
branches. Using this multiple prefetch approach, the processor fetches instruc-
tions from both possible paths (sequential and tar get). By replicating the
prefetch queue (and possibly even the first few stages of the pipeline itself),
the processor can keep both possible execution paths “alive” until the branch
decision is made. Instructions from the correct path continue on to execution,
while those from the incorrect path are discarded. For this approach to work,
there must be suf ficient space on the chip for the pr efetch queues and suf-
ficient memory (particularly instr uction cache) bandwidth to allow for the
simultaneous prefetching of both paths.

4.3.4 Delayed control transfers

Delayed control transfers are another approach some designers have adopted
to eliminate, or at least minimize, the penalty associated with contr ol trans-
fers (both conditional and unconditional) in pipelined pr ocessors. A delayed
branch instruction is unlike any contr ol transfer instruction the reader has
likely encountered before. The branch instructions in most computer ar chi-
tectures take effect immediately. That is, if the branch condition is tr ue (or
if the instruction is an unconditional branch), the next instr uction executed
after the branch itself is the one at the target location. A delayed branch does
not take ef fect immediately. The instr uction sequentially following the
branch is executed whether or not it succeeds. Only after the instr uction
following the control transfer instruction, which is said to be in the delay slot,
is executed, will the taiget instruction be executed, with execution continuing
sequentially from that point.

An example of delayed branching is shown in Figue 4.15. Let us assume
instructions I, through I, form a program loop, with I, being a conditional
branch back to I;. In a normal instruction set architecture, Is would never be
executed until the loop had finished iterating. If this instr uction set were
implemented with a pipelined instruction unit, Iy would have to be flushed
from the pipeline every time the branch I, succeeded. If the number of loop
iterations turned out to be laige, many clock cycles would be wasted fetching
and flushing I.

Program loop

T

il I, I, (14d I ...
cond. .
X branch) ! \
! : i Already fetched into
-~ -----------=-=== pipeline behind I,; why
not execute it?
(brings it inside the loop)

Figure 4.15 Delayed branching example.

192 Computer Architecture: Fundamentals and Principles of Computer Design

The idea of delayed branching, which only makes sense in an ar chitec-
ture designed for pipelined implementation, comes fr om the desire not to
waste the time required to fetch I each time the branch (I,) is taken. “Since
I; is already in the pipeline,” the ar gument goes, “why not go ahead and
execute it instead of flushing it?” T o programmers used to working in
high-level languages or most assembly languages, this appr oach invariably
seems very strange, but it makes sense in terms of efficient hardware imple-
mentation. (The delayed branch scheme appears to an uninitiated assembly
programmer as a bug, but as all computing pr ofessionals should know, any
bug that is documented becomes a featur e.) I; appears to be — and is
physically located in memory — outside the loop, but logically , in terms of
program flow, it is part of the loop. The instr uctions are stored in the
sequence I, I, I, I, I;, but they are logically executed in the sequence I, I,,
L L, L.

The trick to using this feature lies in finding an instruction that logically
belongs before the branch but that is independent of the branch decision —
neither affecting the branch condition nor being affected by it. (If the control
transfer instruction is unconditional, any instr uction that logically goes
before it could be placed in its delay slot.) If such an instr ~ uction can be
identified, it may be placed in the delay slot to make pr oductive use of a
clock cycle that would otherwise be wasted. If no such instr uction can be
found, the delay slot may simply be filled with a time-wasting instr uction
such as a NOP. This is the softwar e equivalent of flushing the delay slot
instruction from the pipe.

Delayed control transfer instructions are not found in complex instr uc-
tion set computer (CISC) architectures, which by and large trace their lineage
to a time befor e pipelining was widely used. However , they are often fea-
tured in RISC architectures, which were designed from the ground up for a
pipelined implementation. CISC architectures were intended to make assem-
bly language programming easier by making the assembly language look
more like a high-level language. RISC ar chitectures, however, were not
designed to support assembly language pr ogramming at all, but rather to
support efficient code generation by an optimizing compiler (We will discuss
the RISC philosophy in mor e detail in Section 4.4.) The fact that delayed
branches make assembly programming awkward is not really significant as
long as a compiler can be designed to take advantage of the delay slots when
generating code.

There is no reason an architecture designed for pipelined implementa-
tion must have only one delay slot after each contr ol transfer instruction. In
fact, the example presented earlier in Table 4.11 is of a machine that could
have two delay slots. (Machines with very deep pipelines might have even
more.) Since instructions I; and I; will both have entered the pipeline before
the branch at I, can be taken, they could both be executed befor e the target
instruction if the ar chitecture so specifies (see Figur e 4.16). The more delay
slots that exist after a conditional branch instr uction, the more difficult it
will be for the compiler (or masochistic assembly pogrammer) to find useful,

Chapter four: Enhancing CPU performance 193

Apparent extent of Delay slot 1 Already in pipeline
m '/_ Delay slot 2 when I, executes
‘L LI | RS P PRV
branch) |

4 (cond. |
|
|

Actual extent of program loop
Figure 4.16 Example of control transfer with two delay slots.

independent instructions with which to fill them. In the worst case they can
still be filled with NOPs, which keeps the har dware simpler than it would
be if it had to be able to r ecognize this situation and flush the instr uctions
itself. This is one more example of the hardware—software tradeoffs that are
made all the time in computer systems design.

4.3.5 Memory accesses: delayed loads and stores

Control transfers are not the only occurr ences that can interr upt or slow
processing in a pipelined pr ocessor. Another potentially costly activity (in
terms of performance) is accessing memory for operands. Register operands
are generally accessible very quickly , such that they can be used for an
arithmetic computation within the same clock cycle. Memory operands, even
if they reside in cache, generally r equire at least one cycle to access befor e
any use can be made of them. RISC ar chitectures in particular attempt to
minimize this pr oblem by clearly subdividing their instr uction sets into
computational instructions (which operate only onr egister contents) and
memory access (or load and store) instructions that do not perform compu-
tations on data. Even so, a problem may arise when a subsequent instruction
tries to perform a computation on a data value being loaded by a pr evious
instruction. For example, suppose the following two instr uctions appear
consecutively in a program:

LOAD VALUE, R5
ADD R5, R4, R3

Given the slower speed of memory r elative to most CPUs, the variable
VALUE being loaded into r egister R5 might not be available by the time it
is needed by the ADD instruction. One obvious solution to the pr oblem
would be to build in some sort of har dware interlock that would fr eeze or
stall the pipeline until the data had been retrieved from memory and placed
in R5. Then, and only then, would theADD instruction be allowed to execute.
The hardware is thus made r esponsible for the corr ect operation of the
software — a typical, traditional computer design appr oach.

194 Computer Architecture: Fundamentals and Principles of Computer Design

Another way of appr oaching this problem is simply to document that
loads from memory always take at least one extra cycle to occur . The com-
piler, or the assembly language pr ogrammer, would be made awar e that
every load instruction has a “load delay slot.” In other wods, the instruction
immediately following a load must not make use of the value being loaded.
(In some ar chitectures, the following instr uction may also not be another
load.) If the load’s destination register is referenced by the following instruc-
tion, it is known that the value obtained will be the old value, not the new
one being loaded fr om memory. This is another example of documenting
what might appear to the casual user to be a bug and thus enshrining it as
a feature of the instr uction set. Instead of the har dware compensating for
delays in loading data and ensuring the corr ect operation of the softwar e,
the software is simply informed of the details of the har dware implementa-
tion and for ced to ensure correctness on its own. (Note that a har dware
interlock will still be r equired to detect data cache misses and stall the
pipeline when they occur, since main memory access may take several clock
cycles rather than one.) In the example above, corr ectness of operation is
ensured by simply inserting an unr elated but useful instruction (or a NOP
if no such instr uction can be found) between the LOAD and the ADD (or
any other operational instruction) that uses the r esults of the LOAD.

Store operations (writes of data to memory) ar e less problematic than
loads because the CPU is unlikely to need to retrieve the stored information
from memory soon enough to pose a problem. (Since stores write data from
a register to memory, presumably the CPU can use the copy of the data still
in a register if it is needed.) However , back-to-back memory accesses may
pose a problem for some machines because of the time required to complete
an access. If two consecutive load or stor e operations are executed, it may
be necessary to stall the pipeline. For that rason, stores in some architectures
are also sometimes said to have a “delay slot” that should not contain another
load or store instruction. If it does, the pipeline may have to be stalled for
one cycle to allow the first store to complete before a second memory access
is done.

4.3.6 Data dependencies and hazards

Dependency relations among computed r esults, giving rise to pipeline haz-
ards, may also hold up operations in a pipelined CPU and keep it fr om
approaching its theoretical throughput. In a nonpipelined pr ocessor, each
instruction completes before execution of the next instr uction begins. Thus,
values computed by a pr evious instruction are always available for use in
subsequent instructions, and the program always obtains the results antici-
pated by the von Neumann sequential execution model. Since a pipelined
instruction unit overlaps the execution of several instr uctions, though, it
becomes possible for results to become sensitive to the timing of instructions
rather than just the or der in which they appear in the pr ogram. This is
obviously not a desirable scenario and must be corr ected (or at least

Chapter four: Enhancing CPU performance 195

Cycle |Stage 1|Stage 2|Stage 3|Stage 4 Cycle |Stage 1|Stage 2|Stage 3|Stage 4
1 I 1 I
2 L, I =] 2 I, I
3 I; I L ¢ 3 1.3 Ilz L
4 I, I, 12\“\11 4 fg fz — I,
5 I | 1 Iy I, 5 L, | I I; —
(a) Incorrect operation stage 3 needs (b) Correct operation due to stalling pipeline
result of I; at beginning of cycle 4; not for 1 cycle after cycle 3; stage 3 will now
available until end of cycle 4. have updated value for use in executing I,.

Figure 4.17 Data dependency problem in pipelined CPU.

accounted for) if we want our pipelined machine to compute the sameesults
as a purely sequential machine.

For an example of a common data dependency pr oblem in a pipelined
machine, consider the following situation (illustrated in Figur e 4.17). Sup-
pose a CPU with a four-stage pipeline like the one in our pr evious example
executed the following sequence of instr uctions:

I,: ADD R1,R2,R3
L: SUB R3, R4, R6
I;: XOR R, R5,R3

The last operand listed for each instr uction is the destination. Thus, it can
be seen that instruction I, uses the result computed by I;, but will that result
be available in time for I , to use it?

In Figure 4.17a, we can see how instr uction I; proceeds through the
pipeline, with I, and I, following it stage by stage. The r esult from I, is not
computed by stage 3 until the end of the thir d clock cycle and is not stor ed
back into the destination register (R3) by stage 4 until the end of the fourth
clock cycle. However, stage 3 needs to r ead R3 and obtain its new contents
at the beginning of the fourth clock cycle so they can be used to execute the
subtraction operation for I,. If execution proceeds unimpeded as shown, the
previous contents of R3 will be used by I , instead of the new contents and
the program will operate incorr ectly. This situation, in which ther e isa
danger of incorrect operation because the behavior of one instr uction in the
pipeline depends on that of anothery is known as adata hazard. This particular
hazard is known as a true data dependence or (more commonly) a read after
write (RAW) hazard because I,, which reads the value in R3, comes afterI ,,
which writes it.

To avoid the hazard and ensure correct operation, the control unit must
make sure thatI, actually reads the data after I , writes it. The obvious
solution is to stall I, (and any following instr uctions) for one clock cycle in

196 Computer Architecture: Fundamentals and Principles of Computer Design

order to give I, time to complete. Figure 4.17b shows how this corr ects the
problem. I, now does not r each stage 3 of the pipeline until the beginning
of the fifth clock cycle, so it is executed with the corr ect operand value from
R3.

RAW hazards are the most common data hazards and the only possible
type in a machine with a single pipelined instruction unit where instructions
are always begun and completed in the same or der. Other types of data
hazards, known as write after read (WAR) and write after write(WAW) hazards,
can only exist in machines with multiple pipelines (or at least multiple
execution units, which might be “fed” by a common pipeline) or in situations
where writes can be done by mor e than one stage of the pipe. In such a
machine, instructions may be completed in a dif ferent order than they were
fetched. This introduces new complications to the pr ocess of ensuring that
the pipelined machine obtains the same results as a nonpipelined processor.

Consider again the sequence of thr ee instructions introduced above.
Notice that I, and I; both write their results to register R3. In a machine with
a single pipeline feeding a single ALU, we know that if I, enters the pipeline
first (as it must), it will also be completed first. Later , its result will be
overwritten by the r esult calculated by I ;, which of course is the behavior
expected under the von Neumann sequential execution model. Now suppose
the machine has more than one ALU that can execute the equired operations.
The ADD instruction (I;) might be executed by one unit while the XOR (I ;)
is being executed by another. There is no guarantee that I, will be completed
first or haveitsr esult sent to R3 first. Thus, it is possible that due to
out-of-order execution R3 could end up containing the wr ong value. This
situation, in which two instructions both write to the same location and the
control unit must make sure that the second instruction’s write occurs after
the first write, is known as an output dependence or WAW hazard.

Now consider the r elationship between instr uctions I, and I; in the
example code. Notice that I ; writes its result to R3 after the pr evious value
in R3 has been r ead for use as one of the operands in the subtraction per -
formed by I,. At least that is the way things ar e supposed to happen under
the sequential execution model. Once again, however, if multiple execution
units are employed, it is possible thatI , and I; may execute out of their
programmed order. If this were to happen, I, could mistakenly use the new
value in R3 that had been updated by I, rather than the old value computed
by L. This is one more situation, known as an antidependence or WAR hazard,
that must be guarded against in a machine wher e out-of-order execution is
allowed.

There is one other possible dependent relationship between instructions
that might have their execution overlapped in a pipeline. Thisr ead after
read situation is the only one that never cr eates a hazard. In our example,
both I, and I read R1 for use as a source operand. Since R1 is never modified
(written), both instructions are guaranteed to read the correct value regard-
less of their or der of execution. Thus, a simple r ule of thumb is that for a

Chapter four: Enhancing CPU performance 197

data hazard to exist between instructions, at least one of them must modify
a commonly used value.

4.3.7 Controlling instruction pipelines

Controlling the operation of pipelined pr ocessors in order to detect and
correct for data hazards is a very important but very complex task, especially
in machines with multiple execution units. In a machine with only one
pipelined instruction execution unit, RA W hazards are generally the only
ones a designer must worry about. (The exception would be in the very
unusual case where more than one stage of the pipeline is capable of writing
a result.) Control logic must keep track of (or “r eserve”) the destination
register or memory location for each instr uction in progress and check it
against the sour ce operands of subsequent instr uctions as they enter the
pipe. IfaRA W hazard is detected, one appr oach is to simply stall the
instruction that uses the operand being modified (as shown in Figur e 4.17b)
while allowing the instruction that modifies it to continue. When the location
in question has been modified, the r eservation placed on it is r eleased and
the stalled instruction is allowed to pr oceed. This approach is straightfor-
ward, but forced stalls impair pipeline thr oughput.

Another approach that can minimize, or in some cases eliminate, the
need to stall the pipeline is known as data forwarding. By building in addi-
tional connectivity within the pr ocessor, the result just computed by an
instruction in the pipeline can be forwar ded tothe ALU for use by the
subsequent instruction at the same time it is being sent to the r eserved
destination register. This approach generally saves at least one clock cycle
compared to the alternative of writing the data into the first instr ~ uction’s
destination register and then immediately reading it back out for use by the
following, dependent instruction.

Finally, designers can choose not to build in contr ol logic to detect, and
interlocks or forwarding to avoid, these RAW hazards caused by pipelining.
Rather, they can document pipeline behavior as an architectural feature and
leave it up to the compiler to r eorder instructions and insert NOPs to artifi-
cially stall subsequent instructions, allowing a sufficient number of cycles to
elapse so that the value in question will definitely be written befoe it is read.
This solution simplifies the har dware design but is not ideal for designing
a family of computers since it ties the instr uction set architecture closely to
the details of a particular implementation, which may later be superseded.
In order to maintain compatibility, more advanced future implementations
may have to emulate the behavior of the elatively primitive earlier machines
in the family. Still, the approach of handling data dependencies in softwar e
is a viable approach for designers who want to keep the hardware as simple
as possible.

Machines with multiple execution units encounter a host of dif ficulties
not faced by simpler implementations. Adding WAW and WAR hazards to
the RAW hazards inherent to any pipelined machine makes the design of

198 Computer Architecture: Fundamentals and Principles of Computer Design

control logic much mor e difficult. Two important contr ol strategies were
devised in the 1960s for high-performance, internally parallel machines of
that era. Variations of these methods are still used in the microprocessors of
today. These design appr oaches are known as the scoreboard method and
Tomasulo’s method.

The scoreboard method for resource scheduling dates back to the CDC
6600 supercomputer, which was intr oduced in 1964. James Thornton and
Seymour Cray were the lead engineers for the 6600 and contributed sub-
stantially to this method, which was used later in the Motor ola 88000 and
Intel i860 microprocessors. The machine had 10 functional units that wer e
not pipelined but did operate concurr ently (leading to the possibility of
out-of-order execution). The CDC 6600 designers came up with the idea of
a central clearinghouse, or scoreboard, to schedule the use of functional units
by instructions. As part of this pr ocess, the scoreboard had to detect and
control inter-instruction dependencies to ensur e correct operation in an
out-of-order execution environment.

The scoreboard is a hardware mechanism — a collection of registers and
control logic — that monitors the status of all data r egisters and functional
units in the machine. Every instr uction is passed through the scoreboard as
soon as it is fetched and decoded in or der to check for data dependencies
and resource conflicts before the instruction is issued to a functional unit for
execution. The scoreboard checks to make sur e the instruction’s operands
are available and that the appropriate functional unit is also available; it also
resolves any write conflicts so that corr ect results are obtained.

There are three main parts, consisting of fables, or sets of registers, with
associated logic, to the scor eboard: functional unit status, instruction status,
and destination register status. The functional unit status table contains several
pieces of information about the status of each functional unit. This informa-
tion includes a busy flag that indicates whether or not the unit is curr ently
in use, two fields indicating the numbers of its source registers and one field
indicating its destination register number, and ready flags for each of the source
registers to indicate whether they ar e ready to be read. (A source register is
deemed ready if it is not waiting to r eceive the results of a previous opera-
tion.) If a given functional unit can perform mor e than one operation, there
might also be a bit indicating which operation it is performing.

The instruction status table contains an entry for each instr uction from
the time it is first decoded until it completes (until its r esult is written to the
destination). This table indicates the curr ent status of the instr uction with
respect to four steps: (a) whether or not it has been issued, (b) whether or
not its operands have been read, (c) whether or not its execution is complete,
and (d) whether or not the r esult has been written to the destination.

The destination register status table is the key to detecting data hazar ds
between instructions. It contains one entry for each CPU register. This entry
is set to the number of the functional unit that will pr oduce the result to be
written into that register. If the register is not the destination of a curr ently
executing instruction, its entry is set to a null value to indicate that it is not

Chapter four: Enhancing CPU performance 199

Table 4.12 Scoreboard Example: Functional Unit Status T able

Source Source

Unit Destination | Register Register
Unit Name | Number | Busy? | Register 1 Ready? 2 Ready?
Adder/ 0 No — — — — —
Subtractor 1
Adder/ 1 Yes 5 2 Yes 7 Yes
Subtractor 2
Multiplier 2 Yes 0 1 Yes 3 Yes
Divider 3 No — — — — —

involved in any write dependencies. Table 4.12 to Table 4.14 show examples
of possible contents of the functional unit status, instr ~ uction status, and
destination register status tables for a machine with four functional units
and eight registers. The actual CDC 6600 was more complex, but this exam-
ple will serve for illustrative purposes.

The tables show a typical situation with several instr uctions in some
stage of completion. Some functional units are busy and some are idle. Unit
0, the first adder/subtractor, has just completed the first ADD operation and
sent its result to R6, so it is momentarily idle. Unit 1, the second adder/
subtractor, has just completed the second ADD operation. However, the
result has yet to be written into R5 (in this case, simply because not enough
time has elapsed for the write operation to complete; in some situations, the
delay could be a deliberate stall caused by a W AR hazard between this and
a previous instruction). Therefore, this instruction is not complete and the
reservations on the functional unit and destination r egister have not been
released. Unit 2, the multiplier , has the first MUL operation in pr ogress.
Notice that R0 is reserved in the destination register status table as the result
register for unit 2. As long as this is true, the control logic will not issue any
subsequent instruction that uses RO0.

Table 4.13 Scoreboard Example: Instruction Status Table

Instruction | Instruction | Operands | Execution Result
Instruction Address Issued? Read? Complete? | Written?
ADD R1,R4,R6 1000 Yes Yes Yes Yes
ADD R2,R7,R5 1001 Yes Yes Yes No
MUL R1,R3,R0 1002 Yes Yes No No
MUL R2,R6,R4 1003 No No No No
ADD RO,R5,R7 1004 No No No No

Table 4.14 Scoreboard Example: Destination Register Status T able

R7 | R6 | R5 | R4 | R3 | R2 | R1 | RO
Functional Unit Number | — - 1 - - - - 2

200 Computer Architecture: Fundamentals and Principles of Computer Design

As new instructions are fetched and decoded, the scoeboard checks each
for dependencies and hardware availability before issuing it to a functional
unit. The second MUL instruction has not yet been issued because the only
multiplier, functional unit 2, is busy. Hardware (unit 0) is available such that
the third ADD instruction could be issued, but it is stalled due to data
dependencies: neither of its operands (in R0 and R5) ar e yet available. Only
when both of these values are available can this instruction be issued to one
of the adder/subtractor units. The new R5 value will be available soon, but
until the first multiply completes (fr eeing unit 2 and updating R0) neither
of the two instructions following the first MUL can be issued.

As long as scor eboard entries remain, subsequent instructions may be
fetched and checked to see if they are ready for issue. (In Table 4.13, the last
scoreboard entry is still available and the first one is no longer needed now
that the instruction has completed, so two additional instr uctions could be
fetched.) If all scor eboard entries are in use, no mor e instructions can be
fetched until some instr uction currently tracked by the scor eboard is com-
pleted. The limited number of scor eboard entries, along with the fr equent
stalls caused by all thr ee types of data hazar ds and the fact that all r esults
must be written to the r egister file before use, are the major limitations of
the scoreboard approach.

Another important control strategy was first used in the IBM 360/91, a
high-performance scientific computer introduced in 1967. Its multiple pipe-
lined execution units were capable of simultaneously processing up to three
floating-point additions or subtractions and two floating-point multiplica-
tions or divisions in addition to six loads and thr ee stores. The operation of
the floating-point registers and execution units (the heart of the machine’s
processing capability) was controlled by a hardware scheduling mechanism
designed by Robert Tomasulo.

Tomasulo’s method is essentially a refinement of the scoreboard method
with some additional features and capabilities designed to enhance concur -
rency of operations. One major dif ference is thatin T omasulo’s method,
detection of hazards and scheduling of functional units ar e distributed, not
centralized in a single scoreboard. Each data register has a busy bit and a tag
field associated with it. The busy bit is set when an instruction specifies that
register as a destination and clear ed when the r esult of that operation is
written to the r egister. The tag field is used to identify which unit will
compute the result for that r egister. This information is analogous to that
kept in the destination status r egister table of a scor eboard.

Another principal feature of Tomasulo’s method that dif fers from the
scoreboard method is the use of reservation stations to hold operands (and
their tags and busy bits, plus an operation code) for the functional units.
Each reservation station is essentially a set of input r egisters that are used
to buffer operations and operands for a functional unit. The details of func-
tional unit construction are not important to the contr ol strategy. For exam-
ple, if the machine has thr ee reservation stations for addition/subtraction
(as the 360/91 did), it does not matter whether it has thr ~ ee nonpipelined

Chapter four: Enhancing CPU performance 201

adders or one thr ee-stage pipelined adder (as was actually the case). Each
reservation station has its own unit number and appears to ther est of the
machine as a distinct “virtual” adder. Likewise, if there are two reservation
stations for multiplication, the machine appears to have two virtual multi-
pliers regardless of the actual har dware used.

The tags associated with each operand in T omasulo’s method are very
important because they specify the origin of each operand independently of
the working r egister set. Though pr ogram instructions are written with
register numbers, by the time an instr uction is dispatched to a r eservation
station, its operands ar e no longer identified by their original r egister des-
ignations. Instead, they are identified by their tags, which indicate the num-
ber of the functional unit (actually the number of a virtual functional unit
— one of the reservation stations) that will produce that operand. Operands
being loaded from memory are tagged with the number of their load buffer
(in a modern machine they might be tagged by cache location, but the 360/
91 had no cache). Once an operand has been pr ~ oduced (or loaded fr om
memory) and is available in the r eservation station, its tag and busy bit ar e
changed to 0 to indicate that the data value is pr esent and ready for use.
Any time a functional unit is r eady to accept operands, it checksitsr eser-
vation stations to see if any of them have all operands pesent; if so, it initiates
the requested operation. Thus, although programs for the machine are writ-
ten sequentially using the von Neumann model, the functional units ef fec-
tively operate as dataflow machines (see Section 7.1) in which execution is
driven by the availability of operands.

This use of tags generated on the fly , rather than the original r egister
numbers generated by the programmer or compiler, to identify operands is
known as register renaming. The r egister renaming scheme significantly
reduces the number of accesses to data r egisters; not only do they not have
to be read for operands if data ar e coming directly from a functional unit,
but only the last of a series of writes to the same r egister actually needs to
be committed to it. The intermediate values ar e just sent dir ectly to the
reservation stations as necessary . Tomasulo’s register renaming scheme is
instrumental in avoiding stalls caused by WAR and WAW hazards and thus
achieves a significant advantage over the scor eboard method.

Another important feature of the 360/91 that helped to r educe or elim-
inate stalls caused by RAW hazards was the use of a common data bus (CDB)
to forward data to r eservation stations that need a just-calculated r esult.
Because of this data forwarding mechanism (which goes hand in hand with
the register renaming scheme), the reservation stations do not have to wait
for data to be written to the r egister file. If the tag of a value on the CDB
matches the tag of an operand needed by any r eservation station, the oper-
and is captured from the bus and can be used immediately . Meanwhile, the
register file also monitors the CDB, loading a new value into any r egister
with a busy bit set whose tag matches the one on the bus. Figur e 4.18isa
simplified view of a machine with T omasulo scheduling and a CDB ar chi-
tecture like the IBM 360/91.

202 Computer Architecture: Fundamentals and Principles of Computer Design

CPU registers
Busy Tag Data

RO
R1
R2
R3

(SRR <Y

Busy Tag Op Data Busy Tag Op Data
ASO 4 Busy Tag Op Data Busy Tag Op Data
AS1 []] IMDO[T T 1 |7
AS2 | Mp1] [[| |8

o v

Reservation
stations

Adder/subtractor Multiplier/divider

Common data bus
Figure 4.18 Example architecture with a CDB and r eservation stations.

Tomasulo’s method has some distinct disadvantages. Not only does it
require complex hardware for control, but its r eliance on a single, shar ed
bus makes it hard to scale up for a machine with many r egisters and func-
tional units (typical of modern CPUs). Given suf ficient real estate on the
chip, additional shared internal buses can be constructed to remove the CDB
bottleneck. Likewise, the larger tags (and greater number of tag comparisons)
needed in a more complex machine can be accommodated if sufficient space
is available. However, the great selling point for Tomasulo’s method is that
it helps encourage concurr ency of execution (to a gr eater degree than the
scoreboard method) while preserving the dependency relationships inherent
to programs written under the von Neumann sequential execution model.
Tomasulo’s method in particular helps get better performance out of ar chi-
tectures with multiple pipelines. Because of this, appr oaches based on or
very similar to this method are used in many modern, superscalar (see Section
4.5.2) microprocessors including the more advanced members of the Alpha,
MIPS, PA /RISC, Pentium, and PowerPC families.

4.4 Characteristics of RISC machines

In Section 3.1.6 we discussed some of the ar chitectural features common to
machines built around the RISC philosophy. These included an instr uction
set with a limited number of fixed-length instr uctions using as few instruc-
tion formats as possible, simple functionality of each instr uction with opti-
mization performed by the compiler, support for only a few simple address-
ing modes, and a load/store approach in which computational instructions
operate only on r egisters or constants. Later, when discussing contr ol unit
design, we mentioned another characteristic of RISC machines that distin-
guishes them from CISCs: RISCs invariably use har dwired control.

Chapter four: Enhancing CPU performance 203

Many of the other characteristics common to RISC ar chitectures stem
from one other guiding principle, which we alluded to earlier and can now
fully appreciate: RISCs are architecturally designed to accommodate a pipe-
lined implementation. It is true that modern implementations of the remain-
ing CISC architectures are almost always pipelined to some extent, but this
pipelining is done in spite of their ar chitectural complexity, not because of
it. RISCs are designed with a simple pipeline implementation in mind, one
that allows the har dware to be made as simple and fast as possible while
consigning complex operations (or anything that cannot be done quickly in
hardware) to software. One humorous definition of the RISC acronym, “Rel-
egate Impossible Stuff to Compilers,” expresses this philosophy quite well.

Other characteristics common to RISC ar chitectures are essentially sec-
ondary traits that ar e implied by one or mor e of the attributes alr eady
mentioned. The three-operand instructions common to RISC ar chitectures
are designed to make things easier for compilers.Also, because of their load /
store instruction set architecture, RISCs need a lar ge register set to achieve
good performance. This lar ge register set (as well as other enhancements
such as on-chip cache memory and floating-point hadware) is made possible
by the use of a har dwired control unit, which takes up much less space on
the chip than would a microprogrammed control unit. (A typical hardwired
control unit may consume only about 10% of the available chip ar ea, while
a microprogrammed control unit may occupy 50% or mor e of the silicon.)
Single-cycle instruction execution and the existence of delay slots behind
control transfer and memory access instr uctions are direct consequences of
a design that supports pipelining. Likewise, a pipelined machine benefits
greatly from a Harvard architecture that keeps memory accesses for data
from interfering with instr uction fetching. RISC machines almost always
have a Harvard architecture, which typically manifests itself as separate,
on-chip data and instruction caches.

The main distinguishing characteristics of a typical RISC ar chitecture
and its implementation can be summarized briefly as follows:

e Fixed-length instructions are used to simplify instr uction fetching.

e The machine has only a few instruction formats in order to simplify
instruction decoding.

* A load/store instruction set ar chitecture is used to decouple memory
accesses from computations so that each can be optimized indepen-
dently.

e Instructions have simple functionality, which helps keep the control unit
design simple.

* A hardwired control unit optimizes the machine for speed.

e The architecture is designed for pipelined implementation , again to op-
timize for speed of execution.

® Only a few, simple addressing modes are provided, since complex ones
may slow down the machine and ar e rarely used by compilers.

204 Computer Architecture: Fundamentals and Principles of Computer Design

e Optimization of functions by the compiler is emphasized since the archi-
tecture is designed to support high-level languages rather than as-
sembly programming.

o Complexity is in the compiler (Where it only affects the performance of
the compiler), not in the hardware (where it would affect the perfor-
mance of every program that runs on the machine).

Additional, secondary characteristics pr evalent in RISC machines
include:

* Three-operand instructions make it easier for the compiler to optimize
code.

* A large register set (typically 32 or more registers) is possible because
the machine has a small, har dwired control unit and desirable be-
cause of the need for the compiler to optimize code for the load/
store architecture.

e Instructions execute in a single clock cycle (or at least most of them
appear to, due to pipelined implementation).

® Delayed control transfer instructions are used to minimize disr uption
to the pipeline.

* Delay slots behind loads and stores help cover up the latency of memory
accesses.

® A Harvard architecture is used to keep memory accesses for data from
interfering with instr uction fetching and thus keep the pipeline(s)
full.

® On-chip cache is possible due to the small, hardwired control unit and
necessary to speed instruction fetching and keep the latency of loads
and stores to a minimum.

Not every RISC architecture exhibits every one of the above featur es —
nor does every CISC architecture avoid all of them. They do, however, serve
as reference points that can help us understand and classify a new or unfa-
miliar architecture. What distinguishes a RISC ar chitecture from a CISC is
not so much a checklist of featues but the assumptions underlying its design.
RISC is not a specific machine, but a philosophy of machine design that
stresses keeping the hardware as simple and fast as rasonably possible while
moving complexity to the software. (Note that “reduced instruction set” does
not mean reduced to the absolute, bare minimum required for computation.
It means reduced to only those features that contribute to increased perfor-
mance. Any features that slow the machine in some r espect without more
than making up for it by incr easing performance in some other way ar e
omitted.) Given a suitable, limited set of machine operations, the RISC phi-
losophy effectively posits that he who can execute the most operations in
the shortest time wins. It is up to the compiler to find the best encoding of
a high-level algorithm into machine language instr uctions executed by this
fast pipelined processor and thus maximize system performance.

Chapter four: Enhancing CPU performance 205

It is interesting to note that while the acr onym RISC was coined cir ca
1980 by David Patterson of the University of California at Berkeley (and took
several years after that to make its way into common parlance), many of the
concepts embodied in the RISC philosophy pr edated Patterson’s work by
more than 15 years. In hindsight, the CDC 6600 has beenr ecognized by
many computer scientists as the first RISC ar chitecture. Though it was not
pipelined, the 6600 did have multiple execution units and thus was some-
times able to appr oach a throughput of approximately one instruction per
clock cycle (an unhear d-of achievement in 1964). It displayed many of the
other RISC characteristics described above, including a small instruction set
with limited functionality, a load/store architecture, and the use of thr ee
operands per instruction. It did, however, violate our criterion of having set
length instructions; some were 32 bits long, while others took up 64 bits.
Though no one gave their architecture a catchy nickname, the 6600’s design-
ers Thornton and Cray wer e clearly well ahead of their time.

Another RISC architecture that existed before the name itself came about
was the IBM 801. This pr oject, which was code-named America at first but
would eventually be given the number of the building that housed it, was
started in 1975, several years befor e the work of Patterson at Berkeley and
John Hennessy at Stanford. The 801 was originally designed as a minicom-
puter to be used as the contr ol processor for a telephone exchange system
— aproject that was eventually scrapped. The 801 never made it to the
commercial market as a stand-alone system, but its arhitecture was the basis
for IBM’s ROMP microprocessor, which was developed in 1981. The ROMP
was used inside other IBM har dware (including the commer cially unsuc-
cessful PC/RT, which was the first RISC-based PC). The 801’s simple ar chi-
tecture was based on studies performed by IBM engineer John Cocke, who
examined code compiled for the IBM System /360 ar chitecture and saw that
most of the machine instructions were never used. While it was not a finan-
cial success, the IBM 801 inspir ed a number of other pr ojects, including the
ones that led to IBM’s development of the POWER (performance optimized
with enhanced RISC) ar chitecture used in the RS/6000 systems, as well as
the PowerPC microprocessor family.

It was only some time after the IBM 801 pr oject was under way that
Patterson began developing the RISC I micr oprocessor at Berkeley while,
more or less simultaneously, Hennessy started the MIPS project at Stanford.
(Both projects were funded by the Defense Advanced Research Projects
Agency [DARPA].) These two ar chitectures were refined over a period of
several years in the early 1980s; derivatives of both wer e eventually com-
mercialized. Patterson’s second design, the RISC II, was adapted by Sun
Microsystems to create the SPARC architecture, while Hennessy cr eated a
company called MIPS Computer Systems (now known as MIPS T echnolo-
gies) to market chips based on his ar chitecture.

Patterson’s design was particularly innovative initsuseof ar egister
remapping scheme known as overlapping register windows to reduce the per-
formance cost associated with pr ocedure calls. (Analysis done by the

206 Computer Architecture: Fundamentals and Principles of Computer Design

Window 0 Window 1 Window 2
RO Global RO Global RO Global
R7 registers R7 registers R7 registers
R8 Input
R15 registers
8 (invisible)
R16 Local
R23 registers
8 (invisible)
R24 Output R8 Input
R31 registers R15 registers
R16 Local
(invisible) Ro3| registers
R24 Output R8 Input
R31| registers R15| registers
R16
(invisible) Local
R23 registers
R24 Output
R31 registers
(invisible)

Figure 4.19 Overlapping register window scheme.

Berkeley research team indicated that calling and returning from procedures
consumed much of a processor’s time while running compiled code.) In this
scheme, the CPU has many mor e hardware registers than the programmer
can “see.” Each time a pr ocedure call occurs, the registers (except for a few
that have global scope) are logically renumbered such that the called routine
uses a dif ferent subset (or “window”) of them. However , the remapping
leaves a partial overlap of registers that can be used to pass arguments from
the caller to the callee. (See Figur e 4.19.) The previous mapping is restored
when the called procedure is exited. By using registers rather than the stack
for parameter passing, the CPU can avoid many memory accesses that would
otherwise be necessary and thus achieve higher performance while executing
the program.

Though these new chips took some time to gain widespread acceptance,
they demonstrated the viability of the RISC appr oach. The commercial ver-
sions of Patterson’s and Hennessy’s pioneering ar chitectures were used in
high-performance engineering workstations successfully marketed by Sun
Microsystems and Silicon Graphics; they eventually became two of the most
successful RISC architectures to date and ultimately br ought the RISC phi-
losophy into the mainstr eam of computer ar chitecture. By the 1990s, RISC
had become the dominant philosophy of computer design.

What will be the design philosophy of the futur e? Already the
once-sharp distinctions between RISC and CISC machines have started to
blur as we have enter ed what some observers call the post-RISC era. Many

Chapter four: Enhancing CPU performance 207

of the latest computer ar chitectures borrow features from both RISC and
CISC machines; their designers have found that by selectively adding back
certain features that were eliminated from the original RISC ar chitectures,
performance on many applications (especially those that use graphics) can
be improved. Meanwhile, computer engineers charged with the task of keep-
ing legacy CISC architectures, such as the Intel x86, alive have adopted many
of the techniques pioneer ed by RISC designers. AMD’s K5 and K6 chips
emulated the x86 instruction set rather than executing it directly. These chips
achieved high performance by br eaking each CISC macr oinstruction down
into simpler RISC-like instructions that were then executed on highly pipe-
lined “core” hardware.

Considering that RISC and CISC ar e radically different philosophies of
computer design, it makes sense to view the future of computer architecture
in philosophical terms. The philosopher Geor g Hegel believed that human
thought progresses from an initial idea to its opposite and then to anew
higher concept that binds the two together and transcends them. These thee
steps are known as thesis, antithesis, and synthesis; through them the tr uth
develops and progress is achieved. Considering computer systems design
in this light, CISC can be seen as a thesis put forward in the 1960s and 1970s,
with RISC, its antithesis, stepping forwar d to challenge it in the 1980s and
1990s. The computing architectures of the new millennium may thus be seen
as the synthesis of CISC and RISC, with the pr ~ omise — alr eady being
achieved — of going beyond the limitations of either appr oach to deliver a
new level of computing performance in the next several years.

4.5 Enhancing the pipelined CPU

We learned in the preceding sections that pipelining is an ef fective way to
improve the processing performance of computer har dware. However, a
simple arithmetic or instruction unit pipeline can only improve performance
by a factor approaching, but never reaching or exceeding, the small number
of stages employed. In this section we will describe design appr oaches that
have been adopted to achieve further performance impr ovements in pipe-
lined CPUs.

4.5.1 Superpipelined architectures

The fundamental limitation on performance impr ovement using pipelining
is the number of stages into which the task is subdivided. A three-stage
pipeline can at best yield a speedup appr oaching a factor of 3; a five-stage

pipeline can only approach a 5:1 speed ratio. The simplest and most straight-
forward approach to achieving further performance impr ovement, then, is
simply to divide the pipeline into mor e smaller stages in order to clock it at
a higher frequency. There is still only one pipeline, but by incr easing the
number of stages we increase its temporal parallelism — it is working on more

208 Computer Architecture: Fundamentals and Principles of Computer Design

instructions at the same time. This use of a very deep, very high-speed
pipeline for instruction processing is called superpipelining.

One of the first superpipelined pr ocessors was the MIPS R4000 (intr o-
duced in 1991), which had an eight-stage pipeline instead of the four - or
five-stage design that was common in RISC ar chitectures at the time. The
eight stages were instruction fetch (first half), instruction fetch (second half),
instruction decode and register fetch, execution, data cache access (first half),
data cache access (second half), tag check, and write back. By examining this
decomposition of the task, one can see that the speed of the cache had been
a limiting factor in CPU performance. In splitting up memory access acr oss
two stages, the MIPS designers wer e able to better match that slower oper -
ation with the speed of internal CPU operations and thus balance the work-
load throughout the pipe.

The MIPS R4000 illustrated both the advantages and disadvantages of
a superpipelined approach. On the plus side, it achieved a very high clock
frequency for its time. The single pipelined functional unit was simple to
control and took up little space on the chip, leavingr oom for more cache
and other components including a floating-point unit and a memory man-
agement unit. However, as with all deeply pipelined instr uction execution
units, branching presented a major problem. The branch penalty of the R4000
pipeline was only three cycles (one might reasonably expect an even greater
penalty given an eight-stage implementation). However , the MIPS instr uc-
tion set ar chitecture had been designed for a shallower pipeline and thus
only specified one delay slot following a branch. This meant ther e were
always at least two stall cycles after a branch — thr ee if the delay slot could
not be used constructively. This negated much of the advantage gained from
the chip’s higher clock fiequency. The R4000’s demonstration of the inceased
branch delays inherent to a single superpipeline was so convincing that this
approach has largely been abandoned. Most current machines that are super-
pipelined are also superscalar (see next section) to allow speculative execution
down both paths from a branch.

4.5.2 Superscalar architectures

A superscalar machine is one that uses a standar d, von Neumann-type
instruction set but can issue (and thus often complete) multiple instr uctions
per clock cycle. Obviously, this cannot be done with a single conventional
pipeline, so an alternate definition of superscalar is a machine with a sequen-
tial programming model that uses multiple pipelines. Superscalar CPUs
attempt to exploit whatever degree of instruction level parallelism (ILP) exists
in sequential code by increasing spatial parallelism (building multiple execu-
tion units) rather than temporal parallelism (building a deeper pipeline). By
building multiple pipelines, designers of superscalar machines can get
beyond the theoretical limitation of one instruction per clock cycle inherent
to any single-pipeline design and achieve higher performance without the
problems of superpipelining.

Chapter four: Enhancing CPU performance 209

Many microprocessors of the past several years have been implemented
as superscalar designs. Superscalar CPUs ar e generally classified by the
maximum number of instructions they can issue at the same time. (Of course,
due to data dependencies, str uctural hazards, and branching, they do not
actually issue the maximum number of instructions during every cycle.) The
maximum number of instr uctions that can be simultaneously issued
depends, as one might expect, on the number of pipelines built into the CPU.
DEC’s Alpha 21064 (a RISC pr ocessor introduced in 1992) was a two-issue
chip, while its successor the 21164 (1995) was a four-issue processor. Another
way of saying the same thing is to call the 21064 a two-way superscalar CPU,
while the 21164 is said to be four-way superscalar. The MIPS R10000, R12000,
R14000, and R16000 ar e also four-way superscalar processors. Even CISCs
can be implemented in superscalar fashion: as far back as 1993, Intel’s first
Pentium chips were based on a two-way superscalar design. The Pentium
had essentially the same instruction set architecture as the 486 processor but
achieved higher performance by using two execution pipelines instead of
one.

In order to issue multiple instr uctions per cycle fr om a sequentially
written program and still maintain corr ect execution, the pr ocessor must
check for dependencies between instr uctions using an appr oach like those
we discussed previously (the scoreboard method or Tomasulo’s method) and
issue only those instr uctions that do not conflict with each other . Since
out-of-order execution is possible, all types of hazar ds can occur; r egister
renaming is often used to help solve the pr oblems. Precise handling of
exceptions (to be discussed in Chapter 5) is mor e difficult in a superscalar
environment, too. The logic required to detect and resolve all of these prob-
lems is complex to design and adds significantly to the amount of chip ar ea
required. The multiple pipelines also take up moe room, making superscalar
designs very space-sensitive and thus mor e amenable to implementation
technologies with small featur e (transistor) sizes. (Superpipelined designs,
by contrast, are best implemented with technologies with short propagation
delays.) These many difficulties of building a superscalar CPU ar e offset by
a significant advantage: with multiple pipelines doing the work, clock fr e-
quency is not as critical in superscalar machines as it is in superpipelined
ones. Since generating and distributing a high-frequency clock signal across
a microprocessor is far from a trivial exercise, this is a substantial advantage
in favor of the superscalar appr oach.

Superscalar and superpipelined design are not mutually exclusive. Some
CPUs have been implemented with multiple, deep pipelines, making them
both superpipelined and superscalar . Sun’s UltraSP ARC processor, intro-
duced in 1995, was an early example of this hybrid appr oach: it was both
superpipelined (nine stages) and four-way superscalar. A more recent (2003)
example is IBM’s PowerPC 970 CPU. Even CISC pocessors such as the AMD
Athlon have combined superscalar and superpipelined design in or der to
maximize performance. Given suf ficient chip area, superscalar design is a
useful enhancement that makes superpipelining much more practical. When

210 Computer Architecture: Fundamentals and Principles of Computer Design

a branch is encountered, a superscalar/superpipelined machine can use one
(or more) of its deep pipelines to continue executing sequential code while
another pipeline executes speculatively down the branch taget path. Which-
ever way the branch decision goes, at least one of the pipelines will have
correct results; any that took the wr ong path can be flushed. Some work is
wasted, but processing never comes to a complete halt.

4.5.3 Very long instruction word (VLIW) architectures

Superscalar CPU designs have many advantages. However , there remains
the significant problem of scheduling which operations can be done concur-
rently and which ones have to wait and be done sequentially after others.
Determining the precise amount of instruction level parallelism in a program
is a complex exercise that is made even mor e difficult by having to do it on
the fly within the limitations of har dware design and timing constraints.
How can we get the benefits of multiple instr uction issue found in super -
scalar CPUs without having to build in complex, space- and power-consum-
ing circuitry to analyze multiple types of data dependencies and schedule
the initiation of operations? A look back at our discussion of RISC principles
provides one possible answer: let the compiler do the work. This idea is the
foundation of a relatively new class of architectures known by the acronym
(coined by Josh Fisher) VLIW, which stands for Very Long Instruction Word.

The centerpiece of a VLIW architecture is exactly what the name implies:
a machine language instruction format that is fixed in length (as in a RISC
architecture) but much longer than the 32- to 64-bit formats common to most
conventional CISC or RISC ar chitectures (see Figure 4.20 for an example).
Each very long instr uction contains enough bits to specify not just one
machine operation, but several to be performed simultaneously. Ideally, the
VLIW format includes enough slots (groups of bit fields) to specify operands
and operations for every functional unit present in the machine. If sufficient
instruction level parallelism is present in the high-level algorithm, all of these
fields can be filled with useful operations, and maximum use will be made
of the CPU’s internal parallelism. If not enough logically independent oper -
ations can be scheduled at one time, some of the fields will be filled with
NOPs, and thus some of the har dware will be idle while other units ar e
working.

The VLIW approach has essentially the same ef fect as a superscalar
design, but with most or all of the scheduling work done statically (of fline)

S g |z | |5 | | [|§ | | | 1§ |= |[=© |

g BB B LE B BB B BB

< [2a] < < < 2]

R FEFEEE ER PR GRS ERPEPERE: ERFEFEEE
g a2 am1g [2Ta T aTNE (2T aTaTE (&Y e

gl ol Bl Il el lg o0

Figure 4.20 Example of very long instr uction word format.

Chapter four: Enhancing CPU performance 211

by the compiler, rather than dynamically (at r un-time) by the contr ol unit.
It is the compiler’s job to analyze the program for data and resource depen-
dencies and pack the slots of each VLIW with as many concurr ently execut-
able operations as possible. Since the compiler has mor e time and resources
to perform this analysis than would the contr ol unit, and since it can see a
bigger picture of the code at once, it may be able to find and exploit mor e
instruction level parallelism than would be possible in har dware. Thus, a
VLIW architecture may be able to execute more (equivalent) instructions per
cycle than a superscalar machine.

Finding and expressing the parallelism inherent in a high-level program
is quite a job for the compiler; however , the process is essentially the same
whether it is done in har dware or software. Doing scheduling in softwar e
allows the hardware to be kept simpler and ideally faster One of the primary
characteristics of the original, single-pipeline RISC architectures was reliance
on simple, fast hardware with optimization to be done by the compilerVLIW
is nothing more or less than the application of that same principle to a system
with multiple pipelined functional units. Thus, initsr eliance on moving
pipeline scheduling from hardware to software (as well as in its fixed-length
instruction format), VLIW can be seen as the logical successor to RISC.

