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The first principle is that you must not fool yourself,
and you are the easiest person to fool.

—RICHARD P. FEYNMAN
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He can perhaps say what the experiment died of.

—R.A. FISHER





About the Author
Alex Reinhart is a statistics instructor and PhD student at Carnegie 
Mellon University. He received his BS in physics at the University of 
Texas at Austin and does research on locating radioactive devices 
using physics and statistics.





BRIEF CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1: An Introduction to Statistical Significance . . . . . . . . . . . 7
Chapter 2: Statistical Power and Underpowered Statistics . . . . . . 15
Chapter 3: Pseudoreplication: Choose Your Data Wisely . . . . . . . 31
Chapter 4: The p Value and the Base Rate Fallacy . . . . . . . . . . . . . 39
Chapter 5: Bad Judges of Significance . . . . . . . . . . . . . . . . . . . . . . . 55
Chapter 6: Double-Dipping in the Data . . . . . . . . . . . . . . . . . . . . . . . 63
Chapter 7: Continuity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 8: Model Abuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Chapter 9: Researcher Freedom: Good Vibrations? . . . . . . . . . . . . 89
Chapter 10: Everybody Makes Mistakes . . . . . . . . . . . . . . . . . . . . . . 97
Chapter 11: Hiding the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Chapter 12: What Can Be Done?. . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147





CONTENTS IN DETA IL

PREFACE xv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

INTRODUCTION 1

1
AN INTRODUCTION TO
STATISTICAL SIGNIFICANCE 7
The Power of p Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Psychic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Neyman-Pearson Testing . . . . . . . . . . . . . . . . . . . . . . . . 11

Have Confidence in Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2
STATISTICAL POWER AND
UNDERPOWERED STATISTICS 15
The Power Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
The Perils of Being Underpowered . . . . . . . . . . . . . . . . . . . . . . . 18

Wherefore Poor Power? . . . . . . . . . . . . . . . . . . . . . . . . 20
Wrong Turns on Red . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Confidence Intervals and Empowerment . . . . . . . . . . . . . . . . . . 22
Truth Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Little Extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3
PSEUDOREPLICATION:
CHOOSE YOUR DATA WISELY 31
Pseudoreplication in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Accounting for Pseudoreplication . . . . . . . . . . . . . . . . . . . . . . . . 33
Batch Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Synchronized Pseudoreplication . . . . . . . . . . . . . . . . . . . . . . . . . 35



4
THE P VALUE AND
THE BASE RATE FALLACY 39
The Base Rate Fallacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Quick Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
The Base Rate Fallacy in Medical Testing . . . . . . . . . 42
How to Lie with Smoking Statistics . . . . . . . . . . . . . . . 43
Taking Up Arms Against the Base Rate Fallacy . . . . 45

If At First You Don’t Succeed, Try, Try Again . . . . . . . . . . . . . . 47
Red Herrings in Brain Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Controlling the False Discovery Rate . . . . . . . . . . . . . . . . . . . . . . 52

5
BAD JUDGES OF SIGNIFICANCE 55
Insignificant Differences in Significance . . . . . . . . . . . . . . . . . . . 55
Ogling for Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6
DOUBLE-DIPPING IN THE DATA 63
Circular Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Regression to the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Stopping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7
CONTINUITY ERRORS 73
Needless Dichotomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Statistical Brownout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Confounded Confounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8
MODEL ABUSE 79
Fitting Data to Watermelons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Correlation and Causation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9
RESEARCHER FREEDOM:
GOOD VIBRATIONS? 89
A Little Freedom Is a Dangerous Thing . . . . . . . . . . . . . . . . . . . . 91
Avoiding Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii Contents in Detail



10
EVERYBODY MAKES MISTAKES 97
Irreproducible Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Making Reproducibility Easy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Experiment, Rinse, Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

11
HIDING THE DATA 105
Captive Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Obstacles to Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Data Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Just Leave Out the Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Known Unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Outcome Reporting Bias . . . . . . . . . . . . . . . . . . . . . . . . 111

Science in a Filing Cabinet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Unpublished Clinical Trials . . . . . . . . . . . . . . . . . . . . . . 114
Spotting Reporting Bias . . . . . . . . . . . . . . . . . . . . . . . . . 115
Forced Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12
WHAT CAN BE DONE? 119
Statistical Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Scientific Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Your Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

NOTES 131

INDEX 147

Contents in Detail xiii





PREFACE

A few years ago I was an undergraduate
physics major at the University of Texas
at Austin. I was in a seminar course, trying
to choose a topic for the 25-minute presen-
tation all students were required to give.
“Something about conspiracy theories,” I told Dr. Brent
Iverson, but he wasn’t satisfied with that answer. It was too
broad, he said, and an engaging presentation needs to be
focused and detailed. I studied the sheet of suggested topics
in front of me. “How about scientific fraud and abuse?” he
asked, and I agreed.

In retrospect, I’m not sure how scientific fraud and abuse
is a narrower subject than conspiracy theories, but it didn’t
matter. After several slightly obsessive hours of research, I real-
ized that scientific fraud isn’t terribly interesting—at least, not
compared to all the errors scientists commit unintentionally.

Woefully underqualified to discuss statistics, I nonetheless
dug up several dozen research papers reporting on the numer-
ous statistical errors routinely committed by scientists, read



and outlined them, and devised a presentation that satisfied
Dr. Iverson. I decided that as a future scientist (and now a self-
designated statistical pundit), I should take a course in statistics.

Two years and two statistics courses later, I enrolled as a
graduate student in statistics at Carnegie Mellon University.
I still take obsessive pleasure in finding ways to do statistics
wrong.

Statistics Done Wrong is a guide to the more egregious sta-
tistical fallacies regularly committed in the name of science.
Because many scientists receive no formal statistical training—
and because I do not want to limit my audience to the statisti-
cally initiated—this book assumes no formal statistical training.
Some readers may easily skip through the first chapter, but I
suggest at least skimming it to become familiar with my expla-
natory style.

My goal is not just to teach you the names of common
errors and provide examples to laugh at. As much as is pos-
sible without detailed mathematics, I’ve explained why the
statistical errors are errors, and I’ve included surveys showing
how common most of these errors are. This makes for harder
reading, but I think the depth is worth it. A firm understanding
of basic statistics is essential for everyone in science.

For those who perform statistical analyses for their day jobs,
there are “Tips” at the end of most chapters to explain what
statistical techniques you might use to avoid common pitfalls.
But this is not a textbook, so I will not teach you how to use
these techniques in any technical detail. I hope only to make
you aware of the most common problems so you are able to
pick the statistical technique best suited to your question.

In case I pique your curiosity about a topic, a comprehen-
sive bibliography is included, and every statistical misconcep-
tion is accompanied by references. I omitted a great deal of
mathematics in this guide in favor of conceptual understand-
ing, but if you prefer a more rigorous treatment, I encourage
you to read the original papers.

I must caution you before you read this book. Whenever
we understand something that few others do, it is tempting to
find every opportunity to prove it. Should Statistics Done Wrong
miraculously become a New York Times best seller, I expect to see
what Paul Graham calls “middlebrow dismissals” in response to
any science news in the popular press. Rather than taking the
time to understand the interesting parts of scientific research,
armchair statisticians snipe at news articles, using the vague
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description of the study regurgitated from some overenthusi-
astic university press release to criticize the statistical design of
the research.*

This already happens on most websites that discuss science
news, and it would annoy me endlessly to see this book used
to justify it. The first comments on a news article are always
complaints about how “they didn’t control for this variable”
and “the sample size is too small,” and 9 times out of 10, the
commenter never read the scientific paper to notice that their
complaint was addressed in the third paragraph.

This is stupid. A little knowledge of statistics is not an
excuse to reject all of modern science. A research paper’s
statistical methods can be judged only in detail and in context
with the rest of its methods: study design, measurement tech-
niques, cost constraints, and goals. Use your statistical knowl-
edge to better understand the strengths, limitations, and poten-
tial biases of research, not to shoot down any paper that seems
to misuse a p value or contradict your personal beliefs. Also,
remember that a conclusion supported by poor statistics can
still be correct—statistical and logical errors do not make a
conclusion wrong, but merely unsupported.

In short, please practice statistics responsibly. I hope you’ll
join me in a quest to improve the science we all rely on.

Acknowledgments
Thanks to James Scott, whose statistics courses started my statis-
tical career and gave me the background necessary to write this
book; to Raye Allen, who made James’s homework assignments
much more fun; to Matthew Watson and Moriel Schottlender,
who gave invaluable feedback and suggestions on my drafts; to
my parents, who gave suggestions and feedback; to Dr. Brent
Iverson, whose seminar first motivated me to learn about statis-
tical abuse; and to all the scientists and statisticians who have
broken the rules and given me a reason to write.

My friends at Carnegie Mellon contributed many ideas and
answered many questions, always patiently listening as I tried to
explain some new statistical error. My professors, particularly
Jing Lei, Valérie Ventura, and Howard Seltman, prepared me
with the necessary knowledge. As technical reviewer, Howard

*Incidentally, I think this is why conspiracy theories are so popular. Once you
believe you know something nobody else does (the government is out to get
us!), you take every opportunity to show off that knowledge, and you end up
reacting to all news with reasons why it was falsified by the government. Please
don’t do the same with statistical errors.
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caught several embarrassing errors; if any remain, they’re my
responsibility, though I will claim they’re merely in keeping
with the title of the book.

My editors at No Starch dramatically improved the manu-
script. Greg Poulos carefully read the early chapters and wasn’t
satisfied until he understood every concept. Leslie Shen pol-
ished my polemic in the final chapters, and the entire team
made the process surprisingly easy.

I also owe thanks to the many people who emailed
me suggestions and comments when the guide became
available online. In no particular order, I thank Axel Boldt,
Eric Franzosa, Robert O’Shea, Uri Bram, Dean Rowan, Jesse
Weinstein, Peter Hozák, Chris Thorp, David Lovell, Harvey
Chapman, Nathaniel Graham, Shaun Gallagher, Sara Alspaugh,
Jordan Marsh, Nathan Gouwens, Arjen Noordzij, Kevin Pinto,
Elizabeth Page-Gould, and David Merfield. Without their com-
ments, my explanations would no doubt be less complete.

Perhaps you can join this list. I’ve tried my best, but this
guide will inevitably contain errors and omissions. If you spot
an error, have a question, or know a common fallacy I’ve
missed, email me at alex@refsmmat.com. Any errata or updates
will be published at http://www.statisticsdonewrong.com/ .
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INTRODUCTION

In the final chapter of his famous
book How to Lie with Statistics,

Darrell Huff tells us that “anything
smacking of the medical profession”

or backed by scientific laboratories and uni-
versities is worthy of our trust—not uncondi-
tional trust but certainly more trust than we’d
afford the media or politicians.(After all, Huff’s book is filled
with the misleading statistical trickery used in politics and
the media.) But few people complain about statistics done by
trained scientists. Scientists seek understanding, not ammuni-
tion to use against political opponents.

Statistical data analysis is fundamental to science. Open
a random page in your favorite medical journal and you’ll be
deluged with statistics: t tests, p values, proportional hazards
models, propensity scores, logistic regressions, least-squares fits,
and confidence intervals. Statisticians have provided scientists



with tools of enormous power to find order and meaning in the
most complex of datasets, and scientists have embraced them
with glee.

They have not, however, embraced statistics education, and
many undergraduate programs in the sciences require no statis-
tical training whatsoever.

Since the 1980s, researchers have described numerous
statistical fallacies and misconceptions in the popular peer-
reviewed scientific literature and have found that many scien-
tific papers—perhaps more than half—fall prey to these errors.
Inadequate statistical power renders many studies incapable
of finding what they’re looking for, multiple comparisons and
misinterpreted p values cause numerous false positives, flexible
data analysis makes it easy to find a correlation where none
exists, and inappropriate model choices bias important results.
Most errors go undetected by peer reviewers and editors, who
often have no specific statistical training, because few journals
employ statisticians to review submissions and few papers give
sufficient statistical detail to be accurately evaluated.

The problem isn’t fraud but poor statistical education—
poor enough that some scientists conclude that most published
research findings are probably false.1 Review articles and edi-
torials appear regularly in leading journals, demanding higher
statistical standards and tougher review, but few scientists hear
their pleas, and journal-mandated standards are often ignored.
Because statistical advice is scattered between frequently mis-
leading textbooks, review articles in assorted journals, and statis-
tical research papers difficult for scientists to understand, most
scientists have no easy way to improve their statistical practice.

The methodological complexity of modern research means
that scientists without extensive statistical training may not be
able to understand most published research in their fields. In
medicine, for example, a doctor who took one standard intro-
ductory statistics course would have sufficient knowledge to
fully understand only about a fifth of research articles published
in the New England Journal of Medicine.2 Most doctors have even
less training—many medical residents learn statistics informally
through journal clubs or short courses, rather than through
required courses.3 The content that is taught to medical stu-
dents is often poorly understood, with residents averaging less
than 50% correct on tests of statistical methods commonly
used in medicine.4 Even medical school faculty with research
training score less than 75% correct.

2 Introduction



The situation is so bad that even the authors of surveys of
statistical knowledge lack the necessary statistical knowledge
to formulate survey questions—the numbers I just quoted are
misleading because the survey of medical residents included a
multiple-choice question asking residents to define a p value
and gave four incorrect definitions as the only options.5 We
can give the authors some leeway because many introductory
statistics textbooks also poorly or incorrectly define this basic
concept.

When the designers of scientific studies don’t employ
statistics with sufficient care, they can sink years of work and
thousands of dollars into research that cannot possibly answer
the questions it is meant to answer. As psychologist Paul Meehl
complained,

Meanwhile our eager-beaver researcher, undis-
mayed by logic-of-science considerations and
relying blissfully on the “exactitude” of modern
statistical hypothesis-testing, has produced a long
publication list and been promoted to a full profes-
sorship. In terms of his contribution to the endur-
ing body of psychological knowledge, he has done
hardly anything. His true position is that of a potent-
but-sterile intellectual rake, who leaves in his merry
path a long train of ravished maidens but no viable
scientific offspring.6

Perhaps it is unfair to accuse most scientists of intellectual
infertility, since most scientific fields rest on more than a few
misinterpreted p values. But these errors have massive impacts
on the real world. Medical clinical trials direct our health care
and determine the safety of powerful new prescription drugs,
criminologists evaluate different strategies to mitigate crime,
epidemiologists try to slow down new diseases, and marketers
and business managers try to find the best way to sell their
products—it all comes down to statistics. Statistics done wrong.

Anyone who’s ever complained about doctors not making
up their minds about what is good or bad for you understands
the scope of the problem. We now have a dismissive attitude
toward news articles claiming some food or diet or exercise
might harm us—we just wait for the inevitable second study
some months later, giving exactly the opposite result. As one
prominent epidemiologist noted, “We are fast becoming a
nuisance to society. People don’t take us seriously anymore,
and when they do take us seriously, we may unintentionally
do more harm than good.”7 Our instincts are right. In many
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fields, initial results tend to be contradicted by later results. It
seems the pressure to publish exciting results early and often
has surpassed the responsibility to publish carefully checked
results supported by a surplus of evidence.

Let’s not judge so quickly, though. Some statistical errors
result from a simple lack of funding or resources. Consider
the mid-1970s movement to allow American drivers to turn
right at red lights, saving gas and time; the evidence suggest-
ing this would cause no more crashes than before was statis-
tically flawed, as you will soon see, and the change cost many
lives. The only factor holding back traffic safety researchers
was a lack of data. Had they the money to collect more data
and perform more studies—and the time to collate results
from independent researchers in many different states—the
truth would have been obvious.

While Hanlon’s razor directs us to “never attribute to
malice that which is adequately explained by incompetence,”
there are some published results of the “lies, damned lies, and
statistics” sort. The pharmaceutical industry seems particularly
tempted to bias evidence by neglecting to publish studies that
show their drugs do not work;* subsequent reviewers of the
literature may be pleased to find that 12 studies indicate a
drug works, without knowing that 8 other unpublished studies
suggest it does not. Of course, it’s likely that such results would
not be published by peer-reviewed journals even if they were
submitted—a strong bias against unexciting results means
that studies saying “it didn’t work” never appear and other
researchers never see them. Missing data and publication bias
plague science, skewing our perceptions of important issues.

Even properly done statistics can’t be trusted. The pleth-
ora of available statistical techniques and analyses grants
researchers an enormous amount of freedom when analyzing
their data, and it is trivially easy to “torture the data until it
confesses.” Just try several different analyses offered by your
statistical software until one of them turns up an interesting
result, and then pretend this is the analysis you intended to do
all along. Without psychic powers, it’s almost impossible to tell
when a published result was obtained through data torture.

In “softer” fields, where theories are less quantitative,
experiments are difficult to design, and methods are less stan-
dardized, this additional freedom causes noticeable biases.8

*Readers interested in the pharmaceutical industry’s statistical misadventures
may enjoy Ben Goldacre’s Bad Pharma (Faber & Faber, 2012), which caused a
statistically significant increase in my blood pressure while I read it.

4 Introduction



Researchers in the United States must produce and publish
interesting results to advance their careers; with intense compe-
tition for a small number of available academic jobs, scientists
cannot afford to spend months or years collecting and ana-
lyzing data only to produce a statistically insignificant result.
Even without malicious intent, these scientists tend to produce
exaggerated results that more strongly favor their hypotheses
than the data should permit.

In the coming pages, I hope to introduce you to these com-
mon errors and many others. Many of the errors are prevalent
in vast swaths of the published literature, casting doubt on the
findings of thousands of papers.

In recent years there have been many advocates for statis-
tical reform, and naturally there is disagreement among them
on the best method to address these problems. Some insist that
p values, which I will show are frequently misleading and con-
fusing, should be abandoned altogether; others advocate a “new
statistics” based on confidence intervals. Still others suggest a
switch to new Bayesian methods that give more-interpretable
results, while others believe statistics as it’s currently taught is
just fine but used poorly. All of these positions have merits, and
I am not going to pick one to advocate in this book. My focus is
on statistics as it is currently used by practicing scientists.
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1
AN INTRODUCTION TO

STATISTICAL SIGNIFICANCE

Much of experimental science
comes down to measuring differ-

ences. Does one medicine work
better than another? Do cells with

one version of a gene synthesize more of
an enzyme than cells with another version?
Does one kind of signal processing algorithm
detect pulsars better than another? Is one
catalyst more effective at speeding a chemical
reaction than another?

We use statistics to make judgments about these kinds of
differences. We will always observe some difference due to luck
and random variation, so statisticians talk about statistically
significant differences when the difference is larger than could
easily be produced by luck. So first we must learn how to make
that decision.



The Power of p Values
Suppose you’re testing cold medicines. Your new medicine
promises to cut the duration of cold symptoms by a day. To
prove this, you find 20 patients with colds, give half of them
your new medicine, and give the other half a placebo. Then
you track the length of their colds and find out what the aver-
age cold length was with and without the medicine.

But not all colds are identical. Maybe the average cold lasts
a week, but some last only a few days. Others might drag on for
two weeks or more. It’s possible that the group of 10 patients
who got the genuine medicine in your study all came down with
really short colds. How can you prove that your medicine works,
rather than just proving that some patients got lucky?

Statistical hypothesis testing provides the answer. If you
know the distribution of typical cold cases—roughly how many
patients get short colds, long colds, and average-length colds—-
you can tell how likely it is that a random sample of patients will
all have longer or shorter colds than average. By performing a
hypothesis test (also known as a significance test), you can answer
this question: “Even if my medication were completely ineffec-
tive, what are the chances my experiment would have produced
the observed outcome?”

If you test your medication on only one person, it’s not
too surprising if her cold ends up being a little shorter than
usual. Most colds aren’t perfectly average. But if you test the
medication on 10 million patients, it’s pretty unlikely that all
those patients will just happen to get shorter colds. More likely,
your medication actually works.

Scientists quantify this intuition with a concept called the
p value. The p value is the probability, under the assumption
that there is no true effect or no true difference, of collecting
data that shows a difference equal to or more extreme than
what you actually observed.

So if you give your medication to 100 patients and find that
their colds were a day shorter on average, then the p value of
this result is the chance that if your medication didn’t actually
do anything, their average cold would be a day or more shorter
than the control group’s by luck alone. As you might guess, the
p value depends on the size of the effect—colds that are shorter
by four days are less common than colds that are shorter by
just one day—as well as on the number of patients you test the
medication on.
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Remember, a p value is not a measure of how right you are
or how important a difference is. Instead, think of it as a mea-
sure of surprise. If you assume your medication is ineffective
and there is no reason other than luck for the two groups to
differ, then the smaller the p value, the more surprising and
lucky your results are—or your assumption is wrong, and the
medication truly works.

How do you translate a p value into an answer to this ques-
tion: “Is there really a difference between these groups?” A
common rule of thumb is to say that any difference where
p < 0.05 is statistically significant. The choice of 0.05 isn’t
because of any special logical or statistical reasons, but it has
become scientific convention through decades of common use.

Notice that the p value works by assuming there is no dif-
ference between your experimental groups. This is a counter-
intuitive feature of significance testing: if you want to prove that
your drug works, you do so by showing the data is inconsistent
with the drug not working. Because of this, p values can be
extended to any situation where you can mathematically
express a hypothesis you want to knock down.

But p values have their limitations. Remember, p is a
measure of surprise, with a smaller value suggesting that you
should be more surprised. It’s not a measure of the size of the
effect. You can get a tiny p value by measuring a huge effect—
“This medicine makes people live four times longer”—or by
measuring a tiny effect with great certainty. And because any
medication or intervention usually has some real effect, you can
always get a statistically significant result by collecting so much
data that you detect extremely tiny but relatively unimportant
differences. As Bruce Thompson wrote,

Statistical significance testing can involve a tauto-
logical logic in which tired researchers, having col-
lected data on hundreds of subjects, then conduct
a statistical test to evaluate whether there were a lot
of subjects, which the researchers already know,
because they collected the data and know they
are tired. This tautology has created considerable
damage as regards the cumulation of knowledge.1

In short, statistical significance does not mean your result
has any practical significance. As for statistical insignificance,
it doesn’t tell you much. A statistically insignificant difference
could be nothing but noise, or it could represent a real effect
that can be pinned down only with more data.
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There’s no mathematical tool to tell you whether your
hypothesis is true or false; you can see only whether it’s con-
sistent with the data. If the data is sparse or unclear, your con-
clusions will be uncertain.

Psychic Statistics
Hidden beneath their limitations are some subtler issues with
p values. Recall that a p value is calculated under the assump-
tion that luck (not your medication or intervention) is the only
factor in your experiment, and that p is defined as the proba-
bility of obtaining a result equal to or more extreme than the one
observed. This means p values force you to reason about results
that never actually occurred—that is, results more extreme than
yours. The probability of obtaining such results depends on
your experimental design, which makes p values “psychic”: two
experiments with different designs can produce identical data
but different p values because the unobserved data is different.

Suppose I ask you a series of 12 true-or-false questions
about statistical inference, and you correctly answer 9 of them.
I want to test the hypothesis that you answered the questions by
guessing randomly. To do this, I need to compute the chances
of you getting at least 9 answers right by simply picking true or
false randomly for each question. Assuming you pick true and
false with equal probability, I compute p = 0.073.* And since
p > 0.05, it’s plausible that you guessed randomly. If you did,
you’d get 9 or more questions correct 7.3% of the time.2

But perhaps it was not my original plan to ask you only
12 questions. Maybe I had a computer that generated a limitless
supply of questions and simply asked questions until you got 3
wrong. Now I have to compute the probability of you getting
3 questions wrong after being asked 15 or 20 or 47 of them. I
even have to include the remote possibility that you made it to
175,231 questions before getting 3 questions wrong. Doing the
math, I find that p = 0.033. Since p < 0.05, I conclude that
random guessing would be unlikely to produce this result.

This is troubling: two experiments can collect identical data
but result in different conclusions. Somehow, the p value can
read your intentions.

*I used a probability distribution known as the binomial distribution to calculate
this result. In the next paragraph, I’ll calculate p using a different distribution,
called the negative binomial distribution. A detailed explanation of probability
distributions is beyond the scope of this book; we’re more interested in how
to interpret p values rather than how to calculate them.
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Neyman-Pearson Testing
To better understand the problems of the p value, you need to
learn a bit about the history of statistics. There are two major
schools of thought in statistical significance testing. The first
was popularized by R.A. Fisher in the 1920s. Fisher viewed p as
a handy, informal method to see how surprising a set of data
might be, rather than part of some strict formal procedure
for testing hypotheses. The p value, when combined with an
experimenter’s prior experience and domain knowledge, could
be useful in deciding how to interpret new data.

After Fisher’s work was introduced, Jerzy Neyman and Egon
Pearson tackled some unanswered questions. For example, in
the cold medicine test, you can choose to compare the two
groups by their means, medians, or whatever other formula
you might concoct, so long as you can derive a p value for the
comparison. But how do you know which is best? What does
“best” even mean for hypothesis testing?

In science, it is important to limit two kinds of errors:
false positives, where you conclude there is an effect when there
isn’t, and false negatives, where you fail to notice a real effect. In
some sense, false positives and false negatives are flip sides of
the same coin. If we’re too ready to jump to conclusions about
effects, we’re prone to get false positives; if we’re too conserva-
tive, we’ll err on the side of false negatives.

Neyman and Pearson reasoned that although it’s impos-
sible to eliminate false positives and negatives entirely, it is
possible to develop a formal decision-making process that will
ensure false positives occur only at some predefined rate. They
called this rate α, and their idea was for experimenters to set
an α based upon their experience and expectations. So, for
instance, if we’re willing to put up with a 10% rate of false posi-
tives, we’ll set α = 0.1. But if we need to be more conservative in
our judgments, we might set α at 0.01 or lower. To determine
which testing procedure is best, we see which has the lowest
false negative rate for a given choice of α.

