

Numerical
Computing
with IEEE Floating
Point Arithmetic

This page intentionally left blank

Numerical
Computing
with IEEE Floating
Point Arithmetic
Including One Theorem, One Rule of Thumb,
and One Hundred and One Exercises

Michael L. Overton
Courant Institute of Mathematical Sciences

New York University
New York, New York

siam.
Society for Industrial and Applied Mathematics

Philadelphia

Copyright © 2001 by the Society for Industrial and Applied Mathematics.

1 0 9 8 7 6 5 4 3 2

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information, write to the Society for Industrial and Applied Mathematics,
3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

Overton, Michael L
Numerical computing with IEEE floating point arithmetic / Michael L Overton.

p. cm.
Includes bibliographical references and index.
ISBN 0-89871-571-7

I. Computer arithmetic. 2. Floating-point arithmetic. 3. Numerical calculations.
I. Title.

QA76.9.M35O94200I
O04'.0l'5l--dc2l

00-067941

SlcLJTL is a registered trademark.

Dedicated to girls who like math
especially my daughter
Eleuthera Overton Sa

This page intentionally left blank

Contents

Preface ix

Acknowledgments xi

1 Introduction 1

2 The Real Numbers 5

3 Computer Representation of Numbers 9

4 IEEE Floating Point Representation 17

5 Rounding 25

6 Correctly Rounded Floating Point Operations 31

7 Exceptions 41

8 The Intel Microprocessors 49

9 Programming Languages 55

10 Floating Point in C 59

11 Cancellation 71

12 Conditioning of Problems 77

13 Stability of Algorithms 83

14 Conclusion 97

Bibliography 101

vii

This page intentionally left blank

Preface

Numerical computing is a vital part of the modern scientific infrastructure. Almost
all numerical computing uses floating point arithmetic, and almost every modern
computer implements the IEEE1 binary floating point standard, published in 1985.
This standard is arguably the most important in the computer industry, the result of an
unprecedented cooperation between academic computer scientists and the cutting edge
of industry. Nonetheless, many years after its publication, the key ideas of the IEEE
standard remain poorly understood by many students and computer professionals.
Perhaps this is because an easily accessible yet reasonably detailed discussion of the
standard has not been available—hence, the evolution of this short book. Although it
is intended primarily for computer science or mathematics students, as a supplement
to a more traditional textbook for a course in scientific computing, numerical analysis,
or computer architecture, it also aims to reach a broader audience. As well as the IEEE
standard, topics include the floating point architecture of the Intel microprocessors,
a discussion of programming language support for the standard, and an introduction
to the key concepts of cancellation, conditioning, and stability. The book should be
accessible to any reader with an interest in computers and mathematics. Some basic
knowledge of calculus and programming is assumed in the second half. The style is
not that of a traditional textbook. There is enough variety of content that all but the
most expert readers will find something of interest here.

A web page for the book is maintained at

http://www.cs.nyu.edu/cs/faculty/overton/book/

Refer to this page for corrections to the text, to download programs from the book,
and to link to the web pages mentioned in the bibliography, which will be updated as
necessary.

MICHAEL L. OVERTON

1 Institute for Electrical and Electronics Engineers. IEEE is pronounced "I triple E.

IX

http://www.cs.nyu.edu/cs/faculty/overton/book/

This page intentionally left blank

Acknowledgments

Special thanks go to Jim Deminel for introducing me to the IEEE floating point
standard years ago, answering many questions, and encouraging me to complete this
work. Thanks also to Vel Kahan, without whom we would not have the standard, and
to Chris Paige, who taught from an early version of this book and made many helpful
suggestions. I am also grateful to many other people for their detailed comments,
particularly David Gay, David Goldberg, Ilse Ipsen, Jorge Nocedal, Nick Trefethen,
and Margaret Wright. Being part of a network of colleagues like these is the greatest
pleasure of my professional life. I particularly thank Gene Golub and Olof Widlund
for their crucial support during my early postdoctoral research career; I would not
have been able to begin this work without them. Thanks also to Joe Darcy, Nick
Higham, David Scott and Antoine Trux for pointing out errors in the first printing
that are corrected in this second printing.

Many thanks to Vickie Kearn for her enthusiasm for publishing this book despite
its unconventional format, to Beth Gallagher for her careful copy editing, and to all
those involved in the production process. The publication of this book is one of many
rewarding aspects of my association with SIAM during the past decade.

On a more personal note, I honor the memory of my father, David, who continues
to inspire me many years after his passing, and I especially thank three wonderful
people: my mother Kathie, my daughter Eleuthera, and my best friend Renan.

XI

This page intentionally left blank

Accurate reckoning: The entrance into knowledge
of all existing things and all obscure secrets

A'HMOSE, The Rhind Mathematical Papyrus, c. 1650 B.C.

I am a HAL Nine Thousand computer Production Number 3. I became
operational at the Hal Plant in Urbana, Illinois, on January 12, 1997.

The quick brown fox jumps over the lazy dog.
The rain in Spain is mainly in the plain.

Dave—are you still there?
Did you know that the square root of 10 is 3.162277660168379?

Log 10 to the base e is 0.434294481903252 ...
correction, that is log e to the base 10 ...

The reciprocal of 3 is 0.333333333333333333333 ...
2 times 2 is ... 2 times 2 is ...

approximately 4.101010101010101010 ...
I seem to be having difficulty ...

—HAL, in 2001: A Space Odyssey

This page intentionally left blank

Chapter 1

Introduction

Numerical computing means computing with numbers, and the subject is almost as old
as civilization itself. Ancient peoples knew techniques to carry out many numerical
tasks. Among the oldest computational records that we have is the Egyptian Rhind
Papyrus from about 1650 B.C. [Cha79], quoted on the previous page. Counting stones
and counting rods have been used for calculation for thousands of years; the abacus
originated as a flat surface with counting stones and was used extensively in the
ancient world long before it evolved into the device with beads on wires that was
common in Asia until recently. The abacus was the basis of calculation in Europe
until the introduction of our familiar positional decimal notation from the Middle
East, beginning in the 13th century. By the end of the 16th century, positional decimal
notation was in standard use throughout Europe, as it became widely recognized for
its computational convenience.

The next key development was the invention and tabulation of logarithms by John
Napier at the beginning of the 17th century; his idea was that time-consuming multi-
plication and especially division may be avoided by adding or subtracting logarithms,
using tabulated values. Isaac Newton laid the foundations of modern numerical com-
puting later in the 17th century, developing numerical techniques for the solution of
many mathematical problems and inventing calculus along the way. Several of New-
ton's computational methods still bear his name. In Newton's footsteps followed Euler,
Lagrange, Gauss, and many other great mathematicians of the 18th and 19th centuries.

The idea of using physical devices as an aid to calculation is an old one. The abacus
has already been mentioned. The slide rule was invented soon after Napier's discovery
of logarithms, although it was not commonly used until the middle of the 19th cen-
tury. Numbers are represented on a slide rule explicitly in a logarithmic scale, and its
moving rule and cursor allow multiplication and division to be carried out easily, accu-
rate to about three decimal digits. This simple, inexpensive device was used by many
generations of engineers and remained in common use until about 1975, when it was
made obsolete by cheap electronic calculators. Mechanical calculating machines were
devised by Schickard, Pascal, and Leibnitz in the 17th century; their descendants also
remained in use until about 1975. The idea of a programmable machine that would
operate without human intervention was developed in great depth by Charles Babbage
in the 19th century, but his ideas were way ahead of his time and were mostly ignored.
During World War II, scientific laboratories had rooms full of people doing different
parts of a complicated calculation using pencil and paper, slide rules, and mechanical
calculators. At that time, the word computer referred to a person, and those group
calculations may be viewed as the early steps of parallel computing.

1

2 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

The Computer Age

The machine often described as the world's first operating computer was the Z3, built
by the engineer Konrad Zuse in Germany in 1939-1941. The Z3 used electromechanical
switching devices and computed with binary floating point numbers, a concept to be
described in detail in subsequent chapters.2 Although Zuse developed his machines
during World War II, his government took no interest in his work. Slightly later, and
in great secrecy, the British government developed a powerful electronic code-breaking
machine, the Colossus. The first general-purpose operational electronic computer3 is
usually said to be the ENIAC (Electronic Numerical Integrator And Computer), a
decimal machine with 18,000 vacuum tubes that was built by Eckert and Mauchly at
the University of Pennsylvania in 1943-1945. Eckert was the electronics expert and
Mauchly had the experience with extensive numerical computations. The intellectual
giants who most influenced the postwar computer design in England and the United
States were Alan Turing, one of the architects of the Colossus project, and John
von Neumann, the Hungarian mathematician at Princeton. Two ideas in particular
were advocated by von Neumann: the storage of instructions in the memory of the
computer and the use of binary rather than decimal storage and arithmetic. The
first fully functional stored-program electronic computers were built in England in
1948-1949; besides Turing, key leaders there included Maurice Wilkes and James
Wilkinson. In the late 1940s and early 1950s, it was feared that the rounding errors
inherent in floating point computing would make nontrivial calculations too inaccurate
to be useful. Wilkinson demonstrated conclusively that this was not the case with
his extensive computational experiments and innovative analysis of rounding errors
accumulated in the course of a computation. Wilkinson's analysis was inspired by the
work of Goldstine and von Neumann and of Taring [Wil64]. For more on the early
history of computers, see [Wil85]. For a remarkable collection of essays by a cast of
stars from the early days of computing, see [MHR80].

During the 1950s, the primary use of computers was for numerical computing in
scientific applications. In the 1960s, computers became widely used by large busi-
nesses, but their purpose was not primarily numerical; instead, the principal use of
computers became the processing of large quantities of information. Nonnumerical
information, such as character strings, was represented in the computer using binary
numbers, but the primary business applications were not numerical in nature. During
the next three decades, computers became ever more widespread, becoming available
to medium-sized businesses in the 1970s and to many millions of small businesses and
individuals during the personal computer revolution of the 1980s and 1990s. The vast
majority of these computer users do not see computing with numbers as their primary
interest; instead, they are interested in the processing of information, such as text,
images, and sound. Users are often not aware that manipulation of images and sound
involves a lot of numerical computing.

Science Today
In scientific disciplines, numerical computing is essential. Physicists use computers to
solve complicated equations modeling everything from the expansion of the universe
to the microstructure of the atom, and to test their theories against experimental

2Ideas that seem to originate with Zuse include the hidden significand bit [Knu98, p. 227], to be
discussed in Chapter 3, the use of oo and NaN [Kah96b], to be discussed in Chapter 7, the main
ideas of algorithmic programming languages [Wil85, p. 225], and perhaps the concept of a stored
program [Zus93, p. 44]. His autobiography [Zus93] gives an amazing account of his successful efforts
at computer design and construction amid the chaos of World War II.

3 A much more limited machine was developed a little earlier in Iowa.

CHAPTER 1. INTRODUCTION 3

data. Chemists and biologists use computers to determine the molecular structure
of proteins. Medical researchers use computers for imaging techniques and for the
statistical analysis of experimental and clinical observations. Atmospheric scientists
use numerical computing to process huge quantities of data and to solve equations
to predict the weather. Electronics engineers design ever faster, smaller, and more
reliable computers using numerical simulation of electronic circuits. Modern airplane
and spacecraft design depends heavily on computer modeling. Ironically, the tragic
Challenger accident in January 1986 was due more to political errors than to scientific
ones. From a scientific point of view, reentry of the space shuttle into the atmosphere
was a far more delicate and difficult procedure than lift-off, and many nervous scientists
were elated and relieved to see that their calculations had worked so well when the
space shuttle first reentered the atmosphere and landed.

In brief, all fields of science and engineering rely heavily on numerical comput-
ing. The traditional two branches of science are theoretical science and experimental
science. Computational science is now often mentioned as a third branch, having a
status that is essentially equal to, perhaps even eclipsing, that of its two older sib-
lings. The availability of greatly improved computational techniques and immensely
faster computers allows the routine solution of complicated problems that would have
seemed impossible just a generation ago.

This page intentionally left blank

Chapter 2

The Real Numbers

The real numbers can be represented conveniently by a line. Every point on the
line corresponds to a real number, but only a few are marked in Figure 2.1. The
line stretches infinitely far in both directions, towards oo and —oo, which are not
themselves numbers in the conventional sense but are included among the extended real
numbers. The integers are the numbers 0,1, —1,2, —2,3, —3, — We say that there is
an infinite but countable number of integers; by this we mean that every integer would
eventually appear in the list if we count for long enough, even though we can never
count all of them. The rational numbers are those that consist of a ratio of two integers,
e.g., 1/2, 2/3, 6/3; some of these, e.g., 6/3, are integers. To see that the number of
rational numbers is countable, imagine them listed in an infinite two-dimensional array
as in Figure 2.2. Listing the first line and then the second, and so on, does not work,
since the first line never terminates. Instead, we generate a list of all rational numbers
diagonal by diagonal: first 0, then ±1/1; then ±2/1, ±1/2; then ±3/1, ±2/2, ±1/3;
then ±4/1, ±3/2, ±2/3, ±1/4; etc. In this way, every rational number (including every
integer) is eventually generated. In fact, every rational number is generated many
times (e.g., 1/2 and 2/4 are the same number). However, every rational number does
have a unique representation in lowest terms, achieved by canceling any common factor
in the numerator and denominator (thus 2/4 reduces to 1/2).

The irrational numbers are the real numbers that are not rational. Familiar exam-
ples of irrational numbers are V% TT, and e. The numbers \/2 and TT have been studied
for more than two thousand years. The number e, mentioned in the quote from HAL
on page xiii, is the limit of

Figure 2.1: The Real Line

5

as n —•> oo. Investigations leading to the definition of e began in the 17th century.
Every irrational number can be defined as the limit of a sequence of rational numbers,

NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Figure 2.2: The Nonzero Rational Numbers

but there is no way of listing all the irrational numbers—the set of irrational numbers
is said to be uncountable.

Positional Number Systems
The idea of representing numbers using powers of 10 was used by many ancient peoples,
e.g., the Hebrews, the Greeks, the Romans, and the Chinese, but the positional system
we use today was not. The Romans used a system where each power of 10 required
a different symbol: X for 10, C for 100 = 102, M for 1000 = 103, etc., and repetition,
together with additional symbols for quinary groupings, was used to indicate how
many of each power of 10 were present. For example, MDCCCCLXXXV means 1000
+ 500 + 400 + 50 + 30 + 5 = 1985. The familiar abbreviations such as IV for 4
were not used by the Romans. The Chinese system, which is still in use, is similar
except that instead of repetition, symbols for the numbers 1 through 9 are used to
modify each power of 10. These systems allowed easy transcription of numbers to an
abacus for calculation, although they are not convenient for calculation with pencil
and paper.

Large numbers cannot be conveniently represented by such systems. The positional
notation used worldwide today requires a key idea: the representation of zero by a
symbol. As far as we know, this was first used by the Babylonians about 300 B.C. Our
decimal positional system was developed in India around 600 A.D. and was used for
centuries by the Arabs in the Middle East before being passed on to Europe during
the period 1200-1600—hence the name "Arabic numerals." This decimal, or base 10,
system requires 10 symbols, representing the numbers 0 through 9. The system is
called positional (or place-value) because the meaning of the number is understood
from the position of the symbols, or digits, of the number. Zero is needed, for example,
to distinguish 601 from 61. The reason for the decimal choice is the simple biological
fact that humans have 10 fingers and thumbs. Indeed, the word digit derives from the
Latin word for finger. Other positional systems developed by ancient peoples include
the base 60 system used by the Babylonians, the vestiges of which are still seen today
in our division of the hour into 60 minutes and the minute into 60 seconds, and the
base 20 system developed by the Mayans, which was used for astronomical calculations.
The Mayans are the only people known to have invented the positional number system,
with its crucial use of a symbol for zero, independently of the Babylonians.

Decimal notation was initially used only for integers and was not used much for
fractions until the 17th century. A reluctance to use decimal fractions is still evident
in the use of quarters, eighths, sixteenths, etc., for machine tool sizes in the United
States (and, until recently, for stock market prices).

Although decimal representation is convenient for people, it is not particularly
convenient for use on computers. The binary, or base 2, system is much more useful:
in this, every number is represented as a string of bits, each of which is either 0 or 1.
The word bit is an abbreviation for binary digit; a bitstring is a string of bits. Each

6

CHAPTER 2. THE REAL NUMBERS 7

bit corresponds to a different power of 2, just as each digit of a decimal number
corresponds to a different power of 10. Computer storage devices are all based on
binary representation: the basic unit is also called a bit, which may be viewed as
a single physical entity that is either "off' or "on." Bits in computer storage are
organized in groups of 8, each called a byte. A byte can represent any of 256 = 28 (2 to
the power 8) different bitstrings, which may be viewed as representing the integers from
0 to 255. Alternatively, we may think of these 256 different bitstrings as representing
256 different characters.4 A word is 4 consecutive bytes of computer storage (i.e., 32
bits), and a double word is 8 consecutive bytes (64 bits). A kilobyte is 1024 = 210

bytes, a megabyte is 1024 kilobytes (220 bytes), a gigabyte is 1024 megabytes (230

bytes), a terabyte is 1024 gigabytes (240 bytes), and a petabyte is 1024 terabytes
(250 bytes). Petabyte storage devices now exist, although they would have seemed
almost unimaginably large just a decade ago. It is often useful to remember that 210

is approximately 103. The Greek prefixes kilo, mega, giga, tera, and peta generally
mean 103,106,109,1012, and 1015, respectively, in other scientific contexts, but with
computers, powers of 2 are more important than powers of 10.

Although the binary system was not in wide use before the computer age, the
idea of representing numbers as sums of powers of 2 is far from new. It was used as
the basis for a multiplication algorithm described in the Rhind Mathematical Papyrus
[Cha79], written nearly four millennia ago (see p. xiii).

Binary and Decimal Representation

Every real number has a decimal representation and a binary representation (and,
indeed, a representation in a base equal to any integer greater than 1). Instead of
representation, we sometimes use the word expansion. The representation of integers
is straightforward, requiring an expansion in nonnegative powers of the base. For
example, consider the number

and its binary equivalent

Nonintegral real numbers have digits (or bits) to the right of the decimal (or binary)
point; these expansions may be finite or nonterminating. For example, 11/2 has the
expansions

and

Both of these expansions terminate. However, the number 1/10, which obviously has

4The ASCII encoding scheme defines standard character interpretations for the first 128 of these
bitstrings; Unicode is an extension that defines up to 216 two-byte characters, allowing encoding of
virtually all written languages in the world.

8 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

the finite decimal representation (0.l)io, does not have a finite binary representation.
Instead, it has the nonterminating expansion

Note that this representation, although nonterminating, is repeating. The fraction 1/3
has nonterminating expansions in both binary and decimal:

Rational numbers always have either finite or repeating expansions. For example,

In fact, any finite expansion can also be expressed as a repeating expansion. For
example, 1/10 can be expressed as

However, we will use the finite expansion when it exists.
Irrational numbers always have nonterminating, nonrepeating expansions. For

example,

The first 10 digits of e may suggest that its representation is repeating, but it is not.

Exercise 2.1 Conversion of integers from binary representation to decimal is straight-
forward, because we are so familiar with the decimal representations of the powers of 2.
Devise (or recall) a systematic method to convert the decimal representation of an in-
teger to binary. Which do you find more convenient: determining the bits from left to
right, or from right to left? Both methods are acceptable, but once you get the idea,
one of them is easier to use systematically than the other. Test your choice on some
examples and convert the binary results back to decimal as a check. Does your method
extend to convert a finite decimal representation of a nonintegral rational number,
such as 0.1, to its binary representation?

When working with binary numbers, many people prefer to use octal notation
(base 8), using the symbols 0 through 7 to abbreviate the bitstrings 000 through 111.
An alternative is the hexadecimal system (base 16), using the symbols 0,... ,9,A,... ,F
to represent the bitstrings 0000 through 1111.

Chapter 3

Computer Representation of
Numbers

What is the best way to represent numbers on the computer? Let us start by con-
sidering integers. Typically, integers are stored using a 32-bit word, so we confine
our attention to this case. If we were concerned only with nonnegative integers, the
representation would be easy: a bitstring specifying the binary representation of the
integer. For example, the integer 71 (see (2.1)) would be stored as

The nonnegative integers that we can represent in this way range from 0 (a bitstring
of 32 zeros) to 232 — 1 (a bitstring of 32 ones). The number 232 is too big, since its
binary representation consists of a one followed by 32 zeros.

Signed Integers via 2's Complement
In fact, we need to be able to represent negative integers in addition to positive
integers and 0. The most obvious idea is sign-and-modulus: use one of the 32 bits
to represent the sign, and use the remaining 31 bits to store the magnitude of the
integer, which may then range from 0 to 231 — 1. However, nearly all machines use
a more clever representation called 2's complement.5 A nonnegative integer x, where
0 < x < 231 — 1, is stored as the binary representation of x, but a negative integer —y,
where 1 < y < 231, is stored as the binary representation of the positive integer

For example, the integer —71 is stored as

In order to see that this is correct, let us add the 2's complement representations for
71 and -71 together:

5There is a third system called 1's complement, where a negative integer — y is stored as the binary
representation of 232 — y — 1. This system was used by some supercomputers in the 1960s and 1970s
but is now obsolete.

9

10 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Adding in binary by hand is like adding in decimal. Proceed bitwise right to left;
when 1 and 1 are added together, the result is 10 (base 2), so the resulting bit is set to
0 and the 1 is carried over to the next bit to the left. The sum of the representations
for 71 and for —71 is thus the bitstring for 232, as required by the definition (3.1).
The bit in the leftmost position of the sum cannot be stored in the 32-bit word and is
called an overflow bit. If it is discarded, the result is 0—exactly what we want for the
result of 71 -f (—71). This is the motivation for the 2's complement representation.

Exercise 3.1 Using a 32-bit word, how many different integers can be represented by
(a) sign and modulus; (b) 2 '5 complement? Express the answer using powers of 2. For
which of these two systems is the representation for zero unique ?

Exercise 3.2 Suppose we wish to store integers using only a IQ-bit half-word (2 bytes).
This is called a short integer format. What is the range of integers that can be stored
using 2's complement? Express the answer using powers of 2 and also translate the
numbers into decimal notation.

Exercise 3.3 Using an 8-bit format for simplicity, give the 2 's complement repre-
sentation for the following integers: I, 10, 100, —1, —10, and —100. Verify that
addition of a negative number to its positive counterpart yields zero, as required, when
the overflow bit is discarded.

Exercise 3.4 Show that if an integer x between —231 and 231 — 1 is represented using
2 's complement in a 32-bit word, the leftmost bit is 1 if x is negative and 0 if x is
positive or 0.

Exercise 3.5 An easy way to convert the representation of a nonnegative integer x
to the 2's complement representation for —x begins by changing all 0 bits to Is and
all 1 bits to Os. One more step is necessary to complete the process; what is it, and
why?

All computers provide hardware instructions for adding integers. If two positive
integers are added together, the result may give an integer greater than or equal to
231. In this case, we say that integer overflow occurs. One would hope that this
leads to an informative error message for the user, but whether or not this happens
depends on the programming language and compiler being used. In some cases, the
overflow bits may be discarded and the programmer must be alert to prevent this
from happening.6 The same problem may occur if two negative integers are added
together, giving a negative integer with magnitude greater than 231.

On the other hand, if two integers with opposite sign are added together, integer
overflow cannot occur, although an overflow bit may arise when the 2's complement
bitstrings are added together. Consider the operation

where

Clearly, it is possible to store the desired result x — y without integer overflow. The
result may be positive, negative, or zero, depending on whether x > y, x = y, or
x < y. Now let us see what happens if we add the 2's complement representations for

6The IEEE floating point standard, to be introduced in the next chapter, says nothing about
requirements for integer arithmetic.

CHAPTER 3. COMPUTER REPRESENTATION OF NUMBERS 11

x and —y, i.e., the bitstrings for the nonnegative numbers x and 232 — y. We obtain
the bitstring for

If x > y, the leftmost bit of the result is an overflow bit, corresponding to the power
232, but this bit can be discarded, giving the correct result x — y. If x < y, the result
fits in 32 bits with no overflow bit, and we have the desired result, since it represents
the negative value — (y — x) in 2's complement.

This demonstrates an important property of 2's complement representation: no
special hardware is needed for integer subtraction. The addition hardware can be
used once the negative number —y has been represented using 2's complement.

Exercise 3.6 Show the details for the integer sums 50 + (—100), 100 + (—50), and
50 + 50, using an 8-bit format.

Besides addition, the other standard hardware operations on integer operands are
multiplication and division, where by the latter, we mean integer division, yielding an
integer quotient. Multiplication may give integer overflow. Integer division by zero
normally leads to program termination and an error message for the user.

Exercise 3.7 (D. Goldberg) Besides division by zero, is there any other division op-
eration that could result in integer overflow?

Fixed Point
Now let us turn to the representation of nonintegral real numbers. Rational numbers
could be represented by pairs of integers, the numerator and denominator. This has the
advantage of accuracy but the disadvantage of being very inconvenient for arithmetic.
Systems that represent rational numbers in this way are said to be symbolic rather than
numeric. However, for most numerical computing purposes, real numbers, whether
rational or irrational, are approximately stored using the binary representation of the
number. There are two possible methods, called fixed point and floating point.

In fixed point representation, the computer word may be viewed as divided into
three fields: one 1-bit field for the sign of the number, one field of bits for the binary
representation of the number before the binary point, and one field of bits for the
binary representation after the binary point. For example, in a 32-bit word with field
widths of 15 and 16, respectively, the number 11/2 (see (2.2)) would be stored as

while the number 1/10 would be approximately stored as

The fixed point system is severely limited by the size of the numbers it can store. In
the example just given, only numbers ranging in size from (exactly) 2~16 to (slightly
less than) 215 could be stored. This is not adequate for many applications. Therefore,
fixed point representation is rarely used for numerical computing.

