

Early praise for Your Code as a Crime Scene

This book casts a surprising light on an unexpected place—my own code. I feel

like I’ve found a secret treasure chest of completely unexpected methods. Useful

for programmers, the book provides a powerful tool to smart testers, too.

➤ James Bach

Author, Lessons Learned in Software Testing

You think you know your code. After all, you and your fellow programmers have

been sweating over it for years now. Adam Tornhill uses thinking in psychology

together with hands-on tools to show you the bad parts. This book is a red pill.

Are you ready?

➤ Björn Granvik

Competence manager

Adam Tornhill presents code as it exists in the real world—tightly coupled, un-

wieldy, and full of danger zones even when past developers had the best of inten-

tions. His forensic techniques for analyzing and improving both the technical and

the social aspects of a code base are a godsend for developers working with legacy

systems. I found this book extremely useful to my own work and highly recommend

it!

➤ Nell Shamrell-Harrington

Lead developer, PhishMe

By enlisting simple heuristics and data from everyday tools, Adam shows you how

to fight bad code and its cohorts—all interleaved with intriguing anecdotes from

forensic psychology. Highly recommended!

➤ Jonas Lundberg

Senior programmer and team leader, Netset AB

After reading this book, you will never look at code in the same way again!

➤ Patrik Falk

Agile developer and coach

Do you have a large pile of code, and mysterious and unpleasant bugs seem to

appear out of nothing? This book lets you profile and find out the weak areas in

your code and how to fight them. This is the essence of combining business with

pleasure!

➤ Jimmy Rosenskog

Senior consultant, software developer

Adam manages to marry source code analysis with forensic psychology in a unique

and structured way. The book presents tools and techniques to apply this concept

to your own projects to predict the future of your codebase. Brilliant!

➤ Mattias Larsson

Senior software consultant, Webstep

Your Code as a Crime Scene
Use Forensic Techniques to Arrest Defects,

Bottlenecks, and Bad Design in Your Programs

Adam Tornhill

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)

Potomac Indexing, LLC (indexer)

Cathleen Small (copyeditor)

Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-038-7

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—March 2015

https://pragprog.com
rights@pragprog.com

Contents

Foreword by Michael Feathers ix

Acknowledgments xi

1. Welcome! 1

About This Book 1

Optimize for Understanding 2

How to Read This Book 4

Toward a New Approach 6

Get Your Investigative Tools 7

Part I — Evolving Software

2. Code as a Crime Scene 13

Meet the Problems of Scale 13

Get a Crash Course in Offender Profiling 15

Profiling the Ripper 16

Apply Geographical Offender Profiling to Code 17

Learn from the Spatial Movement of Programmers 18

Find Your Own Hotspots 22

3. Creating an Offender Profile 23

Mining Evolutionary Data 23

Automated Mining with Code Maat 26

Add the Complexity Dimension 28

Merge Complexity and Effort 30

Limitations of the Hotspot Criteria 30

Use Hotspots as a Guide 31

Dig Deeper 33

4. Analyze Hotspots in Large-Scale Systems 35

Analyze a Large Codebase 35

Visualize Hotspots 38

Explore the Visualization 40

Study the Distribution of Hotspots 41

Differentiate Between True Problems and False Positives 45

5. Judge Hotspots with the Power of Names 47

Know the Cognitive Advantages of Good Names 47

Investigate a Hotspot by Its Name 50

Understand the Limitations of Heuristics 52

6. Calculate Complexity Trends from Your Code’s Shape . . 55

Complexity by the Visual Shape of Programs 55

Learn About the Negative Space in Code 57

Analyze Complexity Trends in Hotspots 59

Evaluate the Growth Patterns 63

From Individual Hotspots to Architectures 64

Part II — Dissect Your Architecture

7. Treat Your Code As a Cooperative Witness 67

Know How Your Brain Deceives You 68

Learn the Modus Operandi of a Code Change 71

Use Temporal Coupling to Reduce Bias 72

Prepare to Analyze Temporal Coupling 76

8. Detect Architectural Decay 77

Support Your Redesigns with Data 77

Analyze Temporal Coupling 78

Catch Architectural Decay 83

React to Structural Trends 87

Scale to System Architectures 89

9. Build a Safety Net for Your Architecture 91

Know What’s in an Architecture 91

Analyze the Evolution on a System Level 93

Differentiate Between the Level of Tests 94

Create a Safety Net for Your Automated Tests 99

Know the Costs of Automation Gone Wrong 103

Contents • vi

10. Use Beauty as a Guiding Principle 105

Learn Why Attractiveness Matters 105

Write Beautiful Code 107

Avoid Surprises in Your Architecture 108

Analyze Layered Architectures 111

Find Surprising Change Patterns 113

Expand Your Analyses 116

Part III — Master the Social Aspects of Code

11. Norms, Groups, and False Serial Killers 121

Learn Why the Right People Don’t Speak Up 122

Understand Pluralistic Ignorance 124

Witness Groupthink in Action 127

Discover Your Team’s Modus Operandi 128

Mine Organizational Metrics from Code 132

12. Discover Organizational Metrics in Your Codebase . . . 133

Let’s Work in the Communication Business 133

Find the Social Problems of Scale 135

Measure Temporal Coupling over Organizational Boundaries 138

Evaluate Communication Costs 141

Take It Step by Step 145

13. Build a Knowledge Map of Your System 147

Know Your Knowledge Distribution 147

Grow Your Mental Maps 152

Investigate Knowledge in the Scala Repository 155

Visualize Knowledge Loss 158

Get More Details with Code Churn 161

14. Dive Deeper with Code Churn 163

Cure the Disease, Not the Symptoms 163

Discover Your Process Loss from Code 164

Investigate the Disposal Sites of Killers and Code 168

Predict Defects 171

Time to Move On 174

15. Toward the Future 175

Let Your Questions Guide Your Analysis 175

Take Other Approaches 177

Contents • vii

Let’s Look into the Future 181

Write to Evolve 182

A1. Refactoring Hotspots 183

Refactor Guided by Names 183

Bibliography 187

Index 191

Contents • viii

Foreword by Michael Feathers

It’s easy to look at code and think that there is nothing more than what we

see. When we look at it, we see operators, identifiers, and other language

structure, but that is all surface. We forget the depth. We spend so much

time looking at the current state of the code that we forget its history and all

of the forces that influenced it along its path toward the present.

We pay for this myopia. Many code changes are incredibly shortsighted, both

in terms of our vision of what the code will be in the future, and the way that

it got to be the way that it is.

Years ago, I was struck by the fact that we use version-control systems to

keep track of our projects’ histories, but we hardly ever revert to previous

versions. Those versions exist as an insurance policy, and we’re lucky when

we never have to file a claim. It’s easy, then, to look at that record of changes

and see it as waste. Do we really need more than the last few versions? The

naive answer is no, but we have a real opportunity when we enthusiastically

say yes—we can mine our source code history to learn more about us, our

environment, and how we work. That information is real power.

I think that we are at the beginning of a new era of awareness about how

software changes. We’re abandoning the static view of code and seeing it as

a verb—a constantly changing medium that reacts to its immediate and

extended environment. Your Code as a Crime Scene is the first book I’ve

encountered that takes that view and runs with it. Adam presents tools,

techniques, and insight that will change the way you develop software. You

can’t unread this information, and you will see software differently.

Dig in.

Michael Feathers

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Acknowledgments

My writing experience has been fun, challenging, and rewarding. I owe that

to all the amazing people who helped me out.

First of all, I’d like to thank the Pragmatic Bookshelf for this opportunity. In

particular, I’d like to thank my editor, Fahmida Y. Rashid, who made this a

much better book than what I could’ve done on my own. Thanks, Fahmida!

I’d also like to thank all my reviewers: John Cater, Nell Shamrell, Rod Hilton,

Gunther Schmidl, Dan Shiovitz, Lief Eric Fredheim, Jeremy Frens, Kevin

Beam, and Andy Lester. Thanks a lot for all your feedback and ideas!

Special thanks to Jonas Lundberg and James Bach for their deep insights

and helpful suggestions.

As always, I could count on my great colleagues at Webstep to help out: Patrik

Falk, Mattias Larsson, Jimmy Rosenskog, Björn Granvik, and Mikael Pahmp.

Thanks for all your encouragement and technical expertise! I would also like

to thank Martin Stenlund for being an amazing manager and a true leader.

I’ve always been a big fan of Michael Feathers’ work. That’s why I’m extra

proud to include his foreword. Thanks, Michael—you’re an inspiration!

The case studies in this book were possible due to skilled programmers who

have made their code open source. So thanks to all contributors to Hibernate,

Craft.Net, nopCommerce, and Scala. I have a lot of respect for your work.

My parents, Eva and Thorbjörn, have always supported me. You’re the

best—thanks for all you’ve done for me!

Finally, I’d like to thank my family for their endless support: Jenny, Morten,

and Ebbe—thanks. I love you.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 1

Welcome!

The central idea of Your Code as a Crime Scene is that we’ll never be able to

understand complex, large-scale systems just by looking at a single snapshot

of the code. As you’ll see, when we limit ourselves to what’s visible in the

code, we miss a lot of valuable information. Instead we need to understand

both how the system came to be and how the people working on it interact

with each other. In this book, you’ll learn to mine that information from the

evolution of your codebase.

Once you’ve worked through this book, you’ll be able to examine a large system

and immediately get a view of its health—that is, its health from both a

technical perspective and from the development practices that led to the code

you see today. You’ll also be able to track the improvements made to the code

and gather objective data on them.

About This Book

There are plenty of good books on software design for programmers. So why

read another one? Well, unlike other books, Your Code as a Crime Scene

focuses on your codebase. This book will help you identify potential problems

in your code, find ways to improve it, and get rid of productivity bottlenecks.

Your Code as a Crime Scene blends forensic psychology and software evolution.

Yes, it is a technical book, but programming isn’t just about lines of code.

We also need to focus on the psychological aspects of software development.

But forensics—isn’t that about finding criminals? It sure is, but you’ll also

see that criminal investigators ask many of the same open-ended questions

programmers ask while working through a codebase. By applying forensics

concepts to software development, we gain valuable insights. And in our case,

the offender is problematic code that we need to improve.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

As you read along, you’ll:

• Predict which sections of code have the most defects and the steepest

learning curves.

• Use software evolution to find the code segment that matters most for

maintenance.

• Understand how multiple developers and teams influence code quality.

• Learn how to track organizational problems in your code and get tips on

how to fix them.

• Get a psychological perspective on your programs and learn how to make

them easier to understand.

Who Should Read This Book?

This book is written for programmers, software architects, and technical leads.

The techniques in the book are useful for both small and large systems. On

small systems, you’ll get new insights into your design and how well the

actual code reflects your ideas. On large projects, you’ll learn to find the code

that matters most for your productivity and save maintenance costs, and

you’ll learn how to track down organizational problems in your codebase.

It doesn’t matter what language you program in, as long as you are comfortable

with the command prompt. The case studies in the book use Clojure, Java,

and C#, but you don’t need to know any of these languages to be able to follow

along. Our discussions will focus on design principles, which are language-

independent.

We’ll also interact a lot with version-control systems. To get the most out of

the book, you should know how to work with Subversion, Git, Mercurial, or

a similar tool.

The strategies you’ll learn will be useful regardless of the size of your codebase.

But the more complex your codebase is, the more you’ll need this book.

This book covers both technical and social issues in large-scale projects. If

you’re in a leadership position, use the strategies to maintain a high-level

view of your system and development progress.

Optimize for Understanding

Most software development books focus on writing code. After all, that’s what

we programmers do: write code.

Chapter 1. Welcome! • 2

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

I thought that was our main job until I read Facts and Fallacies of Software

Engineering [Gla92]. Its author, Robert Glass, convincingly argues that

maintenance is the most important phase in the software development lifecy-

cle. Somewhere between 40 and 80 percent of a typical project’s total costs

go toward maintenance. What do we get for all this money? Glass estimates

that close to 60 percent of the changes are genuine enhancements, not just

bug fixes.

These enhancements come about because we have a better understanding

of the final product. Users spot areas that can be improved and make feature

requests. Programmers make changes based on the feedback and modify the

code to make it better. Software development is a learning activity, and

maintenance reflects what we’ve learned about the project thus far.

Maintenance is expensive, but it isn’t necessarily a problem. It can be a good

sign, because only successful applications are maintained. The trick is to

make maintenance effective. To do that, we need to know where we spend

our time.

It turns out that understanding the existing product is the dominant mainte-

nance activity (see Facts and Fallacies of Software Engineering [Gla92]). Once

we know what we need to change, the modification itself may well be trivial.

But the road to that enlightenment is often painful.

This means our primary task as programmers isn’t to write code, but to

understand it. The code we have to understand may have been written by

our younger selves or by someone else. Either way, it’s a challenging task.

This is just as important in today’s Agile environments. With Agile, we enter

maintenance mode immediately after the first iteration, because we modify

existing code in later iterations. We spend the rest of the project in the most

expensive phase of the development lifecycle. Let’s ensure that it’s time well-

invested.

Know the Enemy of Change

To stay productive over time, we need to keep our programs’ complexity in

check. The human brain may be the most complex object in the known uni-

verse, but even our brain has limitations. As we program, we run into those

limitations all the time. Our brain was never designed to deal with walls of

conditional logic nested in explicit loops or to easily parse asynchronous

events with implicit dependencies. Yet we face such challenges every day.

report erratum • discuss

Optimize for Understanding • 3

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

We can always write more tests, try to refactor, or even fire up a debugger to

help us understand complex code constructs. As the system scales up,

everything gets harder. Dealing with over-complicated architectures, incon-

sistent solutions, and changes that break seemingly unrelated features can

kill both our productivity and our joy in programming. The code alone doesn’t

tell the whole story of a software system.

We need all the supporting techniques and strategies we can get. This book

is here to provide that support.

How to Read This Book

This book is meant to be read from start to finish. Later parts build on tech-

niques that I introduce gradually over the course of several chapters. Let’s

look at the big picture.

Part I Shows How You Detect Problematic Code

In Part I, you’ll learn techniques to identify complex code that you also need

to work with often. No matter how much we enjoy our work, when it comes

to commercial products, time and money always matter. In this part, you’ll

learn methods to identify and prioritize the changes to the code that give you

the most value.

We’ll build the techniques on forensic methods used to predict and track

down serial offenders. You’ll see that each crime forms part of a larger pattern.

Similarly, each change we make to our software leaves a trace. Each such

trace is a clue to understanding the system we’re building.

Chapter 1. Welcome! • 4

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

These modification patterns let you look beyond the current structure of the

code to find out where it came from and how it evolved. By mining commit

data and analyzing the history of your code, you learn to predict the code’s

future. This will allow you to start the fixes ahead of time.

Part II Shows How You Can Improve Your Architecture

Once you know how to identify offending code in your system, you’ll want to

look at the bigger picture. You’ll want to ensure that the high-level design of

your system supports the evolution of your code.

In this part, we’ll take inspiration from eyewitness testimonies to see how

memory biases can frame both innocent bystanders and code. You’ll then

learn techniques to reduce memory biases and see how you can interview

your own codebase. Your reward is information that you cannot deduce from

the code alone.

After you’ve finished Part II, you’ll know how to evaluate your software

architecture against the modifications you make to your code. You’ll also have

techniques that let you identify signs of structural decay and expensive

duplications of knowledge. In addition, you’ll see how they provide you with

refactoring directions and suggest new modular boundaries in your design.

Part III Shows How Your Organization Affects Your Code

Today’s large software systems are developed by multiple teams. That inter-

section between people and code is an often overlooked aspect of software

development. When there’s a misalignment between how you’re organized

versus the work style your software architecture supports, code quality and

communication suffers. As a result, we wind up with tricky workarounds and

compromises to the design.

report erratum • discuss

How to Read This Book • 5

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

In Part III, you’ll learn techniques to identify organizational problems that

show up in your code. You’ll see how to predict bugs from the way we work,

understand how social biases influence software development, and uncover

the distribution of knowledge among developers. As a bonus, you’ll learn

about group decisions, communication, false serial killers, and how they all

relate to software development.

Because we base these techniques on version-control data as well, the

methods are aligned with how you really work, instead of to any formal

organizational chart. As you’ll see, those two views often differ.

Toward a New Approach

Over the past decade, there’s been some fascinating research on software

evolution. Like most ideas and studies from academia, these findings have

not crossed over into the industry. This book bridges that gap by translating

academic research into examples for the practicing programmer.

You may be wondering how the strategies we cover in this book will relate to

other software development practices. Let’s sort that out so that you know

how your new skills will complement your existing ones.

• Tests: The techniques you are about to learn let you identify the parts of

your code most likely to contain defects. But they won’t find the errors

themselves. You still need to be testing the code. If you invest in automated

tests, this book will give you tools to monitor the quality and evolution of

those tests.

• Static analysis: Static analysis is a powerful technique for finding errors

and dangerous coding constructs. Static analysis focuses on the impact

your code has on the machine. In this book, we’ll focus on how we humans

look at the meaning of our code. Your code has to serve both audi-

ences—machines and humans—so the techniques in this book complement

static analysis rather than replace it.

• Complexity metrics: Complexity metrics have been around since the 1970s,

but they’re pretty bad at, well, spotting complexity. Metrics are language-

specific, which means we cannot analyze a polyglot codebase. Another

limitation of metrics is that they erase social information about how the

code was developed. Instead of erasing that information, we’ll learn to

derive value from it. We’ll complement metrics with more data.

• Code reviews: A manual process that is expensive to replicate, code reviews

still have their place in software development. Done right, they’re useful

for both bug-hunting and knowledge-sharing. The techniques you’ll learn

in this book will help you prioritize the code you need to review.

Chapter 1. Welcome! • 6

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

As you see, the techniques you’ll learn complement existing practices, rather

than replacing them. I often use these techniques to identify parts of the code

in need of manual inspection and review—or, as you’ll see soon, to communi-

cate with testers and other developers about the codebase.

Software Development is More Than a Technical Problem

In a surprisingly short time, we’ve moved from lighting fires in our

caves to reasoning about multicores and CPU caches in cubicles.

Yet we handle modern technology with the same biological tools

as our prehistoric ancestors used for basic survival. That’s why

taming complexity in software has to start with how we think.

Programming needs to be aligned with the way our brain works.

In this book, we’ll take several opportunities to move beyond pure

technical material. You’ll learn why beauty is a fundamental

quality of all good code, how individuals can bias group decisions,

and how coding to music affects your problem-solving abilities.

Get Your Investigative Tools

The techniques in this book are based on how you and your team interact

with the code. Most of that information is stored within your version-control

system. To analyze it, we need some automated tools to mine and process

the data, but there aren’t a lot of tools out there we can use.

To get you started, I’ve put together a suite of open-source tools capable of

performing the analyses:

• Code Maat: Code Maat is a command-line tool used to mine and analyze

data from version-control systems.

• Git: The techniques in this book would work with other types of version-

control systems, but we’ll use Git in our examples. You can refer to Code

Maat’s web page1 to get an overview of mining data from Mercurial and

Subversion.

• Python: The techniques don’t depend on you knowing Python. We just

include it here because Python is a convenient language for automating

repetitive tasks.

1. https://github.com/adamtornhill/code-maat

report erratum • discuss

Get Your Investigative Tools • 7

https://github.com/adamtornhill/code-maat
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Use Git BASH on Windows

You can run Git in a DOS prompt on Windows. But some of our

commands will use special characters, such as backticks. Those

characters have a different meaning in DOS. The simplest solution

is to interact with Git through its Git BASH shell that emulates a

Linux environment.

Forget the Tools

Before we get to the installation of the tools, I want to mention that even

though we’ll use Code Maat extensively, this book isn’t about a particular

tool. The tools here are prepared for your convenience as a way to put the

theories into practice.

While Code Maat does help with the tasks ahead, the important factor here

is you—when it comes to software design, there’s no tool that replaces human

expertise. What you’ll learn goes beyond any tool; Code Maat just relieves you

of repetitive calculations, input parsing, and result generation.

In each of the case studies you’re about to read, the toolset is the least

important part. The algorithms in Code Maat are fairly simple—you could

implement them as plain scripts in a language of your choice.

That simplicity is a strength. It allows you to focus on the application of the

techniques and how to interpret the resulting data. That’s the important part,

and that’s what we’ll build on in the book.

After you finish Your Code as a Crime Scene, you’ll be in a position to move

beyond Code Maat. There’s even a closing chapter dedicated to that in

Chapter 15, Toward the Future, on page 175.

Install Your Tools

You can get detailed setup instructions for all the tools we’re using from the

Code Maat distribution site.2

This book also has its own web page.3 Check it out—you’ll find the book

forum, where you can talk with other readers and with me. If you find any

mistakes, please report them on the errata page.

2. http://www.adamtornhill.com/code/crimescenetools.htm
3. https://pragprog.com/book/atcrime/code-as-a-crime-scene

Chapter 1. Welcome! • 8

report erratum • discuss

http://www.adamtornhill.com/code/crimescenetools.htm
https://pragprog.com/book/atcrime/code-as-a-crime-scene
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Know What’s Expected

I’ve applied the techniques in this book on a wide variety of programming

languages, including Java, C#, Python, Clojure, C++, and Common Lisp. The

techniques are language-independent and will work no matter what technol-

ogy you use.

Similarly, I’ve used the strategies on both Windows- and Linux-based operating

systems. As long as you use a version-control system sensibly, you’ll find

value in what you’re about to learn.

We’ll run the tools and scripts from a command prompt. Sure, we could put

a GUI on the tools to hide options and details. But I want you to truly

understand the techniques we’re discussing so you’ll be able to extend and

adapt them for your unique environment. Don’t worry—I’ll walk you through

the commands. They’re basic and will work on Windows, Mac, and Linux.

As a convention we’ll use prompt> to indicate

an operating system–independent, generic

prompt. Whenever you see prompt>, replace it

mentally with the prompt for the command

line you’re using.

You’ll also see some Python, but we won’t develop in it. We’ll use Python to

perform repetitive tasks so that we can focus on the fun stuff. If you haven’t

used Python before, it’s fine; I’ll provide the code you need and walk you

through the algorithms so you can use them with a different language of your

choice.

Tools will come and go; details will change. The intent here is to go deeper

and focus on timeless aspects of large-scale software development. (Yes,

timeless sounds pretentious. It’s because the techniques are about people

and how we function—we humans change at a much more leisurely rate than

the technology surrounding us.)

Let’s get started with how forensic psychology helps you investigate your code.

report erratum • discuss

Get Your Investigative Tools • 9

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Part I

Evolving Software

Let’s start with the evolution of software designs.

We’ll discuss the consequences of scale and the

challenges of legacy code. In this part, you’ll learn

novel techniques to assess and analyze your

codebase.

By looking into the history of your system, you’ll

learn how to predict its future. This will allow you

to act on time, should there be any signs of trouble.

CHAPTER 2

Code as a Crime Scene

We just discussed how software maintenance is both difficult and expensive.

Our challenge is to reduce complexity and get code that is easy to modify. To

succeed, we need to prioritize what improvements to make based on how we

actually work with the system. That way, we get the most value in the least

amount of time.

In this chapter, you’ll learn novel strategies from forensic psychology that

you can use to identify and prioritize software-design issues. It isn’t enough

to look at a static snapshot of the code; we also need to look at how the system

evolved. We do that by treating version-control data as our evidence.

Along the way, you’ll learn techniques to identify code that is hard to under-

stand and tricky to modify. It’s code that slows down your productivity and

degrades the quality of your system. Knowing where the true problems are

lets you make improvements where they are needed the most.

Meet the Problems of Scale

Think back to the last large project you worked on. If you could make any

change to that codebase, what would it be? Since you spent a lot of time with

the code, you can probably think quickly of several trouble spots. But do you

know which of those changes would have the greatest impact on your produc-

tivity and make maintenance easier?

Your final choice has to balance several factors. Obviously, you want to sim-

plify the tricky elements in the design. You may also want to address defect-

prone modules. To get the most out of your redesign, you should improve the

part of code you will most likely work with again in the future.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

If your project is anything like typical large-scale projects, it will be hard to

identify and prioritize those areas of improvement. Refactoring or redesigning

can be risky, and even if you get it right, the actual payoff is uncertain.

Like a hangover, it’s a problem that gets worse the more you add to it.

Find the Code That Matters

Take a look at all the subsystem dependencies in the following figure. The

system wasn’t originally designed to be this complex, but this is where code

frequently ends up. The true problems are hidden among all these interactions

and aren’t easy to find. Complexity obscures the parts that need attention.

We need help tackling these large-scale software applications. No matter how

experienced you are, the human brain is not equipped to effectively step

through a hundred thousand lines of entangled code. The problem also gets

worse with the size of your development team, because everyone is working

separately. Nobody has a holistic picture of the code, and you risk making

biased decisions. In addition, all large-scale codebases have code that no one

knows well or feels responsible for. Everyone gets a limited view of the system.

Decisions made based on incomplete information are troublesome. They may

optimize one part of the code but push complexities and inconsistencies to

Chapter 2. Code as a Crime Scene • 14

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

other areas maintained by other developers. You can address a part of this

problem by rotating team members and sharing experiences. But you still

need a way to aggregate the team’s collective knowledge. We’ll get there soon,

but let’s first discuss one of the traditional approaches—complexity met-

rics—and why they don’t work on their own.

The Problem with Complexity Metrics

Complexity metrics are useful, but not in isolation. As we previously discussed

in Toward a New Approach, on page 6, complexity metrics alone are not

particularly good at identifying complexity. This also isn’t an optimal approach.

Complexity is only a problem if we need to deal with it. If no one needs to

read or modify a particular part of the code, does it really make a difference

whether it’s complex? Well, you may have a potential time bomb waiting to

go off, but large-scale codebases are full of unwarranted complexity. It’s

unreasonable to address them all at once. Each improvement to a system is

also a risk, as new problems and bugs may be introduced. We need strategies

to identify and improve the parts that really matter. Let’s uncover them by

putting our forensic skills to work.

Get a Crash Course in Offender Profiling

You probably know a little bit about offender profiling already. Movies such

as the 1990s hit The Silence of the Lambs popularized the profession, and

that popularity exists even decades after the movie’s theatrical release.

In The Silence of the Lambs, Dr. Hannibal Lecter, portrayed by Anthony

Hopkins, is an imprisoned convicted killer. Throughout the movie, he is pre-

sented with details from different crime scenes. He takes the information and

deduces the offender’s personality and motivations for committing the crime.

The police use his profile to identify and find the serial killer Buffalo Bill.

(Sorry for the spoiler!) While impressive, Dr. Lecter’s stunning forensics skills

have a serious limitation: they only work in Hollywood movies.

Fortunately, we have scientifically valid profiling alternatives that extend to

the real world. Read along, and I’ll show you how the tools forensic psycholo-

gists use to attack these open-ended problems can also be useful for software

developers.

report erratum • discuss

Get a Crash Course in Offender Profiling • 15

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Learn Geographical Profiling of Crimes

Geographical profiling has its scientific basis in statistics and environmental

psychology. It’s a complex subject with a fair share of controversies (just like

programming!), but the basic principles are simple enough.

Criminals aren’t that different from us: they go to work, visit restaurants and

shops, and keep in touch with friends. They build mental maps of all the

places they go. This is not specific to criminals—we all build mental maps.

But an offender uses the mental map to decide where to commit a crime.

The locations where crimes occur are very rarely random—the geographical

locations contain valuable information about the offender. Think about it for

a moment: there must be an overlap in space and time between the offender

and a victim, right?

Once a crime has been committed, the offender realizes it would be too dan-

gerous to return to that area. Typically, the location of the next crime is in

the opposite direction from the first scene.

Over time, these crime scenes form a circle on a map. So while an offender’s

deeds may be bizarre, the rationale behind the processes is logical. (See

Principles of Geographical Offender Profiling [CY08a] for an in-depth discussion.)

We can look at the patterns and profile the person who committed the crimes.

Let’s take a look at how geographic profiling can help track down one of the

most notorious serial killers in history, Jack the Ripper.

Profiling the Ripper

We can figure out where Jack the Ripper’s home was with the following map.

It was generated by Professor David Canter1 using Dragnet, a software

developed by The Center for Investigative Psychology.2 Dragnet considers each

crime location a center of gravity. It then combines the individual centers

mathematically using one small twist; psychologically, all distances aren’t

equal. Thus, the crime locations are weighted depending on their relative

distances. That weighted result points to the geographical area most likely

to contain the home base of the offender, also known as our hotspot. The

hotspot is indicated by the central red area on the map. The resulting hotspot

is gold for investigators because they can focus their efforts on the smaller

area instead of patrolling the entire city.

1. http://www.davidcanter.com/
2. http://www.i-psy.com/index.php

Chapter 2. Code as a Crime Scene • 16

report erratum • discuss

http://www.davidcanter.com/
http://www.i-psy.com/index.php
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Apply Geographical Offender Profiling to Code

As I learned about geographical offender profiling in criminal psychology, I

was struck by its possible applications to software. What if we could devise

techniques that let us identify hotspots in large software systems? A hotspot

analysis that could narrow down a large system to a few critical modules

would be a big win in our profession.

Instead of speculating about potential design problems among million lines

of code, geographical profiling would give us a prioritized lists of sections that

need refactoring. It would also be dynamic, reflecting shifts in development

focus over time.

Explore the Geography of Code

We need a geography of code. Despite its lack of physics, software is easy to

visualize. My favorite tool is Code City.3 It’s fun to work with and matches

the offender-profiling metaphor well. The following figure shows a sample city

generated by the tool.

3. http://www.inf.usi.ch/phd/wettel/codecity.html

report erratum • discuss

Apply Geographical Offender Profiling to Code • 17

http://www.inf.usi.ch/phd/wettel/codecity.html
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

A city block represents a package, and each class is a building. The number

of methods defines the height, and the number of attributes specifies the base

of the building. Try out Code City, and you’ll notice new patterns you didn’t

spot before in the code itself.

Code City is a nice starting point, but it limits us to looking at only object-

oriented designs. Today’s software world is increasingly polyglot. Even when

you use the same language, you may have complex configurations in scripts,

XML, and other markup formats. A geography must present a holistic picture,

no matter what languages we choose. We’ll soon explore other options, but

before that we need to address a more serious limitation of our data.

Look at the large buildings in our city map again. If that information is all we

have, those large buildings would be our hotspots. But there’s nothing in the

illustration to indicate on which building we should actually spend our efforts.

Perhaps those large classes have been stable for years, are well-tested, and

have little developer activity. It doesn’t make sense to start there when other

buildings may require immediate attention. In this case, the code doesn’t tell

the whole story.

Learn from the Spatial Movement of Programmers

Parts evolve at different rates in a codebase. As some modules stabilize, others

become more fragile and volatile. When we profiled the Ripper, we used his

spatial information to limit the search area. We pull off the same feat with

code by focusing on areas with high developer activity.

Chapter 2. Code as a Crime Scene • 18

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Joe asks:

Who Was Jack?

Since Jack the Ripper was never caught, how do we know if the geographical offender

profile is any good?

As of September 2014, there were reports of mitochondrial DNA evidence that pre-

sumably links one of the suspects, Aaron Kosminski, to a Jack the Ripper victim.

There is a lot of controversy and debate around the claim, so let me introduce you to

another likely suspect: James Maybrick.

In the early 1990s, a diary supposedly

written by Liverpool cotton merchant

James Maybrick surfaced. In this diary,

Maybrick claimed to be the Ripper.

Since its publication in The Diary of

Jack the Ripper [Har10], thousands of

Ripperologists around the world have

tried to expose the diary as a forgery

using techniques such as handwriting

analysis and chemical ink tests. No one

has yet managed to prove the diary is

fake, and its legitimacy is still under

dispute.

The interesting part about the diary for us is the fact that Maybrick wrote that he

used to rent a room on Middlesex Street whenever he visited London. You can see

Middlesex Street right inside our hotspot.

But what about Aaron Kosminiski’s homebase? It, too, fits the profile, although not

as well as Maybrick’s does. Kosminski’s probable home at the time of the murders is

just a little bit east of the high-probability hotspot area.

Your development organization probably already applies tools that track your

movements in code. Oh, no need to feel paranoid! It’s not that bad—it’s just

that we rarely think about these tools this way. Their traditional purpose is

something completely different. Yes, I’m talking about version-control systems.

report erratum • discuss

Learn from the Spatial Movement of Programmers • 19

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The statistics from our version-control system can be an informational gold

mine. Every modification to the system you’ve ever done is recorded, along

with the related steps you took. It’s more detailed than the geographical

information you learned about in offender profiling. Let’s see how version-

control data enriches your understanding of the codebase and improves your

map of the system. The following figure depicts the most basic version-control

data using a tree-map algorithm.4

The size and color of each module is weighted based on how frequently it

changes. The more recorded changes the module has, the larger its rectangle

in the visualization. Volatile modules stand out and are easy to spot.

Measuring change frequencies is based on the idea that code that has changed

in the past is likely to change again. Code changes for a reason. Perhaps the

module has too many responsibilities or the feature area is poorly understood.

We can identify the modules where the team has spent the most effort.

4. https://github.com/adamtornhill/MetricsTreeMap

Chapter 2. Code as a Crime Scene • 20

report erratum • discuss

https://github.com/adamtornhill/MetricsTreeMap
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Interpret Evolutionary Change Frequencies

We are using change frequencies as a proxy for effort. Yes, it’s a rough metric,

but as you’ll see soon it’s a heuristic that works surprisingly well in practice.

In the earlier code visualization, we saw that most of the changes were in the

logical_coupling.clj module, followed by app.clj. If those two modules turn out to

be a mess of complicated code, redesigning them will have a significant impact

on future work. After all, that’s where we are currently spending most of our

time.

While looking at effort is a step in the right direction, we need to also think

about complexity. The temporal information is incomplete on its own because

we don’t know anything about the nature of the code. Sure, logical_coupling.clj
changes often. But perhaps it is a perfectly structured, consistent, and clear

solution. Or it may be a plain configuration file that we’d expect to change

frequently anyway. Without information about the code itself, we don’t know

how important it is. Let’s see how we can resolve that.

Find Hotspots by Merging Complexity and Effort

In the following illustration, we combine the two dimensions, complexity and

effort. The interesting bit is in the overlap between them.

When put together, the overlap between complexity and effort signals a

hotspot, an offender in code. Hotspots are your guide to improvements and

refactorings. But there’s more to them—hotspots are intimately tied to code

quality, too. So before we move on, let’s look at some research on the subject.

report erratum • discuss

Learn from the Spatial Movement of Programmers • 21

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

See That Hotspots Really Work

Hotspots represent complex parts of the codebase that have changed quickly.

Research has shown that frequent changes to complex code generally indicate

declining quality:

• After studying a long-lived system, a research team found that the number

of times code changes is a better predictor of defects than pure size. (See

Predicting fault incidence using software change history [GKMS00].)

• In a study on code duplication, a subject we’ll investigate in Chapter 8,

Detect Architectural Decay, on page 77, modules that change frequently

are linked to maintenance problems and low quality. (See An Empirical

Study on the Impact of Duplicate Code [HSSH12].)

• Several studies report a high overlap between these simple metrics and

more complex measures. The importance of change to a module is so high

that more elaborate metrics rarely provide any further predictive value.

(See, for example, Does Measuring Code Change Improve Fault Prediction?

[BOW11].)

• Finally, a set of different predictor models was designed to detect quality

issues in code. The number of lines of code and the modification status

of modules turned out to be the two strongest individual predictors. (See

Where the bugs are [BOW04].)

When it comes to detecting quality problems, process metrics from version-

control systems are far better than traditional code measurements.

Find Your Own Hotspots

In this chapter, you learned the theory behind hotspot analyses. You learned

that to identify the parts that matter for your productivity, it isn’t enough to

look at a static snapshot of the code. Instead, you need to also look at where

you spend most of your efforts.

We’ve now come full circle: we have a geography of code with a probability

surface that lets you track down offending code. We’ll explore this concept in

more detail in the next chapter, and you’ll learn to extract the information

from version-control systems. It will be data that helps you find potential

suspects, such as code smells and team-productivity bottlenecks.

Turn the page, and let’s walk through your first offender profile.

Chapter 2. Code as a Crime Scene • 22

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 3

Creating an Offender Profile

We just learned how methods from forensic psychology let us find complex,

buggy code and guide our refactoring efforts. Now it’s time to put the theory

into practice. Together, we’re going to analyze a software system. In our case,

the offender is problematic code, not criminals.

We’ll start by mining evolutionary data from a version-control system. We’ll

then augment the change data with complexity estimates to identify hotspots.

Along the way, we’ll stop to look at existing research to see how the analysis

helps us spot maintenance problems and quality issues.

When you finish this chapter, you’ll be able to identify hotspots in your own

code. As you’ll see, hotspots point you to the parts of the code where you’ll

get the most from improvements in terms of time and money.

Finally, you’ll get tips on how to use the resulting information to prioritize

design problems, guide manual work, and communicate within a project.

We’ll also discuss the limitations of the hotspot concept.

Mining Evolutionary Data

Version-control data is our software-development equivalent to spatial

movement in geographical profiling. A version-control system—such as Sub-

version, Git, or Mercurial—records the steps each developer took. I focus on

Git in my examples, but you can find an overview of how to mine data from

other systems in the Code Maat documentation.1

The first codebase we’ll study is Code Maat. That’s right—we’ll use our anal-

ysis tool to analyze the tool itself. I’m a Lisp programmer—we love circular

stuff like that.

1. https://github.com/adamtornhill/code-maat

report erratum • discuss

https://github.com/adamtornhill/code-maat
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

To follow along with the examples, you need to clone the Code Maat repository2

so that you have the complete source tree on your computer:

prompt> git clone https://github.com/adamtornhill/code-maat.git
Cloning into 'code-maat'...
remote: Reusing existing pack: 1092, done.
remote: Total 1092 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1092/1092), 365.75 KiB | 271.00 KiB/s, done.
Resolving deltas: 100% (537/537), done.
Checking connectivity... done.
prompt>

Once the clone command completes, you’ll find a local code-maat directory with

the source code. Move into that directory:

prompt>cd code-maat

Turn Back Time

Code Maat is still under development, and some of the worst issues we spot

here will probably be fixed by the time you read this. So we are going to pre-

tend it’s still 2013. That’s fine—the digital world lets us easily travel back to

less gracious times:

prompt> git checkout `git rev-list -n 1 --before="2013-11-01" master`
...
HEAD is now at d804759... Documented tree map visualizations

The git command is a bit tricky because it does two things: it fetches the

revision on the specified date and checks out that revision. Other version-

control systems provide similar rollback mechanisms.