How does this work in practice? Under the Neyman–
Pearson system, we define a null hypothesis—a hypothesis that
there is no effect—as well as an alternative hypothesis, such as
“The effect is greater than zero.” Then we construct a test
that compares the two hypotheses, and determine what results
we’d expect to see were the null hypothesis true. We use the
p value to implement the Neyman-Pearson testing procedure
by rejecting the null hypothesis whenever p < α. Unlike
Fisher’s procedure, this method deliberately does not address
the strength of evidence in any one particular experiment; now
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we are interested in only the decision to reject or not. The size
of the p value isn’t used to compare experiments or draw any
conclusions besides “The null hypothesis can be rejected.” As
Neyman and Pearson wrote,

We are inclined to think that as far as a particu-
lar hypothesis is concerned, no test based upon
the theory of probability can by itself provide any
valuable evidence of the truth or falsehood of that
hypothesis.

But we may look at the purpose of tests from
another view-point. Without hoping to know
whether each separate hypothesis is true or false,
we may search for rules to govern our behaviour
with regard to them, in following which we insure
that, in the long run of experience, we shall not be
too often wrong.3

Although Neyman and Pearson’s approach is conceptu-
ally distinct from Fisher’s, practicing scientists often conflate
the two.4,5,6 The Neyman-Pearson approach is where we get
“statistical significance,” with a prechosen p value threshold
that guarantees the long-run false positive rate. But suppose
you run an experiment and obtain p = 0.032. If your thresh-
old was the conventional p < 0.05, this is statistically signif-
icant. But it’d also have been statistically significant if your
threshold was p < 0.033. So it’s tempting—and a common
misinterpretation—to say “My false positive rate is 3.2%.”

But that doesn’t make sense. A single experiment does
not have a false positive rate. The false positive rate is deter-
mined by your procedure, not the result of any single experiment.
You can’t claim each experiment had a false positive rate of
exactly p, whatever that turned out to be, when you were using
a procedure to get a long-run false positive rate of α.

Have Confidence in Intervals
Significance tests tend to receive lots of attention, with the
phrase “statistically significant” now part of the popular lexi-
con. Research results, especially in the biological and social
sciences, are commonly presented with p values. But p isn’t the
only way to evaluate the weight of evidence. Confidence intervals
can answer the same questions as p values, with the advantage
that they provide more information and are more straightfor-
ward to interpret.

A confidence interval combines a point estimate with the
uncertainty in that estimate. For instance, you might say your
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new experimental drug reduces the average length of a cold by
36 hours and give a 95% confidence interval between 24 and
48 hours. (The confidence interval is for the average length;
individual patients may have wildly varying cold lengths.) If
you run 100 identical experiments, about 95 of the confidence
intervals will include the true value you’re trying to measure.

A confidence interval quantifies the uncertainty in
your conclusions, providing vastly more information than a
p value, which says nothing about effect sizes. If you want to
test whether an effect is significantly different from zero, you
can construct a 95% confidence interval and check whether the
interval includes zero. In the process, you get the added bonus
of learning how precise your estimate is. If the confidence inter-
val is too wide, you may need to collect more data.

For example, if you run a clinical trial, you might produce a
confidence interval indicating that your drug reduces symptoms
by somewhere between 15 and 25 percent. This effect is statisti-
cally significant because the interval doesn’t include zero, and
now you can assess the importance of this difference using your
clinical knowledge of the disease in question. As when you were
using p values, this step is important—you shouldn’t trumpet
this result as a major discovery without evaluating it in context.
If the symptom is already pretty innocuous, maybe a 15–25%
improvement isn’t too important. Then again, for a symptom
like spontaneous human combustion, you might get excited
about any improvement.

If you can write a result as a confidence interval instead of
as a p value, you should.7 Confidence intervals sidestep most of
the interpretational subtleties associated with p values, making
the resulting research that much clearer. So why are confidence
intervals so unpopular? In experimental psychology research
journals, 97% of research papers involve significance testing,
but only about 10% ever report confidence intervals—and most
of those don’t use the intervals as supporting evidence for their
conclusions, relying instead on significance tests.8 Even the
prestigious journal Nature falls short: 89% of its articles report
p values without any confidence intervals or effect sizes, making
their results impossible to interpret in context.9 One journal
editor noted that “p values are like mosquitoes” in that they
“have an evolutionary niche somewhere and [unfortunately]
no amount of scratching, swatting or spraying will dislodge
them.”10

One possible explanation is that confidence intervals go
unreported because they are often embarrassingly wide.11

Another is that the peer pressure of peer-reviewed science is
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too strong—it’s best to do statistics the same way everyone else
does, or else the reviewers might reject your paper. Or maybe
the widespread confusion about p values obscures the benefits
of confidence intervals. Or the overemphasis on hypothesis
testing in statistics courses means most scientists don’t know
how to calculate and use confidence intervals.

Journal editors have sometimes attempted to enforce
the reporting of confidence intervals. Kenneth Rothman, an
associate editor at the American Journal of Public Health in the
mid-1980s, began returning submissions with strongly worded
letters:

All references to statistical hypothesis testing and
statistical significance should be removed from the
paper. I ask that you delete p values as well as com-
ments about statistical significance. If you do not
agree with my standards (concerning the inappro-
priateness of significance tests), you should feel free
to argue the point, or simply ignore what you may
consider to be my misguided view, by publishing
elsewhere.12

During Rothman’s three-year tenure as associate editor,
the fraction of papers reporting solely p values dropped precipi-
tously. Significance tests returned after his departure, although
subsequent editors successfully encouraged researchers to
report confidence intervals as well. But despite reporting confi-
dence intervals, few researchers discussed them in their articles
or used them to draw conclusions, preferring instead to treat
them merely as significance tests.12

Rothman went on to found the journal Epidemiology,
which had a strong statistical reporting policy. Early on,
authors familiar with significance testing preferred to report
p values alongside confidence intervals, but after 10 years, atti-
tudes had changed, and reporting only confidence intervals
became common practice.12

Perhaps brave (and patient) journal editors can follow
Rothman’s example and change statistical practices in their
fields.
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2
STATISTICAL POWER AND

UNDERPOWERED STATISTICS

You’ve seen how it’s possible
to miss real effects by not collect-

ing enough data. You might miss a
viable medicine or fail to notice an

important side effect. So how do you know
how much data to collect?

The concept of statistical power provides the answer. The
power of a study is the probability that it will distinguish an
effect of a certain size from pure luck. A study might easily
detect a huge benefit from a medication, but detecting a
subtle difference is much less likely.

The Power Curve
Suppose I’m convinced that my archnemesis has an unfair
coin. Rather than getting heads half the time and tails half the
time, it’s biased to give one outcome 60% of the time, allowing



him to cheat at incredibly boring coin-flipping betting games.
I suspect he’s cheating—but how to prove it?

I can’t just take the coin, flip it 100 times, and count the
heads. Even a perfectly fair coin won’t always get 50 heads, as
the solid line in Figure 2-1 shows.
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Figure 2-1: The probability of getting different numbers of heads if you flip
a fair coin (solid line) or biased coin (dashed line) 100 times. The biased
coin gives heads 60% of the time.

Even though 50 heads is the most likely outcome, it still
happens less than 10% of the time. I’m also reasonably likely to
get 51 or 52 heads. In fact, when flipping a fair coin 100 times,
I’ll get between 40 and 60 heads 95% of the time. On the other
hand, results far outside this range are unlikely: with a fair coin,
there’s only a 1% chance of obtaining more than 63 or fewer
than 37 heads. Getting 90 or 100 heads is almost impossible.

Compare this to the dashed line in Figure 2-1, showing the
probability of outcomes for a coin biased to give heads 60% of
the time. The curves do overlap, but you can see that an unfair
coin is much more likely to produce 70 heads than a fair coin is.

Let’s work out the math. Say I run 100 trials and count
the number of heads. If the result isn’t exactly 50 heads, I’ll
calculate the probability that a fair coin would have turned up
a deviation of that size or larger. That probability is my p value.
I’ll consider a p value of 0.05 or less to be statistically significant
and hence call the coin unfair if p is smaller than 0.05.

How likely am I to find out a coin is biased using this pro-
cedure? A power curve, as shown in Figure 2-2, can tell me.
Along the horizontal axis is the coin’s true probability of get-
ting heads—that is, how biased it is. On the vertical axis is the
probability that I will conclude the coin is rigged.
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The power for any hypothesis test is the probability that
it will yield a statistically significant outcome (defined in this
example as p < 0.05). A fair coin will show between 40 and
60 heads in 95% of trials, so for an unfair coin, the power is the
probability of a result outside this range of 40–60 heads. The
power is affected by three factors:

• The size of the bias you’re looking for. A huge bias is much
easier to detect than a tiny one.

• The sample size. By collecting more data (more coin flips),
you can more easily detect small biases.

• Measurement error. It’s easy to count coin flips, but many
experiments deal with values that are harder to measure,
such as medical studies investigating symptoms of fatigue or
depression.
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Figure 2-2: The power curves for 100 and 1,000 coin flips, showing the
probability of detecting biases of different magnitudes. The vertical line
indicates a 60% probability of heads.

Let’s start with the size of the bias. The solid line in Fig-
ure 2-2 shows that if the coin is rigged to give heads 60% of the
time, I have a 50% chance of concluding that it’s rigged after
100 flips. (That is, when the true probability of heads is 0.6,
the power is 0.5.) The other half of the time, I’ll get fewer than
60 heads and fail to detect the bias. With only 100 flips, there’s
just too little data to always separate bias from random varia-
tion. The coin would have to be incredibly biased—yielding
heads more than 80% of the time, for example—for me to
notice nearly 100% of the time.

Another problem is that even if the coin is perfectly fair, I
will falsely accuse it of bias 5% of the time. I’ve designed my test
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to interpret outcomes with p < 0.05 as a sign of bias, but those
outcomes do happen even with a fair coin.

Fortunately, an increased sample size improves the sensitiv-
ity. The dashed line shows that with 1,000 flips, I can easily tell
whether the coin is rigged. This makes sense: it’s overwhelm-
ingly unlikely that I could flip a fair coin 1,000 times and get
more than 600 heads. I’ll get between 469 and 531 95% of the
time. Unfortunately, I don’t really have the time to flip my
nemesis’s coin 1,000 times to test its fairness. Often, perform-
ing a sufficiently powerful test is out of the question for purely
practical reasons.

Now counting heads and tails is easy, but what if I were
instead administering IQ tests? An IQ score does not measure
an underlying “truth” but instead can vary from day to day
depending on the questions on the test and the mood of the
subject, introducing random noise to the measurements. If you
were to compare the IQs of two groups of people, you’d see not
only the normal variation in intelligence from one person to
the next but also the random variation in individual scores. A
test with high variability, such as an IQ test requiring subjective
grading, will have relatively less statistical power.

More data helps distinguish the signal from the noise. But
this is easier said than done: many scientists don’t have the
resources to conduct studies with adequate statistical power to
detect what they’re looking for. They are doomed to fail before
they even start.

The Perils of Being Underpowered
Consider a trial testing two different medicines, Fixitol and
Solvix, for the same condition. You want to know which is safer,
but side effects are rare, so even if you test both medicines on
100 patients, only a few in each group will suffer serious side
effects. Just as it is difficult to tell the difference between two
coins that turn up 50% heads and 51% heads, the difference
between a 3% and 4% side effect rate is difficult to discern. If
four people taking Fixitol have serious side effects and only
three people taking Solvix have them, you can’t say for sure
whether the difference is due to Fixitol.

If a trial isn’t powerful enough to detect the effect it’s look-
ing for, we say it is underpowered.

You might think calculations of statistical power are essen-
tial for medical trials; a scientist might want to know how many
patients are needed to test a new medication, and a quick calcu-
lation of statistical power would provide the answer. Scientists
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are usually satisfied when the statistical power is 0.8 or higher,
corresponding to an 80% chance of detecting a real effect of
the expected size. (If the true effect is actually larger, the study
will have greater power.)

However, few scientists ever perform this calculation, and
few journal articles even mention statistical power. In the pres-
tigious journals Science and Nature, fewer than 3% of articles
calculate statistical power before starting their study.1 Indeed,
many trials conclude that “there was no statistically significant
difference in adverse effects between groups,” without noting
that there was insufficient data to detect any but the largest
differences.2 If one of these trials was comparing side effects
in two drugs, a doctor might erroneously think the medications
are equally safe, when one could very well be much more dan-
gerous than the other.

Maybe this is a problem only for rare side effects or only
when a medication has a weak effect? Nope. In one sample of
studies published in prestigious medical journals between 1975
and 1990, more than four-fifths of randomized controlled trials
that reported negative results didn’t collect enough data to
detect a 25% difference in primary outcome between treatment
groups. That is, even if one medication reduced symptoms by
25% more than another, there was insufficient data to make
that conclusion. And nearly two-thirds of the negative trials
didn’t have the power to detect a 50% difference.3

A more recent study of trials in cancer research found
similar results: only about half of published studies with nega-
tive results had enough statistical power to detect even a large
difference in their primary outcome variable.4 Less than 10%
of these studies explained why their sample sizes were so poor.
Similar problems have been consistently seen in other fields of
medicine.5,6

In neuroscience, the problem is even worse. Each individ-
ual neuroscience study collects such little data that the median
study has only a 20% chance of being able to detect the effect
it’s looking for. You could compensate for this by aggregating
data collected across several papers all investigating the same
effect. But since many neuroscience studies use animal sub-
jects, this raises a significant ethical concern. If each study is
underpowered, the true effect will likely be discovered only
after many studies using many animals have been completed
and analyzed—using far more animal subjects than if the study
had been done properly in the first place.7 An ethical review
board should not approve a trial if it knows the trial is unable
to detect the effect it is looking for.
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Wherefore Poor Power?
Curiously, the problem of underpowered studies has been
known for decades, yet it is as prevalent now as it was when
first pointed out. In 1960 Jacob Cohen investigated the statis-
tical power of studies published in the Journal of Abnormal and
Social Psychology8 and discovered that the average study had
only a power of 0.48 for detecting medium-sized effects.* His
research was cited hundreds of times, and many similar reviews
followed, all exhorting the need for power calculations and
larger sample sizes. Then, in 1989, a review showed that in the
decades since Cohen’s research, the average study’s power had
actually decreased.9 This decrease was because of researchers
becoming aware of another problem, the issue of multiple com-
parisons, and compensating for it in a way that reduced their
studies’ power. (I will discuss multiple comparisons in Chap-
ter 4, where you will see that there is an unfortunate trade-off
between a study’s power and multiple comparison correction.)

So why are power calculations often forgotten? One reason
is the discrepancy between our intuitive feeling about sample
sizes and the results of power calculations. It’s easy to think,
“Surely these are enough test subjects,” even when the study
has abysmal power. For example, suppose you’re testing a
new heart attack treatment protocol and hope to cut the risk
of death in half, from 20% to 10%. You might be inclined to
think, “If I don’t see a difference when I try this procedure on
50 patients, clearly the benefit is too small to be useful.” But
to have 80% power to detect the effect, you’d actually need
400 patients—200 in each control and treatment group.10

Perhaps clinicians just don’t realize that their adequate-
seeming sample sizes are in fact far too small.

Math is another possible explanation for why power calcu-
lations are so uncommon: analytically calculating power can
be difficult or downright impossible. Techniques for calculat-
ing power are not frequently taught in intro statistics courses.
And some commercially available statistical software does not
come with power calculation functions. It is possible to avoid
hairy mathematics by simply simulating thousands of artifi-
cial datasets with the effect size you expect and running your
statistical tests on the simulated data. The power is simply the
fraction of datasets for which you obtain a statistically significant
result. But this approach requires programming experience,
and simulating realistic data can be tricky.

*Cohen defined “medium-sized” as a 0.5-standard-deviation difference between
groups.
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Even so, you’d think scientists would notice their power
problems and try to correct them; after five or six studies with
insignificant results, a scientist might start wondering what she’s
doing wrong. But the average study performs not one hypoth-
esis test but many and so has a good shot at finding something
significant.11 As long as this significant result is interesting
enough to feature in a paper, the scientist will not feel that
her studies are underpowered.

The perils of insufficient power do not mean that scientists
are lying when they state they detected no significant difference
between groups. But it’s misleading to assume these results
mean there is no real difference. There may be a difference,
even an important one, but the study was so small it’d be lucky
to notice it. Let’s consider an example we see every day.

Wrong Turns on Red
In the 1970s, many parts of the United States began allowing
drivers to turn right at a red light. For many years prior, road
designers and civil engineers argued that allowing right turns
on a red light would be a safety hazard, causing many additional
crashes and pedestrian deaths. But the 1973 oil crisis and its
fallout spurred traffic agencies to consider allowing right turns
on red to save fuel wasted by commuters waiting at red lights,
and eventually Congress required states to allow right turns
on red, treating it as an energy conservation measure just like
building insulation standards and more efficient lighting.

Several studies were conducted to consider the safety
impact of the change. In one, a consultant for the Virginia
Department of Highways and Transportation conducted a
before-and-after study of 20 intersections that had begun to
allow right turns on red. Before the change, there were 308
accidents at the intersections; after, there were 337 in a similar
length of time. But this difference was not statistically signifi-
cant, which the consultant indicated in his report. When the
report was forwarded to the governor, the commissioner of the
Department of Highways and Transportation wrote that “we can
discern no significant hazard to motorists or pedestrians from
implementation” of right turns on red.12 In other words, he
turned statistical insignificance into practical insignificance.

Several subsequent studies had similar findings: small
increases in the number of crashes but not enough data to
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conclude these increases were significant. As one report
concluded,

There is no reason to suspect that pedestrian acci-
dents involving RT operations (right turns) have
increased after the adoption of [right turn on red].

Of course, these studies were underpowered. But more
cities and states began to allow right turns on red, and the prac-
tice became widespread across the entire United States. Appar-
ently, no one attempted to aggregate these many small studies
to produce a more useful dataset. Meanwhile, more pedestrians
were being run over, and more cars were involved in collisions.
Nobody collected enough data to show this conclusively until
several years later, when studies finally showed that among inci-
dents involving right turns, collisions were occurring roughly
20% more frequently, 60% more pedestrians were being run
over, and twice as many bicyclists were being struck.13,14,*

Alas, the world of traffic safety has learned little from this
example. A 2002 study, for example, considered the impact
of paved shoulders on the accident rates of traffic on rural
roads. Unsurprisingly, a paved shoulder reduced the risk of
accident—but there was insufficient data to declare this reduc-
tion statistically significant, so the authors stated that the cost
of paved shoulders was not justified. They performed no cost-
benefit analysis because they treated the insignificant differ-
ence as meaning there was no difference at all, despite the fact
that they had collected data suggesting that paved shoulders
improved safety! The evidence was not strong enough to meet
their desired p value threshold.12 A better analysis would have
admitted that while it is plausible that shoulders have no benefit
at all, the data is also consistent with them having substantial
benefits. That means looking at confidence intervals.

Confidence Intervals and Empowerment
More useful than a statement that an experiment’s results were
statistically insignificant is a confidence interval giving plausible
sizes for the effect. Even if the confidence interval includes
zero, its width tells you a lot: a narrow interval covering zero
tells you that the effect is most likely small (which may be all
you need to know, if a small effect is not practically useful),

*It is important to note that accidents involving right turns are rare: these
changes amount to fewer than 100 deaths per year in the United States.15

A 60% increase in a small number is still small—but nonetheless, a statistical
error kills dozens of people each year!
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while a wide interval clearly shows that the measurement was
not precise enough to draw conclusions.

Physicists commonly use confidence intervals to place
bounds on quantities that are not significantly different
from zero. In the search for a new fundamental particle, for
example, it’s not helpful to say, “The signal was not statis-
tically significant.” Instead, physicists can use a confidence
interval to place an upper bound on the rate at which the
particle is produced in the particle collisions under study
and then compare this result to the competing theories that
predict its behavior (and force future experimenters to build
yet bigger instruments to find it).

Thinking about results in terms of confidence intervals
provides a new way to approach experimental design. Instead
of focusing on the power of significance tests, ask, “How much
data must I collect to measure the effect to my desired preci-
sion?” Even a powerful experiment can nonetheless produce
significant results with extremely wide confidence intervals,
making its results difficult to interpret.

Of course, the sizes of our confidence intervals vary from
one experiment to the next because our data varies from
experiment to experiment. Instead of choosing a sample size
to achieve a certain level of power, we choose a sample size
so the confidence interval will be suitably narrow 99% of the
time (or 95%; there’s not yet a standard convention for this
number, called the assurance, which determines how often the
confidence interval must beat our target width).16

Sample size selection methods based on assurance have
been developed for many common statistical tests, though not
for all; it is a new field, and statisticians have yet to fully explore
it.17 (These methods go by the name accuracy in parameter esti-
mation, or AIPE.) Statistical power is used far more often than
assurance, which has not yet been widely adopted by scientists
in any field. Nonetheless, these methods are enormously useful.
Statistical significance is often a crutch, a catchier-sounding but
less informative substitute for a good confidence interval.

Truth Inflation
Suppose Fixitol reduces symptoms by 20% over a placebo, but
the trial you’re using to test it is too small to have adequate
statistical power to detect this difference reliably. We know that
small trials tend to have varying results; it’s easy to get 10 lucky
patients who have shorter colds than usual but much harder to
get 10,000 who all do.
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Now imagine running many copies of this trial. Sometimes
you get unlucky patients, so you don’t notice any statistically sig-
nificant improvement from your drug. Sometimes your patients
are exactly average and the treatment group has their symptoms
reduced by 20%—but you don’t have enough data to call this a
statistically significant increase, so you ignore it. Sometimes the
patients are lucky and have their symptoms reduced by much
more than 20%, so you stop the trial and say, “Look! It works!”
You can plot these outcomes in Figure 2-3, which shows the
probability that each trial will yield a certain effect size estimate.
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Figure 2-3: If you run your trial thousands of times, you will see a broad
distribution of effect sizes in terms of percent reduction in symptoms.
The vertical dotted line indicates the effect size which is large enough
to be statistically significant. The true improvement is 20%, but you see
effects from 10% losses to 50% gains. Only the lucky trials are statistically
significant, exaggerating the effect size.

You’ve correctly concluded Fixitol is effective, but you’ve
inflated the size of its effect because your study was under-
powered.

This effect, known as truth inflation, type M error (M for
magnitude), or the winner’s curse, occurs in fields where many
researchers conduct similar experiments and compete to pub-
lish the most “exciting” results: pharmacological trials, epi-
demiological studies, gene association studies (“gene A causes
condition B”), and psychological studies often show symptoms,
along with some of the most-cited papers in the medical litera-
ture.18,19 In fast-moving fields such as genetics, the earliest pub-
lished results are often the most extreme because journals are
most interested in publishing new and exciting results. Follow-
up studies tend to show much smaller effects.20
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Consider also that top-ranked journals, such as Nature
and Science, prefer to publish studies with groundbreaking
results—meaning large effect sizes in novel fields with little
prior research. This is a perfect combination for chronic truth
inflation. Some evidence suggests a correlation between a
journal’s impact factor (a rough measure of its prominence
and importance) and the factor by which its studies overesti-
mate effect sizes. Studies that produce less “exciting” results
are closer to the truth but less interesting to a major journal
editor.21,22

When a study claims to have detected a large effect with
a relatively small sample, your first reaction should not be
“Wow, they’ve found something big!” but “Wow, this study
is underpowered!”23 Here’s an example. Starting in 2005,
Satoshi Kanazawa published a series of papers on the theme
of gender ratios, culminating with “Beautiful Parents Have
More Daughters.” He followed up with a book discussing
this and other “politically incorrect truths” he’d discovered.
The studies were popular in the press at the time, particu-
larly because of the large effect size they reported: Kanazawa
claimed the most beautiful parents have daughters 52% of the
time, but the least attractive parents have daughters only 44%
of the time.

To biologists, a small effect—perhaps one or two percent-
age points—would be plausible. The Trivers–Willard Hypothesis
suggests that if parents have a trait that benefits girls more than
boys, then they will have more girls than boys (or vice versa).
If you assume girls benefit more from beauty than boys, then
the hypothesis would predict beautiful parents would have, on
average, slightly more daughters.

But the effect size claimed by Kanazawa was extraordinary.
And as it turned out, he committed several errors in his statis-
tical analysis. A corrected regression analysis found that his
data showed attractive parents were indeed 4.7% more likely
to have girls—but the confidence interval stretched from 13.3%
more likely to 3.9% less likely.23 Though Kanazawa’s study used
data from nearly 3,000 parents, the results were not statistically
significant.

Enormous amounts of data would be needed to reliably
detect a small difference. Imagine a more realistic effect size—
say, 0.3%. Even with 3,000 parents, an observed difference of
0.3% is far too small to distinguish from luck. You’d be lucky to
obtain a statistically significant result just 5% of the time. These

Statistical Power and Underpowered Statistics 25



results will be those that exaggerate the true effect by at least a
factor of 20, and 40% of them will produce a wild overestimate
in favor of boys instead of girls.23

So even if Kanazawa had performed a perfect statistical
analysis, he still would have occasionally gotten lucky with a
paper like “Engineers Have More Sons, Nurses Have More
Daughters”* and given a wild overestimate of a true, tiny effect.
Studies of the size he conducted are simply incapable of detect-
ing effects of the size you’d expect in advance. A prior power
analysis would have told him this.

Little Extremes
Truth inflation arises because small, underpowered studies
have widely varying results. Occasionally you’re bound to
get lucky and have a statistically significant but wildly over-
estimated result. But this wide variation can cause trouble
even when you’re not performing significance tests. Sup-
pose you’re in charge of public school reform. As part of
your research into the best teaching methods, you look
at the effect of school size on standardized test scores. Do
smaller schools perform better than larger schools? Should
you try to build many small schools or a few large schools?

To answer this question, you compile a list of the highest-
performing schools you have. The average school has about
1,000 students, but the top-scoring 10 schools are almost all
smaller than that. It seems that small schools do the best, per-
haps because teachers can get to know students and help them
individually.

Then you take a look at the worst-performing schools,
expecting them to be large urban schools with thousands of
students and overworked teachers. Surprise! They’re all small
schools too.

What’s going on? Well, take a look at the plot of test
scores versus school size in Figure 2-4. Smaller schools have
wider variation in test scores because they have fewer students.
With fewer students, there are fewer data points to establish
the “true” performance of the teachers; a few anomalous scores
can sway the school’s average significantly. As schools get larger,
test scores vary less and in fact increase on average.24

*A real paper, which he published in 2005 in the Journal of Theoretical Biology.
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Figure 2-4: Schools with more students have less random variation in
their test scores. This data is simulated but based on real observations of
Pennsylvania public schools.