The VLIW concept goes back further than most computing professionals
are aware. The first VLIW system was the Yale ELI-512 computer (with its
Bulldog compiler) built in the early 1980s, just about the time that RISC
architectures were being born. Josh Fisher and some colleagues fr om Yale
University started a company named Multiflow Computer , Inc. in 1984.
Multiflow produced several TRACE systems, named for the trace scheduling
algorithm used in the compiler. Another company, Cydrome Inc., which was
founded about the same time by Bob Rau, pr oduced a machine known as
the Cydra-5. However, the VLIW concept was clearly ahead of its time.
(Remember, RISC architectures, which were a much less radical departur e
from conventional design, had a har d time gaining acceptance at first, too.)
Both companies failed to thrive and eventually went out of business.

For some time after this, VLIW ar chitectures were only found in exper-
imental, research machines. IBM got wind of the idea and started its own
VLIW project in 1986. Most of the r esearch involved the (very complex)
design of the compilers; IBM’s har dware prototype system was not con-
structed until about 10 years after the pr oject began. This system is based
on what IBM calls the DAISY (dynamically architected instruction set from
Yorktown) architecture. Its instructions are 759 bits long; they can simulta-
neously specify up to8 ALU operations, 4 loads or stor es, and 7 branch
conditions. The prototype machine contains only 4 MB of data memory and
64K VLIWs of pr ogram memory, so it was obviously intended mor e as a
proof of the VLIW concept (and of the compiler) than as a working system.

Commercially available processors based on the VLIW idea have only
recently entered the market. The most popular ar chitecture to date that
incorporates elements of VLIW is the IA-64 ar chitecture, which was jointly
developed by Intel and Hewlett-Packar d and implemented in the Itanium

212 Computer Architecture: Fundamentals and Principles of Computer Design

Instruction 1 Instruction 3

—
N
—_

—~

Predicate | &
=
I~
=

) Instruction 2

Operand
3
Predicate
Op code
Operand
Operand
Op code
3
Predicate
Template

—
=
'S
=
—
~
=
—
~
=
—
~
=
—
&)
2

14 @ @ @

[
Instruction bundle (128 bits)

—~
&)
=

™ @ O O

—~
&)
=
—
ul
=

Figure 4.21 1A-64 EPIC instruction format.

and Itanium 2 processors. Intel does not use the acr onym VLIW, preferring
to refer to its slightly modified version of the concept as EPIC (which stands
for Explicitly Parallel Instr uction Computing). However, EPIC’s lineage is
clear: VLIW pioneers Fisher and Rau went to work with HRifter their former
companies folded and contributed to the development of the new ar chitec-
ture. The IA-64 instruction set incorporates 128-bit bundles (see Figure 4.21)
containing three 41-bit RISC-type instructions; each bundle provides explicit
dependency information. This dependency information (determined by the
compiler) is used by the hardware to schedule the execution of the bundled
operations. The purpose of this arrangement (with some of the scheduling
done in hardware in addition to that done by softwar e) is to allow binary
compatibility to be maintained between different generations of chips. Ordi-
narily, each generation of a given manufactur er’s VLIW processors would
be likely to have a dif ferent number and types of execution units and thus
a different instruction format. Since hardware is responsible for some of the
scheduling and since the instruction format is not directly tied to a particular
physical implementation, the Itanium pr ocessor family is ar chitecturally
somewhere between a pure VLIW and a superscalar design (though pr oba-
bly closer to VLIW).

The VLIW approach has several disadvantages, which IBM, HP , and
Intel hope will be outweighed by its significant advantages. Early VLIW
machines performed poorly on branch-intensive code; IBM has attempted
to address this problem with the tree structure of its system, while the IA-64
architecture addresses it with a technique called predication (as opposed to
prediction, which has been used in many RISC and superscalar pr ocessors).
The predication technique uses a set of predicate registers, each of which can
be used to hold a true or false condition. Where conditional branches would
normally be used in a pr ogram to set up a str ucture such as if/ then/else,
the operations in each possible sequence are instead predicated (made condi-
tional) on the contents of a given pr edicate register. Operations from both
possible paths (the “then” and “else” paths) then flow thr ough the parallel,
pipelined execution units, but only one set of operations (the ones with the
predicate that evaluates to tr ue) are allowed to write their r esults.

Another problem that negatively af fected the commer cial success of
early VLIW ar chitectures was the lack of compatibility with established

Chapter four: Enhancing CPU performance 213

architectures. Unless one had access to all the source code and could recom-
pile it, existing softwar e could not be r un on the new ar chitectures. IBM’s
DAISY addresses this problem by performing dynamic translation (essen-
tially, run-time interpretation) of code for the popular PowerPC architecture.
EPIC processors also support execution of the huge existing IA-32 (x86) code
base, as well as code compiled for the HP PA-RISC architecture, through
emulation at run time. Yet another VLIW disadvantage is poor code density.
Since not every VLIW has useful operations in all its slots, some bit fields
are inevitably wasted, making compiled pr ograms take up mor e space in
memory than they otherwise would. No r eal cure has been found for this
problem, but memory gets cheaper every day .

VLIW architectures have several advantages that would seem to foretell
their future success. The most obvious is the elimination of most or all
scheduling logic from the hardware, freeing up more space for additional
functional units, more on-chip cache, etc. Simplifying the contr ol logic may
also reduce overall delays and allow the system to operate at a higher clock
frequency than a superscalar CPU built with the same technology . Also, as
we previously mentioned, the compiler (r elatively speaking) has “all day”
to examine the entir e program and can potentially uncover much mor e
instruction level parallelism in the algorithm than could ar eal-time, hard-
ware scheduler. This advantage, coupled with the pr esence of additional
functional units, should allow VLIW machines to execute mor e operations
per cycle than are possible with a superscalar approach. Since at some point
in the coming years the steady incr ease in CPU clock speeds will have to
flatten out, the ability of VLIW ar chitectures to exploit instr uction level
parallelism will likely contribute to their success in the high-performance
computing market.

4.6 Chapter wrap-up

No part of a modern computer system is as complex as its CPU. (This
explains why we have devoted two chapters, rather than just one, to CPU
design topics.) In this chapter, several advanced design concepts involving
internal concurrency of operations within a CPU wer e explained in a fair
amount of detail; however, the reader may rest assured that we have only
scratched the surface of the intricacies of this subject. Computer engineers
may spend their entire careers designing high-performance microprocessors
and not learn everything there is to know about it — and even compr ehen-
sive knowledge of technical details can quickly become obsolete. Certainly
no single course or textbook can do full justice to this highly specialized
discipline. Given that mastery of a vast body of ever -changing details is
virtually impossible, though, it is all the mor e crucial for computing profes-
sionals to appreciate the history of CPU design and understand the tech-
niques involved in extracting the best performance fr om an architecture.

It is likely that r elatively few of the students using this book will sub-
sequently be employed in the design of high-performance micr oprocessor

214 Computer Architecture: Fundamentals and Principles of Computer Design

chips. However, it is highly pr obable that at some point the r eader will be
called upon to provide system specifications or choose the best machine for
a particular task. In or der to be able to intelligently select a system for a
desired application, it is important, among other things, to have a basic
understanding of the performance-enhancing techniques used in micr opro-
cessor design. Since practically all modern CPUs ae pipelined to some extent
(some much more so than others), it is important for any student of computer
science or computer engineering to understand the principles, practicalities,
and pitfalls of pipelined implementations of both numerically intensive and
general-purpose processors. One should also be familiar with implementa-
tion techniques in increasingly wide use that take advantage of deep (super-
pipelined) or multiple (superscalar and VLIW) pipelines to further optimize
CPU performance.

By studying and understanding the elements of pr ocessor architecture
and implementation covered in this chapter and the one befor it, the serious
student will have helped himself or herself understand their performance
implications and thus will be better equipped to make wise choices among
the many competing computer systems in the constantly changing market
of the present and the future. If, however, the reader’s goal is to help design
the next generation of high performance CPUs, studying this material will
have taken him or her the first few steps down that highly challenging caeer
path.

4.7 Review questions

1. Suppose you are designing a machine that will fr equently have to
perform 64 consecutive iterations of the same task (for example, a
vector processor with 64-element vector r egisters). You want to im-
plement a pipeline that will help speed up this task as much as is
reasonably possible but recognize that dividing a pipeline into more
stages takes up more chip area and adds to the cost of implementa-
tion.

a. Make the simplifying assumptions that the task can be subdivided
as finely or coarsely as desired and that pipeline registers do not
add a delay. Also assume that one complete iteration of the task
takes 16 ns (thus, a nonpipelined implementation would take 64
x 16 = 1024 ns to complete 64 iterations). Consider possible pipe-
lined implementations with 2, 4, 8, 16, 24, 32, and 48 stages. What
is the total time r equired to complete 64 iterations in each case?
What is the speedup (vs. a nonpipelined implementation) in each
case? Considering cost as well as performance, what do you think
is the best choice for the number of stages in the pipeline? Explain.
(You may want to make graphs of speedup and/or total process-
ing time vs. the number of stages to help you analyze the
problem.)

Chapter four: Enhancing CPU performance 215

b. Now assume that a total of 32 levels of logic gates ar e required
to perform the task, each with a propagation delay of 0.5 ns (thus,
the total time to produce a single result is still 16 ns). Logic levels
cannot be further subdivided. Also assume that each pipeline
register has a pr opagation delay equal to that of two levels of
logic gates, or 1 ns. Re-analyze the pr oblem; does your previous
recommendation still hold? If not, how many stages would you
recommend for the pipelined implementation under these condi-
tions?

2. Given the following reservation table for a static arithmetic pipeline:

tO | t1 | t2 | t3 | t4 | t5

Stage1 | X X
Stage 2 X | X
Stage 3 X | X

Write the forbidden list.

Determine the initial collision vector C.

Draw the state diagram.

Find the MAL.

Find the minimum latency.

3. Considering the overall market for all types of computers, which of
the following are more commonly found in today’s machines: arith-
metic pipelines (as discussed in Section 4.2) or instr uction unit pipe-
lines (Section 4.3)? Explain why this is so.

4. Why do control transfers, especially conditional contr ol transfers,
cause problems for an instr uction-pipelined machine? Explain the
nature of these problems and discuss some of the techniques that can
be employed to cover up or minimize their ef fect.

5. A simple RISC CPU is implemented with a single scalar instr ~ uc-
tion-processing pipeline. Instr uctions are always executed sequen-
tially except in the case of branch instr uctions. Given that p, is the
probability of a given instruction being a branch, p, is the probability
of a branch being taken, p, is the probability of a correct prediction,
b is the branch penalty in clock cycles, and ¢ is the penalty for a
correctly predicted branch:

a. Calculate the throughput for this instruction pipeline if no branch
prediction is made, given that p, = 0.16, p, = 0.3, and b = 3.

b. Assume that we use a branch pr ediction technique to try to im-
prove the pipeline’s performance. What would be the throughput
if c =1, p. = 0.8, and the other values ar e the same as above?

6. What are the similarities and dif ferences between a delayed branch
and a delayed load?

7. Given the following sequence of assembly language instr uctions for
a CPU with multiple pipelines, indicate all data hazar ds that exist
between instructions.

a0 oe

N

216 Computer Architecture: Fundamentals and Principles of Computer Design

10.

11.

12.

13.

14.

I;: Add R2, R4, R3 ;R2=R4 +R3
I: Add R1, R5, R1 ;R1=R5+R1
I;: Add R3, R1, R2 ;R3 =R1 +R2
I,: Add R2, R4, R1 ;R2 =R4 +R1

What are the purposes of the scor eboard method and T omasulo’s
method of controlling multiple instruction execution units? How are
they similar and how are they different?

List and explain nine common characteristics of RISC ar chitectures.

In each case, discuss how a typical CISC pr ocessor would (either

completely or partially) not exhibit the given attribute.

How does the overlapping r egister windows technique, used in the

Berkeley RISC and its commercial successor the Sun SPARC, simplify

the process of calling and r eturning from subprograms?

You are on a team helping design the new Platinum V® processor for

AmD_] Corporation. Consider the following design issues:

a. Your design team is considering a superscalar vs. superpipeline
approach to the design. What ar e the advantages and disadvan-
tages of each option? What technological factors would tend to
influence this choice one way or the other?

b. Your design team has allocated the silicon ar ea for most of the
integrated circuit and has narr owed the design options to two
choices: one with 32 r egisters and a 512-KB on-chip cache and
one with 512 registers but only a 128-KB on-chip cache. What are
the advantages and disadvantages of each option? What other
factors might influence your choice?

How are VLIW architectures similar to superscalar architectures, and

how are they different? What are the relative advantages and disad-

vantages of each approach? In what way can VLIW ar chitectures be
considered the logical successors to RISC ar chitectures?

Is Explicitly Parallel Instr uction Computing (EPIC) the same thing

as a VLIW architecture? Explain why or why not.

Fill in the blanks below with the most appr opriate term or concept

discussed in this chapter:

The time required for the first result in a series of com-
putations to emerge from a pipeline.

This is used to separate one stage of a pipeline from the
next.

This type of pipeline can perform dif ferent kinds of
computations at different times.

This occurs if we mistakenly try to use a pipeline stage
for two different computations at the same time.

Over time, this tells the mean number of clock cycles
between initiation of operations into a pipeline.

Over time, this tells the mean number of operations
completed per clock cycle.

Chapter four: Enhancing CPU performance 217

The clock cycles that are wasted by an instruction-pipe-
lined processor due to executing a contr ol transfer in-

struction.

A technique used in pipelined CPUs whee the compiler
supplies a hint as to whether or not a given conditional

branch is likely to succeed.

The instruction(s) immediately following a conditional

control transfer instruction in some pipelined pr oces-
sors, which are executed whether or not the contr ol
transfer occurs.

A technique used in pipelined CPUs where the instruc-
tion immediately following another instr uction that
reads a memory operand cannot use the updated value

of the operand.

The most common data hazard in pipelined processors;

also known as a tr ue data dependence.

Also known as an output dependence, this hazar d can
occur in a processor that utilizes out-of-order execution.

A centralized resource scheduling mechanism for inter-
nally concurrent processors; it was first used in the CDC
6600 supercomputer.

These are used by a Tomasulo scheduler to hold oper -
ands for functional units.

A technique used in some RISC processors to speed up

parameter passing for high-level language pr ocedure
calls.

This type of processor architecture maximizes temporal
parallelism by using a very deep pipeline with very fast
stages.

This approach to high-performance pr ocessing uses
multiple pipelines with r esolution of inter -instruction
data dependencies done by the contr ol unit.

The architecture technology used in Intel’s IA-64 (Itani-

um) chips.

The IA-64 ar chitecture uses this appr oach instead of

branch prediction to minimize the disruption caused by
conditional control transfers.

chapter five

Exceptions, interrupts, and
input/output systems

We have studied two of the thr ee main components of a modern computer
system: the memory and the central pr ocessing unit. The r emaining major
component, the input/output (I/O) system, is just as important as the first
two. It is always necessary for a useful computer system to be able to eceive
information from the outside world, whether that information happens to
be program instructions, interactive commands, data to be pr ocessed, or
(usually) some combination of these things. Likewise, egardless of the mem-
ory capacity or computational capabilities of a system, it is essentially useless
unless the results of those computations can be conveyed to the human user
(or to another machine for further processing, display, storage, etc.). Anyone
who has ever bought an expensive audio amplifier knows that the r esulting
sound is only as good as the signal sour ce fed to the inputs and the speaker
system that converts the amplified signal into sound waves for the listener
to hear. Without a clean sound sour ce and high fidelity speakers, the
amplifier is nothing more than an expensive boat anchor. Similarly, without
an I/O system able to quickly and efectively interact with the user and other
devices, a computer might just as well be thr own overboard with a stout
chain attached.

In this chapter we will also study how computer systems use exceptions
(including traps, hardware interrupts, etc.) to alert the pr ocessor to various
conditions that may require its attention. The reader who has had a previous
course in basic computer or ganization will no doubt r ecall that exceptions,
both hardware and software related, are processed by the central processing
unit (CPU). Thus, it may have seemed logical to cover that material in the
previous chapters on CPU design. Since those chapters wer e already filled
with so many other important concepts r elated to CPU ar chitecture and
implementation, and — even more importantly — since most exceptions are
related directly or indirectly to I/O operations, we have r eserved the dis-
cussion of this important topic to its logical place in the context of the
function of the I/O system.

219

220 Computer Architecture: Fundamentals and Principles of Computer Design

5.1 Exceptions

An exception, in generic terms, can be any synchr onous or asynchr onous
system event that occurs and r equires the attention of the CPU for its r eso-
lution. The basic idea is that while the CPU is r unning one program (and it
is always running some program unless it has a special low-power, or sleep,
mode), some condition arises inside or outside the pr ocessor that requires
its intervention. In order to attend to this condition, the CPU suspends the
currently running program, then locates and runs another program (usually
referred to as aservice routine or handler) that addresses the situation. Whether
it is a har dware device requesting service, an err or condition that must be
investigated and fixed if possible, or some other type of event, the handler
is responsible for servicing the condition that caused the exception. Once
the handler runs to completion, contr ol is returned (if possible) to the pr e-
viously running program, which continues from the point where it left off.

Exceptions can be divided into two general types: those caused by hard-
ware devices (which may be on- or of f-chip, but in either case ar e outside
the CPU proper) and those are caused by the software running on the CPU.
There are many similarities between hardware- and software-related excep-
tions and a few key dif ferences that we will examine in this section. Since
hardware-related exceptions, more commonly known as interrupts, are a bit
more straightforward concept and are usually more directly related to 1/O,
we shall examine their characteristics first.

5.1.1 Hardware-related exceptions

Exceptions caused by har dware devices (often I/ O devices) ar e generally
referred to as interrupts. The obvious origin of this term lies in the mechanism
employed by external devices to get the attention of the CPU. Since the
processor is busy executing instructions that likely have nothing to do with
the device in question, the device interrupts the execution of the current task
by sending a har dware signal (either a specified logic level 0 or 1 or the
appropriate transition of a signal from 1 to 0 or from 0 to 1) over a physical
connection to the CPU. In Figur e 5.1, this physical connection is shown as
an active low interrupt request (IRQ) input from the device to the CPU; when
this input is logic 0, the deviceisr equesting service. Assuming interrupts
are enabled (meaning the CPU is listening to devices) and the r equest is of
sufficient priority (we will discuss priority schemes below), the curr ently
running program will be suspended and the appr opriate interrupt handler
will be executed to service the sour ce of the interrupt.

It is important to recognize that because interrupts come from hardware
devices outside the CPU, they ae asynchronous events. Interrupts may occur
at any time without r egard to anything else the pr ocessor may be doing.
Because they may fall anywher e within the instr uction stream the CPU is
executing, it is crucial that interrupts must be processed transparently. That
is, all relevant CPU state information — including the contents of all egisters

Chapter five: Exceptions, interrupts, and input/output systems 221

CPU

1/0
device RQ
A
0
—_——
No interrupt Interrupt
requested requested

Figure 5.1 Interrupt request from device to CPU.

and status and condition code flags — must be saved befor e interrupt pro-
cessing begins and then restored before the interrupted program is resumed
in order to guarantee correct operation.

To illustrate how critical itis for allr elevant state information to be
maintained, consider the situation illustrated in Figur e 5.2. An interrupt is
recognized after the CMP (compare) instruction. The CPU suspends execu-
tion at this point; after the interr upt handler completes, it will r esume exe-
cution with the BEQ (branch if equal) instr uction. This conditional branch
instruction bases its branch decision on whether or not the pr evious com-
parison showed equality. (This is generally accomplished by setting a status
flag, such as a zero or Z flag, to reflect the result of the CMP instruction.) If
no interrupt had occurred, no other arithmetic or logical operation could
possibly intervene between the CMP and the BEQ, so the branch would
execute properly. However, if an interrupt occurs as indicated in Figure 5.2,
it is possible that some arithmetic or logic instr uction that is part of the
interrupt handler could r eset the Z flag and cause the branch to operate
incorrectly when the original pr ogram is r esumed. This would not be a
desirable situation. Thus, it is critical that the complete CPU state be main-
tained across any interrupt service routine.

Partly in order to reduce the amount of processor state information that
must be saved (and also because it simplifies the design of the contr ol unit),
most CPUs only examine their interr upt request inputs at the conclusion of
an instruction. Even if the pr ocessor notices that an interr upt is pending, it
will generally complete the curr ent instruction before acknowledging the
interrupt request or doing anything to service it. Pipelined CPUs may even
take the time to drain the pipeline by completing all instructions in progress
before commencing interrupt processing. This takes a little extra time but
greatly simplifies the process of restarting the original instruction stream.

CMP ’ R1,R2 ;compare two values and set status bits
Interrupt occurs

BEQ Target ;conditional branch, succeeds if operands were equal

Figure 5.2 Occurrence of an interrupt between related instructions.

222 Computer Architecture: Fundamentals and Principles of Computer Design

The usual mechanism employed for saving the processor state is to push
all the register contents and flag values on a stack in memoryWhen interrupt
processing is complete, a special instruction (usually with a mnemonic such
as RTI or IRET [return from interrupt] or RTE [return from exception]) pops
all the register contents (including the pr ogram counter) of f the stack in
reverse order, thus restoring the processor to the same state it was in befor e
the interrupt occurred. (Since interrupt handlers generally run with system
or supervisor privileges, while the interr upted program may have been
running at any privilege level, r estoring the previous privilege level must
be part of this pr ocess.) Some ar chitectures specify that only absolutely
essential information (such as the pr ogram counter and flag values) ar e
automatically preserved on the stack when an interr upt is serviced. In this
case, the handler is responsible for manually saving and restoring any other
registers it uses. If the machine has many CPU r egisters and the interr upt
service routine uses only a few of them, this method will r esult in reduced
latency when responding to an interrupt (an important consideration in some
applications). An even faster method, which has been used in a few designs
where sufficient chip space was available, is for the pr ocessor to contain a
duplicate set of r egisters that can be used for interr upt processing. After
doing its job, the service routine simply switches back to the original register
set and returns control to the interrupted program.

5.1.1.1 Maskable interrupts

It is usually desirable for the operating system to have some way of enabling
and disabling the pr ocessor from responding to interrupt requests. Some-
times the CPU may be engaged in activities that need to be able to pr oceed
to completion without interr uption or are of higher priority than some or
all interrupt sources. If this is the case, ther e may be a need to temporarily
mask, or disable, some or all intermupts. Masking an interrupt is the equivalent
of putting a mask over a person’s face; it prevents the interrupt request from
being seen by the CPU. The device may maintain its active interrupt request
until a later time when interr upts are re-enabled.

Masking is generally accomplished by manipulating the status of one
or more bits in a special CPU configuration register (often known by a name
such as the status r egister, processor state register, or something similar).
There may be a single bit that can be set or clear ed to disable or enable all
interrupts or individual bits to mask and unmask specific interr upt types,
or even a field of bits used together to specify a priority thr eshold below
which interrupts will be ignor ed. In systems with separate supervisor and
user modes (this includes most modern micr oprocessors), the instructions
that affect the mask bits ar e usually designated as privileged or system
instructions. This prevents user programs from manipulating the interr upt
mechanism in ways that might compr omise system integrity. The specifics
of the interrupt masking scheme ar e limited only by the ar ea available for
interrupt logic, the intended applications for the system, and the cr eativity
of the CPU designers.

Chapter five: Exceptions, interrupts, and input/output systems 223

There are often several devices that can cause interr upts in a system.
Some of these devices may be mor e important, or may have more stringent
timing requirements, than others. Thus, it may be important to assign a
higher priority to certain interr upt requests so they will be serviced first in
case more than one device has a request pending. Most architectures support
more than one — often several — priority levels for interr upts. To take two
well-known examples, the Motorola 68000 supports 7 interrupt priority lev-
els, while Sun’s SP ARC architecture supports 15. The various levels ar e
distinguished by a priority encoder, which can be an external chip or may
be built into the CPU.

Consider the case of a CPU that has thr ee interrupt request lines: IRQ2,
IRQ1, and IRQO (see Figure 5.3). One very simple approach would be to treat
these as three separate interr upt requests with dif ferent priorities (which
would be established by priority encoding logic inside the CPU). Each inter-
rupt request input could be driven by a separate device (thus thr ee types of
devices could be supported). If the system has mor e than three devices
capable of generating interrupts, multiple devices will have to share an IRQ
input, and additional logic will be r equired to distinguish among them.

Any time none of the three IRQ inputs are active, the CPU proceeds with
normal processing. If one or mor e interrupt requests become active, logic
inside the CPU compares the highest priority active input with the curr ent
priority level to see whether or not this request is masked. If it is unmasked,
the CPU acknowledges the interr upt request and begins servicing it; if it is
masked, the CPU ignores it and continues pr ocessing the current program.

A slightly more complex but mor e flexible scheme could be devised
using the same three interrupt request inputs: IRQ2, IRQ1, and IRQO. Instead
of considering them as three separate interrupt requests, the logic inside the
CPU could be constr ucted to interpret them as a 3-bit field indicating the
current interrupt request level. Level 0 (000 binary) could indicate that no
device is currently requesting an interr upt, while levels 1 thr ough 7 (001
through 111 binary) could be interpreted as distinct interrupt requests with
different priorities (for example, 1 lowest thr ough 7 highest). In such a
scheme, the devices would not be connected dir ectly to the IRQ inputs of
the CPU. Instead, the device interr upt request lines would be connected to
the inputs of a priority encoder, with the outputs of the encoder connected
to the interrupt request lines (see Figure 5.4).

1/0 1/0 1/0 CPU
device device device
0 1 2
I IRQ2 (highest priority)
IRQ1
IRQO (lowest priority)

Figure 5.3 CPU with simple interrupt priority scheme.

224 Computer Architecture: Fundamentals and Principles of Computer Design

Priority CPU
encoder
FI?Onil hlghgst IN7
priority device ING6
—IN5
From other devices §—IN 4
—IN3
From lowest > %g % Out 2 IRQ2 (MSB)
priority device Out 1 IRQ1
Oout0 IRQO (LSB)

Figure 5.4 System with seven interr upt priority levels.

This scheme allows for up to seven interr upting devices, each with its
own request number and priority level. (Again, if mor e than seven devices
were needed, additional hardware could be added to allow multiple devices
to share a single interrupt request level.) This type of arrangement could be
realized completely with logic inside the CPU chip, but that would r equire
the use of seven pins on the package (rather than just thr ee) for interrupt
requests.

In a system such as this one with several priority levels of interr upts,
the masking scheme would pr obably be designed such that interr upts of a
given priority or higher ar e enabled. (It would be simpler to mask and
unmask all levels at once, but that would defeat most of the advantage of
having several interrupt types.) All this requires is a bit field (in this case 3
bits), either in a register by itself or as some subset of a CPU control register,
that can be interpr eted as a thr eshold — a binary number specifying the
lowest interrupt priority level curr ently enabled. (Alternatively, it could
represent the highest priority level curr ently masked.) A simple magnitude
comparator (see Figur e 5.5) could then be used to compar e the curr ent
interrupt request level with the priority thr eshold; if the curr ent request is
greater than or equal to (or in the second case, simply gr eater than) the
threshold value, the interr upt request is honored. If not, it is ignor ed until
the threshold is changed to a lower value. Many ar chitectures specify an
interrupt masking mechanism similar to this.

5.1.1.2 Nonmaskable interrupts

Nonmaskable interrupts are supported by almost all ar chitectures. As the
name implies, a nonmaskable interrupt is one that cannot be disabled. When-
ever it is activated, the pr ocessor will recognize it and suspend the curr ent
task to service it. Thus, a nonmaskable interr upt is the highest priority

hardware interrupt. Interrupt priority level 7 is the nonmaskable interr upt
in a Motorola 68000 system, while level 15 is the nonmaskable interr upt in
a SPARC-based system. In the example of Figure 5.3 above, the CPU design-
ers could either designate one of the interr upt request inputs (for example,
IRQ?2) as a nonmaskable interrupt or provide a separate nonmaskable inter-
rupt pin for that purpose. Similarly, in the example of Figur e 5.4 one of the

Chapter five: Exceptions, interrupts, and input/output systems 225

CPU
Interrupt
request Control register
level .. |[IPm2[1PM1[1PMO] - .-

IRQ2 I Interrupt

RQl ———— | | | priority
\159\0/ | mask

From Input A Input B
d I/~O Magnitude

evices

comparator
A>B A=B A<B

Honor
i >—— interrupt

request

Figure 5.5 Circuit for comparing interrupt request level and mask thr eshold level.

levels (for example, level 7 as in the 68000) could be set up as nonmaskable,
or a separate input pin could be used for the nonmaskable intermpt (making
eight types of interrupts in all).

We have mentioned that it may sometimes be necessary for some or all
interrupts to be temporarily disabled; the reader might wonder what sort of
scenario might require the use of a nonmaskable intermupt. One classic exam-
ple is the use of a power fail sensor to monitor the system power sour ce. If
the sensor detects a voltage dr opout, it uses an interr upt to warn the CPU
that system power is about to be lost. (When line voltage is lost, power
supply capacitors will typically maintain the output voltage for a few mil-
liseconds — perhaps just long enough for the CPU to save cr ucial informa-
tion and perform an oderly system shutdown.) Given that no system activity
of any priority level will be possible without power, it makes sense to assign
to this power fail sensor an interrupt request line that will never be ignored.
One can also envision the use of an embedded micr ocontroller in a piece of
medical equipment such as a heart monitor . If the sensor that detects the
patient’s pulse loses its signal, that would pr obably be consider ed an
extremely high priority event r equiring immediate attention r egardless of
what else might be going on.

5.1.1.3 Watchdog timers and reset
Watchdog timers and reset are special types of interr upts that can be used
to reinitialize a system under certain conditions. All microprocessors have
some sort of reset capability. This typically consists of a hardware connection
that under normal conditions is always maintained at a certain logic level
(for example, 1). If this pin is ever driven by external har dware to the

226 Computer Architecture: Fundamentals and Principles of Computer Design

opposite logic level, it signals the CPU to stop pr ocessing and reinitialize
itself to a known state fr om which the operating system and any other
necessary programs can be reloaded. This pin is often connected to a har d-
ware circuit including a button (switch) that can be pr essed by a user when
the system crashes and all other attempts atr ecovery have failed. Some
architectures also have RESET instr uctions that use internal har dware to
pulse the same signal, r esetting the pr ocessor and external devices to a
known state. The reset mechanism is very much like a nonmaskable interupt
except for one thing: on a reset, no machine state information is saved since
there is no intention of r esuming the task that was r unning before the reset
occurred.

Processors that are intended for use in embedded systems (inside some
other piece of equipment) also generally have an alternate r eset mechanism
known as a watchdog timer. (Some manufacturers have proprietary names,
such as computer operating properly [COP], for this type of mechanism.) A
watchdog timer is a counter that r uns continuously, usually driven by the
system clock or some signal derived fr om it. Periodically, the software run-
ning on the CPU is responsible for resetting the watchdog timer to its initial
value. (The initial value chosen and the frequency of the count pulses deter-
mine the timeout period.) As long as the timer is reset before going through
its full count range, the system operates as normal. Howeverif the watchdog
timer ever rolls over its maximum count (or r eaches zero, depending on
whether it is an up- or down-counter), it can be assumed that somehow the
system software has locked up and must be reinitialized. A hardware circuit
detects the timer rollover and generates a system r eset. This type of moni-
toring mechanism is often necessary in embedded systems because it may
be inconvenient or impossible for a user to manually r eset the system when
trouble occurs. Not all computers are desktop workstations with convenient
reset buttons. The pr ocessor may be buried deep within an automobile
transmission or an interstellar space pr obe.

5.1.1.4 Nonwvectored, vectored, and autovectored interrupts

Now that we have discussed various types of har dware interrupts and the
approaches that can be used to assign priorities to those that ar e maskable,
we should consider the process required to identify the correct service rou-
tine to run for a given type of interrupt. The process of identifying the source
of the interrupt and locating the service r outine associated with it is called
interrupt vectoring. When an interrupt is recognized, the CPU suspends the
currently running program and executes a service r outine or handler to
address the condition causing the interr upt. How does the CPU go about
finding the handler?

The simplest appr oach would be to simply assign a fixed addr ess in
memory to the hardware interrupt request line. (If there are multiple inter-
rupt request lines, a dif ferent fixed addr ess could be assigned to each.)
Whenever an interrupt occurs (assuming it is not masked), the CPU simply
goes to that address and begins executing code fr om there. If there is only

Chapter five: Exceptions, interrupts, and input/output systems 227

one interrupt-generating device in the system, this code would be the han-
dler for that device. If ther e are multiple devices, this code would have to
be a generic interr upt handler that would query all the devices in priority
order to determine the source of the interrupt, then branch to the appopriate
service routine for that device. This basic, no-frills scheme is known as a
nonvectored interrupt.

The obvious advantage of nonvectored interrupts is the simplicity of the
hardware. Also, where multiple interrupt sources exist, any desired priority
scheme can be established by writing the handler to query device status in
the desired order. However, having to do this puts more of a burden on the
software — and modifying system softwar e to change device priorities is
not something that should be lightly done. This software-intensive approach
also significantly increases the latency between an interrupt request and the
time the device is actually serviced (especially for the lower priority devices).
In addition, having a fixed addr ess for the location of the interr upt service
routine places significant limitations on the design of the memory system.
(One must make sure that memory exists at that addess, that it can be loaded
with the appropriate software, and that no other conflicting use is made of
that area of memory.) Because of their several drawbacks, nonvectored inter-
rupts are seldom seen in modern computer systems.

If the har dware devices in the system ar e smart enough, the use of
vectored interrupts is a much mor e flexible and desirable alternative. In a
system with vectored interrupts, the CPU responds to each interrupt request
(of sufficient priority to be recognized) with an interrupt acknowledge sequence.
During this special acknowledge cycle (Figure 5.6 shows a typical sequence
of events), the processor indicates that it is esponding to an interrupt request
at a particular priority level and then waits for the interr upting device to
identify itself by placing its device number on the system bus.

Upon receiving this device number, the CPU uses it to index into an
interrupt vector table (or, more generically, an exception vector table) in memory.
In some systems, this table begins at a fixed addr ess; in others, it can be
placed at any desired location (which is identified by the contents of a vector
table base register in the CPU). Figure 5.7 shows an overview of the pr ocess.
The entries in the vector table are generally not the interrupt service routines
themselves, but the starting addr esses of the service r outines (which them-
selves can be located anywhere in memory). Thus, the value obtained fr om

Interrupt request

(IRQ) from I/O system \ /
Interrupt acknowledge / \

(IACK) from CPU
Interrupt request Device vector
System data bus level (from CPU) number (from device)

Figure 5.6 Interrupt acknowledge sequence in a system with vector ed interrupts.

228 Computer Architecture: Fundamentals and Principles of Computer Design

Main memory
.

Vector table base register |—> Starting address of

service routine 0

Device vector number

) Starting address of
* (size of each table entry)

service routine 1

Offset into exception vector table

remics routine
service routine i rogram counter
. (begin executing
service routine)

Starting address of
service routine (n — 1)

Figure 5.7 Typical interrupt vectoring process.

the table is simply loaded into the machine’s pr ogram counter (after the
previous contents of the PC, status flags, etc., have been saved), and execu-
tion of the service r outine begins from that location.

The main advantage of the vectored interrupt scheme is that the correct
handler for any device can be quickly and easily located by a simple table
lookup process, with no additional softwar e overhead required. Thus, the
latency to respond to any type of interrupt of any priority level is essentially
identical. Also, more flexibility is maintained since the interr upt service
routines may reside anywhere in memory. New ones may be added, or
existing ones changed, at any time by simply modifying the contents of the
vector table. (Of course, this should be a privileged operation so user pr o-
grams cannot corrupt the interrupt system.) The only disadvantages are the
slightly longer time required to determine the starting location of the service
routine (since it is looked up instead of har dwired) and the increased com-
plexity of the peripheral devices (which must be able to 'ecognize the appro-
priate interrupt acknowledge sequence and output their device number in
response). However, the extra cycle or two required to generate the address
of the service routine is typically more than compensated for by the simpli-
fication of the handler softwar e, and the additional logic needed in the
peripheral device interfaces is generally not pr ohibitive.

If “dumb” devices ar e used in the system, a variation on the vector ed
interrupt scheme known as autovectoring can be used to preserve the advan-
tages just discussed. In a system with autovectored interrupts, a device that
is not capable of pr oviding a vector number via the bus simply r equests a
given priority level interr upt while activating another signal to trigger the
autovectoring process. When this occurs (or possibly when a given period
of time elapses without a vector number being supplied) the CPU automat-
ically, internally generates a device number based on the interr upt priority
level that was requested. (See Figure 5.8 for an example of an autovectoring

Chapter five: Exceptions, interrupts, and input/output systems 229

Interrupt request

(IRQ) from I/O system \ /
Interrupt acknowledge / \
(IACK) from CPU
Auto vector request / \
(AVEC) from I/O system
Svstem data b Interrupt request (CPU generates
yste abus level (from CPU) vector number internally)

Figure 5.8 Autovectored interrupt acknowledge sequence.

sequence.) This CPU-generated device number is then used to index into the
exception vector table as usual.

Vectored and autovectored interrupts can be, and often ar e, used in the
same system. Devices that ar e capable of supplying their own vector num-
bers can make use of the full capabilities of vectoed interrupts, while simpler
devices can revert to the autovectoring scheme. This hybrid appr oach pro-
vides the system designer with maximum flexibility when a wide variety of
different peripheral devices are needed.

5.1.2 Software-related exceptions

The second major source of exceptions (in addition to har dware interrupts)
is software running on the CPU itself. V arious conditions can arise fr om
executing machine instructions that require at least the temporary suspen-
sion of the program’s execution; because of this, these conditions ar e often
best dealt with in a manner very similar to interr upts. While there are quite
a variety of synchronous, software-related events that may require attention
— and while the number and details of these events may vary significantly
from one system to another — we can divide them for discussion purposes
into the general categories of traps, faults and err ors, and aborts.

Traps, also sometimes known as software interrupts, are the most common
and least serious type of softwar e-related exceptions. Traps are generally
caused deliberately (either conditionally or unconditionally) by programs in
order to access operating system services (often for input or output, but also
for memory allocation and deallocation, file access, etc.). In modern operat-
ing systems with virtual machine envir onments, user programs run ata
lower privilege level than system r outines and are generally not allowed to
directly access hardware I/ O devices because of potential conflicts with other
programs in memory. Thus, a pr ogram must request the operating system
to perform I/O (or other services involving shar ed resources) for it. Traps
provide a convenient mechanism for this.

Almost any instruction set architecture one can think of has some type
of trapping instr uction. A simple embedded micr ocontroller such as the
Motorola 68HC12 has only one, with the mnemonic SWI (for software inter-
rupt). The ubiquitous Intel x86 ar chitecture defines an INT (interr upt)

230 Computer Architecture: Fundamentals and Principles of Computer Design

instruction with an op code followed by an 8-bit vector number for a total
of 256 possible software interrupts, each with its own exception vector . (In
a given system some of the vectors will be used for har dware interrupts, so
not all 256 INT instr uctions are typically available.) The Motor ola 68000
implements 16 unconditional trap instructions, TRAP #0 through TRAP #15.
The 68000 also has a conditional trap instr uction, TRAPV, which causes a
trap only if the overflow flag in the pocessor’s condition code register (CCR)
is set. (The 68020 and subsequent CPUs defined additional TRAPcc instr uc-
tions that tested other conditions to decide whether or not to cause a trap.)
Even a reduced instruction set computer (RISC) ar chitecture such as Sun’s
SPARC defines a set of 128 trap instructions (half the total number of excep-
tions). In each of these arcchitectures, the process for handling traps, including
the vectoring/table lookup mechanism for locating the handlers, is essen-
tially identical to that employed for hardware interrupts. The only difference
is that instead of a device placing a vector number on the bus, the vector
number is generated fr om the op code of the trapping instr uction (or a
constant stored immediately following it); thus, the pr ocess is more akin to
autovectoring.

The automatic vectoring pr ocess is important because it means user
programs wanting to access operating system services via traps do not need
to know where the system routine for a given service is located in memory .
(If system services were accessed as subroutines, a user program wanting to
call one would have to know or be able to calculate its addr ess in order to
access it.) The user program only needs to know which trap number to use
for the service, plus any parameters or information that must be set up in
registers or memory locations (such as the stack) to communicate with the
trap handler. The exception vectoring and eturn process takes care of getting
to the code for the service and getting back to the user pr ogram. Thisis a
very significant advantage since the exact location of a given service routine
is likely to vary fr om one system to another.

Though traps are synchronous events occurring within the CPU, they
are otherwise similar to interr upts generated by external devices. In both
situations, since the exception pr ocessing is due to a mor e or less r outine
situation rather than a catastr ophic problem, control can generally be
returned to the next instr uction in the pr eviously running procedure with
no problems. In fact, since they ar e synchronous events resulting from pro-
gram activity, traps are a bit easier to deal with than interr upts. Because the
occurrence of traps is predictable, it may not be necessary for a trap handler
to preserve the complete CPU state (as must be done to ensure transparency
of interrupts). Registers, flags, memory locations, etc., may be modified in
order to return information to the trapping program, provided of course that
any modified locations are documented.

Errors and faults are more serious than traps because they arise due to
something the program has done wrong — for example dividing by zero or
trying to access a memory location that is not available (in other wor ds,
causing a page fault or segment fault in a virtual memory system). Other

Chapter five: Exceptions, interrupts, and input/output systems 231

error conditions could include trying to execute an undefined op code, trying
to execute a privileged instr uction in user mode, overflowing the stack,
overstepping array bounds, etc. Whatever it is, the eror or faulting condition
must be corrected (if possible), or at least adequately accounted for , before
the offending program can be resumed. Depending on the particular err or,
it may not have even been possible to complete the faulting instr uction as
is normally done with interr upts and traps. In or der to service the faulting
condition, the instruction being executed may have to be “r olled back” and
later restarted from scratch or stopped in progress and then continued, either
of which is mor e difficult than handling an exception on an instr ~ uction
boundary. Typically when an error or fault occurs, processor state informa-
tion is recorded in a pr edetermined area (such as the system stack). This
information is then used to help the err or or fault handler determine the
cause of the pr oblem and properly resume execution when the err oneous
condition is corr ected (for example, when a faulted page is loaded into
physical main memory).

Aborts are the most critical softwar e-related errors. They are generally
unrecoverable, meaning that something catastrophic occurred while the pro-
gram was running that makes it impossible to continue that program. Exam-
ples of aborts would include the 68000’s “double bus err or” (a hardware
fault on the system bus that occurs during the handling of a pr evious bus
error) and the x86’s “double fault” (which arises when an exception occurs
during the invocation of an exception handler , such as might occur if the
exception vector table had been corrupted). In many cases the problem is so
serious that the CPU gets lost and it becomes impossible to tell the cause of
the abort or which instruction was executing when it occurr ed. Because the
program that was executing has been aborted, preservation of the processor
state is not important for r esumption of the pr ogram (though it could be
worthwhile for diagnostic purposes). A well-written operating system r un-
ning ona CPU in a pr otected, supervisor mode should be able to cleanly
abort the program that crashed and continue running other programs (itself
included). However, any user familiar with the “Blue Scr een of Death” that
is displayed by a certain company’s operating systems knows that it is
possible for an abort to crash the entir e system and necessitate a r eset.

5.2 Input and output device interfaces

Interfacing between the CPU and I/O devices is typically done via device
interface registers that are mapped in an I/O address space. This space may
be either common with or separate from the memory address space; we will
discuss the pros and cons of each approach in Section 5.3. Most I/ O devices
have associated control and status registers used to configure and monitor
their operation, along with one or more data input and output registers used
to facilitate the actual transfer of information between the device and the
CPU (or memory). Figure 5.9 shows a hypothetical device with four interface
registers. Each of these device interface r egisters corresponding to an /O

232 Computer Architecture: Fundamentals and Principles of Computer Design

T
: (to/from actual device) I/0 device interface :
" i |
I I
: Data input Data output | | Device status | [Device control :
| register register register register |
I I
[R, SR R, S |
System
A (to/from CPU)
bus

Figure 5.9 Example of I/ O device interface showing interface r egisters.

port (or hardware gateway to a device) appears at a particular location in
the address space where it can be addressed by I/O instructions.

The principal reason I/O devices ar e interfaced via ports made up of
interface registers is the dif ference in timing characteristics between the
various types of devices and the CPU. The pr ocessor communicates with
the memory devices and I/O ports over a high-speed bus that may be either
synchronous (with a clock signal contr olling the timing of all data transfers)
or asynchronous (with a handshaking pr otocol to coor dinate transfers). In
order for the main memory (and the fastest I/O devices) to perform well,
this bus must be able to operate at the full bandwidth of memory. However,
many I/O devices ar e slower — often considerably so — than memory
devices. There also may be a delay between the time a device has data to
transfer and the time the CPU is r eady to receive it, or vice versa. Because
of these timing issues, there needs to be some sort of buffering or temporary
storage between the bus and the device; a data r egister built into the device
interface can serve this purpose. (If several data items may accumulate in
the interval over which the device is serviced, the interface may contain an
enhanced buffer such as a first in, first out (FIFO) memory. (Figure 5.10 shows
an example of a device interface with FIFO buf fering.) I/ O ports composed
of device interface registers provide the rest of the system with a standar d-
ized interface model that is essentially independent of the characteristics of
any particular I/O device.

|
: (to/from actual device) I/O device interface |
|
' i |
| |
! l
IFFIFO { ——|[FIFO 4 —] |
:EData i — FData : — |
:;Input i —— fInput | — |
| [Buffer y ——] [Buffer { —— | Device status | [Device control :
: register register :
|
I

(to/from CPU)

Figure 5.10 Example I/O device interface with FIFO buf fering.

Chapter five: Exceptions, interrupts, and input/output systems 233

In addition to the basic functions of device monitoring and contr ol and
the buffering and timing of data transfers, I/ O interfaces also sometimes
perform additional duties specific to a particular type of device. For example,
many interfaces provide data conversion between serial and parallel formats,
between encoded and decoded representations, or even between digital and
analog signals. Some may also perform error detection and error correction on
the data being transferred in order to enhance the reliability of communica-
tion. More sophisticated interfaces may serve as device controllers, translating
commands from the CPU into specific signals needed by the har ~ dware
device. A classic example of this is a disk contr oller, which takes track/sector
seek and read /write commands from the processor and derives motor drive
signals that position the read / write head for accessing the desired data on the
disk and the electrical signals needed by the head to r ead or write the data.

Given the typical I/ O interface model pr esented in this section, how does
the system go about performing transfers of data into or out of the machine?
Several approaches, each with their own advantages and disadvantages, ar e
possible. The CPU can directly perform input or output operations, either under
dedicated program control or on demand (based on device-generated hadware
interrupts). Alternatively, it is possible for the CPU to delegate the job of over -
seeing 1/O operations to a special har dware controller or even to a second,
independent processor dedicated to I/ O operations. W e will examine each of
these I/O methodologies in the next several sections.

5.3 Program-controlled I/O

The simplest, but most time-consuming (fr om the standpoint of the CPU),
approach for performing I/O operations is to have the CPU monitor the
status of each I/O device and perform the data transfer itself by executing
the appropriate instructions when a given device is r eady. The CPU deter -
mines whether each device is r eady by periodically polling it (querying the
appropriate bits in its status r egister). Since this monitoring and contr ol of
I/0O devices is done by a pr ogram written for that purpose, it is r eferred to
as program-controlled 1/ O. (Because the monitoring is done via status register
polling, this method is also sometimes known as polled 1/O.) For any given
device, the code making up its part of the “polling loop” might look some-
thing like this:

MOVE DEV1_STATUS_REG, R1 ; get device status

AND DEV1_STATUS_MASK, R1 ; check to see if r eady bit set
BZ SKIPDEV1 ; if not set, device not r eady
MOVE DEV1_DATA_REG, R2 ; if device ready, read data
MOVE DEV1_BUF_PTR, R1 ; get pointer to device bulf fer
MOVE R2, [R1] ; copy data to buf fer

INC R1 ; increment pointer

MOVE R1, DEV1_BUF_PTR ; store updated pointer
MOVE DEV2_STATUS_REG, R1 ; check next device

SKIP DEV1:

234 Computer Architecture: Fundamentals and Principles of Computer Design

This code checks the appropriate bit of an input device’s status r egister
to see if it has an item of data to transfer . If it does, the CPU r eads the data
from the input data r egister and stores it in a buf fer in memory; if not, the
CPU moves on and polls the next device. (A similar appr oach could be
employed to check whether an output device is r eady to receive data and,
if so, to transfer the data to its output data r egister.) It would be possible to
modify the code such that the status of a given device would be checked
repeatedly until it was r eady. This would ensur e prompt servicing of that
one device, but no other pogram activity (including polling of other devices)
could occur until that device became r eady and transferred its data. This
would not be a desirable approach in any but the very simplest of embedded
systems, if anywhere.