Your local copy of Code Maat should now look as the code did back in 2013.

Investigate the Git Log

Git lets us inspect historical commits by its log command. To get the level of

detail we need, we use the --numstat flag:

prompt> git log --numstat

This command will output a detailed log, as shown in the figure on page 25.

The sample output contains a lot of valuable information. In the following

chapters, we’ll get several opportunities to inspect it in depth. For now, we’ll

limit the analysis to the changed modules. We see that the oldest commit

involved changes to six files, while the next one only modified churn.clj.

2. https://github.com/adamtornhill/code-maat

Chapter 3. Creating an Offender Profile • 24

report erratum • discuss

https://github.com/adamtornhill/code-maat
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Verify Your Intuitions

Human intuition is wonderful for making quick decisions. The

quality of those decisions, however, is not always wonderful.

Expert intuition can lead to high-quality decisions. The problem

is that we don’t know up front whether this time is one of those

expert intuitions. Intuition is an automatic, unconscious process,

and like all automatic mental processes, it’s sensitive to cognitive

and social biases. Factors in your surroundings or in the specific

situation can influence your judgment. Most of the time you aren’t

aware of that influence. (You’ll see some examples in Chapter 11,

Norms, Groups, and False Serial Killers, on page 121.) For example,

we may be notoriously bad at evaluating past decisions due to

hindsight bias. That’s why it’s important to verify your intuitive

ideas with supporting data.

From a practical perspective, we need guiding techniques like the

ones presented here because intuition doesn’t scale—especially

not in complex areas, such as a large-scale software project that

is constantly changing.

report erratum • discuss

Mining Evolutionary Data • 25

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Automated Mining with Code Maat

In a large system under heavy development, hundreds of commits are made

each day. Manually inspecting that data is error-prone and, more importantly,

takes time away from all the fun programming. Let’s automate this.

Calculating change frequencies is straightforward: parse the log file and

summarize the number of times each module occurs. You could also add

more complex processing to keep track of renamed or moved files.

You already know about Code Maat. Now we’re going to use it to analyze

change frequencies. The gitoutput on page 25 is fine for humans but too ver-

bose for a tool. The following command generates a more compact version:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short \
--numstat --before=2013-11-01

Code Maat is strict about its input. (It doesn’t have to be—it’s just easier to

write a parser if we can ignore special cases.) Here are the rules:

• Everything except --before is mandatory.

• Use the --before to get a reproducible, historical output in this example.

Here we include all commits before that given date. It’s our temporal

period of interest for this analysis.

• If you want to analyze the complete evolution, just leave out the flag.

• Specify an optional start date through the --after flag.

As long as you keep the supported log format, you’re free to vary and combine

different filtering options.

To persist the log information, just redirect the git output to a file. For example:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short \
--numstat --before=2013-11-01 > maat_evo.log

This will result in a file maat_evo.log in your current directory. Before we feed

this file to Code Maat, let’s open it and take a look. You will see a logfile with

the same type of information as shown in the earlier example.

Chapter 3. Creating an Offender Profile • 26

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Inspect the Data

Inspecting the input data is a good starting point. Code Maat provides a

summary option that presents an overview of the information in the log. Once

you’ve installed Code Maat as described on the distribution page,3 fire up the

tool by entering the following command—we’ll discuss the options in just a

minute:

prompt> maat -l maat_evo.log -c git -a summary
statistic,value
number-of-commits,88
number-of-entities,45
number-of-entities-changed,283
number-of-authors,2

The -a flag specifies the analysis we want. In this case, we’re interested in a

summary. In addition, we need to tell Code Maat where to find the logfile (-l
maat_evo.log) and which version-control system we’re using (-c git). That’s it.

These three options should cover most use cases.

The summary statistics displayed above are generated as comma-separated

values (.CSV). The first line, statistic,value, specifies the heading of each column.

For our purposes, the row number-of-entities-changed holds the interesting data.

During our specified development period, the different modules in the system

have been changed 283 times. Let’s see whether we can find any patterns in

those changes.

Use CSV Output

Code Maat is designed to be minimalistic. It just collects the

results. By generating output as .CSV, a well-supported text format,

the output can be read by other programs. You can import the

.CSV into a spreadsheet or, with a little scripting, populate a

database with the data.

This model allows you to build more elaborate visualizations and

analyses on top of Code Maat. Pure text is the universal interface.

Analyze Change Frequencies

Now that you have the modification data, the next step is to analyze the dis-

tribution of those changes across modules. To analyze change frequencies,

specify the revisions analysis:

3. http://www.adamtornhill.com/code/crimescenetools.htm

report erratum • discuss

Automated Mining with Code Maat • 27

http://www.adamtornhill.com/code/crimescenetools.htm
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

prompt> maat -l maat_evo.log -c git -a revisions
entity,n-revs
src/code_maat/analysis/logical_coupling.clj,26
src/code_maat/app/app.clj,25
src/code_maat/core.clj,21
test/code_maat/end_to_end/scenario_tests.clj,20
project.clj,19
...

The revisions analysis results in two columns: an entity column specifying the

name of a source code module, and n-revs, stating the number of revisions of

that module.

The output is sorted on the number of revisions. That means our most fre-

quently modified candidate is logical_coupling.clj with 26 changes, followed by 25

changes to the fuzzily named app.clj. I named it—I really should know better.

Thanks to the revisions analysis, you identified the parts of the code with most

developer activity. Sure, the number of commits is a rough metric, but we’ll

meet more elaborate measures later. As you saw earlier in See That Hotspots

Really Work, on page 22, the relative number of commits is a surprisingly

good predictor of defects and design issues. Its simplicity makes it an

attractive starting point.

Add the Complexity Dimension

You now have the data to trace the spatial movements of programmers within

the code. In Chapter 2, Code as a Crime Scene, on page 13, we pointed out

the importance of combining that data with a complexity dimension. Let’s see

where the complexity is hiding in this code.

Get Complexity by Lines of Code

We’re going to use lines of code as a proxy for software complexity. Lines of

code is a terrible metric, but the other ones are just as bad. (See the research

by Herraiz and Hassan in Making Software [OW10] for a comparison of com-

plexity metrics.) Using lines of code at least gives us some advantages:

• It’s fast and simple. More elaborate metrics need to understand the lan-

guage they’re processing. That means they need to parse the code, which

may take some time. Lines of code is a fast way to get the same approxi-

mation of complexity.

• It’s language-neutral. Language neutrality is the main reason I prefer lines

of code. In today’s polyglot systems, sophisticated metrics lose their

meaning. As we start to parse individual language constructs, we lose the

Chapter 3. Creating an Offender Profile • 28

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

opportunity for cross-language comparisons. For example, web applica-

tions often combine HTML, CSS, and JavaScript in addition to a server-

side technology, such as Java, C#, or Clojure. A language-neutral metric

lets us get a holistic picture of all these parts, no matter what language

they’re written in.

We can always turn to language-specific techniques later to get more details

on hotspots. Similarly, we can use any metric to represent complexity. For

now, let’s summarize the lines of code in our system.

Counting Lines with cloc

Many tools count lines of code. My favorite is cloc. It’s free and easy to use.

You can get a copy of cloc on SourceForge.4

With cloc installed, let’s put it to work:

prompt> cloc ./ --by-file --csv --quiet

language,filename,blank,comment,code
Clojure,./src/code_maat/analysis/logical_coupling.clj,23,14,145
Clojure,./test/code_maat/end_to_end/scenario_tests.clj,23,19,117
Clojure,./src/code_maat/analysis/churn.clj,14,11,99
Clojure,./src/code_maat/app/app.clj,13,6,94
Clojure,./test/code_maat/analysis/logical_coupling_test.clj,15,5,89
...

Here we told cloc to count all files in the code-maat directory. We also specified

that we want statistics --by-file (the alternative is a summary) and --csv output.

As you can see in the following figure, cloc does a good job of detecting the

programming language the code is written in.

Based on language, cloc separates lines containing comments from real code.

We don’t want blank lines or comments in our analysis.

4. http://cloc.sourceforge.net/

report erratum • discuss

Add the Complexity Dimension • 29

http://cloc.sourceforge.net/
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Merge Complexity and Effort

At this point, you have two different views of the codebase: one that tells you

where the complexity is and one that shows individual change frequencies.

We will find potential hotspots where the two views intersect.

To merge the two views, we first save the intermediate files to .CSV files:

prompt> maat -l maat_evo.log -c git -a revisions > maat_freqs.csv
prompt> cloc ./ --by-file --csv --quiet --report-file=maat_lines.csv
...

You should now have two .CSV files in your code-maat directory: maat_freqs.csv
and maat_lines.csv. Because merging them would be tedious (but straightfor-

ward!), we’ll use a Python script available from the Code Maat distribution

page.5

After you’ve downloaded it, run the included scripts/merge_comp_freqs.py script

with your two .CSV files as input. And remember to prefix the script with the

path to your local copy of scripts/merge_comp_freqs.py:

prompt> python scripts/merge_comp_freqs.py maat_freqs.csv maat_lines.csv
module,revisions,code
src/code_maat/analysis/logical_coupling.clj,26,145
src/code_maat/app/app.clj,25,94
src/code_maat/core.clj,21,49
test/code_maat/end_to_end/scenario_tests.clj,20,117
project.clj,19,17
...

The resulting output is sorted on change frequencies first—the best predictor

of problems—and size second. That means we get a prioritized list of suspects

immediately; our revisions analysis showed that the logical_coupling.clj module

changed often. Now we see that it’s complex, too. You’ve found your first

hotspot!

Limitations of the Hotspot Criteria

There is a limitation when looking at hotspots—when is a particular module

hot? We’ve just used whatever happened to be the maximum number of

revisions in the specified temporal period. What if that number was 3? Or

845? Without any context, they’re just numbers.

5. http://www.adamtornhill.com/code/crimescenetools.htm

Chapter 3. Creating an Offender Profile • 30

report erratum • discuss

http://www.adamtornhill.com/code/crimescenetools.htm
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

In Part III, you’ll learn about analyses that normalize the data. For now we’re

going to ignore that; in practice, the non-normalized data we’re working on

is generally good enough as a guide. We use the relative rank within a code-

base to identify hotspots. Before we move on, I just wanted you to be aware

of when this might not work.

The hotspots you’ll find depend on the temporal period you defined when

preparing the files. This can be tricky to get right. By using version-control

data, we get a picture of how we actually interact with the system. Over time,

our development focus shifts, and the hotspots will also shift. Similarly, as

design issues get resolved, hotspots cool down. If they don’t, that means the

problem still exists.

Finally, individual commit styles may bias the data; some developers commit

small, isolated changes, while others prefer a big-bang commit style. I’ve

never experienced this as a problem myself, since features and changes tend

to be developed on branches, and we perform our analyses on the master

branch or trunk. That said, even if your analysis works fine, you have a lot

to gain by getting your team to adopt a shared convention for all commits. It

simplifies your workflow.

Use Hotspots as a Guide

Similar to forensic psychology methods, code offender profiling techniques

help us narrow down the search area within a codebase. In the next chapter,

you’ll see the payoff on a large codebase where the hotspots make up a small

percentage of the total code. That means we can focus our human expertise

on smaller, more focused parts of the system. This opens up a number of

possibilities:

• Prioritize design issues: I started this investigation because I needed a

way to plan and prioritize improvements to a legacy system. Some of the

suggested improvements were redesigns that cost several weeks of intense

report erratum • discuss

Use Hotspots as a Guide • 31

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

work. I had to ensure we spent time on improvements that actually helped

future development efforts. Hotspots, indicating complex code that changes

frequently, proved to be great candidates. With the material in this

chapter, you have the basis to do the same analysis yourself.

• Perform code reviews: Code reviews have high defect-removal rates. A

code review done right is also time-consuming. Because hotspots make

good predictors of buggy code (see The Relationship Between Hotspots

and Defects, on page 32), they identify the parts where reviews would be

a good investment of time.

• Improve communication: On a recent project I used the results of a hotspot

analysis to communicate with the test leader. That project had several

skilled testers. They often spent the end of each iteration on exploratory

testing. The test leader wanted a simple way to identify feature areas that

could benefit from such additional testing. Hotspots make a perfect

starting point for these kinds of tests.

The Relationship Between Hotspots and Defects

Hotspots make good predictors of defects. If your development team maintains

a bug database, it’s possible to map defects to modules in the code. For

example, here’s how it looked on a system I investigated:

Chapter 3. Creating an Offender Profile • 32

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

As you see in the diagram, defects tend to cluster in a few problematic mod-

ules. This is a typical pattern found in many systems. In this particular sys-

tem, the hotspots made up only 4 percent of the code, yet they contained

seven of the eight modules with the greatest number of defects.

Guided by hotspots, you’ll encircle those buggy areas with high precision.

This allows you to improve the code that needs it the most.

Dig Deeper

Right now, we are at the central idea of the book. Subsequent chapters will

expand on this concept. While we initially focused on code and design, we’ll

take the same basic techniques and apply them to organization, teamwork,

and communication in Part III. But first let’s dig deeper into the concept of

hotspots.

The next chapter will discuss how you can investigate hotspots to see whether

they’re real problems or perhaps just false positives. In the latter case, we

can relax, but more often than not we’ve identified some serious technical

problems.

Finally, I’d like to emphasize that a geographic code profile isn’t intended to

provide an absolute truth about the system. Instead, it’s a supporting tool,

a guide for your expertise. And it’s based on data from how we actually work

with the code. How good is that?

report erratum • discuss

Dig Deeper • 33

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 4

Analyze Hotspots in Large-Scale Systems

So far we’ve applied these concepts to small open-source projects. The real

benefits come when we look at a codebase that has outgrown the head of a

single developer.

In this chapter, we’ll analyze a large open-source system. We’ll visualize the

analysis results, discuss their interpretations, and relate them to design

principles.

When you’ve finished this chapter, you’ll know how to identify weak spots in

a large system.

Analyze a Large Codebase

When you start with a new project, how do you know which parts need extra

attention? That kind of expertise takes time to build. You need to read a lot

of code, talk to more experienced developers, and start small with your own

changes. There’s no way around this.

At the same time, it’s important that you get a quick overview of where

potential problems may be hiding. Those problems will influence how you

approach design. If you have to add a feature in the middle of the worst spot,

you want to know about it so that you can plan countermeasures, such as

writing extra tests and setting aside time to refactor the code. You may decide

to come up with a different design altogether.

A hotspot analysis gives you an overview of the good as well as the fragile

areas of the codebase. The best part is that you get all that information faster

than a CSI agent can hack together a Visual Basic GUI to track an IP address

in real time.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

As an example of in a large-scale system, let’s investigate Hibernate1—a pop-

ular open-source Java library for object-relational mapping. We’re using

Hibernate because it’s well known, has a rich history, and is under active

development. If you’ve worked with a database in the Java ecosystem, chances

are you’ve come across Hibernate.

Clone the Hibernate Repository

To get started, let’s clone Hibernate’s Git repository to your computer:

prompt> git clone https://github.com/hibernate/hibernate-orm.git
Cloning into 'hibernate-orm'...
...
Receiving objects: 100% (210129/210129), 127.83 MiB | 1.99 MiB/s, done.
Resolving deltas: 100% (118283/118283), done.
Checking connectivity... done.

Because Hibernate is under active development, we know things may have

changed since I wrote this book. So let’s roll back the code, as we learned in

chapter Turn Back Time, on page 24, so that we all start with the same code:

prompt> git checkout `git rev-list -n 1 --before="2013-09-05" master`
Note: checking out '46c962e9b04a883e03137962b0bdb71fdcfa0c4e'.
...
HEAD is now at 46c962e... HHH-8468 cleanup and simplification

Now the Hibernate code on your computer looks as it did back in September

of 2013. Let’s generate a log, as we did in Automated Mining with Code Maat,

on page 26.

Generate a Version-Control Log

We are going to limit our analysis to code changes made in the last year and

a half. Here’s how you specify that:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short \
--numstat --before=2013-09-05 --after=2012-01-01 > hib_evo.log

This generates a detailed hib_evo.log we can use with Code Maat. Let’s explore

the generated data:

prompt> maat -l hib_evo.log -c git -a summary
statistic,value
number-of-commits,1346
number-of-entities,10193
number-of-entities-changed,18258
number-of-authors,89

1. http://hibernate.org/

Chapter 4. Analyze Hotspots in Large-Scale Systems • 36

report erratum • discuss

http://hibernate.org/
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

As you can see, there’s been plenty of development activity over the last year

and a half. Remember how we said earlier, in Analyze a Large Codebase, on

page 35, that finding hotspots makes it easier to get started with a new project?

This is a good example: you’re starting out with Hibernate and are faced with

400,000 lines of unfamiliar code. Talking to the 89 different developers who’ve

contributed to the project over the past year and a half is impractical (partic-

ularly since some of them may have left the project).

Follow along, and you’ll see how a hotspot analysis can guide you through

unfamiliar code territory.

Choose a Timespan for Your Analyses

First of all, it’s important to limit the data you are analyzing to a shorter time

period than the project’s total lifetime. If you include too much historic data

in the analysis, you skew the results and obscure important recent trends.

You also risk flagging hotspots that no longer exist.

One approach is to include time in your analysis, by weighing individual

measures by their relative age. The challenge if you choose that route is how

to set up the algorithm. We go with an alternative approach in this book,

which is to limit the period of time we look at. It’s a more general approach,

but it requires you to be familiar with the development history.

To select an appropriate analysis period, you have to know how you work on

the project. You have to know the methodology you’re using and the length

of your release cycles. The period also depends on the questions you want

answered. On my projects I choose the following timeframes:

• Between releases: Compare hotspots between releases to evaluate your

long-term improvements.

• Over iterations: If you work iteratively, measure between each iteration.

This lets you spot code that starts to grow into hotspots early.

• Around significant events: Define the temporal period around significant

events, such as reorganizations of code or personnel. When you make

large redesigns or change the way you work, it will reflect in the code.

With this analysis method, you have a way to investigate both impact and

outcome.

report erratum • discuss

Analyze a Large Codebase • 37

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Start with a Long Period

As you start with your first analysis, go with a longer period, such

as one or two years of historic data. That lets you explore the

system and spot long-term trends. On projects with high develop-

ment activity, select a shorter initial period, perhaps as little as

one month.

Visualize Hotspots

Large-scale systems will have massive amounts of analysis data. Even if Code

Maat identifies the hotspots, it will still be hard to compare subsystems against

each other or detect other trends, such as clusters of volatile modules. We

need more help.

Visualizations are powerful when you have to make sense of large data sets.

Our human brain is an amazing pattern-matching machine. The amount of

visual information we’re able to process is astonishing. Let’s tap into all that

brain power.

Use Circle Packing for Large Systems

We haven’t identified the hotspots in Hibernate yet. But let’s sneak ahead

and see where we’re heading. Here’s how our Hibernate data looks in an

enclosure diagram (a visualization form that works well for large systems):

Chapter 4. Analyze Hotspots in Large-Scale Systems • 38

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Look at all those nested circles. Enclosure diagrams are based on a geometric

layout algorithm called circle packing. Each circle represents a part of the

system. The more complex a module, as measured by lines of code, the larger

the circle. And the more effort we spend on a module, as measured by its

number of revisions, the more intense its color.

Even if you don’t know anything about Hibernate, the visualization gives you

an entry point into understanding the system. In the preceding figure, you

can see both the good and the fragile parts of the codebase. And that’s even

before you actually look at the code. Can you think of a better starting point

as you enter a large-scale project? Let’s see how you collect and interpret all

that information.

Mining Hibernate

The steps used to mine Hibernate are identical to the ones you learned earlier

in Chapter 3, Creating an Offender Profile, on page 23.

This time, we use the size of the codebase as a proxy for complexity. We

determine the code size with cloc:

prompt> cloc ./ --by-file --csv --quiet --report-file=hib_lines.csv

The change frequencies of the modules are used to represent effort. These

are calculated with Code Maat:

prompt> maat -l hib_evo.log -c git -a revisions > hib_freqs.csv

Combining the two views gives you the now-familiar overlap between complex-

ity and effort—the hotspots:

prompt> python scripts/merge_comp_freqs.py hib_freqs.csv hib_lines.csv
module,revisions,code
build.gradle,79,402
hibernate-core/.../persister/entity/AbstractEntityPersister.java,44,3983
hibernate-core/.../cfg/Configuration.java,40,2673
hibernate-core/.../internal/SessionImpl.java,39,2097
hibernate-core/.../internal/SessionFactoryImpl.java,34,1384
...

The results we just got form the basis of the visualization in the preceding

figure; it’s just another view of the same data.

report erratum • discuss

Visualize Hotspots • 39

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Explore the Visualization

The circle-packing visualization used earlier is based on an algorithm from

D3.js,2 a JavaScript library based on data-driven documents. We won’t dig

deeper into D3.js, as that is enough material for a book of its own. Instead,

we’ll explore a ready-made visualization.

Before we start, I want to remind you that the strategies we are learning in

this book don’t depend on specific tools. D3.js is just one of the many ways

to visualize the code. Other options include:

• Spreadsheets: Since we’re using .CSV as the output format, any spreadsheet

application lets you visualize the results from Code Maat. Spreadsheet

applications are great for processing your analysis results (for example,

sorting and filtering the resulting data).

• R programming language:
3 The programming language R is a complete

environment for both statistical computations and data visualizations. It

has a steeper learning curve, but it pays off if you want to dive deeper

into data analysis.

Launch the Hotspot Visualization

If you haven’t done it already, download the samples from the Code Maat

distribution4 accompanying this book. Unpack the samples and open a com-

mand prompt in that directory.

The visualization is an .html file, so you can open it in any web browser. The

.html file will load a JSON resource describing our hotspots. Modern browsers

introduce a security restriction on that. To make it work flawlessly, launch

Python’s SimpleHTTPServer in the sample/hibernate directory:

prompt> python -m SimpleHTTPServer 8888

Point your browser to http://localhost:8888/hibzoomable.html. You should now see a

familiar picture: the image we saw earlier on page 38.

Use Interactive Hotspot Visualizations

The resulting patterns do look cool—who said large-scale software isn’t

beautiful? But we’re not here to marvel at its beauty. Instead, click on one of

2. http://d3js.org/
3. http://www.r-project.org/
4. http://www.adamtornhill.com/code/crimescenetools.htm

Chapter 4. Analyze Hotspots in Large-Scale Systems • 40

report erratum • discuss

http://localhost:8888/hibzoomable.html
http://d3js.org/
http://www.r-project.org/
http://www.adamtornhill.com/code/crimescenetools.htm
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

the circles. The first thing you notice is that the visualization is interactive,

as shown in the following figure.

An interactive visualization lets you chose your own level of detail. If you see

a hot area, zoom in to explore it further.

To get this visual advantage, we need to discuss one more trick to decide

which modules to include.

Include All Modules in the Visualization

Look at the preceding figure again. See how the hotspots pop out? The reason

is that the entire codebase is visualized, not just code we have recorded

changes for. We get that for free, since cloc includes size metrics for all modules

in the current snapshot. We then apply color only to the modules that changed

within the period of interest.

This visualization makes it easy to toggle between analysis findings and the

actual code they represent. Another win is that you get a quick overview of

both volatile clusters and the stable parts of the system. Let’s see what that

distribution of hotspots tells us about our code.

Study the Distribution of Hotspots

Take another look at the the first hotspot picture on page 38. The cluster we

see in the lower-right corner is something that frequently happens in software

projects. The reason we see that cluster is because changes to one hotspot

are intimately tied to changes in other areas.

Multiple hotspots that change together are signs of unstable code. In a well-

designed system, we expect code to become more stable over time. Let’s con-

sider the underlying design principles to see why.

report erratum • discuss

Study the Distribution of Hotspots • 41

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Individual Coding Styles Affect Hotspots

A project’s success depends on the coding skills of the people

involved. As humans we vary a lot in our capabilities. A cognitively

demanding task like programming amplifies those variations.

That’s one reason why there’s a large difference in quality between

the code of different programmers, even on the same team. Given

these differences, it is hardly surprising that the expertise and

coding techniques of individual developers make up one reason

for clusters of hotspots.

Specialization is very common in large software projects. Develop-

ers find their niche within a subsystem or feature area and stay

there. If the same person is designing all the modules within that

area, then the results are going to be similar. This may be one

reason why hotspots attract each other.

We aren’t talking about incompetency. When we look at the current

hotspot, we don’t have the original context, so mistakes look

obvious in hindsight. But there are many reasons why the code

looks as it does. Perhaps it was a strategic decision to build on

top of a fragile base—a deliberate technical debt. Or the hotspot

may be a clue that your developers don’t know something. You

can educate your team with better methods or even rearrange the

teams to shift skills around. We’ll devote Part III of this book to

those areas.

Design to Isolate Change

As we discussed in See That Hotspots Really Work, on page 22, there’s a strong

correlation between the stability of code and its quality. If you look into

research on the subject, you’ll find support for the idea; the importance of

change to a module is so high that more elaborate metrics rarely provide any

further predictive value when it comes to defects. (See the research in Does

Measuring Code Change Improve Fault Prediction? [BOW11].)

In the following figure, metamodel represents a stable package. That’s the kind

of code you want. Contrast it with the subsystems cfg and persister, which both

contain several hotspots that evolve together.

Chapter 4. Analyze Hotspots in Large-Scale Systems • 42

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The importance of change isn’t limited to individual classes. It’s even more

important on a system level. Here’s why.

Stabilize by Extracting Cohesive Design Elements

Different features stabilize at different rates. You want to reflect that in your

design such that modules in a specific subsystem evolve at similar rate.

When faced with clusters of hotspots, we need to investigate the kind of

changes we are making. Because you’re working with version-control data,

you can look at each change made to the modules. You’ll often find that the

change patterns suggest new modular boundaries.

When modules aren’t stable, we need to act. Often that failure stems from

low cohesion; the subsystems keep changing because they have many reasons

to do so.

The following figure shows a simplified example from Code Maat. Its app.clj
module has changed several times, each time for different reasons. It has

three responsibilites, and therefore three reasons to change. Refactoring this

module to three independent ones would isolate the responsibilities and sta-

bilize the code.

report erratum • discuss

Study the Distribution of Hotspots • 43

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The more of your code you can protect from change, the better. Cohesion lets

you isolate change. You have less code to modify in stable modules. This

relieves your brain, as it means you have less knowledge to keep in your head.

It’s cognitive economy.

Create Your Own Visualizations

Before we move on, let’s see how you can visualize your own code with a set

of simple tools. The visualizations in this chapter all contain the same infor-

mation as we have in the Code Maat output. Because that output is in .CSV
format, it’s easy to write scripts to transform it into other formats. The D3.js

visualizations we’ve been using are based on the Zoomable Circle Packing

algorithm.5 Because D3.js is data-driven, you can ignore most details and

treat the visualization as a black box. You’ll find that it’s surprisingly easy to

experiment with.

5. http://bl.ocks.org/mbostock/7607535

Chapter 4. Analyze Hotspots in Large-Scale Systems • 44

report erratum • discuss

http://bl.ocks.org/mbostock/7607535
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The D3.js circle-packing algorithm expects a JSON document. That means

you’ll have to convert from .CSV to JSON and feed the resulting data into D3.js.

I’ve included a script for the conversion in the Code Maat distribution you’ve

downloaded. (It’s the script used to create the visualizations in this chapter.)

Run it with the -h flag as python csv_as_enclosure_json.py -h to get a usage description.

Try it out. Visualizing data is fun!

Differentiate Between True Problems and False Positives

We’ve covered a lot of ground in this chapter. You analyzed a large system,

identified its hotspots, and learned techniques for investigating the visualiza-

tions.

You learned how a hotspot lets you focus on narrow areas of the code in need

of attention. So you don’t have to manually inspect hundreds of modules, the

analysis gave you a prioritized list of problem modules. You can use that to

guide your future work. If you’re in a position to redesign the hotspots, then

do it! Otherwise, you need to take defensive measures, such as writing addi-

tional tests or regularly inspecting code.

We also discussed how hotspots are distributed and how we can use this

information to identify the stability of each subsystem or feature area. The

key idea is that you want to evolve your modules into stability as soon as

possible. (To read more on the subject, check out Michael Feathers’s excellent

blog on The Active Set of Classes,6 which takes a slightly different view.)

You’re now at a point where you can identify weak spots in a large system.

To make efficient use of your new skills, you need strategies to sort out real

problems from false positives. The good news is that you’re just a chapter

away from such techniques.

6. http://michaelfeathers.typepad.com/michael_feathers_blog/2012/12/the-active-set-of-classes.html

report erratum • discuss

Differentiate Between True Problems and False Positives • 45

http://michaelfeathers.typepad.com/michael_feathers_blog/2012/12/the-active-set-of-classes.html
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 5

Judge Hotspots with the Power of Names

If you profile offenders, you rely on hotspots in your hunt for criminals.

However, while they are better than random guessing, they do not guarantee

that you will find the offender. In code, hotspots can identify real problems,

but you have to be prepared for false positives, too.

In this chapter, you’ll learn heuristics to pass quick judgments on your

hotspots. The goal is to differentiate between hotspots that are the result of

complex application logic and those that are based on configuration files. The

distinction is important. Hotspots give us a narrow view of the system, but

we may still have thousands of lines of code to inspect. Sorting out the

hotspots that really matter saves time and effort.

The first heuristic we’ll discuss is naming. As you’ll see, good names helps

you understand your design elements. Here we’ll use names as a heuristic

on the quality of modules.

Know the Cognitive Advantages of Good Names

Back in Mining Hibernate, on page 39, you created a code offender profile of

Hibernate. The resulting hotspots presented a different view of the system

than what you normally see. Buried deep within 400,000 lines of code, the

hotspot analysis flagged a number of potential design issues you needed to

be aware of.

As you can see in the following figure, the top five hotspots still account for

10,000 lines of code. It’s much better than 400,000, but it’s still plenty of

code.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

This ratio between hotspots and total code size is quite typical across systems.

Hotspots typically account for around 4 to 6 percent of the total codebase.

Remember that hotspots reflect the probability of there being a problem, so

false positives are possible. Any hotspot we can rule out is a win. We could

look into the code to find out, but a faster way can do the trick: by looking

at the name of the hotspot.

Names Make the Code Fit Your Head

When it comes to programming, the single most important thing we can do

for our programs is to name their design elements. Put names on your con-

cepts. A name is more than a description—it helps a program fit your head.

Our brain has several bottlenecks. To a programmer, the most painful bottle-

neck is working memory. Our brain’s working memory is short term and

serves as the mental workbench of the mind. This is where we integrate and

manipulate information.

Working memory is also limited cognitively—there are only so many pieces

of information we can hold in our head at once. Research indicates that we

can keep three to seven items in memory simultaneously. Practically every

programming task stretches our working memory to the max.

We can’t expand the number of items we can keep in working memory, but

we can make each item carry more information. We call this chunking. We

create chunks as we take low-information items and group them together,

such as when we group characters to form words. Similarly, we introduce

chunks in our programs when we group computational expressions into

named functions. Now each name serves as a chunk and makes the code

easier to work with. Your brain will thank you for coming up with good names.

Recognize Bad Names

When we choose good names, we make our code cheaper to maintain.

Remember back in Optimize for Understanding, on page 2, you learned that

Chapter 5. Judge Hotspots with the Power of Names • 48

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

we spend most of our time modifying existing code. Names guide us with this

task. Research shows that we try to infer the purpose of the code and build

a mental representation just by reading the name of a class or function.

Names rule. (See Software Design: Cognitive Aspects [DB13] for the empirical

findings.)

Top-level design elements, such as modules and classes, are always named.

(This isn’t true for concepts such as anonymous classes, but these are

implementation details, not top-level elements.) We use those names to pass

a quick judgment on the hotspots we find. The idea is to differentiate between

hotspots due to complex application logic and plain configuration files. While

we expect a configuration file to change frequently, hotspots in application

logic signal serious design issues.

So, what’s a bad name? To get an idea, let’s take the guidelines for good

naming and look for the complete opposite:

• A good name is descriptive and expresses intent. For example, Concurren-
tQueue and TcpListener.

• Bad names carry little information and convey no hints to the purpose of

the module. For example, StateManager (isn’t state management what pro-

gramming is about?) and Helper (a helper for what and whom?).

• A good name expresses a single concept that suggests cohesion.

Remember, fewer responsibilities means fewer reasons to change. Again,

TcpListener is a good example.

• A bad name is built with conjunctions, such as and, or, and so on. These

are sure signs of low cohesion. Examples include ConnectionAndSessionPool
(do connections and sessions express the same concept?) and FrameAndTool-
barController (do the same rules really apply to both frames and toolbars?).

Bad names attract suffixes like lemonade draws wasps on a hot summer day.

The immediate suspects are everything that ends with Manager, Util, or the

dreaded Impl. Modules baptized like that are typically placeholders, but over

time they end up housing core logic elements. You know they will hurt once

you look inside.

The guidelines in this chapter apply to object-oriented inheritance hierarchies,

too. Good interfaces express roles and communication protocols between

objects. Their implementations specify both what’s specific and what’s different

about the concrete instances.

report erratum • discuss

Know the Cognitive Advantages of Good Names • 49

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Bad interfaces suffer the same information drain as bad names. Their

implementations fail to add specific info about the concrete instance. For

example, the interface IState doesn’t carry information (again, imperative pro-

gramming is all about state) and its implementor State doesn’t specify the

context.

Express Intent and Suggest Usage

A good naming strategy for object-oriented hierarchies is to express

intent and suggest usage. Say we create an intention-revealing

interface: ChatConnection. (Yes, I did it—I dropped the cognitive dis-

tractor, the I prefix.) Let each implementation of this interface

specify what makes it unique: SynchronousTcpChatConnection, Asyn-
chronousTcpChatConnection, and so on.

Investigate a Hotspot by Its Name

Remember how we found our suspects in Hibernate back in Chapter 4, Ana-

lyze Hotspots in Large-Scale Systems, on page 35? Let’s zoom in on our sus-

pects, as we do in the following image. Now we can figure out what’s going

on by looking at their names.

Chapter 5. Judge Hotspots with the Power of Names • 50

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Both SessionImpl.java and SessionFactoryImpl.java have names that sound suspicious.

Sessions are key concepts in ORM frameworks, such as Hibernate—so it’s

clear these files must have a lot of application logic inside.

Both modules are large. (Remember: the diameter of the circle represents the

size dimension.) Combined with their very general names, we can assume

that they are real problems and not false positives. If you were maintaining

this system, I’d recommend you investigate these hotspots deeper.

Check Your Assumptions with Complexity

As you go through the top hotspots, you pass the same judgment on the

AbstractEntityPersister. Persisting entities seems to pretty much nail what an ORM

is about. Its prefix is a concern, too. To abstract means to take away—if the

abstract representation of an entity persister still consists of 4,000 lines of

code, you know you’ve found a candidate for refactoring.

The module build.gradle is another story. We can tell that it’s part of the build

system. Build files can still pose problems (I’ve spent years trying to debug

legacy makefiles; that’s time I will never get back), but its modest 402 lines

of code suggests it’s at least comprehensible.

Finally, we get to the trickiest module. Let’s look at our analysis results again.

By virtue of its name alone, Configuration.java would be considered a false positive

because it’s a configuration file. But its code size of 2,600 lines should make

alarm bells go off. Perhaps there’s more than plain configuration settings in

there?

This is where our heuristics of using names and code size reach their limits.

We either need to manually inspect Configuration.java or use more sophisticated

methods to understand the module’s complexity.

In the next chapter, you’ll learn a quick way to estimate complexity. Until

then, let’s put Configuration.java on hold and go over what to do with the hotspots

we’ve found so far.

report erratum • discuss

Investigate a Hotspot by Its Name • 51

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Understand the Limitations of Heuristics

Heuristics are common in everyday life. We use heuristics all the time for our

decisions and judgments. Real-life choices are a bit like modifying legacy

code: we have to make decisions based on incomplete information and

uncertain outcomes. In both situations, we aim for solutions that we believe

have a high probability of leading to desirable outcomes.

Heuristics by definition are imprecise. A common source of error is to substi-

tute a difficult question for a simple one. Because the mental processes are

unconscious, we’re not even aware that we answered the wrong question.

One example is availability bias: we base decisions on how easily examples

come to mind. In a classic study by Paul Slovic in Decision Making: Descriptive,

Normative, and Prescriptive Interactions [SFL88], researchers asked people

about the most likely causes of death. The participants could choose between

pairs such as botulism or lightning, or murder or suicide. Respondents mis-

judged the probabilities in favor of the more dramatic and violent example—for

example, choosing murder over suicide and lightning over botulism, although

statistics show that the reverse is much more likely.

We’re not immune to these biases during software development, either. Sup-

pose you recently read a blog post describing a data access implementation.

If you were asked where the problems are in your own system, the availability

bias might well kick in, and you’d be predisposed to answer “data access.”

And that’s even if you didn’t recall that you had read that blog post.

Our constant reliance on heuristics is one reason why we need techniques

like the ones in this book. These techniques support our decision-making

and let us verify our assumptions. We humans are anything but rational.

Complement Your Heuristics with Data

When you started this chapter, you’d already identified some hotspots. Now

you’ve learned about simple ways to classify them. By using the name of the

potential offender, you can sort out true problems from false positives.

Heuristics are mental shortcuts. When we rely on them, we trade precision

for simplicity. There’s always a risk that we may draw incorrect conclusions.

Remember how we saw a warning signal as we categorized Configuration.java in
Check Your Assumptions with Complexity, on page 51? That’s just a risk we

have to take.

With hotspots such as SessionImpl.java and SessionFactoryImpl.java, we want to

refactor these files. Such large-scale refactorings are challenging and require

Chapter 5. Judge Hotspots with the Power of Names • 52

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

more discipline than local changes. It’s way too easy to code yourself into a

corner. To support such refactorings, have a look at Appendix 1, Refactoring

Hotspots, on page 183, which uses names as a guide during the initial refac-

toring effort once the offending code is found.