Another example: in the United States, counties with the
lowest rates of kidney cancer tend to be Midwestern, Southern,
and Western rural counties. Why might this be? Maybe rural
people get more exercise or inhale less-polluted air. Or perhaps
they just lead less stressful lives.

On the other hand, counties with the highest rates of kidney
cancer tend to be Midwestern, Southern, and Western rural
counties.

The problem, of course, is that rural counties have the
smallest populations. A single kidney cancer patient in a county
with 10 residents gives that county the highest kidney cancer
rate in the nation. Small counties hence have much more vari-
ation in kidney cancer rates simply because they have so few
residents.25 The confidence intervals for their cancer rates are
correspondingly larger.

A popular strategy to fight this problem is called shrink-
age. For counties with few residents, you can “shrink” the
cancer rate estimates toward the national average by taking a
weighted average of the county cancer rate with the national
average rate. When the county has few residents, you weight
the national average strongly; when the county is large, you
weight the county strongly. Shrinkage is now common practice
in constructing cancer rate maps, among other applications.*
Unfortunately, it biases results in the opposite direction: small

*However, shrinkage is usually implemented using more sophisticated methods
than a simple weighted average.
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counties with truly abnormal cancer rates are estimated to have
rates much closer to the national average than they are.

There’s no single fix to this problem. The best alternative is
to sidestep it altogether: rather than estimating rates by county,
you could use congressional districts, which in the United States
are designed to have roughly equal populations. Congressional
districts are much larger than counties, though, and frequently
they have strange shapes because of gerrymandering. Maps
based on districts may not be statistically misleading but are
still difficult to interpret.

Of course, enforcing equal sample sizes isn’t always an
option. Online shopping sites, for instance, need to sort prod-
ucts based on customer ratings, but they can’t force equal num-
bers of customers to rate every product. Another example is a
discussion website like reddit, which can sort comments by user
ratings; comments can receive vastly different numbers of votes
depending on when or where or by whom they were posted.
Shrinkage is helpful in dealing with these situations. An online
store can use a weighted average of a product’s ratings and
some global average. Products with few ratings will be treated
as generically average, while products with thousands of votes
are sorted by their true individual ratings.

For sites like reddit that have simple up-and-down votes
rather than star ratings, one alternative is to generate a confi-
dence interval for the fraction of positive votes. The interval
starts wide when a comment has only a few votes and narrows
to a definite value (“70% of voters like this comment”) as com-
ments accumulate; sort the comments by the bottom bound
of their confidence intervals. New comments start near the
bottom, but the best among them accumulate votes and creep
up the page as the confidence interval narrows. And because
comments are sorted by the proportion of positive votes rather
than the total number, new comments can compete with those
that have already accumulated thousands of votes.26,27

TIPS • Calculate the statistical power when designing your study
to determine the appropriate sample size. Don’t skimp.
Consult a book like Cohen’s classic Statistical Power Analysis
for the Behavioral Sciences or talk to a statistical consultant. If
the sample size is impractical, be aware of the limitations of
your study.

• When you need to measure an effect with precision, rather
than simply testing for significance, use assurance instead
of power: design your experiment to measure the hypothe-
sized effect to your desired level of precision.
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• Remember that “statistically insignificant” does not mean
“zero.” Even if your result is insignificant, it represents the
best available estimate given the data you have collected.
“Not significant” does not mean “nonexistent.”

• Look skeptically on the results of clearly underpowered
studies. They may be exaggerated due to truth inflation.

• Use confidence intervals to determine the range of
answers consistent with your data, regardless of statistical
significance.

• When comparing groups of different sizes, compute confi-
dence intervals. These will reflect the additional certainty
you have in larger groups.
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3
PSEUDOREPLICATION:

CHOOSE YOUR DATA WISELY

In a randomized controlled trial,
test subjects are assigned to either

experimental or control groups
randomly, rather than for any system-

atic reason. Though the word random makes
such studies sound slightly unscientific, a
medical trial is not usually considered definitive unless it is a
randomized controlled trial. Why? What’s so important about
randomization?

Randomization prevents researchers from introducing
systematic biases between test groups. Otherwise, they might
assign frail patients to a less risky or less demanding treatment
or assign wealthier patients to the new treatment because their
insurance companies will pay for it. But randomization has no
hidden biases, and it guarantees that each group has roughly
the same demographics; any confounding factors—even ones



you don’t know about—can’t affect your results. When you
obtain a statistically significant result, you know that the only
possible cause is your medication or intervention.

Pseudoreplication in Action
Let me return to a medical example. I want to compare two
blood pressure medications, so I recruit 2,000 patients and
randomly split them into two groups. Then I administer the
medications. After waiting a month for the medication to take
effect, I measure each patient’s blood pressure and compare
the groups to find which has the lower average blood pres-
sure. I can do an ordinary hypothesis test and get an ordinary
p value; with my sample size of 1,000 patients per group, I will
have good statistical power to detect differences between the
medications.

Now imagine an alternative experimental design. Instead
of 1,000 patients per group, I recruit only 10, but I measure
each patient’s blood pressure 100 times over the course of a
few months. This way I can get a more accurate fix on their
individual blood pressures, which may vary from day to day.
Or perhaps I’m worried that my sphygmomanometers are not
perfectly calibrated, so I measure with a different one each
day.* I still have 1,000 data points per group but only 10 unique
patients. I can perform the same hypothesis tests with the same
statistical power since I seem to have the same sample size.

But do I really? A large sample size is supposed to ensure
that any differences between groups are a result of my treat-
ment, not genetics or preexisting conditions. But in this new
design, I’m not recruiting new patients. I’m just counting the
genetics of each existing patient 100 times.

This problem is known as pseudoreplication, and it is quite
common.1 For instance, after testing cells from a culture, a
biologist might “replicate” his results by testing more cells
from the same culture. Or a neuroscientist might test multiple
neurons from the same animal, claiming to have a large sample
size of hundreds of neurons from just two rats. A marine biol-
ogist might experiment on fish kept in aquariums, forgetting
that fish sharing a single aquarium are not independent: their
conditions may be affected by one another, as well as the tested
treatment.2 If these experiments are meant to reveal trends in
rats or fish in general, their results will be misleading.

*I just wanted an excuse to use the word sphygmomanometer.
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You can think of pseudoreplication as collecting data that
answers the wrong question. Animal behaviorists frequently
try to understand bird calls, for example, by playing different
calls to birds and evaluating their reactions. Bird calls can vary
between geographical regions, just like human accents, and
these dialects can be compared. Prior to the 1990s, a common
procedure for these experiments was to record one represen-
tative bird song from each dialect and then play these songs to
10 or 20 birds and record their reactions.3 The more birds that
were observed, the larger the sample size.

But the research question was about the different song
dialects, not individual songs. No matter how “representative”
any given song may have been, playing it to more birds couldn’t
provide evidence that Dialect A was more attractive to male
yellow-bellied sapsuckers than Dialect B was; it was only evi-
dence for that specific song or recording. A proper answer to the
research question would have required many samples of songs
from both dialects.

Pseudoreplication can also be caused by taking separate
measurements of the same subject over time (autocorrelation),
like in my blood pressure experiment. Blood pressure measure-
ments of the same patient from day to day are autocorrelated,
as are revenue figures for a corporation from year to year. The
mathematical structure of these autocorrelations can be com-
plicated and vary from patient to patient or from business to
business. The unwitting scientist who treats this data as though
each measurement is independent of the others will obtain
pseudoreplicated—and hence misleading—results.

Accounting for Pseudoreplication
Careful experimental design can break the dependence
between measurements. An agricultural field experiment
might compare growth rates of different strains of a crop in
each field. But if soil or irrigation quality varies from field
to field, you won’t be able to separate variations due to crop
variety from variations in soil conditions, no matter how many
plants you measure in each field. A better design would be to
divide each field into small blocks and randomly assign a crop
variety to each block. With a large enough selection of blocks,
soil variations can’t systematically benefit one crop more than
the others.

Alternatively, if you can’t alter your experimental design,
statistical analysis can help account for pseudoreplication.
Statistical techniques do not magically eliminate dependence

Pseudoreplication: Choose Your Data Wisely 33



between measurements or allow you to obtain good results
with poor experimental design. They merely provide ways to
quantify dependence so you can correctly interpret your data.
(This means they usually give wider confidence intervals and
larger p values than the naive analysis.) Here are some options:4

• Average the dependent data points. For example, aver-
age all the blood pressure measurements taken from a
single person and treat the average as a single data point.
This isn’t perfect: if you measured some patients more
frequently than others, this fact won’t be reflected in the
averaged number. To make your results reflect the level
of certainty in your measurements, which increases as you
take more, you’d perform a weighted analysis, weighting
the better-measured patients more strongly.

• Analyze each dependent data point separately. Instead of
combining all the patient’s blood pressure measurements,
analyze every patient’s blood pressure from, say, just day
five, ignoring all other data points. But be careful: if you
repeat this for each day of measurements, you’ll have prob-
lems with multiple comparisons, which I will discuss in the
next chapter.

• Correct for the dependence by adjusting your p values and
confidence intervals. Many procedures exist to estimate the
size of the dependence between data points and account
for it, including clustered standard errors, repeated mea-
sures tests, and hierarchical models.5,6,7

Batch Biology
New technology has led to an explosion of data in biology.
Inexpensive labs-on-a-chip called microarrays allow biologists
to track the activities of thousands of proteins or genes simulta-
neously. Microarrays contain thousands of probes, which chem-
ically bind to different proteins or genes; fluorescent dyes al-
low a scanner to detect the quantity of material bound to each
probe. Cancer research in particular has benefited from these
new technologies: researchers can track the expression of thou-
sands of genes in both cancerous and healthy cells, which might
lead to new targeted cancer treatments that leave healthy tissue
unharmed.

Microarrays are usually processed in batches on machines
that detect the fluorescent dyes. In a large study, different
microarrays may be processed by different laboratories using
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different equipment. A naive experimental setup might be to
collect a dozen cancerous samples and a dozen healthy samples,
inject them into microarrays, and then run all the cancerous
samples through the processing machine on Tuesday and the
healthy samples on Wednesday.

You can probably see where this is going. Microarray results
vary strongly between processing batches: machine calibrations
might change, differences in laboratory temperature can affect
chemical reactions, and different bottles of chemical reagents
might be used while processing the microarrays. Sometimes
the largest source of variation in an experiment’s data is simply
what day the microarrays were processed. Worse, these prob-
lems do not affect the entire microarray in the same way—
in fact, correlations between the activity of pairs of genes can
entirely reverse when processed in a different batch.8 As a result,
additional samples don’t necessarily add data points to a bio-
logical experiment. If the new samples are processed in the
same batch as the old, they just measure systematic error intro-
duced by the equipment—not anything about cancerous cells
in general.

Again, careful experimental design can mitigate this prob-
lem. If two different biological groups are being tested, you can
split each group evenly between batches so systematic differ-
ences do not affect the groups in different ways. Also, be sure
to record how each batch was processed, how each sample was
stored, and what chemical reagents were used during process-
ing; make this information available to the statisticians analyz-
ing the data so they use it to detect problems.

For example, a statistician could perform principal com-
ponents analysis on the data to determine whether different
batches gave wildly different results. Principal components
analysis determines which combinations of variables in the data
account for the most variation in the results. If it indicates that
the batch number is highly influential, the data can be analyzed
taking batch number into account as a confounding variable.

Synchronized Pseudoreplication
Pseudoreplication can occur through less obvious routes. Con-
sider one example in an article reviewing the prevalence of
pseudoreplication in the ecological literature.9 Suppose you
want to see whether chemicals in the growing shoots of grasses
are responsible for the start of the reproductive season in cute
furry rodents: your hypothesis is that when the grasses sprout
in springtime, the rodents eat them and begin their mating
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season. To test this, you try putting some animals in a lab, feed
half of them ordinary food and the other half food mixed with
the grasses, and wait to see when their reproductive cycles start.

But wait: you vaguely recall having read a paper suggesting
that the reproductive cycles of mammals living in groups can
synchronize—something about their pheromones. So maybe
the animals in each group aren’t actually independent of each
other. After all, they’re all in the same lab, exposed to the same
pheromones. As soon as one goes into estrus, its pheromones
could cause others to follow, no matter what they’ve been eat-
ing. Your sample size will be effectively one.

The research you’re thinking of is a famous paper from
the early 1970s, published in Nature by Martha McClintock,
which suggested that women’s menstrual cycles can synchro-
nize if they live in close contact.10 Other studies found simi-
lar results in golden hamsters, Norway rats, and chimpanzees.
These results seem to suggest that synchronization could cause
pseudoreplication in your study. Great. So does this mean
you’ll have to build pheromone-proof cages to keep your
rodents isolated from each other?

Not quite. You might wonder how you prove that menstrual
or estrous cycles synchronize. Well, as it turns out, you can’t.
The studies “proving” synchronization in various animals were
themselves pseudoreplicated in an insidious way.

McClintock’s study of human menstrual cycles went some-
thing like this:

1. Find groups of women who live together in close contact—
for instance, college students in dormitories.

2. Every month or so, ask each woman when her last men-
strual period began and to list the other women with whom
she spent the most time.

3. Use these lists to split the women into groups that tend to
spend time together.

4. For each group of women, see how far the average woman’s
period start date deviates from the average.

Small deviations would mean the women’s cycles were
aligned, all starting at around the same time. Then the re-
searchers tested whether the deviations decreased over time,
which would indicate that the women were synchronizing. To
do this, they checked the mean deviation at five different points
throughout the study, testing whether the deviation decreased
more than could be expected by chance.
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Unfortunately, the statistical test they used assumed that
if there was no synchronization, the deviations would randomly
increase and decrease from one period to another. But imagine
two women in the study who start with aligned cycles. One has
an average gap of 28 days between periods and the other a gap
of roughly 30 days. Their cycles will diverge consistently over the
course of the study, starting two days apart, then four days, and
so on, with only a bit of random variation because periods are
not perfectly timed. Similarly, two women can start the study not
aligned but gradually align.

For comparison, if you’ve ever been stuck in traffic, you’ve
probably seen how two turn signals blinking at different rates
will gradually synchronize and then go out of phase again. If
you’re stuck at the intersection long enough, you’ll see this
happen multiple times. But to the best of my knowledge, there
are no turn signal pheromones.

So we would actually expect two unaligned menstrual cycles
to fall into alignment, at least temporarily. The researchers
failed to account for this effect in their statistical tests.

They also made an error calculating synchronization at the
beginning of the study: if one woman’s period started four days
before the study began and another’s started four days after, the
difference is only eight days. But periods before the beginning
of the study were not counted, so the recorded difference was
between the fourth day and the first woman’s next period, as
much as three weeks later.

These two errors combined meant that the scientists were
able to obtain statistically significant results even when there
was no synchronization effect outside what would occur without
pheromones.11,12

The additional data points the researchers took as they
followed subjects through more menstrual cycles did not pro-
vide evidence of synchronization at all. It was merely more
statistical evidence of the synchronization that would’ve hap-
pened by chance, regardless of pheromones. The statistical
test addressed a different question than the scientists intended
to ask.

Similar problems exist with studies claiming that small furry
mammals or chimpanzees synchronize their estrous cycles. Sub-
sequent research using corrected statistical methods has failed
to find any evidence of estrous or menstrual synchronization
(though this is controversial).13 We only thought our rodent
experiment could have pseudoreplication because we believed
a pseudoreplicated study.
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Don’t scoff at your friends if they complain about synchro-
nized periods, though. If the average cycle lasts 28 days, then
two average women can have periods which start at most 14 days
apart. (If your period starts 20 days after your friend’s, it’s only
eight days before her next period.) That’s the maximum, so the
average will be seven days, and since periods can last for five to
seven days, they will frequently overlap even as cycles converge
and diverge over time.

TIPS • Ensure that your statistical analysis really answers your
research question. Additional measurements that are highly
dependent on previous data do not prove that your results
generalize to a wider population—they merely increase
your certainty about the specific sample you studied.

• Use statistical methods such as hierarchical models and
clustered standard errors to account for a strong depen-
dence between your measurements.

• Design experiments to eliminate hidden sources of corre-
lation between variables. If that’s not possible, record con-
founding factors so they can be adjusted for statistically. But
if you don’t consider the dependence from the beginning,
you may find there is no way to save your data.
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4
THE P VALUE AND

THE BASE RATE FALLACY

You’ve seen that p values are hard
to interpret. Getting a statistically

insignificant result doesn’t mean
there’s no difference between two

groups. But what about getting a significant
result?

Suppose I’m testing 100 potential cancer medications. Only
10 of these drugs actually work, but I don’t know which; I must
perform experiments to find them. In these experiments, I’ll
look for p < 0.05 gains over a placebo, demonstrating that the
drug has a significant benefit.

Figure 4-1 illustrates the situation. Each square in the grid
represents one drug. In reality, only the 10 drugs in the top
row work. Because most trials can’t perfectly detect every good
medication, I’ll assume my tests have a statistical power of 0.8,
though you know that most studies have much lower power.
So of the 10 good drugs, I’ll correctly detect around 8 of them,
shown in darker gray.



Figure 4-1: Each square represents one candidate
drug. The first row of the grid represents drugs that
definitely work, but I obtained statistically significant
results for only the eight darker-gray drugs. The black
cells are false positives.

Because my p value threshold is 0.05, I have a 5% chance
of falsely concluding that an ineffective drug works. Since
90 of my tested drugs are ineffective, this means I’ll conclude
that about 5 of them have significant effects. These are shown
in black.

I perform my experiments and conclude there are 13
“working” drugs: 8 good drugs and 5 false positives. The
chance of any given “working” drug being truly effective is
therefore 8 in 13—just 62%! In statistical terms, my false dis-
covery rate—the fraction of statistically significant results that
are really false positives—is 38%.

Because the base rate of effective cancer drugs is so low
(only 10%), I have many opportunities for false positives. Take
this to the extreme: if I had the bad fortune of getting a truck-
load of completely ineffective medicines, for a base rate of
0%, then I have no chance of getting a true significant result.
Nevertheless, I’ll get a p < 0.05 result for 5% of the drugs in the
truck.

The Base Rate Fallacy
You often see news articles quoting low p values as a sign that
error is unlikely: “There’s only a 1 in 10,000 chance this result
arose as a statistical fluke, because p = 0.0001.” No! This
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can’t be true. In the cancer medication example, a p < 0.05
threshold resulted in a 38% chance that any given statistically
significant result was a fluke. This misinterpretation is called
the base rate fallacy.

Remember how p values are defined: the p value is the
probability, under the assumption that there is no true effect
or no true difference, of collecting data that shows a difference
equal to or more extreme than what you actually observed.

A p value is calculated under the assumption that the
medication does not work. It tells me the probability of obtain-
ing my data or data more extreme than it. It does not tell
me the chance my medication is effective. A small p value is
stronger evidence, but to calculate the probability that the
medication is effective, you’d need to factor in the base rate.

When news came from the Large Hadron Collider that
physicists had discovered evidence for the Higgs boson, a long-
theorized fundamental particle, every article tried to quote a
probability: “There’s only a 1 in 1.74 million chance that this
result is a fluke,” or something along those lines. But every news
source quoted a different number. Not only did they ignore
the base rate and misinterpret the p value, but they couldn’t
calculate it correctly either.

So when someone cites a low p value to say their study
is probably right, remember that the probability of error is
actually almost certainly higher. In areas where most tested
hypotheses are false, such as early drug trials (most early drugs
don’t make it through trials), it’s likely that most statistically
significant results with p < 0.05 are actually flukes.

A Quick Quiz
A 2002 study found that an overwhelming majority of statistics
students—and instructors—failed a simple quiz about p values.1

Try the quiz (slightly adapted for this book) for yourself to see
how well you understand what p really means.

Suppose you’re testing two medications, Fixitol and Solvix.
You have two treatment groups, one that takes Fixitol and one
that takes Solvix, and you measure their performance on some
standard task (a fitness test, for instance) afterward. You com-
pare the mean score of each group using a simple significance
test, and you obtain p = 0.01, indicating there is a statistically
significant difference between means.
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Based on this, decide whether each of the following state-
ments is true or false:

1. You have absolutely disproved the null hypothesis (“There
is no difference between means”).

2. There is a 1% probability that the null hypothesis is true.

3. You have absolutely proved the alternative hypothesis
(“There is a difference between means”).

4. You can deduce the probability that the alternative hypoth-
esis is true.

5. You know, if you decide to reject the null hypothesis, the
probability that you are making the wrong decision.

6. You have a reliable experimental finding, in the sense that
if your experiment were repeated many times, you would
obtain a significant result in 99% of trials.

You can find the answers in the footnote.*

The Base Rate Fallacy in Medical Testing
There has been some controversy over the use of mammograms
to screen for breast cancer. Some argue that the dangers of
false positive results—which result in unnecessary biopsies,
surgery, and chemotherapy—outweigh the benefits of early
cancer detection; physicians groups and regulatory agencies,
such as the United States Preventive Services Task Force, have
recently stopped recommending routine mammograms for
women younger than 50. This is a statistical question, and the
first step to answering it to ask a simpler question: if your mam-
mogram turns up signs of cancer, what is the probability you
actually have breast cancer? If this probability is too low, most
positive results will be false, and a great deal of time and effort
will be wasted for no benefit.

Suppose 0.8% of women who get mammograms have breast
cancer. In 90% of women with breast cancer, the mammogram
will correctly detect it. (That’s the statistical power of the test.
This is an estimate, since it’s hard to tell how many cancers we
miss if we don’t know they’re there.) However, among women
with no breast cancer at all, about 7% will still get a positive
reading on the mammogram. (This is equivalent to having a

*I hope you’ve concluded that every statement is false. The first five statements
ignore the base rate, while the last question is asking about the power of the
experiment, not its p value.
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p < 0.07 significance threshold.) If you get a positive mammo-
gram result, what are the chances you have breast cancer?

Ignoring the chance that you, the reader, are male,* the
answer is 9%.

How did I calculate this? Imagine 1,000 randomly
selected women chose to get mammograms. On average, 0.8%
of screened women have breast cancer, so about 8 women in
our study will. The mammogram correctly detects 90% of breast
cancer cases, so about 7 of the 8 will have their cancer discov-
ered. However, there are 992 women without breast cancer,
and 7% will get a false positive reading on their mammograms.
This means about 70 women will be incorrectly told they have
cancer.

In total, we have 77 women with positive mammograms, 7
of whom actually have breast cancer. Only 9% of women with
positive mammograms have breast cancer.

Even doctors get this wrong. If you ask them, two-thirds
will erroneously conclude that a p < 0.05 result implies a
95% chance that the result is true.2 But as you can see in these
examples, the likelihood that a positive mammogram means
cancer depends on the proportion of women who actually have
cancer. And we are very fortunate that only a small proportion
of women have breast cancer at any given time.

How to Lie with Smoking Statistics
Renowned experts in statistics fall prey to the base rate fallacy,
too. One high-profile example involves journalist Darrell Huff,
author of the popular 1954 book How to Lie with Statistics.

Although How to Lie with Statistics didn’t focus on statistics
in the academic sense of the term—it was perhaps better titled
How to Lie with Charts, Plots, and Misleading Numbers—the book
was still widely adopted in college courses and read by a pub-
lic eager to outsmart marketers and politicians, turning Huff
into a recognized expert in statistics. So when the US Surgeon
General’s famous report Smoking and Health came out in 1964,
saying that tobacco smoking causes lung cancer, tobacco com-
panies turned to Huff to provide their public rebuttal.†

Attempting to capitalize on Huff’s respected status, the
tobacco industry commissioned him to testify before Congress

*Being male doesn’t actually exclude you from getting breast cancer, but
it’s far less likely.
†The account that follows is based on letters and reports from the Legacy
Tobacco Documents Library, posted at http://www.refsmmat.com/articles/
smoking-statistics.html.
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and then to write a book, tentatively titled How to Lie with Smok-
ing Statistics, covering the many statistical and logical errors
alleged to be found in the surgeon general’s report. Huff com-
pleted a manuscript, for which he was paid more than $9,000
(roughly $60,000 in 2014 dollars) by tobacco companies and
which was positively reviewed by University of Chicago statis-
tician (and paid tobacco industry consultant) K.A. Brownlee.
Although it was never published, it’s likely that Huff’s friendly,
accessible style would have made a strong impression on the
public, providing talking points for watercooler arguments.

In his Chapter 7, he discusses what he calls overprecise
figures—those presented without a confidence interval or any
indication of uncertainty. For example, the surgeon general’s
report mentions a “mortality ratio of 1.20,” which is “statistically
significant at the 5 percent level.” This, presumably, meant that
the ratio was significantly different from 1.0, with p < 0.05. Huff
agrees that expressing the result as a mortality ratio is perfectly
proper but states:

It does have an unfortunate result: it makes it
appear that we now know the actual mortality
ratio of two kinds of groups right down to a deci-
mal place. The reader must bring to his interpre-
tation of this figure a knowledge that what looks
like a rather exact figure is only an approximation.
From the accompanying statement of significance
(“5 percent level”) we discover that all that is actu-
ally known is that the odds are 19 to one that the
second group truly does have a higher death rate
than the first. The actual increase from one group
to the other may be much less than the 20 percent
indicated, or it may be more.

For the first half of this quote, I wanted to cheer Huff on:
yes, statistically significant doesn’t mean that we know the precise
figure to two decimal places. (A confidence interval would have
been a much more appropriate way to express this figure.) But
then Huff claims that the significance level gives 19-to-1 odds
that the death rate really is different. That is, he interprets the
p value as the probability that the results are a fluke.

Not even Huff is safe from the base rate fallacy! We don’t
know the odds that “the second group truly does have a higher
death rate than the first.” All we know is that if the true mortal-
ity ratio were 1, we would observe a mortality ratio larger than
1.20 in only 1 in 20 experiments.

Huff’s complaint about overprecise figures is, in
fact, impossibly precise. Notably, K.A. Brownlee read this
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comment—and several similar remarks Huff makes throughout
the manuscript—without complaint. Instead, he noted that in
one case Huff incorrectly quotes the odds as 20 to 1 rather than
19 to 1. He did not seem to notice the far more fundamental
base rate fallacy lurking.