Floating Point
Floating point representation is based on exponential (or scientific) notation. In expo-
nential notation, a nonzero real number x is expressed in decimal as

12 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

and E is an integer. The numbers 5 and E are called the significant and the exponent,
respectively. For example, the exponential representation of 365.25 is 3.6525 x 102,
and the exponential representation of 0.00036525 is 3.6525 x 10~4. It is always pos-
sible to satisfy the requirement that 1 < S < 10, as S can be obtained from x by
repeatedly multiplying or dividing by 10, decrementing or incrementing the exponent
E accordingly. We can imagine that the decimal point floats to the position immedi-
ately after the first nonzero digit in the decimal expansion of the number—hence the
name floating point.

For representation on the computer, we prefer base 2 to base 10, so we write a
nonzero number x in the form

Consequently, the binary expansion of the significand is

For example, the number 11/2 is expressed as

Now it is the binary point that floats to the position after the first nonzero bit in the
binary expansion of x, changing the exponent E accordingly. Of course, this is not
possible if the number x is zero, but at present we are considering only the nonzero
case. Since 60 is 1? we may write

The bits following the binary point are called the fractional part of the significand. We
say that (3.2), (3.3) is the normalized representation of x, and the process of obtaining
it is called normalization.

To store normalized numbers, we divide the computer word into three fields to
represent the sign, the exponent E, and the significand 5, respectively. A 32-bit word
could be divided into fields as follows: 1 bit for the sign, 8 bits for the exponent, and
23 bits for the significand. The sign bit is 0 for positive numbers and 1 for negative
numbers. Since the exponent field is 8 bits, it can be used to represent exponents E
between —128 and 127 (for example, using 2's complement, though this is not the way
it is normally done). The 23 significand bits can be used to store the first 23 bits after
the binary point in the binary expansion of 5, namely, 61,. . . , 623- It is not necessary
to store bo> since we know it has the value 1: we say that b0 is a hidden bit. Of course,
it might not be possible to store the number x with such a scheme, either because E is
outside the permissible range —128 to 127 or because the bits 624,625, • • • in the binary
expansion of S are not all zero. A real number is called a floating point number if it
can be stored exactly on the computer using the given floating point representation
scheme. If a number x is not a floating point number, it must be rounded before it
can be stored on the computer. This will be discussed later.

Using this idea, the number 11/2 would be stored as

and the number

7Also known as the mantissa.

CHAPTER 3. COMPUTER REPRESENTATION OF NUMBERS 13

would be stored as

To avoid confusion, the bits in the exponent field are not shown explicitly, for the
moment, but written in the functional form "ebits(E)". Since the bitstring stored in
the significand field is actually the fractional part of the significand, we also refer to
this field as the fraction field. Given a string of bits in the fraction field, it is necessary
to imagine that the symbols "1." appear in front of the string, even though these
symbols are not stored.

In this scheme, if x is exactly a power of 2, so that the significand is the number
1.0, the bits stored in the fraction field are all 0 (since 60 is not stored). For example,

would be stored as

and the number

would be stored as

Now consider the much larger number

This integer is much too large to store in a 32-bit word using the integer format
discussed earlier. However, there is no difficulty representing it in floating point,
using the representation

Exercise 3.8 What is the largest floating point number in this system, assuming the
significand field can store only the bits 61... 623 and the exponent is limited by —128 <
E < 127? Don't forget that the hidden bit, bo, is 1.

Exercise 3.9 What is the smallest positive floating point number in this system?
Remember the requirement that the number is normalized, i.e., that the hidden bit, bo,
is 1.

Exercise 3.10 What is the smallest positive integer that is not exactly representable
as a floating point number in this system?

Exercise 3.11 Suppose we change (3.2) so that the bounds on the significand are
½ < S < I, change (3.3) to

and change our floating point system so that the significand field stores only the bits
b 2 > - - - > & 2 4 , with the exponent limited by —128 < E < 127 as before. What is the
largest floating point number in this system? What is the smallest positive floating
point number in this system (remembering that the number must be normalized with
the hidden bit b\ = I)? What is the smallest positive integer that is not exactly
representable as a floating point number in this system?

14 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

If a number x does not have a finite binary expansion, we must terminate its
expansion somewhere. For example, consider the number

If we truncate this to 23 bits after the binary point, we obtain

However, if we then normalize this to obtain

so that there is a 1 before the binary point, we find that we now have only 19 correct
bits after the binary point. This leads to the unnecessarily inaccurate representation

having 4 incorrect bits at the end of the significand. Clearly, this is not a good idea.
It is preferable to first normalize and then truncate, so that we retain 23 correct bits
after the binary point:

This way all the available bits are used. The alert reader will note that it might be
better to round the final bit up to 1. We will discuss this later.

Precision, Machine Epsilon, and Ulp
The precision of the floating point system is the number of bits in the significand
(including the hidden bit). We denote the precision by p. In the system just described,
p = 24 (23 stored bits in the fractional part of the significand and 1 leading hidden
bit). Any normalized floating point number with precision p can be expressed as

The smallest such x that is greater than 1 is

We give a special name, machine epsilon,8 to the gap between this number and the
number 1, and we write this as

More generally, for a floating point number x given by (3.4) we define

Ulp is short for unit in the last place. If x > 0, then ulp(x) is the gap between x and
the next larger floating point number. If x < 0, ulp(x) is the gap between x and the
next smaller floating point number (larger in absolute value).

Exercise 3.12 Let the precision p = 24, so e = 2~23. Determine ulp(x) for x having
the following values: 0.25, 2, 3, 4, 10, 100, 1030. Give your answer as a power of 2;
do not convert this to decimal.

8 Many authors define machine epsilon to be half the gap. We follow [Hig96] in our definitions of
6 and ulp.

CHAPTER 3. COMPUTER REPRESENTATION OF NUMBERS 15

The Special Number Zero
So far, we have discussed only nonzero numbers. The number zero is special. It cannot
be normalized, since all the bits in its representation are zero. Thus, it cannot be
represented using the scheme described so far. A pattern of all zeros in the significand
represents the significand 1.0, not 0.0, since the bit 60 is hidden. There are two
ways to address this difficulty. The first, which was used by most floating point
implementations until about 1975, is to give up the idea of a hidden bit and instead
insist that the leading bit 60 in the binary representation of a nonzero number must
be stored explicitly, even though it is always 1. In this way, the number zero can be
represented by a significand that has all zero bits. This approach effectively reduces
the precision of the system by one bit, because, to make room for 60> we must give
up storing the final bit (623 in the system described above). The second approach is
to use a special string in the exponent field to signal that the number is zero. This
reduces by one the number of possible exponents E that are allowed for representing
nonzero numbers. This is the approach taken by the IEEE standard, to be discussed
in the next chapter. In either case, there is the question of what to do about the sign
of zero. Traditionally, this was ignored, but we shall see a different approach in the
next chapter.

The Toy Number System
It is quite instructive to suppose that the computer word size is much smaller than 32
bits and work out in detail what all the possible floating point numbers are in such a
case. Suppose that all numbers have the form

with 60 stored explicitly and all nonzero numbers required to be normalized. Thus,
60 is allowed to be zero only if 61 and 62 are also zero, indicating that the number
represented is zero. Suppose also that the only possible values for the exponent E are
— 1,0, and 1. We shall call this system the toy floating point number system. The set
of toy floating point numbers is shown in Figure 3.1.

Figure 3.1: The Toy Floating Point Numbers

The precision of the toy system is p = 3. The largest number is (1.11)2 x 21 =
(3.5)io, and the smallest positive number is (1.00)2 x 2"1 = (0.5)io- Since the next
floating point number bigger than 1 is 1.25, machine epsilon for the toy system is
e = 0.25. Note that the gap between floating point numbers becomes smaller as the
magnitudes of the numbers themselves get smaller, and bigger as the numbers get
bigger. Specifically, consider the positive floating point numbers with E = 0: these
are the numbers 1, 1.25, 1.5, and 1.75. For each of these numbers, say x, the gap
between x and the next floating point number larger than x, i.e., ulp(x), is machine
epsilon, e = 0.25. For the positive floating point numbers x with E = 1, the gap is

16 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

twice as big, i.e., ulp(x) = 2e, and for those x with E — — 1, the gap is ulp(x) = ^e.
Summarizing, the gap between a positive toy floating point number x — (b0-b1b2)2 x2£

and the next bigger toy floating point number is

as already noted in (3.6).
Another important observation to make about Figure 3.1 is that the gaps between

zero and ±0.5 are much greater than the gaps between numbers ranging from ±0.5
to ±1. We shall show in the next chapter how these gaps can be filled in with the
introduction of subnormal numbers.

Exercise 3.13 Suppose we add another bit to the toy number system, allowing signif-
icands of the form 60-616263, with 60 stored explicitly as before and all nonzero numbers
required to be normalized. The restrictions on the exponent are unchanged. Mark the
new numbers on a copy of Figure 3.1.

Fixed Point versus Floating Point
Some of the early computers used fixed point representation and some used floating
point. Von Neumann was initially skeptical of floating point and promoted the use
of fixed point representation. He was well aware that the range limitations of fixed
point would be too severe to be practical, but he believed that the necessary scaling
by a power of 2 should be done by the programmer, not the machine; he argued that
bits were too precious to be wasted on storing an exponent when they could be used
to extend the precision of the significand. Wilkinson experimented extensively with
a compromise system called block floating point, where an automatic scale factor is
maintained for a vector, i.e., for a block of many numbers, instead of one scale factor
per number. This means that only the largest number (in absolute value) in the vector
is sure to be normalized; if a vector contains numbers with widely varying magnitudes,
those with smaller magnitudes are stored much less accurately. By the late 1950s it
was apparent that the floating point system is far more versatile and efficient than
fixed point or block floating point.

Knuth [Knu98, pp. 196, 225] attributes the origins of floating point notation to
the Babylonians. In their base 60 number system, zero was never used at the end of
a number, and hence a power of 60 was always implicit. The Babylonians, like von
Neumann, did not explicitly store their exponents.

Chapter 4

IEEE Floating Point
Representation

Floating point computation was in standard use by the mid 1950s. During the sub-
sequent two decades, each computer manufacturer developed its own floating point
system, leading to much inconsistency in how one program might behave on different
machines. For example, although most machines developed during this period used
binary floating point systems roughly similar to the one described in the previous
chapter, the IBM 360/370 series, which dominated computing during the 1960s and
1970s, used a hexadecimal system (base 16). On these machines, the significand is
stored using 24 bits, to be interpreted as 6 hexadecimal digits, leaving 1 bit for the
sign and 7 bits for the exponent (representing a power of 16). Normalization requires
only that the first hexadecimal digit be nonzero; consequently, the significand could
have up to 3 leading zero bits. Therefore, the accuracy of the significands ranges from
21 to 24 bits; some numbers (such as 1/10; see (2.3)) are represented less accurately
than on a binary machine. One motivation for this design was to reduce the bit shift-
ing required during floating point add and subtract operations. Another benefit is
that the hexadecimal base allows a much greater range of normalized floating point
numbers than a binary system permits.

In addition to inconsistencies of representation, there were also many inconsis-
tencies in the properties of floating point arithmetic. See Chapter 6 for examples
of difficulties that could arise unexpectedly on some machines. Consequently, it was
very difficult to write portable software that would work properly on all machines.
Programmers needed to be aware of various difficulties that might arise on different
machines and attempt to forestall them.

A Historic Collaboration: IEEE p754

In an extraordinary cooperation between academic computer scientists and micropro-
cessor chip designers, a standard for binary floating point representation and arith-
metic was developed in the late 1970s and early 1980s and, most importantly, was
followed carefully by the microprocessor industry. As this was the beginning of the
personal computer revolution, the impact was enormous. The group of scientists
who wrote the standard did so under the auspices of the Institute for Electrical and
Electronics Engineers;8 the group was known as IEEE p754. The academic com-
puter scientists on the committee were led by William Kahan of the University of

8Abbreviated IEEE, pronounced "I triple E."

17

18 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

California at Berkeley; industrial participants included representatives from Apple,
Digital Equipment Corporation (DEC), Intel, Hewlett-Packard, Motorola, and Na-
tional Semiconductor. Kahan's interest in the project had been sparked originally by
the efforts of John Palmer, of Intel, to ensure that Intel's new 8087 chip would have
the best possible floating point arithmetic. An early document that included many
of the ideas adopted by the standard was written in 1979 by Kahan, Coonen, and
Stone; see [Cod8l]. Kahan was awarded the 1989 Turing Prize by the Association of
Computing Machinery for his work in leading IEEE p754.

In [Sev98], Kahan recalled: "It was remarkable that so many hardware people
there, knowing how difficult p754 would be, agreed that it should benefit the commu-
nity at large. If it encouraged the production of floating-point software and eased the
development of reliable software, it would help create a larger market for everyone's
hardware. This degree of altruism was so astonishing that MATLAB's creator Cleve
Moler used to advise foreign visitors not to miss the country's two most awesome
spectacles: the Grand Canyon, and meetings of IEEE p754."

The IEEE standard for binary floating point arithmetic was published in 1985,
when it became known officially as ANSI/IEEE Std 754-1985 [IEE85]. In 1989, it
received international endorsement as IEC 559, later designated IEC 60559. A sec-
ond IEEE floating point standard, for radix-independent floating point arithmetic,
ANSI/IEEE Std 854-1987 [IEE87], was adopted in 1987. The second standard was
motivated by the existence of decimal, rather than binary, floating point machines,
particularly hand-held calculators, and set requirements for both binary and decimal
floating point arithmetic in a common framework. The demands for binary arithmetic
imposed by IEEE 854 are consistent with those previously established by IEEE 754.
In this book, when we write "the IEEE standard," we refer to the binary standard,
IEEE 754. The term "IEEE arithmetic" is used to mean floating point arithmetic that
is in compliance with the IEEE standard. For more on the development of the stan-
dard, see [CodSl] and [PH97, Section 4.12]. At the time of this writing, the standard
is being considered for revision [IEE-R].

IEEE Floating Point Essentials

The IEEE standard has three very important requirements:

• consistent representation of floating point numbers by all machines adopting the
standard (discussed in this chapter);

• correctly rounded floating point operations, using various rounding modes (see
Chapters 5 and 6);

• consistent treatment of exceptional situations such as division by zero (see Chap-
ter 7).

In the basic IEEE formats, the leading bit of a normalized number is hidden, as
described in the previous chapter. Thus, a special representation is needed for storing
zero. However, zero is not the only number for which the IEEE standard has a special
representation. Another special number, not used on older machines, is the number oo.
This allows the possibility of dividing a positive number by zero and storing a sensible
mathematical result, namely oo, instead of terminating with an overflow message.
This turns out to be very useful, as we shall see later, although one must be careful
about what is meant by such a result. One question that immediately arises is: what
about — oo? It turns out to be convenient to have representations for — oo as well as
oo, and for —0 as well as 0. We will give more details in Chapter 7, but note for

CHAPTER 4. IEEE FLOATING POINT REPRESENTATION 19

Table 4.1: IEEE Single Format

now that —0 and 0 are two different representations for the same number zero, while
—oo and oo represent two very different numbers. Another special number is NaN,
which stands for "Not a Number" and is accordingly not a number at all, but an
error pattern. This too will be discussed later. All of these special numbers, as well
as others called subnormal numbers, are represented through the use of a specific bit
pattern in the exponent field.

The Single Format
The IEEE standard specifies two basic representation formats, single and double.
Single format numbers use a 32-bit word and their representations are summarized in
Table 4.1.

Let us discuss Table 4.1 in some detail. The ± refers to the sign of the number,
a zero bit being used to represent a positive sign. The first line shows that the
representation for zero requires a special zero bitstring for the exponent field as well
as a zero bitstring for the fraction field, i.e.,

No other line in the table can be used to represent the number zero, for all lines except
the first and the last represent normalized numbers, with an initial bit equal to 1; this
is the one that is hidden. In the case of the first line of the table, the hidden bit is
0, not 1. The 2~126 in the first line is confusing at first sight, but let us ignore that
for the moment since (0.000... 0)2 x 2~126 is certainly one way to write the number
0. In the case when the exponent field has a zero bitstring but the fraction field has a
nonzero bitstring, the number represented is said to be subnormal.9 Let us postpone
the discussion of subnormal numbers for the moment and go on to the other lines of
the table.

All the lines of Table 4.1 except the first and the last refer to the normalized
numbers, i.e., all the floating point numbers that are not special in some way. Note

9The word denormalized was used in IEEE 754. The word subnormal replaced it in IEEE 854.

20 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

especially the relationship between the exponent bitstring a1a2a3 • • • a8 and the actual
exponent E. We see that the exponent representation does not use either the sign-
and-modulus or the 2's complement integer representation discussed in the previous
chapter, but something called biased representation; the bitstring that is stored is
the binary representation of E + 127. The number 127, which is added to the desired
exponent E, is called the exponent bias. For example, the number 1 = (1.000... 0)2 x 2°
is stored as

Here the exponent bitstring is the binary representation for 0 + 127 and the fraction
bitstring is the binary representation for 0 (the fractional part of 1.0). The number
11/2 = (1.011)2 x 22 is stored as

The number 1/10 = (1.100110011.. .)z x 2 4 has a nonterminating binary expansion.
If we truncate this to fit the significand field size, we find that 1/10 is stored as

We shall see other rounding options in the next chapter.
The range of exponent field bitstrings for normalized numbers is 00000001 to

11111110 (the decimal numbers 1 through 254), representing actual exponents from
-E'min = —126 to .Emax = 127. The smallest positive normalized number that can be
stored is represented by

and we denote this by

The largest normalized number (equivalently, the largest finite number) is represented
by

and we denote this by

The last line of Table 4.1 shows that an exponent bitstring consisting of all 1s is
a special pattern used to represent ±00 or NaN, depending on the fraction bitstring.
We will discuss these in Chapter 7.

Subnormals
Finally, let us return to the first line of the table. The idea here is as follows: although
2~126 is the smallest normalized number that can be represented, we can use the
combination of the special zero exponent bitstring and a nonzero fraction bitstring to
represent smaller numbers called subnormal numbers. For example, 2~127, which is
the same as (0.1)2 x 2~126, is represented as

while 2~149 = (0.0000... 01)2 x 2~126 (with 22 zero bits after the binary point) is
stored as

CHAPTER^ IEEE FLOATING POINT REPRESENTATION 21

Figure 4.1: The Toy System Including Subnormal Numbers

This is the smallest positive number that can be stored. Now we see the reason for the
2-126 in the first line. It allows us to represent numbers in the range immediately below
the smallest positive normalized number. Subnormal numbers cannot be normalized,
since normalization would result in an exponent that does not fit in the field.

Let us return to our example of the toy system with a tiny word size, illustrated in
Figure 3.1, and see how the addition of subnormal numbers changes it. We get six extra
numbers: ±(0.11)2x2~1 = 3/8, ±(0.10)2x2-1 = 1/4, and ±(0.01)2x2-1 = 1/8; these
are shown in Figure 4.1. Note that the gaps between zero and ±0.5 are evenly filled
in by the subnormal numbers, using the same spacing as that between the numbers in
the range ±0.5 to ±1.

Subnormal numbers are have less room for nonzero bits in the fraction field than
normalized numbers. Consequently, the accuracy to which they can approximate a
number drops as the size of the subnormal number decreases. Thus (1/10) x 2~123 =
(0.11001100.. .)2 x 2~126 is truncated to

while (1/10) x 2~135 = (0.11001100.. .)2 x 2~138 is truncated to

Exercise 4.1 Determine the IEEE single format floating point representation for the
following numbers: 2, 30, 31, 32, 33, 23/4, (23/4) x 2100, (23/4) x 2-100, and (23/4) x
2~135. Truncating the significand as in the 1/10 example, do the same for the numbers
1/5 = (1/10) x 2, 1024/5 = (1/10) x 211, and (1/10) x 2~140, using (2.3) to avoid
decimal-to-binary conversions.

Exercise 4.2 What is the gap between 2 and the first IEEE single format number
larger than 2 ? What is the gap between 1024 and the first IEEE single format number
larger than 1024?

Exercise 4.3 Give an algorithm that, given two IEEE single format floating point
numbers x and y, determines whether x is less than, equal to, or greater than y, by
comparing their representations bitwise from left to right, stopping as soon as the first
differing bit is encountered. Assume that neither x nory is ±0, ±00 , or NaN. The fact
that such a comparison can be done easily motivates biased exponent representation.
It also justifies referring to the left end of the representation as the "most significant"
end.

Exercise 4.4 This extends Exercise 3.13, which considered the toy number system
with one additional bit in the significand. Mark the subnormal numbers in this system
on the modified copy of Figure 3.1 that you used to answer Exercise 3.13.

22 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 4.2: IEEE Double Format

Table 4.3: Range of IEEE Floating Point Formats

The Double Format
The single format is not adequate for many applications, either because higher preci-
sion is desired or (less often) because a greater exponent range is needed. The IEEE
standard specifies a second basic format, double, which uses a 64-bit double word.
Details are shown in Table 4.2. The ideas are the same as before; only the field widths
and exponent bias are different. Now the exponents range from Emin = —1022 to
•Emax = 1023, and the number of bits in the fraction field is 52. Numbers with no
finite binary expansion, such as 1/10 or TT, are represented more accurately with the
double format than they are with the single format. The smallest positive normalized
double format number is

and the largest is

We summarize the bounds on the exponents and the values of the smallest and
largest normalized numbers given in (4.1), (4.2), (4.3), and (4.4) in Table 4.3.

Single versus Double
The IEEE standard requires that machines provide the single format. The double for-
mat is optional, but is provided by almost all computers that implement the standard,

CHAPTER 4. IEEE FLOATING POINT REPRESENTATION 23

Table 4.4: Precision of IEEE Floating Point Formats

and we shall therefore assume that the double format is always provided. Support for
the requirements may be provided by hardware or software, but almost all machines
have hardware support for both the single and double formats. Because of its greater
precision, the double format is preferred for most applications in scientific computing,
though the single format provides an efficient way to store huge quantities of data.

The Extended Format

The standard also strongly recommends support for an extended format, with at least
15 bits available for the exponent and at least 63 bits for the fractional part of the
significand. The Intel microprocessors implement arithmetic with the extended format
in hardware, using 80-bit registers, with 1 bit for the sign, 15 bits for the exponent,
and 64 bits for the significand. The leading bit of a normalized or subnormal number is
not hidden as it is in the single and double formats, but is explicitly stored. Otherwise,
the format is much the same as single and double. Other machines, such as the Spare
microprocessor used in Sun workstations, implement extended precision arithmetic in
software using 128 bits. Consequently, computations with the extended format are
fast on an Intel microprocessor but relatively slow on a Spare.

Precision and Machine Epsilon of the IEEE Formats

Recall from the previous chapter that we use the notation p (precision) to denote the
number of bits in the significand and e (machine epsilon) to mean the gap between 1
and the next larger floating point number. The precision of the IEEE single format
is p = 24 (including the hidden bit); for the double format it is p = 53 (again,
including the hidden bit). When we speak of single precision, we mean the precision
of the IEEE single format (p = 24); likewise double precision means the precision of
the IEEE double format (p = 53).10 The precision of the Intel extended format is
p = 64, since it has no hidden bit. The first single format number larger than 1 is
1 + 2~23, and the first double format number larger than 1 is 1 + 2~52. With the
Intel extended format, since there is no hidden bit, 1 + 2~64 cannot be stored exactly;
the first extended format number larger than 1 is 1 + 2~63. These observations are
summarized in Table 4.4, showing the values of the precision p and machine epsilon e,
together with its approximate decimal equivalent, for each of the single, double, and
Intel extended formats.

Significant Digits

The single precision p = 24 corresponds to approximately 7 significant decimal digits,
since

10 Often the terms single precision and double precision are also used to mean the single format
and double format, respectively.

24 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Here « means approximately equals.11 Equivalently,

The double precision p = 53 corresponds to approximately 16 significant decimal digits,
and the Intel extended precision p = 64 corresponds to approximately 19 significant
decimal digits. We deliberately use the word approximately here, because defining
significant digits is problematic. The IEEE single representation for

is, when converted to decimal,

To how many digits does this approximate TT? We might say 7, since the first 7 digits
of both numbers are the same, or we might say 8, since if we round both numbers
to 8 digits, rounding TT up and the approximation down, we get the same number
3.1415927. See [Hig96] for a discussion of the difficulties involved in using definitions
like these to define "significant digits." We will see a better way to measure accurate
digits in the next chapter.

Big and Little Endian
Modern computers address memory by bytes. A 32-bit word consists of 4 consecutive
bytes with addresses, say, B\,..., .B4, where B4 = B1 + 3. Suppose we store a single
format floating point number in this word. We know from Table 4.1 that a single
format number has the bit format

where a is the sign bit. This corresponds to 4 bytes, of which the "most significant"
(see Exercise 4.3) is the byte

Let us ask the question: is this most significant byte stored in byte B1 or byte B4!
Surprisingly, it turns out that the answer depends on the machine. Addressing systems
for which the answer is B1 are called Big Endian (the first byte B\ stores the "big end"
of the floating point word). Addressing systems for which the answer is B4 are called
Little Endian (the first byte B1 stores the "little end," i.e., the least significant byte,
of the floating point word). Sun and IBM machines use Big Endian addressing, while
Intel uses Little Endian addressing. Some microprocessors, such as the DEC Alpha,
can operate in either mode. The fact that different machines use different schemes
means that care must be taken when passing data from one machine to another. The
addressing schemes were given the names Big and Little Endian by Danny Cohen, in
a whimsical reference to Gulliver's Travels, where the issue is which end of a boiled
egg should be opened [HP95, Chapter 3.4].

11In this case, they differ by about a factor of 2, since 2 23 is even closer to 10 7.

Chapter 5

Rounding

We saw in the previous chapter that the finite IEEE floating point numbers can all be
expressed in the form

where p is the precision of the floating point system with, for normalized numbers,
bo = 1 and Emin < E < Emax and, for subnormal numbers and zero, 60 = 0 and E =
£-min- We denoted the largest normalized number by Nmax and the smallest positive
normalized number by Nmin. There are also two infinite floating point numbers, ±00.

We now introduce a new definition. We say that a real number x is in the normal-
ized range of the floating point system if

The numbers ±0 and ±00 and the subnormal numbers are not in the normalized range
of the floating point system, although they are all valid floating point numbers.

Suppose that a real number x is not a floating point number. Then at least one
(and perhaps both) of the following must be true:

• x is outside the normalized range (its absolute value is greater than Nmax or
less than -Nmin). For example, the numbers 2130 and 2~130 are both outside the
normalized range of the single format.

• The binary expansion of x requires more than p bits to specify the number
exactly; equivalently, the floating point precision p is too small to represent x
exactly. For example, the number

requires more bits to specify it than are available in the significand field of the
single format.

In either case, we need to approximate x by something else.
Let us define x- to be the floating point number closest to x that is less than or

equal to x, and define x+ to be the floating point number closest to x that is greater
than or equal to x. If the closest number is zero, we set the sign of zero to be the sign
of x. For example, consider the toy floating point number system again. If x = 1.7,
then x- = 1.5 and x+ = 1.75, as shown in Figure 5.1.

Returning to the IEEE floating point formats, let x be a positive number in the
normalized range, and write x in the normalized form

25

26 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Figure 5.1: Rounding in the Toy System

It follows that the closest floating point number less than or equal to x is

i.e., X- is obtained by truncating the binary expansion of the significand, discarding
bp, bp+i, etc. If x is not a floating point number, i.e., at least one of the discarded bits
in its expansion is nonzero, then

the next floating point number bigger than X-, and therefore also the next one that
is bigger than x (which must lie between x~ and x+). Here the "1" in the increment
is in the (p — l)th place after the binary point, so the gap between X- and x+ is

Note that this quantity is the same as ulp(x_), defined in (3.6). Finding the binary
expansion of x+ is a little more complicated, since one bit must be added to the last
place of the fraction field of X-; this may involve some "carries" and possibly, if all
the bits in the field are 1, an increment in the exponent field.

If x is greater than -/Vmax, then

If x is positive but less than Nmin, then X- is either subnormal or zero, and x+ is
either subnormal or Nmin.

If x is negative, the situation just described is reversed. For example, if x is
negative and in the normalized range, x+ is obtained by dropping bits bp, bp+i, etc.,
since discarding bits of a negative number makes the number closer to zero, and
therefore larger (further to the right on the real line). If x is negative but its absolute
value is less than Nmin, then x+ is either a negative subnormal number or —0, and
X- is either a negative subnormal number or —Nmin.

Correctly Rounded Values
The IEEE standard defines the correctly rounded value of x, which we shall denote by
round(x), as follows. If x is a floating point number, then round(x) = x. Otherwise,
the correctly rounded value depends on which of the following four rounding modes is
in effect:

• Round down (sometimes called round towards — oo).
round(x;) = X-.

• Round up (sometimes called round towards oo).
round (x) = x+.

CHAPTER 5. ROUNDING 27

• Round towards zero.
round(x) = X- if x > 0; round(x) = x+ if x < 0.

• Round to nearest.
round(x) is either x_ or x+, whichever is nearer to x (unless |x| > Nmax).

In case of a tie, the one with its least significant bit equal to zero is chosen. See
below for details.

If x is positive, then X- is between zero and x, so round down and round towards
zero have the same effect. If x is negative, then #+ is between zero and x;, so round up
and round towards zero have the same effect. In both cases, round towards zero simply
requires truncating the binary expansion, unless x is outside the normalized range.

The rounding mode that is almost always used in practice is round to nearest. In
the toy system, round to nearest gives round(l.7) = 1.75 (see Figure 5.1). Consider x
given by (5.1) again. If the first bit that cannot be stored, bpj is 0, round to nearest
rounds down to x_; on the other hand, if bp = 1 and at least one other subsequent
nonzero bit is also 1, round to nearest rounds up to x+. If bp = 1 and all subsequent
bits are 0, there is a tie. The least significant bits, i.e., the (p — l)th bits after the
binary point, of X- and x+ must be different, and the one for which this bit equals
0 is chosen to break the tie. For the motivation for this rule, see [Gol9l, Theorem
5]. When the word round is used without any mention of a rounding mode, it almost
always means round to nearest. The IEEE standard requires that the default rounding
mode be round to nearest.

There is an exception to the round to nearest rule when x > Nmax. In this case,
round(x) is defined to be Nmax if x < Nmax + urp(-/Vmax)/2 and oo otherwise. From
a strictly mathematical point of view, this is not consistent with the usual definition,
since x cannot be said to be closer to oo than to ATmax. From a practical point of view,
however, the choice oo is important, since round to nearest is the default rounding
mode and rounding to Nmax may give very misleading results. Similar considerations
apply when x < —Nmax.

Exercise 5.1 What are the IEEE single format binary representations for the rounded
value of 1/10 (see (2.3),), using each of the four rounding modes? What are they for
1 + 2~25 and!130?

Exercise 5.2 Using the IEEE single format, construct an example where X- and
x+ are the same distance from x, and use the tie-breaking rule to define round(a;),
assuming the round-to-nearest mode is in effect.

Exercise 5.3 Suppose that 0 < x < Nm-m, but that x is not a subnormal floating point
number. We can write

where at least one of bp,bp+i,..., is not zero. What is X-? Give some examples,
assuming the single format is in use (p = 24, Emin = —126).

Absolute Rounding Error and Ulp

We now define rounding error. Let a: be a real number and let

28 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

the absolute rounding error associated with x. Its value depends on the precision and
rounding mode in effect. In toy precision, when round down or round towards zero is
in effect, we have round(1.7) = 1.5, so

but if round up or round to nearest is in effect, we have round(1.7) = 1.75, so

Returning again to the IEEE formats, if x is in the normalized range, with

the absolute rounding error associated with x is less than the gap between X- and x+,
regardless of the rounding mode, and we have from (5.2) that

Informally, we say that the absolute rounding error is less than one w/p, meaning
ulp(a:_) if x > 0 and ulp(x+) if x < 0. When round to nearest is in effect, we can say
something stronger: the absolute rounding error is less than or equal to half the gap
between X- and x+, i.e.,

Informally, we say that the absolute rounding error is at most half an ulp. By defini-
tion, the absolute rounding error is zero when x is a floating point number.

Exercise 5.4 What is abserr(l/10) using the IEEE single format, for each of the four
rounding modes? (See Exercise 5.1.)

Exercise 5.5 Suppose that x > Nmax. What is abserr(a;)7 for each of the four round-
ing modes? Look carefully at the definition of round (x}.

Exercise 5.6 What is abserr(ar) for x given in Exercise 5.3, using the rounding mode
round down ?

Exercise 5.7 Do the bounds (5.5) and (5.6) hold when \x\ < Nmin? Explain.

Relative Rounding Error, Machine Epsilon, Significant Digits
The relative rounding error associated with a nonzero number x is defined by

where

Assuming that £, given by (5.4), is in the normalized range and is not a floating point
number, we have

Therefore, for all rounding modes, the relative rounding error satisfies the bound

CHAPTER 5. ROUNDING 29

using (5.5), (5.9), and the definition of e in (3.5). In the case of round to nearest, we
have

using (5.6) and (5.9). The same inequalities hold when x is a floating point number
in the normalized range, since then relerr(x) = abserr(x) = 0.

Exercise 5.8 Do the bounds (5.10) and (5.11) hold when \x\ < Nmin? Explain. (See
Exercise 5.7.,)

It follows from (5.10) and (5.11) that

and, for round to nearest,

We can think of — Iog2 relerr(x) as measuring the number of bits to which round(x)
and x agree: at least p — 1, and at least p in the case of round to nearest. Likewise,
it follows from (5.10) that

and we can think of — Iog10 relerr(a;) as measuring the number of decimal digits to
which round(x) and x agree. Consulting Table 4.4 for the value of e, we see that this
means that round(x) and x agree to at least about 7 digits when IEEE single precision
is in use, and to about 16 digits in the case of IEEE double.

It also follows from (5.8) that

Combining this with (5.10) and (5.11), we have completed the proof of the following
result, which is so important that we state it as the only theorem in this book.

Theorem 5.1 Let x be any real number in the normalized range of a binary floating
point system with precision p. Then

for some 6 satisfying

where e, machine epsilon, is the gap between 1 and the next larger floating point
number, i.e.,

Furthermore, if the rounding mode in effect is round to nearest,

Theorem 5.1 is very important, because it shows that, no matter how x is stored
or displayed, either in binary format or in a converted decimal format, we may think
of its value not as exact but as exact within a factor of 1 + e. Thus, for example, IEEE
single format numbers are accurate to within a factor of about 1 +10~7, which means
that they have approximately seven significant decimal digits.

Exercise 5.9 Does the result established by Theorem 5.1 still hold if 0< \x\ < N min?
If not, give an x for which the conclusion is false.

This page intentionally left blank

Chapter 6

Correctly Rounded Floating
Point Operations

A key feature of the IEEE standard is that it requires correctly rounded operations,
specifically:

• correctly rounded arithmetic operations (add, subtract, multiply, divide);

• correctly rounded remainder and square root operations;

• correctly rounded format conversions.

Correctly rounded means12 rounded to fit the destination of the result, using the
rounding mode in effect. For example, if the operation is the addition of two floating
point numbers that are stored in registers, the destination for the result is normally one
of these registers (overwriting one of the operands). On the other hand, the operation
might be a store instruction, in which case the destination is a location in memory
and a format conversion may be required. Regardless of whether the destination is a
register or a memory location, its format could be IEEE single, double, or extended,
depending on the machine being used and the program being executed.

Correctly Rounded Arithmetic

We begin by discussing the arithmetic operations. Very often, the result of an arith-
metic operation on two floating point numbers is not a floating point number in the
destination format. This is most obviously the case for multiplication and division; for
example, 1 and 10 are both floating point numbers but we have already seen that 1/10
is not, regardless of the destination format. It is also true of addition and subtraction:
for example, 1 and 2~24 are IEEE single format numbers, but 1 + 2~24 is not.

Let x and y be floating point numbers, let +,—,x,/ denote the four standard
arithmetic operations, and let ®,©,<8>,0 denote the corresponding operations as they
are actually implemented on the computer. Thus, x + y may not be a floating point
number, but x ® y is the floating point number that is the computed approximation
of x + y. Before the development of the IEEE standard, the results of a floating point
operation might be different on two different computers. Occasionally, the results
could be quite bizarre. Consider the following questions, where in each case we assume

12 On some systems, a precision mode allows rounding to a precision narrower than that provided
by the destination. See Chapter 8.

31

32 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

that the destination for the result has the same format as the floating point numbers
x and y.

Question 6.1 If x is a floating point number, is the floating point product 1 <8>x equal
tox?

Question 6.2 If x is a nonzero (and finite) floating point number, is the floating
point quotient x 0 x equal to I?

Question 6.3 If x is a floating point number, is the floating point product 0.5 ®x the
same as the floating point quotient x 0 2 ?

Question 6.4 If x and y are floating point numbers, and the floating point difference
x © y is zero, does x equal y ?

Normally, the answer to all these questions would be yes, but for each of Questions
6.1 through 6.3, there was a widely used computer in the 1960s or 1970s for which
the answer was no for some input x [Sev98], [Kah00], [PH97, Section 4.12]. These
anomalies cannot occur with IEEE arithmetic. As for Question 6.4, virtually all
systems developed before the standard were such that the answer could be no for
small enough values of x and y; on some systems, the answer could be no even if
x and y were both near 1 (see the discussion following equation (6.4)). With IEEE
arithmetic, the answer to Question 6.4 is always yes; see the next chapter.

When the result of a floating point operation is not a floating point number in
the destination format, the IEEE standard requires that the computed result be the
rounded value of the exact result, i.e., rounded to fit the destination, using the round-
ing mode in effect. It is worth stating this requirement carefully. The rule is as follows:
if x and y are floating point numbers, then

and

where round is the operation of rounding to the given destination, using the rounding
mode in effect.

Exercise 6.1 Show that the IEEE rule of correctly rounded arithmetic immediately
guarantees that the answers to Questions 6.1 to 6.3 must be yes. Show further that no
rounding is necessary, i.e., that the exact result is a floating point number except in
one specific case; what is that case?

Using Theorem 5.1, it follows that, as long as x + y is in the normalized range,

where

machine epsilon for the destination format. This applies to all rounding modes; for
round to nearest, we have the stronger result

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 33

For example, if the destination format is IEEE single and the rounding mode is round
to nearest, floating point addition is accurate to within a factor of 1 + 2~24, i.e., to
approximately seven decimal digits. The same holds for the other operations 0, <8>,
and 0.

Exercise 6.2 Suppose that the destination format is IEEE single and the rounding
mode is round to nearest. What are 640220, 6402~20, 3202-20, 1602~20, 802~20 ?
Give your answers in binary, not decimal. What are the results if the rounding mode
is changed to round up ?

Exercise 6.3 Recalling how many decimal digits correspond to the 24-bit precision of
an IEEE single format number, which of the following expressions do you think have
the value exactly I if the destination format is IEEE single and the rounding mode is
round to nearest: 1 0 round(10~5), 1 0 round(10~10), 1 0 round(10~15) ?

Exercise 6.4 What is the largest floating point number x for which 1 ®x is exactly I,
assuming the destination format is IEEE single and the rounding mode is round to
nearest? What if the destination format is IEEE double?

The result of a sequence of two or more arithmetic operations may not be the
correctly rounded value of the exact result. For example, consider the computation of
(x + y) — z, where x = 1, y = 2~25, and z = 1, assuming the destination format for
both operations is IEEE single, and with round to nearest in effect. The numbers x,
t/, and z are all IEEE single format floating point numbers, since x = z = 1.0 x 2° and
y = 1.0 x 2~25. The exact sum of the first two numbers is

This does not fit the single format, so it is rounded, giving

The final result is therefore

However, the exact result is

which does fit the single format exactly. Notice that the exact result would be obtained
if the destination format for the intermediate result x + y is the IEEE double or
extended format (see Chapter 8).

Exercise 6.5 In this example, what is x 0 (y © z), and (x © z) 0 y, assuming the
destination format for all operations is IEEE single?

Exercise 6.6 Using the same example, what is (x 0 y) 0 z if the rounding mode is
round up?

Exercise 6.7 Let x = 1, y = 2~15
7 and z = 215, stored in the single format. What

is (x 0 y) 0 z, when the destination format for both operations is the single format,
using round to nearest ? What if the rounding mode is round up ?

34 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 6.8 In exact arithmetic, the addition operation is commutative, i.e.,

for any two numbers x,y, and also associative, i.e.,

for any x, y, and z. Is the floating point addition operation 0 commutative? Is it
associative?

The availability of the rounding modes round down and round up allows a pro-
grammer to make any individual computation twice, once with each mode. The two
results define an interval that must contain the exact result. Interval arithmetic is the
name used when sequences of computations are done in this way. See Exercises 10.17,
10.18, 13.5, and 13.11.

Addition and Subtraction

Now we ask the question: How is correctly rounded arithmetic implemented? This
is surprisingly complicated. Let us consider the addition of two IEEE single format
floating point numbers x = S x 2E and y = T x 2F, assuming the destination format
for x+y is also IEEE single. If the two exponents E and F are the same, it is necessary
only to add the significands S and T. The final result is (S + T) x 2E, which then
needs further normalization if S + T is greater than or equal to 2, or less than 1. For
example, the result of adding 3 = (1.100)2 x 21 to 2 = (1.000)2 x 21 is

However, if the two exponents E and F are different, say with E > F, the first
step in adding the two numbers is to align the significands, shifting T right E — F
positions so that the second number is no longer normalized and both numbers have
the same exponent E. The significands are then added as before. For example, adding
3 = (1.100)2 x 21 to 3/4 = (1.100)2 x 2-1 gives

In this case, the result does not need further normalization.

Guard Bits
Now consider adding 3 to 3 x 2~23. We get

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 35

This time, the result is not an IEEE single format floating point number, since its
significand has 24 bits after the binary point: the 24th is shown beyond the vertical
bar. Therefore, the result must be correctly rounded. In the case of rounding to
nearest, there is a tie, so the result with its final bit equal to zero is used (round up
in this case).

Rounding should not take place before the result is normalized. Consider the
example of subtracting the floating point number l+2~22+2~23 from 3, or equivalently
adding 3 and -(1 + 2~22 + 2~23). We get

Thus, rounding is not needed in this example.
In both examples (6.1) and (6.2), it was necessary to carry out the operation using

an extra bit, called a guard bit, shown after the vertical line following the 623 position.
Without the guard bit, the correctly rounded result would not have been obtained.

Exercise 6.9 Work out the details for the examples 1 + 2~24 and I — 2~24. Make up
some more examples where a guard bit is required.

The following is a particularly interesting example. Consider computing x — y with
x = (1.0)2 x 2° and y = (1.1111... 1)2 x 2~l, where the fraction field for y contains 23
ones after the binary point. (Note that y is only slightly smaller than x; in fact, it is
the next floating point number smaller than x.) Aligning the significands, we obtain

This is an example of cancellation, since almost all the bits in the two numbers cancel
each other. The result is (1.0)2 x 2~24, which is a floating point number. As in the
previous example, we need a guard bit to get the correct answer; indeed, without it,
we would get a completely wrong answer.

The following example shows that more than one guard bit may be necessary.
Consider computing x — y where x = 1.0 and y = (1.000... 01)2 x 2~25, where y has
22 zero bits between the binary point and the final 1 bit. Using 25 guard bits, we get

This is the correctly rounded value of the exact sum of the numbers. If we were to

36 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

use only two guard bits, we would get the result:

In this case, normalizing and rounding results in rounding up (using the tie-breaking
rule) instead of down, giving the final result 1.0, which is not the correctly rounded
value of the exact sum. We get the same wrong answer even if we have 3, 4, or as many
as 24 guard bits in this case! Machines that implement correctly rounded arithmetic
take such possibilities into account. However, by being a little clever, the need for 25
guard bits can be avoided. Let us repeat the same example, with two guard bits, but
with one additional bit "turned on" to indicate that at least one nonzero extra bit was
discarded when the bits of the second number, y, were shifted to the right past the
second guard bit position. The bit is called sticky because once it is turned on, it stays
on, regardless of how many bits are discarded. Now, before doing the subtraction, we
put the sticky bit in a third guard bit position. For this example, we then get

which is the correct answer. In general, it is necessary to use only three extra bits to
implement correctly rounded floating point addition and subtraction: two guard bits
(often called the guard and round bits) and one sticky bit [Gol95].

Exercise 6.10 Consider the operation x + y, where x — 1.0 and y — (1.000... 01)2 x
2~24, and y has 22 zero bits between the binary point and the final 1 bit. What is the
correctly rounded result, assuming round to nearest is in use? What is computed if
only one guard bit is used? What if two guard bits are used? What if two guard bits
and a sticky bit are used?

When the IBM 360 was released in 1965, it did not have any guard bits, and it
was only after the strenuous objections of computer scientists that later versions of
the machine incorporated one hexadecimal guard digit—still not enough to guarantee
correctly rounded arithmetic. Decades later, the Cray supercomputer still did not
have a guard bit. Let x — 1 and let y be the next floating point number smaller
than 1, and consider the operation x — y, as in example (6.3) above. On one Cray
machine, the computed result x © y is wrong by a factor of 2, since a 1 is shifted past
the end of the second operand's significand and discarded. Thus we have

On another Cray machine, the second operand y is rounded before the operation takes
place. This converts the second operand to the value 1.0 and gives the result xQy = 0,
so that in this case the answer to Question 6.4 is no, even though x and y are not
small numbers.

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 37

Multiplication and Division
Floating point multiplication and division, unlike addition and subtraction, do not
require significands to be aligned. If x = S x 2E and y = T x 2F, then

so there are three steps to floating point multiplication: multiply the significands,
add the exponents, and normalize and correctly round the result. Likewise, division
requires taking the quotient of the significands and the difference of the exponents.
However, multiplication and division of the significands are substantially more com-
plicated operations than addition and subtraction. In principle it is possible, by using
enough space on the chip, to implement the operations so that they are all equally
fast. In practice, chip designers build the hardware so that multiplication is approx-
imately as fast as addition, because in many floating point applications addition and
multiplication appear together in the inner loop. However, the division operation,
which is the most complicated to implement, generally takes significantly longer to
execute than addition or multiplication. Division by zero will be discussed in the next
chapter.

Exercise 6.11 Assume that x = S x 2E and y = Tx2F are normalized floating point
numbers, i.e., 1 < \S\ < 2, 1 < |T| < 2, with (the binary representations of) S and
T each having p bits (including the hidden bit). Let U be the exact product of the two
significands, i.e., U = S x T.

1. What are the possibilities for the number of nonzero bits to the left of the binary
point of (the binary representation for) U? What does this tell you about how
many bits it may be necessary to shift the binary point of U left or right to
normalize the result?

2. What are the possibilities for the number of nonzero bits to the right of the
binary point of U? In what cases can U be represented exactly using p bits
(including the hidden bit), and in what cases must the result be rounded to fit a
p-bit destination?

Exercise 6.12 The pigeon-hole principle (J. Demmel, W. Kahan; see also fEde94]).
Answer the following questions for (a) the toy floating point system shown in Figures
3.1 and 4.1, and (b) the IEEE single format numbers.

1. How many floating point numbers x satisfy 1 < x < 2? How many of these
satisfy 1 < x < 3/2 and how many satisfy 3/2 < x < 2 ?

2. How many floating point numbers x satisfy 1/2 < x < I? Approximately how
many of these satisfy 1/2 < x < 2/3 and approximately how many satisfy 2/3 <
x<l?

3. Does it follow that there must exist two different floating point numbers x\ and
#2 between 1 and 2 for which the computed reciprocals 1 0 x\ and 1 0 #2 are the
same (rounded to the same format)? Are you thinking of xi and x% between I
and 3/2 or between 3/2 and 2? Is this true regardless of the rounding mode?

4. Does it follow that there exist floating point numbers x for which

38 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

is not exactly I? Is this true regardless of the rounding mode? Does it also follow
that there exist floating point numbers x for which

is not exactly x ?

The Intel Pentium chip received a lot of bad publicity in 1994 when the fact that
it had a floating point hardware bug was exposed. An example of the bug's effects is
that, on the original Pentium, the floating point division operation

gave a result with only about 4 correct decimal digits. The error occurred in only a
few special cases and could easily have remained undiscovered much longer than it did;
it was found by a mathematician doing experiments in number theory. Nonetheless, it
created a sensation, mainly because it turned out that Intel knew about the bug but
had not released the information. The public outcry against incorrect floating point
arithmetic depressed Intel's stock value significantly until the company finally agreed
to replace everyone's defective processors, not just those belonging to institutions that
Intel thought really needed correct arithmetic! It is hard to imagine a more effective
way to persuade the public that floating point accuracy is important than to inform it
that only specialists can have it. The event was particularly ironic since no company
had done more than Intel to make accurate floating point available to the masses. For
details on how the bug arose, see [Ede97].

For more on how computers implement arithmetic operations, see [HP95, PH97,
Gol95]. For a wealth of information on rounding properties of floating point arithmetic
at a more advanced level, see Goldberg [Gol91] and Kahan [Kah97, Kah96b, Kah00].

Remainder, Square Root, and Format Conversions
In addition to requiring that the basic arithmetic operations be correctly rounded,
the IEEE standard also requires that correctly rounded remainder and square root
operations be provided. The remainder operation, x REM y, is valid for finite x and
nonzero y and produces r — x — y x n, where n is the integer nearest the exact value
x/y. The square root operation is valid for all nonnegative arguments. The standard
method for computing square roots goes back to Newton.

Exercise 6.13 The formula for the length of the hypotenuse of a right-angled trian-
gle is

where x and y are the lengths of the legs of the triangle. Suppose this formula is
computed using IEEE floating point arithmetic when it happens that all of x, y, and z
are integers (e.g., 3, 4, and 5 or 5, 12, and 13). Will the floating point result for z
necessarily be an integer?

Numbers are usually input to the computer using some kind of high-level pro-
gramming language, to be processed by a compiler or an interpreter. There are two
different ways that a number such as 1/10 might be input. One way would be to
input the decimal string 0.1 directly, either in the program itself or in the input to the
program. The compiler or interpreter then calls a standard input-handling procedure
which generates machine instructions to convert the decimal string to a binary format

CHAPTER 6. CORRECTLY ROUNDED FLOATING POINT OPERATIONS 39

and store the correctly rounded result in memory or a register. Alternatively, the
integers 1 and 10 might be input to the program and the ratio 1/10 generated by a
division operation. In this case too, the input-handling procedure must be called to
read the integer strings 1 and 10 and convert them to binary representation. Either
integer or floating point format might be used to store these values, depending on the
type of the variables used in the program, but the values must be converted to floating
point format before the division operation computes the quotient 1/10.

Just as decimal to binary conversion is typically needed to input data to the com-
puter, binary to decimal conversion is usually needed to output results when compu-
tation is completed.

The standard requires support for correctly rounded format conversions. These
fall into several categories:

• Conversion between floating point formats. Conversion from a narrower to a
wider precision (e.g., from single to double) must be exact. Conversion from a
wider precision to a narrower one requires correct rounding.

• Conversion between floating point and integer formats. Conversion from a float-
ing point format to an integer format requires rounding to the nearest integer
using the rounding mode in effect. If the floating point number is already an
integer, the conversion should be exact unless this number does not fit the inte-
ger format. Conversion from integer format to floating point format may require
rounding (see Exercise 3.10).13

• Rounding a floating point number to an integral value. This is also a required
feature, so that rounding to an integral value does not require use of the integer
format.

• Binary to decimal and decimal to binary conversion. The rounding mode is used
to round these conversions. There is an important requirement when round to
nearest is in effect: if a binary single format number is converted to at least 9
decimal digits and then converted from this decimal representation back to the
binary single format, the original number must be recovered. The same rule
holds for the double format, using at least 17 decimal digits. This double format
conversion requirement was one motivation for the precision specifications for
the extended format discussed in Chapter 4 [Gol91]. IEEE 754 does not require
correctly rounded conversions in all cases, because efficient algorithms to do so
were not known in 1985. However, the technology has advanced since then, and
efficient conversion algorithms that round correctly in all cases are now known
[Gay90] and are implemented in widely used software available from [Net].

13This point is not actually made in IEEE 754, but is clarified in IEEE 854.

This page intentionally left blank

Chapter 7

Exceptions

One of the most difficult things about programming is the need to anticipate excep-
tional situations. Ideally, a program should handle exceptional data in a manner as
consistent as possible with the handling of unexceptional data. For example, a pro-
gram that reads integers from an input file and echoes them to an output file until
the end of the input file is reached should not fail just because the input file is empty.
On the other hand, if it is further required to compute the average value of the input
data, no reasonable solution is available if the input file is empty. So it is with float-
ing point arithmetic. When a reasonable response to exceptional data is possible, it
should be used.

Infinity from Division by Zero
The simplest example of an exception is division by zero. Before the IEEE standard
was devised, there were two standard responses to division of a positive number by
zero. One often used in the 1950s was to generate the largest floating point number as
the result. The rationale offered by the manufacturers was that the user would notice
the large number in the output and draw the conclusion that something had gone
wrong. However, this often led to confusion: for example, the expression 1/0 — 1/0
would give the result 0, so the user might not notice that any error had taken place.
Consequently, it was emphasized in the 1960s that division by zero should lead to the
interruption or termination of the program, perhaps giving the user an informative
message such as "fatal error—division by zero." To avoid this, the burden was on the
programmer to make sure that division by zero would never occur.

Suppose, for example, it is desired to compute the total resistance of an electrical
circuit with two resistors connected in parallel, with resistances, respectively, R\ and
R<2 ohms, as shown in Figure 7.1. The formula for the total resistance of the circuit is

This formula makes intuitive sense: if both resistances R\ and RI are the same value
R, then the resistance of the whole circuit is T = R/2, since the current divides
equally, with equal amounts flowing through each resistor. On the other hand, if RI is
very much smaller than R2, the resistance of the whole circuit is somewhat less than
R1, since most of the current flows through the first resistor and avoids the second
one. What if R1 is zero? The answer is intuitively clear: since the first resistor offers
no resistance to the current, all the current flows through that resistor and avoids the
second one; therefore, the total resistance in the circuit is zero. The formula for T

41

42 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Figure 7.1: The Parallel Resistance Circuit

also makes sense mathematically if we introduce the convention that 1/0 = oo and
l/oo = 0. We get

Why, then, should a programmer writing code for the evaluation of parallel resistance
formulas have to worry about treating division by zero as an exceptional situation? In
IEEE arithmetic, the programmer is relieved of that burden. The standard response to
division by zero is to produce an infinite result and continue with program execution.
In the case of the parallel resistance formula, this leads to the correct final result
l/oo = 0.

NaN from Invalid Operation
It is true that a x 0 has the value 0 for any finite value of a. Similarly, we adopt
the convention that a/0 = oo for any positive value of a. Multiplication with oo also
makes sense: a x oo has the value oo for any positive value of a. But the expressions
0 x oo and 0/0 make no mathematical sense. An attempt to compute either of these
quantities is called an invalid operation, and the IEEE standard response to such an
operation is to set the result to NaN (Not a Number). Any subsequent arithmetic
computation with an expression that involves a NaN also results in a NaN. When a
NaN is discovered in the output of a program, the programmer knows something has
gone wrong and can invoke debugging tools to determine what the problem is.

Addition with oo makes mathematical sense. In the parallel resistance example,
we see that 00+-^- =00. This is true even if R-2 also happens to be zero, because
oo + oo = oo. We also have a — oo = —oo for any finite value of a. But there is no
way to make sense of the expression oo — oo, which therefore yields the result NaN.

These conventions can be justified mathematically by considering addition of limits.
Suppose there are two sequences Xk and yk both diverging to oo, e.g., Xk = 2k, yk = 2k,
for k = 1,2,3,..., or the other way around. Clearly, the sequence Xk+yk also diverges
to oo. This justifies the expression oo + oo = oo. But it is impossible to make a
statement about the limit of Xk — yk, since the result depends on whether one of the
sequences diverges faster than the other. Consequently, oo — oo is NaN.

Exercise 7.1 What are the values of the expressions oo/O, O/oo, and oo/oo? Justify
your answer.

Exercise 7.2 For what nonnegative values of a is it true that a/oo equals zero?

Exercise 7.3 Using the 1950s convention for treatment of division by zero mentioned
above, the expression (1/0)/10000000 results in a number very much smaller than the
largest floating point number. What is the result in IEEE arithmetic?

CHAPTER 7. EXCEPTIONS 43

Exercise 7.4 The formula RiR2/(R\ + #2) is equivalent to (7.1) if R1 and R2 are
both nonzero. Does it deliver the correct answer using IEEE arithmetic if R1 or R<2,
or both, are zero?

Signed Zeros and Signed Infinities

A question arises: Why should 1/0 have the value oo rather than — oo? This is one
motivation for the existence of the floating point number —0, so that the conventions
a/0 = oo and a/(—0) = —oo may be followed, where a is a positive number. The
reverse holds if a is negative. The predicate 0 = —0 is true, but the predicate oo = —oo
is false. We are led to the conclusion that it is possible that the predicates a = b and
I/a = 1/6 have opposite values (the first true, the second false, if a = 0, b — —0).
This phenomenon is a direct consequence of the convention for handling infinity.

The floating point number —0 is produced by several operations, including the
unary operation —0, as well as a/oo when a is negative, a x 0 when a is negative, and
the square root of —0, regardless of the rounding mode, as well as a — a for any finite
a when the rounding mode is round down. Not all programming environments display
the sign of zero by default, because users rarely needs to distinguish between 0 and
-0.

Exercise 7.5 Are there any other cases in which the predicates a — b and I/a = 1/6
have opposite values, besides a and b being zeros of opposite sign?

Exercise 7.6 What are the values of the expressions 0/(—0), oo/(—oo), and
-oo/(-0)?

Exercise 7.7 What is the result for the parallel resistance formula (7.1) if R1 = 1
and R2 = -0?

More about NaNs

The square root operation provides a good example of the use of NaNs. Before the
IEEE standard, an attempt to take the square root of a negative number might result
only in the printing of an error message and a positive result being returned. The
user might not notice that anything had gone wrong. Under the rules of the IEEE
standard, the square root operation is invalid if its argument is negative, and the
standard response is to return a NaN. Likewise, the remainder operation a REM 6 is
invalid if a is ±00 or 6 is ±0, and the standard response is to return a NaN.

More generally, NaNs provide a very convenient way for a programmer to handle
the possibility of invalid data or other errors in many contexts. Suppose we wish to
write a program to compute a function that is not defined for some input values. By
setting the output of the function to NaN if the input is invalid or some other error
takes place during the computation of the function, the need to return special error
messages or codes is avoided. Another good use of NaNs is for initializing variables
that are not otherwise assigned initial values when they are declared. Furthermore,
the bitstring in the fraction field can, in principle at least, be used to code the origin of
the NaN. Consequently, we do not speak of a unique NaN value but of many possible
NaN values. The standard distinguishes quiet NaNs and signaling NaNs, but since
signaling NaNs are rarely used in practice, we make no such distinction here.

When a and 6 are real numbers, one of three relational conditions holds: a = b,
a < 6, or a > b. The same is true if a and 6 are floating point numbers in the
conventional sense, even if the values ±00 are permitted. However, if either a or 6 is
a NaN none of the three conditions a = 6, a < 6 , a>6 can be said to hold (even

44 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

if both a and b are NaNs). Instead, a and b are said to be unordered. Consequently,
although the predicates a <b and (not(a > b)) usually have the same value, they have
different values (the first false, the second true) if either a or b is a NaN.

The conversion of a binary format floating point number to an integer or decimal
representation that is too big for the format in question is an invalid operation, but
it cannot deliver a NaN since there is no floating point destination for the result.

Exercise 7.8 Extend Exercise 4.3 to the case where either x or y may be ±0, ±00,
or NaN, and the result may be "unordered".

Overflow

Traditionally, overflow is said to occur when the exact result of a floating point oper-
ation is finite but with an absolute value that is larger than the largest floating point
number. As with division by zero, in the days before IEEE arithmetic was available
the usual treatment of overflow was to set the result to (plus or minus) the largest
floating point number or to interrupt or terminate the program. In IEEE arithmetic,
the standard response to overflow is to deliver the correctly rounded result, either
±Nmax or ±00. The range of numbers that round to ±00 depends on the rounding
mode; see Chapter 5.

To be precise, overflow is said to occur in IEEE arithmetic when the exact result of
an operation is finite but so big that its correctly rounded value is different from what
it would be if the exponent upper limit Emax were sufficiently large. In the case of
round to nearest, this is the same as saying that overflow occurs when an exact finite
result is rounded to ±00, but it is not the same for the other rounding modes. For
example, in the case of round down or round towards zero, if an exact finite result x is
more than ATmax, it is rounded down to Nmax no matter how large x is, but overflow is
said to occur only if x > Nmax + ulp(ATmax), since otherwise the rounded value would
be the same even if the exponent range were increased.

Gradual Underflow

Traditionally, underflow is said to occur when the exact result of an operation is
nonzero but with an absolute value that is smaller than the smallest normalized float-
ing point number. In the days before IEEE arithmetic, the response to underflow was
typically, though not always, flush to zero: return the result 0. In IEEE arithmetic,
the standard response to underflow is to return the correctly rounded value, which
may be a subnormal number, ±0 or ±-/Vmin. This is known as gradual underflow.
Gradual underflow was and still is the most controversial part of the IEEE standard.
Its proponents argued (and still do) that its use provides many valuable arithmetic
rounding properties and significantly adds to the reliability of floating point software.
Its opponents argued (and still do) that arithmetic with subnormal numbers is too
complicated to justify inclusion as a hardware operation which will be needed only
occasionally. The ensuing debate accounted for much of the delay in the adoption
of the IEEE standard. Even today, some IEEE compliant microprocessors support
gradual underflow only in software. The standard gives several options for defining
exactly when the underflow exception is said to occur; see [CKVV02] for details.

The motivation for gradual underflow can be summarized very simply: compare
Figure 3.1 with Figure 4.1 to see how the use of subnormal numbers fills in the rel-
atively large gap between ±ATmin and zero. The immediate consequence is that the
worst case absolute rounding error for numbers that underflow to subnormal numbers
is the same as the worst case absolute rounding error for numbers that round to Nmin.
This is an obviously appealing property.

CHAPTER 7. EXCEPTIONS 45

Consider the following subtraction operation, using the IEEE single format. The
second operand is Nmin and the first operand is a little bigger:

The last line shows the ideal normalized representation, but this is smaller than Nmin.
Without gradual underflow, we would have to flush the result to zero, so that in this
case the answer to Question 6.4 is no. With gradual underflow, the answer 2~128 can
be stored exactly, with the subnormal representation

This suggests that, when gradual underflow is supported, the answer to Question 6.4
is always yes. This is indeed the case; see Exercise 7.12.

Extensive analysis by Coonen [Coo8l], Demmel [Dem84], and Kahan [Kah96b]
makes a very convincing case for the value of gradual underflow. It is high time to
bury this controversy and to accept gradual underflow as a clever yet practical solution
to a tricky technical problem, and one that demands hardware support.

Exercise 7.9 Using round to nearest, what numbers are rounded down to zero and
what numbers are rounded up to the smallest subnormal number?

Exercise 7.10 Consider the operation

where the first part of the operation, y 0 x, underflows. What is the result when
gradual underflow is used? What is the result when flush to zero is used? Which
correctly approximates the exact result? (See fCod81.)

Exercise 7.11 Suppose that x and y are floating point numbers with the property that

Show that the exact difference x—y is also a floating point number, so that xQy = x—y,
if gradual underflow is used. Show that this is not always the case if flush to zero is
used. (See [Kah96b, Ste74].)

Exercise 7.12 Prove that the answer to Question 6.4 is always yes in IEEE arith-
metic, because of gradual underflow.

Exercise 7.13 Is the worst case relative rounding error for numbers that underflow
to subnormal numbers the same as the worst case relative rounding error for numbers
that round to Nmin? Why or why not?

46 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 7.1: IEEE Standard Response to Exceptions

Invalid Operation
Division by Zero

Overflow
Underflow

Inexact

Set result to NaN
Set result to ±00

Set result to ±00 or ±Nmax

Set result to ±0, ±-/Vmin or subnormal
Set result to correctly rounded value

The Five Exception Types

Altogether, the IEEE standard defines five kinds of exceptions: invalid operation,
division by zero, overflow, underflow, and inexact, together with a standard response
to each of these. All of these have now been described except the last. The inexact
exception is, in fact, not exceptional at all because it occurs every time the result of an
arithmetic operation is not a floating point number and therefore requires rounding.
Table 7.1 summarizes the standard responses to the five exceptions.

The IEEE standard specifies that when an exception occurs it must be signaled
by setting an associated status flag, and strongly recommends that the programmer
should have the option of either trapping the exception, providing special code to
be executed when the exception occurs, or masking the exception, in which case the
program continues executing with the standard response shown in the table. The
status flags are sticky, i.e., once a flag is set, it remains set until cleared. This allows
the programmer to tell whether or not an exception occurred during execution of a
given segment of code. If the user is not programming in assembly language, but in
a higher level language being processed by an interpreter or a compiler, the ability
to trap exceptions and test or reset status flags may or may not be passed on to the
programmer (see Chapter 9). However, users do not need to trap exceptions. It is
common practice to rely on the standard responses described in Table 7.1, assuming
the interpreter or compiler in use masks the exceptions as its default action.

The appearance of a NaN in the output of a program is a sure sign that something
has gone wrong. The appearance of oo in the output may or may not indicate a
programming error, depending on the context. When writing programs where division
by zero is a possibility, the programmer should be cautious. Operations with oo should
not be used unless a careful analysis has ensured that they are appropriate.

The IEEE Philosophy on Exceptions

The IEEE approach to exceptions permits a very efficient and reliable approach to
programming in general, which may be summarized as: Try the easy fast way first; fix
it later if an exception occurs. For example, suppose it is desired to compute

Even if the result is within the normalized range of the floating point system, a di-
rect implementation might result in overflow. The traditional careful implementation
would guard against overflow by scaling x and y by max(|ar|, |y|) before squaring. But
with IEEE arithmetic, the direct computation may be used. The idea is to first clear
the exception status flags, then do the computation, and then check the status flags.
In the unlikely event that overflow (or underflow) has occured, the program can take
the necessary action. For details of how to compute (7.3) in Fortran 2003, for example,

CHAPTER 7. EXCEPTIONS 47

see [MRC04, Section 11.10.4]. For a more extensive discussion of how this idea can
be used for many different numerical computations, see [DL94]. To make such ideas
practical, it is essential that the IEEE standard be properly supported by both soft-
ware and hardware, so that setting and testing the status exception flags is permitted
by the programming language in use, and does not significantly slow down execution
of the program.

Hardware support for the standard for a specific class of machines is discussed in
the next chapter, and software support is discussed in the following chapter. Although
support for the standard is still far from perfect, it has steadily improved over the
years. For some more thoughts on these issues, as well as some interesting comments
on alternative arithmetic models, see [Dem91].

This page intentionally left blank

Chapter 8

The Intel Microprocessors

The two largest manufacturers of the microprocessor chips that were used in the early
personal computers incorporated the IEEE standard in their design; these were Intel
(whose chips were used by IBM PCs and clones) and Motorola (whose 68000 series
chips were used by the Apple Macintosh II and the early Sun workstations). Later
microprocessors, such as the Sun Spare, DEC Alpha, and IBM RS/6000 and Power
PC, also followed the standard. Even the IBM 390, the successor to the 360/370
series, offers support for the IEEE standard as an alternative to the long-supported
hexadecimal format. We shall confine our attention to the Intel microprocessors, since
these chips were and still are the most widely used. The total number of individ-
ual computers using these chips is conservatively estimated to be in the hundreds of
millions.

The original Intel microprocessor was the 8086 chip, announced in 1978. This chip
included a central processing unit (CPU) and an arithmetic-logical unit (ALU) but
did not support floating point operations. In 1980, Intel announced the 8087 and 8088
chips, which were used in the first IBM PCs. The 8088 was a modification of the 8086.
The 8087 was the floating point coprocessor, providing a floating point unit (FPU) on
a separate chip from the 8088. The 8087 was revolutionary in a number of respects.
It was unprecedented that so much functionality could be provided by such a small
chip. Many of the features of the IEEE standard were first implemented on the 8087.
The extended format recommended by the standard was based on the 8087 design.

The successors of the 8087, the 80287 and 80387, were also coprocessors, imple-
mented separately from the main chip. However, later microprocessors in the series,
namely the 80486 DX, the Pentium, the Pentium Pro, the Pentium II, and the Pen-
tium III, included the FPU on the main chip. Though each machine was faster than
its predecessor, the architecture of the Pentium FPUs remained essentially the same
as that of the 8087. We will now describe this in some detail.

Hardware Extended Precision

Floating point instructions operate primarily on data stored in eight 80-bit floating
point registers, each of which can accommodate an extended format floating point
number (see Chapter 4). However, it was expected that programs would usually
store variables in memory using the single or double format. The extended precision
registers were provided with the idea that a sequence of floating point instructions,
operating on data in registers, would produce an accumulated result that is more
accurate than if the computations were done using only single or double precision.
This more accurate accumulated result would then be rounded to fit the single or

49

50 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

double format and stored to memory when the sequence of computations is completed,
perhaps giving the correctly rounded value of the exact result, which would be unlikely
to happen when a sequence of operations uses the same precision as the final result.
Although the IEEE standard encourages this practice, it also requires that the user
have the option of disabling it through use of a precision mode.15 The precision mode
may be set to any of the supported formats; for example, if the precision mode in
effect is single, the floating point computations must deliver results that are rounded
to single precision before being stored in the extended format register. A subtle point
is that even if the precision mode in effect is single, a floating point value that overflows
the single format does not generate an exception, as long as it does not overflow the
extended format.

The Register Stack

Another interesting feature is the organization of the floating point registers in a
logical stack. The eight registers are numbered 0 to 7. At any given time, the top
register in the stack is denoted by ST(0), the second-to-top register ST(1), etc. The
actual physical register corresponding to the top register ST(0) is determined by a
top-of-stack pointer stored in a 3-bit field of the 16-bit status word, which is stored in
a dedicated 16-bit register. If this bitstring is Oil, for example, ST(0) is equivalent to
physical register 3, ST(1) is equivalent to physical register 4, and so on; thus, ST(7)
is physical register 2. When the register stack is pushed, the top-of-stack pointer
is decremented', e.g., the top register is changed from physical register 3 to physical
register 2, ST(1) becomes physical register 3, and ST(7) becomes physical register 1.

The register stack is very convenient for the evaluation of arithmetic expressions.
For example, consider the task of computing the expression

assuming the floating point numbers a, b, and c are available in memory locations A,
B, and C, respectively, and that the result is to be stored in memory location X. A
sequence of assembly language instructions that will carry out this task is

FLD A
FLD B
FADD
FLD C
FMUL
FSTP X

Here the first FLD instruction pushes the value in memory location A onto the stack;
in other words, it first decrements the top-of-stack pointer and then copies the value
in A, namely a, to the new stack register ST(0). The second FLD instruction then
pushes the value in the memory location B onto the stack; this requires decrementing
the stack pointer and copying the value in B, namely 6, to the new ST(0). At this point
ST(0) contains b and ST(1) contains a. The FADD instruction then adds the value
in ST(0) to the value in ST(1) and pops the stack, i.e., increments the top-of-stack
pointer. The third FLD instruction pushes the value in location C, namely c, onto
the stack. Then the FMUL instruction multiplies the new value in ST(0), namely c,
onto the value in ST(1), namely a + 6, and pops the stack, leaving the final value of
the expression in the top register ST(0). Finally, the FSTP instruction stores the final
result in memory location X, popping the stack one more time. The register stack now

15Called rounding precision mode in the standard.

CHAPTER 8. THE INTEL MICROPROCESSORS 51

Table 8.1: Logical Register Stack Contents, at Successive Times

Register
ST(0)
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

TimeO Time 1
a

Time 2
b
a

Time3
a® b

Time 4
c

a © 6

Time 5
(a © b) <8> c

Table 8.2: Physical Register Stack Contents, at Successive Times

Register
P.R. 0
P.R. 1
P.R. 2
P.R. 3
P.R. 4
P.R. 5
P.R. 6
P.R. 7

TimeO

— >

Time 1

— > a

Time 2

-» b
a

Time 3

6
— > a®6

Time 4

— > c
a © 6

Time5

c
— > (a © b) <g> c

has the same configuration that it did before the expression evaluation began (either
empty or containing some other results still to be processed). The whole computation
is summarized in Table 8.1.

Note that the computation is always organized so that the latest result is at the
top of the stack. The values in the registers are floating point numbers, not formulas.
The expression a © 6 is used rather than a + 6, because this is the actual computed
value, the rounded value of a + b.

Suppose ST(0) is initially equivalent to physical register 3. Then the contents of
the physical registers during the expression evaluation are shown in Table 8.2. The
symbol —* indicates the top register in the stack at each point in time.

Each time the register stack is pushed, the top register, ST(0), moves one position
in terms of the physical registers. Also, when the register stack is popped and ST(0)
moves back to its previous position, the numerical value in the physical register remains
unchanged until it is overwritten, e.g., by a subsequent push instruction.

The register stack can handle arithmetic expressions nested up to seven levels.
However, it is possible to overflow the stack by pushing it too many times. When this
happens, an invalid operation is signaled and the standard response is to return a NaN.
Consequently, compiler writers need to bear this in mind so that stack overflow does
not occur when complicated expressions are parsed. The original idea was to handle
stack overflows, which could be expected to be rare, through interrupt software, to give
compiler writers the illusion of an unlimited stack. Although this idea was promoted
enthusiastically by Kahan, it was never implemented [PH97, p. 319].

52 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

There are other versions of the floating point arithmetic instructions that require
only one operand to be in a register and the other operand to be in memory. Though
these result in shorter assembly language programs, they make the functionality of
the stack somewhat less clear.

Exercise 8.1 Give a sequence of assembly language instructions to compute

and show, by modifying Tables 8.1 and 8.2, how the computation progresses,

Exercise 8.2 Give a floating point expression whose evaluation would overflow the
register stack.

Status Flags, Exception Masks, Rounding and Precision Modes

In addition to the top-of-stack pointer, the status word also contains the five exception
status flags that are required by the IEEE standard. A flag is set to 1 when the
corresponding exception takes place. These flags can be cleared by special assembly
language instructions such as FCLEX.

Besides the status word, the floating point unit has another special word called the
control word, which is stored in another dedicated 16-bit register. The control word
is used to set the rounding mode, the precision mode, and the exception masks. Four
bits of the control word (two bits for each mode) are used to encode the rounding
mode (see Chapter 5) and the precision mode (see the discussion at the beginning
of this chapter). Five bits in the control word are reserved for exception masks.16

When an exception occurs and the corresponding flag in the status word is set, the
corresponding mask in the control word is examined. If the exception mask is 0, the
exception is trapped and control is passed to a user-provided trapping routine. If
the exception mask is 1, i.e., the exception is masked, the processor takes the default
action described in Table 7.1 and execution continues normally.

The floating point environment is set to a default initial state by the assembly
language instruction FNINIT. This clears all status flags in the status word, and sets
the control word as follows: the rounding mode is round to nearest, the precision mode
is extended, and all exceptions are masked. Other instructions are provided to set the
rounding mode, precision mode, or exception masks in the control word to desired
values.

The Itanium Chip and Fused Multiply-Add

In 2000, Intel announced its new IA 64 Itanium chip. The Itanium complies with
the IEEE standard, and its floating point registers support the same 80-bit extended
format as the 8087 and Pentium. However, the Itanium architecture departs radically
from that of Intel's previous microprocessors. Most significant, as far as floating point
is concerned, is the fact that it has 128 floating point registers, compared with 8 on the
Pentium. Another significant change is that the Itanium includes a fused multiply-add
instruction (FMA). The FMA computes the correctly rounded value

16The status and control words also respectively store a status flag and corresponding exception
mask not required by the IEEE standard. This additional status flag is set when an operation with
a subnormal operand takes place.

CHAPTER 8. THE INTEL MICROPROCESSORS 53

which is generally a more accurate approximation to the exact result than computing

The FMA instruction is very useful because many floating point programs include the
operation a x 6 + c in their inner loops. The FMA was developed earlier by IBM as
part of its RS/6000 architecture and is used by its descendant, the Power PC. Support
for the FMA instruction is not discussed by the IEEE standard but is addressed in its
ongoing revision [IEE-R]. Kahan [Kah97] describes the FMA as a "mixed blessing,"
with some disadvantages as well as obvious advantages.

Exercise 8.3 Find single format floating point numbers a, b, and c for which (8.1)
and (8.2) are different, assuming the destination format for each operation is IEEE
single.

This page intentionally left blank

Chapter 9

Programming Languages

Programs for the first stored program electronic computers consisted of a list of ma-
chine instructions coded in binary. It was a considerable advance when assemblers
became available, so that a programmer could use mnemonic codes such as LOAD
X, instead of needing to know the code for the instruction to load a variable from
memory to a register and the physical address of the memory location. The first
widely available higher level programming language was developed at IBM in the mid
1950s and called Fortran, for formula translation. Programmers could write instruc-
tions such as x = (a + b)*c, and the compiler would then determine the necessary
machine language instructions to be executed. Fortran became extremely popular
and is still widely used for scientific computing today. Soon after Fortran was estab-
lished, the programming language ALGOL was developed by an international group of
academic computer scientists. Although ALGOL had many nicer programming con-
structs than Fortran, it never achieved the latter's success, mainly because Fortran
was designed to be highly efficient from its inception, which ALGOL was not.16 How-
ever, many of the innovations of ALGOL, such as the notions of block structure and
recursion, survived in subsequent programming languages, including Pascal, which
appeared in the 1970s. These notions also greatly influenced later modifications of
Fortran, particularly the major revisions Fortran 77 and Fortran 90 in 1977 and 1990,
respectively.

In the 1980s, the programming language C, a product of Bell Labs, emerged as
the lingua franca of computing. C was used as the foundation of the object-oriented
language C++, which in turn led to Java, the language developed by Sun in the 1990s.
Fortran remains very popular for numerical computing because of the availability of
fast optimizing compilers on all machines, as well as the existence of billions of lines of
legacy code. However, C and C++ are also widely used for numerical computing, and
Java is being promoted as an alternative with much promise because of its portable
binary code and its emphasis on reliability.

Netlib [Net] is a valuable resource for free numerical software to solve all kinds
of problems. For example, LAPACK (Linear Algebra package) is a state-of-the-art
package for solving problems from linear algebra. LAPACK is portable software,
built on the BLAS (Basic Linear Algebra Subroutines), which are fine-tuned for high
performance on specific machines. Most of Netlib's programs are written in Fortran,
but C, C++, and Java packages are also available.

16Wilkes writes [W1198], "As an intellectual achievement, Fortran was stillborn by its very success
as a practical tool."

55

56 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Language Support for IEEE 754

The record of language support for the IEEE floating point standard is mixed. To
make good use of hardware that supports the standard, a programming language
should define types that are compatible with the IEEE formats, allow control of the
rounding mode (and the precision mode when it exists), provide the standard responses
to exceptions as the default behavior, allow access to and resetting of the exception
status flags, and allow trapping of exceptions. All of these were provided soon after the
publication of IEEE 754 by Apple in SANE (Standard Apple Numerics Environment)
[App88], using the Pascal and C languages. Unfortunately, in the words of Kahan,
"Apple never received the accolade it deserved from the marketplace" [Kah97], and
its fine example was not followed by many others, although SANE did evolve into a
similar support system for Apple's Power PC Macintosh. The Fortran and C language
international standards committees have, until recently, shied away from support for
IEEE 754. The result has been that the standardized hardware features have not been
generally available to users programming in higher level languages. Furthermore, in
cases where support is provided, different vendors have provided different mechanisms
for access. In brief, software support for IEEE 754 since publication of the standard
has been as inconsistent as was hardware support for floating point during the previous
three decades.

C99 and Fortran 2003

Thanks to the efforts of the ANSI Fortran committee X3J3 and the Numerical C Ex-
tensions Group (NCEG), the situation has finally improved. An International Stan-
dards Organization/International Electrotechnical Commission (ISO/IEC) revision of
the Fortran standard, known as Fortran 2003, was recently approved, and the long-
awaited ISO/IEC revision of the C language standard, known as C99, was completed
in December 1999 [ISO99]. Although neither Fortran 2003 nor C99 require every
implementation to support IEEE 754, they both provide standardized mechanisms
for accessing its features when supported by the hardware. For information on For-
tran 2003, see [MRC04]. C99 introduces a macro,17 __STDC_IEC_559__, which is
supposed to be predefined by implementations supporting IEEE 754. Any implemen-
tation defining this macro must then conform with various requirements. The types
float and double must use the IEEE single and double formats, respectively, and it is
recommended that type long double fit the IEEE extended format requirements. The
implementation must provide access to status flags such as FE_DIVBYZERO, control of
rounding modes via macros such as FE_DOWNWARD, and access to special constants via
macros such as INFINITY. Other macros with function syntax must also be provided,
such as isnan to determine if a number has a NaN value, and isnormal to test if
a value is in the normalized range. Details are given in Annex F of [ISO99]. In the
next chapter, we discuss how to write simple numerical programs in C, but we do not
attempt to illustrate the use of the macros.

Java

The situation with Java is quite different. The Java language types float and double
are required to conform to the IEEE single and double floating point formats. Unfor-
tunately, the well-publicized requirements of the Java language and the IEEE floating
point standard have major conflicts with each other. For example, Java insists that the
results of arithmetic operations be rounded to nearest, in contradiction to the IEEE

17As mentioned earlier, the international name of IEEE 754 is IEC 559.

CHAPTER 9. PROGRAMMING LANGUAGES 57

requirement that four rounding modes be supported. Another major difficulty is that
Java programs are required to give identical output on all platforms, while the IEEE
floating point standard specifically allows, but does not require, extended precision
computation for intermediate results that are later to be rounded to narrower formats
(see Chapter 8). The fact that Sun and Intel have opposite positions on this matter
does not bode well for a quick resolution. However, some progress has been made. Java
1.2 relaxed the requirement somewhat to allow use of the precision mode discussed
in Chapter 8 to disable extended precision. This permits the inconsistency that on a
Sun Spare, for example, a double precision computation might result in overflow, while
on an Intel Pentium, if an intermediate part of the same computation is performed
using the extended precision registers with the precision mode set to double, overflow
might not occur (see Chapter 8). See [Kah98] for the case against disabling extended
precision, and see [Jav] for current developments in numerical aspects of Java.

In fact, complete programming language support for the IEEE standard involves
much more than the main issues mentioned above. For more detailed discussions, see
[Dar98, Fig00, Gol91].

MATLAB
The interactive system MATLAB offers a very attractive alternative to conventional
compiled languages. MATLAB is extremely popular because of its ease of use, its
convenient and accurate matrix operations, its extensive software toolboxes, and its
graphics capabilities. Furthermore, although MATLAB is normally used in interpreted
mode, it is possible to compile MATLAB code for increased efficiency, as well as to
call C, Fortran, and Java subprograms. MATLAB uses IEEE arithmetic with the
double format, with exceptions masked so that the standard responses take place (see
Table 7.1). However, MATLAB does not provide access to control of rounding and
precision or to the exception status flags.18 We highly recommend MATLAB, but we
do not discuss it here, because many books on the subject are available; see especially
[HH00]. The plots in Chapters 11 and 12 were produced using MATLAB.

Complex Arithmetic
Fortran and C99 support data types for complex numbers. In MATLAB, every variable
is (potentially) complex. Complex arithmetic is implemented in software, calling on
the hardware to carry out the necessary real arithmetic operations. Thus, for example,
taking the square root of a complex variable with a negative real part and a zero
imaginary part yields a complex result with a zero real part and a nonzero imaginary
part, not a NaN, since the hardware square root operation generated by the compiler
or interpreter has a positive real argument (the complex modulus).

Floating point computation is an option in symbolic computing systems such as
Maple and Mathematica. It is also used in other familiar software, such as spreadsheet
programs.

18There is an exception: on an Intel machine running MATLAB 6, it is possible to change the round-
ing and precision modes. To change the rounding mode, type system-dependent ('setround' ,r),
where r is one of Inf (for round up), —Inf (for round down), 0 (for round towards zero), or
'nearest' (or 0.5) (for round to nearest, the default). To change the precision mode, type
system-dependent ('setprecision' ,p), where p is one of 64 (for extended), 53 (for double, the de-
fault), or 24 (for single) (see Table 4.4).

This page intentionally left blank

Chapter 10

Floating Point in C

The C programming language became very popular in the 1980s. A good reference
for the language is [Rob95]. Here we discuss how to get started with floating point
computation in C.

Float and Double, Input and Output
In C, the type float normally refers to the IEEE floating point single format, and when
we do computations with variables of type float, we say we are using single precision.
Here is an echo program that reads in a floating point number using the standard input
routine scanf and prints it out again using the standard output routine printf:

main () /* Program 1: Echo */
{

float x;
scanf ("7.f", &x);
printf ("x = °/.f", x);

}

The second argument to the scanf statement is not the value of the variable x but the
address of x; this is the meaning of the & symbol. The address is required because the
input routine needs to know where to store the value that is read. On the other hand,
the second argument to the printf statement is the value of the variable x. The
first argument to both routines is a control string. The two standard format codes
used for specifying floating point numbers in these control strings are 7,f and */,e.
These refer, respectively, to fixed decimal and exponential decimal formats. Actually,
*/,f and V.e have identical effects when used with the input routine scanf, which can
process input in either a fixed decimal format (e.g., 0.666) or an exponential decimal
format (e.g., 6.66e-l, meaning 6.66 x 10"1). However, different format codes have
different effects when used with the output routine printf. The scanf routine calls
a decimal to binary conversion routine to convert the input decimal format to the
internal binary floating point representation, and the printf routine calls a binary to
decimal conversion routine to convert the floating point representation to the output
decimal format. The C99 standard recommends that both conversion routines use the
rounding mode that is in effect to correctly round the results.

Assuming Program 1 has been saved in a file and compiled, let us consider the
output when it is executed. Table 10.1 shows the output of Program 1 for various
output formats in the printf statement, when the input is 0.66666666666666666666
(the value of 2/3 to 20 digits).

59

60 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 10.1: Output of Program 1 for Various Output Format Codes

Format code
%f
7.e
%8. 3f
%8 . 3e
%21 . 15f
%21 . 15e

Output
0.666667
6.666667e-01
0.667
6.667e-01
0.666666686534882
6 . 666666865348816e-01

The 7.f format code generates output in a fixed decimal output, while 7.e gener-
ates exponential notation. Neither of them echoes the input to the accuracy given
originally, since it is not possible to store the value of 2/3 to 20 accurate digits using
single precision. Instead, the input value is correctly rounded to 24 bits of precision
in its significand, which, as we saw earlier, corresponds to approximately 7 significant
decimal digits. Consequently, the format codes 7.f and 7.e print, by default, 6 digits
after the decimal point, but */.e shows a little more accuracy than 7,f since the digit
before the decimal point is nonzero. In both cases, the decimal output is rounded,
using the default round to nearest mode; this explains the final digit 7. The next two
lines of the table show how to print the number to less precision if so desired. The 8
refers to the total field width, and the 3 to the number of digits after the decimal point.
The last two lines show an attempt to print the number to more precision, but we see
that about half the digits have no significance. The output is the result of converting
the single precision binary representation of 2/3 to more than the 7 decimal digits to
which it agrees with the value that was input. The output would be exactly the same
if, instead of reading the value 0.66666666666666666666 for x, we set the value of x
equal to the quotient 2.0/3.0. It is important to realize that regardless of the decimal
output format, the floating point variables are always stored using the IEEE binary
formats described in Chapter 4.

Using the 7.f format code is not a good idea unless it is known that the numbers are
neither too small nor too large. For example, if Program 1 is run on the input 1. Oe-10,
the output using 7.f is 0.000000, since it is not possible to print the desired value
more accurately using only 6 digits after the decimal point without using exponential
notation. Using 7«e we get the desired result l.OOOOOOe-10. A useful alternative is
7og, which chooses either a fixed or an exponential display, whichever is shorter.

We can represent the value of 2/3 more accurately by declaring x to have type
double instead of float. Type double uses the IEEE floating point double format,19

and when we do computations with variables of type double, we say we are using double
precision. But if we change float to double in Program 1, we get a completely wrong
answer such as -6.392091e-236 (using the 7.e output format code). The problem
here is that the 7.f in the input format code instructs the scanf routine to store the
input value in the IEEE single format at the address given by &x; scanf does not
know the type of x, only its address. When x is printed, its value is converted to
decimal assuming it is stored in the double format. Therefore, any scanf statement
that reads a double variable must use the control format code 7.1f or 7.1e (for long
float or long exponential) instead of */.f or 7.e, so that the result is stored in the IEEE
double format. Do not attempt to use 7.d to refer to the double format; 7.d actually

19The name long float was used in the past but is obsolete in this context.

CHAPTER 10. FLOATING POINT IN C 61

means integer format.
The printf control string does not need to use 7.1f or %le (as opposed to 7,f

or %e) when printing the values of double variables. This is because printf always
expects double variables, and so float variables are always automatically converted
to double values before being passed to the output routine. Therefore, since printf
always receives double arguments, it treats the control strings 7.e and %le exactly the
same; likewise °/.f and %.lf, %,g and %lg. However, the default, if no field width and
precision are specified, is to output the number to approximately the precision of the
single format, so we need to specify higher precision output to see more digits. In
summary, then, if we change float to double in the variable declaration, change 7.f to
%lf in the scanf statement, and change 7.e to %21.15e in the printf statement, we
obtain an output that has 15 significant digits after the decimal point.

Choice of the wrong output format code can have serious implications! A good
example is the story of a German state election in 1992. According to the rules of this
election, a minimum of 5% of the vote was required for a party to be allocated any
seats in the parliament. The evening of the election, results were announced declaring
that the Green party had received exactly 5% of the vote. After midnight it was
discovered that the Greens actually had only 4.97% of the vote. The program that
printed out the percentages showed only one place after the decimal, and had rounded
the count up to 5% [WW92].

Exercise 10.1 Supposing that the German election program was written in C, what
output format code would have led to the incorrect conclusion that the Greens had
exactly 5% of the vote? What would have been a better output format code?

Exercise 10.2 (D. Gay) The wrong answer obtained by Program I if float is changed
to double without any change to the scanf format depends on whether the machine
uses Big Endian or Little Endian addressing (see the end of Chapter 4). Why is this?
If you have machines of both kinds available, experiment to see what results you obtain
on each.

Two Loop Programs
Let us now consider a program with a "while loop":

main() /* Program 2: First Loop Program */
{

int n = 0;
float x * 1;

/* Repeatedly divide x by 2 until it underflows to 0 */

while (x > 0) {
x = x/2;
n++;
printf ("(2 raised to the power %d) = 7.e \n", n, x);

}
}

Program 2 initializes an IEEE single format floating point variable x to 1, and then
repeatedly divides it by 2. We could, for clarity, replace 2 in the statement x = x/2
by 2.0, but this is not necessary because x has type float. (If x had type int, the
integer division operator would be used instead, giving the result 0, for example, if

62 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

x had the value 1.) The termination test is x > 0: the loop continues to execute as
long as x is positive, but terminates when x is zero (or negative). The statement n++
increments the integer n by 1 during every pass through the loop, keeping track of
how many times it is executed. (This statement is shorthand for n = n + 1.) The
printf statement displays the values of n and x, which by construction satisfy the
equation

as long as the arithmetic is done exactly. The \n is the newline character, needed
so that the output is displayed one line at a time. If the arithmetic were to be done
exactly, Program 2 would run forever, but in floating point, the value of the variable
x will underflow to zero eventually. What is the output using IEEE arithmetic?20

Here is the answer:

(2 raised to the power -1) = 5.000000e-01
(2 raised to the power -2) = 2.500000e-01
(2 raised to the power -3) = 1.250000e-01
(2 raised to the power -4) = 6.250000e-02
(2 raised to the power -5) = 3.125000e-02

.... 140 lines omitted

(2 raised to the power -146) = 1.121039e-44
(2 raised to the power -147) = 5.605194e-45
(2 raised to the power -148) = 2.802597e-45
(2 raised to the power -149) = 1.401298e-45
(2 raised to the power -150) = O.OOOOOOe+00

Here is the explanation. The variable x is reduced from its initial value of 1 to 1/2,
1/4, 1/8, etc. After the first 126 times through the loop, x has been reduced to the
smallest IEEE single normalized number, -/Vmin = 2~126. If there were no subnormal
numbers, x would underflow to zero after one more step through the loop. Instead,
gradual underflow requires that the next step reduce x to the subnormal number 2~127,
which has the representation

The next step reduces x to 2 128, with the representation

This continues 21 more times, until x reaches 2 , with the representation

After one more step, we would like x to have the value 2 15°, but this is not repre-
sentable in the IEEE single format. We have a choice of rounding it up to 2~149 or
down to 0. In either case, we make an absolute rounding error of 2~150. The default
rounding mode, round to nearest, chooses the one with the 0 final bit, namely, the
number 0.

20Some machines support gradual underflow only in software. On such machines, the compiler's
default option may not be to support IEEE arithmetic. Some machines provide compiler options to
specify that IEEE arithmetic is to be used, but some do not.

CHAPTER 10. FLOATING POINT IN C 63

Now let us consider a different loop program:

main() /* Program 3: Second Loop Program */
{

int n = 0;
float x = 1, y = 2;

/* Repeatedly divide x by 2 until y = (1 + x) rounds to 1 */

while (y > 1) {
x * x/2;
y « 1 + x;
n++;
printf('l added to (2 raised to the power -%d) = 7,e \n", n, y);

}
}

In Program 3, the variable x (with type float) is again initialized to 1 and repeatedly
divided by 2, but this time the termination test is different: the loop continues as long
as y is greater than 1, where y is set to the value of 1 + x, but terminates if the value
of y is exactly 1 (or smaller). What is the output using IEEE arithmetic?

Here is the answer:

1 added to (2 raised to the power -1) = 1.500000e+00
1 added to (2 raised to the power -2) = 1.250000e+00
1 added to (2 raised to the power -3) = 1.125000e+00
1 added to (2 raised to the power -4) = 1.062500e+00
1 added to (2 raised to the power -5) = 1.031250e+00

.... 10 lines omitted

1 added to (2 raised to the power -16) = 1.000015e+00
1 added to (2 raised to the power -17) = 1.000008e+00
1 added to (2 raised to the power -18) = 1.000004e+00
1 added to (2 raised to the power -19) = 1.000002e+00
1 added to (2 raised to the power -20) = l.OOOOOle+00
1 added to (2 raised to the power -21) = l.OOOOOOe+00
1 added to (2 raised to the power -22) = l.OOOOOOe+00
1 added to (2 raised to the power -23) = l.OOOOOOe+00
1 added to (2 raised to the power -24) = l.OOOOOOe+00

Program 3 terminates much sooner than Program 2 does. Recall that 1 + 2~23 has
the exact representation

However, even though the number 2 24 can be represented exactly using the IEEE
single format, the number 1 + 2~24 cannot. We have a choice of rounding it up to
1 + 2~23 or down to 1. As earlier, both choices are equally close, this time with an
absolute rounding error of 2~24. Again, the default rounding mode, round to nearest,
chooses the answer with the zero final bit, namely, the number 1. Consequently, the
loop terminates.

At first sight, it seems from the output that the loop should have terminated
earlier, when x reached the value 2~21. However, this is because the output format

64 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

code 7,e used in the printf statement does not display enough decimal digits. Six
digits after the decimal point are not quite enough. We can insist on seeing seven by
changing the printf statement to

printf ("1 added to (2 raised to the power -%d) = %.7e \n", n, y);

in which case the last few lines of output become

1 added to (2 raised to the power -20) = 1.0000010e+00
1 added to (2 raised to the power -21) = 1.0000005e+00
1 added to (2 raised to the power -22) = 1.0000002e+00
1 added to (2 raised to the power -23) » l.OOOOOOle+00
1 added to (2 raised to the power -24) = 1.OOOOOOOe+00

We could have coded Program 3 without using the variable y, replacing it by 1 + x
in both the while loop termination test and the printf statement. However, when
we do this, we are no longer sure that the value of 1 + x will be rounded to the
IEEE single format. Indeed, on an Intel machine, e.g., a Pentium, the value of 1 + x
would then likely be held in an extended 80-bit register. If so, the program would run
through the loop more times before it terminates.

Exercise 10.3 Write a C program to store the value of 1/10 in a float variable and
then repeatedly divide the number by 2 until it is subnormal. Continue dividing by 2
until about half the precision of the number is lost. Then reverse the process, multi-
plying by 2 the same number of times you divided by 2. Display the final result. How
many significant digits does it have? Explain why this happened.

Exercise 10.4 What would happen if Programs 2 and 3 were executed using the
rounding mode round up ? Make a prediction and then, if your C compiler supports
the rounding modes, do the experiment.

Exercise 10.5 Recalling Exercise 6.12, write a C program to find the smallest positive
integer x such that the floating point expression

is not 1, using single precision. Make sure that the variable x has type float, and assign
the value of the expression I 0 x to a float variable before doing the multiplication
operation, to prevent the use of extended precision or an optimization by the compiler
from defeating your experiment. Repeat with double precision.

Exercise 10.6 Again recalling Exercise 6.12, write a C program to find the smallest
positive integer x such that

is not x, using single precision. Repeat with double precision. (See the comments in
the previous exercise.)

CHAPTER 10. FLOATING POINT IN C 65

Table 10.2: Parallel Resistance Results

R1
1
1
1
1
1
1
1
1
1

R2

1

10
1000
1.0e5
l.0el0
0.1
1 . Oe-5
l.Oe-10
0

Total resistance
5.000000e-01
9.090909e-01
9.990010e-01
9 . 999900e-01
l.OOOOOOe+00
9 . 090909e-02
9.999900e-06
l.OOOOOOe-10
O.OOOOOOe+00

Infinity and Division by Zero
Now let us turn our attention to exceptions. Program 4 implements the parallel
resistance formula (7.1):

mainO /* Program 4: Parallel Resistance Formula */
{

float rl,r2, total;

printf("Enter the two resistances \n");
scanf("'/.f °/,f", &rl, &r2); /* input the resistances of the two

resistors connected in parallel */
printf ("rl = 7.e r2 = */.e \n", rl, r2) ;
total=l / (1/rl + l/r2); /* formula for total resistance */
printf ("Total resistance is 7,e \n", total);

}

Table 10.2 summarizes the output of Program 4 for various input data. In the first
five lines, RI is held fixed equal to 1 and R2 is increased from 1 to a large number. The
larger R2 is, the more the current tends to flow through the first resistor, and so the
closer the total resistance is to 1. With R\ fixed equal to 1, and R2z sufficiently large,
i.e., 1/R2 sufficiently small, the floating point sum of 1/R2 and l /R1 is precisely 1
even though the exact result would be strictly greater than 1 for all finite nonnegative
values of R-2. Thus, the final result (the inverse of the sum) is precisely 1, even though
the mathematical result is strictly less than 1. This is, of course, because of the limited
precision of an IEEE single format floating point number.

The last four lines of the table show what happens when R\ is fixed equal to 1
and R-2. is decreased below 1. The smaller R2 is, the more the current tends to flow
through the second resistor.

The last line of the table shows that the output zero is obtained when R2=0; as
explained in Chapter 7, this is a sensible mathematical result. This result is obtained
only if the floating point environment is set properly, so that the standard response
to division by zero takes place, i.e., so that the result of the quotient 1/0 is set to oo.
This is the default on most systems.

Exercise 10.7 If R\ = I, for approximately what range of values for R?. (what powers
of 10) does Program 4 give a result exactly equal to 1? Try to work out the answer
before you run the program.

66 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 10.3: Some Standard C Math Library Functions

fabs
sqrt
exp
log

loglO
sin
cos

atan
pow

absolute value: fabs(x) returns \x\
square root: sqrt (x) returns ^fx
exponential (base e): exp(x) returns ex

logarithm (base e): log(x) returns \oge(x)
logarithm (base 10): loglO(x) returns Iog10(:r)
sine (argument given in radians)
cosine (argument given in radians)
arctangent (result in radians between — 7r/2 and Tr/2)
power (two arguments: pow(x,y) returns xy)

Exercise 10.8 How does the answer to Exercise 10.7 change if R\ = 1000: approxi-
mately what range of values for RI give a result exactly equal to 1000 ? Explain your
reasoning.

Exercise 10.9 How does the answer to Exercise 10.7 change if the rounding mode is
changed to round up? If your compiler supports the rounding modes, try the experi-
ment.

The Math Library
Very often, numerical programs need to evaluate standard mathematical functions.
The exponential function is denned by

It maps the extended real line (including ±00) to the nonnegative extended real num-
bers, with the convention that exp(—00} = 0 and exp(oo) = oo. Its inverse is the
logarithmic function (base e), log(:c), satisfying

The function log(y) is denned for y > 0 with the conventions that log(0) = — oo and
log(oo) = oo. These functions, along with many others such as the trigonometric
functions, are provided by all C compilers as part of an associated math library. Some
of them are listed in Table 10.3. They all expect double arguments and return double
values, but they can be called with float arguments and their values assigned to float
variables; the conversions are done automatically. The C99 standard calls for the
support of variants such as expf and expl, which expect and return float and long
double types, respectively, but these are rarely needed. The C99 standard also calls for
support for other mathematical functions not traditionally provided, including fma,
the fused multiply-add operation (with a single rounding error) described at the end
of Chapter 8.

Neither the IEEE standard nor the C99 standard prescribe the accuracy of the
irrational-valued math library functions (with the exception of the square root func-
tion). The library functions can usually be presumed to deliver approximately cor-
rectly rounded results; i.e., given a floating point argument x, return a function value
that agrees with the true function value f (x) to within about an ulp; however, this
may not always be the case [Kah96a]. One of the motivations for the provision of

CHAPTER 10. FLOATING POINT IN C 67

extended precision by the IEEE standard was to allow fast accurate computation of
the library functions [Hou81]. There is a fundamental difficulty in computing cor-
rectly rounded values of the exponential, logarithmic, and trigonometric functions,
called the Tablemaker's Dilemma: one might have to compute an arbitrarily large
number of correct digits before one would know whether to round the result up or
down. However, clever algorithms can nonetheless achieve correctly rounded results
by using sufficiently high precision when necessary [Mul97].

More importantly, if x is not a floating point number and so must first be rounded
before / is evaluated, the library functions do not necessarily return a value that
agrees with f (x) within about an ulp. This phenomenon is discussed in Chapter 12.

C99 calls for the math library functions to return infinite or NaN values when
appropriate. For example, log returns — oo when its argument is 0 and NaN when its
argument is negative. The case where the argument is —0 is controversial. Kahan
argues that the math library functions should return results that distinguish the sign
of 0, so that, e.g., log(—0) returns NaN. One motivation for this is that one may think
of —0 as representing a negative underflowed quantity; a compelling application is the
use of branch cuts to define complex-valued functions [Gol91, Kah97]. However, the
C99 standard says that log(—0) must return the same value as log(0), i.e., —oo.