We also want to consider whether the hotspot code is deteriorating further

or improving over time. Many teams actively refactor code, so perhaps the

area flagged in the hotspot is actually in better shape now than it was a year

ago. In that case, the code may be heading in the right direction. One way to

investigate that is by looking at the complexity trends over time. In the next

chapter, we’ll investigate a fast, lightweight metric that lets us calculate and

understand trends with a minimum of overhead.

report erratum • discuss

Understand the Limitations of Heuristics • 53

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 6

Calculate Complexity Trends

from Your Code’s Shape

You just learned how to use names when investigating design issues. Most

hotspots you’ll find are so complex that you need to make several passes

through the code before you uncover and treat the root cause. During that

time, you want to be sure the code is evolving in the right direction. Simpler

and better. Here’s how.

In this chapter, we’ll use the shape of your code as a proxy for program

complexity. We’ll apply indentation-based complexity measures to the hotspot’s

revision history to calculate complexity trends. We’ll be able to see whether

the code is deteriorating or improving over time. This is additional information

we can use to prioritize the hotspots we find.

On top of that, we’ll discuss learning, encouraging design discussions, and

measuring the modification effort. We’ll do this by looking at what’s not

there—negative space is a new way to view your code. Let’s see it in action.

Complexity by the Visual Shape of Programs

A few years ago, I used to commute to work by train. Since I went to the station

at about the same time each day, I soon recognized my fellow commuters.

One man used to code on his laptop during the ride. I don’t know whether

he wrote Java, C++, or C#, but even with just a hurried glance, I knew his

software was complex.

You’ve probably done the same. Isn’t it fascinating that we can form an

impression of something as intricate as software by a quick look?

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Humans are visual creatures. Our brain processes a tremendous amount of

visual information in a single glance. As programmers, when we glimpse code,

we automatically compare the code’s shape—how the code looks visual-

ly—against other code we’ve seen. Even if we aren’t consciously aware of it,

after years of coding, we know what good code looks like. We can use this

skill more deliberately.

Judge Complexity by Program Shape

Look at these modules, A and B. Which

one would you rather maintain and

extend?

Independent of the programming lan-

guage used, the differences in complexity

are striking. Module B looks pretty

straightforward, while module A winds

down a complex, conditional slope. You

see how the shape of the code reveals its complexity?

Learn from the Shape of Code

I started to investigate the idea of using the shape of code while

teaching test-driven development—TDD, a high-discipline

methodology littered with pitfalls. (See http://www.adamtornhill.com/articles/
codepatterns/codepatterns.htm for the original writeup.) The design

context resulting from TDD is far from trivial. By creating compact

overviews of the code’s shape, similar to the image that follows on

page 57, the programming team was able to:

• Compare differences in complexity between unit tests.

• Use shapes during code reviews as an effective way to

encourage discussions about the high-level design.

• Identify parts of the design that diverge from the rest of the

structure.

• Let the visual contrast serve as a tool to highlight basic design

principles. For example, a solution using polymorphism looks

quite different from one based on conditional logic.

The reason this technique works is that visual shapes give you a

compact high-level perspective without distracting with details.

Chapter 6. Calculate Complexity Trends from Your Code’s Shape • 56

report erratum • discuss

http://www.adamtornhill.com/articles/codepatterns/codepatterns.htm
http://www.adamtornhill.com/articles/codepatterns/codepatterns.htm
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Visual inspections are fine for analyzing individual units. But what happens

when we want to scale up and look at complex systems? We automate the

task.

This kind of image comparison is hard for a computer to do. For what your

brain does by the flick of some neurons, a machine must use complex algo-

rithms and have serious computing power. So we’ll analyze the textual repre-

sentation of the code. We’ll also simplify the process by shifting our perspec-

tive: let’s focus on the negative space.

Learn About the Negative Space in Code

Virtually all programming languages use whitespace as indentation to improve

readability. (Even Brainf***1 programs seem to use it, despite the goal implied

by the language’s name.) Indentation correlates with the code’s shape. So

instead of focusing on the code itself, we’ll look at what’s not there, the nega-

tive space. We’ll use indentation as a proxy for complexity.

The idea of indentation as a proxy for complexity is backed by research. (See

the research in Reading Beside the Lines: Indentation as a Proxy for Complexity

1. http://en.wikipedia.org/wiki/Brainfuck

report erratum • discuss

Learn About the Negative Space in Code • 57

http://en.wikipedia.org/wiki/Brainfuck
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Metric. Program Comprehension, 2008. ICPC 2008. The 16th IEEE International

Conference on [HGH08].) It’s a simple metric, yet it correlates with more

elaborate metrics, such as McCabe cyclomatic complexity and Halstead

complexity measures.

The main advantage to a whitespace analysis is that it’s easy to automate.

It’s also fast and language-independent. Even though different languages

result in different shapes, the concept works just as well on Java as it does

on Clojure or C.

However, there is a cost: some constructs are nontrivial despite looking flat.

(List comprehensions2 come to mind.) But again, measuring software complex-

ity from a static snapshot of the code is not supposed to produce absolute

truths. We are looking for hints. Let’s move ahead and see how useful these

hints can be.

Whitespace Analysis of Complexity

Back in Check Your Assumptions with Complexity, on page 51, we identified

the Configuration.java class in Hibernate as a potential hotspot. Its name indicates

a plain configuration file, but its large size warns it is something more. A

complexity measure gives you more clues.

Calculating indentation is trivial: just read a file line by line and count the

number of leading spaces and tabs. Let’s use the Python script complexity_anal-
ysis.py in the scripts folder of the code you downloaded from the Code Maat

distribution page.3

The complexity_analysis.py script calculates logical indentation. Four spaces or

one tab counts as one logical indentation. Empty and blank lines are ignored.

Open a command prompt in the Hibernate root directory and fire off the fol-

lowing command. Just remember to provide the real path to your own scripts
directory:

prompt> python scripts/complexity_analysis.py \
hibernate-core/src/main/java/org/hibernate/cfg/Configuration.java
n,total,mean,sd,max
3335,8072,2.42,1.63,14

Like an X-ray, these statistics give us a peek into a module to reveal its inner

workings. The total column is the accumulated complexity. It’s useful to

2. http://en.wikipedia.org/wiki/List_comprehension
3. http://www.adamtornhill.com/code/crimescenetools.htm

Chapter 6. Calculate Complexity Trends from Your Code’s Shape • 58

report erratum • discuss

http://en.wikipedia.org/wiki/List_comprehension
http://www.adamtornhill.com/code/crimescenetools.htm
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

compare different revisions or modules against each other. (We’ll build on

that soon.) The rest of the statistics tell us how that complexity is distributed:

• The mean column tells us that there’s plenty of complexity, on average 2.42
logical indentations. It’s high but not too bad.

• The standard deviation sd specifies the variance of the complexity within

the module. A low number like we got indicates that most lines have a

complexity close to the mean. Again, not too bad.

• But the max complexity show signs of trouble. A maximum logical inden-

tation level of 14 is high.

A large maximum indentation value means there is a lot of indenting, which

essentially means nested conditions. We can expect islands of complexity. It

looks as if we’ve found application logic hidden inside a configuration file.

Analyze Code Fragments

Another promising application is to analyze differences between

code revisions. An indentation measure doesn’t require a valid

program—it works just fine on partial programs, too. That means

we can analyze the complexity delta in each changed line of code.

If we do that for each revision in our analysis period, we can detect

trends in the modifications we make. This usage is a way to mea-

sure modification effort. A low effort is the essence of good design.

When you find excess complexity, you have a clear candiate for refactoring.

Before you begin refactoring, you may want to check out the module’s com-

plexity trend. Let’s apply our whitespace analysis to historical data and track

trends in the hotspot.

Analyze Complexity Trends in Hotspots

In a healthy codebase, you can add new features with successively less effort.

Unfortunately, the reverse is often true: new features add complexity to an

already tricky design. Eventually, the system breaks down, and development

slows to a crawl.

This phenomenon was identified and formalized by Manny Lehman4 in a set

of laws on software evolution. In his law of increasing complexity, Lehman

states that “as an evolving program is continually changed, its complexity,

reflecting deteriorating structure, increases unless work is done to maintain

or reduce it.” (See On Understanding Laws, Evolution, and Conservation in the

Large-Program Life Cycle [Leh80].)

4. http://en.wikipedia.org/wiki/Manny_Lehman_%28computer_scientist%29

report erratum • discuss

Analyze Complexity Trends in Hotspots • 59

http://en.wikipedia.org/wiki/Manny_Lehman_%28computer_scientist%29
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Joe asks:

With the Power of Shapes, Wouldn’t Visual

Programming Languages Give Us an Edge?

Since the dawn of computing, our industry has tried to simplify programming. Visual

programming is one such approach. Instead of typing cryptic commands in text, what

if we could just draw some shapes, press a button, and have the computer generate

the program? Wouldn’t that simplify programming? Indeed it would. But not in the

way the idea is sold, nor in a way that matters.

Visual programming might make small tasks easier, but it breaks down quickly for

larger problems. (The Influence of the Psychology of Programming on a Language Design

[PM00] has a good overview of the research.) The thing is, it’s the larger problems that

would benefit from simplifying the process—small tasks generally aren’t that complex.

This is a strong argument against visual programming languages. It also explains

why demonstrations of visual programming tools look so convincing—demo programs

are small by nature.

Expressions also don’t scale very well. A visual symbol represents one thing. We can

assign more meanings to it by having the symbol depend on context. (Natural lan-

guages have tried this—hieroglyphs show the limitations of the system.) Contrast

this with text where you’re free to express virtually any concept.

I became painfully aware of the limitations of visual programming when I rewrote in

C++ a system created in the graphical Specification and Description Language (SDL).

What took four screens of SDL was transformed into just a few lines of high-level

C++.

Chapter 6. Calculate Complexity Trends from Your Code’s Shape • 60

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

You already know about hotspot analyses to identify these “deteriorating

structures” so that you can react and reduce complexity. But how do we know

if we are improving the code over time or just contributing to the grand

decline? Let’s see how we uncover complexity trends in our programs.

Use Indentation to Analyze Complexity Trends

An indentation analysis is fast and simple. That means it scales to a range

of revisions without eating up your precious time. Of course, you may well

wonder if different indentation styles could affect the results. Let’s look into

that.

This chapter has its theoretical foundations in the study Reading Beside the

Lines: Indentation as a Proxy for Complexity Metric. Program Comprehension,

2008. ICPC 2008. The 16th IEEE International Conference on [HGH08]. That

research evaluated indentation-based complexity in 278 projects. They found

that indentation is relatively uniform and regular. Their study also suggests

that deviating indentations don’t affect the results much.

The explanation is also the reason the technique works in the first place:

indentation improves readability. It aligns closely with underlying coding

constructs. We don’t just indent random chunks of code (unless we’re com-

peting in the International Obfuscated C Code Contest).5

Similarly, it doesn’t really matter if we indent two or four spaces. However, a

change in indentation style midway through the analysis could disturb your

results. For example, running an auto-indent program on your codebase

would wreck its history and show an incorrect complexity trend. If you are

in that situation, you can’t compare revisions made before and after the

change in indentation practices.

Even if individual indentation styles don’t affect the analysis results as much

as we’d think, it’s still a good idea to keep a uniform style as it helps build

consistency. With that sorted out, let’s move on to an actual analysis.

Focus on a Range of Revisions

You’ve already seen how to analyze a single revision. Now we want to:

1. Take a range of revisions for a specific module.

2. Calculate the indentation complexity of the module as it occurred in each

revision.

3. Output the results revision by revision for further analysis.

5. http://www.ioccc.org/

report erratum • discuss

Analyze Complexity Trends in Hotspots • 61

http://www.ioccc.org/
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

With version-control systems, we can roll back to historical versions of our

code and run complexity analyses on them. For example, in git we look at

historical versions with the show command.

The receipe for a trend analysis is pretty straightforward, although it requires

some interactions with the version-control system. Since this book isn’t about

git or even version-control systems, we’re going to skip over the actual imple-

mentation details and just use the script already in your scripts directory. Don’t

worry, I’ll walk you through the main steps to understand what’s happening

so that you can perform your own analysis on your code.

Discover the Trend

In your cloned Hibernate Git repository, type the following into the command

prompt (and remember to reference your own scripts path) to run git_complexi-
ty_trend.py:

prompt> python scripts/git_complexity_trend.py \
--start ccc087b --end 46c962e \
--file hibernate-core/src/main/java/org/hibernate/cfg/Configuration.java

rev,n,total,mean,sd
e75b8a7,3080,7610,2.47,1.76
23a6280,3092,7649,2.47,1.76
8991100,3100,7658,2.47,1.76
8373871,3101,7658,2.47,1.76
...

This looks cryptic at first. What just happened is that we specified a range of

revisions determined by the --start and --end flags. Their arguments represent

our analysis period, as we see in the following image.

After that, you gave the name of the --file to analyze. In this case, we focus on

our suspect, Configuration.java.

The analysis generates .CSV output similar to the file you got during the earlier

single-module analysis. The difference here is that we get the complexity

Chapter 6. Calculate Complexity Trends from Your Code’s Shape • 62

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

statistics for each historical revision of the code. The first column specifies

the commit hash from each revision’s git code. Let’s visualize the result to

discover trends.

Visualize the Complexity Trend

Spreadsheets are excellent for visualizing .CSV files. Just save the .CSV output

into a file and import it into Excel, OpenOffice, or a similar application of your

choice.

Let’s look at the total complexity growth first. That would be the total column.

As you can see in the image, Config-
uration.java accumulated complexity

over time.

This growth can occur in two basic

ways:

1. New code is added to the

module.

2. Existing code is replaced by

more complex code.

Case 2 is particularly worri-

some—that’s the “deteriorating

structure” Lehman’s law warned

us about. We calculated the stan-

dard deviation (in the sd column)

to differentiate between these two

cases. Let’s see how it looks.

The standard deviation decreases.

This means lines get more alike in

terms of complexity, and it is probably a good thing. If you look at the mean,
you see that it, too, decreases. Let’s see what that means for your programs.

Evaluate the Growth Patterns

When you’re analyzing complexity trends, the interesting thing isn’t the

numbers themselves but the shape of the evolutionary curve.

The following figure shows the shapes you’re most likely to find in a typical

codebase. The dip in the curve in Case B generally is a sign of a refactoring,

because the code got simpler. Case C is also common because there’s little

report erratum • discuss

Evaluate the Growth Patterns • 63

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

change in the file’s complexity. We have a stable module where we make small

tweaks and changes. I expect to see this pattern in a configuration file.

Case A is a warning sign. As the file gets more complex, it becomes harder to

understand.

To know how bad it is, we look at descriptive statistics—such as standard

deviation—as we did earlier. A high standard deviation points to many complex

blocks of conditional logic, which is the kind of code that’s hard to understand

and maintain.

From Individual Hotspots to Architectures

In this chapter, we started to look inside modules. You learned that the

visual shape of code tells us about its complexity. You saw how analyzing

indentation provides fast and language-neutral results. We can use indentation

to measure and compare complexity across our codebase.

By calculating complexity trends over a range of historical revisions, we get

enough information to quickly judge the direction hotspots are going.

Now that we’ve finished this chapter, we’ve taken the concept of hotspot

analysis in software development full circle. We learned how to analyze small

systems, such as Code Maat, and large-scale codebases, such as Hibernate.

We drilled into individual modules to reveal their internal complexity.

We learned that a hotspot analysis is an ideal first entry point into a new

system. Now’s the time to go from individual modules to high-level designs

and architectures. In the next part of the book, you’ll learn to find patterns

in how multiple hotspots evolve together. This information lets you pass

similar judgments on the architecture of your system, not just individual

modules. Let’s dissect our architectures!

Chapter 6. Calculate Complexity Trends from Your Code’s Shape • 64

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Part II

Dissect Your Architecture

Part I showed you how to identify offending code

in your system. Now we’ll look at the bigger picture.

In this part, you’ll learn to evaluate your software

architecture against the modifications you make to

your code. The techniques let you identify signs of

structural decay, provide refactoring directions, and

suggest new modular boundaries in your design.

And it all starts with forensics. Let’s see what an

innocent robber can teach us about software design.

CHAPTER 7

Treat Your Code As a Cooperative Witness

In Part I, we looked at how to detect hotspots in code. You learned to pass

quick judgments on the hotspots you found. You also learned how to measure

their complexity trends to determine whether the code was improving or getting

worse over time. This is the ideal starting point. The next step is to look at

the bigger picture.

In this part of the book, we’ll transition from looking at individual modules

to analyzing complete software architectures. We’ll evaluate how well the

high-level design of our system supports the evolution of our code: is our

architecture more of a hindrance than a help?

We’ll still use hotspots, though. The techniques you’re about to learn identify

high-level structural problems, and we’ll use hotspots to gain more informa-

tion.

We’ll start with another forensic psychology case study to learn about eyewit-

ness interviews. This case study illustrates common memory biases and why

we need to support our decisions with objective data. We’ll then apply the

concept to software development. You’ll see how a change to one component

leads to a cascade of complex changes in other parts of the code. Hotspots

rarely walk alone.

This leads us to the concept of temporal coupling. Temporal coupling is a type

of dependency you cannot deduce just by looking at the code. It’s a powerful

interview tool for our codebase and lets us identify improvements based on

how we worked with the code in the past.

So let’s move ahead and listen to the modification patterns in our system.

They have a lot to tell us.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Know How Your Brain Deceives You

If you’ve worked in the software industry for some time, you’re probably all

too familiar with the following scenario. You are working on a product in

which you or your company has invested money. This product will need to

improve as users demand new features.

At first, the changes are small. For example, you tweak the FuelInjector algorithm.

As you do, you realize that the Engine abstraction depends on details of the

FuelInjector algorithm, so you modify the Engine implementation, too. But before

you can ship the code, you discover by accident that the logging tool still

shows the old values. You need to change the Diagnostics module, too.

Phew—you almost missed that one.

If you had run a hotspot analysis on this fictional codebase, Engine and Diagnos-
tics probably would’ve popped up as hotspots. But what the analysis would’ve

failed to tell you is that they have an implicit dependency on each other.

Changes to one of them means changes in the other. They’re entangled.

The problem gets worse if there isn’t any explicit dependency between them,

as you can see in our example. Perhaps the modules use an intermediate

format to communicate over a network or message bus. Or perhaps it’s just

copy-paste code that’s been tweaked. In both cases, there’s nothing in the

structure of your code that points at the problem. In this scenario, dependency

graphs or static-analysis tools won’t help you.

If you spend a lot of time with the system, you’ll eventually find out about

these issues. Perhaps you’ll even remember them when you need to, even

when you’re under a time crunch, stressed, and not really at your best. Most

of us fail sometimes. Our human memory is everything but precise. Follow

along to see how it deceives us.

The Paradox of False Memories

But if I’m confident in a memory, it must be correct, right?

Chapter 7. Treat Your Code As a Cooperative Witness • 68

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Sorry to disappoint you, but no, confidence doesn’t guarantee a correct

memory. To see what I mean, let’s look into the scary field of false memories.

A false memory sounds like a paradox. False memories happen when we

remember a situation or an event differently from how it actually looked or

occurred. It’s a common phenomenon and usually harmless. Perhaps you

remember rain on your first day of school, while in fact the sun shone. But

sometimes, particularly in criminal investigations, false memories can have

serious consequences. Innocent people have gone to jail.

There are multiple reasons why we have false memories. First of all, our

memory is constructive, meaning the information we get after an event can

shape how we recall the original situation. Our memory organizes the new

information as part of the old information, and we forget when we learned

each piece. This is what happened in the Father Pagano case we’ll work on

in this chapter.

Our memory is also sensitive to suggestibility. In witness interviews, leading

questions can alter how the person recalls the original event. Worse, we may

trust false memories even when we are explicitly warned about potential

misinformation. And if we get positive feedback on our false recall, our future

confidence in the (false) memory increases.

Keep a Decision Log

In software, we can always look back at the code and verify our

assumptions. But the code doesn’t record the whole story. Your

recollection of why you did something or chose a particular solution

is sensitive to bias and misinformation, too. That’s why I recom-

mend keeping a decision log to record the rationale behind larger

design decisions. The mind is a strange place.

Meet the Innocent Robber

Our human memory is a constructive process. That means our memories are

often sketchy, and we fill out the details ourselves as we recall the memory.

This process makes memories sensitive to biases. This is something Father

Pagano learned the hard way.

Back in 1979, several towns in Delaware and Pennsylvania were struck by a

series of robberies. The salient characteristic of these robberies was the per-

petrator’s polite manners. Several witnesses identified a priest named Father

Pagano as the robber. Case solved, right?

report erratum • discuss

Know How Your Brain Deceives You • 69

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Father Pagano probably would

have gone to jail if it hadn’t

been for the true robber,

Roland Clouser, and his dra-

matic confession. Clouser

showed up during the trial,

and Father Pagano walked

free.

Let’s see why all those witness-

es were wrong andsee if that

tells us something about pro-

gramming.

Verify Your Intuitions

Roland Clouser and Father Pagano looked nothing alike. So what led the

witnesses to make their erroneous statements?

First of all, politeness is a trait many people associate with a priest. This came

up because the police mentioned that the suspect might be a priest. To make

things worse, of all the suspects the police had, Father Pagano was the only

one wearing a clerical collar (see A reconciliation of the evidence on eyewitness

testimony: Comments on McCloskey and Zaragoza [TT89]).

The witnesses weren’t necessarily to blame, either. The procedures in how

eyewitness testimony was collected were also flawed. As Forensic Psychology

[FW08] points out, the “police receive surprisingly little instruction on how to

interview cooperative witnesses.”

Law-enforcement agencies in many countries have learned from and improved

their techniques thanks to case studies like this. New interview procedures

focus on tape-recording conversations, comparing interview information with

other pieces of evidence, and avoiding leading questions. These are things we

could use as we look at our code, too.

In programming, our code is also cooperative—it’s there to solve our problems.

It doesn’t try to hide or deceive. It does what we told it to do. So how do we

treat our code as a cooperative witness while avoiding our own memory’s

traps?

Chapter 7. Treat Your Code As a Cooperative Witness • 70

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Reduce Memory Biases with Supporting Evidence

A common memory bias is misattribution. Our memories are often

sketchy. We may remember a particularly tricky design change

well, but misremember when it occurred or even in what codebase.

And as we move on, we forget the problem, and it comes back to

haunt us or another developer later.

You need supporting data in other situations, too. On larger

projects, you can’t see the whole picture by yourself. The temporal

coupling analysis we go over in this chapter lets you collect data

across teams, subsystems, and related programs, such as auto-

mated system tests. Software is so complex that we need all the

support we can get.

Learn the Modus Operandi of a Code Change

When we program, we’re stuck with the same brain with its same tendencies

to make mistakes. Sure, in programming we can go back and recheck the

code. The problem is that we have to do that repeatedly—the sheer complex-

ity of software makes it impossible to hold all of the details in our heads. That

means our brain works with a simplified view. As soon as we drop details, we

run the risk of missing something.

This is why we need to guide our decisions by objective data. The good part

is that this data is based on how we actually work and interact with the sys-

tem. Let’s see how.

Link Commits to Detect Temporal Coupling

Remember the crash course in geographical profiling of crimes, back in Learn

Geographical Profiling of Crimes, on page 16? We learned that linking related

crimes allows us to make predictions and take possible counter-steps. We

can do the same with code.

In programming, our version-control data allows us to trace changes over

series of commits to spot patterns in the modifications. One prominent pattern

is called temporal coupling, and you can see an example in the following figure.

report erratum • discuss

Learn the Modus Operandi of a Code Change • 71

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Modules change together in temporal coupling. This is different from tradi-

tional coupling in that there may not be any explicit software dependencies

between modules. There is a hidden, implicit dependency, which means a

change in one predictably results in a change in the coupled module.

Remember what happened in our initial fictional example with FuelInjector?
Let’s see how temporal coupling can help us detect and fix this problem.

Use Temporal Coupling to Reduce Bias

Law enforcement improved their interview processes. We use similar tech-

niques: avoid leading questions, play back tape-recorded conversations, and

compare interview information with other information. We just do it with code

and not people.

Now, let me show you how temporal coupling looks. You’ll get a high-level

view of the concept, which makes it easier to apply in practice later.

See Temporal Coupling in a System

It’s difficult to show temporal coupling with a single illustration. What would

be best is video. Despite the advances in ebook technology, we’re not quite

there, so bear with me as I walk you through the following images.

Chapter 7. Treat Your Code As a Cooperative Witness • 72

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Joe asks:

If I Know Where the Problems Are, Does Temporal

Coupling Really Add Value?

A temporal coupling analysis complements but does not replace your expertise. This

analysis is great for large codebases with multiple developers. I once analyzed a large

project that I was involved with and found several unexpected cases of hidden

dependencies. These dependencies had been costing time and effort as well as intro-

ducing bugs. Once they were uncovered, we redesigned the project.

It’s also a technique I’ve found useful in my own private projects. The analysis gives

me a different view into the design and reveals things I missed.

It’s also a helpful tool when considering design changes. By analyzing historical

change patterns, we get an idea of how deep and far-reaching our proposed change

will go.

If we look into the research on temporal coupling (or its synonyms, change coupling

and logical coupling), we find several applications:

• One research team used visualization techniques to compare coupled modules

against the specified software architecture. This allowed them to identify signs

of structural decay (see Animated Visualization of Software History using Evolution

Storyboards [BH06]).

• Another research team used temporal coupling as a code-recommendation guide.

Using the results of such an analysis, they could recommend relevant source

code for specific modification tasks (see Predicting source code changes by mining

change history [YMNC04]).

• A study of an object-oriented system used temporal coupling to detect architec-

tural weaknesses, such as poorly designed inheritance hierarchies (see CVS

release history data for detecting logical couplings [GK03]).

In the chapters to come, you’ll learn about these applications. The idea is that it’s

just impossible to keep track of everything that’s happening in a codebase under

heavy development. In a temporal coupling analysis, we have a tool that lets us

monitor and react to costly problems early.

report erratum • discuss

Use Temporal Coupling to Reduce Bias • 73

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

I replayed version-control data and animated the growing system to illustrate

how Code Maat evolved. Each time a module changed, the size of its building

grew a little. Tall buildings in the illustration have high change frequencies.

To make it easier to spot patterns, I increased the opacity of the building’s

color every time it changed. As the hotspot cooled down, I decreased the

opacity.

Looking long enough at this animation could drive you crazy, but you would

spot some patterns. In the following figure, I highlight two patterns showing

how modules are changing.

Chapter 7. Treat Your Code As a Cooperative Witness • 74

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

• Explicit coupling: git.clj and git_test.clj tend to change together. This is hardly

surprising since the latter is a unit test on the former. In fact, we’d be

surprised if the pattern wasn’t there. A unit test always has a strong

degree of direct coupling to the code under testing.

• Temporal coupling: The right-hand snapshot is more interesting: core.clj
and svn.clj change together. It’s interesting because there isn’t any explicit

dependency between them. You have to dig into the source code to figure

out they are related. Congratulations, you’ve just detected a case of tem-

poral coupling in Code Maat.

Temporal coupling can point to either expected co-changes, such as a module

and its unit tests, or serious problems in design. Let’s see what they are.

Understand the Reasons Behind Temporal Dependencies

Temporal coupling is a powerful interview tool for your codebase. It lets you

identify design issues you cannot spot in the code alone. Once you’ve found

them, the reasons behind the temporal coupling often suggest places to

refactor, too:

• Copy-paste: The most common case of temporal coupling is copy-paste

code. This one is straightforward to address; extract and encapsulate the

common functionality.

• Inadequate encapsulation: Temporal coupling is related to encapsulation

and cohesion. In the next chapter, you’ll see temporal coupling that was

the result of not isolating program arguments from application logic.

Encapsulating the concept that varies would improve the design.

• Producer-consumer: Finally, temporal coupling may reflect different roles,

such as a producer and consumer of specific information. In that case

it’s not obvious what to do, and it might not be a good idea to change the

structure. In situations like this, we rely on our expertise to make an

informed decision.

Findings like these are the main strengths of a temporal coupling analysis.

They give us objective data on how our changes interact with the codebase

and suggest new modular boundaries.

As we move on to perform an analysis in the next chapter, we’ll see further

refactoring support: a temporal coupling analysis also shows how severe and

deep the necessary changes will go. This guides our design and reasoning

upfront, too.

report erratum • discuss

Use Temporal Coupling to Reduce Bias • 75

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Prepare to Analyze Temporal Coupling

We started this chapter by discussing modules that keep changing together.

We learned that they make maintenance harder, cost more, and open us up

to more mistakes.

After that, we saw how our brain does its best to deceive us when it comes

to remembering such complex, detailed information. Just as crime investiga-

tors have techniques to reduce bias, so do we. That’s why we introduced the

concept of temporal coupling as a way to interview our codebase about its

past.

You learned that temporal coupling lets you detect hidden, implicit dependen-

cies in your system and got ideas on why those dependencies might show up.

You can use that information as objective data to guide your refactorings and

redesigns.

With the theory fresh in our minds, let’s move on and perform a temporal

coupling analysis on our code.

Chapter 7. Treat Your Code As a Cooperative Witness • 76

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 8

Detect Architectural Decay

In the previous chapter, you learned how temporal coupling detects hidden

dependencies in your system. Now it’s time to learn how to perform an anal-

ysis of temporal coupling on your code.

In this chapter, we’ll analyze two systems of different sizes. The smaller project

shows how temporal coupling can still give us fresh insights into the design

even when we’re very familiar with the code. The larger project shows how to

detect architectural decay so that we can make improvements early in the

process. You’ll also see that the structures you’re working with aren’t always

aligned with the official architecture.

Let’s see how information-rich the change patterns in a system can be for

our analysis.

Support Your Redesigns with Data

I once worked on a project with severe problems in its database access.

Changes were awkward, they took longer than they should, and bugs swarmed

like mosquitoes at a Swedish barbecue.

Learning from mistakes is important, so I decided to redesign the worst parts

of the database layer. Something interesting happened. Even though the

database layer was in better shape, developers still complained about how

fragile and unstable it was. Changes still broke unrelated features. What went

wrong? Did I mess up?

While the database improved, it turned out that wasn’t where the true prob-

lems were. The database was just the messenger subtly warning us about

temporal coupling (and we shot the messenger).

Other parts of the system unexpectedly depended on the data storage. The

true problem was in automatic system tests. A minor change to the data format

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

triggered a cascade of changes to the test scripts. This wasn’t obvious because

the scripts didn’t explicitly call the database code.

After reading the previous chapter, you now can see how a temporal coupling

analysis could’ve helped us find this problem earlier. Redesigns are about

minimizing risk and prioritizing areas of code that have the largest impact

on the work we’re doing now. Get it wrong like we did, and you will miss an

opportunity to make genuine improvements to your code. Let’s see how we

can use temporal coupling to avoid these mistakes.

Analyze Temporal Coupling

In Chapter 7, Treat Your Code As a Cooperative Witness, on page 67, we said

that temporal coupling can be an interview tool for your codebase. The first

step in an interview is to know who you should talk to.

Let’s use sum of coupling analysis to find our first code witness.

Use Sum of Coupling to Identify the Modules to Inspect

You’ve already seen that there are different reasons for modules to be coupled.

Some couples, such as a unit and its unit test, are valid. So modules with

the highest degree of coupling may not be the most interesting to us. Instead,

we want modules that are architecturally significant. A sum of coupling

analysis finds those modules.

Sum of coupling looks at how many times each module has been coupled to

another one in a commit and sums it up. For example, in the following figure,

you see that module app.clj changed with both core.clj and project.clj in Commit

#1, but just with core.clj in Commit #2. Its sum of coupling is three.

The module that changes most frequently together with others must be

important and is a good starting point for an investigation. Let’s try it out on

Chapter 8. Detect Architectural Decay • 78

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Code Maat by reusing the the logfile we mined in Chapter 3, Creating an

Offender Profile, on page 23.

Move into the top-level directory in your Code Maat repository and type the

following command:

prompt> maat -l maat_evo.log -c git -a soc
entity,soc
src/code_maat/app/app.clj,105
test/code_maat/end_to_end/scenario_tests.clj,97
src/code_maat/core.clj,93
project.clj,74
...

You can see that this command uses the same format we saw in the earlier

hotspot analysis. The only difference is that we’re requesting -a soc (sum of

coupling) instead.

We see that app.clj changes the most with other modules. Let’s keep an eye on

app.clj as we dive deeper.

Measure Temporal Coupling

At this point you know that app.clj is the module with the most temporal cou-

pling. The next step is to find out which modules it’s coupled to. We use Code

Maat for this analysis:

prompt> maat -l maat_evo.log -c git -a coupling
entity,coupled,degree,average-revs
src/code_maat/parsers/git.clj,test/code_maat/parsers/git_test.clj,83,12
src/code_maat/analysis/entities.clj,test/code_maat/analysis/entities_test.clj,76,7
src/code_maat/analysis/authors.clj,test/code_maat/analysis/authors_test.clj,72,11
...

The command line is identical to the one you just used, with the exception

that we’re requesting -a coupling instead. The resulting .CSV output contains

plenty of information:

1. entity: This is the name of one of the involved modules. Code Maat always

calculates pairs.

2. coupled: This is the coupled counterpart to the entity.

3. degree: The degree specifies the percent of shared commits. The higher

the number, the stronger the coupling. For example, git.clj and git_test.clj
change together in 83 percent of all commits.

4. average-revs: Finally, we get a weighted number of total revisions for the

involved modules. The idea here is that we can filter out modules with

too few revisions to avoid bias.

report erratum • discuss

Analyze Temporal Coupling • 79

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

You see a typical pattern in the output: each unit changes together with its

unit test (e.g. git.clj and git_test.clj, entities.clj and entities_test.clj).

This kind of temporal coupling is expected and not a problem. Code Maat

was developed with test-driven development, so I’d say that getting any other

result would’ve been a problem. Just plain old physical coupling—nothing

too exciting here.

Things get interesting a bit farther down:

prompt> maat -l maat_evo.log -c git -a coupling
...
src/code_maat/app/app.clj,src/code_maat/core.clj,60,23
src/code_maat/app/app.clj,test/code_maat/end_to_end/scenario_tests.clj,57,23
...

We see that app.clj changed with core.clj 60 percent of the time and with sce-
nario_tests.clj 57 percent of the time. There’s no way to tell why just from the

names alone, but 60 percent is a high degree of coupling. We are talking

about every second (or so), change in app.clj triggering a change in two other

modules. That can’t be good. Let’s investigate why.

Check Out the Evolution Radar

In a large codebase, a temporal coupling analysis sparks an

explosion of data. Code Maat resolves that by allowing us to

specify optional thresholds. The research tool Evolution Radar
1

takes a different approach and lets us zoom in and out to the level

of detail we’re interested in. So check out the tool and take inspi-

ration.

Investigate Temporal Couples

Once we make such a finding, we need to drill down into the code. Because

all changes are recorded in our version-control system, we can perform a diff
on the modules. I’d recommend focusing on the shared commits and look for

recurring modification patterns within those commits.

Code Maat is written in Clojure. Although an exciting language, it’s far outside

the scope of this book. So let’s stay with temporal coupling, and allow me to

walk you through the design to spot the problems.

1. http://www.inf.usi.ch/phd/dambros/tools/evoradar.php

Chapter 8. Detect Architectural Decay • 80

report erratum • discuss

http://www.inf.usi.ch/phd/dambros/tools/evoradar.php
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

I’m a bit ashamed to admit that core.clj is the command-line interface of Code

Maat. (I changed it later to a better name.) It parses the arguments you give

it, converts them to a Clojure representation, and forwards them to app.clj.

app.clj glues the program together by mapping the given arguments to the

correct invocations of parsers, analyses, and output formats. As you can see,

the program arguments cause the coupling; every time a new argument is

added, two distinct modules have to evolve to know about it.

So, your first takeaway is actually a reminder about the power of names that

you learned about in Chapter 5, Judge Hotspots with the Power of Names, on

page 47. With proper naming, we’d have a better entry point for our manual

code inspection. Second, we failed to encapsulate a concept that varies. If we

extract the knowledge of all command-line arguments from app.clj, we break

the coupling and make the code easier to evolve and maintain.

Use Temporal Coupling for Design Insights

The analysis on Code Maat illustrates how we can use temporal coupling

analysis on small projects. Code Maat (which I wrote to learn Clojure during

my daily commute) is a single-developer project with less than 2,000 lines of

code.

Such small projects don’t need a hotspot analysis. We already know which

modules are hard to change. Temporal coupling is different because it provides

insights into our design. We get active feedback on our work so that we can

spot improvements we hadn’t even thought of.

Keep Your Temporal Coupling Algorithms Simple

The algorithm we’ve used so far isn’t the only kid in town. Temporal coupling

means that some entities change together over time. But there isn’t any formal

report erratum • discuss

Analyze Temporal Coupling • 81

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

definition of what change together means. In research papers, you’ll find

several alternative measures.

One typical alternative adds the notion of time to the algorithm; the degree

of coupling is weighted by the age of the commits. The idea is to prioritize

recent changes over changes in the more distant past. A relationship thus

gets weaker with the passage of time. However, as you’ll see soon when we

discuss software defects, a time parameter doesn’t necessarily improve the

metric.

The algorithm that Code Maat implements, the percent of shared commits,

is chosen because when faced with several alternatives that seem equally

good, simplicity tends to win. The Code Maat measure is straightforward to

implement and, more importantly, intuitive to reason about and verify.

Home

Crime

Crime

Distance Decay

Circle Hypothesis

Interestingly enough, simplicity may

win in criminal investigations, too. In

a fascinating study, researchers

trained people on two simple heuris-

tics for predicting the home location

of criminals:

• Distance decay: Criminals do not

travel far from their homes to

offend. Thus, crimes are more

likely closer to an offender’s home

and less likely farther away.

• Circle hypothesis: Many serial

offenders live within a circle

defined by the criminals’ two far-

thest crime locations.

Using these simple principles allowed the participants to predict the likely

home location of serial killers with the same accuracy as a sophisticated

geographical profiling system. (See Applications of Geographical Offender

Profiling [CY08].) We build the techniques in this book on the same kind of

simplicity.

Know the Limitations of Temporal Coupling

Our simple definition of temporal coupling as modules that change in the

same commit works well. Often, that definition takes us far enough to identify

unexpected relationships in our system. But in larger organizations, our

Chapter 8. Detect Architectural Decay • 82

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

measure is too narrow. When multiple teams are responsible for different

parts of the system, the temporal period of interest is probably counted in

days or even weeks. We’ll address this problem in Chapter 12, Discover

Organizational Metrics in Your Codebase, on page 133, where you’ll learn to

group multiple commits into a logical change set based on a custom timespan.