Taking Up Arms Against the Base Rate Fallacy
You don’t have to be performing advanced cancer research or
early cancer screenings to run into the base rate fallacy. What if
you’re doing social research? Say you’d like to survey Americans
to find out how often they use guns in self-defense. Gun control
arguments, after all, center on the right to self-defense, so it’s
important to determine whether guns are commonly used for
defense and whether that use outweighs the downsides, such as
homicides.

One way to gather this data would be through a survey. You
could ask a representative sample of Americans whether they
own guns and, if so, whether they’ve used the guns to defend
their homes in burglaries or themselves from being mugged.
You could compare these numbers to law enforcement statistics
of gun use in homicides and make an informed decision about
whether the benefits of gun control outweigh the drawbacks.

Such surveys have been done, with interesting results. One
1992 telephone survey estimated that American civilians used
guns in self-defense up to 2.5 million times that year. Roughly
34% of these cases were burglaries, meaning 845,000 burglar-
ies were stymied by gun owners. But in 1992, there were only
1.3 million burglaries committed while someone was at home.
Two-thirds of these occurred while the homeowners were asleep
and were discovered only after the burglar had left. That leaves
430,000 burglaries involving homeowners who were at home
and awake to confront the burglar, 845,000 of which, we are led
to believe, were stopped by gun-toting residents.3

Whoops.
One explanation could be that burglaries are dramatically

underreported. The total number of burglaries came from the
National Crime Victimization Survey (NCVS), which asked tens
of thousands of Americans in detailed interviews about their
experiences with crime. Perhaps respondents who fended off
a burglar with their firearms didn’t report the crime—after
all, nothing was stolen, and the burglar fled. But a massive
underreporting of burglaries would be needed to explain the
discrepancy. Fully two-thirds of burglaries committed against
awake homeowners would need to have gone unreported.
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A more likely answer is that the survey overestimated the
use of guns in self-defense. How? In the same way mammo-
grams overestimate the incidence of breast cancer: there are
far more opportunities for false positives than false negatives.
If 99.9% of people did not use a gun in self-defense in the past
year but 2% of those people answered “yes” for whatever reason
(to amuse themselves or because they misremembered an inci-
dent from long ago as happening in the past year), the true rate
of 0.1% will appear to be nearly 2.1%, inflated by a factor of 21.

What about false negatives? Could this effect be balanced
by people who said “no” even though they gunned down a
mugger just last week? A respondent may have been carrying
the firearm illegally or unwilling to admit using it to a stranger
on the phone. But even then, if few people genuinely use a
gun in self-defense, then there are few opportunities for false
negatives. Even if half of gun users don’t admit to it on the
phone survey, they’re vastly outnumbered by the tiny fraction
of nonusers who lie or misremember, and the survey will give
a result 20 times too large.

Since the false positive rate is the overwhelming error factor
here, that’s what criminologists focus on reducing. A good
way to do so is by conducting extremely detailed surveys. The
NCVS, run by the Department of Justice, uses detailed sit-down
interviews where respondents are asked for details about crimes
and their use of guns in self-defense. Only respondents who
report being victimized are asked about how they defended
themselves, and so people who may be inclined to lie about or
misremember self-defense get the opportunity only if they also
lie about or misremember being a victim. The NCVS also tries
to detect misremembered dates (a common problem) by inter-
viewing the same respondents periodically. If the respondent
reports being the victim of a crime within the last six months,
but six months ago they reported the same crime a few months
prior, the interviewer can remind them of the discrepancy.

The 1992 NCVS estimated a much lower number than the
phone survey—something like 65,000 incidents per year, not
millions.4 This figure includes not only defense against bur-
glaries but also robberies, rapes, assaults, and car thefts. Even
so, it is nearly 40 times smaller than the estimate provided by
the telephone survey.

Admittedly, people may have been nervous to admit illegal
gun use to a federal government agency; the authors of the
original phone survey claimed that most defensive gun use
involves illegal gun possession.5 (This raises another research
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question: why are so many victims illegally carrying firearms?)
This biases the NCVS survey results downward. Perhaps the
truth is somewhere in between.

Unfortunately, the inflated phone survey figure is still
often cited by gun rights groups, misinforming the public
debate on gun safety. Meanwhile, the NCVS results hold
steady at far lower numbers. The gun control debate is
far more complicated than a single statistic, of course, but
informed debate can begin only with accurate data.

If At First You Don’t Succeed, Try, Try Again
The base rate fallacy shows that statistically significant results
are false positives much more often than the p < 0.05 criterion
for significance might suggest. The fallacy’s impact is magnified
in modern research, which usually doesn’t make just one sig-
nificance test. More often, studies compare a variety of factors,
seeking those with the most important effects.

For example, imagine testing whether jelly beans cause
acne by testing the effect of every single jelly bean color on
acne, as illustrated in Figure 4-2.
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Figure 4-2: Cartoon from xkcd, by Randall Munroe
(http://xkcd.com/882/)
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As the comic shows, making multiple comparisons means
multiple chances for a false positive. The more tests I perform,
the greater the chance that at least one of them will produce
a false positive. For example, if I test 20 jelly bean flavors that
do not cause acne at all and look for a correlation at p < 0.05
significance, I have a 64% chance of getting at least one false
positive result. If I test 45 flavors, the chance of at least one
false positive is as high as 90%. If I instead use confidence inter-
vals to look for a correlation that is nonzero, the same problem
will occur.

NOTE The math behind these numbers is fairly straightforward. Suppose we
have n independent hypotheses to test, none of which is true. We set our
significance criterion at p < 0.05. The probability of obtaining at least
one false positive among the n tests is as follows:

P(false positive) = 1 − (1 − 0.05)n

For n = 100, the false positive probability increases to 99%.

Multiple comparisons aren’t always as obvious as testing
20 jelly bean colors. Track the symptoms of patients for a
dozen weeks and test for significant benefits during any of
those weeks: bam, that’s 12 comparisons. And if you’re check-
ing for the occurrence of 23 different potential dangerous side
effects? Alas! You have sinned.

If you send out a 10-page survey asking about nuclear
power plant proximity, milk consumption, age, number of
male cousins, favorite pizza topping, current sock color, and a
few dozen other factors for good measure, you’ll probably find
that at least one of those things is correlated with cancer.

Particle physicists call this the look-elsewhere effect. An experi-
ment like the Large Hadron Collider’s search for the Higgs
boson involves searching particle collision data, looking for
small anomalies that indicate the existence of a new particle.
To compute the statistical significance of an anomaly at an
energy of 5 gigaelectronvolts,* for example, physicists ask
this: “How likely is it to see an anomaly this size or larger at
5 gigaelectronvolts by chance?” But they could have looked
elsewhere—they are searching for anomalies across a large
swath of energies, any one of which could have produced a

*Physicists have the best unit names. Gigaelectronvolts, jiffies, inverse
femtobarns—my only regret as a physicist who switched to statistics is that
I no longer have excuses to use these terms.
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false positive. Physicists have developed complicated proce-
dures to account for this and correctly limit the false positive
rate.6

If we want to make many comparisons at once but control
the overall false positive rate, the p value should be calculated
under the assumption that none of the differences is real. If we
test 20 different jelly beans, we would not be surprised if one
out of the 20 “causes” acne. But when we calculate the p value
for a specific flavor, as though each comparison stands on its
own, we are calculating the probability that this specific group
would be lucky—an unlikely event—not any 1 out of the 20.
And so the anomalies we detect appear much more significant
than they are.7

A survey of medical trials in the 1980s found that the aver-
age trial made 30 therapeutic comparisons. In more than half
the trials, the researchers had made so many comparisons that
a false positive was highly likely, casting the statistically signifi-
cant results they did report into doubt. They may have found a
statistically significant effect, but it could just have easily been a
false positive.8 The situation is similar in psychology and other
heavily statistical fields.

There are techniques to correct for multiple comparisons.
For example, the Bonferroni correction method allows you to
calculate p values as you normally would but says that if you
make n comparisons in the trial, your criterion for significance
should be p < 0.05/n. This lowers the chances of a false pos-
itive to what you’d see from making only one comparison at
p < 0.05. However, as you can imagine, this reduces statistical
power, since you’re demanding much stronger correlations
before you conclude they’re statistically significant. In some
fields, power has decreased systematically in recent decades
because of increased awareness of the multiple comparisons
problem.

In addition to these practical problems, some researchers
object to the Bonferroni correction on philosophical grounds.
The Bonferroni procedure implicitly assumes that every null
hypothesis tested in multiple comparisons is true. But it’s
almost never the case that the difference between two popula-
tions is exactly zero or that the effect of some drug is exactly
identical to a placebo. So why assume the null hypothesis is
true in the first place?

If this objection sounds familiar, it’s because you’ve heard
it before—as an argument against null hypothesis significance
testing in general, not just the Bonferroni correction. Accurate
estimates of the size of differences are much more interesting
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than checking only whether each effect could be zero. That’s
all the more reason to use confidence intervals and effect size
estimates instead of significance testing.

Red Herrings in Brain Imaging
Neuroscientists do massive numbers of comparisons when
performing functional MRI (fMRI) studies, where a three-
dimensional image of the brain is taken before and after the
subject performs some task. The images show blood flow in
the brain, revealing which parts of the brain are most active
when a person performs different tasks.

How exactly do you decide which regions of the brain
are active? A simple method is to divide the brain image into
small cubes called voxels. A voxel in the “before” image is com-
pared to the voxel in the “after” image, and if the difference in
blood flow is significant, you conclude that part of the brain was
involved in the task. Trouble is, there are tens of thousands of
voxels to compare and therefore many opportunities for false
positives.

One study, for instance, tested the effects of an “open-
ended mentalizing task” on participants.9 Subjects were shown
“a series of photographs depicting human individuals in social
situations with a specified emotional valence” and asked to
“determine what emotion the individual in the photo must
have been experiencing.” You can imagine how various emo-
tional and logical centers of the brain would light up during
this test.

The data was analyzed, and certain brain regions were
found to change activity during the task. Comparison of
images made before and after the “mentalizing task” showed
a p = 0.001 difference in an 81mm3 cluster in the brain.

The study participants? Not college undergraduates paid
$10 for their time, as is usual. No, the test subject was a 3.8-
pound Atlantic salmon, which “was not alive at the time of
scanning.”*

Neuroscientists often attempt to limit this problem by
requiring clusters of 10 or more significant voxels with a strin-
gent threshold of p < 0.005, but in a brain scan with tens of
thousands of voxels, a false positive is still virtually guaranteed.
Techniques like the Bonferroni correction, which control the

*“Foam padding was placed within the head coil as a method of limiting salmon
movement during the scan, but proved to be largely unnecessary as subject
motion was exceptionally low.”
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rate of false positives even when thousands of statistical tests
are made, are now common in the neuroscience literature. Few
papers make errors as serious as the ones demonstrated in the
dead salmon experiment. Unfortunately, almost every paper
tackles the problem differently. One review of 241 fMRI studies
found that they used 207 unique combinations of statistical
methods, data collection strategies, and multiple comparison
corrections, giving researchers great flexibility to achieve statis-
tically significant results.10

Controlling the False Discovery Rate
As I mentioned earlier, one drawback of the Bonferroni cor-
rection is that it greatly decreases the statistical power of your
experiments, making it more likely that you’ll miss true effects.
More sophisticated procedures than Bonferroni correction
exist, ones with less of an impact on statistical power, but even
these are not magic bullets. Worse, they don’t spare you from
the base rate fallacy. You can still be misled by your p threshold
and falsely claim there’s “only a 5% chance I’m wrong.” Proce-
dures like the Bonferroni correction only help you eliminate
some false positives.

Scientists are more interested in limiting the false discovery
rate: the fraction of statistically significant results that are false
positives. In the cancer medication example that started this
chapter, my false discovery rate was 38%, since fully one-third
of my statistically significant results were flukes. Of course, the
only reason you knew how many of the medications actually
worked was because I told you the number ahead of time. In
general, you don’t know how many of your tested hypotheses
are true; you can compute the false discovery rate only by guess-
ing. But ideally, you’d find it out from the data.

In 1995, Yoav Benjamini and Yosef Hochberg devised an
exceptionally simple procedure that tells you which p values
to consider statistically significant. I’ve been saving you from
mathematical details so far, but to illustrate just how simple the
procedure is, here it is:

1. Perform your statistical tests and get the p value for each.
Make a list and sort it in ascending order.

2. Choose a false-discovery rate and call it q. Call the number
of statistical tests m.
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3. Find the largest p value such that p ≤ iq/m, where i is the
p value’s place in the sorted list.

4. Call that p value and all smaller than it statistically
significant.

You’re done! The procedure guarantees that out of all
statistically significant results, on average no more than q per-
cent will be false positives.11 I hope the method makes intuitive
sense: the p cutoff becomes more conservative if you’re looking
for a smaller false-discovery rate (smaller q) or if you’re making
more comparisons (higher m).

The Benjamini–Hochberg procedure is fast and effective,
and it has been widely adopted by statisticians and scientists.
It’s particularly appropriate when testing hundreds of hypothe-
ses that are expected to be mostly false, such as associating
genes with diseases. (The vast majority of genes have nothing
to do with a particular disease.) The procedure usually pro-
vides better statistical power than the Bonferroni correction,
and the false discovery rate is easier to interpret than the false
positive rate.

TIPS • Remember, p < 0.05 isn’t the same as a 5% chance your
result is false.

• If you are testing multiple hypotheses or looking for cor-
relations between many variables, use a procedure such as
Bonferroni or Benjamini–Hochberg (or one of their vari-
ous derivatives and adaptations) to control for the excess of
false positives.

• If your field routinely performs multiple tests, such as in
neuroimaging, learn the best practices and techniques
specifically developed to handle your data.

• Learn to use prior estimates of the base rate to calculate the
probability that a given result is a false positive (as in the
mammogram example).
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5
BAD JUDGES OF SIGNIFICANCE

Using too many statistical signifi-
cance tests is a good way to get

misleading results, but it’s also
possible to claim significance for a

difference you haven’t explicitly tested. Mis-
leading error bars could convince you that a
test is unnecessary, or a difference in the statistical significance
of two treatments might convince you there’s a statistically sig-
nificant difference between them. Let’s start with the latter.

Insignificant Differences in Significance
“We compared treatments A and B with a placebo. Treatment
A showed a significant benefit over placebo, while treatment B
had no statistically significant benefit. Therefore, treatment A is
better than treatment B.”



We hear this all the time. It’s an easy way of comparing
medications, surgical interventions, therapies, and experimen-
tal results. It’s straightforward. It seems to make sense.

However, a difference in significance does not always make
a significant difference.1

One reason is the arbitrary nature of the p < 0.05 cut-
off. We could get two very similar results, with p = 0.04 and
p = 0.06, and mistakenly say they’re clearly different from each
other simply because they fall on opposite sides of the cutoff.
The second reason is that p values are not measures of effect
size, so similar p values do not always mean similar effects. Two
results with identical statistical significance can nonetheless
contradict each other.

Instead, think about statistical power. If we compare our
new experimental drugs Fixitol and Solvix to a placebo but
we don’t have enough test subjects to give us good statistical
power, then we may fail to notice their benefits. If they have
identical effects but we have only 50% power, then there’s a
good chance we’ll say Fixitol has significant benefits and Solvix
does not. Run the trial again, and it’s just as likely that Solvix
will appear beneficial and Fixitol will not.

It’s fairly easy to work out the math. Assume both drugs
have identical nonzero effects compared to the placebo, and
our experiments have statistical power B. This means the prob-
ability that we will detect each group’s difference from control
is B, so the probability that we will detect Fixitol’s effect but not
Solvix’s is B(1 − B). The same goes for detecting Solvix’s effect
but not Fixitol’s. Add the probabilities up, and we find that the
probability of concluding that one drug has a significant effect
and the other does not is 2B(1 − B). The result is plotted in
Figure 5-1.

Instead of independently comparing each drug to the
placebo, we should compare them against each other. We can
test the hypothesis that they are equally effective, or we can con-
struct a confidence interval for the extra benefit of Fixitol over
Solvix. If the interval includes zero, then they could be equally
effective; if it doesn’t, then one medication is a clear winner.
This doesn’t improve our statistical power, but it does prevent
the false conclusion that the drugs are different. Our tendency
to look for a difference in significance should be replaced by a
check for the significance of the difference.
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Figure 5-1: A plot of 2B(1−B), the probability that one drug will show
a significant result and the other an insignificant result despite both
drugs having identical effects. When the power is very low, both drugs
give insignificant results; when the power is very high, both drugs give
significant results.

This subtle distinction is important to keep in mind, for
example, when interpreting the results of replication studies, in
which researchers attempt to reproduce the results of previous
studies. Some replication studies frame their negative results
in terms of significance: “The original paper obtained a sig-
nificant result, but this more careful study did not.” But even
if the replication experiment was designed to have sufficient
statistical power to detect the effect reported in the initial study,
there was probably truth inflation—the initial study probably
overstated the effect. Since a larger sample is required to detect
a smaller effect, the true power of the replication experiment
may be lower than intended, and it’s perfectly possible to obtain
a statistically insignificant result that is nevertheless consistent
with the earlier research.

As another example, in 2007 the No. 7 Protect & Perfect
Beauty Serum became a best seller for Boots, the UK phar-
macy chain, after the BBC reported on a clinical trial that
supposedly proved its effectiveness in reducing skin wrinkles.
According to the trial, published by the British Journal of Der-
matology, the serum reduced the number of wrinkles in 43%
of test subjects, a statistically significant benefit, whereas the
control treatment (the same serum without the active ingredi-
ent) benefited only 22% of subjects, a statistically insignificant
improvement. The implication, touted in advertising, was that
the serum was scientifically proven to be your best choice for
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wrinkle control—even though the authors had to admit in their
paper that the difference between the groups was not statisti-
cally significant.2

This misuse of statistics is not limited to corporate market-
ing departments, unfortunately. Neuroscientists, for instance,
use the incorrect method for comparing groups about half
the time.3 You might also remember news about a 2006 study
suggesting that men with multiple older brothers are more
likely to be homosexual.4 How did they reach this conclusion?
The authors explained their results by noting that when they
ran an analysis of the effect of various factors on homosexuality,
only the number of older brothers had a statistically significant
effect. The number of older sisters or of nonbiological older
brothers (that is, adopted brothers or stepbrothers) had no
statistically significant effect. But as we’ve seen, this doesn’t
guarantee there’s a significant difference between these different
effect groups. In fact, a closer look at the data suggests there
was no statistically significant difference between the effect of
having older brothers versus older sisters. Unfortunately, not
enough data was published in the paper to allow calculation of
a p value for the comparison.1

This misinterpretation of inconclusive results contributes to
the public impression that doctors can’t make up their minds
about what medicines and foods are good or bad for you. For
example, statin drugs have become wildly popular to reduce
blood cholesterol levels because high cholesterol is associated
with heart disease. But this association doesn’t prove that reduc-
ing cholesterol levels will benefit patients. A series of five large
meta-analyses reviewing tens of thousands of patient records
set out to answer this question: “Do statins reduce mortality in
patients who have no history of cardiovascular disease?”

Three of the studies answered yes, statins do reduce mor-
tality rates. The other two concluded there was not enough
evidence to suggest statins are helpful.5 Doctors, patients, and
journalists reading these articles were no doubt confused,
perhaps assuming the research on statins was contradictory
and inconclusive. But as the confidence intervals plotted in
Figure 5-2 show, all five meta-analyses gave similar estimates
of the effect of statins: the relative risk estimates were all near
0.9, indicating that during the trial periods, 10% fewer patients
on statin drugs died. Although two studies did have confidence
intervals overlapping a relative risk of one—indicating no differ-
ence between treatment and control—their effect size estimates
matched the other studies well. It would be silly to claim there
was serious disagreement between studies.
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Figure 5-2: Confidence intervals for the relative risk of mortality among
patients taking statin drugs, estimated by five different large meta-analyses.
A relative risk of less than one indicates smaller mortality rates than among
the control group. The meta-analyses are labeled by the lead author’s
name and year of publication.

Ogling for Significance
In the previous section, I said that if we want to compare
Fixitol and Solvix, we should use a significance test to com-
pare them directly, instead of comparing them both against
placebo. Why must I do that? Why can’t I just look at the
two confidence intervals and judge whether they overlap?
If the confidence intervals overlap, it’s plausible both drugs
have the same effect, so they must not be significantly different,
right? Indeed, when judging whether a significant difference
exists, scientists routinely eyeball it, making use of plots like
Figure 5-3.
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Figure 5-3: Time until recovery of patients using Fixitol or Solvix.
Fixitol appears to be more effective, but the error bars overlap.
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Imagine the two plotted points indicate the estimated time
until recovery from some disease in two different groups of 10
patients. The width of these error bars could represent three
different things.

1. Twice the standard deviation of the measurements. Calcu-
late how far each observation is from the average, square
each difference, and then average the results and take the
square root. This is the standard deviation, and it measures
how spread out the measurements are from their mean.
Standard deviation bars stretch from one standard devia-
tion below the mean to one standard deviation above.

2. The 95% confidence interval for the estimate.

3. Twice the standard error for the estimate, another way
of measuring the margin of error. If you run numerous
identical experiments and obtain an estimate of Fixitol’s
effectiveness from each, the standard error is the standard
deviation of these estimates. The bars stretch one standard
error below and one standard error above the mean. In the
most common cases, a standard error bar is about half as
wide as the 95% confidence interval.

It is important to notice the distinction between these.
The standard deviation measures the spread of the individual
data points. If I were measuring how long it takes for patients
to get better when taking Fixitol, a high standard deviation
would tell me it benefits some patients much more than others.
Confidence intervals and standard errors, on the other hand,
estimate how far the average for this sample might be from the
true average—the average I would get if I could give Fixitol
to every single person who ever gets the disease. Hence, it is
important to know whether an error bar represents a standard
deviation, confidence interval, or standard error, though papers
often do not say.*

For now, let’s assume Figure 5-3 shows two 95% confi-
dence intervals. Since they overlap, many scientists would con-
clude there is no statistically significant difference between the
groups. After all, groups one and two might not be different—
the average time to recover could be 25 days in both groups, for
example, and the differences appeared only because group one
got lucky this time.

*And because standard error bars are about half as wide as the 95% confidence
interval, many papers will report “standard error bars” that actually span two
standard errors above and below the mean, making a confidence interval
instead.
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But does this really mean the difference isn’t statistically
significant? What would its p value be?

I can calculate p using a t test, the standard statistical test
for telling whether the means of two groups are significantly
different from each other. Plugging in the numbers for Fixitol
and Solvix, I find that p < 0.05! There is a statistically significant
difference between them, even though the confidence intervals
overlap.

Unfortunately, many scientists skip the math and simply
glance at plots to see whether confidence intervals overlap.
Since intervals can overlap but still represent a statistically
significant difference, this is actually a much more conserva-
tive test—it’s always stricter than requiring p < 0.05.6 And so
significant differences will be missed.

Earlier, we assumed the error bars in Figure 5-3 represent
confidence intervals. But what if they are standard errors or
standard deviations? Could we spot a significant difference by
just looking for whether the error bars overlap? As you might
guess, no. For standard errors, we have the opposite problem
we had with confidence interval bars: two observations might
have standard errors that don’t overlap, but the difference
between the two is not statistically significant. And standard
deviations do not give enough information to judge signifi-
cance, whether they overlap or not.

A survey of psychologists, neuroscientists, and medical
researchers found that the majority judged significance by
confidence interval overlap, with many scientists confusing
standard errors, standard deviations, and confidence intervals.7

Another survey, of climate science papers, found that a majority
of papers that compared two groups with error bars made this
error.8 Even introductory textbooks for experimental scientists,
such as John Taylor’s An Introduction to Error Analysis, teach stu-
dents to judge by eye, hardly mentioning formal hypothesis
tests at all.

There is exactly one situation when visually checking confi-
dence intervals works, and it is when comparing the confidence
interval against a fixed value, rather than another confidence
interval. If you want to know whether a number is plausibly
zero, you may check to see whether its confidence interval
overlaps with zero. There are, of course, formal statistical pro-
cedures that generate confidence intervals that can be com-
pared by eye and that even correct for multiple comparisons
automatically. Unfortunately, these procedures work only
in certain circumstances; Gabriel comparison intervals, for
example, are easily interpreted by eye but require each group
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being compared to have the same standard deviation.9 Other
procedures handle more general cases, but only approximately
and not in ways that can easily be plotted.10 (The alternative,
doing a separate test for each possible pair of variables and then
using the Bonferroni correction for multiple comparisons, is
tedious and conservative, lowering the statistical power more
than alternative procedures.)

Overlapping confidence intervals do not mean two values
are not significantly different. Checking confidence intervals or
standard errors will mislead. It’s always best to use the appro-
priate hypothesis test instead. Your eyeball is not a well-defined
statistical procedure.

TIPS • Compare groups directly using appropriate statistical tests,
instead of simply saying, “This one was significant, and this
one wasn’t.”

• Do not judge the significance of a difference by eye. Use a
statistical test.

• Remember that if you compare many groups, you need to
adjust for making multiple comparisons!
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6
DOUBLE-DIPPING IN THE DATA

Earlier, we discussed truth infla-
tion, a symptom of the overuse

of significance testing. In the quest
for significance, researchers select

only the luckiest and most exaggerated re-
sults since those are the only ones that pass
the significance filter. But that’s not the only
way research gets biased toward exaggerated
results.

Statistical analyses are often exploratory. In exploratory data
analysis, you don’t choose a hypothesis to test in advance. You
collect data and poke it to see what interesting details might
pop out, ideally leading to new hypotheses and new experi-
ments. This process involves making numerous plots, trying a
few statistical analyses, and following any promising leads.

But aimlessly exploring data means a lot of opportunities
for false positives and truth inflation. If in your explorations
you find an interesting correlation, the standard procedure is



to collect a new dataset and test the hypothesis again. Testing
an independent dataset will filter out false positives and leave
any legitimate discoveries standing. (Of course, you’ll need to
ensure your test dataset is sufficiently powered to replicate your
findings.) And so exploratory findings should be considered
tentative until confirmed.

