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Foreword 

The first Stanford MIPS project started as a special graduate course in 
1981. That project produced working silicon in 1983 and a prototype for 
running small programs in early 1984. After that, we declared it a success 
and decided to move on to the next project-MIPS-X. This book is the 
final and complete word on MIPS-X. 

The initial design of MIPS-X was formulated in 1984 beginning in the 
Spring. At that time, we were unsure that RISe technology was going 
to have the industrial impact that we felt it should. We also knew of a 
number of architectural and implementation flaws in the Stanford MIPS 
machine. We believed that a new processor could achieve a performance 
level of over 10 times a VAX 11/780, and that a microprocessor of this 
performance level would convince academic skeptics of the value of the 
RISe approach. We were concerned that the flaws in the original RISe 
design might overshadow the core ideas, or that attempts to industrialize 
the technology would repeat the mistakes of the first generation designs. 

MIPS-X was targeted to eliminate the flaws in the first generation de­
signs and to boost the performance level by over a factor of five. 

From this high-level performance goal, we created a list of secondary 
goals. At the top of the list were simplicity and a high clock rate. We felt 
that the MIPS design had become overly complex leading to unnecessary 
bottlenecks on performance and to unnecessary design complexity. Simpli­
fying the instruction set and increasing the instruction count per program 
put more focus on the need for a high clock rate. 

The goal of a high clock rate led us to confront one of the toughest prob­
lems facing designers of high performance microprocessors-the differences 
in on-chip and off-chip bandwidth. How could we build a machine with a 
simple instruction set and a high clock rate without putting unreasonable 
demands on the external interface and memory system? The answer was 
a fast on-chip instruction cache, but limited die area forced us to find a 
clever design that minimized tag area without sacrificing hit rate. The 
streamlined instruction set freed a large amount of silicon for the cache, 
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xx FOREWORD 

reinforcing an advantage of the RISC architecture approach. Non-RISC 
machines are just reaching the level where they have the same amount of 
cache that MIPS-X had in 1986. 

In addition to the aggressive clock rate, the deeper pipeline in MIPS-X 
forced us to find new ways to deal with branch penalties. Finally, we 
felt the need to provide for hardware floating-point support, which had 
been ignored in the first generation RISC machines. We supplied a high 
performance coprocessor interface for a floating point unit. The on-chip 
instruction cache created some additional challenges in delivering floating 
point instructions to the coprocessor. 

MIPS-X also tried a few new design approaches not used in MIPS: 
MIPS-X used a more innovative and aggressive clocking strategy. The 
20 MHz clock rate was attained with this approach, and Mark Horowitz's 
design skills. MIPS-X also had a more complete CAD strategy-especially 
for simulation. This helped find bugs in the design much earlier. A solid 
functional decomposition of the design with simulation provided the ba­
sis for a structured design where individual segments could be designed in 
parallel. Paul Chow's efforts at putting together this simulator and coor­
dinating the design were directly responsible for a bug-free design on first 
silicon. 

Probably the thing that surprised us most about MIPS-X is that the 
project took essentially the same amount of time that the first MIPS 
project-about three years to silicon and four years to a board-level demo! 
We thought that we had learned a lot since MIPS, and we had a much more 
aggressive schedule than the MIPS schedule. Nevertheless, the project took 
just as long. Of c~urse, the longer design schedule was directly related to 
the improvement in performance and increase in the size of the design­
both the performance and transistor count were more that five times larger. 
We could never have done a design as complex as MIPS-X with the expe­
rience and tools that we used for the first MIPS processor. 

We have found that a project of the duration and complexity of MIPS 
or MIPS-X is at about the limit of what we can handle in a university. 
Completing this sort of project requires the unwavering dedication of a few 
people and the individual contributions of many. The output from such a 
project consists of a wide variety of insights gained by the team members, 
a collection of standard publications, and a document of this type. Only 
with a book of this scope can the entire story of the MIPS-X design be 
told. Our hope is that this document can convey a fraction of what we 
have learned from the MIPS-X project. 

John Hennessy 



Preface 

VLSI microprocessors built according to the RISe philosophy have made a 
significant impact in the commercial marketplace. Much of the work that 
led to the development of these processors originated from Stanford Uni­
versity and the University of California at Berkeley. This book is a detailed 
description of the design and implementation of a second generation VLSI 
RISe microprocessor at Stanford University called MIPS-X. 

The MIPS-X project began at Stanford University in the Spring of 
1984 with the goal of investigating second generation RISe architectures. 
Within the project, there were two distinct groups that interacted very 
closely to define the architecture of MIPS-X. One of the groups was 
the compiler group that was looking at code-generation and optimization 
strategies for RISe machines, and the other group was the hardware group 
that was responsible for specifying and implementing the actual proces­
sor. Together, they worked to design the instruction-set architecture of 
MIPS-X by using data gathered from benchmarks run on instruction-level 
simulators. 

The MIPS-X processor was successfully implemented and tested in 
1986. It demonstrated that a processor using simple hardware and so­
phisticated compilation techniques could provide very high performance. 
The results of this work are documented in many places, and the references 
are collected in the Bibliography. 

This book concentrates on the hardware implementation of MIPS-X 
and begins with a description of the MIPS-X architecture and instruction 
set. This is followed by an an overview of the MIPS-X software system 
and some of the strategies that it uses to generate efficient code. The 
remainder of the book is an in-depth examination of the implementation 
of a VLSI RISC microprocessor. We have attempted to document most 
of the details of the hardware implementation of MIPS-X, including logic 
equations, logic and circuit diagrams, and some layout considerations. The 
principle designers have described each of the major sections of MIPS-X: 
the Instruction Cache, the Instruction Register, the Register File, the Ex-
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ecute Unit, the PC Unit, the Tags Unit, and the external interface. 
In Chapter 3 Scott McFarling briefly describes the compiler system and 

provides citations to the literature for more detailed explanations. Steve 
Richardson contributed the section on the Interprocedural Analyzer, and 
Steve Tjiang contributed the section on the Code Generator. Chapter 4 
gives a general picture of the hardware resources, and mentions some of 
the implementation issues. Glenn Gulak provided the description of the 
naming convention that we used for the signals. The Execute Engine, com­
prising the Register File and the Execute Unit, is described in Chapter 5. 
Mark Horowitz did the Register File, and the datapath part of the ALU 
that was used in the Execute Unit. The ALU was simplified for use as 
the PC Unit incrementer and displacement adders. Richard Simoni did 
the Execute Unit. The parts of the processor that have to do with in­
struction fetching are described in Chapter 6. I did the PC Unit, and 
Jonathan Rose changed the PC PLA to standard cells. Arturo Salz did 
the Tags Unit, John Acken did the Instruction Cache, and Don Stark did 
the Instruction Register. Chapter 7 describes the External Interface of 
MIPS-X. Section 7.1 is essentially a Stanford Computer Systems Labora­
tory Technical Report called MIPS-X: The External Interface. This was 
done by Anant Agarwal, Arturo Salz, and myself. Appendix A describes 
the MIPS-X exception handling in detail, and is taken from the MIPS-X 
Instruction Set and Programmer's Manual[8J. Appendix B is also from 
the Programmer's Manual, and describes the use of the multiplication and 
division instructions of MIPS-X. 

Paul Chow 
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Chapter 1 

Introduction 

MIPS-X is the successor to the MIPS project at Stanford University. Like 
its predecessor, it is a single chip VLSI processor that uses a simplified 
instruction set, pipelining and a software code reorganizer to obtain high 
performance. Key features include single-cycle execution of all instruc­
tions, use of an on-chip 512-word instruction cache, coprocessor support, 
and support for multiprocessor operation. The processor is designed in 
a 2 /-lm, 2-level metal CMOS technology, and will have a cycle time of 
50 ns. 

During the spring of 1984 the original MIPS design team plus about 
half a dozen new students began investigating architectures for a new 
high performance microprocessor. The resulting design, MIPS-X, bor­
rows heavily from the original RISC[33, 27] and MIPS designs[21, 35], 
though most closely resembles the latter for obvious reasons. 

Our experience with the MIPS design[35] reinforced some of our ini­
tial observations about machine design. One of the goals of the MIPS 
project was to develop an architecture that would efficiently execute 
compiled code. To accomplish this goal, we tried to present as much 
parallelism of the micromachine to the software system as possible, even 
when this resulted in a complex set of constraints on the assembly level 
programmer. One way that MIPS achieved parallelism was through the 
heavy use of pipelining. All the pipeline interlocks were maintained by 
the software system; there were no hardware interlocks. Not only did 
this make the hardware simpler, it also gave the compiler a chance to 
reorganize the code to make use of the cycle normally wasted during an 
interlock. These design decisions were enormously successful. Both the 
heavy use of pipelining and the transfer of the interlocks to the software 
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2 CHAPTER 1. INTRODUCTION 

were important reasons behind the high performance of MIPS. 
Not all the original design tradeoffs made for MIPS were, in hindsight, 

the best ones. In the original MIPS design, two operations could be 
packed into a single machine instruction. The architecture supported 
instructions with two AL U operations in them or an AL U operation 
with a memory operation. This packing of assembly level instructions 
was done to reduce the required instruction traffic and to make maximal 
use of the available hardware. It also made the instructions more difficult 
to decode and the pipeline more difficult to control. As a result, the 
clock cycle time of the 3f.lm nMOS version of MIPS was limited by the 
instruction decode time. 

MIPS-X uses much the same overall organization as the original 
MIPS machine. It is again a heavily pipelined machine, with a deeper 
pipeline than the original MIPS design, and the resulting pipeline inter­
locks are handled by the supporting software system. MIPS-X differs 
from MIPS in a few important areas: 

• All MIPS-X instructions implement a single operation and execute 
in a single clock cycle. 

• All instructions are fixed format; every instruction is 32 bits. 

• Simple and efficient support for coprocessors is provided. 

• Support for its use as the base processor of a shared memory mul­
tiprocessor is provided. 

• MIPS-X contains a large on-chip instruction cache. 

• The processor was fabricated in a 2f.lm, 2-level metal CMOS tech­
nology. 

MIPS-X took about two years from the beginning of the project until 
the design was complete and the layout sent for fabrication. Over half of 
this time was spent deciding what to implement. These times are very 
similar to those for the original MIPS microprocessor[22, 34]. Although 
the implementation methods were different, both projects spent over a 
year, and more than halftheir design time, before work on the details of 
the circuit design and layout began. It is interesting to note that almost 
no CAD tools[lO] were used in this initial phase of the project except 
for a small amount of exploratory layout to determine cell sizes. Most of 
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the architectural decisions for MIPS-X were made using data gathered 
from the original MIPS software system and instruction-level simulator, 
and good old-fashioned back-of-the-envelope estimates. 

Once we had an idea of what we needed to implement, we partitioned 
the design according to functional units: the Instruction Cache, the In­
struction Register, the External Interface, the Register File, the Execute 
Unit, the PC Unit and the Tags Unit. A designer was assigned to each 
of the sections and he was responsible for everything from building the 
functional description to doing the layout (using magic[32]) and verifica­
tion of his section. This meant that each person became the expert for 
his part of the chip and did not need to know details about the other sec­
tions except for the timing of the signals at the boundaries. The details 
of various global signals were mostly tracked by one person. Partitioning 
the design in this was also encouraged the use of separate, independent 
controllers for each section instead of using a more global approach that 
would have been more complex. 

A chronology of major events is shown in Figure 1.1. Once the initial 
architecture was specified in the form of the architecture manual[8], de­
tailed work on the microarchitecture of the machine began. A functional 
simulator, called Funsim, was written to check that all the correct sig­
nals were being generated and that they had the correct timing. Funsim 
was used extensively during the final verification and was the key reason 
that the pieces of the design could be assembled and the switch-level 
simulation running programs within a few days. The final verification 
only took about two ~eeks[10]. 

Funsim became the definitive description of the machine and was an 
important part of the verification process. The switch-level simulator, 
RSIM[44], was connected to Funsim so that the switch-level circuit could 
be stimulated and checked by Funsim. This was called comparison-mode 
simulation because the switch-level circuit was run in parallel with Fun­
sim so that the behaviour of the two circuits could be compared at every 
clock step. This was first used to verify the pieces of the design by run­
ning sequences of test code and small Pascal programs. Once the pieces 
of the chip worked correctly in this mode, the chip was put together and 
simulated further to get the last bugs out. 

First silicon was received in October of 1986 and, except for a small 
problem with the instruction cache, some working parts were found. The 
next step was to build a board for the processor and this was done by 
a design class in the spring of 1987. By mid summer, we were able to 
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CHAPTER 1. INTRODUCTION 

John Hennessy describes the goals for a new processor to follow 
the MIPS project. 
The basic pipeline structure is decided. There are still ques­
tions about the instruction cache, using register windows or not, 
branches and branch prediction, character support and LISP sup­
port. 
An all day meeting is held to discuss the work done over the 
summer. The datapath components are described along with a 
proposed instruction set and encoding. The chosen instruction 
cache organization and branch strategies are explained and data 
is given to support them. A floorplan for the chip is shown. 
The final format of the instruction set is settled. 
The first version of the MIPS-X Instruction Set and Programmer's 
Manual is published. 
The instruction-level simulator, Milsx, comes up. 
The small benchmarks run on Milsx. 
A document with initial ideas for the control signals and circuits 
in the datapath is given to the design group. 
Design of the functional simulator begins. 
A more detailed description of the datapath timing and circuits 
is done. This includes stick diagrams for some circuits. 
The functional simulator kernel is completed and people begin 
writing models of their sections. 
The functional simulator is put together and begins to run simple 
programs a few days later. 
Start to put the layout for the datapath together. 
The functional simulator executes a simple Pascal program. 
The pad frame is built around the chip. The die will be 8mm by 
8.5mm. 
The full datapath is extracted. 
Extraction of the current full design begins to see if anything will 
break. 
Simulation of the various parts of the chip begins using RSIM and 
Funsim. 
The extracted version of the full chip minus the instruction cache 
memory cells runs Ackerman. The functional simulator is used to 
drive the RSIM model. 
A version of the design is frozen and archived, ready for transfer 
to MOSIS. Design also sent to Xerox PARC shortly thereafter. 
Ten MIPS-X die arrive from Xerox PARCo Mosis parts had arrived 
earlier but they had a mask problem. 
Assembling of the test setup is done and initial testing is done. 
One of the dies runs Ackerman to completion with the instruction 
cache disabled. 
The MIPS-X board executes Puzzle successfully. 

Figure 1.1: A chronology of MIPS-X. 
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download Pascal programs to the board and run them. 
The MIPS-X project was both a large software effort in exploring 

advanced compilation techniques and the design of the VLSI processor. 
This book concentrates on the latter, examining the details of the hard­
ware design and describing the circuits used. In the next chapter we 
begin with an overview of the MIPS-X architecture and instruction set 
and describe the hardware-software tradeoffs that were made. Chapter 3 
follows with an overview of the MIPS-X compiler system and some of 
the strategies that it uses to generate efficient code. In Chapter 4 we 
begin our detailed description of the MIPS-X hardware with an exam­
ination of the global issues. Chapter 5 explains the execution engine, 
which includes the Register File and the Execute Unit. The instruction 
fetch hardware is explained in Chapter 6. This consists of the PC Unit, 
the Tags Unit, the Instruction Cache and the Instruction Register. The 
External Interface is explained in Chapter 7. This focuses on the timing 
of the signals on the pins. 



Chapter 2 

Architecture 

The design of VLSI processors is dramatically affected by the constraints 
of the fabrication technology. The speed/complexity tradeoffs are ex­
tremely important and difficult to resolve. Additional chip functionality 
requires more area, and often slows down every other function of the 
chip. This slowdown arises from increased control logic complexity and 
increased capacitance loading on the wires. The decrease in overall speed 
can negate the desired improvement in machine performance. To pre­
vent this from occurring in MIPS-X, our overall design philosophy was to 
keep the processor as simple as possible. When new features, like copro­
cessor support, were added, the goal was to add the minimum required 
to accomplish the task. 

In this chapter, we first show the architecture of MIPS-X by giving an 
overview of the hardware resources, the instruction set, and the exception 
handling. We then examine some of the hardware tradeoffs that were 
made during the design of the processor. 

2.1 MIPS-X Overview 

MIPS-X is a 32-bit microprocessor that uses a simplified instruction set. 
The instruction set is designed to be very easy to decode and to require 
only simple hardware for its execution. Table 2.1 lists the MIPS-X in­
structions and Figure 2.1 shows the format ofthe instructions. A detailed 
description of the bit assignments in the instruction opcodes is given in 
Appendix C. The simplified instruction set has two important benefits: 
simple, fast circuits can be used and there is more area left to imple-

7 
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Memory 

11010p Src1 Des! Offse! (17) 

Branch 

1 00 1 Cond I Src1 Src2 H Disp (16) 

Compute 

1 01 I OP Src1 Src2 Des! Comp Func (12) 

Compute Immediate 

Src1 Des! Immed (17) 

Figure 2.1: The MIPS-X instruction formats. 

ment features that can contribute to the performance of the machine. In 
MIPS-X, most of the area was used to implement an instruction cache. 

MIPS-X is a load-store architecture, meaning the only memory op­
erations are explicit loads and stores. It has 32 general purpose registers 
and provides a 32-bit ALU and a 64-bit to 32-bit funnel shifter for com­
pute operations. Integer multiplication and division are also supported 
with I-bit at a time multiply and divide step instructions. Appendix B 
explains how integer multiplication and division work. Within the pro­
gram counter section, there is an incrementer that calculates the next 
sequential address and a displacement adder that computes the branch 
destination. Providing a separate AL U and displacement adder allows 
branch instructions to both compute a condition and the target address 
simultaneously. 

There are also several special registers. They are: 

PSW The processor status word. 

PC-4, PC-l Locations in the PC Chain used for saving and restoring 
the state of the PC Chain. 

MD The mul/div register. This is a special register used 
during multiplication and division. 
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Instruction Operands 

Memory Instructions 
ld X[Src1],Desl 
sl X[Src1],Src2 
ldf X[Src1],fDesl 
slf X[Src1],fSrc2 
ldl X[Src1],Desl 
sll X[Src1],Src2 
movfrc Coplnstr,Dest 
movtoc Coplnstr,Src2 
alue CopInstr 

Bra.nch Instructions 
beq,heqsq Srcl,Src2,Label 

Opera.tion 

Desl:=M[X+Src1] 
M[X+Src1]:=Src2 
fDesl:=M[X+Src1] 
M[X+Src1]:=fSrc2 
Desl:=M[X+Src1] 
M[X+Src1]:=Src2 
Desl:=CopReg 
CopReg:=Src2 
Cop executes CopInstr 

Comments 

Load 
Store 
Load floating-point 
Store floating-point 
Load through - bypass cache 
Store through - bypass cache 
Move from coprocessor 
Move to coprocessor 
Coprocessor ALU 

Branch if equal 

9 

bge,bgesq Srcl,Src2,Label 
bhs, bhssq Srel,Src2,Label 
blo,blosq Srcl,Src2,Label 

PC:=Label if Src1 = Src2 
PC:=Label if Src1 >= Src2 
PC:=Label if Src1 >= Src2 
PC:=Label if Src1 < Src2 
PC:=Label if Src1 < Src2 
PC:=Label if Src1 <> Src2 

Branch if greater or equal 
Unsigned branch if higher or sa.me 
Unsigned branch if lower 

bU,bltsq Srcl,Src2,Label 
bne, bnesq Srel,Src2,Label 

Compute Instructions 
a.dd Srcl,Src2,Dest 
dstep Srcl,Src2,Dest 

msta.rt Src2,Dest 

mstep Srel,Src2,Dest 

sub Srcl,Src2,Dest 
suhne Srcl,Src2,Dest 
and Srcl,Src2,Dest 
bie Srcl,Src2,Dest 
nol Srcl,Dest 
or Srcl,Src2,Dest 
xor Srcl,Src2,Dest 

mov Srcl,Dest 
asr Srcl,Dest,#N 

rotlb Srcl,Src2,Dest 
roUcb Srcl,Src2,Dest 

sh Srcl,Src2,Dest,#N 

nop 

Compute Immediate Instructions 
addi Srcl,#N,Dest 

jpc 
jpcrs 

jspci 
movfrs 
movtos 
trap 

Src1,#N,Desl 
SpecReg,Dest 
SrcI,SpecReg 
Vector 

Desl:=Src1+Src2 

Dest:=Srcl-Src2 
Desl:=Src1+Src2 
Dest:=Srcl bitwise a.nd Src2 
Dest:=s;cl" bitwise a.nd Src2 
Desl:=Src1 
Dest:=Srcl bitwise or Src2 
Dest:=Srcl bitwise 

exclusive-or Src2 
Dest:=Srcl 
Desl:=Src1 shifled right N 

positions 
Dest:=Srcl byte rotated left 
Dest:=Srcl byte rotated left 

Desl:=Src2[32-N:31] II 
Src1[O:32-N -I] 

rO:=rO+rO 

Desl:=N +Src1 

Desl:=PC+1, PC:=Src1+N 
Desl:=SpecReg 
SpecReg:=Src1 

Branch if less 
Branch if not equal 

Integer add 
One step of I-bit restoring divide 

algorithm 
First step of I-bit shift a.nd add 

multiplication 
One step of I-bit shift a.nd add 

multiplica.tion 
Integer subtra.ction 
Subtract with no carry in 
Logica.l and 
Bit clear 
Logical not 
Logica.lor 
Logical exclusive-or 

Really jusl add Src1,rO,Desl 
Arithmelic shifl righl 

Rolale leU by [30:31] byles 
Rolale leU by complemenl of 

Src2[30:31] byles 
Funnel shift 

No operation. Really just 
a.dd rO,rO,rO 

Add immediate I7-bit sign 
extended 

Jump using value in PC Chain 
Jump from PC Cha.in a.nd restore 

state 
Jump indexed, save PC 
Move from special register 
Move to special register 
Trap to vector 

Src2[a : b] mea.ns the bit field containing bits a through b in Src2 where the bits are 
numbered Big-Endian (Bit 0 is the most significant bit). 

The register rO is hardwired with the constant zero. 
The mov and nop instructions are assembly language equiva.lents for other instructions. 

Table 2.1: MIPS-X instruction set. 
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The architecture has four types of instructions: memory instructions, 
conditional branch instructions, compute instructions, and compute im­
mediate instructions. The memory system is byte addressed and is ac­
cessed via load and store instructions but the memory system only han­
dles word quantities. All memory operations use the same addressing 
mode; the contents of a register are added to a 17-bit signed offset to 
produce a 32-bit address. Memory instructions may communicate with 
other hardware besides the external cache. We use this fact to implement 
a fast and simple coprocessor interface. 

The coprocessor instructions, movfrc (move from coprocessor) and 
movtoc (move to coprocessor), use the memory instruction format. These 
instructions are used to transfer data between the processor registers 
and the coprocessor registers. The instruction bits for the coprocessor 
(Coplnstr) are put into the Offset field, and these bits appear on the 
address lines of the processor where they can be read by the coprocessor. 
The format of Coplnstr is not determined by the processor hardware, 
but should include bits to identify a coprocessor, a function field, and 
some source and destination register specifiers. 

One coprocessor, usually a floating-point unit, is deemed to be spe­
cial. The instructions ldf (load floating-point) and stf (store floating­
point) can be used to load and store the registers of one specific copro­
cessor without needing to use the processor registers as an intermediate 
step. For these instructions the Dest field for ldf and the Src2 field for 
stf instructions appear on the FPReg lines of the processor. 

All instructions are restartable so MIPS-X will support a dynamic, 
paged virtual memory system. To help implement such a system, 
MIPS-X supports both maskable and nonmaskable interrupts. The only 
internally generated exception is trap on overflow, and this can be dis­
abled by setting a bit in the PSW. For systems requiring more com­
plex interrupt handling, an external interrupt coprocessor can be added. 
MIPS-X also provides two operating modes, system and user, that ex­
ecute in separate address spaces to provide the protection need~d to 
implement an operating system. The current mode is stored in the PSW 
and it can only be changed while executing in system mode. 

2.1.1 Memory Organization 

The memory is composed of 32-bit words and it is a uniform address 
space starting at 0 and ending at 232 - 1. Each memory location is a 
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Word 0 Word 1 Word 2 
30 

Word2 -1 

Figure 2.2: Word numbering in memory. 

0 7 8 15 16 2324 

I I I I I I I I I I I I I I I I I I I I I I I I 

11 

31 

I I I I I 
Byte 0 (MSB end) Byte 1 Byte 2 Byte 3 (LSB end) 

Figure 2.3: Bit and byte numbering in a word. 

byte. Load/store addresses are manipulated as 32-bit byte addresses on­
chip but only words can be read from memory (ie., only the top 30 bits 
are sent to the memory system). The numbering of words in memory 
is shown in Figure 2.2. Bytes (characters) are accessed by sequences of 
instructions that can do insertion or extraction of characters into or from 
a word. Instructions that affect the program counter, such as branches 
and jumps, generate word addresses. This means that the offsets used 
for calculating load/store addresses are byte offsets, and displacements 
for branches and jumps are word displacements. The addressing is con­
sistently Big Endian[l1]. 

Bytes are numbered starting with the most significant byte at the 
most significant bit end of the word. The bits in a word are numbered 0 
to 31 starting at the most significant bit (MSB) and going to the least 
significant bit (LSB). Bit and byte numbering are shown in Figure 2.3. 

The address space is divided into system and user space. An address 
wi th the high order bit (bit 0) set to one (1) will access user space. If 
the high order bit is zero (0) then a system space address is accessed. 
Programs executing in system space can access both system and user 
space. User programs cannot access system space. Any attempt to access 
system space will result in the address being mapped to user space. Bit 
o of the address will always be forced to 1 (a user space address) in user 
mode. 

2.1.2 Caches 

Memory bandwidth is an important issue in high performance proces­
sor design and MIPS-X is no exception. The processor is capable of 
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executing one instruction every clock cycle. At a clock frequency of 20 
MHz it requires 30 to 40 Mwords/sec of memory bandwidth to satisfy 
its instruction and data fetch requirements. Getting this amount of data 
across the available package pins would be a difficult task. The solu­
tion used in MIPS-X is to provide a large (2K byte) instruction cache 
(ICache) on the chip. Only instructions that miss in the on-chip cache 
need to pass through the package pins. The cache is placed above the 
datapath, in the area of the chip that is normally used for microcode 
storage and processor control. External memory fetches, consisting of 
data references and instruction references that miss in the ICache, are 
handled by a large (16K to 64K word) external cache (Ecache). The 
external cache uses a shared bus to communicate with main memory. 
An added benefit of this two-level cache is that it effectively provides a 
second port to memory; the processor can fetch an instruction from the 
ICache at the same time it is accessing off chip data. 

Store instructions assume that the Ecache is a write-back cache mean­
ing that two cycles are needed to complete the store. The first cycle is 
used to probe the cache to make sure the location exists and the sec­
ond cycle is used to do the actual store. The software must schedule a 
non-memory instruction after every store instruction. However, ICache 
misses cannot be predicted so there is one hardware interlock that occurs 
if an ICache miss occurs after the first cycle of the store instruction. This 
interlock stalls the processor for one cycle to complete the store before 
the ICache miss sequence begins. 

2.1.3 Pipeline Organization 

MIPS-X is heavily pipelined so that one instruction can be issued every 
cycle. Each instruction is divided into five pipeline stages. They are: 
IF, Instruction fetch; RF, Instruction decode and register fetch; AL U, 
AL U or shift operation; MEM, Wait for data from memory on a load and 
output data for a store; and WB, Write the result into the destination 
register. 

The use of the AL U cycle depends on the instruction being executed. 
For compute or compute immediate instructions, this cycle performs 
the desired computation. During memory instructions the AL U is used 
to compute the address of the desired memory location. For branch 
instructions the AL U is used to compare two registers to determine the 
branch condition. 
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Although a compute instruction finishes its computation during the 
third pipeline cycle (ALU), the result is not written back into the Reg­
ister File until the last pipeline cycle. This delayed write-back is done to 
make instructions only change machine state during their last pipeline 
cycle, making exception handling much easier. Internal bypassing is pro­
vided so that instructions do not have to wait for previous instructions 
to write their results in the Register File (during WB) before being able 
to access their results. With bypassing, two ALU instructions can be 
issued in sequence even if the second one uses the result of the first one. 
For a load instruction, there is still a delay of one cycle between the load 
instruction and the availability of its result for the next instruction. The 
software must take this load delay into consideration. 

Another pipeline interlock that arises from this pipeline arrangement 
is a branch delay of two. In a branch instruction the result of the com­
parison is not known until the end of the AL U pipeline stage. By this 
time, two instructions have been fetched before the result of the branch 
can take effect. The software tries to schedule useful instructions in the 
delay slots. To increase the probability of finding useful instructions, one 
version of the branch instructions makes it possible to statically predict 
that the branch will be taken. If the branch is not taken, the instructions 
in the delay slots are squashed or cancelled. As with branches, the jump 
instruction has a delay of two because the AL U is used to compute the 
jump address. 

2.1.4 The Processor Status Word 

The Processor Status Word (PSW) holds some of the information per­
taining to the current state of the machine. The PSW actually contains 
two sets of bits that are called PSWcurrent and PSWother. The cur­
rent state of the machine is always reflected in PSWcurrent. When an 
exception or trap occurs, the contents of PSWcurrent are copied into 
PSWother except for the e bit. PSWother then contains the processor 
state from before the exception or trap so that it can be saved. Also, 
interrupts are disabled, PC shifting is disabled, overflows are masked and 
the processor is put into system state. The I bit is cleared if the excep­
tion was an interrupt. A jump PC and restore state instruction (jpcrs) 
causes PSWother to be copied into PSWcurrent. After the ALU cycle 
of the jpcrs instruction, the interrupts are enabled and the processor 
returns with its previous state restored. 
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The PSW can be both read and written while in system space, but a 
write to the PSW while in user space has no effect. To change the current 
state of the machine via the PSW, a move to special (movtos) instruction 
must be used to write the bits in PSWcurrent. Before restoring the state 
of the machine, a move to special instruction must be used to change the 
bits in PSWother. All the bits are writable except the e bit and the 
E-bit shift chain. 

The assignment of bits is shown in Figure 2.4. The bits correspond­
ing to PSWcurrent are shown in upper case and those in lower case 
correspond to the bits in PSWother. The bits are: 

I, i The I bit should be checked by the exception handler. It is 
set to 0 when there is an interrupt request, otherwise it will be 
set to a 1. This bit never needs to be written but the value 
will be retained until the next interrupt or exception. The i 
bit contains the previous value of the I bit but in general has 
no meaning since only the I bit needs to be looked at when an 
exception occurs. 

M, m Interrupt mask. When set to 1, the processor will not recog­
nize interrupts. Can only be changed by a system process, an 
interrupt or a trap instruction. 

U, u When set to 1, the processor is executing in user state. Can 
only be changed by a system process, an interrupt or a trap 
instruction. 

S, s Set to 1 when shifting of the PC Chain is enabled. 

e Clear when doing an exception or trap return sequence. Used 
to determine whether state should be saved if another exception 
occurs during the return sequence. This bit only changes after 
an exception has occurred so the exception handler must be 
used to inspect this bit. 

E The E bits make up a shift chain that is used to determine 
whether the e bit needs to be cleared when an exception occurs. 
The E bits and the e bit are visible to the programmer but 
cannot be written. 

v, v The overflow mask bit. Traps on overflows are prevented when 
this bit is set. If this bit is off, then the processor will trap 
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o 31 

I I I I I I I I I 

Figure 2.4: The Processor Status Word. 

to Address 0 (the start of all exception and interrupt handling 
routines) when an overflow occurs during ALU or multiplica­
tion/ division operations. The exception handling routine should 
begin the overflow trap handling routine if the overflow bit (0) 
is set in PSWcurrent. This bit can only be changed while in 
system space so a system call will have to be provided for user 
space programs to set or clear this bit. 

0, 0 This bit gets set or cleared on every exception. When a trap on 
overflow occurs, the 0 bit is set to 1 as seen by the exception 
handler. This bit never needs to be written. The 0 bit contains 
the previous value of the 0 bit but in general has no meaning. 

Attempting to write to the PSW while in user space will be the same 
as executing a nop instruction. The PSW is not changed and no other 
action is taken. 

2.1.5 Exception Handling 

One of the most important aspects of processor design is the exception 
handling architecture. This is especially true for a processor such as 
MIPS-X. The deep pipeline and long branch delay mean that a large 
number of old instruction addresses need to be stored in the case of an 
interrupt. For a machine with a branch delay of n, n+l instructions 
must be restarted to resume correct operation after an interrupt. If n 

or less instructions are restarted, it is possible to end up in a situation 
where the restarted instructions are in the slot of a branch. Since the 
branch is not saved the restarted machine will not execute the required 
address change after the branch slot instructions finish. MIPS-X has a 
branch delay of two, which implies that it must restart three instruc­
tions. Unfortunately these are the instructions in the last stages of the 
pipeline. To provide this information, the program counter (PC) unit 
uses a 5-stage shift chain, called the PC Chain, to save the addresses of 
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all the instructions currently in the pipeline. A detailed description of 
the exception handling sequence is given in Appendix A. 

2.2 Hardware Design Tradeoffs 

During the design of the MIPS-X instruction set there were a number 
of interesting tradeoffs made between what needed to be implemented 
in hardware to achieve maximum performance and what could be done 
either in the software or with simpler, less efficient hardware. In all cases 
the decision was made on the basis of performance gain versus hardware 
required. A less complex solution was used if additional hardware would 
only improve performance by 5%. We will examine some of the more 
interesting cases: the coprocessor interface, the branch mechanism, shift 
operations and exception handling. 

2.2.1 Coprocessor Interface 

Many commercial processors use a coprocessor for complex operations 
such as floating point but their interfaces are not very efficient. Consid­
erable time was spent trying to find an interface for MIPS-X that would 
give reasonable performance and still fit within the constraints of VLSI 
packaging design. The key issue in the MIPS-X design was the pres­
ence of the on-chip instruction cache because not all instructions would 
be visible to the, outside world. Some other way would be needed to 
send instructions to the coprocessors. The simplest solution was to have 
an extra bus from the chip that would be the coprocessor instruction 
bus. The problem was that this would necessitate making the instruc­
tion cache smaller to fit the extra pads required. It was also argued 
that if more pads were needed, there would be better uses for them than 
dedicating them to the coprocessor. Another suggestion was to force 
coprocessor instructions to be non-cached so that they could always be 
visible outside of the main processor. However, this meant that all co­
processor instructions incurred the overhead of cache-miss cycles. The 
final solution made coprocessor instructions a form of memory instruc­
tion. The coprocessor instruction was encoded in the offset field of the 
memory-type instructions and appears on the Address Bus. An extra 
pin was needed to indicate that this was not a memory access. This 
solution used available pins without requiring a lot of extra hardware. 



2.2. HARDWARE DESIGN TRADEOFFS 17 

The main difficulty was that coprocessor instructions would be limited 
to 17 bits. 

A further refinement of the coprocessor interface was made. It was 
observed that the coprocessor registers could only access memory by first 
going through the main processor registers. This was unsatisfactory for 
floating-point operations so two instructions were added that allowed one 
coprocessor to load and store its registers directly with memory. This 
required the addition of four pins to indicate the coprocessor register to 
be used and meant that a floating-point unit could access memory in the 
same time as the main processor. Other coprocessors would need an ex­
tra cycle to transfer the data between the processor and the coprocessor. 

2.2.2 Branch Mechanism 

The branch mechanism in a pipelined machine has one of the largest 
impacts on the performance of the machine. Branches disrupt the flow of 
the pipeline so it is important that their effects are minimized. Condition 
codes were eliminated very quickly because data[20] showed that most 
branches required explicit compare operations to set the condition codes. 
This indicated that very little was saved by having them. Also, condition 
codes mean extra state that must be saved and is especially difficult to 
do in a heavily pipelined machine. 

The most important aspect of the MIPS-X branch scheme is the two­
slot delayed branch. In the MIPS-X pipeline this is the most natural 
way of implementing a delayed branch scheme because by the time the 
comparison has been done in the AL U cycle, two instructions have been 
issued. Having two delay slots was originally thought to be a problem 
because the experience with MIPS showed that it would be difficult to 
fill both slots with useful instructions. MIPS had only one delay slot and 
filled it with an instruction that either did useful work or had no effect if 
the branch went the wrong way. In MIPS-X we considered several ways 
of making the branch more efficient. One scheme was to use hardware 
and build a branch prediction cache. Another idea was to allow only 
simple conditions that could be evaluated at the end of the RF stage 
of the pipeline, reducing the branch delay to one. The resulting scheme 
uses static prediction and a mechanism for squashing or cancelling the 
instructions in the delay slots if the branch is not taken. When used 
with profiling information, this scheme was shown to be as effective as 
a hardware branch prediction scheme and the single-slot scheme[30]. It 
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also required very little hardware mainly because the squashing hardware 
was already needed to handle exceptions. The branch prediction scheme 
would have been complicated to implement and it would have taken 
up much area for the branch prediction cache. The single slot scheme 
was not used because it would require putting more logic in one of the 
critical paths of the machine. The critical path was getting data from 
a load instruction onto the chip and through the bypass registers. The 
comparison logic would be added to the end of this path. 

2.2.3 Shift Operations 

Implementing hardware to do shift and rotate operations poses a 
dilemma because these types of instructions are used very infrequently 
(only 1-5% in MIPS-X traces) yet if no hardware is provided, certain op­
erations, like character handling, become very difficult. We first thought 
that we could implement a very simple shifter that could do small fixed 
shifts of 1, 2, 4, and 8 bits but this turned out to be about the same as 
building a full shifter. This fact, coupled with the need to extract and 
insert bytes, caused us to re-evaluate building a full shifter. We imple­
mented a funnel shifter that concatenates two 32-bit operands to form a 
64-bit double word and then extracts any continuous subfield of 32-bits 
from that double word. The only variable operation implemented was 
variable byte rotates because this was needed to make character extrac­
tion and insertion work without doing a lot of masking and shifting. 

2.2.4 Exception Handling 

Exception handling was one area where we learned a lot from the MIPS 
experience. The MIPS processor tried to complete the instructions that 
were in the pipeline before the point where the exception occurred. This 
meant that there were a large number of possible states and this increased 
the complexity of the control. In MIPS-X we tried to minimize the 
number of possible states in the machine. When an exception occurs in 
MIPS-X, the pipeline is halted and the PC is immediately set to zero. 
The shift chain of old PC values is frozen to save the addresses of the 
instructions that are still in the pipeline. The PSWcurrent bits are saved 
into PSWother, interrupts are turned off and the machine is placed into 
system mode. At the start of the exception handler, the values in the 
PC Chain and PSWother are saved before interrupts and PC Chain 
shifting is resumed. To restart after an exception the saved PC values 
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are restored in the PC Chain and three jumps are executed using the 
contents of the PC Chain. By doing the simplest action for an exception 
we were able to build very simple controllers for the machine. Very little 
is lost by not completing instructions in the pipeline because exceptions 
should occur infrequently. 



Chapter 3 

The Compiler System 

A key factor contributing to the performance achieved by RISC micro­
processors is the compiler system and this was certainly true for MIPS-X. 
The MIPS-X project had a software group that worked closely with the 
hardware designers to define the instruction set of the processor. 

This chapter gives an overview of the MIPS-X compiler system. Op­
timization techniques, code generation, code reorganization, and the 
instruction-level simulator are described. References to the literature 
are cited for those interested in learning more details. 

3.1 Overview 

The MIPS-X compiler introduced a number of new optimization tech­
niques and served to drive the design and evaluation of the MIPS-X 
architecture. Both Pascal and LISP are supported. A high level of both 
machine independent and machine dependent optimizations are applied. 
Some phases of the optimization can use profile information from pre­
vious executions of the program to guide the optimization. Figure 3.1 
shows the various phases of the compiler. They are described below: 

up as Pascal Front-end. Generates U-code intermediate form. Based 
on the Pascal* compiler[23]. 

merger Procedure Merger. Selectively inlines procedures to decrease 
the cost of procedure calls. Can make use of profile information 
to reduce the number of additional instruction cache misses 
caused by duplicating code[29]. 

21 
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pro lIe pascal code lisp code 

1 1 
upa psI 

1 
merger ... uopt~ 

1 
ugen 

1 
ax runtimes 

1 
mI 

.Jhine milsx 

Figure 3.1: The MIPS-X compiler. 
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ipa Interprocedural Analyzer. Constructs data-flow information 
across procedure boundaries[37]. 

uopt 

psI 

ugen 

ax 

mId 

milsx 

Global optimizer. 
mizations including 
optimizations[6, 7]. 

Performs standard compiler opti­
register allocation and array indexing 

Portable Standard LISP compiler. Translates LISP into 
MIPS-X assembly code[40, 41, 43, 42]. 

Code Generator. Uses Twig[2, 45], a language designed for 
building code generators. 

Assembler and Reorganizer. Translates assembly language 
code into legal machine code that satisfies the pipeline con­
straints of the machine. The code is reordered to reduce 
pipeline stalls and branch latencies[30]. 

Linker. Combines object code from various modules with the 
runtimes to form an executable file. 

MIPS-X instruction level simulator. Emulates instructions for 
performance analysis and compiler debugging. 

3.2 Interprocedural Analyzer 

Richardson and Gqnapathi have implemented an interprocedural 
dataflow analyzer to investigate its impact on code optimization. Theo­
retical work by Banning and later work by Cooper and Kennedy provided 
the basis for the analyzer [3, 12]. 

The interprocedural analyzer scans once through a program's inter­
mediate form (UCODE, as described below) and produces three sum­
mary sets: 

MOD(u), for each procedure u, the set of variables global to U that 
may be modified by a call to Uj 

USE(u), for each procedure u, the set of variables global to U that may 
be in some way accessed by a call to Uj and 

ALIASES(x), for each variable x, the set of variables that may be 
aliased to x. 
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These sets are flow-insensitive in the sense that the events described 
(e.g. the modification or use of a given variable) will happen on at least 
one path of execution through the procedure, but are not guaranteed 
to happen on every path. Flow-insensitive information is sometimes 
termed may information because it refers to events that mayor may not 
happen when a procedure is invoked. Other work has concentrated on 
flow-sensitive information, which is more difficult to gather [4]. 

The summary sets gathered by the interprocedural analyzer might 
potentially be used for such techniques as procedure integration, linkage 
tailoring, interprocedural register allocation, or interprocedural constant 
propagation [36]. The sets have actually been utilized in connection with 
the MIPS-X global optimizer UOPT. Thus far, however, the results of 
this experiment have not been encouraging [37]. 

3.3 Global Optimizer 

The MIPS-X global optimizer is the same one used for MIPS[6, 7]. The 
optimizer both reads and writesUCODE, a machine-independent stack­
based intermediate language. No changes were needed to UCODE or to 
the optimizer except for changing some parameters such as the number 
of registers. The major optimizations undertaken by the optimizer are 
shown below: 

Common Sub-Expression Elimination Removes duplicate compu­
tations. 

Constant Arithmetic Computes calculations that can be performed 
at compile time. 

Copy Propagation Replaces the use of a copy with the use of the 
original value, which may make the copy unnecessary. 

Red undant Store Elimination Removes stores that will be overwrit­
ten before the stored value is used. 

Code Motion Attempts to move calculations out of loops so that they 
will be executed fewer times. 

Reduction of Operator Strength Typically this replaces multiplies 
for array indexing with adds to an array pointer. 
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Induction Variable Elimination Attempts to replace uses of an in­
duction variable with uses of an array pointer, saving the induction 
variable calculations. 

Register Allocation Performs global allocation of variables to regis­
ters using a variation of Chaitin's graph coloring algorithm[5] de­
veloped by Chow[7]. 

3.4 LISP Front-end 

The LISP front-end for MIPS-X[40, 41, 43, 42] is a port of the Portable 
Standard LISP Compiler (PSL)[16, 18,17]. Steenkiste choose to generate 
MIPS-X assembly language directly rather than generate UCODE. LISP 
has some special operations that are currently not well supported by 
UCODE. In addition, the PSL compiler was more tuned to generating 
machine code than stack-based code. 

The reason for developing a LISP front-end for MIPS-X was to study 
the impact of LISP on architectural choices and to study new optimiza­
tions that might be particularly effective for LISP. Steenkiste showed that 
the mix of instructions used by LISP programs is very similar to other 
languages such as Pascal. Thus, MIPS-X has high LISP performance 
even without any special hardware support. Tags can be handled with 
normal instructions and the additional savings to be gained from special 
tag support is small. The compiler also introduced some new ideas for 
procedure call optimiz!1tion and interprocedural register allocation. For 
LISP, certain procedures such as cons should always be inlined. The cost 
of other calls can be reduced with generalized tail recursion removal. If 
the last operation in a procedure is a call, there is no reason to return to 
the procedure. Also, Steenkiste showed that most LISP programs spend 
most of their time executing procedures near the leaf in the call graph. 
The LISP compiler makes use of this fact when allocating registers across 
procedure boundaries. Variables used in procedures close to the leaf are 
allocated first. 

3.5 Code Generator 

The code generator for MIPS-X uses Twig [45] and translates UCODE 
into MIPS-X assembly code. Twig builds the code generator from a set 
of pattern-action rules. A pattern is an expression tree and the action 
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generates code for that tree. Each rule has a cost that is derived from 
the costs of the machine instructions. Twig uses dynamic programming 
and tree matching to produce good quality code. 

Since Twig generates code by performing pattern matching on trees, 
UGEN must extract expression trees from its stack-based UeODE in­
put. The pattern matcher takes the trees a.nd breaks them into subtrees 
that correspond to one or more MIPS-X instructions. The subtrees are 
chosen so as to minimize the cost of the instruction sequence generated. 
RISe machines are particularly appropriate for automatic creation of the 
code generator since there are fewer choices of instructions to perform a 
particular operation and the cost of each instruction is easy to determine. 
Therefore there are fewer rules than for elSe machines. However, many 
Twig patterns were needed to take care of the idiosyncrasies of UeODE. 

The code generator assumes an idealized MIPS-X that has no branch, 
load, and store delays. These delays are taken care of by the assembler 
through code reorganization. 

3.6 Reorganizer 

In constructing the MIPS-X compiler, the MIPS reorganizer[19, 24] was 
completely replaced. The MIPS reorganizer generated very good code 
but was slow and would have been difficult to port to MIPS-X. For 
MIPS-X we desired good quality code plus a fast and simple algorithm. 
We also needed a reorganizer that could be used as a test bed for archi­
tectural choices ahd new compilation techniques. The final program also 
introduced a new technique of reorganizing across basic block bound­
aries. In the next three subsections we present the methods used for 
local reorganization, interblock reorganization, and branch scheduling. 

3.6.1 Local Reorganization 

Much of the complexity of the MIPS reorganizer came from attempting 
to change the order that a resource such as a register is used. Figure 3.2 
shows the algorithm used by the MIPS-X reorganizer. The use of a 
particular resource must be kept in source order. Given a choice, the re­
organizer will schedule stores as early as possible. Since stores interfere 
with all other memory operations, they tend to be difficult to schedule 
without a stall cycle. By scheduling a store first, if there is another 
instruction that could have been started before the store that can be 
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procedure LocalReorg(a basic block) 
construct data flow DAG with arcs from instructions to all 

instructions they depend on 
for all instructions i in basic block 

end 

if i is a branch 
label[i] := 2 

else 
label[i] := 0 

end 

for all instructions i in basic block in reverse order 
find maxSon the son of i in the data flow DAG with the 

maximum label 
label[i] := max(Iabel[i],label[maxSon] + InterlockLength(i,maxSon)) 

end 
repeat 

Pick instruction i with (in order of priority) 
(1) i is not a branch 
(2) all sons in DAG scheduled and operations completed 
(3) i is a store 
(4) i has maximum label 
(5) i is a load 

Mark i to be emitted next 
until( all instructions in basic block marked) 

end 

Figure 3.2: Local reorganization algorithm. 
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executed immediately after the store, a cycle will be saved. If there are 
no stores, the instruction with the longest critical path label is scheduled 
next. The critical path counts the length of any sequences of instructions 
depending on an instruction and any interlock delays between instruc­
tions such as load delays. If more than one instruction has the same 
critical path length, loads will be scheduled first. Branches are labeled 
with a critical path length label of 2. This makes it easy to determine if 
any instructions can be placed after the branch in delay slots. 

As an example, consider the basic block shown in Figure 3.3. The 
code on the left shows a basic block before reorganization with the stall 
cycles shown. The basic block would take nine cycles to execute if the 
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(3) ld 1 [r15],r1 ld 1[r15],r1 
(stall) ld 2[r15],r2 

(2) addi r1,#1,r1 addi r1,#1,r1 
(0) st 1 [r15],r1 st 1[r15],r1 

(stall) • addi r2,#1,r2 
(3) ld 2[r15],r2 st 2[r15],r2 

(stall) 
(1) addi r2,#1,r2 
(0) st 2[r15],r2 

Figure 3.3: Local reorganization example. 

original order is maintained. On the right is the same basic block after 
reorganization. Here only six cycles are needed. The numbers at the 
far left show the critical path labels that are generated as shown in 
Figure 3.2. Both loads have the same label and either one could be 
scheduled first but both are preferred over any other instruction. Next, 
the add immediate instruction corresponding to the first instruction is 
scheduled since it is the only instruction that can be started that cycle. 
After the add, the first store is scheduled since stores have a higher 
priority. This allows the remaining add immediate to be placed after the 
store while the memory is busy, even though the add immediate has a 
critical path label higher than the remaining store. 

3.6.2 Interblock Reorganization 

Ellis and Fisher[14, 13] reorganized code for machines with very wide in­
structions. To find a large number of operations that could be executed 
simultaneously, they were forced to analyze more than one basic block 
at a time. Their algorithm traces through a chain of basic blocks that 
is thought to be the most likely to be executed sequentially. This trace 
is reorganized to increase the number of operations performed simulta­
neously. A similar algorithm could be used to fill pipeline latency stalls 
on MIPS-X, but the complexity of the trace scheduling does not seem 
justified for this less ambitious problem. 

The MIPS reorganizer[19, 24] analyzed successor basic blocks at­
tempting to fill branch delay slots. An instruction could be moved from 
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ld 1[r15],rl 
(stall) 
beq rl,rO,labell 
(stall) 
(stall) 
ld 2[r15],r2 
(stall) 
beq r2,rO,labeI2 
(stall) 
(stall) 

ld 
ld 
beq 
(stall) 
(stall) 
beq 
(stall) 
(stall) 

1[r15],rl 
2[r15],r2 
rl,rO)abell 

r2,rO,labeI2 

Figure 3.4: Interblock reorganization example. 

29 

the sequentially next basic block or from the target of the branch. For 
this operation to be legal, the reorganizer must insure that the operation 
moved will not destroy any information that the program still needs. As 
we will see in the next section, branch slots on MIPS-X are usually filled 
in a different way. However, any successor instructions that could be 
put in a branch slot may be used to fill any other pipeline stalls. Care is 
needed to insure that the moved instruction does not destroy any infor­
mation needed later in the basic block and that the program semantics 
are maintained for all possible sequences of basic block executions. As 
an example, consider t,he assembly code shown in Figure 3.4. The code 
on the left is before reorganization. Assuming register 2 contains no in­
formation that will be used if the first branch is taken, the second load 
can be moved up into the first basic block as shown. To make this deter­
mination, the reorganizer performs live register analysis. In Figure 3.4, 
when the first branch is not taken, this optimization saves two cycles. On 
typical programs, interblock reorganization saves about 3% in execution 
time. 

3.6.3 Branch Optimization 

Most RISC machines have only a single delay cycle after a branch. 
MIPS-X has two. As Figure 3.5 shows, if possible, two instructions 
preceding a branch are moved after the branch. Usually two instruc­
tions cannot be found that can be legally moved. Figure 3.6 shows an 
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add rl,r3,r3 beq r4,rO,labell 
add r2,r3,r3 add rl,r3,r3 
beq r4,rO,labell ~ add r2,r3,r3 
(stall) 
(stall) 

Figure 3.5: Delayed branch scheduling. 

alternate method of optimizing the branches. The branch instruction is 
converted into a squashing branch that will execute the delay instruc­
tions only if the branch is taken. Two instructions from the target are 
copied into the delay slots and the branch displacement is adjusted so 
that the instruction after the copied instruction is executed after the now 
filled delay cycles. If the branch is taken, two cycles are saved. If the 
branch instruction is not executed the instructions in the delay slots are 
not executed and no harm is done. 

Branches are taken more often than not and filling delay slots from 
the target is better in general than filling instructions from the sequen­
tially next basic block. However, if the reorganizer has profile informa­
tion available, it can determine which branches are usually taken and 
which are usually not taken. Usually not-taken branches can be opti­
mized as shown in Figure 3.7. Here the branch is modified so that it 
branches to the ~equentially next basic block in the frequent case. A 
new branch is inserted so that in the unlikely case, the original target 
basic block will still be executed next. Even though the introduction of 
a new branch increases the execution time for the less likely case, this 
is more than made up by speeding up the more frequent case. With 
all theses optimizations combined, typical branches on MIPS-X require 
about 1.35 cycles per branch. This is actually faster than most RISe 
machines with only a single delay slot after branches. 

3.7 Machine Simulator 

Milsx, the MIPS-X instruction-level simulator, was developed early in 
the design of the machine. The simulator served as a testbed for con­
structing the compiler and evaluating the effectiveness of various opti­
mizations. It has the capability of executing MIPS-X instructions one 
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beq r4,rO,labell beqsq 
(stall) add 
(stall) add 

• 
labell: labell: 

add rl,r3,r3 add 
add r2,r3,r.3 add 

label2: label2: 

Figure 3.6: Squashed branch scheduling. 

labell: 

beq 
(stall) 
(stall) 
add 
add 

r4 ,rO ,l,abell 

rl,r3,r3 
r2,r3,r3 

label2: 

labell: 

bnesq 
add 
add 
bra 
(stall) 

(stall) 
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r4,rO,labeI2 
rl,r3,r3 
r2,r3,r3 

rl,r3,r3 
r2,r3,r3 

r4,rO,labeI2 
rl,r3,r3 
r2,r3,r3 
labell 

Figure 3.7: Profile assisted optimization of a usually not-taken branch. 
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at a time so that any program that runs on the simulator, should run on 
the machine. Another function of the simulator was to collect statistics 
of which instructions are executed and how fast the machine would be. 
lt can also generate instruction and data traces to aid the design of the 
overall system. 

To perform all these functions for realistic programs, milsx needed 
to be quite fast. This was achieved with a two step process. First, 
instructions are read in and decoded. The various fields are extracted and 
converted into a more simple form. For example, a register specifier is 
represented as a pointer to the address in memory used by the simulator 
to hold the register contents. Finally, the decoded program is executed. 
This two-step process results in an instruction emulation rate of 20,000 
instructions per second on a VAX-ll/780. 
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A Hardware Overview 

Decisions about what should be implemented in hardware and what can 
be handled in software will have the most impact on the performance of 
a processor. All processors support the same basic hardware functions 
since they must all fetch instructions and execute them. What makes 
one processor different from another is the way that the functions are 
combined and the way that the hardware is organized to carry out the 
functions. In a reduced instruction set computer (RISC) architecture, 
such as MIPS-X, the emphasis has been placed on building hardware 
that implements the common, simple functions quickly and then letting 
the software decide how the functions should be combined to carry out 
more complex operations. 

The MIPS-X hardware can be divided into six major sections: the 
Register File, the Execute Unit, the PC Unit, the Tags Unit, the Instruc­
tion Cache (ICache) and the Instruction Register. Figure 4.1 shows a 
photograph of the MIPS-X die with the sections outlined. In this chap­
ter we will describe the global organization of the hardware resources in 
MIPS-X and the instruction execution pipeline. We will also explain the 
global implementation issues. 

4.1 The Hardware Resources 

The dominant feature in Figure 4.1 is the ICache RAM. It is 512 words 
by 32 bits and sits above the datapath. The Register File section 
consists of the array of 32 general-purpose 32-bit registers, the pipeline 
bypass registers and the registers used for interfacing to external memory. 

33 
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The Execute Unit includes a 64-bit to 32-bit funnel shifter, a 32-bit 
AL U, the MD registers that support multiplication and division, and the 
processor status word. In the PC Unit there are two 32-bit adders used 
to increment the PC and to compute the destinations of branches, and 
a chain of shift registers (the PC Chain) to save the PCs of instructions 
in execution. These PCs are needed to restart the machine after an 
exception. The Tags Unit contains 32 tags (Tag RAM) and 512 valid 
bits (Vstore) for the ICache. Between the datapath and the ICache is the 
Instruction Register (IReg), which contains pipeline staging registers 
and instruction decode logic. The IReg is also used during ICache misses 
to write instructions into the ICache RAM array. 

Figure 4.2 shows the hardware resources and the major buses that 
connect them. The Src1 Bus and the Src2 Bus are used to read data 
from the Register File. The Result Bus carries data words to the Bypass 
registers to be written to the Register File, and addresses to the Tags 
Unit where the Result Bus is multiplexed with the PC Bus. Addresses 
for memory instructions are carried on the Result Bus and addresses 
during ICache misses come from the PC Bus. The Result Bus and the 
PC Bus are multiplexed onto the Address Bus. The Immediate Bus 
carries immediate values from the IReg for use in the PC Unit and the 
AL U. The MemBus carries instructions from the data pads to the ICache 
during ICache misses and between the datapath and the data pads during 
memory instructions. 

4.2 Clocking 

MIPS-X uses a two-phase non-overlapping clocking scheme. The two 
phases are called Phil or 4>1, and Phi2 or 4>2. There are also several 
derived clocks: 

Phi2_b This is the complement of 4>2. 

Psil or 'ljJ1 The 'ljJ1 clock is ¢1 qualified by ICacheMiss and Miss and 
is the clock that is used to cause state changes to occur. The 
processor is easily stalled by preventing 'ljJ1 from rising. 

PsilPC or 'ljJ1PC This clock is only used in the PC Unit. When the 
processor is stalled with 'ljJ1, this clock continues to allow parts of 
the PC Chain to be clocked during cache misses (See Section 6.1.8). 
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Figure 4.1: The MIPS-X die photo. 
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Figure 4.2: The MIPS-X hardware resources. 

4.3 General Instruction Flow 

The interaction of resources in MIPS-X can be understood by examining 
what the hardware is doing in each phase of the execution of an instruc­
tion. The pipeline is only five stages long (10 clock phases) and is shown 
in Table 4.1. An .additional stage, IF -1, is also shown. This pipe stage 
occurs before IF, during the WE stage of the previous instruction. The 
use of IF -1 is mainly for historical reasons, and to make the actions 
within each pipe stage correspond to the name of the pipe stage. 

The instruction fetch begins during IF -1 when the PC Bus is driven 
with the address of the next instruction to be fetched. During <PI of IF, 
ICache hit detection is done so that in the next phase the ICache can 
be accessed or, if there is a miss, the address driven to the address pads. 
On <PI of RF, the Register File access begins and the bypass register 
comparisons are done. The register or bypass values are then driven 
onto the Src1 and Src2 Buses during <p2 so that they can be used in the 
Execute Unit during the next phase. At the same time in the PC Unit, 
the current PC and the branch displacement field in the Immediate Bus 
are being latched for the incrementer and the displacement adder. The 
PC incrementer, the ALU, and the PC displacement adder all operate 
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IF_l q,I No action 
q,2 PC Bus {:: displacement adder, trap vector, incrementer, ALU or 

value from PC Chain 
Precharge tag comparators and valid bit store 

IF q,I Do tag compare 
Valid bit store access 
ICache address decoder {:: PC[bits 26 to 31] 
Detect ICache hit 
Precharge ICache 

q,2 Do ICache access 
Instruction Register {:: ICache 

RF q,I Do bypass register comparisons to see if bypassing required 
q,2 Src1 Bus {:: Src1 register or bypass register 

Src2 Bus {:: Src2 register, bypass register or offset field in 
memory instruction 

PC displacement adder latch {:: branch displacement from 
Immediate Bus 

Output memory data register {:: Src2 register or bypass source 

ALU q,I Do ALU operation, shifter operation, PC displacement adder addition 
Increment PC (calculate next sequential instruction address) 
Precharge Result Bus 

q,2 Result Bus {:: ALU 
Result bypass register {:: Result Bus 
Memory address pads {:: Result Bus 

MEM q,I No action 
q,2 Input memory data register {:: Result register or Memory data 

pads (load instruction) 
Memory data pads {:: Output memory data register (store 

instruction) 

WB q,I Destination register {:: Input memory data register 
q,2 No action 

Table 4.1: MIPS-X instruction flow. 



38 CHAPTER 4. A HARDWARE OVERVIEW 

during </>1 of the ALU stage. The result of the ALU or shifter compu­
tation is driven on the Result Bus during </>2 of AL U, and this is then 
either used as an address for a memory instruction or staged through 
the bypass registers to be written to the Register File. Access to the 
special registers, the PSW, the MD register and the PC registers is done 
through the ALU when they are being written, and by using the Result 
Bus when they are being read. For memory instructions, store data are 
driven to the pads during MEM </>2 and load data are latched on the 
chip when MEM </>2 falls. Register write-back occurs during </>1 of WB. 
Instruction timings of all the different types of instructions are given in 
the Programmer's Manual[8]. 

4.4 Control Flow 

The design of MIPS-X put great emphasis on making the control of the 
machine as simple as possible. Consistent with the philosophy of only 
implementing instructions in hardware that significantly improve perfor­
mance, control features were only implemented if they were necessary to 
get the correct results or if they greatly improved performance. This is 
particularly true for handling exceptional conditions. Instead of trying 
to finish instructions that occur logically before an exception, such as 
was done in MIPS[35], the entire pipeline is frozen when an exception 
is detected and then restarted after the exception is serviced. To freeze 
the pipeline, shif~ing of the PC Chain is stopped and instructions in the 
pipeline are simply prevented from changing the state of the machine. 
Most of the hardware can continue to execute as if there were no ex­
ception, minimizing the number of places that need to know about the 
exception. 

Control in MIPS-X is primarily done with logic that is local to each 
of the sections. There are a few global signals that travel through most 
of the chip: 

Reset Puts the processor into a known state. This is controlled by an 
external pin. 

Exception Precharged signal that connects to the External Interface, 
the Execute Unit and the PC Unit. It is pulled low by the External 
Interface when there is an unmaskable interrupt and by the Execute 
Unit when there is a maskable interrupt or a trap on overflow. The 
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PC Unit uses it to affect what is driven onto the PC Bus, as well 
as to generate some signals for the two global control finite state 
machines. 

Squash Used during squashing branches and when an exception occurs. 
It is mainly used to prevent write-backs from occurring, and orig­
inates in the Squash finite state machine (Section 6.1.10). 

Cache Miss Generated during Instruction Cache misses. It is gener­
ated in the Cache Miss finite state machine (Section 6.1.9). 

The simplicity of the control of MIPS-X is demonstrated by the sim­
plicity of the global controllers, which together use less than 0.2% of 
the total chip area. The global control is provided by two finite-state 
machines located above the datapath in the PC Unit. One is used to 
handle ICache miss sequencing, and the other one is used for instruction 
squashing. They are discussed in detail in Sections 6.1.9 and 6.1.10. 

4.5 Implementation Issues 

Before the physical layout of the processor could begin there were several 
global decisions that had to be made. This was very important because 
the design of the circuits was split among several people. In this section 
we describe the naming convention that we used for signal names and 
the basic plan used in designing the datapath. 

4.5.1 The Naming Convention 

To make sure that there would be some consistency in how the signals 
were labeled, we devised a naming convention very early in the design of 
the machine. We also had to consider the different tools that we planned 
to use and their restrictions regarding names. Our naming convention 
includes the use of a suffix that specifies the polarity, strength, and 
timing characteristics of the signal. Given the large number of signals in 
MIPS-X, we found this extremely helpful, especially in avoiding timing 
errors when using signals generated by different designers. 

Names had to be a sequence ofletters and digits starting with a letter, 
and they had to be case insensitive (although it was desirable to use case 
to make the name easier to read): An example might be AdderGetPCBus. 
The only special character allowed was the underscore ("_") character, 
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and this was used to append information. Global signals were named at 
the start: the power lines, Vdd and Gndj the clock signals, Phil, Phi2, 
Psilj and the buses, such as MemBus, AddressBus and PCBus. Inverted 
signals had the characters "_b" appended to the name, and then timing 
information was appended on the end. This was a two to four character 
code that started with an optional "p" to indicate a precharged signal. 
The next two characters were defined as follows: 

sl Stable </>1 
s2 Stable </>2 
vI Valid </>1 
v2 Valid </>2 
ql Qualified </>1 
q2 Qualified </>2 
dc DC signal 
wI Weird </>1 (Le., all signal types, other than the above 

that occur during </>1) 
w2 Weird </>2 (Le.;,all signal types, other than the above 

that occur during </>2) 
ww wishy-washy (Le., all signals that do not fit in any of 

the above) 

If a signal could be associated with a pipe stage then a third letter was 
appended: 

IF 
r RF 
a ALU 
m MEM 
w WB 

A stable signal is defined to be constant throughout the phase while a 
valid signal is one that can change during the phase but is guaranteed to 
be a constant logic value before and during the falling edge of the phase. 
A qualified signal is a signal that is logically ANDed with the clock phase 
indicated. Some ambiguity can arise. For example, a v2 signal can also 
be a sl signal. In this case, sl , the strongest specification is specified. 

Control lines that enabled bus drivers or receivers use the forms ob­
jectDrvdestination and objectGetsource . These correspond to an ob­
ject, such as an adder, either driving (Drv) or getting (Get) a destina­
tion or source signal. 
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4.5.2 Datapath Design 

The organization of the MIPS-X datapath can be seen in Figure 4.2. It 
is comprised of the the Register File, the Execute Unit, the PC Unit, 
and the Tags Unit. The central control is located in the PC Unit and 
provides the global signals (described in Section 4.4) that are used by 
the rest of the smaller controllers sitting above each of the units in the 
datapath. 

The basic floorplan and wiring strategy for the MIPS-X datapath is 
quite simple. It uses metal 2 running horizontally for the buses, and for 
the power (Vdd and Gnd) lines. The control lines run vertically through 
the datapath in metal 1. The datapath power lines are connected at both 
ends of the datapath to large vertical power lines that are fed directly 
from power pins on the pad frame. The V dd and Gnd lines are shared 
between two bit slices of the datapath. This is achieved by flipping every 
other bit slice. Figure 4.3 shows how this works using a simple latch as 
an example. The single cell is shown on the left, and this is flipped to 
share the Vdd lines as shown on the right. This combined cell can then 
be arrayed 16 times, such that the Gnd lines are shared, to achieve a 
32-bit datapath. The datapath is somewhat unique in that it actually 
contains room for 33 bits. The thirty-third bit slot is located at the top 
of the datapath, right below the control line drivers. This bit slice was 
often left blank but was used on occasion to provide a delay element that 
matched some component in the datapath. For example, this slot was 
used in both the Register File and the AL U for a dummy cell used to 
generate a self-timed clock. 

Placed above the datapath are the drivers for the datapath control 
signals. These drivers again use metal 2 running horizontally, this time 
to supply global clocks as well as power. The power lines for the control 
drivers again connect to the wide power buses on the right and left side 
of the datapath. 

One of the first tasks was to generate a set of design rules to use for 
the layout. The chip was to be fabricated in a 2 /-lm CMOS technology, 
but the design rules for this technology were not available when the 
project started. A worst-case rule file was generated l after a number 

IThis rule file ended up being a bit conservative, especially for contact surrounds -
the diffusion surround was 2 p.m as was the metal 2 via surround. Since the diffusion 
contacts were so large, the minimum transistor size was chosen to be 6 p.m wide and 
2 p.m long. 
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Figure 4.3: Datapath latch cell, and cell combined with flipped version. 
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of commercial rule files were compared. Once the design-rules were in 
place we were able to set the pitch of the datapath cells. This was 
primarily determined by the number of metal 2 tracks needed to carry 
the necessary buses over the cells. From Figure 4.2 it can be- seen that 
only three bus tracks are needed to carry the major buses, but the pitch 
was chosen so that four tracks were available to provide room for some 
local routing in metal 2. Using our design rules the resulting pitch was 
55 f.lm. 

At the beginning of the layout, a set of generic cells was provided to 
the designers. These cells included cells dealing with buses, latch cells 
and bus drivers, and a set of cells to drive the control lines into the 
datapath. In addition, since MIPS-X requires three adders (ALU, PC 
displacement adder, and PC incrementer) one basic carry structure was 
designed and used in all three devices. 

Which latch design to use was widely discussed. A static flow-through 
latch with a single n-channel access transistor was finally selected. Fig­
ure 4.4 shows a schematic of the cell, and Figure 4.3 shows the layout 
of the cell. Using a single n-channel access transistor avoided the need 
to have complementary versions of the gated clock lines running across 
the datapath, but did mean that some care was required because of the 
degraded high-level at the output of the n-channel pass transistor. To 
prevent the high-level from being degraded further, the feedback pull­
down device is made weak by putting a transistor in the pull-down path 
that is biased only slightly on. This transistor, with its gate connected 
to a bias voltage called, Vbias, acts as a very weak current source. The 
weak p-channel pull-up transistor serves two functions. It makes the 
latch static, and also restores the degraded high level to a full high value. 
To minimize area, all transistors in the latch are minimum size, except 
the weak p-transistor, which is 6 f.lm wide and 7 f.lm long. 

There are two types of bus logic used in the datapath. The Result 
Bus is a precharged bus, and the other buses are driven with three-state 
drivers. A schematic for the Result Bus driver is shown in Figure 4.5. 
The layout of the Result Bus driver is shown in Figure 4.6. It has a pull­
down path using two 10 f.lm wide by 2 f.lm long transistors. The standard 
three-state bus driver is shown in Figure 4.7. The 6-transistor pre-drive 
circuit is really the result of merging the NAND and NOR gates that are 
usually used to drive the output transistors. When the driver is enabled, 
the gates of the output devices are connected together and driven to the 
correct value, and when the driver is disabled, the gate of the n-channel 
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Figure 4.4: Schematic of datapath latch cell. 

device is driven to Gnd while the p-channel gate is driven to Vdd. The 
output uses a folded 20 J1m by 2 J1m transistor in both the pull-up and 
pull-down paths. A bigger version of the driver uses a 40 J1m wide folded 
transistor. Figure 4.8 shows the layout of the three-state driver cell. 

To drive the, control signals across the datapath, a set of standard 
control drivers is used. One design goal was to try to minimize the 
skew of the control lines running into the datapath. This was done by 
creating a family of control drivers that had identical physical outlines, 
but different capacitive drive ability. The designer could then choose the 
right driver once the loading on the control line was known. To keep the 
clock skew down, the control signals were ANDed with the clock right 
in the control driver. Thus all elements in the datapath should see the 
clock one control driver delay after the clocks change. The layout on the 
left of Figure 4.9 shows the layout of a 2 pf AND driver. The first stage 
is a NAND gate followed by a 60 J1m wide by 2 J1m inverter buffer. The 
layout on the right of Figure 4.9 shows a 1 pf AND driver. The final set 
of control drivers came in 0.5 pf increments. Note that two large metal 
2 tracks for Vdd and Gnd run across the buffers to supply the necessary 
current. 
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Figure 4.5: Schematic of Result Bus driver. 

Figure 4.6: Layout of Result Bus driver. 
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Figure 4.7: Schematic of three-state bus driver. 

The only major circuit that is common to several parts of the dat­
apath is the ALU/adder. The full ALU is used in the Execute Unit, 
while a simplified version is used twice in the PC Unit, once as the in­
crementer and once as the displacement adder. Section 5.2.8 gives a 
detailed description of the ALU. 
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-

Figure 4.8: Layout of three-state bus driver. 
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Figure 4.9: Layout of 2 pi and 1 pi AND control line drivers. 



Chapter 5 

The Execute Engine 

The useful work of the machine is done in two major sections: the Reg­
ister File and the Execute Unit. The Register File section contains the 
register memory cell array and the bypass network. The Execute Unit 
includes the shifter, the AL U, and registers to support multiplication 
and division. Together, these two units comprise less than 15% of the 
total chip area. 

5.1 The Register File 

The Register File (Regfile) provides the operands needed by the execu­
tion unit of MIPS-X. Logically it is a 32 word, triple-ported (dual read, 
single write) memory that contains a connection to the external memory 
system to support load and store instructions. For architectural reasons 
Register 0 stores the constant 0 and cannot be changed. The unit is 
made more complex because of the basic pipeline that MIPS-X uses: 
Regfile writes happen only at the end of the pipeline. Thus, the Regfile 
unit must also provide holding registers for the results that have not yet 
been written into the Regfile, and provide a way to bypass the Regfile 
when the following instruction uses these computed-but-not-yet-stored 
values. The unit is located at the left end of the datapath and it is about 
2466 /Jm high by 2245 /Jm wide. Only about one half of the width is the 
actual RAM for the registers. The rest of the space is used to implement 
the result bypass registers and the interface to the memory bus. 

The main functions of the Register File Unit are to: 

• Provide a set of general purpose registers. 

49 
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• Avoid pipeline stalls by allowing results to be used before they are 
written into the Regfile . 

• Provide a path to load and store data from/to the external memory 
system. 

Logically the Regfile can be broken up into eight main blocks as 
shown in Figure 5.1. The datapath is comprised of the Register Ar­
ray and its associated read/write circuits, the memory data input 
register MDRin (which also acts as a bypass register), the memory 
data output registers MDRout, and the result bypass register, Re­
sult. The datapath connects to the Execute Unit through three buses: 
Src1Bus_sla, Src2Bus_sla, and Result Bus_b_pv2. The two source buses 
deliver operands to the Execute Unit and the Result Bus provides the 
results to be written into the Regfile. The Regfile communicates with the 
external memory system using the MemBus, which connects the mem­
ory data registers to the external data bus. RegControl sits above the 
datapath and receives the operand specifiers for the instruction from the 
Instruction Register, and the general pipeline control signals used by the 
rest of the machine. It contains the comparators needed to implement 
bypassing, and is responsible for controlling the datapath elements. 

The following sections will describe the operation of the Regfile in 
more detail. The next section will describe the design of the actual Reg­
ister Array, and will be followed by a description of the bypass registers 
and how they are controlled. 

5.1.1 Register Array 

The initial design of the register cell used dual-differential buses, but this 
was dropped because the short bit lines made sense amplifiers unneces­
sary. Instead we used a CMOS version of the 6-transistor RAM cell with 
split word lines described by Sherburne[39]. Figure 5.2 shows the CMOS 
cell. This cell can perform either two reads (word lines independently 
controlled) or one write (both word lines must address the same cell). To 
provide the three ports that MIPS-X requires, the Register Array is time 
multiplexed with writes occurring on ¢l and reads on ¢2. To reduce the 
access time, three sets of static decoders are placed above the Register 
Array, one for each access port. The inputs to the decoders are driven 
on the phase before their output is used so the decode time is not on 
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Figure 5.1: Register File block diagram. 
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wordline2 

wordlinel 

Figure 5.2: Register cell. 

the critical path for accessing the registers. This allowed the use of the 
simple and relatively dense decoder structure shown in Figure 5.3. 

Time multiplexing the Register Array did pose some minor problems. 
The most significant problem was that it did not fit in well with the two 
phase clocking method that MIPS-X used. In a 6-T memory, the bit 
lines must always be high before a read can begin, otherwise the value in 
the cell being read can be corrupted. To prevent a read from disturbing 
the contents of a register, the Register Array really needs three clock 
phases: read, write, and recover. The extra phase was generated by 
using a self-timed circuit to split ¢I into a write and a recover phase. 
The circuit is shown in Figure 5.4 and is used to detect when a write has 
completed. It causes the signal Write_qI to fall, which in turn causes the 
selected word lines to fall and the bit lines to be precharged. 

A row of dummy cells was placed above the Register Array; these 
cells are hardwired to always contain a zero. Thus, after a read the 
dummy bit line is always low and the bit line is high. The write drive for 
the dummy row input is tied high, so it always tries to write a one into 
the cells. Transistor Msense detects when the bit lines have crossed by 
enough to write the register. This transistor discharges the precharged 
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node Done, causing Done to rise, and forcing the write drivers to recover 
the bit lines for the following read. Transistor Monce is needed to prevent 
the circuit from oscillating. If it is deleted, then the recovery of the bit 
line will cause Done to rise, and the write will restart. The write and 
recovery is quite fast, requiring less than 20 ns to complete. 

The word-line drivers and the bit-line drivers into the Register Array 
also need to perform three different tasks - read, write, and precharge. 
These functions are generated by using slightly strange logic gates. The 
word-line driver posed an especially difficult design problem since two 
of the drivers were needed for each memory cell, and the cells were only 
36pm wide. The circuit that was used is shown in Figure 5.5. It is two 
tristate inverters connected together. When Phi2 is high and Write is 
low the outputs of the Src1 and Src2 Decoders are driven onto the word 
lines (Src1Sel is driven onto wordlinel, Src2Sel is driven onto wordline2). 
When Write is high and ¢2 is low the output of the Destination Decoder 
(DestSel) is driven onto both word lines. When the write is complete 
and the circuit goes into recovery, Write becomes low and ¢2 remains 
low. Write falling will cause all the word lines to go low, unless the just 
written word line will be read on the following cycle. In this case the 
selected word line remains high, but does not cause a problem since the 
cell is guaranteed to have the same value that was driven on the bit lines. 

The bit-line driver is shown in Figure 5.6. Each bit of memory has 
two of these drivers, one for bit and one for bit. This circuit is a slightly 
modified form of the standard tristate driver that is used many places 
in MIPS-X. When Write_b is high and Phi2_b is low the buffer is in 
a tristate mode, and the output is floating. When Write_b is low and 
Phi2_b is high the input value is driven onto the bit line. After the 
write has completed Write_b will rise, which causes the output to be 
driven high independent of the input, performing the precharge stage. 
Notice that this circuit precharges the bit lines any time both Write_b 
and Phi2_b are both high, so some care is needed at the end of the read 
cycle. The machine must latch the values on the bit lines before Phi2_b 
rises and causes the bit lines to be precharged. 

The sensing of each bit line was done using a simple CMOS inverter 
that had a large p:n width ratio. The large p-channel device moved the 
switching point of the gate closer to Vdd, which slightly sped up the 
read path. Because the bit lines were fairly short we did not need a 
more complex sensing scheme. 
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5.1.2 Bypass Registers and Control 

ALU results are generated on </>2 of ALU, the third machine pipe stage, 
and are not written into the Register Array until </>1 of WB. This means 
that the Regfile must contain a two-stage shift register to delay the values 
being written into the Register Array. The destination specifier must also 
be delayed, since it is driven into the Regfile on </>2 of RF and again is 
not used until </>1 of WB. During the time the Regfile is holding the 
data it is responsible for keeping track of whether the instructions that 
generated the data were squashed (either from a mispredicted branch or 
from an exception). If the instruction was squashed it should not affect 
the user visible state of the machine and thus should not be written 
into the Register Array. This no-oping of the instruction is performed 
by appending a single bit to the write destination address. This sixth 
bit, called NoDest, is set to indicate that this instruction is not to write 
into the Register Array. This bit is set in the Instruction Register if the 
instruction does not generate a result (Stores, Branches, etc.), and is set 
in the Regfile when Squash or Exception are asserted. 

To remove some of the constraints caused by delaying the Regfile 
writes until the last cycle, the Regfile provides bypass paths to use the 
results of previous instructions before they are written into the Register 
Array. This bypassing is implemented by using four 6-bit comparators l 

in RegControl as shown in Figure 5.7. During </>2 of RF, the compara­
tors check the two current register sources against the destinations of 
the previous two instructions. In the case of a match, the data in the 
temporary latch'is gated onto the appropriate SrcBus, rather than the 
value that was fetched from the Register Array. In the case of multiple 
matches (the last two instructions used the same destination register), 
the newest value is used. 

The bypass comparator logic is shown in Figure 5.8. To avoid requir­
ing both the true and complement forms of the comparison data, both 
an n-channel and p-channel precharged structure is used for each bit. 
If the data matches, both precharged nodes will remain unchanged, but 
if there is a mismatch the output of the n-channel gate will fall and/or 
the output of the p-channel gate will rise. Inverting the output of the 

lIn addition to the 5-bit address, the NoDest bit is compared to make sure that 
the latch contains valid data before the data is bypassed. This also makes it possible 
not to bypass data that is written to Register O. The Instruction Register always sets 
the NoDest bit when the destination address is O. 
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Figure 5.7: Bypass comparators. 

n-channel gate and then NORing the outputs together gives the desired 
match signal. Using this structure allowed the bypass comparators to be 
quite small. They fit under the wires that contain the register specifiers. 

5.1.3 Datapath, 

A schematic of the entire datapath in the Regfile (not including the Reg­
ister Array itself) is shown in Figure 5.9. Starting with the right most 
part of the datapath is the Result Register, which latches the value on 
the ResultBus. To support bypassing, two tristate drivers can be enabled 
by bypass comparators to drive this value onto either SrcBus when the 
current instruction uses the result of the immediately preceeding instruc­
tion. 

Moving slightly to the left, the next set of latches make up the Mem­
ory Data Output Register (MDRout). These latches delay the data from 
the Src2Bus, which is latched on ¢2 of RF2, and delayed until the MEM 
cycle when it is driven out onto the MemBus. This delayed value is the 

2This is really a bug. The first latch is redundant and should be removed. The 
bus is stable cPl, and should be latched by a Psil latch 
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input to a tristate driver that drives the MemBus in the MEM cycle of 
a store. 

The next latch in the datapath is the Memory Data Input Latch 
(MDRin). It serves two functions. In the case of load instructions 
MDRin serves as the input latch for the memory data. During </>2 of 
the MEM cycle the value on the MemBus is latched and the output of 
this latch is used to drive the bit-line write drivers (wdrv) on the next 
clock phase. For normal AL U instructions LdRes_q2m is asserted during 
</>2 of MEM, and the latch is used as the second part of the delay chain 
for ALU results. So for either load or ALU operations the result of the 
operation is in MD Rin by the end of the MEM cycle. 

The second set of bypass comparators are used to select whether 
the data from the Register Array is latched or whether the data from 
MDRin should be used instead. This simple muxing was used instead of 
two additional tristate drivers since it occupied much less space, though 
it does slow down the bypass path for just-loaded data by a couple of 
nanoseconds. 

5.2 The Execute Unit 

The Execute Unit contains the hardware that is used to do the actual 
operations on data. The unit is sandwiched between the Register File 
and the PC Unit in the center ofthe datapath. It occupies about 1800 JLm 
ofthe datapath's full 7440 JLm length and it is about 2370 JLm high. This 
includes about 530' JLm for the height of the controllers that sit above 
the datapath and the large drivers that drive the control signals through 
the datapath. The main hardware in the Execute Unit includes: 

• A 64-bit to 32-bit funnel shifter. 

• The multiply jdivide (MD) register to support multiplication and 
division. 

• A 32-bit ALU. 

• The processor status word (PSW). 

• Circuitry to detect arithmetic overflow and generate branch condi­
tions. 
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The purpose of this section is to describe the hardware associated with 
each piece of the unit, including both the datapath circuitry and the 
accompanying controllers. 

5.2.1 Interface 

The signals connected to the Execute Unit are shown in Table 5.1, and 
their approximate location in the layout is shown in Figure 5.10. 
The functions performed by each signal are: 

SrclBus_sla Bus on which the Src1 operand is delivered from the Reg­
file to the Execute Unit. 

Src2Bus-sla Bus on which the Src2 operand is delivered from the Reg­
file to the Execute Unit. 

ResuItBus_h_pv2a Bus that carries an operation's result back to the 
Regfile. Depending on the instruction, this bus may be driven by 
either the Shifter or the AL U, as well as by several sources in the 
PC Unit. This is the Result Bus used by the Regfile and Execute 
Unit. 

ResultBusPC_h_pv2a Same as ResultBus_b_pv2a except in the most 
significant bit (bit 0). This is the Result Bus used by the PC Unit 
and the Tags Unit. The difference in the most significant bits is 
explained in S~ction 5.2.12. 

ALUResuIt-s2a The 32-bit result of the ALU operation performed 
during 4>1. Depending on the instruction, this mayor may not 
be a useful result. 

ImmedBus-sla The 17-bit immediate bus, used for carrying constants 
encoded in instructions to the Execute and PC Units. Used as one 
of the ALU sources for memory and compute immediate instruc­
tions. 

Squash_h-s2 Active during the ALU cycle of two instructions to be 
squashed after a branch instruction, and during the two cycles fol­
lowing a cycle in which Exception_b_pv2 is active. Used in both the 
MDReg and PSW to prevent squashed instructions from changing 
state. 
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signal bits timing direction connected to Unit 
SrclBus_s1a 32 stable ¢>1 input Regfile 
Src2Bus_s1a 32 stable ¢>1 input Regfile 
ResultBus_b_pv2a 32 valid ¢>2 output Regfile 
ResultBusPC_b_pv2a 32 valid ¢>2 output PC Unit 
AL UResult..s2a 32 stable ¢>2 output PC Unit 
ImmedBus_s1a 17 stable ¢>1 input IReg 
Squash_b..s2 1 stable ¢>2 input PC Unit 
InterrupLs2 1 stable ¢>2 input EFace 
Exception_b_pv2 1 valid ¢>2 bidirectional PC Unit 
Reset_s2 1 stable ¢>2 input Eface 
Memory..s1a 1 stable ¢>1 input IReg 
Branch_s1a 1 stable ¢>1 input IReg 
Compute_s1a 1 stable ¢>1 input IReg 
ComputeImmed..s1a 1 stable ¢>1 input IReg 
Movtos_s1a 1 stable ¢>1 input IReg 
Movfrs_s1a 1 stable ¢>1 input IReg 
Jpcrs_s1a 1 stable ¢>1 input IReg 
TrapInsLs1a 1 stable ¢>1 input IReg 
MDInst..s1a 1 stable ¢>1 input IReg 
OpOType1..s1a 1 stable ¢>1 input IReg 
TBWhich..s1a 1 stable ¢>1 input IReg 
TBEqChk_s1a 1 stable ¢>1 input IReg 
TBGrChk..s1a 1 stable ¢>1 input IReg 
TBHighChk..s1a 1 stable ¢>1 input IReg 
ShiftDrv Res..s1a 1 stable ¢>1 input IReg 
ShiftDrv Resul t..s2a 1 stable ¢>2 input IReg 
TakeBranch..s2a 1 stable ¢>2 output PC Unit 
PSWs_b..s2 1 stable ¢>2 output PC Unit 
PSWu_b..s2 1 stable ¢>2 output PC Unit 
PCM 4Drv ResBus_q2 1 qualified ¢>2 input PC Unit 
IncDrv ResBus_q2 1 qualified ¢>2 input PC Unit 
Psi1 1 clock ¢>1 input Eface 
Phi2_b 1 clock ¢>2 input Eface 
Phi2 1 clock ¢>2 input Eface 
Phil 1 clock ¢>1 input Eface 

Table 5.1: Signals connected to the Execute Unit. 
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InterrupL.s2 Used to indicate an external interrupt to the Execute 
Unit, which will activate Exception_b_pv2 if interrupts are not 
masked. 

Exception_h_pv2 Active for an external interrupt, external exception, 
or overflow (ALU or MD Register). Pulled by the Execute Unit in 
the case of an external interrupt or overflow. Pulled by the Eface 
in the case of an external exception. 

ReseLs2 Active during machine reset. Used by the PSW to ensure that 
the machine comes up after reset with the PSW bits in a reasonable 
configuration. 

Memory...sla Active during the ALU cycle of all memory instructions. 

Branch-sla Active during the AL U cycle of all branch instructions. 

Compute_sla Active during the ALU cycle of all compute instructions. 

Computelmmed...sla Active during the ALU cycle of all compute im­
mediate instructions. 

Movtos...sla Active during the ALU cycle of a movtos (Move To Spe­
cial) instruction. 

Movfrs...sla Active ~uring the AL U cycle of a movfrs (Move From Spe­
cial) instruction. 

Jpcrs_sla Active during the ALU cycle of a jpcrs (Jump PC and Re­
store State) instruction. 

TraplnsLsla Active during the ALU cycle of a trap (Trap Uncondi­
tionally) instruction. 

MDlnst...sla Active during the ALU cycle of a dstep (Divide Step), 
mstep (Multiply Step), or mstart (Multiply Startup) instruction. 

OpOTypel-sla Active during the ALU cycle of any instruction that is 
encoded with a 1 in bit 0 of the Opcode field and bit 1 of the Type 
field. These are the instructions in which the AL U always drives 
the Result Bus. 
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TBWhich..sla TakeB ran ch Which signal. Only contains a useful value 
during the ALU cycle of a branch instruction. Indicates the sense 
ofthe branch condition encoded in the instruction. Same as bit 0 of 
the Opcode field in the branch instructions. Used by TakeBranch 
logic, see Section 5.2.12. 

TBEqChk..sla TakeBranchEqualCheck signal. Only contains a useful 
value during the ALU cycle of a branch instruction. Active if 
the instruction indicates the equality condition is to be tested, 
i.e., the instruction is beq or bne. Used by TakeBranch logic, see 
Section 5.2.12. 

TBGrChk..sla TakeBranchGreaterThanCheck signal. Only contains a 
useful value during the ALU cycle of a branch instruction. Active 
if the instruction indicates the (signed) greater-than condition is 
to be tested, i.e., the instruction is bge or blt. Used by TakeBranch 
logic, see Section 5.2.12. 

TBHighChk..sla TakeBranchHigherThanCheck signal. Only contains 
a useful value during the ALU cycle of a branch instruction. Active 
if the instruction indicates the (unsigned) higher-than condition is 
to be tested, i.e., the instruction is bhs or blo. Used by TakeBranch 
logic, see Section 5.2.12. 

ShiftDrvRes...sla Active during the ALU cycle of those instructions in 
which the shifter drives the Result Bus, i.e., the asr, ratlb, ratlcb, 
and sh instruttions. Used in the shifter controller to ensure that no 
more than one output of the decoders is active during instructions 
that do not use the shifter. 

ShiftDrvResult...s2a Same as ShiftDrvRes..s1a, but delayed by one 
phase. Used to gate the shifter output onto the Result bus. 

TakeBranch...s2a Only contains a useful value during the ALU cycle of 
a branch instruction. Indicates to the PC Unit whether or not the 
branch should be taken. 

PSWs_b..s2 Current value of the PSW S (PC Shifting) bit. 

PSWu_b..s2 Current value of the PSW U (User/System) hit. 

PCM4DrvResBus-(}2 Active when PC-4 in the PC Unit is driving 
the Result Bus. See Section 5.2.12. 
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Figure 5.10: Interface to the Execute Unit. 
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Squash_b_s2 
Exception_b--pv2 
Reset_s2 

Psil 
Phi2_b 
Phi2 
Phil 

TakeBranch_s2a 
PSWs_b_s2 

ResultBusPC_b--pv2a 

PSWu b s2 
PCM4DrVResBus_q2 
IncDrvResBus_q2 

IncDrvResBuSA2 Active when the PC incrementer in the PC Unit is 
driving the Result Bus. See Section 5.2.12. 

5.2.2 Timing 

The Execute Unit performs all of its operations for a particular instruc­
tion during the ALU cycle of that instruction. With only a few excep­
tions, all signals that flow into the Execute Unit from other parts of the 
processor are stable by the end of <p2 of the RF cycle, and remain stable 
throughout <PI of the ALU cycle. All 32-bit data that are generated by 
the unit are placed on the Result Bus by the end of <p2 of the AL U cycle. 
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5.2.3 PLA Controllers 

A PLA-style structure is used within the Execute Unit in several places to 
implement the logic for the control lines that run through the datapath. 
This structure is described once here, and will simply be referred to as 
a PLA throughout the remainder of this section. Since it appeared that 
many of the desired control signals contained few minterms, the decision 
was made to use a precharged AND-plane with wired-OR outputs. A 
schematic of this scheme is shown in Figure 5.11. During the precharge 
phase, each output from the PLA is precharged. In addition, all of the 
input signals into the PLA must be stable by the end of this phase to 
prevent charge-sharing problems. During the evaluation phase, each line 
corresponding to a minterm that evaluates true is discharged. If any of 
the minterms connected to an output is discharged, then the output is 
discharged, thus realizing the wired-OR output. Note that all outputs 
from this style of PLA are qualified with the evaluation clock, meaning 
that the signal is effectively ANDed with the clock, i.e., the signal is 
always low when the clock is low. This property was convenient for most 
of the signals, and often prevented having to run clock signals through 
the datapath as additional control lines. 

5.2.4 Funnel Shifter 

The funnel shifter extracts any contiguous 32-bit field from the concate­
nation oftwo 32-bit inputs. All standard shifts (logical shifts, arithmetic 
shifts, and rotates.) are easily accomplished using this scheme. The shifter 
occupies 650 /-lm of the datapath length. The actual shift is done and 
the result latched during </>1. The result is driven onto the Result Bus 
during </>2. 

A schematic diagram of the shifter is shown in Figure 5.12. It is built 
in two stages. The first stage uses the three high-order bits of the shift 
amount to select a 35-bit field out of the 64-bit input. The second stage 
then uses the two low-order bits of the shift amount (which happen to be 
fully decoded into four bits in the shift instructions) to select the desired 
32-bit field from the 35 bits. This two-stage organization was chosen to 
reduce the size of the shifter by reducing the number of decoded select 
lines running through the datapath from 32 (for a single-stage shifter) 
to 12 (8 for the first stage, 4 for the second). Note that some additional 
complexity is introduced since the datapath must be 35 bits high in the 
region of the first stage rather than the standard 32-bit height. 
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(Each vertical line corresponds to a minterm) 

Goo --------~~------~--------~--------_r--

Clk --------1+--------1-1-------4+---------1 

Inputl ________ 1+-________ --1 ______ -++-______ --1 

Input2 ----~-----1I__--_l+--------+-----~ 

Clk -----A+----1I__--~I___l--___<~---+--~:J 

Outputl Output2 Output3 

Figure 5.11: PLA schematic. 
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A few points about the circuit issues should be mentioned (refer to 
the schematic, Figure 5.12). There is an input multiplexer that allows 
the controller to set up the shifter for a funnel shift, rotate, or arithmetic 
right shift. For the arithmetic shift right, there is a large driver at the 
bottom of the datapath to drive the most significant bit (Le., the sign 
bit) of the Src1 input up through the datapath. This bit, driven into 
each of the bits in the datapath, can then be used as one of the two 
32-bit inputs into the shifter, allowing the arithmetic right shift to be 
performed. Note that the first stage of the shifter is built as a large 
discharge network, meaning that all of the internal lines are precharged 
during </>2 and then discharged selectively during </>1 to yield the desired 
result. 

5.2.5 Funnel Shifter Controller 

The funnel shifter controller is quite straightforward. The control lines 
that must be generated include the input multiplexer lines, the decoded 
shift amounts for the two shift stages, and the line that indicates that 
the shifter should drive the Result Bus. The following sections discuss 
each of the signals generated by the controller. 

Input Multiplexer Signals 

Signals3 : 

Src1 ToShifteLq1a = GF24 . ShifterDrvResultBus_q1a 
Src2ToShifteLq1a == CF22· ShifterDrvResuitBusA1a 
Src1SignToShifteLq1a = CF23 . ShifterDrvResultBus_q1a 

One ofthe 32-bit inputs into the shifter is the Src1 register. The other 
32-bit input is selected by the input multiplexer; this input determines 
the type of shift (funnel shift, rotate, or arithmetic shift) that will be 
performed. These signals come directly from the Comp Func field of the 
shifter instructions, and thus may be pulled directly from the Immediate 
Bus. However, no more than one of these signals should be high at one 
time, so each one is ANDed with ShifterDrvResultBus_q1a. This ensures 
that the signals will only be active for shift instructions. This ANDing is 
done in the control line drivers just before the lines enter the datapath. 

30 Fnn denotes a bit in the CompFunc field corresponding to bit nn in the in­
struction word 
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First Stage Decoded Shift Amounts 

Signals: 
PassO = CF24 . CF25 . 'C'F'26 . CF27 

V CF24· CF25· Src2[30] . Src2[31] 
V CF24· CF25· Src2[30] . Src2[31] 

Pass4 = CF24 . CF25 . CF26 . CF27 
Pass8 = CF24 . CF25 . CF26 . CF27 

V CF24· CF25· Src2[30] . Src2[31] 
V CF24· CF25 . Src2[30] . Src2[31] 

Pass12 = CF24 . CF25 . CF26 . CF27 
Pass16 = CF24 . CF25 . CF26 . CF27 

V CF24· CF25· Src2[30] . Src2[31] 
V CF24· CF25· Src2[30] . Src2[31] 

Pass20 = CF24 . CF25 . CF26 . CF27 
Pass24 = CF24 . CF25 . CF26 . CF27 

V CF24· CF25· Src2[30] . Src2[31] 
V CF24· CF25· Src2[30] . Src2[31] 

Pass28 = CF24 . CF25 . CF26 . CF27 

The high-order three bits (CF25, CF26, and CF27) of the shift 
amount are decoded into these eight control lines. There is a PLA 
dedicated to this decoding. The only complication in this is that the 
MIPS-X architecture specifies byte rotate instructions with the rotate 
amount specified not in the instruction encoding, but rather in the Srd 
register. Therefote, the inputs to the decoder PLA include both the 
shift amount bits from the Comp Func field (obtained from the Imme­
diate Bus) and the low-order two bits of the Srd Bus pulled up from 
the datapath. The PLA has 12 inputs (including both true and comple­
mented signals), eight outputs, and 16 product terms. 

Second Stage Decoded Shift Amounts 

Signals: 
ShiftO = CF24 . CF31 V CF24 
Shiftl = CF24· CF30· ShifterDrvResultBus.B1a 
Shift2 = CF24· CF29· ShifterDrvResultBus.B1a 
Shift3 = CF24· GF28· ShifterDrvResultBus.B1a 

The low-order two bits of the shift amount are decoded into these 
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four control lines. As in the case of the first stage decoding, there is 
a PLA dedicated to this decoding. In the case of the byte rotate in­
structions mentioned above, the PLA forces the four lines to the same 
values they would have if the low-order two bits of the shift amount were 
00. This is because the second stage of the shifter is not really needed 
in the case where the shift amount is a multiple of four, as is the case 
with byte rotates. The PLA has seven inputs (including both true and 
complemented inputs), four outputs, and five product terms. 

Driving the Result Bus 

Signals: 
ShifterDrvResultBus_q2a = TypeD· Type1 . OpO· Op1 ·Op2 

This is the control signal that determines whether or not the Result 
Bus is driven with the shifter's 32-bit output. Note that unlike the other 
shifter control signals (which are all </>1 signals), this is a </>2 signal. This 
signal is only activated for shift instructions. The shift instructions are 
detected by decoding the Type and Op fields of the instruction; this 
takes place in the IReg during </>1 of the ALU phase. The IReg provides 
ShifterDrvResultBus..s1a to the shifter controller to generate the input 
multiplexer signals (see above). The IReg also latches the signal and 
provides it to the shifter controller as ShifterDrvResultBus..s2a. The 
shifter controller then needs only to perform the clock qualification with 
</>2 to generate ShifterDrvResultBus_q2a. 

5.2.6 MD Register 

The MD (multiply/divide) register is a special register with built-in hard­
ware to facilitate the implementation of the shift-and-add multiply and 
divide instructions specified by the MIPS-X architecture. The MD reg­
ister occupies 205 J.lm of the datapath length. 

A schematic of one bit of the MD register is shown in Figure 5.13. 
Each bit consists of an input multiplexer feeding a string of latches. 
Selecting different inputs allows the MD register to be written from the 
Result Bus, shifted left by one bit, or restored to a previous value. 

Since the MD register comprises part of the MIPS-X machine state, 
special care must be taken to ensure that the correct value is stored in 
the case of an exception or squashed instructions. The easiest way to see 
how this is handled is to look at a pipeline diagram. A pipeline diagram 
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Figure 5.13: MD register schematic. 
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note 1. Exceptlon_b_pv2 falls during this cycle, restoring the old value 
of the MD register. 

note 2. Squash_b_s2 falls for these cycles, preventing new values from 
overwriting the restored value. 

The numbers indicate the latch (see MD register schematic) where the 
value to restore Is held during each phase. 

RF 
first instruction 

~ executed in 
system space 

Figure 5.14: MD register action during an exception. 

outlining the MD register's operation in the case of an exception is shown 
in Figure 5.14. Figure 5.15 shows the squashing case. 

5.2.7 MD Register Controller 

The controller for the MD register generates only five signals. These 
include the input multiplexer lines, the bit to be shifted into the low­
order position during instructions that shift the register, and the line that 
selects whether or not the MD register should drive the Result Bus. Most 
of the logic used to implement the MD register controller is contained in a 
single PLA with seven inputs (including true and complemented signals), 
four outputs, and four product terms. Most of the output signals are 
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Note 1. Squash_b_s2 falls during these cycles, preventing squashed 
instructions from overwriting the correct value in the MD register. 

Figure 5.15: MD register action during instruction squashing. 
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qualified 1>2 signals. This causes a slight complication since many of the 
inputs used in the logic are 1>1 signals and must therefore be latched prior 
to entering the PLA. All but one of these inputs come from the IReg and 
are latched in the IReg. The other 1>1 input comes from the Immediate 
Bus; a special latch is included next to the PLA for this signal. The 
following sections discuss each of the signals generated by the controller. 

Input Multiplexer Signals 

Signals: 
LdMDReg_q2a = Movtos...s2a· CF30· Squash_b...s2. Exception_b_pv2 
MDRegShifLq2a = MDInst...s2a· Squash_b...s2· Exception_b_pv2 
RestoreOldMDReg_q2 = Exception-v2 

These signals drive the select inputs of the multiplexer on the front 
of the MD register latches. LdMDReg_q2a loads the MD register with 
the value on the Result Bus. This line should rise only for a movtos MD 
instruction that is not squashed. In addition, the line is ANDed with 
Exception_b_pv2 in the control line drivers to prevent it from rising in the 
case of an exception. For multiply/divide instructions (mstart, mstep, 
and dstep) that are not squashed, MDRegShifLq2a rises to shift the MD 
register left by one bit. This line is also ANDed with Exception_b_pv2 in 
the control line drivers. On an exception RestoreOldMDReg_q2 rises to 
restore the value of the MD register that was held immediately following 
the last instruction to complete its write-back cycle before starting the 
exception code sequence. Aside from the aforementioned ANDing with 
Exception_b_pv2, all of the logic used to generate the input multiplexer 
signals is contained in the MD register controller PLA. 

Shifting in the Low-Order Bit 

Signals: 
MDRegLSBIn_s2a = MSBofALU_b...s2a 

This is the bit that is shifted into the low-order bit of the MD register 
when MDRegShifLq2a is high. Note that this signal requires no logic. 
All that is required is a latch to capture the sign bit of the AL U output 
at the end of 1>1 for use during 1>2. This latch is physically located at 
the bottom of the datapath, as is a large driver for the line that brings 
the signal back to the top of the datapath for use in the controllers. 
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Driving the Result Bus 

Signals: 
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MDRegDrvResultBus_q2a = Movfrs...s2a· CF30 

When this signal is high the value stored in the MD register will 
be written to the Result Bus. This only occurs when a Movfrs MD 
is executed. The logic that generates this line is contained in the MD 
register controller PLA. 

5.2.8 ALU 

As in most microprocessor designs, the ALU is one of the most timing­
critical datapath units in MIPS-X. The timing constraints on the ALU 
were quite severe since the ALU needed to generate an effective address 
and drive it through to the data pads in a single cycle. Almost half of 
the cycle was required to get the data from the ALU to the pins, which 
meant that the ALU really had to complete its operation in one phase. 
This tight ALU timing did allow the use of a precharged design without 
the need to generate extra clocks. Since the output needed to be valid 
by the start of <jJ2, the AL U used all of <jJ2 for precharge. 

The MIPS-X ALU implements all of the logical and arithmetic op­
erations, including supporting multiplication and division, as well as the 
comparisons for branches and computing memory addresses. It is cer­
tainly more than a simple adder. The basic structure is very similar to 
the standard ALU that is shown in Mead and Conway[31]. Each bit posi­
tion generates propagate and generate (P and G) signals; these are used 
in a carry generation block to yield the carries into each bit position. The 
sum is then generated by the exclusive-or of P with the carry for that 
bit. Logicals are done by changing the functions that the P and G block 
perform. By setting G to 0, the output for each bit is just P, which can 
be set to the desired function. To improve performance, a carry bypass 
scheme, with two levels of bypassing, was used. The standard domino 
design was not used. The AL U occupies 635 J.lm of the datapath length. 

Data in the ALU flows through several sections. It arrives at the 
input to the AL U on either of the Src Buses or from the Immediate Bus. 
A set of multiplexers selects between the Src2 or the Immediate Bus, 
while another set is used to select between Src1 or Src1 shifted by one 
bit (used to implement the multiply/divide instructions). A schematic 
of the input multiplexer is shown in Figure 5.16. 
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Figure 5.16: Input multiplexer for the ALU. 
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Figure 5.17: The ALU P block. 

The outputs of the multiplexers feed the P and G blocks, which 
are shown in Figures 5.17 and 5.18. The P block is a general function 
block that can implement any function of two variables. The function is 
determined by the setting on the control lines. The control lines are high 
during precharge (1)2), but are asserted during 1>1. Since G is needed 
for only a few fUllctions (add, subtract, and 0) a smaller function block 
can be used for G. Notice that the P block actually generates P. This 
difference is important. It means that the adder cannot use a normal 
domino logic carry chain-all Ps start high. But it does mean that the 
generation of the group P signals (e.g., PO· PI . P2 . P3) can be done in 
a domino fashion, using P and a precharged NOR gate. This is shown in 
Figure 5.19. Generating P also allows an Equal output to be generated 
quickly for branches from the AL U, since Equal is just PO· Pl· P2 ... P31 
as shown in Figure 5.20. 

The actual carry path is shown in Figure 5.21. As previously men­
tioned, it has two levels of bypassing, one around each group of four 
inputs, and the other around groups of eight inputs. Using this scheme, 
both bypass chains use only pass transistors; there are no inverter delays. 
Even though the local carry chains are relatively heavily loaded (since 
they generate the the output carries that go to exclusive-or gates) the 
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Figure 5.20: Generating an Equal output. 

worst-case delay through the carry chain is about 15 ns. 
During precharge all the P signals are asserted, which helps the 

precharge (it is not necessary to explicitly precharge each node in the 
carry chain), but it does mean that the circuit must wait until these sig­
nals reach their correct value before the carry chain can evaluate. This 
needed delay is provided by the Go line. Go is kept high until the P 
signals have stablized, at which point it is pulled low, causing the carry 
chain to evaluate. Go is generated using a dummy P block to generate 
a delay that tracks the actual circuit delays. The buffering needed to 
drive the large load that Go sees is enough to match the delay in the 
group generation and provide some extra margin in the design. 

The output of the carry chain is buffered and then exclusive-ored 
with P to form the sum, as shown in Figure 5.22. This output is then 
latched on the end of ¢1 and driven onto the Result Bus on ¢2. 

5.2.9 ALU Controller 

Of the Execute Unit controllers, the ALU controller is the most complex. 
It was found that a PLA implementation of the controller would be too 
large; instead, a regular structure of gates similar to a Weinberger[46] 
array was used. In addition, the signals controlling the driving of the 
Result Bus have some complicated logic involving both ¢1 and ¢2 inputs. 
This logic is implemented with custom layout. The control lines that 
must be generated for the ALU include the input multiplexer lines, the 
AL U function lines, and the lines indicating whether the AL U should 
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drive the Result Bus. The following sections discuss each of the signals 
generated by the controller. 

Input Multiplexer Signals 

Signals: 
Src1ToALU-sla = MDInsLb-sla 
Src1ShiftedToALU-sla = MDInst-sla 
Src2ToALU-sla = Branch-sla V Compute-sla 
ConstantToALU-sla = MemorY.Bla V ComputeImmed-sla 
Src1ShiftedLSBIn_sla = MDInst.Bla· CF23· MSBofMDReg.Bla 

The input multiplexer selects the 32-bit inputs that will be fed to the 
AL U. One of the AL U inputs is fed by either the Src1 Bus or the Src1 Bus 
shifted left by one bit (used in the multiply/divide instructions). The 
other ALU input is fed by either the Src2 Bus or the Immediate Bus. 
These inputs are determined primarily by the type of instruction being 
executed, i.e., Memory, Branch, Compute, or Compute Immediate. The 
input multiplexer control signals are generated in the Weinberger-style 
structure. 

AL U Function Lines 

Signals: 
PO = CF29 . Compute.Bla V Branch-sla 
PI = CF28· Compute.Bla V Memory-sla V ComputeImmed-sla 
P2 = CF27· Compute.Bla V Memory-sla V ComputeImmed-sla 
P3 = CF26 . Compute.Bla V Branch-sla 
GO = CF3I . Compute.Bla V MemorY.Bla V Computelmmed_sla 
GI = CF30· Compute.Bla V Branch.Bla 
ALUCarryln_sla = CF25· Compute.Bla V Branch-sla 

These are the lines that actually control the function performed by 
the ALU on its two 32-bit inputs. The lines consist of four propagate 
signals, two generate signals, and the carry into the ALU. The basic idea 
for each of these signals is to force an add to occur for Memory and 
Compute Immediate instructions, and to force a subtract for Branch 
instructions. For Compute instructions, each of the lines is extracted 
from the Comp Func field of the instruction, allowing great flexibility in 
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forming instructions that perform logical operations. The AL U function 
lines are all generated in the Weinberger-style structure. 

Driving the Result Bus 

Signals: 
Src1DrvResultBus_q2a = Movtos V Mult . MSBofMDReg_b V 

Div· MSBofALU 
ALUDrvResultBus_q2a = Memory V Compute· OpO V 

Computelmmed· OpO V Mult· MSBofMDReg V 
Div· MSBofALU_b 

where Mult means a multiply instruction (mstart or mstep) 
and Div means a divide instruction (dstep) 

These lines determine if the ALU or Src1 Bus is to drive the Result 
Bus. They are quite complicated to generate, since some of the inputs are 
</>1 signals and others are </>2 signals. Basically, all of the </>1 signals are 
logically combined as much as possible during </>1 and these intermediate 
values are then latched and fed through the </>2 logic along with the </>2 
inputs. All of the </>1 logic is done in the Weinberger-style structure, and 
the latches and </>2 logic are done in custom layout. Note that in the 
above equations all timing information and specific references to Comp 
Func bits have been omitted for clarity. A schematic showing the actual 
implementation of these signals is shown in Figure 5.23. 

5.2.10 PSW 

The PSW (Processor Status Word) is a special register containing various 
status bits for the current state of the machine. The function of each bit 
is explained in Section 2.1.4. The PSW occupies 170 tLm of the datapath 
length. 

A schematic of each PSWcurrent-PSWother bit pair is shown in Fig­
ure 5.24. The top two latches make up the PSWcurrent bit, and the 
bottom two latches make up the PSWother bit. The PSW can write 
to and read from the Result Bus. Each PSWcurrent bit can be saved 
in its PSWother bit. The PSWcurrent bit can also be restored from 
the PSWother bit where it was saved. When an exception is taken, 
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Figure 5.23: Result Bus control signals generated by the ALU controller. 
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the PSW current bits are saved in the PSWother bits and most of the 
PSW current bits are forced to a particular value (Le., either 0 or 1 de­
pending on the bit). This is not true, however, for the I and a bits. On 
an exception, they are forced to values that depend on whether or not 
the exception was caused by an interrupt or overflow. 

The PSW e bit is totally different from the other bits in the PSW. 
Its purpose is to indicate to the operating system whether or not the 
machine state should be saved when an exception is taken. Normally 
it should be saved; the case in which it should not be saved is if the 
exception was taken in the middle of an exception return sequence. A 
schematic of the e bit is shown in Figure 5.25. The e bit is implemented 
as a shift chain that has a length tailored to match the length of the time 
it takes to restore machine state during the exception return sequence. 
When the return sequence begins, the entire shift chain is cleared; ones 
are then shifted from the left a phase at a time. When the shift chain is 
filled with ones, then the full machine state has been restored. 

5.2.11 PSW Controller 

The implementation of the PSW controller is fairly straightforward, since 
only five signals are required and each of them is a qualified </>2 sig­
nal. The signals consist of the input multiplexer lines, a line indicating 
whether or not the e bit shift chain should shift, and a line specifying 
whether or not the PSW should drive the Result Bus. 

Most of the logic used to implement the PSW controller is contained 
in a single PLA with 11 inputs (including true and complemented sig­
nals), five outputs, and seven product terms. All of the output signals 
are qualified </>2 signals. Since many of the inputs used in the logic are 
</>1 signals, the signals must be latched prior to entering the PLA. All 
but one of these inputs come from the IReg and are latched in the IReg. 
The other </>1 input comes from the Immediate Bus; a special latch is 
included next to the PLA for this signal. The following sections discuss 
each of the signals generated by the controller. 

Input Multiplexer Signals 

Signals: 
LdPSW _q2a = Movtos...s2a· CF31 . PSWu_b...s2 . Exception_b_pv2 
ForcePSW _q2 = Exception_v2 V Reset...s2 V TrapInst...s2a . Squash_b...s2 
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Figure 5.24: Schematic of a PSWcurrent-PSWother bit pair. 
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PSWOtherToPSW A2 = Jpcrs_s2a . PSWu_b..s2 

These signals drive the select inputs of the multiplexer on the front 
of the PSW latches. LdPSW _q2a loads the PSW with the value on the 
Result Bus. This line should rise only for a movtos psw instruction 
executed in system space. In addition, the line is ANDed with Excep­
tion_b_pv2 in the control line drivers to prevent it from rising in the case 
of an exception. On an exception, a reset, or a trap instruction that 
is not being squashed, ForcePSW _q2 rises to save each PSW current bit 
in its respective PSWother bit and force the PSWcurrent bits to pre­
determined values. PSWOtherToPSW _q2 restores each PSW current bit 
with the value in its PSWother bit. This line is activated as part of the 
exception return sequence as triggered by a jpcrs instruction. Note that 
a jpcrs instruction executed from user space should do nothing. Aside 
from the ANDing with Exception_h_pv2 that is done for LdPSW _q2a, all 
of the logic used to generate the input multiplexer signals is contained 
in the PSW controller PLA. 

E Bit Shift Enable 

Signals: 
ShiftEBiLq2 = PSWs..s2 . Jpcrs_b..s2a 

When activated, this signal enables shifting of the e bit shift chain; 
otherwise, shifting'is disabled. Note that e bit shifting is enabled when­
ever PC shifting is enabled, except when a jpcrs instruction executes (in 
which case the e bit shift chain is reset). The logic for this signal is 
contained in the PSW controller PLA. 

Driving the Result Bus 

Signals: 
PSWDrvResultBus_q2a = Movfrs-s2a· CF31 

When this signal is high the value of the PSW will be written to the 
Result Bus. The only case when this occurs is when a movfrs PSW is 
executed. The logic that generates this line is contained in the PSW 
controller PLA. 
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5.2.12 Special Circuitry 

Various pieces of miscellaneous custom logic are included in the Execute 
Unit. These pieces are located in an otherwise empty "33rd bit" slice at 
the bottom of the datapath, as well as in the unused bits of the PSW 
and the unused area where the Immediate Bus enters the datapath. One 
major function provided by this circuitry is the generation of the Take­
Branch signal that indicates for branch instructions whether execution 
should continue sequentially or at the branch target. Since this decision 
is based on the output of the ALU, the circuitry is located in the 33rd 
bit position at the bottom of the datapath under the ALU. A schematic 
of this is shown in Figure 5.26. The TakeBranch signal is then sent to 
the PC Unit so it can continue execution at the appropriate address. 

The logic that handles the detection of arithmetic overflow is also 
implemented in this circuitry. This detection is complicated by the fact 
that overflow can occur either in the ALU itself or in the shift operation 
sometimes performed in the ALU input multiplexer. Overflows may be 
masked by setting the appropriate bit in the PSW. A schematic of the 
overflow logic is shown in Figure 5.27. In addition to overflow detection, 
this schematic shows circuitry to activate Exception_b_pv2 (the global 
signal used to indicate the occurrence of an exception of any kind) for 
an external interrupt. The generation of the signal fed to the PSW 
signalling the occurrence of an exception due to arithmetic overflow is 
also shown. 

Finally, custom logic is provided to force off-chip memory addresses 
generated by MIPS-X to fall in user space (as opposed to system space) 
whenever the processor is executing in user mode. Since the lower half 
of the address space is designated system space and the upper half is 
designated user space, forcing the high-order bit of an address to a 1 
will cause a mapping into user space. This technique is implemented in 
MIPS-X with a special circuit that operates on bit 0 of the Result Bus 
between the Execute and PC Units in the datapath. This circuit is shown 
in Figure 5.28. When MIPS-X is executing in user space, the circuit will 
force the most significant bit of the Result Bus high on the PC Unit 
side. (The Tag Unit multiplexes the PC Bus and the Result Bus onto 
the address pins.) Note that this does not change the value of the Result 
Bus in the Execute Unit; in this way, the results of compute instructions 
are not affected. When in system mode, the value of the Result Bus is 
transferred unaltered to the Result Bus on the PC Unit side. If the PC 
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Figure 5.26: Schematic of the TakeBranch logic. 



5.2. THE EXECUTE UNIT 

Psi1 

Src1 ShiftedToALU 

ALUDrvResultBus -------------------~ 

PullException_q2 

r----'-- PSWOBitinputjlv2a 

Interrupt_q2 ~~ ___ A_IS_O_P_UI_IE_X_ce_p_t_io_n __ q_2 ___ ..., 

PSWm_'_" ~ ~ 

• = (AddOvll) • (ALUDrvResultBus) + (ShiftOvfl) • (Src1 ShiftedToALU) _s2a 

Figure 5.27: Schematic of the overflow logic. 

91 

m 
)( 

£ :a o· 
::I 

t 
< 
'" 



92 CHAPTER 5. THE EXECUTE ENGINE 

PSWu_s2 --..; :::=0------1 ...... [;>-__ ---. 

Resu~Bus_b_pv2 -------t ---r-- ResultBusPC_b_pv2 
(b~ 0 only) (bit 0 only) 
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Figure 5.28: SystemjU ser space circuitry on the Result Bus. 

Unit is driving the Result Bus (e.g., in a movfrs instruction) then the 
Result Bus from the PC Unit is passed unchanged to the Result Bus on 
the Execute Unit side. 



Chapter 6 

Instruction Fetch 
Hardware 

One of the difficult tasks of keeping a high speed processor busy is to 
make sure that it has a constant supply of instructions and to make 
sure that they are supplied quickly. This requires a very high bandwidth 
for both instructions and data. For MIPS-X, when both an instruction 
and data are required, the peak bandwidth required is 160 Mbytes/s. 
Building a memory system to support this would not be simple and 
transferring this amount of data across the pins of a VLSI chip would 
have been difficult with the packaging technology available at the time. 
MIPS-X uses an on-ch!p instruction cache to reduce the memory band­
width requirements. Putting an instruction cache on-chip also makes it 
possible to fetch new instructions every cycle if the instructions are in 
the cache. 

This chapter describes the four units that comprise the instruction 
fetch hardware. The PC Unit and the Tags Unit are located in the 
datapath and the ICache RAM and the Instruction Register are located 
above the datapath. Instruction addresses are generated in the PC Unit 
and sent to the Tags Unit where they are compared with the tags to 
determine if the address is in the ICache. At. the same time, some of the 
bits are used to begin accessing the ICache RAM array. If an address 
misses in the ICache then an ICache miss sequence begins. If a hit is 
detected, the instruction accessed in the ICache RAM is latched into the 
Instruction Register. Some initial decoding of the instruction is done in 
the Instruction Register. 
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The ICache RAM array takes up about 40% of the total chip area, 
the PC Unit and the Tags Unit comprise about 12% and the Instruction 
Register uses a little over 2% of the total chip area. 

6.1 The PC Unit 

The PC Unit handles the addressing of instructions and saving instruc­
tion addresses so that the machine can be restarted after an exception. 
Located between the Execute Unit and the Tag Unit, the PC Unit takes 
up about 1425 J.tm of the datapath with some of this length overlap­
ping the Execute Unit and the Tag Unit. The total height is 2918 J.tm 
where much of the extra height above the datapath is due to a PLA. The 
datapath is 32 bits wide but the most significant bit (bit 0) is treated 
differently from the rest because it is the system/user bit. 

The main functions of the PC Unit are: 

• Increment the current value on the PC Bus. 

• Sign extend and add the displacement field for branches to the 
current value on the PC Bus. 

• Drive the PC Bus during Reset, Exceptions and traps. 

• Save the addresses of the instructions currently in the pipeline. 

• Sequence the processor during ICache misses. 

• Sequence the processor during instruction squashing. 

• Drive the AL U result onto the Result Bus. 

The main parts of the PC Unit are: 

Incrementer: Compute the value of the PC Bus incremented by 1. 

Displacement Adder: Add the branch offset to the PC Bus. 

PC Chain: Shift chain to save the PC values of instructions in execu­
tion. 

Cache Miss FSM: Finite state machine to handle cache misses. 
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signal bits timing direction connected to Unit 
CMDelay.s1 1 stable </>1 output Execute,Tags 
CM.s1 1 stable </>1 output Regfile 
CMPC-s2 1 stable </>2 output Regfile 
Squash.h.s2 1 stable </>2 output Execute,Regfile 
PCM4DrvResBus..q2 1 qualified </>2 input Execute 
IncDrv ResBus..q2 1 qualified </>2 input Execute 
Exception.h_pv2 1 valid </>2 input Execute 
ICacheTest.s1 1 stable </>1 input Eface 
Reset.s2 1 stable </>2 input Eface 
Psi1PC 1 clock </>1 input Eface 
Psi1 1 clock </>1 input Eface 
Phi2.h 1 clock </>2 input Eface 
Phi2 1 clock </>2 input Eface 
Phil 1 clock </>1 input Eface 
TakeBranch.s2a 1 stable </>2 ALU input Execute 
PSWs_b.s2 1 stable </>2 input Execute 
Immed[O .. 16j.s1a 17 stable </>1 ALU input IReg 
PCBus.s1 32 stable </>1 output Execute,Tags 
PCBus_b.s1 32 stable </>1 output Tags 
ResultBus.h.pv2 32 valid </>2 bidirectional Execute,Tags 
ALUResult[l .. 31j.s2a 31 stable </>2 ALU input Execute 
PSWu_b...s2 1 stable </>2 input Execute 
Hit_vI 1 valid </>1 input Tags 
IMiss...s2 1 stable </>2 output Tags 
TrapInst...s1a 1 stable </>1 ALU input IReg 
Traplnst...s2a 1 stable </>2 ALU input IReg 
Branch...s2a 1 stable </>2ALU input IReg 
Jpcrs.s2a 1 stable </>2 ALU input IReg 
Jpc...s2a 1 stable </>2 ALU input IReg 
Jspci.s2a 1 stable </>2 ALU input IReg 
Movfrs...s2a 1 stable </>2 ALU input IReg 
Movtos...s2a 1 stable </>2 ALU input IReg 

Table 6.1:' Signals connected to the PC Unit. 

Squash FSM: Finite state machine to handle instruction squashing. 

PC Logic: This was previously a PLA but it has been converted to 
standard cell logic. Descriptions here will refer to the PLA. 

6.1.1 PC Unit Interface 

Figure 6.1 shows the logical interface of the PC Unit and the approxi­
mate locations of the signals in the layout. Table 6.1 gives the size of 
the signals, the timing and how they are connected to the neighbouring 
section. 
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Figure 6.1: PC Unit interface. 
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The clock signals are described in Section 4.2. The functions per­
formed by the other signals are described below: 

CMDelay..sl Cache miss signal from the CMFSM. 

CM..sl Cache miss signal from the CMFSM. 

CMPC..s2 Cache miss signal from the CMFSM. 

Squash_b..s2 This signal goes low when an instruction needs to be 
squashed due to an exception, a trap instruction or a squashing 
branch. 

Exception_b_pv2 A precharged signal that is pulled low when an ex­
ception occurs. 

ICacheTest..sl Forces the SQFSM to generate the Squash_b-s2 signal 
so that the PC Unit will only increment the value on the PC Bus 
allowing the cache to be accessed sequentially for testing purposes. 

Reset..s2 Force the CMFSM into the RUN state and the SQFSM into 
the first SQUASH state. When the machine is powered on there are 
two instructions in the pipeline before the first instruction of the 
reset sequence. These instructions could conceivably be branch 
instructions that would cause the machine to branch before the 
reset sequence co~ld begin. Turning on the Squash signal will force 
the PC to increment until the reset sequence begins. 

TakeBranch..s2a This is generated in the Execute Unit and is asserted 
if a branch condition is true. 

PSWs_b_s2 This represents the value of the S bit in the PSW. Shifting 
of the PC Chain is enabled when the S bit is 1. 

Immed[O .. 16]..sla This is the immediate value field of the instruction 
that comes from the Instruction Register. 

PCBus..sl This contains the address of the next instruction to be 
fetched. 

PCBus_b..sl The complement of PCBus-sl used by the Tag Unit. 
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ResultBus_b_pv2 The PC Unit uses this when values in the PC Chain 
are being saved or to load the PC Chain. Bit 0 of the Result 
Bus is actually treated differently from the rest of the bits. This 
is because of the system/user bit. There is some hardware (the 
widget) that forces this bit to be in the correct address space when 
memory addresses are generated but does not affect the bit when 
PC values are being transferred to the Register File. This circuitry 
is discussed in more detail in Section 5.2.12. 

ALUResult[1..31]...s2a This value is used to get the jump address for 
the jspci instruction. The MSB of the jump address is determined 
by PSWu_b-s2. 

PSWu_b...s2 This reflects the value in the System/User bit of the PSW. 
The System/User bit is also used in the MSB of all addresses. 

Hit-vI This signal comes from the Tags Unit and indicates whether or 
not there was a hit or miss in the ICache. 

IMiss...s2 A signal from the CMFSM that is used in the Tags Unit. 

TrapInst...sIa A signal generated by the IReg that indicates the ALU 
cycle is for a trap instruction. 

TrapInst-s2a The ALU cycle is a trap instruction. 

Branch...s2a The ALU cycle is a branch instruction. 

J pcrs...s2a The AL U cycle is a jpcrs instruction. 

J pc_s2a The AL U cycle is a jpc instruction. 

J spci...s2a The AL U cycle is a jspci instruction. 

Movfrs...s2a The ALU cycle is a movfrs instruction. 

Movtos...s2a The AL U cycle is a movtos instruction. 

6.1.2 Timing 

New PC values and control signals that affect the drivers on the PC Bus 
are evaluated or generated during <1>1 and the PC Bus is driven on <1>2. 
The Incrementer and Displacement Unit adders use the same timing as 
the ALU in the Execute Unit. 
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6.1.3 Signal Derivations and Origins 

Most of the combinational logic is done by the static PLA that is found 
in the block labeled PCLogic in Figure 6.1. Other logic is done by 
qualifying signals at the inputs to the drivers for the datapath control 
lines. There are also small pieces of combinational logic within the finite 
state machines. 

Measurements of the first working chips confirmed that the path 
through the PC PLA was one of the major critical paths. This PLA has 
been changed to use standard cells instead. The PLA implementation 
and the corresponding logic at the control drivers are described first, 
followed by a description of the standard cell logic. 

The PC PLA 

The PLA was generated initially using mpla[38] with a tile set to make 
a self-timed dynamic PLA. This eventually evolved into a fully static 
implementation when it was realized that some of the signals could arrive 
late in 1>2. The signals that were of most concern were Exception_b_pv2 
and TakeBranch...s2a. The outputs of the PLA are all qualified 1>2 except 
for SquashFSMinIn_v2, which gets latched in the Squash FSM. The use 
of these logic functions can be seen in Figures 6.2, 6.3, 6.4, 6.6, and 6.8. 

Included below is the input for eqntott[38] used to generate the PLA. 

INORDER = TakeBranch_s2a 
Exception_b_pv2 
Jspci_s2a 
Movtos_s2a 
Movfrs_s2a 
Jpcrs_s2a 
Jpc_s2a 
Branch_s2a 
Traplnst_s2a 
Immed15_s2a 
Immed29_s2a 
Squash2_s2 
Squash_b_s2 
IMiss_s2 
PSWs_s2 
Reset_s2 
CMPC_s2 
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OUTORDER = 
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SquashFSMinln_v2 
AluDrvPCBus_q2 
LatchZero_v2 
NonSeqDrvPCBus_q2 
IncDrvPCBus_q2 
IncDrvResBus_q2 
PCM1GetsResBus_q2 
ShiftPC_q2 
ZeroPC_q2 
ShiftNotZeroPC_q2 
PCM4DrvPCBus_q2 
PCM4DrvResBus_q2 

AluDrvPCBus_q2 = (!CMPC_s2) 
&; (! Reset_s2) 
&; Squash_b_s2 
&; Jspci_s2a; 

PCM1GetsResBus_q2 = (!CMPC_s2) 
&; Movtos_s2a 
&; Immed29_s2a; 

&; (PSWs_s2 &; !(Movtos_s2a &; Immed29_s2a) 
) ; 

ShiftNotZeroPC_q2 = «PSWs_s2 

ZeroPC_q2 = PSWs_s2 

I «Movtos_s2a Movfrs_s2a) &; Immed29_s2a 
) 

) &; (!Squash2_s2) 
) 

Jpcrs_s2a &; (!CMPC_s2) 
&; (! Reset_s2) 
&; Squash_b_s2; 

&; Squash2_s2; 
PCM4DrvPCBus_q2 = (!CMPC_s2) 

&; (! Reset_s2) 
&; Squash_b_s2 
&; (Jpcrs_s2a I Jpc_s2a); 

PCM4DrvResBus_q2 = (!IMiss_s2) 
&; Movfrs_s2a 
&; Immed29_s2a; 

LatchZero_v2 = (!Exception_b_pv2) 
&; (! Reset_s2) ; 

IncDrvPCBus_q2 = (!CMPC_s2) 
&; (!Reset_s2) 



6.1. THE PC UNIT 

.t (! Squash_b_s2 
I Branch_s2a 

.t (!TakeBranch_s2a) 
(!Jspci_s2a) 

.t (!Jpc_s2a) 

.t (!Jpcrs_s2a) 

.t (! Branch_s2a) 

.t (!Traplnst_s2a) 
) ; 

IncDrvResBus_q2 = (!IMiss_s2) 
.t JspcLs2a; 

NonSeqDrvPCBus_q2 = Reset_s2 
I (!Exception_b_pv2) 
I ( (!CMPC_s2) 

.t (Squash_b_s2) 

.t (Traplnst_s2a 
I Branch_s2a 
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.t TakeBranch_s2a 

) ; 
SquashFSMinln_v2 = Squash_b_s2 

) 

.t (Branch_s2a 

) ; 

Logic at the Control Drivers 

.t Immed15_s2a 

.t (!TakeBranch_s2a) 
I Traplnst_s2a 

This section gives the logic that is done at the inputs of the control 
line drivers. The left hand sides of the equations are the outputs of the 
drivers. All outputs from the PLA are qualified with "(pIa)" since some 
of the names are the same. If there is no right hand side then there is no 
other logic. The order of the drivers starts from the Execute Unit side. 
PC Bus drivers also have a complemented input that is not shown. 

AluDrvPCBus_q2 = AluDrvPCBus_q2(pla) .t Exception_b_pv2 
Phi2 
ALU GO 
Phi2 
LatchTrapVector_ql = PsilPC .t Traplnst_sla.t !Reset_s2 
Reset_s2 
LatchZero_v2 = LatchZero_v2(pla) 
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LatchDispAdder_q2 = PsilPC & !Traplnst_sla & !Reset s2 
NonSeqDrvPCBus_q2 = NonSeqDrvPCBus_q2(pla) 
Phi2 
ALU GO 
Phi2 
Psil 
IncDrvPCBus_q2 = IncDrvPCBus_q2(pla) & Exception_b_pv2 
IncDrvResBus_q2 = IncDrvResBus_q2(pla) & Exception_b_pv2 
PsilPC 
Phi2 
PsilPC 
CMPCDrvPCBus_q2 = Phi2 & Exception_b_pv2 & CMPC_s2 
PCM1GetsResBus_q2 = PCM1GetsResBus_q2(pla) 
ShiftPC_q2 = ShiftPC_q2(pla) 
Psil 
ZeroPC_q2 = ZeroPC_q2(pla) 
ShiftNotZeroPC_q2 = ShiftNotZeroPC_q2(pla) 
Psil 
ZeroPC_q2 = ZeroPC_q2(pla) 
ShiftNotZeroPC_q2 = ShiftNotZeroPC_q2(pla) 
Psil 
PCM4DrvPCBus_q2 = PCM4DrvPCBus_q2(pla) & Exception_b_pv2 
PCM4DrvResBus_q2 = PCM4DrvResBus_q2(pla) & Exception_b_pv2 

The Standard Cell Implementation 

In this section, the standard cell implementation is described. Explana­
tions are given about how and where various functions are generated. 

The original implementation of the PLA used a dynamic PLA struc­
ture. This meant that the exception signal could not be used as an 
input because it had to be a stable signal. The PLA was eventually 
converted to a static implementation but the exception signal was left 
at the drivers. The standard cell implementation moved the exception 
signal into the standard cell logic instead of putting it in the drivers. 
This is reflected in the following equations. These terms are generated 
in the standard cell block and then qualified with </>2 at the drivers. 

INORDER = TakeBranch_s2a 
Exception_b_pv2 
Jspci_s2a 
Movtos_s2a 
Movfrs_s2a 
Jpcrs_s2a 
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Jpc_s2a 
Branch_s2a 
Traplnst_s2a 
Immed15_s2a 
Immed29_s2a 
Squash2_s2 
Squash_b_s2 
IMiss_s2 
PSWs_s2 
Reset_s2 
CMPC_s2 

OUTORDER = SquashFSMinln_v2 
AluDrvPCBus_q2 
LatchZero_v2 
NonSeqDrvPCBus_q2 
IncDrvPCBus_q2 
IncDrvResBus_q2 
PCM1GetsResBus_q2 
ShiftPC_q2 
ZeroPC_q2 
ShiftNotZeroPC_q2 
PCM4DrvPCBus_q2 
PCM4DrvResBus_q2 

AluDrvPCBus_q2 = (!CM~C_s2) 
t Exception_b_pv2 
t (! Reset_s2) 
t Squash_b_s2 
t Jspci_s2a; 

PCM1GetsResBus_q2 = (!CMPC_s2) 
t Movtos_s2a 
t Immed29_s2a; 
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t (PSWs_s2 t !(Movtos_s2a t Immed29_s2a) 
) ; 

ShiftNotZeroPC_q2 = «PSWs_s2 
I «Movtos_s2a I Movfrs_s2a) t Immed29_s2a 

) 
) t (!Squash2_s2) 

) 
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t (! Reset_s2) 
t Squash_b_s2j 

ZeroPC_q2 = PSWs_s2 
t Squash2_s2j 

PCM4DrvPCBus_q2 = (!CMPC_s2) 
t Exception_b_pv2 
t (! Reset_s2) 
t Squash_b_s2 
t (Jpcrs_s2a I Jpc_s2a)j 

PCM4DrvResBus_q2 = (!IMiss_s2) 
t Exception_b_pv2 
t Movfrs_s2a 
t Immed29_s2aj 

IncDrvResBus_q2 = (!IMiss_s2) 
t Exception_b_pv2 
t Jspci_s2aj 

The SquashFSMIN_v2 signal goes to the Squash Finite State Ma­
chine, which is located next to the standard cell logic: 

SquashFSMinln_v2 = Squash_b_s2 
t (Branch_s2a 

) j 

t Immed15_s2a 
t (!TakeBranch_s2a) 
I Traplnst_s2a 

The LatchZero_v2 signal is done locally at the driver by using a NOR 
gate and feeding the output into the driver with </>2. 

LatchZer"o_v2 = (!Exception_b_pv2) 
t (! Reset_s2) j 

The next signals contain TakeBranch-s2, which arrives late in </>2 at 
the PC Unit. TakeBranch-s2 is generated at the bottom of the datapath 
(near the output of the ALU) by the time </>1 falls. It must then be 
driven all the way up and over to the PC logic. The delay is minimized 
by using the signal as close to the PC control drivers as possible. To do 
this, the equations are decomposed into several parts that are combined 
with TakeBranch-s2 and </>2 at the drivers. 

The complete function for IncDrvPCBus_q2 is: 
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IncDrvPCBus_q2 = (!CMPC_s2) 
t Exception_b_pv2 
t (! Reset_s2) 
t (! Squash_b_s2 

) ; 

I Branch s2a 
t (!TakeBranch_s2a) 

(!Jspci_s2a) 
t (!Jpc_s2a) 
t (!Jpcrs_s2a) 
t (! Branch_s2a) 
t (!Traplnst_s2a) 
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The complete function is decomposed into the terms Tl through T4, 
which are computed in the standard cells. 

Tl = (!CMPC_s2) t Exception_b_pv2 t (!Reset_s2); 
T2 = (!Jspci_s2a) t (!Jpc_s2a) t (!Jpcrs_s2a) t (!Branch_s2a) 

t (!Traplnst_s2a); 
T3 = Tl t (!Squash_b_s2) I Tl t T2; 
T4 = Tl t Branch_s2a; 

At the driver, T5 is qualified with </>2. 

T5 = T3 I T4 t (!TakeBranch_s2a); 

The complete function for NonSeqDrvPCBus_q2 is: 

NonSeqDrvPCBus_q2 = Reset_s2 
I (!Exception_b_pv2) 
I ( (! CMPC_s2) 

t (Squash_b_s2) 
t (Traplnst_s2a 

I Branch s2a 
t TakeBranch_s2a 

) 

) ; 

The decomposition is: 

Tl = Reset_s2 I (!Exception_b_pv2); 
T2 = (!CMPC_s2) 8& Squash_b_s2; 
T3 = Tl I T2 8& Traplnst_s2a; 
T4 = T2 t Branch_s2a; 

At the driver, T5 is qualified with </>2. 

T5 = T3 I T4 t TakeBranch_s2a; 



106 CHAPTER 6. INSTRUCTION FETCH HARDWARE 

6.1.4 The System/User Bit 

Bit 0 of addresses from the PC Unit is the System/User bit and is treated 
differently from the rest of the bits in the PC Unit. When the Sys­
tem/User bit (PSWu...s2) is set to 1, the machine is executing in user 
space and when it is set to 0, the machine is in system space. This bit 
replaces the most significant bit of the Incrementer and Displacement 
adders so that the address space cannot be affected by the adders. More 
details of these connections are given when each ofthe individual sections 
are discussed. 

6.1.5 The ALU Drivers 

The ALU Drivers are at the front of the PC Unit next to the Execute 
Unit and are included as part of the Displacement Unit as shown in 
Figure 6.2. The input of the drivers is ALUResulLs2a for bits 1 to 31 
and PSWu_b...s2 for bit O. PSWu_b...s2 goes through an inverter before 
going into the drivers. The ALU is used to calculate the destination for 
jspci instructions and the result is driven onto the PC Bus with these 
drivers. The size of the drivers used are 40/2 p-channel transistors and 
20/2 n-channel transistors, and are enabled by AluDrvPCBus_q2. 

6.1.6 The Displacement Unit 

The Displacement Unit has four possible sources for driving the PC 
Bus. They are Address 0, the Trap Vector, the Reset Vector and the 
Displacement Adder. These four values are multiplexed into a latch that 
provides the input for a PC Bus driver. 

Address 0 

When an exception occurs the processor begins execution at Address 0 
in system space. Since the latch is inverting, Address 0 is provided by 
tying the input of the multiplexer to Vdd. The System/User bit is not 
needed in bit 0 because the exception handling routine will always be in 
system space. 

The TrapVector 

The trap instruction contains an 8-bit vector in bits 21 to 28. This is a 
part of the immediate field so the Immediate Bus (Immed...s1a) is used 
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The immediate field 
contains the complement 
of the vector. 

The PC Trap Mask pulls 
all other bits to 1. 

Latch TrapVect _ql 

qI 

ResetVector_b ---+---------' 

PSWu_b_s2 
(in bit 0) 

ALUResulcs2a -----, 
NonSeqDrvPCBus_q2 

Figure 6.2: PC Displacement Unit. 

107 

DispPSWu_b_s2 
(to incrementer) 
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to get these values to the multiplexer. The reason that the instruction 
is encoded with the bit complement of the vector is because the latch 
inverts the bits before they get to the drivers. All bits but bits 21 to 
28 are pulled to V dd to mask them to zero. All traps vector to system 
space. 

The Reset Vector 

This sets the location where the processor will begin execution after a 
reset. The reset vector is specified by programming tabs on the multi­
plexer input that connect to either of the power supplies. The program­
ming node in the hardware is called ResetVector_b. It has been wired to 
Ox7fffffe01 . 

The Displacement Adder 

The Displacement Adder is used to calculate the destination of a 
branch. The inputs are PCBus-s1 and a version of the Immediate Bus 
(Immed_s1a) where bits 0 to 15 are sign extended from bit 16. The adder 
functions on every cycle but the output is only latched if there is a taken 
branch. The circuit for the adder is a simplified version of the AL U in 
the Execute Unit. The carry-in line, Cin_b, has been tied to Vdd. 

In the bit 0 position of the adder, the final exclusive-or gate has been 
removed to make room for an inverter so that the System/User bit will 
be the correct polarity. The actual output of the adder in this position 
is not used. 

6.1. 7 The Incrementer 

The Incrementer is always computing the next sequential value of the PC 
by adding PCBus-s1 to 0 with the carry-in set (Cin_b connected to Gnd). 
The adder circuit is the same cell as the one used for the displacement 
adder. The output of the incrementer can be driven onto the PC Bus or 
onto the Result Bus. Figure 6.3 shows a schematic of the Incrementer 
Unit. 

IThis number becomes Ox7fffff80 at the address pins because of the shifting of the 
PC in the Tags Unit. 
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DispPSWu_b_s2 
(Bit 0 only) 

Psil 

IncDrvResBus_q2 

Figure 6.3: PC Incrementer Unit. 

6.1.8 The PC Chain 
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The PC Chain is used to save values of the PC for instructions that are 
currently in execution. The front part of the chain is clocked on 'ljJ1PC 
and is required for sequencing values of the PC during cache miss cycles. 
The remainder of the chain is needed to save the three PC values needed 
to restart the machine in the event of an exception or trap. Figure 6.4 
shows a schematic of the PC Chain. 

The 'ljJ1PC clock is used only in the PC Chain and is generated 
by qualifying the </>1 clock with PadMiss_vl. During all cache misses 
(internal and external) the rest of the machine is frozen because 'ljJ1 does 
not rise but during internal cache misses, parts of the PC Chain must 
still be clocked which is the reason for the existence of'ljJ1PC. 

During an internal cache miss, the instruction that missed, PCmiss, 
and the next instruction to be executed, PCnext, are fetched from the 
external cache. This is done by clocking these addresses through the 
front part of the chain twice. The first time is to send the addresses off 
the chip and the second time is to do the write into the tags and cache, 
and start the "fetch" of the instruction. During internal cache misses, 
CMPCDrvPCBus42 is used to enable values from the PC Chain onto 
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the PC Bus. This sequencing is explained in more detail in Section 6.2.3. 
The back end of the PC Chain saves the values needed to restart 

the machine after an exception or trap. It is clocked on 'ljJl since it is 
state that needs to be preserved during any cache misses. During <jJ2, 
shifting is qualified by the shift bit in the PSW, PSWs-s2 and whether 
certain instructions are being executed. See Section 6.1.3 for the exact 
equations. 

When instructions in the branch slots are squashed it is necessary to 
"no-op" the instructions in the PC Chain so that if an interrupt occurs, 
the squashed instructions are not restarted. This must be done because 
the branch instruction may already have fallen off the end of the pipe so 
that it will not be re-executed. On restart there is no way to determine 
whether the instructions in the slots were being squashed, so they are 
changed to "no-ops" by zeroing the PC Chain and making sure there is 
a nop instruction at Address O. 

The back part of the PC Chain can be loaded from the Result Bus 
during movtos pcml (PC-I) instructions. It can drive the PC Bus dur­
ing jpc or jpcrs instructions and the Result Bus during movfrs pcm4 
(PC-4) instructions. 

6.1.9 The Cache Miss Finite State Machine 

The Cache Miss Finite State Machine (CMFSM) is used to sequence the 
processor through an internal cache miss sequence. The state diagram 
for the machine is shown in Figure 6.5 and the schematic is shown in Fig­
ure 6.6. This machine is constructed out of the same cells as those used 
for the datapath with a few minor modifications. The input is Hit-vI 
which comes from the Tags Unit and it is qualified with feedback from 
the output of the machine to prevent the machine from restarting a miss 
sequence once it is already in one. In the worst case the machine should 
do two cycles with IMiss-s2 on and two cycles with it off corresponding 
to the two cache miss cycles and executing the two instructions. 

During reset and exceptions the machine is forced into the run state 
meaning no cache miss signals are on. 

6.1.10 The Squash Finite State Machine 

The Squash Finite State Machine is a very simple 3-state machine im­
plemented as a two-stage shift register. The state diagram is shown in 
Figure 6.7 and the schematic is shown in Figure 6.8. In the squash state, 
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Figure 6.5: State diagram for Cache Miss FSM. 

there are two cycles when the PC Unit is forced into increment mode 
and the instructions are turned into "no-ops". There is feedback to the 
input such that it is possible to put any type of branch into the slots of 
any other branch instruction. 

A Reset signal will cause the processor to squash the next two instruc­
tions. This is necessary because when the machine starts, the instruc­
tions already in the pipe will be indeterminate and must be prevented 
from affecting the reset sequence (for example, they could be branches). 

Exceptions also will cause the squash signal to rise for two cycles to 
cancel the instructions still in the pipe when the exception occurred. 

During ICacheTesLsl the PC must be forced into increment mode. 
This is done by simply forcing the squash signal on. 

6.2 Internal Cache Tags 

The Tags Unit provides the basic control signals that allow the internal 
RAM to be used as an instruction cache for MIPS-X. This unit is located 
at the end of the datapath on the right-hand side and is about 2344 {lm 

high by 1715 {lm wide. 



,
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
i
D

 
!M

is
s_

s2
 

.-
-
-
-
-
-
-
-
-
-
-
1

1
)
0

-
-

C
M

_s
I 

.-
--

--
;D

 
C

M
P

C
_s

2 

C
M

D
el

ay
_s

l 

P
hi

2 
N

ex
tC

M
st

at
e_

q2
 

P
m
I
P
C
-
-
-
1
_
-
-
-
-
,
-
-
-
-
~
-
-
-
_
r
-
-
-
-
-
-
-
-
-
~
-
-
~
-
-
-
1
_
~
 

H
it

_v
i 

c
f'

1
 

C
M

D
el

ay
_h

_s
l 

E
xc

ep
ti

on
_h

-!
,v

2 
~
 

~
 

~
 

I 
I 

F
ig

ur
e 

6.
6:

 S
ch

em
at

ic
 f

or
 C

ac
he

 M
is

s 
F

S
M

. 



114 CHAPTER 6. INSTRUCTION FETCH HARDWARE 

Reset 

Exception or 
Squashing Branch 

Figure 6.7: Squash FSM State Diagram. 

Resecs2 --JF..---JF..---1IF---------Ir 

Figure 6.8: Schematic for the Squash FSM. 
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The main functions performed by the Tags Unit are: 

• Detection of a cache hitl miss. 

• Generation of the block select (tag select) signals. 

• Driving the Address Bus with the appropriate value. 

• Tag maintenance and replacement. 

• Maintenance of the valid word indicators. 

The main parts of the Tags Unit are: 

Tag Store 
Valid Bit Store 
Address Driver 
Ring Counter 
Tag Control 

Memory where tags are stored and compared. 
Memory where the valid word indicators are stored. 
Drives the correct value onto the Address Bus. 
Implements the tag replacement algorithm. 
Various logic that glues everything together. 

The following sections describe the Internal Cache organization, the 
Tags Unit interface to MIPS-X, its timing, and the hardware associated 
with each piece of the Tags Unit. 

6.2.1 Internal Cache Description 

Figure 6.9 shows a schematic of the Internal Cache (ICache) organization 
as well as the usage of the Program Counter (PC) bits. 

The ICache is organized into four sets and eight blocks as shown in 
Figure 6.9. Bits [26,27] 0f the PC index into one of the four sets, followed 
by an 8-way associative tag compare of the PC against the tags in the 
selected set. If the tag is found in the set we have a block hit. 

Tags are 24 bits long and consist of bits [0,3 .. 25] of the PC. Note 
that bits [1,2] are not tagged. Also, each tag contains an extra (reset) 
bit that allows invalidation of all tags upon reset. 

The line size, the amount of cached data associated with each tag, 
is sixteen 32-bit words. Bits [28 .. 31] of the PC are used to select one of 
these words. Since MIPS-X fetches only one word at a time, a cache line 
can simultaneously have invalid words (not resident in the cache) as well 
as valid ones. A valid bit is associated with each word in the cache to 
indicate whether or not the word contains valid data. A cache hit occurs 
when there is a block hit and the corresponding valid bit is set. 

We can now calculate the amount of storage required in the Tags 
Unit for the Tag Store and Valid Bit Store. Each of the four sets has a 
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tag for each of its eight blocks, so there are a total of 32 tags. Since each 
tag requires 25 bits, we require 32·25 = 800 bits in the Tag Store. Each 
tag corresponds to a 16-word line, so 16 valid bits are required for each 
tag. The Valid Bit Store therefore requires 32 . 16 = 512 bits. 

The tag replacement algorithm is a variation of FIFO (First In First 
Out) and is implemented by means of an 8-bit Ring Counter. At any 
time, the Ring Counter points to the block into which a new tag should 
be placed (possibly replacing another tag). The Ring Counter is incre­
mented (1) after a tag is replaced due to a block miss, or (2) when the 
Ring-Counter points to the same block in which a block hit occurred. 
Upon reset, the Ring Counter is set to point to block O. 

When a tag is replaced, the valid bits of the whole line are reset 
(smashed). When the instruction that caused the miss is read from 
memory and written into the ICache, the corresponding valid bit is set. 

To be able to perform the tag compare and the valid bit access in 
one cycle, the valid bits are kept in a separate memory (Valid Bit Store) 
and not with the instructions, as is usually the case. 

6.2.2 Tags Interface 

The signals connected to the Tags Unit are shown in Table 6.2, and their 
approximate location in the layout is shown in Figure 6.10. 
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signal bits timing direction connected to Unit 
Reset..s2 1 stable </>2 input Eface 
ICacheTest 1 stable </>1 input Eface 
CacheDisable 1 stable </>1 input Eface 
hit-vI 1 valid </>1 output PC Unit 
CMDelay..sl 1 stable </>1 input PC Unit 
IMiss..s2 1 stable </>2 input PC Unit 
PCBus..sl 32 stable </>1 input PC Unit 
PCBus_b..sl 32 stable </>1 input PC Unit 
ResultBus_b_pv2 32 valid </>2 input Execute 
AddressBus_v2 32 valid </>2 output Eface 
TagSelect..s2 8 stable </>2 output ICache 
phil 1 clock </>1 input Eface 
phi2 1 clock </>2 input Eface 
phi2_b 1 clock </>2 input Eface 

Table 6.2: Signals connected to the Tags Unit. 

The functions performed by each signal are2 : 

ReseLs2 

ICacheTest 

CacheDisable 

hiLvl 

CMDelay...s1 

IMiss...s2 

PCBus...s1 

PCBus_b_sl 

Forces the Ring Counter to point to block 0 and, 
if ICacheTest is not set, stores a 1 in the reset bit 
of all tags. 

Sets the cache in test mode whereby all locations 
of the cache can be sequentially written or read. 

Forces a cache miss to occur on every fetch. 

Determines whether a cache hit/miss occurred. 

Instructs the tags to set the valid bit of the corre­
sponding PC. 

Determines what gets driven onto the Address 
Bus: the PC Bus (when IMiss..s2 is 1) or the Re­
sult Bus. 

The address of the instruction to be fetched. 

The complement of the address of the instruction 
to be fetched. 

2 All of the signals are active high. 
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TagStore 
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Figure 6.10: Interface to the Tags Unit. 

ResultBus_b_pv2 The result of an ALU operation. This signal is 
only used to drive the Address Bus. 

AddressBus_v2 The address that goes off chip. 

TagSelecLs2 Three bits of the address are first fully decoded 
into the eight lines that comprise this signal before 
being sent to the ICache RAM. One of the lines 
will go high, to select the block in which a hit 
occurs 

Since the PC Unit maintains the state of the machine, most opera­
tions performed by the Tags Unit are guided by the signals supplied by 
the PC Unit, such as IMiss~2 and CMDelay_sl. 
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Figure 6.11: ICache timing with no internal cache misses. 

6.2.3 Timing 

Most operations performed by the Tags Unit occur on </>1 and most ofthe 
input control signals from other units should be stable </>1. All elements 
within the Tags Unit are precharged on </>2 and evaluated on </>1. The 
timing of two successive ICache accesses with no internal cache misses is 
shown in Figure 6.11. In the absence of cache misses, the following takes 
place: 

IF -1: This is the cycle preceding the fetch of an instruction. During 
</>1 the PC is computed, and during </>2 it is latched onto the PC Bus. 

IF: During </>1 a tag compare and a valid bit access are performed 
and a cache miss/hit is determined. If no miss occurs, then the block 
number in which the hit was detected is latched. During </>2 this value is 
used to read the instruction from the cache onto the Instruction Bus (I 
bus). 

RF: The Instruction Bus contains the instruction to be executed. 
The instruction is decoded and the source registers are accessed. 

As long as there are no cache misses the machine will continue to 
fetch instructions from the cache in this manner. 

The timing of a cache miss is shown in Figure 6.12 and proceeds as 
follows: 

IF_1: The PC is computed during </>1 and latched onto the PC Bus 
during </>2. 

IF: During </>1 a tag compare and a valid bit access are performed, 
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Figure 6.12: ICache timing during internal cache misses. 

and a block miss situation occurs. The new tag value is written into the 
tag memory and the valid bits of the corresponding line are smashed (set 
to 0). For all this to happen on the same active clock (</>1), the tags use 
a self-timed signal that indicates when the tag compare is done. 

During </>2, after detecting a cache miss, IMiss-B2 will become active 
causing the previous value of the PC Bus (latched during </>1) to be driven 
onto the Address Bus and then onto the Address pins. At this point the 
machine will go into the cache miss states: CMl and CM2. 

CM1: The external memory will provide the instruction at address 
PCcurr which will be latched into MDRin during </>2. At the same time 
the PC of the instruction that caused the miss (PC curr ) will again be 
latched onto the PC Bus. 

CM2: During </>1 CMDelay_sl will become active, causing the 
appropriate valid bit to be set. During </>2 the instruction that caused 
the miss will be loaded onto the Instruction Bus and written into the 
cache. 

RF: The Instruction Bus now contains the instruction to be exe­
cuted. 

The above sequence applies to a cache miss due to a block miss, in 
which case a tag needs to be replaced. For the case of a cache miss due to 
an invalid word (block hit and 0 valid bit), the tags are not written and 
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the valid bits are not smashed. Nonetheless, since the missing instruction 
still has to be fetched from external memory, the rest of the timing 
sequence applies to this kind of cache miss as well. 

Note that the machine requires two cycles to fetch an instruction 
from memory, one to read the external memory, and another to write 
the instruction into the cache. The machine takes advantage of this: 
instead of leaving the external bus unused during CM2, MIPS-X fetches 
the next instruction from memory during this cycle (provided it is not 
in the cache already). 

This is shown in Figure 6.12, where the fetch of the next instruction 
(corresponding to PCnext ) is seen to miss during CMl. The instruction 
gets read from memory during CM2, and is finally written into the cache 
during IF' (the' implies that this is not a regular fetch since the instruc­
tion is not read from the ICache; it was loaded into MDRin at the end 
of CM2). 

In the case of a block hit and an invalid word, the Ring Counter will 
be incremented if it happens to point to the same block in which the tag 
was found. This guarantees that during CM2, PCcurr will always gener­
ate a block hit and PCnext will never overwrite the tag that corresponds 
to PCcurr • 

It is important to note that a tag compare is performed on every 
4>1; this is necessary since the block number in which a tag is stored is 
needed before the Valid Bit Store or the ICache can be accessed. This 
is also one of the critical paths in the machine, since in 4>1 we must do a 
tag compare to determine a block hit, and then in the same cycle either 
read out the corresponding valid bit in case of a block hit or write the 
new tag and smash the valid bits in case of a block miss. 

To accomplish this, the Valid Bit Store operates as follows: the word 
and set select are done at the beginning of the cycle; when the tag 
compare is done, the appropriate valid bit (the one associated with the 
block that hit) is multiplexed out. If the tag compare fails (block miss) 
then no valid bit is selected and a narrow write pulse is sufficient to write 
the tags and smash the valid bits. 

Similarly, the tag compare is done on all 32 tags at the same time, 
and the block select circuitry will multiplex out the eight compare signals 
within the desired set. An OR of the eight compare signals is then 
performed to determine a block hit/miss. 
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6.2.4 Tag Store 

The Tag Store section is comprised of the following elements: 

Tag Driver 
Tag Array 
Done Array 

Tag Driver 

Drives the PC Bus onto the tag cells. 
Array that stores the tags and does the tag compare. 
Provides the self-timed tagDone signal. 

The function of the Tag Driver is to drive the PC Bus onto the tags 
and address drivers. It takes the PC Bus as an input and generates a 
qualified PC Bus. 

Since the tag compare is accomplished by pulling down on a 1/>2-
precharged matchLine, the tag array requires a qualified-1/>1 PC Bus to 
evaluate the matchLine. On the other hand, the Address Driver requires 
that the PC Bus be stable during 1/>1 to latch it. This is also true for 
the tag array, since it gets written with a qualified-1/>1 signal. The Tag 
Driver solves this problem by taking advantage of the 1/>1-1/>2 clock gap 
to provide the hold time required by the latches. This is accomplished 
by driving its outputs during 1/>1, leaving the outputs undriven during 
the 1/>1-1/>2 gap (relying on charge store to retain a '1' value), and then 
pre-discharging its outputs when 1/>2 becomes active. 

The cells of the Tag Driver are designed to match the pitch of the 
datapath. A schematic of the tag driver is shown in Figure 6.13. The 
output transistors are 21 J.Lm wide by 2 J.Lm long, all other transistors are 
6 J.Lm wide by 2 J.Lm long. 

Tag Array 

The Tag Array consists of the 32 tags. The tags are laid out side by 
side, with the qualified PC Bus and the Result Bus running horizon­
tally through them, and a tag Write and a matchLine running vertically 
through each tag. 

Each tag consists of 24 tag cells and one reset cell. The tag cells are 
arranged vertically, with bit 25 of the PC at the top, and the reset cell 
at the bottom. 

The tag cells, shown in Figure 6.14, are built around six-transistor 
fully static CMOS RAM cells with n-channel access pass transistors. The 
cell is written by raising the tagWrite signal and driving complementary 
bit lines (PCBusJjl and PCBus_b_ql) to the access transistors. The 
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Figure 6.13: Tag Driver cell. 

tag comparators are built into the cells and simply pull down on the 
matchLine when the corresponding PC Bus bit differs from the content 
of the cell. Note that the cell's contents are never read out, the outcome 
of the compare (the match line) is the only output. The matchLines are 
precharged on <p2 and evaluated on <PI. All transistors are minimum size 
devices (6 /-lm wide by 2 /-lm long), and the size of a tag cell is 45 /-lm 
high by 62 /-lm wide. The tag cells are designed to flip horizontally and 
be placed adjacent to each other; the layout for two such cells is shown 
in Figure 6.15. 

The tag reset cells are nearly identical to the tag cells. The only 
difference is that the ground line of the feedback inverter is connected to 
the Reset line instead of ground. The reset cells are driven by Tag Driver 
cells that have their PCBus and PCBus_b inputs connected to V dd and 
ground respectively. When Reset is raised, a 0 is written into all the reset 
cells; when a tag gets written, a 1 is written into the corresponding reset 
cell. After a reset none of the tags will match, effectively flushing the 
tags. Note that care must be taken to ensure that the first instruction 
executed after a reset is written into the tags. This is because Reset is a 
stable-<p2 signal, and it may be lowered too late in the cycle (during <PI) 
to allow the tag to be written. In any event, since the tag write takes 
place late in <PI, after a tag compare, this is not a problem. Figure 6.16 
shows the schematic of a reset cell. 
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PCBus_ql-+--1>----...... ----+--

to I1Cllt tag 

to next bit in tag 

Figure 6.14: A Tag cell. 

Done Array 

The Done Array provides a self-timed signal (tagDone_vl) that indicates 
when the tag compare is finished. The tagDone signal is generated by 
means of a dummy matchLine that is guaranteed to fall after all other 
matchLines. 

The Done Array contains 25 cells connected to the dummy match­
Line. Each of these cells provides a capacitive load similar to the load 
present on a match,line due to the compare transistors of a tag cell. The 
lower 24 cells are only used as capacitors on the dummy match line; the 
topmost cell in the array (the 25th) contains two sets of transistors, one 
of which will always pull down on the matchLine during </>1. 

The dummy matchLine should fall after all other matchLines since 
(1) it is pulled down by only one transistor (this corresponds to having 
one bit of the PC differ from a tag entry), and (2) the array is located on 
the right hand side of the tags where the capacitive load on the qualified 
PC Bus is greatest. 

The dummy matchLine is buffered through a chain of inverter buffers 
to generate the tagDone signal. The buffers are necessary since the 
tagDone signal drives 64 gates whose output must be valid before </>1 
falls. The size of the buffer transistors are 6 J.Lm wide by 2 J.Lm long, 20 
J.Lm wide by 2 J.Lm long, and 50 J.Lm wide by 2 J.Lm long. A schematic of 
the tag-done circuit is shown in Figure 6.17. 
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Figure 6.15: Layout for 2 adjacent Tag cells. 
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Figure 6.16: Reset Tag cell. 
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Figure 6.17: Tag Done circuit. 
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6.2.5 Valid Bit Store 

The Valid Bit Store is comprised of the following elements: 

Valid Bit Word Decoder 
Valid Bit Array 

Valid Bit Word Decoder 

Selects word within line. 
Array that stores the valid bits. 

127 

The Valid Bit Word Decoder takes bits [28 .. 31] of the PC Bus as inputs 
and generates 16 qualified-</>1 decoded signals. These are used to select 
one ofthe 16 valid bits associated with a tag. Therefore, these 16 decoded 
signals are used as the word lines to select the bit lines of the valid bit 
memory. Since the bit lines are precharged on </>2 this selection occurs 
during </>1 when the bit lines are evaluated. 

The decoders are laid out in diffusion. The PC Bus bits run vertically 
in 1st-level metal, with programming tabs providing the polysilicon gates 
at the appropriate places. Each decoder is simply a NAND gate with 
five inputs (the four PCBus (or PCBus_b) bits and </>1), followed by an 
inverter-buffer whose transistors are 22 J.lm wide by 2 J.lm long. The 
decoder cells are designed to match the vertical pitch of the valid bit 
memory cells and they are located on the left side of the Valid Bit Store. 

Valid Bit Array 

The Valid Bit Array consists of the 512 valid bits, organized as 32 lines 
of 16 bits each. Each line of valid bits is located directly on top of its 
corresponding tag, with the 16 valid bit cells running vertically. 

The matchLine (from the tag below), the tagWrite signal, and the 
bitLine run vertically through each line in 1st-level metal. The word lines 
(from the Valid Bit Word Decoders) and the power lines run horizontally 
through the 32 lines in 2nd-level metal. 

The valid bit cells consist of fully static CMOS RAM cells with one 
n-channel access transistor, as shown in Figure 6.18. The bit lines are 
precharged on </>2, and the cell is read out by driving its word line high 
during </>1. Also, a 0 may be written to each individual cell within the line 
by pulling down on the bit line; this is used to set a valid bit. Note that 
a 1 cannot be written into the cell; invalidation of a line (smashing the 
valid bits) is accomplished by raising the tagWrite signal, which serves as 
the ground line for the feedback inverter. Raising tagWrite will write a 1 
on all sixteen valid bit cells associated with the tag being replaced. This 
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rest of cache line 

Figure 6.18: Valid Bit cell. 

next 
tag 

could have also been accomplished by incorporating another n-channel 
transistor into the cell, but this would have increased the size of the cell 
beyond the pitch constraints. 

All transistors in the valid bit cell are minimal size devices (6 !-lm 
wide by 2 !-lm long), except for the access transistor which is 13 !-lm 
wide by 2 !-lm long. The size of the cell is 35.5 !-lm high by 42.5 !-lm 
wide. Note that the bit line is discharged through two transistors, the 
n-channel feedback transistor and the n-channel transistor that drives 
the tag Write_ql signal. The cells are designed so they flip horizontally 
and vertically; four, such cells are placed adjacent to each other sharing 
the V dd and ground contacts. The layout for four such cells is given in 
Figure 6.19. 

6.2.6 Ring Counter 

The Ring Counter consists of an 8 bit shift register. Every bit uses 2 
static half-latches; one is clocked on </>1, the other is clocked on </>2. At 
all times only one ofthe Ring Counter bits is set; the other seven bits are 
reset. The latches are provided with an asynchronous reset (a pull-down 
transistor) that will reset the Ring Counter, forcing it to point to block 
o. A schematic of the Ring Counter is given in Figure 6.20. 

The Ring Counter is shifted to the right (points to the next block) 
after a block miss or if the Ring Counter points to the same block as 
the one that hit. The block select lines are compared with the Ring 
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Figure 6.19: Layout for 4 adjacent valid bit cells. 
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clock 

D 1--.... --Q 

Figure 6.21: Flow Through Latch with weak feedback. 

Counter bits by means of a precharged circuit. The result of this compare 
(tag=rc_b_v1) and the block miss signal are latched on </11 and on the 
next </12 cycle will cause the Ring Counter to shift. 

If the Ring Counter points to the last block (block 7) and is shifted, 
a 1 will be shifted into the first position. Note that the last bit is not 
shifted into the first position; rather, the NOR of all the Ring Counter 
bits is used instead. Although these two methods are functionally the 
same, the latter was chosen as a means of recovery in case a glitch causes 
all the bits to become zero. If this were to happen, a one could never be 
shifted back into the ring, thereby rendering the ICache useless since no 
more tags would get written. 

All latches used in the Ring Counter are static flow-through latches 
with one n-channel access transistor. To be able to write these latches, 
the feedback n-channel transistor is made 'weak' by means of a weak 
drive signal, and the feedback p-channel transistor is a high resistance 
device (4 Ilm wide by 5 Ilm long). A schematic of this latch is shown in 
Figure 6.21. 
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ResultBus_pv2 -----I 

Figure 6.22: Address Driver. 

Testing Circuitry 

Special control has been added to the Ring Counter to facilitate testing 
of the internal cache. When ICache Test is active, the ICache will go into 
a sequential mode, where the Ring Counter is only incremented when 
the PC Bus selects set number 0 (determined by bits [26,27]). Since, 
in sequential mode, the PC Unit increments the PC every cycle, this 
feature allows writing to all the tags in a block before replacing it. If the 
normal replacement algorithm is followed, the tags would not be written 
in sequential order, making it more difficult to determine a cache/tags 
problem. This feature is easily added by the inclusion oftwo more NAND 
gates, as shown i~ Figure 6.20, where the setO_b_sl signal comes from 
the set decoders. 

6.2.7 Address Driver 

The Address Driver takes ResultBus_b_pv2 and PCBus_ql as inputs, 
latches the latter and selects one of them (depending on IMiss~2) to 
drive the Address Bus. The selection is done by means of an n-channel 
multiplexer circuit3 followed by a chain of inverter buffers with transistor 
sizes 13.5 J.lm wide by 2 J.lm long and 61.5 J.lm wide by 2 J.lm long. The 
Address Driver schematic is shown in Figure 6.22. 

3Since a large capacitance is driven by the Address Bus, a full transmission gate 
should be used. 
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PC Bus 
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'------------------- -----------------~ --.......--
Address Bus 

Figure 6.23: Shifting of the PC Bus onto the Address Bus. 

PC Shifting 

The PC addresses generated by the PC Unit are word addresses while the 
data addresses on the Result Bus are byte addresses. These two must 
be made equivalent when presented to the external memory/cache to 
maintain a consistent addressing scheme. The convention is to convert 
all addresses to byte addresses and, since the machine fetches words, 
the external memory may ignore the two low order bits of the Address 
Bus. This conversion is accomplished by shifting the PC Bus as shown 
in Figure 6.23. Note that PC Bus bits 1 and 2 are not passed on to 
the Address Bus (these bits are not tagged either), and bits 30 and 31 
of the Address Bus will always be 0 for instruction addresses. The PC 
shift is accomplished by the interconnect between the Tag Array and the 
Address Driver. 

6.2.8 Tag Control 

The tag control contains the logic that "glues" all other parts of the Tags 
Unit together. The functions performed by this section are: 

• Generation of the cache hit/miss signal (hit-vi). 

• Set selection. 

• Valid bit multiplexing and writing. 

• Generation of the tag select signals. 

• Generation of the tag write signals. 
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• Precharging various parts of the circuit. 

A complete diagram of the control section for one cache block is 
shown in Figure 6.24. 

Set Selector 

The Set Selector does a 1-out-of-4 decoding of bits 26 and 27 of the PC 
Bus and drives the decoded signals along the width of the tags section. 
The decoding is done by four NAND gates, as shown in Figure 6.24, 
followed by an inverter driver. The driver transistors are 35.5 pm wide 
by 2 pm long. 

Valid Bit Control 

The valid bit control multiplexes the appropriate valid bit and, for valid 
bit writes, it drives the valid bit line low. 

Multiplexing of the valid bit is acq>mplished by means of an n-channel 
pass transistor that connects each one of the 32 valid bit lines to the I/O 
bit line (VbiLb_vl). This line is precharged on </>2 and the appropriate 
pass transistor (the one in the block where a hit was detected) is turned 
on during </>1, when the tag compare is finished. The logic on the gate 
of each pass transistor is: 

muxtxtor[j] = tagDone_v1 . matchLines1[j] . setSelect[k] 

where j is the number (0 .. 31) of the corresponding matchLine (the one 
in which a block hit was detected, if any), and k is the number (0 .. 3) of 
the addressed set as generated by the set select circuit. 

Writing a valid bit is accomplished by multiplexing the valid bit line, 
as described above, and driving the bit line low. This is simply a large n­
channel (26.5 pm by 2 pm) transistor controlled by the Vwrite_ql signal, 
which is CMDelay_sl qualified with </>1. This is shown in Figure 6.24. 

Hit/Miss Signal 

The circuit that generates the hit/miss signal (hiLvl) is shown in Fig­
ure 6.25. Each block generates a blockHit signal, which is a </>2-precharged 
line pulled down by one of the four match lines in the block. The set 
select signals control four n-channel pass transistors that will allow only 
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hiCvl 

reseCs2 

->, 
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Figure 6.24: Schematic of one block of the tags, including the tagDone 
circuitry. 
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Figure 6.25: Generation of the hit/miss signal. 

the match line within the selected set to pull down on the blockHit line. 
The resulting eight blockHit lines are ORed together to generate the 
"global" hit/miss signal. The OR is accomplished by means of an OR­
AND combination to avoid an exceedingly slow 32-input OR gate. All 
the precharge and pass transistors are 6 J-lm wide by 2 J-lm long. 

Tag Write signals 

A tag Write_ql signal is generated for each of the 32 tags. The tagWrite 
line is activated when the corresponding tag must be replaced, and is 
controlled by the following logic: 

tagWrite[j] = blockMiss_v1 . </>1 . ringCounter..s1[j] . setSelect[k] 
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where j is the number (0 .. 31) of the corresponding matchLine and k is 
the number of the addressed set (decodesO...s l..decode3...s 1). 

The rise of the tagWrite signal is determined by blockMiss_vl, which 
will rise sometime during <PI in case of a block miss. The size of the 
tagWrite driver transistors is 13 J.Lm wide by 2 J.Lm long. 

Tag Select Lines 

The Tag Select lines, along with PCBus...sl[26 .. 31], form the 9-bit cache 
RAM address. There are eight Tag Select lines, representing a decoded 
3-bit address; only one of the eight lines will be set to a 1, and they cor­
respond to the blockHiLvl[O .. 7] signals generated by each of the blocks. 
The block in which a hit occurs will be set to 1, all the others will be 
pulled down during the tag compare. In the case of a block miss, block­
HiLvl[0 .. 7] will be O. The blockHit lines are buffered by a 6/2 inverter, 
latched during <PI, and then driven to the ICache RAM by a pair of 
inverter buffers, as shown on Figure 6.24. The size of the buffers are 14 
J.Lm wide by 2 J.Lm long, and 48 J.Lm wide by 2 J.Lm long respectively. 

6.3 The Instruction Cache RAM 

This section describes the static RAM portion of the Instruction Cache 
(ICache). For a description of the virtual addressing of the ICache and 
timing relative to the MIPS-X pipeline, see Section 6.2.1. 

This RAM has a d,ual purpose for its existence, first as an inter­
nal instruction cache for the MIPS-X microprocessor, and second as a 
test vehicle for analyzing fault models and failure mechanisms. Some 
of the unique design decisions in this RAM were driven by the MIPS-X 
application-but were applied to the design in such a way as to maintain 
suitability as a test vehicle. 

RAMs are typically asynchronous because the clocking scheme of the 
application is unknown and an asynchronous timing interface is the most 
general. Since the ICache was designed specifically for MIPS-X, it is a 
synchronous design using two non-overlapping clock phases. The size of 
the ICache is 4.2 mm by 5.7 mm and it is organized as 512 words with 
32 bits per word. 

All of the interface signals for the ICache RAM are shown in Ta­
ble 6.3. The address lines, aO through a5, are decoded to select one of 
the 64 word lines, with each of the word lines enabling eight words of 32 
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bits each. One of the eight TagSelect lines is used to select a word in the 
line. 

signal bits timing direction connected to Unit 
TagSelect..s2 8 stable 4>2 input Tags Unit 
address 6 valid 4>1 input Tags Unit 
Idata 32 valid 4>2 i/o IReg 
Write 1 stable 4>2 input Eface 
phil 1 clock 4>1 input Eface 
phiLb 1 clock 4>1 input Eface 
phi2 1 clock 4>2 input Eface 

Table 6.3: Signals connected to the Instruction Cache. 

Several test probe taps have been added to detect, diagnose, and 
further analyze any faults present in the circuit. For example, because 
the word lines are metal 1 and polysilicon, 10 J.Lm square metal 2 pads 
are placed at the top of each word line to allow wafer probing. 

The timing diagram for the RAM is shown in Figure 6.26. The 
application requires the bus to be valid 4>2, so the RAM is precharged 
during 4>1. The write signal must be stable 4>2, and the address is valid 
4>1. The RAM operates within the 50 ns clock cycle. 

6.3.1 Block Description 

A block diagram for the RAM is shown in Figure 6.27. The RAM 
precharges when 4>1 is high, and some time during 4>1 the six address 
lines are expected to become valid and remain valid until they are latched 
on the leading edge of 4>2. The address latches are flow-through latches, 
allowing the address to percolate through the NAND gate predecoders 
into the address decoders. A given address raises two word lines, one on 
each side of the RAM, with 128 cells accessed by each word line. The 
word lines out of the address decoders are gated with 4>2, so that all 
word lines are low until 4>2 goes high, allowing the selected word lines 
to rise. The selected word lines turn on the two access n-channel pass 
transistors for each RAM cell. The bit select circuitry is driven by eight 
tag lines from the tag store. The tag select lines must be stable 4>2 and 
at most only one tag line may be high. For a read cycle, the bit lines 
drive the sense amplifier, which in turn pulls down the cache bus that 
was precharged during 4>1 by the IReg. For a write cycle, the bus drives 
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Figure 6.26: The RAM timing diagram. 

the pair of inverters that make up the bit-line write drivers. The write 
drivers discharge the bit or bitbar lines through the bit-line select, which 
writes the RAM cell. 

The circuit schema~ic for a single path through the RAM is shown 
in Figure 6.28. 

6.3.2 The RAM Cell 

This design uses a six transistor fully static CMOS RAM cell, that is 
39.75 Jim by 29 Jim. The access transistors are n-channel pass tran­
sistors, which are adequate since all reading and writing for the cell is 
accomplished by pulling one bit line low. Bit lines only need to be pulled 
low because both bit lines are precharged before the read/write cycle. 
The circuit schematic is shown in Figure 6.29. The transistor widths are 
all 6 Jim, the lengths of the inverter transistors are 2 Jim, and the lengths 
of the pass transistors are 2.5 Jim. The layout of the RAM cell is shown 
in Figure 6.30. 
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Figure 6.27: The RAM block diagram. 
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Figure 6.28: A single path through the RAM. 

word line 

bit line bit line 

Figure 6.29: The RAM cell schematic. 
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Figure 6.30: The RAM cell layout. 
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6.3.3 The Cell Arrays 

RAMs are very regular structures and utilize arrays of repeated cells. 
The following sections describe some of the arrays and the peripheral 
requirements to interface the arrays to the rest of the layout. 

Four Cells 

The layout for four adjacent memory cells is shown in Figure 6.31. To 
insure balanced bit lines, each cell is flipped within an array offour RAM 
cells. Each word line is in metal 1 and only tapped to polysilicon every 
two cells. The resistance of the word line is therefore decreased at the 
expense of increased area. The bit lines and ground lines run parallel 
to each other in metal 2, while the word lines and Vdd utilize metal 1. 
A substrate tap exists for every four cells, as well as shared taps to the 
n-well. RAM cells share Vdd connections with adjacent cells. The 4cell 
is 87.5 J-Lm by 66 J-Lm. 

The Half Planes 

The RAM is broken into two half planes on either side of the sense 
amplifiers. The half planes are 2.55 mm by 3.77 mm. The block diagram 
for the memory array is shown in Figure 6.32. Figure 6.32a shows the 
bit select circuit for one bit on one side of the array. This figure shows 
that p-channel transistors are used to connect the sense amplifiers to the 
bit lines, and that n-channel transistors are used to connect the write 
drivers to the bit lines. This figure also shows both ptags and ntags. The 
ptags are simply inverted tag lines (the sense amplifiers are activated for 
both read and write) and the ntags are qualified by write and </>1 so that 
the write drivers are only connected to the bit lines during the second 
phase of a write cycle. Figure 6.32b shows the logical organization of 
the RAM. The eight tag lines select one of eight pieces of the RAM, four 
on each side. Each piece represents 32 bit line pairs selected by one tag 
line. Figure 6.32c shows the physical organization of the RAM. The eight 
pieces are interleaved so that the eight pairs of bit lines are adjacent for 
each bit. 

Precharge 

The bit lines are precharged from the outside ends by 10 J-Lm wide p­
channel transistors. The precharge signal </>1 is a long polysilicon line 
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Figure 6.31: Four RAM cells and RAM cell boundary. 
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Figure 6.33: Bit-line precharge. 

with a metal 1 strap tapping it four times up the side of the array. 
The purpose of the metal is to speed up the precharge, and the reason 
for only 4 taps is to spread the precharge out over 15 ns to avoid a 
huge current spike during precharge. The bit-line precharge approach 
is shown in Figure 6.33. The lower left hand part of the figure shows 
that each pair of bit lines is precharged through p-channel transistors 
enabled by </>1. The lower right hand part of the diagram shows the RC 
model for one bit line. The bit lines would precharge too slowly if </>1 was 
distributed in polysilicon. The current spike during precharge would be 
too great if </>1 wa~ distributed in metal. Therefore, the top figure shows 
a metal strap (the top line) tapping a polysilicon conductor (the series 
of resistors) to spread the precharge current spike, yet still complete the 
bit-line precharge during </>1. 

6.3.4 Sense Amplifiers 

The schematic for the sense amplifiers is shown in Figure 6.34. The sense 
amplifier inputs are precharged and equalized on </>1, and the internal 
nodes are pre-discharged. All transistors in the sense amplifier are turned 
off as the bit lines begin to change. When one input or the other drops 
by Vth, the p-channel transistor at the top of the sense amp begins to 
source current to the midpoint of the other side of the sense amp. This 
turns on the pull-down transistor so that the midpoint of the leg opposite 
the dropping input is held low. If a zero is being read (i.e., in went low), 
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Figure 6.34: The sense amplifiers. 

the large n-channel transistor discharges the cache bus. If a one is read 
(i.e., in went low), the bus remains high with the other large n-channel 
transistor providing a balancing load. The delay from the bit line to bit 
decode to sense amplifier to bus is 7-8 ns. The size of the sense amplifier 
with write drivers is determined by the width ofthe 32-bit metal 2 ICache 
bus that runs over the middle of the RAM, and the height of four RAM 
cells. The sense amplifier, write drivers, and bit-line multiplexers make 
up a cell that is 117 /-lm tall by 501.5 /-lm wide. 

6.3.5 Read/Write Circuits 

The schematic for the sense amplifiers with associated precharge circuitry 
and write drivers is shown in Figure 6.35. The write circuitry consists 
of two inverters, but because each cell is written by pulling one of the 
bi t lines low, the p-channel devices in the inverters do not need enough 
strength to pull the other line high, only enough to hold the precharged 
line high and restore any degradation. 

6.3.6 Tag Drivers 

This RAM has two distinct types of address inputs: the six address lines, 
and the eight fully decoded tag lines. The tag lines are used to select one 
of eight bit line pairs before they go into the sense amplifier. There are 
two 8-to-1 multiplexers, one for the eight bit lines and one for the eight 
bit bar lines. The multiplexers are physically implemented with four bits 
on each side of the sense amplifier, since four bits are in the Left Array, 
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and four bits are in the Right Array. Figure 6.32a shows the multiplexers 
for the four bits in the Left Array. The multiplexers have p-channel pass 
transistors for sensing the value in a cell during a read cycle and have 
n-channel pass transistors for driving a bit line low during a write cycle. 
The tag line inputs are active high, are inverted to drive the p-channel 
transistors (ptag in Figure 6.35), and qualified with the write signal and 
4>1 to drive the n-channel transistors (ntag in Figure 6.35). 

6.3.7 Address Decoding 

The block diagram for address decoding is shown in Figure 6.36. The 
six address lines enter the flow-through latches, which latch the address 
on 4>2 and generate both true and complemented address values for the 
predecoders. The purpose of the predecoders is to increase the amount 
of information on each line entering the decoders without increasing the 
number of signal lines. The twelve predecoded signals are then decoded 
to raise one of 64 word lines. The schematics for the flow- through latches 
and predecoders are shown in Figures 6.37 and 6.38. Each predecoded 
signal is a function of two address lines, resulting in three groups of four 
predecoded signals. For example, one group of four predecoded signals 
is (aO· al), (aO· al), (aO . al), and (aO· al). The decoder and word-line 
driver are shown in Figure 6.39. Only three of the twelve lines leaving 
the predecoder are selected low for one address; therefore, the decoder 
needs only three inputs. 
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Figure 6.37: Flow-through latch in address decode circuitry. 



150 CHAPTER 6. INSTRUCTION FETCH HARDWARE 

aO =D-a1 

aO ==Do-a1 predecoded 
address lines 

a1 ==Do- for aD, a1 
aO 

aO ==Do-a1 
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Figure 6.39: Final address decode stage and word-line driver. 
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6.4 Instruction Register 

6.4.1 Overview 

The Instruction Register (IReg) stores the instruction coming out of the 
ICache, does a preliminary decoding of this instruction, delays, and fi­
nally sends parts of the instruction to other parts of the machine. During 
an ICache miss the IReg writes new instructions into the ICache. The 
IReg is 32 bits wide and is located near the center of the chip below the 
ICache and above the Execute Unit. The IReg is 2180 Jim wide and 703 
Jim high. 

The main parts of the IReg are: 

Register Array: Holds parts of the instruction in a shift register until 
needed. 

Decoder Array: Does initial decoding of the operand and type fields 
of the instruction. 

ICache Data Bus Interface: Handles all communication with the 
ICache. 

No Destination Value Logic: Determines when the result of an in­
struction should not be written back into the Register File. 

6.4.2 Register Array 

The Register Array is implemented as a shift register of either two or 
three stages, depending on the position of each bit within the instruction. 
The first two latches hold the instruction during </>1 and </>2 of Register 
Fetch (RF), while the third stage (where present) holds certain parts of 
the instruction during </>1 of ALU. The latches are clocked by </>2, 1/;1, 
and </>2, respectively. 

There are five sections in the Array: the Type and Op fields (bits 0-1 
and 2-4, respectively), the source 1 address (bits 5-9), the source 2 ad­
dress (bits 10,12,14,16,18), the destination address (bits 11,13,15,17,19), 
and the immediate field (bits 20-31). These bit positions are identical to 
the MemBus bit positions except for the source 2 and destination fields, 
which are interdigitated to facilitate multiplexing. 

The Register Array is three stages deep in all sections except the 
source 1 and source 2 fields; the machine is done with these sections of 
the instruction at the end of RF. Included in the source 2/ destination 
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section is a multiplexer used to put the contents of the source 2 field on 
the destination bus for instructions with only one operand. 

The Register Array is located in the top center of the IReg, just below 
the ICache Interface. It is 1768 JLm wide and 106 JLm high. The cells· 
are laid out on a 55 JLm pitch. Clock lines run horizontally, while inputs, 
outputs, and power run vertically. Schematics are shown in Figures 6.40 
and 6.41. The array gets its inputs from the cache interface at the top and 
sends its outputs to the source 1, source 2, destination, and Immediate 
buses, and to the Weinberger array. 

6.4.3 Decoder Array 

The decoder array is a Weinberger structure with 11 logical inputs and 
29 outputs. All gates are AND structures except for Store..sla, which is 
OR-AND. A 'lj;llatch is present on those signals required to be stable on 
<p2. Some of the outputs are duplicates of one another added for extra 
drive and ease of wiring. The layout of two typical decoders is shown in 
Figure 6.42. 

The array, located at the bottom of the IReg, is 1380 JLm wide and 
220 JLm high. It is split into two sections by the Immediate Bus. The 
inputs run horizontally in polysilicon strapped with metal 2. There are 
6 JLm wide transistors arranged vertically to form the gates. The 'lj;llatch 
and output inverter are located below the input lines. Power is supplied 
by the main V dd and Gnd lines immediately above the array. One of 
the inputs, CompllteImmed, is formed within the array. The connection 
between the output inverter and this input can be seen at the bottom of 
the left part of the structure. 

Inputs 

There are eleven logical inputs to the Decoder Array plus 'lj;1 and Vbias 
running horizontally. Table 6.4 shows the inputs in order from the top. 

Outputs 

Outputs from the Decoder Array are nominally static <PI because their 
inputs are static <PI. Any signals designated static two (s2) contain an 
output latch. Table 6.5 lists the outputs in the order they occur in the 
decoder, from left to right. 
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Figure 6.42: Sample decoders. 
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Op.2 
Op.2 
Op.l 
Op.l 
Op.O 
Op.O 
Typ.l 
Typ.l 
Typ.O 
Typ.O 
ComputeImmed 
Psil 
Vbias 

Table 6.4: Decoder Array inputs. 

6.4.4 Instruction Cache Data Bus Interface 

This interface connects the cache bus (ICacheDataBus_w2) with the ex­
ternal memory bus (MemBus_w2). Its function varies with the instruc­
tion being performed and the phase of the clock. During cache writes 
(Le. after a cache miss), the value from the Memory Bus is driven onto 
the cache bus and into the register array. During </>1 of cache reads, the 
interface precharges the cache bus. While in test mode, the interface 
couples the cache and memory buses via pass gates. 

The interface is located along the top of the IReg. It is 95 pm high 
and 118 pm wide with a cell pitch of 55 pm. MemBus_w2 connects 
in polysilicon, ICacheDataBus_w2 in metal 2, and the register array in 
diffusion. Clocks and control signals run horizontally in metal 1. A </>2 
qualified version of write used in the cache is produced to the left of the 
array. The interface schematic is shown in Figure 6.43, and the driver 
layout in Figure 6.44. 

6.4.5 No Destination Value Logic 

The No Destination Value Logic detects when an instruction does not 
produce a value to be written into the Register File. This occurs when 
the instruction is a branch, a store, a load to the floating-point coproces­
sor, or the destination field of the instruction is zero. The logic generates 
the signal NoDestVal, which is sent to the bypass control section of the 
Register File. 
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Signal Logic Destination 

Store..sla «Op2) + (OpO))(Opl)(Typl)(TypO) Regfile 
ShiftDrv Result..sl a (Op2 )(Typl )(TypO) Execute 
ShiftDrv Result_s2a (Op2)(Typl)(TypO) Execute 
MDInst_s2a (Op2)(Opl )(OpO)(Typl )(TypO) Execute 
Movfrs..s2a (Op2)(Opl )(OpO)(CmpI) Execute 
MDlnst3..sla (Op2)(Opl )(OpO)(Typl )(TypO) Execute 
TyplOpO_sla (OpO)(Typl) Execute 
MDInst..s2a (Op2)( Opl )(OpO)(Typl )(TypO) Execute 
Compute..sla (Typl )(TypO) Execute 
Branch_sla (Typl)(TypO) Execute 
Memory..sla (Typl)(TypO) Eface,Regfile 
Movtos_sla (Op2)(Opl )(OpO)(CmpI) Execute 
ComputeImmed..sla (Typl)(TypO) Execute 
TBHighChk..sla (Op2)(Opl) Execute 
TBGrChk..sla (Op2)(Opl) Execute 
TBWhich..sla (OpO) Execute 
TBEqchk_sla (Op2)(Opl) Execute 
Movfrs2..s2a (Op2)(Opl)(OpO)(CmpI) Execute 
Movtos..s2a (Op2)(Opl)(OpO)(CmpI) Execute 
Jpcrs2..s2a (Op2)(Opl )(OpO)(CmpI) Execute 
TrapInst..s2a (Op2)(Opl )(OpO)(CmpI) Execute 
Immed[O .. l6]...sla Execute,PC 
TrapInst..sla (Op2)(Opl )(OpO)(CmpI) PC 
TrapInst..s2a (Op2)(Opl )(OpO)(CmpI) PC 
Branch2_s2 (Typl)(TypO) PC 
Jpcrs..s2a (Op2)(Opl)(OpO)(CmpI) PC 
Jpc..s2a (Op2)(Opl )(OpO)(CmpI) PC 
Jspci..s2a (Op2)(Opl )(OpO)( CmpI) PC 
Movfrs3...s2a (Op2)(Opl )(OpO)(CmpI) PC 
Movtos2_s2a (Op2)(Opl )(OpO)(CmpI) PC 

Table 6.5: Decoder Array outputs. 
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Figure 6.43: Instruction Cache interface. 
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Figure 6.44: ICache interface driver. 
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NoDestVaCb 

Fig~re 6.45: No Destination Value schematic. 
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Dest[l] 
Dest[2] 
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This section is located along the left edge of the IReg. It is 450 tlm 
high and 120 tlm wide. The schematic is shown in Figure 6.45. 



Chapter 7 

The External Interface 

The connection of the core of the processor to the outside world is done 
by the External Interface. It is important that this interface minimizes 
the overhead required for the processor to do a transaction with the 
outside world. The goal is to allow the implementation of straightfor­
ward external circuits to connect the processor to the external cache, 
coprocessors and main system bus. 

This chapter begins by describing the MIPS-X external interface from 
the point of view of the outside world. The timing of the pins and their 
functions are given. The behaviour of the processor is described for 
memory accesses and all of the exceptional conditions. The chapter then 
examines the circuitry used to implement this interface. 

7.1 The System Builder's View 

This section gives the information that is needed to put the MIPS-X 
processor into a computing system. To relax the constraints on some 
of the critical paths in the memory system a late miss detect and a 
delayed write-back are used. To speed up floating-point load and store 
operations, a special floating-point coprocessor interface allows direct 
transfer of data between the floating-point coprocessor and the external 
cache. All coprocessor instructions are transmitted over the Address Bus 
instead of using an extra set of pins. 

Each MIPS-X processor may have several coprocessors. The number 
of coprocessors is not limited by the hardware, but by the number of 
bits in the coprocessor instruction that are used to specify the coproces-
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Figure 7.1: MIPS-X and coprocessors. 
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sor number. A proposed format in the Programmer's Manual[8] shows 
three bits for up to eight coprocessors. Figure 7.1 shows the MIPS-X 
and coprocessor interconnection. It includes a MIPS-X main proces­
sor and three coprocessors. One coprocessor is special because load and 
store operations to its registers can take place without going through the 
MIPS-X registers. This coprocessor is intended to be the floating-point 
unit. 

Accessing the Ecache is one of the critical paths of the system. To 
reduce the Ecache access time a direct-mapped virtual cache is proposed. 
A direct-mapped cache does not have the delay of an associative com­
pare and using a virtual cache means that a large cache that does not 
require time for address translation can be built. Given current static 
RAM technology, a 16K-word to 64K-word direct-mapped cache is feasi­
ble. The proposed cache has a 4-word block size, and the entire block is 
fetched from main memory on a cache miss. The cache uses a write-back 
scheme to reduce traffic on the main memory bus. Table 7.1 presents 
some performance figures for the Ecache using simulations against real­
istic operating system and multiprogramming workloads. 
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Cache Size 
16 KWords 
32 KWords 
64 KWords 

Miss Rate 
2.94% 
2.25% 
1.66% 

Table 7.1: Miss rates in the external cache. 
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Figure 7.2: MIPS-X systems on a bus. 
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Figure 7.2 shows three MIPS-X processors, their associated caches 
and how they could be connected into a shared-memory multiprocessor 
system with a single bus. The memory requests that are not satisfied 
by the external cache go to main memory. Important issues such as 
keeping the caches consistent in the shared-memory environment, I/O, 
and virtual to physical address translation are not discussed here. 

7.1.1 Signal Description 

This section describes the functions of the pins on MIPS-X. A functional 
diagram of the pins is shown in Figure 7.3. A high signal represents a 
logic '1' level or active signal. Logic '0' is represented by a low signal. 
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Reset 

Exception 

Interrupt 

ICacheDisable 

ICacheTest 

CopCycle 

WBEnable 

FPReg[I-4] 

Vdd Gnd 

MIPS-X 

Phil Phi2 

Address[O-31] 

~.~Data[O-31] 

1----11. MemCycle 

1----11. BypassCache 

1----1. Read/Write_b 

~--Miss 

~-- AddressTristate 

Figure 7.3: Functional signal diagram for MIPS-X. 

An active low signal name has '_b' appended to it. Appendix D gives 
the pin numbers for the 144 pin PGA for the Revision 1 and Revision 2 
parts. Appendix E describes the differences between the Revision 1 part 
and the Revision 2 part. 

Power and Clock Signals 

Vdd 5 volt power supply (12 pins). 

Gnd Ground (12 pins). 

</>1 Input. Phase 1 of a non-overlapping clock. 

</>2 Input. Phase 2 of a non-overlapping clock. 
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System Buses 

AddressO-Address31 Three-state outputs. 32-bit Address Bus with 
byte addressing. The two LSBs of the address (Address30 and 
Address31) are ignored by the memory system since the memory 
system access is word aligned. However, these two bits are needed 
for coprocessor instructions. 

Datao-Data31 Input/Output. 32-bit Data bus. 

Memory Control 

MemCycle Output. Indicates that the current cycle is a valid memory 
cycle. If this signal is not active, the memory subsystem should 
ignore the address and data lines during the cycle. 

Read/Write_b Output. Defines the direction of a data bus transfer. A 
high signal means that a data bus read is occurring. 

BypassCache Output. The memory transaction should not use the ex­
ternal cache. This pin is active during the execution of the ldt 
(load-through) and stt (store-through) instructions. 

AddressTristate Input. Tristate the Address Bus. This signal connects 
directly to the pads and is independent of the clocks. 

Miss Input. This signal is used to stall the processor. See Section 7.1.5. 

Exception Control 

Reset Input. Resets the processor. See Section 7.1.10 for more details. 

Interrupt Input. Maskable interrupt. 

Exception Input. Non-maskable interrupt. 

Coprocessor Control 

Cop Cycle Output. Indicates that the current MEM cycle is a coproces­
sor cycle. If MemCycle is active then this is an FP load or store, 
otherwise it is one of the other coprocessor instructions. 
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WBEnable Output. Write-Back Enable indicates to the coprocessors 
that a write-back (or change in coprocessor internal state) of the 
last coprocessor instruction issued may be performed. See Section 
7.1.7 for more details. 

FPRegrFPReg4 Outputs. 4-bit floating-point register number. Indi­
cates which FPU register is to be used for data transfers between 
FPU registers and memory during ldf and stf instructions. An 
FPU load or store cycle occurs when both CopCycle and MemCy­
cle are active. 

Other 

ICacheDisable Input. Disable the on-chip ICache causing the processor 
to execute cache-miss cycles. 

ICacheTest Input. Used to read and write the instruction cache directly. 
See Section 7.1.11 for more details. 

Vbias Input. This should normally be left open. There is an internal 
Vbias generator that connects to all of the latches to make them 
static. When this pin is grounded, the weak feedback is turned off 
and the latches become dynamic. This pin can also be driven to 
set a different bias level than the value generated internally. 

7.1.2 Signal Timings 

Table 7.2 gives the timing of the signals on each of the pins. In Table 7.2, 
a stable signal means that it is at the correct value for the entire phase. A 
valid signal means that the signal may change during the phase but it can 
be latched at the end of the phase. When an interrupt is acknowledged, 
further interrupts are masked by the processor. The Interrupt pin must 
be released before the processor unmasks interrupts in the PSW or the 
processor will begin another interrupt sequence. This pin is latched by 
the processor whenever 4>1 falls. When Miss is high, the Interrupt pin 
must be kept high until after both Miss and 4>1 fall. 

The Exception pin must be high for a single 4>2 or it can rise monoton­
ically with 4>2. In the processor, it will discharge a precharged line. The 
signal is not latched internally, otherwise it would take one extra cycle 
before the exception sequence could begin. Miss prevents state changes 
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Outgoing Signals 
AddressO - Address31 
Datao - Data31 

MemCycle 
Read/Write_b 
BypassCache 
CopCycle 
WBEnable 
FPRegO-FPreg3 

Incoming Signals 
Datao - Data31 
AddressTristate 
Miss 
Reset 
Exception 
Interrupt 
ICacheDisable 
ICacheTest 

valid 4>2 of ALU, stable 4>1 of MEM 
valid 4>1 of WB for Bt and MEM for movtoc, 
stable 4>2 
valid 4>2 of ALU, stable 4>1 of MEM 
valid 4>2 of ALU, stable 4>1 of MEM 
valid 4>2 of ALU, stable 4>1 of MEM 
valid 4>2 of ALU, stable 4>1 of MEM 
valid 4>2 of MEM, stable 4>1 of WB 
valid 4>2 of ALU, stable 4>1 of MEM 

valid 4>2 of MEM 
asynchronous 
See Section 7.1.5. 
stable 4>2 
stable 4>2 (can monotonically rise with 4>2) 
stable 4>1 
stable 4>1 
stable 4>1 

Table 7.2: Signal timing .. 
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so Exception will only be recognized if it is high for the </>2 preceding 
Miss falling. 

7.1.3 MIPS-X Clocks 

MIPS-X uses a 2-phase, non-overlapping clock. These two phases are 
called </>1 and </>2. The Revision 1 parts have been tested up to 16 MHz 
and the Revision 2 parts should run between 16 and 20 MHz but were 
never fabricated. 

7.1.4 Pad Loading 

The pads have been designed to drive a 50 pI load. 

7.1.5 Memory References 

This section describes the MIPS-X memory interface. It is intended that 
an external cache (Ecache) be used to give the processor fast access to 
data and instructions. For multiprocessor systems, the Ecache is also 
needed to reduce the traffic on the main bus. Details of the Ecache 
will not be discussed here but it is assumed that some of the signals 
are generated by the Ecache. It is also assumed that the Ecache is a 
write-back cache. 
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The organization of the Ecache and its interface is shown in Fig­
ure 7.4. The Ecache supplies both instructions and data to the proces­
sor and handles them in the same way. The processor does not indicate 
whether it is doing an instruction or data reference. Instructions that 
miss in the on-chip ICache are retrieved from the Ecache. The controller 
for the Ecache is a coprocessor. It supplies the process-id (PID) on an 
Ecache access. 

MIPS-X achieves a fast external cache interface by employing two 
key features that will be discussed in this section: 

• a late miss signal (called Miss). 

• delayed writes into the Ecache. 

These features provide the Ecache with some extra time for the time 
critical operations of detecting misses and writing data back into the 
cache. 

For load and store operations, the address is valid 12 of the AL U 
cycle. The address is latched in an external latch by the falling edge 
of 12, and presented to the memory subsystem (the Ecache, and in 
its absence, memory) during the MEM cycle. This should provide the 
memory system with enough set-up time for the address lines. The 
memory control signals (MemCycle, Read/Write_b, Bypass Cache and 
Cop Cycle ) are sent out at the same time as the address. 

Miss 

The Miss signal is used to stall the processor, particularly during memory 
or cache accesses. Internally, the processor does state changes on 11 
when the Miss signal goes low. When the Miss signal is high during 11 
the processor is stalled. Miss can be lowered up to 10 ns before 11 falls 
and still allow the processor to successfully complete the 11 clock phase. 

Late Miss 

Typically, for correct operation, the processor should save the data from 
a load only if it has been determined that the data resulted from a hit in 
the cache. It is known that the critical path in the Ecache is not getting 
the data to and from the processor pins; it is determining whether the 
reference hit in the cache. The data from the cache is written into the 
processor registers during 11 of the WB cycle but to allow more time 
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hit rnernMiss 
valid ---1~ 
dirty ---1~ 

PID 

elk: 

index 

Ecache 
Controller AddressTristate 

MernC c1e 

L...-~'--------A-ddres--s-----1·~::;) ~i 
1"'-----1 ... , .. ,.,.1 

MIPS-X 

YD 
a i 

Tags 1 r Data 
i t 
d Y 

dirty 

hit valid To Main Bus 

Figure 7.4: Ecache interface. 
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for the hit detection, MIPS-X allows the Miss signal to fall after </>1 
of WB rises. This means that if Miss does not fall, the processor has 
written invalid data into its register. In this case, the processor continues 
to re-execute the load cycle while the Ecache fetches the correct data. 
When the correct data is being presented to the processor, the Miss 
line is released, and the processor continues with the correct data in the 
register. 

To make this scheme work, the compiler must ensure that a load 
instruction does not use the same register for both the address calculation 
and the destination. This will insure that all loads are idempotent (can 
be repeated indefinitely and give the same result). 

Memory Read 

Figure 7.5 shows the basic timing for a load instruction. A normal read 
begins with the processor presenting the new address to the cache by the 
end of </>2 of ALU of the load instruction. This address is latched in the 
external address register, and driven to the memory array. MemCycle 
and Read/Write_b will be high for this cycle. The memory system must 
present valid data to the processor before the falling edge of MEM </>2. 
The Miss signal should be raised before </>1 rising and lowered during </>1 
if the data is valid. If the memory system is not fast enough to keep up 
with the processor, then it must stall the processor by keeping the Miss 
signal high. 

While the data is latched by the processor, the Ecache controller is 
performing the tag compare. The Miss line is pulled low during the </>1 
of WB if the reference hits in the cache. If the read generates an Ecache 
miss, then Miss is kept high and the data has to be retrieved from main 
memory. While the processor is stalled, the Ecache presents the address 
to main memory which will return the requested data to the Ecache. 
When the data is finally received from memory, the Ecache lowers Miss 
and the processor continues as usual. 

Some complications arise in the Ecache control because of the late 
miss detection and the Ecache system having a two-stage pipeline. Every 
cycle, an address is latched externally during </>2 falling and supplied to 
the Ecache. When there is an Ecache miss during the first load of a 
back-to-back load operation, the address of the second load will displace 
the address of the load that missed. To handle this event, the Ecache 
controller must keep the address of the first load in an internal register 
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Address I I addr I ~ 
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data I ) I I ! I MISS' 

Figure 7.5: Timing diagram for a load instruction. 
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Data I I garbaga! I datai FBr-----+, 

Figure 7.6: Timing diagram for Ecache miss during consecutive loads. 

and then reload it in the address register. This is done by first tri­
stating the processor address pins and then driving the address bus with 
the address that missed. Figure 7.6 shows this sequence. 

Memory Write 

To reduce the main memory bus traffic in a multiprocessor configuration 
MIPS-X assumes that a write-back scheme is used for the Ecache. Under 
this scheme, writes are only updated in memory when either the Ecache 
is flushed or a block that needs to be replaced is found dirty. Therefore, 
before writing data into the Ecache, the miss and dirty conditions must 
be determined. If a miss-and-dirty condition is encountered, the current 
cache entry must first be updated in memory and only then can the data 
be written into the cache. This means that a store instruction needs two 
memory cycles: one to probe the cache to check if the block exists and 
one to write the data. The instruction following the store instruction 
should not use its MEM cycle (the WB of the store instruction) so the 
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ALU 
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II 
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Figure 7.7: Timing diagram for a store instruction. 

Ecache can use this cycle to write the data without stalling the pro­
cessor. The architecture disallows stores followed by another memory 
or coprocessor instruction but there is no hardware interlock to prevent 
this. The compiler reorganizer is responsible for scheduling the right 
instruction here l . 

Figure 7.7 shows the timing for a store instruction. The write op­
eration begins like a read, except that the Read/Write_b signal is low. 
Data is driven out of the processor when Miss falls during </>1 of WB 
and remains on the bus until </>1 rising of the next cycle. The Ecache 
writes the data during WB (the MEM slot of the next instruction). This 
scheme is known as the delayed write. Note that raising Miss before WB 
will not stall the write; the data will be on the bus for exactly one cycle, 
independent of Miss. 

A sequence of memory instructions is shown in Figure 7.8. 