The advantage of program-controlled I/O is its obvious simplicity with
respect to hardware. Unlike the other methods we shall examine, no devices
or signals are required for data transfer other than the CPU, the I/ O device’s
interface registers, and the bus that connects them. This lack of har dware
complexity is attractive because itr educes implementation cost, but it is
counterbalanced by increased complexity of the software and adverse impli-
cations for system performance. Code similar to the example shown above
would have to be executed periodically for every device in the system — a
task made more complex by the likelihood that some devices will need to
transfer data mor e frequently than others. Any time spent polling I/O
devices and transferring data is time not spent by the CPU performing other
useful computations. If the polling loop is executed fr equently, much time
will be taken from other activities; if it is executed infrequently, I/ O devices
will experience long waits for service. (Data may even be lost if the device
interfaces provide insufficient buffering capability.) Thus, pr ogram-con-
trolled I/O is only useful in situations wher e occasional transfers of small
amounts of data ar e needed and wher e latency of r esponse is not very
important, or where the system has very little to do other than perform I/
O. This is unlikely to be the case in most general-purpose and high-perfor -
mance computer systems.

In order to check I/ O device status and perform input or output data
transfers, the CPU mustbe abletor ead and write the device interface
registers. These registers are assigned locations in an address space — either
the same one occupied by the main memory devices or a separate space
dedicated to I/O devices. The details of each of these appr oaches are dis-
cussed below.

5.3.1 Memory-mapped I/O

The simplest approach for identifying I/O port locations is to connect the
device registers to the same bus used to communicate with main memory
devices and decode I/O addresses in the same manner as memory addesses.
(Figure 5.11 illustrates the concept.) When this technique, r eferred to as
memory-mapped 1/ 0O, is used, there is only one CPU addr ess space, which is

Chapter five: Exceptions, interrupts, and input/output systems 235

CPU Mempry
Address device
decoder]

Upper

/

Lower

Address [[

[[Memory
device

1

PO

Memory
device
2

System b
Data ystem bus

|

|
g

|

I/0 device 0

I/0 device 1

I/O device 2

[(ORASRNG

I/0 device 3

!

Figure 5.11 Example system with memory-mapped I/O.

used for both memory devices and I/0O devices. Reads and writes of device
interface registers are done with the same machine instr uctions (MOVE,
LOAD, STORE, etc.) used to read and write memory locations.

The main advantage of memory-mapped 1/O is its simplicity. The hard-
ware is as basic as possible; only one bus and one addr ess decoding circuit
are required for a functional system. The instr uction set architecture is also
kept simple because data transfer instr uctions do double duty, and it is not
necessary to have additional op codes for I/O instr uctions. This scheme is
also flexible from a programming standpoint since any and all addr essing
modes that can be used for memory access can also be br ought to bear on
I/O operations. These advantages led to the use of memory-mapped I/O in
a wide variety of successful complex instr uction set computer (CISC) and
RISC architectures including the Motorola 680x0 and Sun SP ARC families.

On the downside, in a system with memory-mapped I/O, any addr esses
that are used for I/O device interfacer egisters are unavailable for memory
devices. In other words, I/O ports create holes in the memory addr ess space,

236 Computer Architecture: Fundamentals and Principles of Computer Design

leaving less room for programs and data. (If there is an I/ O device at addr ess
400, there cannot also be a memory location with addr ess 400.) Depending on
how the I/O addr esses are chosen, not all of the available physical memory
space may be contiguous. This is admittedly less of a pr oblem than it used to
be since the majority of modern systems have very lage virtual address spaces,
and pages or segments that are not physically adjacent can be made to appear
so in the virtual addr ess space. Still, the addr essing of I/ O devices must be
taken into account in the system design since all virtual r eferences must ulti-
mately be resolved to physical devices. Also, writing and examining
machine-level code (for example, I/ O drivers) can be somewhat mor e confus-
ing, as itis dif ficult to tell the I/ O operations fr om memory accesses.

5.3.2 Separate I/0O

In contrast to systems using memory-mapped I/O, some ar chitectures
define a second address space to be occupied exclusively by I/O device
interfaces. In this appr oach, known as separate I/O (sometimes referred to
as isolated 1/O), the CPU has a set of instr uctions dedicated to reading and
writing 1/O ports. The most popular example of this appr oach is the Intel
x86 architecture, which defines IN and OUT instr uctions that are used to
transfer data between CPU registers and I/ O devices.

Separate I/ O means that memory accesses and I/O transfers awe logically
separate (they exist in separate addr ess spaces). They may or may not be
physically separate in the sense of having distinct buses for I/ O and memory
operations as shown in Figure 5.12. Having separate buses would allow the
CPU to access an I/ O device at the same time itis r eading or writing main
memory but would also incr ease system complexity and cost. As we shall
see later, it may be advisable in some cases to allow a dir ect connection
between an I/O device and memory . This would not be possible in the
dual-bus configuration unless there is a way to make a connection between
the two separate buses.

The other, more common, option for implementing separate I/O is to
use one physical bus for both memory and I/O devices, but to pr ovide
separate decoding logic for each addr ess space. Figure 5.13 shows how a
control signal output fr om the CPU could be used to enable either the
memory address decoder or the I/O addr ess decoder, but not both at the
same time. The state of this signal would depend on whether the pr ocessor
is currently executing an I/O instr uction or accessing memory (either for
instruction fetch or r eading/writing data). Given this type of decoding
scheme, it is possible for an I/ O port numbeed 400 to coexist with a similarly
addressed memory location without causing a conflict — even when the
same bus is used by the CPU to communicate with both devices. The bus is
effectively multiplexed between the two types of operations.

The advantages and disadvantages of separate I/O ar e more or less the
converse of those for memory-mapped I/O. Separate I/ O eliminates the
problem of holes in the physical addr ess space that occurs when I/O ports

Chapter five: Exceptions, interrupts, and input/output systems 237

/0 Memory
device 0 e device
P N » 0
t /o Memory
e address Cry address Lf_r\—T
- decoder decoder Memory
1/0 !
device 1 [¥ ™ Upper Upper ! device
T Lower Lower — 1
Address Address T
T— _/_r [[1/O bus Memory bus I:I:r_/_/
Data Data
1/0 Memory
device 2 e device
T — 2
1— N~ I N7 N
/0 ™ l«—s| Memory
device 3 de\:;lce

Figure 5.12 System with separate buses for I/ O devices and memory .

are mapped as memory locations. All of the memory address space is avail-
able for decoding memory devices. It also makes it easy to distinguish I/O
operations from memory accesses in machine-level pr ograms (perhaps a
nontrivial advantage given that not all code is well documented in the r eal
world). Hardware cost and complexity may be increased, though; at the very
least, some additional decoding logic is r equired. (If a completely separate
bus is used for I/O, the cost incr ease may be considerable.) Defining input
and output instructions uses up more op codes and complicates the instruc-
tion set architecture somewhat. Typically (this is certainly tr ue of the Intel
example), the addressing range and addressing modes available to the input
and output instructions are more limited than those used with memory data
transfer instructions. While this takes some flexibility away from the assem-
bly programmer (and the compiler), one could ar gue that most memory
addressing modes are not really needed for I/O and that a typical system
has far fewer I/ O devices than memory locations. In the final analysis, the
fact that both of these approaches have been used in commercially successful
systems with good I/O performance tends to imply that neither has a huge
advantage over the other and that the choice between them is lagely a matter
of architectural taste.

5.4 Interrupt-driven 1/0

The two big disadvantages of pr ogram-controlled I/O (whether mem-
ory-mapped or separate) are the inconvenience of — and time consumed by

238 Computer Architecture: Fundamentals and Principles of Computer Design

Memory
device
0

[~
CPU Memory —T—
address 1

decoder

.

Upper
Lower t

Memory

Address device

(-
L»—/ N 1
System Bus N

Memory
device

Data

MEM/IO

o]
|
.

lw—w| Memory
—T—=| device

1/0 device 0
—1
N1
I/0 '
address 1/0 device 1
decoder

1/0 device 2

L
ik

1/0 device 3

1

Figure 5.13 Single-bus system with separate I/ O addr ess space.

— polling devices and the over head of the CPU having to execute instr uc-
tions to transfer the data. In many cases the first of these drawbacks is the
more serious; it can be addr essed by adopting an interrupt-driven 1/O strat-
egy. Interrupt-driven I/O is similar to pr ogram-controlled I/O in that the
CPU still executes code to perform transfers of data, but in this case devices
are not polled by software to determine their readiness. Instead, each device
uses a hardware interrupt request line to notify the CPU when it wants to
send or receive data (see Figure 5.14). The interrupt service routine contains
the code to perform the transfer(s).

The use of interr upts complicates the system har dware (and the CPU
itself) somewhat, but interrupts are standard equipment on modern micr o-
processors, so unless a lot of external har dware devices (such as interr upt

Chapter five: Exceptions, interrupts, and input/output systems 239

CPU 1/0 1/0 1/0 1/0
device 3 | | device 2 | | device 1 | | device O
A
IRQ3 —
Int t
nterrup IRQ2 . .
request % Main
lines IRQ1 memory
IRQO [« M
Data -
Address v f f f f
CPU sends/receives data CPU obtains data from/stores
to/from I/O device data in main memory

Figure 5.14 Interrupt-driven I/O concept.

controller chips or priority encoders) ar e required, the incremental cost of
using interrupts is minimal. Even an Intel x86-based PC with a single CPU
interrupt request line (INTR) needs only two inexpensive 8259A interrupt
controller chips cascaded together (see Figur e 5.15) to collect and prioritize
the interrupts for all its I/ O devices. In newer machines, this functionality
is usually incorporated into the motherboar d chipset to further reduce cost
and parts count.

Any slight additional hardware cost incurred by using interrupts for I/O
devices is generally much mor e than offset by the simplification of system
software (no polling loops), which also implies less over head work for the
CPU and therefore increased performance on non-I/O tasks. I/O code can
be very efficient since each device can have its own interuipt handler tailored
to its unique characteristics. (For best performance, ther e should be enough
interrupt request lines that each device can have one dedicated to it; other -
wise, service routines will have to be shared, and the processor will still have
to perform some polling to distinguish between interrupt sources.) Running
the handlers still takes some time away fr om the CPU doing other things

“Slave” “Master”
interrupt interrupt
controller controller
8259A 8259A
Device —{ IR0 Device — IR0
Device —{ IR1 Device — IR1
Device —={ IR2 IR2
Device —{ IR3 Device — IR3
Device —{ IR4 Device —= IR4 Intel
Device —{ IR5 Device — IR5 CPU

Device — IR6
Device —={ IR7

Device —{ IR6
Device —{ IR7

INT INT INTR

Figure 5.15 Typical PC interrupt hardware configuration.

240 Computer Architecture: Fundamentals and Principles of Computer Design

(such as running the operating system and user programs), but the elimina-
tion of polling means that no mor e processor time is spent on I/O than
absolutely necessary. Also, devices typically ar e serviced with gr eatly
reduced latency as compared to a polled implementation.

Interrupt-driven I/0O is used to some extent in just about all types of
computer systems, from embedded microcontrollers to graphics worksta-
tions to supercomputers. It is particularly suitable for general-purpose sys-
tems where there are a variety of devices thatr equire data transfers —
especially where these transfers ar e of varying sizes and occur at mor e or
less random times. The only situations wher e interrupt-driven I/O is not a
very good choice are those where transfers involve lar ge blocks of data or
must be done at very high speeds. The following sections explor e more
suitable methods of handling I/ O operations in such cir cumstances.

5.5 Direct memory access

In a system using either pr ogram-controlled or interr upt-driven 1/0O, the
obvious middleman — and potential bottleneck — is the CPU itself. Unless
input data are to be used immediately in a computation, or unless r esults
just produced are to be sent dir ectly to an output device (both rar e occur-
rences), data sent to or fr om an I/O device will need to be buf fered for a
time in main memory. Typically the CPU stores data to be output in memory
until the destination device is r eady to accept it and conversely r eads data
from a given input device when it is available and stor es it in memory for
later processing. Even a casual examination of this pr ocess will detect an
inefficiency: in order to transfer data between main memory and an I/O
device, the data goes into the CPU and then right back out of the CPU. If
there were some way to eliminate the middleman and transfer the data
directly between the device and memory , one would expect that ef ficiency
of operations could be impr oved and the CPU would have mor e time to
devote to computation. Fortunately, such a streamlined method for perform-
ing I/O operations does exist; it is known as direct memory access (DMA).

The reason program-controlled and interrupt-driven I/O are carried out
by the CPU is that in a simple computer system like the one illustrated in
Figure 5.16, the CPU is the only device “smart” enough to oversee the data
transfers. It is the only component capable of pr oviding the address, read/
write control, and timing signals necessary to operate the system bus and
thus transfer data into or out of memory locations and device interface
registers. In other words, it is the only bus master in the system. (Abus master
is a device that is capable of “driving” the bus, or initiating data transfers.)
Memory chips and most I/O devices are bus slaves; they never initiate a read
or write operation on their own but only r espond to requests made by the
current bus master. Thus, in this system, all data transferr ed from or to1/O
devices must pass through the CPU.

In order to expedite I/ O by performing direct transfers of data between
two slave devices (such as main memory and an I/O port), ther e must be

Chapter five: Exceptions, interrupts, and input/output systems
CPU 1/0 1/0 1/0 Main
device device | ¢« | device memor
0 1 i Y
SO S 6 O pit
Address ¢ [I C
Control I¢ § I
System bus
Figure 5.16 Simple computer system without DMA capability.
CPU 1/0 1/0 Main
device | * " °| device memory Colr?tbﬁ)l?ler
O S I L G 1 R O
Address [[S Address
Control It { { Control

241

Figure 5.17 Simple computer system with DMAC.

another device in the system, besides the CPU, that is capable of becoming
the bus master and generating the contr ol signals necessary to coor dinate
the transfer. Such a device is r eferred to as a direct memory access contr oller
(DMAC). It can be added to the basic system as shown in Figur e 5.17.Itis
also possible for individual devices or gr oups of devices to have their own
DMAC:s in a configuration such as the one shown in Figur e 5.18.

A typical DMAC is not a programmable processor like the system CPU,
but a har dware state machine capable of carrying out certain operations
when commanded by the CPU. Specifically, the DMAC is capable of gener -
ating the address and control and timing signals necessary to activate mem-
ory and I/O devices and transfer data over the system bus. By simulta-
neously activating the signals that cause a given device to place data on the
bus and memory to accept data from the bus (or vice versa), the DMAC can
cause a direct input or output data transfer to occur . Meanwhile, since the

1/0 1/0 1/0 1/0
device device device device
CPU DMA DMA -
Main
controller controller
memory
Data ¢ |V> E t |V> IE Data

Address { *, Address
Control Control

Figure 5.18 Computer system with multiple DMACs.

242 Computer Architecture: Fundamentals and Principles of Computer Design

: DMA controller :
| |
| | |
: | Transfer count |<——>| I/O address | :
| |
| |
: | Buffer address |<— | Control/status | :
|

' EREA
N RN R I IS IV DU

WR BR BGA
Address Data RD IRQ BG
lines lines

Figure 5.19 Block diagram of typical DMAC.

CPU is not occupied with the data transfer , it can be doing something else
(presumably, useful computational work).

Since the DMAC isnotapr ogrammable device, it is not capable of
making decisions about when and how I/O transfers should be done.
Instead, it must be initialized by the CPU with the parameters for any given
operation. (The CPU would do this when it became awar e of a device’s
readiness to transfer data by polling it or receiving an interrupt.) The DMAC
contains registers (see Figure 5.19 for a typical example) that can be loaded
by the CPU with the number of bytes or wor ds to transfer, the starting
location of the I/O buf fer in memory, the nature of the operation (input or
output), and the addr ess of the I/ O device. Once these parameters ar e set
up, the DMAC is capable of carrying out the data transfer autonomously
Upon completion of the operation, it notifies the CPU by generating an
interrupt request or setting a status bit that can be polled by softwar e. The
simple DMAC shown in Figur e 5.19 has only a single channel, meaning it
can work with only one I/O device at a time. Integrated cir ~ cuit DMACs
often have multiple channels and thus mor e than one set of contr ol and
status registers.

To the extent possible, the I/O operation using DMA proceeds simulta-
neously with normal code execution by the CPU. It is likely that the CPU
will eventually wanttor ead or write memory at the same time anI/O
transfer is taking place. Unless main memory is multiported (meaning it has
a second hardware interface so that more than one device can read or write
it at a time) and a separate bus is pr ovided for I/O, one or the other will
have to wait because only one device can be bus master at a time. The
decision as to which device will be bus master at any given time is made by
bus arbitration logic, which may be implemented in a separate circuit or built
into the CPU chip. T ypically, any device wanting to become bus master
asserts a hardware bus request signal to the arbitration logic (shown as BR
in Figure 5.19), which responds with a bus grant (BG) signal when it is ready
for that device to become bus master . The device acknowledges the grant,
assumes control of the bus, and then r elinquishes control of the bus when
it is done. The DMAC shown in Figure 5.19 would do this by activating and

Chapter five: Exceptions, interrupts, and input/output systems 243

Bus request (BR)
from DMAC

Bus grant (BG)
from CPU

Bus grant acknowledge

(BGA) from DMAC
system bus < CPU has control >—< DMAC has control >—< CPU has control

Figure 5.20 Bus arbitration sequence for DMAC becoming bus master .

then deactivating its bus grant acknowledge (BGA) signal; see Figure 5.20 for
a timing diagram illustrating the sequence of events.

Usually, priority for bus mastership is given to the DMAC because it is
easier for the CPU (as compared to an I/O device) to wait a few cycles and
then resume operations. For example, once a disk contr oller starts reading
data from a disk sector into memory , the transfers must keep up with the
data streaming off the disk or the controller will have to wait for the disk to
make a complete rotation before continuing. Also, the CPU normally has an
on-chip cache so it can often continue executing code for some time without
needing to read or write main memory, whereas all the I/ O transfers involve
main memory. (If the DMAC has an internal buf fer, it is possible to transfer
data directly from one I/O device to another without using main memory ,
but this mode is rar ely if ever needed in most systems.) Depending on the
characteristics (particularly speed) of the particular I/ O device involved and
the relative priority of the transfer compar ed to CPU activity, DMA may be
done in burst mode or cycle stealing mode. In burst mode (as depicted in Figure
5.20), the DMAC assumes exclusive ownership of the bus for the duration
of the I/O operation; in cycle stealing mode, transfers of I/ O data ar e inter-
woven (time-multiplexed) with CPU bus activity . If DMA does not use
the full bandwidth of the bus or the CPU needs r elatively few bus cycles,
the I/O operation may be done “for fr ee” or nearly so, with little or no
impact on processor performance.

Direct memory access is the most complex way of handling I/ O we have
studied so far; in particular , it r equires more hardware than the other
approaches. (After all, the CPU still needs all the cir cuitry and connections
to be able to poll devices and r eceive interrupts to be aware of the need for
a transfer to occur, but the DMAC is an additional device that adds its own
cost and complexity to the system.) Ther e is also the incr eased software
overhead of having to set up the DMA channel parameters for each transfer.
Because of this, DMA is usually less ef ficient than I/O performed dir ectly
by the CPU for transfers of small amounts of data.

However, large block transfers to or fr om a relatively small number of
devices are easily, efficiently, and quickly handled via DMA. Its r eal power
is seen when dealing with devices such as high-speed network communica-
tion interfaces, disk drive contr ollers, printers, and so forth. An entire disk

244 Computer Architecture: Fundamentals and Principles of Computer Design

sector, printer buffer, etc., can be conveniently transferr ed in (as far as the
CPU is concerned) a single operation. These lage blocks of data are normally
transferred in or out at least twice as quickly as if the CPU performed them
directly, because each byte or wor d of data is only moved once (dir ectly to
or from memory), rather than twice (into and then out of the CPU). In
practice, the speed of DMA may be several times that of other I/O modes
because DMA also eliminates the need for the CPU fetching and executing
instructions to perform each data transfer . This considerable speed advan-
tage in dealing with block I/ O transfers has made DMA a standard feature,
not just in high-performance systems, but in general-purpose machines as
well.

5.6 Input/output processors

Direct memory access is an effective way of eliminating much of the burden
of I/O operations from a system’s CPU. However, since the DMAC is not a
programmable device, all of the decision making and initial setup must still
be done by the CPU befor e it turns the data transfer pr ocess over to the

DMAC. If the I/ O requirements of a system are very demanding, it may be
worthwhile to offload the work from the main CPU to an inputfoutput pro-
cessor (I/O processor or simply IOP). I/O pr ocessors are also sometimes
called peripheral processors or front-end processors.

An I/0O processor is simply an additional, independent, pr ogrammable
processor that oversees I/O; it is able (among other things) to perform data
transfers in DMA mode. While the I/O pr ocessor could be another gen-
eral-purpose processor of the same type as the system CPU, it is typically a
special-purpose device with more limited capabilities, optimized for control-
ling I/ O devices rather than normal computing tasks. Thus, while a system
that uses one or more I/ O processors is technically a parallel ormultiprocessor
system, it is considered a heterogeneous multiprocessor rather than the more
typical homogeneous multiprocessor (like the ones we will discuss in the next
chapter) in which all CPUs are of the same type and are used to do more or
less the same type of work. An I/O processor typically contr ols several
devices, making it more powerful than a DMAC, which is typically estricted
to one device per DMA channel. Because 1/ O processors are programmable,
they are flexible and can pr ovide a common interface to a wide variety of
I/0 devices. Of course, this power and flexibility come at a greater cost than
is typical of nonprogrammable DMACs.

I/O processors as a separate system component date back to the IBM
mainframes of the late 1950s and 1960s. IBM r eferred to its I/O pr ocessors
as channel processors. These devices wer e very simple, von Neumann-type
processors. The channel processors had their own register sets and program
counters but shared main memory with the system CPU. Their pr ograms
were made up of channel commands with a completely dif ferent instruction
set architecture from the main CPU. (This instr uction set was very simple
and optimized for I/O.) Channel pr ocessors could not execute machine

Chapter five: Exceptions, interrupts, and input/output systems 245

instructions, nor could the CPU execute channel commands. The CPU and
the channel processor communicated by writing and reading information in
a shared communication area in memory. The I/O channel concept worked
well for the types of applications typically r un on mainframe computers,
and IBM used this appr oach in many successful systems over a number of
years.

A somewhat different approach was adopted by Control Data Corpora-
tion (CDC), whose lar ge systems competed with IBM’s high-end machines
for many years. Starting in the 1960s, CDC’s machines used I/O pr ocessors
known as peripheral processing units (PPUs). These were not just autonomous
processors sharing main memory like IBM’s channels; they wer e simple
computers, complete with their own memory that was separate from system
main memory, dedicated to I/O operations. The PPUs had mor e complete
instruction sets than were typical of channel processors; they were architec-
turally similar to a main CPU but with unnecessary featur es such as float-
ing-point arithmetic omitted. Besides control of I/O devices, the PPUs could
perform other operations such as data buf fering, error checking, character
translation, and data formatting and type conversion. While the name has
not always been the same, this type of independent I/O pr ocessor with its
own local memory has been used to good effect in many other systems over
the years.

5.7 Chapter wrap-up

It has been said of humanr elationships that “love makes the world go
‘round.” Love, of course, is based on interaction with another person, and
anyone who has been in such ar elationship knows that communication is
the key to success. So it is with computer systems as well. A system may
have the fastest CPU on the market, huge caches, tons of main memory, and
big, fast disks for secondary storage, but if it cannot effectively communicate
with the user (and other devices as needed) it will not get any love in terms
of success in the marketplace. Simply put, good I/O performance is essential
to all successful computer systems.

In very simple systems, it may be possible for the CPU to dirctly oversee
all I/ O operations without taking much away from its performance of other
tasks. It can do this by dir ectly reading and writing I/O ports, which may
be located in the memory address space or in a separate I/ O address space.
As systems become more complicated and more I/O devices must be sup-
ported, it becomes helpful — even necessary — to add complexity to the
hardware in the form of an interr upt handling mechanism and support for
DMA. Hardware interrupts generated by I/O devices r equiring service are
one specific example of a more general class of events known as exceptions.
Trapping instructions (software interrupts), another exception type, are also
important to I/ O operations, as they allow user pr ograms to readily access
I/O routines that must execute at a system privilege level. Handling all
types of exceptions effectively and efficiently (including saving CPU state

246 Computer Architecture: Fundamentals and Principles of Computer Design

information, vectoring to and returning from the handler, and restoring the
saved state) is a complex and important task for modern computer systems
and one that must be done well to achieve good performance fr om the I/O
system.

While I/O performed by the CPU under program control or in response
to interrupts is often suf ficient for devices that transfer small amounts of
data on a sporadic basis, it is not very ef ficient (nor is it a good use of CPU
cycles) to handle block I/O transfers this way . A better approach uses the
technique of DMA to copy data between memory and an I/O device in a
single operation, bypassing the CPU. Not only can the transfer poceed more
rapidly, but the CPU is fr eed up to perform other computations while the
I/0O operation proceeds. Almost all modern computers are capable of using
DMA to send and receive large blocks of data quickly and ef ficiently. Some
systems even go beyond the typical, dumb DMAC and employ dedicated,
programmable I/O processors to offload work from the main system pr o-
cessor. Such systems, at the cost of significant extra har dware, maintain the
advantages of DMA while adding flexibility and the power to contr ol more
I/0O devices.

All I/ O systems, from the simplest to the most complex, ar e based on
the concepts covered in this chapter. By studying and understanding these
concepts, the reader will be better pr epared to evaluate I/O techniques in
existing systems and those of the futur e. Though the specific solutions
change over time, moving bits fr om one place to another is a pr oblem that
never goes away.

5.8 Review questions

1. What do we mean when we say that interr upts must be pr ocessed
transparently? What does this involve and why is it necessary?

2. Some processors, before servicing an interr upt, automatically save
all register contents. Others automatically save only a limited amount
of information. In the second case, how can we be sue that all critical
data are saved and restored? What are the advantages and disadvan-
tages of each of these appr oaches?

3. Explain the function of a watchdog timer. Why do embedded control
processors usually need this type of mechanism?

4. How are vectored and autovectored interrupts similar and how are
they different? Can they be used in the same system? Why or why
not? What are their advantages and disadvantages compar ed with
nonvectored interrupts?

5. Given the need for user pograms to access operating system services,
why are traps a better solution than conventional subpr ogram call
instructions?

6. Compare and contrast program-controlled I/O, interrupt-driven I/O,
and DMA-based I/O. What are the advantages and disadvantages of

Chapter five: Exceptions, interrupts, and input/output systems 247

10.

each? Describe scenarios that would favor each appr oach over the
others.
Systems with separate I/ O have a second addr ess space for I/O
devices as opposed to memory and also a separate category of in-
structions for doing I/ O operations as opposed to memory data
transfers. What are the advantages and disadvantages of this method
of handling I/O? Name and describe an alternative strategy and
discuss how it exhibits a dif ferent set of pros and cons.
Given that many systems have a single bus that can be controlled by
only one bus master at a time (and thus the CPU cannot use the bus
for other activities during I/O transfers), explain how a system that
uses DMA for I/O can outperform one in which all I/O is done by
the CPU.
Compare and contrast the channel pr ocessors used in IBM main-
frames with the PPUs used in CDC systems.
Fill in the blanks below with the most appr opriate term or concept
discussed in this chapter:
A synchronous or asynchronous event that occurs, r e-
quiring the attention of the CPU to take some action.
A special program that is run in order to service a de-
vice, take care of some err or condition, or r espond to
an unusual event.
When an interrupt is accepted by a typical CPU, critical
processor status information is usually saved her e.
The highest priority interrupt in a system; one that will
never be ignored by the CPU.
A signal that causes the CPU to r einitialize itself and/
or its peripherals so that the system starts fom a known
state.
The process of identifying the source of an interrupt and
locating the service routine associated with it.
When this occurs, the device in question places a num-
ber on the bus that is r ead by the processor in order to
determine which handler should be executed.
Another name for a software interrupt, this is a synchro-
nous event occurring inside the CPU because of pr o-
gram activity.
On some systems, the “blue screen of death” can result
from this type of softwar e-related exception.
These are mapped in a system’s I/ O addess space; they
allow data and/or control information to be transferred
between the system bus and an I/O device.
A technique that featur es a single, common addr ess
space for both I/ O devices and main memory .

248 Computer Architecture: Fundamentals and Principles of Computer Design

Any device that is capable of initiating transfers of data
over the system bus by poviding the necessary address,
control, and/or timing signals.

A hardware device that is capable of carrying out I/O
activities after being initialized with certain parameters
by the CPU.

A method of handling I/ O where the DMAC takes over
exclusive control of the system bus and performs an
entire block transfer in one operation.

An independent, programmable processor that is used
in some systems to of fload input and output activities
from the main CPU.

chapter six

Parallel and
high-performance systems

In Chapter 4 we explored a number of techniques, including pipelining, that
can be used to make a single pr ocessor perform better. As we discovered,
pipelining has its limits in terms of impr ~ oving performance. Instr uction
execution can only be divided into so many steps, and operations such as
memory accesses and contr ol transfers (as well as dependencies between
instructions) can cause delays. Superpipelined, superscalar , and very long
instruction word (VLIW) designs ar e implementation and ar chitectural
approaches that have been used to overrome (to some degree) the difficulties
inherent to extracting performance from a single processor, but each of these
approaches has its own costs and limitations. Ultimately , given the level of
implementation technology available at any point in time, designers can
make a CPU execute instructions only so fast, and no faster. If this is not fast
enough for our purposes — if we cannot get the performance we need fr om
a system with a single CPU — the r emaining, obvious alternative is to use
multiple processors to increase performance. Machines with multiple pr o-
cessing units are commonly known as parallel processing systems, though a
more appropriate term might be concurrent or cooperative processing.

It should come as no surprise to the r eader that there have been, and
still are, many types of high-performance computer systems, most of which
are parallel to some extent. The need for high-performance computing hard-
ware is common across many types of applications, each of which has dif-
ferent characteristics that favor some appr oaches over others. Some algo-
rithms are more easily parallelized than others, and the natue of the inherent
parallelism may be quite dif ferent from one program to another. Certain
applications such as computational fluid dynamics (CFD) codes may be able
to take advantage of massively parallel systems with thousands of float-
ing-point processors. Others, for example game tree searching, may only be
able to efficiently use a small number of central pr ocessing units (CPUs),
and the operations r equired of each one may be quite dif ferent than those
required of the CFD machine. Thus, a wide variety of systems ranging fr om

249

250 Computer Architecture: Fundamentals and Principles of Computer Design

two to tens of thousands of pr ocessors have been built and found some
degree of success.

Parallel systems are not only distinguished by the number and type of
processors they contain, but also by the way in which these pr ocessors are
connected. Any task carried out by multiple pr ocessors will require some
communication; multiple CPUs with no inter connection between them can
only be considered as separate machines, not as a parallel system. Indeed,
the communications networks used to inter connect parallel systems ar e a
key component — often the most important aspect — of the overall system
design. Of course, the amount of communicationr equired varies widely
across applications, so a number of dif ~ferent techniques can be used to
implement it. Thus, a lar ge portion of this chapter (after the first section on
the classification of high-performance and parallel systems and their char -
acteristics) will be devoted to the important topic of inter ~ connection net-
works for parallel systems.

6.1 Types of computer systems: Flynn’s taxonomy

A variety of computer ar chitectures, including parallel ones, have existed
for many years — much longer than many modern computer pr ofessionals
realize. The first parallel systems, including the Univac LARC, Burr oughs
D825, and IBM Sage, appear ed in the late 1950s (scar cely 10 years after the
first programmable computers were built). Within a few years, several types
of architectures that are still in use today emer ged. In 1966, Michael Flynn
published an article in which he defined four general classifications of com-
puter systems, three of which were parallel in some sense of the word. Nearly
four decades later, Flynn’s classifications ar e still widely used to describe
the computers of today. With the exception of a few specialized architectures
(to be discussed in Chapter 7) that wee developed after Flynn’s work, almost
all practical systems still fall into one of his four categories:

1. Single Instruction Stream, Single Data Stream (SISD) machines have a
single CPU that executes one instr uction on one operand (or small
set of operands, such as those for a typical arithmetic or logical
operation) at a time. Nonparallel machines builtar ound a single
processor with a von Neumann (Princeton) or Harvar d architecture,
like most of the ones we have studied so far , fall into this category .
Though pipelined and superscalar machines internally process mul-
tiple instructions simultaneously, they appear to process one instruc-
tion at a time and thus ar e still generally consider ed to be SISD
architectures. This type of system with a single pr ocessor (which
executes a single stream of machine instructions) is also known as a
uniprocessor system.

2. Single Instruction Stream, Multiple Data Stream (SIMD) machines exe-
cute a single, sequential pr ogram, but each instr uction specifies an
operation to be carried out in parallel on multiple operands (or sets

Chapter six: Parallel and high-performance systems 251

of operands). Typically these multiple operands ar e elements of an
array of values; thus, SIMD machines ar e often known as array pro-
cessors. The SIMD ar chitecture generally implies a machine with a
single control unit but many datapaths (pr ocessing elements). This
architectural classification will be discussed in more detail in Section
6.1.2.

3. Multiple Instruction Stream, Single Data Stream (MISD) machines were
described by Flynn, pr esumably for symmetry with the r emaining
categories, but did not exist at the time of his writing — nor have
they proliferated since. An MISD machine would be one that per -
formed several different operations (or executed multiple sequences
of instructions) on the same stream of operands. One can ar gue that
no commercially available machine is a true MISD system. However,
it is possible to consider some vector processors (to be discussed in
Section 6.1.1) and some special-purpose architectures such as artificial
neural networks and dataflow machines (covered in Chapter 7) as being,
or at least resembling to some extent, MISD architectures as described
by Flynn.

4. Multiple Instruction Stream, Multiple Data Str eam (MIMD) machines
simultaneously execute different programs (instruction streams) on
different sets of operands. Such a system is composed of mor e than
one SISD-type (von Neumann or Harvar d architecture) CPU, con-
nected in such a fashion so as to facilitate communication between
the processors. This is the most common type of parallel system in
existence today. Depending on the nature of interprocessor commu-
nication, MIMD systems may be known as multiprocessor systems
(Section 6.1.3) or multicomputer systems (Section 6.1.4); hybrids of the
two classifications are also possible.

Figure 6.1 breaks down the various classifications of computer systems
using Flynn’s taxonomy as a guide (though some other types of systems are
shown as well). Note that all the systems except SISD machines and the
earliest pipelined vector processors are parallel machines. The characteristics
of SISD systems have been discussed in some detail in the first five chapters
of this book. The few systems with MISD-like characteristics will be pointed
out as appropriate in the discussion that follows. The vast majority of parallel
systems in use today are built around an MIMD or SIMD architecture. Thus,
the rest of this chapter deals primarily with those types of systems. The
following sections describe in mor e detail several common categories of
high-performance computer architectures that were introduced above.

6.1.1 Vector processors

Vector processors, while not as widely used as they wer e 15 to 20 years ago,
are still a significant class of machines with characteristics that ar e worth
our while to study. The classic examples of vector pr ocessing systems are

252 Computer Architecture: Fundamentals and Principles of Computer Design

Types of computer systems

Flynn’s classifications Special-purpose/future architectures
| I
[I I |
SISD SIMD MISD —— MIMD [~ Artificial neural networks
(Uniprocessor) (Array processor) (not a standard (parallel }4 -----
Princeton Global architecture) system) - Data flow machines
architecture memory [Some vector Multicomputer . X
(GM-SIMD) processors (LM-MIMD) - Fuzzy logic architectures
Harvard Ho .
. with vector .
architecture Local chaining? Multiprocessor - Quantum computers
memory = ’ (GM-MIMD)
Some early (LM-SIMD) Dataflow UMA L Others?
vector machines? NUMA '
processors
[Artificial COMA
U neural Multi-
networks? multicomputer
,—Y/

1

i

1

Figure 6.1 Classifications of computer ar chitectures.

the Cray-1 and its successors including the Cray X-MP and Y-MP vector
supercomputers, though similar machines have been built by other compa-
nies such as NEC, Fujitsu, and Hitachi. The instructions of vector processors
operate not on individual (scalar) values, but on vectors (one-dimensional
arrays of values). For example, an instr uction of the form ADD V1, V2, V3
does not add one number to another to pr oduce a single result, but instead
adds each element of a set of numbers to the corr esponding element of a
second set, producing a corresponding set or vector of esults. Vector reduction
operations with a scalar r esult (such as dot pr oduct) may also be imple-
mented as single machine instructions. These types of operations are usually
accomplished by passing the vector elements, one after the other, through a
(usually quite deeply) pipelined arithmetic/logic unit; Figure 6.2 depicts this
process.

Since the vectors being processed are typically made up of a large num-
ber of elements (the length may be fixed or specified by some means such
as a vector length register) and since the same operations ar e performed on
each element of the vector , the heavily pipelined appr oach used in vector
processors may yield a lar ge speedup compared with performing the same
computations on a scalar pr ocessor. Vector processing also significantly
decreases the effort involved in fetching and decoding instr uctions, since it
is not required that a machine instruction be executed for each computation.
Instead, efficiency is enhanced, as the execution of one instr uction causes a
large number of similar arithmetic or logical operations to be performed.

The vector approach can be quite useful in carrying out scientific calcu-
lations, which often involve manipulations of lar ge matrices or arrays of
data. (In an array of two or mor e dimensions, individual r ows or columns
may be processed as vectors.) Conversely; it is of little use in general-purpose
machines. This lack of general application makes vector pr ocessing systems

Chapter six: Parallel and high-performance systems 253

Vector A Vector B
An-1) B(n-1)
An-2) B(n-2)
A(3) B(3)
A(2) B(2)
A1) B(1)
A(0) B(0)
ALU
Operation
select
R(n-1)
R(n-2)
R(3)
R(2)
R(1)
R(0)

Result vector R
Figure 6.2 Vector addition example.

more expensive, as the (usually high) development cost is spread over fewer
machines. High cost and low generality ar e significant reasons why vector
processors now make up only a small fraction of the installed base of super-
computers and only a tiny slice of today’s overall computer market.

Vector machines ar e perhaps the most dif ficult of high-performance
systems to classify under Flynn’s taxonomy: They are not necessarily parallel
systems, though in practice virtually all vector super computers (since the
Cray-1, which was a unipr ocessor) have been parallel (MIMD) machines
with interleaved main memory modules shar ed among a small number of
fast vector CPUs. A single vector processor has a similar ef fect to, and may
be programmed much like, an SIMD array processor (see below) but should
probably be considered in a strict sense as a pipelined SISD system. However
if vector chaining (a technique in which a sequence of vector instr uctions are
overlapped, with the data from one operation being used in the next) is used,
a vector pr ocessor may be consider ed an example of the elusive MISD
classification.

254 Computer Architecture: Fundamentals and Principles of Computer Design

6.1.2 Array processors

Array processors are SIMD machines as defined by Flynn. Like vector proces-
sors, array processors carry out the operation specified by a single machine
instruction on a number of data elements. (Depending on the specific ar chi-
tecture, the operands may be str uctured as arrays of one, two, or mor e
dimensions.) However, instead of doing this with a single (or just a few)
deeply pipelined execution units that overlap computations in time (tempo-
ral parallelism), array processors typically make use of spatial parallelism:
they employ many simple processing elements (PEs), each of which operates
on an individual element of an operand array . If these processing elements
are pipelined at all, they typically have only a small number of stages. Figue
6.3 shows the str ucture of a typical SIMD array pr ocessor; note the single
control unit that coordinates the operations of all the PEs.

Because they share a single contr ol unit, the PEs of an array pr ocessor
operate in lockstep — each one performs the same computation at the same
time, but on different elements of the operand array(s). In some cases, it may
be possible to set or clear bits in a mask r egister to enable some PEs while
disabling others, but if during a given cycle a PE is performing any compu-
tation at all, it is performing the same one as the other PEs. Figur e 6.4 illus-
trates a situation in which six of the eight PEs in our example array processor
will perform a given computation while the other two r emain idle.

Like the MIMD machines consider ed below, SIMD computers may be
constructed with either shar ed (globally accessible) or distributed (local)
memory systems; each approach has its own set of pr os and cons. Because
most commercial array processors have used the massively parallel appoach

Control unit

Registers

I

PEO PE1 PE2 PE3

Processing

l— l— l— elzr)r]lgesr)xts

-

PE4 PE5 PE6 PE7

Figure 6.3 Array processor (SIMD machine) example.

Chapter six: Parallel and high-performance systems 255

Control unit

Mask register
00111111

~
No computation \/_\/\/

performed All perform same computation
Figure 6.4 Array processor with some processing elements masked.

and because of the dif ficulty of sharing memory among a lar ge number of
processing elements, the distributed memory approach has been more prev-
alent. Such an array processor, in which each PE has its own local memory ,
may be designated as a LM-SIMD system; a simple example is depicted in
Figure 6.5. The alternative str ucture, in which PEs shar e access to a global
memory system, may be r eferred to asa GM-SIMD ar chitecture (see
Figure 6.6).

While SIMD machines ar e designed to gr eatly accelerate performance
on computations using arrays of data, like pipelined vector pr ocessors they

PE PE PE PE
Memory Memory Memory Memory
module module module module

Figure 6.5 Array processor with distributed memory (LM-SIMD ar chitecture).

Control unit

| Interconnection network |

| Memory system |

Figure 6.6 Array processor with shared memory (GM-SIMD ar chitecture).

256 Computer Architecture: Fundamentals and Principles of Computer Design

provide little or no speed advantage for general-purpose, scalar computa-
tions. For this reason, array processors are almost never built as stand-alone
systems; rather, they typically serve as copr ocessors (or array accelerators)
to a conventional CPU that serves as the fr ont-end, or main, pr ocessor for
the overall system. Historically, most array pr ocessors of the 1970s, 1980s,
and early 1990s were built for government agencies and lar ge corporations
and were used primarily for scientific applications.

One of the earliest array pr ocessors was the ILLIACIV , aresearch
machine originally developed by Daniel Slotnick at the University of Illinois
and later moved to NASA Ames Research Center. The ILLIAC was a fairly
coarse-grained SIMD system; it had only 64 processing elements, each capable
of performing 64-bit arithmetic operations at 13 MHz. (The original design
called for 256 PEs, but the har dware proved to be so expensive that only
one-quarter of the array was ever built.) Each pr ocessing element had its
own local memory; the single contr ol unit could access the memory of any
PE. The front-end processor for the ILLIAC IV was originally a Burr oughs
B6700, which was later replaced by a DEC PDP-10.

Perhaps as ar eaction to the high cost (over $30 million) and delays
(several years) involved in getting the ILLIAC IV to work, most of the other
high-performance array processors that have since been developed have
adopted the massively parallel approach: each used many mor e processing
elements than ILLIAC, but each PE was much simpler (often just a 1-bit
processor). This approach, also known as fine-grained SIMD, became more
attractive as very lar ge-scale integration (VLSI) technology matur ed and
allowed the integration of a lar ge number of simple processing elements in
a small physical space. The ICL Distributed Array Processor (DAP), the
Goodyear Aerospace Massively Parallel Processor (MPP), and the Thinking
Machines Connection Machine (CM-1 and CM-2) systems wee all composed
of large numbers (4K, 16K, and 64K r espectively) of 1-bit pr ocessing ele-
ments. (The CM-2 did augment its huge array of 1-bit PEs with 2K 64-bit
floating-point processors.) Eventually, implementation technology devel-
oped to the point where some complexity could be restored to the processing
elements. The MasPar MP-1 and MP-2 systems, introduced a few years after
the Connection Machine, r eturned to a parallel datapath design. Each of
these systems could contain up to 16K pr ocessing elements; those used in
the MP-1 were 4 bits wide, while the PEs in the MP-2 wer e 32 bits wide.
Each PE also contained floating-point har dware.

All the SIMD systems just mentioned wer e high-performance machines
directed at the scientific pr ocessing market. Like vector pr ocessors, these
large-scale array processors did not have a place in the general computing
arena, so only ar elatively few copies of each system wer e built and sold.
However, SIMD technology has mor e recently found its way into personal
computers and other less expensive systems — particularly those used for
multimedia applications, signal and image pr ocessing, and high-speed
graphics. The most ubiquitous example of (very coarse-grained) SIMD in
today’s computers is in the multimedia extensions added to the Intel x86

Chapter six: Parallel and high-performance systems 257

architecture over the past several years. Intel’s MMX enhancements, intr o-
duced in 1997, were executed by a simple array coprocessor integrated onto
the chip with the CPU and floating-point unit. These new MMX instructions
were capable of performing arithmetic operations on up to eight integer
values at once. Advanced Micro Devices (AMD), manufacturer of x86-com-
patible processors, responded the following year by introducing its 3DNow!
instruction set architecture, which was a superset of MMX including float-
ing-point operations. Further SIMD operations wer e later added by Intel
with SSE (Str eaming SIMD Extensions) and SSE-2 and by ~ AMD with
Enhanced 3DNow! These architectural enhancements (along with others such
as SPARC’s Visual Instruction Set, the MIPS MDMX and MIPS-3D multime-
dia instructions, and the AltiVec extensions to the PowerPC architecture) all
make use of parallel har dware to perform the same operation on multiple
data values simultaneously and thus embody the SIMD concept as they
enhance performance on the multimedia and graphics applications being
run more and more on home and small business systems.

In addition to general-purpose micr oprocessors like the ones just men-
tioned, some specialized pr ocessors used for graphics and signal pr ocessing
also feature an SIMD ar chitecture. One of the first array pr ocessors built for
graphics applications was Pixar’s Channel Processor (Chap), developed around
1984 for use in pixel pr ocessing operations such as r otations, transformations,
image blending, and edge filtering. Chap, which performed only integer oper -
ations, was later followed by Flap (Floating-Point Array Processor), which was
used for thr ee-dimensional transformations, clipping, shading, etc. Mor e
recently, the Pixel-Planes 5 and PixelFlow graphics machines developed at the
University of North Car olina have used SIMD arrays for r endering. Some of
the latest digital signal processing chips such as Analog Devices’ Hammerhead
SHARC and ChipWrights” ViSP video signal pr ocessors fall into the SIMD
classification as well. New applications ar e continually being discover ed for
array processors; ClearSpeed Technology (formerly PixelFusion) has changed
its application focus and adapted its Fuzion 150 graphics array pr ocessor for
use in high-speed network packet pr ocessing applications.

While pipelined vector pr ocessors have waned in popularity inr ecent
years, it appears that array processors based on the SIMD ar chitecture are not
going to follow suit. Though lar ge-scale, massively parallel SIMD super com-
puting machines are, and likely will r emain, a niche market, smaller -scale
systems are increasingly making use of moderate, coarse-grained array paral-
lelism. In summary, SIMD array processors have succeeded to a greater extent
than pipelined vector machines in recent years because their parallel ar chitec-
ture scales well as chip feature sizes shrink and because they have been found
to have a wider range of useful applications.

6.1.3 Multiprocessor systems

Multiprocessor systems fall under Flynn’s category of MIMD machines. They
differ from array processors in that the several CPUs execute completely

258 Computer Architecture: Fundamentals and Principles of Computer Design

|CPU||CPU||CPU||CPU‘

| Interconnection network |

Memory Memory Memory Memory
module module module module

Figure 6.7 Typical multiprocessor system (GM-MIMD ar chitecture).

different, usually unrelated, instructions at the same time rather than being
in lockstep with each other. Specifically, multiprocessors are MIMD systems
with two or more independent (though usually similar, that is, homogeneous)
CPUs that communicate via writing and reading shared main memory loca-
tions. Because they share memory, the CPUs in a multipr ocessor system are
said to be “tightly coupled.” Such an ar chitecture in which at least some —
usually all — of main memory is globally accessible may be r eferred to as
a GM-MIMD system. A block diagram of a typical multipr ocessor system is
shown in Figure 6.7.

Multiprocessors may have as few as two or as many as hundr eds of
CPUs sharing the same memory and input/output (I/O) systems. (Most
massively parallel MIMD systems with thousands of CPUs ar e multicom-
puters in which memory and I/O ar e not globally shar ed.) As with most
parallel machines, the key featur e of any multipr ocessor architecture is the
interconnection network used to tie the system together — in this case, to
connect the processors to the shared main memory modules. These networks
vary considerably in terms of construction, cost, and speed; we will examine
them in more detail in Sections 6.2 to 6.4. While the cost of inter connection
hardware may be considerable, multipr ocessor systems offer a simple pro-
gramming model without the message-passing overhead inherent to parallel
systems that do not have shared memory. It is relatively easy to port existing
code from a uniprocessor environment and achieve a reasonable increase in
performance for many applications.

The classical multiprocessor system architecture, which has been in use
at least since the early 1970s, has shar ed memory modules that ar e equally
accessible by all processors. Given that no contention exists (a given module
is not already in the process of being read or written by another CPU), any
processor can access any memory location in essentially the same amount
of time; this attribute is known as the uniform memory access (UMA) property.
This type of system, in which a number of similar (usually identical) pr o-
cessors share equal access to a common memory system, is known as a
symmetric multiprocessor (SMP) system. SMPs have a single addr ess space
that is accessible to all CPUs. All CPUs are managed by a single operating
system, and only one copy of any given pr ogram is needed.

Chapter six: Parallel and high-performance systems 259

As far as a user is concerned, a symmetric multipr ocessor looks, and is
programmed, much like a unipr ocessor; the difference is that multiple pro-
cesses can run in a tr uly concurrent (rather than time-sliced) fashion. The
performance of each CPU’s cache is important, just as it is in a unipr ocessor
system, but the placement of code and data in main memory is not particu-
larly critical. The main advantages of SMP, therefore, are simplicity and ease
of programming. One of the principal disadvantages of an SMP architecture
is that (because of the characteristics of the inter connection networks that
are used to connect the CPUs to memory) it does not scale well toalar ge
number of processors. As the number of pr ocessors increases, a single bus
becomes a bottleneck and performance suf fers. If a multiported memory
system or a higher-performance network such as a cr ossbar switch is used
to overcome this limitation, its complexity and cost can become pr ohibitive
for large numbers of CPUs. Thus, a typical symmetric multipocessor system
has 16 or fewer CPUs, with the practical limit being a few dozen at the very
most.

A more recently developed approach that is primarily used in lar ger
multiprocessor systems is the nonuniform memory access (NUMA) architec-
ture. In this type of system, ther e is still a global addr ess space that is
accessible to all CPUs, but any given memory module is mor e local to one
processor (or one small gooup of processors) than to others that ae physically
farther away. A given CPU has a dir ect physical connection (as it would in
an SMP system) to certain memory modules, but only anindir ect (and
considerably slower) connection to others. (Figur e 6.8 illustrates a typical
system based on this ar chitectural plan.) Thus, while all shar ed memory
locations are accessible to all CPUs, some of them will be able to access a
given location more quickly than others. One can consider such a NUMA
system to be an example of distributed shared memory (DSM). As such, the
NUMA architecture represents a middle gr ound between shared memory
SMP systems with only a few pr ocessors and the (often much lar ger) dis-
tributed memory multicomputers to be discussed below .

The performance of a multipr ocessor with a NUMA architecture
depends substantially on how information (code and data) needed by each
processor is mapped in memory. While a program written and compiled for
an SMP architecture will run without modification on a CC-NUMA (cache
coherent NUMA) machine, it will be unlikely to achieve the performance
gain one might expect given the number of pocessors. This is largely because
if a processor frequently needs to access memory locations that ae physically
remote, it will spend much of its time waiting for information. T o maximize
performance, the programmer or the compiler must be “NUMA aware,”
tuning the program such that as much as possible the information needed
by each CPU is available in its diectly connected, local memory. This process
requires some effort and is more successful for some programs than others.
A CC-NUMA system will also generally incur a higher har dware cost due
to a more complex cache coher ence scheme (to be discussed below) com-
pared to an SMP system. If hardware is not used to ensure cache coherence,

260 Computer Architecture: Fundamentals and Principles of Computer Design

PEPY 999E

Local interconnection Local interconnection

| Memory | | Memory | | Memory | | Memory | | Memory | | Memory | | Memory | | Memory |

L IPPE Y

Global
interconnection

Local interconnection

| Memory | | Memory | | Memory | | Memory |

Figure 6.8 Multiprocessor with distributed shared memory (NUMA architecture).

the programming effort required to do so in softwar e will increase cost in a
different way.

On the plus side, the NUMA architecture scales well to a lar ge number
of processors, although the differential access time between local and remote
memory access does tend to incr ease as the system gr ows larger. Not only
may a given system be built with many (in some cases, hundr eds of) CPUs,
but most NUMA-based machines ar e designed to be highly configurable
such that a user may start out with a smaller system and add extra pocessor
and memory boards as needed. This is possible because while the inter con-
nection structure within local gr oups of processors is like that of an SMP
and can only handle a limited number of components, the global inter con-
nection network (while slower) is generally much more flexible in structure.
Because of their power and flexibility, systems with this type of architecture
have become increasingly popular in recent years. Notable examples include
the Data General/EMC Numaline and AViiON systems, the Sequent (now
IBM) NUMA-Q, the Hewlett-Packard / Convex Exemplar line of servers, and
the Silicon Graphics Origin 2000 and 3000 super computers.

A few experimental multiprocessors such as the Data Diffusion Machine
(multiple test systems have been built), the Kendall Square Research KSR-1,
and Sun Micr osystems’ Wildfire prototype use ar efinement of NUMA
known as a cache-only memory architecture (COMA). (Most of these systems
are actually based on a simplified implementation of this achitecture known
as simple COMA [S-COMA].) In such a system, the entir e main memory
address space is tr eated as a cache. Portions of the cache ar e local to each
CPU or small group of CPUs. Another name for the local subsets of cache
is “attraction memories.” This name comes fr om the fact thatin a
COMA-based machine, all addresses represent tags rather than actual, phys-
ical locations. Items are not tied down to a fixed location in memory, though

Chapter six: Parallel and high-performance systems 261

they appear that way to the pr ogrammer (who views the system as though
it were a large SMP). Instead, blocks of memory (fiom the size of pages down
to individual cache lines, depending on the implementation) can be migrated
— and even replicated — dynamically so they ar e nearer to where they are
most needed. By using a given part of memory , a processor “attracts” that
block of memory to its local cache. A directory is used to make the curr ent
overall cache mapping available to all pr ocessors so that each can find the
information it needs. While the COMA approach requires even more hard-
ware support than the traditional multipr ocessor cache coherence methods
we are about to study and has yet to be adopted in commer cial machines,
it shows some potential for making larger multiprocessors behave more like
SMPs and thus perform well without the softwar e having to be tuned to a
particular hardware configuration.

Cache coherence in multiprocessors is an important issue that we have
briefly mentioned without giving a formal definition or explanation. In any
multiprocessor system, CPUs share information as necessary by writing and
reading memory locations. As long as access to the shar ed main memory is
done in proper sequence — and as long as main memory is the only level
involved — this approach is fairly straightforward. However, systems with
main memory only (in other wor ds, without cache) would be much slower
than cache-based systems. This would directly contradict the main purpose
(speed) for building a parallel system in the first place. Thus, cache is essen-
tially universal in multiprocessor systems. However, the existence of multi-
ple caches in a system, which can possibly contain the same information,
introduces complications that must be dealt with in one way or another .

Recall our discussion of cache memories in Section 2.4. W e noted that
cache operation is fairly straightforward as long as only memory read oper-
ations are considered. Writes, however, introduce complications since sooner
or later main memory must be updated such that its contents ar e consistent
with those of the cache. W e studied two write policies, write-thr ough and
write-back, commonly used in cache design. One potential pr oblem with a
write-back policy is that for some amount of time, main memory may contain
stale data; that is, the cache may contain a newly computed value for an item
while main memory contains a previous value that is no longer correct. This
situation is not corr ected until the line containing the updated item is dis-
placed from cache and written back to memory In the meantime, if any other
operation (such as a DMA transfer from memory to an output device) were
to read the contents of that memory location, the incorrect, old value would
be used.

One way to solve this problem in a uniprocessor system (though it may
cost a little in performance) is to simply adopt a write-thr ough policy such
that every time an item in cache is updated, the same value is immediately
written to main memory . This makes sur e that the contents of cache and
main memory are always consistent with each other . Main memory will
never contain invalid or “stale” data. Now consider the addition of a second

262 Computer Architecture: Fundamentals and Principles of Computer Design

Main memory

Updated -----""
System bus
Updated Write-through Not updated
Tl W | [m [T
Cache 0 Cache 1

Write (gets old value
CPUO C:PUZII if item is read)

Figure 6.9 Cache coherence problem in a multiprocessor system.

CPU, with its own cache, to the system as shown in Figur e 6.9. What effects
may result from the existence of multiple caches in a system?

As Figure 6.9 shows, a potential pr oblem arises anytime the same line
from main memory is loaded into both caches. It is possible that either
processor may write to any given memory location in the line. A
write-through policy guarantees that main memory will always be updated
to contain the information written by either of the pr ocessors, but it does
nothing to ensure that the other CPU’s cache will be updated with the new
value. If the location in question r emains in the second pr ocessor’s cache
long enough to be subsequently r eferenced by a pr ogram (resulting in a
cache hit), the data obtained will be the old, incorr ect value instead of the
new one. The two caches ar e inconsistent with each other and thus pr esent
an incoherent view of the contents of main memory . (The problem only gets
more complex as additional CPUs, each with its own cache, ar e added to
the system.) This is not a desirable situation, as it can r esult in incorrect
operation of the software running on the parallel system. Maintaining coher-
ence of stored information (while keeping complexity and cost to reasonable
levels) is a major design issue in multipr ocessor systems. Let us examine
some of the strategies commonly used to addr ess this problem.

The simplest scenario as far as cache coher ence is concerned is a small,
symmetric multiprocessor where all CPUs use the same inter ~connection
hardware (often a shared bus as in Figure 6.10) to access main memory. If a
write-through policy is used, every time a value is updated in any cache in
the system, the new data value and the corr esponding address will appear
on this common network or bus. By monitoring, or “snooping on,” system
bus activity, each cache controller can detect whether any item it is currently
storing has been written to by another pr ocessor and can take appr opriate
action if this is the case. A cache coherence protocol that uses this approach
is called (with apologies due to Peanuts creator Charles Schulz) a snoopy
protocol.

Chapter six: Parallel and high-performance systems 263

Main memory

I .

(New value appears on bus) 1 Write-through
[]

1 (Monitors bus) | (Monitors bus) l (Monitors bus and detects
write to cached
Tag | - location; grabs
Tog | - data or marks old
Cache 0 Cache 1 Cache 2 Cache 3 copy invalid)
Write (will get new
CPU 0 | crul | | cru2 | CPU 3 value if

location read)

Figure 6.10 Symmetric multiprocessor with shared bus interconnection.

What is the appr opriate action to take when a cache contr oller detects
another processor’s write to a location it has cached? One of two approaches
will suffice to keep another CPU fr om using the stale data curr ently in its
cache. Either its duplicate copy of the cache entry must be invalidated (for
example, by clearing the valid bit in its cache tag) such that the nexteference
to it will for ce a miss and the corr ect value will be obtained fr om main
memory at that time, or it must be updated by loading the changed value
from main memory. (Depending on timing constraints, it may be possible
in some systems to copy the item fr om the bus as it is written to main
memory.) Not surprisingly, these two appr oaches are referred to, r espec-
tively, as write-invalidate snoopy cache and write-update snoopy cache protocols.
Their operation is illustrated in Figur e 6.11 and Figure 6.12.

System bus
Address Data
Tag Valid Data
(Matches) | x 0 | | Old value
Cache

Z Marked invalid to force
miss on next access

Figure 6.11 Maintaining cache coherence using the write-invalidate appr oach.

264 Computer Architecture: Fundamentals and Principles of Computer Design

System bus
Address Data
Tag Valid
(Matches)| 1 | |New value
Cache

Updated with new value l
— next access will be a hit

Figure 6.12 Maintaining cache coherence using the write-update appr oach.

Each of these two appmaches has certain advantages and disadvantages.
The write-update protocol makes sure that all caches that hold copies of a
particular item have a valid copy For data that are heavily shared (frequently
used by more than one CPU), this appr oach works well since it tends to
keep hit ratios high for the shar ed locations. It is especially useful in situa-
tions where read and write accesses tend to alternate. Howeverwrite-update
can significantly increase overhead on the system bus, especially considering
that in many systems an entir e line must be transferr ed to or fr om cache
even if only one byte or wod is affected. This additional bus activity equired
for updates may r educe the bandwidth available to other pr ocessors and
interfere with other activities such as I/O.

If data are only lightly shared (seldom referenced except by one partic-
ular CPU), much of the time and ef fort spent updating all the other caches
on each write may be wasted since the line in question is likely to be evicted
from most of the caches before it is used again. In this case, the write-inval-
idate protocol may be preferred even though it will sometimes cause a miss
on shared data where write-update would have resulted in a hit. (The overall
hit ratio for the cache containing the invalidated line may incr ease since it
may be replaced with another line that turns out to be hit mor e frequently.)
Write-invalidate does not perform as well as write-update when r eads and
writes alternate but has the advantage when several writes to the same line
occur in succession since it avoids the multiple update transactions. A line
only needs to be invalidated once no matter how many times it is written.

System designers cannot pr ecisely predict the behavior of the many
programs that will ultimately be r un on a given machine, but they can
study (either live or in simulation) the ef fect of dif ferent protocols on
benchmarks or other r epresentative code. In practice, most commer cial
SMP systems use some form of the write-invalidate potocol (several imple-
mentation variants exist) because it works better with the lar ger line sizes
that are common in today’s cache designs and because it saves bandwidth
on the system bus. As the number of pr ocessors in an SMP increases (as
has been occurring in recent years), system bus bandwidth is at mor e and

Chapter six: Parallel and high-performance systems 265

more of a premium; this has given a fairly decisive edge to write-invalidate
protocols in most applications.

The above discussion assumed a write-through policy for simplicity, but
many caches are designed with a write-back policy (which can also help to
reduce traffic on the system bus). While a snoopy cache as just described
depends on the cache contr ollers monitoring line write-thr oughs to main
memory, the same coherence effect can be achieved with a write-back policy
if the capability exists for broadcasting information between caches without
a main memory write having to occur on the system bus. If this capability
includes a way to transfer data, then copies of the data in other caches can
be updated that way without main memory being written. If (as is mor e
common) no provision is made for dir ect data transfer among the caches,
only the write-invalidate pr otocol can be used. (This is yet another r eason
for its popularity over write-update.) For the write-invalidate appr oach to
work with write-back caches, it is necessary for a given cache to claim
exclusive ownership of an item the first time its CPU writes to it. Subsequent
writes to the same line (by the owning pr ocessor only) can be done at cache
speed, with a single write-back to main memory occurring later . However,
all other caches must not only mark their copies of this line as invalid, but
must block access to the corr esponding main memory locations since they
are invalid too. If another CPU subsequently needs to performar ead or
write of an invalid location, it must ask the first pr ~ ocessor to relinquish
ownership and perform the write-back operation befor e the memory access
can proceed.

Snoopy cache protocols work well for small SMP systems with only a
single bus to be snooped, but they become much mor e complex and expen-
sive for systems with multiple buses or other complex interconnection struc-
tures. There is simply too much har dware to snoop. In particular, it is sig-
nificantly more difficult to achieve coherence in a NUMA architecture than
in an SMP. The snoopy cache approaches described above are inappropriate
for NUMA systems in which dif ferent SMP-like processor groups have no
way to snoop on, or otherwise be directly informed of, each other’s internal
transactions. Instead, directory-based protocols are normally used to imple-
ment cache coherent NUMA machines.

A directory is simply a har dware repository for information concerning
which processors have cached a particular (cache line-sized) block of shared
memory. The directory maintains a large data structure containing informa-
tion about each memory block in the system, including which caches have
copies of it, whether or not it is “dirty ,” and so on. (Figur e 6.13 shows an
example of a system with 16 CPUs and 2 ?* memory blocks.) Since a full-map
directory like the one shown contains information about the pesence of every
block in the system in each cache, its size is essentially pr oportional to the
number of processors times the number of memory blocks. If this pr oves to
be too lar ge to implement, the dir ectory may be constr ucted with fewer
entries (which means only a limited number of blocks fr om main memory
can be cached at once) or with fewer bits per entry (which means only a

266 Computer Architecture: Fundamentals and Principles of Computer Design

Block |Cached? |Exclusive?| Shared? Presence bits

Number o|l1|2|3|4|5|6|7|8|9|1011|12[13|14[15
0 0 0 o [0[o[ofo[0[0[0[0[0[0[0[0[0[0[0[0
1 1 0 L [T[T[T[T[0o[o[o[o[T[T[0[0[I[1][0[0
5 1 1 o |ofofofo[o[T[o[0]o[0[0[0[0[0[0]0
3 0 0 o |ojofofo[o[ofo[o]o[0[0[0]0]0[0]0
2 5] o 0 o l|ofofofofofofofoofo]ofo[o]o[o]o0
224_1 1 0 1 0o(0|1(1]0

Figure 6.13 Full-map directory example.

limited number of caches may contain a given block). The diectory approach
works with any inter connection structure (not just a single bus) since all
communications related to cache coher ence are point-to-point (between a
given cache and the directory), and no broadcasting or snooping is required.
What sort of events r equire communication between a cache and the
directory? Fortunately, in most applications the majority of accesses ar e
memory reads resulting in cache hits. Since read hits use only the local cache
and do not affect the work of any other processor, they require no interaction
with the directory. However, a read (or write) that r esults in a miss means
the cache needs to load a new block fr om main memory (usually evicting a
previously stored line in order to do so). This requires notifying the directory
of the line being displaced (so its dir ectory information can be updated to
reflect this action) and r equesting the new information to be loaded fr om
main memory, with the directory noting that transaction as well. Also, write
hits to shared, previously “clean” cache locations must be communicated to
the directory since they directly affect the consistency of data. Exactly how
and when this is done depends on the specific directory protocol being used.
There are many dif ferent implementations of dir ectory-based cache
coherence protocols, some relatively simple and some mor e complex. The
details vary from system to system and, for the most part, ar e beyond the
scope of this book. W e shall content ourselves with describing a simple
scheme in which each memory block is always in one of thr ee states:
uncached, shared, or exclusive. The uncached state means exactly what it says:
the block exists only in main memory and is not curr ently loaded in any
processor’s cache. The shared state means the block is present in one or more
caches in addition to main memory and all copies are up to date. (The block
will remain in this state until it is displaced fr ~ om all caches or until a
processor tries to write to it.) When a write occurs, the block enters the

Chapter six: Parallel and high-performance systems 267

Line displaced from last Write (load line from

cache where present main memory)
Read (update
cache needing
data and set its
presence bit)

Uncached

Line displaced from
Write hit (invalidate owning cache

copies in other caches)

Write miss by non-owning

Shared Exclusive . :
Write miss (load line from Processor; owner writes
back to main memory,

main memory, U then load line int
; . invalidate copies in enfoad fine 1nto
Read hit Read miss P requesting cache

. ther caches) Read or write
(update cache needin; o L .
’ data and set its ¢ hit by owning and give it e;cluswe
processor ownership

presence bit)

Read miss by non-owning
processor; owner writes back
to main memory, then update

cache needing data and
set its presence bit

Figure 6.14 State diagram for simple dir ectory-based cache coherence protocol.

exclusive state. Only one cache (the one local to the CPU that performed the
write) has a valid copy of the block; it is said to be the owner of the block
and can read or write it at will. Befor e granting ownership, the dir ectory
sends a message to any other caches that contain the block, telling them to
invalidate their copies. If a pr ocessor other than the owner later wants to
access a block that is in the exclusive state, it has to stall while the dir ectory
tells the owning cache to write it back to main memory; the block thereturns
to the shared state (if the access is a r ead) until it is written again (and thus
returns to the exclusive state) or displaced fr om all caches (returning to the
uncached state).

Figure 6.14 is a state diagram that depicts the possible transitions
between the three states of this simple dir ectory-based protocol. Note that
the logic behind the states and transitions is very similar to that used by a
typical write-invalidate snoopy protocol. The main difference is that in this
case the state transitions ar e driven by messages sent fr om a cache to the
directory (or vice versa) rather than bus transactions observed by snooping.

The original, and simplest, form of the dir ectory-based approach
involved the use of a centralized directory that kept track of all memory blocks
in the system. However, this approach does not scale well because a lar ge
number of CPUs (and therefore caches) may saturate a single directory with
requests. The alternative to a centralized dir ectory scheme, which works
better for larger systems (especially CC-NUMA machines) is a distributed
directory protocol. In such an implementation a number of smaller diectories
(typically one for each local group of processors) exist, with each one being
responsible for keeping track of the caches that stor e the portion of the

268 Computer Architecture: Fundamentals and Principles of Computer Design

memory address space most local to it. For example, if a CC-NUMA system
had 32 processors divided into 4 local gr oups of 8 pr ocessors each, the
directory might be split into 4 parts with each part keeping track of cohence
information for one-fourth of the blocks. Any cache needing to communicate
with a directory would send a message to one of the four based on which
part of the address space it was referencing. Distributed directory protocols
scale well to almost any size multipr ocessor system, though cost and com-
munication delays may become limiting factors in very lar ge systems.

An additional aspect of cache coher ence that pertains to both snoopy
and directory-based protocols is serialization, which means ensuring the
proper behavior of multiple write operations. (So far , we have only consid-
ered the effects of individual writes to memory.) When more than one CPU
updates a given memory location at or about the same time, the updates
must be serialized (forced to be sequential) so they are seen in the same order
by all processors. If this were not done and multiple write operations took
effect in different sequences from the standpoint of different CPUs, incorrect
operation could result. In a single-bus SMP , writes (as well asr eads) are
automatically serialized by the bus since only one main memory operation
can occur at a time, but in DSM multipr ocessors with more complex inter-
connection schemes, it is possible for multiple write operations to be initiated
at once. The directory (or any other coher ence scheme used by the system)
must ensure that ownership of a data item is granted exclusively and that
all processors see the ef fect of grants of ownership (and the subsequent
memory writes) in the same or der. Subsequent reads or writes of the same
item must be delayed until the first write is committed to memory .

Finally, we note that not all multipr ocessors solve the cache coher ence
problem by using hardware. Another approach that has been tried in a few
systems (mostly larger ones in which hardware cache coherence schemes are
costly) is a non-cache-coherent (NCC) architecture. (The Cray T3D and T3E
systems are prominent examples of NCC-NUMA architecture.) In such a
system, consistency of data among the various caches is not enfor ced by
hardware. Instead, software is responsible for ensuring the integrity of data
shared among multiple processors. One simple way to do this is to divide
data into two types: cacheable and noncacheable. Data that ar e read-only or
used only by one CPU ar e considered cacheable; read / write data that may
be used by more than one processor are marked as noncacheable. Since all
shared read /write data are stored in main memory and never in cache, the
cache coherence problem is solved by simply avoiding it.

The problem with such a technique, known asa static coherence check
(which is usually performed by the compiler with support fom the operating
system) is that it is an extremely conservative approach. It works but it may
impair performance significantly if ther e is a lar ge amount of data thatar e
shared only occasionally. Designating all shar ed variables as noncacheable
means many potential cache hits may be sacrificed in or der to avoid a few
potential problems. In many cases, ther e may be only certain specific times
when both read and write accesses can occur; the r est of the time, the data

Chapter six: Parallel and high-performance systems 269

in question may effectively be read-only (or used by only one CPU) and thus
could be cacheable. If the compiler (or the pr ogrammer) is capable of per -
forming a more sophisticated analysis of data dependencies, it may be pos-
sible to generate appr opriate cacheable/noncacheable intervals for shar ed
data and thus impr ove performance in an NCC system. This type of
advanced compiler technology is an ar ea of ongoing research in computer
science. For now, however, the difficulty of achieving good performance with
software coherence approaches is nontrivial — which is another way of
saying that compilers are not very good at it yetand itisar eal pain to do
manually. This lack of easy pr ogrammability explains why very few
NCC-NUMA systems exist.

Synchronization and mutual exclusion are also important issues in multi-
processor systems. In a system using the shar ed memory model, processes,
which may be running on the same or dif ferent CPUs, generally communi-
cate by sharing access to individual variables or data sets in memory . How-
ever, the programmer must be careful that accesses to shared data are done
in the correct order for the r esults to be predictable. As a simple example,
assume that two pr ocesses (A and B) both want to incr ement a shar ed
variable X that has initial value 0. Each pr ocess executes the same sequence
of three instructions as follows:

I; LOAD X R1
L: ADD 1, R1
I, STORE R1,X

What will be the final value of X after this code is executed by both cesses?
Ideally, X would have been incr emented twice (once by process A and once
by process B) and thus would have the final value 2. This will be the case if
either process executes all three instructions in order before the other begins
executing the same sequence. However , absent explicit synchr onization
between the two processes, it is possible that X could be incr emented only
once. For example, it is possible that the or der of execution could be I; (A),
L (B), L (A), L, (B), I; (A), I, (B). In this case, it is easy to see that the final
value of X would be 1 — an err oneous result.

How can we ensure that operations on shared data will be done corectly
in a parallel system? The obvious solution is to somehow ensur e that when
a process begins executing the crucial statements that affect the shared item
(instructions I;, I,, and I, in the above example) it completes this entie critical
section of code before any other process is allowed to begin executing it. Only
one process at a time will have access to the critical section and thus the
shared resource (generally an I/O device or memory location — in this case,
the variable X). In other words, the processes that share this resource can be
synchronized with respect to the resource using mutual exclusion.

How can the system enfor ce mutually exclusive access to shar ed
resources? Remember, in a multiprocessor multiple CPUs execute instmuctions

270 Computer Architecture: Fundamentals and Principles of Computer Design

at the same time; each is unaware of what instructions the others are process-
ing, so absent some sort of “locking” mechanism, it is possible that more than
one could be in a critical section at the same time. Even in a unipr ~ ocessor
system, a process could be interr upted while in a critical section and then
another process could enter the critical section befor e the first pr ocess is
resumed. Clearly some mechanism (softwar e instructions supported by the
underlying hardware) needs to be in place to restrict access to critical sections
of code. Such a mechanism could be placed in fr ont of each critical section to
effect the necessary synchronization.

The classical mechanism for r egulating access to shared resources uses
a special shared variable called a semaphore. The simplest type of semaphore
is a binary variable that takes on the value tr ue or false (set or clear). Before
entering a critical section of code, a pr ocess tests the associated semaphore;
if it is clear, the process sets it and enters the critical section. If it is alr eady
set, the process knows another process has already entered the critical section
and waits for a period of time, then re-tests the semaphore and either enters
the critical section or waits some mor e as appr opriate. After exiting the
critical section, a process must release (clear) the semaphore to allow access
by other processes. More general types of semaphotes (for example, counting
semaphores) may be used to r egulate access to multiple units of a shar ed
resource, but the basic idea behind them is similar .

The alert reader has probably already spotted a potential flaw in the
solution just described. The semaphor e itself is a shar ed resource just like
the one being accessed inside the critical section. If we ar e using the sema-
phore to enforce mutually exclusive access to some other shar ed resource,
how can we know access to the semaphor e itself is mutually exclusive?
Would it not be possible for multiple pr ocesses to read the semaphore at
nearly the same time and find it cleay then perform redundant set operations
and proceed together into the critical section, thus defeating the mutual
exclusion mechanism?

The answer to the above question would be “yes,” and the semaphor e
scheme would fail — unless the system had a means of ensuring, in har d-
ware, that each access to the semaphor e was atomic (complete and indivisi-
ble). In other wor ds, its contents must be r ead and written in one uninter -
ruptible memory cycle. The trick to accomplishing this is to pr ovide a
hardware lock that prevents any other device from accessing memory while
the semaphore is read, tested, modified if necessary , and written back. A
memory cycle in which all of these operations take place without the possi-
bility of interruption is called a read-modify-write (RMW) cycle.

Machine instructions that implement indivisible RMW cycles are known
as mutual exclusion primitives. Almost all modern microprocessors, since they
are designed to be usable in multitasking and multipr ocessor systems, pro-
vide one or mor e such instruction. One common example is a fest and set
instruction; in one operation, it reads the current value of a memory location
(whether clear or set) and sets it to true. Another equivalent instruction (but
with more general functionality) isa swap instruction. It exchanges the

Chapter six: Parallel and high-performance systems 271

R
WR \—/7
LOCK —\ PR
Data bus Original data Modified data
from memor to memory

CPU internal
operations

No other device can gain control
of the bus during this interval

Figure 6.15 Timing diagram showing a RMW sequence.

contents of a register and a memory location (which could be a semaphor e)
in a single indivisible instr uction.

In bus-based uniprocessor or multiprocessor systems, a hardware signal
(called LOCK or something similar) inhibits other accesses to memory while
it is asserted. When a mutual exclusion primitive is executed, the lock signal
stays active until the semaphor e value has been checked and the updated
value is committed to memory . Interrupts are also temporarily disabled
while the lock signal is active, thus ensuring that the RMW cycle is atomic.
Figure 6.15 shows a typical sequence of events for an RMW cycle.

Mutual exclusion is more difficult to implement in larger multiprocessor
systems based on the NUMA or COMA models due to the lack of a single
interconnection structure that can be locked for a given atomic operation to
take place. Since in a system with DSM memory it is possible for multiple
memory operations to be in pr ogress at the same time, the management of
mutual exclusion primitives must be integrated with and enfor ced by the
cache coherence scheme (which is usually dir ectory-based). When a lock is
requested for exclusive access to a memory location, that location must be
put into the exclusive state under the ownership of the pr ocessor that is
going to test and modify it. It cannot enter any of the other states until the
lock is released by the owning pr ocessor and the updated value has been
committed to memory. Other processors that may be waiting to access the
synchronization variable must be queued by the dir ectory. Because of the
directory overhead required, atomic operations ar e more costly in perfor -
mance, in DSM systems than they ar e in SMP systems.

6.1.4 Multicomputer systems

Multicomputer systems are parallel systems that, like multipr ocessors, come
under the MIMD classification in Flynn's taxonomy of computer systems.
The difference — and it is a significant one — is that multicomputers do not
directly share memory. As the name implies, each part of a multicomputer

272 Computer Architecture: Fundamentals and Principles of Computer Design

Communications network |

cPU | cPU | | cpPU | CPU
| Memory | | Memory | | Memory | e

| wo ||| wo ||| wo | 7o
Computer Computer Computer Computer
0 1 2 (n-1)

Figure 6.16 Typical multicomputer system (LM-MIMD ar chitecture).

system is a complete computer in its own right, with its own pr 0Cessor,
memory, and I/O devices. (Unlike multipr ocessors, it is not even necessary
that the individual computers r un the same operating system, as long as
they understand the same communications pr otocol.) The memory of each
computer is local to it and is not dir ectly accessible by any of the others.
Thus, the memory access model used in multicomputers may be r eferred to
as NORMA (no remote memory access) — the next logical step beyond the
UMA and NUMA models typical of multipr ocessors. Because of the lack of
shared main memory, multicomputers may be referred to as loosely coupled
systems, or ar chitecturally speaking, LM-MIMD systems. A typical multi-
computer is illustrated in Figure 6.16.

Multicomputer systems may be constr ucted from just a few computers
or as many as thousands. The lar gest MIMD systems tend to be multicom-
puters because of the dif ficulties (noted above) with sharing main memory
among large numbers of processors. Beyond a few hundred processors, the
difficulties in constr ucting a multipr ocessor system tend to outweigh the
advantages. Thus, most massively parallel MIMD super computing systems
are multicomputers.

Multicomputer systems date back to the early to mid-1980s. The Caltech
Cosmic Cube is generally acknowledged to have been the first multicom-
puter, and it significantly influenced many of the others that came after it.
Other historical examples of multicomputers include Mississippi State Uni-
versity’s MADEM (Mapped Array Differential Equation Machine), nCUBE
Company’s nCUBE, the Intel iPSC and Paragon, the Ametek 2010, and the
Parsys SuperNode 1000. More recently, the Beowulf class of cluster computers
(introduced by Donald Becker and Thomas Sterling in 1994) has become the
most widely used type of multicomputer . Beowulf clusters ar e parallel
machines constructed of commodity computers (often inexpensive PCs) and
inexpensive network hardware; to further minimize cost, they typically r un
the open-source Linux operating system. Though each individual computer
in such a cluster may exhibit only moderate performance, the low cost of

Chapter six: Parallel and high-performance systems 273

each machine (and the scalability of the connection mechanism) means that
a highly parallel, high-performance system can be constructed for much less
than the cost of a conventional super computer.

As is the case with other parallel ar chitectures, the key featur e of any
multicomputer system is the communications network used to tie the com-
puters together (see Sections 6.2 to 6.4). One major advantage of multicom-
puters (besides the low cost of the individual machines, which do not have
to be internally parallel) is the r elative simplicity and lower cost of the
interconnections. Since memory does not have to be shar ed, the types of
networks used to connect the individual computers can be much mor e
flexible, and in many cases less expensive, than those used in multipr oces-
sors. Frequently, the communications network may be implemented by
something as simple and cheap as off-the-shelf 100 Mbps Ethernet, which is
used in many Beowulf-type cluster machines. Maximizing performance in
an environment with a heavy interpr ocessor communications load may
require higher performance networks such as Myrinet (which allows
full-duplex communication at 2 Gbps in each dir ection); this is still usually
less expensive than the specialized interconnections used in many multipro-
cessors. It is interesting to note that by June 2005, 304 of the world’s top 500
high-performance supercomputers were cluster systems, and 141 of those
systems used Myrinet-based communications networks.

The main disadvantage of multicomputers is that the simple, global
shared memory model common to uniprocessors and multiprocessors is not
feasible. Because there is no way to dir ectly address the memory belonging
to other processors, inter-process communication must be done via a mes-
sage-passing programming model instead of the shar ed memory model. In
other words, rather than communicating implicitly (via accessing shar ed
memory locations), processes running on a multicomputer must communi-
cate explicitly (via sending and r eceiving messages that ar e either r outed
locally or over the network, depending on the locations of the communicat-
ing processes).

The message-passing programming model for multicomputers is gener-
ally implemented in high-level language pr ograms by using standar dized
Message Passing Interface (MPI) or Parallel V irtual Machine (PVM) func-
tions. These message-passing models aie more complex and are not generally
considered to be as intuitive to pr ogrammers as the shared memory model;
the different programming paradigm also makes it mor e difficult to port
existing code from a unipr ocessor environment to a multicomputer than
from a uniprocessor to a multiprocessor. There can also be a negative ef fect
on performance, as message-passing always incurs some over head. Of
course, this is counterbalanced somewhat by the flexibility in constr ucting
the communications network and the additional advantage that parallel
algorithms are naturally synchronized via messaging, rather than requiring
artificial synchronization primitives like those needed in multiprocessor sys-
tems. The relative desirability of the two appr oaches from a programmer’s
point of view can be summed up by the observation that it is relatively easy

274 Computer Architecture: Fundamentals and Principles of Computer Design

to implement message-passing on a machine with shar ed memory, but dif-
ficult to simulate the existence of shar ed memory on a message-passing
multicomputer.

In general, since network performance (which is usually much slower
than the interconnection between CPUs and memories in a multipr ocessor)
and messaging overhead tend to be limiting factors, multicomputers work
best for relatively coarse-grained applications with limited communications
required between processes. The length of the messages is not usually as
important as the fr equency with which they ar e sent; too many messages
will bog down the network and pr ocessors will stall waiting for data. Mul-
ticomputer applications that transmit a few lar ger messages generally per -
form better than those that need to send many small ones. The best case is
where data are transferred between computers only intermittently , with
fairly long periods of computation in between.

It is possible to constr uct a lar ge-scale parallel system that combines
some of the attributes of multiprocessors and multicomputers. For example,
one can constr uct a multicomputer system wher e each of its computing
nodes is a multiprocessor. Such a hybrid system may be consideed to occupy
a middle ground, architecturally speaking, between a typical multicomputer
system (NORMA) and a NUMA-based multipr ocessor system and is some-
times referred to as a multi-multicomputer. Because memory can be shar ed
between CPUs in a local gr oup but not between those that ar e physically
remote, a message-passing protocol must still be supported as in other mul-
ticomputers. Examples of multi-multicomputer systems include the IBM SP
(Scalable POWERparallel) series machines and the Cluster of Multipiocessor
Systems (COMPS), a joint venture (launched in 1996) between the University
of California at Berkeley , Sun Micr osystems, and the National Ener gy
Research Scientific Computing Center (NERSC). Each local computing node
in these highly parallel systems was a symmetric multipr ocessor containing
four to eight CPUs. Since multi-multicomputers combine some of the advan-
tages of multiprocessors and multicomputers, they ar e worth noting as a
potentially significant development in the ongoing evolution of high-perfor-
mance computing systems.

6.2 Interconnection networks for parallel systems

From the discussion of parallel systems (particularly multipr ocessors, mul-
ticomputers, and array processors) in the previous section, the reader may
have correctly concluded that one of the most important keys to performance
is the speed of communications among the pr ocessors. Regardless of how
fast a given CPU may be, it can accomplish no useful work if it is starved

for data. In a unipr ocessor system, access to the needed data depends only
on the memory system or, in some cases, an I/ O device interface. In a parallel
system, it is unavoidable that one pr ocessor will need data computed by
another. Getting those data fr om their source to their intended destination,

Chapter six: Parallel and high-performance systems 275

reliably and as quickly as possible, is the job of the parallel system’s inter -
connection network.

6.2.1 Purposes of interconnection networks

In the previous section, we noted the two principal purposes for inter con-
nection networks in parallel systems. The first was to connect CPUs or PEs
(and possibly other bus masters such as I/ O processors or DMA controllers)
to shared main memory modules, as is typical of multipr ocessor systems
and a few array pr ocessors. The second was to enable the passing of mes-
sages thatare communicated fr om one processor to another in systems
without shared memory.

Some interconnection networks serve additional purposes. In many
cases, networks are used to pass contr ol signals among pr ocessors or pro-
cessing elements. This use of a network is particularly notable in SIMD
systems, but MIMD systems may also r equire certain control signals to be
available to all CPUs. For example, signals r equired to implement the sys-
tem’s cache control strategy or coherence policy may need to be connected
to all the pr ocessors. Likewise, other har dware control lines such as bus
locks, arbitration signals for access to shar ed resources, etc., may be distrib-
uted via the network.

One other purpose of some inter connection networks is to r eorganize
and distribute data while transferring values flom one CPU or PE to another
Architectures intended for specialized applications, such as pr ocessing fast
Fourier transforms (for which data ar e shuffled in a predetermined pattern
after each iteration of the computations), may be constr ucted with network
connections that optimize the r outing of data for the performance of that
application. However, since networks with mor e generic topologies have
improved considerably in performance, and since a specialized network is
unlikely to improve (and may even hurt) performance on applications for
which it is not intended, this type of network is raely encountered in modern
systems.

6.2.2 Interconnection network terms and concepts

In order to understand the operation of interconnection networks in parallel
systems, we must first define some terms and concepts that we will use to
describe and compare the many types of networks that ar e and have been
used in such systems. First, a node is any component (a pr ocessor, memory,
switch, complete computer, etc.) that is connected to other components by
a network. (Another way to say this is that each node is a junction point in
the network.) In an array processor, each processing element (or PE-memory
combination if main memory is local to the PEs) might constitute a node. In
a symmetric multipr ocessor, each CPU and each shar ed memory module
would be a node. In a multicomputer , each individual computer is consid-
ered a node.

276 Computer Architecture: Fundamentals and Principles of Computer Design

6.2.2.1 Master and slave nodes

A master node is one that is capable of initiating a communication over the
network. Slave nodes respond to communications when requested by a mas-
ter. In a multipr ocessor, the CPUs ar e master nodes and the memories ar e
slave nodes. In a multicomputer, all nodes are generally created equal, and
a given node may act as the master for some communications and as a slave
for others. The details of array processor construction vary considerably, but
in general the common control unit is responsible for coordinating transfers
of data between nodes as necessary and thus could be considered the master
node, while the PEs and memories ar e generally slaves.

6.2.2.2 Circuit switching vs. packet switching
At different times, a given node in a parallel system will need to send or
receive data to or fr om various other nodes. In or der to do so, it must be
able to select the desir ed node with which to communicate and configur e
the state of the network to enable the communication. Configuring the net-
work for a communication to take place is done in two general ways. A
circuit-switched network is one in which physical hardware connections (gen-
erally implemented via multiplexers and demultiplexers or their equiva-
lents) are changed in or der to establish a communications link between
desired nodes. This pathway for information, and the connections that com-
prise it, remain in place for the duration of the communication (see Figur e
6.17 for an example). When it becomes time for dif ferent nodes to commu-
nicate, some or all of the pr eviously existing connections ar e broken and
others are made to facilitate the new pathway for data to travel. In this sense,
a circuit-switched interconnection for a parallel computing system is directly
analogous to the land-line telephone network. Cir = cuit-switched networks
are an example of solving a pr oblem (in this case, communication) using a
hardware-oriented approach. Circuit-switched networks can be advanta-
geous when the number of nodes is not too lar ge, particularly if certain
connection patterns are needed frequently and we want to be able to opti-
mize the speed of transfers between certain sets of nodes. Cir cuit switching
is particularly applicable wher e there is a need to transfer r elatively large
blocks of data between nodes.

Switch
.

Sending .
node * | . Switch
__gg_

: Receiving

yd . node
/,/l hd
Connection(s) Definite hardware
and/or more connection
switches established

Figure 6.17 Circuit-switched network.

Chapter six: Parallel and high-performance systems 277

The alternative to cir cuit switching is known as packet switching. A
packet-switched network is one in which the same physical connections exist
at all times. The network is connected to all the nodes all the time, and no
physical connections are added or deleted during normal operation. In oxder
for one node to communicate with a specific other node, data must be outed
over the proper subset of the existing connections to arrive at its destination.
In other words, a virtual connection must be established between the sending
and receiving node. Because specific node-to-node communications ar e
made virtually rather than by switching physical connections,
packet-switched networking is consider ed to be a mor e software-oriented
approach than cir cuit-switched networking (though har dware is definitely
needed to support the transmission of data). Ther outing hardware and
software are local in nature; each node has its own copy .

The terminology used for this type of network comes fr om the fact that
each message sent out over the network is formatted into one or mor e units
called packets. Each packet is a gr oup of bits formatted in a certain pr edeter-
mined way (a hypothetical example can be seen in Figue 6.18). A given packet
is sent out from the originating (sending) node into the network (which may
be physically implemented in any number of ways) and must find its way to
the destination (receiving) node, which then must r ecognize it and take it of £
the network. Often a packet might take multiple possible paths thr ough the
network, as shown in Figur e 6.19. Because the packets appear to find their
way through a blind maze of network connections in or der to arrive (appar-
ently by magic) at their correct destinations, they are sometimes referred to as
“seeing-eye packets.” Of course, this does not r eally occur by either magic or
blind luck. Rather, the hardware and software present at each node in the
network must have enough intelligence to r ecognize packets meant for that
node and to route packets meant for other nodes so that they ar e forwarded
ever-closer to their destinations. The packets do not really find their own way

Destination
address

Length

Data

(4
)
(4
)

Error detection
correction info

Figure 6.18 Typical message packet format.

278 Computer Architecture: Fundamentals and Principles of Computer Design

Sending node

il i
G’

Receiving node

T

Specific path of packets across
network may not be known

Figure 6.19 Routing of messages in packet-switched network.

to the destination — they ar e helped along by the intermediate nodes — but
they appear to get ther e by themselves because no physical connections ar e
changed to facilitate their passage.

In order for intermediate nodes tor oute packets and for destination
nodes to recognize packets meant for them to r eceive, each message packet
sent must include some type of r outing information in addition to the data
being transmitted (plus, perhaps, information about what the data represent
or how they ar e to be pr ocessed). The originating node must pr ovide the
address of the destination node, on either an absolute or r elative basis; this
part of the packet will be examined by each node that r eceives it in order to
determine how to perform the r outing.

Unlike circuit-switched interconnections, packet-switched networks
tend to favor the sending of short to medium-length messages; they ar e less
efficient for transfers of large blocks of data. In many cases the length of the
packets sent over the network is fixed at some elatively small size; messages
that contain more data than will fit into one packet must be divided up into
multiple packets and then r eassembled by the destination node. In other
networks, the length of the packets may be variable (generally , up to some
maximum size). If this is the case, then one of the first items in each packet
(either just before or just after the addr essing information) is a length spec-
ifier defining the size of the packet.

Our discussion has tr eated networks as being either pur ely circuit
switched or purely packet switched. This is usually, but not always, the case.
A few systems have adopted an appr oach known as integrated switching,
which connects the nodes using both cir cuit and packet switching. The idea
is to take advantage of the capabilities of each appr oach by moving lar ge
amounts of data over cir cuit-switched paths while smaller chunks of infor -
mation are transmitted via packet switching.

As parallel computer systems have become lar ger and more complex,
there has been a trend toward creating networks that use a hybrid approach
in which some node-to-node connections use cir cuit switching and others
are made via packet switching. This is particularly tr ue of large multipro-
cessors that employ the NUMA and COMA architectural models.

Chapter six: Parallel and high-performance systems 279

Shared-memory systems with many processors often have a number of fast,
usually circuit-switched, networks (such as a cr ossbar, multistage network,
or bus) that tie together local gr oups of a few nodes. These smaller subnet-

works are then tied together by a global, “wider area” network, which often
uses packet switching over a ring, mesh, tor us, or hypercube interconnect.
Systems that have used this hybrid, hierar chical networking appr oach
include the Cray T3D, Stanfor d DASH and FLASH, HP/ Convex Exemplar,
and Kendall Square Research KSR-1.

6.2.2.3 Static and dynamic networks

As far as we ar e concerned, these terms ar e virtual synonyms for
packet-switched and cir cuit-switched networks. Ina dynamic network, the
connections between nodes are reconfigurable, while the pattern of connec-
tions in a static network remains fixed at all times. Thus, in general, networks
that use circuit switching may be termed dynamic. (Abus may be considered
a special case; its connection topology is static, but various bus masters can
take control of it at dif ferent times dynamically and in that sense it is cir -
cuit-switched.) While it would be possible to r oute packets over a dynami-
cally configured network, in practice, packet-switched networks ar e almost
always static in their connection topology. Therefore, unless otherwise spec-
ified, we will consider dynamic networks as being ciruit-switched and static
networks as being packet-switched.

6.2.2.4 Centralized control vs. distributed control
In any network, whether static or dynamic, the physical or virtual connec-
tions must be initiated and terminated in r esponse to some sort of contr ol
signals. These signals may be generated by a single network contr oller, in
which case the network is said to use centralized control. Alternatively, it may
be possible for several controllers, up to and including each individual node
in the network, to allocate and deallocate communications channels. This
arrangement, in which ther e is no single centralized network contr oller, is
known as distributed control.

Packet-switched networks are an example of distributed contr ol. There
is no centralized contr oller for the communications network as a whole;
rather, the control strategy is distributed over all the nodes. Each node in
the network only needs to know how to r oute messages that come to it and
it normally handles these r outings independently, without consulting any
other node. Because this type of network uses distributed control, it has few
if any limitations on physical size and can be local ar ~ ea or wide ar ea in
nature. The Internet, which now str etches to all parts of the globe, can be
considered the ultimate example of a packet-switched wide ar ea network
with distributed control.

Circuit-switched networks usually are characterized by centralized con-
trol. Processors (or other master nodes) r equest service (in the form of con-
nections) from a single network contr oller that allocates communications

280 Computer Architecture: Fundamentals and Principles of Computer Design

links and generates the har dware signals necessary to set them up. In the
case of conflicts, the central network contmwller arbitrates between conflicting
requests according to some sort of priority scheme, which only it (and not
the nodes) needs to know. The network controller could be an independent
processor running a control program, but for speed r easons it is almost
always implemented in har dware (much like a cache contr oller or DMA
controller). Because of the need to quickly send control information from the
network controller to the switching har dware in order to make and br eak
connections, it is difficult and expensive to use a centralized control strategy
in networks that cover lar ge physical areas. Instead, centralized contr ol is
typically used in small, localized networks.

6.2.2.5 Synchronous timing vs. asynchronous timing
Another way to classify the inter connection networks used in parallel sys-
tems is by the natur e of the timing by which data transfers ar e controlled.
In any network, timing signals ar e necessary to coor dinate the transfer of
data between a sending node and a r eceiving node. Data being transferr ed
must be maintained valid by the sender long enough for ther eceiver to
acquire them. In a synchronous network, this problem is solved by synchro-
nizing all transfers to a given edge of a common, centrally generated clock
signal. The sender is r esponsible for having data r eady for transfer by this
time, and the receiver uses the clock signal (or some fixed r eference to it) to
capture the data. This appr oach works well for localized inter connection
networks such as a bus or small circuit-switched network where all attached
components are physically close together and operate at r oughly the same
speed. However, in situations where some nodes are much faster than others,
where there are many nodes, and whee nodes are spread over a considerable
physical area, synchronous networks are at a disadvantage. If components
are of disparate speeds, a synchr onous network must operate at the speed
of the slowest component (or there must be a means of inserting “wait states”
to allow slower devices to respond to communication requests). If there are
many nodes or they ar e widely spread out, itis dif ficult to distribute a
common clock signal to all of them while keeping it in phase so that transfers
are truly synchronized.

The alternative is to use anasynchronous network where there is no global
timing signal (clock) available. In such a network, the timing of any one
transfer of data is unr elated to the timing of any other transfers. Instead,
each transfer of data betweennodesisr egulated by handshaking signals
exchanged between the two components. Each indicates to the other when
it is ready to send or r eceive data. A simple handshaking pr otocol is illus-
trated in Figure 6.20. It is worth noting that message-passing networks,
which are usually packet-switched, are generally asynchronous due to their
distributed control, while cir cuit-switched networks are more likely to be
synchronous (though this is not always the case).

Chapter six: Parallel and high-performance systems 281

Request (from sender) g

[i
Acknowledge (from receiver) A J
Data Valid
“Ready to “Data

receive have been
data” received”

“Ready to “Data

transmit have been
data” sent”

Figure 6.20 Example handshaking protocol for asynchronous data transfer.

6.2.2.6 Node connection degree

Node connection degree refers to the number of physical communications
links connected to a given node. For example, a node with four connections
to other nodes (like the one shown in Figur e 6.21) is said to be of degr ee
four. In some networks, all nodes are of the same degree; in other networks,
some nodes have more connectivity than others. Generally speaking, nodes
with high connection degree are more expensive to build, as each connection
to another node takes up a certain amount of space, dissipates mor e power,
requires more cables to be r outed in and out, and so on. However , all else
being equal, networks with higher-degree nodes tend to exhibit better com-
munications performance (because of having shorter communication dis-
tance; see next section) and may be more tolerant of the failure of some links.

6.2.2.7 Communication distance and diameter

Communication distance and diameter ar e important parameters for inter -
connection networks. The communication distance between two nodes is the
number of communication links that must be traversed for data to be trans-
ferred between them. In other words, the distance is the number of network
hops an item must make to get fr om one node to the other. If there is more
than one possible path, the distance is consider ed to be the length of the

shortest path. In Figure 6.22, the distance between nodes A and B is 2, while

Link

Link

“Link
N
N

Link

Node with
connection
degree four

Figure 6.21 Connection degree of a node.

282 Computer Architecture: Fundamentals and Principles of Computer Design

3
Figure 6.22 Communication distance and diameter in a network.

the distance between nodes B and C is 3. In some networks, the distance
between any arbitrarily chosen nodes is a constant; mor e often, the distance
varies depending on which nodes ar e communicating. One factor that is
often of interest (because it can af fect network performance) is the average
communication distance between nodes. Another important parameter, the
communication diameter of a network, is the maximum distance between any
two nodes. In Figure 6.22, nodes A and C are as widely separated as possible.
The distance between them is 4, so the diameter of the network is 4.

In general, the time and overhead required for communication increase
as the number of hops r equired for a data transfer incr eases. Not only is
there a basic pr opagation delay associated with the physical length of the
communications path and the number and type of components between the
sending and receiving nodes, but the longer the path, the greater the chance
of contention for resources along the way. If two or mor e communications
are trying to use the same har dware, some must wait while another goes
through. Since contention can occur at any node along a path, the longer the
distance of the communication, the greater the chance of contention. There-
fore, a smaller average or maximum distance between nodes is better , all
else being equal. The average distance between nodes thus gives some indi-
cation of r elative communications performance when technically similar
networks are being compared. A network with smaller diameter means that
the worst-case communication time is likely to be smaller as well.

6.2.2.8 Cost, performance, expandability, and fault tolerance
The cost of a network, like the cost of all other computer har dware, is
ultimately measured in dollars (or whatever the local unit of currency might
be). However, many things factor into that bottom line cost figue. In general,
the cost of a network depends on its size and speed; lar ger, faster networks

Chapter six: Parallel and high-performance systems 283

will inevitably cost mor e to build than smaller, slower networks. The r ela-
tionships, however, are not always (or even usually) linear , as we shall see
in our examinations of the dif ferent types of networks in the following
sections of this chapter.

Each link between nodes costs a certain amount to build, not only in
terms of dollars spent constr ucting hardware, but in other ways such as
increased power dissipation, maintenance costs, and (sometimes most
importantly of all) physical space taken up by the communications hadware
on each end and the cables or other media used to make the connection. If
a wireless network is used (uncommon in today’s high-performance com-
puters, but per haps more common in the futur e), then each link costs a
certain amount of electromagnetic spectrum. (As economists tell us, anything
that makes use of scarce resources, whatever form those resources may take,
incurs a cost.)

The cost of the individual links, however they ar e implemented, is nor-
mally related to their bandwidth (see below; all else being equal,
higher-capacity links will cost more). The total number of links depends on
the number of nodes and their connection degree (which is governed by the
topology of the network). The total cost of a network is oughly proportional
to the number of links that compose it, though economies of scale are appli-
cable in some situations, while in others incr eases in size beyond a certain
point may increase cost more rapidly.

The performance of a network depends on many factors and can be
measured in different ways. One very important factor is the raw information
bandwidth of each link. (This is defined in the same sense as it was in Section
1.6 for memory and I/O systems: the number of bits or bytes of information
transferred per unit of time. Common units of bandwidth ar e megabits,
megabytes, gigabits, or gigabytes per second.) Mor e bandwidth per link
contributes to higher overall communications performance. In conjunction
with the number of links, the bandwidth per link determines the overall
peak bandwidth of the network. (This is an important performance param-
eter, but, like peak MIPS with r espect to a CPU, it does not tell us all we
need to know because it fails to take topology or realistic application behav-
ior into account.) We might also note that in networks (as in memory and
I/0O systems) the peak available bandwidth is not always used.

Other factors are just as important as link bandwidth in determining
overall network performance. Node connection degr ee (which, in conjunc-
tion with the number of nodes, determines the number of links) also plays
a major role; a node connected via multiple links has access to mor e com-
munications bandwidth than one with a single link of the same speed.
Another consideration that is significant in some types of networks is com-
munications overhead. Besides the actual data transferred, the network must
(in many cases) also carry additional information such as packet headers,
error detection and correction information, etc. This overhead, while it may
be necessary for network operation, takes up part of the information-carrying
capacity of the network. Any bandwidth consumed by overhead takes away

284 Computer Architecture: Fundamentals and Principles of Computer Design

from the gross bandwidth of the network and leaves less net bandwidth
available for moving data.

While peak and effective bandwidth (per node or overall) are important
performance measures, the one that is most significant in many situations
is simply the time taken to deliver an item of data fr ~ om its source to its
destination. This amount of time is defined as the network latency. In some
networks this value is a constant; in many others it is not. Ther efore, mea-
sures of network performance may include the minimum, average, and
maximum times required to send data over the network.

Latency may depend on several factors, most notably the speed of the
individual communications links (which is r elated to bandwidth) and the
number of links that must be traversed. It also may depend on other factors
including the probability of delays due to congestion or contention in the
network. In some cases, the network latency is a known, constant value, but
in most networks, though ther e may be a minimum latency that can be
achieved under best-case conditions, the maximum latency is considerably
longer. (It is not even necessarily tr ue that network latency is bounded; for
example, any network using TCP/IP [Transmission Control Protocol/Inter-
net protocol] as the transport mechanism does not guarantee that message
packets will be delivered at all.) Perhaps the best measure for evaluating the
performance of the network is the average latency of communications, but
one must be careful to measure or estimate that figure using realistic system
conditions. It is likely to vary considerably fr om one application to another
based on the degr ee of parallelism inher ent in the algorithm, the level of
network traffic, and other factors. Thus, as in the case of evaluating CPU
performance, we should be car eful to choose the most applicable network
benchmark possible.

Expandability is the consideration of how easy or dif ficult, how costly or
inexpensive, it is to add more nodes to an existing network. If the har dware
required for a node is cheap, and the stucture of the network is fairly flexible,
then it is easy to expand the machine’s capabilities. This is one of the most
desirable characteristics of a parallel system.A situation often arises in which
we, the users, didn’t get the performance gain we hoped for by building or
buying a system with 1 nodes, but we think that if we add m more, for a
total of n +m nodes, we can achieve the desir ed performance goal. The
question then becomes, “what (above and beyond what the additional node
processors, memories, etc., cost) will it cost us to add the necessary connec-
tions to the network?”

In some types of networks, adding a node costs a fixed amount, or , to
borrow the “big O” notation used in algorithm analysis, the cost function is
O(n), where 1 is the number of nodes. In other wor ds, a 16-node configura-
tion costs twice as much as an 8-node configuration but half as much as a
32-node configuration. For other types of networks, the cost can vary in other
ways, for example logarithmically [O(n log 1)] or even quadratically [O(n?)].
In this last case, a network with 16 nodes would cost four times as much as
one with 8 nodes, while a network with 32 nodes would cost 16 times as

Chapter six: Parallel and high-performance systems 285

much as an 8-node network. All else being equal, such a network is not
preferable if there is any chance the system will need to be expanded after
its initial acquisition.

Fault tolerance in interconnection networks, as in most other systems,
generally ties in with the idea of r edundancy. If there is only one way to
connect a node to a given other node and the har dware fails somewhere
along that path, then further communication between those nodes is impos-
sible and, most likely, the system will not continue to function. (Alternatively
one may be able to stop using some of the nodes and function in a degraded
mode with only a subset of the nodes operating.) If the network has some
redundancy (multiple paths from each node to other nodes) built in, then a
single hardware fault will not cripple the system. It will be able to keep
operating in the presence of a failed link or component, with all communi-
cations able to get through, though perhaps a bit more slowly than normal,
and all nodes will still be accessible.

Another benefit of a network with r edundant connections, even in the
absence of hardware faults, is that temporary contention or congestion in
one part of the network can be avoided by choosing a dif ferent routing or
connection that bypasses the affected node. This may improve performance
by reducing the average time to transmit data over the network.

Packet-switched and circuit-switched networks may have r edundancy
built in. In cir cuit-switched networks, the redundancy must be in the har d-
ware (redundant switching elements and connections). In some
packet-switched networks, though, additional redundancy can be achieved
using the same set of hardware connections by adopting control and routing
strategies that are flexible enough to choose alternate paths for packets when
problems are encountered. This can have beneficial implications for both
fault tolerance and performance.

6.3 Static interconnection networks

A static interconnection network, simply put, is one in which the har dware
connections do not change over time. As noted in the pr evious section, a
given connection topology is put into place and r emains in place while the
system is running, regardless of which nodes need to communicate with
each other. At various times, different nodes use the same physical connec-
tions to transfer data. W e will examine some of the mor e common static
network topologies in this section.

6.3.1 Buses

The simplest and most widely used inter connection network for small sys-
tems, particularly uniprocessors and symmetric multiprocessors, is a bus. A
bus, as depicted in Figure 6.23, is nothing more or less than a set of connec-
tions (usually wires or printed cir cuit traces) over which data, addr esses,
and control and timing signals pass fiom one attached component to another

286 Computer Architecture: Fundamentals and Principles of Computer Design

Node Node Node Node
0 1 2 3
Bus

Figure 6.23 Use of a bus to inter connect system nodes.

Connections to a bus are normally made using tri-state devices, which allow
devices not involved in a particular data transfer to open-cicuit their outputs
and effectively isolate themselves from the bus temporarily. Meanwhile, the
sending device enables its outputs onto the bus while the r eceiving devices
enable their inputs.

Control signals define the type and timing of transfers in a bus-based
system. Buses may be either synchr onous or asynchronous in their timing.
Normally, each component connected to a bus is of degr ee one, though it is
possible for processors or memory modules to have multiple bus interfaces.
The distance between any two components, and thus the diameter of the
bus, is also one since the bus is not consider ed a node in and of itself, but
merely a link between nodes. (If the bus wee considered a node, the distance
between connected components would be two.) Because all the nodes have
degree one and are connected to the same bus, any master node (CPU, DMA,
IOP, etc.) can access any other node in essentially the same time — unless
there is a conflict for the use of the bus.

The advantage of a bus inter connection is its r elative simplicity and
expandability. Up to a point, it is easy to add additional master or slave
nodes to the bus and expand the system. The one gr eat limitation of a bus
is that only one transaction (exchange of data) can take place at a time; in
other words, it exhibits no concurr ency in its operation. The data transfer
bandwidth of the bus is fixed and does not scale with the addition of mor e
components. While in a multipr ocessor system most memory accesses ar e
satisfied by local caches and thus do notr equire use of the system bus, a
certain fraction will r equire use of thebustor each main memory. I/O
transactions also use the bus. The mor e processors there are in the system,
the more traffic will be seen on the bus.At some point, the needed bandwidth
will exceed the capacity of the bus, and pr ocessors will spend significant
time waiting to access memory . Thus, a single-bus inter connection is prac-
tically limited to a system with r elatively few nodes.

To get better performance using the same general appr oach, designers
can use a multiple bus architecture such as the dual-bus configuration shown
in Figure 6.24; this would allow more pairs of nodes to communicate simul-
taneously, but at increased hardware cost. Scheduling and arbitrating mul-
tiple buses is also a complex issue, and cache coherence schemes (see Section
6.1.3) that depend on snooping a system bus ar e also more difficult when
multiple buses must be monitor ed.

Chapter six: Parallel and high-performance systems 287

Bus 0
Node 0 Node 1 Node 2 Node 3 ... ® Node (n - 1)

Bus 1

Figure 6.24 Dual-bus interconnection.

6.3.2 Linear and ring topologies

Buses are generally used in multipr ocessor systems where each attached
node is a CPU, memory module, or I/O device rather than a complete
computer. Most other static inter connection networks are more commonly
used in multicomputer systems where each node is a complete computer (or
in distributed memory SIMD systems wher e each PE has its own local
memory). Two of the simplest static networks ar e linear and ring networks;
an example of each is shown in Figur e 6.25. The topology of each is fairly
obvious from its name. A linear network, or linear array , is a str ucture in
which each node is dir ectly connected to its neighbors on either side. The
two terminal (end) nodes have neighbors only on one side. Thus, all nodes
are degree two except for those on the ends, which ar e of degree one. The
ring network is identical to the linear network except that an additional link
is added between the two end nodes. This makes all nodes identical in
connectivity, with a connection degr ee of two.

A linear network with n nodes has a communication diameter of n —1,
while a ring network of the same size has a diameter of [n/2 | (1n/2 rounded
down to the next smaller integer). Thus, a ring of eight nodes (as shown in
Figure 6.25b) has a diameter of 4, while one with seven nodes would have
a diameter of 3. The above analysis pr esumes that all communication links
are bidirectional, which is virtually always the case. A linear network with
unidirectional links would not allow some nodes to send data to others. A
ring network could be made to work with unidir ectional links, but would
not perform well — nor would it exhibit the enhanced fault tolerance (due
to the two possible r outing paths between any two nodes) that is the other
main advantage of a ring over a linear network. (Between any two nodes in
a linear network there is only one possible path for the outing of data, while
there are two possible paths between arbitrary nodes in a ring network.
Thus, if one link fails, the ring can still function in degraded mode as a linear

(a) Linear network (b) Ring network

Figure 6.25 Linear and ring networks.

288 Computer Architecture: Fundamentals and Principles of Computer Design

array. All nodes will still be able to communicate, though performance is
likely to suffer to some extent.)

Linear and ring networks are simple to construct and easily expandable
(all one has to do is insert another node with two communications links
anywhere in the structure). However, they are impractically slow for systems
with large numbers of nodes. Communications performance can vary over
a wide range, since the distance between nodes may be as little as 1 or as
great as the diameter (which can be lar ge for a network with many nodes).
A linear network is not fault tolerant, and a ring network br eaks down if
more than one fault occurs.

6.3.3 Star networks

Another simple network with a static inter connection structure is the star
network (see Figure 6.26). In a star network, one central node is designated
as the hub and all other nodes ar e directly connected to it. Each of these
peripheral nodes is of degr ee one, while if ther e are n peripheral nodes the
hub is of degree n. The diameter of the star network is 2 r egardless of the
number of nodes; it takes one hop for a piece of data tor each the hub and
one more for it to r each its destination, assuming the destination is not the
hub itself. This assumption is generally tr ue. Since the hub sees much more
communications traffic than any other node, it is common for it to be dedi-
cated to communications rather than consisting of general-purpose comput-
ing hardware. The hub may include a dedicated communications pr ocessor
or it may simply be a nonpr ogrammable hardware switching device.

The main advantage of a star network is its small diameter for any
number of nodes. Its main disadvantage is the lar ge amount of traf fic that
must be handled by one node (the hub). As more nodes are added to the
network, the amount of communications bandwidth r equired of the hub
increases until at some point it is saturated with traf fic. Adding more nodes
than this will r esult in nodes becoming idle as they wait for data. If the
advantages and disadvantages of a star network sound familiay they should;
they are essentially identical to those of a bus. If one considers the bus
hardware itself to be a node, it corr esponds directly to the hub of a star
network. Both are potential bottlenecks that become mor e of a pr oblem as
more nodes are added to the system.

e
7N

Figure 6.26 Star network.

Chapter six: Parallel and high-performance systems 289

Figure 6.27 Tree network.

6.3.4 Tree and fat tree networks

A tree network is one in which the nodes ar e connected by links in the
structure of a binary tree. Figure 6.27 shows a tree network with seven nodes.
It is easy to see that the binary tr ee network illustrated here is not constant
degree. Leaf nodes are of degree one, the root node has degree two, and the
nodes at intermediate levels of the tree all have a connection degree of three,
as they are connected to one node above them and two below .

The communication diameter of a binary tr ee network is obviously the
distance between leaf nodes on opposite sides of the tree. In Figure 6.27, the
diameter of the seven-node tr ee network is 4. Adding another level (for a
total of 15 nodes) would give a diameter of 6. In general, the diameter is 2(h
—1), where h is the height of the tr ee (the number of levels of nodes).

A tree network is not ideal if communication between physically remote
nodes is frequent. It has a relatively large diameter compared to the number
of nodes (though not as lar ge a diameter as the ring or linear networks).
Another disadvantage is that all communications traf fic from one subtree
(right or left) to the other must pass thr ough a single node (the r oot node);
that node, and the others near it, will tend to be the busiest. While this is
not quite as serious a performance limitation as the hub node in a star
network (through which all traf fic must pass), it does imply that ther oot
(and other nodes close to it) may tend to saturate if the tr ee is large or the
volume of communication is heavy.

In such a case, if designers want to maintain the tr ee topology, a better
solution is the use of a fat tree network (see Figure 6.28). It has the same
overall structure as the regular binary tree, but the communications links at
levels close to the r oot are duplicated or of higher bandwidth so that the
increased traffic at those levels can be better handled. Lower levels, which
handle mostly local communications, can be lower in bandwidth and thus
can be built in a less costly fashion.

Tree and fat tree networks have few advantages for general computing,
though the tree topology (like any specialized inter connection) may map
well to a few specific applications. Though these str uctures do scale better
to a larger number of nodes than the linear, ring, or star networks, they lack
some of the advantages of the network topologies to be cover ed in the
following sections. Thus, tree networks are rarely seen in large-scale parallel
machines.

290 Computer Architecture: Fundamentals and Principles of Computer Design

Figure 6.28 Fat tree network.

6.3.5 Nearest-neighbor mesh

One type of inter connection network that has been used in many medium-
to large-scale parallel systems (both array pr ocessors and multicomputers)
is the nearest-neighbor mesh. It has most fr equently been constructed in two
dimensions as shown in Figur e 6.29, though it is possible to extend the
concept to three (or more) dimensions. (Note that a linear network as shown
in Figure 6.25a is logically equivalent to a one-dimensional nearest-neighbor
mesh.) Each interior node in a two-dimensional mesh inter connection is of
connection degree four, with those on the edges being of degr ee three and
the corner nodes, degree two. One can think of the nodes as equally spaced
points on a flat map or graph, with the communication links being lines of
latitude and longitude connecting them in the east-west (x) and north-south
(y) directions.

The higher degree of connectivity per node, as compaed to the networks
we previously considered, tends to keep the average communication dis-
tance (and the diameter , or worst-case distance) smaller for the near -
est-neighbor mesh. For example, consider a system with 16 nodes. If they
are connected in linear fashion, the diameter is 15; if in a ring, 8; if they ar e
connected in the mesh of Figure 6.29, the diameter is only 6. In general, the

Figure 6.29 Two-dimensional nearest-neighbor mesh network.

Chapter six: Parallel and high-performance systems 291

diameter of an n by n (also written as n x n) square mesh (with n? nodes) is
(n—1) +(n—1) =2(n — 1) =2n — 2. The price one pays for this decr eased
diameter (which tends to improve communication performance) is the price

of building more links and making more connections per node. The routing
of messages from one node to another is moe complex as well, since multiple
paths exist between any two nodes. However, this flexibility provides fault
tolerance, as a nonfunctional or overbur dened link may be r outed around
(provided the situation is r ecognized and the r outing protocol allows for

this).

6.3.6 Torus and Illiac networks

The one exception to the r egular structure of the two-dimensional near -
est-neighbor mesh just discussed is the reduced connectivity of the edge and
corner nodes. It is often convenient to build all the nodes in a network the
same way; if most of them ar e to have four communications interfaces, for
simplicity’s sake the others might as well have that capability , too. In the
nearest-neighbor mesh some nodes do not make use of all four of their
possible links. Two other networks, the forus network and the Illiac network,
have all degree four nodes and thus make use of the full number of links
per node. The torus network is simply a two-dimensional near est-neighbor
mesh with straightforward edge connections added to connect the nodes at
opposite ends of each r ow and column. Looking at the near est-neighbor
mesh shown in Figure 6.29, it is clear that if links were added to connect the
leftmost and rightmost nodes in each r ow, the result would be a cylindrical
topology as shown in Figure 6.30a. By making the same type of connections
between the nodes at the top and bottom of each column, one transforms
its geometrical shape into that of a tor us (better known to most of us as the
shape of a doughnut or bagel) as shown in Figur e 6.30b.

Y

| VAR

‘ i N
\ 1/

(a) Cylindrical network (b) Toroidal network

Figure 6.30 Formation of cylindrical and tor oidal networks from nearest-neighbor
mesh.

292 Computer Architecture: Fundamentals and Principles of Computer Design

Figure 6.31 Torus network with 16 nodes.

Figure 6.31 shows a 16-node tor us network depicted to emphasize its
similarity to the nearest-neighbor mesh rather than its toroidal geometry. As
one might imagine, the characteristics, advantages, and disadvantages of
this network are similar to those of the two-dimensional mesh. Because of
the additional connectivity, its communication diameter is somewhat smaller
than that of a mesh without edge connections. In general, the diameter of a
torus with 7% nodes (an n x n mesh plus edge connections)is2 [n/2] (= n,
if n is even). In the case of the 16-node network shown, the diameter is only
4 instead of the two-dimensional mesh’s 6. The torus is also somewhat more
fault tolerant than the mesh because more alternative routings exist between
nodes. Of course, the cost is slightly higher because of the additional links
that must be put in place.

Another network that is very similar in topology to the torus is the Illiac
network — so named because it was used to inter connect the processing
elements of the ILLIAC-IV array pr ocessor. The original Illiac network had
64 nodes; for simplicity, Figure 6.32 depicts a network with the same str uc-
ture but only 16 nodes. Notice that the edge connections in one dimension
(the columns in Figure 6.32) are identical to those in the tor us network. In
the other direction, the connections are a bit dif ferent. The rightmost node
in each r ow is connected to the leftmost node in the nextr ow, with the
rightmost node of the last r ow being linked to the leftmost in the firstr ow.
As in the torus network, this results in all nodes being of connection degree
four.

Figure 6.32 shows the Illiac network as a modified two-dimensional
nearest-neighbor mesh. Alternatively, it can be viewed as alar ge ring net-
work with additional, smaller , internal ring networks adding additional
connectivity. The reader can trace the horizontal connections in Figur e 6.32
from one row to the next and back to the first, confirming that they alone
form a continuous ring among the 16 nodes. It is easy to see that each set
of nodes in vertical alignment forms a ring of four nodes when the edge
connections are considered. Thus, an n x n Illiac network with n2 nodes
consists of n rings of n nodes each, interspersed within a lar ger ring that
connects all n?> nodes. This interpretation of the network’s stucture is empha-
sized in Figure 6.33.

Chapter six: Parallel and high-performance systems 293

P
P
//

\Z D)

Figure 6.32 16-node Illiac network.

7N
N

Figure 6.33 Alternative representation of Illiac network.

The characteristics of an Illiac network ar e similar to those of a tor us
network. The connection degr ee of the nodes is the same (four), and the
diameter is the same or slightly less (for 72 nodes, the diameteris n — 1).
Both the Illiac and torus networks exhibit somewhat better communications
performance than the simple two-dimensional mesh at a slightly higher cost.

6.3.7 Hypercube networks

The nearest-neighbor mesh, torus, and Illiac networks have nodes of higher
degree than the linear, ring, and star networks. Their r esulting lower com-
munication diameters make them more suitable for connecting lar ger num-
bers of nodes. However, for massively parallel systems in which logically
remote nodes must communicate, even these networks may have unaccept-
ably poor performance. One type of network that scales well to very lar ge
numbers of nodes is a hypercube or binary n-cube interconnection. Figure 6.34
shows an eight-node hyper cube (three-dimensional hypercube or binary
3-cube) that has the familiar shape of a geometrical cube. Each node has a
connection degree of three, and the diameter of the network is also 3. These

294 Computer Architecture: Fundamentals and Principles of Computer Design

100 101

000 001

110 111

010 011
Figure 6.34 Three-dimensional hypercube network.

numbers are not coincidental; a hypercube network of n dimensions always
has a diameter of n and contains 2" nodes, each of degree n.

Notice that if we number the nodes in binary , from 000 (0) to 111 (7), it
takes 3 bits to uniquely identify each of the eight nodes. The numbering is
normally done such that the binary addr esses of neighboring nodes dif fer
only in one bit position. One bit position corr esponds to each dimension of
the cube. Assigning the node addresses in this way simplifies the routing of
messages between nodes.

It is inter esting to note that hyper cubes of dimension less than thr ee
degenerate to equivalence with other network topologies we have studied.
For example, a binary 2-cube, with four nodes, is the same as a2 x 2 square
nearest-neighbor mesh. A binary 1-cube, with just two nodes connected by
one communications link, equates to the simplest possible linear array . In
the lower limit, a binary 0-cube (with a single node) would not be a parallel
system at all; instead, it would r epresent a unipr ocessor system with no
network connectivity.

Hypercubes of more than three dimensions are not difficult to construct
and are necessary if mor e than eight nodes ar e to be connected with this
type of topology. They are, however, increasingly difficult to diagram on a
flat sheet of paper . Figure 6.35 shows two alternative r epresentations of a
four-dimensional hypercube (binary 4-cube). The important thing to notice
is that each node is connected to four others, one in each dimension of the
cube. (Binary node addresses would in this case be composed of 4 bits, and
each of the four nodes adjacent to a given node would have an addr ess that
differs in one of the four bit positions.) By extension, one can easily infer (if
not easily depict on a flat surface) the structure of a binary n-cube with five,
six, or more dimensions. Hypercubes of up to 16 dimensions (up to 65,536
nodes) have been constructed and used in massively parallel systems.

Hypercube networks, by keeping the communication diameter small,
can provide good performance for systems with lar ge numbers of nodes.
However, they do have certain limitations. First, the number of nodes must
be an integer power of two to maintain the cube str ucture, so incrementally
increasing performance by adding just a few nodes is not feasible as it is for
some of the other network types. Also, the node connection degree increases

Chapter six: Parallel and high-performance systems 295

Figure 6.35 Four-dimensional hypercube network.

with each new dimension of the network. This may cause dif ficulties with
construction and results in a network that tends to be mor e expensive than
others for the same number of nodes. When we incr ease the order of the
cube by one, we only add one mor e connection per node but we double the
number of nodes. Ther efore, the total number of communication links
increases dramatically with the dimensionality of the network. An n-cube
with 2" nodes requires (n x 2%)/2 = n x 2" connections. That is only 12
connections for a binary 3-cube with 8 nodes, but the number gows to 24,576
connections for a 12-cube with 4,096 nodes and 524,288 connections for a
16-cube with 65,536 nodes. In this as in so many other aspects of computer
systems design, there is no such thing as a fr ee lunch.

6.3.8 Routing in static networks

Since the network connections themselves ar e not changed in static net-
works, the logic used to decide which connections must be utilized to get
data to the desired destination is crucial. We do not usually want to boadcast
a particular item to all nodes, but rather to send it to a particular node whee
it is needed. The choice of which connection, or sequence of connections,
must be followed in or der for a message to get to its destination in a
packet-switched network is referred to as the r outing protocol. In addition,
the manner in which message packets ar e transferred from node to node
along the routing path has gr eat significance with r egard to performance,
especially in lar ger networks. We shall examine some aspects of message
routing over static networks in a bit mor e detail.

Store and forward routing is a data transfer approach that has been in use
in networks (most notably the Internet) for many years. In a system using
this type of r outing, messages are sent as one or mor e packets (which ar e
typically of a fixed size). When a message is sent fr om one node to another,
the nodes may (if we are fortunate) be directly connected, but in most cases
the packets will have to pass thr ough one or mor e intermediate nodes on
their way from the originating node to the destination. To facilitate this, each
node has FIFO storage buf fers the size of a packet. As a message packet
traverses the network, at each intermediate node the entie packet is received
and assembled in one of these buffers before being retransmitted to the next
node in the dir ection of the destination (as determined by the particular
routing protocol being used). Packets ar e treated as fundamental units of

296 Computer Architecture: Fundamentals and Principles of Computer Design

information; at any given time, a packet is either stoed (completely buffered)
in one node or in the pr ocess of being forwar ded (transmitted) from one
node to a neighboring node; thus, this method isr eferred to as stor e and
forward routing. When store and forward routing is used, a packet is never
dispersed over multiple nodes, r egardless of how many hops must be tra-
versed between the sending and r eceiving nodes. This appr oach simplifies
the process of communication, but delays can be substantial when the send-
ing and receiving nodes are widely separated.

Wormbhole routing is an alternative strategy that was developed later to
improve message-passing performance, especially in lar ge networks with
many nodes through which messages must pass. It was first intr oduced by
William Dally and Charles Seitz and was first used commer cially in the
Ametek 2010 multicomputer, which featur ed a two-dimentional near est
neighbor mesh inter connection. Academic research on wormhole r outing
was done using Caltech’s Mark IIl hyper cube and Mississippi State’s
MADEM (Mapped Array Differential Equation Machine).

In this approach, each message packet is divided up into flow contr ol
digits, or flits, each typically the size of an individual data transfer (the
channel width between nodes). When a message packet is transmitted fr om
one node to the next, the flits ar e sent out one at a time. The r eceiving node
checks to see if the message is intended for it and, if so, stor es the flitsin a
receive buffer. If the message is passing through on the way to another node,
the correct output channel is identified and the first flit is sent on its way as
soon as possible. Subsequent flits ar e sent after the first one as rapidly as
possible, without waiting for the entire packet to be assembled in any inter -
mediate node. If the destination node is several hops away from the sending
node, the message will likely become spr ead out over several intermediate
nodes and links, stretching across the network like a worm (hence the name
of the technique).

Figure 6.36 shows how message packets might be formatted in a multi-
computer connected by a two-dimensional mesh. This example uses a deter-
ministic routing, which means that any message sent fr om one node to

Relative X address Flit 1
Relative Y address Flit 2
Length Flit 3
Flit 4

Dzllta
Flit n

Figure 6.36 Wormbhole routing example.

Chapter six: Parallel and high-performance systems 297

another always follows the same path. Specifically, in this case messages are
always routed in the X dir ection (east-west) as far as they need to go, and
only theninthe Y direction (north-south). The first flit is always the X
address, expressed in a relative format (+3 means three hops to the east; -2
means two hops to the west).

At each intermediate node, the absolute value of the X addr ess is dec-
remented by one so that it reaches zero at the node where the message must
change directions. At that point, the X addr ess flit is stripped of f, and the
second flit (the Y address) becomes the leading flit. If it is found to be zer o,
the message is at the destination node and is pulled of f the network as the
remaining flits come in. If it is positive, the message is r outed north, and if
it is negative, the message isr outed south. Again, at each node inthe Y
direction, the Y address flit is decremented toward zero, and when it reaches
zero the message has reached its destination. If the message packets ar e not
all the same length, the thir d flit (behind the X and Y address flits) would
contain the message length information, informing the r outing hardware of
how many additional flits ar e to follow so that each node knows when a
message has passed through in its entirety. Once this happens, the sending
and receiving channels (input or output pathways in particular dir ections)
are freed up so they can be allocated to other messages as necessary .

It is important to note that a node cannot r eallocate the same input or
output channel to another message until the curr ent message is completely
received or transmitted over that channel. Channels must be dedicated to
one message at a time. Intermixing flits fr om more than one message over
the same channel does not work because ther e is no way to tell them apart.
Address, length, and data flits all appear the same to the hardware; the only
way the routers can tell which flit is which is by counting flits until the end
of amessageisr eached. Intermixing flits fr om multiple messages would
spoil the channel’s count.

This means that often a message will have to temporarily stall in the
network because some other message has already started using the channel
that this message needs in or der to make pr ogress toward its destination.
For example, in Figure 6.37 node Al is trying to send a message to node A2,
while node B1 is trying to send a message to node B2. Both messages have
to pass through node C, exiting towar d their destinations via that node’s
north output channel. Say the message fr om Al arrives at C first, and a
connection is established between C’s west input channel and its north
output channel to service this message. Subsequently the first flit of the
message from B1 arrives at C via C’s south input. The r outing hardware at
node C examines the address flit of this message and discovers that it needs
to be sent out via the north output channel, but it is alr eady allocated to the
other message. Therefore, this message must wait until the last flit of the
first message exits via C’s north output.

In this type situation, the flits of a stalled message may be temporarily
left spread out over one or more nodes of the network, with further progress
temporarily impossible. Since each intermediate node has an input and

298 Computer Architecture: Fundamentals and Principles of Computer Design
A3

A2

Al
Blocked

Bl
Figure 6.37 Example of stall caused by contention for a channel.

output channel reserved for the stalled message, performance may drop due
to network congestion as messages block other messages. Performance can
be improved if each node has FIFO buf fers (like those used in systems with
store and forward routing) associated with each of its input channels to stowe
incoming flits as they arrive. This allows flits to pr oceed as far as possible
and helps keep stalled messages fr om blocking others.

Stalling may also be reduced, and performance further improved, if the
system uses an adaptive (or dynamic) routing algorithm such that messages
do not always have to follow the same path from point A to point B. In such
a system, messages may be r outed around areas of congestion where chan-
nels are already in use. For example, in Figur e 6.38 if node Al is communi-
cating with node A2, the routing hardware might choose to send a message
from B1 to B2 over a dif ferent path, as shown, avoiding a delay .

The major caveat in designing an adaptive r outing algorithm for a net-
work using wormbhole r outing is the absence of deadlock, a situation where
messages permanently stall in the network because of mutual or cyclic

———»o PB)

A2

Al

B1

Figure 6.38 Alternative routing in a system with wormhole r outing.

Chapter six: Parallel and high-performance systems 299

Packet
[+—— transmission
time

[«———— Message transmission time (3 hops) —>|

—>| |<— Flit transmission time
Message

[——— transmission —>|

time (3 hops)

Time
Figure 6.39 Store and forward routing vs. wormhole routing.

blocking. (In other words, message A blocks B at one point, but somewher e
else B blocks A; or A blocks B, which blocks C, which blocks A, or some
such.) The simple east-west, then north-south, routing algorithm presented
first has been shown to be deadlock-free, guaranteeing that all messages will
eventually reach their destinations. Adaptive routing algorithms attempt to
be as flexible as possible, but some pathr estrictions must be placed on
routing in order to meet the deadlock-fr ee criterion.

In a system with wormholer outing, communications ar e effectively
pipelined. When the sending and r eceiving nodes are adjacent in the net-
work, wormhole routing is no faster than stor e and forward routing. When
they are far apart, the pipelining ef fect means that the message may arrive
at its destination much sooner . Figure 6.39 compares the two appr oaches
based on the time taken to communicate between r emote nodes.

When store and forward routing is used, a message packet works its
way sequentially across the network, moving from one node along its path
to the next. The packet does not even begin to arrive at the destination node
until after it has been completely r eceived and buffered by the next to last
node in its path. The total time r equired for communication is proportional
to the number of hops between nodes.

When wormhole routing is used (assuming no stalls occur along the
path), the message starts being r eceived as soon as the first flit can traverse
the network to the destination. The r emaining flits follow the first as fast as

300 Computer Architecture: Fundamentals and Principles of Computer Design

the intermediate nodes can receive and send them, arriving right on the heels
of the first flit. The overall time to send the message is dominated by the
size of the message rather than the number of hops; each additional node
traversed adds only a minimal incr ement (in the best case, the time to send
and receive an individual flit) to the overall communication time. Thus, the
advantage of wormhole r outing over store and forward routing becomes
greater as the size of the network incr eases.

In summary, static, packet-switched networks come in a variety of topol-
ogies and use a variety of r outing techniques to get messages to their
intended destinations. Each static network configuration has its own char -
acteristics, advantages, and disadvantages. In general, incr eased perfor-
mance and robustness can be obtained by increasing the number of commu-
nications links relative to the number of nodes. This also incr eases the cost
of implementation. Since packet-switched networks ar e normally used in
multicomputers, which (especially in the form of cluster systems) ae becom-
ing more and more popular, continued research, innovation, and impr ove-
ment in this aspect of parallel systems design is likely .

6.4 Dynamic interconnection networks

Dynamic networks are those in which the physical connections within the
network are changed in or der to enable dif ferent nodes to communicate.
Hardware switching elements make and break connections in order to estab-
lish and destroy pathways for data between particular nodes.

Some dynamic, circuit-switched networks have direct connections (sin-
gle switches) between nodes; these are known as single-stage networks. These
networks can be very complex and expensive to build and can be very costly
for large numbers of nodes. If the network has a lar ge number of nodes, it
is more usual to have signals travel thr ough several, simpler, cheaper
switches (with a small number of inputs and outputs) to get fr om one node
to another, rather than one complex, expensive switch. If the same set of
switches is used iteratively in oxer to transfer data from one node to another
it is called a recirculating network; if several sets (stages) of smaller switches
are connected to take the place of a single, lar ge switch, we r efer to the
network as a multistage inter connection network.

6.4.1 Crossbar switch

The highest-performance dynamic interconnection network is a single-stage
network known as a crossbar switch, specifically a full crossbar (so termed to
distinguish it from a staged network made up of smaller crossbar switching
elements). An m x n crossbar switch is a har dware switching network with
m inputs and n outputs (usually, but not always, m = n) in which a dir ect
connection path can be made fr om any input to any output. The har dware
is so duplicated that no connection interfer es with other possible connec-

tions; in other words, making a connection from input i to output j does not

Chapter six: Parallel and high-performance systems 301

=

2

£
=

ENERERERERENENE

<
o

=

~

Figure 6.40 8 x 8 full crossbar switch.

prevent any input other than i from being connected to any output other
than j. At any time, several independent, concurr ent connections may be
established (as many as the smaller of m or 1), subject only to the restriction
that a given input can only be connected to one output and vice versa.

The switching elements in a cr ossbar are often bidirectional, enabling
data to be sent or received over the same connection. Thus, it might be more
accurate in many situations to simply r efer to nodes as being on one or the
other side of the crossbar switch. Often, particularly in symmetric multipro-
cessors, the nodes on one side ar e master nodes (such as CPUs) and those
on the other side are slave nodes (memory modules). An 8 x 8 full crossbar
switch, which would allow up to eight simultaneous connections, is depicted
in block diagram form in Figur e 6.40.

It is worthwhile to take the time to consider how a cossbar switch might
be implemented in hardware. Consider the simplest possible case of a2 x 2
crossbar switching element. (We take this example not only for the sake of
simplicity but because such elements ar e used as building blocks in other
types of networks that we shall consider later .) The most basic 2 x 2 switch
has only two states: straight-through connections (input 0 to output 0 and
input 1 to output 1) and crossover connections (input 0 to output 1 and input
1 to output 0). A single control input is sufficient to select between these two
states. Thisbasic2 x 2 crossbar is depicted in block diagram form in
Figure 6.41.

Now consider what type of cir cuitry is required to implement such a
switch. First, consider the simplest case, in which data transfer thr ough the
switch is unidirectional (only from the designated input side to the output
side). Considering that either of the two inputs must be able to be connected

302 Computer Architecture: Fundamentals and Principles of Computer Design

C=0 C=1
In0 Out 0 In0 — — Out 0
In1l Out 1 Inl— — Out 1
Straight-through Crossover
connection connection

Figure 6.41 Block diagram of basic 2 x 2 switching element.

Out 0
In0

Inl -
Out 1

Figure 6.42 Logic diagram for basic 2 x 2 switching element.

to a given output, the cir cuitry driving either output is equivalent to a 2 to
1 multiplexer. Thus, the complete circuit for the 2 x 2 switch (see Figure 6.42)
effectively consists of two such multiplexers, with the sense of the contr ol
or select signal inverted such that the input that is not r outed to one output
is automatically routed to the other.

If the switching element needs to be bidir ectional, such that data may
be transferred from the designated output side to the input as well as fr om
input to output, the logic gates making up the multiplexers must be eplaced
by bidirectional tri-state buffers, CMOS transmission gates, or some other
circuit that allows signals to flow in either dir ection. Two possible imple-
mentations of this type of cir cuit are illustrated in Figure 6.43.

In some systems, it is important for a single node to be able to broadcast
data (send them to all nodes on the other side of the cr ossbar). To facilitate
this, we can construct the switch such that in addition to the straight-though
and crossover configurations, it can be placed in the upper broadcast or lower
broadcast modes. Upper broadcast simply means that input 0 is connected to
both outputs while input 1 is open-cir cuited, while lower br oadcast means
the reverse. The four possible states of such a switching element (which
requires two control signals instead of one) ar e shown in Figure 6.44.

This circuit may be implemented much like the one shown in Figur e
6.42 (as a combination of two 2 to 1 multiplexers) except that some additional
control logic is required to allow one input to be connected to both outputs.
Figure 6.45 illustrates this appr oach. If broadcast capability is desired in a

Chapter six: Parallel and high-performance systems 303

C

C
LO - - RO Lo ‘ DK} +— RO
C C C

L1 { [;?] } R1 L1

C
(a

R1

a1 xéa

) (b)

Figure 6.43 Logic diagrams for bidirectional 2 x 2 switching element.

¢ G G G
00 01
[| [|
In0 Out 0 In0 —><— Out 0
In1 Out 1 In1 — — Out 1
Straight-through Crossover
10 11
[| [|
In0 \ Out 0 In0 ——-/— Out 0
Inl— — Out 1 In1 Out 1
Upper broadcast Lower broadcast

Figure 6.44 Block diagram of 2 x 2 switching element with br oadcast capability.

bidirectional switch, implementation is more complex than simply replacing
logic gates with bidirectional buffers as we did in the circuits of Figure 6.43.
Separate broadcast paths must be constr ucted for each side to avoid the
situation where one input connected to two outputs becomes two inputs
connected to a single output.

The diagrams above r epresent one bit of the smallest possible (2 X 2)
crossbar switch. A switch to be used for parallel data transfers would equire
this hardware to be r eplicated for each of the bits to be simultaneously
transferred. The reader can easily imagine that incr easing the capability of
these small switches to4 x 4, 8 x 8, or larger crossbars would make them
significantly more complex and expensive to build.

Full crossbars are most commonly used to interconnect CPUs and mem-
ory modules in high-end symmetric multiprocessor systems. One side of the

304 Computer Architecture: Fundamentals and Principles of Computer Design

In0O
C, -4
0 Out 0
E}
= Out 1
In1l

Figure 6.45 Logic diagram for 2 x 2 switching element with br oadcast capability.

switching network is connected to the processors and the other to the mem-
ories. The main advantage of a coossbar interconnection is high performance.
At any time, any idle input can be connected to any idle output with no
waiting, regardless of connections alr eady in place. While CPUs in a
bus-based multiprocessor system may frequently have to wait to access main
memory, since only one bus transaction can take place at a time, pr ocessors
connected to memory modules via a cr ossbar only have to wait to access a
module that is already in use by another CPU. Conversely, the main disad-
vantage of a crossbar is its high cost. Because of the complexity of contplling
the switch and the replication of hardware components that is necessary to
establish multiple connections simultaneously, the cost of a full cr ossbar is
a quadratic function. In “Big O” notation, an # X n crossbar has an imple-
mentation cost of O(n?). Thus, it is very expensive to build a crossbar switch
with large numbers of inputs and outputs.

6.4.2 Recirculating networks

The problem with a full cr ossbar switching network is that it is expensive,
particularly for large numbers of inputs and outputs. T o save on cost, it is
possible to build a switching network fr om a number of smaller switching
elements (often 2 x 2 switches like the ones we studied above) such that each
node is directly connected only to a limited number of other nodes. Since
not all inputs can be connected to all outputs given a single set (or stage) of
switches like those shown in Figur e 6.46, communication between a given
source and most destinations must be accomplished by forwar ding data
through intermediate nodes. Since the data must often pass thr ough this
type of network mor e than once to r each their destination, it is r eferred to
as a recirculating network. Because (like a cr ossbar) it is implemented with a
single set of switches, a recirculating network is also known as a single-stage
network.

The advantage of a r ecirculating network is its low cost compar ed to
other networks such as a cr ossbar switch. Interconnecting n nodes requires
only n/2 switch boxes (assuming they ar e 2 x 2) — fewer if the boxes have
more inputs and outputs. Therefore, its cost function for # nodes is O(n). Its
obvious disadvantage is r educed performance. Unless a communication is

Chapter six: Parallel and high-performance systems 305

Figure 6.46 Recirculating network with eight nodes.

intended for one of the nodes dir ectly connected to the originating node, it
will have to be transmitted mor e than once; each additional pass thr ough
the network will introduce some overhead, slowing the process of commu-
nication.

6.4.3 Multistage networks

A multistage network (or staged network), like a recirculating network, is built
from a number of smaller switch boxes rather than one lar ge switch. How-
ever, to avoid the need to make multiple passes thr ough the same set of
switches, the multistage network adds additional sets of switches so that
any input may be connected directly to any output. For the most usual case
of 2 x 2 switch boxes making up an 7 X n network, it takes at least log ,n
stages of n/2 switches each to enable all possible input to output combina-
tions. Figure 6.47 depicts a network designed in this manner. To connect any
of eight inputs to any of eight outputs, this inter connection (known as an
Omega network) uses three stages of four 2 x 2 switch boxes each.

While this is more expensive (in this case, by a factor of thr ee) than the
recirculating network discussed above, it generally performs better since all
direct source-to-destination connections are possible. It is also much less

306 Computer Architecture: Fundamentals and Principles of Computer Design

0 — 0
1 — 1
2 — 2
3 — 3
4 — 4
5 — 5
6 — 6
7 — 7
Stage 2 Stage 1 Stage 0

Figure 6.47 Example multistage network (Omega network).

expensive than an 8x 8 full crossbar. Analysis shows that thisn x n multistage
network has a cost that scales as O(n log 1), which is much less expensive
than O(n?) as n becomes large.

6.4.3.1 Blocking, nonblocking, and rearrangeable networks

With a little analysis, one can confirm that a multistage network such as the

Omega network depicted in Figur e 6.47 is capable of connecting any input

to any chosen output given proper configuration of three switch boxes (one
in the first stage, one in the second, and one in the thir d). The specific boxes
that must be controlled in each stage depend on the particular nodes one is

trying to connect. The ability to connect any given input to a chosen output

is one of the characteristics we attributed to a full cr ossbar switch. Does it
follow that the multistage network shown is equivalent to an 8 x 8 full
crossbar? By examining the diagram mor e critically, we can see that this is

not the case.

Look again at Figure 6.47. After studying the structure of the network,
the reader should be able to convince himself or herself that there is a single
possible path through this network between any specified input and output
and that establishing this path r equires specific control signals to be sent to
a particular set of switching elements (one particular box in each of stages
0,1, and 2). What may not be as obvious at first is that this first configuration,
whatever it may be, precludes some other input-to-output connections from
being simultaneously made.

Consider the situation depicted in Figur e 6.48, in which a connection is
made from node 6 on the left side of the network to node 2 on the right side
of the network. This r equires the three switch boxes in the only possible

Chapter six: Parallel and high-performance systems 307

0
|
0 --- --- ----— 0
I E N) U et — 1
0
|
2 2
3 — 3
1
|
4 . — 4
. /) .
6 . — 6
7 . — 7
Stage 2 Stage 1 Stage 0

Figure 6.48 Connections in Omega network.

connection path to be set to the cr ossover, straight-through, and
straight-through configurations, r espectively. (Incidentally, if a cr ossover
connection is enabled by a 1 on a box’s contr ol input and a straight-through
connection is enabled by a 0, the pr oper control settings may be obtained
by exclusive-ORing the binary addresses of the sending and receiving nodes.
In this case, 110 XORed with 010 yields 100 as the proper value to set up the
three switching elements.) Once these three boxes are configured in this way,
it is easy to see that several (up to seven) other simultaneous connections
are possible. For example, node 0 on the left could be connected to node 0
on the right, node 7 on the left could be connected to node 1 on the right,
and so on.

However, it is not possible to make arbitrary additional connections
across the network once a given connection is in place (as would be the case
for a full 8 x 8 crossbar switch). For example, with an existing connection
from node 6 to node 2, it is not possible to connect node 4 on the left to node
3 on the right. This is because two of the switch boxes (the top one in stage
1 and the second one from the top in stage 0) are common to the two desired
connections. Connecting node 6 to node 2 requires both of these boxes to be
in the straight-through configuration, while connecting node 4 to node 3
would require both of them to be in the crossover connection. If one of these
connections is curr ently made, the other cannot be made until the first
connection is no longer needed. Thus, one connection is said to block the
other, and this network is termed a blocking network. A full crossbar, in which
any connections involving distinct nodes ar e simultaneously possible, is
known as a nonblocking network. Once again, we see a typical engineering

308 Computer Architecture: Fundamentals and Principles of Computer Design

0 — — 0
1 — — 1
2 — — 2
3 — — 3
4 — — 4
5 — — 5
6 — — 6
7 — — 7

Figure 6.49 Example rearrangeable network (Benes network).

tradeoff of cost versus flexibility (and, ultimately, performance). A blocking
network like the Omega network is less expensive and less flexible; because
(at least some of the time) connections will have to wait on other connections,
all else being equal, it will not enable the system to perform as well as a full
crossbar (which offers maximum flexibility but at maximum cost).

There is another possible tradeof f point between the blocking and non-
blocking networks. By adding some additional switching har dware beyond
that required to create a blocking network, it is possible to allow for multiple
possible paths between nodes. Any path between nodes will still block some
other connections, but if it is desir ed to make one of those blocked connec-
tions, a different (redundant) path between the original two nodes can be
selected that will unblock the desir ed new connection. In other wor ds, the
original connection (or set of connections) in place can be earranged to allow
a new connection. Such a network is called a rearrangeable network. An exam-
ple of ar earrangeable network, known as a Benes network, is shown in
Figure 6.49.

The cost of a rearrangeable network like this one is greater than the cost
of a similar blocking network. In general, the topologies of r earrangeable
networks are similar to those of blocking networks except for the addition
of extra stages of switch boxes that serve to pr ovide the path r edundancy
necessary to rearrange connections. The 8 x 8 Benes network shown is similar
to the 8 x 8 Omega network discussed pr eviously but has two extra sets of
switch boxes. It looks like an Omega network folded over on itself such that
the last two sets of connections between switches ar e a mirror image of the
first two sets. By adding these two extra stages, we have ensur ed that there
are four possible paths, rather than just one, between arbitrarily chosen
nodes on the left and right sides. For example, Figur e 6.50 shows the four

Chapter six: Parallel and high-performance systems 309

0 — 0
1 — — 1
2 — / — 2
3 — — 3
4 — — 4
5 — / — 5
6 — — 6
7 — 7

Figure 6.50 8 x 8 Benes network showing multiple possible connections between
nodes.

possible paths that connect node 7 with node 0. Notice that each of these
paths goes through a different switch box in the middle stage. This is tr ue
for any left-right node pair. Since there are two good routings through each
switch box, and since any input—-output pair can be joined thr ough any of
the four central switch boxes, it should not be surprising that it is possible
to simultaneously connect all eight nodes on one side to any combination
of the eight nodes on the other side.

In general, if ther e are n = 2" inputs and outputs and the blocking
(Omega) network has m = log,n stages, the rearrangeable (Benes) network
with the same number of inputs and outputs and the same size switch boxes
will require 2m — 1 stages. Notice that the cost function of ann X n rearrange-
able network like this one is still O(n log 1) as in the case of the blocking
network, but with a larger (by a factor of two) pr oportionality constant. All
of this analysis assumes the use of 2 x 2 switch boxes. It is also possible to
construct rearrangeable networks by incr easing the size (number of inputs
and outputs) of the individual switch boxes rather than the number of stages,
but this appr oach is not as common; building mor e, smaller switches is
usually cheaper than building fewer but mor e complex switches.

The main feature of this type of network is that (similar to a full cossbar)
given one or mor e (up to n — 1) connections already in place, it is always
possible to make a connection between a curr ently idle node on the right to
an idle node on the left. In some cases making this new connection may not
require any existing connections to be r erouted, but in other cases it will.
(This is where the rearrangeable network differs from a nonblocking net-
work.)

310 Computer Architecture: Fundamentals and Principles of Computer Design

0 — L 0
1 — — 1
2 — — 2
3 — — 3
4 — A4
5 g 7 — 5
6 — S 6
7 — N Z 7
Original three connections ======= Fourth connection rerouted
———————— Fourth connection added Fifth connection added

after fourth rerouted
Figure 6.51 Making and rerouting connections in a r earrangeable network.

For example, assume that nodes 1, 3, and 5 on the left side of the 8 x 8
Benes network are currently connected to nodes 1, 6, and 7 on the right side
as shown in Figur e 6.51. Further suppose that we want to connect node 2
on the left to node 4 on the right. We could do this without rearranging any
of the existing connections, as shown in Figur e 6.51.

Now assume that we want to add a connection fr om node 0 on the left
to node 0 on the right. W e find that the existing four connections do not
permit this. However, it is possible to r eroute existing connections — for
example, the connection between nodes 2 and 4 as shown in Figur e 6.51.
This frees up a path so that our newly desired connection can be established.
After this, it would still be possible to connect the three remaining nodes on
the left to the three remaining nodes on the right in any combination; how-
ever, some additional rearrangement of the existing connections would likely
be necessary.

Recirculating networks, blocking and r earrangeable multistage net-
works, and full cr ossbar switches ar e different ways of implementing a
dynamic, circuit-switched interconnection. Each has its own characteristics
and each represents a different tradeoff point in the price-performance con-
tinuum. As these networks are most often found in small to medium mul-
tiprocessors, they are likely to continue in use for some time to come, but
since parallel systems show a continuing trend of expanding the number of
processors to increase performance, dynamic networks will likely often be
used in conjunction with static networks in lar ge systems.

Chapter six: Parallel and high-performance systems 311

6.5 Chapter wrap-up

The history of computing devices is the history of a quest for performance.
The time of the human user is valuable, so he or she always wants a system
to run the chosen applications faster . However, at any given time, existing
technology only allows a single pr ocessor to perform computations at a
certain maximum speed. That speed is not always suf ficient to meet perfor-
mance demands, and thus parallel systems wer e born.

Many types of parallel systems have been developed over the years.
Except for a few unconventional architectures that we shall discuss in Chap-
ter 7, almost all of them fall into one or the other of Flynn's two practical
parallel architectural classifications: single instruction stream, multiple data
stream (SIMD) machines, also known as array pr ~ ocessors, and multiple
instruction stream, multiple data stream (MIMD) machines, which ar e var-
iously known as multipr ocessors or multicomputers depending on their
structure. MIMD machines ar e by far the mor e common of the two basic
parallel architectures, but SIMD machines have also played an important
part in the history of high-performance computing and ar e unlikely to dis-
appear in the foreseeable future.

Perhaps the most significant factor that can be used to distinguish one
parallel architecture from another is whether or not the pr ocessors (or pro-
cessing elements in a SIMD) communicate by sharing memory or by passing
messages back and forth. Sharing memory , as in multipr ocessor systems,
allows processors to interact more extensively using relatively large amounts
of data. It also presents a programming model that is familiar to those who
are accustomed to the unipr ocessor (SISD) ar chitecture. However, sharing
memory among pr ocessors has its complications, especially wher e large
numbers of processors are involved. Among the most significant of these
complicating factors is the need to maintain coher ence of data among main
memory and the caches local to each pr ocessor. (Other significant design
issues for multipr ocessors include serialization and synchr onization via
mutual exclusion primitives.) Depending on system size and topology , var-
ious approaches, including snoopy cache and diectory-based protocols, may
be employed to allow the system to realize the performance benefits of cache
while maintaining the integrity of data. = Alternatively, software-based
approaches may be used to avoid the cache coher ence problem (though
generally at some cost in performance and pr ogramming effort).

Some parallel systems avoid the pr oblems inherent to sharing memory
by limiting memory accesses to the local pr ocessor. Since processors cannot
share data by r eading each others’ memories, they must communicate by
passing data in messages sent over a communications network. A processor
needing data may send a message to the node that has the data, and that
node sends back a message containing ther equested information. This
approach not only avoids the problem of consistency between caches, but it
provides a built-in synchr onization mechanism in the form of sending and
receiving messages. This approach works very well when the volume of data

312 Computer Architecture: Fundamentals and Principles of Computer Design

sharing (and thus communications) is light; if the amount of data to be shaxd
is great, it may overwhelm the communications capacity of the system and
cause it to perform poorly. As off-the-shelf technologies like Ethernet have
become faster, less expensive, and mor e widely available, the use of “clus-
ters” (networks of commodity computers) tor un demanding applications
has increased. This trend appears likely to continue for the foeseeable future.
Any parallel system, whether it is SIMD or MIMD and whether or not
the processors share memory directly, must have some sort of inter connec-
tion network to allow nodes to communicate with one another. Interconnec-
tion networks generally fall into the categories of dynamic, or cir -
cuit-switched, networks and static, or packet-switched, networks. W ithin
each category, networks may be classified as synchr onous or asynchronous
depending on their timing, and contr ol of a network may be distributed or
centralized. Network topology differences lead to distinctions between net-
works in terms of node connection degr ee, communication diameter,
expandability, fault tolerance, etc. W ith increasing frequency, communica-
tions networks for larger systems are being constructed as hybrids of more
than one basic type of network. However a network is constr ucted, if the
parallel system is to perform up to expectations, the capabilities of the
network must be matched to the number and speed of the various pocessors
and the volume of traffic generated by the application of interest. As demand
for high-performance computing continues to gr ow, parallel systems ar e
likely to become mor e and more common, and the challenges for system
designers, integrators, and administrators will no doubt continue as well.

6.6 Review questions

1. Discuss at least three distinguishing factors that can be used to dif-
ferentiate among parallel computer systems. Why do systems vary
so widely with respect to these factors?

2. Michael Flynn defined the terms SISD, SIMD, MISD, and MIMD to
represent certain classes of computer ar chitectures that have been
built or at least consider ed. Tell what each of these abbr eviations
stands for, describe the general characteristics of each of these ar chi-
tectures, and explain how they are similar to and dif ferent from one
another. If possible, give an example of a specific computer system
fitting each of Flynn's classifications.

3. Whatis the main difference between a vector computer and the scalar
architectures that we studied in Chapters 3 and 4? Do vector ma-
chines tend to have a high or low degr ee of generality as defined in
Section 1.4? What types of applications take best advantage of the
properties of vector machines?

4. How are array processors similar to vector pr ocessors and how are
they different? Explain the dif ference between fine-grained and

Chapter six: Parallel and high-performance systems 313

10.

11.

12.

13.

14.

15.

16.

coarse-grained array processors. Which type of array parallelism is

more widely used in today’s computer systems? Why?

Explain the dif ference between multiprocessor and multicomputer

systems. Which of these architectures is more prevalent among mas-

sively parallel MIMD systems? Why? Which ar chitecture is easier to
understand (for programmers familiar with the unipocessor model)?

Why?

Explain the similarities and dif ferences between UMA, NUMA, and

COMA multiprocessors.

What does “cache coherence” mean? In what type of computer sys-

tem would cache coherence be an issue? Is a write-thr ough strategy

sufficient to maintain cache coherence in such a system? If so, explain
why. If not, explain why not and name and describe an appr ~ oach
that could be used to ensur e coherence.

What are the relative advantages and disadvantages of write-update

and write-invalidate snoopy protocols?

What are directory-based protocols and why are they often used in

CC-NUMA systems?

Explain why synchronization primitives based on mutual exclusion

are important in multiprocessors. What is a read-modify-write cycle

and why is it significant?

Describe the construction of a Beowulf cluster system.Architecturally

speaking, how would you classify such a system? Explain.

Describe the similarities and dif ferences between cir cuit-switched

networks and packet-switched communications networks. Which of

these network types is consider ed static and which is dynamic?

Which type is mor e likely to be centrally contr olled and which is

more likely to use distributed contr ol? Which is mor e likely to use

asynchronous timing and which is mor e likely to be synchr onous?

What type of inter connection structure is used most often in small

systems? Describe it and discuss its advantages and disadvantages.

Describe the operation of a static network with a star topology . What

connection degree do its nodes have? What is its communication

diameter? Discuss the advantages and disadvantages of this topology

How are torus and Illiac networks similar to a two-dimensional

nearest-neighbor mesh? How are they different?

Consider a message-passing multicomputer system with 16 comput-

ing nodes.

a. Draw the node connections for the following connection topolo-
gies: linear array, ring, two-dimensional r ectangular near-
est-neighbor mesh (without edge connections), binary n-cube.

b. What is the connection degree for the nodes in each of the above
interconnection networks?

c. What is the communication diameter for each of the above net-
works?

314 Computer Architecture: Fundamentals and Principles of Computer Design

17.

18.

19.

20.

21.

d. How do these four networks compar e in terms of cost, fault
tolerance, and speed of communications? (For each of these cri-
teria, rank them in or der from most desirable to least desirable.)

Describe, compare, and contrast stor e-and-forward routing with

wormhole routing. Which of these appr oaches is better suited to

implementing communications over a static network with alar ge
number of nodes? Why?

In what type of system would one most likely encounter a full cross-

bar switch interconnection? Why is this type of network not usually

found in larger (measured by number of nodes) systems?

Consider the different types of dynamic networks discussed in this

chapter. Explain the dif ference between a blocking network and a

nonblocking network. Explain how ar earrangeable network com-

pares to these other two dynamic network types. Give an example
of each.

Choose the best answer to each of the following questions:

a. Which of the following is not a method for ensuring cache coher-
ence in a multiprocessor system? (1) write-update snoopy cache;
(2) write-through cache; (3) write-invalidate snoopy cache; (4)
full-map directory protocol.

b. In a 16-node system, which of these networks would have the
smallest communication diameter? (1) n-cube; (2) two-dimension-
al nearest-neighbor mesh; (3) ring; (4) tor us.

c. Which of the following is a r earrangeable network? (1) Illiac net-
work; (2) multistage cube network; (3) cr ossbar switch; (4) Benes
network; (5) none of the above.

d. In a64-node system, which of the following would have the
smallest node connection degr ee? (1) ring; (2) two-dimensional
nearest-neighbor mesh; (3) llliac network; (4) n-cube.

Fill in the blanks below with the most appr opriate term or concept

discussed in this chapter:

A parallel computer architecture in which there are sev-
eral processing nodes, each of which has its own local
or private memory modules.

A parallel computer architecture in which there are sev-
eral processing nodes, all of which have access to shaed
memory modules.

Another name for an array pr ocessor.

A relatively small MIMD system in which the uniform
memory access property holds.

A situation in which messages on a network cannot
proceed to their destinations because of mutual or cyclic
blocking.

An interconnection network in which any node can be
connected to any node, but some sets of connections ae
not simultaneously possible.

Chapter six: Parallel and high-performance systems 315

The maximum number of hops r equired to communi-
cate across a network.

Multicomputers with many nodes would be inter con-
nected by this.

The classic example of a nonblocking, cir cuit-switched
interconnection network for multiprocessor systems.
A method of message passing in which flits do not
continue toward the destination node until the r est of
the packet is assembled.

A method used for ensuring coherence of data between
caches in a multiprocessor system where a write hit by
one CPU causes other pr ocessors’ caches to r eceive a
copy of the written value.

The basic unit of information transfer thr ough the
network in a multicomputer system using wormhole
routing.

chapter seven

Special-purpose and future
architectures

In the previous six chapters we discussed the characteristics common to the
vast majority of computer architectures in use today, as well as most histor-
ical architectures since the dawn of modern computing in the 1940s. W e
could stop at this point, and the typical reader would be prepared to under-
stand, compare, and evaluate most, if not all machines he or she might
encounter in at least the first several years (if not mor e) of a car eer in the
computing field. It has been said, though, that there is an exception to every
rule, and so it is in computer achitecture. For all the mwiles, or at least standard
design practices, that we have discussed, there are at least a few exceptions:
unique types of computer architectures designed in special ways for special
purposes — past, present, and possibly future.

As we learned in Chapter 1, most single-pr ocessor systems use either a
Princeton or Harvar d architecture. Chapters 3 and 4 r evealed that these
architectures may be designed using a hardwired or microprogrammed con-
trol unit, using a nonpipelined, pipelined, or superscalar implementation,
yet their similarities (as seen by the user) outweigh their dif ferences.
Machines based on the Princeton and Harvar d architectures are similar in
design and programming, differing only in the aspect of having single vs.
separate paths between the CPU and memory for accessing instructions and
data. In Chapter 6 we studied conventional parallel ar chitectures, based on
the message-passing and shar ed memory models and built with a wide
variety of interconnection networks; again, in each case the individual pr o-
cessors that made up the parallel system wer e based on the traditional, von
Neumann, sequential execution model. In this final chapter , we shall con-
sider several types of computing systems that ar e not based on the typical
single or parallel processing architectures that perform conventional opera-
tions on normal binary data types, but instead have their own characteristics
that may render them better suited to certain applications.

317

318 Computer Architecture: Fundamentals and Principles of Computer Design

7.1 Dataflow machines

One type of computer ar chitecture that eschews the traditional, sequential
execution model of the von Neumann ar chitecture is a dataflow machine.
Such a machine does notr ely on a sequential, step-by-step algorithm as
exemplified by the machine, assembly , and high-level languages used to
program conventional computers. Execution is not instr uction-driven, but
rather data-driven; in other wor ds, itis governed by the availability of
operands and hardware to execute operations. When a har dware execution
unit finishes a pr evious computation and is r eady to perform another, the
system looks for another operation of the same type that has all operands
available and schedules it into that unit.

Dataflow computers are not controlled by a program in the sense that
term is understood by most computer pr ogrammers. No program counter
is required to sequence operations. Instead, execution is contolled according
to a dataflow graph that represents the dependencies between computations.
Figure 7.1 depicts a few of the mor e common symbols that can be used to
construct such a graph.

Each node, or actor, in the dataflow graph r epresents an operation to be
performed (or a decision to be made). Each arc (arrow) connecting nodes
represents a result from one operation that is needed to perform the other
(with the dependency indicated by the dir ection of the arr ow). Tokens rep-
resenting values are placed on the ar cs as operations ar e performed; each
node requires certain tokens to be available as inputs befor e it can fire (be
executed). In other words, anytime all the pr evious operations leading to a
given node in the dataflow graph have been completed, the operationr ep-
resented by that node may be dispatched to the pr ocessing element (or,
preferably, to one of a number of parallel processing elements) for execution.
After the operation executes, tokens representing its results are placed on its
output arcs and are then available for other operations that were waiting on
them. Figure 7.2 shows a dataflow graph corr esponding to the following
high-level programming construct:

. (output token
(input token) appears here

after actor fires)
(Boolean
/ control
’ .
Q —_ , variables)
) ' \ X f

/) ‘
\ \

i .
oy (D (D
(input token) (+, -, %, /, etc.) J \

(Boolean
output)

Operator Switch Merger Decision

Figure 7.1 Examples of dataflow graph symbols.

Chapter seven: Special-purpose and future architectures 319

Figure 7.2 Example dataflow graph.

if (m <)5)

{
n=(m?*5)-2;
}

else

{
n=(m?*3)-2;
}

Memory accesses can be r epresented by load and stor e nodes (actors)
that have predicate token inputs that restrain them from firing until the proper
time for the r ead or write to occur . As long as the pr edicate is false, the
memory operation does not proceed.

An alternative representation of a program for a dataflow machine uses
activity templates to represent each operation. (See Figur e 7.3 for a template

320 Computer Architecture: Fundamentals and Principles of Computer Design

m
Less than Switch Multiply Multiply Merge Subtract
—>

[data in] [datain] [datain] [data in]

[data in] [data in]
5 —>| [Boolean in] 5 3 [data in] 2
(Boolean out) 4 (true

data output) (result out) ’—‘ [Boolean in] (resultout) —> n

(result out)

(false (data out)
data output)

Figure 7.3 Example activity template.

corresponding to the graph shown in Figur e 7.2.) Each template has a code

representing the operation to be performed, fields to store input tokens, and
an address field indicating where the output tokens should be sent. Whether
activity templates or a dataflow graph ar e used to indicate the pr ecedence
of operations, the important concept is that execution is not inher ently
sequential (as in the von Neumann model) but is controlled by the availabil-
ity of operands and functional har dware.

While the concept of dataflow processing may be an intuitively appeal-
ing model of computation, and the dataflow graph and activity template
models are interesting ways to represent the methods for carrying out com-
putational tasks, the reader is no doubt wondering what, if any , advantage
such an architecture might have in comparison to a machine using conven-
tional von Neumann-style programming. It turns out that the chief potential
advantage of a dataflow architecture is an increased ability to exploit parallel
execution hardware without a lot of over head. If only one har dware unit is
available to execute operations, we might as well write pr ograms using the
time-honored sequential model, as going to a dataflow model can do nothing
to improve performance. However, if we have the ability to constr uct mul-
tiple functional units, then it is possible that a dataflow appr oach to sched-
uling them may relieve some of the bottleneck that we usually (and artifi-
cially) impose by adopting the von Neumann pr ogramming paradigm.

Dataflow machines have the potential to outperform traditional ar chi-
tectures because, in many computational tasks, a number of operations log-
ically could be performed concurr ently, but the von Neumann-style pr o-
grammer is given no way to explicitly specify that concurr ency. Unless the
latent instruction-level parallelism inherent to the task can be detected by
the control unit hardware (as in a superscalar architecture) or by the compiler
(as in a very long instr uction word [VLIW] ar chitecture), the system may
not make maximum use of parallel r esources. In particular, dataflow
machines take advantage of fine-grained parallelism (many simple pr ocess-
ing elements) and do so in a moe general way than single instuiction stream,
multiple data stream (SIMD) machines, which only take advantage of the
explicit parallelism inherent to array computations, or superscalar/VLIW
machines, which only take advantage of the (usually coarse-grained) instric-
tion-level parallelism that can be found in and extracted fr om a sequen-
tial-instruction program.

Chapter seven: Special-purpose and future architectures 321

/ Memory \

—| Cell 0

(operation packets)

Network Network l

I
. I .
. | :
I

l
l
1
|'—>
1
l
. . . !
:> Distribution | Cell 1 | > | Arbitration
.
[N
|—:—>

> | Celln-1

Control
Logic
Decision
Units

Processing Array

1
! |

! 1

1

| | Functional Unit 0 :

! 1

! 1

1 Functional Unit 1 :< ::
! 1

! 1

! 1

! 1

! 1

! [

<— (result packets)

Functional Unit m-1

I”‘I I

Figure 7.4 Example dataflow machine.

With this in mind, consider an example dataflow machine with the
general structure shown in Figure 7.4. Note the availability of a number of
functional units (processing elements), similar to those that might be found
in an SIMD array processor but, in this case, not constrained only to be used
in lockstep for array computations. Available functional units ar e given
operation packets corresponding to actors that ar e ready to fire and, upon
performing the required operations, produce result packets whose contents,
of course, may become operands for subsequent computations.

Though it has many processing elements, a dataflow machine is clearly
not an SIMD ar chitecture. In fact, while dataflow machines ar e invariably
parallel in their construction, they have no instruction stream in the conven-
tional sense. Therefore, strictly speaking, they ar e neither SIMD nor MIMD
(as some authors classify them), but instead can be said to form their own
unique class of systems outside Flynn’s taxonomy . (If one had to try to
pigeonhole them into one of Flynn’s classifications, a r easonable argument
could be made for considering dataflow computers as MISD machines,
since the flow of data, in lieu of an instr ~ uction stream, passes thr ough
multiple actors that correspond to instructions.) This ambiguity in classifying

322 Computer Architecture: Fundamentals and Principles of Computer Design

dataflow machines explains the dashed line and question marks in the pr e-
vious chapter’s Figure 6.1.

Dataflow architectures can be classified as either static or dynamic. In a
static dataflow machine (the type illustrated in Figure 7.1 to Figure 7.4), only
one token at a time can exist on any ar ¢ in the dataflow graph. An actor
(node) is scheduled to fire when all of its r equired input tokens are present
but no result token exists. The static dataflow appr oach has the benefit of
(relatively) simpler implementation but tends to limit the amount of paral-
lelism that can be exploited. Iterative computations (the equivalent of loops)
can only be executed in pipelined or staged, rather than tr uly parallel, fash-
ion. Static dataflow also does not allow for the equivalents of piocedure calls
and recursion, which are useful and important pr ogramming constructs.

To get around these problems and take better advantage of inher ent
parallelism, Arvind, Kim Gostelow, and Wil Plouffe (of the University of
California at Irvine) developed the dynamic dataflow model. In a dynamic
dataflow machine, more than one token can exist on any arc in the dataflow
graph. In order for this to work, values ar e identified by tags to distinguish
them from other, dynamically cr eated, instances of the same variable.
(Because of this, dynamic dataflow machines ar e also called tagged-token
dataflow machines.) An actor only fir es when all of its input ar cs contain
tokens with the same tag. The benefits of dynamic dataflow include better
exploitation of concurrency as well as the ability to implement r ecursive/
reentrant constructs. However, these advantages are counterbalanced some-
what by the added over head of generating and matching the tags for the
data tokens and the need to pr ovide storage for multiple tagged tokens at
the inputs of each node.

The idea of dataflow graphs, and dataflow machines to execute them,
dates back to the late 1960s. Richard Karp, Ray Miller, and Shmuel Winograd
developed the dataflow idea as a graphical method forr epresenting com-
putations, though Duane Adams of Stanfor d University is cr edited with
coining the term dataflow. The first (1971) design for a computer based on
dataflow principles was the MIT Static Dataflow Architecture, which was
described by Jack Dennis and David Misunas. The first operational dataflow
machine was the Data Driven Machine-1 (DDM-1), a static dataflow machine
designed by Al Davis of the University of Utah and built in cooperation with
Burroughs Corporation. This pr oject was started in 1972, but the machine
was not completed until 1976 — a testimony , perhaps, to the dif ficulty of
building dataflow computers.

These early dataflow machines and their successors have generally been
one-of-a-kind, specially designed, prototype or research machines. A number
were built during the 1980s and early 1990s (the boom period, to the extent
there was one, for dataflow computers), mainly in Eur ope and Japan. Some
of the notable examples include the (static) Data Driven Pr ocessor (or DDP)
built by Texas Instruments, as well as the University of Manchester Dataflow
Computer, the MIT Tagged-Token Dataflow Machine, the Japan Electo-Tech-
nical Laboratory SIGMA-1, and the Motorola/MIT Monsoon (four dynamic

Chapter seven: Special-purpose and future architectures 323

dataflow computers). While these were all significant research projects, none
of them were ever brought successfully to the general computing market.

What are some of the problems that have kept dataflow machines fr om
widespread use? One can point to several stumbling blocks to their accep-
tance. First, dataflow machines have generally r equired special program-
ming languages. (Dataflow graphs, activity templates, and similar
data-driven constructs are represented in arcane languages such as Id, VAL,
SISAL, and Lucid that ar e not familiar to most pr ogrammers.) Conversely,
programs written in traditional, standard, high-level languages like Fortran,
C, C++, and Java do not map easily to dataflow graphs, since control depen-
dencies do not easily map to data dependencies. Given that the cost of
software development is usually a dominant — if not the lar ~ gest — cost
component of most computing solutions, few commer cial developers want
to bother to create dataflow implementations of their applications.

It is also true that while dataflow machines ar e in theory well suited to
exploit the parallelism inher ent to many tasks, they only doar eally good
job on applications with a level of data parallelism that happens to be a good
match for the parallelism of the underlying machine har dware. A dataflow
approach can be good for speeding up scalar computations with a moderate
to high degree of unstructured parallelism, but it pr ovides no significant
performance advantage for the vector and array computations that ar e typ-
ically of interest in the high-performance, scientific computing market. (Vec-
tors and arrays are not the only pr oblems; multi-element data structures in
general, especially large ones, are not handled efficiently by dataflow archi-
tectures, in which r esource scheduling is done on the level of individual
operations.) Even with r egard to more general, scalar computing applica-
tions, some studies have found that dataflow machines may perform worse
than typical superscalar processors on algorithms that are control-intensive
(depend on a lot of looping and branching). In addition — and this is not a
trivial problem — the lack of locality of r eference inherent in a dataflow
graph makes it dif ficult to take advantage of hierar chical storage systems
(featuring fast cache memory at the highest levels) to impr ove system per-
formance.

Finally, high-performance dataflow computers are just not easy to build.
It has historically been dif ficult to keep sulf ficient quantities of data in fast
memory near the dataflow machine’s many pr ocessing elements to keep
them busy and take full advantage of the parallelism inher ent in the appli-
cation. Instead, it has thus far pr oven to be easier to impr ove performance
by building superscalar pr ocessors with large cache memories. However ,
with the many advances made in microelectronics in the past few years, the
ability to integrate large numbers of processing elements (and large amounts
of fast memory) in a small space has alleviated some of the pr evious imple-
mentation problems. Thus, despite the several drawbacks that have
restricted their use in the past, it is possible that dataflow machines (like
SIMD machines before them) may yet experience a sur ge in popularity.

324 Computer Architecture: Fundamentals and Principles of Computer Design

Even if they are never adopted widely in their own right, though, data-
flow architectures have had — and may continue to have — influence with
regard to other types of machine ar chitectures. Computer ar chitects have
discovered that the dataflow appr oach has certain benefits that can be
applied to traditional processor design to try to maximize the advantages of
both approaches. For example, in Section 4.3.7 we described the contr ol
strategy devised by Robert T omasulo to schedule the multiple functional
units of the IBM 360/91. This appoach was later adapted for use in a number
of internally parallel (a.k.a. superscalar) micr oprocessors. Tomasulo’s
method is essentially a dataflow appr oach to scheduling har dware, with
register renaming and data forwar ding used to optimize operations origi-
nally specified in a sequential pr ogram. Thus, though they outwar dly per-
form as von Neumann machines and ar e programmed using the conven-
tional, sequential pr ogramming paradigm, pr ocessors with T omasulo
scheduling operate internally as dataflow machines.

Another way in which dataflow concepts have influenced more conven-
tional computer designs is in the area of multithreaded, superthreaded, and
hyper-threaded processors. Consider the behavior of pr ograms in conven-
tional machines. We think of programs running on a SISD or MIMD ar chi-
tecture as being composed of one or mor e, relatively coarse-grained, pro-
cesses. Each process is an instr uction stream consisting of a number of
sequentially programmed instructions. Multiple processes canrun on an
MIMD system in tr uly concurrent fashion, while on a SISD machine they
must run one after another in time-sliced fashion. In a dataflow machine,
each machine language instr uction can be consider ed an extremely “light-
weight” process of its own, to be scheduled when it is r eady to run (has all
its operands) and when hardware (a processing element) is available to run
it. This is as fine-grained a decomposition of pr ocesses as is possible and
lends itself well to a highly parallel machine implementation. However , as
we have noted, massively parallel dataflow machines ar e not always prac-
tical or efficient.

The same concept, to a lesser degr ee (and much less finely grained), is
used in multithreaded systems. Multithreaded architectures, at least in some
aspects, evolved from the dataflow model of computation. The idea of data-
flow, and multithreading as well, is to avoid data and contr ol hazards and
thus keep multiple hardware functional units busy, particularly when laten-
cies of memory access or communication ar e high or when not a gr eat deal
of instruction-level parallelism is present within a process. While each thread
of execution is not nearly as small as an individual instr uction (as it would
be inatr ue dataflow machine), having mor e, “lighter-weight” threads
instead of larger, monolithic processes and executing these thr eads in truly
concurrent fashion is in the spirit of a dataflow machine since itincr eases
the ability to exploit replicated hardware.

Time-slice multithreading, or superthreading, is a dataflow-inspired imple-
mentation technique whereby a single, superscalar processor executes more
than one process or thread at a time. Each clock cycle, the contr ol unit’s

Chapter seven: Special-purpose and future architectures 325

Instruction Thread 0 instructions II]

Streams Thread 1 instructions
l Unused stages I:]

Scheduling Logic
v, ! Y, Vo3 Vo4 Vs
0 0 0 l
v Y Y v !
1 1 Pipelined
v v v v v v Funct?onal
Units
0 0 0 0 |
v v v v v v !
|
v v v v v AEEEEEE ,'
Reorder Buffer

!

Figure 7.5 Instruction execution in superthreaded processor.

scheduling logic can issue multiple instructions belonging to a single thread,
but on a subsequent cycle it may issue instr uctions belonging to another
thread. (Figure 7.5 illustrates this appr oach.) In effect, process and thread
execution on a superthreaded machine is still time-sliced as it is in traditional
architectures, but the time slice can be as small as one clock cycle.

The superthreaded approach can lead to better use of hadware resources
in a superscalar processor due to mitigation of dependency-based hazar ds,
but it is still limited by the inher ent instruction-level parallelism, or lack
thereof, in the individual thr eads. (Studies have shown that, on average, a
single thread only has sufficient instruction-level parallelism to issue about
2.5 instructions per clock cycle.) T o address this limitation, simultaneous
multithreading, or hyper-threading, goes a step beyond superthr eading.

Compared to superthreading, hyper-threading (which is used in some
of the latest generation pr ocessors from Intel) gives the scheduling logic
more flexibility in deciding which instr uctions to issue at what time. In a
hyper-threaded processor, it is not necessary that all the instr uctions issued
during a given clock cycle belong to the same thead. For example, a six-issue
superscalar machine could issue thr ee instructions from thread 0 and three
from thread 1 at the same time, or four fr om thread 0 and two fr om thread
1, etc., as illustrated in Figur e 7.6.

326 Computer Architecture: Fundamentals and Principles of Computer Design

Instruction Thread 0 instructions II]

Streams Thread 1 instructions
l Unused stages I:]

Scheduling Logic
\Z 0 1 1 v 2 v 3 v 4 v 5 _ _ _____
0 0 1 0 1 :
Y ¥ ¥ Y Y v !
1 0 0 1 0 0 Pipelined
v v v v v v Funct?onal
Units
0 1 1 1 |
v v v v v v !
0 1 1 0 [
I
v v v v v AEEEEEE !
Reorder Buffer

!

Figure 7.6 Instruction execution in hyper-threaded processor.

In effect, hyper-threading internally splits a single, physical superscalar
processor into two or more logically separate CPUs, each executing its own
instruction stream by sharing pr ocessor resources that otherwise might go
unused if only a single thr ead were executing. (Of course, some CPU
resources including the pr ogram counter and certain other r egisters may
have to be replicated to allow for hyper -threading.) Hyper-threaded imple-
mentation can significantly increase the efficiency of resource utilization and
improve overall system performance as seen by the user . Because of its
adoption by the lar gest manufacturer of microprocessors, hyper-threading
could prove to be the most lasting legacy of the dataflow appr oach.

7.2 Artificial neural networks

Artificial neural networks (ANNSs) are another special class of computer archi-
tecture outside Flynn's taxonomy, at least as far as most computer scientists
and engineers are concerned. (ANNs may, in some sense of the terms, be
considered MIMD or even MISD machines as described in Section 6.1, but
the comparisons are very loose and it is pr obably better to think of them as
exemplifying a unique type of ar chitecture with its own attributes.)
Like dataflow machines, ANNs usually employ a lar ge number of simple

Chapter seven: Special-purpose and future architectures 327

(to other
neurons)

| Receiving
Synapse neuron

— — — = = -Dendrites (receive input
from other neurons)

Figure 7.7 Basic structure of a neuron.

hardware processing elements and are data-driven rather than relying on a
sequential, algorithmic programming paradigm.

Artificial neural networks are not based on the von Neumann execution
model, but rather on a biological model: the or ganization of the human ner -
vous system. The fundamental processing unit in the human brain is a neuron,
or nerve cell. Processing in an artificial neural network is based on the func-
tionality of neurons in a real (biological) neural network, but these functions
are implemented digitally using inter connected processing elements.

Neurons in the human brain are composed of a cell body, or soma, along
with fibers called dendrites that receive electrical impulses fr om other neu-
rons, and other, long fibers known asaxons that conduct impulses away from
the cell (see Figure 7.7). Phrased in computer terminology, dendrites act as
input devices for a neuron, while output to other neurons occurs via axons.
The interface between an axon and another neur on to which it transmits
information occurs across a tiny gap called a synapse. An electrical impulse
sent down an axon causes the release of certain chemicals, called neurotrans-
mitters, into the synapse. Depending on the natur e and amount of these
chemicals that are released, the receiving neuron is either excited (made more
likely) to “fire” (transmit its own electrical impulse) or inhibited (made less
likely to fire).

The many neurons in the human nervous system are connected in com-
plex, three-dimensional patterns. Each neuron has a large number (possibly
many thousands) of synapses that conduct impulses to it fom other neurons;
it may also send its output via axons to many other neuons. Each individual
dendrite may receive excitory or inhibitory stimuli, and the overall ef fect of
these stimuli on the neur on is algebraically additive. If the net ef fect of the
excitory neurotransmitters minus the net effect of the inhibitory ones exceeds
a certain electrical threshold called the action potential, then the neuron will
fire (and thus affect other neurons to which its output is connected); other -
wise, it will remain dormant. While the functionality of an individual neuon
is simple, the connections between neurons are very complex and organized

328 Computer Architecture: Fundamentals and Principles of Computer Design

Weights

Activation
Function |, Output

Figure 7.8 Simulated neuron in an artificial neural network.

into hierarchical layers. It is these connections that define the functionality
of the nervous system.

In an artificial neural network, the neuons of a biological neural network
are typically simulated with a lar ge number of simple pr ocessing elements
that compute the weighted sum of several inputs, as illustrated in Figur e
7.8. The programming of the ANN lies in the inter connections between the
elements and the assignment of the weights to the inputs of each element.
The connections are usually numerous and dense; for this reason, ANNs are
also sometimes known as connectionist systems. The set of inputs, multiplied
by their respective weights, are summed together and passed thr ough an
activation or transfer function that is used to determine the neur on’s output.
In some cases the activation function may be a simple step function, but
more often it is a logistic (or sigmoid) curve, exponential (Gaussian) function,
etc., depending on the behavior desir ed of the network.

Generally the “programming,” if one can call it that, of an ANN is done
in an iterative fashion. The network is pr esented with a variety of inputs
and their corresponding desired output values; while in learning mode, it
“explores” the domain and range of inputs and outputs. As we alter weights
and connections, r eiterate and get the network closer and closer to the
desired output behavior, it adapts its function to suit the task (thus, yet
another name for an artificial neural network is an adaptive system). In effect,
we are teaching or training it to perform the task, just as we might train a
human (or other) biological system, contr olled by real neurons, to throw a
ball, fetch a stick, walk, count, or perform some other activity .

After some number of iterations of training (note that training perfor -
mance can be significantly affected by the particular activation function used
in the simulated neur ons), the network (we hope) eventually achieves con-
vergence, which means it develops the ability to epresent the complete gamut
of inputs and corresponding outputs and does not for get its previous train-
ing. Effectively, the network learns to give a corr ect output in r esponse to
any given set of inputs, without needing to algorithmically model the desird
behavior. Then, upon switching fr om its learning mode tor etrieving, or

Chapter seven: Special-purpose and future architectures 329

operating, mode, the network can accept new inputs and pr ovide outputs
corresponding to its training, even though the inputs presented in operating
mode may not be exactly the same as any of the inputs on which the network
was trained (to take a human example, a player needing to make a thr ow
from shortstop to first base, instead of from second base or third base to first
base as he or she had pr eviously learned to do). It is this ability to handle
different inputs that makes artificial neural networks so useful. After all, we
already know the pr oper outputs for the training inputs. While ther e are
many potential problems, including “overfitting” the training data, in many
applications ANNSs can provide good, or at least acceptable, outputs acr oss
a wide spectrum of inputs.

Various models can be used to make the network adapt; the simplest,
dating back to the 1960s, is called the perceptron learning rule. The network
is trained by changing weights by amounts pr oportional to the dif ference
between the desired output and the actual output. The earliest type of neural
network, invented by Frank Rosenblatt based on this model, is the
Single-Layer Perceptron (SLP). As its name implies, it is constr ucted with a
single set of simulated neurons between its inputs and its outputs, as shown
in Figure 7.9.

The SLP is simple to constr uct and train, but not versatile enough to
solve many problems. In particular, Marvin Minsky and Seymour Papert
showed that SLPs are not able to solve tasks that ar e “linearly inseparable”
in a mathematical sense. Per haps the most popular r efinement of the basic
method is the Multi-Layer Perceptron (MLP). Figure 7.10 shows an example
of such a network. Note that the number of inputs, outputs, and layers, as
well as the number of artificial neur ons making up each layer , may vary
considerably depending on the characteristics of the problem to be solved.

Perceptron
Inputs Layer Outputs
e
2% g
LRI
T

(simulated
neurons)

Figure 7.9 Single-layer perceptron example.

330 Computer Architecture: Fundamentals and Principles of Computer Design

Hidden
Layer
Inputs Output
iy Layer Output
[
iy
o
b
0,

Figure 7.10 Multilayer perceptron example.

Historically, the problem with MLPs was difficulty in training. The out-
put layer (like the single layer in an SLP) presented little difficulty, since the
network’s computed outputs could be compar ed to known good values;
however, there was no good way to adjust the weights on the pevious layers.
This problem was eventually (in the mid 1980s) solved thr ough the use of
back-propagation, a procedure in which for each forwar d pass (training iter -
ation), the output errors are used in a reverse pass through the layers of the
network, with weights adjusted to minimize err ors at each step until the
input layer is reached. Then another forward and backward pass are made,
with the process iterated until conver gence is achieved. On eachr everse
pass, as one works backwar d through the layers, the weights w; of each
neuron i in the current layer with respect to neuron j in the following layer
are adjusted according to the generalized Delta Rule:

w; =130,
where 7 is the learning rate (varying this can af fect whether, and how fast,
the network achieves convergence), 9, is the error for neuron j in the follow-
ing layer, and o; is the output of neuron i. The error function §, is defined as
(o]-) times (1 — o;) times the summation of the err ors in the following layer
multiplied by their weights (or simply the output err ors, if the following
layer is the output layer). Because they typically use the training method
just described, MLPs are also known as back-propagated Delta Rule networks.
SLPs, MLPs, and many other types of artificial neural networks includ-

ing radial basis function (RBF) networks, are supervised neural networks. This
means that befor e being put into operation, they must be trained (as
described above) by a human user to perform the desir ed function. This is

Chapter seven: Special-purpose and future architectures 331

a fairly straightforward process as long as there exist sufficient examples of
desired input and output combinations that can be used to train the system.

In some situations, though, the desir ed behavior of the system may not
be well defined. We may be able to classify an output as “good” or “bad”
but not know much more about it; therefore, the supervised learning model
may not be feasible. In such cases, artificial neural networks may be designed
to use a modified form of supervision known as the reinforcement model of
learning. Reinforcement learning uses criticism instead of teaching. In other
words, after each learning trial the only feedback pr ovided to guide the
system is a single r einforcement variable, often expressed as a value in the
range from +1 (perfect) to -1 (completely wr ong). As the r eader might
expect, systems using reinforcement learning generally tend to conver ge on
a solution more slowly than those that use supervised learning.

For situations in which no training feedback — not even mer e “up or
down” criticism — is available, yet another class of ANNs known as unsu-
pervised neural networks (sometimes called competitive learning networks)
have been developed. As the name implies, these ar e systems that learn on
their own without user intervention. Examples of such networks include
Kunihiko Fukushima’s Neocognitron and the Self-Organizing Map (SOM)
invented by Teuvo Kohonen of the Helsinki (Finland) University of T ech-
nology. While the details of these advanced ANN techniques are beyond the
scope of this book, the curiousr eader may find them worthy of further
inquiry.

The strength of all types of artificial neural networks lies in the same
areas where human beings are strong: being able to “see” that a relationship
or pattern exists in data and make corr elations between inputs and desired
outputs without necessarily being able to expr ess those correlations in an
explicit description. In particular, ANNs are well suited to those applications
with parameters that ar e difficult to measure and structures thatare too
complex to model (and thus that do not lend themselves well to an algorith-
mic solution), but where the “programmers” have access to examples of the
desired behavior (or at least some idea of what that behavior should look
like). As we mentioned above, the machine is not so much pr ogrammed as
trained (either by a user or by itself) to perform the corect functions to arrive
at a desired result. Take the examples of thr owing and catching a ball, or
recognizing an image of a certain animal such as a cat. Algorithmically
programming a robot arm to thr ow a ball is a complex exer cise involving
precise timing and the articulation of multiple joints. Pr ogramming a robot
to catch a thrown ball (which may approach at different speeds, with differ-
ent spins, from different directions, etc.) may be even mor e difficult, and
writing an algorithm to r ecognize a photo of an animal mor e difficult still.
Yet almost any healthy six-year -old child can be taught (using his or her
biological neural network) to thr ow and catch a ball fairly r eliably with
enough iterations of practice and canr ecognize a cat, having seen several
examples of cats. Artificial neural networks offer great advantages for robotic
control and pattern recognition as well as many other applications including

332 Computer Architecture: Fundamentals and Principles of Computer Design

process monitoring and contr ol, image processing, market forecasting, etc.
that are difficult to implement with conventional computers using traditional
programming methods.

Artificial neural networks can theoretically be implemented in software
running on any computing platform, but few general-purpose processors or
embedded control processors (another typical application of ANNSs) have
the computational horsepower to achieve the performance levels typically
desired of neural network applications. Thus, ANNs are best implemented
on specialized machines specifically intended for such use — ideallya highly
parallel machine with many simple pr ocessing elements and a high degr ee
of interconnection between the processing elements. There have been a num-
ber of neural network-based systems built over the years. Many have been
university research machines, often in the form of custom integrated circuits
that implement neural network pr ocessors or building blocks, such as the
FIRE1 chip being developed at the University of Manchester . Increasingly
in recent years, though, neural network processors have found niches in the
commercial market. Examples include the IBM ZISC (Zer o Instruction Set
Computer), the Neural Network Pr ocessor (NNP) built by Accurate Auto-
mation Corporation, and Irvine Sensors Corporation’s SDANN (3DArtificial
Neural Network) chip, which serves as a building block for their Silicon
Brain project.

One currently available system that implements a neural network
approach for multiple applications is the Vind AX processor, made by Axeon
Ltd. (Scotland). This pr ocessor is intended for use in embedded contr ol
systems in automotive applications as well as image and audio pr ocessing.
VindAX implements artificial neurons using an array of 256 identical parallel
processing elements implemented in CMOS logic, though the manufactur er
claims that the chip hides the details of its neural ar chitecture from the user.
Axeon does not market the device as an artificial neural network pr ocessor
at all; instead, the manufactur er downplays that angle and r efers to its
operation as being based on an advanced statistical modeling technique. The
effect, though, is the classical ANN learning pattern: by training on actual
data, the machine determines the corr elations between inputs and outputs
in complex, difficult-to-model systems without attempting to describe them
algorithmically, and once trained, it can ef ficiently and effectively classify
data or control a system.

In Section 6.1.2, we noted that while expensive, massively parallel SIMD
array processing supercomputers have fallen out of favor , low-cost,
coarse-grained SIMD technology has gained acceptance in a variety of appli-
cation areas including multimedia and graphics pr ocessing in desktop PCs
and workstations. It appears that in much the same way , artificial neural
network technology (which is also based on arrays of simple pr ocessing
elements) — while it is unlikely to take over the world of computing — will
probably continue to be used, and per haps even increase its market share,
in a variety of niche applications such as those discussed above. In that case,

Chapter seven: Special-purpose and future architectures 333

the reader may find this brief introduction to ANNSs to have been well worth
the time spent reading it.

7.3 Fuzzy logic architectures

All the architectures we considered in the first six chapters of this book, and
even (for the most part) those discussed in the preceding two sections, share
the common feature of performing operations on digital operands in binary
form. Ultimately, every datum in the system resolves to a true or false value,
represented by binary 1 or 0. Multiple-bit integers and evenr eal numbers
in floating-point format ar e usually supported, but all logical variables are
either true or false, on or off. While this maps well to the preferred physical
implementations of computers in har dware, it does not always exemplify
the way knowledge exists, or decisions ar e made by human beings, in the
real world. Propositions are not always demonstrably 100% tr ue or 100%
false, and inputs may be subject to noise or not known precisely. (For exam-
ple, while driving, how fast is that other vehicle appr oaching ours from
behind? “Pretty fast” may be all we can determine.) Instead of an absolute
certainty, we may only know the tr uth of a logical pr oposition with some
relative degree of confidence. It may be tr ue with probability 0.3, or 0.7, or
0.99, etc. Architectures based on the principles of fuzzy logic address the
uncertainty inherent in all r eal-world situations by making it a design fea-
ture. In a fuzzy logic system, instead of just the disaete values 0 and 1,logical
variables can take on a continuum of values between 0 and 1, inclusive.

The concept of fuzzy logic was first described in the 1960s by Lotfi Zadeh
of the University of California at Berkeley . Zadeh's r esearch deals with
principles of approximate reasoning, rather than precise reasoning as used in
systems based on Boolean logic. Fuzzy logic allows the designer of a system
to express not only on/ off, true/false, or other binary notions, but also “high
vs. medium vs. low” or “very much vs. considerable vs. somewhat vs. not
much” and so on. When applied to quantities of inteest such as speed, color,
and height, these imprecise modifiers give rise to linguistic variables that can
take on values such as “very fast,” “moderately heavy” and “slightly dirty.”
Although they are vague compared to the binary values assigned to Boolean
variables, these concepts ar e readily understandable to human beings and
are frequently used in everyday life.

The idea of fuzzy logic is to cr eate a digital system that functions mor e
like the way humans make decisions, especially in cases where their knowl-
edge is incomplete. Like the artificial neural networks described in the pr e-
vious section, fuzzy logic was an outgr owth of research into artificial intel-
ligence. Both fuzzy systems and neural networks ar e considered soft
computing approaches since they not only tolerate, but embrace, the uncer -
tainty and lack of precision inherent in real-world scenarios. Unlike ANNSs,
though, fuzzy logic systems do not attempt to model the actual, physical
function of the human nervous system. They try to achieve similarr esults
without using the connectionist ar chitecture of a neural network.

334 Computer Architecture: Fundamentals and Principles of Computer Design

To understand how fuzzy logic works, we start with the idea of ainiverse
of discourse. This is simply the set of all things under consideration; for
example all men, all automobiles, or all r ocks. The universe of discourse is
made up of any number of fuzzy subsets. A fuzzy subset is any gr oup of
elements of the universe whose membership cannot be defined pr ecisely.
For example, the universe of men is made up of subsets of tall men, thin
men, bald men, young men, handsome men, and so on. How many men
belong to the subset of tall men? It depends on what you consider “tall.”
The perceived likelihood that an element of the universe belongs to a given
fuzzy subset is embodied in the idea of anembership function, which produces
a truth value indicating the degree of membership in the fuzzy subset. The
truth value produced by the membership function for a given member of
the universe is not r estricted only to the binary values 0 and 1 but can be
any value in between.

Consider the concept of “heaviness” as applied to the set (or universe)
of all human beings. Is a given person a member of the subset of heavy
people or not? Ther e is most likely some chance that some given observer
would classify almost anyone as heavy. (For example, a child might consider
any adult heavy, by comparison to himself or herself.) The membership
function in this case is intended to provide a reasonable approximation, over
the continuous interval from 0 to 1, of the degr ee to which a given person
is a member of the subset of heavy people. (Note that a membership function
is not the same thing, mathematically speaking, as a pwobability distribution;
it is more accurately described as apossibility distribution.) A simple example
membership function heavy() that assigns a given person x a likelihood of
being considered heavy could be specified as follows:

heavy(x) = {0, if weight(x) < 100 pounds;
(weight(x) — 100 pounds) /200 pounds,
if 100 pounds < weight (x) < 300 pounds;
1, if weight(x) > 300 pounds.}

A graph of this function is shown in Figure 7.11. Applying this function, we
could say that a 150-pound person has a degree of membership in the set of
heavy people (or a tr uth value of being heavy) of 0.25, while a 240-pound
person is heavy with a tr uth value of 0.7.

This is an extremely simple membership function (a simple linear func-
tion of one variable, with lower and upper limits at0 and 1, r espectively).
Other commonly used piecewise linear membership functions include the
triangular and trapezoidal functions shown in Figur e 7.12. Nonlinear r ela-
tionships such as the logistic and exponential functions (mentioned in Sec-
tion 7.2 in the context of activation functions for simulated neurons) can also
be used, although they may be mor e expensive to implement in har dware
or software. In many cases, it might be desirable for a fuzzy subset’s mem-
bership function to depend on more than one variable (although, again, this
tends to increase computational cost). For example, a better definition of

Chapter seven: Special-purpose and future architectures 335

Heavy (x)
1.0

0.7

0.5

0.25

T >
0 200 240 300 Weight (x)
(Ib.)

- —

T
100 1

Figure 7.11 Simple membership function.

f(x) = {0, if < hor x > k;
(x-h)/(i-h), if h < x < i§;
Lifi<x<j;

(k-x)/(k-j), if j < x < k.}

f(x) ={0,ifx<horx>j;
(x-h)/(i-h), if h< x < i;
(-x)/(j-i), ifi < x <j.}

|
|
|
|
|
|
j

9 4

) S

(a) Triangular (b) Trapezoidal

Figure 7.12 Commonly used membership functions.

heavy() might consider a person’s height, age, and gender in addition to his
or her weight in determining how heavy he or she is. T o take another
example, the degree to which the distance between two cars on a highway
is close or far away might depend not only on their separation in feet or
meters, but also on the speed they ar e traveling.

Conventional computer hardware (and software) can be very complex
but ultimately bases its operation on the individual Boolean operationAND,
OR, and NOT as applied to binary operands. Given that fuzzy variables,
unlike Boolean variables, can take on a continuum of values from 0 to 1, can
we apply these same logical operations, and if so, how? It turns out that we
can indeed perform logic operations on fuzzy subsets if we define those
operations appropriately. What ar e suitable definitions? NOT is fairly
straightforward; we can simply say thatif fruth(x) has a value in the range
of 0 to 1, then we can say truth(not x) is equal to 1.0 — truth(x). The AND and
OR functions have been subject to various interpr etations, but the most
common definitions are truth(x AND y) = min(truth(x), truth(y)) and truth(x

336 Computer Architecture: Fundamentals and Principles of Computer Design

OR y) = max(truth(x), truth(y)). Notice that if one wer e to restrict the fuzzy
variables to only the discrete values 0 and 1 instead of a continuum of values,
these definitions would yield the same r esults as the traditional Boolean
algebra definitions of NOT, AND, and OR. Thus, one can say that Boolean
logicis a subset of fuzzy logic, or alternativelythat fuzzy logic is an extension
of Boolean (or “traditional” or “crisp”) logic fr om the discrete set {0, 1} to
cover the range of r eal numbers between 0 and 1, inclusive.

Where is the use of fuzzy logic valuable? Per haps the most common
application is in expert systems, which try to replicate the decisions made by
a human who is knowledgeable about the chosen application area. A human
subject matter expert formulates fuzzy rules that reflect his or her under -
standing of the workings of the system. The fuzzy expert system then makes
inferences about data and ultimately chooses a course of action, using those
fuzzy logic rules rather than Boolean (crisp) logic. Fuzzy expert systems (like
artificial neural networks) may be used in business decision support systems,
financial investment trading programs, weather prediction, and many other
areas where precise, algorithmic modeling is dif ficult.

Another typical application of fuzzy logic is in contr ol systems (which
some authors consider to be a subset of expert systems). Figur e 7.13 shows
a block diagram of a contr ol system based on fuzzy logic. The fuzzy con-
troller (the operation of which will be discussed below) sits within a closed
feedback loop, just as would a typical analog or digital servo contr ol unit.
While traditional analog and digital control design approaches are often best
for control of systems that are linear (or can be adequately approximated as
linear systems), fuzzy logic contr ol — again like neural network contr ol —
is particularly useful for controlling systems that are nonlinear, complex, or

1

:. Knowledge Base :

W 1
1

1| Membership Rule ,

:: functions Base :

! |

I 1

_£ - Storage
|
Scali |

caling | .
Input i Inference Buffering/ Output
- > if > i > > i . f
neéded) : Fuzzifier engine Defuzzifier Amplificatio Process T»—»
Pr
1
| i £ i (if needed)
1
, | Control Unit
1
L 1
Scaling Sensor(s)

(if needed)

Figure 7.13 Fuzzy logic control.

Chapter seven: Special-purpose and future architectures 337

have poorly specified characteristics. (Due to their similar str engths, some
control systems combine aspects of fuzzy logic and artificial neural net-
works.)

Whether it is part of an expert system, a contr ol system, or something
else, the process of computation in a fuzzy system generally proceeds in the
same sequence of steps, as illustrated in Figur e 7.13. The first step is called
fuzzification. During fuzzification, the membership functions that are defined
as part of the system’s knowledge base are applied to the values of the input
variables. In other wor ds, fuzzification maps the raw , numeric input data
into linguistic values thatr epresent membership in fuzzy subsets. This
allows the system to determine the tr uth value for each premise or precon-
dition for each r ule that has been defined to govern the operation of the
system.

The second step is generally r eferred to as inferencing (also sometimes
referred to as reasoning or fuzzy processing). Inferencing is the pr ocess of
rule evaluation and composition. The set of ules that were mentioned above,
which reflect expert knowledge of system behavior, are normally expressed
in terms of if-then relationships between fuzzy output subsets and linguistic
variables derived from the inputs in such forms as, “if ~ speed is low and
distance is high, then make throttle = medium.” Any given application may
have a number of rules (collectively known as the rule base) of a form similar
to this, describing the r elationship between input and output parameters.
Thus, rule evaluation means that the truth values for each premise for every
rule are combined and used in computing the conclusions of the r ules. This
results in the creation of a number of fuzzy subsets (one for each r ule that
is used in the determination of each output). Composition takes the r esults
of rule evaluation for all r ules that can possibly af fect each output and
combines them to form a single fuzzy subset for each output variable. (It is
interesting that the steps of r ule evaluation and composition ar e analogous
to the AND and OR operations in Boolean logic, so the end r esult of the
inferencing process is the evaluation of a sort of sum of products expression
in fuzzy logic for each output.) Inferencing evaluates the fuzzy relation (effec-
tively, the model of system behavior) that exists between an output and the
fuzzified input variables, determining the fuzzy output that corr esponds to
the current inputs.

Finally, in cases where the end result of the fuzzy processing must be a
single, definite, numeric value (or a binary either/or decision) rather than a
fuzzy or linguistic value, we have the process of defuzzification. The need for
defuzzification in a contr ol system is fairly obvious; an electric motor , for
example, does not understand the fuzzy command “slow down a little,” but
it will respond to a change in its input voltage.In this case, defuzzification
involves determining the specific voltage value to send to the motor based
on the fuzzy output obtained from rule evaluation and composition. Besides
control systems, many other applications alsor equire defuzzification. A
number of techniques can be used for defuzzification, each with its own
advantages and disadvantages; most amount to taking some sort of a

338 Computer Architecture: Fundamentals and Principles of Computer Design

weighted average of the fuzzy output subset. T wo of the most common are
the mean of maxima method and the centroid method. The mean of maxima
method selects the crisp output value for which the fuzzy output takes on
its maximum truth value. If there is more than one such value, as its name
implies, this method calculates the average of the values for which maxima
occur. The centroid method uses the “center of gravity” of the fuzzy output
(the center of the area under its membership function) to determine the crisp
output value.

Like artificial neural networks, fuzzy systems do not absolutely r equire
a special hardware architecture for implementation. The fuzzy logic opera-
tions of fuzzification, infer encing, and defuzzification can be implemented
in software on top of a conventional SISD, SIMD, or MIMD computer ar chi-
tecture. This is good enough for many applications but not very ef ficient. If
the desired application makes extensive use of fuzzy logic techniques, it may
make sense to try to maximize performance by optimizing the har dware to
implement them.

When a fuzzy logic algorithm is r un on a conventional, von Neumann
CPU, the membership functions and the rules in the rule base are evaluated
sequentially. A machine optimized for fuzzy control would have a dedicated
fuzzifier (or membership function unit) that would likely be implemented
with parallel hardware to speed up the pr ocess. The inference engine could
also use replicated hardware to enable it to evaluate multiple r ules simulta-
neously, and the defuzzifier would probably have several methods built in
for the system designer to choose fr om. The resulting machine, though it
would have a control unit and use internal storage to hold the membership
functions and rules in its knowledge base, would function dif ferently from
most machines based on the von Neumann ar chitecture. Such machines do
exist; while no conventional, commer cial microprocessors (let alone super -
computers) have yet been designed ar ound a fuzzy logic core, it is possible
to add a fuzzy logic accelerator to a general-purpose CPU if needed. One
example of this appr oach is the Siemens 81C99, a copr ocessor that was
developed in the mid-1990s to of fload calculations for fuzzy logic systems
from the main system processor. It was not manufacturer-specific and could
be used with a variety of general-purpose micr oprocessors to implement
high performance, fuzzy logic-based applications.

While general-purpose machines rarely make use of special fuzzy logic
features even in the form of coprocessors, that is not to say that such features
do not play a significant r ole in some systems. It turns out that since fuzzy
logic techniques are used most fr equently in control systems, one is most
likely to find hardware support for fuzzy logic inmicrocontrollers (single-chip
computers used in embedded control applications). The first standard, com-
mercial MCU (microcontroller unit) to incorporate built-in hadware support
for fuzzy systems was the Motorola 68HC12. This 16-bit chip, first produced
in 1996, is the successor to the 68HC1 1 (one of the most widely used 8-bit
microcontrollers dating back to the mid-1980s).

Chapter seven: Special-purpose and future architectures 339

In addition to its general-purpose instr uction set, the 68HC12 imple-
ments four operations specifically intended for use in developing fuzzy logic
applications. The MEM instruction computes a membership function to fuzz-
ify an input, while REV performs unweighted r ule evaluation on a rule list.
The REVW instr uction does the same thing as REV , but also allows the
programmer to specify a per -rule weighting function. Finally, WAV com-
putes the sum of pioducts and sum of weights needed to calculate a weighted
average for defuzzification purposes. (WAV must be followed by a “normal”
EDIV instruction to compute the average and thus complete the defuzzifi-
cation.) While the 68HC12 instr uction set is optimized for the implementa-
tion of fuzzy systems, it is worth noting that these instuctions are not carried
out by physically separate har dware. Instead, the chip uses the main CPU
core logic to perform them. Still, the manufactur er claimed that a fuzzy
inference kernel could be implemented on the 68HC12 in only 20% of the
code space required by, and executing 10 times faster than, its pr edecessor,
the 68HC11, which did not have these special instr uctions.

Some other microcontrollers have gone the extra mile for even better
performance and incorporated har dware fuzzy inference engine modules.
For example, members of the ST5 family of 8-bit ICUs (intelligent contr oller
units) manufactured by STMicroelectronics contain both a general-purpose,
8-bit CPU core and a hardware “decision processor.” The decision processor
includes both a hardware fuzzy inference unit that can be used to accelerate
rule evaluation and composition and an optimized arithmetic/logic unit that
can perform fast multiply , divide, accumulate, minimum, and maximum
calculations. (Like many microcontrollers, the chip also incorporates analog
and digital peripheral interfaces so that in many applications it can function
as a single-chip solution.) Having both a generic CPU and a decision pr o-
cessor on the chip allows the designer to combine fuzzy and traditional
control approaches if desired. The ST5’s intended applications include motor
control, appliance control, and thermal regulation.

Finally, it is worth noting that some embedded contr ol processors have
combined aspects of fuzzy logic and artificial neural networks to support
“neuro-fuzzy” control. An example of such a device was the NeuraLogix
(later Adaptive Logic, Inc.) NLX230 Fuzzy Mico Controller. This chip (devel-
oped around 1994) featured a general-purpose fuzzy logic engine with an
added neural network processor to enhance performance.

The outlook for continued, and even mor e widespread, use of fuzzy
logic is promising — perhaps even more so than for artificial neural net-
works, since fuzzy logic systems are typically simpler and cheaper to imple-
ment than ANNSs. This is especially important for high-volume pr oduction
systems that require only moderate performance but need to be implemented
with low cost. Over the past several years, fuzzy technology has been suc-
cessfully used (in preference to more conventional approaches) in a variety
of applications ranging from household appliances to consumer electr onics
to navigation systems to automobiles. Japanese companies have been par -
ticularly aggressive in making use of fuzzy logic systems; Nissan, Mitsubishi,

340 Computer Architecture: Fundamentals and Principles of Computer Design

and others have built fuzzy logic contr ollers for antilock brake systems,
engines, transmissions, and other vehicle systems. While the average reader
should not expect to encounter many fuzzy logic-based systems in the
business or scientific computing environments, a familiarity with their char-
acteristics could come in handy especially for those who work in the gowing
field of embedded systems.

7.4 Quantum computing

Perhaps the most difficult type of alternative computer architecture to under-
stand, yet the one that holds the most pr omise to revolutionize computing
in the professional lifetime of today’s student, is the quantum computer. A
quantum computer is a device based not on Boolean algebra, but on the
principles of quantum physics. These principles, in ef fect, allow the same
hardware to simultaneously compute a vast number of possibilities, as
though it were massively parallel hardware. While they are still in the exper-
imental stage and no one knows whether they will ever be commer cially
successful, if they canber eliably constructed, quantum computers may
prove to be orders of magnitude more powerful than today’s fastest super -
computers, performing some types of calculations millions or even billions
of times faster. They may one day even r ender most of the material in the
first six chapters of this book obsolete.

Conventional computers have incr eased by or ders of magnitude in
speed over their 60-plus years of existence. Much of this incr ease in speed
and computing power has been made possible by continuing r eductions in
the sizes of the individual components used in their constr uction. Vacuum
tubes gave way to discr ete semiconductor devices, which, in turn, wer e
replaced by integrated cir cuits. Over the years, the sizes of the individual
transistors that make up an integrated circuit have shrunk to the point where
each individual device is a small fraction of a micron (more properly known
as a micrometer, or one millionth of a meter) acr oss.

The performance achievable with computers based on integrated ciruits
has historically followed a pattern known as Moor e’s Law (named after
Gordon Moore, one of the cofounders of Intel, who first expr essed it).
Moore’s Law says that the continually shrinking sizes of semiconductor
devices results in an exponential gr owth in the number of transistors that
can feasibly be integrated on a single chip. According to Moore’s 1965 pre-
diction (which has turned out to be amazingly accurate over a 40-year
period), the number of transistors on a single integrated cir cuit would con-
tinue to double on approximately a yearly basis, with a corresponding dou-
bling of computational power appr oximately every 18 to 24 months. How-
ever, the limits achievable under Moore’s Law may be reached in just a few
years; Moore himself, in 2005, estimated that fundamental limits will be
reached within 10 to 20 years.

What does it mean to run up against “fundamental limits” in the design
of traditional, Boolean algebra—based computers? As performance continues

Chapter seven: Special-purpose and future architectures 341

to increase mainly because components continue to shrink, what happens
when the transistor sizes ar e reduced to the size of just a few atoms each?
Ultimately, we will reach a stopping point wher e the transistors that make
up our logic gates can be made no smaller while continuing to work as
binary switches and thus, effectively, classical computer architectures can be
made no faster. It is at this point, which by all estimates is not too many
years away, that we will have to turn away from semiconductor-based com-
puting as we know it today to some new technology or even a whole new
paradigm — perhaps quantum computing — to achieve further increases in
performance.

The idea of building computers based on the principles of quantum
mechanics goes back to the late 1970s and early 1980s. Several scientists wee
already considering the fundamental limits of semiconductor-based compu-
tation 20 to 30 years ago. They saw that if implementation technology con-
tinued to advance accor ding to Moore’s Law, then the ever -shrinking size
of silicon transistors must eventually r esult in devices no lar ger than a few
atoms. At this point, problems would arise because on an atomic scale, the
laws that govern device pr operties and behavior ar e those of quantum
mechanics, not classical physics. This observation led these r esearchers to
wonder whether a new, radically different type of computer could be devised
based on quantum principles.

Paul Benioff, a scientist at the Argonne National Laboratory, is generally
credited with being the first to apply the ideas of quantum physics to com-
puters. Other scientists who did early work on the idea included Richar d
Feynman of the California Institute of T echnology, who conceived the idea
of a quantum computer as a simulator for experiments in quantum physics,
and David Deutsch of the University of Oxfor d, who expanded Feynman's
idea and showed that any physical pr ocess could, in theory, be modeled by
a quantum computer. Deutsch’s work was very important: his findings
showed that not only was a general-purpose quantum computer possible,
but that such computers could have capabilities gr eatly surpassing those of
conventional machines and could solve classes of problems that are imprac-
tical or impossible to solve with even the fastest super computers of today.

How do quantum computers work? One important featur e of all con-
ventional computers, whether they are uniprocessor (SISD) or parallel (SIMD
or MIMD) machines, is that the basic unit of information they stoe or process
is a binary digit, or bit. These bits may be gr ouped together to form bytes
or words, but all the basic combinational and sequential logic devices (gates,
latches, flip-flops, etc.) operate on or stor e individual bits. Quantum com-
puters are different from all the other machines we have studied in that their
basic unit of information is aquantum bit (qubit, for short). Unlike a bit, which
can take on only one or the other of two states (1 or 0, tr ue or false, on or
off, etc.) at a given time, a qubit is an entity that can assume not only the
logical states corresponding to one or zero, but also other states correspond-
ing to both 1 and 0 at the same time, ora superposition or blend of those
states with a certain pr obability of being either.

342 Computer Architecture: Fundamentals and Principles of Computer Design

All conventional computers, even though their components ae very tiny,
obey the laws of classical (Newtonian) physics, like all the other visible
objects with which we interact on a daily basis. Quantum computers operate
at the level of molecules, or even individual atoms or ions, and their com-
ponent particles, which obey the laws of quantum physics. In many cases,
these laws give rise to ef fects that are extremely counterintuitive to those of
us more familiar with classical physics. For example, experiments with pho-
ton beam splitting have demonstrated the phenomenon of quantum interfer-
ence, which results from the superposition of the multiple possible quantum
states. Without delving too deeply into theoretical physics, which is beyond
the scope of this book, one can say that subatomic particles do not have a
definite existence in the sense that macr oscopic objects do (a chair is either
in the room or not). Rather, such a particle can be said to exist at a certain
place and time with a given statistical probability. It does not have a definite
existence or nonexistence (or, alternatively, it both exists and does not exist)
until someone observes it, at which time the pr obability resolves to 1 (it
exists) or 0 (it does not).

In a quantum computer , the atoms (and the subatomic particles that
comprise them) are essentially used as processors and memories at the same
time. Even though ther e is only one set of some number of qubits in the
machine, the qubits are not restricted to be in only one state at a time, as the
bits in a binary r egister would be. While a 3-bitr egister can only take on
one of the eight states 000 through 111 at any given time, a 3-qubit quantum
register can be in all eight states at once, in coherent superposition. Using
quantum parallelism, a set of n qubits can store 2" numbers at once, and once
the quantum register is initialized to the superposition of states, operations
can be performed on all the states simultaneously. Thus, adding more qubits
makes a quantum computer exponentially mor e powerful, as shown in
Figure 7.14.

The process of computation using a quantum computer is very different
than in a von Neumann machine with sequential pr ogramming. In today’s
research machines, a computation is typically initiated by providing a tuned
pulse of energy (for example, laser energy or radio-frequency energy applied
via nuclear magnetic resonance [NMR]) to change the energy state of an atom.
The energized atom then engages in contr olled interactions with several
other atoms, going through sequences of quantum gates (or unitary transfor-
mations on qubits) and thus changing superpositions of quantum states into
other superpositions. In doing so, the atoms acting as the computer establish
a resulting pattern of quantum states that corr esponds to results that might
be generated by conventional computers. Ther esulting superposition of
qubits represents a massively parallel set of computations all done by a single
piece of (quantum) hardware. In effect, in one time step an n-qubit quantum
computer can perform the same calculation on2 " values, something that
would take 2" time steps on a unipr ocessor machine or r equire an SIMD
machine with 2" processors to accomplish in one time step.

Chapter seven: Special-purpose and future architectures 343

Processing Power

0 5 10 15 20

Number of Qubits

Figure 7.14 Potential processing power vs. number of qubits.

If all this were easy to do, we would already see quantum computers in
widespread use. Not only ar e quantum computers dif ficult and expensive
to build, at least for now (it is har d to separate one, or a small number of
atoms from others to use for computation using techniques like nuclear
magnetic resonance, ion traps, or cavity quantum electrodynamics), but it is
also very dif ficult to keep an individual atom in a steady state while its
energy levels are manipulated and its spin directions or other properties are
observed. One of the most significant problems in making practical applica-
tion of quantum computers isr etrieving the results of the computations.
Measuring the results of a quantum computation is pr oblematic because
interfering in any way with the atoms being used for computation can
change their value, collapsing them back into the single state 1 or 0 instead
of their coherent superposition of many states, which is what is so valuable
for parallel computation. Therefore, measurements on qubits must be made

344 Computer Architecture: Fundamentals and Principles of Computer Design

indirectly. Most approaches that have been tried so far involve cooling the
atoms in the computer to very low temperatures, near absolute zero. This is
obviously not an inexpensive technique, nor one that would work well for
production machines.

One method for determining the states of the qubits uses the phenom-
enon of quantum entanglement. The quantum principle of entanglement
allows one to apply an external for ce to a pair of atoms; once they ar e
entangled, the second atom takes on the pr operties of the first atom, but
with opposite spin. This linkage allows the qubit value stor ed by a given
atom to be read indirectly via techniques (such as NMR) used to measur e
the spin of its entangled cohort. Thus, the results of a quantum computation
can be read without interfering with the atom doing the computation.
Another, more recently devised approach involves using the interfer ence
between quantum states, rather than entanglement, to r etrieve information
from the qubits. None of the appr oaches developed so far ar e ideal, and
research is ongoing.

Another, related problem that must be solved to make quantum com-
puting practical is err or correction. In a quantum computer , errors can be
introduced due to decoherence, or the tendency for unavoidable interactions
with the surrounding environment to affect the qubits, destr oying the con-
structive interference patterns that are used in the computation and decaying
the quantum state to an incoher ent mixed state. This tends to br eak down
the information stored in the quantum computer and induce err ors in com-
putations. As in the case of information r etrieval, research into ef fective
methods of error correction is under way . Substantial progress in fighting
decoherence and other potential err or sources will need to be made befor e
robust quantum computers, capable of solving computationally dif ficult
problems, can be built.

As the reader has no doubt concluded, research into quantum computers
is still very much at the theoretical, not practical, stage. Some of the leading
investigators are at IBM, Los Alamos National Laboratories, Caltech, and
the University of Oxford. The most advanced quantum computers of today
contain only a few qubits. Researchers at the IBM Almaden Research Center
constructed a 5-qubit computer in 2000 and used it to compute a single-step
solution to an “order-finding” equation that would have r equired repeated
iterations to solve on a conventional machine. Since then, the same research-
ers have produced a 7-qubit machine that has run Shor’s factoring algorithm
(the first algorithm designed specifically for quantum computers; see below).
A 7-qubit computer has also been built (in 2000) at the Los Alamos National
Laboratory. These machines illustrate that the development of quantum
computers, while the subject of intense r esearch, is still in its infancy. It has
been estimated by physicist David Deutsch, a pioneer of quantum comput-
ing, that a quantum computer would need to have 30 qubits to possess the
equivalent computing power of a 10-teraflop conventional super computer.
Given the cost and dif ficulty of constructing quantum computers today, it
would take even more — dozens — of qubits to make quantum computers

Chapter seven: Special-purpose and future architectures 345

worthwhile compared to conventional, integrated cir cuit-based computers.
While practical, marketable quantum computers ar e probably still years —
maybe decades — away, they may (if we ar e lucky) become available just
as they are really needed, in other wor ds, just as Moore’s Law finally runs
its course.

Assuming the problems can be worked out and practical quantum com-
puters can be built, how will they be used? Probably not as general-purpose
machines. By their nature, quantum computers are not likely to be useful or
practical for mundane tasks such as e-mail and wor d processing, which are
quite handily accomplished using low-cost, semiconductor -based comput-
ers. It appears that the most appropriate application of quantum computers
will be extremely numerically intensive computations such as the factoring
of large numbers. This was their first application. After David Deutsch
published his paper on the capabilities of quantum computers, scientists
began to search for problems that would be a good fit for such machines
and for algorithms that could be used to solve those pr oblems. For a while,
it appeared that quantum computers might r emain an academic curiosity
without much in the way of practical uses.

Then, in 1994, Peter Shor (a research scientist at AT&T Bell Laboratories)
wrote a paper in which he described the first algorithm specifically intended
for quantum computation. Shor ’s algorithm takes advantage of the power
of quantum superposition to implement a set of mathematical operations
that enable a machine to rapidly factor very lage numbers. Given a quantum
computer of sufficient power, the factorization could be accomplished orders
of magnitude faster than is possible with even the most advanced sili-
con-based computers. Shor’s algorithm has already been run on the 7-qubit
computer developed by IBM, factoring the number 15 into the numbers 3
and 5. While this seems trivial, itr epresents a proof of the concept, with
staggering implications if quantum computers with mote qubits can be built.

While at first blush, number factorization sounds like a rather academic
exercise in itself, it has important applications, especially in the field of
cryptography. The difficulty of using conventional computers to factor large
numbers is what makes present crypto systems, such as RSA, extiemely hard
to crack. (The RSA algorithm, named for its inventors Rivest, Shamir , and
Adelman, is the most widely used public key encryption method and the
principal technology behind secure transactions on the Internet.) A person,
organization, or government with access to a powerful quantum computer
could use Shor’s algorithm to break into any encrypted message and recover
the supposedly secure information; thus, today’s encryption methods could
be made obsolete. Conversely, quantum computers could be used to imple-
ment new codes that would encode information with far stonger encryption
than is possible with even the fastest super computers of today and thus be
essentially impossible to crack.

Given the ability of quantum computers to factor very lar ge numbers,
cryptography could very well turn out to be the “killer application” that
drives the continued development of quantum computers. Howevermaking

346 Computer Architecture: Fundamentals and Principles of Computer Design

and breaking codes is not the only ar ea in which these r evolutionary
machines may make an impact. Other potential applications of quantum
computers include signal pr ocessing, solving dif ferential equations, and
searching large databases. (The potential for this last application should be
easy to see if the r eader recalls the advantages of an associative sear ch in
hardware as described in Section 2.3.3. Since quantum computers inherently
look at all the data at the same time, they could possibly perform the same
type of associative search without the cost of the parallel sear ch hardware.)
While the potential of quantum computers has bar ely begun to be tapped,
their possible benefits ar e almost limitless. As with so many other aspects
of computer architecture, the future awaits our discovery.

7.5 Chapter wrap-up

Only time will tell whether the venerable von Neumann and Harvard archi-
tectures, and their parallel descendants, will persist or go the way of
horse-drawn carriages. It appears that conventional computer ar chitectures
will remain dominant for the next 10 to 20 years, but alr eady, alternative
architectures such as dataflow machines, artificial neural networks, and
fuzzy logic systems have found market niches wher e, in particular applica-
tions, they offer advantages that make them mor e suitable than traditional
SISD, SIMD, or MIMD systems. It seems likely that at least some of these
alternative architectures will continue to be used, per haps even increasing
in popularity over the next few years.

Looking farther down the road, the looming brick wall at the end of the
Moore’s Law road implies that new ar chitectures, radically dif ferent from
those of today, may be needed if further performance impr ovements are
desired (and they always will be). Quantum computers, with their unique
promise, may prove to be the architecture (or one of the architectures) of the
future if their many practical difficulties can be overcome. Other possibilities
on the horizon include optical, molecular, and biological computers (which
may include genetic or even DNA-based machines). While we have not
explored their properties or uses here, developments in those fields will bear
watching. Considering the ongoing r esearch in these fields that r epresent
the frontiers of computing, it is entirely possible that a brand-new paradigm
of architecture or implementation may r ender today’s super computers as
obsolete as the ENIAC. Any way you slice it, the next 20 to 30 years will
certainly be an inter esting time to be a computer scientist or computer
engineer.

7.6 Review questions

1. Explain how a dataflow machine avoids the von Neumann bottle-
neck.

Chapter seven: Special-purpose and future architectures 347

10.

11.

12.

13.

14.

15.

16.

Draw a dataflow graph and an activity template for the following
programming construct:

if (x >=0)

{
z=(x+y)*4;
}

else

{
z=(y-x)*4;

}

If you had a scientific application that involved a lar ge number of
matrix manipulations, would you rather r un it on a dataflow com-
puter or an SIMD computer? Explain.

What do you think is the main r eason dataflow computers have so
far not been widely adopted?

Give an example of how dataflow techniques have influenced and/
or been used in conventional computer design.

Are superthreaded and hyper-threaded processors the same thing?
If not, how do they dif fer?

Would you classify an ANN as an SISD, SIMD, MISD, or MIMD
system or something else? Make a case to support your choice.
Explain how the pr ocessing elements and inter connections in an
ANN relate to the structure of the human nervous system.

How is a supervised ANN programmed to carry out a particular
task? What is the dif ference between a supervised vs. unsupervised
ANN?

Why are ANNs well suited to applications such as r obotic control?
Give an example of an application for which you do not think an
ANN would be a good choice.

What is different about logical variables in a fuzzy system compared
to a conventional computer system?

Both ANNSs and fuzzy logic systems attempt to mimic the way hu-
man beings make decisions. What is the main difference between the
two approaches?

What is a fuzzy subset and how does the idea of a membership
function relate to it? Pr opose a simple membership function rich()
that deals with the concept of a fuzzy subset of wealthy people.

Can the Boolean, or crisp, logic operations AND, OR, and NOT be
defined in regard to fuzzy logic? If so, explain how; if not, explain
why not.

Explain, in the context of a fuzzy expert system, what r ules are and
how they are used.

For what type(s) of physical system is fuzzy control particularly well
suited?

348 Computer Architecture: Fundamentals and Principles of Computer Design

17.

18.

19.

20.

21.

What is Moore’s Law and how has it related to advances in comput-
ing over the past 40 years? Is Moor e’s Law expected to r emain true
forever or lose its validity in the futur e? Explain your answer and
discuss the implications for the design of futur e high-performance
computer systems.
How does a quantum computer fundamentally dif fer from all the
other computer architectures discussed in this book? What allows a
quantum computer to achieve the effect of a massively parallel com-
putation using a single piece of har dware?
What are some of the problems scientists must solve in order to make
supercomputers based on the principles of quantum mechanics prac-
tical?
What application(s) are expected to be a good match for the unique
capabilities of quantum computers? Explain.
Fill in the blanks below with the most appr opriate term or concept
discussed in this chapter:
A type of computer ar chitecture in which execution
depends on the availability of operands and execution
units rather than a sequential-instr uction program
model.
An element in a dataflow graph that r epresents an op-
eration to be performed on data.
These are used to represent data values (operands and
results) in algorithms for a dataflow ar chitecture.
This (outwardly) von Neumann machine made use of
dataflow techniques for internal scheduling of opera-
tions.
A machine using this technique can issue instr uctions
from more than one thread of execution during the same
clock cycle.
A type of computer ar chitecture with a structure based
on that of the human nervous system.
The fundamental units that make up a biological neural
network.
These are fibers that act as input devices for neur ons in
human beings.
When an artificial neural network achieves this, it is
trained and ready to be put into operating mode.
The earliest and simplest type of artificial neural net-
work.
A type of artificial neural network that does not require
user intervention for training.
A type of computer architecture in which logical values
are not restricted to purely “true” or “false” (1 or 0).
A type of variable that expr esses a fuzzy concept; for
example, “slightly dirty” or “very fast.”

Chapter seven: Special-purpose and future architectures 349

The set of all objects under consideration in the design
of a fuzzy system.

The numerical degree (between 0 and 1, inclusive) of
membership that an object has in a fuzzy subset.

The first step performed in doing fuzzy computations
for an expert system, contr ol system, etc.

This is necessary if a fuzzy r esult must be converted to
a crisp output.

A type of computer ar chitecture in which the same
physical hardware can be used to simultaneously com-
pute many results as though it were parallel hardware;
its operation is not based on Boolean algebra, but on
the physics of subatomic particles.

A prophetic observation of the fact that conventional
computers would tend to gr ow exponentially mor e
powerful over time as integrated cir cuit features got
smaller and smaller.

The basic unit of information in a quantum computer .
This phenomenon r esults from the superposition of
multiple possible quantum states.

A state in which an atom’s pr operties are identically
assumed by another atom, but with opposite spin.

The tendency for interactions with the surrounding en-
vironment to disturb the state of qubits, possibly result-
ing in computational errors.

A quantum computer with this many qubits has been
estimated to have 10 TFLOPS of computational power .
So far, this appears to be the most likely application for
supercomputers based on quantum principles.

appendix

Reference and further
reading materials with web
links

Chapter 1: Introduction to computer architecture

The Analytical Engine Table of Contents, W alker, John (Fourmilab Switzerland),
http:/ / www.fourmilab.ch/babbage / contents.html

A Brief History of the Abacus, Fernandes, Luis (Ryerson University), http:/ / www.ee.
ryerson.ca:8080/ ~elf / abacus / history.html

A Brief History of Computing T echnology, Smith, Der ek J. (University of W ales
Institute, Cardiff), http://www.smithsrisca.demon.co.uk/STMsubtypes-ptl.
html

John von Neumann; O’Connor, John J.; and Robertson, Edmund F. (University of
St. Andrews, Scotland), http:/ /www-gr oups.dcs.st-and.ac.uk/ ~history/
Mathematicians/Von_Neumann.html

John von Neumann (W ikipedia, the Free Encyclopedia), http:/ /en.wikipedia.org/
wiki/John_von_Neumann

A Brief History of Computer T echnology, Computational Science Education Pr oject
(Oak Ridge National Laboratory), http:/ / csepl.phyornl.gov/ov/node8.html

Development of Computers (The Columbia Electr onic Encyclopedia, 6th edition),
http:/ /www.infoplease.com/ ce6/sci/ A0857507.html

Introduction, Smotherman, Mark (Clemson University), http:/ /www .cs.clemson.
edu/~mark/464/intro.html

The Supercomputer Arrives with the CDC 6600 in 1964, Howe, T om (CEDMagic.
com), http:/ / www.cedmagic.com/history / cdc-6600.html

The CDC 6600-Scientific Computing Division (National Center for Atmospheric
Research), http:/ /www.scd.ucar.edu/computers/ gallery / cdc/6600.html

The Supercomputer Company (Cray, Inc.), http:/ /www.cray.com/

Top 500 Supercomputer Sites (Top500.0rg), http:/ / www.top500.0rg/

Microcomputer History, Ryburn, Paul (University of Memphis), http:/ /www .msci.
memphis.edu/~ryburnp /comp1200/history / microhist.html

Most Important Softwar e Products (Byte.com), http:/ /www .byte.com/art/9509/
sec7/art5.htm

351

http://www.fourmilab.ch/babbage/contents.html
http://www.ee
http://www.smithsrisca.demon.co.uk/STMsubtypes-pt1
http://www-groups.dcs.st-and.ac.uk/~history/
http://en.wikipedia.org/
http://csep1.phy.ornl.gov/ov/node8.html
http://www.infoplease.com/ce6/sci/A0857507.html
http://www.cs.clemson
http://www.cedmagic.com/history/cdc-6600.html
http://www.scd.ucar.edu/computers/gallery/cdc/6600.html
http://www.cray.com/
http://www.top500.org/
http://www.msci
http://www.byte.com/art/9509/

352 Computer Architecture: Fundamentals and Principles of Computer Design

Information Technology Industry Time Line, Bellec, Jean (Federation des Equipes Bull),
http:/ / perso.club-internet.fr/febcm/english /information_technology /
information_technology_4.htm

Archives: Mainframes: Basic Information Sour ces (IBM Corporation), http://
www-1.ibm.com/ibm/history/exhibits/mainframe/mainframe_basinfo.
html

VAX History, Lowe, Richar d (WebMythology.com), http://www.webmythology.
com/VAXhistory.htm

Types of Computers, Loaiza, Cuauhtemoc Rivera (Universidad Michoacana, Mexico),
http:/ / www.fismat.umich.mx/ ~crivera/academia/ psicologia/computer
Types.htm

CPU Performance, Madison, David Ljung (DaveF AQ.com), http://davefaq.com/
Opinions/CPU_Performance.html

Computer Systems Performance Analysis and Benchmarking, Kurmann, Christian
(Computer Systems Institute, Switzerland), http:/ /www .cs.inf.ethz.ch/
37-235/vorl /vorl03-02.pdf

Classic Benchmarks, Longbottom, Roy (Roybot Ltd.), http:/ /fr eespace.virgin.net/
roy.longbottom/ classic.htm

Benchmark Programs and Reports (Netlib.org), http:/ / www.netlib.org /benchmark/

Tina’s Bookmarks for Benchmarks, Chang, T ianying (Georgia Institute of Technolo-
gy), http:/ /www.cc.gatech.edu/ ~tychang/old /benchmark.html

Workloads, Ellis, Carla and Kuenning, Geof f (Duke University), http:/ /www .cs.
duke.edu/courses/spring03/ cps296.6/lecture4.ppt

Frequently Asked Questions on the Linpack Benchmark, Dongarra, Jack (University
of Tennessee, Knoxville), http:/ /www .netlib.org/utk/people/JackDongarra /
fag-linpack.html

Reality Check (Sun Micr osystems, Inc.), http://www .sun.com/realitycheck/
headsup0920.html

The SPEC Or ganization (Standard Performance Evaluation Corporation), http:/ /
www.spec.org/spec/spec.html

SPEC Benchmarks, Guest, Martyn and Deegan, Miles (Council for the Central
Laboratory of the Resear ch Councils, U.K.), http:/ /www .cse.clrc.ac.uk/
disco/Benchmarks/spec.shtml

PC-DOS (Wikipedia, the Free Encyclopedia), http:/ /en.wikipedia.org/wiki/PC-DOS

DOS History (PC Museum), http:/ / members.fortunecity .com/pcmuseum/dos.htm

Chapter 2: Computer memory systems

DRAM (The PC T echnology Guide), http:/ /www .pctechguide.com/03memory_
DRAM.htm

Memory 1996: Complete Coverage of DRAM, SRAM, EPROM, and Flash Memory
ICs, Griffin, Jim; Matas, Brian; and de Suberbasaux, Christian (Smithsonian
Institution, National Museum of American History: Chip Collection), http:/
/smithsonianchips.si.edu/ice/cd/ MEM96/ title.pdf

Hardware Components: Semiconductor Digital Memory Manufactur ers, Davis,
Leroy (InterfaceBus.com), http:/ / www.interfacebus.com / memory.html

Solid State Memory Development in IBM, Pugh, E. W ; Critchlow, D. L.; Henle, R.
A.; and Russell, L. A. (IBM Corporation), http:/ / www .research.ibm.com/
journal/rd/255/ibmrd2505V.pdf

http://perso.club-internet.fr/febcm/english/information_technology/
http://www-1.ibm.com/ibm/history/exhibits/mainframe/mainframe_basinfo
http://www-1.ibm.com/ibm/history/exhibits/mainframe/mainframe_basinfo
http://www.webmythology
http://www.fismat.umich.mx/~crivera/academia/psicologia/computer
http://davefaq.com/
http://www.cs.inf.ethz.ch/
http://freespace.virgin.net/
http://www.netlib.org/benchmark/
http://www.cc.gatech.edu/~tychang/old/benchmark.html
http://www.cs
http://www.netlib.org/utk/people/JackDongarra/
http://www.sun.com/realitycheck/
http://www.spec.org/spec/spec.html
http://www.spec.org/spec/spec.html
http://www.cse.clrc.ac.uk/
http://en.wikipedia.org/wiki/PC-DOS
http://members.fortunecity.com/pcmuseum/dos.htm
http://www.pctechguide.com/03memory_
http://www.interfacebus.com/memory.html
http://www.research.ibm.com/

Appendix: Reference and further reading materials with web links 353

Bubble Memory (W ikipedia, the Free Encyclopedia), http:/ /www .wikipedia.org/
wiki/Magnetic_bubble_memory

MRAM (Webopedia.com), http:/ / www.webopedia.com/TERM/M/MRAM.html

Instant Access Memory, Voss, David (Wired Magazine Issue 8.04), http:/ / www.wired.
com/wired/archive/8.04/ mram html?pg=1&topic=&topic_set

A Closer Look at DVD, D’ Ambrise, Rich (Maxell Corporation), http:/ / www.cd-info.
com/CDIC/Technology /DVD/dvd.html

Cache Memory, Anthes, Gary H. (Computerworld, April 3, 2000), http:/ / www.computer
world.com /networkingtopics /networking /lanwan/story /0,10801,44333,00.
html

Cache Memory Systems, Storr, Phil (Phil Storr’s PC Hardware Book), http:/ /members.
iweb.net.au/ ~pstorr/ pcbook /book2 / cache.htm

Virtual Memory, Weems, Charles (University of Massachusetts), http:/ / www
cs.umass.edu/ ~weems/CmpSci635A / 635lecture1l.html

Solaris 64-bit Developer’s Guide: 64-Bit Computing (Sun Micr osystems, Inc.), http:
/ / docs.sun.com/db/doc/806-0477 / 6j9r2e2ab?a=view

Data Organization on Disks, Rafiei, Davood (University of ~ Alberta), http://
www.cs.ualberta.ca/ ~drafiei/ 291 /notes/ 6-disks.pdf

Reference Guide: Har d Disk Drives: Access Time, Kozierok, Charles M. (Storage
Review.com), http:/ / www.storagereview.com/map/lm.cgi/access

Taking Disk Drive Speeds for a Spin, Barrall, Geof f (Blue Arc Corporation), http://
searchstorage.techtarget.com/tip/1,289483,sid5_gci874833,00.html

Disk Array Performance, Burkhard, Walt (University of California, San Diego), http:/
/www.cs.ucsd.edu/ classes/wi01/cse102/sol2.pdf

Chapter 3: Basics of the central processing unit

Other CPU Architectures: 0, 1, 2 and 3 Address Machines, Bjork, Russell C. (Gordon
College), http://www.math-cs.gordon.edu/courses/cs222/lectures/
other_architectures.html

Instruction Set Architecture (ISA), Citron, Daniel (Jerusalem College of Technology),
http:/ /shekeljct.ac.il/ ~citron/ca/isa.html

Instruction Set Architecture, Yang, Woodward (Harvard University), http:/ /www.
eecs.harvard.edu/cs141/lectures/lec7-3.pdf

RISC Maker, Perry, Tekla S. (IEEE Spectr um), http://www.spectrum.ieee.org/
careers/ careerstemplate.jsp? Articleld=p110202

The MIPS Processor, Pfieffer, Joe (New Mexico State University), http:/ /www .cs.
nmsu.edu/ ~pfeiffer/ classes /473 /notes / mips.html

ASIC Design for Signal Pr ocessing: Carry Save Adders, Knagge, Geof f
(GeoffKnagge.com), http:/ / www.geoffknagge.com/fyp/ carrysave.shtml

A Generalized Carry-Save Adder Array for Digital Signal Pr ocessing, Karlsson,
Magnus (Sydkraft AB, Sweden), http:/ / www.es.isy.liu.se/norsig2000/ publ/
page287_id016.pdf

Wallace Tree Simulation, Carpinelli, John D. (Computer Systems Or ganization and
Architecture, Addison Wesley Longman), http:/ /occawlonline.pearsoned.
com/bookbind /pubbooks/ carpinelli_awl/chapterl/medialib/wallace/
Sim.html