If you don’t collect a new dataset or your new dataset is
strongly related to the old one, truth inflation will come back
to bite you in the butt.

Circular Analysis
Suppose I want to implant electrodes in the brain of a mon-
key, correlating their signals with images I’ll be projecting on
a screen. My goal is to understand how the brain processes
visual information. The electrodes will record communication
between neurons in the monkey’s visual cortex, and I want
to see whether different visual stimuli will result in different
neuronal firing patterns. If I get statistically significant results,
I might even end up in news stories about “reading monkeys’
minds.”

When implantable electrodes were first available, they
were large and could record only a few neurons at a time. If
the electrode was incorrectly placed, it might not detect any
useful signal at all, so to ensure it clearly recorded neurons
that had something to do with vision, it would be slowly moved
as the monkey viewed a stimulus. When clear responses were
seen, the electrode would be left in place and the experiment
would begin. Hence, the exploratory analysis was confirmed by
a full experiment.

Placing the electrode is an exploratory analysis: let’s try
some neurons until one of them seems to fire whenever the
monkey views an image. But once the electrode is in place, we
collect a new set of data and test whether, say, the neuron firing
rate tells us whether the monkey is viewing a green or purple
image. The new data is separate from the old, and if we simply
got a lucky correlation when placing the electrode, we would
fail to replicate the finding during the full experiment.

Modern electrodes are much smaller and much more
sophisticated. A single implant the size of a dime contains
dozens of electrodes, so we can implant the chip and after-
ward select the electrodes that seem to give the best signals.
A modern experiment, then, might look something like this:
show the monkey a variety of stimuli, and record neural re-
sponses with the electrodes. Analyze the signal from every
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electrode to see whether it showed any reaction above the
normal background firing rate, which would indicate that it
is picking up signals from a neuron we’re interested in. (This
analysis may be corrected for multiple comparisons to prevent
high false positive rates.)

Using these results, we discard data from the electrodes
that missed their targets and analyze the remaining data more
extensively, testing whether the firing patterns varied with the
different stimuli we presented. It’s a two-stage procedure: first
pick out electrodes that have a good signal and appear related
to vision; then determine whether their signals vary between
different stimuli. It’s tempting to reuse the data we already col-
lected, since we didn’t have to move the electrodes. It’s essen-
tially a shotgun approach: use many small electrodes, and some
are bound to hit the right neurons. With the bad electrodes fil-
tered out, we can test whether the remaining electrodes appear
to fire at different rates in response to the different stimuli. If
they do, we’ve learned something about the location of vision
processing in monkey brains.

Well, not quite. If I went ahead with this plan, I’d be using
the same data twice. The statistical test I use to find a correla-
tion between the neuron and visual stimulus computes p assum-
ing no correlation—that is, it assumes the null hypothesis, that
the neuron fires randomly. But after the exploratory phase, I
specifically selected neurons that seem to fire more in reaction
to the visual stimuli. In effect, I’d be testing only the lucky
neurons, so I should always expect them to be associated with
different visual stimuli.1 I could do the same experiment on a
dead salmon and get positive results.

This problem, double-dipping in the data, can cause wildly
exaggerated results. And double-dipping isn’t specific to neural
electrodes; here’s an example from fMRI testing, which aims to
associate activity in specific regions of the brain with stimuli or
activities. The MRI machine detects changes in blood flow to
different parts of the brain, indicating which areas are working
harder to process the stimulus. Because modern MRI machines
provide very high-resolution images, it’s important to select a
region of interest in the brain in advance; otherwise, we’d be
performing comparisons across tens of thousands of individual
points in the brain, requiring massive multiple comparison cor-
rection and lowering the study’s statistical power substantially.
The region of interest may be selected on the basis of biology or
previous results, but often there is no clear region to select.

Suppose, for example, we show a test subject two different
stimuli: images of walruses and images of penguins. We don’t
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know which part of the brain processes these stimuli, so we per-
form a simple test to see whether there is a difference between
the activity caused by walruses and the activity when the subject
sees no stimulus at all. We highlight regions with statistically
significant results and perform a full analysis on those regions,
testing whether activity patterns differ between the two stimuli.

If walruses and penguins cause equal activation in a certain
region of the brain, our screening is likely to select that region
for further analysis. However, our screening test also picked
out regions where random variations and noise caused greater
apparent activation for walruses. So our full analysis will show
higher activation on average for walruses than for penguins. We
will detect this nonexistent difference several times more often
than the false positive rate of our test would suggest, because
we are testing only the lucky regions.2 Walruses do have a true
effect, so we have not invented a spurious correlation—but we
have inflated the size of its effect.

Of course, this is a contrived example. What if we chose the
region of interest using both stimuli? Then we wouldn’t mistak-
enly believe walruses cause greater activation than penguins.
Instead, we would mistakenly overstate both of their effects.
Ironically, using more stringent multiple comparisons correc-
tions to select the region of interest makes the problem worse.
It’s the truth inflation phenomenon all over again. Regions
showing average or below-average responses are not included
in the final analysis, because they were insufficiently significant.
Only areas with the strongest random noise make it into further
analysis.

There are several ways to mitigate this problem. One is to
split the dataset in half, choosing regions of interest with the
first half and performing the in-depth analysis with the second.
This reduces statistical power, though, so we’d have to collect
more data to compensate. Alternatively, we could select regions
of interest using some criterion other than response to walrus
or penguin stimuli, such as prior anatomical knowledge.

These rules are often violated in the neuroimaging litera-
ture, perhaps as much as 40% of the time, causing inflated cor-
relations and false positives.2 Studies committing this error tend
to find larger correlations between stimuli and neural activity
than are plausible, given the random noise and error inherent
to brain imaging.3 Similar problems occur when geneticists col-
lect data on thousands of genes and select subsets for analysis or
when epidemiologists dredge through demographics and risk
factors to find which ones are associated with disease.4
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Regression to the Mean
Imagine tracking some quantity over time: the performance
of a business, a patient’s blood pressure, or anything else that
varies gradually with time. Now pick a date and select all the
subjects that stand out: the businesses with the highest rev-
enues, the patients with the highest blood pressures, and so
on. What happens to those subjects the next time we mea-
sure them?

Well, we’ve selected all the top-performing businesses
and patients with chronically high blood pressure. But we’ve
also selected businesses having an unusually lucky quarter
and patients having a particularly stressful week. These lucky
and unlucky subjects won’t stay exceptional forever; measure
them again in a few months, and they’ll be back to their usual
performance.

This phenomenon, called regression to the mean, isn’t some
special property of blood pressures or businesses. It’s just the
observation that luck doesn’t last forever. On average, every-
one’s luck is average.

Francis Galton observed this phenomenon as early as
1869.5 While tracing the family trees of famous and eminent
people, he noticed that the descendants of famous people
tended to be less famous. Their children may have inherited
the great musical or intellectual genes that made their parents
so famous, but they were rarely as eminent as their parents.
Later investigation revealed the same behavior for heights:
unusually tall parents had children who were more average,
and unusually short parents had children who were usually
taller.

Returning to the blood pressure example, suppose I pick
out patients with high blood pressure to test an experimental
drug. There are several reasons their blood pressure might
be high, such as bad genes, a bad diet, a bad day, or even mea-
surement error. Though genes and diet are fairly constant, the
other factors can cause someone’s measured blood pressure to
vary from day to day. When I pick out patients with high blood
pressure, many of them are probably just having a bad day or
their blood pressure cuff was calibrated incorrectly.

And while your genes stay with you your entire life, a
poorly calibrated blood pressure cuff does not. For those
unlucky patients, their luck will improve soon enough, regard-
less of whether I treat them or not. My experiment is biased toward
finding an effect, purely by virtue of the criterion I used to
select my subjects. To correctly estimate the effect of the
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medication, I need to randomly split my sample into treatment
and control groups. I can claim the medication works only if
the treatment group has an average blood pressure improve-
ment substantially better than the control group’s.

Another example of regression to the mean is test scores.
In the chapter on statistical power, I discussed how random
variation is greater in smaller schools, where the luck of an
individual student has a greater effect on the school’s average
results. This also means that if we pick out the best-performing
schools—those that have a combination of good students, good
teachers, and good luck—we can expect them to perform less
well next year simply because good luck is fleeting. As is bad
luck: the worst schools can expect to do better next year—
which might convince administrators that their interventions
worked, even though it was really only regression to the mean.

A final, famous example dates back to 1933, when the field
of mathematical statistics was in its infancy. Horace Secrist, a
statistics professor at Northwestern University, published The
Triumph of Mediocrity in Business, which argued that unusually
successful businesses tend to become less successful and unsuc-
cessful businesses tend to become more successful: proof that
businesses trend toward mediocrity. This was not a statistical
artifact, he argued, but a result of competitive market forces.
Secrist supported his argument with reams of data and numer-
ous charts and graphs and even cited some of Galton’s work in
regression to the mean. Evidently, Secrist did not understand
Galton’s point.

Secrist’s book was reviewed by Harold Hotelling, an influ-
ential mathematical statistician, for the Journal of the American
Statistical Association. Hotelling pointed out the fallacy and
noted that one could easily use the same data to prove that
business trend away from mediocrity: instead of picking the
best businesses and following their decline over time, track
their progress from before they became the best. You will invari-
ably find that they improve. Secrist’s arguments “really prove
nothing more than that the ratios in question have a tendency
to wander about.”5

Stopping Rules
Medical trials are expensive. Supplying dozens of patients
with experimental medications and tracking their symptoms
over the course of months takes significant resources, so many
pharmaceutical companies develop stopping rules, which allow
investigators to end a study early if it’s clear the experimental
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drug has a substantial effect. For example, if the trial is only
half complete but there’s already a statistically significant dif-
ference in symptoms with the new medication, the researchers
might terminate the study rather than gathering more data to
reinforce the conclusion. In fact, it is considered unethical to
withhold a medication from the control group if you already
know it to be effective.

If poorly done, however, dipping into the data early can
lead to false positives.

Suppose we’re comparing two groups of patients, one
taking our experimental new drug Fixitol and one taking a
placebo. We measure the level of some protein in their blood-
streams to see whether Fixitol is working. Now suppose Fixitol
causes no change whatsoever and patients in both groups have
the same average protein levels. Even so, protein levels will vary
slightly among individuals.

We plan to use 100 patients in each group, but we start with
10, gradually recruiting additional pairs to place in the treat-
ment and control groups. As we go along, we do a significance
test to compare the two groups and see whether there is a sta-
tistically significant difference between average protein levels.
We’ll stop early if we see statistical significance. We might see a
result like the simulation in Figure 6-1.
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Figure 6-1: The results of a significance test taken after every pair of new
patients is added to the study. There is no genuine difference between
groups. The dashed line indicates the p = 0.05 significance level.

The plot shows the p value of the difference between
groups as we collect more data, with the dashed line indicat-
ing the p = 0.05 level of significance. At first, there appears to
be no significant difference. But as we collect more and more
data, the p value dips below the dashed line. If we were to stop
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early, we’d mistakenly conclude that there is a significant differ-
ence between groups. Only as we collect even more data do we
realize the difference isn’t significant.

You might expect that the p value dip shouldn’t happen
since there’s no real difference between groups. After all, tak-
ing more data shouldn’t make our conclusions worse, right? It’s
true that if we run the trial again, we might find that the groups
start out with no significant difference and stay that way as we
collect more data or that they start with a huge difference and
quickly regress to having none. But if we wait long enough and
test after every data point, we will eventually cross any arbitrary
line of statistical significance. We can’t usually collect infinite
samples, so in practice this doesn’t always happen, but poorly
implemented stopping rules still increase false positive rates
significantly.6

Our intent in running the experiment is important here.
Had we chosen a fixed group size in advance, the p value would
be the probability of obtaining more extreme results with that
particular group size. But since we allowed the group size to
vary depending on the results, the p value has to be calculated
taking this into account. An entire field of sequential analysis
has developed to solve these problems, either by choosing a
more stringent p value threshold that accounts for the multiple
testing or by using different statistical tests.

Aside from false positives, trials with early stopping rules
also tend to suffer disproportionately from truth inflation.
Many trials that are stopped early are the result of lucky
patients, not brilliant drugs. By stopping the trial, researchers
have deprived themselves of the extra data needed to tell the
difference. In fact, stopped medical trials exaggerate effects
by an average of 29% over similar studies that are not stopped
early.7

Of course, we don’t know the Truth about any drug being
studied. If we did, we wouldn’t be running the study in the first
place! So we can’t tell whether a particular study was stopped
early because of luck or because the drug really was good.
But many stopped studies don’t even publish their original
intended sample size or the stopping rule used to justify ter-
minating the study.8 A trial’s early stoppage is not automatic
evidence that its results are biased, but it is suggestive.

Modern clinical trials are often required to register their
statistical protocols in advance and generally preselect only
a few evaluation points at which to test their evidence, rather
than after every observation. Such registered studies suffer only a
small increase in the false positive rate, which can be accounted
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for by carefully choosing the required significance levels and
other sequential analysis techniques.9 But most other fields do
not use protocol registration, and researchers have the freedom
to use whatever methods they feel appropriate. For example, in
a survey of academic psychologists, more than half admitted to
deciding whether to collect more data after checking whether
their results were significant, usually concealing this practice
in publications.10 And given that researchers probably aren’t
eager to admit to questionable research practices, the true
proportion is likely higher.

TIPS • If you use your data to decide on your analysis procedure,
use separate data to perform the analysis.

• If you use a significance test to pick out the luckiest (or
unluckiest) people in your sample of data, don’t be sur-
prised if their luck doesn’t hold in future observations.

• Carefully plan stopping rules in advance and adjust for
multiple comparisons.
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7
CONTINUITY ERRORS

So far in this book, I’ve focused
on comparisons between groups.

Is the placebo or the drug more
effective? Do intersections that allow

right turns on red kill more people than
those that don’t? You produce a single statis-
tic for each group—such as an average num-
ber of traffic accidents—and see whether
these statistics are significantly different
between groups.

But what if you can’t separate test subjects into clear
groups? A study of the health impacts of obesity might mea-
sure the body mass index of each participant, along with blood
pressure, blood sugar, resting heart rate, and so on. But there
aren’t two clear groups of patients; there’s a spectrum, from
underweight to obese. Say you want to spot health trends as
you move from one end of this spectrum to the other.



One statistical technique to deal with such scenarios is
called regression modeling. It estimates the marginal effect of
each variable—the health impact of each additional pound of
weight, not just the difference between groups on either side of
an arbitrary cutoff. This gives much finer-grained results than a
simple comparison between groups.

But scientists frequently simplify their data to avoid the
need for regression analysis. The statement “Overweight people
are 50% more likely to have heart disease” has far more obvious
clinical implications than “Each additional unit of Metropoli-
tan Relative Weight increases the log-odds of heart disease
by 0.009.” Even if it’s possible to build a statistical model that
captures every detail of the data, a statistician might choose a
simpler analysis over a technically superior one for purely prac-
tical reasons. As you’ve seen, simple models can still be used
incorrectly, and the process of simplifying the data introduces
yet more room for error. Let’s start with the simplification
process; in the next chapter, I’ll discuss common errors when
using full regression models instead.

Needless Dichotomization
A common simplification technique is to dichotomize variables by
splitting a continuous measurement into two separate groups.
In the example study on obesity, for example, you might divide
patients into “healthy” or “overweight” groups. By splitting the
data, you don’t need to fuss over choosing the correct regres-
sion model. You can just compare the two groups using a t test.

This raises the question: how do you decide where to split
the data? Perhaps there’s a natural cutoff or a widely accepted
definition (as with obesity), but often there isn’t. One common
solution is to split the data along the median of the sample,
which divides the data into two equal-size groups—a so-called
median split. A downside to this approach is that different
researchers studying the same phenomenon will arrive at dif-
ferent split points, making their results difficult to compare or
aggregate in meta-analyses.

An alternative to a median split is to select the cutoff that
gives you the smallest p value between groups. You can think
of this as choosing to separate the groups so they are the “most
different.” As you might imagine, this approach makes false
positives more likely. Searching for the cutoff with the best
p value means effectively performing many hypothesis tests
until you get the result you want. The result is the same as
you saw previously with multiple comparisons: a false positive
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rate increased by as much as a factor of 10.1 Your confidence
intervals for the effect size will also be misleadingly narrow.

Dichotomization problems cropped up in a number of
breast cancer research papers in the early 1990s studying the
S-phase fraction, the fraction of cells in a tumor that are busy
copying and synthesizing new DNA. Oncologists believe this
fraction may predict the ultimate course of a cancer, allow-
ing doctors to target their patients’ treatments more effec-
tively. Researchers studying the matter divided patients into
two groups: those with large S-phase fractions and those with
small ones.

Of course, each study chose a different cutoff between
“large” and “small,” picking either the median or the cutoff
that gave the best p value. Unsurprisingly, the studies that
chose the “optimal” cutoff had statistically significant results.
But when these were corrected to account for the multiple
comparisons, not one of them was statistically significant.

Further studies have suggested that the S-phase fraction is
indeed related to tumor prognosis, but the evidence was poor
for many years. The method continued to be used in cancer
studies for several years after its flaws were publicized, and a
2005 set of reporting guidelines for cancer prognostic factor
studies noted the following: “Despite years of research and hun-
dreds of reports on tumor markers in oncology, the number
of markers that have emerged as clinically useful is pitifully
small.”2 Apart from poor statistical power, incomplete report-
ing of results, and sampling biases, the choice of “optimal” cut
points was cited as a key reason for this problem.

Statistical Brownout
A major objection to dichotomization is that it throws away
information. Instead of using a precise number for every
patient or observation, you split observations into groups
and throw away the numbers. This reduces the statistical
power of your study—a major problem when so many studies
are already underpowered. You’ll get less precise estimates of
the correlations you’re trying to measure and will often under-
estimate effect sizes. In general, this loss of power and precision
is the same you’d get by throwing away a third of your data.3

Let’s go back to the example study measuring the health
impacts of obesity. Say you split patients into “normal” and
“overweight” groups based on their body mass index, taking a
BMI of 25 to be the maximum for the normal range. (This is
the standard cutoff used in clinical practice.) But then you’ve
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lost the distinction between all BMIs above this cutoff. If the
heart-disease rate increases with weight, it’s much more difficult
to tell how much it increases because you didn’t record the dif-
ference between, say, mildly overweight and morbidly obese
patients.

To put this another way, imagine if the “normal” group
consisted of patients with BMIs of exactly 24, while the “over-
weight” group had BMIs of 26. A major difference between
the groups would be surprising since they’re not very different.
On the other hand, if the “overweight” group all had BMIs of
36, a major difference would be much less surprising and indi-
cate a much smaller difference per BMI unit. Dichotomization
eliminates this distinction, dropping useful information and
statistical power.

Perhaps it was a silly choice to use only two groups—what
about underweight patients?—but increasing the number of
groups means the number of patients in each group decreases.
More groups might produce a more detailed analysis, but the
heart disease rate estimates for each group will be based on less
data and have wider confidence intervals. And splitting data
into more groups means making more decisions about where
to split the data, making different studies yet more difficult to
compare and making it even easier for researchers to generate
false positives.

Confounded Confounding
You may wonder the following: if I have enough data to achieve
statistical significance after I’ve dichotomized my data, does the
dichotomization matter? As long as I can make up for the lost
statistical power with extra data, why not dichotomize to make
the statistical analysis easy?

That’s a legitimate argument. But analyzing data without
dichotomizing isn’t that hard. Regression analysis is a common
procedure, supported by nearly every statistical software pack-
age and covered in numerous books. Regression doesn’t involve
dichotomization—it uses the full data, so there is no cutoff to
choose and no loss of statistical power. So why water down your
data? But more importantly, dichotomization does more than
cut power. Counterintuitively, it also introduces false positives.

We are often interested in controlling for confounding
factors. You might measure two or three variables (or two or
three dozen) along with the outcome variable and attempt to
determine the unique effect of each variable on the outcome
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after the other variables have been “controlled for.” If you
have two variables and one outcome, you could easily do this by
dichotomizing the two variables and using a two-way analysis of
variance (ANOVA) table, a simple, commonly performed pro-
cedure supported by every major statistical software package.

Unfortunately, the worst that could happen isn’t a false
negative. By dichotomizing and throwing away information,
you eliminate the ability to distinguish between confounding
factors.4

Consider an example. Say you’re measuring the effect of
a number of variables on the quality of health care a person
receives. Health-care quality (perhaps measured using a survey)
is the outcome variable. For predictor variables, you use two
measurements: the subject’s personal net worth in dollars and
the length of the subject’s personal yacht.

You would expect a good statistical procedure to deduce
that wealth impacts quality of health care but yacht size does
not. Even though yacht size and wealth tend to increase
together, it’s not your yacht that gets you better health care.
With enough data, you would notice that people of the same
wealth can have differently sized yachts—or no yachts at all—
but still get a similar quality of care. This indicates that wealth
is the primary factor, not yacht length.

But by dichotomizing the variables, you’ve effectively cut
the data down to four points. Each predictor can be only
“above the median” or “below the median,” and no further
information is recorded. You no longer have the data needed
to realize that yacht length has nothing to do with health care.
As a result, the ANOVA procedure falsely claims that yachts
and health care are related. Worse, this false correlation isn’t
statistically significant only 5% of the time—from the ANOVA’s
perspective, it’s a true correlation, and it is detected as often as
the statistical power of the test allows it.

Of course, you could have figured out that yacht size
wouldn’t matter, even without data. You could have left it
out of the analysis and saved a lot of trouble. But you don’t
usually know in advance which variables are most important—
you depend on your statistical analysis to tell you.

Regression procedures can easily fit this data without any
dichotomization, while producing false-positive correlations
only at the rate you’d expect. (Of course, as the correlation
between wealth and yacht size becomes stronger, it becomes
more difficult to distinguish between their effects.) While
the mathematical theory of regression with multiple variables
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can be more advanced than many practicing scientists care to
understand, involving a great deal of linear algebra, the basic
concepts and results are easy to understand and interpret.
There’s no good reason not to use it.

TIPS • Don’t arbitrarily split continuous variables into discrete
groups unless you have good reason. Use a statistical pro-
cedure that can take full advantage of the continuous
variables.

• If you do need to split continuous variables into groups for
some reason, don’t choose the groups to maximize your
statistical significance. Define the split in advance, use the
same split as in previous similar research, or use outside
standards (such as a medical definition of obesity or high
blood pressure) instead.
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8
MODEL ABUSE

Let’s move on to regression.
Regression in its simplest form

is fitting a straight line to data:
finding the equation of the line that

best predicts the outcome from the data.
With this equation, you can use a measure-
ment, such as body mass index, to predict
an outcome like blood pressure or medical
costs.

Usually regression uses more than one predictor variable.
Instead of just body mass index, you might add age, gender,
amount of regular exercise, and so on. Once you collect med-
ical data from a representative sample of patients, the regres-
sion procedure would use the data to find the best equation
to represent the relationship between the predictors and the
outcome.



As we saw in Chapter 7, regression with multiple variables
allows you to control for confounding factors in a study. For
example, you might study the impact of class size on students’
performance on standardized tests, hypothesizing that smaller
classes improve test scores. You could use regression to find the
relationship between size and score, thus testing whether test
scores rise as class size falls—but there’s a confounding variable.

If you find a relationship, then perhaps you’ve shown
that class size is the cause, but the cause could also be another
factor that influences class size and scores together. Perhaps
schools with bigger budgets can afford more teachers, and
hence smaller classes, and can also afford more books, higher
teacher salaries, more support staff, better science labs, and
other resources that help students learn. Class size could have
nothing to do with it.

To control for the confounding variable, you record each
school’s total budget and include it in your regression equation,
thus separating the effect of budget from the effect of class size.
If you examine schools with similar budgets and different class
sizes, regression produces an equation that lets us say, “For
schools with the same budget, increasing class size by one student
lowers test scores by this many points.” The confounding vari-
able is hence controlled for. Of course, there may be confound-
ing variables you aren’t aware of or don’t know how to measure,
and these could influence your results; only a truly randomized
experiment eliminates all confounding variables.

There are many more versions of regression than the
simple one presented here. Often the relationship between
two variables isn’t a simple linear equation. Or perhaps the
outcome variable isn’t quantitative, like blood pressure or a
test score, but categorical. Maybe you want to predict whether
a patient will suffer complications after a surgery, using his or
her age, blood pressure, and other vital signs. There are many
varieties of procedures to account for these possibilities.

All kinds of regression procedures are subject to common
problems. Let’s start with the simplest problem: overfitting,
which is the result of excessive enthusiasm in data analysis.

Fitting Data to Watermelons
A common watermelon selection strategy is to knock on the
melons and pick those with a particularly hollow sound, which
apparently results from desirable characteristics of watermelon
flesh. With the right measurement equipment, it should be
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possible to use statistics to find an algorithm that can predict
the ripeness of any melon from its sound.

I am particularly interested in this problem because I
once tried to investigate it, building a circuit to connect a
fancy accelerometer to my computer so I could record the
thump of watermelons. But I tested only eight melons—not
nearly enough data to build an accurate ripeness-prediction
system. So I was understandably excited when I came across a
paper that claimed to predict watermelon ripeness with fantas-
tic accuracy: acoustic measurements could predict 99.9% of the
variation in ripeness.1

But let’s think. In this study, panelists tasted and rated
43 watermelons using a five-point ripeness scale. Regression
was used to predict the ripeness rating from various acoustic
measurements. How could the regression equation’s accuracy
be so high? If you had the panelists rerate the melons, they
probably wouldn’t agree with their own ratings with 99.9% accu-
racy. Subjective ratings aren’t that consistent. No procedure,
no matter how sophisticated, could predict them with such
accuracy.

Something is wrong. Let’s evaluate their methods more
carefully.

Each watermelon was vibrated at a range of frequencies,
from 1 to 1,000 hertz, and the phase shift (essentially, how long
it took the vibration to travel through the melon) was mea-
sured at each frequency. There were 1,600 tested frequencies,
so there were 1,600 variables in the regression model. Each
one’s relationship to ripeness has to be estimated.

Now, with more variables than watermelons, I could fit
a perfect regression model. Just like a straight line can be
made to fit perfectly between any two data points, an equa-
tion with 43 variables can be used to perfectly fit the measure-
ments of 43 melons. This is serious overkill. Even if there is
no relationship whatsoever between acoustics and ripeness,
I can fit a regression equation that gives 100% accuracy on
the 43 watermelons. It will account for not just the true rela-
tionship between acoustics and ripeness (if one exists) but
also random variation in individual ratings and measurements.
I will believe the model fits perfectly—but tested on new water-
melons with their own measurement errors and subjective rat-
ings, it may be useless.

The authors of the study attempted to sidestep this problem
by using stepwise regression, a common procedure for select-
ing which variables are the most important in a regression. In
its simplest form, it goes like this: start by using none of the
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1,600 frequency measurements. Perform 1,600 hypothesis tests
to determine which of the frequencies has the most statistically
significant relationship with the outcome. Add that frequency
and then repeat with the remaining 1,599. Continue the proce-
dure until there are no statistically significant frequencies.

Stepwise regression is common in many scientific fields,
but it’s usually a bad idea.2 You probably already noticed one
problem: multiple comparisons. Hypothetically, by adding
only statistically significant variables, you avoid overfitting, but
running so many significance tests is bound to produce false
positives, so some of the variables you select will be bogus. Step-
wise regression procedures provide no guarantees about the
overall false positive rate, nor are they guaranteed to select the
“best” combination of variables, however you define “best.”
(Alternative stepwise procedures use other criteria instead
of statistical significance but suffer from many of the same
problems.)

So despite the veneer of statistical significance, stepwise
regression is susceptible to egregious overfitting, producing an
equation that fits the data nearly perfectly but that may prove
useless when tested on a separate dataset. As a test, I simulated
random watermelon measurements with absolutely zero cor-
relation with ripeness, and nonetheless stepwise regression fit
the data with 99.9% accuracy. With so many variables to choose
from, it would be more surprising if it didn’t.

Most uses of stepwise regression are not in such extreme
cases. Having 1,600 variables to choose from is extraordinarily
rare. But even in modest cases with 100 observations of a few
dozen variables, stepwise regression produces inflated estimates
of accuracy and statistical significance.3,4

Truth inflation is a more insidious problem. Remember,
“statistically insignificant” does not mean “has no effect what-
soever.” If your study is underpowered—you have too many
variables to choose from and too little data—then you may
not have enough data to reliably distinguish each variable’s
effect from zero. You’ll include variables only if you are un-
lucky enough to overestimate their effect on the outcome.
Your model will be heavily biased. (Even when not using a
formal stepwise regression procedure, it’s common practice
to throw out “insignificant” variables to simplify a model, lead-
ing to the same problem.)

There are several variations of stepwise regression. The ver-
sion I just described is called forward selection since it starts from
scratch and starts including variables. The alternative, backward
elimination, starts by including all 1,600 variables and excludes
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those that are statistically insignificant, one at a time. (This
would fail, in this case: with 1,600 variables but only 43 melons,
there isn’t enough data to uniquely determine the effects of all
1,600 variables. You would get stuck on the first step.) It’s also
possible to change the criteria used to include new variables;
instead of statistical significance, more-modern procedures use
metrics like the Akaike information criterion and the Bayesian
information criterion, which reduce overfitting by penalizing
models with more variables. Other variations add and remove
variables at each step according to various criteria. None of
these variations is guaranteed to arrive at the same answer,
so two analyses of the same data could arrive at very different
results.

For the watermelon study, these factors combined to pro-
duce implausibly accurate results. How can a regression model
be fairly evaluated, avoiding these problems? One option is
cross-validation: fit the model using only a portion of the melons
and then test its effectiveness at predicting the ripeness of the
other melons. If the model overfits, it will perform poorly dur-
ing cross-validation. One common cross-validation method is
leave-one-out cross-validation, where the model is fit using all but
one data point and then evaluated on its ability to predict that
point; the procedure is repeated with each data point left out in
turn. The watermelon study claims to have performed leave-out-
one cross-validation but obtained similarly implausible results.
Without access to the data, I’m not sure whether the method
genuinely works.

Despite these drawbacks, stepwise regression continues to
be popular. It’s an intuitively appealing algorithm: select the
variables with statistically significant effects. But choosing a
single model is usually foolishly overconfident. With so many
variables to choose from, there are often many combinations
of variables that predict the outcome nearly as well. Had I
picked 43 more watermelons to test, I probably would have
selected a different subset of the 1,600 possible acoustic pre-
dictors of ripeness. Stepwise regression produces misleading
certainty—the claim that these 20 or 30 variables are “the” pre-
dictors of ripeness, though dozens of others could do the job.

Of course, in some cases there may be a good reason to
believe that only a few of the variables have any effect on the
outcome. Perhaps you’re identifying the genes responsible for
a rare cancer, and though you have thousands of candidates,
you know only a few are the cause. Now you’re not interested
in making the best predictions—you just want to identify the
responsible genes. Stepwise regression is still not the best tool;
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the lasso (short for least absolute shrinkage and selection operator,
an inspired acronym) has better mathematical properties and
doesn’t fool the user with claims of statistical significance. But
the lasso is not bulletproof, and there is no perfect automated
solution.

Correlation and Causation
When you have used multiple regression to model some
outcome—like the probability that a given person will suffer
a heart attack, given that person’s weight, cholesterol, and so
on—it’s tempting to interpret each variable on its own. You
might survey thousands of people, asking whether they’ve had
a heart attack and then doing a thorough physical examina-
tion, and produce a model. Then you use this model to give
health advice: lose some weight, you say, and make sure your
cholesterol levels fall within this healthy range. Follow these
instructions, and your heart attack risk will decrease by 30%!

But that’s not what your model says. The model says that
people with cholesterol and weight within that range have a
30% lower risk of heart attack; it doesn’t say that if you put an
overweight person on a diet and exercise routine, that per-
son will be less likely to have a heart attack. You didn’t collect
data on that! You didn’t intervene and change the weight and
cholesterol levels of your volunteers to see what would happen.

There could be a confounding variable here. Perhaps
obesity and high cholesterol levels are merely symptoms of
some other factor that also causes heart attacks; exercise and
statin pills may fix them but perhaps not the heart attacks.
The regression model says lower cholesterol means fewer
heart attacks, but that’s correlation, not causation.

One example of this problem occurred in a 2010 trial
testing whether omega-3 fatty acids, found in fish oil and com-
monly sold as a health supplement, can reduce the risk of heart
attacks. The claim that omega-3 fatty acids reduce heart attack
risk was supported by several observational studies, along with
some experimental data. Fatty acids have anti-inflammatory
properties and can reduce the level of triglycerides in the
bloodstream—two qualities known to correlate with reduced
heart attack risk. So it was reasoned that omega-3 fatty acids
should reduce heart attack risk.5

But the evidence was observational. Patients with low tri-
glyceride levels had fewer heart problems, and fish oils reduce
triglyceride levels, so it was spuriously concluded that fish oil
should protect against heart problems. Only in 2013 was a large
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randomized controlled trial published, in which patients were
given either fish oil or a placebo (olive oil) and monitored
for five years. There was no evidence of a beneficial effect of
fish oil.6

Another problem arises when you control for multiple con-
founding factors. It’s common to interpret the results by saying,
“If weight increases by one pound, with all other variables held
constant, then heart attack rates increase by . . .” Perhaps that
is true, but it may not be possible to hold all other variables con-
stant in practice. You can always quote the numbers from the
regression equation, but in reality the act of gaining a pound of
weight also involves other changes. Nobody ever gains a pound
with all other variables held constant, so your regression equa-
tion doesn’t translate to reality.

Simpson’s Paradox
When statisticians are asked for an interesting paradoxical
result in statistics, they often turn to Simpson’s paradox.*
Simpson’s paradox arises whenever an apparent trend in data,
caused by a confounding variable, can be eliminated or
reversed by splitting the data into natural groups. There
are many examples of the paradox, so let me start with the
most popular.

In 1973, the University of California, Berkeley, received
12,763 applications for graduate study. In that year’s admissions
process, 44% of male applicants were accepted but only 35% of
female applicants were. The university administration, fearing a
gender discrimination lawsuit, asked several of its faculty to take
a closer look at the data.†

Graduate admissions, unlike undergraduate admissions,
are handled by each academic department independently. The
initial investigation led to a paradoxical conclusion: of 101 sep-
arate graduate departments at Berkeley, only 4 departments
showed a statistically significant bias against admitting women.
At the same time, six departments showed a bias against men,

*Simpson’s paradox was discovered by Karl Pearson and Udny Yule and is thus
an example of Stigler’s law of eponymy, discovered by Robert Merton, which
states that no scientific discovery is named after the original discoverer.
†The standard version of this story claims that the university was sued for dis-
crimination, but nobody ever says who filed the suit or what became of it. A
Wall Street Journal interview with a statistician involved in the original investiga-
tion reveals that the lawsuit never happened.7 The mere fear of a lawsuit was
sufficient to trigger an investigation. But the lawsuit story has been around so
long that it’s commonly regarded as fact.
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which was more than enough to cancel out the deficit of
women caused by the other four departments.

How could Berkeley as a whole appear biased against
women when individual departments were generally not? It
turns out that men and women did not apply to all depart-
ments in equal proportion. For example, nearly two-thirds of
the applicants to the English department were women, while
only 2% of mechanical engineering applicants were. Further-
more, some graduate departments were more selective than
others.

These two factors accounted for the perceived bias. Women
tended to apply to departments with many qualified applicants
and little funding, while men applied to departments with fewer
applicants and surpluses of research grants. The bias was not
at Berkeley, where individual departments were generally fair,
but further back in the educational process, where women
were being shunted into fields of study with fewer graduate
opportunities.8

Simpson’s paradox came up again in a 1986 study on
surgical techniques to remove kidney stones. An analysis of
hundreds of medical records appeared to show that percuta-
neous nephrolithotomy, a minimally invasive new procedure
for removing kidney stones, had a higher success rate than
traditional open surgery: 83% instead of 78%.

On closer inspection, the trend reversed. When the data
was split into small and large kidney-stone groups, percuta-
neous nephrolithotomy performed worse in both groups, as
shown in Table 8-1. How was this possible?

Table 8-1: Success Rates for Kidney Stone Removal Surgeries

Treatment Diameter < 2 cm Dia. ≥ 2 cm Overall

Open surgery 93% 73% 78%
Percutaneous nephrolithotomy 87% 69% 83%

The problem was that the study did not use randomized
assignment. It was merely a review of medical records, and it
turned out that doctors were systematically biased in how they
treated each patient. Patients with large, difficult-to-remove
kidney stones underwent open surgery, while those with small,
easy-to-remove stones had the nephrolithotomy.9 Presumably,
doctors were more comfortable using the new, unfamiliar
procedure on patients with small stones and reverted to open
surgery for tough cases.
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The new surgery wasn’t necessarily better but was tested
on the easiest patients. Had the surgical method been chosen
by random assignment instead of at the surgeon’s discretion,
there’d have been no such bias. In general, random assign-
ment eliminates confounding variables and prevents Simpson’s
paradox from giving us backward results. Purely observational
studies are particularly susceptible to the paradox.

This problem is common in medicine, as illustrated by
another example. Bacterial meningitis is an infection of tis-
sues surrounding the brain and spinal cord and is known to
progress quickly and cause permanent damage if not immedi-
ately treated, particularly in children. In the United Kingdom,
general practitioners typically administer penicillin to children
they believe have meningitis before sending them to the hospi-
tal for further tests and treatment. The goal is to start treatment
as soon as possible, without waiting for the child to travel to the
hospital.

To see whether this early treatment was truly beneficial,
an observational study examined records of 448 children diag-
nosed with meningitis and admitted to the hospital. Simple
analysis showed that children given penicillin by general prac-
titioners were less likely to die in treatment.

A more careful look at the data reversed this trend. Many
children had been admitted directly to the hospital and never
saw a general practitioner, meaning they didn’t receive the
initial penicillin shot. They were also the children with the
most severe illnesses—the children whose parents rushed them
directly to the hospital. What if they are excluded from the
data and you ask only, “Among children who saw their general
practitioner first, did those administered penicillin have better
outcomes?” Then the answer is an emphatic no. The children
administered penicillin were much more likely to die.10

But this was an observational study, so you can’t be sure
the penicillin caused their deaths. It’s hypothesized that tox-
ins released during the destruction of the bacteria could
cause shock, but this has not been experimentally proven.
Or perhaps general practitioners gave penicillin only to chil-
dren who had the most severe cases. You can’t be sure without
a randomized trial.

Unfortunately, randomized controlled experiments are
difficult and sometimes impossible to run. For example, it may
be considered unethical to deliberately withhold penicillin
from children with meningitis. For a nonmedical example, if
you compare flight delays between United Airlines and Con-
tinental Airlines, you’ll find United has more flights delayed
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on average. But at each individual airport in the comparison,
Continental’s flights are more likely to be delayed. It turns out
United operates more flights out of cities with poor weather. Its
average is dragged down by the airports with the most delays.7

But you can’t randomly assign airline flights to United or
Continental. You can’t always eliminate every confounding
factor. You can only measure them and hope you’ve measured
them all.

TIPS • Remember that a statistically insignificant variable does not
necessarily have zero effect; you may not have the power
needed to detect its effect.

• Avoid stepwise regression when possible. Sometimes it’s
useful, but the final model is biased and difficult to inter-
pret. Other selection techniques, such as the lasso, may be
more appropriate. Or there may be no need to do variable
selection at all.

• To test how well your model fits the data, use a separate
dataset or a procedure such as cross-validation.

• Watch out for confounding variables that could cause
misleading or reversed results, as in Simpson’s paradox,
and use random assignment to eliminate them whenever
possible.
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9
RESEARCHER FREEDOM:

GOOD VIBRATIONS?

There’s a common misconcep-
tion that statistics is boring and

monotonous. Collect lots of data;
plug numbers into Excel, SPSS, or R;

and beat the software with a stick until it pro-
duces colorful charts and graphs. Done! All
the statistician must do is enter some com-
mands and read the results.

But one must choose which commands to use. Two
researchers attempting to answer the same question can
and often do perform entirely different statistical analyses.
There are many decisions to make.



What do I measure?
This isn’t as obvious as it sounds. If I’m testing a psychiatric
medication, I could use several different scales to measure
symptoms: various brain function tests, reports from doc-
tors, or all sorts of other measurements. Which will be most
useful?

Which variables do I adjust for?
In a medical trial, I might control for patient age, gender,
weight, BMI, medical history, smoking, or drug use, or for
the results of medical tests done before the start of the
study. Which of these factors are important? Which can
be ignored? How do I measure them?

Which cases do I exclude?
If I’m testing diet plans, maybe I want to exclude test sub-
jects who came down with diarrhea during the trial, since
their results will be abnormal. Or maybe diarrhea is a side
effect of the diet and I must include it. There will always
be some results that are out of the ordinary, for reasons
known or unknown. I may want to exclude them or analyze
them specially. Which cases count as outliers? What do I do
with them?

How do I define groups?
For example, I may want to split patients into “overweight,”
“normal,” and “underweight” groups. Where do I draw the
lines? What do I do with a muscular bodybuilder whose
BMI is in the “overweight” range?

What about missing data?
Perhaps I’m testing cancer remission rates with a new
drug. I run the trial for five years, but some patients will
have tumors reappear after six years or eight years. My
data does not include their recurrence. Or perhaps some
patients dropped out because of side effects or personal
problems. How do I account for this when measuring the
effectiveness of the drug?

How much data should I collect?
Should I stop when I have a definitive result or continue
as planned until I’ve collected all the data? What if I have
trouble enrolling as many patients as desired?

It can take hours of exploration to see which procedures
are most appropriate. Papers usually explain the statistical
analysis performed but don’t always explain why researchers
chose one method over another or what the results would have
been had they chosen a different method. Researchers are free
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to choose whatever methods they feel appropriate—and though
they may make good choices, what happens if they analyze the
data differently?

This statistical freedom allows bias to creep into analy-
sis undetected, even when analysts have the best of inten-
tions. A few analysis decisions can change results dramatically,
suggesting that perhaps analysts should make the decisions
before they see the data. Let’s start with the outsized impact of
small analysis decisions.

A Little Freedom Is a Dangerous Thing
In simulations, it’s possible to get effect sizes different by a
factor of two simply by adjusting for different variables, exclud-
ing different sets of cases, and handling outliers differently.1

Even reasonable practices, such as remeasuring patients with
strange laboratory test results or removing clearly abnormal
patients, can bring a statistically insignificant result to signifi-
cance.2 Apparently, being free to analyze how you want gives
you enormous control over your results!

A group of researchers demonstrated this phenomenon
with a simple experiment. Twenty undergraduates were ran-
domly assigned to listen to either “When I’m Sixty-Four” by the
Beatles or “Kalimba,” a song that comes with the Windows 7
operating system. Afterward, they were asked their age and
their father’s age. The two groups were compared, and it was
found that “When I’m Sixty-Four” listeners were a year and a
half younger on average, controlling for their father’s age, with
p < 0.05. Since the groups were randomly assigned, the only
plausible source of the difference was the music.

Rather than publishing The Musical Guide to Staying Young,
the researchers explained the tricks they used to obtain this
result. They didn’t decide in advance how much data to collect;
instead, they recruited students and ran statistical tests periodi-
cally to see whether a significant result had been achieved. (You
saw earlier that such stopping rules can inflate false-positive
rates significantly.) They also didn’t decide in advance to con-
trol for the age of the subjects’ fathers, instead asking how old
they felt, how much they would enjoy eating at a diner, the
square root of 100, their mother’s age, their agreement with
“computers are complicated machines,” whether they would
take advantage of an early-bird special, their political orienta-
tion, which of four Canadian quarterbacks they believed won an
award, how often they refer to the past as “the good old days,”
and their gender.
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Only after looking at the data did the researchers decide on
which outcome variable to use and which variables to control
for. (Had the results been different, they might have reported
that “When I’m Sixty-Four” causes students to, say, be less able
to calculate the square root of 100, controlling for their knowl-
edge of Canadian football.) Naturally, this freedom allowed
the researchers to make multiple comparisons and inflated
their false-positive rate. In a published paper, they wouldn’t
need to mention the other insignificant variables; they’d be
free to discuss the apparent antiaging benefit of the Beatles.
The fallacy would not be visible to the reader.

Further simulation by the researchers suggested that if
scientists try different statistical analyses until one works—say,
by controlling for different combinations of variables and trying
different sample sizes—false positive rates can jump to more
than 50% for a given dataset.3

This example sounds outlandish, and most scientists would
protest that they don’t intentionally tinker with the data until
a significant result appears. They construct a hypothesis, col-
lect data, explore the data a bit, and run a reasonable statis-
tical analysis to test the hypothesis. Perhaps we could have
tried 100 analyses until we got a fantastic result, they say, but
we didn’t. We picked one analysis that seemed appropriate for
the data and stuck with it.

But the choice of analysis strategy is always based on the
data. We look at our data to decide which variables to include,
which outliers to remove, which statistical tests to use, and
which outcomes to examine. We do this not with the explicit
goal of finding the most statistically significant result but to
design an analysis that accounts for the peculiarities that arise
in any dataset. Had we collected different data—had that one
patient suffered from chronic constipation instead of acute
diarrhea—we would choose a different statistical analysis. We
bias the analysis to produce results that “make sense.”

Furthermore, a single prespecified scientific hypothesis
does not necessarily correspond to a single statistical hypoth-
esis. Many different statistical results could all be interpreted
to support a hypothesis. You may believe that one drug has
fewer side effects than another, but you will accept statistically
significant drops in any of a dozen side effects as evidence. You
may believe that women are more likely to wear red or pink
during ovulation, but you will accept statistically significant
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effects for red shirts, pink shirts, or the combination of both.*
(Or perhaps you will accept effects for shirts, pants, hats, socks,
or other kinds of clothing.) If you hypothesize that ovulation
makes single women more liberal, you will accept changes in
any of their voting choices, religious beliefs, and political values
as evidence.† The choices that produce interesting results will
attract our attention and engage our human tendency to build
plausible stories for any outcome.

The most worrying consequence of this statistical freedom
is that researchers may unintentionally choose the statistical
analysis most favorable to them. Their resulting estimates of
uncertainty—standard errors, confidence intervals, and so on—
will be biased. The false-positive rate will be inflated because
the data guided their statistical design.

Avoiding Bias
In physics, unconscious biases have long been recognized as
a problem. Measurements of physical constants, such as the
speed of light or subatomic particle properties, tend to clus-
ter around previous measurements rather than the eventually
accepted “truth.”8 It seems an experimentalist, obtaining results
that disagree with earlier studies, “searches for the source or
sources of such errors, and continues to search until he gets a
result close to the accepted value. Then he stops!”9

Seeking to eliminate this bias, particle physicists have begun
performing blind analyses: the scientists analyzing the data avoid
calculating the value of interest until after the analysis proce-
dure is finalized. Sometimes this is easy: Frank Dunnington,
measuring the electron’s charge-to-mass ratio in the early 1930s,
had his machinist build the experimental apparatus with the
detector close to, but not exactly at, the optimal angle. Without
the precise angle measurement, Dunnington could not calcu-
late his final answer, so he devised his analysis procedures while
unable to subconsciously bias the results. Once he was ready, he
measured the angle and calculated the final ratio.

*This was a real study, claiming women at peak fertility were three times more
likely to wear red or pink.4 Columbia University statistician Andrew Gelman
wrote an article in Slate criticizing the many degrees of freedom in the study,
using it as an example to attack statistical methods in psychology in general.5
†I am not making up this study either. It also found that “ovulation led married
women to become more conservative.”6 A large replication attempt found
no evidence for either claim.7
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Blind analysis isn’t always this straightforward, of course,
but particle physicists have begun to adopt it for major exper-
iments. Other blinding techniques include adding a constant
to all measurements, keeping this constant hidden from ana-
lysts until the analysis is finalized; having independent groups
perform separate parts of the analysis and only later combining
their results; or using simulations to inject false data that is later
removed. Results are unblinded only after the research group is
satisfied that the analysis is complete and appropriate.

In some medical studies, triple blinding is performed as a
form of blind analysis; the patients, doctors, and statisticians
all do not know which group is the control group until the
analysis is complete. This does not eliminate all sources of bias.
For example, the statistician may not be able to unconsciously
favor the treatment group, but she may be biased toward a
larger difference between groups. More extensive blinding
techniques are not in frequent use, and significant methodolo-
gical research is required to determine how common statistical
techniques can be blinded without making analysis impractical.

Instead of triple blinding, one option is to remove the
statistician’s freedom of choice. A limited form of this, cover-
ing the design and execution of the experiment rather than
its analysis, is common in medicine. Doctors are required to
draft a clinical trial protocol explaining how the data will be
collected, including the planned sample size and measured
outcome variables, and then the protocol is reviewed by an
ethics committee to ensure it adequately protects patient safety
and privacy. Because the protocol is drafted before data is
collected, doctors can’t easily tinker with the design to obtain
favorable results. Unfortunately, many studies depart from their
protocols, allowing for researcher bias to creep in.10,11 Journal
editors often don’t compare submitted papers to original pro-
tocols and don’t require authors to explain why their protocols
were violated, so there is no way to determine the motivation
for the changes.

Many scientific fields have no protocol publication require-
ment, and in sciences such as psychology, psychiatry, and soci-
ology, there is often no single agreed-upon methodology to use
for a particular experiment. Appropriate designs for medical
trials or physics experiments have been analyzed to death, but
it’s often unclear how to handle less straightforward behavioral
studies. The result is an explosion of diversity in study design,
with every new paper using a different combination of methods.
When there is intense pressure to produce novel results, as
there usually is in the United States, researchers in these fields
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tend to produce biased and extreme results more frequently
because of their freedom in experimental design and data
analysis.12 In response, some have proposed allowing protocol
registration for confirmatory research, lending subsequent
results greater credibility.

Of course, to paraphrase Helmuth von Moltke, no analysis
plan survives contact with the data. There may be complications
and problems you did not anticipate. Your assumptions about
the distribution of measurements, the correlation between
variables, and the likely causes of outliers—all essential to your
choice of analysis—may be entirely wrong. You might have
no idea what assumptions to make before collecting the data.
When that happens, it’s better to correct your analysis than to
proceed with an obviously wrong preplanned analysis.

It may not even be possible to prespecify an analysis before
seeing the data. Perhaps you decide to test a new hypothesis
using a common dataset that you have used for years, per-
haps you aren’t sure what hypothesis is relevant until you see
the data, or perhaps the data suggests interesting hypotheses
you hadn’t thought of before collecting it. For some fields,
prepublication replication can solve this problem: collect a
new, independent dataset and analyze it using exactly the
same methods. If the effect remains, you can be confident in
your results. (Be sure your new sample has adequate statistical
power.) But for economists studying a market crash, it’s not
possible (or at least not ethical) to arrange for another one. For
a doctor studying a cancer treatment, patients may not be able
to wait for replication.

The proliferation of statistical techniques has given us
useful tools, but it seems they’ve been put to use as blunt
objects with which to beat the data until it confesses. With
preregistered analyses, blinding, and further research into
experimental methods, we can start to treat our data more
humanely.

TIPS • Before collecting data, plan your data analysis, accounting
for multiple comparisons and including any effects you’d
like to look for.

• Register your clinical trial protocol if applicable.

• If you deviate from your planned protocol, note this in your
paper and provide an explanation.

• Don’t just torture the data until it confesses. Have a spe-
cific statistical hypothesis in mind before you begin your
analysis.
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10
EVERYBODY MAKES MISTAKES

Until now, I have presumed that
scientists are capable of making

statistical computations with perfect
accuracy and err only in their choice

of appropriate numbers to compute. Scien-
tists may misuse the results of statistical tests
or fail to make relevant computations, but
they can at least calculate a p value, right?