Another problem with the measure is that we’re limited to the information

contained in commits. We may miss important coupling relationships that

occur between commits. The solution to this problem requires hooks into our

text editors and our IDE to record precise information on our code interactions.

Tools like that are under active research.

Yet another bias is moving and renaming modules. While version-control

systems track renames, Code Maat does not. (If I ever turn Code Maat into a

commercial product, that’s a feature I’d add.) It sounds more limiting than it

actually is: problematic modules tend to remain where they are. The good

thing is that because we lose some of the supporting information, the results

we get are more likely to point to true problems. Consider renaming the

module as a reset switch triggered by refactoring.

Catch Architectural Decay

Temporal coupling has a lot of potential in software development. We can

spot unexpected dependencies and suggest areas for refactoring.

Temporal coupling is also related to software defects. There are multiple rea-

sons for that. For example, a developer may forget to update one of the

(implicitly) coupled modules. Another explanation is that when you have

multiple modules whose evolutionary lifelines are intimately tied, you run

the risk of unexpected feature interactions. You’ll also soon see that temporal

coupling often indicates architectural decay. Given these reasons, it’s not

surprising that a high degree of temporal coupling goes with high defect rates.

Temporal Coupling and Software Defects

Researchers found that different measures of temporal coupling

outperformed traditional complexity metrics when it came to

identifying the most defect-prone modules (see On the Relationship

Between Change Coupling and Software Defects [DLR09]). What’s

surprising is that temporal coupling seems to be particularly good

at spotting more severe bugs (major/high-priority bugs).

The researchers made another interesting finding when they

compared the bug-detection rate of different coupling measures.

report erratum • discuss

Catch Architectural Decay • 83

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Temporal Coupling and Software Defects

Some measures included time awareness, effectively down-priori-

tizing older commits and giving more weight to recent changes.

The results were counterintuitive: the simpler sum of coupling

algorithm that you learned about in this chapter performed better

than the more sophisticated time-based algorithms.

My guess is that the time-based algorithms performed worse

because they’re based on an assumption that isn’t always valid.

They assume code gets better over time by refactorings and focused

improvements. In large systems with multiple developers, those

refactorings may never happen, and the code keeps on accumulat-

ing responsibilities and coupling. Using the techniques in this

chapter, we have a way to detect and avoid that trap. And now we

know how good the techniques are in practice.

Enable Continuing Change

Back in Chapter 6, Calculate Complexity Trends from Your Code’s Shape, on

page 55, we learned about Lehman’s law of increasing complexity. His law

states that we must continuously work to prevent a “deteriorating structure”

of our programs as they evolve. This is vital because every successful software

product will accumulate more features.

Lehman has another law, the law of continuing change, which states a program

that is used “undergoes continual change or becomes progressively less useful”

(see On Understanding Laws, Evolution, and Conservation in the Large-Program

Life Cycle [Leh80]).

There’s tension between these two laws. On one hand, we need to evolve our

systems to make them better and keep them relevant to our users. At the

same time, we don’t want to increase the complexity of the system.

One risk with increased complexity is features interacting unexpectedly. We

make a change to one feature, and an unrelated one breaks. Such bugs are

notoriously hard to track down. Worse, without an extensive regression test

suite, we may not even notice the problem until later, when it’s much more

expensive to fix.

To prevent horrors like that from happening in our system, let’s see how we

can use temporal coupling to track architectural problems and stop them

from spreading in our code.

Chapter 8. Detect Architectural Decay • 84

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Identify Architecturally Significant Modules

In the following example, we’re going to analyze a new codebase. Craft.Net2

is a set of Minecraft-related .NET libraries. We’re analyzing this project because

it’s a fairly new and cool project of suitable size with multiple active developers.

To get a local copy of Craft.Net, clone its repository:

prompt> git clone https://github.com/SirCmpwn/Craft.Net.git

Let’s perform the trend analysis step by step so that we can understand what’s

happening. Each step is nearly identical; the time period is the only thing

that changes. We can automate this with a script later. Let’s find the first

module to focus on.

Move into the Craft.Net directory and perform a sum of coupling analysis:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--before=2014-08-08 > craft_evo_complete.log
prompt> maat -l craft_evo_complete.log -c git -a soc
entity,soc
Craft.Net.Server/Craft.Net.Server.csproj,685
Craft.Net.Server/MinecraftServer.cs,635
Craft.Net.Data/Craft.Net.Data.csproj,521
Craft.Net.Server/MinecraftClient.cs,464
...

Notice how we first generate a Git log and then feed that to Code Maat. Sure,

there’s a bit of Git magic here, but nothing you haven’t seen in earlier chapters.

You can always refer back to Chapter 3, Creating an Offender Profile, on page

23, if you need a refresher on the details.

When you look for modules of architecural significance in the results, ignore

the C# project files (.csproj). The first real code module is MinecraftServer.cs. As

you see, that class has the most cases of temporal coupling to other modules.

Looks like a hit.

The name of our code witness, MinecraftServer, is also an indication that we’ve

found the right module; a MinecraftServer sounds like a central architectural

part of any, well, Minecraft server. We want to ensure that the module stays

on track over time. Here’s how we do that.

2. https://github.com/SirCmpwn/Craft.Net

report erratum • discuss

Catch Architectural Decay • 85

https://github.com/SirCmpwn/Craft.Net
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Perform Trend Analyses of Temporal Coupling

To track the architectural evolution of the MinecraftServer, we’re going to perform

a trend analysis. The first step is to identify the periods of time that we want

to compare.

The development history of Craft.Net goes back to 2012. There was a burst

of activity that year. Let’s consider that our first development period.

To perform the coupling analysis, let’s start with a version-control log for the

initial period:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--before=2013-01-01 > craft_evo_130101.log

We now have the evolutionary data in craft_evo_130101.log. We use the file for

coupling analysis, just as we did earlier in this chapter:

prompt> maat -l craft_evo_130101.log -c git -a coupling > craft_coupling_130101.csv

The result is stored in craft_coupling_130101.csv. That’s all we need for our first

analysis period. We’ll look at it in a moment. But to spot trends we need more

sample points.

In this example, we’ll define the second analysis period as the development

activity in 2013 until 2014. Of course, we could use multiple, shorter periods,

but the GitHub activity shows that period contains roughly the same amount

of activity. So for brevity, let’s limit the trend analysis to just two sample

points.

The steps for the second analysis are identical to the first. We just have to

change the filenames and exclude commit activity before 2013. We can do

both in one sweep:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--after=2013-01-01 --before=2014-08-08 > craft_evo_140808.log

prompt> maat -l craft_evo_140808.log -c git -a coupling > craft_coupling_140808.csv

Chapter 8. Detect Architectural Decay • 86

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

We now have two sampling points at different stages in the development his-

tory. Let’s investigate them.

Investigate the Trends

When we perform an analysis of our codebase, we want to track the evolution

of all interesting modules. To keep this example short, we’ll focus on one main

suspect as identified in the sum of coupling analysis: the MinecraftServer module.

So let’s filter the data to inspect its trend.

I opened the result files, craft_coupling_130101.csv and craft_coupling_140808.csv, in a

spreadsheet application and removed everything but the modules coupled to

MinecraftServer to get the filtered analysis results.

There’s one interesting finding in 2012: the MinecraftServer.cs is coupled to

MinecraftClient.cs. This seems to be a classic case of temporal coupling between

a producer and a consumer of information, just as we discussed in Understand

the Reasons Behind Temporal Dependencies, on page 75. When we notice a

case like that, we want to track it.

Forward to 2014. The coupling between server and client isn’t present a year

and a half later, but we have other problems. As you can see, the MinecraftServer
has accumulated several heavy temporal dependencies compared to its

cleaner start in the initial development period.

When that happens, we want to understand why and look for places to

improve. Let’s see how.

React to Structural Trends

The following figure presents a visual view of the architectural decay we just

spotted. It’s the same enclosure diagrams we used back in Chapter 4, Analyze

report erratum • discuss

React to Structural Trends • 87

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Hotspots in Large-Scale Systems, on page 35, but now they’re illustrating the

modules coupled to MinecraftServer at two different points in time.

The obvious increase in temporal coupling says there are more modules that

have to change with the MinecraftServer in 2014 than earlier in the development

history. Note that the number of coupled modules isn’t a problem in itself.

To classify a temporal coupling, you need to look at the architectural bound-

aries of the coupled modules.

When the coupled modules are located in entirely different parts of the system,

that’s structural decay. Our data in the trend table on page 87 shows one

obvious case in 2014: Craft.Net.Anvil/Level.cs.

That coupling, together with the growing trend, suggests that our MinecraftServer
has been accumulating responsibilities.

Remember how we initially discussed code changes that seem to break

unrelated features? The risk with the trend we see here is that it leaves the

system vulnerable to such unexpected feature interactions.

If allowed to grow, increased temporal coupling leads to fragile systems. As

you saw earlier, temporal coupling has a high correlation with defects. That’s

why we want to integrate the analysis into a team’s workflow. Let’s see how.

Chapter 8. Detect Architectural Decay • 88

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Use a Storyboard to Track Evolution

The trend analysis we just performed is reactive. It’s an after-the-fact analysis.

The results are useful because they help us improve, but we can do even

better.

With more activity, you want more sample points. So why not make it a habit

to perform regular analyses on the projects you work on?

If you work iteratively, perform the analyses in each iteration. This approach

has several advantages:

• You spot structural decay immediately.

• You see the structural impact of each feature as you work with it.

• You make your evolving architecture visible to everyone on the team.

I recommend that you visualize the result of each analysis, perhaps as in

Figure , , on page 88, print them all out, and put them on a storyboard for

each iteration.

Think back to our initial example on automated tests with nasty implicit

couplings to a database. With an evolutionary storyboard, we’d spot the decay

as soon as we noticed the pattern—a few iterations at most, and that’s it.

An iterative trend analysis of temporal coupling is a low-tech approach that

helps us improve. It also has the notable advantage of putting focus on the

right parts of the system. As such, an evolutionary storyboard is invaluable

to complement and stimulate design discussions with peers.

If you find as much promise in this approach as I do, check out the article

Animated Visualization of Software History using Evolution Storyboards [BH06].

The authors are the pioneers of the storyboard idea, and their paper shows

some cool animations of growing systems.

Scale to System Architectures

This chapter started with a sum of coupling analysis. With that analysis, we

identified the architecturally significant modules. We also noted that those

modules aren’t necessarily the ones we’d expect from our formal specification

or design.

After that, we saw how a temporal coupling analysis gives us information we

cannot extract from the code alone. It’s information that gives us design

insights and refactoring directions. When used as a refactoring guide, we can

assume that modules that have changed together in the past are likely to

report erratum • discuss

Scale to System Architectures • 89

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

continue to change together. We looked at that in our second analysis of

Craft.Net.

You then learned to spot architectural decay by applying trend analyses to

the coupling. Finally, you learned how to track potential decay with an evolu-

tionary storyboard.

With temporal coupling behind us, we’ve completed our initial set of analysis

methods. Before we move on to discuss teams and social dynamics, we’re

going to build on what we’ve learned so far. Until now, we have limited the

analyses to individual files. But now you’ll see how temporal coupling scales

to system architecture, too. That will be exciting!

Chapter 8. Detect Architectural Decay • 90

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 9

Build a Safety Net for Your Architecture

You just learned about temporal coupling of modules. What you may not have

realized is that this analysis scales to architectures, too. In this chapter, you’ll

learn to analyze architecture with respect to your team’s modification patterns.

We’ll start with an analysis of automated system tests before we extend the

concept to other parts of your architecture in the next chapter. We start with

tests because they’re frequently added as an afterthought, almost like a hidden

architectural layer. You’ll also see how you can set up early warning systems

to detect when automated tests go wrong. In the process, you’ll learn about

problem-solving and how it relates to programming. Let’s dive in and see what

hidden secrets we can cover in our architecture.

Know What’s in an Architecture

If someone approaches you on a dark street corner and asks if you’re inter-

ested in software architecture, chances are he’ll pull out a diagram. It will

probably look UML-like, with a cylinder for the database and lots of boxes

connected by lines. It’s a structure—a static snapshot of an ideal system.

But architecture goes beyond structure, and just a blueprint isn’t enough.

We should treat architecture as a set of principles rather than as a specific

collection of modules. Let’s think of architecture as principles that help us

reason and navigate large-scale systems. Breaking principles is expensive.

Let me illustrate with a short story.

View Your Automated Tests as Architecture

Do you remember my war story in the previous chapter? The one about

automated system tests that depended upon the data storage? Like so many

other failed designs, this one started with the best of intentions.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The first iterations went fine. But we soon noticed that new features started

to become expensive to implement. What ought to be a simple change suddenly

involved updating multiple high-level system tests. Such a test suite is coun-

terproductive because it makes change harder. We found out about these

problems by performing the same kind of analysis you’ll learn about in this

chapter. We also made sure to build a safety net around our tests to prevent

similar problems in the future. Let’s see why it’s needed.

Automated tests becoming mainstream is a promising trend. When we auto-

mate the mundane tasks, we humans can focus on real testing, where we

explore and evaluate the system. Test automation also makes changes to the

system more predictable. We get a safety net when modifying software, and

we use the scripts to communicate knowledge and drive additional develop-

ment. While we all know these benefits, we rarely talk about the risks and

costs of test automation. Automated tests, particularly on the system level,

are hard to get right. And when we fail, these tests create a time sink, halting

all progress.

Test scripts are architecture, too—albeit an often neglected aspect. Like any

architectural boundary, a good test system should encapsulate details and

avoid depending on the internals of the code being tested. We want to be able

to refactor the implementation without affecting how the tests run. If we get

this wrong, we lose the predictability advantage that a good test suite provides

when we’re modifying code.

In addition to the technical maintenance challenge, as the following figure

shows, such tests lead to a significant communication and coordination

overhead. We developers now risk breaking each other’s changes.

Chapter 9. Build a Safety Net for Your Architecture • 92

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Automated tests are no different from any other subsystem. The architecture

we choose must support the kind of changes we make. This is why you want

to track your modification patterns and ensure that they are supported by

your design. Here’s how.

Analyze the Evolution on a System Level

You’ve already learned to analyze temporal coupling between individual

modules. Now we’re raising the abstraction level to focus on system bound-

aries. We start with just two boundaries: the production code and the test

code.

Specify Your Architectural Boundaries

The first step is to define application code and test code. In Code Maat, which

we’re returning to for this analysis, the definition is simple: everything under

the src/code_maat directory is application code, and everything located in

test/code_maat is test code.

Once we’ve located the architectural boundaries, we need to tell Code Maat

about them. We do that by specifying a transformation. Open a text editor

and type in the following text:

src/code_maat => Code
test/code_maat => Test

The text specifies how Code Maat translates files within physical directories

to logical names. You can see an example of how individual modifications get

grouped in the following figure.

Save your transformations in a file named maat_src_test_boundaries.txt and store

it in your Code Maat repository root. You’re now ready to analyze.

report erratum • discuss

Analyze the Evolution on a System Level • 93

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

We perform an architectural analysis with the same set of commands we’ve

been using all along. The only difference is that we must specify the transfor-

mation file to use. We do that with the -g flag:

prompt> maat -l maat_evo.log -c git -a coupling -g maat_src_test_boundaries.txt
entity,coupled,degree,average-revs
Code,Test,80,65

The analysis results are delivered in the same format used in the previous

chapter. But this time Code Maat categorizes every modified file into either

Code or Test before it performs the analysis.

The results indicate that our logical parts Code and Test have a high degree of

temporal coupling. This might be a concern. Are we getting ourselves into an

automated-test death march where we spend more time keeping tests up to

date than evolving the system? We cannot tell from the numbers alone. So

let’s look at the factors we need to consider to interpret the analysis result.

Interpret the Analysis Result

Our analysis results tells us that in 80 percent of all code changes we make,

we need to modify some test code as well. The results don’t tell us how much

we have to change, how deep those changes go, or what kind of changes we

need. Instead, we get the overall change pattern. To interpret it, we need to

know the context of our product:

• What’s the test strategy?

• Which type of tests are automated?

• On what level do we automate tests?

Let’s see how Code Maat answers those questions.

As you can see in the test coverage figure on page 95, we try to automate as

much as we can in Code Maat.

Code Maat has a fairly high code coverage (that is, if we ignore the embarrass-

ing, low-coverage modules such as code-maat.cmd-line and code-maat.analysis.summary
that I wish I’d written tests for before I published this data). That coverage

has a price. It means our tests have many reasons to change. Here’s why.

Differentiate Between the Level of Tests

In Code Maat, the partitioning between tests and application code isn’t a

stable architectural boundary; you identified a temporal coupling of 80 percent.

That means they’ll change together most of the time.

Chapter 9. Build a Safety Net for Your Architecture • 94

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

But our current analysis has a limitation. Code Maat uses both unit tests

and system-level tests. In our analysis, we grouped them all together. Let’s

see what happens when we separate the different types of tests.

report erratum • discuss

Differentiate Between the Level of Tests • 95

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

If you look into the folder test/code_maat of your Code Maat repository, you’ll

find four folders, shown in the following figure. Each of them contains a par-

ticular suite of test cases. Let’s analyze them by their individual boundaries.

Open a text editor, enter the following mapping, and save it as

maat_src_test_boundaries.txt:

src/code_maat => Code
test/code_maat/analysis => Analysis Test
test/code_maat/dataset => Dataset Test
test/code_maat/end_to_end => End to end Tests
test/code_maat/parsers => Parsers Test

With the individual test groups defined, launch a coupling analysis:

prompt> maat -l maat_evo.log -c git -a coupling \
-g maat_src_detailed_test_boundaries.txt
entity,coupled,degree,average-revs
Code,End to end Tests,42,50
Analysis Test,Code,42,49
Code,Parsers Test,41,49

These results give us a more detailed view:

• Analysis Test and Parsers Test contain unit tests. These tests change together

with the application code in about 40 percent of all commits. That’s a

reasonable number. Together with the coverage results we saw earlier, it

means we keep the tests alive, yet manage to avoid having them change

too frequently. A higher coupling would be a warning sign that the tests

depend on implementation details, and that we’re testing the code on the

wrong level. Again, there are no right or wrong numbers; it all depends

on your test strategy. For example, if you use test-driven development,

you should expect a higher degree of coupling to your unit tests.

Chapter 9. Build a Safety Net for Your Architecture • 96

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Joe asks:

Code Coverage? Seriously, Is It Any Good?

Code coverage is a simple technique to gain feedback. However, I don’t bother with

analyzing coverage until I’ve finished the initial version of a module. But then it gets

interesting. The feedback you get is based on your understanding of the application

code you just wrote. Perhaps there’s a function that isn’t covered or a branch in the

logic that’s never taken?

To get the most out of this measure, try to analyze the cause behind low coverage.

Sometimes it’s okay to leave it as is, but more often you’ll find that you’ve overlooked

some aspect of the solution.

The specific coverage figure you get is secondary; while it’s possible to write large

programs with full coverage, it’s not an end in itself, nor is it meaningful as a general

recommendation. It’s just a number. The value you get from code coverage is by the

implicit code review you perform when you study uncovered lines.

Finally—and this is a double-edged sword—code coverage can be used for gamification.

I’ve seen teams and developers compete with code coverage high scores. To a certain

degree this is good. I found it useful when introducing test automation and getting

people on a team to pay attention to tests. Who knew automated tests could bring

out the competitiveness in us?

• Dataset Test was excluded by Code Maat because its coupling result was

below the default threshold of interest. (You can fine-tune these parame-

ters—look at Code Maat’s documentation.1)

• End to end Tests define system-level tests. These change together with the

application code in 40 percent of all commits. This is a fairly high number

compared to the unit tests—we’d expect the higher-level tests to be more

stable and have fewer reasons to change. Our data indicate otherwise. Is

there a problem?

Encapsulate Test Data

It turns out there’s a reason that almost every second change to the application

code affects the system-level tests, too. And, unfortunately for me as the

programmer responsible, it’s not a good reason. So, let me point this out so

you can avoid the same problem in your own codebase.

The system tests in Code Maat are based on detailed test data. Most of that

data is collected from real-world systems. I did a lot of experimentation with

1. https://github.com/adamtornhill/code-maat

report erratum • discuss

Differentiate Between the Level of Tests • 97

https://github.com/adamtornhill/code-maat
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

different data formats during the early development of Code Maat. Each time

I changed my mind about the data format, the system tests had to be modified,

too.

So, why not choose the right test data from the beginning?

That would be great, wouldn’t it? Unfortunately, you’re not likely to get there.

To a large degree, programming is problem-solving. And as the following figure

illustrates, human problem-solving requires a certain degree of experimenta-

tion.

The preceding figure presents a model from educational psychology. (See

Understanding and solving word arithmetic problems [KG85].) We programmers

face much the same challenges as educators: we have to communicate with

programmers who come to the code after we’ve left. That knowledge is built

by an iterative process between two mental models:

• The situation model contains everything you know about the problem,

together with your existing knowledge and problem-solving strategies.

• The system model is a precise specification of the solution—in this case,

your code.

You start with an incomplete understanding of the problem. As you express

that knowledge in code, you get feedback. That feedback grows your situation

model, which in turn makes you improve the system model. It means that

human problem-solving is inherently iterative. You learn by doing. It also

means that you don’t know up front where your code ends up.

Remember those architectural principles we talked about earlier in this

chapter? This is where they help. Different parts of software perform different

tasks, but we need consistency to efficiently understand the code. Architecture

specifies that consistency.

This model of problem-solving above lets us define what makes a good design:

one where your two mental models are closely aligned. That kind of design

is easier to understand because you can easily switch between the problem

and the solution.

Chapter 9. Build a Safety Net for Your Architecture • 98

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The take-away is that your test data has to be encapsulated just like any

other implementation detail. Test data is knowledge, and we know that in a

well-designed system, we don’t repeat ourselves.

Violating the Don’t Repeat Yourself (DRY) principle with respect to test data

is a common source of failure in test-automation projects. The problem is

sneaky because it manifests itself slowly over time. We can prevent this,

though. Let’s see how.

Create a Safety Net for Your Automated Tests

Remember how we monitored structural decay back in Use a Storyboard to

Track Evolution, on page 89? We’re going to set up a similar safety net for

automated tests.

Our safety net is based on the change ratio between the application code and

the test code. We get that metric from an analysis of change frequencies, just

like the analyses you did back in Part I.

Monitor Tests in Every Iteration

To make it into a trend analysis, we need to define our sampling intervals. I

recommend that you obtain a sample point in each iteration or at least once

a month. In case you’re entering an intense period of development (for

example, around deadlines—they do bring out the worst in people), perform

the analysis more frequently.

To acquire a sample point, just specify the same transformations you used

earlier in this chapter:

src/code_maat => Code
test/code_maat => Test

Ensure that your transformation is saved in the file maat_src_test_boundaries.txt
in your Code Maat repository.

Now you just have to instruct Code Maat to use your transformations in the

revisions analysis:

prompt> maat -l maat_evo.log -c git -a revisions -g maat_src_test_boundaries.txt
entity,n-revs
Code,153
Test,91

The analysis results show that in this development period, we’ve modified

application code in 153 commits and test code in 91. Let’s see why that’s

interesting.

report erratum • discuss

Create a Safety Net for Your Automated Tests • 99

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Test GrowthCode GrowthDate

911532013-09-01

1221832013-10-01

1372272013-11-01

Track Your Modification Patterns

If we continue to collect sample points, we’re soon able to spot trends. It’s

the patterns that are interesting, particularly with respect to the relationship

between application code and test code growth. Let’s look at some trends to

see what they tell us. You can see the typical patterns you can expect

(although I do hope you never meet alternative C) in the following figure. Each

case shows how fast the test code evolves compared to the application code.

Note that we’re talking system-level tests now.

R
e
v
is
io
n
s

Time Application code
Test code

A B C

In Case A, you see an ideal change ratio. The test code is kept alive and in

sync with the application. Most of the effort is spent in the application code.

Case B is a warning sign. The test code suddenly got more reasons to change.

When you see this pattern, you need to investigate. There may be legitimate

reasons: perhaps you’re focusing refactoring efforts on your test code. That’s

fine, and the pattern is expected. But if you don’t find any obvious reason,

you risk of having your development efforts drown in test-script maintenance.

Case C means horror. The team spends too much effort on the tests compared

to the application code. You recognize this scenario when you make what

should be a local change to a module, and suddenly your build breaks with

several failing test cases. These scenarios seem to go together with long build

times (counted in hours or even days). That means you get the feedback

spread out over a long period, which makes the problem even more expensive

to address. At the end, the quality, predictability, and productivity of your

work suffers.

Chapter 9. Build a Safety Net for Your Architecture • 100

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Avoid the Automated-Test Death March

If you run into the warning signs—or in the worst case, the death

march—make sure to run a coupling analysis on your test code as recom-

mended in Supervise the Evolution of the Test Scripts Themselves, on page 102.

Combine it with a hotspot analysis, as you saw in Part I. Together, the two

analyses help you uncover the true problems.

But, don’t wait for warning signs. There’s much you can do up front.

First of all, it’s important to realize that automated scripts don’t replace

testing. Skilled testers will find different kinds of bugs compared to what

automated tests will find. In fact, as James Bach and Michael Bolton have

pointed out,2 we shouldn’t even use the phrase “test automation,” since there’s

a fundamental difference between what humans can do and what our auto-

mated scripts do. As the following figure shows, checking is a better word for

the tasks we’re able to automate.

So, if you’re investing in automated checks, make sure you read Test

Automation Snake Oil [Bac96] for some interesting insights into these issues.

Automation also raises questions about roles in an organization. A tragedy

like Case C on page 100, happens when your organization makes a mental

divide between test and application code. As we know, they need to evolve

together and adhere to the same quality standards. To get there, we need to

have developers responsible for writing and maintaining the test infrastructure

and frameworks.

What about the test cases themselves? Well, they are best written by testers

and developers in close collaboration. The tester has the expertise to decide

on what to test, while the developer knows how to express it in code. That

moves the traditional role of the tester to serve as a communication bridge

between the business side, with its requirements, and the developers that

make them happen with code.

2. http://www.satisfice.com/blog/archives/856

report erratum • discuss

Create a Safety Net for Your Automated Tests • 101

http://www.satisfice.com/blog/archives/856
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

You get additional benefits with a close collaboration:

• Well-written test scripts capture a lot of knowledge about the system and

its behavior. We developers get to verify our understanding of the

requirements and get feedback on how well the test automation infrastruc-

ture works.

• Testers pick up programming knowledge from the developers and learn

to structure the test scripts properly. This helps you put the necessary

focus on the test-automation challenges.

• As a side effect, collaboration tends to motivate the people on your team,

since everyone gets to see how the pieces fit together. In the end, your

product wins.

Supervise the Evolution of the Test Scripts Themselves

From a productivity perspective, the test scripts you create are just as

important as the application code you write. That’s why I recommend that

you track the evolution of test scripts with an analysis of temporal coupling,

the analysis you learned about in Chapter 8, Detect Architectural Decay, on

page 77.

If you identify clusters of test scripts that change together, my bet is that

there’s some serious copy-paste code to be found. You can simplify your

search for it by using tools for copy-paste detection. Just be aware that these

tools don’t tell the whole story. Let’s see why.

We programmers have become conditioned to despise copy-paste code. For

good reasons, obviously. We all know that copy-paste makes code harder to

modify. There’s always the risk of forgetting to update one or all duplicated

versions of the copied code. But there’s a bit more to the story.

Perhaps I’m a slow learner, since it took me years to understand that no

design is exclusively good. Design always involves tradeoffs. When we ruth-

lessly refactor away all signs of duplication, we raise the abstraction level in

our code. And abstracting means taking away. In this case, we’re trading ease

of understanding for locality of change.

Just in case, I’m not advocating copy-paste; I just want you to be aware that

reading code and writing code put different requirements on our designs. It’s

a fine but important difference; just because two code snippets look similar

does not mean they should share the same abstraction. (Remember, DRY is

about knowledge, not code.)

Chapter 9. Build a Safety Net for Your Architecture • 102

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The Distinction Between Code and Knowledge Duplication

Consider the distinction between concepts from the problem

domain and the solution domain. If two pieces of code look similar

but express different domain-level concepts, we should probably

live with the code duplication. Because the two pieces of code

capture different business rules, they’re likely to evolve at different

rates and in divergent directions. On the other hand, we don’t

want any duplicates when it comes to code that makes up our

technical solution.

Tests balance these two worlds. They capture a lot of implicit

requirements that express concepts in the problem domain. If we

want our tests to also communicate that to the reader, the tests

need to provide enough context. Perhaps we should accept some

duplicated lines of code and be better off in the process?

Know the Costs of Automation Gone Wrong

The most obvious problem with failed test automation is that teams spend

more time keeping tests up and running than on developing new features.

That’s not where you want to be. Remember Lehman’s law of continuing

change? Without new features, your software becomes less useful.

Another less obvious cost is psychological. Consider an ideal system. There,

a broken test would be a loud cry to pause other tasks and focus on finding

the bug causing the test to fail.

But when we start to accept failing tests as the normal state of affairs, we’ve

lost. A failing test is no longer a warning signal, but a potential false positive.

Over time, you lose faith in the tests and blame them. As such, a failed test-

automation project costs more than just the time spent on maintaining test

environments and scripts.

This is why you learned to set up a safety net to catch such potential problems

early. The next natural step is to generalize that safety net. Let’s have a look

at how we can do the same for different software architectures as well.

report erratum • discuss

Know the Costs of Automation Gone Wrong • 103

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 10

Use Beauty as a Guiding Principle

By now you know how to patrol your architetural boundaries with respect to

automatic tests. You’ve also learned to supervise the evolution of your tests,

which provides you with an early warning system when things start to go

downhill.

In this final chapter of Part II, we’ll apply these techniques to architecture in

general. We’ll base the discussions around common architectural patterns

and see how we can analyze their effectiveness with respect to the way we

work with the code.

We’ll start with an analysis of Code Maat’s architecture. Once you’re comfort-

able with the analysis of a small system, we’ll move on to investigate a large

web-based application built on multiple technologies like .Net, JavaScript,

and CSS. Finally, we’ll discuss how you can analyze micro-service architec-

tures.

By focusing on architectures built on radically different patterns, you’ll learn

the general principles behind the analysis methods. That will give you the

tools you need to apply the techniques on your own system, no matter what

architectural style you use.

This chapter takes a different starting point from what you’ll otherwise meet

in programming books. Instead of focusing on design principles, we’ll use

beauty as a reasoning tool. You’ll see that beauty is a fundamental quality of

all good code. Here you’ll learn what beautiful code is, why it matters, and

how your brain loves it. Let’s dive into attractiveness.

Learn Why Attractiveness Matters

Think about your daily work and the kinds of changes you make to your

programs. Truth be told, how often do you get something wrong because your

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

conceptual model of what the code does didn’t match up with the program’s

real behavior? Perhaps that query method you called had a side effect that

you rightfully didn’t expect. Or perhaps there’s a feature that breaks sporad-

ically due to an unknown timing bug, particularly when it’s the full moon

and, of course, just before that critical deadline.

Programming is hard enough without having to guess a program’s intent. As

we get experience with a codebase, we build a mental model of how it works.

When that code then fails to meet our expectations, bad things are bound to

happen. Those are the moments that trigger hours of desperate debugging,

introduce brittle workarounds, and kill the joy of programming faster than

you can say “null pointer exception.”

These problems are hard because they hit us with the full force of surprise.

And surprise is something that’s expensive to our human brain. To avoid

those horrors, we need to write beautiful code. Let’s see what that is.

Define Beauty

Beauty is a fundamental quality of all good code. But what exactly is beauty?

To find out, let’s look at beauty in the physical world.

At the end of the 1980s, scientist Judith Langlois performed an interesting

experiment. (See Attractive faces are only average [LR90].) Aided by computers,

she developed composite pictures by morphing photos of individual faces. As

she tested the attractiveness of all these photos on a group, the results turned

out to be both controversial and fascinating. Graded on physical attractiveness,

the composite pictures won. And they won big.

The reason for the controversy comes from the process that produced the

apparently attractive faces. When you morph photos of faces, individual dif-

ferences disappear. The more photos you merge, the more average the end

result. That would mean that beauty is nothing more than average!

The idea of beauty as averageness seems counterintuitive. In our field of

programming, I’d be surprised if the average enterprise codebase would receive

praise for its astonishing beauty. But beauty is not average in the sense of

ordinary, common, or typical. Rather, beauty lies in the mathematical sense

of averageness found in the composite faces.

The reason the composite pictures won is that individual imperfections were

also evened out with each additional morphed photo. This is surprising since

it makes beauty a negative concept, defined by what’s absent rather than

Chapter 10. Use Beauty as a Guiding Principle • 106

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

what’s there. Beauty is the absence of ugliness. Let’s look at the background

to see how it relates to programming.

Our preference for beauty is shaped by evolution to guide us away from bad

genes. This makes sense since our main evolutionary task was to find a

partner with good genes. And back in the Stone Age, DNA tests weren’t easy

to come by. (In our time the technology is there, but trust me, a date will not

end well if you ask your potential partner for a DNA sample.)

Instead, we tacitly came to use beauty as a proxy for good genes. The theory

is that natural selection operates against extremes. This process works to the

advantage of the composite pictures that are as average as it gets.

Now, let’s see what a program with such good genes would look like.

Write Beautiful Code

Translated to our world of software, the good genes theory means the absence

of special cases. Beautiful code has a consistent level of expression. Just as

deviations from the mathematical averageness makes a face less attractive,

so does any coding construct that deviates from the main style of your

application.

These constructs signal bad genes in our programs because they make it

harder to form a mental model of the program. That’s just the way your brain

works; when presented with inconsistencies and conflicting representations,

your brain selects one of the stimuli at the price of the other. You can switch

between them, but it’s going to be expensive.

report erratum • discuss

Write Beautiful Code • 107

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

That means as soon as you break the expectations of someone reading your

code, you’ve introduced a cognitive cost. This is a cost that makes your pro-

grams harder to understand and riskier to modify. Broken expectations are

to blame for many bugs.

Attractive Criminals

Criminals benefit from beauty, too. There’s a growing body of

research on the topic. The research indicates that attractive

defendants are perceived as less guilty and, should they be con-

victed, receive a more lenient sentence than unattractive offenders.

And it’s a finding that seems to hold for both mock jurors, used

during experiments, and real-life judges (source: The Psychology

of Physical Attraction [SF08]).

These findings are, of course, worrisome. But sometimes the

attractiveness of offenders works against them. A good-looking

criminal may receive a more lenient sentence for a burglary. But

if the criminal used his good looks to swindle his victims, we

penalize his success.

If you’ve ever doubted the importance of beautiful code, you now

see how profound attractiveness is in our lives.

Use Beauty in Your Architecture

The beauty principle applies to software architectures, too. Since an architec-

tural decision is by definition more important than a local coding construct,

breaking beauty in a high-level design is even worse.

Consider a codebase that has multiple ways to do interprocess communication,

differs in its error-handling policies, or uses several conflicting mechanisms

for data access without any obvious benefit. Such a system is hard to learn

and work with—particularly since the knowledge you build up when working

with one part of the codebase doesn’t necessarily transfer to others. Here’s

what we can do to prevent it.

Avoid Surprises in Your Architecture

So beauty is about consistency and avoiding surprises. Fine. But what you

consider a surprise depends on context. In the real world, you won’t be sur-

prised to see an elephant at the zoo, but you’d probably rub your eyes if you

saw one in your front yard (at least here in Sweden, where I live). Context

matters in software, too (elephants less).

Chapter 10. Use Beauty as a Guiding Principle • 108

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

When you use beauty as a reasoning tool, you need principles to measure

against. This is where patterns help. Let’s see how we can use them to detect

nasty surprises in our designs.

Measure Against Your Patterns

We’ve already performed a few analyses on Code Maat. Now we’ll look at its

overall architecture. Let’s start by defining its architectural boundaries.

Code Maat is built on the architectural pattern Pipes and Filters. Pipes and

Filters is used to process a stream of input—in this case, the version-control

data—and transform it into a stream of analysis results.

The idea behind Pipes and Filters is to “divide the application’s task into

several self-contained data processing steps” (qoutation from Pattern-Oriented

Software Architecture Volume 4: A Pattern Language for Distributed Computing

[BHS07]). That means any Pipes and Filters implementation with temporal

coupling between its processing steps would be a surprise to a maintenance

programmer. A sure sign of ugliness.

So this looks like a good principle against which to evaluate the architecture.

Let’s do a temporal coupling analysis across Code Maat’s data-processing

steps.

Specify the Architecturally Significant Components

Remember how you specified a transformation to evaluate automatic tests in

Chapter 9, Build a Safety Net for Your Architecture, on page 91? You use the

same strategy to analyze any software architecture. Just open a text editor

and specify the following transformations:

src/code_maat/parsers => Parse
src/code_maat/analysis => Analyze
src/code_maat/output => Output
src/code_maat/app => Application

report erratum • discuss

Avoid Surprises in Your Architecture • 109

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Compare this transformation to the architecture in the preceding figure. As

you see, each logical name in the transformation corresponds to one Filter in
Code Maat. In addition, we include an Application component. Application serves

as the entry point for Code Maat.

This transformation allows you to detect surprising modification patterns

that break the architectural principle. Just save the text you just entered as

maat_pipes_filter_boundaries.txt and run the following analysis:

prompt> maat -l maat_evo.log -c git -a coupling -g maat_pipes_filter_boundaries.txt
entity,coupled,degree,average-revs
Analyze,Application,37,32
Application,Parse,31,29

Hmm, the results don’t show any violation of the Pipes and Filters principle.

That’s reassuring. However, there seems to be something strange going on

with the top-level Application component—it’s coupled to two filters. That may

be bad enough. Let’s see why.

Identify the Offending Code

Since Code Maat is a small codebase, we can go directly to the source code.

To find the offending code, you’d need to compare the revisions of the code

where any module in Application was changed together with Parse or Analyze.

If you follow that track, you’ll soon find the code above. As you see, the piece

of Clojure code determines the version-control system to use. It then returns

a function—for example, svn-xml->modifications—that knows how to invoke a

parser for that system.