Multiplication, Johnson, Martin (Massey University), http:/ / cs-alb-pc3.massey
ac.nz/notes /59304 /15.html

http://www.wikipedia.org/
http://www.webopedia.com/TERM/M/MRAM.html
http://www.wired
http://www.cd-info
http://www.computer
http://members
http://www
http://www.cs.ualberta.ca/~drafiei/291/notes/6-disks.pdf
http://www.cs.ualberta.ca/~drafiei/291/notes/6-disks.pdf
http://www.storagereview.com/map/lm.cgi/access
http://searchstorage.techtarget.com/tip/1,289483
http://searchstorage.techtarget.com/tip/1,289483
http://www.cs.ucsd.edu/classes/wi01/cse102/sol2.pdf
http://www.math-cs.gordon.edu/courses/cs222/lectures/
http://shekel.jct.ac.il/~citron/ca/isa.html
http://www
http://www.spectrum.ieee.org/
http://www.cs
http://www.geoffknagge.com/fyp/carrysave.shtml
http://www.es.isy.liu.se/norsig2000/publ/
http://occawlonline.pearsoned
http://cs-alb-pc3.massey

354 Computer Architecture: Fundamentals and Principles of Computer Design

Signed Multiplication, Division of Engineering (University of North Florida), http:

/ /www.unf.edu/~swarde/Execution_Units/Signed_Multiplication/
signed_multiplication.html

Booth’s Algorithm, Wang, Jian-Sheng (National University of Singapor e), http://
www.cz3.nus.edu.sg/~wangjs/CZ101 /notes/ week8 html

Integer Division, Kaplan, Ian (Bearcave.com), http:/ /www.bearcave.com/software /
divide.htm

Division Algorithms, Echaiz, Javier (Universidad Nacional del Sur, Argentina), http:
/ / cs.uns.edu.ar/ ~jechaiz / arquitectura/ division/

Project Summary for ECE 429, Intr oduction to VLSI Design, Spring 2001: 1. About
SRT Division, Stine, James (Illinois Institute of T echnology), http://
www.ece.iit.edu/ ~jstine /ece429 / proj429 / proj429_spr01.pdf

Integer and Floating Point Arithmetic, Smotherman, Mark (Clemson University),
http:/ /www.cs.clemson.edu/~mark/464/fp.html

IEEE 754: Standard for Binary Floating-Point Arithmetic (Institute of Electrical and
Electronics Engineers), http:/ / grouper.ieee.org/groups/754/

Lecture Notes for CSC 252, Scott, Michael L. (University of Rochester), http://
www.cs.rochester.edu/u/scott/252 /notes/04_architecture

Maurice Vincent Wilkes (Wikipedia, the Free Encyclopedia), http:/ / www.wikipedia.
org/wiki/Maurice_Wilkes

A Brief History of Micr oprogramming, Smotherman, Mark (Clemson University),
http:/ /www.cs.clemson.edu/ ~mark /uprog.html

Chapter 4: Enhancing CPU performance

Lecture 6: Pipelining, W eems, Charles (University of Massachusetts), http://
www.cs.umass.edu/ ~weems/CmpSci635/ Lecture6/L6.Lhtml

Pipeline Scheduling, Kogge, Peter M. (University of Notr e Dame), http:/ /www.cs.
nchu.edu.tw/lab/syslab/download/19%20Pipeline%20Scheduling%
20(1)%20-%20static%20(Kogge).pdf

Dynamically Configured Pipelines, Kogge, Peter M. (University of Note Dame), http:
/ /www.cs.nchu.edu.tw/lab/syslab/download/20%20Pipeline%
20Scheduling(2)%20-%20dynamic%20(kogge).pdf

Architectural and Or ganizational Tradeoffs in the Design of the MultiT itan CPU,
Jouppi, Norman P. (Digital Equipment Corporation, WRL Research Report
89/9), http:/ /www.hplLhp.com/ techreports/ Compaq-DEC/WRL-89-9.pdf

Chapter 4, Instruction Level Parallelism and Dynamic Execution, Kelly , Paul H. J.
(Imperial College of Science, T echnology and Medicine), http://
www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/2003-04 / Lectures /
Ch04/ ACA-Ch04-CurrentVersion_files/v3_document.htm

Instruction-Level Parallelism and Its Dynamic Exploitation, Panda, Dhabaleswar K.
(Ohio State University), http:/ /www .cse.ohio-state.edu/~panda/775/
slides/Ch3_1.pdf

Design of a Computer: The Contr ol Data 6600, Thornton, J. E. (Contr ol Data
Corporation), http:/ /www.cs.nmsu.edu/ ~pfeiffer/classes/473/notes/
DesignOfAComputer_CDC6600.pdf

CDC 6600, Pfieffer, Joe (New Mexico State University), http:/ /www .cs.nmsu.edu/
~pfeiffer/ classes/473 /notes / cdc.html

Pipeline Hazards, Pfieffer, Joe (New Mexico State University), http:/ /www.cs.nmsu.
edu/ ~pfeiffer/classes/473/notes/hazards.html

http://www.unf.edu/~swarde/Execution_Units/Signed_Multiplication/
http://www.cz3.nus.edu.sg/~wangjs/CZ101/notes/week8.html
http://www.cz3.nus.edu.sg/~wangjs/CZ101/notes/week8.html
http://www.bearcave.com/software/
http://www.ece.iit.edu/~jstine/ece429/proj429/proj429_spr01.pdf
http://www.ece.iit.edu/~jstine/ece429/proj429/proj429_spr01.pdf
http://www.cs.clemson.edu/~mark/464/fp.html
http://grouper.ieee.org/groups/754/
http://www.cs.rochester.edu/u/scott/252/notes/04_architecture
http://www.cs.rochester.edu/u/scott/252/notes/04_architecture
http://www.wikipedia
http://www.cs.clemson.edu/~mark/uprog.html
http://www.cs.umass.edu/~weems/CmpSci635/Lecture6/L6.I.html
http://www.cs.umass.edu/~weems/CmpSci635/Lecture6/L6.I.html
http://www.cs
http://www.cs.nchu.edu.tw/lab/syslab/download/20%20Pipeline%
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-89-9.pdf
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/2003-04/Lectures/
http://www.doc.ic.ac.uk/~phjk/AdvancedCompArchitecture/2003-04/Lectures/
http://www.cse.ohio-state.edu/~panda/775/
http://www.cs.nmsu.edu/~pfeiffer/classes/473/notes/
http://www.cs.nmsu.edu/
http://www.cs.nmsu

Appendix: Reference and further reading materials with web links 355

Data Hazard Classification, Prabhu, Gurput (Iowa State University), http:/ /
www.cs.iastate.edu/ ~prabhu/ Tutorial / PIPELINE / dataHazClass.html

Which Machines Do Computer Architects Admire?, Smotherman, Mark (Clemson
University), http:/ / www.cs.clemson.edu/~mark/admired_designs.html

Computer Architecture: Session #7: Chapter 3 Topics, Adams, George B. III (Purdue
University), http:/ / www.ece.purdue.edu/~gba/ee565 /Sessions /S07.pdf

The RISC Concept: A Survey of Implementations, Esponda, Mar garita and Rojas,
Raul (Freie Universitat Berlin), http:/ /www .inf.fu-berlin.de/lehre/ WS94/
RA /RISC-9.html

RISC (Wikipedia, the Free Encyclopedia), http:/ / www.wikipedia.org/wiki/RISC

The IBM RT Information Page, Brashear, Derrick (Carnegie Mellon University), http:/
/ www.contrib.andrew.cmu.edu/ ~shadow /ibmrt.html

Reduced Instruction Set Computers (RISC): Academic/Industrial Interplay Drives
Computer Performance Forward, Joy, William N. (Sun Micr osystems, Inc.),
http:/ /www.cs.washington.edu/homes/lazowska/cra/risc.html

Understanding Stacks and Registers in the Spar ¢ Architecture(s), Magnusson,
Peter (Swedish Institute of Computer Science), http:/ / wwwsics.se/ ~psm/
sparcstack.html

RISC vs. CISC: The Post-RISC Era, HannibalArsT echnica.com), http://www.
arstechnica.com/cpu/4q99/risc-cisc/rve-1.html

Short History of Long Instr uctions (Byte.com), http:/ /www .byte.com/art/9604/
sec8/art4.htm

Multiflow Computer, VLIW, History, Information (Reservoir Labs, Inc.), http://
www.reservoir.com/ vliw.php

VLIW Processors and Trace Scheduling, Mathew, Binu K. (University of Utah), http:
/ /www.cs.utah.edu/~mbinu/ coursework/686_vliw /

VLIW at IBM Research (IBM Corporation), http:/ / www.research.ibm.com/vliw/

An Eight-Issue Tree-VLIW Processor for Dynamic Binary Translation, Ebcioglu, Ke-
mal; Fritts, Jason; Kosonocky , Stephen; Gschwind, Michael; Altman, Erik;
Kailas, Krishnan; and Bright, Terry (IBM T. J. Watson Research Center), http:
/ | www.research.ibm.com/vliw /Pdf/iccd98.pdf

DAISY: Dynamically Architected Instruction Set from Yorktown (IBM Corporation),
http:/ /www.research.ibm.com/ daisy /

Historical Background for EPIC, Smotherman, Mark (Clemson University), http://
www.cs.clemson.edu/~mark/epic.html

Understanding EPIC Architectures and Implementations, Smotherman, Mark (Clemson
University), http:/ /www.cs.clemson.edu/~mark /464 /acmse_epic.pdf

Chapter 1: Intr oduction: CISC, RISC, VLIW , and EPIC Architectures (Intel Press),
http:/ /www.intel.com/intelpress/ chapter-scientific.pdf

Assembly Language Programming Tools for the IA-64 Architecture, Tal, Ady; Bassin,
Vadim; Gal-On, Shay; and Demikhovsky, Elena (Intel Corporation), http:/ /
www.intel.com/technology /itj/ q41999/ pdf/ assemble.pdf

Itanium Architecture Software Developer's Manual. Volume 1: Application Architecture,
(Intel Corporation), http://www .intel.com/design/Itanium/manuals/
245317.pdf

http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/dataHazClass.html
http://www.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/dataHazClass.html
http://www.cs.clemson.edu/~mark/admired_designs.html
http://www.ece.purdue.edu/~gba/ee565/Sessions/S07.pdf
http://www.inf.fu-berlin.de/lehre/WS94/
http://www.wikipedia.org/wiki/RISC
http://www.contrib.andrew.cmu.edu/~shadow/ibmrt.html
http://www.cs.washington.edu/homes/lazowska/cra/risc.html
http://www.sics.se/~psm/
http://www
http://www.byte.com/art/9604/
http://www.reservoir.com/vliw.php
http://www.reservoir.com/vliw.php
http://www.cs.utah.edu/~mbinu/coursework/686_vliw/
http://www.research.ibm.com/vliw/
http://www.research.ibm.com/vliw/Pdf/iccd98.pdf
http://www.research.ibm.com/daisy/
http://www.cs.clemson.edu/~mark/epic.html
http://www.cs.clemson.edu/~mark/epic.html
http://www.cs.clemson.edu/~mark/464/acmse_epic.pdf
http://www.intel.com/intelpress/chapter-scientific.pdf
http://www.intel.com/technology/itj/q41999/pdf/assemble.pdf
http://www.intel.com/technology/itj/q41999/pdf/assemble.pdf
http://www.intel.com/design/Itanium/manuals/

356 Computer Architecture: Fundamentals and Principles of Computer Design

Chapter 5: Exceptions, interrupts, and input/output
systems

UF 68HC12 Development Kit Manual, Schwartz, Eric M. (University of Florida),
http:/ /www.mil.ufl.edu /4744 /labs / UF6812Board V30_Manual V34.pdf

Exceptions and Interrupts 1, Walker, Hank (Texas A&M University), http:/ / courses.
cs.tamu.edu/ cpsc462 / walker/Slides / Exceptions_Interrupts_1.pdf

Undocumented Windows NT: Adding New Softwar e Interrupts, Dabak, Prasad;
Borate, Milind; and Phadke, Sandeep (W indowsITLibrary.com), http://
www.windowsitlibrary.com/Content/356/10/1.html

Assembly Language Trap Generating Instr uctions, Milo (OSdata.com), http://
www.osdata.com/ topic/language/asm/trapgen.htm

IA-32 Architecture Exceptions (Sandpile.or g), http://www.sandpile.org/ia32/
except.htm

Radiation Shield/Glossary: TEC/SWE Softwar e Engineering and Standar disation
(European Space Agency), http://www.estec.esa.nl/wmwww /EME/
laptops/radshld/ glossary.htm

8259A Interrupt Controller on the PC, Frank, Cornelis (The Nondotted Goup), http:/
/www.nondot.org/sabre/os/ files/ MiscHW / 8259pic.pdf

Interrupt Controllers, Kozierok, Charles M. (The PC Guide), http:/ / wwwpcguide.com/
ref/ mbsys/res/irq/ funcController-c.html

FreeBSD Handbook: DMA: What It Is and How It Works, Durda, Frank IV (Nemesis.
Lonestar.org), http:/ /www.infran.ru/ TechInfo/BSD /handbook257.html

DMA Controller (Eagle Planet), http:/ /members.tripod.com/~Eagle_Planet/
dma_controller.html

Chapter 5: Direct Memory Access, Cardnell, Dave (Central Queensland University),
http:/ / webclass.cqu.edu.au/Units/81120_FOCT_Hardware /Study_Material
/Study_Guide/ chap5/toc.html

DMA and Interr upt Handling (EventHelix.com), http:/ /www .eventhelix.com/
RealtimeMantra/FaultHandling/dma_interrupt_handling.htm

Chapter 6: Parallel and high-performance systems

2. Hardware Trends: Parallel Scientific Computers, Center for Advanced Computing
Research (California Institute of Technology), http:/ / www.cacr.caltech.edu/
Publications/ techpubs/ ccsf-04 / hardware.html

History of Super computing Timeline, Brewer, Darrin (Magoo’s Universe), http:/ /
uk.geocities.com/magoos_universe / cpu_history2.htm

History of Super computing, Farber, David (University of Pennsylvania), http:/ /
www.interesting-people.org/archives/interesting-people/199308/
msg00125.html

The History of the Development of Parallel Computing, Wilson, Gregory (University
of Toronto), http:/ /parallel.ru/history /wilson_history.html

High Performance Computer Architecture, Computational Science Education Project
(Oak Ridge National Laboratory), http:/ /csepl.phy .ornl.gov/ca/nodel0.
html

Survey of High Performance Architectures, Computational Science Education Project
(Oak Ridge National Laboratory), http:/ /csepl.phy .ornl.gov/ca/node23.
html

http://www.mil.ufl.edu/4744/labs/UF6812BoardV30_ManualV34.pdf
http://courses
http://www.windowsitlibrary.com/Content/356/10/1.html
http://www.windowsitlibrary.com/Content/356/10/1.html
http://www.osdata.com/topic/language/asm/trapgen.htm
http://www.osdata.com/topic/language/asm/trapgen.htm
http://www.sandpile.org/ia32/
http://www.estec.esa.nl/wmwww/EME/
http://www.nondot.org/sabre/os/files/MiscHW/8259pic.pdf
http://www.pcguide.com/
http://www.infran.ru/TechInfo/BSD/handbook257.html
http://members.tripod.com/~Eagle_Planet/
http://webclass.cqu.edu.au/Units/81120_FOCT_Hardware/Study_Material
http://www.eventhelix.com/
http://www.cacr.caltech.edu/
http://uk.geocities.com/magoos_universe/cpu_history2.htm
http://uk.geocities.com/magoos_universe/cpu_history2.htm
http://www.interesting-people.org/archives/interesting-people/199308/
http://www.interesting-people.org/archives/interesting-people/199308/
http://parallel.ru/history/wilson_history.html
http://csep1.phy.ornl.gov/ca/node10
http://csep1.phy.ornl.gov/ca/node23

Appendix: Reference and further reading materials with web links 357

Vector Processor (Wikipedia, the Free Encyclopedia), http:/ /en.wikipedia.org/wiki/
Vector_processor

SIMD Architectures, Alaghband, Gita (University of Colorado at Denver), http:/ /
carbon.cudenver.edu/ csprojects / CSC5809501 /Simd / archi.html

ILLIAC 1V CFD, Carpenter , Bryan (Indiana University), http:/ / grids.ucs.indiana.
edu/ptliupages/ projects/ HPJava/talks/beijing/hpf/introduction/
node4.html

ILLIAC 1V, Thelen, Ed (Ed-Thelen.org), http:/ / ed-thelen.org/comp-hist/ vs-illiac-iv.
html

The MasPar MP-1, Dongarra, Jack (T op500.org), http:/ /www.top500.org/ORSC/
1996 /nodel5.html

SIMD Multimedia Extensions: Do MMX, 3DNow!, and SSE Still Matter?, Fr eeman,
Vince (Jupitermedia Corporation), http:/ /www .cpuplanet.com/features/
article.php/30231_1487301_1

On MMX, 3DNow!, and Katmai, Karbo, Michael B. (KarbosGuide.com), http:/ /
www.karbosguide.com/hardware /module3e09.htm

Red Hat Enterprise Linux 3: Using as, the Gnu Assembler: Intel’'s MMX and AMD's
3DNow! SIMD Operations (Red Hat, Inc.), http:/ /www .redhat.com/docs/
manuals/enterprise/ RHEL-3-Manual / gnu-assembler/i386-simd.html

Overview of Resear ch Efforts on MediaISA Extensions and Their UsageinV ideo
Coding, Lappalainen, Ville; Hamalainen, Timo D.; and Liuha, Petri (IEEE
Transactions on Circuits and Systems for V ideo Technology), http://www.
nokia.com/downloads/aboutnokia/research/library /communication_
systems/CS5. pdf

Hardware: G4 Executive Summary: Whatis AltiVec? (Apple Computer, Inc.), http:
/ | developer.apple.com/hardware/ve/summary.html

Visual Instruction Set (Wikipedia, the Free Encyclopedia), http:/ /en.wikipedia.org/
wiki/ Visual_instruction_set

Will SIMD Make a Comeback?, Reddaway, Stewart (Cambridge Parallel Pr ocessing
Ltd.), http://www.cs.okstate.edu/~pdcp/vols/vol02/vol02no3editorial.
html

Programmable Hardware #1: Basic Har dware Capabilities, Dale, Jason (University
of Texas at Austin), http:/ /www.cs.utexas.edu/users/billmark/courses/
¢s395T-03-spring / presentations/Feb11-programmable-hardwarel.pdf

ClearSpeed Revises Graphics Engine to Process Packets, Edwards, Chris (EE Times/
CommsDesign.com), http://www.commsdesign.com/news/tech_beat/
OEG2001061150119

The Pixel-Planes Family of Graphics Architectures, Cohen, Jonathan (Johns Hopkins
University), http:/ /www.csjhu.edu/~cohen/VW2000/Lectures/Pixel-Planes.
color.pdf

Interactive 3D Medical Visualization: A Parallel Approach to Surface Rendering 3D
Medical Data, Yoo, Terry S. and Chen, David T (University of North Cawolina),
http:/ /erie.nlm.nih.gov/~yoo/ pubs/94-059.pdf

A Shading Language on Graphics Hardware: The Pixel Flow Shading System, Olano,
Marc and Lastra, Anselmo (University of North Car olina), http://www.
cs.unc.edu/~pxfl/ papers/ pxflshading.pdf

PixelFusion to Roll Fuzion SIMD Chip this Year, Clarke, Peter (EE T imes), http:/ /
www.eetimes.com/news/latest/ showArticle.jhtml?article]D=18303652

Graphics Processor Reworked for 40Gbit/s Comms, Edwar ds, Chris (EE Times UK),
http:/ / www.eetuk.com/tech /news/OEG2001061250008

http://en.wikipedia.org/wiki/
http://carbon.cudenver.edu/csprojects/CSC5809S01/Simd/archi.html
http://carbon.cudenver.edu/csprojects/CSC5809S01/Simd/archi.html
http://grids.ucs.indiana
http://ed-thelen.org/comp-hist/vs-illiac-iv
http://www.top500.org/ORSC/
http://www.cpuplanet.com/features/
http://www.karbosguide.com/hardware/module3e09.htm
http://www.karbosguide.com/hardware/module3e09.htm
http://www.redhat.com/docs/
http://www
http://en.wikipedia.org/
http://www.cs.okstate.edu/~pdcp/vols/vol02/vol02no3editorial
http://www.cs.utexas.edu/users/billmark/courses/
http://www.commsdesign.com/news/tech_beat/
http://www.cs.jhu.edu/~cohen/VW2000/Lectures/Pixel-Planes
http://erie.nlm.nih.gov/~yoo/pubs/94-059.pdf
http://www
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=18303652
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=18303652
http://www.eetuk.com/tech/news/OEG20010612S0008

358 Computer Architecture: Fundamentals and Principles of Computer Design

ChipWrights Optimizes Processor for Digital Cameras, Keenan, Robert (EE Times),
http:/ /www.eetimes.com/news/latest/showArticle.jhtml?articleID=
10800932

Analog Devices ADSP-21160 Hammerhead SHARC, (Electronic Tools GmbH), http:
/ | www.etools.de/hardware / prozessorkartennachprozessortyp/ processor
guide/analogdevicesadsp21160hammerheadsharc.htm

Multiprocessors and Multipr ocessing, Thornley, John (California Institute of
Technology), http:/ / www.cs.caltech.edu/ ~cs284 /lectures/ 70ct97.ppt

NUMA Frequently Asked Questions (SourceForge.net), http:/ /Ise.sourceforge.net/
numa/faq/

Lecture 19: Multiprocessors, Balasubramonian, Rajeev (University of Utah), http://
www.cs.utah.edu/ classes/cs6810/ pres/6810-19.pdf

Next Generation Super computers: Cluster of Multi-pr ocessor Systems Pr oject
Launched, Kahn, Jeffery (Lawrence Berkeley National Laboratory), http:/ /
www.lbl.gov/Science-Articles/ Archive / COMPS-collaboration.html

STiNG Revisited: Performance of Commercial Database Benchmarks on a CC-NUMA
Computer System, Clapp, Russell M. (IBM Corporation), http:/ /iacoma.
cs.uiuc.edu/ caecw01/sting. pdf

Web3. Systems Architecture, Hwang, Kai and Xu, Zhiwei (Scalable Parallel Computing:
Technology, Architecture, Programming, WCB/McGraw-Hill), http:/ / ceng.usc.
edu/~kaihwang/book/Web3.html

Data Diffusion Machine Home Page (University of Bristol), http:/ /www .cs.
bris.ac.uk/Research/DDM/index.html

WildFire: A Scalable Path for SMPs, Hagersten, Erik and Koster ~, Michael (Sun
Microsystems, Inc.), http:/ / user.it.uu.se/ ~eh/ papers/wildfire.ps

Shared Bus Cache Coherence Protocols, Mendelson, Avi (Technion, Israel Institute of
Technology), http:/ / www.cs.technion.ac.il/ ~cs236603 / p7-coherency.ppt

Multi-Processor Architectures, Narahari, Bhagirath (George Washington University),
http:/ /www.seas.gwu.edu/%7Enarahari/ cs211/ materials/lectures / multi-
processor.pdf

Lecture 30: Multipr ocessors-Flynn Categories, Lar ge vs. Small Scale, Cache
Coherency, Katz, Randy H. (University of California, Berkeley), http://
www.cs.berkeley.edu/~randy/Courses/CS252.596 / Lecture30.pdf

Cache Coherent Distributed Shared Memory, Mark, William R. (University of T exas at
Austin), http:/ /www.cs.utexas.edu/users/billmark/ courses/ cs395T-03-spring
/ presentations/ Apr01-shared-memory.ppt

Multiprocessors and Multithr eading, Lebeck, Alvin R. (Duke University), http:/ /
www.cs.duke.edu/courses/ cps220/fall04/lectures/ 6-mt.pdf

The Performance and Scalability of Distributed Shar ed Memory Cache Coher ence
Protocols Chapter 2: Cache Coher ence Protocols, Heinrich, Mark (Stanfor d
University), http:/ /www.csl.cornell.edu/~heinrich/dissertation/Chapter
Two.pdf

Notes on Concurr ency, Mooney, James D. (W est Virginia University), http://
www.cs.wvu.edu/~jdm/ classes/ cs356 /notes/ mutex/

Parallel Processing: Parallel Computer Architectures, Halverson, Tom (Dakota State
University), http:/ / courses.dsu.edu/csc317 /notes /notset12.htm

CC-NUMA Internet Resour ces, Bemmerl, Thomas (R WTH Scalable Computing,
Aachen, Germany), http:/ /www lfbs.rwth-aachen.de/users/joachim /SCI/
links.html

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=
http://www.etools.de/hardware/prozessorkartennachprozessortyp/processor
http://www.cs.caltech.edu/~cs284/lectures/7oct97.ppt
http://lse.sourceforge.net/
http://www.cs.utah.edu/classes/cs6810/pres/6810-19.pdf
http://www.cs.utah.edu/classes/cs6810/pres/6810-19.pdf
http://www.lbl.gov/Science-Articles/Archive/COMPS-collaboration.html
http://www.lbl.gov/Science-Articles/Archive/COMPS-collaboration.html
http://iacoma
http://ceng.usc
http://www.cs
http://user.it.uu.se/~eh/papers/wildfire.ps
http://www.cs.technion.ac.il/~cs236603/p7-coherency.ppt
http://www.seas.gwu.edu/%7Enarahari/cs211/materials/lectures/multi-processor.pdf
http://www.seas.gwu.edu/%7Enarahari/cs211/materials/lectures/multi-processor.pdf
http://www.seas.gwu.edu/%7Enarahari/cs211/materials/lectures/multi-processor.pdf
http://www.cs.berkeley.edu/~randy/Courses/CS252.S96/Lecture30.pdf
http://www.cs.berkeley.edu/~randy/Courses/CS252.S96/Lecture30.pdf
http://www.cs.utexas.edu/users/billmark/courses/cs395T-03-spring
http://www.cs.duke.edu/courses/cps220/fall04/lectures/6-mt.pdf
http://www.cs.duke.edu/courses/cps220/fall04/lectures/6-mt.pdf
http://www.csl.cornell.edu/~heinrich/dissertation/Chapter
http://www.cs.wvu.edu/~jdm/classes/cs356/notes/mutex/
http://www.cs.wvu.edu/~jdm/classes/cs356/notes/mutex/
http://courses.dsu.edu/csc317/notes/notset12.htm
http://www.lfbs.rwth-aachen.de/users/joachim/SCI/

Appendix: Reference and further reading materials with web links 359

Networks and T opologies, Pfieffer, Joe (New Mexico State University), http:/ /
www.cs.nmsu.edu/ ~pfeiffer/ classes /573 /notes/ topology.html

Message Passing Architectures, Bestavros, Azer (Boston University), http://
cs-www.bu.edu/ faculty /best/ crs/ cs551/lectures /lecture-15.html

A Hybrid Interconnection Network for Integrated Communication Services, Chen,
Yi-long and Lyu, Jyh-Charn (Northern Telecom, Inc./ Texas A&M University),
http:/ /ipdps.eece.unm.edu/1997/59/278.pdf

Chapter 7: Special-purpose and future architectures

Dataflow Machine Architecture, Veen, Arthur H. (Center for Mathematics and
Computer Science), http:/ / cs-people.bu.edu/ gabepl/dataflow.pdf

Dataflow Architectures, Silc, Jurij (Jozef Stefan Institute), http:/ / csd.ijs.si/ courses/
dataflow/

Advanced Topics in Dataflow Computing and Multithr eading: Introduction, Bic, Lubomir;
Gaudiot, Jean-Luc; and Gao, Guang R. (IEEE Computer Society /John W iley
& Sons), http:/ / www.computer.org/ cspress/ CATALOG/bp06542 / intro.htm

Parallel Processing Architectures, Manzke, Michael (Trinity College Dublin), https:/
/www.cs.tcd.ie/ Michael Manzke /3ba5/3ba5_third_lecture.pdf

Comp.compilers: History of Super computing, Wilson, Greg (Australian National
University), http:/ / compilers.iecc.com/ comparch/ article / 93-08-095

Dataflow: A Complement to Superscalar , Budiu, Mihai; Artigas, Pedro V.; and
Goldstein, Seth Copen (Micr osoft Research/Carnegie Mellon University),
http:/ /www-2.cs.cmu.edu/~mihaib/research /ispass05.pdf

Data-Flow Research Project: Research Reports: Abstracts (University of Manchester),
http:/ /www.cs.man.ac.uk/cnc/ dataflow.html

Executing a Program on the MIT Tagged-Token Dataflow Architecture, Arvind; and
Nikhil, RishiyurS. (IEEE Transactions on Computers, Vol. 39, No. 3), http:/ /
www.cs.wisc.edu/ ~isca2005/ ttda.pdf

Scheduling Dynamic Dataflow Graphs W ith Bounded Memory Using The T oken
Flow Model, Buck, Joseph Tobin (University of California at Berkeley), http:/
/ ptolemy.eecs.berkeley.edu/publications/ papers/93/jbuckThesis / thesis.
pdf

Processor Allocation in a Multi-ring Dataflow Machine, Barahona, Pedr o and Gurd,
John R. (University of Manchester), http:/ /www .cs.man.ac.uk/cstechrep/
Abstracts/ UMCS-85-10-3.html

The WaveScalar Instruction Set (University of W ashington), http://wavescalar.
cs.washington.edu/wavescalar.shtml

Introduction to Multithr eading, Superthreading and Hyperthr eading, Stokes,
Jon (ArsTechnica.com), http:/ / arstechnica.com/articles/ paedia/cpu/ hyper
threading.ars

Simultaneous Multithreading Project, Eggers, Susan (University of Washington), http:
/ | www.cs.washington.edu/research/smt/

Hyper-Threading Technology: Microarchitecture Research — Working Smarter and
Cooler (Intel Corporation), http:/ /www .intel.com/ technology / computing /
htt/

Brain Neurology: The Neuron (Newfoundland Brain Injury Association), http://
www.nbia.nf.ca/the_neuron.htm

Synapse, Jones, Paul (Multiple Sclerosis Information Trust), http:/ / www.mult-sclerosis.
org/synapse.html

http://www.cs.nmsu.edu/~pfeiffer/classes/573/notes/topology.html
http://www.cs.nmsu.edu/~pfeiffer/classes/573/notes/topology.html
http://cs-www.bu.edu/faculty/best/crs/cs551/lectures/lecture-15.html
http://cs-www.bu.edu/faculty/best/crs/cs551/lectures/lecture-15.html
http://ipdps.eece.unm.edu/1997/s9/278.pdf
http://cs-people.bu.edu/gabep1/dataflow.pdf
http://csd.ijs.si/courses/
http://www.computer.org/cspress/CATALOG/bp06542/intro.htm
http://www.cs.tcd.ie/Michael.Manzke/3ba5/3ba5_third_lecture.pdf
http://compilers.iecc.com/comparch/article/93-08-095
http://www-2.cs.cmu.edu/~mihaib/research/ispass05.pdf
http://www.cs.man.ac.uk/cnc/dataflow.html
http://IEEE
http://www.cs.wisc.edu/~isca2005/ttda.pdf
http://www.cs.man.ac.uk/cstechrep/
http://wavescalar
http://arstechnica.com/articles/paedia/cpu/
http://www.cs.washington.edu/research/smt/
http://www.intel.com/technology/computing/
http://www.nbia.nf.ca/the_neuron.htm
http://www.nbia.nf.ca/the_neuron.htm
http://www.mult-sclerosis

360 Computer Architecture: Fundamentals and Principles of Computer Design

An Introduction to Neural Networks, Smith, Leslie (University of Stirling), http:/ /
www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html

Artificial Neural Networks, Andina de la Fuente, Diego (Universidad Politecnica de
Madrid), http:/ /www.gc.ssr.upm.es/inves/neural /annl/anntutorial html

Neural Network (Wikipedia, the Free Encyclopedia), http:/ / en.wikipedia.org/wiki/
Neural_network

Artificial Neural Network (Wikipedia, the Free Encyclopedia), http:/ /en.wikipedia.
org/wiki/Artificial_neural_network

Neural Networks (StatSoft, Inc.), http:/ / www statsoft.com/ textbook/stneunet.html

An Idiot’s Guide to Neural Networks, Bowles, Richard (RichardBowles.Tripod.com),
http:/ /richardbowles.tripod.com /neural / neural.htm

Neural Network Har dware (Accurate Automation Corporation), http://www .
accurate-automation.com/Products /NNP/nnp.html

Neural Network Hardware, Lindsey, Clark S.; Denby, Bruce; and Lindblad, Thomas
(Royal Institute of T echnology, Sweden), http:/ /neuralnets.web.cern.ch/
NeuralNets /nnwInHepHard.html

Fuzzy Logic and Neural Nets: Still V iable After All These Years?, Prophet, Graham
(EDN.com), http:/ /www.edn.com/article/ CA421505.html

FAQ: Fuzzy Logic and Fuzzy Expert Systems, Kantr owitz, Mark; Horstkotte, Erik;
and Joslyn, Cliff (Carnegie Mellon University), http:/ /www .fags.org/faqs/
fuzzy-logic/partl/

Fuzzy Logic for “Just Plain Folks”, Sowell, Thomas (Fuzzy-Logic.com), http:/ /
www.fuzzy-logic.com/Chl.htm

Fuzzy Logic in Knowledge Builder (Attar Softwar e Limited), http://
www.intellicrafters.com/fuzzy.htm

Lectures on Fuzzy Logic and Fuzzy Systems, Part 3, V. rusias, Bogdan and Casey,
Matthew (University of Surr ey), http:/ /www.computing.surrey.ac.uk/
courses/ cs364/FuzzyLogicFuzzySystems_3.ppt

Fuzzy Logic Toolbox: Dinner for T wo, Reprise (The MathW orks, Inc.), http://
www.mathworks.com/access/helpdesk/help/toolbox/ fuzzy / fp684.html

Editorial: Fuzzy Models: What Are They, and Why?, Bezdek, J. C. (IEEE Transactions
on Fuzzy Systems, Vol. 1, No. 1), http:/ / wwwee.vt.edu/~dadone/fuzzylntro/
intro_to_fuzzy_sets.pdf

Fuzzy Expert System for Navigation Contr ol, Hoe, Koay Kah (University of
Technology, Malaysia), http://wwwl.mmu.edu.my/~khkoay/fuzzy/fuzzy.
html

Fuzzy Logic Design: Methodology , Standards, and Tools, von Altrock, Constantin
(EE Times), http:/ / www.fuzzytech.com/e/e_a_eet.html

Demonstration Model of FuzzyTECH Implementation on Motor ola 68HC12 MCU,
Drake, Philip; Sibigtr oth, Jim; von Altrock, Constantin; and Konigbauer ,
Ralph (Motorola, Inc./Inform Software Corporation), http:/ /www .fuzzy
tech.com/e/e_a_mot.html

Fuzzy Estimation Tutorial (Electronics Now, May, 1996), http:/ / www.fuzzysys.com/
fuzzyestimationtutorial. htm

Microcontrollers Products Overview: ST5 Product Family, (STMicroelectronics), http:
/ /mcu.st.com/mcu/inchtml.php?fdir=pages&fnam=st5

MCS 96 Micr ocontrollers: The Perfect Match for Fuzzy Logic ~ Applications, (Intel
Corporation), http://support.intel.com/design/auto/mcs96/designex/
2363.htm

http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html
http://www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.html
http://en.wikipedia.org/wiki/
http://en.wikipedia
http://www.statsoft.com/textbook/stneunet.html
http://richardbowles.tripod.com/neural/neural.htm
http://www
http://neuralnets.web.cern.ch/
http://www.edn.com/article/CA421505.html
http://www.faqs.org/faqs/
http://www.fuzzy-logic.com/Ch1.htm
http://www.fuzzy-logic.com/Ch1.htm
http://www.intellicrafters.com/fuzzy.htm
http://www.intellicrafters.com/fuzzy.htm
http://www.computing.surrey.ac.uk/
http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/fp684.html
http://www.mathworks.com/access/helpdesk/help/toolbox/fuzzy/fp684.html
http://www.ee.vt.edu/~dadone/fuzzyIntro/
http://www1.mmu.edu.my/~khkoay/fuzzy/fuzzy
http://www.fuzzytech.com/e/e_a_eet.html
http://www.fuzzy
http://www.fuzzysys.com/
http://support.intel.com/design/auto/mcs96/designex/

Appendix: Reference and further reading materials with web links 361

Research-Silicon-Moore’s Law (Intel Corporation), http:/ / www.intel.com/ research /
silicon/ mooreslaw.htm

Moore’s Law is 40, Oates, John (The Register), http:/ / www.theregister.co.uk /2005 /
04/13/moores_law_forty/

The End of Moor e’s Law, BottleRocket (Kuro5hin.org), http:/ / www.kuroShin.org/
story /2005/4/19/202244/053

An Introduction to Quantum Computing, W est, Jacob (California Institute of T ech-
nology), http:/ / www.cs.caltech.edu/~westside / quantum-intro.html

How Quantum Computers Will Work, Bonsor, Kevin (Howstuffworks.com), http:/
/ computerhowstuffworks.com/quantum-computer.htm

How Does a Quantum Computer W ork? (Howstuffworks.com), http:/ /computer.
howstuffworks.com/question475.htm

Quantum Leap for IBM Computers (Howstuf fworks.com), http://computer.how
stuffworks.com/news-item164.htm

Quantum Computer (Wikipedia, the Free Encyclopedia), http:/ /en.wikipedia.org/
wiki/Quantum_computer

Home, Deutsch, David (University of Oxfor d), http://www.qubit.org/people/
david/

Qubit.org, Centre for Quantum Computation (Oxfor d University), http://
www.qubit.org/

A Practical Architecture for Reliable Quantum Computers, Oskin, Mark; Chong,
Frederic T.; and Chuang, Isaac L. (IEEE Computer, January 2002), http:/ /
www.cs.washington.edu/homes/oskin/Oskin-A-Practical-Architec-
ture-for-Reliable-Quantum-Computers.pdf

Scalable Quantum Computing Using Solid-State Devices, Kane, Br uce (National
Academy of Engineering: The Bridge, Vol. 32, No. 4), http:/ /www .nae.edu/
NAE /naehome.nsf/weblinks/ MKEZ-5HULS9?OpenDocument

Quantum Computing (IBM Almaden Research Center), http://www .al-
maden.ibm.com/st/ quantum_information/qcom/

IBM’s Test-Tube Quantum Computer Makes History (IBM Corporation), http:/ /
domino.research.ibm.com/comm/pr.nsf/ pages/news.20011219_quantum.
html

Using Quantum Effects for Computer Security, Hartgroves, Arran; Harvey, James;
Parmar, Kiran; Prosser, Thomas; and Tucker, Michael (University of Birming-
ham), http://www.cs.bham.ac.uk/~mdr/teaching/modules04/security/
students/SS1-quantum.pdf

The Future of CPUs in Brief, Essex, David (T echnologyReview.com), http://
www.technologyreview.com/articles/02/01/wo_essex012802.asp?p=0

Programmable Cells: Engineer Turns Bacteria into Living Computers, Quinones, Eric
(Princeton University), http:/ / www .eurekalert.org/ pub_releases/2005-04/
pu-pce042505.php

Why Should We Care About Biological Computing?, Fulk, Kevin (University of
Houston), http:/ / www.uhisrc.com/FTB/Biocomputing / FTBBioComp.pdf

Computer architecture (general)

Computer Architecture (Wikipedia, the Free Encyclopedia), http:/ /en.wikipedia.
org/wiki/Computer_architecture

http://www.intel.com/research/
http://www.theregister.co.uk/2005/
http://www.kuro5hin.org/
http://www.cs.caltech.edu/~westside/quantum-intro.html
http://computer
http://computer.how
http://en.wikipedia.org/
http://www.qubit.org/people/
http://www.qubit.org/
http://www.qubit.org/
http://IEEE
http://www.cs.washington.edu/homes/oskin/Oskin-A-Practical-Architec-ture-for-Reliable-Quantum-Computers.pdf
http://www.cs.washington.edu/homes/oskin/Oskin-A-Practical-Architec-ture-for-Reliable-Quantum-Computers.pdf
http://www.cs.washington.edu/homes/oskin/Oskin-A-Practical-Architec-ture-for-Reliable-Quantum-Computers.pdf
http://www.nae.edu/
http://www.al-maden.ibm.com/st/quantum_information/qcom/
http://www.al-maden.ibm.com/st/quantum_information/qcom/
http://www.al-maden.ibm.com/st/quantum_information/qcom/
http://domino.research.ibm.com/comm/pr.nsf/pages/news.20011219_quantum
http://domino.research.ibm.com/comm/pr.nsf/pages/news.20011219_quantum
http://www.cs.bham.ac.uk/~mdr/teaching/modules04/security/
http://www.technologyreview.com/articles/02/01/wo_essex012802.asp?p=0
http://www.technologyreview.com/articles/02/01/wo_essex012802.asp?p=0
http://www.eurekalert.org/pub_releases/2005-04/
http://www.uhisrc.com/FTB/Biocomputing/FTBBioComp.pdf
http://en.wikipedia

362 Computer Architecture: Fundamentals and Principles of Computer Design

WWW Computer Architecture Page, Xu, Min; Martin, Milo; Bur ger, Doug; and Hill,
Mark (University of W isconsin-Madison/University of Pennsylvania/
University of Texas at Austin), http:/ /www.cs.wisc.edu/~arch/www/

Computer Architecture: Further Reading, Kjos, Kontorsjef Bar d (Norwegian
University of Technology and Science), http:/ / www.idi.ntnu.no/~dam/fag/
sif8064 / Further.php

Great Microprocessors of the Past and Pr esent, Bayko, John (University of Regina,
Canada), http:/ / www.sasktelwebsite.net/jbayko/ cpu.html

Computer Architecture Educational Tools, Koren, Israel (University of Massachusetts,
Ambherst), http:/ / www.ecs.umass.edu/ece/koren/architecture/

Computer Architecture Research Area (IBM Corporation), http:/ /domino.r esearch.
ibm.com/comm /research.nsf/pages/r.arch.html

Computer Architecture: The Anatomy of Modern Pr ocessors, Morris, John
(University of Western Australia), http://ciips.ee.uwa.edu.au/~morris/
CA406/CA_ToC.html

Computer Architecture: Single and Parallel Systems, Zargham, Mehdi R. (Prentice Hall),
http:/ /www.bzsoft.com/architecture.htm

Computer Organization and Ar chitecture, sixth edition, Stallings, W illiam (Prentice
Hall), http:/ / www.williamstallings.com/COA6e.html

The Essentials of Computer Or ganization and Architecture, Null, Linda and Lobur, Julia
(Jones and Bartlett Publishers), http:/ / computerscience.jopub.com/ catalog/
0763726494 / table_of_contents.htm

http://www.cs.wisc.edu/~arch/www/
http://www.idi.ntnu.no/~dam/fag/
http://www.sasktelwebsite.net/jbayko/cpu.html
http://www.ecs.umass.edu/ece/koren/architecture/
http://domino.research
http://ciips.ee.uwa.edu.au/~morris/
http://www.bzsoft.com/architecture.htm
http://www.williamstallings.com/COA6e.html
http://computerscience.jbpub.com/catalog/

	Front cover
	Title Page

	Copyright

	Dedication
	Preface
	Acknowledgments
	About the Author
	Contents
	Chapter 1 - Introduction to computer architecture
	1.1 What is computer architecture?
	1.1.1 Architecture vs. implementation

	1.2 Brief history of computer systems
	1.2.1 The first generation
	1.2.2 The second generation
	1.2.3 The third generation
	1.2.4 The fourth generation
	1.2.5 Modern computers: the fifth generation

	1.3 Types of computer systems
	1.3.1 Single processor systems
	1.3.2 Parallel processing systems
	1.3.3 Special architectures

	1.4 Quality of computer systems
	1.4.1 Generality and applicability
	1.4.2 Ease of use
	1.4.3 Expandability
	1.4.4 Compatibility
	1.4.5 Reliability

	1.5 Success and failure of computer architectures and implementations
	1.5.1 Quality and the perception of quality
	1.5.2 Cost issues
	1.5.3 Architectural openness, market timing, and other issues

	1.6 Measures of performance
	1.6.1 CPU performance
	1.6.2 Memory system performance
	1.6.3 I/O system performance
	1.6.4 System benchmarks

	1.7 Chapter wrap-up
	1.8 Review questions

	Chapter 2 - Computer memory systems
	2.1 The memory hierarchy
	2.1.1 Characteristics of an ideal memory
	2.1.2 Characteristics of real memory devices
	2.1.3 Hierarchical memory systems

	2.2 Main memory interleaving
	2.2.1 High-order interleaving
	2.2.2 Low-order interleaving

	2.3 Logical organization of computer memory
	2.3.1 Random access memories
	2.3.2 Sequential access memories
	2.3.3 Associative memories

	2.4 Cache memory
	2.4.1 Locality of reference
	2.4.2 Hits, misses, and performance
	2.4.3 Mapping strategies
	2.4.4 Cache write policies
	2.4.5 Cache replacement strategies
	2.4.6 Cache initialization

	2.5 Memory management and virtual memory
	2.5.1 Why virtual memory?
	2.5.2 Virtual memory basics
	2.5.3 Paged virtual memory
	2.5.4 Segmented virtual memory
	2.5.5 Segmentation with paging
	2.5.6 The MMU and TLB
	2.5.7 Cache and virtual memory

	2.6 Chapter wrap-up
	2.7 Review questions

	Chapter 3 - Basics of the central processing unit
	3.1 The instruction set
	3.1.1 Machine language instructions
	3.1.2 Functional categories of instructions
	3.1.3 Instruction addressing modes
	3.1.4 Number of operands per instruction
	3.1.5 Memory-register vs. load-store architectures
	3.1.6 CISC and RISC instruction sets

	3.2 The datapath
	3.2.1 The register set
	3.2.2 Integer arithmetic hardware
	3.2.3 Arithmetic with real numbers

	3.3 The control unit
	3.3.1 A simple example machine
	3.3.2 Hardwired control unit
	3.3.3 Microprogrammed control unit

	3.4 Chapter wrap-up
	3.5 Review questions

	Chapter 4 - Enhancing CPU performance
	4.1 Pipelining
	4.2 Arithmetic pipelines
	4.2.1 Types of arithmetic pipelines
	4.2.2 Pipeline scheduling and control

	4.3 Instruction unit pipelines
	4.3.1 Basics of an instruction pipeline
	4.3.2 Control transfers and the branch penalty
	4.3.3 Branch prediction
	4.3.4 Delayed control transfers
	4.3.5 Memory accesses: delayed loads and stores
	4.3.6 Data dependencies and hazards
	4.3.7 Controlling instruction pipelines

	4.4 Characteristics of RISC machines
	4.5 Enhancing the pipelined CPU
	4.5.1 Superpipelined architectures
	4.5.2 Superscalar architectures
	4.5.3 Very long instruction word (VLIW) architectures

	4.6 Chapter wrap-up
	4.7 Review questions

	Chapter 5 - Exceptions, interrupts, and input/output systems
	5.1 Exceptions
	5.1.1 Hardware-related exceptions
	5.1.2 Software-related exceptions

	5.2 Input and output device interfaces
	5.3 Program-controlled I/O
	5.3.1 Memory-mapped I/O
	5.3.2 Separate I/O

	5.4 Interrupt-driven I/O
	5.5 Direct memory access
	5.6 Input/output processors
	5.7 Chapter wrap-up
	5.8 Review questions

	Chapter 6 - Parallel and high-performance systems
	6.1 Types of computer systems: Flynn’s taxonomy
	6.1.1 Vector processors
	6.1.2 Array processors
	6.1.3 Multiprocessor systems
	6.1.4 Multicomputer systems

	6.2 Interconnection networks for parallel systems
	6.2.1 Purposes of interconnection networks
	6.2.2 Interconnection network terms and concepts

	6.3 Static interconnection networks
	6.3.1 Buses
	6.3.2 Linear and ring topologies
	6.3.3 Star networks
	6.3.4 Tree and fat tree networks
	6.3.5 Nearest-neighbor mesh
	6.3.6 Torus and Illiac networks
	6.3.7 Hypercube networks
	6.3.8 Routing in static networks

	6.4 Dynamic interconnection networks
	6.4.1 Crossbar switch
	6.4.2 Recirculating networks
	6.4.3 Multistage networks

	6.5 Chapter wrap-up
	6.6 Review questions

	Chapter 7 - Special-purpose and future architectures
	7.1 Dataflow machines
	7.2 Artificial neural networks
	7.3 Fuzzy logic architectures
	7.4 Quantum computing
	7.5 Chapter wrap-up
	7.6 Review questions

	Appendix
 - Reference and further reading materials with web links