Perhaps not.
Surveys of statistically significant results reported in medi-

cal and psychological trials suggest that many p values are
wrong and some statistically insignificant results are actually
significant when computed correctly.1,2 Even the prestigious
journal Nature isn’t perfect, with roughly 38% of papers making
typos and calculation errors in their p values.3 Other reviews
find examples of misclassified data, erroneous duplication of
data, inclusion of the wrong dataset entirely, and other mix-ups,
all concealed by papers that did not describe their analysis in
enough detail for the errors to be easily noticed.4



These sorts of mistakes are to be expected. Scientists may
be superhumanly caffeinated, but they’re still human, and the
constant pressure to publish means that thorough documen-
tation and replication are ignored. There’s no incentive for
researchers to make their data and calculations available for
inspection or to devote time to replicating other researchers’
results.

As these problems have become more widely known,
software tools have advanced to make analysis steps easier to
record and share. Scientists have yet to widely adopt these
tools, however, and without them, thoroughly checking work
can be a painstaking process, as illustrated by a famous debacle
in genetics.

Irreproducible Genetics
The problems began in 2006, when a new genetic test
promised to allow chemotherapy treatments to be carefully
targeted to the patient’s specific variant of cancer. Duke Uni-
versity researchers ran trials indicating that their technique
could determine which drugs a tumor would be most sensitive
to, sparing patients the side effects of ineffective treatments.
Oncologists were excited at the prospect, and other researchers
began their own studies. But first they asked two biostatisticians,
Keith Baggerly and Kevin Coombes, to check the data.

This was more difficult than they expected. The original
papers did not give sufficient detail to replicate the analy-
sis, so Baggerly and Coombes corresponded with the Duke
researchers to get raw data and more details. Soon they dis-
covered problems. Some of the data was mislabeled—groups
of cells that were resistant to a drug were marked as sensitive
instead, and vice versa. Some samples were duplicated in the
data, sometimes marked as both sensitive and resistant. A cor-
rection issued by the Duke researchers fixed some of these
issues but introduced more duplicated data at the same time.
Some data was accidentally shifted by one so that measurements
from one set of cells were used when analyzing a different cell
line. Genetic microarrays, which I discussed earlier in the con-
text of pseudoreplication, varied significantly between batches,
and the effect of the microarray equipment could not be sep-
arated from the true biological differences. Figures allegedly
showing results for one drug actually contained the results for
a different drug.

In short, the research was a mess.5 Despite many of the
errors being brought to the attention of the Duke researchers,
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several clinical trials using the genetic results began, funded
by the National Cancer Institute. Baggerly and Coombes
attempted to publish their responses to the research in the
same academic journals that published the original research,
but in several cases they were rejected—groundbreaking
research is more interesting than tedious statistical detail.
Nonetheless, the National Cancer Institute caught wind of the
problems and asked Duke administrators to review the work.
The university responded by creating an external review com-
mittee that had no access to Baggerly and Coombes’ results.
Unsurprisingly, they found no errors, and the trials continued.6

The errors attracted serious attention only later, some
time after Baggerly and Coombes published their discoveries,
when a trade magazine reported that the lead Duke researcher,
Anil Potti, had falsified his résumé. Several of his papers were
retracted, and Potti eventually resigned from Duke amid accusa-
tions of fraud. Several trials using the results were stopped, and
a company set up to sell the technology closed.7

The Potti case illustrates two problems: the lack of repro-
ducibility in much of modern science and the difficulty of pub-
lishing negative and contradictory results in academic journals.
I’ll save the latter issue for the next chapter. Reproducibility
has become a popular buzzword, and you can probably see why:
Baggerly and Coombes estimate they spent 2,000 hours figuring
out what Potti had done and what went wrong. Few academics
have that kind of spare time. If Potti’s analysis software and
data were openly available for inspection, skeptical colleagues
would not be forced to painstakingly reconstruct every step of
his work—they could simply read through the code and see
where every chart and graph came from.

The problem was not just that Potti did not share his data
readily. Scientists often do not record and document the steps
they take converting raw data to results, except in the often-
vague form of a scientific paper or whatever is written down in
a lab notebook. Raw data has to be edited, converted to other
formats, and linked with other datasets; statistical analysis has to
be performed, sometimes with custom software; and plots and
tables have to be created from the results. This is often done
by hand, with bits of data copied and pasted into different data
files and spreadsheets—a tremendously error-prone process.
There is usually no definitive record of these steps apart from
the overstressed memory of the graduate student responsible,
though we would like to be able to examine and reproduce
every step of the process years after the student has graduated.
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Making Reproducibility Easy
Ideally, these steps would be reproducible: fully automated, with
the computer source code available for inspection as a defini-
tive record of the work. Errors would be easy to spot and cor-
rect, and any scientist could download the dataset and code and
produce exactly the same results. Even better, the code would
be combined with a description of its purpose.

Statistical software has been advancing to make this
possible. A tool called Sweave, for instance, makes it easy to
embed statistical analyses performed using the popular R pro-
gramming language inside papers written in LATEX, a typesetting
system commonly used for scientific and mathematical publica-
tions. The result looks just like any scientific paper, but another
scientist reading the paper and curious about its methods can
download the source code, which shows exactly how all the
numbers and plots were calculated. But academic journals,
which use complicated typesetting and publishing systems, do
not yet accept Sweave publications, so its use is limited.

Similar tools are emerging for other programming lan-
guages. Data analysts using the Python programming language,
for example, can record their progress using the IPython Note-
book, which weaves together text descriptions, Python code,
and plots and graphics generated by the Python code. An
IPython Notebook can read like a narrative of the analysis
process, explaining how data is read in, processed, filtered,
analyzed, and plotted, with code accompanying the text. An
error in any step can be corrected and the code rerun to
obtain new results. And notebooks can be turned into web
pages or LATEX documents, so other researchers don’t need to
install IPython to read the code. Best of all, the IPython Note-
book system has been extended to work with other languages,
such as R.

Journals in heavily computational fields, such as computa-
tional biology and statistics, have begun adopting code-sharing
policies encouraging public posting of analysis source code.
These policies have not yet been as widely adopted as data-
sharing policies, but they are becoming more common.8 A
more comprehensive strategy to ensure reproducibility and
ease of error detection would follow the “Ten Simple Rules
for Reproducible Computational Research,” developed by a
group of biomedical researchers.9 These rules include auto-
mating data manipulation and reformatting, recording all
changes to analysis software and custom programs using a
software version control system, storing all raw data, and
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making all scripts and data available for public analysis. Every
scientist has experienced the confusion of reading a paper and
wondering, “How the hell did they get that number?”, and these
rules would make that question much easier to answer.

That’s quite a lot of work, with little motivation for the
scientist, who already knows how the analysis was done. Why
spend so much time making code suitable for other people
to benefit from, instead of doing more research? There are
many advantages. Automated data analysis makes it easy to
try software on new datasets or test that each piece functions
correctly. Using a version control system means you have a
record of every change, so you’re never stuck wondering, “How
could this code have worked last Tuesday but not now?” And a
comprehensive record of calculations and code means you can
always redo it later; I was once very embarrassed when I had to
reformat figures in a paper for publication, only to realize that I
didn’t remember what data I had used to make them. My messy
analysis cost me a day of panic as I tried to re-create the plots.

But even if they have fully automated their analysis, scien-
tists are understandably reluctant to share their code. What if
a competing scientist uses it to beat you to a discovery? Since
they aren’t required to disclose their code, they don’t have to
disclose that they used yours; they can get academic credit for a
discovery based mostly on your work. What if the code is based
on proprietary or commercial software that can’t be shared?
And some code is of such miserable quality that scientists find
it embarrassing to share.

The Community Research and Academic Programming
License (CRAPL), a copyright agreement drafted by Matt Might
for use with academic software, includes in its “Definitions”
section the following:

2. “The Program” refers to the medley of source
code, shell scripts, executables, objects, libraries
and build files supplied to You, or these files as
modified by You.

[Any appearance of design in the Program is
purely coincidental and should not in any way
be mistaken for evidence of thoughtful software
construction.]

3. “You” refers to the person or persons brave and
daft enough to use the Program.

4. “The Documentation” refers to the Program.
5. “The Author” probably refers to the caffeine-

addled graduate student that got the Program
to work moments before a submission deadline.
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The CRAPL also stipulates that users must “agree to hold
the Author free from shame, embarrassment, or ridicule for
any hacks, kludges, or leaps of faith found within the Program.”
While the CRAPL may not be the most legally rigorous licens-
ing agreement, it speaks to the problems faced by authors of
academic code: writing software for public use takes a great
deal more work than writing code for personal use, including
documentation, testing, and cleanup of accumulated cruft from
many nights of hacking. The extra work has little benefit for the
programmer, who gets no academic credit even for important
software that took months to write. And would scientists avail
themselves of the opportunity to inspect code and find bugs?
Nobody gets scientific glory by checking code for typos.

Experiment, Rinse, Repeat
Another solution might be replication. If scientists carefully re-
create the experiments of other scientists from scratch, collect-
ing entirely new data, and validate their results—a painstaking
and time-consuming process—it is much easier to rule out the
possibility of a typo causing an errant result. Replication also
weeds out fluke false positives, assuming the replication attempt
has sufficient statistical power to detect the effect in question.
Many scientists claim that experimental replication is the heart
of science; no new idea is accepted until it is independently
tested and retested around the world and found to hold water.

That’s not entirely true. Replication is rarely performed for
its own sake (except in certain fields—physicists love to make
more and more precise measurements of physical constants).
Since replicating a complicated result may take months, repli-
cation usually happens only when researchers need to use a
previous result for their own work. Otherwise, replication is
rarely considered publication worthy. Rare exceptions include
the Reproducibility Project, born out of increasing concern
among psychologists that many important results may not sur-
vive replication. Run by a large collaboration of psychologists,
the project has been steadily retesting articles from prominent
psychology journals. Preliminary results are promising, with
most results reproduced in new trials, but there’s a long way
to go.

In another example, cancer researchers at the pharmaceu-
tical company Amgen retested 53 landmark preclinical studies
in cancer research. (By “preclinical” I mean the studies did not
involve human patients, because they were testing new and
unproven ideas.) Despite working in collaboration with the
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authors of the original papers, the Amgen researchers could
reproduce only six of the studies.10 Bayer researchers have
reported similar difficulties when testing potential new drugs
found in published papers.11

This is worrisome. Does the trend hold true for less
speculative kinds of medical research? Apparently so. Of
the top-cited research articles in medicine, a quarter have
gone untested after their publication, and a third have been
found to be exaggerated or wrong by later research.12 That’s
not as extreme as the Amgen result, but it makes you wonder
what major errors still lurk unnoticed in important research.
Replication is not as prevalent as we would like it to be, and the
results are not always favorable.

TIPS • Automate your data analysis using a spreadsheet, analysis
script, or program that can be tested against known input.
If anyone suspects an error, you should be able to refer to
your code to see exactly what you did.

• Corollary: Test all analysis programs against known input
and ensure the results make sense. Ideally, use automated
tests to check the code as you make changes, ensuring you
don’t introduce errors.

• When writing software, follow the best practices for sci-
entific computing: http://www.plosbiology.org/article/ info:
doi/10.1371/journal.pbio.1001745.

• When using programs and scripts to analyze your data, fol-
low the “Ten Simple Rules for Reproducible Computational
Research.”9

• Use a reproducible research tool like Sweave to automati-
cally include data from your analysis in your paper.

• Make all data available when possible, through specialized
databases such as GenBank and PDB or through generic
data repositories such as Dryad and Figshare.

• Publish your software source code, spreadsheets, or analysis
scripts. Many journals let you submit these as supplemen-
tary material with your paper, or you can deposit the files
on Dryad or Figshare.
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11
HIDING THE DATA

I’ve talked about the common
mistakes made by scientists and

how the best way to spot them is
with a bit of outside scrutiny. Peer

reviewers provide some of this scrutiny, but
they don’t have time to extensively reanalyze
data and read code for typos—they can check only that the
methodology makes sense. Sometimes they spot obvious errors,
but subtle problems are usually missed.1

This is one reason why many journals and professional soci-
eties require researchers to make their data available to other
scientists upon request. Full datasets are usually too large to
print in the pages of a journal, and online publication of results
is rare—full data is available online for less than 10% of papers
published by top journals, with partial publication of select
results more common.2 Instead, authors report their results
and send the complete data to other scientists only if they ask



for a copy. Perhaps they will find an error or a pattern the
original scientists missed, or perhaps they can use the data to
investigate a related topic. Or so it goes in theory.

Captive Data
In 2005, Jelte Wicherts and colleagues at the University of
Amsterdam decided to analyze every recent article in several
prominent journals of the American Psychological Association
(APA) to learn about their statistical methods. They chose the
APA partly because it requires authors to agree to share their
data with other psychologists seeking to verify their claims.
But six months later, they had received data for only 64 of the
249 studies they sought it for. Almost three-quarters of authors
never sent their data.3

Of course, scientists are busy people. Perhaps they simply
didn’t have time to compile their datasets, produce documents
describing what each variable meant and how it was measured,
and so on. Or perhaps their motive was self-preservation; per-
haps their data was not as conclusive as they claimed. Wicherts
and his colleagues decided to test this. They trawled through all
the studies, looking for common errors that could be spotted
by reading the paper, such as inconsistent statistical results,
misuse of statistical tests, and ordinary typos. At least half of
the papers had an error, usually minor, but 15% reported at
least one statistically significant result that was significant only
because of an error.

Next Wicherts and his colleagues looked for a corre-
lation between these errors and an unwillingness to share
data. There was a clear relationship. Authors who refused
to share their data were more likely to have committed an
error in their paper, and their statistical evidence tended to
be weaker.4 Because most authors refused to share their data,
Wicherts could not dig for deeper statistical errors, and many
more may be lurking.

This is certainly not proof that authors hid their data
because they knew their results were flawed or weak; there
are many possible confounding factors. Correlation doesn’t
imply causation, but it does waggle its eyebrows suggestively and
gesture furtively while mouthing, “Look over there.”* And the
surprisingly high error rates demonstrate why data should be

*Joke shamelessly stolen from the alternate text of http://xkcd.com/552/ .
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shared. Many errors are not obvious in the published paper and
will be noticed only when someone reanalyzes the original data
from scratch.

Obstacles to Sharing
Sharing data isn’t always as easy as posting a spreadsheet online,
though some fields do facilitate it. There are gene sequencing
databases, protein structure databanks, astronomical observa-
tion databases, and earth observation collections containing
the contributions of thousands of scientists. Medical data is
particularly tricky, however, since it must be carefully scrubbed
of any information that may identify a patient. And pharmaceu-
tical companies raise strong objections to sharing their data on
the grounds that it is proprietary. Consider, for example, the
European Medicines Agency (EMA).

In 2007, researchers from the Nordic Cochrane Center
sought data from the EMA about two weight-loss drugs. They
were conducting a systematic review of the effectiveness of the
drugs and knew that the EMA, as the authority in charge of
allowing drugs onto the European market, would have trial
data submitted by the manufacturers that was perhaps not yet
published publicly. But the EMA refused to disclose the data
on the grounds that it might “unreasonably undermine or prej-
udice the commercial interests of individuals or companies”
by revealing their trial design methods and commercial plans.
They rejected the claim that withholding the data could harm
patients.

After three and a half years of bureaucratic wrangling
and after reviewing each study report and finding no secret
commercial information, the European Ombudsman finally
ordered the EMA to release the documents. In the meantime,
one of the drugs had been taken off the market because of side
effects including serious psychiatric problems.5

Academics use similar justifications to keep their data pri-
vate. While they aren’t worried about commercial interests, they
are worried about competing scientists. Sharing a dataset may
mean being beaten to your next discovery by a freeloader who
acquired the data, which took you months and thousands of
dollars to collect, for free. As a result, it is common practice in
some fields to consider sharing data only after it is no longer
useful to you—once you have published as many papers about
it as you can.
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Fear of being scooped is a powerful obstacle in academia,
where career advancement depends on publishing many
papers in prestigious journals. A junior scientist cannot afford
to waste six months of work on a project only to be beaten to
publication by someone else. Unlike in basketball, there is no
academic credit for assists; if you won’t get coauthor credit,
why bother sharing the data with anyone? While this view is
incompatible with the broader goal of the rapid advancement
of science, it is compelling for working scientists.

Apart from privacy, commercial concerns, and academic
competition, there are practical issues preventing data shar-
ing. Data is frequently stored in unusual formats produced by
various scientific instruments or analysis packages, and spread-
sheet software saves data in proprietary or incompatible for-
mats. (There is no guarantee that your Excel spreadsheet or
SPSS data file will be readable 30 years from now, or even by
a colleague using different software.) Not all data can easily
be uploaded as a spreadsheet anyway—what about an animal
behavior study that recorded hours of video or a psychology
study supported by hours of interviews? Even if sufficient stor-
age space were found to archive hundreds of hours of video,
who would bear the costs and would anyone bother to watch it?

Releasing data also requires researchers to provide descrip-
tions of the data format and measurement techniques—what
equipment settings were used, how calibration was handled,
and so on. Laboratory organization is often haphazard, so
researchers may not have the time to assemble their collection
of spreadsheets and handwritten notes; others may not have a
way of sharing gigabytes of raw data.

Data Decay
Another problem is the difficulty of keeping track of data as
computers are replaced, technology goes obsolete, scientists
move to new institutions, and students graduate and leave labs.
If the dataset is no longer in use by its creators, they have no
incentive to maintain a carefully organized personal archive
of datasets, particularly when data has to be reconstructed
from floppy disks and filing cabinets. One study of 516 articles
published between 1991 and 2011 found that the probability of
data being available decayed over time. For papers more than
20 years old, fewer than half of datasets were available.6,7 Some
authors could not be contacted because their email addresses
had changed; others replied that they probably have the data,
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but it’s on a floppy disk and they no longer have a floppy drive
or that the data was on a stolen computer or otherwise lost. The
decay is illustrated in Figure 11-1.*

Figure 11-1: As papers get older, the probability that their data is still in
existence decays. The solid line is a fitted curve, and the gray band is its
95% confidence band; the points indicate the average availability rates for
papers at each age. This plot only includes papers for which authors could
be contacted.

Various startups and nonprofits are trying to address this
problem. Figshare, for instance, allows researchers to upload
gigabytes of data, plots, and presentations to be shared pub-
licly in any file format. To encourage sharing, submissions
are given a digital object identifier (DOI), a unique ID com-
monly used to cite journal articles; this makes it easy to cite
the original creators of the data when reusing it, giving them
academic credit for their hard work. The Dryad Digital Reposi-
tory partners with scientific journals to allow authors to deposit
data during the article submission process and encourages
authors to cite data they have relied on. Dryad promises to
convert files to new formats as older formats become obsolete,
preventing data from fading into obscurity as programs lose
the ability to read it. Dryad also keeps copies of data at several
universities to guard against accidental loss.

*The figure was produced using code written by the authors of the study, who
released it into the public domain and deposited it with their data in the Dryad
Digital Repository. Their results will likely last longer than those of the studies
they investigated.
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The eventual goal is to make it easy to get credit for the
publication and reuse of your data. If another scientist uses
your data to make an important discovery, you can bask in the
reflected glory, and citations of your data can be listed in the
same way citations of your papers are. With this incentive,
scientists may be able to justify the extra work to deposit their
datasets online. But will this be enough? Scientific practice
changes very slowly. And will anyone bother to check the data
for errors?

Just Leave Out the Details
It is difficult to ask for data you do not know exists. Journal
articles are often highly abridged summaries of the years of
research they report on, and scientists have a natural prejudice
toward reporting the parts that worked. If a measurement or
test turned out to be irrelevant to the final conclusions, it will
be omitted. If several outcomes were measured and one showed
statistically insignificant changes during the study, it won’t be
mentioned unless the insignificance is particularly interesting.

Journal space limits frequently force the omission of
negative results and detailed methodological details. It is
not uncommon for major journals to enforce word limits on
articles: the Lancet, for example, requires articles to be less than
3,000 words, while Science limits articles to 4,500 words and sug-
gests that methods be described in an online supplement to the
article. Online-only journals such as PLOS ONE do not need to
pay for printing, so there are no length limits.

Known Unknowns
It’s possible to evaluate studies to see what they left out. Sci-
entists leading medical trials are required to provide detailed
study plans to ethical review boards before starting a trial,
so one group of researchers obtained a collection of these
protocols from a Danish review board.8 The protocols spec-
ify how many patients will be recruited, what outcomes will
be measured, how missing data (such as patient dropouts or
accidental sample losses) will be handled, what statistical anal-
yses will be performed, and so on. Many study protocols had
important missing details, however, and few published papers
matched the protocols.
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We have seen how important it is for studies to collect
a sufficiently large sample of data, and most of the ethical
review board filings detailed the calculations used to deter-
mine an appropriate sample size. However, less than half of
the published papers described the sample-size calculation in
detail. It also appears that recruiting patients for clinical trials
is difficult—half of the studies recruited different numbers of
patients than they intended to, and sometimes the researchers
did not explain why this happened or what impact it may have
on the results.

Worse, many of the scientists omitted results. The review
board filings listed outcomes that would be measured by each
study: side-effect rates, patient-reported symptoms, and so on.
Statistically significant changes in these outcomes were usually
reported in published papers, but statistically insignificant
results were omitted, as though the researchers had never
measured them. Obviously, this leads to hidden multiple com-
parisons. A study may monitor many outcomes but report only
the few that are statistically significant. A casual reader would
never know that the study had monitored the insignificant
outcomes. When surveyed, most of the researchers denied
omitting outcomes, but the review board filings belied their
claims. Every paper written by a researcher who denied omit-
ting outcomes had, in fact, left some outcomes unreported.

Outcome Reporting Bias
In medicine, the gold standard of evidence is a meta-
analysis of many well-conducted randomized trials. The
Cochrane Collaboration, for example, is an international
group of volunteers that systematically reviews published ran-
domized trials about various issues in medicine and then pro-
duces a report summarizing current knowledge in the field and
the treatments and techniques best supported by the evidence.
These reports have a reputation for comprehensive detail and
methodological scrutiny.

However, if boring results never appear in peer-reviewed
publications or are shown in insufficient detail to be of use,
the Cochrane researchers will never include them in reviews,
causing what is known as outcome reporting bias, where systematic
reviews become biased toward more extreme and more inter-
esting results. If the Cochrane review is to cover the use of a
particular steroid drug to treat pregnant women entering labor
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prematurely, with the target outcome of interest being infant
mortality rates, it’s no good if some of the published studies col-
lected mortality data but didn’t describe it in any detail because
it was statistically insignificant.*

A systematic review of Cochrane systematic reviews revealed
that more than a third are probably affected by outcome report-
ing bias. Reviewers sometimes did not realize outcome report-
ing bias was present, instead assuming the outcome simply
hadn’t been measured. It’s impossible to exactly quantify how
a review’s results would change if unpublished results were
included, but by their estimate, a fifth of statistically significant
review results could become insignificant, and a quarter could
have their effect sizes decrease by 20% or more.9

Other reviews have found similar problems. Many studies
suffer from missing data. Some patients drop out or do not
appear for scheduled checkups. While researchers frequently
note that data was missing, they frequently do not explain why
or describe how patients with incomplete data were handled
in the analysis, though missing data can cause biased results
(if, for example, those with the worst side effects drop out and
aren’t counted).10 Another review of medical trials found that
most studies omit important methodological details, such as
stopping rules and power calculations, with studies in small
specialist journals faring worse than those in large general
medicine journals.11

Medical journals have begun to combat this problem by
coming up with standards, such as the CONSORT checklist,
which requires reporting of statistical methods, all measured
outcomes, and any changes to the trial design after it began.
Authors are required to follow the checklist’s requirements
before submitting their studies, and editors check to make sure
all relevant details are included. The checklist seems to work;
studies published in journals that follow the guidelines tend
to report more essential detail, though not all of it.12 Unfor-
tunately, the standards are inconsistently applied, and studies
often slip through with missing details.13 Journal editors will
need to make a greater effort to enforce reporting standards.

Of course, underreporting is not unique to medicine.
Two-thirds of academic psychologists admit to sometimes omit-
ting some outcome variables in their papers, creating outcome

*The Cochrane Collaboration logo is a chart depicting the results of studies
on corticosteroids given to women entering labor prematurely. The studies on
their own were statistically insignificant, but when the data was aggregated, it
was clear the treatment would save lives. This remained undiscovered for years
because nobody did a comprehensive review to combine available data.
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reporting bias. Psychologists also often report on several exper-
iments in the same paper, testing the same phenomenon from
different angles, and half of psychologists admit to reporting
only the experiments that worked. These practices persist even
though most survey respondents agreed they are probably
indefensible.14

In biological and biomedical research, the problem often
isn’t reporting of patient enrollment or power calculations. The
problem is the many chemicals, genetically modified organisms,
specially bred cell lines, and antibodies used in experiments.
Results can be strongly dependent on these factors, but many
journals do not have reporting guidelines for these factors, and
the majority of chemicals and cells referred to in biomedical
papers are not uniquely identifiable, even in journals with strict
reporting requirements.15 Attempt to replicate the findings, as
the Bayer and Amgen researchers mentioned earlier did, and
you may find it difficult to accurately reproduce the experi-
ment. How can you replicate an immunology paper when it
does not state which antibodies to order from the supplier?*

We see that published papers aren’t faring very well. What
about unpublished studies?

Science in a Filing Cabinet
Earlier you saw the impact of multiple comparisons and truth
inflation on study results. These problems arise when studies
make numerous comparisons with low statistical power, giving a
high rate of false positives and inflated estimates of effect sizes,
and they appear everywhere in published research.

But not every study is published. We only ever see a frac-
tion of medical research, for instance, because few scientists
bother publishing “We Tried This Medicine and It Didn’t
Seem to Work.” In addition, editors of prestigious journals
must maintain their reputation for groundbreaking results,
and peer reviewers are naturally prejudiced against negative
results. When presented with papers with identical methods
and writing, reviewers grade versions with negative results more
harshly and detect more methodological errors.16

*I am told that even with the right materials, biological experiments can be
fiendishly difficult to reproduce because they are sensitive to tiny variations in
experimental setup. But that’s not an excuse—it’s a serious problem. How can
we treat a result as general when it worked only once?
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Unpublished Clinical Trials
Consider an example: studies of the tumor suppressor protein
TP53 and its effect on head and neck cancer. A number of
studies suggested that measurements of TP53 could be used
to predict cancer mortality rates since it serves to regulate cell
growth and development and hence must function correctly
to prevent cancer. When all 18 published studies on TP53 and
cancer were analyzed together, the result was a highly statisti-
cally significant correlation. TP53 could clearly be measured to
tell how likely a tumor is to kill you.