This explains the coupling between the logical parts Application and Parse. When

a parser component changes, those functions have to change as well. In a

small codebase like Code Maat, this isn’t a severe problem. But the general

design is questionable because it encourages coupling between parts that

Chapter 10. Use Beauty as a Guiding Principle • 110

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

should be independent. Now, would you be surprised if I told you that a

similar type of coding construct is used to select the analysis to run?

As you see in the analysis results, the Analyze and Application components change

together as well. Since Code Maat mainly grows by new analysis components,

this becomes a more severe problem than the coupling to the parsers. It’s the

kind of design that becomes an evolutionary hurdle for the program. If we

break that change coupling, we remove a surprise and make our software

easier to evolve in the process. That’s a big win.

Spot the Uncovered Bug

Before we move on, did you spot the other surprise in the code above? Hint:

have a look at the last line.

The code supports three parsers: svn, hg, and git. Now, have a look at the

error message we throw as default. The message says “Supported options are:

svn or git.” Oops—we missed the hg option there!

This kind of bug is typical for code constructs built on conditional logic and

far from our beauty ideal. You’ll probably make similar findings yourself;

when you investigate analysis results, you get a different view of your code.

That change in perspective opens your eyes to those obvious mistakes that

you’ll otherwise just skim over. (See Code Coverage? Seriously, Is It Any Good?,

on page 97, for a related discussion.)

Now that you’ve seen how to analyze one type of architecture, let’s scale up

to a more complex system.

Analyze Layered Architectures

Code Maat is a small system with a simple architecture. More elaborate

architectures require more sophisticated transformation specifications:

• Don’t specify all components. For example, ignore small utility compo-

nents.

• Differentiate how the code is laid out in the file system against its logical

structure. Your analysis transformations don’t have to mirror the code

structure the transformations operate on.

• Use beauty as a guide. You know how you want the ideal system to look.

Now think of all the ugly ways those expectations could be broken. In

particular, look for beauty breakers that would be expensive.

Let’s see it in practice on a large system.

report erratum • discuss

Analyze Layered Architectures • 111

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Identify Significant Layers

Our next case study uses nopCommerce.1 nopCommerce is an open-source

product used to build e-commerce sites. It’s a competent piece of code con-

sisting of 200,000 lines of C# and JavaScript together with a bunch of SQL

scripts and CSS files—a perfect opportunity to see how the analysis method

works across multiple languages.

The first step is to identify the architectural principles of the system. nopCom-

merce is a web application built around the Model-View-Controller pattern.

Model-View-Controller (MVC) is a pattern for implementing user-interface

applications. Like all patterns, each implementation looks different.

One variation is to introduce a service layer encapsulating the business logic

and have the Controller delegate to that layer. This is how it’s done in nopCom-

merce. Often, additional layers, such as data access, follow.

There’s a simple idea behind all those layers. That idea is to separate concerns.

In theory, that allows us to change our mind and swap a layer for one with

another implementation. This potential flexibility comes at a price.

In practice, layered architectures rarely deliver upon their promise. Instead,

you’ll often find that each modification you make to the code ripples through

multiple layers. Such modification patterns are an indication that the layers

aren’t worth the price you pay. Perhaps they even make your code harder to

change. Let’s see whether that’s the case.

1. http://www.nopcommerce.com/

Chapter 10. Use Beauty as a Guiding Principle • 112

report erratum • discuss

http://www.nopcommerce.com/
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Find Surprising Change Patterns

Start by cloning the nopCommerce git repository:

git clone https://git01.codeplex.com/nopcommerce

Move into your repository and generate a version-control log. Let’s look at all

changes to the code from the start of 2014 until the present day (defined as

2014-09-25—the day I’m writing this):

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short --numstat \
--after 2014-01-01 --before 2014-09-25 > nop_evo_2014.log

Your git log is now stored in the file nop_evo_2014.log. Let’s define a transforma-

tion to go with it.

Define Each Layer as an Architectural Boundary

Just as we did for our Pipes and Filters analysis, we map each architectural

part to a logical name. Here’s the transformation for nopCommerce:

src/Presentation/Nop.Web/Administration/Models => Admin Models
src/Presentation/Nop.Web/Administration/Views => Admin Views
src/Presentation/Nop.Web/Administration/Controllers => Admin Controllers
src/Libraries/Nop.Services => Services
src/Libraries/Nop.Core => Core
src/Libraries/Nop.Data => Data Access
src/Libraries/Nop.Services => Business Access Layer
src/Presentation/Nop.Web/Models => Models
src/Presentation/Nop.Web/Views => Views
src/Presentation/Nop.Web/Controllers => Controllers

report erratum • discuss

Find Surprising Change Patterns • 113

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

I derived the transformation from the nopCommerce documentation.2 I also

had a look at the source code to identify the Model-View-Controller layers

that you see below the src/Presentation/Nop.Web and src/Presentation/Nop.Web/Administra-
tion folders. (When you analyze your own system, you’re probably already

familiar with its high-level design.)

Before we run the analysis, note that nopCommerce consists of two applica-

tions: one administration application and one application for the actual store.

We specify both in our transformation, since they’re logical parts of the same

system and have to be maintained together.

Now, store the transformation specification in the file arch_boundaries.txt, and

you’re set for the analysis:

prompt> maat -c git -l nop_evo_2014.log -g arch_boundaries.txt -a coupling
entity,coupled,degree,average-revs
Admin Models,Admin Views,75,74
Admin Controllers,Admin Models,68,73
Admin Controllers,Admin Views,66,89
Admin Models,Core,54,76
Core,Services,46,130
Models,Views,46,47
Admin Views,Core,44,92
Admin Controllers,Core,39,91
Controllers,Models,38,60
Admin Controllers,Services,35,128
Admin Models,Services,35,113
Admin Views,Services,34,129
Controllers,Views,34,83
Controllers,Services,33,132
Admin Controllers,Controllers,31,92

The results reveal several cases of temporal coupling. The Admin parts of the

system exhibit the strongest coupling. Let’s focus on them.

Identify Expensive Change Patterns

Remember that one idea behind the MVC pattern is to allow us to swap in

different views. Since the Views change together with the Models in 75 percent

of all cases, that idea is probably not fulfilled; if we do add a different set of

views, those will have to change frequently as well, which will slow us down.

The following figure also shows that all components in the MVC part have a

temporal dependency upon the Core and Services layers. Let’s get support from

a hotspot analysis to find out how serious that is.

2. http://docs.nopcommerce.com/display/nc/nopCommerce+Documentation

Chapter 10. Use Beauty as a Guiding Principle • 114

report erratum • discuss

http://docs.nopcommerce.com/display/nc/nopCommerce+Documentation
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Use Hotspots to Assess the Severity

Instead of identifying individual modules as hotspots, we’ll reuse the transfor-

mation. That allows you to find hotspots on the level of your architecture.

That is, a hotspot in this analysis corresponds to a whole layer:

prompt> maat -c git -l nop_evo_2014.log -g arch_boundaries.txt -a revisions
entity,n-revs
Services,393
Views,388
Admin Controllers,257
Admin Views,253
Controllers,181
Core,169
Data Access,122
Admin Models,76
Models,36

As you see, the Services layer has the most volatile code. That means any

temporal coupling that involves Services is, on average, a more serious concern

than the others. This is information we use to reason about the cost of

changes—for example, when exploring design alternatives.

However, a temporal coupling analysis can’t tell us the direction of the change

dependency; we don’t know whether changes to the Services lead to predictable

changes in the MVC parts or whether it is the other way around. But we do

know there’s a 35 percent risk that our change will affect multiple layers.

Finally, note the strange change dependency between the Admin Controllers and

the Controllers that we see at the bottom of the preceding figure. The controllers

in two different packages change together 31 percent of the time.

report erratum • discuss

Find Surprising Change Patterns • 115

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

When we find cross-cutting temporal coupling like that, we should investigate

the cause. Often, coupled components share a common abstraction, such as

a base class that accumulates too many responsibilities. In other cases, we’ll

find the opposite problem, and we have a shared abstraction waiting to be

discovered. To find it, we want to apply a temporal coupling analysis, as we

did back in Chapter 8, Detect Architectural Decay, on page 77.

Treat Patterns as Helpful Friends

Before we move on, note that these results aren’t presented to show that

design patterns don’t work—quite to the contrary. Patterns are context-

dependent and do not, by some work of magic, provide universally good

designs. You can’t take the human out of the design loop. That said, patterns

have a lot to offer:

• Patterns are a guide. Our architectural principles are likely to evolve

together with our system. Remember, problem-solving is an iterative

process. Agreeing on the right set of initial principles is challenging, and

this is where the knowledge captured in patterns helps.

• Patterns share knowledge. Patterns come from existing solutions and

experiences. Since few designs are really novel, we’ll often find patterns

that apply to our new problem as well.

• Patterns have social value. As the architect Christopher Alexander formal-

ized patterns, the intent was to enable collaborative construction using

a shared vocabulary. As such, patterns are more of a communication tool

than a technical solution.

• Patterns are reasoning tools. You learned about chunking back in Names

Make the Code Fit Your Head, on page 48. Patterns are a sophisticated

form of chunking. Their names serve as handles to knowledge stored in

our long-term memory. Patterns optimize our working memory and guide

us as we evolve mental models of the problem and solution space.

Expand Your Analyses

When we uncover problems in our analyses, we want to react. We typically

reconsider some architectural principles, perhaps even the overall patterns

we built on. As a result, we evolve parts of our system into a new direction.

As we do this, we want to be able to track that as well.

The techniques you’ve learned will be there to support you, since the analyses

aren’t limited to the patterns we’ve discussed in this chapter. Understanding

Chapter 10. Use Beauty as a Guiding Principle • 116

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

the underlying ideas lets you apply the analyses to new situations. So before

we move on to the final part of the book, let’s have a quick look at some dif-

ferent architectural styles you may encounter.

Analyze Microservices

At the time of this writing, microservices are gaining rapid popularity. That

means many of tomorrow’s legacy systems are likely to be microservice

architectures. Let’s stay a step ahead and see what we would want to analyze

when we come across such systems.

Microservices are based on an old idea where you organize your code by fea-

ture. You keep each part small and orthogonal to others, and use a simple

mechanism to glue everything together (for example, a message bus or an

HTTP API). In fact, these are the same principles on which UNIX has built

since the dawn of curly braces in code.

A microservice architecture attempts to encapsulate each fine-grained

responsibility in a service. This principle implies that a microservice architec-

ture is attractive when it allows us to modify and replace individual services

without affecting other services. The warning sign in a microservices architec-

ture is a commit that affects multiple services:

When we analyze microservices, we want to consider each service an architec-

tural boundary. That’s what we specify in our transformations. As soon as

we see changes that ripple through multiple services, we know that ugliness

is creeping into our system, and we can react immediately.

Reverse-Engineer Your Principles from Code

As you saw in the microservice example, we use the same techniques to

analyze all kinds of architectures. But what if we don’t have any existing

principles on which we can base our reasonings? What if we just inherited a

monster codebase without any obvious structure or style? Well, our focus

changes. Let’s see how.

report erratum • discuss

Expand Your Analyses • 117

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

All codebases, even the worst spaghetti monsters, have some principles. All

programmers have their own style. It may change over time, but we can find

and build upon consistencies.

When you find yourself wading through legacy code, take the time to step

back. Look at the records in your version-control system. Often, you can spot

patterns. Complement that information with what you learn as you make

changes to the code. Perhaps most of the database access is located in an

inaptly named utility module. Maybe each subscreen in the GUI is backed by

its own class. Fine—you just uncovered your first principles.

As you start to reverse-engineer more principles, tailor the analyses in this

chapter accordingly. Look for changes that break the principles. The principles

may not be ideal, and the system may not be what you want. But at least this

strategy will give you an opportunity to assess how consistent the system is.

Used that way, the analyses will help you improve the situation and make

code changes more predictable over time.

Use Your Suite of Analysis Techniques

Now you have a set of new skills that allow you to analyze everything from

individual design elements all the way up to architectures and automated

tests. With these techniques, you’ll be able to detect when your programs

start to evolve in a direction your architecture cannot support.

The key to these high-level analyses is to formulate simple rules based on

your architectural principles. We introduced beauty as a supporting tool, and

you set up your analyses to capture the cases where we break it.

Once you’ve formulated your rules, run the analyses frequently. Use the

results as an early warning system and as the basis for design discussions.

You also want to complement the temporal coupling results with a hotspot

analysis. Hotspots help you assess the severity of your temporal couples.

Throughout Part II, we have focused on how to interview our codebase and

evaluate the code’s health. But the challenges of large-scale software go beyond

technology. Many of the problems you’ll find in a forensic code analysis have

social roots.

In Part III, we’ll move into this fascinating area. You’ll meet new techniques

to identify the organizational problems that creep into your code. You’ll also

learn about social biases that influence your development team and how to

avoid classic pitfalls when scaling your development efforts. Of course, we’ll

mine supporting evidence for all claims. Let’s move on to people!

Chapter 10. Use Beauty as a Guiding Principle • 118

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Part III

Master the Social Aspects of Code

Here we expand our vision into the fascinating field

of social psychology. Software development is prone

to many of the social fallacies and biases we meet

in our everyday life. They just manifest themselves

in a different setting.

In this part, you’ll learn to analyze the communica-

tion and interaction between developers. We’ll also

cover the perils of multiple authors working on the

same module and introduce techniques to predict

post-release defects. Best of all, we’ll pull it off from

the perspective of your code. This is your codebase

like you’ve never seen it before!

CHAPTER 11

Norms, Groups, and False Serial Killers

Part II showed you how to analyze high-level designs and architectures. We

based the techniques on the concept of temporal coupling. You learned to

use temporal coupling to evaluate how well your software architecture supports

the modifications you make to the code.

We also discussed how you can use that information to detect structural

decay, supervise test-automation efforts, and guide your design discussions.

You also saw how the hotspot analyses from Part I complement your new

forensic code skills. As far as technology goes, you’re set with what you need

to uncover the mysteries of your codebase.

But large-scale software projects are more than technical problems. Software

development is also a social activity. Programming involves social interactions

with our peers, customers, and managers. Those interactions range from

individual conversations to important decisions made in large groups.

Just as you want to ensure that your software architecture supports the way

you evolve your system, you also want to ensure that the way you organize

your work aligns with how the system is structured.

How well you and your team fare on these social aspects influences how your

system looks. That’s why social psychology is just as important to master as

any programming language. In this final part of the book, you’ll learn about

social biases, how you can predict bugs from the way we work, and how to

build a knowledge map of your codebase. And just as before, we’ll mine sup-

porting data from our version-control systems.

We’ll start with the social biases. These biases may lead to disastrous deci-

sions, which is why you want to be aware of them and recognize them. We’ll

then to see how we gather objective data on the social aspects of software

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

development to inform our decisions about team organization, responsibilities,

and our process. Let’s start in the middle of a criminal investigation.

Learn Why the Right People Don’t Speak Up

In the early 1990s, Sweden had its first serial killer. The case led to an

unprecedented manhunt. Not for an offender—he was already locked up—but

for the victims. There were no bodies.

A year earlier, Thomas Quick, incarcerated in a mental institution, started

confessing to one brutal murder after another. The killings Quick confessed

to were all well-known unsolved cases.

Over the course of some hectic years, Swedish and Norwegian law enforcement

dug around in forests and traveled all across the country in search of hard

evidence. At the height of the craze, they even emptied a lake. Yet not a single

bone was found.

This striking lack of evidence didn’t prevent the courts from sentencing Quick

to eight of the murders. His story was judged as plausible because he knew

detailed facts that only the true killer could’ve known. Except Quick was

innocent. He fell prey to powerful cognitive and social biases.

The story about Thomas Quick is a case study in the dangers of social biases

in groups. The setting is much different from what we encounter in our daily

lives, but the biases aren’t. The social forces that led to the Thomas Quick

disaster are present in any software project.

See How We Influence Each Other

We’ll get back to the resolution of the Quick story soon. But let’s first under-

stand the social biases so we can prevent our own group disasters.

When we work together in a group to accomplish something—for example, to

design that amazing web application that will knock Google Search down—we

influence each other. Together, we turn seemingly impossible things into

reality. Other times, the group fails miserably. In both cases, the group exhibits

what social scientists call process loss.

Process loss is the theory that groups, just as machines, cannot operate at

100 percent efficiency. The act of working together has several costs that we

need to keep in check. These costs are losses in coordination and motivation.

In fact, most studies on groups find that they perform below their potential.

Chapter 11. Norms, Groups, and False Serial Killers • 122

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

So why do we choose to work in groups when it’s obviously inefficient? Well,

often the task itself is too big for a single individual. Today’s software products

are so large and complex that we have no other choice than to build an

organization around them. We just have to remember that as we move to

teams and hierarchies, we pay a price: process loss.

When we pay for something, we expect a return. We know we’ll lose a little

efficiency in all team efforts; it’s inevitable. (You’ll learn more about coordina-

tion and communication in subsequent chapters.) What’s worse is that social

forces may rip your group’s efforts into shreds and leave nothing but broken

designs and bug-ridden code behind. Let’s see what we can do to avoid that.

Learn About Social Biases

Pretend for a moment that you’ve joined a new team. On your first day, the

team gathers to discuss two design alternatives. You get a short overview

before the team leader suggests that you all vote for the best alternative.

It probably sounds a little odd to you. You don’t know enough about the initial

problem, and you’d rather see a simple prototype of each suggested design

to make an informed decision. So, what do you do?

If you’re like most of us, you start to look around. You look at how your col-

leagues react. Since they all seem comfortable and accepting of the proposed

decision procedure, you choose to go along with the group. After all, you’re

fresh on the team, and you don’t want to start by rejecting something everyone

else believes in. As in Hans Christian Andersen’s fairy tale, no one mentions

that the emperor is naked. Let’s see why. But before we do, we have to address

an important question about the role of the overall culture.

Isn’t All This Group Stuff Culture-Dependent?

Sure, different cultures vary in how sensitive they are to certain biases. Most

research on the topic has focused on East-West differences. But we don’t

need to look that far. To understand how profoundly culture affects us, let’s

look at different programming communities.

report erratum • discuss

Learn Why the Right People Don’t Speak Up • 123

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Take a look at the code in the speech balloon. It’s

a piece of APL code. APL is part of the family of

array programming languages. The first time you

see APL code, it will probably look just like this

figure: a cursing cartoon character or plain line

noise. But there’s a strong logic to it that results

in compact programs. This compactness leads to

a different mindset.

The APL code calculates six lottery numbers, guaranteed to be unique, and

returns them sorted in ascending order.1 As you see in the code, there are no

intermediate variables to reveal the code’s intent. Contrast this with how a

corresponding Java solution would look.

Object-oriented programmers value descriptive names such as randomLotteryNum-
berGenerator. To an APL programmer, that’s line noise that obscures the real

intent of the code. The reason we need more names in Java, C#, or C++ is

that our logic—the stuff that really does something—is spread out across

multiple functions and classes. When our language allows us to express all

of that functionality in a one-liner, our context is different, and it affects the

way we and our community think.

Different cultures have different values that affect how their members behave.

Just remember that when you choose a technology, you also choose a culture.

Understand Pluralistic Ignorance

What just happened in our fictional example is that you fell prey to pluralistic

ignorance. Pluralistic ignorance happens in situations where everyone privately

rejects a norm but thinks that everyone else in the group supports it. Over

time, pluralistic ignorance can lead to situations where a group follows rules

that all of its members reject in private.

We fall in this social trap when we conclude that the behavior of our peers

depends on beliefs that are different from our own, even if we behave in an

identical way ourselves. That’s what happened around Andersen’s naked

emperor. Because everyone praised the emperor’s new clothes, each individ-

ual thought they missed something obvious. That’s why they chose to conform

to the group behavior and play along with the praise of the wonderful clothes

they couldn’t see.

1. http://en.wikipedia.org/wiki/APL_(programming_language)

Chapter 11. Norms, Groups, and False Serial Killers • 124

report erratum • discuss

http://en.wikipedia.org/wiki/APL_(programming_language)
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Another common social bias is to mistake a familiar opinion for a widespread

one. If we hear the same option repeatedly, we come to think of that opinion

as more prevalent than it really is. As if that wasn’t bad enough, we fall for

the bias even if it’s the same person who keeps expressing that opinion

(source: Inferring the popularity of an opinion from its familiarity: A repetitive

voice can sound like a chorus [WMGS07]).

This means it’s enough with one individual, constantly expressing a strong

opinion, to bias your whole software development project. It may be about

technology choices, methodologies, or programming languages. Let’s see what

you can do about it.

Challenge with Questions and Data

Most people don’t like to express deviating opinions, but there are exceptions.

One case is when our minority opinion is aligned with the group ideal. That

is, we have a minority opinion, but it deviates from the group norm in a pos-

itive way; the group has some quality it values, and we take a more extreme

position and value it even more. In that setting, we’re more inclined to speak

up, and we’ll feel good about it when we do.

report erratum • discuss

Understand Pluralistic Ignorance • 125

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Within our world of programming, such “good” minority opinions may include

desired attributes such as automatic tests and code quality. For example, if

tests are good, then testing everything must be even better (even if it forces

us to slice our designs in unfathomable pieces). And since code quality mat-

ters, we must write code of the highest possible quality all the time (even

when prototyping throwaway code).

Given what we know about pluralistic ignorance and our tendency to mistake

familiar opinions for common ones, it’s easy to see how these strong, deviating

opinions may move a team in a more extreme direction.

Social biases are hard to avoid. When you suspect them in your team, try

one of the following approaches:

• Ask questions: By asking a question, you make others aware that the

proposed views aren’t shared by everyone.

• Talk to people: Decision biases like pluralistic ignorance often grow from

our fears of rejection and criticism. So if you think a decision is wrong

but everyone else seems fine with it, talk to your peers. Ask them what

they like about the decision.

• Support decisions with data: We cannot avoid social and cognitive biases.

What we can do is to check our assumptions with data that either supports

or challenges the decision. The rest of this book will arm you with several

analyses for this purpose.

If you’re in a leadership position, you have additional possibilities to guide

your group toward good decisions:

• Use outside experts to review your decisions.

• Let subgroups work independently on the same problem.

• Avoid advocating a specific solution early in the discussions.

• Discuss worst-case scenarios to make the group risk-aware.

• Plan a second meeting upfront to reconsider the decisions of the first one.

These strategies are useful to avoid groupthink (source: Group Process, Group

Decision, Group Action [BK03]). Groupthink is a disastrous consequence of

social biases where the group ends up supressing all forms of internal dissent.

The result is group decisions that ignore alternatives and the risk of failure,

and that give a false sense of consensus.

As you’ve seen, pluralistic ignorance often leads to groupthink. This seems

to be what happened in the Thomas Quick case.

Chapter 11. Norms, Groups, and False Serial Killers • 126

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Witness Groupthink in Action

Let’s get back to our story of Thomas Quick. Quick was sentenced for eight

murders before he stopped cooperating in 2001. Without Quick’s confessions,

there was little to do—remember, there was no hard evidence in any of the

murder cases. It took almost ten years for the true story to unfold.

What had happened was that Thomas Quick was treated with a pseudoscien-

tific version of psychotherapy back in the 1990s. The therapists managed to

restore what they thought were recovered memories. (Note that the scientific

support for such memories is weak at best.) The methods they used are almost

identical to how you implant false memories. (See The Paradox of False

Memories, on page 68.) Quick also received heavy dozes of benzodiazepines,

drugs that may make their users more suggestible.

The murder investigation started when the therapists told the police about

Quick’s confessions. Convinced by the therapists’ authority that repressed

memories were a valid scientific theory, the lead investigators started to

interrogate Quick.

These interrogations were, well, peculiar. When Quick gave the wrong answers,

he got help from the chief detective. After all, Quick was fighting with repressed

memories and needed all the support he could get. Eventually, Quick got

enough clues to the case that he could put together a coherent story. That

was how he was convicted.

By now, you can probably see where the Thomas Quick story is heading. Do

you recognize any social biases in it? To us in the software world, the most

interesting aspects of this tragic story are in the periphery. Let’s look at them.

Know the Role of Authorities

Once the Quick scandal with its false confessions was made public, many

people started to speak up. These people, involved in the original police

investigations, now told the press about the serious doubts they’d had from

the very start. Yet few of them had spoken up ten years earlier, when Quick

was originally convicted.

The social setting was ideal for pluralistic ignorance—particularly since the

main prosecutor was a man of authority and was convinced of Quick’s guilt.

He frequently expressed that opinion and contributed to the groupthink.

From what you now know about social biases, it’s no wonder that a lot of

smart people decided to keep their opinions to themselves and play along.

Luckily, you’ve also got some ideas for how you can avoid having similar sit-

report erratum • discuss

Witness Groupthink in Action • 127

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

uations unfold in your own teams. Let’s add one more item to that list by

discussing a popular method that often does more harm than good—brain-

storming.

Move Away from Traditional Brainstorming

If you want to watch process loss in full bloom, check out any brainstorming

session. It’s like a best-of collection of social and cognitive biases. That said,

you can be productive with brainstorming, but you need to change the format

drastically. Here’s why and how.

The original purpose of brainstorming was to facilitate creative thinking. The

premise is that a group can generate more ideas than its individuals can on

their own. Unfortunately, research on the topic doesn’t support that claim.

On the contrary, research has found that brainstorming produces fewer ideas

than expected and that the quality of the produced ideas may suffer as well.

The are several reasons for the dramatic process loss. For example, in brain-

storming we’re told not to criticize ideas. In reality, everyone knows they’re

being evaluated anyway, and they behave accordingly. Further, the format

of brainstorming allows only one person at a time to speak. That makes it

hard to follow up on ideas, since we need to wait for our time to talk. In the

meantime, it’s easy to be distracted by other ideas and discussions.

To reduce the process loss, you need to move away from the traditional

brainstorming format. Studies suggest that a well-trained group leader may

help you eliminate process loss. Another promising alternative is to move to

computers instead of face-to-face communication. In that setting, where social

biases are minimized, electronic brainstorming may actually deliver on its

promise. (See Idea Generation in Computer-Based Groups: A New Ending to

an Old Story [VDC94] for a good overview of the research.)

Now you know what to avoid and watch out for. Before we move on, take a

look at some more tools you can use to reduce bias.

Discover Your Team’s Modus Operandi

Remember the geographical offender-profiling techniques you learned back

in Learn Geographical Profiling of Crimes, on page 16? One of the challenges

with profiling is linking a series of crimes to the same offender. Sometimes

there’s DNA evidence or witnesses. When there’s not, the police have to rely

on the offender’s modus operandi.

Chapter 11. Norms, Groups, and False Serial Killers • 128

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

A modus operandi is like a criminal signature. For example, the gentleman

bandit you read about in Meet the Innocent Robber, on page 69, was charac-

terized by his polite manners and concern for his victims.

Software teams have their unique modus operandi, too. If you manage to

uncover it, it will help you understand how the team works. It will not be

perfect and precise information, but it can guide your discussions and deci-

sions by opening new perspectives. Here’s one trick for that.

Use Commit Messages as a Discussion Basis

Some years ago, I worked on a project that was running late. On the surface,

everything looked fine. We were four teams, and everyone was kept busy. Yet

the project didn’t make any real progress in terms of completed features.

Soon, the overtime bell began to ring.

Luckily, there was a skilled leader on one of teams. He decided to find out

the root cause of what was holding the developers back. I opted in to provide

some data as a basis for the discussions. Here’s the type of data we used:

Until now, we have focused our techniques around the code you’re changing.

But a version-control log has more information. Every time you commit a

change, you provide social information.

report erratum • discuss

Discover Your Team’s Modus Operandi • 129

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Have a look at the word cloud. It’s created from the commit messages in the

Craft.Net repository by the following command:

prompt> git log --pretty=format:'%s'
Merge pull request #218 from NSDex/master
Don't add empty 'extra' fields to chat msg JSON
Fix Program.cs
Revert "Merge pull request #215 from JBou/master"
...

The command extracts all commit messages. You have several simple alter-

natives to visualize them. The one was created by pasting the messages into

Wordle.2

If we look at the commit cloud, we see that certain terms dominate. What

you’ll learn right now is by no means scientific, but it’s a useful heuristic: the

words that stand out tell you where you spend your time. For the Craft.Net

team, it seems that they get a lot of features in, as indicated by the word

“Added,” but they also spend time on “Fixing” code.

On the project I told you about—the one that was running late and no one

knew why—the word cloud had two prominent words. One of them highlighted

a supporting feature of less importance where we surprisingly spent a lot of

time. The second one pointed to the automated tests. It turned out the teams

2. http://www.wordle.net

Chapter 11. Norms, Groups, and False Serial Killers • 130

report erratum • discuss

http://www.wordle.net
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

were spending a significant portion of their workdays maintaining and

updating tests. This finding was verified by the techniques you learned in

Chapter 9, Build a Safety Net for Your Architecture, on page 91. We could then

focus improvements on dealing with the situation.

What story does your own version-control log tell?

Commit Messages Tell a Story

Commit clouds are a good basis for discussion around our process and daily

work. The clouds present a distilled version of our team’s daily code-centered

activities. What we get is a different perspective on our development that

stimulates discussions.

What we want to see in a commit cloud is words from our domain. What we

don’t want to see is words that indicate quality problems in code or in our

process. When you find those indications, you want to drill deeper.

But commit messages have even more to offer; A new line of research proposes

that commit messages tell something about the team itself. A team of

researchers found this out by analyzing commit messages in different open-

source projects with respect to their emotional content. The study compared

the expressed emotions to factors such as the programming language used,

the team location, and the day of the week. (See Sentiment analysis of commit

comments in GitHub [GAL14].)

Among other findings, the results of the study point to Java programmers

expressing the most negative feelings, and distributed teams the most positive.

The study is a fun read. But there’s a serious topic underpinning it. Emotions

play a large role in our daily lives. They’re strong motivators that influence

our behavior on a profound level, often without making us consciously aware

of why we react the way we do. Our emotions mediate our creativity, teamwork,

and productivity. As such, it’s surprising that we don’t pay more attention to

them. Studies like this are a step in an important direction.

Data Doesn’t Replace Communication

Given all fascinating analyses, it’s easy to drown in technical

solutions to social problems. Just remember that no matter how

many innovative data analyses we have, there’s no replacement

for actually talking to the rest of the team and taking an active

role in the daily work. The methods in this chapter just help you

ask the right questions.

report erratum • discuss

Discover Your Team’s Modus Operandi • 131

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Mine Organizational Metrics from Code

In this chapter, you learned about process loss and that groups never perform

at their maximum potential. As such, teamwork and organizations are

investments we pay for, and they should be considered as such.

You also learned that groups are sensitive to social biases. You saw that there

are biases in all kinds of groups—software development included—and you

need to be aware of the risks.

That leads us to the challenges of scaling software development. As we go

from a small group of programmers to interdependent teams, we increase the

coordination and communication overhead, which in turn increases the risk

for biased decisions. As such, the relative success of any large-scale program-

ming effort depends more on the people on the project than it does on any

single technology.

Over the next chapters, you’ll learn about fascinating research findings that

support this view. As you’ll see, if you want to know about the quality of a

piece of software, look at the organization that built it. You’ll also learn how

to mine and analyze organizational data from your version-control system.

So please keep the social biases in the back of your head as you read along;

by using the techniques you’re about to learn, you’ll get information to help

you make informed decisions and challenge groupthink. Let’s start with how

the number of programmers affects code quality.

Chapter 11. Norms, Groups, and False Serial Killers • 132

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 12

Discover Organizational Metrics

in Your Codebase

In the previous chapter, you learned about social biases and how they affect

group decisions and interactions with other developers. We also discussed

the idea that the social aspects of software development are just as important

as the technical ones. Now you’ll see what that means in practice.

We’ll start by revisiting the classic software “laws” of Brooks and Conway to

see how they fare against modern research. Based on those findings, we’ll

introduce organizational metrics that let us analyze the quality of our code

from the team’s perspective. You’ll also learn to use hotspots and temporal

coupling to evaluate how well your team organization aligns with the way you

work with the code. Let’s start with a story of a doomed software project.

Let’s Work in the Communication Business

I once joined a project that was doomed from the very beginning. The stake-

holders wanted the project completed within a timeframe that was virtually

impossible to meet. Of course, if you’ve spent some time in the software

business, you know that’s standard practice. What made this case different

was that the company had detailed data on an almost identical project. And

they tried to game it.

The historical data indicated that the project would need at least a year, but

this time they wanted it done in three months. That’s a quarter of the time.

The stakeholders did realize that; their solution was to throw four times as

many developers on the project. Easy math, right? There was just one slight

problem: this tactic doesn’t work and never has. Let’s see why.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

See That a Man-Month Is Still Mythical

If you pick up a forty-year-old programming book, you expect it to be dated.

Our technical field has changed a lot over the past decades. But the people

side of software development is different. The best book on the subject, The

Mythical Man-Month: Essays on Software Engineering [Bro95], was published

in the 1970s and describes lessons from a development project in the 1960s.

Yet the book hasn’t lost its relevance.

In a way that’s depressing for our industry, as it signals a failure to learn.

But it goes deeper than that. Although our technology has advanced dramat-

ically, people haven’t really changed. We still walk around with brains that

are biologically identical to the ones of our ancestral, noncoding cavemen.

That’s why we keep falling prey to the same social and cognitive biases over

and over again, with failed projects covering our tracks.

You saw this in the story of the

doomed project at the beginning of

this chapter. It’s a story that captures

Brooks’s law from The Mythical

Man-Month: Essays on Software

Engineering [Bro95]: “Adding manpow-

er to a late software project makes it

later.” Let’s see why.

Move Beyond Brooks’s Law

The rationale behind Brooks’s law is

that intellectual work is hard to paral-

lelize. While the total amount of work

that gets done increases, the additional communication effort increases at a

more rapid rate. At the extreme, we get a project that gets little done besides

administrating itself (aka the Kafka management style).

Social psychologists have known this for years. Group size alone has a strong

negative impact on communication. With increased group size, a smaller

percentage of group members takes part in discussions, process loss acceler-

ates, and the larger anonymity leads to less responsibility for the overall goals.

There’s a famous and tragic criminal case that illustrates how group size

impacts our sense of responsibility. Back in 1964, Kitty Genovese, a young

woman, was assaulted and killed on her way home in New York City. The

attack lasted for 30 minutes. Her screams for help were heard through the

Chapter 12. Discover Organizational Metrics in Your Codebase • 134

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

windows by at least a dozen neighbors. Yet no one came to help, and not one

called the police.

The tragedy led to a burst of research on responsibility. Why didn’t anyone

at least call the police? Were people that apathetic?

The researchers that studied the Kitty Genovese case focused on our social

environment. Often, the situation itself has a stronger influence upon our

behavior than personality factors do. In this case, each of Kitty Genovese’s

neighbors assumed that someone else had already called the police. This

psychological state is now known as diffusion of responsibility, and the effect

has been confirmed in experiments. (See the original research in Bystander

intervention in emergencies: diffusion of responsibility [DL68].)

Software development teams aren’t immune to the diffusion of responsibility

either. You’ll see that with increased group size, more quality problems and

code smells will be left unattended.

Skilled people can reduce these problems but can never eliminate them. The

only winning move is not to scale—at least not beyond the point your codebase

can sustain. Let’s look at what that means and how you can measure it.

Remember the Diffusion of Responsibility

Once you know about diffusion of responsibility, it gets easier to

avoid. When you witness someone potentially in need of help, just

ask if he or she needs any—don’t assume someone else will take

that responsibility. The same principle holds in the software world:

if you see something that looks wrong, be it a quality problem or

organizational trouble, just bring it up. Chances are that the

larger your group, the fewer people who will react, and you can

make a difference.

Find the Social Problems of Scale

In the first parts of this book, we discussed large codebases and how we fail

to get a holistic view of them. We just can’t keep it all in a single brain. We

recognize when we suffer from quality problems or when the work takes longer

than we’d expect it to, but we don’t know why.

The reasons go beyond technical difficulties and include an organizational

component as well. On many projects, the organizational aspects alone

determine success or failure. Let’s understand them better.

report erratum • discuss

Find the Social Problems of Scale • 135

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Know the Difference Between Open-Source and Proprietary Software

So far we’ve used real-world examples for all our analyses. The problems

we’ve uncovered are all genuine. But when it comes to the people side, it gets

harder to rely on open-source examples because the projects don’t have a

traditional corporate organization.

Open-source projects are self-selected communities, which creates different

motivational forces for the developers. In addition, open-source projects tend

to have relatively flat and simple communication models. As a result, research

on the subject has found that Brooks’s law doesn’t hold up as well: the more

developers involved in an open-source project, the more likely that the project

will succeed (source: Brooks’ versus Linus’ law: an empirical test of open source

projects [SEKH09]).

However, there are other aspects to consider. In a study on Linux, researchers

found that “many developers changing code may have a detrimental effect on

the system’s security” (source: Secure open source collaboration: an empirical

study of Linus’ law [MW09]). More specifically, with more than nine developers,

the modules are sixteen times more likely to contain security flaws. The result

just means that open source cannot evade human nature; we pay a price for

parallel development in that setting, too.

Anyway, we’ll need to pretend a little in the following case studies. We need

to pretend that the open-source projects are developed by a traditional orga-

nization. The intent is to show you how the analyses work so that you can

use them on your own systems. Proprietary or not, the analyses are the same,

but the conclusions may vary. With that in mind, let’s get started!

Understand How Hotspots Attract Multiple Authors

Adding more people to a project isn’t necessarily bad as long as we can divide

our work in a meaningful way. The problems start when our architecture fails

to sustain all developers.

We touched on the problem as we investigated hotspots. Hotspots frequently

arise from code that accumulates responsibilities. That means programmers

working on independent features are forced into the same part of the code.

(Hotspots are the traffic jams of the software world.)

Chapter 12. Discover Organizational Metrics in Your Codebase • 136

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

When multiple programmers make changes in parallel to the same piece of

code, things often go wrong. We risk conflicting changes and inconsistencies,

and we fail to build mental models of the volatile code.

If we want to work effectively on a larger scale, we need to ensure a certain

isolation. Here’s how you find that information.

Analyze Your Code for Multiple Authors

As you can see in the following figure, each commit contains information

about the programmer who made the change. Just as we calculated modifica-

tion frequencies to determine hotspots, let’s now calculate author frequencies

of our modules.