IThere is a hardware interlock that prevents an ICache miss from occurring during 
the second cycle of a store instruction. Section 7.1.6 explains this in more detail. 
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Instruction 
1 : IF RF ALU MEM WB 
2 : IF RF ALU MEM2 WB 
3 : IF RF ALU4 7 MEM WB 
4 : IF RF ALU MEM 
5 : IFl,3 CM15 CM26 RF ALU 
6 : IF8 RF 
7 : IF9 

Figure 7.9: ICache miss timing. 

Bus Locking 

There is no provision in the MIPS-X processor for implementing syn­
chronization primitives such as a read-modify-write instruction. Two 
schemes have been proposed to accomplish synchronization. One is to 
use strictly software synchronization such as Dijkstra's or Dekker's algo­
rithm. The other is to implement coprocessor instructions in the Ecache 
controller. A possible coprocessor instruction is one that locks the bus 
on a read and unlocks it on the next store instruction. This is effectively 
a read-modify-write instruction. 

7.1.6 ICache Misses 

The timing for an ICache miss cycle looks exactly like a load instruction 
to the Ecache. During an ICache miss, two instructions are fetched dur­
ing two cache miss cycles. Exceptions during an ICache miss are handled 
in the same way as those during normal operation. Figure 7.9 describes 
an ICache miss sequence for each of the pipeline stages. Figure 7.10 
shows the timing of the external pins for a typical instruction sequence. 
In Figure 7.9, assume that instruction 5 misses in the instruction cache. 
The following enumeration numbers correspond to the superscripts in 
Figure 7.9. 

1. Instruction 5 misses in the ICache. The miss sequence starts from 
the next cycle. 

2. Instruction 2 is closest to completion at this point. An instruction 
can commit only in its WB phase (stores are an exception) and 
special care needs to be taken to see that the instruction does not 
change processor state before the miss is handled. 
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• If instruction 2 is an AL U operation then the WB is postponed 
until after the miss sequence. 

• If instruction 2 is a load, then the data from memory is latched 
into the input memory data register, the register that latches 
input data before it is written into the Register File. If the 
memory operation corresponding to instruction 2 fails (Miss 
is active) then the sequence of events that follow at the Ecache 
is the same as an Ecache miss during the first load of a load­
load sequence. The timing for this sequence was shown in 
Figure 7.6. The Ecache controller loads the address register 
with the load address of instruction 2 (note that this address 
was displaced from the address register by the address that 
came from the processor) and completes the load. The Miss 
signal stays high causing the processor to stall throughout the 
load miss sequence. 

• If instruction 2 is a store then the only hardware interlock 
in the processor takes effect. Recall that store instructions 
require two cycles to complete and the software ensures that 
the instruction after the store does not use memory. However, 
there is no way to predict an ICache miss, which also needs to 
access memory, so a hardware interlock is implemented that 
inserts an extra cycle to complete the store before the ICache 
miss begins. After the ICache miss cycles are completed, in­
struction 2 will execute a null WB cycle. 

If an exception occurs during the ICache miss cycles, the store 
instruction should be re-executed but the store has actually 
completed. Before returning from an interrupt, the interrupt 
handler must convert the first instruction to a nop if it is a 
store instruction. This is done by changing the address for 
that instruction to Address 0 where there is a nop2. This ac­
tion need not be done if it is known that all store instructions 
are idempotent. Writes to shared memory or device registers 
may have side effects that render them non-idempotent. 

3. The address of instruction 5 is sent out. 

2The architecture specifies that a nop instruction be found at Address 0 in both 
system and user space. This allows instructions to be squashed on restart by setting 
their PC address to zero. 
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4. The address of instruction 5 overrides a possible data address due 
to instruction 3. Essentially, the internal ICache miss signal causes 
the PC value to be selected instead of the address for the memory 
access. 

5. Instruction 5 returns from the Ecache. The address of instruction 
6 is sent out. 

6. Instruction 5 is copied into the ICache. Instruction 6 comes back 
from the Ecache. 

7. The address corresponding to a possible memory-reference by in­
struction 3 is placed on the Address Bus by MIPS-X and latched 
into the address latch at the Ecache. 

8. Instruction 5 is decoded to begin its RF phase. Instruction 6 is 
copied into the ICache. It is 'fetched' at the same time. 

9. The RF of instruction 6 is started. Instruction 7 is fetched from 
the ICache (unless another ICache miss occurs). 

7.1. 7 Coprocessors 

Coprocessor instructions are cached in the main processor and hence 
have to be sent to the appropriate coprocessor for execution. Ideally, the 
coprocessor instructions should be sent over a separate bus, but because 
this requires a large number of pins a scheme that sends coprocessor in­
structions over the Address Bus is used. The coprocessor instructions are 
really memory type instructions with the offset field containing the in­
struction for the coprocessor. All loads and stores of coprocessor registers 
must go through the MIPS-X registers except for one special coprocessor 
which would usually be a floating-point unit. 

There are three instructions that deal with the general coprocessor in­
terface. They are move-to-coprocessor (movtoc), move-from-coprocessor 
(movfrc) and coprocessor-alu (aluc). The first two are used to transfer 
data between the coprocessor registers and MIPS-X and the last one is to 
initiate coprocessor operations. The aluc instruction is actually a movfrc 
instruction with the destination register set to register 03 . 

3The current software system generates movfrc instructions but movtoc instructions 
could also be used if the coprocessor ignores the data on the data bus during this cycle. 
The timing diagrams in this document assume that movtoc instructions are used. 
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The floating-point load and store instructions are described later in 
Section 7.1.8. Detailed descriptions of these instructions are given in the 
Programmer's Manual[8] and briefly in Section 2.1. 

The timing of the coprocessor instructions is similar to the timing 
for load and store instructions. During the AL U cycle, the coprocessor 
instruction is driven on the Address Bus as if it were an address. This 
is latched by the coprocessor latch on AL U </>2 falling. The Cop Cycle 
signal is asserted at the same time, notifying the coprocessors that the 
Address Bus contains a coprocessor instruction; the MemCycle signal is 
inactive, so the memory subsystem will ignore the Address Bus during 
this cycle. The addressed coprocessor will then execute the instruction 
as follows: 

• movtoc - The MIPS-X source register is placed on the data bus 
at MEM </>1 rising or when Miss falls. If necessary, the coproces­
sor can stall MIPS-X until it has decoded the instruction by using 
the Miss line. The data stays driven until Miss is released dur­
ing WB </>1. The data is latched by the coprocessor on MEM </>2 
falling. The coprocessor should only write the destination register 
if the WBEnable signal is activated by MIPS-X as explained later 
in Section 7.1. 7. Note that this instruction is like a store instru~­
tion except that only one memory cycle is needed because a cache 
probe is not necessary. 

• movfrc - The coprocessor places the contents of the appropri­
ate register on the data bus before MEM </>2 falling. If necessary, 
MIPS-X can be stalled if this cannot be done in time since the 
coprocessor only has one cycle to do this4 • MIPS-X will latch the 
contents of the data bus on MEM </>2 falling. 

• aluc - The coprocessor decodes the instruction and starts executing 
the instruction. If movfrc instructions are used, then the data on 
the data bus is read by MIPS-X and dumped into register o. If 

4This will probably be the case since a 50ns clock cycle will not be enough time for 
the coprocessor to read the instruction, decode it, decode the register number, index 
into its register file, and place the contents on the data bus. An alternative solution 
that would have provided the coprocessor more time to decode the register number 
would have been to send out the register number in the RF phase on the register 
number lines provided for the floating-point unit, but this meant a non-trivial change 
in the MIPS-X processor implementation and was discarded. 
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movtoc instructions are used, then MIPS-X places register 0 on 
the data bus. This should be ignored by the coprocessor. 

Coprocessors should stall the main processor by keeping Miss high if 
they require more time to finish an operation . 

Write-Back Enable 

The external interface of MIPS-X provides for rest art ability of coproces­
sor instructions. This is necessary if the processor has to operate in a 
system where interrupts or other exceptions may occur. An instruction 
should not change processor state until it has reached the WB stage on 
the main processor. To tell a coprocessor that an instruction can com­
plete, a signal called WBEnable is asserted by MIPS-X on the WB cycle 
of the coprocessor instruction. Before this signal is received, the copro­
cessor must retain the result of the operation internally until WBEnable 
is activated (if at all). If the coprocessor implements idempotent opera­
tions then it may ignore the WBEnable signal and commit as soon as it 
has finished execution. 

Figure 7.11 shows the timing for the execution of four consecutive 
coprocessor instructions: movtoc, movfrc, aluc and aluc. Instruction 4 
stalls MIPS-X; this is to show what happens when an instruction is sent 
to a coprocessor that can execute only one instruction at a time, and 
has not finished executing the previous instruction sent to it. Also, note 
that when the coprocessor stalls MIPS-X, the Ecache must also stall. 
Otherwise, it would read the incorrect data from the data bus. This 
shows that all devices interacting with MIPS-X must look at the Miss 
signal. 

If the MEM cycle of a coprocessor instruction coincides with an in­
terrupt or page fault, the WBEnable signal will not be generated and 
the instruction will be re-executed after the interrupt has been serviced. 
When a coprocessor is waiting for WBEnable to complete its current 
instruction and another coprocessor instruction is issued before WBEn­
able, the current instruction is squashed. The coprocessor should start 
the new instruction if it was the coprocessor addressed. If a coproces­
sor sees a WBEnable before or concurrent with any other coprocessor 
instructions issued, then it should complete its current instruction. If an 
ICache miss occurs during the MEM cycle of a coprocessor instruction, 
activation of the WBEnable signal is delayed until after the CMl and 
CM2 cycles because the WB cycle is delayed. If no exception occurs 
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during these two cycles then WBEnable will be activated. When an ex­
ception occurs during the CM cycles, WBEnable will not be generated 
and the instruction will be restarted later. Figure 7.12 shows the delay­
ing of the WBEnable during an ICache miss followed by a coprocessor 
instruction that gets squashed due to an interrupt. 

There are at least two ways the coprocessor can behave if it is sent 
back-to-back instructions: 

• The coprocessor can be pipelined at least two stages: One for ex­
ecuting and one for performing the write-back. This allows the 
main processor to send data and instructions to the coprocessors 
one immediately after another as shown in Figure 7.12. It may 
be necessary to bypass the coprocessor Result register because the 
next instruction may need to use it before it has been written back . 

• The coprocessor first performs the write-back and then starts ex­
ecuting the new instruction. In this case, the main processor is 
stalled until the pending write-back is performed and the copro­
cessor has had time to decode the new instruction. 

A better option would be to resolve these interlocks by software, 
but this may not be possible for all coprocessors, because coprocessor 
instruction execution times will vary from coprocessor to coprocessor, 
from system to system, and even from instruction to instruction on the 
same coprocessor. Nevertheless, it is still worthwhile to try to schedule 
useful operations between coprocessor instructions when the execution 
times can be estimated. 

The need to look at the WBEnable signal before completing the ex­
ecution of instructions on coprocessors can complicate the coprocessor 
control. An alternative solution that obviates the WBEnable signal is 
to guarantee that non-idempotent instructions are not restarted on the 
coprocessors. Then the coprocessor instruction that is in its MEM phase 
when an exception occurs can be allowed to complete in the coprocessor. 
Such a feature can be implemented in the software interrupt handler. 
During the return from interrupt, the handler should check to see if the 
first instruction to be restarted is a non-idempotent coprocessor instruc­
tion and convert it to be the nop instruction at Address o. This is similar 
to the scheme used to prevent stores from re-executing after an interrupt. 
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7.1.8 Floating-Point Unit 

The special interface for the floating-point unit tries to optimize floating­
point loads and stores. The fact that all loads and stores of coprocessor 
registers must go through the general purpose registers of the main pro­
cessor was considered unsatisfactory for the floating-point unit (FPU) 
since it could be used heavily. The coprocessor interface was extended 
to allow loads and stores directly between memory and the FPU by in­
cluding two more instructions for the floating-point coprocessor. Load 
float (ld!) loads a floating-point register from memory and store float 
(st!) stores the contents of a floating-point register into memory. 

The two instructions require four pins dedicated to the FPU: 
FPRegl-FPReg.4- The timing of these two instructions is identical to 
memory loads and stores. For a st!, MIPS-X performs a store cycle by 
generating the memory address and signaling the FPU to provide the 
data word. For a ld!, MIPS-X performs a load cycle by generating the 
memory address and signaling the FPU to get the data from the data 
bus. The FPU source or destination register for a ldf or stf operation is 
sent to the FPU by means ofthe FPRegl-FPReg4 signals, whose timings 
are identical to the address lines. 

Figure 7.13 shows the timing of the various signals required for a 
stream of floating-point instructions: two ldf's to load the operands 
followed by an aluc (the floating-point operation) to be performed on the 
two operands and a movtoc to move the result into a MIPS-X register, 
followed by a stf to store the result into memory. 

It is important to note that when a ldf or stf is being performed, 
it may be necessary for either the FPU or the Ecache to wait for one 
another. The solution adopted is to require each of these to remain 
in the same state until 4>2 has fallen; the required synchronization is 
accomplished by having the FPU and the Ecache stall MIPS-X using 
the Miss signal until they have both finished. The data should then be 
latched on the falling edge of 4>2. 

7.1.9 Exceptions 

Exceptions such as interrupts and page-faults are asynchronous events. 
The Interrupt line is maskable and latched by the processor during 4>I. 
The Exception line is not maskable and not latched. FigUl~s 7.14 and 
7.15 give the timing for the Interrupt and the Exception lines respectively. 
Exceptions and Interrupts can occur while the processor is being stalled 
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instruclion 
0: II IF 

1: add 

RF ALU MEM (W8) (W8) 
Int:::Har 

IF RF Al.U (MEM) (MEM) t > 
2: sub 
3: X .: X 

IF RF (ALU) (ALU) t I IF (RF) (RF) t 
IAnt 

5: X ! 
! 

Phit ~ 

1'tli2 

MemCycie 

ReadJWriw_b 

Address adfO r~~add) 

AdfLatc:h 

Miss 

Dam4-----4-----~----~----~----~----_r~ 

Interrupt 
4.-----+-----~--~ 

note: t -> R.{P. WS· -> &tore lnished 

Figure 7.14: Interrupt timing. 

RF 

IFint+1 

by the Miss signal. When the Miss signal is released, execution will begin 
at the start of the exception handling routine. Section 7.1.2 explains the 
timing for these signals in more detail. 

When MIPS-X recognizes an interrupt or exception, execution jumps 
to Address 0 in system space. At this point, the exception routine should 
save the state of the processor and any coprocessors that are to be used 
before the interrupt returns. Details of this are explained in Appendix A. 

Table 7.3 shows the action taken by MIPS-X for various instruc­
tions when an interrupt or exception occurs during the AL U, MEM and 
WB stages. If an interrupt occurs before the WB stage of a coproces­
sor instruction, the processor does not activate the WBEnable line. The 
coprocessor remains in a suspended state until it receives the next copro­
cessor cycle request, signaling a new instruction. In this case it starts off 
on the new instruction, neglecting to do the write-back of the previous 
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ALU MEM WB 
Compute instruction Squashed Squashed Completes 
Load instruction Squashed Squashed Completes 

(never leaves chip) 
Store instruction Squashed Completes next cycle Completes 

(never leaves chip) 
COP instruction Squashed WBEnable Completes if 

(never leaves chip) not generated WBEnable seen 

Table 7.3: MIPS-X actions for various instruction types when an excep­
tion occurs during their ALU, MEM and WB pipe stages. 

one. This effectively squashes the interrupted instruction. Interrupts 
which arrive after the WBEnable signal has been asserted have no effect 
on the coprocessor. 

7.1.10 Reset 

To reset the processor, this pin should be held high for at least 4 cycles 
and should only be released when ¢1 is active or during the rising edge 
of ¢1. Internally, Reset is expected to be a stable ¢2 signal. 

During reset, the address Ox7fffff805 is forced onto the address pins 
and the processor will begin executing at this location when Reset is 
released. This location should be the start of the reset sequence. 

7.1.11 Instruction Cache Testing 

The instruction cache can be read and written to test whether the bits 
in the instruction cache are working. The sequence is: 

1. Reset the processor by holding the Reset pin high for at least 4 
cycles to clear the tags. Before releasing Reset, set ICacheTest 
high and do 4 more cycles. Then release Reset as described in 
Section 7.1.10. 

2. While ICacheTest is high the PC Unit is forced to increment start­
ing from the Reset vector. Since the ICache is empty, the processor 
will now do ICache miss cycles to fill the ICache with the data pre­
sented at the data pins. The data should be available at the pins 
while the MemCycle pin is high but can be left driven on the pins 

5This is the byte address that appears on the pins of the chip. Internally, the PC 
Unit is word addressed and it uses Ox7fffffeO as its starting address. This is reflected 
in the simulators and the assemblers. 



7.1. THE SYSTEM BUILDER'S VIEW 189 

during this part of the test if only one pattern is to be loaded in 
all locations. With the PC Unit forced to be in increment mode, 
all locations in the cache will be filled with the data at the data 
pins after 1024 clock cycles. This number is not 512 cycles (the 
ICache can hold 512 instructions) because the processor is execut­
ing ICache miss cycles. You will see a pattern of two ICache miss 
cycles and two execute cycles on the Address Bus. 

3. During ICacheTest mode the datapath of the processor is still in­
terpreting the data at the data pins as instructions. This means 
that some care must be taken if the top two bits of the data (cor­
responding to the TYfield of an instruction) are 1 0 meaning that 
the instruction is a memory instruction. If the data can be inter­
preted as a store instruction, the data loaded into the ICache will 
be corrupted because the datapath will be driving the internal data 
bus. If the data can be interpreted as a load instruction, then the 
MemCycle pin cannot be used to determine when to put the next 
data pattern on the pins unless you know when it is for an ICache 
miss and when it is for the load instruction. 

4. After filling the ICache, Reset the processor while keeping ICa­
cheTest high. This will force the PC Unit back to the Reset vector 
but it will not invalidate the contents of the tags. When Reset is 
released, the processor will sequence through the 512 ICache loca­
tions in 512 cycles. The data on the data pins will be data from 
the ICache. 

5. If none of the patterns loaded into the instruction cache correspond 
to memory instructions, then the PadMem pin should always stay 
low because all instructions should be in the ICache and no data 
will be accessed. If PadMem does go high it is an indication of data 
coming from the ICache being interpreted as a memory instruction 
or a failure in the tags causing an ICache miss cycle. 

7.1.12 Datapath Testing 

A useful feature for testing the datapath is to observe the contents of 
the Address Bus. Internally, the Address Bus is the output of either the 
Result Bus or the PC Bus. During ICache miss cycles, the Address Bus 
will have the contents of the PC Bus. Otherwise, it will show the value 
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of the Result Bus which usually has the output of the AL U or the shifter, 
depending on the instruction being executed. 

7.2 The External Interface Hardware 

This section deals with the hardware used to connect the main core of 
the MIPS-X processor with the pins of the chip. Most of the circuits are 
located in the space above the Register File and beside the Instruction 
Cache. Immediately beside the Instruction Cache are some test circuits 
that were included because there was space. It has no effect on the 
function of the processor. 

The description of the signals is divided into three classes: 

• outgoing signals that are driven off the chip, 

• incoming signals that come on chip, 

• test pins. 

Detailed descriptions of the signals are given in Section 7.1.1. 

7.2.1 Outgoing Signals 

The control signals that are driven off the chip are shown in Table 7.4. 
These signals are issued from a small pipeline that begins at the In­
struction Register. The Op/Type field bits are decoded to the required 
signals and then delayed till they are needed at the pads. Three events 
can change this process: 

1. during an instruction cache miss the signals are forced to perform 
a Load to service the miss, 

2. an Exception or a Reset forces all signals in the pipe to a nop, 

3. if a Squashing Branch does not go, the two squashed instructions 
have their signals forced to nop. 

A nop in this instance means that no external operation is performed. 
The values driven on the pins for various instructions are shown in 

Table 7.5. Write-back Enable is the same signal as Cop but delayed 
by one more cycle. The Floating-Point Register (FPReg) signals are a 
delayed version of the Src2/Dst field and are tapped off the end of the 
register decoders. The FPReg signals are ignored during the conditions 
described above so they are not modified like the other signals. 
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Name Signal Bits Timing 
Read/Write_b R/W 1 stable <jJ1 MEM 
Coprocessor Cycle Cop 1 stable <jJ1 MEM 
Bypass External Cache Bypass 1 stable <jJ1 MEM 
Memory Access Mem 1 stable <jJ1 MEM 
Write-back Enable WB 1 stable <jJ1 WB 
Floating-Point Register FPReg 4 stable <jJ1 MEM 

Table 7.4: Outgoing signals. 

Instruction Mem R/W Bypass Cop 
ld 1 1 0 0 
st 1 0 0 0 
ldf 1 1 0 1 
stf 1 0 0 1 
movtoc 0 0 0 1 
movfrc 0 1 0 1 
ldt 1 1 1 0 
stt 1 0 1 0 
nop 0 1 0 0 

Table 7.5: Outgoing signal values for various instructions. 
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Incoming Derived Logic 
Signal Signal 

Phil 
Psi1 Phil· ICacheM iss· Miss 
PsilPC Phil· ICacheMiss 

Phi2 
Phi2_b Phi2 

Interrupt Interrupt...s2 
Reset Reset...s2 
Exception Exception_b_pv2 

Table 7.6: Incoming signals and derived signals. 

7.2.2 Incoming Signals 

The control signals that come on chip are listed in Table 7.6. These 
signals are buffered and driven to the rest of the chip. Some are also 
combined with other logic to derive other signals. These derived signals 
are also shown in Table 7.6 along with the logic. 

7.2.3 Test Pins 

There are several features in MIPS-X that allow testing of various parts of 
the chip. The pins ICacheTest and Reset can be used to test the ICache. 
This is described in detail in Section 7.1.11. The ICacheDisable pin is 
used to disable the ICache. This allows testing of the datapath without 
worrying about problems in the ICache and also allows the processor 
to be used if defects in the ICache are discovered. With the ICache 
disabled, the processor will always do ICache miss cycles so the pattern 
observed is two ICache miss cycles followed by two execute cycles. 

The Revision 1 MIPS-X part includes a Test pin that can be used to 
enable observation of control lines in the datapath. With the Test pin 
enabled, the four floating-point register pins are converted into input 
pins and are used to select control lines to be driven onto the MemBus. 
This allows up to 128 control lines to be examined on tha data pads. 
This feature was never used so the circuits were removed in the Revision 
2 MIPS-X part. 



Appendix A 

Exception Handling 

An exception is defined as either an event that causes an interrupt or a 
trap instruction that can be thought of as a software interrupt. The two 
sequences cause similar actions in the processor hardware. Because there 
is a branch delay of two, three PCs from the PC Chain must be saved 
and restarted on an interrupt. Three PCs are needed in the event that a 
branch has occurred and fallen off the end of the chain. The two branch 
slot instructions and the branch destination are saved for restarting. 
Restarting a trap is slightly different and is explained later. Section 2.1.4 
describes what happens in the PSW during interrupts, exceptions, and 
traps. 

A.1 Interrupts 

Interrupts are asynchronous events that the programmer has no control 
over. Because there are several instructions executing at the same time, 
it is necessary to save the PCs of all the instructions currently executing 
so that the machine can be properly restarted after an interrupt. The 
PCs are held in the PC Chain. When an interrupt occurs, the PC Chain 
is frozen (stops shifting in new values) to allow the interrupt routine to 
save the PCs of the three instructions that need to be restarted. These 
are the PCs of the instructions that are in the RF, ALU and MEM 
cycles of execution. This means that no further exceptions can occur 
while the PCs are being saved. When the interrupt sequence begins, the 
interrupts are disabled, PSWcurrent is copied into PSWother and the 
machine begins execution in system state. The contents of PSWother 

193 
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should be saved if interrupts are to be enabled before the return from 
the interrupt. The contents of the MD register must also be saved and 
restored if any multiplication or division is done. If the interrupt routine 
is very short and interrupts can be left off, it is possible to just leave the 
PC Chain frozen, otherwise the three PCs must be saved. To save the 
PCs, use movfrs with pcm4 (PC minus 4, the register containing the PC 
fetched four instructions ago) as the source. The PC Chain shifts after 
each read of pcm4. The interrupt routine will start execution at location 
O. 

To return from an interrupt, interrupts must first be disabled to allow 
the state of the machine to be restored. The PSW must be restored and 
the PC Chain loaded with the return addresses. The PC Chain is loaded 
with the addresses of the three instructions to be restarted by writing 
to pcmi (PC minus 1, the register that holds the PC of the previously 
fetched instruction). The PC Chain shifts after each write to pcmi. The 
instructions are restarted by doing three jumps to the address in pcm4 
and having shifting of the PC Chain enabled. 

The first of the three jumps should be a jpcrs instruction. It will 
cause PSWother to be copied to PSW current with the interrupts turned 
on and the state returned to user space. The machine state changes 
after the ALU cycle of the first jump. The effective result is a jump 
using the contents of pcm4 as the destination address, and shifting the 
next address into pcm4. The last two instructions of the return jump 
sequence should be jpc instructions, which also use the contents of pcm4 
as the destination address. The jpc instructions do not change the state 
of the machine. 

A problem arises because an exception could occur while restarting 
these instructions. The PC Chain is now in a state that it is not possible 
to restart the sequence again using the standard sequence of first saving 
the PC Chain. The start of an exception sequence should first check 
the e bit in the PSW to see whether it is cleared. The e bit will be set 
only when the PC Chain is back in a normal state. If it is clear, then 
the state of the machine should not be resaved. The state to use for 
restart should still be available in the process descriptor for the process 
being restarted when the exception occurred. The sequence for interrupt 
handling is shown in Figure A.l. 
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lret: inst a 
inst b 
inst c 
--- interrupt 
inst d 
inst e 

inthlr: bra to save if e bit set 
Do necessary fixes 

save: 
bra nosave 
Save PS\lother 
Save MD 
movfrs 
movfrs 
movfrs 

pcm4.rA 
pcm4.rB 
pcm4.rC 

nosave: Enable interrupts 

Process interrupts 

Disable interrupts 
Restore MD 
Restore PS\lother 
movtos 
movtos 
movtos 
jpcrs 
jpc 
jpc 

rA.pcml 
rB.pcml 
rC.pcml 
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;Instructions a.b and c are restarted 

;Start of interrupt handler 
;e bit clear so don't save PC Chain 

;do save if interrupts to be enabled 
;if necessary 
;save PCs if necessary 

;if necessary and above saving done 

; if necessary 
; if necessary 
;restore PCs 

;This changes the PS\I as well 
;Doesn't touch PS\I 

execution begins at label lret 

Figure A.l: Interrupt sequence. 
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A.2 Trap On Overflow 

A trap on overflow behaves exactly like an interrupt except that it is 
generated on-chip instead of externally. This interrupt can be masked 
by setting the V bit in the PSW. 

When a trap on overflow occurs, the 0 bit is set in the PSW. The 
exception handling routine must check this bit to see if an overflow is 
the cause of the exception. 

A.3 Trap Instructions 

Besides the Trap on Overflow, there is only one other type of trap avail­
able. It is an unconditional vectored trap to a system space routine 
in low order memory. After the AL U cycle of the trap instruction the 
processor goes into system state with the PC Chain frozen. The instruc­
tion before the trap instruction will complete its WB cycle. The PSW is 
saved by copying PSWcurrent to PSWother as described in Section 2.1.4. 
PSW current is loaded as if this were an interrupt. 

Before interrupts can be turned on again, some processor state must 
be saved. The return PCs are currently in the PC Chain. Three PCs 
must be read from the PC Chain and the third one saved in the process 
descriptor. It is the instruction that is in the RF cycle. The instruction 
corresponding to the PC in MEM completes so it need not be restarted. 
The PC in the AL U cycle should not be restarted because it is the trap 
instruction. PSWother must be saved so that the state of the prior 
process is preserved. If PSWother is not saved before interrupts are 
enabled, then another interrupt will smash the PSW of the process that 
executed the trap before it can be saved. 

All trap instructions have an 8-bit vector number attached to them. 
This provides 256 legal trap addresses in system space. These addresses 
are 8 locations apart to provide enough space to store some instructions 
that will cause a jump to the correct handler. If this is not enough 
vectors, one of the traps can take a register as an argument to determine 
the action required. 

The return sequence must disable interrupts, restore the contents of 
PSWother and MD if they were saved and then disable PC shifting so 
that the return address can be shifted into the PC Chain. Two more 
addresses must be shifted in as well so that the restart will look the 
same as an interrupt. This can be done by loading the addresses of two 
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nop instructions into the PC Chain ahead of the return address. Three 
jumps to the addresses in the PC Chain are then executed using jpcrs 
and two jpcs. The first jump will copy the contents of PSWother into 
PSW current and turn on PC shifting. The processor state changes after 
the AL U cycle of the jpcrs. The change of state also enables interrupts 
and puts the processor in user space. 

If an interrupt occurs during the return sequence then the interrupt 
handler will look at the e bit in the PSW to determine whether the state 
should be saved. 

The flow of code for taking a trap and returning is shown in Fig­
ure A.2. 

trap vecnum 
lret: 

vecnum: movfrs pcm4,rO 
movfrs pcm4,rO 
movfrs pcm4,r31 
Save PSWother 
Save MD 
Enable interrupts 

Process requested trap 

Disable interrupts 
Restore MD 
Restore PSWother 
movtos 
movtos 
movtos 
jpcrs 
jpc 
jpc 

rO,pcml 
rO,pcml 
r31,pcml 

; instruction before trap 
;trap instruction 
;save this one to restart 
;if necessary 
;if necessary 
;if necessary and above saving done 

;movtos x,pswc where x has M bit set 
;if necessary 
;if necessary 
;assume a nop at 0 

;instruction after trap 

execution begins at label lret 

Figure A.2: Trap sequence. 



Appendix B 

Integer Multiplication and 
Division 

This appendix describes the multiplication and division support on 
MIPS-X. The philosophy behind why the current implementation was 
chosen is described first and then the instructions for doing multiplica­
tion and division are described. 

B.1 Multiplication and Division Support 

The goal of the multiplication and division support in MIPS-X is to 
provide a reasonable amount of support with the smallest amount of 
hardware possible. Speed ups can be obtained by realizing that most 
integer multiplications are used to obtain a 32-bit result, not a 64-bit 
result. The result is usually the input to another operation, or it is 
the address of an array index. In either case, a number larger than 32 
bits would not make sense. Since the result is less than 32 bits, one of 
the operands is most likely to be less than 16 bits or there will be an 
overflow. In general this means that only about 16 I-bit multiplication 
or division steps are required to generate the final answer. For very small 
constants, instructions can be generated inline instead of using a general 
multiplication or division routine. Therefore, it was felt that there was 
no great advantage to implement a scheme that could do more than one 
bit at a time such as Booth multiplication. 

The other advantage of only generating a 32-bit result is that it 
is possible 'to do multiplication starting at the MSB of the multiplier 
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meaning that the same hardware can be used for multiplication and 
division. The required hardware is a single register, the MD register, 
that can shift left by one bit each cycle, and an additional multiplexer 
at the source one input of the ALU, that selects the input or two times 
the input for the source 1 operand. 

B.2 Multiplication 

Multiplication is done with the simple I-bit shift and add algorithm 
except that the computation is started from the most significant bit 
instead of the least significant bit of the multiplier. The instruction that 
implements one step of the algorithm is called mstep. For 

mstep rSrc1,rSrc2,rDest 

the operation is: 

If the MSB of the MD register is 1 
then 

rDest <= 2 X rSrc1 + rSrc2 
else 

rDest <= 2 X rSrc1 

Shift left MD 

For signed multiplication, the first step is different from the rest. If 
the MSB of the multiplier is 1, the multiplicand should be subtracted 
from O. The instruction called mstart is provided for this purpose. For 

mstart rSrc2,rDest 

the operation is: 

If the MSB of the MD register is 1 
then 

rDest <= 0 - rSrc2 
else 

rDest <= 0 

Shift left MD 
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N umber of msteps needed 8 32 
Number of cycles with positive multiplier 13 42 
Number of cycles with negative multiplier 15 42 

Table B.l: Number of cycles needed to do a multiplication. 

To show the simplest implementation of a multiplication routine as­
sume that the following registers have been assigned and loaded 

rMer is the multiplier, 
rMand is the multiplicand, 
rDest is the result register, 
rLink is the jump linkage register. 

Then, 

movtos 
nop 
mstart 
mstep 
jspci 

rMer,rMD ;Move the multiplier into MD 
;Needed for hardware timing reasons 

rMand,rDest ;Do the first mstep. Result goes into rDest 
rDest,rMand,rDest ;Repeat 31 times 
rLink,#O,rO ; Return 

It is possible to speed up the routine by using the assumption de­
scribed previously that the numbers will not both be a full 32 bits long. 
The simplest scheme is to check to see if the multiplier is less than 8 bits 
long. Some statistics indicate that this occurs frequently. 

The routine shown in Figure B.l implements multiplication with less 
than 32 msteps on average. It will actually do a full 32 msteps if it 
is necessary. In this case it is most likely that overflow will occur and 
this can be detected if the V bit in the PSW is clear so that a trap 
on overflow will occur. Assume that the registers rMer, rMand and 
rDest have been assigned and loaded as in the previous example. Two 
temporary registers, rTempl and rTemp2 are also required. 

The number of cycles required, not including the instructions needed 
for the call sequence is shown in Table B.l. Compare this with the 
simple routine using just 32 steps which requires 35 instructions to do 
the multiplication and a Booth 2-bit algorithm that will need about 19 
instructions. It can be observed that if most multiplications require 8 or 
less msteps, then this routine will be faster tha1l just doing 32 msteps all 
the time. 
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ji;;i;;;;;;;;;;;;;;;;,;;,i;;;;;,;;;;;;;;;,;;;;;;;;;;;;iii;;;;,;;;,.;;;; 

MUL 

fast, unchecked, signed mUltiply 
rLink link 
rKand 
rDest 
rTempl 
rTemp2 = 

src2 
rKer 

temp 
temp 

srcl/dest 

lote: This code has been reorganized 

•••••• 0 •• 0 •• 0.0 ••••• 0.0 •• 0 •• 0 •• 0.0 •••••• 0.0 •• 0 •• 0 •• 0 ••••••• 0 •• 0 •• 0 •• 0.0 

"""""""", •• " ••• ".".".,.""."",.,."""JJJJ.",.J ••••••• 
MUL: 

asr 
bne 
sh 
movtos 
mstart 
mstep 

lmu18bit: 

lnot8: 

mstep 
mstep 
mstep 
mstep 
jspci 
mstep 
mstep 

addi 
beqsq 
mstart 
mstep 
movtos 
mstart 
mstep 
mstep 
mstep 
mstep 

24 

mstep 
jspci 
mstep 
mstep 

rKer ,rTemp2 ,#7 
rTemp2,rO,lnot8 
rO,rKer,rTempl,#24 
rTempl,md 
rKand,rDest 
rDest,rKand,rDest 

rDest,rKand,rDest 
rDest,rKand,rDest 
rDest,rKand,rDest 
rDest,rKand,rDest 
rLink,#O,rO 
rDest,rKand,rDest 
rDest,rKand,rDest 

rTemp2,#l,rTemp2 
rTemp2,rO,lmu18bit 
rKand,rDest 
rDest,rKand,rDest 
rDest,md 
rKand,rDest 
rDest,rKand,rDest 
rDest,rKand,rDest 
rDest,rKand,rDest 
rDest,rKand,rDest 

msteps 

rDest,rKand,rDest 
rLink,#O,rO 
rDest,rKand,rDest 
rDest,rKand,rDest 

Test for positive 8-bit number 

assume 8 bit 

may need nop before this 

8 bit negative 

do full 32 bits 
may need nop before this 

Figure B.1: Signed integer multiplication. 
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B.3 Division 

For division, the same set of hardware is used, except the ALU is con­
trolled differently. The algorithm is a restoring division algorithm. Both 
of the operands must be positive numbers. Signed division is not sup­
ported as it is too hard to do for the hardware required[15]. 