But then suppose we dig up unpublished results on TP53:
data that had been mentioned in other studies but not pub-
lished or analyzed. Add this data to the mix, and the statistically
significant effect vanishes.17 After all, few authors bothered to
publish data showing no correlation, so the meta-analysis could
use only a biased sample.

A similar study looked at reboxetine, an antidepressant sold
by Pfizer. Several published studies suggested it was effective
compared to a placebo, leading several European countries to
approve it for prescription to depressed patients. The German
Institute for Quality and Efficiency in Health Care, responsible
for assessing medical treatments, managed to get unpublished
trial data from Pfizer—three times more data than had ever
been published—and carefully analyzed it. The result: reboxe-
tine is not effective. Pfizer had convinced the public that it was
effective only by neglecting to mention the studies showing it
wasn’t.18

A similar review of 12 other antidepressants found that of
studies submitted to the United States Food and Drug Admin-
istration during the approval process, the vast majority of nega-
tive results were never published or, less frequently, were pub-
lished to emphasize secondary outcomes.19 (For example, if a
study measured both depression symptoms and side effects, the
insignificant effect on depression might be downplayed in favor
of significantly reduced side effects.) While the negative results
are available to the FDA to make safety and efficacy determina-
tions, they are not available to clinicians and academics trying
to decide how to treat their patients.

This problem is commonly known as publication bias, or
the file drawer problem. Many studies sit in a file drawer for
years, never published, despite the valuable data they could
contribute. Or, in many cases, studies are published but omit
the boring results. If they measured multiple outcomes, such
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as side effects, they might simply say an effect was “insignifi-
cant” without giving any numbers, omit mention of the effect
entirely, or quote effect sizes but no error bars, giving no infor-
mation about the strength of the evidence.

As worrisome as this is, the problem isn’t simply the bias on
published results. Unpublished results lead to a duplication of
effort—if other scientists don’t know you’ve done a study, they
may well do it again, wasting money and effort. (I have heard
scientists tell stories of talking at a conference about some tech-
nique that didn’t work, only to find that several scientists in the
room had already tried the same thing but not published it.)
Funding agencies will begin to wonder why they must support
so many studies on the same subject, and more patients and
animals will be subjected to experiments.

Spotting Reporting Bias
It is possible to test for publication and outcome reporting bias.
If a series of studies have been conducted on a subject and a sys-
tematic review has estimated an effect size from the published
data, you can easily calculate the power of each individual study
in the review.* Suppose, for example, that the effect size is 0.8
(on some arbitrary scale), but the review was composed of many
small studies that each had a power of 0.2. You would expect
only 20% of the studies to be able to detect the effect—but you
may find that 90% or more of the published studies found it
because the rest were tossed in the bin.20

This test has been used to discover worrisome bias in the
publication of neurological studies of animal experimenta-
tion.21 Animal testing is ethically justified on the basis of its
benefits to the progress of science and medicine, but evidence
of strong outcome reporting bias suggests that many animals
have been used in studies that went unpublished, adding noth-
ing to the scientific record.

The same test has been used in a famous controversy in
psychology: Daryl Bem’s 2011 research claiming evidence for
“anomalous retroactive influences on cognition and affect,”
or psychic prediction of the future. It was published in a rep-
utable journal after peer review but predictably received nega-
tive responses from skeptical scientists immediately after publi-
cation. Several subsequent papers showed flaws in his analysis

*Note that this would not work if each study were truly measuring a different
effect because of some systematic differences in how the studies were con-
ducted. Estimating their true power would be much more difficult in that case.
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and gave alternative statistical approaches that gave more rea-
sonable results. Some of these are too technically detailed to
cover here, but one is directly relevant.

Gregory Francis wondered whether Bem had gotten his
good results through publication bias. Knowing his findings
would not be readily believed, Bem published not one but
10 different experiments in the same study, with 9 showing
statistically significant psychic powers. This would seem to be
compelling, but only if there weren’t numerous unreported
studies that found no psychic powers. Francis found that Bem’s
success rate did not match his statistical power—it was the result
of publication bias, not extrasensory perception.22

Francis published a number of similar papers criticizing
other prominent studies in psychology, accusing them of
obvious publication bias. He apparently trawled through the
psychological literature, testing papers until he found evidence
of publication bias. This continued until someone noticed the
irony.23 A debate still rages in the psychological literature over
the impact of publication bias on publications about publica-
tion bias.

Forced Disclosure
Regulators and scientific journals have attempted to halt pub-
lication bias. The Food and Drug Administration requires cer-
tain kinds of clinical trials to be registered through its website
ClinicalTrials.gov before the trials begin, and it requires the
publication of summary results on the ClinicalTrials.gov website
within a year of the end of the trial. To help enforce registra-
tion, the International Committee of Medical Journal Editors
announced in 2005 that it would not publish studies that had
not been preregistered.

Compliance has been poor. A random sample of all clin-
ical trials registered from June 2008 to June 2009 revealed
that more than 40% of protocols were registered after the first
study participants have been recruited, with the median delin-
quent study registered 10 months late.24 This clearly defeats
the purpose of requiring advanced registration. Fewer than
40% of protocols clearly specified the primary outcome being
measured by the study, the time frame over which it would
be measured, and the technique used to measure it, which is
unfortunate given that the primary outcome is the purpose of
the study.
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Similarly, reviews of registered clinical trials have found
that only about 25% obey the law that requires them to publish
results through ClinicalTrials.gov.25,26 Another quarter of regis-
tered trials have no results published anywhere, in scientific jour-
nals or in the registry.27 It appears that despite the force of law,
most researchers ignore the ClinicalTrials.gov results database
and publish in academic journals or not at all; the Food and
Drug Admimistration has not fined any drug companies for
noncompliance, and journals have not consistently enforced
the requirement to register trials.5 Most peer reviewers do not
check trial registers for discrepancies with manuscripts under
review, believing this is the responsibility of the journal editors,
who do not check either.28

Of course, these reporting and registration requirements
do not apply to other scientific fields. Researchers in fields
such as psychology have suggested encouraging registration
by prominently labeling preregistered studies, but such efforts
have not taken off.29 Other suggestions include allowing peer
review of study protocols in advance, with the journal deciding
to accept or reject the study before data has been collected;
acceptance can be based only on the quality of the study’s
design, rather than its results. But this is not yet widespread.
Many studies simply vanish.

TIPS • Register protocols in public databases, such as
ClinicalTrials.gov, the EU Clinical Trials Register
(http://www.clinicaltrialsregister.eu), or any other pub-
lic registry. The World Health Organization keeps a list
at its International Clinical Trials Registry Platform web-
site (http://www.who.int/ictrp/en/), and the SPIRIT check-
list (http://www.spirit-statement.org/) lists what should be
included in a protocol. Post summary results whenever
possible.

• Document any deviations from the trial protocol and dis-
cuss them in your published paper.

• Make all data available when possible, through specialized
databases such as GenBank and PDB or through generic
data repositories such as Dryad and Figshare.

• Publish your software source code, Excel workbooks, or
analysis scripts used to analyze your data. Many journals
will let you submit these as supplementary material with
your paper, or you can use Dryad and Figshare.
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• Follow reporting guidelines in your field, such as
CONSORT for clinical trials, STROBE for observational
studies in epidemiology, ARRIVE for animal experiments,
or STREGA for gene association studies. The EQUATOR
Network (http://www.equator-network.org/) maintains lists of
guidelines for various fields in medicine.

• If you obtain negative results, publish them! Some journals
may reject negative results as uninteresting, so consider
open-access electronic-only journals such as PLOS ONE or
Trials, which are peer-reviewed but do not reject studies for
being uninteresting. Negative data can also be posted on
Figshare.
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12
WHAT CAN BE DONE?

I’ve painted a grim picture. But
anyone can pick out small details

in published studies and produce
a tremendous list of errors. Do these

problems matter?
Well, yes. If they didn’t, I wouldn’t have written this book.
John Ioannidis’s famous article “Why Most Published

Research Findings Are False”1 was grounded in mathematical
concerns rather than in an empirical test of research results.
Since most research articles have poor statistical power and
researchers have freedom to choose among analysis methods to
get favorable results, while most tested hypotheses are false and
most true hypotheses correspond to very small effects, we are
mathematically determined to get a plethora of false positives.

But if you want empiricism, you can have it, courtesy of
Jonathan Schoenfeld and John Ioannidis. They studied the
question “Is everything we eat associated with cancer?”2,*After

*An important part of the ongoing Oncological Ontology Project to categorize
everything into two categories: that which cures cancer and that which causes it.

http://dailymailoncology.tumblr.com/


choosing 50 common ingredients out of a cookbook, they
set out to find studies linking them to cancer rates—and
found 216 studies on 40 different ingredients. Of course, most
of the studies disagreed with each other. Most ingredients
had multiple studies alternately claiming they increased and
decreased the risk of getting cancer. (Sadly, bacon was one of
the few foods consistently found to increase the risk of cancer.)
Most of the statistical evidence was weak, and meta-analyses
usually showed much smaller effects on cancer rates than the
original studies.

Perhaps this is not a serious problem, given that we are
already conditioned to ignore news stories about common
items causing cancer. Consider, then, a comprehensive review
of all research articles published from 2001 to 2010 in the New
England Journal of Medicine, one of the most prestigious medi-
cal research journals. Out of the 363 articles that tested a cur-
rent standard medical practice, 146 of them—about 40%—
concluded that the practice should be abandoned in favor of
previous treatments. Only 138 of the studies reaffirmed the
current practice.3

The astute reader may wonder whether these figures
are influenced by publication bias. Perhaps the New England
Journal of Medicine is biased toward publishing rejections of
current standards since they are more exciting. But tests of the
current standard of care are genuinely rare and would seem
likely to attract an editor’s eye. Even if bias does exist, the sheer
quantity of these reversals in medical practice should be worri-
some.*

Another review compared meta-analyses to subsequent
large randomized controlled trials. In more than a third of
cases, the randomized trial’s outcome did not correspond well
to the meta-analysis, indicating that even the careful aggrega-
tion of numerous small studies cannot be trusted to give reli-
able evidence.4 Other comparisons of meta-analyses found that
most results were inflated, with effect sizes decreasing as they
were updated with more data. Perhaps a fifth of meta-analysis
conclusions represented false positives.5

Of course, being contradicted by follow-up studies and
meta-analyses doesn’t prevent a paper from being used as
though it were true. Even effects that have been contradicted

*A yet-more-astute reader will ask why we should trust these studies suggesting
current practice is wrong, given that so many studies are flawed. That’s a fair
point, but we are left with massive uncertainty: if we don’t know which studies
to trust, what are the best treatments?
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by massive follow-up trials with unequivocal results are fre-
quently cited 5 or 10 years later, with scientists apparently not
noticing that the results are false.6 Of course, new findings
get widely publicized in the press, while contradictions and
corrections are hardly ever mentioned.7 You can hardly blame
the scientists for not keeping up.

Let’s not forget the merely biased results. Poor reporting
standards in medical journals mean studies testing new treat-
ments for schizophrenia can neglect to include the scales they
used to evaluate symptoms—a handy source of bias because
trials using homemade unpublished scales tend to produce
better results than those using previously validated tests.8

Other medical studies simply omit particular results if they’re
not favorable or interesting, biasing subsequent meta-analyses
to include only positive results. A third of meta-analyses are
estimated to suffer from this problem.9

Multitudes of physical-science papers misuse confidence
intervals.10 And there’s a peer-reviewed psychology paper
allegedly providing evidence for psychic powers on the basis
of uncontrolled multiple comparisons in exploratory studies.11

Unsurprisingly, the results failed to be replicated—by scientists
who appear not to have calculated the statistical power of their
tests.12

So what can we do? How do we prevent these errors from
reaching print? A good starting place would be in statistical
education.

Statistical Education
Most American science students have minimal statistical
education—one or two required courses at best and none
at all for most students. Many of these courses do not cover
important concepts such as statistical power and multiple com-
parisons. And even when students have taken statistics courses,
professors report that they can’t apply statistical concepts to
scientific questions, having never fully understood—or having
forgotten—the appropriate techniques. This needs to change.
Almost every scientific discipline depends on statistical analysis
of experimental data, and statistical errors waste grant funding
and researcher time.

It would be tempting to say, “We must introduce a new
curriculum adapted to the needs of practicing scientists and
require students to take courses in this material” and then
assume the problem will be solved. A great deal of research
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in science education shows that this is not the case. Typical
lecture courses teach students little, simply because lectures
are a poor way to teach difficult concepts.

Unfortunately, most of this research is not specifically
aimed at statistics education. Physicists, however, have done
a great deal of research on a similar problem: teaching intro-
ductory physics students the basic concepts of force, energy,
and kinematics. An instructive example is a large-scale survey
of 14 physics courses, including 2,084 students, using the Force
Concept Inventory to measure student understanding of basic
physics concepts before and after taking the courses. The stu-
dents began the courses with holes in their knowledge; at the
end of the semester, they had filled only 23% of those holes,
despite the Force Concept Inventory being regarded as too
easy by their instructors.13

The results are poor because lectures do not suit how
students learn. Students have preconceptions about basic
physics from their everyday experience—for example, every-
one “knows” that something pushed will eventually come to
a stop because every object in the real world does so. But we
teach Newton’s first law, in which an object in motion stays
in motion unless acted upon by an outside force, and expect
students to immediately replace their preconception with the
new understanding that objects stop only because of frictional
forces. Interviews of physics students have revealed numerous
surprising misconceptions developed during introductory
courses, many not anticipated by instructors.14,15 Misconcep-
tions are like cockroaches: you have no idea where they came
from, but they’re everywhere—often where you don’t expect
them—and they’re impervious to nuclear weapons.

We hope that students will learn to solve problems and
reason with this new understanding, but usually they don’t.
Students who watch lectures contradicting their misconcep-
tions report greater confidence in their misconceptions after-
ward and do no better on simple tests of their knowledge.
Often they report not paying attention because the lectures
cover concepts they already “know.”16 Similarly, practical
demonstrations of physics concepts make little improvement
in student understanding because students who misunder-
stand find ways to interpret the demonstration in light of their
misunderstanding.17 And we can’t expect them to ask the
right questions in class, because they don’t realize they don’t
understand.
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At least one study has confirmed this effect in the teaching
of statistical hypothesis testing. Even after reading an article
explicitly warning against misinterpreting p values and hypoth-
esis test results in general, only 13% of students correctly an-
swered a questionnaire on hypothesis testing.18 Obviously,
assigning students a book like this one will not be much help
if they fundamentally misunderstand statistics. Much of basic
statistics is not intuitive (or, at least, not taught in an intuitive
fashion), and the opportunity for misunderstanding and error
is massive. How can we best teach our students to analyze data
and make reasonable statistical inferences?

Again, methods from physics education research provide
the answer. If lectures do not force students to confront and
correct their misconceptions, we will have to use a method
that does. A leading example is peer instruction. Students
are assigned readings or videos before class, and class time is
spent reviewing the basic concepts and answering conceptual
questions. Forced to choose an answer and discuss why they
believe it is true before the instructor reveals the correct answer,
students immediately see when their misconceptions do not
match reality, and instructors spot problems before they grow.

Peer instruction has been successfully implemented in
many physics courses. Surveys using the Force Concept Inven-
tory found that students typically double or triple their learn-
ing gains in a peer instruction course, filling in 50% to 75% of
the gaps in their knowledge revealed at the beginning of the
semester.13,19,20 And despite the focus on conceptual under-
standing, students in peer instruction courses perform just as
well or better on quantitative and mathematical questions as
their lectured peers.

So far there is relatively little data on the impact of
peer instruction in statistics courses. Some universities have
experimented with statistics courses integrated with science
classes, with students immediately applying statistical knowl-
edge to problems in their field. Preliminary results suggest
this works: students learn and retain more statistics, and they
spend less time complaining about being forced to take a statis-
tics course.21 More universities should adopt these techniques
and experiment with peer instruction using conceptual tests
such as the Comprehensive Assessment of Outcomes in Statis-
tics22 along with trial courses to see what methods work best.
Students will be better prepared for the statistical demands of
everyday research if we simply change existing courses, rather
than introducing massive new education programs.
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But not every student learns statistics in a classroom. I was
introduced to statistics when I needed to analyze data in a lab-
oratory and didn’t know how; until strong statistics education
is more widespread, many students and researchers will find
themselves in the same position, and they need resources. The
masses of aspiring scientists who Google “how to do a t test”
need freely available educational material developed with com-
mon errors and applications in mind. Projects like OpenIntro
Statistics, an open source and freely redistributable introductory
statistics textbook, are promising, but we’ll need many more.
I hope to see more progress in the near future.

Scientific Publishing
Scientific journals are slowly making progress toward solving
many of the problems I have discussed. Reporting guidelines,
such as CONSORT for randomized trials, make it clear what
information is required for a published paper to be repro-
ducible; unfortunately, as you’ve seen, these guidelines are
infrequently enforced. We must continue to pressure journals
to hold authors to more rigorous standards.

Premier journals need to lead the charge. Nature has
begun to do so, announcing a new checklist that authors are
required to complete before articles can be published.23 The
checklist requires reporting of sample sizes, statistical power
calculations, clinical trial registration numbers, a completed
CONSORT checklist, adjustment for multiple comparisons, and
sharing of data and source code. The guidelines address most
issues covered in this book, except for stopping rules, prefer-
ential use of confidence intervals over p values, and discussion
of reasons for departing from the trial’s registered protocol.
Nature will also make statisticians available to consult for papers
when requested by peer reviewers.

The popular journal Psychological Science has recently
made similar moves, exempting methods and results sections
from article word-count limits and requiring full disclosure
of excluded data, insignificant results, and sample-size calcu-
lations. Preregistering study protocols and sharing data are
strongly encouraged, and the editors have embraced the “new
statistics,” which emphasizes confidence intervals and effect-size
estimates over endless p values.24 But since confidence intervals
are not mandatory, it remains to be seen if their endorsement
will make a dent in the established practices of psychologists.
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Regardless, more journals should do the same. As these
guidelines are accepted by the community, enforcement can
follow, and the result will be much more reliable and repro-
ducible research.

There is also much to be said about the unfortunate incen-
tive structures that pressure scientists to rapidly publish small
studies with slapdash statistical methods. Promotions, tenure,
raises, and job offers are all dependent on having a long list
of publications in prestigious journals, so there is a strong
incentive to publish promising results as soon as possible.
Tenure and hiring committees, composed of overworked aca-
demics pushing out their own research papers, cannot exten-
sively review each publication for quality or originality, relying
instead on prestige and quantity as approximations. University
rankings depend heavily on publication counts and successful
grant funding. And because negative or statistically insignifi-
cant results will not be published by top journals, it’s often not
worth the effort to prepare them for publication—publication
in lower-class journals may be seen by other academics as a
bad sign.

But prestigious journals keep their prestige by rejecting
the vast majority of submissions; Nature accepts fewer than 10%.
Ostensibly this is done because of page limits in the printed
editions of journals, though the vast majority of articles are
read online. Journal editors attempt to judge which papers
will have the greatest impact and interest and consequently
choose those with the most surprising, controversial, or novel
results. As you’ve seen, this is a recipe for truth inflation, as
well as outcome reporting and publication biases, and strongly
discourages replication studies and negative results.

Online-only journals, such as the open-access PLOS ONE
or BioMed Central’s many journals, are not restricted by page
counts and have more freedom to publish less obviously excit-
ing articles. But PLOS ONE is sometimes seen as a dumping
ground for papers that couldn’t cut it at more prestigious jour-
nals, and some scientists fear publishing in it will worry poten-
tial employers. (It’s also the single largest academic journal,
now publishing more than 30,000 articles annually, so clearly
its stigma is not too great.) More prestigious online open-access
journals, such as PLOS Biology or BMC Biology, are also highly
selective, encouraging the same kind of statistical lottery.

To spur change, Nobel laureate Randy Schekman an-
nounced in 2013 that he and students in his laboratory will
no longer publish in “luxury” scientific journals such as Science
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and Nature, focusing instead on open-access alternatives (such
as eLife, which he edits) that do not artificially limit publication
by rejecting the vast majority of articles.25 Of course, Schekman
and his students are protected by his Nobel prize, which says
more for the quality of his work than the title of the journal it is
published in ever could. Average graduate students in average
non-Nobel-winning laboratories could not risk damaging their
careers with such a radical move.

Perhaps Schekman, shielded by his Nobel, can make the
point the rest of us are afraid to make: the frenzied quest for
more and more publications, with clear statistical significance
and broad applications, harms science. We fixate on statistical
significance and do anything to achieve it, even when we don’t
understand the statistics. We push out numerous small and
underpowered studies, padding our résumés, instead of taking
the time and money to conduct larger, more definitive ones.

One proposed alternative to the tyranny of prestigious
journals is the use of article-level metrics. Instead of judging
an article on the prestige of the journal it’s published in, judge
it on rough measures of its own impact. Online-only journals
can easily measure the number of views of an article, the num-
ber of citations it has received in other articles, and even how
often it is discussed on Twitter or Facebook. This is an improve-
ment over using impact factors, which are a journal-wide aver-
age number of citations received by all research articles pub-
lished in a given year—a self-reinforcing metric since articles
from prestigious journals are cited more frequently simply
because of their prestige and visibility.

I doubt the solution will be so simple. In open-access jour-
nals, article-level metrics reward articles popular among the
general public (since open-access articles are free for anyone to
read), so an article on the unpleasant composition of chicken
nuggets* would score better than an important breakthrough
in some arcane branch of genetics. There is no one magic solu-
tion; academic culture will have to slowly change to reward the
thorough, the rigorous, and the statistically sound.

Your Job
The demands placed on the modern scientist are extreme.
Besides mastering their own rapidly advancing fields, most
scientists are expected to be good at programming (including

*Mostly fat, bone, nerve, and connective tissue, though this article was sadly not
actually open-access.26 The brand of chicken nuggets was not specified.
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version control, unit testing, and good software engineering
practices), designing statistical graphics, writing scientific
papers, managing research groups, mentoring students, man-
aging and archiving data, teaching, applying for grants, and
peer-reviewing other scientists’ work, along with the statistical
skills I’m demanding here. People dedicate their entire careers
to mastering one of these skills, yet we expect scientists to be
good at all of them to be competitive.

This is nuts. A PhD program can last five to seven years in
the United States and still not have time to teach all these skills,
except via trial and error.* Tacking on a year or two of experi-
mental design and statistical analysis courses seems unrealistic.
Who will have time for it besides statisticians?

Part of the answer is outsourcing. Use the statistical con-
sulting services likely offered by your local statistics department,
and rope in a statistician as a collaborator whenever your sta-
tistical needs extend beyond a few hours of free advice. (Many
statisticians are susceptible to nerd sniping. Describe an inter-
esting problem to them, and they will be unable to resist an
attempt at solving it.) In exchange for coauthorship on your
paper, the statistician will contribute valuable expertise you
can’t pick up from two semesters of introductory courses.

Nonetheless, if you’re going to do your own data analysis,
you’ll need a good foundation in statistics, if only to under-
stand what the statistical consultant is telling you. A strong
course in applied statistics should cover basic hypothesis test-
ing, regression, statistical power calculation, model selection,
and a statistical programming language like R. Or at the least,
the course should mention that these concepts exist—perhaps
a full mathematical explanation of statistical power won’t fit
in the curriculum, but students should be aware of power and
should know to ask for power calculations when they need
them. Sadly, whenever I read the syllabus for an applied statis-
tics course, I notice it fails to cover all of these topics. Many
textbooks cover them only briefly.

Beware of false confidence. You may soon develop a smug
sense of satisfaction that your work doesn’t screw up like every-
one else’s. But I have not given you a thorough introduction to
the mathematics of data analysis. There are many ways to foul
up statistics beyond these simple conceptual errors. If you’re
designing an unusual experiment, running a large trial, or
analyzing complex data, consult a statistician before you start.

*Professional programmers often trade stories about the horrible code pro-
duced by self-taught academic friends.
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A competent statistician can recommend an experimental
design that mitigates issues such as pseudoreplication and helps
you collect the right data—and the right quantity of data—to
answer your research question. Don’t commit the sin, as many
do, of showing up to your statistical consultant’s office with data
in hand, asking, “So how do I tell if this is statistically signifi-
cant?” A statistician should be a collaborator in your research,
not a replacement for Microsoft Excel. You can likely get good
advice in exchange for some chocolates or a beer or perhaps
coauthorship on your next paper.

Of course, you will do more than analyze your own data.
Scientists spend a great deal of time reading papers written by
other scientists whose grasp of statistics is entirely unknown.
Look for important details in a statistical analysis, such as the
following:

• The statistical power of the study or any other means by
which the appropriate sample size was determined

• How variables were selected or discarded for analysis

• Whether the statistical results presented support the
paper’s conclusions

• Effect-size estimates and confidence intervals accompany-
ing significance tests, showing whether the results have
practical importance

• Whether appropriate statistical tests were used and, if nec-
essary, how they were corrected for multiple comparisons

• Details of any stopping rules

If you work in a field for which a set of reporting guidelines
has been developed (such as the CONSORT checklist for med-
ical trials), familiarize yourself with it and read papers with it in
mind. If a paper omits some of the required items, ask yourself
what impact that has on its conclusions and whether you can
be sure of its results without knowing the missing details. And,
of course, pressure journal editors to enforce the guidelines
to ensure future papers improve. In fields without standard
reporting guidelines, work to create some so that every paper
includes all the information needed to evaluate its conclusions.

In short, your task can be expressed in four simple steps.

1. Read a statistics textbook or take a good statistics course.
Practice.
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2. Plan your data analyses carefully in advance, avoiding the
misconceptions and errors I’ve talked about. Talk to a
statistician before you start collecting data.

3. When you find common errors in the scientific literature—
such as a simple misinterpretation of p values—hit the per-
petrator over the head with your statistics textbook. It’s
therapeutic.

4. Press for change in scientific education and publishing. It’s
our research. Let’s do it right.
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