In this case study, we’ll move back to Hibernate because the project has many

active contributors. You can reuse your hib_evo.log log file if you still have it.

report erratum • discuss

Find the Social Problems of Scale • 137

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Otherwise, just create a new one, as we did back in Generate a Version-Control

Log, on page 36.

Use the authors analysis to discover the modules that are shared between

multiple programmers:

prompt> maat -l hib_evo.log -c git -a authors
entity,n-authors,n-revs
../persister/entity/AbstractEntityPersister.java,14,44
libraries.gradle,11,28
../internal/SessionImpl.java,10,39
../loader/Loader.java,10,23
../mapping/Table.java,9,28
...

The results show all modules in Hibernate, sorted by their number of authors.

The interesting information is in the n-authors column, which shows the number

of programmers who have committed changes to the module.

As you see, the AbstractEntityPersister.java class is shared between fourteen different

authors. That may be a problem. Let’s see why.

Learn the Value of Organizational Metrics

In an impressive research effort, a team of researchers investigated one of

the largest pieces of software ever written: Windows Vista. The project was

investigated for the links between product quality and organizational structure.

(Read about the research in The Influence of Organizational Structure on

Software Quality [NMB08].) The researchers found that organizational metrics

outperform traditional measures, such as code complexity or code coverage.

In fact, the organizational structure of the programmers that create the soft-

ware is a better predictor of defects than any property of the code itself!

One of these super-metrics was the number of programmers who worked on

each component. The more parallel work, the more defects in that code. This

is similar to the analysis you just performed on Hibernate. Let’s dig deeper.

Measure Temporal Coupling over Organizational

Boundaries

The research findings from the Windows Vista study suggest that quality

decreases with the number of programmers. It’s easy to see the link to Brooks’s

law: more programmers implies more coordination overhead, which translates

to more opportunities for misunderstandings and errors.

Chapter 12. Discover Organizational Metrics in Your Codebase • 138

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

One way to highlight the severity of parallel work is by comparing the modules

with most authors to the hotspots you identify. So let’s look back at the

hotspot analysis we did in Chapter 4, Analyze Hotspots in Large-Scale Systems,

on page 35:

As you can see, the AbstractEntityPersister—the class with the most program-

mers—is also our number-one hotspot. That means the trickiest part of the

code affects the most programmers. That can’t be good. Let’s see why.

Interpret Conway’s Law

Brooks wasn’t the first to point out the link between organization and software

design. A decade earlier, Melvin Conway published his classic paper that

included the thesis we now recognize as Conway’s Law (see How do committees

invent? [Con68]):

Any organization that designs a system (defined more broadly here than just

information systems) will inevitably produce a design whose structure is a copy

of the organization’s communication structure.

Conway’s law has received a lot of attention over the years, so let’s keep this

brief. Basically, we can interpret Conway’s law in two ways. First, we can

interpret it in the cynical (and fun) way, as in the The Jargon File:1 “If you

have four groups working on a compiler, you’ll get a 4-pass compiler.”

1. http://catb.org/~esr/jargon/html/C/Conways-Law.html

report erratum • discuss

Measure Temporal Coupling over Organizational Boundaries • 139

http://catb.org/~esr/jargon/html/C/Conways-Law.html
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The other interpretation starts from the system we’re building: given a pro-

posed software architecture, how should the optimal organization look to

make it happen? When interpreted in reverse like this, Conway’s law becomes

a useful organizational tool. Let’s see how you can use it on existing systems.

Use Conway’s Law on Legacy Systems

As you learned in Optimize for Understanding, on page 2, we spend most of

our time modifying existing code. Even though Conway formulated his law

around the initial design of a system, the law has important implications for

legacy code as well.

There’s a big difference when you need to cooperate with a programmer sitting

next to you, versus someone you’ve never met who is located in a different

time zone. So let’s find out where your communication dependencies are.

Start your analysis from the hotspots in the system, since these are central

to your daily work. From there, identify other modules that have a temporal

coupling to the hotspots. Once you know the modules that evolve together,

look for the main developers of those modules. From there, we can start to

reason about ease of communication. Here’s how you do it.

Calculate Temporal Coupling over a Day

To analyze temporal coupling over organizational boundaries, we need to

consider all commits during the same day as parts of a logical change set.

Different authors will by definition commit their work independently, so we

can’t limit ourselves to modules in the same commit. We focus on a single

day as a heuristic; modules that keep changing together that often over a

period of time are probably related.

In the authors analysis, we identified AbstractEntityPersister as the module with

most contributors. Because it’s also a hotspot, we’ll zoom in on it. Specify the

--temporal-period 1 option to make Code Maat treat all commits within the same

day as a single, logical change set:

prompt> maat -c git -l hib_evo.log -a coupling --temporal-period 1
entity,coupled,degree,average-revs
..
../AbstractEntityPersister.java, ../CustomPersister.java,45,11
../AbstractEntityPersister.java, ../EntityPersister.java,45,11
../AbstractEntityPersister.java, ../GoofyPersisterClassProvider.java,43,12
...

The analysis results show that AbstractEntityPersister tends to change together

with a bunch of other modules. Every time you make a change to the

Chapter 12. Discover Organizational Metrics in Your Codebase • 140

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

AbstractEntityPersister, there’s a 45 percent chance that three different classes

will change during that same day.

The next step is to find out the main developers of the coupled modules. Once

we have that information, we can compare it to the formal organization of

developers and reason about ease of communication. Here’s the analysis.

Evaluate Communication Costs

To reason about communication costs, we need to know who’s communicating

with whom. The analysis model we’ll use is based on the idea that we can

identify a main developer of each module.

We’ll define the main developer as the programmer who’s likely to know the

most about the specific code. Because code knowledge isn’t easy to measure,

we’ll use the number of contributed lines of code instead.

Like all heuristics, our metric has its flaws—in particular, since we measure

something as multifaceted as programmer contributions. That doesn’t mean

the results are useless; the metrics are there to support your decisions, not

to make them for you. Your knowledge and expertise cannot be replaced by

data.

So sure, using the number of added lines of code is a rough approximation,

but the overall results tend to be good enough. Let’s see the metric in action.

Identify Main Developers by Removed Code

Since we used the number of added lines to identify main develop-

ers, this means that a copy-paste cowboy could easily conquer

parts of the codebase. So, let’s turn it around and find an alterna-

tive.

Good programmers take pride in doing more with less. That means

you could use the number of removed lines of code instead. That

tweak to the algorithm would identify developers who actively

refactor the code. Since Code Maat implements the analysis,

refactoring-main-dev, go ahead and try it yourself.

In practice, you’ll often find that in projects that care about code

quality, like Hibernate, the two algorithms identify the same people.

This is why we used the conceptually simpler metric of added lines

in our case study.

report erratum • discuss

Evaluate Communication Costs • 141

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Identify Main Developers

As the following figure shows, the contribution information is recorded in

every commit. We just need to instruct Code Maat to sum it up and calculate

a degree of ownership for each entity. The author with most added lines is

considered the main developer, the knowledge owner, of that module.

You perform a main developer analysis with the main-dev option. On Hibernate,

this analysis will deliver a long list of results. (Remember, Hibernate is a large

codebase.) So let’s save the results to a file for further inspection:

prompt> maat -c git -l hib_evo.log -a main-dev > main_devs.csv

Let’s look inside main_devs.csv to find the main developer of AbstractEntityPersister:

The results identify Mr. Ebersole, the productive project lead on Hibernate,

as the main developer. In our analysis period, he contributed 695 of the 1,219

lines that have been added to AbstractEntityPersister, an ownership of 57%.

Remember, we’re after expensive communication paths. So who does Mr.

Ebersole have to communicate with? To find out, we need to identify the main

developers of the modules that are temporally coupled to AbstractEntityPersister.
Let’s look at that.

Chapter 12. Discover Organizational Metrics in Your Codebase • 142

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

This Only Works on Git

The main-dev analysis we ran only works on Git. The reason is that

neither Subversion nor Mercurial includes the number of modified

lines of code in its log files. Fortunately, there’s a workaround

that’s almost as good.

If you’re on another version-control system—for example, Subver-

sion—then run the main-dev-by-revs analysis instead. That analysis

classifies the programmer who has contributed the most commits

to a specific module as its main developer.

Analyze Contributions to Coupled Modules

When we analyzed the temporal coupling to AbstractEntityPersister in the code on

page 140, we identified three dependent modules. Let’s extract the main

developers of those from our main_devs.csv analysis results:

Ownership (%)Main DeveloperCoupled Module

58Steve EbersoleCustomPersister.java

39Steve EbersoleEntityPersister.java

54Steve EbersoleGoofyPersisterClassProvider.java

As you can see in the preceding figure, all entities that have a temporal cou-

pling to the AbstractEntityPersister are within the mind of the same developer.

Looks good—or does it? The low ownership degree, 39 percent, of EntityPersis-
ter.java indicates that the code is shared between several authors. Let’s see

how much each programmer contributed before we can feel safe.

Calculate Individual Contributions

The contributions of each developer are available from the same version-

control information. We just need to use an entity-ownership analysis instead.

Here’s how it looks, filtered for EntityPersister:

prompt> maat -c git -l hib_evo.log -a entity-ownership
entity,author,added,deleted
...
../EntityPersister.java,Gail Badner,1,0
../EntityPersister.java,Steve Ebersole,20,9
../EntityPersister.java,Rob Worsnop,3,0
../EntityPersister.java,Eric Dalquist,19,8
../EntityPersister.java,edalquist,8,2
...

report erratum • discuss

Evaluate Communication Costs • 143

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Oops—one of the programmers, Eric Dalquist, uses two committer names.

We see it immediately in the output above, but Code Maat had no way to

know. That means we’ve run into our first analysis bias!

The problem is easy to fix once we’ve identified the authors with multiple

aliases. On your own projects, you want to investigate and clean the log before

any analyses. Once we’ve done a quick search-and-replace on our data, we

rerun the analysis on the cleaned log:

The algorithm now identifies the correct main developer. If we put our results

together, we can start to reason about communication:

1. We have a temporal coupling between EntityPersister and AbstractEntityPersister.
2. Since AbstractEntityPersister is a hotspot, we know we need to modify the code

frequently.

3. That means its coupled part, EntityPersister, will need to change often as

well, but the two modules have different main developers!

Let’s look at the consequences.

Check Communication Dependencies Against Your Organization

Hibernate is open source with a development process that’s different from

what most companies in the industry use. Without more context and insight,

it’s hard to reason about the consequences of our findings.

What we do know is that communication costs are likely to increase with

organizational distance. So when you identify a case like this in your own

projects, you want to check the information against your organization. Are

the two programmers on the same team? Are they located at the same site?

If not, it may be a concern.

When we work together, we develop informal communication channels. We

meet in the hallway, grab a coffee together in the morning, or chat about our

work during lunch breaks. If we lose those opportunities for informal talks,

our products suffer.

In this chapter, you got the basic tools to start analyzing how well your own

development work aligns with those communication channels. Let’s sum up.

Chapter 12. Discover Organizational Metrics in Your Codebase • 144

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Take It Step by Step

The dependencies between organizational aspects and system design are

complex. As a consequence, the analysis in this chapter contains multiple

steps. Let’s recap them:

Using the steps above, you’re now able to perform a basic analysis of commu-

nication problems and team productivity bottlenecks. When you find them,

you need to react. Unfortunately, that’s the hard part because it depends on

your specific organization and system.

One typical action is to rearrange the teams according to communication

needs. Because those needs will change over the course of a longer project,

you probably need to revisit these topics at regular intervals. Done right, such

a rebalancing of project teams has been found to minimize communication

overhead. (See The Effect of Communication Overhead on Software Maintenance

Project Staffing [DHAQ07].)

This is what happened on the project I told you about at the beginning of the

chapter. The project was supposed to deliver in three months. After one year

of expensive and intense parallel development, the project was put on hold

and analyzed, and the teams were reorganized. After that, we had fewer

developers working on the code, and yet you won’t be surprised to learn that

we got a productivity boost that lasted.

Sometimes it’s easier—and indeed more appropriate—to redesign the shared

parts of the system to be more inline with the structure of the organization.

This alternative is close to what Conway himself suggests in his classic paper

as he concludes that “a design effort should be organized according to the

report erratum • discuss

Take It Step by Step • 145

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

need for communication” (source: How do committees invent? [Con68]). The

techniques in this chapter are there to help you with this challenging task.

Toward a Communication Map

In this chapter, you learned that the number of authors behind a module

correlates to the number of post-release defects in that code. We discussed

how this is a consequence of the increased communication overhead that

comes with parallel work. You also learned to investigate it yourself through

an authors analysis.

We then looked at Conway’s law and how the way we organize our work

impacts the code. You learned that your project organizations must align with

the way the system is structured. You also got the basic tools to perform that

analysis. During these analyses, we found a way to identify how much each

developer has contributed in terms of code. We used this metric as a crude

device to find the main developers.

With the analyses in this chapter, you’ll be able to spot many organizational

problems that creep into your code. But we can do even better. In the next

chapter, we’ll look at individual developer patterns. As you’ll see, those pat-

terns make good predictors of defects. As a bonus, you’ll learn to build a

complete knowledge map of your system. It’s a map that helps you plan,

communicate, and estimate knowledge loss in case a core developer leaves.

Let’s move on!

Chapter 12. Discover Organizational Metrics in Your Codebase • 146

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 13

Build a Knowledge Map of Your System

In the previous chapter, you learned to analyze how well your team structure

fits the way you work with the code. We also looked at how the number of

authors of a piece of code affects its quality. Now we’ll dive deeper into different

author patterns to see how your organization affects your codebase.

Coordination is vital to all large-scale software development. It’s also important

to find out what and with whom we need to coordinate. In this chapter, we’ll

take a look at supporting techniques to map out the knowledge distribution

in our codebase. As a bonus, you’ll see how the information lets you predict

defects, support planning, and assess knowledge drain in case a developer

leaves your project.

At the end of this chapter, you’ll have a radically different view of your system.

Let’s get started!

Know Your Knowledge Distribution

A while ago, I worked with a large development organization. We were hun-

dreds of developers organized in multiple divisions and teams. To make it

work, each team was responsible for one subsystem. The subsystems all had

well-documented interfaces. However, sometimes the API had to change to

support a new feature. That’s where things started to get expensive.

You’re probably reminded of Conway’s law from the previous chapter. The

team organization was closely aligned to the system architecture. As a conse-

quence, the communication worked well—at least on the surface. When we

needed to change an API, we knew which team we should talk to. The problem

was that these changes often rippled through the system; a change to our

API meant another subsystem had to change as well. And to change that

subsystem, our peers had to request a change to yet another API, and so on.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

As the figure shows, when an organization creates isolated teams, collaboration

across system boundaries suffers. While we may know the expertise on the

team responsible for the interfaces we use, we rarely know what happens

behind them. This is a problem when it comes to design, code reviews, and

debugging. Ideally, you’d like to get input from everyone who’s affected by a

change. So let’s find out who they are.

Find the Author to Praise

Modern version-control systems all provide a blame command. (I love that

Subversion aliases the command as praise!) blame is useful if you know exactly

which module you need to change. As you can see in the following figure,

blame shows the author who last modified each line in a given file.

The information from blame is useful, but it doesn’t take us far enough. If we

don’t know that part of the system, which is probably why we want to talk to

someone else in the first place, then we don’t know which file to inspect. And

Chapter 13. Build a Knowledge Map of Your System • 148

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

even when we do, the information from blame is low-level. What we’d need is

a summary, a high-level overview.

blame is also sensitive to superficial changes. So if we want information that

reflects knowledge, we need to look deeper at the contributions that led up

to the current code. Let’s see how to do that.

It’s Not About Blame or Praise

The analyses in this part of the book are easy to misuse by

applying them as some kind of evaluation of programmer perfor-

mance or productivity. There are several reasons why that’s a bad

idea. Let’s focus on the one that social psychologists call a funda-

mental attribution error.

The fundamental attribution error describes our tendency to

overestimate personality factors when we explain other people’s

behavior. For example, when you see that I committed a bunch

of buggy spaghetti last week, you know it’s because I’m a bad

programmer, irresponsible, and perhaps even a tad stupid. When

you, on the other hand, deliver scrappy code (yes, I know—it’s a

hypothetical scenario), you know it’s because you were close to a

deadline, had to save the project, or just intended it to be a proto-

type. As you see, we attribute the same observable behavior to

different factors depending on whether it concerns us or someone

else.

There’s also a group aspect to this bias. When we judge the

behavior of someone closer to us, such as a team member, we’re

more likely to understand the situational influence. That means

the fundamental attribution error is a bias that we can learn to

avoid. We just need to remind ourselves that the power of the sit-

uation is strong and often a better predictor of behavior than a

person’s personality.

Dig Below the Surface with Developer Patterns

Chapter 12, Discover Organizational Metrics in Your Codebase, on page 133,

used version-control data to identify the number of developers behind each

module. While the measure is correlated with bugs, the number itself doesn’t

reveal much. Even with many contributors, a module may still have one main

developer who maintains overall consistency while other programmers con-

tribute minor fixes to the code. Or, it could indeed be a shared effort where

many different programmers contribute significant chunks of the total code.

report erratum • discuss

Know Your Knowledge Distribution • 149

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

To dig deeper, we need to get a summary of individual contributions. The

algorithm we use summarizes the number of commits for each developer and

presents it together with the total number of revisions for that module. Here’s

how the metric looks on Hibernate:

prompt> maat -c git -l hib_evo.log -a entity-effort
entity,author,author-revs,total-revs
...
AbstractEntityPersister.java,Steve Ebersole,17,44
AbstractEntityPersister.java,Brett Meyer,3,44
AbstractEntityPersister.java,Rob Worsnop,5,44
...
AbstractEntityPersister.java,Gail Badner,4,44
AbstractEntityPersister.java,Paweł Stawicki,1,44
AbstractEntityPersister.java,Strong Liu,2,44

...

The results above are filtered on the AbstractEntityPersister module that we iden-

tified as a potential problem back in Evaluate Communication Costs, on page

141. While these analysis results let you reason about how fragmented the

development effort is, the raw text output soon becomes daunting; it’s hard

to get the overall picture. So let’s turn to a more brain-friendly approach.

Visualize Developer Effort with Fractal Figures

Take a look at the following figure. In contrast to the raw analysis results,

the fractal figures visualization immediately provides you with a view of how

the programming effort was shared—how fragmented the developer effort is

for each module in your system.

Chapter 13. Build a Knowledge Map of Your System • 150

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The fractal figures algorithm is simple: represent each programmer with a

color and draw a rectangle whose area is proportional to the percentage of

commits by that programmer. You can also see that the rectangles are ren-

dered in alternating directions to increase the visual contrast between different

parts. (You’ll find more details in the original research paper Fractal Figures:

Visualizing Development Effort for CVS Entities [DLG05].)

If you want to try fractal figures on your own system—and you really

should—check out the implementation and documentation on GitHub.1 All

you need is a result file from a Code Maat entity-effort analysis.

Now, let’s see what the different patterns tell us about the codebase.

Distinguish the Ownership Models

Three basic patterns keep showing up when you visualize development effort,

and these patterns can be used to predict code quality. You can see the pat-

terns in the following figure:

From a communication point of view, a single developer provides the simplest

communication structure; there’s just one person to talk to. It’s also likely

that the code within that module is consistent. The quality of the code

depends, to a large extent, on the expertise of one single developer.

The second case with multiple, balanced developers is more interesting. Often,

such code has one developer who contributed the most code. It turns out that

the ownership proportion of that main developer is a good predictor of the

quality of the code! The higher the ownership proportion of the main developer,

the fewer defects in the code. (See Don’t Touch My Code! Examining the Effects

of Ownership on Software Quality [BNMG11].)

1. https://github.com/adamtornhill/FractalFigures

report erratum • discuss

Know Your Knowledge Distribution • 151

https://github.com/adamtornhill/FractalFigures
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

An even stronger predictor of defects is the number of minor contributors.

You see an example of that in case 3 in the preceding figure. When we make

a change to a module where we are the main developer, we sometimes need

to change a related piece of code that we haven’t worked on before. As such,

we don’t know the background and thinking that went into the original code.

It’s in that role as minor contributors that we’re more likely to introduce

defects.

The fractal figures give you another investigative tool to uncover expensive

development practices. Once you’ve identified one of the warning signs, such

as many minor contributors, you react by performing code reviews, running

a hotspot analysis, and talking to the contributing programmers to see whether

they experience any problems.

Do More with Fractal Figures

Fractal figures work well on an architectural level, too. On this level, you use

them to visualize the fragmentation of subsystems or even whole systems.

You generate architectural fractal figures by specifying a transformation as

we did back in Specify Your Architectural Boundaries, on page 93. Then you

just run an entity-effort analysis and tell Code Maat to use your transformation.

Another interesting variation on fractal figures is to use their size dimension

to express other properties of the code. For example, you can use the size of

each figure to visualize complexity or the number of historic bugs in each

module. Used that way, fractal figures allow you to present a lot of information

in a compact and brain-friendly way.

Grow Your Mental Maps

Remember how we discussed geographical offender profiling back in Learn

Geographical Profiling of Crimes, on page 16? We built our hotspot analyses

based on the idea that just as we spot patterns in the movement of criminals,

our version-control data lets us identify patterns in the changes we make to

the codebase. What I didn’t mention back then is that the movement of

offenders is constrained by a concept called mental maps.

A mental map is our subjective view of a specific geographic area. Our mental

maps deviate from how a real map would look. For example, geographical

hindrances such as highways and rivers often constrain and skew our percep-

tion of an area. In the small town where I grew up, it took me years to venture

across the heavily trafficked road that cut through the city. As a consequence,

Chapter 13. Build a Knowledge Map of Your System • 152

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

my mental map ended at that the street. It was the edge of the world. Similarly,

the mental maps of criminals shape where their crimes take place.

We programmers have mental maps, too. Over time, at least when we work

with others, we tend to specialize and get to know some parts of the system

better than others. These knowledge barriers shape our perception of the

system—our mental maps constrain our view of the system to the parts we

know. Let’s see how we can tear them down.

Explore Your Knowledge Map

Imagine for a moment that you had a map of the individual knowledge distri-

bution in your organization. No, no—not some out-of-date Excel file that’s

stashed away on the intranet. To be useful, the information has to be based

on how we actually work. In reality, in code.

The concept we’ll develop is a knowledge map. A knowledge map lets you find

the right people to discuss a piece of code, fix hotspots, and help out with

debugging. Let’s see how the end result looks in the figure on page 154, so we

know where we’re heading.

This knowledge map of the programming language Scala is based on the same

concept as the fractal figures, as each programmer is assigned a color. This

lets us reason about knowledge distribution on a system level. For example,

the map shows that components such as scaladoc (generates API documenta-

tion), asm (Java bytecode manipulation), and reflect (dynamic type inspection

and manipulation) seem to be in the hands of a single developer—there’s little

knowledge distribution. In contrast, other components, such as the compiler,
exhibit a shared effort, with contributions from multiple developers.

report erratum • discuss

Grow Your Mental Maps • 153

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Figure 1—Knowledge map showing the main developer (indicated by color) of each

module.

The visualization is based on interactive enclosure diagrams, just like we

used back in Visualize Hotspots, on page 38. Have a look at the visualization

samples you downloaded from the Code Maat distribution site.2 There’s a scala
directory inside that bundle. Open a command prompt in that directory and

launch Python’s SimpleHTTPServer:

prompt> python -m SimpleHTTPServer 8888

Now you can point your browser to http://localhost:8888/scala_knowledge.html to view

the Scala knowledge map. The interactive visualization lets you zoom in on

2. http://www.adamtornhill.com/code/crimescenetools.htm

Chapter 13. Build a Knowledge Map of Your System • 154

report erratum • discuss

http://localhost:8888/scala_knowledge.html
http://www.adamtornhill.com/code/crimescenetools.htm
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

individual components for a detailed examination. Let’s see what the map

tells us about the Scala compiler.

Pretend for a moment that we join this project and need to make a change to

the typechecker. Our map immediately points us to the green developer as the

correct person to discuss our proposed design with. If we come across some

task in the backend instead, green may still be able to help us out, but we’re

more likely to get the right expertise if we involve the light-blue developer,

too. All right, let’s see how you can create this map.

Investigate Knowledge in the Scala Repository

The Scala codebase is fairly large, with approximately 300,000 lines of code.

The project flourishes with developer activity; over the past two years, more

than 150 developers have contributed to the project. That scale of development

report erratum • discuss

Investigate Knowledge in the Scala Repository • 155

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

makes it virtually impossible for any single developer to keep it all in his or

her head. So, let’s put our map together to guide us.

Start by cloning Scala’s git repository:

prompt> git clone https://github.com/scala/scala.git
Cloning into 'scala'...
...

To get reproducible results, we need to go back in time to when this book was

written. We do that with the piece of git magic we learned in Turn Back Time,

on page 24. But we need to be careful. Because Scala uses different branches,

we need to know where we are before we travel in time. We do that with the

git status:

prompt> git status
On branch 2.11.x
Your branch is up-to-date with 'origin/2.11.x'.

You use the name of the branch—in this case, origin/2.11.x—as the final argu-

ment to the command that rolls back the codebase:

prompt> git checkout `git rev-list -n 1 --before="2013-12-31" origin/2.11.x`
...
HEAD is now at 969a269..

Now your local Scala repository should look just like it did at the end of 2013,

and you’re ready to analyze.

Analyze the Knowledge Distribution

Because we want to use the information to find the right people to talk to, we

have to identify the developers who know the different parts of the system.

This is a similar problem to the one we solved back in Evaluate Communication

Costs, on page 141, where we used a main developer analysis to identify the

top contributor to each module.

We start by generating a version-control log:

prompt> git log --pretty=format:'[%h] %an %ad %s' --date=short \
--numstat --before=2013-12-31 --after=2011-12-31 > scala_evo.log

The command limits our analysis period to the last two years. That’s because

knowledge is fragile and dissolves over time; if we haven’t touched a piece of

code for a couple of years, it’s unlikely that we remember much about it. In

addition, code that’s been stable for that long is rarely the focus of our daily

activities. But remember that these time periods are all heuristics that you

may have to fine-tune in your own projects.

Chapter 13. Build a Knowledge Map of Your System • 156

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Now that we have a version-control log, let’s see what happens when we

aggregate all that information to identify the main developers:

prompt> maat -c git -l scala_evo.log -a main-dev > scala_main_dev.csv

The command saves the analysis results to the file scala_main_dev.csv for further

processing. If you look inside it, you should see the main developer of each

module:

entity,main-dev,added,total-added,ownership
..
GenICode.scala,Paul Phillips,584,1579,0.37
ICodeCheckers.scala,Jason Zaugg,19,44,0.43
ICodes.scala,Grzegorz Kossakowski,16,32,0.5
...

The main developer information serves as the basis of our knowledge map.

We just need to project the information on the geography of our system. Let’s

do it.

Project the Main Developers onto a Map

Back in Chapter 3, Creating an Offender Profile, on page 23, we used lines of

code as a proxy for complexity as we hunted hotspots. It makes sense to use

the same metric and visualization here, since it allows you to compare hotspots

against the knowledge map.

We collect the information with cloc:

prompt> cloc ./ --by-file --csv --quiet --report-file=scala_lines.csv

Now we have the elements we need. We have the structure in scala_lines.csv and

the presumed knowledge owners in scala_main_dev.csv. Let’s combine those with

a unique color for each individual developer.

Specify the Color of Each Developer

We humans can distinguish between hundreds of thousands of different color

variations. However, in your visualization, you want to keep a larger distinction

between each color. Several tools can help you select good color schemes.

(See, for example, ColorBrewer.3)

The colors we use in Figure 1, Knowledge map showing the main developer

(indicated by color) of each module, on page 154, are specified as HTML5 color

names.4 Take a look in the visualization samples we downloaded from the

3. http://colorbrewer2.org/
4. http://www.w3schools.com/html/html_colornames.asp

report erratum • discuss

Investigate Knowledge in the Scala Repository • 157

http://colorbrewer2.org/
http://www.w3schools.com/html/html_colornames.asp
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Code Maat distribution site.5 Inside that bundle, there’s a scala folder with a

scala_author_colors.csv. That file specifies the mapping from author to color for

the top contributors. Here’s a sample:

author,color
Martin Odersky,darkred
Adriaan Moors,orange
Paul Phillips,green
...

Now that we’ve assigned a color to each developer, we can put it all together.

Generate Your Own Map

As we discussed in Visualize Hotspots, on page 38, the enclosure diagram is

built on D3.js.6 Since D3.js is data-driven, we need to serve it a JSON docu-

ment that specifies the content to visualize.

That JSON document is generated by a Python script included on the Code

Maat distribution page. Before you run it, just remember to specify your local

path to the Python scripts:

prompt> python scripts/csv_main_dev_as_knowledge_json.py \
--structure scala_lines.csv --owners scala_main_dev.csv \
--authors scala_author_colors.csv > scala_knowledge_131231.json

Now you should have a scala_knowledge_131231.json file in your local directory.

The JSON inside that file should be identical to the one that was used to

create Figure 1, Knowledge map showing the main developer (indicated by

color) of each module, on page 154.

Once you have the JSON document, you can reuse the d3.js code that’s

included in the Code Maat sample visualization of Scala. Just open the

scala_knowledge.html file and replace the included scala_knowledge_131231.json with

a reference to your own content. Explore, experiment, and automate from

there.

Visualize Knowledge Loss

Think back to the last project you worked on. What if one of the core develop-

ers suddenly left? Literally just walked out the door. What parts of the code

would now be left in the wild? And what parts should the next developer start

to look at? Most of the time, we don’t know the answers. Let’s see how our

knowledge map puts us in a better position.

5. http://www.adamtornhill.com/code/crimescenetools.htm
6. http://d3js.org/

Chapter 13. Build a Knowledge Map of Your System • 158

report erratum • discuss

http://www.adamtornhill.com/code/crimescenetools.htm
http://d3js.org/
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Learn the Predictive Power of Abandoned Code

Practices such as good documentation, close collaboration, and code reviews

help to spread the knowledge of the codebase. But even under ideal conditions,

practices can never replace the intricate knowledge that comes from working

with a piece of code over time. That’s one reason why the number of ex-

developers who have worked on a component is a good predictor of the

number of post-release defects the code will have. (See The Influence of

Organizational Structure on Software Quality [NMB08] for the original research.)

In early 2014, the Scala project faced that challenge. Paul Phillips, who’d

worked on the codebase for five years, left the project–you can watch him tell

the story here.7 Let’s see if we can find the resulting knowledge gap.

Identify Abandoned Code

You’ve already seen how the knowledge map lets you identify the main con-

tributors for each module. When it comes to identifying abandoned

code—that’s code written by a programmer who’s no longer in the compa-

ny—we can simplify it. The only thing we actually need is a color to identify

the ex-programmers.

In this case, we just assign a color to Paul Phillips:

author,color
Paul Phillips,green

Save the CSV as scala_ex_programmers.csv and generate a JSON document for

our new visualization:

prompt> python scripts/csv_main_dev_as_knowledge_json.py \
--structure scala_lines.csv --owners scala_main_dev.csv \
--authors scala_ex_programmers.csv > scala_knowledge_loss.json

You should now have a scala_knowledge_loss.json ready to visualize the knowledge

drain in the Scala project. All we need to do is open the scala_knowledge.html file
and point to our own JSON file. The figure on page 160 shows the resulting

knowledge loss.

A good programmer like Paul Phillips is, of course, impossible to replace.

What we can do, however, is to use our knowledge of where the abandoned

code is as an input to planning and risk assessments. Since we now know

where our blind spots are, we need to allocate extra time in case we plan

modifications to them. It’s still hard, but at least we know that up front.

7. https://www.youtube.com/watch?v=uiJycy6dFSQ

report erratum • discuss

Visualize Knowledge Loss • 159

https://www.youtube.com/watch?v=uiJycy6dFSQ
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Figure 2—The green color marks code written by a programmer who’s no longer with

the company.

Know the Uses and Misuses

The knowledge map is useful to everyone on a project:

• We developers use it to identify peers who can help out with code reviews,

design discussions, and debugging tasks.

• New project members use the knowledge as a communication aid.

• Testers grab a digital copy of the map to find the developer who’s most

likely to know about a particular feature.

• Finally, technical leaders use the information to evaluate how well the

system structure fits the team structure, identify knowledge loss, and

ensure that we get the natural informal communication channels we need

to write great code.

Chapter 13. Build a Knowledge Map of Your System • 160

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

A knowledge map is also a great supplement to a temporal coupling analysis.

When you identify components that are temporally coupled, you want to break

that dependency. In the meantime, you want to ensure that the main devel-

opers of the coupled components work closely together.

Unfortunately, it’s easy to misuse the knowledge map. It’s not a summary of

individual productivity, nor is it a way to evaluate people. Used that way, the

information does more harm than good. Eventually, we developers learn to

game the metric, and the quality of the code and the work environment suffers

in the process. Don’t go there.

Get More Details with Code Churn

We covered a lot of ground in this chapter. First, we talked about the perils

of fragmented development efforts. You learned about its link to post-release

defects. You also learned to analyze the problem and visualize the result with

fractal figures. With fractal figures, you got an overview of how the development

was shared.

We then took the idea to the system level. You’ve already learned that much

of our time as software developers is spent communicating. Now you’ve seen

how to build a knowledge map of your codebase to help you find the correct

person to discuss a particular feature or piece of code with. We also saw that

these techniques go beyond programming and provide information useful to

technical managers as well.

Our fractal figures and maps are based on how we as developers have worked

so far. The measure we used builds on a concept called code churn. Code

churn measures the rate at which our code evolves. By digging deeper into

the subject, you’ll be able to predict defects, identify unstable parts in your

system, and even gain important information about the real process your

team follows. Let’s see how it works!

report erratum • discuss

Get More Details with Code Churn • 161

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 14

Dive Deeper with Code Churn

In the previous chapter, we looked at the risks and costs of fragmented

development efforts. We also created a knowledge map to serve as a commu-

nication and planning aid. In this chapter, we’ll build on that information by

introducing the concept of code churn.

Code churn is a measure that tells us the rate at which our code evolves. By

analyzing code churn, we can identify fluctuating parts of our codebase. This

lets us predict both post-release defects and unstable feature areas.

You’ll also see how code churn lets you reverse-engineer your team’s coding

process. That information lets you evaluate your development practices and

investigate your potential process loss. As always, let’s start with a war story.

Cure the Disease, Not the Symptoms

So, how much do you enjoy merging code from different development

branches? Not at all? Neither do I. If you’re like me, you’ve probably had your

fair share of merge nightmares. Remember the project I talked about in

Chapter 12, Discover Organizational Metrics in Your Codebase, on page 133?

You know, the story of the project that got stacked with four times as many

developers as needed to get it done “faster”?

In that project, one of the major bottlenecks turned out to be parallel work.

We often spent a few hours adding a feature, only to find out that the relevant

code had been rewritten in another branch. Not only is that way of working

frustrating, it’s also expensive and a sure way to breed defects. We don’t want

that.

Better tools like Git and Mercurial have improved the situation, but we cannot

expect our tools to cure dysfunctional practices. Let’s see how code churn

can uncover them.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Meet Code Churn

Code churn refers to a family of measures that reflect how rapidly your

codebase evolves. Each time you commit a change to your source code, your

version-control system records the lines you’ve added, modified, and deleted.

The following image shows how it looks in Git.

Over time, we get thousands of such small churn contributions in our

repositories. Each one of them provides a small hint about how we work. Let’s

see how we can use that to discover process loss in our organization.

Discover Your Process Loss from Code

By using code churn, we can detect problems in our process. Again, we’re

not referring to the official processes our companies use to get a sense of

predictiveness in software development. Instead, we’re referring to the actual

process you and your team use. Formal or not, chaotic or ordered—there’s

always a process.

Now, remember how we discussed process loss back in Chapter 11, Norms,

Groups, and False Serial Killers, on page 121? Process loss means that we, as

a team, will never operate at 100 percent efficiency. But what we can do is

minimize the loss. To succeed, we need to know where we stand. So let’s see

how code churn lets us trace process loss in the history of our codebase.

Measure the Churn Trend

Let’s start with a code churn analysis on Code Maat to reverse-engineer its

coding process. Move into your Code Maat repository and request an abs-churn
analysis:

Chapter 14. Dive Deeper with Code Churn • 164

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

prompt> maat -c git -l maat_evo.log -a abs-churn
date,added,deleted
2013-08-09,259,20
2013-08-11,146,70
2013-08-12,213,79
2013-08-13,126,23
2013-08-15,334,118
...

The abs-churn analysis calculates the absolute code churn in the project. That

means we get to see the total number of added and deleted lines of code

grouped by each commit date.

When we re-engineer our process from code, the churn numbers themselves

aren’t that interesting. What matters is the overall pattern. Let’s look at it.

A simple way to investigate churn patterns is to visualize the analysis results

in a line diagram. Save the analysis results to a file and import the data into

a spreadsheet application of your choice. As the following figure shows, the

overall trend is a steady stream of commits. That’s a good trend because it

means we’re building the software in small increments. Small increments

make our progress more predictive. It’s a coding process that makes it easier

to track down errors, since we can roll back the specific and isolated changes

until we reach a stable state.

But all is not well. There’s a suspiciously high peak in the middle of the churn

diagram. What happened there? According to the results from our abs-churn
analysis, that spike occurred on the 2013-08-20. At that day, the Code Maat

codebase grew by a factor of 60 compared to the normal daily churn. If that

report erratum • discuss

Discover Your Process Loss from Code • 165

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

growth occurred due to new application logic, we may have a problem, because

high code churn predicts defects.

Our first investigative step is to look at the version-control log for the date of

interest. In this case, we find that the spike is due to the addition of static

test data. As you can see in the following image, a complete Subversion log

was committed to the repository.

So in this case, our spike was a false positive (although test data may be

fragile, too, as we discussed in Encapsulate Test Data, on page 97). But you

need to be aware of other churn patterns. Let’s look at them.

Know the Common Churn Patterns

When we investigate churn trends, we’ll typically find one of the patterns

illustrated in the figure below. As we discuss these patterns, imagine a fictional

deadline approaching. Now, let’s look at each pattern.

The first case shows a decreasing churn trend. That means we’re able to

stabilize more and more of our code bases as time goes on. This is the pattern

we want to see.