The dividend is loaded in the MD register and the register that will 
contain the remainder (rRem) is initialized to O. The divisor is loaded 
into another register called (rDor). The result of the division (quotient) 
will be in MD. For 

dstep rRem,rDor,rRem 

the operation is: 

Set ALUsrc1 input to 2 X rRem+ MSB(rMD) 
Set ALUsrc2 input to rDor 
ALUoutput,¢:: ALUsrc1- ALUsrc2 

If MSB(ALUoutput) is 1 
then 

else 

rRem '¢:: AL Usrc1 
rMD '¢:: 2 X rMD 

rRem'¢:: AL Uoutput 
rMD,¢:: 2 X rMD+ 1 

At the end of 32 dsteps the quotient will be in the MD register, and 
the remainder is in rRem. 

A routine for doing division is shown in Figure B.2. The dividend is 
passed in rDend and the divisor in rDor. At the end, the quotient is in 
MD and rQuot, and the remainder is in rRem. Note that rDend and 
rRem can be the same register, and rDor and rQuot can be the same 
register. The dividend and divisor are checked to make sure they are 
positive. This routine does a 32-bit by 32-bit division so no overflow can 
occur. 

The number of cycles needed, not including the calling sequence and 
assuming the operands are positive, is shown in Table B.2. 
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....................................................................... """""""" ••••• " ••• , ••• " •••••• , ••• , ••• ,.",."""JIII."""'. 
DIY 

fast, unchecked, signed divide (should check for zero divide); 
rLink = link 
rDend,rRem = srcl (dividend) 
rDor = rQuot = src2/dest (divisor/quotient) 
rTempl = temp (trashed) 
rTemp2 = temp (trashed) 

lote: This code has been reorganized 
iii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iii;;;;;;;;;;;;;; 
DIY: 

mov 
bge 
nop 
nop 
sub 

lcinit1: 
bgesq 
addi 
nop 
sub 
sub 
addi 

lcinit2: 
bltsq 
movtos 
mov 
sh 
movtos 
beq 
mov 
addi 

ldivfull: 
addi 

ldivloop: 
dstep 
dstep 

ldivloopr: 
dstep 
addi 
dstep 
bnesq 
dstep 
dstep 
movfrs 
bge 

lcinit3: 

nop 
nop 
sub 

jspci 
nop 
nop 

rDend,rTemp2 
rDend,rO,lcinitl 

rO,rDend,rDend 

rDor,rO,lcinit2 
rO ,ltoll:ff ,rTempl 

rO,rTemp2,rTemp2 
rO,rDor,rDor 
rO,'Oll:ff,rTempl 

rTempl,rDend,ldivfull 
rDend,md 
rO,rRem 
rO,rDend,rDend,'8 
rDend,md 
rO,rO,ldivloop 
rO,rRem 
rO,'8,rTempl 

rO,'32,rTempl 

rRem,rDor,rRem 
rRem,rDor,rRem 

rRem,rDor,rRem 
rTempl,'-8,rTempl 
rRem,rDor,rRem 
rTempl,rO,ldivloopr 
rRem,rDor,rRem 
rRem,rDor,rRem 
md,rQuot 
rTemp2,rO,lcinit3 

rO,rQuot,rQuot 

rLink,'O ,rLinlt 

; dividend> 0 ? 

make dividend > 0 

divisor > 0 ? 
check for 8-bit dividend 

rTemp2 > 0 if positive result 
make divisor> 0 

do 8-bit check 
start 32-bit divide 

shift up divisor to do 8 bits 
start 8-bit divide 

loop counter 

do full 32 dsteps 

do this instruction 5 times, not shovn 
decrement loop counter 

get result 
check if need to adjust 

sign of result 

adjust sign of result 

return 

Figure B.2: Signed integer division. 
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N umber of dsteps needed 
N umber of cycles needed 

Table B.2: Number of cycles needed to do a divide. 
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Appendix C 

Opcode Map 

Figure 2.1 shows the MIPS-X instruction formats. This is a summary 
of how the bits in the instruction opcodes have been assigned. The first 
sections will show how the bits in the OP and Comp Func fields are 
assigned. Then the opcode map of the complete instruction set will be 
given. 

C.l OP Field Bit Assignments 

The OP bits are bits 2-4 in all instructions. For memory type instruc­
tions the bits have no particular meaning by themselves. For branch 
type instructions the bits in the OP field (also known as the Cond field) 
are assigned as follows: 

Bit 2 Set to 0 if branch on condition true, set to 1 if branch on 
condition false 

Bits 3-4 Condition upon which the branch decision is made. 00 = 
unused, 01 = Z, 10 = C, 11 = N EEl V 

For compute type instructions the bits are assigned as follows: 

Bit 2 Set to 1 if the AL U always drives the Result Bus for the 

Bit 3 

Bit 4 

instruction 

Set to 0 

Set to 1 if the shifter always drives the Result Bus for the 
instruction 

For compute immediate type instructions the bits are assigned as 
follows: 
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Bit 2 

Bits 3-4 

APPENDIX C. OPCODE MAP 

Set to 1 if the AL U always drives the Result Bus for the 
instruction 

These bits have no particular meaning by themselves 

C.2 Comp Func Field Bit Assignments 

The Comp Func bits are bits 20 through 31 in the compute and compute 
immediate type instructions. The bits are assigned according to whether 
they are being used by the ALU or the shifter. The bits for the ALU are 
assigned in the following way: 

Bits 20-22 

Bit 23 

Bit 24 

Bit 25 

Bits 26-29 

Bits 30-31 

Unused 

Set to 1 for dstep, 0 otherwise 

Set to 1 for multiply instructions (mstart, mstep), 0 oth­
erWIse 

Carry-in to the ALU 

Input to the P function block. 

Bit 26 

Bit 27 

Bit 28 

Bit 29 

Src1 . Src2 

Src1 . Src2 

Src1 . Src2 

Src1 . Src2 

Input to the G function block. 

Bit 30 

Bit 31 

o for AL U add operation, 1 otherwise 

o for ALU subtract operation, 1 other­
wise 

The bits for the shifter are assigned as follows: 

Bits 20-21 

Bit 22 

Bit 23 

Bit 24 

Bit 25 

Unused 

Set to 1 for funnel shift operation (sh instruction) 

Set to 1 for arithmetic shift operation (asr instruction) 

Set to 1 for byte rotate instructions (rotlb, rotlcb) 

For byte rotate instructions, set to 1 if rotlb, 0 if rotlcb 
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Bits 25-31 Shift amount for funnel and arithmetic shift operations 
(sh and asr instructions). The range is 0 to 31 bits. 
Although this can be encoded in five bits, the two low­
order bits are fully decoded; therefore, the field is seven 
bits. The two low-order bits are decoded as follows: 0 = 
bit 31, 1 = bit 30, 2 = bit 29, 3 = bit 28. For example, a 
shift amount of 30 would become 1110100 in this seven­
bit encoding scheme. 
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C.3 Opcode Map of All Instructions 
Kemory Instructions 

Instruction TY OP Comments 
Id 10 000 * 
st 10 010 
Idf 10 100 * 
stf 10 110 
Idt 10 001 * 
stt 10 011 
movfrc 10 101 Srcl=O, * 
movtoc 10 111 Srcl=O 
aluc 10 101 Srcl=O, Oest=O, * 

Branch Instructions 

Instruction TY CONO 
beq 00 001 
bge 00 111 
bhs 00 010 
blo 00 110 
bIt 00 011 
bne 00 101 

Compute Instructions 

Instruction TY OP Comp Func Comments 
add 01 100 000000011001 
dstep 01 000 000101100110 
mstart 01 000 000011100110 Srcl=O 
mstep 01 000 000010011001 
sub 01 100 000001100110 
subnc 01 100 000000100110 
and 01 100 000000100011 
bic 01 100 000000001011 Src2=0 
not 01 100 000000001111 Src2=0 
or 01 100 000000111011 
xor 01 100 000000011011 
mov 01 100 000000011001 Src2=0 
asr 01 001 00010bbbdddd Src2=O, 

bbbdddd=rotate amount 
rotlb 01 001 000011000000 
rotlcb 01 001 000010000000 
sh 01 001 00100bbbdddd bbbdddd=rotate amount 
nop 01 100 000000011001 Srcl=O, Src2=O, Oest=O 
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Compute Immediate Instructions 

Instruction TY OP Comp Func Comments 
addi 11 100 Immed * (Immed is a 17-bit 
jspci 11 000 Immed * signed constant) 
jpc 11 101 000000000011 * 
jpcrs 11 111 000000000011 
movfrs 11 011 OOOOOOOOOrrr rrr = special register 
movtos 11 010 OOOOOOOOOrrr rrr = special register 
trap 11 110 Ovvvvvvvv011 Src1=0. vvvvvvvv=vector 
unused 11 001 

Key to Comments 

star (*) This is an instruction that has its Dest field in the position 
where the Src2 field normally sits. This can also be deter­
mined by decoding the MSB of the type field and the middle 
bit of the OP field. 

bbbdddd This is the shift amount for the asr and sh instructions. It 
ranges from 1 to 32 bits. 

To determine the encoding for the shift amount, first subtract 
the shift amount from 32. The result can be encoded as 5 
bits. Assume the 5-bit encoding is bbbej, where bbb is used 
in the final encoding. The bottom two bits (e/) are fully 
decoded to yield dddd in the following way: 

ef dddd 
00 0001 
01 0010 
10 0100 
11 1000 

For example, to determine the bits required to specify the 
shift amount for the shift instruction 

asr r4.r3.#5 

first do (32 - 5) to get 27 and then encode 27 according to 
the above to get 1101000. 

rrr This field specifies the special register according to the fol­
lowing table: 
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Special Register rrr 

psw 001 
md 010 
pcm4 (movfrs), pcm1 (movtos) 100 

vvvvvvvv This is the one's complement of the vector. 



Appendix D 

MIPS-X Revision 1 and 2 
Pin Numbers 

The pin assignments for both Revision 1 and Revision 2 are the same 
except that the Revision 2 part does not have a Test pin. This pin is not 
connected (NC) on the Revision 2 part. 

Two lists are given. The first one gives the correspondence between 
the pin numbers and names for the medium tester jumpers, the probe 
card, the layout and the functional simulator (Funsim). The names given 
are the names that are used in the layout and may not be exactly the 
same as the names used elsewhere in this document. The second list 
maps the pin number of the 144 pin PGA and the signal names to the 
medium tester jumpers and 64-pin connectors. A map of the pads is 
shown below. The numbers on the pins are the bonding pad numbers 
for the 144-pin ceramic PGA from Kyoto Ceramic Co., Ltd. (Kyocera). 
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D.l Pin Mapping for Probe Card and Funsim 

This is the list of the pad names and their corresponding pin numbers 
for the tester, probe card and the layout. For the layout the numbering 
of the pads starts with Pin 1 in the top left corner of the chip and going 
counter-clockwise. For each pin, the name used in the layout and the 
name in the functional simulator are given. 

The ClockTri pin is used to switch the state of the multiplexer that 
selects between using the tester to stimulate the clock pins and using an 
external clock for speed testing. This is only a connection between the 
tester and the probe card pins. A low value on this pin selects the tester 
as the clock source. 

Tester Probe Layout 
Jumper # Card # Pin # Pad Name Funsim Name 
-------- -------- -----------

120 B 56 1 Vdd - Pad 
56 A 56 2 PadMiss PadMiss_vl 

119 B 55 3 Padlnterrupt_vl Padlnterrupt_vl 
55 A 55 4 PadRe set PadReset 

118 B 54 5 PadException_v2 PadException_v2 
54 A 54 6 PadMem PadMem 

117 B 53 7 PadRead PadReadWrite 
53 A 53 8 PadBypass PadBypass 

116 B 52 9 PadCop PadCop 
52 A 52 10 P adWB en PadWBen 

115 B 51 11 PadFPReg.l PadFPReg 
51 A 51 12 PadFPReg.2 " 

114 B 50 13 PadFPReg.3 " 
50 A 50 14 PadFPReg.4 " 

113 B 49 15 PadTest(NC in Rev.2) not in funsim 
49 A 49 16 Gnd - Pad 

112 B 48 17 Vdd - Pad 
48 A 48 18 PadDataBus.31 PadDataBus_sl 

111 B 47 19 PadDataBus.30 " 
47 A 47 20 PadDataBus.29 " 

110 B 46 21 Gnd - Reg Array,Pad 
46 A 46 22 PadDataBus.28 " 

109 B 45 23 PadDataBus.27 
45 A 45 24 PadDataBus.26 " 

108 B 44 25 PadDataBus.25 " 
44 A 44 26 PadDataBus.24 " 

107 B 43 27 PadDataBus.23 " 
43 A 43 28 PadDataBus.22 " 

106 B 42 29 PadDataBus.21 " 
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Tester Probe Layout 
Jumper # Card # Pin # Pad Name Funsim Name 
-------- -------- -----------

42 A 42 30 PadDataBus.20 " 
105 B 41 31 PadDataBus .19 " 
41 A 41 32 VddPad 

104 B 40 33 Gnd - Pad 
40 A 40 34 Vdd - Reg Array 

103 B 39 35 PadDataBus .18 " 
39 A 39 36 PadDataBus .17 " 

102 B 38 37 PadDataBus .16 " 
38 A 38 38 PadDataBus .15 " 

101 B 37 39 PadDataBus .14 " 
37 A 37 40 PadDataBus .13 " 

100 B 36 41 PadDataBus .12 " 
36 A 36 42 PadDataBus.ll " 
99 B 35 43 PadDataBus .10 
35 A 35 44 PadDataBus.9 " 
98 B 34 45 PadDataBus.8 
34 A 34 46 PadDataBus.7 " 
97 B 33 47 PadDataBus.6 
33 A 33 48 Gnd - Pad 
96 B 32 49 Vdd - Pad 
32 A 32 50 PadDataBus.5 " 
95 B 31 51 PadDataBus.4 " 
31 A 31 52 PadDataBus.3 " 
94 B 30 53 PadDataBus.2 " 
30 A 30 54 PadDataBus .1 " 
93 B 29 55 PadDataBus.O " 
29 A 29 56 PadAddressBus.O AddressBus 
92 B 28 57 PadAddressBus.l " 
28 A 28 58 PadAddressBus.2 
91 B 27 59 PadAddressBus.3 " 
27 A 27 60 PadAddressBus.4 " 
90 B 26 61 PadAddressBus.5 " 
26 A 26 62 PadAddressBus.6 " 
89 B 25 63 Gnd - Tags ,Pad 
25 A 25 64 Gnd - Pad 
88 B 24 65 Vdd - Pad 
24 A 24 66 PadAddressBus.7 " 
87 B 23 67 PadAddressBus.8 
23 A 23 68 PadAddressBus.9 " 
86 B 22 69 PadAddressBus.l0 " 
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Tester Probe Layout 
Jumper # Card # Pin # Pad Name Funsim Name 
-------- -------- -----------

22 A 22 70 PadAddressBus.ll " 
85 B 21 71 PadAddressBus.12 " 
21 A 21 72 PadAddressBus.13 " 
84 B 20 73 PadAddressBus.14 " 
20 A 20 74 PadAddressBus.15 " 
83 B 19 75 PadAddressBus.16 " 
19 A 19 76 PadAddressBus.17 " 
82 B 18 77 Vdd - Tags 
18 A 18 78 PadICacheDisable PadCacheDisable 
81 B 17 79 PadAddressTristate PadTriState 
17 A 17 80 Vdd - Pad 
80 B 16 81 Gnd - Pad 
16 A 16 82 PadAddressBus.18 AddressBus 
79 B 15 83 PadAddressBus.19 " 
15 A 15 84 PadAddressBus.20 " 
78 B 14 85 PadAddressBus.21 " 
14 A 14 86 PadAddressBus.22 
77 B 13 87 PadAddressBus.23 " 
13 A 13 88 PadAddressBus.24 " 
76 B 12 89 PadAddressBus.25 
12 A 12 90 PadAddressBus.26 
75 B 11 91 PadAddressBus.27 
11 A 11 92 PadAddressBus.28 
74 B 10 93 PadAddressBus.29 
10 A 10 94 PadAddressBus.30 
9 A 9 95 PadAddressBus.31 
8 A 8 96 Vdd - Pad 
7 A 7 97 Gnd - Pad 

69 B 5 98 Gnd - ICache 
68 B 4 99 Vdd - ICache 
65 B 1 100 Gnd - ICache Sense Amp 

128 B 64 101 Vdd - ICache 
127 B 63 102 Vdd - ICache 
126 B 62 103 Gnd - ICache 
125 B 61 104 Vbias 

60 A 60 105 PadICacheTest_sl PadTest 
59 A 59 106 PadPhi2 
58 A 58 107 PadPhil 
57 A 57 108 Gnd - Pad 

3 A 3 ClockTri 
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D.2 Pin Map for 144 Pin PGA 
The mapping in the MIPS-X column is between the signal names and the 
pin numbers on the 144 pin PGA. The numbers in the TESTER column 
are for the 144-pin test adaptor that plugs into the medium tester and 
gives the tester jumper number and the number on the 64-pin connectors. 

MIPS-X TESTER 

Bonding 
Pad No. Pin No. Signal Name Jumper 64-pin conn. Notes 
------- ------- ----------- ------------

1 D 3 Vdd 8 A 8 
3 B 1 Address.7 24 A 24 
4 D 2 Address.8 87 B 23 
5 E 3 Address.9 23 A 23 
6 C 1 Address. 10 86 B 22 
7 E 2 Address. 11 22 A 22 
8 D 1 Address. 12 85 B 21 
9 F 3 Address. 13 21 A 21 

10 F 2 Address. 14 84 B 20 
11 E 1 Address. 15 20 A 20 
12 G 2 Address. 16 83 B 19 
13 G 3 Address. 17 19 A 19 
14 F 1 Vdd 17 A 17 
16 H 2 ICacheDisable 18 A 18 
17 H 1 AddressTristate 81 B 17 
18 H 3 Vdd 40 A 40 
19 J 3 Gnd 7 A 7 
20 J 1 Address. 18 16 A 16 
21 K 1 Address. 19 79 B 15 
22 J 2 Address.20 15 A 15 
23 K 2 Address.21 78 B 14 
24 K 3 Address.22 14 A 14 
25 L 1 Address.23 77 B 13 
26 L 2 Address.24 13 A 13 
27 M 1 Address.25 76 B 12 
28 N 1 Address.26 12 A 12 
29 M 2 Address.27 75 B 11 
30 L 3 Address.28 11 A 11 
31 N 2 Address.29 74 B 10 
32 P 1 Address.30 10 A 10 
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Bonding 
Pad No. Pin No. Signal Name Jumper 64-pin conn. Notes 
------- ------- ----------- ------------

33 M 3 Address.31 9 A 9 
37 N 4 Vdd 41 A 41 
39 Q 2 Gnd 25 A 25 
44 Q 4 Gnd 33 A 33 
45 N 6 Vdd 68 B 4 
54 N 8 Gnd 49 A 49 
55 N 9 Vdd 82 B 18 
61 Q 11 Vdd 88 B 24 
62 P 11 Gnd 57 A 57 
66 N 11 Vbias 125 B 61 
67 P 13 ICacheTest 60 A 60 
68 Q 14 Phi2 59 A 59 (clock line) 
69 N 12 Phil 58 A 58 (clock line) 
71 P 14 Gnd 65 B 1 
73 M 13 Vdd 96 B 32 
75 P 15 Miss 56 A 56 
76 M 14 Interrupt 119 B 55 
77 L 13 Reset 55 A 55 
78 N 15 Exception 118 B 54 
79 L 14 MemCyc1e 54 A 54 
80 M 15 Read/Write_b 117 B 53 
81 K 13 BypassCache 53 A 53 
82 K 14 CopCyc1e 116 B 52 
83 L 15 WBEnable 52 A 52 
84 J 14 FPReg.l 115 B 51 
85 J 13 FPReg.2 51 A 51 
86 K 15 FPReg.3 114 B 50 
87 J 15 FPReg.4 50 A 50 
88 H 14 Test 113 B 49 (NC on Rev.2) 
90 H 13 Gnd 69 B 5 
91 G 13 Vdd 112 B 48 
92 G 15 Data.31 48 A 48 
93 F 15 Data. 30 111 B 47 
94 G 14 Data.29 47 A 47 
95 F 14 Gnd 80 B 16 
97 E 15 Data. 28 46 A 46 
98 E 14 Data.27 109 B 45 
99 D 15 Data.26 45 A 45 

100 C 15 Data. 25 108 B 44 
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Bonding 
Pad No. Pin No. Signal Name Jumper 64-pin conn. Notes 
------- ------- ----------- ------------

101 D 14 Data.24 44 A 44 
102 E 13 Data.23 107 B 43 
103 C 14 Data.22 43 A 43 
104 B 15 Data.21 106 B 42 
105 D 13 Data.20 42 A 42 
106 C 13 Data. 19 105 B 41 
108 A 15 Vdd 120 B 56 
109 C 12 Gnd 89 B 25 
111 A 14 Vdd 127 B 63 
113 C 11 Data. 18 103 B 39 
114 A 13 Data. 17 39 A 39 
115 B 11 Data.16 102 B 38 
116 A 12 Data. 15 38 A 38 
117 C 10 Data. 14 101 B 37 
118 B 10 Data.13 37 A 37 
119 A 11 Data. 12 100 B 36 
120 B 9 Data. 11 36 A 36 
121 C 9 Data. 10 99 B 35 
122 A 10 Data.9 35 A 35 
123 A 9 Data.8 98 B 34 
124 B 8 Data.7 34 A 34 
125 A 8 Data.6 97 B 33 
126 C 8 Gnd 104 B 40 
127 C 7 Vdd 128 B 64 
128 A 7 Data.5 32 A 32 
129 A 6 Data.4 95 B 31 
130 B 7 Data.3 31 A 31 
131 B 6 Data.2 94 B 30 
132 C 6 Data.l 30 A 30 
133 A 5 Data.O 93 B 29 
134 B 5 Address.O 29 A 29 
135 A 4 Address. 1 92 B 28 
136 A 3 Address.2 28 A 28 
137 B 4 Address. 3 91 B 27 
138 C 5 Address.4 27 A 27 
139 B 3 Address.5 90 B 26 
140 A 2 Address. 6 26 A 26 
141 C 4 Gnd 110 B 46 
143 B 2 Gnd 126 B 62 



Appendix E 

Revision 1 and Revision 2 
Differences 

There are a few differences between the Revision 1 and Revision 2 
MIPS-X parts. Most have to do with making the External Interface 
easier to use. Some are internal changes that do not affect the external 
interface logic but are mentioned here for archival purposes. 

1. On the Revision 1 parts, the instruction fetched from the Ecache 
during an ICache miss must be valid until ¢1 falling of the 'WB' 
cycle of the ICache miss cycle. For example, the first instruction. 
fetched back must be stable until ¢1 falling of CM2. For Revision 
2, the timing is the same as a normal load sequence; the data must 
be valid until ¢2 falls during the 'MEM' cycle of an ICache miss 
cycle. For example, the first instruction fetched back must be valid 
until CM1 4>2 falls. 

2. The address pins of the Revision 1 parts are set to zero on every 
¢1, reflecting the precharging of the internal Result Bus. These 
pins are valid ¢2, stable </>1 on the Revision 2 parts. 

3. The Miss pin cannot be used to stall the processor on the Revision 
1 parts. The processor must be stalled by stretching ¢2. The Miss 
pin stalls the processor correctly on the Revision 2 parts. 

4. When an ICache miss occurs between the probe in the Ecache for 
a store instruction and the actual store, the store must be allowed 
to complete before the ICache miss sequence can begin. On the 
Revision 1 parts this interlock must be done by asserting Miss on 
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the processor. For Revision 2 parts, the processor does the interlock 
and stalls itself until the store completes. 

5. Because of the change to the store interlock described in the pre­
vious point, the timing of when data appears on the data pins has 
changed. For Revision 1 parts, data is asserted on the pins during 
MEM ¢2. The Revision 2 parts do different actions for stores and 
movtoc instructions. For store instructions, the data is driven off 
the chip when Miss falls during WB ¢1 and stays valid until ¢l 
rises. Data for a movtoc instruction is driven off chip when Miss 
falls during MEM ¢1 and stays valid until Miss falls during WB 
¢1. If Miss is not high when ¢1 goes high, then all actions will 
occur on the rising edge of ¢1. 

6. There is only one difference in the pinouts of the two versions. The 
Revision 1 part has a Test pin that is used to enable observation of 
control lines in the datapath. This feature was never used so the 
pin is not connected in the Revision 2 part. 

The following changes are internal changes only and do not affect the 
External Interface. 

1. The testing multiplexers have been removed on the Revision 2 
parts. This is why the Test pin has gone away. 

2. The PLA in the PC Unit has been replaced by standard cell logic. 
This is to speed up the critical paths for branches and exceptions. 

3. The branch path logic has been sped up. 

4. The Tag section has been changed to speed up the valid-bit store 
access. 
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circuit, 76 
control for division, 203 
drivers, 106 
inputs, 34, 61, 82, 200, 203 
output, 94, 207 
overflow, 15,63,89 
signals into, 101, 208 
usage, 13, 37-38, 106 

branch 
code reorganization, 23, 26-31 
computing conditions, 12, 17, 

60, 76, 78, 80, 82 
critical path, 99, 104, 222 
delay, 13, 15, 26, 28, 112, 193 
design tradeoffs, 16 
displacement, 11,36 
displacement adder, 34,94, 108 
instruction flow, 37 
instructions, 9-10, 207 
instructions on reset, 97, 112 
result, 156 
signals, 63-64, 78, 82, 89-90 
signals in PC Unit, 97-99,102, 

104-105 

228 

squashing, 13, 17, 30-31, 39, 
56,61,97, 111-112,190 

cache 
instruction, see instruction 

cache 
external, see external cache 

CAD, 2-3, 30, 99 
cancelling, see instruction squash­

ing 
clocks, 34, 40-41, 43-44, 109, 164 

167,192 
CMFSM, see controllers, cache mis1 
control lines, 41, 43-44, 60, 66, 192 

222 
ALU, 78, 80 
MD register, 73, 75-76 
naming, 40 
PC, 98-99, 101, 104 
PSW, 85, 88 
shifter, 69-71 

controllers, 3, 19, 41 
cache miss, 39, 94, 97-98, 111 

113 
global, 39, 41 
squash, 39, 95, 97, 111, 114 

coprocessor, 1-2,7,9-10,16-17,161 
165, 168, 173, 175, 177 
179-180, 182, 191 

alu function, 9, 177, 179, 184 
exception, 186 
floating-point, 10, 156, 161 

166, 184 
critical path, 99, 121 



branch, see branch, critical 
path 

memory, see memory, critical 
path 

division, 8-9, 15, 34, 49, 60, 63, 71, 
75-76,82-83,194,199,210 

ECache, see external cache 
EFace, see External Interface 
exception, 7, 10, 13-16, 18, 34, 38-

39,56,89,94,97,109,111, 
165, 184, 188, 190, 193, 
222 

coprocessor, 180 
during ICache miss, 175 
effect on CMFSM, 111 
effect on SQFSM, 112 
MD action on, 71, 73 
PSW action on, see PSW, on 

exception 
signal, 38, 56, 61, 63, 89, 97, 

99, 102, 166-167, 192, 215 
signal in PC Unit, 99, 101-102, 

104-105 
vector, 106 

Execute Unit, 3, 5, 33-34, 36, 38, 
41,46,49-50,60-61,94-95, 
97-98, 101, 108, 117, 151, 
157 

external cache, 10-12, 133, 161-163, 
167-169, 177, 180, 184, 
191, 221 

bypass, 9, 165 
miss, 109, 168, 170, 172, 176 
miss rates, 163 

External Interface, 3, 5, 38, 62-
63, 95, 117, 138, 157, 161, 
221-222 

finite-state machines, 39 

ICache, see instruction cache 
immediate, 97, 99, 102, 104, 151 

229 

bus, 34, 36, 61, 69-70, 75-76, 
82, 85, 89, 106, 108, 152, 
154 

instruction, 9-10, 12, 28, 61, 
63, 82, 152, 207,211 

instruction cache, 1, 3-5, 8, 11, 16, 
33-34, 93, 151, 175, 190 

bus, 156 
disable, 166 
in instruction flow, 37 
miss, 12, 16, 34, 36, 39, 94, 

98,109,151,168,173,178, 
180, 190, 192, 221 

organization, 115 
RAM, 33, 93-94, 137 
reducing misses, 21 
tags, see Tags Unit 
testing, 95, 97, 112, 132, 166, 

188, 192,217 
Instruction Register, 3, 5, 33-34,37, 

56, 62, 71, 75, 85, 94-95, 
97-98, 138, 151, 190 

instruction set, 7-10 
op codes, 207 

instruction squashing, 39, 56, 88, 
94-95, 176, 188 

branches, see branch, squash­
ing 

coprocessor, 180 
MD register, 71, 74 

interrupt, see exception 
IReg, see Instruction Register 

jpcrs, 9, 13, 62-63, 88, 95, 98, 194-
195, 197,211 

jump address, 98 
jump delay, 13 

LISP, 21, 23, 25 
load, see memory, read 
load delay, 13, 26-27 
load scheduling, 27 

MD register, 8, 34, 38, 60-61, 63, 
71-73, 83, 194-197, 199, 
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212 
MemBus, 34, 36, 40, 50-51, 57, 60, 

151, 156, 192 
memory 

bandwidth, 11, 93 
caches, see instruction cache, 

external cache 
coprocessor read, 9-10,17,156, 

161-162, 166, 177, 179, 
184 

coprocessor write, 9-10, 17, 
161-162, 165-166, 177, 
179, 184 

critical path, 18, 161-162, 168 
data registers, 49-50, 57, 60, 

120-121,176 
FP read, 165 
instruction, 9, 34, 37-38, 63, 

76,82, 177, 189,207,210 
interface, 167 
organization, 10-11 
protection, 10-11, 14-15, 64, 

88-89, 92, 106, 108, 176, 
194, 197 

read, 8-13, 18, 28-29,38,49-50, 
60, 165-166,168, 170-172, 
174-176,180,188-190,221 

read signal, 165, 168, 170, 191, 
215 

signal, 63, 82-83, 157 
synchronization, 175 
virtual, 10 
write, 8-10, 12, 26, 38, 49-50, 

60, 165-166,168, 172-176, 
179, 182, 188 

write has no dest, 56, 156 
MIPS, 1-4,17-18,24,26,28,38 
movtos, 9, 14, 62-63, 75, 83, 85, 95, 

98-99, 102, 111, 157, 195, 
197,201-202,204,211-212 

multiplication, 8-9, 15, 34, 49, 60, 
63, 71, 75-76, 82-83, 194, 
199, 208, 210 

INDEX 

overflow, 10 
trap, 10, 13-15, 38, 60, 63, 85, 

89, 196, 201 

pad loading, 167 
Pascal, 3, 21,25 
PC Bus, 34, 36-37, 39-40, 89, 189 

in PC Unit, 94, 97-98, 101, 106, 
108, 111 

in Tags Unit, 117, 119-120, 
122-124, 127, 132-134 

PC Chain, 8-9, 14-15, 18,34, 37-38, 
94,97, 109-110, 193 

PC Unit, 8, 33-34, 36, 38-39, 41, 
46, 60-62, 64-65, 89, 93-
94, 117-118, 132-133, 157, 
188-189, 222 

PC-I, 8, 99, 101-102, 111, 194-195, 
197, 212 

PC-4, 8, 62, 64, 95, 99, 101-102, 
111,194-195,197,212 

pcml, see PC-1 
pcm4, see PC-4 
pipeline organization, 12 
PLA 

Execute Unit, 66-67, 70-71, 73, 
75-76, 80, 85, 88 

PC, 94-95, 99, 101-102, 222 
processor status word, see PSW 
PSW, 10, 13-15, 38, 60, 212 

e bit, 13-14,85,87-88, 194, 197 
implementation, 83, 85-86, 88 
Obit, 15, 85, 196 
on exception, 13, 18, 83, 85, 

193-194 
on interrupt, 166 
on trap, 196 
overflow, 89, see also PSW, 0 

bit 
reset, 63 
S bit, 14,64,97,99,102,111 
squashing, 61 
U bit, 14, 64, 98, 106 
V bit, 14, 196, 201 



Puzzle, 4 

Regfile, see Register File 
Register File, 3, 5, 13, 33-34, 36, 38, 

41, 49, 60-62, 95, 98, 151, 
156-157,176,190 

reset, 88,94,97, 111-112, 188, 190 
Ring Counter, 116 
signal, 38, 63, 85, 117, 123, 

165, 167, 192, 215 
signal in PC Unit, 97, 99, 101-

102, 104-105, 112 
tags, 115, 122 
vector, 106, 108, 188 

Result Bus, 34, 36-38, 43, 45, 51, 
207-208, 221 

in Execute Unit, 61, 63-66, 69, 
71, 73, 75-76, 80, 82-85, 
88-89, 92 

in PC Unit, 94, 98, 108, 111 
in Regfile, 50, 190 
in Tags Unit, 117,122,133 

Ring Counter, 115-117, 121, 128, 
130-132 

self-timed signals, 41, 52-53, 80, 
120, 122, 124 

shifter, 8, 18, 34, 37-38,49,60-61, 
64, 66, 190, 207-208 
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