When a C program contains calls to the math library, it should have the following
line at the start of the program:

#include <math.h>

The "include file" math.h tells the C compiler about the return types and other
calling-sequence details of the functions provided in the math library. Also, when the
program is compiled, it is necessary to link the math library; the syntax for this is
system-dependent. If an error message says that the math functions cannot be found,
the math library is not properly linked.

Exercise 10.10 Check to see what your C math library returns for log(±0), log(±l),
and log(±oo). The result may depend on whether your compiler supports C99.

Exercise 10.11 The domain of a function is the set of values on which it is defined,
and its range is the set of all possible values that it returns.

1. What are the ranges of the sin and cos functions?

2. What values should sin(oo) and cos(oo) return? Check to see if your C math
library does what you expect. The results may depend on whether your compiler
supports C99.

3. The arcsine and arccosine functions, asin and acos, are, respectively, the inverses
of the sin and cos functions on a restricted domain. By experimenting, determine
these restricted domains, i.e., the ranges of the asin and acos functions.

4. What values should asin(:r) and acos(x) return if x is outside the range of the sin
and cos functions? Check to see if your C math library does what you expected.
The results may depend on whether your compiler supports C99.

Exercise 10.12 What is pow(x, 0) when x is nonzero? What is pow(0,x) when x
is nonzero? What is pow(0,0)? What is the mathematical justification for these
conventions? (See [Gol91].)

68 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 10.13 It's unlikely that HAL, quoted on p. xiii, was IEEE compliant, since
the movie 2001: A Space Odyssey predated the development of the standard by nearly
two decades [Cla99j. What precision does HAL appear to be using? Does he report
correctly rounded results for the square root and log functions before Dave starts dis-
mantling his circuits? In order to answer this with certainty, you may need to use the
long double versions of the math library functions, namely, sqrtl, expl, and logl0l. //
your system does not support these, you may want to use some other extended precision
tool (see the end of Chapter 13).

Exercise 10.14 Recalling Exercise 6.12, is it possible that

or

or

or

will not give the result x, assuming that x is a positive floating point number and
that neither overflow nor underflow takes place? Explain. Hint: One answer is quite
different from the rest.

Exercise 10.15 For three out of the four expressions (10.2), (10.3), (10.4), (10.5),
write a C program to find the smallest positive integer x for which the expression does
not give the result x. Use double precision. If your program generates an apparently
infinite loop, you picked the wrong expression. Explain your results.

Exercise 10.16 Repeat the previous experiment using single precision. You should
assign intermediate results to float variables; for example, when computing (10.2), you
should store the result sqrt(x) in a float variable before multiplying it by itself. Why
is this? Explain your results.

Exercise 10.17 As mentioned in Chapter 6, interval arithmetic means floating point
computing where, for each variable, lower and upper bounds on the exact value of the
variable are maintained. This can be implemented using the round down and round
up modes, assuming these are supported by your C compiler. Write a program to read
a sequence of positive numbers and add them together in a sum. Include an option
to set the rounding mode to any of round down, round up, and round to nearest.
(If your compiler does not allow dynamic access to the rounding mode but does allow
you to set the rounding mode before compilation, then make three different compiled
versions of the program.) The round down mode should give you a lower bound on the
exact result, the round up mode should give you an upper bound, and round to nearest
should give you an intermediate result. Use type float but print the results to double
precision so you can see the rounding effects clearly. Avoid using very simple input
values (such as integers) that may not need rounding at all. Describe the results that
you obtain. To how many digits do the three answers agree? The answer will depend
on your data.

Exercise 10.18 // the rounding modes are supported by your C compiler, use the
ideas of interval arithmetic (see previous exercise) to compute upper and lower bounds
on the quantity

CHAPTER 10. FLOATING POINT IN C 69

where a, b, c, d are input values. Use float variables but print the results to double
precision so you can see the effect of rounding. Think about how to do this carefully.
Do you have to change the rounding mode dynamically, i.e., during the computation?
(If so, but your compiler does not allow this, then find a way to work around the
restriction, e.g., by writing temporary values to a file and breaking the program into
several parts.) Be sure to try a variety of input data to fully test the program. Avoid
using very simple input values (such as integers) that may not need rounding at all.

Exercise 10.19 Write a C program to compute (7.3), recovering from overflow or
underflow as outlined at the end of Chapter 7. If your compiler supports C99, use the
C99 macros [ISO99] to set and access the exception status flags. If your compiler does
not support C99, you may still be able to write a working program by checking whether
the computed results are either oo or 0 and, if they are, scaling and trying again. If
your compiler does not support the macro INFINITY, then compute oo from 1.0/0.0 at
the beginning, assuming the standard response to division by zero is in effect. It may
be helpful to look at a Fortran 2003 implementation [MRC04, Section 11.10.4]-

Exercise 10.20 Avoiding overflow in a product (J. Demmel).

1. Write a C program to read a sequence of positive numbers and compute the
product. Assume that the input numbers do not overflow the IEEE single format.
The program should have the following properties:

• The variables in the program should have type either float or int. Double
or extended precision variables are not permitted.

• The program should print the product of the numbers in the following non-
standard format: a floating point number F (in standard decimal exponen-
tial format), followed by the string

times 10 to the power,

followed by an integer K.

• The result should not overflow, i.e., the result should not be oo, even if the
final value, or an intermediate value generated along the way, is bigger than
Nmax, the biggest IEEE single format floating point number.

• The program should be reasonably efficient, doing no unnecessary computa-
tion (except for comparisons) when none of the intermediate or final values
are greater than Nmax. In this cose, the integer K displayed should be zero.

The way to accomplish these goals is as follows. Suppose the input consists of
two numbers, both 1. Oe30, so that the product is too big to fit in the IEEE single
floating point format. If the IEEE standard response to overflow is in effect,
the result is oo, and by observing this result the program can divide one of the
numbers by a power of 10 and try again. By choosing the power of 10 correctly
(possibly using a loop), the product can be made small enough not to overflow
the IEEE single format. In this way, a final product is computed that requires
final scaling by a certain power of 10: this is the integer that should be output,
and you can assume this is not bigger than the biggest integer that can be stored.
If your compiler does not support the macro INFINITY, then compute oo from
1.0/0.0 at the beginning, assuming the standard response to division by zero is
in effect.

An important part of the assignment is to choose a good test set to properly
check the program.

70 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Note: When you multiply two numbers together and compare the result to oo;

you might not get the answer you expect unless you first store the product of the
numbers in a float variable (since the registers may use the double or extended
format).

2. Extend the program so that the result does not underflow to zero regardless of
how small the intermediate and final values are.

3. Should you also avoid underflow to subnormal intermediate and final values?
Why or why not? How can this be done?

4. Make your program more efficient and accurate than outlined above. For exam-
ple, scale by a power of 2 instead of 10. Then scaling introduces no rounding
errors beyond the ones you can't avoid anyway. Decimal output can still be
displayed at the end. Also, it is not efficient to scale by one power of 2 at a
time; what would be a better choice? Instead of divisions, use multiplications by
precomputed reciprocals, which is faster.

Chapter 11

Cancellation

Consider the two numbers

and

The first number, x, is a 16-digit approximation to TT, while the second number agrees
with TT to only 12 digits. Their difference is

This difference is in the normalized range of the IEEE single format. However, if we
compute the difference z = x — y m a, C program, using the single format to store
the variables x and y before doing the subtraction, and display the result to single
precision, we find that the result displayed for z is

The reason is simple enough. The input numbers x and y are first converted from
decimal to the single binary format; they are not exact floating point numbers, so
the decimal to binary conversion requires some rounding. Because they agree to 12
digits, both x and y round to exactly the same single format number. Thus, all bits in
their binary representation cancel when the subtraction is done; we say that we have
a complete loss of accuracy in the computation z = x — y.

If we use the double format to store x and y and their difference z, and if we
display the result to double precision, we find that z has the value

This agrees with the exact answer (11.1) to about four digits, but what is the meaning
of the other digits? The answer is that the result displayed is the correctly rounded
difference of the double format representations of x and y. Although we might prefer
to see (11.1), this will not happen on a binary machine, as it would on a decimal
calculator with enough digits. It is important to realize that in this case, we may
ignore all but the first four or five digits of (11.3). The rest may be viewed as garbage,
in the sense that they do not reflect the original data x and y. We say that we have
a partial loss of accuracy in the computation z = x — y.

Regardless of whether the loss of accuracy is complete or partial, the phenomenon
is called cancellation. It occurs when one number is subtracted from another number
that is nearly equal to it. Equivalently, it occurs if two numbers with opposite sign
but nearly equal magnitude are added together.

71

72 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Approximating a Derivative by a Difference Quotient
An excellent illustration of cancellation is provided by the example of computing an
approximation to a derivative. Let / be a continuously differentiable function of
a single real variable, i.e., one for which the derivative /' exists and is continuous.
Suppose that we do not have a formula for /, but only a program that evaluates f (x)
for any given value x. How would we estimate the value of f'(a;), the derivative of /
at x?

By definition, f ' (x] is the slope of the line tangent to the graph of / at (x, f (x }) ,
i.e., the limit of the difference quotient

as h converges to zero. This difference quotient is the slope of the line passing through
the points (x + h, f(x + h)} and (x, f (x }) . A natural idea, then, is to evaluate (11.4)
for some "small" value of h—but how small? Setting h to zero will give us 0/0, i.e.,
NaN. Program 5 tries values of h ranging from 10"1 down to 10~20, assuming that
x — I and / is the sine function. Since we know that the derivative of sin(x) is cos(x),
we can evaluate this at x = 1 and compare the result to the difference quotient. The
absolute value of the difference between the two is called the error. The program uses
type double.

#include <math.h>
mainO /* Program 5: Approximate a Derivative by a

Difference Quotient*/
{

int n = 1;
double x = 1.0, h = 1.0, deriv = cos(x), diffquo, error;

printf(" deriv =°/.13.6e \n", deriv);
printf(" h diffquo abs(deriv - diffquo) \n");

/* Let h range from 10~{-1} down to 10~{-20} */

while(n <= 20) {
h = h/10; /* h = 10~(-n) */
diffquo = (sin(x+h)-sin(x))/h; /* difference quotient */
error = fabs(deriv - diffquo);
printf("7.5.1e °/.13.6e 7.13.6e \n", h, diffquo, error);
n++;

}
}

Here is the output:

deriv = 5.403023e-01
h diffquo abs(deriv - diffquo)

l.Oe-01 4.973638e-01 4.293855e-02
l.Oe-02 5.360860e-01 4.216325e-03
l.Oe-03 5.398815e-01 4.208255e-04
l.Oe-04 5.402602e-01 4.207445e-05
l.Oe-05 5.402981e-01 4.207362e-06
l.Oe-06 5.403019e-01 4.207468e-07

CHAPTER 11. CANCELLATION 73

l.Oe-07
l.Oe-08
l.0e-09
l.0e-10
l.Oe-11
l.Oe-12
l.Oe-13
l.Oe-14
l.Oe-15
l.Oe-16
l.Oe-17
l.Oe-18
l.Oe-19
l.Oe-20

5.403023e-01
5.403023e-01
5.403024e-01
5.403022e-01
5.403011e-01
5.403455e-01
5.395684e-01
5.440093e-01
5.551115e-01
0.000000e+00
0.000000e+00
O.OOOOOOe+00
0.000000e+00
0.000000e+00

4.182769e-08
2.969885e-09
5.254127e-08
5.848104e-08
1 . 168704e-06
4.324022e-05
7.339159e-04
3.706976e-03
1.480921e-02
5.403023e-01
5.403023e-01
5.403023e-01
5.403023e-01
5.403023e-01

The error (the absolute value of deriv - diffquo) is plotted as a function of h in
Figure 11.1, using a log-log scale. The results are quite interesting. We see that the
approximation gets better, i.e., the error gets smaller, as h gets smaller—as we might
expect—but only up to a certain point. When h gets too small, the approximation
starts to get worse! Why?

After a little thought, the reason is clear. If x = 1 and h is smaller than half of

Figure 11.1: Error (Absolute Value of Derivative Minus Difference Quotient) as a
Function of h (Log-Log Scale)

74 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

machine epsilon (about 10~16 in the double format), then x + h, i.e., 1 + /i, is rounded
to 1, and so naturally the formula that is being displayed gives the result zero, since
the values sm(x + h) and sin(x) completely cancel. In other words, the final answer has
no significant digits. When h is a little bigger than machine epsilon, the values do not
completely cancel but they still partially cancel. For example, suppose that the first 10
digits of sin(:r + h) and sin(x) are the same. Then, even though sin(a: + h) and sin(x)
both have about 16 significant digits, the difference has only about 6 significant digits.
Since the difference is stored as a normalized double format number, it appears at first
to have 16 significant digits, but only the first 6 are meaningful. We may summarize
the situation by saying that using h too big gives a big discretization error, while using
h too small gives a big cancellation error. For the function f(x) = sin(o;) at x = 1,
the best choice of h is about 10~8, approximately the square root of machine epsilon.

A closer look at the output shows that, for the larger values of h, the error drops
by approximately a factor of 10 every time h is reduced by a factor of 10—until the
cancellation error starts to take over. There is a reason for this. To explain it, we
assume that / is twice continuously differentiate, i.e., that the second derivative, /",
exists and is continuous—as is the case for the sine function. Then there exists z
between x and x + h such that

where /"(z) is the second derivative of / at z. Formula (11.5) is called a truncated
Taylor series. Therefore,

This quantity is the difference between what we are computing, the difference quotient,
and what we want, the exact derivative. Its absolute value is the discretization error.
Equation (11.6) shows that if h is reduced by a factor of 10, the discretization error
also decreases by a factor of about 10 (not exactly, since the point z between x and
x + h changes when h changes). Thus, we say the discretization error is O(h). This
explains the factors of 10 observed in the table (and the corresponding straight line
of data on the right side of Figure 11.1).

The lesson to be learned here is that cancellation, which occurs when subtraction of
nearly equal values takes place, should be avoided when possible. Using the formula for
the derivative of a function is much more accurate than approximating it by difference
quotients.

The Central Difference Quotient
As long as / is smooth enough, we can construct a more accurate approximation to the
derivative of / at x by computing the slope of the line passing through (x + h, f(x+h))
and (x — /i, f(x — h)}, i.e.,

This is called the central difference quotient. Assume that the third derivative /"'
exists and is continuous. For small enough h (but large enough that cancellation is
not a problem), the central difference quotient gives a more accurate approximation
to the derivative f ' (x) than the difference quotient (11.4). Here is the explanation.
Truncated Taylor series give us

CHAPTER 11. CANCELLATION 75

for some z\ between x and x + h and

for some z2 between x and x — h. Subtracting (11.8) from (11.7) and dividing through
by 2/i, we get

This gives the discretization error for the central difference quotient. Thus, the dis-
cretization error for the central difference quotient is O(h2) instead of O(h).

Exercise 11.1 Change Program 5 to use centered differences, and observe that when
h is reduced by a factor of 10, the discretization error is reduced by a factor of about
100, confirming the O(h2) behavior. But, as before, when h becomes too small, the
cancellation error dominates and the results become useless. Approximately what h
gives the best results?

Exercise 11.2 Using a spreadsheet program such as Excel, implement the finite dif-
ference formula in a spreadsheet. Can you tell from the results what precision the
spreadsheet program is using? If necessary, use the menu options to change the output
format used.

This page intentionally left blank

Chapter 12

Conditioning of Problems

Suppose we wish to solve some problem using numerical computing. Roughly speaking,
the conditioning of the problem measures how accurately one can expect to be able to
solve it using a given floating point precision, independently of the algorithm used. We
confine our discussion to the problem of evaluating a real function of a real variable,

assuming that / is twice continuously differentiate and that x and f { x) are in the
normalized range of the floating point precision. Define

Evaluating the function / on the computer using floating point arithmetic, the best
we can hope for is to compute the value

In fact, even this is an unreasonable hope because we will not be able to evaluate /
exactly, but for simplicity, let us suppose for now that we can. Now, we know from
(5.10) in Chapter 5 that the relative rounding error satisfies the bound

where e is machine epsilon (with an additional factor of 1/2 if the rounding mode is
round to nearest). It follows that

As noted in Chapter 5, the left-hand side of this inequality estimates the number of
decimal digits to which x agrees with x—at least about seven digits in the case of
IEEE single precision. The question we now ask is: To how many digits can we expect
y to agree with y? To find out, we must look at the quantity

We have

The first factor,

77

78 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

approximates f'(#), the derivative of / at x. Therefore,

where

The quantity K f (X) is called the condition number of f at x. It measures approximately
how much the relative rounding error in x is magnified by evaluation of f at x. (For
a more rigorous derivation that eliminates the approximation symbol «, see Exercise
12.8.)

Now we are in a position to answer the question: To how many digits can we
expect y to agree with y? The left-hand side of (12.4) is a relative measure of how
well y approximates y. The second factor on the right-hand side of (12.4) is a relative
measure of how well x approximates x. Taking logarithms (base 10) on both sides,
we get

Here the left-hand side is approximately the number of digits to which y agrees with
y, and the first term on the right-hand side is approximately the number of digits to
which x agrees with x, which we know from (12.1) and Table 4.4 is at least about
seven when IEEE single precision is in use. Consequently, we conclude with a rule of
thumb.21

Rule of Thumb 12.1 To estimate the number of digits to which y = f(x} agrees
with y = f (x) , subtract

from the approximate number of digits to which x = round(x) agrees with x, i.e.,
7 when using IEEE single precision or 16 when using IEEE double precision (see
Table 4A). Here Kf(x) is the condition number of f at x, defined in (12.5), and
we assume that f is twice continuously differentiable and that x and f (x) are in the
normalized range of the floating point system.

Since evaluating the condition number of / at x requires first evaluating / at x as
well as the derivative f ' (x) , the condition number does not help us solve our original
problem, the evaluation of /. On the contrary, evaluating the condition number is
harder than evaluating the function. However, the condition number does give us
insight into difficulties that may arise when we evaluate / at certain values of re.

Exercise 12.1 Determine the condition numbers of the functions

and

and discuss what values of x, if any, give large condition numbers Kg(x) or Kh(x).

Table 12.1 tabulates the function, derivative, and condition number of three func-
tions, the exponential, logarithmic, and sine functions, each at three different values
of x. These values are all exact. The three functions and the relevant points (x, f(x})
are shown in Figure 12.1. The derivatives of exp(x), log(x), and sin(x) are

21A rule of thumb is any method of measuring that is practical though not precise [Web96].

CHAPTER 12. CONDITIONING OF PROBLEMS 79

Table 12.1: Sample Condition Numbers

/
exp
exp
exp
log
log
log
sin
sin
sin

X

1
0
-1
e
I

l/e
7T

7T/2

0

/(*)
e
1

l/e
1
0
-1
0
1
0

f'(*)
e
1

1/e
1/e
1
e
-1
0
1

Kf(x)

1

0
1
1

oo
1

oo
0

NaN

log10(«/(x)
0

-co
0
0
oo
0
00

— oo
NaN

Figure 12.1: Exponential, Logarithmic, and Sine Functions

respectively, so the condition numbers are

Altogether, Table 12.1 gives nine examples. Four of these examples have condition
numbers equal to 1. In these examples, we expect that if x approximates x to about
seven significant digits, then y = f(x) should approximate y — f(x) to about seven
digits. In two examples, we see a condition number equal to 0. The problem of
evaluating /(#) in these examples is said to be infinitely well conditioned, and we
expect that y should approximate y to many more digits than x approximates x. On
the other hand, two other examples have condition numbers equal to oo. The problem
of evaluating /(x) in these cases is said to be infinitely ill conditioned, and we expect
that y should approximate y to many fewer digits than x approximates x. Finally,
there is one case in which the condition number is not defined because both x and
f(x) are zero. This is indicated by the NaN in the table. However, see Exercise 12.3.

Exercise 12.2 Construct a table like Table 12.1 to display the condition number of
the functions loglO, cos, and asm, using points where they can be computed exactly, if
possible.

80 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 12.3 The condition number of the sine function is not defined at x = 0, but
the limit of the condition number is defined as x —» 0. What is this limit? Does (12.4)
still hold if we define this limit to be the condition number?

Checking the Rule of Thumb
We used Program 6 to evaluate the math library functions exp, log, and sin near the
points x shown in Table 12.1. The values e, l/e, TT, and Tr/2 were input to double
accuracy and stored in the double variable xD. The values 1, 0, and —1 would have
been stored exactly, so instead we input numbers near these values. For each input
value, Program 6 computes the relevant function value in two ways. The output is
summarized in Table 12.2. The fourth column displays the double results computed by
the function when its argument is the double variable xD. The third column displays
the double results computed by the function when its argument is rounded to single
precision before being passed to the function. In both cases, the function evaluation
uses double precision and the value is displayed to 16 digits. The only difference is
the precision of the argument passed to the function.

#include <math.h>
main () /* Program 6: Function Evaluation */
{

int funcode; /* function code */
float xS; /* IEEE single */
double xD, fxS, fxD, relerr, cond; /* IEEE double */

printf("enter 1 for exp, 2 for log, 3 for sin ");
scanf ("7od" , &funcode) ;
printf("enter an input value \n");
scanf ("7,lf", &xD); /* read using double format */
xS = xD; /* force single format */
switch (funcode) {

case 1: fxS = exp(xS); fxD = exp(xD);
cond = fabs(xD); break;

case 2: fxS = log(xS); fxD = log(xD);
cond = fabs(I/log(xD)); break;

case 3: fxS = sin(xS); fxD = sin(xD);
cond = fabs(xD/tan(xD)); break;

}
printf ("funcode */,d\n", funcode);
printf ("xS = 7.22.15e f(xS) = 7.22.15e \n" , xS, f xS) ;
printf ("xD = 7.22.15e f(xD) = 7,22.15e \n", xD, f xD) ;
/* relative error */
relerr = fabs((fxD - fxS)/fxD);
/* approximate number of digits they are in agreement */
printf ("relative error = 7.e ", relerr);
printf ("approx digits agreeing = 7.2.0f\n", -loglO(relerr));
/* log base 10 of condition number */
printf ("condition number = 7.e ", cond);
printf ("loglO condition number » 7,2.0f\n", loglO(cond));

}

We may view the numbers in the third column of Table 12.2 as reasonably accurate
evaluations of y, the value of the function / at its rounded-to-single argument x. We

CHAPTER 12. CONDITIONING OF PROBLEMS 81

Table 12.2: Actual Function Evaluations: Exp, Log, and Sin

/
exp
exp
exp
log
log
log
log
sin
sin
sin

X

1.000001
0.000001
-1.000001
e (double)

1.001
1.000001

l/e (double)
TT (double)

7T/2 (double)
0.000001

f(x), x rounded to single
2 . 718284420815846e+00
1 . 0000010000004986+00
3 . 6787909033443506-01
9 . 9999996963214006-01
9 . 9954701644058936-04
9 . 536738616591883e-07
-9 . 9999997512838706-01
-8 . 7422780003724756-08
9 . 9999999999999906-01
9 . 9999999747507616-07

f(x), x rounded to double
2 .7182845467422336+00
1 . 0000010000005006+00
3 . 6787907329218516-01
1 . OOOOOOOOOOOOOOOe+00
9 . 9950033308342326-04
9 . 9999949991806686-07
-1 . OOOOOOOOOOOOOOOe+00
1 . 2246467991473536-16
1 . OOOOOOOOOOOOOOOe+00
9 . 9999999999983336-07

Agree
7
15
7
8
4
1
8
-9
15
9

Loss
0
-6
0
0
3
6
0
16
-15
0

may view the numbers in the fourth column as reasonably accurate evaluations of the
exact value y = f(x)—at least, the rounded-to-double argument xD is much closer to
the input value x than the rounded-to-single argument xS. The column headed Agree
in Table 12.1 estimates the number of digits to which these two computations agree,
using the formula on the left-hand side of (12.6), rounded to the nearest integer. The
column headed Loss shows the log (base 10) of the condition number of the function at
xD, using (12.7) and rounding to the nearest integer. According to Rule of Thumb 12.1,
the number shown in the column headed Agree should be approximately 7 minus the
number shown in the column headed Loss. This is exactly the case for several of
the input values, e.g., the log function at x = 1.001 (where the condition number
is about 1000) and x = 1.000001 (where it is about 106). These are two of the ill-
conditioned examples. In the extremely well-conditioned cases, the exp function at
x = 10~6 (condition number 10~6) and the sine function very near ?r/2 (condition
number 10~15), we have, as expected, more agreement in the function values than
there is in their arguments; however, this is limited to about 15 digits, about the
most we can expect using double precision computations. In the case of the sine
function near TT, which is the worst conditioned example of all (condition number
1016), the displayed agreement of —9 digits is a consequence of the division by f xD in
the computation of the log (base 10) of the relative error; if we divided by f xS instead,
we would be informed that we have 0 digits of agreement.

Exercise 12.4 As mentioned in Chapter 4, deciding to how many digits two numbers
agree is problematic. Devise a rule that you think is reasonable and test it on the
numbers in Table 12.2. How do your answers compare with the log (base 10) of the
relative error reported in the column headed Agree?

Exercise 12.5 Modify Program 6 to evaluate the functions whose condition numbers
were displayed in Exercise 12.2, and display the results in a table like Table 12.2. Don't
forget to use the correct formulas for the condition numbers defining the output for the
Loss column. Do the results support Rule of Thumb 12.1?

Exercise 12.6 Determine the condition number of the parallel resistance formula with
variable RI and fixed RI = 1, i.e., the condition number of

82 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 12.7 Suppose that g is a function that is three times continuously differ-
entiable. Determine the condition number for the problem of evaluating the exact
derivative

and the condition number for evaluating the exact difference quotient

for fixed h > 0. Does the latter converge to the former as h converges to zero?

Exercise 12.8 Replace (12.4) by a more precise statement that does not use the «
symbol, using the truncated Taylor series (11.5) instead of (11.4) together with the
assumption that f is twice continuously differentiate.

The notion of conditioning extends far beyond simple function evaluation to more
complicated and challenging problems. In other settings, the definition of condition
number is more subtle than (12.5). For example, suppose the problem to be solved is
to compute y = Ax, where A is a matrix and a; is a vector, or to solve a system of linear
equations Ay = x for y, where A is a square nonsingular matrix and x is a vector. If
we take A to be fixed, we need to know how relative errors in the solution vector y
depend on relative errors in the data vector x, where we must introduce the notion of
a norm to quantify the magnitude of a vector. The condition number is then defined
to measure the worst case of such dependence over all data vectors x with fixed norm;
see [Dem97], [Hig96], or [TB97]. In the case of simple function evaluation discussed
in this chapter, where a: is a scalar, not a vector, this crucial worst case aspect of the
condition number is not present.

Chapter 13

Stability of Algorithms

An algorithm is a well-defined computational method to solve a given class of problems.
In computer science, the study of algorithms is traditionally concerned with efficiency;
it is understood that an algorithm is supposed to get the correct answer, though
proving that this will happen is not necessarily easy. However, numerical algorithms,
which solve problems using floating point arithmetic, almost never find the exact
solution to a problem. Instead, the goal is "approximately correct" answers. These are
by no means guaranteed. Although each individual floating point operation is correctly
rounded, a poor choice of algorithm may introduce unnecessarily large rounding errors.

We saw in the previous chapter that the conditioning of a problem measures how
accurately one can expect to be able to solve it using a given floating point precision,
independently of the algorithm used. The stability of an algorithm measures how good
a job the algorithm does at solving problems to the achievable accuracy defined by
their conditioning. For whatever problem one might want to solve, some algorithms
are better than others. Those algorithms that get unnecessarily inaccurate answers
are called unstable.

We continue to confine our attention to the problem of evaluating a real function
of a real variable,

assuming that / is twice continuously differentiate and that x and f (x) are in the
normalized range of the floating point precision. As earlier, define

We commented in the previous chapter that, using floating point arithmetic, the best
we can hope for is to compute the value

and we showed that

where K/(X) is the condition number of / at x. However, it is generally too much to
expect an algorithm to find y satisfying (13.1). We say that an algorithm to compute
f (x) is stable if it returns y satisfying

83

84 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

where, as earlier, we deliberately avoid a specific definition for the symbol w, meaning
approximately equal. For rigorous definitions of stability, see [TB97, Section III] and
[Hig96, Chapter 1]. Note that we do not insist that y = f(x).22 If an algorithm to
compute f(x] delivers y for which the left-hand side of (13.2) is much greater than
the right-hand side, we say the algorithm is unstable.

Compound Interest
We illustrate these concepts by considering algorithms for computing compound inter-
est. Suppose we invest ao dollars in a bank that pays 5% interest per year, compounded
quarterly. This means that at the end of the first quarter of the year, the value of our
investment is

dollars, i.e., the original amount plus one quarter of 5% of the original amount. At the
end of the second quarter, the bank pays interest not only on the original amount ao,
but also on the interest earned in the first quarter; thus, the value of the investment
at the end of the second quarter is

dollars. At the end of the third quarter the bank pays interest on this amount, so that
the investment is now worth

and at the end of the whole year the bank pays the last installment of interest on the
amount 03, so that the investment is finally worth

In general, if ao dollars are invested at an interest rate x with compounding n times
per year, at the end of the year the final value is

dollars, where

This is the compound interest formula. It is well known that, for fixed x, the com-
pound interest formula Cn(x] has a limiting value as n —>• oo, namely, exp(rr), as
already displayed in (10.1). Consequently, excessively high compounding frequencies
are pointless.

Nonetheless, it is interesting to evaluate Cn(x] for various choices of n. Before
considering algorithms to do this, let us investigate the condition number of Cn(x).
From the chain rule, the derivative is

Thus, for n sufficiently large compared to |z|, Cn(x) is close to being its own derivative,
which is not surprising, since the derivative of the limiting function exp(x) is itself.
Therefore, the condition number of Cn is

which converges to \x\, the condition number of exp(:r) (see (12.7)), as n —» oo.
22The more demanding definition known as backward stability requires that y = f (x) for some x

relatively close to x.

CHAPTER 13. STABILITY OF ALGORITHMS 85

Consequently, the compound interest formula is a well-conditioned function even for
very large n, as long as \x\ is not large.

We first state the simplest, though not the most efficient, algorithm for computing
Cn(x).

Algorithm 13.1

1. Compute z = l-\- £, and set w = 1.

2. Repeatedly (n times) perform the multiplication w <— w x 2, and return w.

Since n may be large, the following more efficient algorithm makes use of the C
library function pow.

Algorithm 13.2

1. Compute z = l + £.

2. Return pow(z,n).

A third algorithm makes use of the properties of the exponential and logarithmic
functions. Writing

and taking logarithms (base e) of both sides, we obtain

Therefore,

Algorithm 13.3

1. Compute z = l + £.

2. Compute v = log(z) and return exp(n x v).

Program 7 implements all three algorithms in C using single precision. The output
for various n is summarized in Table 13.1. In all cases the input for x is 0.05, i.e., an
interest rate of 5%.

#include <math.h>
main () /* Program 7: Compound Interest */
{

int n,i;
float x,z,w,v;

printf("enter input values for x (float) and n (integer) \n");
scanf("7.f 0/.d", &x, &n);
z = 1 + x/n;
w - 1;
for (i=0; i<n; i++) {

w = w*z;
>
v = log(z);
printf ("Alg 1: '/.e \n", w) ;
printf("Alg 2: 7.e \n", pow(z,n));
printf ("Alg 3: °/.e \n", exp(n*v));

}

86 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Table 13.1: Compound Interest at 5%, Single Precision

n
4
365
1000
10,000
100,000
1,000,000

Algorithm 13.1
1.050946
1.051262
1.051215
1.051331
1.047684
1.000000

Algorithm 13.2
1.050946
1.051262
1.051216
1.051342
1.048839
1.000000

Algorithm 13.3
1.050946
1.051262
1.051216
1.051342
1.048839
1.000000

The results are alarming! They look reasonable only for n = 4 (compounding
quarterly) and n = 365 (compounding daily). For n = 1000, all three algorithms give
results that are less than the result for n = 365. This is certainly not correct; we
know that compounding more often may not give much more interest, but it certainly
should not give less! We get our first clue as to what is happening when we come to
the last line in the table. When n = 1,000,000, the computation in step 1 of all three
algorithms,

rounds exactly to 1 using single precision. Thus, the crucial interest rate information
is completely lost, and all three algorithms return a result exactly equal to 1, as if the
interest rate had been zero. Likewise, when n = 10,000 or n = 100,000, some but not
all of the interest rate information is being lost in the computation of z.

On the other hand, it is clear that z is being computed correctly to about seven
digits—there is no cancellation here! So why does the loss of the subsequent digits
matter?

The heart of the matter is that all three algorithms are unstable. The rounding
error in step 1 of each algorithm has a dramatically bad effect because the condition
number of the function being computed in step 2 is much worse than the condition
number of Cn. In fact, step 2 of all three algorithms computes the same function,

The derivative of Pn(z) is nzn 1, so the condition number is

which, unlike the condition number of Cn(x), grows without bound as n —> oo. For
example, when n = 100,000, the log (base 10) of the condition number is 5, and so,
according to Rule of Thumb 12.1, although z computed in step 1 has seven significant
digits, the result w computed in step 2 has only about two accurate digits. Thus,
ill conditioning has been introduced, even though it was not present in the original
function to be computed. Consequently, the algorithms are unstable.

Algorithm 13.3 does not avoid the instability with its use of exp and log. We
already observed in the previous chapter that log(z) has a large condition number
near z — 1, so although z is accurate to about seven digits, v = log(z) is accurate to
only about two digits when x = .05 and n = 100,000 (see Table 12.2).

The easiest way to get more accurate answers is to change Program 7 so that
all computations are done in double precision. All we need to do is change float

CHAPTER 13. STABILITY OF ALGORITHMS 87

Table 13.2: Compound Interest at 5%

n

4
365
1000
10,000
100,000
1,000,000

Algorithm 13.1
(double)
1.050945
1.051267
1.051270
1.051271
1.051271
1.051271

Algorithm 13.2
(double)
1.050945
1.051267
1.051270
1.051271
1.051271
1.051271

Algorithm 13.3
(double)
1.050945
1.051267
1.051270
1.051271
1.051271
1.051271

Algorithm 13.4
(single)
1.050945
1.051267
1.051270
1.051271
1.051271
1.051271

to double, and change °/.f to %lf in the scanf statement. The results, shown in
Table 13.2, are correct to single precision accuracy because we are doing the com-
putations in double precision. Of course, the algorithms are still not stable. If n is
sufficiently large, inaccurate answers will again appear.

Exercise 13.1 For what n does the double precision version of Program 7 give poor
answers? Display the results in a table like Table 13.1.

Surprisingly, there is no obvious stable algorithm to compute the compound in-
terest formula using only the library functions pow, exp, and log. See [Gol91] for a
simple stable algorithm that uses only exp and log, but one that is clever and far
from obvious; a related discussion is given in [Hig96, Section 1.14.1]. However, C99
provides a math library function loglp that is exactly what we need:

This function is well-conditioned at and near s = 0 (see Exercise 13.2). This eliminates
the need for the addition in step 1 of Algorithm 13.3 and gives us the following stable
algorithm.

Algorithm 13.4

1. Compute u = ^.

2. Compute v = loglp(w), and return exp(n x v).

This is implemented in Program 8, and the results are shown in Table 13.2. The
stable algorithm gives accurate results using single precision; the unstable algorithms
give such accurate results only when double precision is used.

#include <math.h>
main () /* Program 8: Stable Algorithm for Compound Interest */
•C

int n;
float x,u,v;

printf("enter input values for x (float) and n (integer) \n");
scanf C7.f V.d", &x, &n);
u = x/n;
v = loglp(u);
printf ("Alg 4: */,e \n", exp(n*v));

88 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Exercise 13.2 What is condition number of the function loglp(s) as a function of
s? What is the limit of the condition number as s —» 0? See Exercise 12.3.

Instability via Cancellation
In fact, the phenomenon of cancellation described in Chapter 11 can be completely
explained by conditioning. The condition number of the function

is

which is arbitrarily large for x close to 1. Consequently, an algorithm that introduces
cancellation unnecessarily is introducing ill conditioning unnecessarily and is unstable.

In Chapter 11, we discussed the idea of approximating a derivative g'(x) by a
difference quotient. A working of Exercise 12.7 shows that the problem of evaluating
the difference quotient has the same condition number in the limit as h —* 0 as
the problem of evaluating g'(x) directly. Suppose that this condition number is not
large. Unfortunately, the first step in evaluating the difference quotient, computing
g(x + h}— g(x), does have a large condition number for small fo, and hence computing
the difference quotient without the use of intermediate higher precision is unstable.
Better algorithms exist to approximate the derivative, e.g., using the central difference
quotient with larger h or still more accurate difference quotients with still larger h.
However, this does not mean that the ordinary difference quotient is necessarily a poor
choice of algorithm, as it may be justified by its efficiency and may be adequate if h
is chosen carefully. Of course, using the formula for the derivative is preferable if it is
known.

Exercise 13.3 Why is the formula

an unstable way to compute f (x) = x + 1? For what values of x is it unstable?

Exercise 13.4 Consider the function f(x] — exp(rc) — 1.

1. What is the condition number of f (x) ? What is the limit of the condition number
as x —> 0? See Exercise 12.3.

2. Write a C program to compute f(x} using the exp function. Is the algorithm
stable? If not, what are the values of x that cause trouble?

3. If your compiler supports C99, write a C program to compute f (x) directly by
calling the math library function expml, intended exactly for this purpose. Does
it give more accurate results?

Exercise 13.5 This is an extension to Exercise 10.17. Instead of using only positive
input data, run your interval sum program to add up numbers with both positive and
negative values. Choose some of your input values so that the numbers cancel out and
the result is zero or close to zero. To how many significant digits do your three answers
(upper bound, lower bound, and intermediate) agree? Is it as many as before? Is the
difficulty that the problem of adding data with alternating signs is ill conditioned,
or that the addition algorithm is unstable? Does it help to add up the positive and

CHAPTER 13. STABILITY OF ALGORITHMS 89

negative terms separately? Be sure to try a variety of input data to fully test the
program.

Computing the Exponential Function without a Math Library

For our second example illustrating stability and instability, let us attempt to compute
the exponential function exp(x) directly, without any calls to library functions. Prom
(12.7), we know that exp is a well-conditioned function as long as \x\ is not too large.
We use the well-known Taylor series

This allows us to approximately compute the limiting sum by means of a simple loop,
noting that successive terms are related by

Thus, each term is easily computed from the previous term by multiplying by x and
dividing by n. How should we terminate the loop? The simplest way would be to
continue until the new term in the sum underflows to zero, as in Program 2 (Chapter
10). A better solution is to use the idea in Program 3 (Chapter 10): the loop may be
terminated when the new term is small enough that adding it to the previous terms
does not change the sum. Program 9 implements this idea using single precision.

#include <math.h>
main() /* Program 9: Compute exp(x) from its Taylor series */
{

int n;
float x, term, oldsum, newsum;

printf("Enter x \n");
scanf('7.e", &x);
n « 0;
oldsum =0.0;
newsum = 1.0;
term = 1.0;
/* terminates when the new sum is no different from the old sum */
while (newsum !=oldsum){

oldsum = newsum;
n++;
term = term*x/n; /* term has the value (x~n)/(n!) */
newsum = newsum + term; /* approximates exp(x) */
printf ("n = 7.3d term = 7.13.6e newsum = 7,13.6e \n",

n,term,newsum);
}
printf ("From summing the series, exp(x)=7.e \n", newsum);
printf ("Using the standard function, exp(x)=7.e \n", exp(x));

}

90 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

Here is the output of Program 9 for x = .05:

n
n
n
n
n

=
=
=
=
=

1
2
3
4
5

term
term
term
term
term

=
=
=
=
=

5
1
2
2
2

.000000e-02

. 250000e-03

. 083333e-05

.604167e-07

.604167e-09

newsum
newsum
newsum
newsum
newsum

=
=
=
=
=

1
1
1
1
1

. 050000e+00

.051250e+00

.0512716+00

.0512716+00

.0512716+00
From summing the series, exp(x)=1.051271e+00
Using the standard function, exp(x)=1.051271e+00

We see that the value of term printed at each step grows rapidly smaller, and
the loop terminates when term is so small that two successive values of newsum are
identical. Actually, it looks from the output that this occurs a few lines before the
loop terminates, but that is just the decimal conversion of newsum to seven digits; the
binary floating point values are different until the last line. The final value of newsum,
1.051271, agrees with the value computed by the library function exp to all digits
shown.

Now let us run Program 9 again for a larger value of x, say 10.0:

n = 1 term = l.000000e+01
n = 2 term = 5.000000e+01
n = 3 term = 1.666667e+02

newsum = 1.100000e+01
newsum = 6.100000e+01
newsum = 2.276667e+02

.4 lines omitted.

n
n
n
n
n
n
n
n

=
=
=
=
=
=
=
=

8
9
10
11
12
13
14
15

term
term
term
term
term
term
term
term

=
=
=
=
=
=
=
=

2
2
2
2
2
1
1
7

.480159e+03

.755732e+03

.7557326+03

.505211e+03

. 087676e+03

.6059056+03

. 147075e+03

.6471646+02

newsum
newsum
newsum
newsum
newsum
newsum
newsum
newsum

=
=
=
=
=
=
=
=

7
1
1
1
1
1
2
2

. 330842e+03

.0086576+04

.2842316+04

. 534752e+04

.743519e+04

.9041106+04

.0188176+04

.095289e+04

13 lines omitted.

n = 29 term = 1.130996e-02 newsum = 2.202646e+04
n - 30 term = 3.769987e-03 newsum = 2.202647e+04
n = 31 term = 1.216125e-03 newsum = 2.202647e+04
n = 32 term = 3.800390e-04 newsum = 2.202647e+04
From summing the series, exp(x)=2.202647e+04
Using the standard function, exp(x)=2.202647e+04

We find that term grows larger than its initial value before it starts to get smaller,
but it does eventually grow smaller when n > 10, and the loop eventually terminates
as before, with an answer 22026.47 that again agrees with the library function exp to
single precision.

Exercise 13.6 Termination of the loop takes place when the decimal exponents of
newsum and term differ by about 7 or 8. Why is this?

Table 13.3 shows the output of Program 9 for various values of x. The first column
shows the value computed by summing the series, and the second column shows the

CHAPTER 13. STABILITY OF ALGORITHMS 91

Table 13.3: Computing the Exponential Function

X

10
1

.05
-1
-5
-10

Computed by summing series
2.202647e+04
2.718282e+00
1.051271e+00
3.678794e-01
6.738423e-03
-6.256183e-05

Computed by call to exp(x)
2.202647e+04
2.718282e+00
1.051271e+00
3.678794e-01
6.737947e-03
4.539993e-05

result returned by the library function exp. The results agree to single precision for
x = 10, x = 1, x = 0.05, and x — -1. However, the final line of Table 13.3 shows that
the value computed by the loop for x — —10 is completely wrong! And the previous
line for x = —5 is correct to only about four digits.

Let's look at the details for x = —10.

n = 1 term » -l.000000e+01
n = 2 term » 5.000000e+01

newsum « -9.000000e+00
newsum = 4.100000e+01

.6 lines omitted.

n = 9 term = -2.755732e+03 newsum
n = 10 term = 2.755732e+03 newsum

-1.413145e+03
1.342587e+03

.34 lines omitted.

n = 45 term = -8.359650e-12 newsum = -6.256183e-05
n » 46 term = 1.817315e-12 newsum » -6.256183e-05
From smnming the series, exp(x)=-6.256183e-05
Using the standard function, exp(x)=4.539993e-05

We see that the values of term are the same as for x = 10 except that they alternate
in sign, which makes sense, since when n is odd,

Therefore, since the terms alternate in sign, they cancel with each other, and eventually
the value of newsum starts to get smaller. The final result is a small number; this is
to be expected, since exp(x) < 1 for x < 0. Also, the loop takes longer to terminate
than it did for x = 10, since the decimal exponents of term and newsum must differ by
about 7 or 8 and newsum is smaller than it was before. Looking at the final value for
newsum, however, we see that the answer is completely wrong, since it is not possible
for exp(rc) to be negative for any value of x. What is happening?

To find out, we examine the line-by-line output of Program 9 more carefully. We
see that for x = —10, the size (i.e., absolute value) of term increases to 2.75 x 103

(for n = 10) before it starts decreasing to zero. We know that term is accurate to
at most about seven digits, since it is an IEEE single format number. Consequently,
its largest value, about 2.75 x 103, must have an absolute rounding error that is at
least about 10~4. The same error must be present in newsum, since it is obtained by

92 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

adding values of term together. As more terms are added to newsum, this error is not
reduced, even though the value of newsum continues to get smaller as the terms cancel
each other out. In fact, the final value of newsum is smaller, in absolute value, than
the error and consequently has no significant digits. The source of the difficulty is the
size of the intermediate results together with the alternating sign of the terms, which
cancel each other out, leading to a small final result even though the individual terms
are quite large. For x > 0, there is no difficulty, since all the terms are positive and no
cancellation takes place. But for x < 0, the results are meaningless for \x\ sufficiently
large.

Now let's run Program 9 for x = — 5:

n = 1 term = -5.000000e+00 newsum = -4.000000e+00
n = 2 term = 1.250000e+01 newsum = 8.500000e+00
n = 3 term = -2.083333e+01 newsum = -1.233333e+01
n = 4 term = 2.604167e+01 newsum = 1.370833e+01
n = 5 term = -2.604167e+01 newsum = -1.233333e+01
n = 6 term = 2.170139e+01 newsum = 9.368057e+00

20 lines omitted

n = 27 term = -6.842382e-10 newsum = 6.738423e-03
n = 28 term = 1.221854e-10 newsum = 6.738423e-03
From summing the series, exp(x)=6.738423e-03
Using the standard function, exp(x)=6.737947e-03

The final result agrees with the library function exp to a few digits, but not to full
precision. When x = — 5, the difficulty is not as severe, since the size of term grows
only to 2.6 x 101 before it starts decreasing to 0. This value of term, which is again
accurate to at most about seven digits, has an absolute rounding error at least about
10~6. The final answer, which is computed to be 6.738423 x 10~3, must have an error
of size at least about 10~6 and is therefore accurate to only about three digits.

Since the problem of computing exp(#) is well conditioned when \x\ is not large,
the inevitable conclusion is that Program 9 implements an algorithm that is unstable
for x < 0.

How can we change Program 9 so that it is stable? The answer is simple: if x is
negative, sum the series for the positive value — x and compute the reciprocal of the
final amount, using the fact that

Thus we add to the end of the code

printf("0ne over the sum=°/,e \n", 1/newsum);
printf("Call to exp(-x) =7.e \n", exp(-x));

and run it for x — 10 instead of x = —10. The final two lines of output are

One over the sum=4.539992e-05
Call to exp(-x) =4.539993e-05

It may seem amazing that this simple trick could work so well, but the reason it works
is that no cancellation takes place. Dividing 1 by a large number with about six or
seven significant digits results in a small number that also has about six or seven
significant digits. (See Exercise 13.7.)

CHAPTER 13. STABILITY OF ALGORITHMS 93

This confirms that the difficulty with Program 9 was not inherent in the problem
that it solves, which is not ill conditioned. We chose an unstable algorithm that
introduced cancellation, and therefore ill conditioning, unnecessarily.

Although Program 9 works well when cancellation is avoided, it cannot be con-
cluded that summing a series until the sum is unchanged will always give such good
answers. See Exercises 13.13-13.15.

The library function exp uses a more clever but more complicated method, which
is both highly accurate and very fast. The purpose of this discussion has been to show
that a good answer can be obtained with a simple program, but also that a completely
wrong answer can be obtained if precautions are not taken. For much more detailed—
yet very readable—discussions of algorithms for computing the functions in the math
library, see [Mul97].

Some microprocessors provide hardware implementations of some of the math func-
tions. For example, the Intel microprocessors provide hardware support for base 2
exponential and logarithmic functions.

Exercise 13.7 Determine the condition number of the function

Are there any finite, nonzero numbers x for which f has a large condition number?

Exercise 13.8 Suppose Program 9 is changed to use double precision. For what range
of values of x (approximately) does it give no significant digits, and why? Modify
Program 9 further using the formula (13.3) to correct the difficulty.

Exercise 13.9 Suppose Program 9 is changed to add the positive and negative terms
in two separate sums, and take their difference at the end. Does this improve its
stability? Why or why not?

Exercise 13.10 I f \ x is large enough, overflow occurs in Program 9. If the standard
response to overflow is used, what results are generated (a) ifx>0, (b) if x < 0, and
(c) if x < 0 but the program is modified using the formula (13.3) ? Explain why these
results are obtained.

Exercise 13.11 // your compiler supports the rounding modes, modify Program 9
using the interval arithmetic idea. Compute lower and upper bounds on the sum,
using round down and round up. You may have to change the termination condition
in order to avoid an infinite loop; why? How well do the lower and upper bounds
agree when x = 10? How well do they agree when x = —10? Can you also get
lower and upper bounds for the result computed by the stable version of the algorithm
incorporating (13.3)? (This requires thought; see Exercise 10.18.,) Do you conclude
that the rounding modes are useful for testing the stability of an algorithm?

Exercise 13.12 Write a stable modification of Program 9 that computes the function
exp(:r) — 1 without any calls to the math library. Compare your answer with the result
computed by expml (see Exercise 13.4).

Exercise 13.13 It is well known that the harmonic series

does not converge. Write a C program to sum this series, using Program 9 as a model,
terminating if the sum is unchanged by the addition of a term. Use an integer n to

94 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

control the loop but compute the terms of the series as the floating point expression
1.0/n, not the integer expression 1/n, which rounds down to zero for n > 1. Use float
variables, not double. Does the program terminate? Including a print statement in
the loop will greatly slow down program execution.

Exercise 13.14 // you have a fast computer with nothing much to do, modify the
program for Exercise 13.13 to use double precision. Do not include a print statement
in the loop. This time, you will find that the value of n runs through all 231 — 1
positive integers until integer overflow occurs. Then what happens? If the overflow
is simply ignored, the loop continues to run through all 231 negative integers as well,
in reverse order, until finally, at step 232 of the loop, all bits of the result become
zero (the overflow bit which does not fit the 32-bit word is discarded). Since n is now
zero, the floating point value for the term 1.0/n becomes oo, the sum becomes oo,
and the loop terminates the next time through, when n is 1 and the sum is still oo.
So we get the right answer (that the series diverges to oo) for completely the wrong
reason/ Unfortunately, C99 did not impose requirements on system response to integer
overflow.

Exercise 13.15 It is well known that the series

converges to 7r2/6. Write a C program to sum this series, terminating if the sum is
unchanged by the addition of a term. How good are the results using single precision?
Using double precision? Use an integer n to control the loop but assign this to a float
variable before you square it, to avoid integer overflow.

Exercises 13.13 through 13.15 show that it is not always easy to write a stable
algorithm to sum a series. See [Hig96, Section 1.12.4 and Chapter 4] for more details.

Interval Arithmetic and Arbitrary Precision Arithmetic
Interval arithmetic and arbitrary precision arithmetic are two approaches that are
useful to users whose applications require a guaranteed accuracy and who are willing
to pay the price of slower execution to achieve their goals. A working of Exercises
10.17, 10.18, 13.5, and 13.11 demonstrates both the power and the limitations of inter-
val arithmetic. The power is that guaranteed lower and upper bounds on the desired
solution are computed, but the limitation is that these bounds may not be close to-
gether, especially if the problem being solved is ill conditioned. It should be clear from
a working of the exercises that carrying out a complicated calculation with interval
arithmetic would be very clumsy with only the rounding modes as tools. However,
software packages are available that carry out interval computations automatically.
INTLAB [Rum] is an efficient and powerful MATLAB toolbox for interval arithmetic.

Arbitrary precision systems make computations to arbitrarily high precision. These
come in several flavors. The traditional approach is to carry out all computations using
a prescribed precision, i.e., a prescribed number of significand bits or digits. Since no
computer provides hardware support for this, such systems must be implemented in
software, typically using an array of integers to represent the consecutive significand
bits of a "big" floating point number. Operations on such numbers would traditionally
be implemented using the integer arithmetic hardware operations. Systems of this kind
are provided, for example, by the symbolic packages Mathematica and Maple (the
latter also available via MATLAB's symbolic toolbox), and by the Unix tool dc. Such
systems do not provide any guarantees on the accuracy of the final results. Regardless

CHAPTER 13. STABILITY OF ALGORITHMS 95

of how many precision bits are in use, if a problem is sufficiently ill-conditioned, the
computed solution will have no significant digits. When the goal is to provide results
with guaranteed accuracy, some sort of adaptive precision must be used.

During the past decade, there has been a shift toward using floating point hardware
operations to implement high precision algorithms. This development has been driven
partly by the widespread acceptance of the IEEE standard, ensuring correctly rounded
results, and partly by the highly optimized performance of floating point hardware
operations on most microprocessors. In such systems, a number x is represented by
an array of k IEEE floating point numbers yi , . . . , y^, where k > 2. The value of x
represented by this array is the sum yi -I hy*. If k = 2 and yi and 3/2 are both IEEE
double format numbers, this system is called double double. For example, the number
2100 + 2-1000 can be represented exactly as a double double, since both 2100 and 2-1000

are IEEE double format numbers. Arithmetic operations on numbers of this kind
are provided by routines that perform a relatively small number of hardware floating
point operations [Pri91, She97]. If guaranteed accuracy is required for the final result,
k must be allowed to increase as the computation progresses. See [LD+02] for recent
work on extending the BLAS (Basic Linear Algebra Subroutines) to high precision, as
well as much information about various current approaches to extended and arbitrary
precision computation. ARPREC [BH+02] is a state-of-the-art arbitrary precision
package that builds on the double double idea.

Arbitrary precision arithmetic may be needed when the answer required is actually
a discrete quantity, such as a yes/no answer. For example, in computational geometry,
it may be necessary to know whether or not a given point is inside a circle determined
by three other points (an ill-conditioned problem when the points are nearly collinear).
The algorithms of [She97] are motivated by this application, and give results with
guaranteed accuracy for a certain class of problems.

However, arbitrary precision is not a panacea. It is impractical in large scale
scientific computing since it is so much slower than double precision. It may be
misleading if, as is often the case, the data input to the computation are not known
exactly. Furthermore, the problem being solved may have other sources of errors, e.g.,
discretization errors, that are far more significant than rounding errors. As Trefethen
says [Tre97, p. 324], "Floating point arithmetic is a name for numerical analysts'
habit of pruning [the accuracy of the computation] at every step along the way of
a calculation rather than in a single act at the end." He was making a comparison
between numerical and symbolic computation, but the same observation applies here.

As technology advances, so do users' requirements and expectations. The ongoing
revision of the IEEE standard [IEE-R] addresses the issue of 128-bit quadruple pre-
cision floating point formats; at present, hardware support for quadruple precision is
provided only by IBM 390 processors. Inevitably, 256-bit floating point will become
standard eventually. Equally inevitably, there will be some users for whom this will
not be enough, who will use arbitrary precision algorithms.

This page intentionally left blank

Chapter 14

Conclusion

Here is a summary of some of the most important ideas in this book.
• Floating point representation of numbers is ubiquitous in numerical computing,

since fixed point numbers have very restricted ranges. Floating point uses exponential
notation, storing a sign, an exponent, and a significand in each floating point word.

• The range of possible values for IEEE single format floating point numbers is
from tiny (approximately 10~38) to huge (approximately 1038). In addition, there are
the corresponding range of negative numbers, the subnormal numbers, and the special
numbers 0 and ±00. NaN is used for the result of invalid operations. Double format
numbers have a much greater finite range.

• Floating point numbers are inherently accurate only to a certain number of bits
or digits. In the case of the IEEE single format, numbers have 24-bit significands,
corresponding to approximately 7 significant decimal digits, and in the case of the
double format, 53-bit significands, corresponding to approximately 16 significant dec-
imal digits. Theorem 5.1 says that, when p-bit significands are in use, the rounded
value of a number x satisfies

with \6\ < 2~p when the rounding mode is round to nearest. The quantity |<5| is called
the relative rounding error and its size depends only on the precision p of the floating
point system and not on the size of x. The absolute rounding error \x — round(x)\
does depend on the size of x, since the gap between floating point numbers is larger
for larger numbers. These results apply to normalized numbers. Subnormal numbers
are less accurate. Because of its greater precision, the double format is preferred for
most scientific computing applications.

• One floating point arithmetic operation is required, under the rules of the IEEE
standard, to give the exact result rounded correctly using the relevant rounding mode
and precision. Such a result is by definition accurate to 24 bits (about 7 digits)
when the destination format is IEEE single, and to 53 bits (about 16 digits) when
the destination format is IEEE double, unless the number is subnormal. Exceptional
cases may yield a result equal to ±00 or NaN.

• A sequence of floating point operations generally does not give correctly rounded
exact results. Furthermore, one cannot expect the results to be accurate to 7 significant
digits (or 16 digits when the double format is in use). Accuracy of computations is
limited by the condition number of the problem being solved. Rule of Thumb 12.1
says that the number of significant digits in the computed results can be expected to
be, at best, about 7 minus the base 10 logarithm of the condition number (or 16 minus
the base 10 logarithm of the condition number if the double format is in use).

97

98 NUMERICAL COMPUTING WITH IEEE ARITHMETIC

• A stable algorithm is one that solves a problem to approximately the accuracy
predicted by Rule of Thumb 12.1. A poor choice of algorithm may give much worse
results; in this case the algorithm is said to be unstable. This may happen because
of cancellation or, more generally, because of intermediate steps that introduce ill
conditioning.

Numerical Algorithms and Numerical Analysis

In this book, we have not even begun to discuss algorithms for the solution of nontrivial
numerical problems, nor the analysis that underlies them. Many fine books, old and
new, contain a wealth of information on these most classical of scientific subjects.
Numerical algorithms and analysis form such a fundamental part of computer science
and applied mathematics that Knuth, in the preface to his celebrated multivolume
series The Art of Computer Programming, commented that his subject might be called
"nonnumerical analysis" [Knu68]. He felt this was too negative, so he suggested instead
"analysis of algorithms," a name that stuck.

We cannot list more than a tiny fraction of the many books on numerical algorithms
and analysis, but we mention a few favorite books, all published since 1995 (a sign that
the subject is thriving). Good choices to begin with are [Hea02, Ste96, Van00]. For a
more comprehensive introduction, with extensive discussion of computer architecture
and software not found in most books, see [Ueb97]. For linear algebra, see [Dem97,
Hig96, TB97]. For differential equations, see [AP98, Ise96j. For optimization, see
[NW99]. For statistics, see [Lan99].

Numerical analysis is, according to Trefethen [Tre97, p. 323], the study of algo-
rithms for the problems of continuous mathematics—not just the study of rounding
errors. We completely agree. As Trefethen says, "The central mission of numerical
analysis is to compute quantities that are typically uncomputable, from an analyti-
cal point of view, and do it with lightning speed." Floating point computing is the
workhorse that makes this possible.

Reliability Is Paramount

There is one thing that is even more important than lightning speed, and that is
reliability. This applies to all kinds of computing and is an issue that received extensive
publicity in the late 1990's because of Year 2000 conversions.

As Kahan says, speed should not be confused with throughput [Kah00]. Fast pro-
grams that break down occasionally and therefore require a lot of user interaction may
be less useful than highly reliable, slower programs. Floating point hardware opera-
tions have become both very fast and, thanks in large part to the IEEE standard, very
reliable. Although the computer industry has, by and large, been hugely supportive of
the IEEE standard, there are still some unfortunate holes in that support. The most
serious is that some microprocessors implement gradual underflow and subnormal
arithmetic only in software. Although this is permitted by the standard, the result
is that Fortran and C compiler writers, for whom speed is paramount, offer "fast"
options that disable gradual underflow and subnormal numbers and flush all under-
flowed values to zero. One problem that this creates is that heterogeneous networks of
workstations, some of which support gradual underflow in hardware and some only in
software, cannot reliably pass data to each other if they are all running in "fast" mode
because subnormal numbers would be invalid on some machines [Dem00]. Let us hope
that a critical program somewhere is not relying on a yes answer to Question 6.4 while
running in a "fast" mode, because the answer may be no when subnormal values are
not permitted. Hopefully, when people in the future look back on the current tech-

CHAPTER 14. CONCLUSION 99

nology of often-disabled software-supported gradual underflow, with its implication of
a possible no answer to Question 6.4, they will find it as archaic as we now see many
of the anomalies of the 1960s and 1970s, such as possible no answers to Questions 6.1
through 6.3.

We conclude by noting that loss of precision in floating point computation can
have unexpectedly serious consequences. During the 1991 Gulf War, the United States
used a missile defense system called Patriot to defend its troops. On one occasion, the
system failed badly, and an analysis after the event explained what happened. The
internal clock of the computer that controlled the defense system stored the time as an
integer value in units of tenths of a second, and the computer program converted this
to a floating point value in units of seconds, rounding the expansion (2.3) accordingly.
Because the program was an old one that had been updated to account for new
technology, the conversion to floating point was done more accurately in some places
in the program than in others. To calculate a time interval, the program took two
snapshots of the clock and subtracted them. Because of the rounding inconsistencies,
the system failed to work when it had been running for more than 100 hours [Ske92].

Floating point to integer conversion can also cause catastrophic errors if the con-
version overflows the integer format and appropriate recovery is not made. It was
an error of this kind that triggered the destruction of Ariane 5, the European Space
Agency's billion-dollar rocket, in June 1996. Thirty-seven seconds after liftoff, a pro-
gram tried to convert the rocket's horizontal velocity from a double format to a short
integer format. The number in question was easily within the normalized range of
the double floating point format, but was too big for the 16-bit short integer format.
When the invalid operation occurred, the program, instead of taking some appropriate
action, shut down the entire guidance system and the rocket self-destructed [Inq96].
The same floating point to integer conversion issue arose again with the discovery of a
bug in the Pentium Pro and Pentium II microprocessors in April 1997. However, the
Ariane bug was a software bug, while the Pentium II bug was a hardware bug: the
invalid operation status flag that was supposed to be set when overflow took place,
according to IEEE standard specifications, was not in fact set. Intel handled this bug
much more professionally than the Pentium division bug, which the company had at-
tempted to cover up; as a result, the bug was fixed fairly promptly and without much
controversy.

In the modern world, many critical matters are dependent on complex computer
programs, from air traffic control systems to heart machines. Many of these codes
depend, in one way or another, on floating point computing.

This page intentionally left blank

Bibliography

[App88] Apple Numerics Manual. Addison-Wesley, Reading, MA, Menlo Park, CA,
second edition, 1988.

[AP98] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differ-
ential Equations and Differential-Algebraic Equations, SIAM, Philadelphia,
1998.

[BH+02] D. H. Bailey, Y. Hida, X.S. Li and B. Thompson.
ARPREC: An arbitrary precision computation package, 2002.
http://crd.lbl.gov/~dbailey/dhbpapers/arprec.pdf

[Cha79] A. B. Chace. The Rhind Mathematical Papyrus. National Council of
Teachers of Mathematics, Reston, VA, 1979. The cited quote is from
Volume 1, pp. 48-49.

[Cla99] Arthur C. Clarke. 2001: A Space Odyssey. New American Library, Penguin
Putnam, New York, 1999. Based on a screenplay by Stanley Kubrick and
Arthur C. Clarke, 1968.

[CKW02] A. Cuyt, P. Kuterna, B. Verdonk and D. Verschaeren. Underflow revisited.
Calculo, 39(3):169-179, 2002.

[CodSl] W. J. Cody. Analysis of proposals for the floating-point standard.
Computer, 14(3):63-69, 1981.

[CooSl] J. T. Coonen. Underflow and the denormalized numbers. Computer,
14(3):75-87, 1981.

[Dar98] J.D. Darcy. Borneo: adding IEEE 754 support to Java, M.S. thesis, Uni-
versity of California, 1998. http://www.jddarcy.org/Borneo/borneo.pdf

[Dem84] J. W. Demmel. Underflow and the reliability of numerical software.
SIAM J. Sci. Stat. Comput, 5:887-919, 1984.

[Dem91] J. W. Demmel. On the odor of IEEE arithmetic. NA Digest, 91(39)
Sept. 29, 1991. http://www.netlib.org/na-digest-html/91/v91n39.html#15

[Dem97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[DemOO] J. W. Demmel, 2000. Private communication.

[DL94] J. W. Demmel and X. Li. Faster numerical algorithms via exception
handling. IEEE Trans. Comput, 43:983-992, 1994.

101

http://www.jddarcy.org/Borneo/borneo.pdf
http://www.netlib.org/na-digest-html/91/v91n39.html#15
http://crd.Ibl.gov/~dbailey/dhbpapers/arprec.pdf

102 BIBLIOGRAPHY

[Ede97] A. Edelman. The mathematics of the Pentium division bug.
SIAM Review, 39:54-67, 1997.

[Ede94] A. Edelman. When is x * (1 / x) ^ 1?, 1994.
http://www.math.mit.edu/~edelman

[Fig00] S. Figueroa. A Rigorous Framework for Fully Supporting the IEEE Standard
for Floating-Point Arithmetic in High-Level Programming Languages. Ph.D.
thesis, New York University, 2000.
http://www.cs.nyu.edu/csweb/Research/theses.html

[Gay90] D. M. Gay. Correctly rounded binary-decimal and decimal-binary con-
versions. Technical report, 1990, AT&T Bell Labs Numerical Analysis
Manuscript 90-10. http://www.ampl.com/REFS/rounding.ps.gz

[Gol91] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. A CM Computer Surveys, 23:5-48, 1991.

[Gol95] D. Goldberg. Computer Arithmetic. Kaufmann, San Mateo, CA, second
edition, 1995. Appendix in [HP95].

[Hea02] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill,
New York, second edition, 2002.

[HP95] J. L. Hennessy and D. L. Patterson. Computer Architecture: A Quantitative
Approach. Kaufmann, San Mateo, CA, second edition, 1995.

[HHOO] D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia,
2000.

[Hig96] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 1996.

[HouSl] D. Hough. Applications of the proposed IEEE 754 standard for floating-
point arithmetic. Computer, 14(3):70-74, 1981.

[IEE85] IEEE standard for binary floating-point arithmetic: ANSI/IEEE std
754-1985, 1985. Reprinted in SIGPLAN Notices 22(2):9-25, 1987.
http://grouper.ieee.org/groups/754/

[IEE87] IEEE standard for radix-independent floating-point arithmetic:
ANSI/IEEE Std 854-1987, 1987. http://grouper.ieee.org/groups/754/

[IEE-R] IEEE 754 Revision Work, http://grouper.ieee.org/groups/754/revision.html

[Inq96] Inquiry board traces Ariane 5 failure to overflow error. SIAM News, 29(8),
Oct. 1996, pp. 1, 12, 13.
http://www.siam.org/siamnews/general/ariane.htm

[Ise96] A. Iserles. A First Course in the Numerical Analysis of Differential
Equations. Cambridge University Press, Cambridge (UK), New York, 1996.

[ISO99] ISO/IEC 9899:1999 Standard for the C programming language (C99), 1999.
http://www.iso.ch/. January 1999 draft available at
http://anubis.dkuug.dk/JTCl/SC22/WG14/www/docs/n869/

[Jav] Java Numerics, http://math.nist.gov/javanumerics/

http://www.math.mit.edu/~edelman
http://www.cs.nyu.edu/csweb/Research/theses.html
http://www.ampl.com/REFS/rounding.ps.gz
http://www.siam.org/siamnews/general/ariane.htm
http://www.iso.ch/
http://anubis.dkuug.dk/JTC1/SC22/WG14/www/docs/n869/
http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/revision.html
http://math.nist.gov/javanumerics/

BIBLIOGRAPHY 103

[Kah96a] W. Kahan. The baleful effect of computer benchmarks upon applied
mathematics, physics and chemistry, 1996.
http://www.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps

[Kah96b] W. Kahan. Lecture notes on the status of IEEE standard 754 for binary
floating-point arithmetic, 1996.
http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps

[Kah97] W. Kahan. The John von Neumann lecture at the SIAM 45th annual
meeting, 1997.
http://www.cs.berkeley.edu/~wkahan/SIAMjvnl.ps

[Kah98] W. Kahan and J.D. Darcy. How Java's floating-point hurts everyone every-
where, 1998. http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf

[KahOO] W. Kahan. Ruminations on the design of floating-point arithmetic, 2000.
http://www.cs.nyu.edu/cs/faculty/overton/book/docs/KahanTalk.pdf

[Knu68] D. E. Knuth. The Art of Computer Programming, Volume 1:
Fundamental Algorithms. Addison-Wesley, Reading, MA, 1968.

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. Addison-Wesley, Reading, MA, third edition,
1998.

[Lan99] K. Lange, Numerical Analysis for Statisticians, Springer, New York, 1999.

[LD+02] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan,
S. Y. Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung and D. J.
Yoo. Design, implementation, and testing of extended and mixed precision
BLAS. ACM Trans. Math. Software, 28:152-163, 2002.

[MRC04] M. Metcalf, J. Reid and M. Cohen. Fortran 95/2003 Explained. Oxford
University Press, Oxford, 2004.

[MHR80] N. Metropolis, J. Hewlett, and G.-C. Rota, editors. A History of Computing
in the Twentieth Century. Academic Press, New York, 1980.

[Mul97] J.-M. Muller. Elementary Functions: Algorithms and Implementation.
Birkhaiiser, Boston, Basel, Berlin, 1997.

[Net] Netlib. http://www.netlib.org

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
1999.

[PH97] D. L. Patterson and J. L. Hennessy. Computer Organization and Design: the
Hardware/Software Interface. Kaufmann, San Mateo, CA, second edition,
1997.

[Pri91] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic.
In P. Kornerup and D. Matula, editors, Proceedings of the 10th Symbosium
on Computer Arithmetic, pp. 132-143, Piscataway, NJ, 1991. IEEE Com-
puter Society Press.

[Rob95] E. S. Roberts. The Art and Science of C. Addison-Wesley, Reading, MA,
Menlo Park, CA, 1995.

http://www.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps
http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps
http://www.cs.berkeley.edu/~wkahan/SIAMjvnl.ps
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://www.cs.nyu.edu/cs/faculty/overton/book/docs/KahanTalk.pdf
http://www.netlib.org

104 BIBLIOGRAPHY

[Rum] S. M. Rump. INTLAB: Interval Laboratory, a MATLAB toolbox for interval
arithmetic, http://www.ti3.tu-harburg.de/rump/intlab/

[Sev98] C. Severance. An interview with the old man of floating-point:
Reminiscences elicited from William Kahan, 1998.
http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html
A condensed version appeared in Computer, 31:114-115, 1998.

[She97] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete Comput. Geom., 18(3):305-363,
1997. http://www.cs.cmu.edu/~quake/robust.html

[Ske92] R. Skeel. Roundoff error and the Patriot missile. SI AM News, 25(4), July
1992, p. 11. http://www.siam.org/siamnews/general/patriot.htm

[Ste74] P. Sterbenz, Floating Point Computation, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[Ste96] G. W. Stewart. Afternotes on Numerical Analysis. SIAM, Philadelphia,
1996.

[TB97] L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. SIAM,
Philadelphia, 1997.

[Tre97] L. N. Trefethen. The definition of numerical analysis. In [TB97],
pp. 321-327.

[Ueb97] C. W. Ueberhuber. Numerical Computation: Methods, Software,
and Analysis. Springer-Verlag, Berlin, New York, 1997. Two volumes.

[VanOO] C. Van Loan. Introduction to Scientific Computing: A matrix-vector
approach using MATLAB. Prentice-Hall, Upper Saddle River, NJ, second
edition, 2000.

[Web96] Webster's New World College Dictionary. Macmillan, New York, 1996.

[W1164] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall,
Englewood Cliffs, NJ, 1964. Reprinted by Dover, New York, 1994.

[Wil85] M. R. Williams. A History of Computing Technology. Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[Wil98] M. V. Wilkes. A revisionist account of early language development.
Computer, 31:22-26, 1998.

[WW92] D. Weber-Wulff. Rounding error changes parliament makeup. The Risks
Digest, 13(37), 1992. http://catless.ncl.ac.uk/Risks/13.37.html#subj4

[Zus93] K. Zuse. The Computer—My Life. Springer-Verlag, Berlin, New York, 1993.

http://www.ti3.tu-harburg.de/rump/intlab/
http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html
http://www.cs.cmu.edu/~quake/robust.html
http://www.siam.org/siamnews/general/patriot.htm
http://catless.ncl.ac.uk/Risks/13.37.html#subj4

Index

-0, 18, 26, 43, 67
2's complement, 9, 10
oo, 18, 27, 42, 46, 65-67, 69

absolute rounding error, 27, 44, 62, 63,
97

Apple, 49, 56
arbitrary precision, 94, 95
Ariane, 99

Babbage, Charles, 1
Big Endian, 24, 61
Binary to decimal conversion, 59
binary to decimal conversion, 39

C, 55-70
cancellation, 35, 71-75, 88, 92, 98
central difference quotient, 75
Colossus, 2
complex arithmetic, 57
compound interest, 84-88
condition number, 78-84, 86, 88, 93, 97
Cray, 36

DEC, 18, 24, 49
decimal to binary conversion, 39, 59
denormalized, see subnormal
difference quotient, 72-74, 82, 88
discretization error, 74, 75, 95
division by zero, 11, 18, 41-46, 65, 69
double double, 95
double precision, see IEEE double for-

mat

ENIAC, 2
exception, 41-47
exception masks, 52, 57
exponent bias, 20, 22
extended precision, see arbitrary preci-

sion, IEEE extended format

fixed point, 11, 16
floating point, llff.
Fortran, 55-57, 98

fused multiply-add, 52-53, 66

gradual underflow, 44, 45, 62, 98, 99
guard bit, 35, 36

hidden bit, 12-15, 18, 19, 23, 37

IBM, 17, 24, 36, 49, 53, 55
IEEE double format, 22ff.
IEEE extended format, 23, 33, 49, 56-

57
IEEE p754, 17
IEEE single format, 19ff.
Intel, 18, 23, 38, 49-53, 57, 64, 93, 99
interval arithmetic, 34, 68, 88, 93, 94
invalid operation, 42-46, 51, 97, 99

Java, 55-57

Kahan, William, 17, 18, 51, 56, 67

Little Endian, 24, 61

machine epsilon, 14, 15, 23, 28, 29, 32,
74, 77

math library, 66, 67, 80, 87, 88
MATLAB, 57, 94
Moler, Cleve, 18

NaN, 19, 20, 22, 42-46, 51, 56, 67, 72,
79, 97

Napier, John, 1
negative zero, see —0
Netlib, 55
Newton, Isaac, 1, 38
JVmax, 20, 22, 25-28, 46, 69
Nmin, 20, 22, 25-29, 46, 62
normalization, 12, 17, 21, 34
normalized, 12-23, 25, 34-35
normalized range, 25-29, 32, 46, 56, 71,

77, 78, 83, 99
numerical analysis, 98

overflow, 44-46, 50, 68, 69, 93

105

106 INDEX

integer, 10, 11, 94, 99
stack, 51, 52

Palmer, John, 18
Patriot, 99
positional number systems, 6
precision, 14ff.
precision mode, 50, 52, 56, 57

register stack, 50, 51
relative rounding error, 28, 45, 77, 78,

97
remainder, 31, 38, 43
round down, 26-28, 34, 68, 93
round to nearest, 27-29ff.
round towards zero, 27, 28
round up, 26-28, 33-35, 64, 66, 68, 93
rounding mode, 26-29, 31-34, 37, 39,

52, 56, 62, 63, 68, 77, 94, 97
Rule of Thumb, 78, 80, 81, 97, 98

significand, 12-16ff.
significant digits, 23, 24, 29, 60, 61, 64,

74, 79, 86, 88, 92, 93, 97
single precision, see IEEE single format
square root, 38, 43, 57, 66, 68, 74
stable, 83, 87, 88, 93, 94, 98
standard response, 41-44, 46, 51, 56,

57, 65, 69, 93
status flag, 46, 52, 56, 57, 69, 99
sticky bit, 36
subnormal, 19-21, 23, 25, 26, 44, 45,

62, 70, 97, 98
Sun, 23, 24, 49, 55, 57

Turing, Alan, 2
two's complement, 9, 10

ulp, 14, 27, 66, 67
underflow, 44, 46, 62, 67-70, 89, 98, 99
unstable, 83, 84, 86-88, 92, 93, 98

von Neumann, John, 2, 16

Wilkes, Maurice, 2, 55
Wilkinson, James, 2, 16

Zuse, Konrad, 2

	Numerical Computing with IEEE Floating Point Arithmetic
	ISBN 0-89871-571-7
	Contents
	Preface
	Chapter 1 Introduction
	Chapter 2 The Real Numbers
	Chapter 3 Computer Representation of Numbers
	Chapter 4 IEEE Floating Point Representation
	Chapter 5 Rounding
	Chapter 6 Correctly Rounded Floating Point Operations
	Chapter 7 Exceptions
	Chapter 8 The Intel Microprocessors
	Chapter 9 Programming Languages
	Chapter 10 Floating Point in C
	Chapter 11 Cancellation
	Chapter 12 Conditioning of Problems
	Chapter 13 Stability of Algorithms
	Chapter 14 Conclusion
	Bibliography
	Index