The second pattern is harder to interpret. The first time I saw it, it didn’t seem

to make sense. Take a look at the following figure. What happens is that you

have a period of virtually no activity, and then you get a sudden churn spike.

Chapter 14. Dive Deeper with Code Churn • 166

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Then there’s no activity again before another large spike occurs. What situa-

tional forces can bring forth a trend like this?

Remember the project I told you about

at the start of this chapter? The

project where we spent hours on

complicated merges? That project

exhibited this pattern. Once we looked

into it, we found that there were

exactly two weeks between each spike.

Of course, the team used an iterative

development process. And, you

guessed it, each iteration was two

weeks. At the start of each iteration, the developers got a feature assigned to

them. The developers then branched out and coded along. As the deadline

approached—in this case, the end of the iteration marked by a demo—each

developer hurried to get his or her feature merged into the main branch.

The takeaway is that deadlines bring out the worst in us. No one wanted to

miss the demo. As a consequence, code was often rushed to completion so

that it could be merged. That in itself is a problem manifested in this pattern.

But there’s more to it. Even when each feature is well-tested in isolation on

its respective branch, we don’t know how the different features are going to

work together. That puts us at risk for unexpected feature interactions, which

are some of the trickiest bugs to track down.

Finally, our last churn pattern shows

a scary place to be. As you see in the

following figure, that project

approaches a deadline but keeps

changing progressively more code.

Since there’s a positive correlation

between code churn and defects, this

patterns means we put the quality of

our code at risk.

This churn pattern means that the

project won’t hit the deadline. There’s a lot more work before we have anything

like a stable codebase. Running regular analyses of hotspots and temporal

coupling lets you uncover more about these problems. Another useful strategy

is to analyze what kind of growth you have by applying the tools from Chapter

6, Calculate Complexity Trends from Your Code’s Shape, on page 55. If the

report erratum • discuss

Discover Your Process Loss from Code • 167

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

new code is more complex than the previous code, the project is probably

patching conditional statements into a design that cannot sustain them.

You Need Other Tools for SVN and Mercurial

Code Maat only supports code churn measures for Git. The reason

is that Git makes the raw data available directly in the version-

control log on which Code Maat operates. That doesn’t mean you’re

out of luck, though.

If you use Subversion, you can still calculate churn metrics. You

need to write a script that iterates through all revisions in your

repository and performs an svn diff for each revision. The output is

fairly straightforward to parse in order to collect the churn values.

I’d also recommend that you check out StatSVN,1 which is a tool

that calculates a churn trend for you.

Mercurial users can apply the strategy to extract raw churn values.

In addition, Mercurial comes with a churn extension that provides

useful statistics.2

Investigate the Disposal Sites of Killers and Code

As we introduced hotspots in Chapter 2, Code as a Crime Scene, on page 13,

we based our hotspots on a core idea from geographical profiling: the spatial

movement of criminals helps us identify and catch them. Similarly, we’ve

been able to identify patterns in our spatial movement in code. And these

patterns let us identify maintenance problems and react to them.

Over the years, forensic psychologists have looked at other behavioral patterns

as well. One recent study investigated the location of disposal sites used by

serial killers. It sure is a macabre research subject, but the information gained

is valuable. Let’s look into it.

The deeds of a serial killer are bizarre. There’s not much to understand there.

But although the deeds are irrational, there is a certain logic to the places

where serial killers choose to dispose of their victims. One driving force is

minimizing the risk of detection. That means the disposal sites are carefully

chosen. Often, the geographical distribution of these locations overlaps with

the offender’s other noncriminal activities. (See Principles of Geographical

Offender Profiling [CY08a].) As a consequence, the location of disposal sites

contains additional information that points to the offender.

1. http://www.statsvn.org/

2. http://mercurial.selenic.com/wiki/ChurnExtension

Chapter 14. Dive Deeper with Code Churn • 168

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Our programing activities are nowhere near as gruesome, but our codebases

do have disposal sites. Disposal sites of code that shouldn’t be there are also

hard to find. Just as criminal investigators improve their models by looking

for additional data, so should we. Let’s see how code churn provides that

information.

Link Code Churn to Temporal Coupling

Our early design decisions frequently lead to problems as our code evolves.

Because programming is a learning activity, it’s ironic that we have to make

so many fundamental design choices early, at the point where we know the

least about the system. That’s why we need to revisit and improve those

choices. We need to reflect our increased understanding in the system we’re

building.

The analyses we’ve learned aim to let us pick up the signs when things start

to evolve in the wrong direction. One typical sign is when our software exhibits

unexpected modification patterns. In Part II, you learned to catch that problem

with temporal coupling analyses. Let’s return to one of those case studies

and supplement it with code churn data.

We’ll reuse the version-control log from Craft.Net that we investigated in Catch

Architectural Decay, on page 83. In that chapter, we found that the central

MinecraftServer module kept accumulating temporal dependencies. We interpreted

this trend as a sign of structural decay.

Let’s revisit the results from that temporal coupling analysis. You can reuse

the version-control log we generated back then. (If you don’t have one, follow

report erratum • discuss

Investigate the Disposal Sites of Killers and Code • 169

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

the steps in Catch Architectural Decay, on page 83.) As you can see in the

following figure, the dependencies go across multiple packages:

Figure 3—Modules that have temporal coupling to MinecraftServer

The structural decay in the preceding figure is a reason for concern. We have

a cluster of 7 modules with strong temporal dependencies on the MinecraftServer.
Trying to break all of these dependencies at once would be a high-risk opera-

tion. Instead, we’d like to prioritize the problems. Are some dependencies

worse than others? A code churn analysis cannot tell for sure, but it gives us

enough hints. Let’s try it out.

Link Code Churn to Temporal Coupling

In our first churn analysis, we calculated a trend for the complete codebase.

Now we want to focus on individual modules instead and see how the churn

is distributed across the system. We do that by an entity-churn analysis. Here’s

how it looks in the Craft.Net repository:

prompt> maat -c git -l craft_evo_140808.log -a entity-churn
entity,added,deleted
...
Craft.Net.Server/MinecraftServer.cs,1315,786
Craft.Net.Server/EntityManager.cs,775,562
Craft.Net.Client/Session.cs,678,499
Craft.Net/Packets.cs,676,3245
...

The results show the amount of churned code in each module. For example,

you see that we added 1,315 lines of code to the MinecraftServer.cs, but we also

deleted 786 lines. Let’s combine this information with our temporal coupling

results:

Chapter 14. Dive Deeper with Code Churn • 170

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Deleted LinesAdded LinesCoupling (%)Module

288839Test/TestServer/Program.cs

4531368Server/RemoteClient.cs

13622448Server/Handlers/PacketHandlers.cs

9917942Client/Handlers/LoginHandlers.cs

5696541Server/EntityManager.cs

1141136Anvil/Level.cs

324567637Packets.cs

Table 1—Code churn for temporal coupling with the MinecraftServer

The churn metrics give us a more refined picture of the structural problems.

Let’s interpret our findings.

Interpret Temporal Coupling with Churn

In the preceding table, we can see that the Level.cs module has increased sig-

nificantly in size. As part of this growth, it got coupled to the MinecraftServer.
That’s the kind of dependency I’d recommend you break soon.

Our churn dimensions also tell us that TestServer/Program.cs and Handlers/LoginHan-
dlers.cs only contain small modifications. That means they get low priority until

our more serious problems have been addressed.

Finally, the EntityManager.cs presents an interesting case. Given what you learned

in Chapter 5, Judge Hotspots with the Power of Names, on page 47, the name

of the module makes an alarm go off. But our metrics show that the module

shrank by 500 lines during our analysis period. Since code is like body fat

after the holiday season—it’s good to get rid of some—this decrease is a

promising sign. You see, code churn can be used to track improvements, too.

As you see, adding churn metrics to your other analyses lets you prioritize

the improvements. Code churn also helps to track your progress. Used this

way, code churn becomes a tool to focus refactoring efforts where they are

likely to pay off quickly.

Predict Defects

A high degree of code churn isn’t a problem in and of itself. It’s more of a

symptom, because code changes for a reason. Perhaps we have a feature area

that’s poorly understood. Or maybe we just have a module with a low-quality

implementation.

report erratum • discuss

Predict Defects • 171

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Given these reasons, it’s hardly surprising that code churn is a good predictor

of defects. Let’s see how we can use that in our hotspot analyses.

Analyze Churn on an Architectural Level

In Chapter 10, Use Beauty as a Guiding Principle, on page 105, we

used temporal coupling to identify expensive change patterns in

different architectures. We used the analysis results to detect

modification patterns that violated architectural principles. Code

churn measures supplement such analyses as well. Let’s see how.

In the architectural analyses, we specify a transformation file. This

file defines our architecturally significant components. To run a

churn analysis on that level, we just specify the same transforma-

tion when we request an entity-churn analysis. When combined with

temporal coupling, code churn provides additional insights on

how serious the identified dependencies are.

Detect Hotspots by Churn

In this book, we used the number of revisions of each module to detect

hotspots. It’s a simple metric that works surprisingly well. But it sure has its

limitations. (We discussed them back in Limitations of the Hotspot Criteria,

on page 30.)

Code churn gives you an alternative metric that avoids some of these biases.

Here are the typical cases where you should consider code churn:

• Differences in individual commit styles: Some developers keep their commits

small and cohesive; others stick to big-bang commits.

• Long-lived feature branches: If we develop code on branches that live for

weeks without being merged, as you see in the following figure, we may

lose important history with regard to the original change frequencies on

the branch.

Chapter 14. Dive Deeper with Code Churn • 172

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

While both scenarios indicate symptoms of deeper problems, sometimes you’ll

find yourself in one of them. In that case, code churn provides a more accurate

metric than raw change frequencies.

To use code churn in a hotspot analysis, you combine the results from an

entity-churn analysis with a complexity metric—for example, lines of code. The

overlap between these two dimensions lets you identify the hotspots.

Consider Relative Code Churn

The code churn measures we’ve used so far are based on absolute churn

values. That means code churn erases the differences between commit styles;

it no longer matters if someone puts a day’s work into a single commit or if

you commit often. All that matters is the amount of code that was affected.

However, it’s worthwhile to investigate an alternative measure. In Use of

relative code churn measures to predict system defect density [NB05], a research

team found that code churn was highly predictive of bugs. The twist is that

the researchers used a different measure than we do. They measured relative

code churn.

Relative code churn means that the absolute churn values are adjusted by

the size of each file. And according to that research paper, the relative churn

values outperform measures of absolute churn. So, have I wasted your time

with almost a whole chapter devoted to absolute churn? I certainly hope not.

Let’s see why.

First of all, a subsequent research paper found no difference between the

effectiveness of absolute and relative churn measures. In fact, absolute values

proved to be slightly better at predicting defects. (See Does Measuring Code

Change Improve Fault Prediction? [BOW11].) Further, relative churn values

are more expensive to calculate. You need to iterate over past revisions of

each file and calculate the total amount of code. Compare that to just parsing

a version-control log, as we do to get absolute churn values.

The conclusion is that we just cannot tell for sure whether one measure is

better than the other. It may well turn out that different development styles

and organizations lend themselves better to different measures. In the

meantime, I recommend that you start with absolute churn values. Simplicity

tends to win in the long run.

report erratum • discuss

Predict Defects • 173

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Know the Limitations of Code Churn

Like all metrics, code churn has its limitations, too. You saw one such case

in Measure the Churn Trend, on page 164, where a commit of static test data

biased the results. Thus, you should be aware of the following pitfalls:

• Generated code: This problem is quite easy to solve by filtering out gener-

ated code from the analysis results.

• Refactoring: Refactorings are done in small, predictable increments. As a

side effect, code that undergoes refactorings may be flagged as high churn

even though we’re making it better.

• Superficial changes: Code churn is sensitive to superficial changes, such

as renaming the instance variables in a class or rearranging the functions

in a module.

In this chapter, we’ve used code churn to complement other analyses. We

used the combined results to support and guide us. In my experience, that’s

where churn measures are the most valuable. This strategy also lets you

minimize the impact of code churn’s limitations.

Time to Move On

In this chapter, you learned about the concept of code churn. We used code

churn to re-engineer your coding process from version-control data. That

technique lets you investigate potential process loss from how you work as a

team.

We then transitioned to calculate code churn for individual modules. You

learned to use this information to supplement temporal coupling analyses.

You also saw how we can measure churn on an architectural level. We then

looked into code churn as an alternative to change frequencies in hotspot

analyses. You also learned about the differences between absolute and relative

churn.

This chapter completes our tour of software evolution and forensic code

investigations. You’ve come a long way since you identified your first hotspot.

But before I leave you on your own, we’ll take a step back and reflect on how

all these techniques fit together. We’ll also share a look into the crystal ball

to see what the future may look like. So, let’s turn the page and find out what

the next steps are!

Chapter 14. Dive Deeper with Code Churn • 174

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

CHAPTER 15

Toward the Future

You’re almost through with the book now, and I hope you’ve enjoyed it! In

this chapter, we’ll consider the various analytic tools together to see how they

complement each other.

We’ll also talk about where you go from here by discussing other types of

analyses. You’ll see how you can analyze developer networks, craft analyses

to detect violations of design principles, and apply the techniques you already

know to new areas. To do that, you may need to build your own custom tools.

You’ll get some tips here, including a brief introduction to the Moose platform,

which can assist you with the task.

Finally, you’ll learn about the limitations in today’s technologies. You’ll learn

how the next generation of tools will have to go beyond version-control systems

and track what’s happening in between commits. All right, I can’t wait, so

let’s jump right into our final chapter!

Let Your Questions Guide Your Analysis

The techniques in this book came about because we needed to understand

large software systems. Because, let’s face it, software development is hard—we

programmers need all the help we can get. Our collection of analysis and

heuristics provides such support. We just need to apply it wisely. Let’s discuss

how.

Start Simple and Then Elaborate as Needed

The hotspot analysis from Part I is as close as we get to a silver bullet. Sure,

you’ve learned about the limitations of hotspots; you’ve seen false positives

and biased data. Yet a hotspot analysis often manages to provide you with a

high-level view of the codebase’s condition. A hotspot analysis is an ideal first

step.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

In addition to hotspot analysis, I always check temporal coupling. Start with

an analysis of individual modules, as we did back in Chapter 8, Detect

Architectural Decay, on page 77. Look for surprising modification patterns

and patterns that cross architectural boundaries.

If you know the codebase well, I also recommend that you specify its architec-

turally significant boundaries in a transformation file and perform an analysis

on that level, as we did in Chapter 10, Use Beauty as a Guiding Principle, on

page 105.

When you need more supporting data, either to understand the problems or

to prioritize improvements, look to supplement your results with the code

churn measures we learned about in Chapter 14, Dive Deeper with Code

Churn, on page 163.

Finally, you need to consider the social environment where your system

evolves. Let’s recap that part.

Support Collaboration

We started Part III with an overview of how we work in groups. You learned

about social biases and saw how they can turn group decisions into disasters.

These biases are hard to avoid, and you should keep in mind that we need

to challenge them, as we saw in Challenge with Questions and Data, on page

125.

In small organizations, we all know each other and how we work. But as soon

as an organization grows, even for a group of seven to ten people, things

change for the worse, and you need communication aids. The knowledge map

that we discussed in Chapter 13, Build a Knowledge Map of Your System, on

page 147, is a powerful concept to guide you in such settings.

If you work with multiple teams, I recommend that you keep track of parallel

work in your codebase. As you learned in Chapter 12, Discover Organizational

Metrics in Your Codebase, on page 133, parallel work leads to lower-quality

code and more defects. When you identify modules that suffer from parallel

work, you investigate them further with fractal figures, as we did in Visualize

Developer Effort with Fractal Figures, on page 150.

Changing the way you work will never be easy. The techniques in this book

can only help you make more informed decisions that let you move closer to

your team’s potential productivity.

Chapter 15. Toward the Future • 176

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

There’s much more to be said about the social influences on software design.

For example, we haven’t talked much about how our physical workplace

affects our ability to code.

Joe asks:

Great, So How Does the Physical Workplace Affect

Our Ability to Code?

Our office space is an important determiner of job performance. As Peopleware:

Productive Projects and Teams [DL99] reports, individuals in quiet working conditions

are one-third more likely to deliver zero-defect work than their peers in noisy environ-

ments. And it gets worse with increased levels of noise.

Studies like this should be an alarming message to any company that depends upon

the creativity and problem-solving skills of its employees. In reality, our office envi-

ronment is often neglected. Many programmers, myself included, fall back on ear-

phones and music to shield us from the noise. It’s important to understand the

tradeoffs here: when we choose a soundtrack to our code, the effect varies with the

task.

Music is an excellent choice when you need a distraction to help you get through a

repetitive, routine task. It may get you to perform slightly better and may make the

task more enjoyable in the process. On the other hand, music will hurt your perfor-

mance when working on novel and cognitively demanding tasks, which include pro-

gramming. However, a noisy work environment is even worse. If you have to code

under noisy conditions, music is a decent alternative. Just remember to select music

with the following qualities:

1. Avoid music that affects you emotionally. Choose something that you neither

strongly like nor strongly dislike.

2. Avoid music with lyrics, because words will compete with the code for your

attention.

3. Pick white noise if you prefer it over music. White noise works well as a noise-

cancellation technique, but just like music, it cannot compete with quiet working

conditions.

Take Other Approaches

The techniques in this book are a starting point. There’s much more informa-

tion in our code repositories. So before we leave, let’s look at some other

approaches. What follows are strategies that might give you even more infor-

mation. These ideas may also serve as an inspiration once you choose to

explore our topic in more depth.

report erratum • discuss

Take Other Approaches • 177

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Investigate More Than Source Code

If you have other artifacts stored under version control, you can include them

in the analyses as well. Some examples include documents, requirement

specifications, or manuals for your product. Perhaps you’ll even look for

temporal dependencies between your requirements and code.

Have a look at the following figure as an example of a non-code analysis. This

picture shows the hotspots in the book you’re reading right now. (If you’re

looking to contribute to the errata, Chapter 13 seems like a chance to score

big.)

Find Classes That Violate Design Principles

Our version-control systems record changes on a much more granular level

than the file. This information is available to you through a simple diff between

two revisions. The details that diff gives you let you reason about how the

interior of a class evolves.

Chapter 15. Toward the Future • 178

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

One of the more interesting approaches in this area is Michael Feathers’s1

use of version-control data to ferret out violations of the Single Responsibility

Principle. His technique uses the added, changed, and deleted lines of code

to identify clusters of methods within a class. For example, you might find

that some methods tend to change together within the same day. When you

spot a trend, it might mean you’ve detected a responsibility that you can

express in a new class.

Michael’s technique is basically a temporal coupling analysis between methods.

The analysis is harder to implement because our tools need to be language-

aware. The payoff is a tool that provides us with refactoring support based

on what our code actually needs. (See Appendix 1, Refactoring Hotspots, on

page 183, for a heuristic based on the same idea.)

Analyze Your Developer Networks

Social factors play an important role in how our code evolves. We’ve talked

about communication and knowledge distribution. Let’s take that a step fur-

ther by analyzing developer networks.

The following figure shows the relationship between different programmers

based on their interactions in code. All programmers are represented by nodes

colored with their team affiliation. Each time we touch the same piece of code

as another developer, we get a link between us. The more often we work with

the same code, the stronger the link. This information allows us to detect

social dependencies across team boundaries.

1. https://michaelfeathers.silvrback.com/using-repository-analysis-to-find-single-responsibility-violations

report erratum • discuss

Take Other Approaches • 179

https://michaelfeathers.silvrback.com/using-repository-analysis-to-find-single-responsibility-violations
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

The network information is mined by Code Maat’s communication analysis. An

interesting approach is to analyze the data as a graph to extract complex

relationships we cannot spot in the visualization alone. For example, a graph

lets us find all programmers that we depend on together with all the program-

mers they depend on themselves.

Remember Conway’s law—our designs work best when we align them with

our organization. A developer network lets you evaluate your design from that

perspective.

Craft Your Own Tools

So far we’ve discussed general analysis tools that we can apply to most

codebases. Once you’ve gained experience and are comfortable with them,

you’ll decide you need to run more analyses. You need to craft your own tools.

The advantage of building custom tools is that you can tailor the analysis to

specific content. Let’s look into that a bit.

The version-control analyses we’ve performed previously aren’t difficult from

a mathematical point of view. The trickiest part—which wasn’t that difficult

either—was to parse the input data into a format on which you can perform

calculations. You can simplify a lot here. Version-control systems like Git

support a tremendous number of options to tailor the log output. Use those

options to derive a log format containing the minimum of what’s needed to

answer the analysis questions you have.

Another tool-building approach is to leverage existing expertise. Moose2 is an

open-source platform for building custom analyses quickly. (You’ve already

seen a piece of Moose work in Code City that we looked at in Chapter 2, Code

as a Crime Scene, on page 13.) Moose helps with tasks such as parsing,

visualizations, and more. I recommend you check it out.

Customize Your Analyses for Pair Programming

Most of the analyses we’ve done ignore the author field in the commit info.

However, in case you want to build a knowledge map or analyze parallel work

between teams, you need that information. And it may be a little bit harder

to obtain if you pair program. Let’s see what you can do.

When you pair program, you can identify the involved programmers through

the commit message. Some pairs already put their initials at the start of the

commit message. If you make that a practice, you have all the data you need.

2. http://www.moosetechnology.org/

Chapter 15. Toward the Future • 180

report erratum • discuss

http://www.moosetechnology.org/
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

You just need to tailor your tools to pick that information instead of the author

field in the log.

Let’s Look into the Future

Remember the old saying that what happens in a commit stays in a commit?

Well, probably not, since I just made it up. But it’s nonetheless true, and

that’s a problem.

Today’s tooling limits us to a commit as the smallest cohesive unit. If we knew

what happened within a commit, we could take our analyses and predictions

to a new level. Consider a temporal coupling analysis as an example. The

analysis lets us identify modules that change together. But we cannot tell

anything about the direction. Perhaps a change to module A is always followed

by predictable modifications to B and C, never the other way around. That

would be valuable information to have.

The next generation of tools has to go beyond version-control systems. We

need tools that integrate with the rest of our development environment, and

tools that record our every interaction with the code. Once we get there, we’ll

be able to support the most important activities in programming: understand-

ing and reading code. Let’s look at how we do that.

Support Code Reading

Most analyses focus on the design aspect of software. But reading code is a

harder problem to solve. Let’s take inspiration from other areas.

Think about how online sites tend to work. You check out a product and

immediately get presented with similar products. What if we could do the

same for code? You open a file and get presented with a “programmers who

read this code also looked at the UserStatistics class and eventually ended up

modifying the ApplicationManager module. Twice.” Such reading recommendations

are a natural next step to take.

Integrate Dynamic Information

Another promising area of research is to integrate dynamic analysis results

into our development environments. We could use that information to present

warnings for particular pieces of our codebase. Let’s look at an example.

You have learned that a high degree of parallel development leads to lower

quality. What if we hooked the results of such an analysis into our code edi-

tors? When we start to modify a piece of code, we would be presented with a

report erratum • discuss

Let’s Look into the Future • 181

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

warning like “watch out—this code has been modified by three different pro-

grammers over the past day.”

To really work, you’d also need a time aspect. If you had a problem with par-

allel development in the past, you reacted, and then you fixed the problem,

the warning should disappear automatically over time.

We already have all the building blocks we need. The next step is to integrate

them with the rest of our workflow. Perhaps some of these new tools will be

written by you?

Write to Evolve

I enjoyed writing this book, and I hope you enjoyed our journey through the

fascinating field of evolving code. Ultimately, it’s all about writing better soft-

ware that’s able to evolve as a reaction to the pressure of new features, novel

usages, and changed circumstances.

Writing code of that quality will never be easy; software development is one

of the hardest things we humans can put our brains to. We need all the

support we can get, and I hope this modest collection of forensic techniques

has inspired you to dive deeper into the subject. The scene is now yours. May

the code be with you.

Chapter 15. Toward the Future • 182

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

APPENDIX 1

Refactoring Hotspots

Refactor Guided by Names

Throughout this book, we’ve focused on detecting problems as early as possi-

ble. You learned that a hotspot analysis is an ideal first step toward under-

standing the overlap between complexity and programmer effort in large

systems. In this appendix, you’ll get some tips on how to tackle the hotspots

you detect.

Back in Chapter 5, Judge Hotspots with the Power of Names, on page 47, you

identified problematic hotspots like SessionImpl.java and SessionFactoryImpl.java in
the Hibernate codebase. Since those modules are central to the system, you

want to refactor them.

Hotspots are complicated by nature, so approach them with care. The safest

way is to make your improvements in small increments so that you can

experiment and roll back design choices that don’t work.

Even as you work iteratively, you want a general idea of where you’re heading.

Large-scale refactorings are challenging and require more discipline than

local changes. It’s way too easy to code yourself into a corner. Let’s see what

we can do to stay on course.

Group Functions by Tasks

As you identify a hotspot, look at the names of its methods and functions.

They hold the key to the future.

If you use an IDE, you’ve probably noticed that it usually sort names alpha-

betically. It’s an unfortunate convention—there’s no order that’s less relevant

(even a random order would be preferable, since it at least doesn’t pretend to

matter) for our purposes.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

What you want to do is group your functions and methods by task. When

you do, as the figure shows, hidden responsibilities emerge.

The groups are ideal for identifying design elements. When you are refactoring,

you make those responsibilities explicit and wind up with a design with

higher cohesion and better modularity. You can make more radical improve-

ments when needed. For readability, cohesion is king. (The other classic

design aspect, coupling, isn’t the main problem. Loosely coupled software

may actually be harder to understand. It’s always a tradeoff.)

Let Names Emerge from Wishful Thinking

Choosing good names is hard. As Martin Fowler points out, “There are two

hard things in computer science: cache invalidation, naming things, and off-

by-one errors.”1

The best strategy is to let the correct names emerge. The tool you need is

wishful thinking; defer the decision about how to represent your data and

simply imagine you have all the functions to solve your problem in the simplest

possible way.

With wishful thinking, you write your ideal code upfront. If you’re test-driven,

you start to play with a test. Don’t worry about it if it doesn’t compile or won’t

1. http://martinfowler.com/bliki/TwoHardThings.html

Appendix 1. Refactoring Hotspots • 184

report erratum • discuss

http://martinfowler.com/bliki/TwoHardThings.html
http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

run. Experiment with different variants until the code is as expressive as

possible. Then you just have to make it compile by implementing your

abstractions. This is often straightforward once you’ve come up with clear

roles for your objects and functions.

The reason wishful thinking works is because it helps you get a new perspec-

tive on your problem. It’s a perspective that fuels your creativity and makes

it easier to come up with code that communicates intent.

I use the technique all the time as I get stuck with parts that don’t read well.

The concept is described along with examples in Structure and Interpretation

of Computer Programs [AS96]—it’s a brilliant read.

Kill the Distractions

A short note on development environments. If you’re using an IDE, I recom-

mend you turn off all syntax highlighting, background compilation, and other

helpful features during your wishful-thinking session.

Because you are pretending to have code that isn’t there yet, the IDE will get

in your way. Few things are as disturbing as having your wishful code marked

up with thick red syntax errors. A view like the following screenshot is a real

productivity killer due to the distracting error markers that draw your attention

away from what you’re trying to achieve.

Get Your Names Right

The main takeaway in this appendix is that naming is the most important

thing in software design, which includes refactoring. Spending some extra

time to get your names right pays off. Wishful thinking helps get them right.

The power of naming concepts goes deep. You saw that information-poor

abstract names are magnets for extra responsibilities. When you come across

such modules, group their methods and functions by responsibilities so that

you know where to refactor.

report erratum • discuss

Refactor Guided by Names • 185

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Bibliography

[AS96] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of

Computer Programs. MIT Press, Cambridge, MA, 2nd, 1996.

[Bac96] J. Bach. Test Automation Snake Oil. Windows Tech Journal. 1996.

[BH06] D. Beyer and A. E. Hassan. Animated Visualization of Software History

using Evolution Storyboards. Reverse Engineering, 2006. WCRE ’06. 13th

Working Conference on. 199–210, 2006.

[BHS07] F. Buschmann, K. Henney, and D.C. Schmidt. Pattern-Oriented Software

Architecture Volume 4: A Pattern Language for Distributed Computing. John

Wiley & Sons, New York, NY, 2007.

[BK03] R.S. Baron and N.L. Kerr. Group Process, Group Decision, Group Action.

Open University Press, Berkshire, United Kingdom, 2003.

[BNMG11] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t Touch

My Code! Examining the Effects of Ownership on Software Quality. Proceed-

ings of the 19th ACM SIGSOFT symposium and the 13th European conference

on foundations of software engineering. 4-14, 2011.

[BOW04] R.M. Bell, T.J. Ostrand, and E.J. Weyuker. Where the bugs are. Proceedings

of the 2004 ACM SIGSOFT international symposium on software testing and

analysis. ACM Press, New York, NY, USA, 2004.

[BOW11] R.M. Bell, T.J. Ostrand, and E.J. Weyuker. Does Measuring Code Change

Improve Fault Prediction?. ACM Press, New York, NY, USA, 2011.

[Bro95] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley, Reading, MA, Anniversary, 1995.

[Con68] M.E. Conway. How do committees invent?. Datamation. 4:28–31, 1968.

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

[CY08] D. Canter and D. Youngs. Applications of Geographical Offender Profiling.

Ashgate, Farnham, Surrey, UK, 2008.

[CY08a] D. Canter and D. Youngs. Principles of Geographical Offender Profiling.

Ashgate, Farnham, Surrey, UK, 2008.

[DB13] F. Detienne and F. Bott. Software Design: Cognitive Aspects. Springer, New

York, NY, USA, 2013.

[DHAQ07] M. Di Penta, M. Harman, G. Antoniol, and F. Qureshi. The Effect of Com-

munication Overhead on Software Maintenance Project Staffing. Software

Maintenance, 2007. ICSM 2007. IEEE International Conference on. 315–324,

2007.

[DL68] J.M. Darley and B. Latané. Bystander intervention in emergencies: diffusion

of responsibility. Journal of Personality and Social Psychology. 8:377–383,

1968.

[DL99] Tom Demarco and Timothy Lister. Peopleware: Productive Projects and

Teams. Dorset House, New York, NY, USA, Second edition, 1999.

[DLG05] M. D’Ambros, M. Lanza, and H Gall. Fractal Figures: Visualizing Develop-

ment Effort for CVS Entities. Visualizing Software for Understanding and

Analysis, 2005. VISSOFT 2005. 3rd IEEE International Workshop on. 1–6,

2005.

[DLR09] M. D’Ambros, M. Lanza, and R Robbes. On the Relationship Between

Change Coupling and Software Defects. Reverse Engineering, 2009. WCRE

’09. 16th Working Conference on. 135–144, 2009.

[FW08] S. M. Fulero and L. S. Wrightsman. Forensic Psychology. Cengage Learning,

Boston, MA, 2008.

[GAL14] E. Guzman, D. Azócar, and L. Li. Sentiment analysis of commit comments

in GitHub. MSR 2014 Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM Press, New York, NY, USA, 2014.

[GK03] H. Gall and M. Krajewski. CVS release history data for detecting logical

couplings. Proc. International Workshop on Principles of Software Evolution.

13–23, 2003.

[GKMS00] T. L. Graves, A. F. Karr, J. S. Marron, and H Siy. Predicting fault incidence

using software change history. Software Engineering, IEEE Transactions

on. 26[7], 2000.

[Gla92] Robert L. Glass. Facts and Fallacies of Software Engineering. Addison-

Wesley Professional, Boston, MA, 1992.

Bibliography • 188

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

[Har10] S. Harrison. The Diary of Jack the Ripper: The Chilling Confessions of James

Maybrick. John Blake, London, UK, 2010.

[HGH08] A. Hindle, M.W. Godfrey, and R.C. Holt. Reading Beside the Lines: Indenta-

tion as a Proxy for Complexity Metric. Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on. IEEE Computer Society

Press, Washington, DC, 2008.

[HSSH12] K. Hotta, Y. Sasaki, Y. Sano, Y. Higo, and S. Kusumoto. An Empirical Study

on the Impact of Duplicate Code. Advances in Software Engineering. Special

issue on Software Quality Assurance Methodologies and Techniques, 2012.

[KG85] W. Kintsch and J. G. Greeno. Understanding and solving word arithmetic

problems. Psychological Review. 92(1):109–129, 1985.

[Leh80] M. M. Lehman. On Understanding Laws, Evolution, and Conservation in

the Large-Program Life Cycle. Journal of Systems and Software. 1:213–221,

1980.

[LR90] J. H. Langlois and L. A. Roggman. Attractive faces are only average. Psy-

chological Science. 1:115–121, 1990.

[MW09] A. Meneely and L. Williams. Secure open source collaboration: an empirical

study of Linus’ law. Proceedings of the 16th ACM conference on computer

and communications security. 453–462, 2009.

[NB05] N. Nagappan and T. Ball. Use of relative code churn measures to predict

system defect density. Proceedings of the 27th international conference on

software engineering. 284–292, 2005.

[NMB08] N. Nagappan, B. Murphy, and V. Basili. The Influence of Organizational

Structure on Software Quality. International Conference on Software Engi-

neering, Proceedings. 521–530, 2008.

[OW10] A. Oram and G. Wilson. Making Software: What Really Works, and Why

We Believe It. O’Reilly & Associates, Inc., Sebastopol, CA, 2010.

[PM00] J.F. Pane and B.A. Myers. The Influence of the Psychology of Programming

on a Language Design. Proceedings of the 12th Annual Meeting of the Psy-

chology of Programmers Interest Group. 193–205, 2000.

[SEKH09] C.M. Schweik, R.C. English, M. Kitsing, and S. Haire. Brooks’ versus Linus’

law: an empirical test of open source projects. Proceedings of the 2008

international conference on digital government research. 423–424, 2009.

[SF08] V. Swami and A. Furnham. The Psychology of Physical Attraction. Routledge,

New York, NY, USA, 2008.

report erratum • discuss

Bibliography • 189

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

[SFL88] P. Slovic, B. Fischhoff, and S. Lichtenstein. Decision Making: Descriptive,

Normative, and Prescriptive Interactions. Cambridge University Press,

Cambridge, United Kingdom, 1988.

[TT89] B. Tversky and M. Tuchin. A reconciliation of the evidence on eyewitness

testimony: Comments on McCloskey and Zaragoza. Journal of Experimental

Psychology: General. [118]:86–91, 1989.

[VDC94] J.S. Valacich, A.R. Dennis, and T. Connolly. Idea Generation in Computer-

Based Groups: A New Ending to an Old Story. Organizational Behavior and

Human Decision Processes. 57[3]:448–467, 1994.

[WMGS07] K. Weaver, D.T. Miller, S.M. Garcia, and N. Schwarz. Inferring the popular-

ity of an opinion from its familiarity: A repetitive voice can sound like a

chorus. Journal of Personality and Social Psychology. [92]:821–833, 2007.

[YMNC04] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source

code changes by mining change history. IEEE Trans. Software Engineering.

9[30], 2004.

