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I .  Introduction 

When combinational switching networks of relay contacts or of electronic 
gate elements are analyzed or synthesized, the network components are usually 
idealized in such a way that they may be adequately described by the Boolean 
algebra. I t  is usually postulated [1] that, at all times, all the normally open (or 
normally closed) contacts on a given relay open and close in synchronism with 
each other, and that each normally open contact is open (closed) when the nor- 
mally closed contacts are closed (open), and vice versa. 

Similarly in a network of electronic gate elements it is usually postulated [2] 
that an input variable can affect the network output with no intervening time 
lag. These assumptions, when put to use in synthesis procedures, lead to net- 
works which behave correctly for steady-state situations but which may not for 
transient conditions (during which a network input variable is changing from 
one of its binary states to the other). 

When combinational networks which do not behave ideally (in a sense to be 
considered below) during changes of input state are incorporated into larger 
switching networks which have sequential action (that is, which act as if they 
had memories) a hazard [3] exists and the sequential circuit may not operate as 
it was meant to by the designer. The significance of a network hazard can be sub- 
stantially reduced and sometimes eliminated by "smoothing" of the network 
output [4]. In a relay circuit, for example, the contact networks are used to con- 
trol relays which in turn contribute contacts to the various other contact net- 
works. If the response time of a given relay is increased so as to increase its 
smoothing action, the effect of a hazard in its controlling network may be elim- 
inated. But now contacts from the given relay which appear in other networks of 
the circuit may behave even less ideally than they did originally, thus creating 
new hazards in the other networks. Moreover, in both relay and electronic cir- 
cuits, the stratagem of smoothing at critical points in the circuit will always in- 
crease the reaction time of the circuit. In most applications this is undesirable. 

This paper suggests a method for the elimination of hazards without resort to 
signal smoothing. It  is shown here that  it is always possible to synthesize a com- 
binational switching network which behaves ideally even though its individual 
components do not. The technique proposed here does not involve the use of a 
new switching algebra. The terminal behavior of the resulting hazard4ree net- 
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works are independent of the timing of the contacts (in the case of a relay circuit) 
or of the delays along the signal paths (in the case of an electronic gate circuit). 

I f .  The Basic Hazards in Contact Networks 

2.1. In the t reatment  of contact networks in this paper, the complementary 
symbols 0 and 1 will stand for open circuits and closed circuits, respectively. For 
this transmission concept the operations of logical addition and logical multipli- 
cation must be associated with paralleling or cascading of contacts or networks 
[4]. The contacts on a given relay, R, will all have the same alphabetic designa- 
tor, which will either be unprimed (r) or primed (r') depending upon whether the 
contact is normally-open or normally-closed, respectively. When the relay, R, is 
unoperated (operated) the normally-open contact, r, is open (closed), and we 
may wr i te r  = 0 (r = 1).Of course, whenr  = 0, r '  = 1 and when r  = 1,r '  = O. 

In the transmission concept, therefore, the two networks of Fig. 1-a have 
transmissions of T1 = a'b + ac and T2 = (a + b)(a' + c). By means of the Boo- 
lean algebra we may prove that  these two expressions are equivalent. Tha t  is, 
when the relays A, B, and C are each in steady-state conditions (either operated 
or unoperated), the two networks cannot be distinguished by measurements 
made at their terminals. 

This equivalence can also be seen by showing, for each of the 2 3 = 8 possible 
combinations of values of the three switching variables, what  the network trans- 
missions are. A convenient way of doing this is in a rectangular matrix, called a 
map [5]. In Fig. 1-b the upper right-hand corner of the maps, for instance, repre- 
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FIG. 1. Illustrating static hazards in contact networks 
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sents the situation for which a = 0 (a' = 1), b = 1, and c ~- 0. I f  we evaluate 
the transmissions of each of the two networks when the a contact is open, the a t 
contact closed, the b contact  closed, and the c contact open, we find tha t  terminal- 
to-terminal paths exist in each network. Thus the corresponding entry in each 
map has been made equal to 1. 

2.2. In order to see indications of possible hazards in the map for a given net- 
work, it is necessary to include, in the map,  representations of the cut-sets and 
tie-sets determined from the topological structure of the network. By a cut-set we 
mean here a minimum set of contacts which, when open, insure tha t  the network 
transmission is zero ( that  the network terminals are cut apart),  even if all other 
contacts are closed. Analogously a tie-set means a minimum set of contacts 
which, when closed, insure tha t  the network transmission is uni ty ( that  the net- 
work terminals are tied together) even if all other contacts are open. 

In N1 the cut-sets are (a, b), (a', c), (b, c), and (a, a ')  and the tie-sets are (a', b) 
and (a, c). For N2 the cut-sets are (a, b) and (a', c) and (a, c), (a', b), (b, c), and 
(a, a') are the tie-sets. We eliminate from consideration the cut-set (a, a') in N1 
because, when the A relay is in a stable state these two complementary contacts 
can never be open simultaneously. In  N2(a, a') is dismissed as a tie-set since these 
two contacts can never be closed at  the same time if A is in a stable state. 

The cut- and tie-sets lust  found are shown in Fig. 1-c. Th~ tie-set (a', b) wil l  
be closed if a = 0 (a' = 1) and b = 1. Therefore it is shown as a grouping of the 
right pair of entries in the top row of the maps. Similarly, the left pair of entries 
in the top row, for which a = b = 0, stands for the cut-set (a, b). 

In  N1 assume tha t  the b and c contacts are closed. As the relay A changes its 
state of operation, the transmission path  through the network changes from the 
upper branch to the lower, or vice versa. The idealization which is usually made is 
tha t  the a and a t contacts always have complementary transmissions and that ,  
for example, iust as the a contact  is opening the a' contact is closing. Actually 
there may  be a short interval of t ime for which both a and a' are open. In  this 
case, N1 will have a momentar i ly  incorrect transmission of zero. The existence 
of this hazard in N1 can also be seen indicated by the arrow in the third column 
of the left map in Fig. 1-c. Note  tha t  there is no one tie-set of contacts which is 
certain to be closed during the transition. The hazard in N1 can be eliminated by  
timSng of the contact operations so tha t  a and a '  are both closed momentar i ly  
when a is unstable. 

In  N~ another kind of hazard exists when b = c = 0 and A is in an unstable 
state. I t  can be seen from the left column in the corresponding map  in Fig. 1-c 
that  the transmission should be zero both  before and after the transition. But  if 
a and a' are both momentar i ly  closed during the transition, an incorrect uni ty 
transmission will occur. This could be eliminated by timing of the contact  opera- 
tions so tha t  a and a' are simultaneously open when A is unstable. 

I t  is possible to derive networks which are terminally equivalent to those of 
Fig. 1 and in which no hazards are present regardless of the relative t iming of the 
contacts on any of the relays. Four  such networks are shown in Fig. 2-a, b, c, and 
d. There are present in each of them the three cut-sets (a, b), (a', c), and (b, c) 
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Fro. 2. Four equivalent hazard-free networks and their map representation 

and the three tie-sets (a', b), (a, c), and (b, c). These are plotted on the map. 
Note that  any two entries which are either both zeros or both ones, and which 
differ in the value of one variable only, are included in a common cut- or tie-set, 
respectively. Consequently, during the corresponding instability of any one of the 
relays A, B, or C, there is either a cut-set with each of its variables having the 
value zero firmly established, or a tie-set with each of its variables having the 
unity value firmly established. 

2.3. The hazards which were described and eliminated in the examples of 
the preceding section are what  might be called static hazards, since during each 
change of a single input variable it  was presumed tha t  the network transmission 
was to remain static a t  either zero or one. Another kind of hazard can occur when 
the network transmission is meant  to change, either from zero to one, or from one 
to zero, when some switching variable changes. We call this kind of hazard a 
dynamic hazard. 

Consider the network in Fig. 3-a. (The subscripts on the three contacts on the 
D relay may be neglected for the present time.) Its cut- and tie-sets are shown in 
the map of Fig. 3-b. The two dotted arrows indicate the static hazards in the net- 
work. One of the possible dynamic hazards is shown by the heavy arrow. Dur-  
ing the corresponding transition the only contacts which have changing transmis- 
sions are the contacts on the D relay. The a and b' contacts are closed and the 
c contact is open since a = 1, b = 0, and c = 0. Effectively then da is in parallel 
with the series combination of d~' and d l .  (See Fig. 3-c.) Assume tha t  when the 
D relay operates the three contacts change their states in the order of their sub- 
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FzG. 3. Illustrating a dynamic hazard 

scripts. When dl closes the network closes; when d2' opens the network reopens; 
and when d3 closes the network closes again. This multiple change of transmission 
before the network assumes an ultimate transmission which is the complement 
of the original transmission, constitutes its dynamic hazard. 

In general it can be shown tha t  a contact network has a dynamic hazard if 
and only if it is possible to fix all but  one of the variables (all but, say, x) at  some 
set of values such that  in the network some x and x' contacts are effective in a 
tie-set and some (not the same two) x and x' contacts are simultaneously effec- 
tive in a cut-set. (In Fig. 3 the dl and d2' contacts were the ones which were ef- 
fective in the tie-set and d3 and d2' were effective in the cut-set.) Therefore a 
necessary condition for a dynamic hazard is that  some relay contributes at  least 
three contacts (not all the same type) to the network. 

The elimination of static hazards does not necessarily guarantee that  dynamic 
hazards have been elimlnated. However, from a practical point of view, dynamic 
hazards actually cause far less difficulty in sequential circuits than do static haz- 
ards. Consequently the cut- and tie-sets which eliminate static hazards may here- 
after be called hazard-preventing even though their inclusion in a network does 
not always prevent dynamic hazards. 
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I I I .  Derivation of Canonic Forms for Hazard-Free Contact Networks 
3.1. We define a hazard-free contact network as one which, for single changes 

in its switching variables, does not change its transmission at all ff the steady- 
state transmissions before and after the variable change are the same, and which 
changes its transmission only once if the initial and final steady-state transmis- 
sions are complementary to each other. It is assumed that no contact changes its 
transmission more than once, if at all, during the instability of the corresponding 
relay (the contact does not bounce), but that the several contacts on that relay 
may change their states of transmission in any order whatsoever. In other words: 
From its terminals a hazard-free network looks like a contact which does not 
bounce if only the contacts which form the network do not bounce. The restric- 
tion to single change of switching variable is not a serious one since sequential 
circuits must be operated in essentially this manner anyhow [4, 6]. 

3.2. We have seen (Section 2.2) that static hazards may be prevented by pro- 
viding within a network both certain cut-sets as well as certain tie-sets. We now 
prove that if a network is composed of a parallel combination of cascade connec- 
tions of contacts corresponding to the specific tie-sets which prevent static haz- 
ards when the network transmission is unity, it will also be free from static hazards 
when the transmission is zero. As an example, note the network of Fig. 4-a which 
has the hazard-preventing tie-sets shown in the corresponding map. The network 
can be closed only when one (or more) of its parallel branches is closed. If the 
network transmission is zero, both before and after a single variable change, 
then each tie-path is open independent of the value of the changing variable. 
That is, each tie-path contains at least one contact which does not belong 
to the unstable relay and which is open while that relay is changing state. It is 
clear that no momentary unity transmission for the entire network is then 
possible. Thus the canonic network which consists of paralleled hazard-prevent- 
ing tie-paths is free from all static hazards, and incidentally, from dynamic haz- 
ards as well. 

A similar argument proves that the network which is formed from a cascade 
combination of parallel contacts corresponding to the cut-sets which prevent 
static hazards when the network transmission is zero, will also be free from all 
hazards. (See Fig. 4-b.) 

3.3. Networks in which all static hazards have been eliminated can be used 
for the control of the secondary (memory) devices in a sequential switching cir- 
cuit with the assurance that no first-order hazards will then be possible. (For 
the definition of an nth-order hazard see the summary at the end of this paper.) 
However, if the network (as in Fig. 4-a, b) contains only those tie- and cut-sets 
which eliminate static hazards it can further be guaranteed that the network will 
be free from dynamic hazards as well. For, if, during the change of state of one of 
the variables in this latter kind of network, one of its tie-sets (cut-sets) becomes 
closed (open) then this tie-set (cut-set) cannot immediately reopen (reclose) to 
cause a dynamic hazard since only one contact from the unstable relay is in'that 
tie-set (cut-set), and since it has been assumed that that contact does not 
bounce. It is, however, possible to have a network free of dynamic hazards even 
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when additional tie- or cut-sets are added to those which prevent static hazards, 
i f  the additional sets are carefully chosen. The network of Fig. 5 is such a network. 

Implicit in the derivation of the two canonic forms of a hazard-free contact 
network is the conclusion that every switching function has at least one hazard- 
free realization. 

The two canonic forms of Fig. 4-a, b may be simplified as in Fig. 4-c, d while 
maintaining the original cut- and tie-sets. Even these reduced networks contain 
twice the number of contacts than does the minimum contact realization of the 
function under discussion. (See Fig. 4-e.) This latter network is algebraically equiv- 
alent to the first four networks but is replete with hazards. In this example at 
least, the elimination of hazards required a substantial increase in the number of 
contacts. 

Not all economical networks have hazards, nor are all hazard-free networks 
necessarily in series-parallel form. The network of Fig. 5, which can be shown 
from its map to be hazard-free, demonstrates the point. In addition, it is easy to 
prove that any network which contains only normally open or normally closed 
contacts from each of its input relays is hazard-free. 

IV .  The Analysis and Prevention of Hazards in Gate Networks 

4.1. For the purposes of this section, the symbols 0 and 1 may be considered to 
represent low and high voltages, respectively. The gate networks will be com- 
posed of three fundamental kinds of elements with interconnected signal leads. 
These elements are the multiply, add, and inversion gates (sometimes known as 
the "and" ,  "or" ,  and "negation" gates, respectively). Other gate elements can 
be represented by simple combinations of these three gates. 

In order to parallel the thoughts in the analysis of contact networks, we intro- 
duce here the concepts of drop-sets and lift-sets which will be related to the struc- 
ture of gate networks and which are analogous to cut-sets and tie-sets, respec- 
tively. 

The gate networks shown in Fig. 6 each produce the function f = a'b + ac = 
(a + b)(a' + c). The drop-sets of the first network are (a, b), (a', c), and (b, c) 
and its lift-sets are (a', b) and (a, c). For example, (b, c) is a drop-set since when 
b = c = 0 (when b and c are both "dropped") the output voltage, f, is certain 
to be dropped to the zero level also. And (a', b) is a lift-set because when a' = 
1 (a = 0) and b = 1 (when a' and b are "lifted") the output voltage, f, is neces- 
sarily lifted to the one level also, no matter how the c voltage is changing. 
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FIG. 6. Two hazardous gate networks and their maps 

Note that  in the sense used here the set (b, c) is not a lift-set for the network in 
Fig. 6-a since even though b = c = 1 neither the signal a'b nor ac is thereby di- 
rectly implied to be unity;  therefore neither is the function f. This conclusion 
can be seen more clearly by  setting b = c = 1 and changing the variable a from 
zero to one and back. If there were no signal delay along either of the dotted 
paths (or if the delays were equal) then the inputs into the final add gate would 
always be complementary and f would always be unity even while a was changing. 

4.2. Physically, however, we are sure tha t  the signal delays are not  precisely 
equal. If, for instance, the delay along the upper path is greater than that  along 
the lower, and if (while b = c = 1) a changes from one to zero, then ac will be- 
come zero shortly before a'b becomes equal to one. For this short interval the 
output, f, will also be zero. This hazard is shown by an arrow on the corresponding 
map. 

I t  might be guessed that  a greater delay in the lower signal path would elimi- 
nate the hazard above. And so it will. But  if we assume that  the lower path  has 
the greater delay, consider what happens when a changes from zero to one (still 
keeping b = c = 1). Now a'b will become zero before ac becomes one and another 
hazard has been generated. In this situation, (,nlike the somewhat analogous 
contact network of Fig. l-a), hazards cannot be eliminated by  adding delays in 
the signal paths. 

In Fig. 6-b the gate network can be shown to have a static hazard for b = c = 
0 which cannot be eliminated unless the delays along the two parallel dotted 
paths could be made exactly equal. If the gates are realized from physical de- 
vices, which necessarily have slowly changing characteristics, this is an impos- 
sible ideal to achieve. 

4.3. With the analogy we have established between cut- and tie-sets and drop- 
and lift-sets, it is clear tha t  any function can be realized in a completely hazard- 
free gate network in forms analogous to the two canonic forms of Fig. 5-a, b. 
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In these networks paralleling of contacts corresponds to combination of signals 
in an add-gate and cascading of contacts corresponds to combination of signals 
in a multiply-gate. 

V. An Example of the Use of Hazard-Free Networks 

5.1. We have mentioned previously that the reason for designing hazard-free 
networks is that their use in sequential circuits helps to insure the operation 
planned by the circuit designer. In this section we sketch the synthesis for a 
relatively simple sequential circuit to show what additional complexity in its 
final design might typically be required. Only the outline of the synthesis is pre- 
sented here. It is but an example of the general procedure which has been pro- 
posed in [4]. 

The circuit we wish to design has two binary inputs, Xi and X~, and one binary 
output, Z. (The meanings of the symbol values, 0 and 1, need not be decided 
upon until later.) I t  is assumed that only one input may change at a time. When 
X2 changes from 0 to 1, the output is to change to (or remain at) the value of X1 
then existing. Otherwise, Z is to remain constant. A typical sequence of terminal 
values is given in Fig. 7. 

The primitive flow table, which is an exact statement of the specifications 
above, is given in Fig. 8-a. One of two possible merged flow tables is given in Fig. 
8-b along with a valid secondary state assignment. The Y and Z matrices follow 
in a straightforward way. They are map representations of the switching func- 
tions Y1, Y2, and Z which are dependent upon the variables xl, x2, y~, and y~ 
(see Fig. 8-e). In the Z matrix, the parenthesized entries must be chosen as they 
have so as to prevent false outputs during transient circuit states. The two dashed 
entries correspond to transient states for which the output may be chosen as 
either zero or one. The blank cells in both the Y and Z matrices represent non- 
occurring states and therefore the values of the functions may be chosen arbi- 
trarily here also. 

5.2. For a relay realization of the circuit, we chose the Y1 and Y2 functions as 
shown in Fig. 9-a, b, and Z = y2 • One economical contact network for generating 
the Y's is given in Fig. 9-c. The dotted y~ contact is not necessary except to pro- 
vide the dotted cut-sets in Fig. 9-a, b. With this contact, the network is hazard- 
free and no special timing between the x2 and x2' contacts is necessary. Without 

xl: tflA I Fi]-I F 

_TLJ-k   _Al f - U  tFI;U 

FIG. 7. Te rmina l  sequences  for a simple sequent ia l  circuit  
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FIG. 8. Flow table synthesis of a sequential circuit 

the additional yl contact, it would be necessary to be certain that there was a 
short interval of time during which both x2 and x2' contacts were open. The modi- 
fied circuit of Fig. 9-d provides additional simplicity if it is not necessary to give 
isolation at inputs and output. For this realization, Z = y~ + xlx~yl,  and the 
hazard-preventing cut- and tie-sets remain the same for Y1 and Y2. 

Note that the two hazards shown in Fig. 9-a, b correspond to transitions which 
may actually take place during the operation of the circuit. These transitions 
(from Fig. 8-b) are ~ 3 and ~ 7. If these changes in circuit state had not 
been possible, the associated hazards could have no effect on circuit behavior 
and would not need to be eliminated. 

5.3. For an all-triode realization of the circuit, it is convenient to choose Y1 
and Y2 in accordance with the maps of Fig. 10-a, b. The lift-sets shown dotted 
prevent the hazards indicated. They are generated by adding the dotted gate in 
the gate network of Fig. ] 0-c. One possible circuit realization of this network 
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FIG. 9. Relay realization of a sequential circuit 

(d) Modification of (¢) 

(Fig. 10-d) is obtained by associating inverter gates with plate-loaded triodes 
and multiply gates with resistive circuits for logical multiplication. These latter 
are chosen so that both of their input voltages must be high before the following 
grid voltage is raised above the cut-off level. Or, alternatively, diode "and" cir- 
cuits may be used. 

5.4. The gate network of Fig. 10-c has been modified slightly, rearranged, and 
its gates renumbered in Fig. ll-a. The changes preserve the hazard preventing 
lift- and drop-sets of the maps of Fig. 10-a, b. By associating the gates of the 
revised network with the transistor circuits [7] of Fig. l l-b, the completed se- 
quential transistor switching circuit of Fig. 11-e results. Again we have illustrated 
that additional physical devices, even though not affecting the steady-state 
algebraic relationships within a circuit, may yet prevent the hazards which en- 
danger proper operation during transients. 
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VI. Summary 

This paper hsa contained a suggestion for a method for the elimination of 
hazards in combinational switching networks, It is possible [4, 61 that when a 
combinational network is used for the control of a memory device in a sequential 
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switching circuit more than one of its variables may be allowed to change state 
simultaneously. Through an extension of the procedure developed in this paper 
it is possible to prove that such a network can be made hazard-free for the 
multiple changes of variable to which it may be subject, if its tie-sets correspond 
to the prime implicants [8] of the transmission function expressed in sum-of- 
products form and if its cut-sets correspond to terms which are dual to prime 
implicants in the product-of-sums form. 

When hazard-free networks are used for the control of the binary memory 
devices in a sequential circuit, they prevent the major cause of departure of cir- 
cuit operation from the ideal: momentarily improper excitation signals to the 
devices. 

Another related, but more obscure, cause of non-ideal circuit operation, multi- 
ple-order hazards, is illustrated in Fig. 12. (This is not meant to be a useful cir- 
cuit.) Assume initially that all relays are unoperated. Grounding of the input 
operates the A relay. Ideally both contacts al and a2 should close simultaneously, 
which action would be followed by the operation of B, C, and D. If, instead, the 
al contact closes (before the a~ contact closes) and operates B, it is conceivable 
that C and D also operate before the a2 contact closes. If this happens, the se- 
quence of action in the B relay controlling network is: al closes, d' opens, and 
a~ closes. This non-ideal excitation of B constitutes what we will call a third-order 
hazard because it exists only if the difference in closing times of the al and a~ 
contacts is more than the response time of the three relays B, C, and D. 

Clearly, hazards of higher and higher order are less and less likely to cause de- 
parture of circuit behavior from that planned by its designer. Even first-order 
hazards do not usually cause trouble because all memory devices have at least a 
little smoothing (inertial) action on the signals they handle. The subject of mul- 
tiple-order hazards is, however, one of theoretical interest. A careful analysis of 
Figs. 10-c and 11-a shows that possible second-order hazards are present if there 
is sufficient delay at the points labeled H. The hazards may be eliminated by 
inserting delay (no smoothing is necessary) in the (Y1, yl) lead; no delay or 
smoothing is necessary in the (Y2, y2) lead. 
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