Bibliography • 190

report erratum • discuss

http://pragprog.com/titles/atcrime/errata/add
http://forums.pragprog.com/forums/atcrime

Index

A
-a coupling flag, 79

-a flag, 27

-a soc flag, 79

abandoned code, 159–161

Abelson, Harold, 185

abs-churn analysis, 164

absolute code churn, 165,
173

abstraction
cross-cutting temporal

coupling, 116
vs. duplication, 102

The Active Set of Classes blog,
45

--after flag, 26

Agile, maintenance and under-
standing, 3

Alexander, Christopher, 116

aliases, developer, 144

“An Empirical Study on the
Impact of Duplicate Code”,
22

“Animated Visualization of
Software History Using
Evolution Storyboards”, 89

anonymity and group size,
134

Applications of Geographical

Offender Profiling, 82

architecture, see also design
analyzing by beauty,

105–118, 176
analyzing layers, 111–116
automated tests, 91–103

avoiding surprises, 108–
111

consistency, 98
defining boundaries, 93,

113
detecting decay with code

churn, 169–171
detecting decay with

temporal coupling
analysis, 73, 77–90

encapsulating test data,
97–99

fractal figures, 152
hotspot analysis of lay-

ered architectures, 115
microservices, 117
patterns, 109–116
reverse-engineering from

code, 117
as set of principles, 91,

98

“Attractive Faces Are Only
Average”, 106

attractiveness, see beauty

authors analysis, 138, 140

automating
calculating complexity

from shape, 57–64
Code Maat mining, 26–28
indentation, 61
tests, 91–103

availability bias, 52

average-revs column, 79

averageness and beauty, 106

Azócar, D., 131

B
Bach, James, 101

Ball, T., 173

Baron, R.S., 126

beauty
analyzing architecture by,

105–118, 176
analyzing layered architec-

tures, 111–116
architecture patterns,

109–111, 113–116
criminals, 108
defining, 106
importance of, 7, 105–

108

--before flag, 26

Bell, R.M., 22, 42, 173

Beyer, D., 73, 89

bias
about, 7, 176
availability bias, 52
brainstorming, 128
cultural factors, 123
differing commit styles,

31
fundamental attribution

error, 149
groupthink, 126–128
heuristics and, 52
hindsight bias, 25
intuition, 25, 70
minority opinions, 125
misattribution, 71
pluralistic ignorance,

122, 124, 126–127
reducing with temporal

coupling, 72–76

repeated opinions, 125–
126

strategies for, 126, 128–
132

witness, 67, 69–70

Bird, C., 151

blame command, 148

Bolton, Michael, 101

Bott, F., 48

boundaries
automated test analysis,

93–99
differentiating unit and

system tests, 94–97
layered architectures,

113
microservices, 117
organizational analysis,

138–141
specifying, 93

Brainfuck, 57

brainstorming, 128

branches
code churn analysis, 172
git status, 156

Brooks, Frederick, 134

“Brooks’ Versus Linus’ Law:
An Empirical Test of Open
Source Projects”, 136

Brooks’s law, 134, 136, 138

Buffalo Bill, 15

Buschmann, F., 109

--by-file flag, 29

“Bystander Intervention in
Emergencies: Diffusion of
Responsibility”, 135

C
-c flag, 27

Canter, David, 16, 82

The Center for Investigative
Psychology, 16

change
code quality and, 22, 28,

42
complexity as enemy of,

3
frequencies analysis, 26–

28, 30, 39
frequencies as proxy for

effort, 20, 39
isolating for stability, 42–

44
law of continuing, 84,

103

patterns in architectures,
113–116

ratio and automated tests
safety net, 99–100

reasons for, 43

change coupling, see tempo-
ral coupling analysis

chaos ownership model, 151–
152

checking vs. testing, 101

chunking, 48, 116

churn, see code churn

circle hypothesis, 82

circle packing, 38, 182, see

also enclosure diagrams

classes, analyzing design vio-
lations, 178

cloc, 29, 39, 157

cloning
Code Maat repository, 24
Craft.Net repository, 85
Hibernate repository, 36
nopCommerce repository,

113
Scala repository, 156

Clouser, Roland, 70

code, see abandoned code;
lines of code, version-con-
trol data

code churn, 163–174, 176

Code City, 17, 180

code coverage, 94, 97

Code Maat
about, 7
analyzing layered architec-

tures, 113–116
architecture patterns,

109–111
authors analysis, 138, 140
automated test analysis,

93–99
automating mining, 26–

28
change reasons example,

43
cloning repository, 24
code churn analysis,

164–174
code coverage, 94
communication analysis, 180
conventions, 26
CSV to JSON conversion

script, 45, 158
differentiating unit and

system tests, 94–97
distribution site, 8

encapsulating test data,
97–99

entity-churn analysis, 170,
172–173

entity-effort analysis, 151–
152

entity-ownership analysis,
143

identifying developer dis-
tribution, 156–158

identifying developer pat-
terns, 149–152

identifying hotspots in
codebase, 23–31, 36–
45

identifying main develop-
ers, 142–144

knowledge map visualiza-
tion, 154

main-dev analysis, 142–
143, 157

main-dev-by-revs analysis,
143

refactoring-main-dev analysis,
141

revisions command, 27, 99
setup instructions, 8
summary option, 27
temporal coupling analy-

sis, 72, 78–82, 96,
109–111

--temporal-period 1 option,
140

visualization samples,
157

code reading, 181

code reviews
knowledge map, 160
prioritizing, 6, 32
shape analysis, 56

cohesion
design stability, 43
grouping functions and

methods by task, 184
isolating change, 43
names, 49
temporal coupling and,

75

collaboration
isolation as barrier, 147
support recap, 176
tests, 101

collective chaos developer
ownership model, 151–152

color
abandoned code, 159

Index • 192

developer visualizations,
150, 153, 157, 159,
179

enclosure diagrams, 39
knowledge map, 153, 157
specifying, 157
tree-map visualization,

20

ColorBrewer, 157

comma-separated values,
see CSV output

command prompt, 9

commit messages, see al-

so temporal coupling analy-
sis; version-control data

analyzing pair program-
ming, 180

discussion basis, 129–
132

emotions in, 131

commit styles
code churn analysis, 172
conventions, 31

communication
automated tests, 92
avoiding bias, 126
dependencies, 133–145
developer networks, 179
group size and, 134
hotspot analysis, 32
informal channels, 144
isolation of knowledge,

147
knowledge map, 160
open-source vs. propri-

etary projects, 136
organizational distance,

144
patterns, 116

communication analysis, 180

competitiveness and code
coverage, 97

complexity, see also complex-
ity metrics

calculating and analyzing
from shape, 55–64

calculating from negative
space, 55, 57–64

code churn, 173
enemy of change, 3
fractal figures, 152
identifying code hotspots,

21, 28–30, 173
law of increasing, 59, 63,

84
limits of name and size

heuristics, 51–52

measuring with lines of
code, 28–29

merging with effort to find
hotspots, 30, 39

need to identify and prior-
itize problems, 13–15

patterns of, 63–64
size as proxy for, 39, 51–

52
social aspects, 7

complexity metrics
compared to indentation,

57
compared to temporal

coupling analysis, 83
detecting hotspots with

code churn, 173
limitations, 6, 15

complexity_analysis.py script, 58

confessions, false, 122, 127

confidence and memory, 69

configuration files, false
hotspots, 47, 49

conjunctions in names, 49

consistency
architecture, 98
beauty and, 105, 107–

108

Conway, Melvin, 139, 145

Conway’s law, 139, 145, 180

cooperative witnesses,
see witnesses

copy-paste, 75, 102

coupled column, 79

coupling, see explicit cou-
pling; implicit coupling;
temporal coupling analysis

Craft.Net
code churn, 169–171
commit messages, 130
temporal coupling analy-

sis, 85–88

criminals
beauty, 108
disposal sites, 168
geographic profiling, 16,

19
mental maps, 152
modus operandi, 129
predicting home loca-

tions, 82

cross-cutting temporal cou-
pling, 116

CSV output
about, 27, 79

advantages, 27
cloc, 29
complexity analysis, 62
converting to JSON, 45,

158
custom visualizations, 44
merging, 30
spreadsheet visualiza-

tions, 40, 63

culture and bias, 123

custom tools, 180

custom visualizations, 44

D
D3.js, 40, 44, 158

D’Ambros, M., 83, 151

Darley, J.M., 135

date
calculating temporal cou-

pling over a day, 140
specifying period, 26, 36–

37, 62

deadlines, 167

death march
automated test, 100–103
code churn pattern, 166–

167

decay, architectural, see al-

so deterioration
code churn, 169–171
detecting with temporal

coupling analysis, 73,
77–90

decision logs, 69

decision making, see bias

Decision Making: Descriptive,

Normative, and Prescriptive

Interactions, 52

decreasing code churn pat-
tern, 166

defects
abandoned code as predic-

tor, 159–161
change frequency as pre-

dictor, 22, 28, 42
code churn as predictor,

163, 165, 167, 171,
173

conditional logic, 111
hotspots as predictor, 21–

22, 32
mapping to modules, 32
noisy environments, 177
organizational metrics as

predictor, 138

Index • 193

ownership proportion as
predictor, 151

temporal coupling as
predictor, 83, 88

degree column, 79

Demarco, Tom, 177

Dennis, A.R., 128

dependencies, see also tempo-
ral coupling analysis

automated tests, 92
communication, 141–145
implicit, 68
large-scale systems, 14
social, 179

description in good names, 49

design, see also architecture
change frequency as pre-

dictor of quality, 22,
28, 42

classes analysis, 178
Conway’s law, 139, 145,

180
grouping functions and

methods by task, 183–
185

isolating change for stabil-
ity, 42–44

need for evidence in re-
designs, 77

prioritizing issues with
hotspots, 32

prioritizing issues with
temporal coupling
analysis, 81

shape analysis, 56

deterioration, see also decay,
architectural

automated tests safety
net, 99–103

detecting with temporal
coupling analysis, 77–
90

deteriorating pattern of
complexity, 63–64

Detienne, F., 48

developers
abandoned code, 159–

161
aliases, 144
analyzing author frequen-

cies, 137, 140
analyzing networks, 179
automated testing and

roles, 101
commit styles, 31, 172
communication dependen-

cies, 133–146

competitiveness and code
coverage, 97

cultures and bias, 123
emotional content of

commit messages, 131
evaluation, 149, 161
identifying main, 141–

144
indentation style, 61
knowledge distribution,

147–161
knowledge map, 152–161
noise, 177
pair programming, 180
patterns, 149–152
social aspects, 7, 121,

126, 133–146, 176,
179

development environments,
185

Di Penta, M., 145

The Diary of Jack the Ripper,
19

diff
analyzing classes for de-

sign violations, 178
temporal coupling analy-

sis, 80

diffusion of responsibility,
135

direction
change dependencies,

115
commit analysis, 181

directories, mapping to
names, 93

disposal sites, 168

distance decay, 82

distractions, 185

documentation, investigating,
178

Does Measuring Code Change

Improve Fault Prediction?,
42, 173

Don’t Repeat Yourself,
see DRY principle

“Don’t Touch My Code! Exam-
ining the Effects of Owner-
ship on Software Quality”,
151

DOS, running Git from, 8

Dragnet, 16

DRY principle, 99, 102

duplication
vs. abstraction, 102

change frequencies and,
22

test data, 99

dynamic analysis, 181

E
The Effect of Communication

Overhead on Software

Maintenance Project

Staffing, 145

efficiency, see process loss

effort
change frequencies as

proxy for, 20, 39
identifying code hotspots,

21
indentation analysis, 59
merging with complexity

to find hotspots, 30, 39

electronic brainstorming, 128

emotions
commit messages, 131
music, 177

encapsulation
microservices, 117
temporal coupling and,

75, 81
tests, 92, 97–99

enclosure diagrams
algorithm, 44
Hibernate, 38–45
knowledge map, 154
Scala, 158
temporal coupling analy-

sis, 87

--end flag, 62

entity column, 28, 79

entity-churn analysis, 170, 172–
173

entity-effort analysis, 151–152

entity-ownership analysis, 143

evidence
avoiding bias, 126
need for, 71, 77

Evolution Radar, 80

evolutionary data, see ver-
sion-control data

experts and bias, 126

explicit coupling, 74

eyewitnesses, see witnesses

F
Facts and Fallacies of Soft-

ware Engineering, 3

false confessions, 122, 127

Index • 194

false memories, 69–70

false positives
analyzing hotspots by

name, 47–53
failing tests, 103

Father Pagano, 69–70

Feathers, Michael, ix, 45, 179

feedback, situation and sys-
tem models, 98

--file flag, 62

Fischhoff, B., 52

Forensic Psychology, 70

forensics, benefits, 1, 13, see

also geographic profiling

Fowler, Martin, 184

fractal figures, 150, 152

“Fractal Figures: Visualizing
Development Effort for CVS
Entities”, 151

Fulero, S.M., 70

functions, grouping by task,
183, 185

fundamental attribution er-
ror, 149

Furnham, A., 108

G
-g flag, 94

Gall, H., 73

gamification, 97

generated code and churn
analysis, 174

Genovese, Kitty, 134

geographic profiling, see al-

so hotspots, code
criminals, 16, 19
disposal sites, 168
geography of code visual-

ization, 17
mental maps, 152
predicting home loca-

tions, 82

Git
about, 7
automated mining, 26–28
code churn example, 164
Git BASH shell, 8
git status command, 156
log command, 24
rollback with git com-

mand, 24
show command, 62

Git BASH shell, 8

git command, rollback with,
24

git status command, 156

git_complexity_trend.py, 62

Glass, Robert, 3

Godfrey, M.W., 57, 61

graphs, developer networks,
179

Graves, T.L., 22

Greeno, J.G., 98

Group Process, Group Deci-

sion, Group Action, 126

groups
bias strategies, 126
groupthink, 126–128
process loss, 122, 128,

134, 164–168
size and communication,

134

groupthink, 126–128, 182,
see also bias

Guzman, E., 131

H
-h flag, 45

Halstead complexity mea-
sures, 57

Harman, M., 145

Harrison, S., 19

Hassan, A.E., 28, 73, 89

Henney, K., 109

Herraiz, Israel, 28

heuristics
about, 52
analyzing hotspots with,

47–53
bias and, 52
commit cloud, 130
limits of name and size,

51–52
predicting criminals’

home locations, 82

hib_evo.log, 36

Hibernate
analyzing author frequen-

cies, 137
calculating and analyzing

complexity with nega-
tive space, 58, 62–64

cloning repository, 36
hotspot analysis, 36–45
hotspot analysis by

name, 50–53
hotspot visualization, 38–

45

hotspots and multiple
authors, 139

identifying developer pat-
terns, 149–152

identifying main develop-
ers, 142–144

temporal coupling over
organizational bound-
aries, 138–141

hierarchies
inheritance, 73
process loss, 123

Hindle, A., 57, 61

hindsight bias, 25

hooks, 83

hotspots in this book, 178

hotspots, code
analyzing in large scale

systems, 35–45
analyzing in large-scale

systems, 115
analyzing with names,

47–53
calculating and analyzing

complexity from shape,
55–64

choosing time span for
analysis, 26, 36–37

compared to knowledge
map, 157

detecting with code
churn, 171

enclosure diagrams, 38–
45

identifying with geograph-
ic profiling, 17–31

layered architectures,
115

limitations, 30
merging complexity and

effort, 30, 39
multiple authors, 136,

139
as predictors of defects,

32
preventing testing death

march, 101
quality predictor, 21–22
recap, 175
refactoring, 52, 183–185
to size ratio, 48
uses, 31
visualization options, 40

hotspots, criminal, 16, 19

Hotta, K., 22

Index • 195

“How Do Committees In-
vent?”, 139, 145

HTML5 color names, 157

I
“Idea Generation in Comput-

er-Based Groups”, 128

identifying
abandoned code, 159
automated mining, 26–28
code hotspots with geo-

graphic profiling, 17–
31, 36–45

criminal hotspots with
geographic profiling, 16

developer patterns, 149–
152

developers for knowledge
map, 156–158

effort with change fre-
quencies, 20

main developers, 141–
144

problems in large-scale
systems, 13–15

IDEs
distraction in wishful

thinking, 185
temporal coupling, 83

ignorance, see pluralistic igno-
rance

implementers, naming, 49

implicit dependencies, 68

indentation and complexity,
61–64

“Inferring the Popularity of an
Opinion from Its Familiari-
ty”, 125

influence, see bias

“The Influence of the Psychol-
ogy of Programming on a
Language Design”, 60, 159

inheritance hierarchies, 73

installation, tools, 8

intent in good names, 49–50

interfaces, naming, 49

International Obfuscated C
Code Contest, 61

intuition
false memories, 70
limitations, 25

isolation
communication prob-

lems, 147

hotspots and multiple
authors, 137

isolating change for stabil-
ity, 42–44

iterations
monitoring tests, 99
problem solving, 98, 116
trend analysis of tempo-

ral coupling, 89

J
Jack the Ripper, 16, 19

The Jargon File, 139

Java programmers and emo-
tions, 131

JSON, D3.js enclosure dia-
grams, 45, 158

K
Karr, A.F., 22

Kerr, N.L., 126

Kintsch, W., 98

knowledge
developer patterns, 149–

152
distribution, 147–161
map, 152–161, 176, 180
need to aggregate collec-

tive, 14
sharing with patterns,

116
visualizing loss, 158–161

knowledge map, 152–161,
176, 180

knowledge owner, see main
developers

Kosminski, Aaron, 19

Krajewski, M., 73

L
-l flag, 27

Langlois, Judith, 106

languages
cloc detection, 29
neutrality, 2, 9, 28
R programming language,

40
visual programming lan-

guages, 60

Lanza, M., 83, 151

large scale systems
code coverage, 97
enclosure diagrams, 38–

45
hotspot analysis, 35–45

hotspot analysis by
name, 50–53

limits of intuition, 25
refactoring hotspots,

183–185
social aspects, 133–146
temporal coupling analy-

sis, 73, 82
visual programming ex-

pressions, 60

large-scale systems
analyzing layered architec-

tures, 111–116
hotspot analysis, 115
need to identify and prior-

itize problems, 13–15
process loss, 122

Latané, B., 135

laws
Brooks’s, 134, 136, 138
continuing change, 84,

103
Conway’s, 139, 145, 180
increasing complexity,

59, 63, 84

Lecter, Hannibal, 15

legacy code
Conway’s law, 140
reverse-engineering archi-

tecture from, 117

Lehman, Manny, 59, 63, 84

Lehman’s law of continuing
change, 84, 103

Lehman’s law of increasing
complexity, 59, 63, 84

Li, L., 131

line diagrams, code churn,
165

lines of code
identifying main develop-

ers with, 141–144
knowledge map, 157
measuring complexity

with, 28–29
predictor of code quality,

22
removed code, 141

Linux, 9

list comprehensions, 58

Lister, Timothy, 177

log command, 24

logical coupling, see temporal
coupling analysis

logs
Code Maat flag, 27

Index • 196

customizing output, 180
decision, 69
developer aliases, 144
generating, 24, 36
Hibernate, 36
persisting, 26

lottery numbers, APL code,
124

M
maat_evo.log file, 26

main developers, see also de-
velopers

identifying, 141–144
knowledge map, 153
ownership proportion as

predictor of defects,
151

main-dev analysis, 142–143,
157

main-dev-by-revs analysis, 143

maintenance
automated tests, 92
change frequencies and

code quality, 22
importance of, 3
names and, 48

Making Software, 28

man-months, 134

manuals, investigating, 178

maps, knowledge, 152–161,
176, 180

maps, mental, 16, 152

max column, indentations, 59

Maybrick, James, 19

McCabe Cyclomatic Complex-
ity, 57

mean column
Hibernate complexity

analysis, 63
indentations, 59

memory
chunking, 48, 116
false, 69–70
implicit dependencies, 68
misattribution bias, 71
names and, 48
recovered memories, 127
suggestibility, 69, 127

Meneely, A., 136

mental maps, 16, 152

mental models
beauty and, 105, 107
patterns, 116

Mercurial, 7, 143

merge_comp_freqs.py, 30

merging complexity and effort
to find hotspots, 30, 39

methods
grouping by task, 183,

185
temporal coupling analy-

sis, 179

metrics, see complexity met-
rics

microservices, 117

Miller, D.T., 125

MinecraftClient, temporal cou-
pling analysis, 87

MinecraftServer
code churn, 169–171
temporal coupling analy-

sis, 85–88

minority opinions, 125

misattribution bias, 71

Model-View-Controller pattern
(MVC), 112, 114

modules, see also temporal
coupling analysis

analyzing author frequen-
cies, 137

change frequency analy-
sis, 27

churn analysis, 170
mapping defects to, 32
modification as predictor

of code quality, 22
moving and renaming, 83

modus operandi
code change, 71
criminals, 129
team, 128–132

Moose, 180

motivation
emotions, 131
open-source vs. propri-

etary projects, 136
process loss, 122

moving, modules, 83

multiple, balanced developer
ownership model, 151

Murphy, B., 138

music, 7, 177

MVC, see Model-View-Con-
troller pattern (MVC)

Myers, B.A., 60, 159

The Mythical Man Month: Es-

says on Software Engineer-

ing, 134

N
n-authors column, 138

n-revs column, 28

Nagappan, N., 138, 151, 173

names
analyzing hotspots with,

47–53
developer aliases, 144
developer cultures, 124
guidelines, 49, 184
importance of good, 47–

50, 81, 185
interfaces and imple-

menters, 49
limits as heuristic, 51–52
module renaming, 83
refactoring hotspots,

183–185
transformations, 93
wishful thinking, 184

natural selection and beauty,
107

negative space, calculating
complexity, 55, 57–64

nested conditions, maximum
indentations, 59

noise, 177

non-code analysis, 178

nopCommerce, analyzing lay-
ered architectures, 112–116

normal change ratio pattern,
100

norms, see bias

number-of-entities-changed, 27

--numstat flag, 24

O
object-oriented programming

culture and bias, 124
names, 49
temporal coupling study,

73

odd code churn pattern, 166

offenders, see criminals

“On the Relationship Between
Change Coupling and Soft-
ware Defects”, 83

“On Understanding Laws,
Evolution, and Conserva-
tion in the Large-Program
Life Cycle”, 59

open-source vs. proprietary
software, 136

Index • 197

opinions, see also bias
minority, 125
repeated, 125–126

optimize for understanding,
2

organizations
abandoned code, 159–

161
communication dependen-

cies, 133–146
developer patterns, 149–

152
identifying main develop-

ers, 141–144
knowledge distribution,

147–161
knowledge map, 152–161
organizational metrics,

133–146
temporal coupling over

organizational bound-
aries, 138–141

Ostrand, T.J., 22, 42, 173

ownership models, 151

P
Pagano, Father, 69–70

pair programming, 180

Pane, J.F., 60, 159

parallel development, see al-

so large-scale systems
analyzing pair program-

ming, 180
dynamic warnings, 181
social aspects, 133–146,

176

parsers, 110–111

Pattern-Oriented Software Ar-

chitecture Volume 4, 109

patterns
advantages, 116
architecture, 109–116
change ratio, 100
code churn, 165–168
complexity, 63–64
developer, 149–152
Model-View-Controller,

112, 114
modification, 100
Pipes and Filter, 109

Peopleware: Productive

Projects and Teams, 177

persisting, log information, 26

personality and fundamental
attribution error, 149

Phillips, Paul, 159

physical workplace, 177

Pipes and Filters pattern, 109

pluralistic ignorance, 122,
124, 126–127

police
interviews, 70, 72
Thomas Quick scandal,

127

praise command, 148

Predicting Fault Incidence
Using Software Change
History”, 22

priest, see Father Pagano

Principles of Geographical Of-

fender Profiling, 16

problem solving, 98, 116

process loss, 122, 128, 134,
164–168

producer-consumer and tem-
poral coupling, 75

profiling, see geographic pro-
filing

programmers, see developers

prompt> convention, 9

proprietary vs. open-source
software, 136

The Psychology of Physical

Attraction, 108

Python
about, 7, 9
calculating indentation

script, 58
complexity trend analysis

script, 62
JSON conversion script,

158
merging .CSV files script,

30
SimpleHTTPServer, 40

Q
quality

change frequency as pre-
dictor, 22, 28, 42

code churn, 163, 165,
167, 171, 173

hotspots and, 21–22, 32
lines of code as predictor,

22
organizational metrics as

predictor, 138

ownership proportion as
predictor, 151

temporal coupling as
predictor, 83, 88

Quick, Thomas, 122, 126–128

R
R programming language, 40

readability and cohesion, 184

Reading Beside the Lines: In-

dentation as a Proxy for

Complexity Metric, 57, 61

reading code, 181

recap, 175–177

“A Reconciliation of the Evi-
dence on Eyewitness Testi-
mony”, 70

recovered memories, 127

redesigns, need for evidence,
77

refactoring
churn analysis, 171, 174
hotspots, 52, 183–185
identifying main develop-

ers with, 141
methods temporal cou-

pling analysis, 179
pattern of complexity, 63

refactoring-main-dev analysis, 141

relative code churn, 173

removed code, 141

renaming modules, 83

resources
APL code, 124
book web page, 8
Code Maat, 7–8
D3.js, 44
Mercurial, 7, 168
nopCommerce, 114
Subversion, 7, 168
version-control systems,

7

responsibility
diffusion of, 135
group size, 134
grouping functions and

methods by task, 184–
185

Single Responsibility
Principle, 179

reverse-engineering architec-
ture from legacy code, 117

revisions command, 27, 99

risk awareness, 126, 159

Roggman, L.A., 106

Index • 198

roles
automated testing and,

101
temporal coupling and,

75

rollback with git command, 24

S
safety net, automated tests,

91–103

sample points and intervals
monitoring tests, 99
temporal coupling analy-

sis, 86

Sasaki, Y., 22

Scala, knowledge map, 153–
161

scale, see large-scale systems

Schweik, C.M., 136

sd column
complexity analysis, 63–

64
indentations, 59

SDL (Specification and De-
scription Language), 60

“Secure Open Source Collabo-
ration: An Empirical Study
of Linus’ Law”, 136

security, open-source soft-
ware, 136

“Sentiment Analysis of Com-
mit Comments in GitHub”,
131

separation, layered architec-
tures, 112

serial killers
disposal sites, 168
Jack the Ripper, 16, 19
predicting home loca-

tions, 82
Thomas Quick scandal,

122, 126–128

shape, calculating and analyz-
ing complexity from, 55–64

show command, 62

Silence of the Lambs, 15

SimpleHTTPServer, 40

simplicity
advantages, 8, 82
churn analysis, 173
heuristics, 52
measuring complexity

with lines of code, 28
temporal coupling algo-

rithms, 82

single developer ownership
model, 151

Single Responsibility Princi-
ple, 179

situation model, 98

size, see also large-scale sys-
tems

communication, 134
fractal figures, 152
to hotspots ratio, 48
limits as heuristic, 51–52
as proxy for complexity,

39, 51–52
relative code churn, 173
tree-map visualization,

20

Slovic, Paul, 52

social aspects, see also bias
programming as social

activity, 7, 121, 126,
133–146

recap, 176, 179
social value of patterns,

116

Software Design: Cognitive

Aspects, 48

SourceForge, 29

specialization, effect on
hotspots, 42

Specification and Description
Language (SDL), 60

specifications, investigating,
178

spreadsheets
code churn, 165
temporal coupling analy-

sis, 87
visualizations, 40, 63,

165

stability
cohesive design elements,

43
complexity pattern, 63
hotspots visualizations,

41–42
isolating change for, 42–

44

standard deviation
complexity analysis, 63–

64
indentations, 59

--start flag, 62

static analysis, 6

statistics, see version-control
data

StatSVN, 168

storyboards, 89

Structure and Interpretation of

Computer Programs, 185

styles
code churn analysis, 172
commit conventions, 31
hotspots and differing,

31, 42
indentation, 61

Subversion
calculating lines of code,

143
churn metrics, 168
praise command, 148
resources, 7

suffixes in names, 49

suggestibility, 69, 127

sum of coupling, 78, 85

summary option, 27, 29

surprises, avoiding, 108–111

Sussman, Gerald Jay, 185

svn diff, churn metrics, 168

Swami, V., 108

system model, 98

system tests, differentiating,
94–97

T
tasks, grouping functions and

methods by, 183, 185

teams
abandoned code, 159–

161
analyzing author frequen-

cies, 137
bias strategies, 126
Brooks’s law, 134
communication dependen-

cies, 133–146
complexity of large-scale

systems, 14
developer patterns, 149–

152
emotional content of

commit messages, 131
knowledge distribution,

147–161
knowledge map, 152–161
modus operandi, 128–

132
process loss, 122, 128,

134

Index • 199

rearranging by communi-
cation needs, 145

social aspects, 121, 126,
133–146, 176

temporal coupling analysis
about, 67
advantages, 71, 73, 75
alternative algorithms, 81
analyzing contributors,

143
architecture patterns,

109–111, 113–116
calculating over a day,

140
code churn, 169–171
Code Maat, 78–81, 96,

109–111
Craft.Net, 85–88
cross-cutting, 116
defined, 74
detecting architectural

decay, 73, 77–90
direction, 115
enclosure diagrams, 87
knowledge map with, 161
limitations, 82
methods, 179
nopCommerce, 113–116
over organizational

boundaries, 138–141
overview, 71–76
as predictor of defects,

83, 88
recap, 176
storyboards, 89
sum of coupling, 78, 85
test scripts, 102
trend analysis, 86–88
uses, 73

temporal period, see date;
time

--temporal-period 1 option, 140

“Test Automation Snake Oil”,
101

test cases, 101

test-driven development
degree of coupling, 96
shape analysis, 56

testers, 101, 160

tests
automated test bound-

aries, 93–99
automated tests as archi-

tectural safety net, 91–
103

automated tests limita-
tions, 101

cases, 101
death march, 100–103
differentiating unit and

system, 94–97
encapsulating data, 92,

97–99
false positives, 103
hotspot analysis, 32
knowledge map, 160
modification patterns,

100
prioritizing, 6
selecting test data, 98
shape analysis, 56
tracking evolution of test

scripts, 102

text editors, temporal cou-
pling, 83

“The Influence of Organiza-
tional Structure on Soft-
ware Quality”, 138

time
calculating temporal cou-

pling over a day, 140
dynamic warnings, 181
limitations of hotspot

analysis, 31
specifying period, 26, 36–

37, 140
temporal coupling analy-

sis, 82–83

tools
custom, 180
limitations, 8
for this book, 7–8

total column, 58, 63

transformations
architectural boundaries,

93, 113
architectural patterns,

109
automated tests, 93, 99
churn analysis, 172
fractal figures, 152
layered architectures,

111, 115
microservices, 117

tree-map algorithm, 20

Tuchin, M., 70

Tversky, B., 70

U
understanding, optimizing

for, 2

“Understanding and Solving
Word Arithmetic Problems”,
98

unit tests, differentiating, 94–
97

UNIX, 117

“Use of Relative Code Churn
Measures to Predict System
Defect Density”, 173

V
Valacich, J.S., 128

version-control data, see al-

so Code Maat; temporal
coupling analysis

about, 2, 7
analyzing layered architec-

tures, 113–116
architecture patterns,

109–111
automated mining, 26–28
automated test analysis,

93–99
blame command, 148
code churn analysis,

164–174, 176
Code Maat flag, 27
commit messages as dis-

cussion basis, 129–132
custom tools, 180
Hibernate analysis, 36–

45
identifying code hotspots

with, 19–31
identifying developer dis-

tribution, 156–158
identifying developer pat-

terns, 149–152
identifying main develop-

ers, 142–144
inspecting log, 24
metrics quality, 22
rollback with git com-

mand, 24

views, Model-View-Controller
pattern (MVC), 114

visual programming lan-
guages, 60

visualizations
architectural decay, 73,

87
code churn, 165
commit messages, 130–

131
complexity analysis, 63
Craft.Net, 87
creating custom, 44
developer, 150, 153,

157, 159, 179
enclosure diagrams, 38–

45, 87, 154

Index • 200

fractal figures, 150
geography of code, 17
Hibernate analysis, 38–

45
interactive, 40
knowledge map, 154
options for, 40
R programming language,

40
specifying colors, 157
spreadsheets, 40, 63
tree-map of version-con-

trol data, 20
word cloud, 130–131

W
warning change ratio pattern,

100

Weaver, K., 125

weighting
by relative age, 37
temporal coupling analy-

sis, 79, 82–83
tree-map visualization,

20

“Where the Bugs Are”, 22

white noise, 177

whitespace, calculating com-
plexity, 57–58

Williams, L., 136

Windows, 8–9, 138

Windows Vista study, 138

wishful thinking and names,
184

witnesses
bias, 67, 69
diffusion of responsibility,

135
false memories, 69–70
suggestibility, 69

word cloud, 130–131

Wordle, 130

working memory, see memory

workplace, physical, 177

Wrightsman, L.S., 70

Y
Ying, A.T.T, 73

Youngs, D., 16, 82

Index • 201

Explore Testing and Cucumber
Explore the uncharted waters of exploratory testing and beef up your automated testing

with more Cucumber—now for Java, too.

Explore It!
Uncover surprises, risks, and potentially serious bugs

with exploratory testing. Rather than designing all tests

in advance, explorers design and execute small, rapid

experiments, using what they learned from the last

little experiment to inform the next. Learn essential

skills of a master explorer, including how to analyze

software to discover key points of vulnerability, how

to design experiments on the fly, how to hone your

observation skills, and how to focus your efforts.

Elisabeth Hendrickson

(186 pages) ISBN: 9781937785024. $29

https://pragprog.com/book/ehxta

The Cucumber for Java Book
Teams working on the JVM can now say goodbye for-

ever to misunderstood requirements, tedious manual

acceptance tests, and out-of-date documentation. Cu-

cumber—the popular, open-source tool that helps

teams communicate more effectively with their cus-

tomers—now has a Java version, and our bestselling

Cucumber Book has been updated to match. The Cu-

cumber for Java Book has the same great advice about

how to deliver rock-solid applications collaboratively,

but with all code completely rewritten in Java. New

chapters cover features unique to the Java version of

Cucumber, and reflect insights from the Cucumber

team since the original book was published.

Seb Rose, Matt Wynne & Aslak Hellesoy

(338 pages) ISBN: 9781941222294. $36

https://pragprog.com/book/srjcuc

https://pragprog.com/book/ehxta
https://pragprog.com/book/srjcuc

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how, for new code and old.

The Agile Samurai
Here are three simple truths about software develop-

ment:

1. You can’t gather all the requirements up front.

2. The requirements you do gather will change.

3. There is always more to do than time and money

will allow.

Those are the facts of life. But you can deal with those

facts (and more) by becoming a fierce software-delivery

professional, capable of dispatching the most dire of

software projects and the toughest delivery schedules

with ease and grace.

This title is also available as an audio book.

Jonathan Rasmusson

(280 pages) ISBN: 9781934356586. $34.95

https://pragprog.com/book/jtrap

The Nature of Software Development
You need to get value from your software project. You

need it “free, now, and perfect.” We can’t get you there,

but we can help you get to “cheaper, sooner, and bet-

ter.” This book leads you from the desire for value down

to the specific activities that help good Agile projects

deliver better software sooner, and at a lower cost.

Using simple sketches and a few words, the author

invites you to follow his path of learning and under-

standing from a half century of software development

and from his engagement with Agile methods from their

very beginning.

Ron Jeffries

(178 pages) ISBN: 9781941222379. $24

https://pragprog.com/book/rjnsd

https://pragprog.com/book/jtrap
https://pragprog.com/book/rjnsd

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with

this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven

Web Frameworks in Seven Weeks explores modern

options, giving you a taste of each with ideas that will

help you create better apps. You’ll see frameworks that

leverage modern programming languages, employ

unique architectures, live client-side instead of server-

side, or embrace type systems. You’ll see everything

from familiar Ruby and JavaScript to the more exotic

Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud

(302 pages) ISBN: 9781937785635. $38

https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle

thousands of users and terabytes of data, and continue

working in the face of both hardware and software

failure. Concurrency and parallelism are the keys, and

Seven Concurrency Models in Seven Weeks equips you

for this new world. See how emerging technologies

such as actors and functional programming address

issues with traditional threads and locks development.

Learn how to exploit the parallelism in your computer’s

GPU and leverage clusters of machines with MapRe-

duce and Stream Processing. And do it all with the

confidence that comes from using tools that help you

write crystal clear, high-quality code.

Paul Butcher

(296 pages) ISBN: 9781937785659. $38

https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

Past and Present
To see where we’re going, remember how we got here, and learn how to take a healthier

approach to programming.

Fire in the Valley
In the 1970s, while their contemporaries were

protesting the computer as a tool of dehumanization

and oppression, a motley collection of college dropouts,

hippies, and electronics fanatics were engaged in

something much more subversive. Obsessed with the

idea of getting computer power into their own hands,

they launched from their garages a hobbyist movement

that grew into an industry, and ultimately a social and

technological revolution. What they did was invent the

personal computer: not just a new device, but a water-

shed in the relationship between man and machine.

This is their story.

Michael Swaine and Paul Freiberger

(424 pages) ISBN: 9781937785765. $34

https://pragprog.com/book/fsfire

The Healthy Programmer
To keep doing what you love, you need to maintain

your own systems, not just the ones you write code

for. Regular exercise and proper nutrition help you

learn, remember, concentrate, and be creative—skills

critical to doing your job well. Learn how to change

your work habits, master exercises that make working

at a computer more comfortable, and develop a plan

to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for

those wishing to know more about health issues. In no

way is this book intended to replace, countermand, or

conflict with the advice given to you by your own

healthcare provider including Physician, Nurse Practi-

tioner, Physician Assistant, Registered Dietician, and

other licensed professionals.

Joe Kutner

(254 pages) ISBN: 9781937785314. $36

https://pragprog.com/book/jkthp

https://pragprog.com/book/fsfire
https://pragprog.com/book/jkthp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

https://pragprog.com/book/atcrime
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: https://pragprog.com/book/atcrime

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/atcrime
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/atcrime
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword by Michael Feathers
	Acknowledgments
	1. Welcome!
	About This Book
	Optimize for Understanding
	How to Read This Book
	Toward a New Approach
	Get Your Investigative Tools

	Part I—Evolving Software
	2. Code as a Crime Scene
	Meet the Problems of Scale
	Get a Crash Course in Offender Profiling
	Profiling the Ripper
	Apply Geographical Offender Profiling to Code
	Learn from the Spatial Movement of Programmers
	Find Your Own Hotspots

	3. Creating an Offender Profile
	Mining Evolutionary Data
	Automated Mining with Code Maat
	Add the Complexity Dimension
	Merge Complexity and Effort
	Limitations of the Hotspot Criteria
	Use Hotspots as a Guide
	Dig Deeper

	4. Analyze Hotspots in Large-Scale Systems
	Analyze a Large Codebase
	Visualize Hotspots
	Explore the Visualization
	Study the Distribution of Hotspots
	Differentiate Between True Problems and False Positives

	5. Judge Hotspots with the Power of Names
	Know the Cognitive Advantages of Good Names
	Investigate a Hotspot by Its Name
	Understand the Limitations of Heuristics

	6. Calculate Complexity Trends from Your Code’s Shape
	Complexity by the Visual Shape of Programs
	Learn About the Negative Space in Code
	Analyze Complexity Trends in Hotspots
	Evaluate the Growth Patterns
	From Individual Hotspots to Architectures

	Part II—Dissect Your Architecture
	7. Treat Your Code As a Cooperative Witness
	Know How Your Brain Deceives You
	Learn the Modus Operandi of a Code Change
	Use Temporal Coupling to Reduce Bias
	Prepare to Analyze Temporal Coupling

	8. Detect Architectural Decay
	Support Your Redesigns with Data
	Analyze Temporal Coupling
	Catch Architectural Decay
	React to Structural Trends
	Scale to System Architectures

	9. Build a Safety Net for Your Architecture
	Know What’s in an Architecture
	Analyze the Evolution on a System Level
	Differentiate Between the Level of Tests
	Create a Safety Net for Your Automated Tests
	Know the Costs of Automation Gone Wrong

	10. Use Beauty as a Guiding Principle
	Learn Why Attractiveness Matters
	Write Beautiful Code
	Avoid Surprises in Your Architecture
	Analyze Layered Architectures
	Find Surprising Change Patterns
	Expand Your Analyses

	Part III—Master the Social Aspects of Code
	11. Norms, Groups, and False Serial Killers
	Learn Why the Right People Don’t Speak Up
	Understand Pluralistic Ignorance
	Witness Groupthink in Action
	Discover Your Team’s Modus Operandi
	Mine Organizational Metrics from Code

	12. Discover Organizational Metrics in Your Codebase
	Let’s Work in the Communication Business
	Find the Social Problems of Scale
	Measure Temporal Coupling over Organizational Boundaries
	Evaluate Communication Costs
	Take It Step by Step

	13. Build a Knowledge Map of Your System
	Know Your Knowledge Distribution
	Grow Your Mental Maps
	Investigate Knowledge in the Scala Repository
	Visualize Knowledge Loss
	Get More Details with Code Churn

	14. Dive Deeper with Code Churn
	Cure the Disease, Not the Symptoms
	Discover Your Process Loss from Code
	Investigate the Disposal Sites of Killers and Code
	Predict Defects
	Time to Move On

	15. Toward the Future
	Let Your Questions Guide Your Analysis
	Take Other Approaches
	Let’s Look into the Future
	Write to Evolve

	A1. Refactoring Hotspots
	Refactor Guided by Names

	Bibliography
	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –

