

What readers are saying about

Pragmatic Version Control using Subversion

I expected a lot, but you surprised me with even more. Hav-

ing used CVS for years I hesitated to try Subversion until

now, although I knew it would solve many of the shortcom-

ings of CVS. After reading your book, my excuses to stay

with CVS disappeared. Oh, and coming from the Pragmatic

Bookshelf this book is fun to read too. Thanks Mike.

Steffen Gemkow

Managing Director, ObjectFab GmbH

I’m a long-time user of CVS and I’ve been skeptical of Sub-

version, wondering if it would ever be “ready for prime time.”

Until now. Thanks to Mike Mason for writing a clear, con-

cise, gentle introduction to this new tool. After reading this

book, I’m actually excited about the possibilities for version

control that Subversion brings to the table.

David Rupp

Senior Software Engineer, Great-West Life & Annuity

This was exactly the Subversion book I was waiting for. As

a long-time Perforce and CVS user and administrator, and

in my role as an agile tools coach, I wanted a compact book

that told me just what I needed to know. This is it.

Within a couple of hours I was up and running against

remote Subversion servers, and setting up my own local

servers too. Mike uses a lot of command-line examples to

guide the reader, and as a Windows user I was worried at

first. My fears were unfounded though—Mike’s examples

were so clear that I think I’ll stick to using the command line

from now on! I thoroughly recommend this book to anyone

getting started using or administering Subversion.

Mike Roberts

Project co-Lead, CruiseControl.NET

Pragmatic Version Control
using Subversion, 2nd Edition

Mike Mason

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

� � � � � � � � �� 	
 � �
 � �

Many of the designations used by manufacturers and sellers to distinguish

their products are claimed as trademarks. Where those designations appear

in this book, and The Pragmatic Programmers, LLC was aware of a trademark

claim, the designations have been printed in initial capital letters or in all

capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic

Programming, Pragmatic Bookshelf and the linking g device are trademarks

of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the

publisher assumes no responsibility for errors or omissions, or for damages

that may result from the use of information (including program listings) con-

tained herein.

Our Pragmatic courses, workshops, and other products can help you and

your team create better software and have more fun. For more information,

as well as the latest Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,

or transmitted, in any form, or by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9776166-5-7

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, May 2006

Version: 2006-5-12

http://www.pragmaticprogrammer.com

Contents
Preface viii

1 Introduction 1

1.1 Version Control in Action 2

1.2 Road Map . 6

1.3 Why Choose Subversion 6

2 What is Version Control? 9

2.1 The Repository 9

2.2 What Should We Store? 11

2.3 Working Copies and Manipulating Files 12

2.4 Projects, Directories, and Files 15

2.5 Where Do Versions Come In? 16

2.6 Tags . 18

2.7 Branches . 19

2.8 Merging . 22

2.9 Locking Options 23

2.10 Configuration Management (CM) 26

3 Getting Started with Subversion 28

3.1 Installing Subversion 28

3.2 Creating a Repository 33

3.3 Creating a Simple Project 34

3.4 Starting to Work with a Project 37

3.5 Making Changes 39

3.6 Updating the Repository 41

3.7 When Worlds Collide 44

3.8 Conflict Resolution 47

CONTENTS vi

4 How To... 52

4.1 Our Basic Philosophy 53

4.2 Important Steps When Using Version Control . 53

5 Accessing a Repository 55

5.1 Network Protocols 55

5.2 Choosing a Networking Option 60

6 Common Subversion Commands 62

6.1 Checking Things Out 62

6.2 Keeping Up-to-Date 64

6.3 Adding Files and Directories 66

6.4 Properties . 66

6.5 Copying and Moving Files and Directories . . . 75

6.6 Seeing What Has Changed 80

6.7 Handling Merge Conflicts 86

6.8 Committing Changes 91

6.9 Examining Change History 91

6.10 Removing a Change 95

7 File Locking and Binary Files 99

7.1 File Locking Overview 99

7.2 File Locking in Practice 100

7.3 When to use Locking 106

8 Organizing Your Repository 107

8.1 A Simple Project 107

8.2 Multiple Projects 108

8.3 Multiple Repositories 109

9 Using Tags and Branches 111

9.1 Tags and Branches 112

9.2 Creating a Release Branch 115

9.3 Working in a Release Branch 117

9.4 Generating a Release 119

9.5 Fixing Bugs in a Release Branch 121

9.6 Developer Experimental Branches 124

9.7 Working with Experimental Code 126

9.8 Merging the Experimental Branch 126

CONTENTS vii

10 Creating a Project 128

10.1 Creating the Initial Project 129

10.2 Structure within the Project 131

10.3 Sharing Code between Projects 135

11 Third-Party Code 141

11.1 Binary Libraries 141

11.2 Libraries with Source Code 144

11.3 Keyword Expansion during Imports 150

A Install, Network, Secure, and Administer 151

A.1 Installing Subversion 151

A.2 Networking with svnserve 153

A.3 Networking with svn+ssh 154

A.4 Networking with Apache 157

A.5 Securing Subversion 163

A.6 Backing Up Your Repository 170

B Migrating to Subversion 174

B.1 Getting cvs2svn 175

B.2 Choosing How Much to Convert 175

B.3 Converting Your Repository 176

C Third-Party Subversion Tools 178

C.1 TortoiseSVN . 178

C.2 IDE Integration 185

C.3 Other Tools . 186

D Advanced Topics 188

D.1 Programmatic Access to Subversion 188

D.2 Advanced Repository Management 193

E Command Summary and Recipes 197

E.1 Subversion Command Summary 197

E.2 Recipes . 208

F Other Resources 214

F.1 Online Resources 214

F.2 Bibliography . 215

Preface
I was pretty excited when I heard about the Pragmatic Starter

Kit—finally some guidance on the basic stuff all projects need

to get right. The opportunity to produce a Subversion edition

of Pragmatic Version Control was one I couldn’t miss. Sub-

version had previously saved me (and my team) from version

control hell, and I wanted to do my part to help promote a

great new version control system.

Version control adds an immense amount to a project. It gives

you a safety net, helps your team collaborate effectively, lets

you organize your builds and QA, and even allows you to do

some detective work if things go wrong. I hope this new edition

of Pragmatic Version Control will help you and your team get

started and succeed with Subversion.

Acknowledgments

I’d like to thank Dave and Andy for taking a chance on my

writing the book and to thank Dave for being such an excellent

editor. I wasn’t really sure what I was getting myself into, and

Dave’s advice and guidance were invaluable.

The book received plenty of scrutiny by reviewers; I’d like to

thank Brad Appleton, Branko Čibej, Martin Fowler, Steffen

Gemkow, Robert Rasmussen, Mike Roberts, and David Rupp

for their well-thought-out comments and suggestions. I’m

frankly amazed by the quality of feedback I got—great sugges-

tions, highly technical comments and plenty of people think-

ing about the “bigger picture.”

Everyone at ThoughtWorks has been really supportive of my

book writing efforts, including several people who took the

time to look through early drafts of the book, and I’d like to

PREFACE ix

thank all those who gave me advice and guidance. I’d particu-

larly like to thank the Calgary office for welcoming me into the

fold this year and for enabling me to get stuff finished when

the crunch point came.

Finally I’d like to thank Martin, Mike, and Michelle for making

me believe I could really write the book and for their encour-

agement along the way.

December 2004

Acknowledgments for the Second Edition

Subversion has come a long way since the first edition of this

book. It has new features, performance and stability improve-

ments, and most importantly has excellent integration with

many leading tools and IDEs. Subversion is now probably

the number one version control tool in use on ThoughtWorks

projects and is a serious competitor to every commercial tool

on the market.

I’d like to thank everyone who has given me support and feed-

back since the publication of the original book. It’s very grat-

ifying to know people have used the book, enjoyed reading it,

and that Subversion has brought them success. Please keep

the feedback coming, it’s invaluable.

The following people generously contributed time reading the

updated manuscript, and provided fantastic feedback: Steve

Berczuk, Nick Coyne, David Rupp and Nate Schutta. Thank

you all for your time, effort, and great ideas.

I’d like to thank Dave and Andy for the opportunity to update

the book to cover new features in Subversion, and in partic-

ular I’d like to thank Andy for taking on the editor’s job this

time around. As I’ve told many friends and colleagues, a good

editor is a crucial part of the writing process, and I feel very

lucky to have worked with both Andy and Dave.

Mike Mason

May 2006

mike@mikemason.ca

PREFACE x

Typographic Conventions

italic font Italics indicate a term that is being defined, or

borrowed from another language.

files Files (and directories) are indicated like this.

commands Commands (and options such as -h) are shown

like this.

output Output (as well as things you might need to type)

is indicated like this. If commands are too long

for a single line they’re split onto multiple lines

using a \ (backward slash).

CVS Hint: This kind of text indicates a hint for users famil-

iar with CVS.

This warning sign indicates this material is more

advanced and can be skipped on your first read-

ing.

“Joe the developer,” our cartoon friend, asks a

related question that you may find useful.

Chapter 1

Introduction
This book tells you how to improve the effectiveness of your

software development process using version control.

Version control, sometimes called source code control, is the

first leg of our project support tripod. We view the use of

version control as mandatory on all projects.

Version control offers many advantages to both teams and

individuals:

• It gives the team a project-wide undo button; nothing is

final, and mistakes are easily rolled back. Imagine you’re

using the world’s most sophisticated word processor. It

has every function imaginable, except one. For some rea-

son, they forgot to add support for a DELETE key. Think

how carefully and slowly you’d have to type, particularly

as you got near the end of a large document. One mis-

take, and you’d have to start again. It’s the same with

version control; having the ability to go back an hour, a

day, or a week frees your team to work quickly, confident

that they have a way of fixing mistakes.

• It allows multiple developers to work on the same code

base in a controlled manner. The team no longer loses

changes when someone overwrites the edits made by

another team member.

• The version control system keeps a record of the changes

made over time. If you come across some “surprising

code,” it’s easy to find out who made the change, when,

and (with any luck) why.

VERSION CONTROL IN ACTION 2

• A version control system allows you to support multiple

releases of your software at the same time as you con-

tinue with the main line of development. With a version

control system, there’s no longer a need for the team to

stop work during a code freeze just before release.

• Version control is a project-wide time machine, allowing

you to dial in a date and see exactly what the project

looked like on that date. This is useful for research,

but it is essential for regenerating prior releases for cus-

tomers with problems.

This book focuses on version control from a project perspec-

tive. Rather than simply list the commands available in a

version control system, we explain the tasks you need to per-

form well in a successful project and then show how a version

control system can help.

Let’s start with a small story....

1.1 Version Control in Action

Fred rolls into the office eager to continue working on the new

Orinoco book ordering system. (Why Orinoco? Fred’s com-

pany uses the names of rivers for all internal projects.) After

getting his first cup of coffee, Fred updates his local copy of

the project’s source code with the latest versions from the cen-

tral version control system. In the log that lists the updated

files, he notices that Wilma has changed code in the basic

Orders class. Fred gets worried that this change might affect

his work, but today Wilma is off at the client’s site, installing

the latest release, so he can’t ask her directly. Instead, Fred

asks the version control system to display the notes associ-

ated with the change to Orders. Wilma’s comment does little

to reassure him:

Added new deliveryPreferences field to the Orders class

To find out what’s going on, he goes back to the version con-

trol system and asks to see the actual changes made to the

source file. He sees that Wilma has added a couple of instance

variables, but they are set to default values, and nothing

seems to change them. This might be a problem in the future,

but it is nothing that will stop him today, so Fred continues

working.

VERSION CONTROL IN ACTION 3

As he works on his code, Fred adds a new class and a cou-

ple of test classes to the system. Fred adds the names of the

files he creates to the version control system as he creates

them; the files themselves won’t be added until he commits

his changes, but adding their names now means he won’t for-

get to add them later.

A couple of hours into the day, Fred has completed the first

part of some new functionality. It passes its tests, and it won’t

affect anything in the rest of the system, so he decides to

check it all into the version control system, making it available

to the rest of the team. Over the years, Fred has found that

checking code in and out frequently works best for him: it’s

a lot easier to reconcile the occasional conflict if you have to

worry about only a couple of files rather than a week’s worth

of changes from the whole team.

Why You Should Never Answer the Phone

Just as Fred is about to start the next round of coding, his

phone rings. It’s Wilma, calling from the client’s site. It looks

like there’s a bug in the release she is installing: printed

invoices are not calculating sales tax on shipping amounts.

The client is going ballistic, and they need a fix now.

...Unless You Use Version Control

Fred double-checks the name of the release with Wilma and

then tells the version control system to check out all the files

in that version of the software. He puts it in a temporary

directory on his PC, as he intends to delete it after he finishes

the work. He now has two copies of the system’s source code

on his computer: the trunk (the main line of development)

and the version released to the client. Because he is about to

fix a bug, he tells the version control system to tag his source

code with a label. (He’ll add another tag when he has fixed

the bug.) These tags act as flags you leave behind to mark

significant points in the development. By using consistently

named tags before and after he makes the change, other folks

in his team will be able to see exactly what changed should

they look at it later.

VERSION CONTROL IN ACTION 4

In order to isolate the problem, Fred first writes a test. Sure

enough, it looks like no one ever checked the sales tax cal-

culation when shipping was involved, because his test imme-

diately shows the problem. (Fred makes a note to raise this

during this iteration’s review meeting; this is something that

should never have gone out the door.) Sighing, Fred adds

the line of code that adds shipping to the taxable total, com-

piles, and checks that his test passes. He reruns the whole

test suite as a quick sanity test and checks the fixed code

back into the central version control system. Finally, he tags

the release branch indicating that the bug is fixed. He sends

a note off to QA, who is responsible for shipping emergency

releases to the client. Using his tag, they’ll be able to instruct

the build system to produce a delivery disk that includes his

fix. Fred then phones Wilma and tells her the fix is in the

hands of QA and should be with her soon.

Having finished with this little distraction, Fred removes the

source for the released code from his local machine: there’s

no point in cluttering things up, and the changes he has made

are safely tucked back into the central server. He then gets to

wondering: is the sales tax bug he found in the released code

also present in the current development version? The quick-

est way to check is to add the test he wrote in the released ver-

sion to the development test suite. He tells the version control

system to merge that particular change in the release branch

into the appropriate file in the development copy. The merge

process takes whatever changes were made to the release

files and makes the same changes to the development ver-

sion. When he runs the tests, his new test fails: the bug

is indeed present. He then moves his fix from the release

branch into the development version. (He doesn’t need the

release branch’s code on his machine to do any of this; all

the changes are being fetched from the central version control

system.) Once he has the tests all running again, he commits

this change into the version control system. That’s one less

bug that’ll bite the team next time.

Crisis over, Fred gets back to working on his own tasks for the

day. He spends a happy afternoon writing tests and code and

toward the end of the day decides he is done. While he has

been working, other folks in his team have also been making

VERSION CONTROL IN ACTION 5

changes, so he uses the version control system to take their

work and apply it to his local copy of the source. He runs

the tests one last time and then checks his changes back in,

ready to start work the next day.

Tomorrow...

Unfortunately, the next day brings its own surprises. Over-

night Fred’s central heating finally gives up the ghost. As Fred

lives in Minnesota, and as it’s February, this isn’t something

to be taken lightly. Fred calls into work to say he’ll be out

most of the day waiting for the repair folks to arrive.

However, that doesn’t mean he has to stop working. Accessing

his office network using a secure connection over the public

Internet, Fred checks out the latest development code onto

his laptop. Because he checked in before he went home the

previous night, everything is there and up-to-date. He con-

tinues to work at home, wrapped in a blanket and sitting by

the fire. Before he stops for the day, he checks his changes in

from the laptop so they’ll be available to him at work the next

day. Life is good (except for the heating repair bill).

Storybook Projects

The correct use of version control on Fred and Wilma’s project

was pretty unobtrusive, but it gave them control and helped

them communicate, even when Wilma was miles away. Fred

could research changes made to code and apply a bug fix to

multiple releases of their application. Their version control

system supports offline work, so Fred gained a degree of loca-

tion independence: he could work from home during his heat-

ing problems. Because they had version control in place (and

they knew how to use it), Fred and Wilma dealt with a number

of project emergencies without experiencing the panic that so

often characterizes our response to the unexpected.

Using version control gave Fred and Wilma the control and

the flexibility to deal with the vagaries of the real world. That’s

what this book is all about.

ROAD MAP 6

1.2 Road Map

Chapter 2 introduces the concepts and terminology of version

control systems. Many version control systems are available

from which to choose. In this book we’re going to focus on

Subversion, an open-source tool available for free over the

internet. Subversion is the successor to CVS, which is itself

one of the most popular version control systems available.

Chapter 3, Getting Started with Subversion, is a tutorial intro-

duction to using Subversion. The remainder of the book is a

set of recipes for using Subversion in projects, divided into six

main chapters. Each chapter contains a number of recipes:

• Connecting to Subversion in different ways

• Using common Subversion commands

• Organizing files inside Subversion

• Using tags and branches to handle releases and experi-

mental code

• Creating a project

• Handling third-party code

We end with a set of appendixes providing reference informa-

tion and more in-depth discussion on using Subversion:

• Networking, securing, and backing up your repository

• Migrating to Subversion

• Using Third-party Subversion tools

• Summary of recipes and Subversion commands

• Using other resources available on the Internet

1.3 Why Choose Subversion

Whilst this book is about version control in general, we’re

choosing to focus on Subversion as our tool of choice. Since a

significant number of different version control tools are avail-

able, it’s probably worth mentioning why you’d want to pick

Subversion.

WHY CHOOSE SUBVERSION 7

The Subversion project was started by a team of developers

who had extensive experience with CVS (some of them had

literally written books on the subject) but who had decided

the time had come to replace the aging system. The Subver-

sion developers were painfully aware of CVS’s shortcomings

and made sure they designed a high-performance, modern

version control system. Their goal was not to create a rad-

ical new paradigm in version control—the CVS development

model had proven highly successful—but to replace CVS with

a new system that fixed all of CVS’s wrinkles.

This might not sound like Subversion is anything ground-

breaking, but bear in mind that CVS is already miles ahead

of many other version control tools. Subversion’s feature set

puts it at the forefront of what’s available today.

Versioning for Files, Directories, and Metadata

Directories, as well as files, are versionable objects in Subver-

sion. This means that moving or renaming a directory is a

first-class operation—files within the directory automatically

move with it, and history is preserved correctly.

Files and directories can also have metadata associated with

them using Subversion properties. Properties can be textual

or binary and are versioned in the same way as file con-

tents, changing over time, being merged with newer revisions,

etc. Properties are used extensively to control how Subversion

handles files, keyword expansion, stuff you’d like it to ignore,

and so on. The great thing about properties is that any Sub-

version client can access them, allowing third-party tools to

integrate much more elegantly with your repository.

Atomic Commits and Changesets

Subversion uses a database transaction analogy when a user

commits a change to the repository, making sure that either

the entire change is successfully committed or it’s aborted

and rolled back. It’s also impossible to see half a change

whilst someone is making a commit—you’ll see the state of

the repository either before the change or after. This behavior

is known as atomic commit and is useful because every devel-

oper will always have a consistent view of the repository. If

WHY CHOOSE SUBVERSION 8

your network connection goes down whilst you’re committing

a change, you won’t leave half your changes in the repository,

and the change will be rolled back cleanly.

As part of the atomic commit process, Subversion groups all

of your changes into a revision (sometimes called a changeset) revision

and assigns a revision number to the change. By grouping revision number

changes to multiple files into a single logical unit, developers

are able to better organize and track their changes.

Excellent Networking Support

Subversion has a highly efficient network protocol and stores

pristine copies of your working files locally, allowing a user to

see what changes they’ve made without even contacting the

server. Subversion provides a variety of networking options,

including the ability to leverage Secure Shell (SSH) and the

Apache web server to make repositories available over a public

network.

Cheap Branching, Tagging, and Merging

In many version control systems, creating a branch is a big

deal. In CVS, for example, branching or labeling code requires

the server to access and modify every file in the repository!

Subversion uses an efficient database model to branch and

merge files, making these operations quick and painless.

True Cross-Platform Support

Subversion is available for a wide variety of platforms, and,

most important, the server will run well on Windows. This

significantly lowers the barrier to entry for teams that don’t

have a Unix server available and makes it much easier to get

started—you can set up a server on a spare Windows box (or

even one that’s in use!) and migrate to another machine once

Subversion has proven itself.

Chapter 2

What is Version Control?
A version control system is a place to store all the various revi-

sions of the stuff you write while developing an application.

They’re basically very simple. Unfortunately, over the years,

people have started using different terms for the various com-

ponents of version control. And this can lead to confusion. So

let’s start by defining some of the terms we’ll be using.

2.1 The Repository

You may have noticed that we wimped out; we said that “a

version control system is a place to store...the stuff you write,”

but we never said exactly where all this stuff is stored. In fact,

it all goes in the repository. repository

In almost all version control systems, the repository is a cen-

tral place that holds the master copy of all versions of your

project’s files. Some version control systems use a database

as the repository, some use regular files, and some use a com-

bination of the two. Either way, the repository is clearly a piv-

otal component of your version control strategy. You need it

sitting on a safe, secure, and reliable machine. And it should

go without saying that it needs to get backed up regularly.

In the old days, the repository and all its users had to share

a machine (or at least share a filesystem). This turns out to

be fairly limiting; it was hard to have developers working at

different sites or working on different kinds of machines or

operating systems. As a result, most version control systems

today support networked operation; as a developer you can

THE REPOSITORY 10

Different Flavors of Networked Access

The writers of version control systems sometimes have
different definitions of what networked means. For
some, it means accessing the files in a repository over
shared network drives (such as Windows shares or NFS
mounts). For others it means having a client-server
architecture, where clients interact with server repos-
itories over a network. Both can work (although the
former is hard to design correctly if the underlying file-
sharing mechanism doesn’t support locking reliably).
However, you may find that deployment and security
issues dictate which systems you can use.

If a version control system needs access to shared
drives, and you need to access it from outside your
internal network, then you’ll need to make sure your
organization allows you to access the data this way.
Virtual Private Network (VPN) packages allow this kind
of secure access, but not all companies run VPNs.

Subversion uses the client-server model for remote
access.

access the repository over a network, with the repository act-

ing as a server and the version control tools acting as clients.

This is tremendously enabling. It doesn’t matter where the

developers are; as long as they can connect over a network

to the repository, they can access all the project’s code and

its history. And they can do it securely; you can even use

the Internet to access your repository without sharing your

precious source code with a nosy competitor.

This does lead to an interesting question, though. What hap-

pens if you need to do development but you don’t have a

network connection to your repository? The simple answer

is, “it depends.” Some version control systems are designed

solely for use while connected to the repository; it is assumed

that you’ll always be online and that you won’t be able to

change source code without first contacting the central repos-

itory. Other systems are more lenient. The Subversion sys-

tem, which we use for our examples in this book, is one of

WHAT SHOULD WE STORE? 11

the latter. We can edit away on our laptops at 35,000 feet

and then resynchronize the changes when we get to our hotel

rooms. This online/offline issue is a crucial one when choos-

ing a version control system; make sure that whatever prod-

uct you choose supports your style of working.

Some version control systems support the notion of multiple

repositories instead of a single central repository. Developers

can swap sets of changes between the separate repositories.

These are often called decentralized version control systems

and are popular when large numbers of developers need to

operate semiautonomously, most famously for developing the

Linux kernel. Examples of decentralized version control sys-

tems include BitKeeper, Arch, and SVK. These systems have

a very different style of development, and we won’t discuss

them further in this book.

2.2 What Should We Store?

All the things in your project are stored in the repository. But

what exactly are the things we’re talking about?

Well, you obviously need program source files to build your

project: the Java, C#, Ruby, or whatever language you’re

using to write your application. In fact, some folks think that

this source code is such an important component of version

control that they use the term source code control systems.

The source code is certainly important, but many people make

the mistake of forgetting all the other things that need to be

stored under version control. For example, if you’re a Java

programmer, you may use the Ant tool to compile your source.

Ant uses a script, normally called build.xml, to control what

it does. This script is part of the build process; without it

you can’t build the application, so it should be stored in the

version control system.

Similarly, many projects use metadata to drive their config-

uration. This metadata should be in the repository too. So

should any scripts you use to create a release CD, test data

used by QA, and so on.

WORKING COPIES AND MANIPULATING FILES 12

In fact, there’s an easy test when it comes to deciding what

goes in and what stays out. Simply ask yourself “if we didn’t

have an up-to-date version of x, could we build, test, and

deliver our application?” If the answer is “no,” then x should

be in the repository.

As well as all the files that go toward creating the released

software, you should also store your noncode project artifacts

under version control (anything you’ll need to make sense

of things later), including the project’s documentation (both

internal and external). It might also include the text of signif-

icant e-mails, minutes of meetings, information you find on

the web—anything that contributes to the project.

2.3 Working Copies and Manipulating Files

The repository stores all the files in our project, but that

doesn’t help us much if we need to add some magic new fea-

ture into our application; we need the files where we can get

to them. This place is called our local working copy. working copy

The working copy is a local copy of all of the things that we

need from the repository to work on our part of the project.

For small- to medium-sized projects, the working copy will

probably simply be a copy of all the code and other artifacts

in the project. For larger projects, you may arrange things so

that developers can work with just a subset of the project’s

code, saving them time when building and helping to isolate

subsystems of the system. You might also hear the working

copy called the working directory or simply the workspace.

In order to populate our working copy initially, we need to get

things out of the repository. Different version control systems

have different names for this process, but the most common

(and the one used by Subversion) is checking out. When you checking out

check out from the repository, you extract local copies of files

into your working copy. Even if you do your work on the same

computer that stores the repository, you’ll still need to check

files out before using them; the repository should be treated

as a black box. The checkout process ensures that you get

up-to-date copies of the files you request and that these files

are copied into a directory structure that mirrors that of the

repository.

WORKING COPIES AND MANIPULATING FILES 13

Joe Asks. . .

What about Generated Artifacts?

If we store all the things needed to build the project,
does that mean we should also be storing all the gen-
erated files? For example, we might run JavaDoc to
generate the API documentation for our source tree.
Should that documentation be stored in the version
control system’s repository?

The simple answer is “no.” If a generated file can
be reconstituted from other files, then storing it is sim-
ply duplication. Why is this duplication bad? It isn’t
because we’re worried about wasting disk space. It’s
because we don’t want things to get out of step. If we
store the source and the documentation, and then
change the source, the documentation is now out-
dated. If we forget to update it and check it back
in, we’ve now got misleading documentation in our
repository. So in this case, we’d want to keep a single
source of the information, the source code. The same
rules apply to most generated artifacts.

Pragmatically, some artifacts are difficult to regener-
ate. For example, you may have only a single license
for a tool that generates a file needed by all the
developers, or a particular artifact may take hours to
create. In these cases, it makes sense to store the
generated artifacts in the repository. The developer
with the tool’s license can create the file, or a fast
machine somewhere can create the expensive arti-
fact. These can be checked in, and all other devel-
opers can then work from these generated files.

WORKING COPIES AND MANIPULATING FILES 14

� � � � � � � � � �
� � � � � � �� � � �

� � ! " # $
� � � � � � �� � � �

%& ' %() * + ,* - . /+ '
%)0 0 1 +23 4 25 6 7 89 7 : ; < 8 4= >? ? @ A

B � � C

� � D E F
Figure 2.1: The Repository and Working Copies

It’s also possible to export files from the repository, which is export

slightly different from checking out. When you do an export,

you won’t end up with a working copy; you’ll just get a snap-

shot of files from the repository. This is useful in certain situ-

ations such as packaging code for distribution.

As you work on a project, you’ll make changes to the project’s

code in your working copy. Every now and then you’ll reach

a point where you’ll want to save your changes back to the

repository. This process is called committing your changes committing

back into the repository.

Of course, all the time you’re making changes, so are other

members of your team. Just like you, they’ll be committing

their changes to the repository. However, these changes do

not affect your local working copy; it doesn’t suddenly change

just because someone else saved changes into the repository.

Instead, you have to instruct the version control system to

update your working copy. During the update, you’ll receive update

the latest set of files from the repository. And when your col-

leagues do an update, they’ll receive your latest changes too.

(Just to confuse things, however, some folks also use the term

check out to refer to updating, because they are checking out

the latest changes. Because this is a common idiom, we’ll also

use this at times in this book.) These various interactions are

shown in Figure 2.1 .

PROJECTS, DIRECTORIES, AND FILES 15

Of course there’s a potential problem here: what happens if

you and a colleague both want to make changes to the same

source file at the same time? It depends on the version control

system you’re using, but all have ways of dealing with the

situation. We talk about this more in Section 2.9, Locking

Options, on page 23.

2.4 Projects, Directories, and Files

So far we’ve talked about storing things, but we haven’t talked

about how those things are organized.

At the lowest level, most version control systems deal with

individual files.1 Each file in your project is stored by name

in the repository; if you add a file called Panel.java to the

repository, then other members of your team can check out

Panel.java into their own working copies.

However, that’s pretty low-level. A typical project might have

hundreds or thousands of files, and a typical company might

have dozens of projects. Fortunately, almost all version con-

trol systems allow you to structure the repository. At the top

level, they typically divide your work into projects. Within

each project, they let you work in terms of modules (and

often submodules). For example, perhaps you are working

on Orinoco, a large web-based book ordering application. All

the files needed to build the application might be stored in the

repository under the Orinoco project name. If you wanted to,

you could check it all out onto your local disk.

The Orinoco project itself might be broken down into a num-

ber of largely independent modules. For example, there might

be a team working on credit card processing and another

working on order fulfillment. With any luck, the folks in

the credit card subproject won’t need to have all the project’s

source to do their job; their code should be nicely partitioned.

So when they check out, they really want to see only the parts

of the project that they’re working on.

1Some IDE-like environments perform versioning at the method level, but

they’re fairly uncommon.

WHERE DO VERSIONS COME IN? 16

Subversion organizes the repository into directories. A project

might correspond to a top-level directory, with modules and

submodules arranged as directories within your project. This

might be enough for simple projects, but for more complex

code sharing Subversion supports the notion of externals. An externals

externals definition allows you to include another Subversion

repository location in any directory in your project.

CVS Hint: Subversion’s directory-based organization corresponds,

roughly speaking, to CVS modules, with externals corresponding to

alias modules. Organizing stuff by directory turns out to be just as pow-

erful and a lot easier for people to understand.

Subversion’s “everything is a directory” approach is discussed

in more depth in Chapter 8, Organizing Your Repository, on

page 107.

2.5 Where Do Versions Come In?

This book is all about version control systems, but so far all

we’ve talked about is storing and retrieving files in a reposi-

tory. Where do versions come in?

Behind the scenes, a version control system’s repository is a

fairly clever beast. It doesn’t just store the current copy of

each of the files in its care. Instead it stores every version

that has ever been checked in. If you check out a file, edit it,

and then check it back in, the repository will hold both the

original version and the version that contains your changes.

In reality, most version control systems store the differences

between versions of a file, rather than complete copies of each

revision. Subversion stores the full text for the newest revision

of a file, as well as cleverly picking historical revisions to store

in full, so that it can retrieve any version of a file quickly.

This helps minimize disk space requirements while keeping

updates and checkouts fast.

There are two common numbering schemes for version control

systems: file-specific numbering and repository-wide number-

ing. In a file-specific numbering scheme, the first revision of

a file is named 1.1. When a change is checked in, the file is

given the number 1.2, and so on. If you have version 1.2 of

Node.cs and version 1.6 of Graph.cs, committing a change to

WHERE DO VERSIONS COME IN? 17

Node.cs will make it revision 1.3. Graph.cs remains unchanged

and at revision 1.6.

In the repository-wide numbering scheme, the entire reposi-

tory starts at revision 0, and checking in a change increases

the repository revision number to 1, then 2, and so on. In

this scheme, it’s more correct to talk about “Panel.java at revi-

sion 7” than to talk about “revision 7 of Panel.java.” Subver-

sion uses this second numbering scheme, which turns out

to be extremely useful for referring to changes once they’ve

been committed. Section 9.5, Simple Bug Fixes, on page 121

explains how to use revision numbers for merging bug fixes

across branches.

CVS Hint: CVS uses a file-specific numbering scheme, so people

often look at the revision number of a file to try to gauge how much

activity is occurring in the file or how much has changed over a period

of time. Subversion’s repository-wide revision numbers make it impos-

sible to do the same thing—you’ll have to use Subversion’s log com-

mand to examine the history to look for changes.

Subversion’s repository revision numbers act as a kind of

marker pen, drawing a line through all the files in your repos-

itory each time a commit is made. Figure 2.2 on the following

page shows three files: Trains.java, Graph.java, and Node.java.

First we commit a change to Graph.java (shown in the diagram

as Graph.java’s circle changing to a star), taking the reposi-

tory to revision 2. If we then change Trains.java and Node.java,

we’ll bring the repository to revision 3. The key point is that

Graph.java is at revision 3 as well, even though its content has

not changed since revision 2.

Subversion revision numbers aren’t much use for figuring out

how much has changed in a particular file or group of files,2

so don’t try to use them for that purpose. People accustomed

to the file-specific numbering scheme are often confused that

the repository has jumped a bunch of revisions without their

2Using version numbers, no matter how they’re assigned, to try to track

“how much change is happening” is pretty futile—a single change could affect

every line in a file. You’re probably better off looking at the changes directly,

using your version control system’s history browsing features, if you want to

find out how much has changed.

TAGS 18

G H I J K L M I N IO H I P Q R L M I N IS T U V L M I N I W X Y Z [Z \] ^ W X Y Z [Z \] _ W X Y Z [Z \] `
a a ab bbc c c

d e f g hi j k k f g d e f g hi j k k f g
Figure 2.2: Revision Numbers in the Repository

checking in anything. This makes sense when you realize the

number applies to everyone’s checkins, not just your own.

This system of storing revisions is remarkably powerful. Using

it, the version control system can do things such as

• Retrieve a specific revision of a file.

• Check out all of the source code of a system exactly as it

appeared two months ago.

• Tell you what changed in a particular file between revi-

sions 7 and 9.

You can also use the revision system to undo mistakes. If

you get to the end of the week and discover you’ve been going

down a blind alley, you can back out all the changes you’ve

made, reverting to the code as it was on Monday morning.

2.6 Tags

All these revision numbers are great, but as people we seem to

be better at remembering names such as PreRelease2 rather

than numbers such as r347.

Tags to the rescue. Version control systems let you assign Tags

names to a group of files (or directories or an entire project) at

a particular point in time. If you assigned the tag PreRelease2

to our group of three files, you could subsequently check them

out using that same tag.

BRANCHES 19

l m n o p q r s t t u p
l m n o p q r s t t u p

v w x y z
v { | }

Figure 2.3: A Simple Trunk

Tags are a great way of keeping track of significant events in

the life of your project’s code. We’ll be using tags extensively

later in this book. You can read about tags and branches

(the topic of the next section) in Chapter 9, Using Tags and

Branches, on page 111.

2.7 Branches

In the normal course of development, most folks are working

on a common code base (although they’ll likely be working on

different parts of it). Developers will be checking out code,

making changes in their working copies, then checking the

changes back in, and everyone will share this work. This

main body of code is called the trunk. We show this in Fig- trunk

ure 2.3 . In this figure (and in the ones that follow) time flows

from left to right. The thicker horizontal line represents the

progression of code through time; it is the main line of the

development. Individual developers check in and check out

code from the trunk into their individual working copies.

But consider the time when a new release is about to be

shipped. One small subteam of developers may be preparing

the software for that release, fixing last-minute bugs, working

with the release engineers, and helping the QA team. During

this vital period, they need stability; it would set back their

efforts if other developers were also editing the code, adding

features intended for the next release.

BRANCHES 20

One option is to freeze new development while the release is

being generated, but this means the rest of the team is effec-

tively sitting idle.

Another option would be to copy the source software out onto

a spare machine and then have the release team just use this

machine. But if we do that, what happens to the changes they

make after the copy? How do we keep track of them? If they

find bugs in the release code that are also in the trunk, how

can we efficiently and reliably merge these fixes back in? And

once they’ve released the software, how do we fix bugs that

customers report; how can we guarantee to find the source

code in the same state as when we shipped the release?

A far better option is to use the branching capabilities built branching

into version control systems.

Branching is a bit like the hackneyed device in science fic-

tion stories where some event causes time to split. From that

point forward there are two parallel futures. Some other event

occurs, and one of these futures splits too. Soon you’re deal-

ing with a whole bunch of alternative universes (a great device

for resolving the story when you run out of plot ideas).

Branching in a version control system also allows you to cre-

ate multiple parallel futures, but rather than being populated

by aliens and space cowboys, they contain source code and

version information.

Take the case of the team about to release a new version of

the product. So far, the entire team has been working in the

trunk, the common thread of code shown in Figure 2.3 on

the page before. But the release subteam wants to isolate

themselves from the trunk. To do this, they create a branch in

the repository. From now until their work is done, the release

subteam will check out from and check into this branch. Even

after the application is released, this branch will stay active;

if customers report bugs, the team will fix them in this release

branch. This is shown in Figure 2.4 on the following page.

A branch is almost like having a totally separate repository:

people using that branch see the source code it contains and

operate independently of people working on other branches

or the trunk. Each branch has its own history and tracks

changes independently of the trunk (although obviously if you

BRANCHES 21

~ � � � � �� � � � � � �� � � � � �

� � � � � � � � � �� � � � � � � �
� � � � � � � � � � � � � �

~ � � � � � � �� � � � � � �� � � � � � � � � � �
� � � � �

� � � � � �

Figure 2.4: Trunk with a Release Branch

look back past the point where the branch was made you’ll see

that the branch and the trunk become one).

This is exactly what you want when you’re creating releases.

The team working on the release will have a stable code base

to polish and ship. In the meantime, the main group of devel-

opers can continue making changes to the main line of code;

there’s no need for a code freeze while the release takes place.

And when customers report problems in the release, the team

will have access to the code in the release branch so they can

fix the bugs and ship updated releases without including any

of the newly developed code from the trunk.

Branches are stored as named directories within Subversion;

you create a branch simply by copying the trunk to a new

location. Subversion’s internals use lazy copies to make this lazy copies

copying process efficient, and these lazy copies are the basis

of Subversion’s tagging support too. Whenever you copy a file

or directory, Subversion simply stores a link to the original.

When you make a change to the copy, Subversion records

those changes as differences against the original. Using lazy

copies Subversion can very quickly copy large trees of files

using almost zero space, ideal for branches and tags.

You can create branches off other branches, but typically you

won’t want to; we’ve come across many developers who have

been put off branching for life because of some bad experi-

ences with overly complicated branching in a project.

MERGING 22

You should avoid excessive branching. Even though branches

might seem like a cheap way to hedge your bets during devel-

opment, they have significant costs when you need to merge

changes between branches. Not only do you need to merge dif-

ferent lines of development, you have to make sure you don’t

lose any changes in the process. Bear in mind that the need to

create multiple branches, especially for parallel lines of devel-

opment rather than releases, may be a sign that something is

going wrong.

In this book we’ll describe a simple scheme that does every-

thing you’ll need but that avoids unnecessary complexity.

2.8 Merging

Back to the science fiction story with the multiple alternate

futures. In order to spice up the plot, writers often allow their

characters to travel between these different universes using

wormholes, polyphase deconfabulating oscillotrons, or just a

good strong cup of piping-hot tea.

You can also travel between alternate futures in a version

control system (the cup of tea is optional). Although each

checked-out version comes from a particular branch and gets

checked back into that same branch, it’s easy to have multi-

ple branches checked out on a single developer’s machine (in

different directories or folders on the hard drive, of course).

That way a developer can be working on both the trunk and

on (say) bug fixes in a release branch at the same time.

Even better, version control systems support merging. Say merging

you fix a bug in the release branch and realize that the same

bug will be present in the trunk code. You can tell the ver-

sion control system to work out the changes you made on the

release branch to fix the bug and then to apply those changes

to the code in the trunk. You can even merge them into differ-

ent release branches. This largely eliminates the need to cut

and paste changes back and forth between different versions

of a system. We’ll have a lot to say about merging later.

LOCKING OPTIONS 23

2.9 Locking Options

Imagine two developers, Fred and Wilma, working on the same

project. Each has checked out the project’s files onto their

respective local hard drives, and each wants to edit their local

copy of File1.java. What happens when they come to check that

file in?

A bad scenario would be for the version control system to

accept Fred’s changes and then accept Wilma’s version of the

same file. As Wilma’s copy won’t have Fred’s changes in it,

storing Wilma’s copy in the repository will effectively forget all

Fred’s hard work.

To prevent this from happening, version control systems must

implement some form of conflict resolution system (probably

a good thing in the case of Fred and Wilma). There are two

common versions of conflict resolution.

The first is called strict locking. In a strict locking version con- strict locking

trol system, all files that are checked out are initially flagged

as being “read-only.” You can look at them, and you can use

them to build your application, but you can’t edit or change

them. To do that, you have to ask the repository’s permission:

“please can I edit File1.java?” If no one else is editing that same

file, then the repository gives you permission and changes the

permissions of your local copy of the file to be “read/write.”

You can then edit. If anyone else asks to edit that same file

while you have it flagged, they’ll be refused. After you’ve fin-

ished your changes and checked the file in, your local copy

reverts to being read only, and it becomes available for other

folks to edit.

The second form of conflict resolution is often called opti-

mistic locking, although it really is not locking at all. Here, optimistic locking

every developer gets to edit any checked-out file: the files are

checked out in a read/write state. However, the repository will

not allow you to check in a file that has been updated in the

repository since you last checked it out. Instead, it asks you

to update your local copy of the file to include the latest repos-

itory changes before checking in. This is where the cleverness

lies. Instead of simply overwriting all your hard work with the

latest repository version of the file, the version control system

attempts to merge the repository changes with your changes.

LOCKING OPTIONS 24

For example, let’s look at File1.java:

Line 1 public class File1 {

- public String getName() {
- return "Wibble";

- }

5 public int getSize() {
- return 42;

- }

- }

Wilma and Fred both check this file out. Fred changes line 3:

return "WIBBLE";

He then checks the file in. This means that Wilma’s copy of

the file is out-of-date. Not knowing this, Wilma changes line

6, so it returns 99 instead of 42. When she goes to check the

file in, she’s told that her copy is out-of-date; she needs to

merge in the repository changes. This corresponds to the star

marked OUT OF SYNC in Figure 2.5 on the next page.

When Wilma merges the changes into her file, the version con-

trol system is clever enough to spot that Fred’s changes do not

overlap hers, so it simply updates her local copy with a new

line 3, leaving her changes still in her file. When she checks

in, she’ll be storing her changes and leaving Fred’s intact.

What happens if Fred and Wilma both updated line 3 but

made different changes to it? Assuming Fred checks in first,

his changes will be accepted. When Wilma goes to check in,

she’ll again be told that her copy is out-of-date. This time,

though, when she goes to merge in the repository version the

system will notice that she’s made a change to a line that has

also been changed in the repository. There’s a conflict. In this

case, Wilma will see some warning messages, and the conflict

will be marked up in her copy of the source file. She’ll have to

resolve it manually (probably by talking with Fred to find out

why they were both working on the same line of code).

Given this description, you might think that optimistic locking

is a somewhat reckless way of developing systems: multiple

people editing the same files at the same time. Often peo-

ple who haven’t tried it reason that it can’t work and insist

on working only with version control systems that implement

strict locking.

LOCKING OPTIONS 25

� � � � � � � � � � � � � ¡ ¢ £� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® � � � � ¡ ¯°� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ² ³ ¯°° � � � � � � � � � � � � � ¡ ¢ £� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® � � � � ¡ ¯°� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ² ³ ¯°°
� � � � � � � � � � � � � ¡ ¢ £� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® � � � � ¡ ¯°� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ² ³ ¯°°

´ ´ ´� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® µ ¶ ¶ · ¸ ¯´ ´ ´ ´ ´� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ¹ ¹ ¯´ ´ ´
� � � � � � � � � � � � � ¡ ¢ £� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® µ ¶ ¶ · ¸ ¯°� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ² ³ ¯°°

� � � � � � � � � � � � � ¡ ¢ £� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® µ ¶ ¶ · ¸ ¯°� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ¹ ¹ ¯°°� � � � � � � � � � � � � ¡ ¢ £� � � � � � ¤ ¥ ¦ � § ¨ ¨ ¡ ¥ © � ª ¡ « ¬ £¦ ¡ ¥ � ¦ § ® µ ¶ ¶ · ¸ ¯°� � � � � � � § ¥ ¨ ¡ ¥ ¤ � ± ¡ « ¬ £¦ ¡ ¥ � ¦ § ¹ ¹ ¯°°

º » ¼ ½ ¾ ¼ ¿ À Á Â Ã À » Ä Å Â Æ Ç È
ÉÊ Ë ÉÌ Í Î Ï Ð Ñ Ò Ð Ó Ô Õ Ö

× Ø Ù Ù Ú Û
Ü Ý Þ ß Ü Ý Þ ß

à á â â ã äå æ ç å èé ê ë ì í î Ý ï ß Ü ðñ Ü ò ó Ü

ô õ ö ö ÷ ø

Figure 2.5: Fred and Wilma make changes to the same file,

but the conflict is handled by a merge.

CONFIGURATION MANAGEMENT (CM) 26

In reality, though, strict locking turns out to be a lot of extra

hassle with no particular payback. If you try an optimistic

locking system (such as Subversion), you’ll be surprised at

just how rarely conflicts arise. It turns out that in practice

the normal ways of dividing work on a team mean that peo-

ple work on different areas of the code; they don’t bump into

each other that often. And when they do need to edit the same

file, they’re often working on different parts of it. In a strict

locking system, one would have to wait for the other to finish

and check in before proceeding. In an optimistic locking sys-

tem, both can proceed. We’ve tried both kinds of locking over

the years, and our strong recommendation is that the vast

majority of teams should use a version control system with

optimistic locking.

Subversion 1.2 introduced optional file locking, discussed in

Chapter 7, File Locking and Binary Files, on page 99. Using a

simple file property you can ask Subversion to enforce strict

locking on individual files, such as sound, graphics, or other

unmergeable files.

2.10 Configuration Management (CM)

Sometimes you’ll hear folks talking about Configuration Man-

agement or Software Configuration Management systems (or

flinging about the abbreviations CM or SCM). At first sight

they seem to be talking about version control. And that’s

largely true; the practices of CM rely very heavily on having

good version control in place. But version control is just one

tool used by configuration management.

CM is a set of project management practices that enables you

to accurately and reproducibly deliver software. It uses ver-

sion control to achieve its technical goals but also uses a lot

of human controls and cross-checks to make sure things are

not forgotten. You can think of configuration management as

a way of identifying the things that get delivered and version

control as a means of recording that identification. CM is a

large topic, and we won’t be covering it more in this book. If

you’re interested in CM, Software Configuration Management

Patterns [BA03] is an excellent resource, and goes into greater

detail on many of the issues we don’t have room to cover here.

CONFIGURATION MANAGEMENT (CM) 27

Many of the techniques and recipes in this book correspond

to an SCM Pattern, which we’ll mention by name.

For now, though, let’s concentrate on how we can use version

control systems to get our jobs done. The next chapter is a

gentle introduction to one particular version control system,

Subversion.

Chapter 3

Getting Started with
Subversion

The best way to get familiar with a new software tool is to try

it, so this chapter will show you how to create and work with

a live Subversion repository. You’ll be learning the basic steps

in using Subversion whilst maintaining a trivial project.

Since Subversion is reasonably recent software, you will prob-

ably need to install it on your computer. Basic installation,

which we’ll cover in this chapter, is pretty simple. For more

advanced installation, networking, security, and administra-

tion instructions, see Appendix A on page 151.

Subversion ships with a command-line client, but there are

a variety of third-party tools for interacting with your repos-

itory. TortoiseSVN integrates with the Windows Explorer, for

example, and some IDEs now include Subversion support.

3.1 Installing Subversion

Obviously you need to have Subversion installed before you

can use it. Depending on how Subversion is packaged for your

operating system, you might get the option to install the client

and server components separately. This is more common for

Unix platforms where an adminstrator might want to set up a

server without installing client tools.

INSTALLING SUBVERSION 29

Joe Asks. . .

Shells, Prompts, Command Windows?

Terminology can get confusing when you’re dealing
with command lines, so let’s clear things up a bit.

A command processor, also called a shell, is a pro-
gram that accepts a command and executes it. The
command can have parameters, and the command
processor often has additional capabilities (such as
redirecting the application’s output to a file). Under
Windows, cmd and command are common com-
mand processors (which you use depends on which
version of Windows you use). On Unix boxes, there’s
a great choice of shells, from the original sh, through
csh, bash, tcsh, zsh, and so on.

Back before we had GUI systems, the command
processor or shell was how you interacted with your
computer. When you booted up DOS, you got the
DOS prompt, and you were talking with the command

application; your computer monitor was effectively a
dumb terminal.

Now that we have fancy front ends, we need a place
to run these command processors, so folks have writ-
ten terminal applications that run in windows. When
one of these terminal applications is running a com-
mand processor or a shell, you can type in commands
at the prompt and have them execute. Sometimes
we’ll call these windows executing a command pro-
cessor a command window.

INSTALLING SUBVERSION 30

Figure 3.1: Windows Command Prompt

Our first step is to check if Subversion is already installed on

your computer. The easiest way to do this is with the com-

mand line. If you’re familiar with the command line, you can

skip the next section.

The Command Line

The command line is a low-level facility that lets you run com-

mands directly on your computer. The command line is a

powerful tool, but it can also be fairly cryptic: you’re working

down in the engine room when you’re issuing commands.

On Windows boxes, you can get to a command-line window by

using Start > Run and typing cmd as the name of the program

to run (on some older Windows versions you may have to type

command instead). You should see a window that looks like

Figure 3.1 .

On Unix boxes, you may be working at the command line

already. If instead you use a desktop environment such as

Gnome or KDE, look for the terminal, konsole, or xterm appli-

cation and run it. You should see a window like that in Fig-

ure 3.2 on the next page. If you’re using Mac OS X, your shell

application is hidden in /Applications/Utilities/Terminal.

You use the command-line window to enter commands and

view their output; no GUI front ends here. For example, in the

INSTALLING SUBVERSION 31

Figure 3.2: Unix Shell Prompt

command-line window you just created, enter the following

command and hit the Enter key (sometimes labeled Return):

echo Hello

You should see the text “Hello” echoed back at you, and just

below it a new prompt where you can enter another command.

An example is shown in Figure 3.3 on the following page.

Prompts

One of the joys of the command window is that you can cus-

tomize the prompt that the shell uses to tell you it’s ready for

input. You can include the time, the current directory, your

username, and all sorts of other essential information in the

prompt. Unfortunately, this flexibility can also lead to confu-

sion: looking at the previous screenshots you can see that the

Windows prompt looks different from the Unix prompt.

In this book, we’ll try to simplify things by standardizing on

a generic prompt in our examples. We’ll show the name of

the current directory followed by a greater-than sign (>). For

example, we might give an example of a command as follows:

work> svn update

INSTALLING SUBVERSION 32

Figure 3.3: After echoing “hello”

This means we’re in a directory called work and we issued the

command svn update. It should be simple to map this “logi-

cal” prompt to the prompt you actually see in your operating

system’s command window.

The commands in this book are generally not Windows or Unix

specific: they should work on both systems. The only differ-

ences are in the names of files; Windows uses drive letters

and backward slashes between the components of filenames,

and Unix uses forward slashes. Use appropriate filenames

for your environment, and things should work out fine. An

exception to this rule is when dealing with file://-based

repositories—the Windows and Unix syntax is quite a bit dif-

ferent. When this is the case, we’ll include both Windows and

Unix versions of each command.

Checking If Subversion Is Installed

Bring up a command window on your computer, and type

the command svn --version, followed by the Return key. If the

Subversion client is installed correctly, you will see a response

similar to that shown in Figure 3.4 on the next page. Next try

file://

CREATING A REPOSITORY 33

Figure 3.4: Subversion Client Installed Correctly

svnadmin --version to see if the Subversion administration tools

are installed. If both of these commands worked, you can skip

ahead to the next section.

Most likely your computer complained that it couldn’t find svn

or svnadmin. That’s okay—Subversion is not yet a standard

part of most operating system installs, so it was a long shot

anyhow. Subversion is distributed both as source code and

as binary packages for different operating systems. Complete

instructions for your operating system should be available

from the package download page at http://subversion.

tigris.org/project packages.html. You can also down-

load the source code if you want to compile Subversion your-

self, but since Subversion relies on a number of other pack-

ages, it may be easiest to download a precompiled version.

3.2 Creating a Repository

Subversion requires a repository to store your data. In this

section you’ll create a repository for storing your first project.

CREATING A SIMPLE PROJECT 34

Subversion Versions

The Subversion developers are busy people, and
since the original publication of this book have
released Subversion 1.2 and 1.3. Most of the exam-
ples in the book will work with any version of Subver-
sion, but the file locking features require Subversion
1.2 (or better) and the more advanced authentica-
tion features require Subversion 1.3 (or better).

When a feature requires a particular version of Subver-
sion we’ll include a note to remind you. We generally
recommend using the most recent release of Subver-
sion if you can, because it will be the most stable and
best supported.

First you need to create an empty directory for the repository

and then tell Subversion to create a new repository in the

directory. Let’s suppose you’re using /home/mike/svn-repos (for

Unix) or c:\svn-repos (for Windows).

Windows:

mkdir c:\svn-repos

svnadmin create c:\svn-repos

Unix:

mkdir /home/mike/svn-repos

svnadmin create /home/mike/svn-repos

Once the svnadmin command completes, you’ll end up with

a set of files in your repository directory. We’ll go into more

detail later on how the repository is stored on disk, but for now

you can safely treat the repository directory and its contents

as a black box.

Your Subversion repository is now set up—next we’ll start cre-

ating a project.

3.3 Creating a Simple Project

Let’s populate your repository with a new project. In the spirit

of pioneering Internet startups, we’ll use a cryptic yet cool-

sounding project name—Sesame. We’ll start by creating a

CREATING A SIMPLE PROJECT 35

Using Remote Filesystems

If you’re using a remote filesystem, such as a Windows
home directory on a network share or your Unix home
directory mounted over NFS, the Subversion client will
work great. You can check out a working copy to any
kind of networked drive with no problems.

If you’re running the Subversion server, however, you
need to be a little more careful. Subversion 1.0
shipped with Berkeley DB as the backend in which the
repository is stored. BDB doesn’t like using database
files on a network drive because of the way it maps
them into memory.

Subversion 1.1 introduced the “fsfs” filesystem–based
backend, which became the default in Subversion
1.2. If you’re using Subversion 1.2 or 1.3, repositories
created using svnadmin create will work just fine on a
remote filesystem.

If you want to use the BDB backend instead of fsfs,
add the --fs-type bdb option when creating your
repository. When using BDB you must store your repos-
itory on a local drive.

couple of files and then import them into a sesame directory

in the repository. (The project name is officially Sesame, but

we’ll use the lowercase sesame in our repository.)

Create a temporary directory on your computer called tmpdir.

Inside that directory, use your favorite text editor to create

two files: Day.txt and Number.txt.

File Day.txt:

monday

tuesday

wednesday

thursday

friday

File Number.txt:
zero
one
two
three
four

CREATING A SIMPLE PROJECT 36

These don’t look much like source programs, but remember

that we’re using our repository to store all the stuff we need

to build our project. It looks like Sesame needs to know the

names of the days of the week and a few small numbers, and

these are the data files that help it do this.

We now need to tell Subversion to import these files into a new

project in the repository. Subversion organizes everything in

the repository by directory, which we’ll explain in more detail

in Chapter 8, Organizing Your Repository, on page 107. For

now, we’ll use the convention recommended by the Subver-

sion developers and store our Sesame project in /sesame/trunk.

In your command prompt, change to the tmpdir directory. If

you’re on Windows, run

tmpdir> svn import -m "importing Sesame project" \

. file:///c:/svn-repos/sesame/trunk

Adding Number.txt

Adding Day.txt

Committed revision 1.

Don’t type the backward slash after the log message. We ran

out of space and couldn’t fit the whole command on one line,

so we used \ to separate it over several lines. You’ll see this

used quite often throughout the book.

If instead you’re on Unix, run

tmpdir> svn import -m "importing Sesame project" \

. file:///home/mike/svn-repos/sesame/trunk

Adding Number.txt

Adding Day.txt

Committed revision 1.

The import keyword tells Subversion we want to import some

files to our repository. The -m option allows you to associate a

message with this import. It’s a good idea to use a log message

indicating what kind of import you’ve performed.

The next parameter (.) tells Subversion to import the contents

of the current directory, tmpdir, into the repository. The final

parameter is a repository URL describing where we want to

import the files. Here we’re telling Subversion to look on the

local filesystem for the repository in our svn-repos directory

and to import into /sesame/trunk inside it.1

1We’re importing to /sesame/trunk because in the future the Sesame project

STARTING TO WORK WITH A PROJECT 37

Repository URLs

You may have noticed that when we imported our
files into the repository, we used a file://... URL
to tell Subversion where to put the new project. This
syntax looks a lot like Internet addresses you see in a
web browser, except instead of starting with http://

the URL starts with file://. This tells Subversion to
look on the local filesystem for the repository, instead
of on the web.

In Chapter 5, Accessing a Repository, on page 55
you’ll see how you can use different URLs to access a
Subversion repository via a network, either on a web
server or via the custom svn protocol.

Subversion responds by letting us know that it has added the

two files and has committed the change into the repository.

So, now we’ve got these files safely tucked away in the repos-

itory. If we are brave (or foolish), we can go ahead and delete

the copies in our temporary directory. However, the prudent

(and pragmatic) developer would probably want to verify that

they are indeed correctly stored in the repository before delet-

ing them. And the easiest way to do that is to get Subversion

to check the files in the Sesame project out into your local

work area. Once we’ve confirmed that everything is there,

and that it looks correct, we can delete our originals. The

next section shows how this is done.

3.4 Starting to Work with a Project

It doesn’t matter whether you’re starting work with a new

project (such as project Sesame, which we just created) or if

you’re joining a project that has been running for months and

has thousands of source files. What you do to start working

with the project’s files is the same:

will need to support branches, which will be stored in /sesame/branches. This

is discussed more fully in Chapter 8, Organizing Your Repository, on page 107.

STARTING TO WORK WITH A PROJECT 38

ù ú û ü ý

þ ÿ � � � ú ù � û ý

� ú � � � �

� � �

þ � þ � 	 � ý
� � �

� � �

Figure 3.5: Working Directory Layout

1. Decide where to put the working copies of the files on

your local machine.

2. Check the project out of the repository into that location.

The first decision is normally fairly simple. We tend to have

a single directory on our boxes called work. We then check

out all projects somewhere under this directory. For simple

projects, we tend to check out directly under work. For more

complex ones, maybe involving code branches, we’d organize

things into a few subdirectories. For now, let’s assume we are

working with simple projects. If we have checked out three

separate projects called poppy, sesame, and sunflower, we’d end

up with directories that looked something like Figure 3.5 .

So, if you haven’t already got one, let’s start off by creating

a work directory, either from the command line or using your

File Manager.

Windows: mkdir c:\work

Unix: mkdir /home/mike/work

Now we’ll check out the source into our working directory.

We use a file:// URL to specify our repository, so again

this command looks a little different on Windows and Unix.

file://

MAKING CHANGES 39

Change to your work directory, and then on Windows run

work> svn co file:///c:/svn-repos/sesame/trunk sesame

A sesame\Number.txt

A sesame\Day.txt

Checked out revision 1.

On Unix, you need to run

work> svn co file:///home/mike/svn-repos/sesame/trunk sesame

A sesame/Number.txt

A sesame/Day.txt

Checked out revision 1.

The argument co tells Subversion that we want to perform

a checkout, the file:// URL specifies which repository we

want to check out from, and finally we tell Subversion where

we want to put our working copy, in this case inside a sesame

directory in our working directory.

You now have a local copy2 of the Sesame project containing

the two files that we initially imported. From now on, we’ll be

working with these copies of the files, because these are the

ones that are being managed by Subversion. After checking

that they look correct, we can go ahead and delete the original

copies in our temporary directory. We’ve handed control of

these files over to our version control system, and it’s just

too confusing to have the original and the managed copies

lying around on our machine. We’ll make sesame our current

directory and work with the checked-out files.

3.5 Making Changes

Despite all our hard work, our customer comes back com-

plaining; it appears our software needs to work on weekends.

So, fire up your favorite editor and add two lines to the end of

Day.txt:

monday

tuesday

wednesday

thursday

friday

saturday

sunday

2Subversion calls this a working copy of the repository files, and this cor-

responds to the SCM “private workspace” pattern.

file://

MAKING CHANGES 40

After saving these changes to disk, let’s see what Subversion

now thinks about the state of our project. You can use the svn

status command to get the status of one or more files:

sesame> svn status Day.txt

M Day.txt

The M here is showing us that Subversion recognizes that this

file has been modified locally (and that these changes have

not yet been saved in the repository).

If we do all our work in small increments, it’s easy to remem-

ber what changes we made to individual files. However, if

you’ve forgotten why a file has been modified (or if you just

want to double-check), you can use the svn diff command to

show the changes between the repository version of the file

and your local copy:

sesame> svn diff Day.txt

Index: Day.txt
===
--- Day.txt (revision 1)

+++ Day.txt (working copy)

@@ -3,3 +3,5 @@

wednesday

thursday

friday

+saturday

+sunday

The output contains a bunch of information. The first line

tells us the name of the file being examined. This has a couple

of uses. First, if we’re examining a bunch of files with one

command, it helps us identify where we are. Second, it is also

used when generating patches (but that’s not something we’ll

be looking at for a while yet).

The two lines after the row of equals signs tell us the name

and revision number of the repository file and that we’re com-

paring it with the working copy.

The cryptic @@ -3,3 +3,5 @@ tells us where in the file the

differences are, followed by the actual difference. The lines

starting with + mean they’ve been added, and a line starting

with - would mean it has been removed.

This diff is shown in unified format, meaning that it contains

context information as well as lines that have been changed.

It’s a popular format because it’s easy to read, and the extra

UPDATING THE REPOSITORY 41

context allows changes to be applied even if the original file

has been altered slightly. Subversion also allows us to specify

our own diff program using --diff-cmd. This is useful if we want

to use a graphical diff utility, for example.

This is an area where the GUI front ends to Subversion have a

distinct advantage: if you use such a tool, you should be able

to generate nice color-coded displays of file differences.

In addtion, the Subversion diff command can show differences

between your working copy and a specific repository version,

or between two versions within the repository. Section 6.6,

Using Subversion Revision Identifiers, on page 80 discusses

diff options in more detail.

3.6 Updating the Repository

Having made our changes (and of course having run the unit

tests), we’re ready to save our latest version in the repository.

On a single-person project such as Sesame, this is really very

simple—you use the svn commit command:

sesame> svn commit -m "Client wants us to work on weekends"

Sending Day.txt

Transmitting file data .

Committed revision 2.

The commit function is used to save any changes we’ve made

back to the repository. The -m option is used to attach a

meaningful message to the changes.

Even though we asked Subversion to commit all files in the

Sesame project, it’s clever enough to know that Number.txt has

not changed, so only the changes in Day.txt are sent to the

repository.

Subversion tells us it has “committed revision 2.” It’s impor-

tant to note that this means revision 2 of the whole repository,

not just Day.txt. If we had changed both Day.txt and Number.txt,

we’d still be at revision 2 in the repository. You can think of

Subversion revision numbers as kind of a global marker going

all the way through the repository, recording when each set of

changes went in.

Following the commit, you can use the log function to confirm

that the repository has indeed been updated:

UPDATING THE REPOSITORY 42

sesame> svn log Day.txt

r2 | mike | 2004-09-08 21:54:19 -0600 (Wed, 08 Sep 2004)

Client wants us to work on weekends

r1 | mike | 2004-09-08 21:50:13 -0600 (Wed, 08 Sep 2004)

importing Sesame project

We can see that mike was the last user to change Day.txt, in

revision 2 (r2) of the repository, and we can see the log mes-

sage that was used when adding Saturday and Sunday to our

list of days. We can also see that Day.txt was changed in revi-

sion 1, when we imported the Sesame project. If you use

--verbose, Subversion will tell you exactly what changed with

each revision:

sesame> svn log --verbose Day.txt

r2 | mike | 2004-09-08 21:54:19 -0600 (Wed, 08 Sep 2004)

Changed paths:

M /sesame/trunk/Day.txt

Client wants us to work on weekends

r1 | mike | 2004-09-08 21:50:13 -0600 (Wed, 08 Sep 2004)

Changed paths:

A /sesame

A /sesame/trunk

A /sesame/trunk/Day.txt

A /sesame/trunk/Number.txt

importing Sesame project

Now that Subversion is being extra talkative, we can see that

in revision 2 /sesame/trunk/Day.txt was modified—there’s an M

next to it. For revision 1, we can see that the /sesame directory

and contents were created. Because of the way Subversion

tracks commits—changes to a set of files, all saved at once

and associated with a single log message—it can display all

the files that were changed in each commit, even though we

asked only about Day.txt. This can be extremely useful, for

example, when reviewing historical information when tracking

down a bug.

Mixed Revision Working Copies

In the last example we used svn log to look at the history of

Day.txt. In fact, using svn log without any other arguments pro-

duces a log for the current directory and any subdirectories,

starting with the most recent changes and working backward.

UPDATING THE REPOSITORY 43

Setting Up a Message Editor

Whenever you change the repository by importing
files, committing changes, or copying things around,
you need to enter a log message. If you don’t specify
the -m option, Subversion will try to open an editor for
you to type in a log message.

Subversion looks at environment variables to deter-
mine which editor it should use, trying SVN EDITOR,
VISUAL, and EDITOR. If you’re on Windows and would
like to set your editor to Notepad, open a command
prompt and type

work> set SVN EDITOR=notepad

This will set SVN EDITOR only for the lifetime of your
command window. If you want to set the environ-
ment variable permanently, you need to go into Win-
dows’ Control Panel (switch to Classic View if you’re
using Windows XP) and choose System. Under the
Advanced tab, hit the Environment Variables but-
ton, and create a new variable. The variable name
should be SVN EDITOR, and the value should be
notepad. After setting up the new environment vari-
able, you’ll need to close any open command win-
dows and re-open them for the new setting to take
effect.

If you’re a Unix user, you’ll set environment variables
differently depending on the shell you’re using. Try
looking at .profile, .bashrc, or .cshrc in your home direc-
tory for existing environment variables, and then add
a new one. You may need to log out and back in
again for a new setting to take effect.

WHEN WORLDS COLLIDE 44

If you ask for the log of the current directory immediately

after committing a change to Day.txt, Subversion won’t tell you

about your change. This is a bit counterintuitive—after all the

change is in the repository, we can see it if we ask for the log

for Day.txt—so why isn’t Subversion including it in the log for

the current directory?

The answer is that because Subversion tracks directories as

first-class objects, it remembers the revision number for each

directory in your working copy. When we commit a change to

Day.txt, Subversion knows the working copy is at revision 2,

but the actual directory is still at revision 1. In order to see

the log message, you’ll need to run svn update first, updating

the current directory to revision 2.

Most of the time you can just ignore mixed revisions. If you

do get tripped up by this behavior, a quick svn update will fix

the problem. In the recipes shown later in the book, we’ll

often include an update as the first step, helping to avoid this

problem altogether.

3.7 When Worlds Collide

Everyone gets nervous when they first hear that Subversion

doesn’t lock files for editing. They wonder, “what happens if

two people edit the same file at the same time?” In this sec-

tion we’ll find out (and hopefully in the process put to rest any

worries you may have). To do this, we’ll need another user (so

that we can have multiple people editing a file at the same

time). Unfortunately, our supplier of do-it-yourself human

cloning kits is on the run, so we’ll have to make do with sim-

ulating the other you.

When it comes to handling conflicts, Subversion doesn’t really

know about users. Instead, it cares about making sure that

different working copies are consistent with the repository.

This means we can simulate our second user simply by check-

ing out a new copy of our project; we just need to put it in a

different place than the first copy. When we first checked out

our project, we put it in a directory called sesame, which is

the project name. To check it out again, we’ll need to specify

a different location, a directory parallel to the one we’ve been

WHEN WORLDS COLLIDE 45

working in. Let’s call that directory aladdin. To check out on

Windows, change to your work directory and run

work> svn co file:///c:/svn-repos/sesame/trunk aladdin

A aladdin\Number.txt

A aladdin\Day.txt
Checked out revision 2.

On a Unix system, you need to run

work> svn co file:///home/mike/svn-repos/sesame/trunk aladdin

A aladdin/Number.txt

A aladdin/Day.txt

Checked out revision 2.

We’ve checked out the project we’ve been working on all along

(Sesame) from the same repository. But we tell Subversion to

store the files in a new directory, called aladdin. Because we

checked in the files from our original directory, we now have

two copies of the project on our hard drive, one in sesame, the

other in aladdin. Right now the two sets of files are identical

(skeptical readers, feel free to check). Remember that two

different directories are our simulation of having two people

working on our project, each with their own checked-out copy

of the files.

Let’s first do a quick sanity check. We’ll alter a file in one

directory, check it in, and then ask Subversion to update our

local copy in the other directory.

First, edit the file Number.txt in the sesame directory, adding

two new lines (five and six):

zero
one
two
three
four
five
six

Now check this file into the repository:

sesame> svn commit -m "Customer wants more numbers"

Sending Number.txt

Transmitting file data .

Committed revision 3.

Now for the first moment of truth. Over in the aladdin direc-

tory, its version of Number.txt is now out-of-date (because the

repository now holds a more recent version). Let’s pop over

there and check:

WHEN WORLDS COLLIDE 46

sesame> cd ..

work> cd aladdin

aladdin> svn status --show-updates

* 2 Number.txt
Status against revision: 3

We’re using --show-updates (short form -u) to get Subversion to

talk to the repository and find out if any updates are available

for files in the aladdin directory. We need to use this option

because by default Subversion just checks to see whether files

in the working copy have been locally modified, not whether

an updated version is available in the repository.

The asterisk shows that an update is available for Number.txt,

which is currently at revision 2. Subversion also tells us that

the repository was at revision 3 when it performed the check.

Before we update to the latest version, we might ask Subver-

sion to tell us what’s different between our version of the file

and the version currently in the repository (as there are times

when you may want to defer an update if it affects stuff you’re

currently working on). Again, we use the svn diff command:

aladdin> svn diff -rHEAD Number.txt

Index: Number.txt
===
--- Number.txt (revision 3)

+++ Number.txt (working copy)

@@ -3,5 +3,3 @@
two
three
four

-five
-six

The -rHEAD option tells Subversion we want to compare our

local copy of Number.txt against whatever revision is the most

recent in the repository. After another one of those cryptic @@

-3,5 +3,3 @@ lines, we see that the two new lines are miss-

ing from our working copy (which shouldn’t be a surprise).

If we hadn’t specified the -r flag, Subversion would compare

our local copy of Number.txt against the repository version that

was checked out to produce it (r2 in this case). As we haven’t

altered the file in our Aladdin persona, this would show no

changes.

We can update our copy in the aladdin directory to merge in

the changes we made over in sesame:

aladdin> svn update

U Number.txt
Updated to revision 3.

CONFLICT RESOLUTION 47

Subversion prints U next to Number.txt to let us know that it

has updated it and tells us that our working copy has been

updated to revision 3. If we look at Number.txt, we’ll see that

we now have the two extra lines.

3.8 Conflict Resolution

So, what happens if two people edit the same file at the same

time? It turns out that there are two scenarios. The first is

when the changes don’t overlap. Simulating this takes a little

effort, so hang in there.

First, edit the copy of Number.txt in the sesame directory. Make

the first line uppercase:

ZERO
one
two
three
four
five
six N

u
m

b
e

r.t
xt

(i
n

Se
sa

m
e

)

Now edit the version of Number.txt over in aladdin. This time

make the last line uppercase:

zero
one
two
three
four
five
SIX N

u
m

b
e

r.t
xt

(i
n

A
la

d
d

in
)

What we’ve just done is simulate two developers each mak-

ing local changes to the same file. Right now, these changes

are independent, because the repository knows about neither.

Let’s change that. A coin toss told us that Aladdin checked in

his version of the changed file first:

aladdin> svn commit -m "Make 'six' important"

Sending Number.txt

Transmitting file data .

Committed revision 4.

A short time later, the sesame developer tries to check in too.

(Remember, this version of the file has the first line in upper-

case.)

sesame> svn commit -m "Zero needs emphasizing"

Sending Number.txt

svn: Commit failed (details follow):

svn: Out of date: '/sesame/trunk/Number.txt' in transaction '7'

CONFLICT RESOLUTION 48

Subversion is telling us that it tried to commit the change

from sesame, but it failed because /sesame/trunk/Number.txt is

out-of-date. Let’s try bringing our local version of the file up-

to-date with the repository. Remember that our file has an

uppercase zero, and the repository version has an upper case

six.

sesame> svn update

G Number.txt
Updated to revision 4.

Subversion prints a G to tell us it has merged our changes

with the repository version (previously, it printed U to let us

know it had updated our working copy with a new version

from the repository). Let’s look at our local version:

ZERO
one
two
three
four
five
SIX

Magic! Our version now contains both our changes and the

Aladdin changes. We both edited a file at the same time, and

Subversion worked it out.

Before we get too smug, though, remember that our local

change (the ZERO) hasn’t yet been stored in the repository. We

ask Subversion to commit our change, and this time it suc-

ceeds, because our local version contains the latest repository

revisions:

sesame> svn commit -m "Zero needs emphasizing"

Sending Number.txt

Transmitting file data .

Committed revision 5.

The next time Aladdin updates, he’ll get our changes too:

sesame> cd ..

work> cd aladdin

aladdin> svn update

U Number.txt
Updated to revision 5.

Butting Heads—When Changes Clash

In the previous example, the changes made by the two (vir-

tual) developers didn’t overlap. What happens if two develop-

ers edit the same lines in the same file at the same time? Let’s

find out.

CONFLICT RESOLUTION 49

Go into the sesame directory and change the second line in

Number.txt from one to ichi. Don’t check this change in. Now

go across to the aladdin directory and change the same line

from one to uno. Let’s assume that once again Aladdin gets to

check in his changes first:

aladdin> svn commit -m "User likes Italian one"

Sending Number.txt

Transmitting file data .

Committed revision 6.

Now let’s go back to the sesame directory. Remembering that

we’re supposed to be simulating two separate users, we pre-

tend we don’t know about the changes made by Aladdin, and

so try to check in our changes:

sesame> svn commit -m "One should be Japanese"

Sending Number.txt

svn: Commit failed (details follow):

svn: Out of date: '/sesame/trunk/Number.txt' in transaction 'c'

We’ve seen this message before: we need to update to get the

repository changes:

sesame> svn update

C Number.txt
Updated to revision 6.

Subversion tells us it has managed to update Sesame’s work-

ing copy to revision 6, but the C next to Number.txt tells us

that there was a conflict when it tried to merge the repository

changes with our local changes. Have we lost all our hard

work? No.

CVS Hint: When CVS detects a conflict, it’ll print a whole bunch of

warning messages and generally tell you the sky is falling. This is to

remind you to fix the conflict, as it’s very easy to check in a file that

still has conflict markers left in it. Subversion tracks the file’s state so it

knows whether you’ve resolved the conflict, and won’t let you check

in until things are okay.

When conflicts happen, it’s most often because two develop-

ers had some kind of misunderstanding. In this case, one

developer wanted to change the line to Italian, and the other

wanted Japanese. If you think about this, it becomes appar-

ent that what we have here is a breakdown in communication;

there’s a problem in the team (or at least in the team’s pro-

cess). Whatever the cause, we’re left wondering, “what should

the line really be?” Subversion doesn’t have a hot line to the

CONFLICT RESOLUTION 50

truth, so it can’t solve the problem. Instead, it adds special

annotations to the file to show what the conflict is. In this

case if we look at the file Number.txt, we’ll see it now looks like:

ZERO
<<<<<<< .mine

ichi
=======
uno
>>>>>>> .r6
two
three
four
five
SIX

The lines with the <<<<<<< and >>>>>>> show where the

conflict occurred. Between them we can see both our change

and the conflicting change in the repository.

Time to do some detective work. The first thing we need to do

is to find out who made the change in the repository. We’ll use

svn log to help us find out what happened here. The conflict

markers seem to suggest r6 is causing the problem:

sesame> svn log -r6 Number.txt

r6 | mike | 2004-09-08 23:01:03 -0600 (Wed, 08 Sep 2004)

User likes Italian one

Looking at the log entry, we can see the name of the author

of the change, along with their check in comment. We wander

over and ask him about the change. A quick call to the cus-

tomer resolves the problem: the customer wanted the word

one in Japanese, and two in Italian. Aladdin must have mis-

heard.

Armed with this new information, we can now resolve the con-

flict. Edit Number.txt in the sesame directory, remove Subver-

sion’s conflict markers, and make the changes requested by

the customer:

ZERO
ichi
due
three
four
five
SIX

Having removed the conflict markers, we can tell Subversion

we’ve resolved the conflict and then commit the file:

sesame> svn resolved Number.txt

Resolved conflicted state of 'Number.txt'

CONFLICT RESOLUTION 51

sesame> svn commit -m "One is Japanese, two Italian"

Sending Number.txt

Transmitting file data .

Committed revision 7.

Subversion actually helped us discover a misunderstanding.

We resolved the conflict, and everyone is happy. Optimistic

locking may actually deserve its name. And, just to make

things even less scary, we need to emphasize that conflicts

rarely happen on real projects.

However, it’s also worth noting that Subversion is not a mind-

reader. It might happen that two people fix the same bug

in two different ways. If these changes don’t conflict at the

source code level, Subversion will happily accept both, even

though it may make no sense to have both fixes in the same

code. The lack of a conflict means you haven’t trodden on

anyone else’s changes at the textual level, but you should still

rely on unit tests to verify that the change works.

Subversion also supports strict locking for unmergeable files

such as sound, graphics and video. Chapter 7, File Locking

and Binary Files, on page 99 discusses file locking in more

detail.

That’s all for our quick tour around Subversion. However, you

may want to leave your test repository lying around. Later,

you might find it helpful if you want to experiment with a par-

ticular facility before doing it for real in the project repository.

Chapter 4

How To...
Even though version control sounds great in theory, many

teams don’t use it. Sometimes this is because the theory

doesn’t seem to translate into practice too well. It’s all very

well reading a document that says something like “generate

a release branch,” but what does that actually mean when it

comes down to typing in the correct Subversion commands?

Another problem is that teams sometimes embrace version

control too vigorously, creating very complex structures to

hold their source, with correspondingly frightening lists of

instructions for achieving even the simplest task. The result?

Eventually (and in our experience that means very quickly),

the team gives up; using the version control system is seen to

be just too much hassle.

The remaining chapters in this book address both of these

problems. They present a simple way to organize your version

control system and a set of basic practices for doing the every-

day things a team needs to do. We suggest to start you use

these basic practices as a set of recipes; follow them whenever

you need to achieve a certain result. Try hard not to deviate

too much from them; if you find yourself wanting to create a

scenario we don’t cover, think hard before proceeding. Per-

haps you don’t really need it.

As with any set of recipes, you’ll soon find yourself feeling

more and more comfortable following them. This is the time

to start some gentle experimenting. However, we suggest you

don’t try something new directly in a real project’s repository.

OUR BASIC PHILOSOPHY 53

Instead, set up the scenario in a test repository (such as the

one we set up in the previous chapter), and try things out

there.

4.1 Our Basic Philosophy

We think version control is one of the three essential techni-

cal practices; every team needs to be proficient in all three (the

others are Pragmatic Unit Testing [HT03], [HT04], and Prag-

matic Project Automation [Cla04]). Every team should be using

version control—all the time, and for everything they pro-

duce. So we have to make it simple, obvious, and lightweight

(because if we don’t, people will eventually stop doing it).

Simplicity means that doing something that should be simple

will actually be simple. Checking in our changes is a simple

(and common) operation, so the basic operation should be one

or two actions. Creating a new customer release is a some-

what more complex concept, so it’s okay to use a few more

steps doing it, but it should still be as simple as possible.

Version control has to be obvious: we need to arrange things

so that it is clear what we’re doing and what version of the

software we’re doing it to. There should be no guessing when

it comes to the source.

Finally, we’re describing a lightweight process; we don’t want

version control to get in the way of getting real work done.

4.2 Important Steps When Using Version

Control

Here is our basic set of rules for organizing your source in a

Subversion repository:

• Before you start, you need to establish an effective and

secure way to access your repository.

• Once you’ve gained access, there is a simple set of Sub-

version commands that you’ll be using daily.

• Each project that your company develops must be stored

in a distinct directory within the Subversion repository.

IMPORTANT STEPS WHEN USING VERSION CONTROL 54

You should be able to check out a project’s complete

source from a single point.

• If projects contain subcomponents that can be worked

on in isolation, or if you intend to share components

between projects, these components should be stored as

projects in their own right and included as an external

resource in other projects.

• If your project incorporates code from third parties (ven-

dors, or perhaps open-source projects) you need to man-

age this as a resource.

• Developers should use branches to separate the main

line of development from code lines that have different

life cycles, such as release branches and major code

experiments. Tags are used to identify significant points

in time, including releases and bug fixes.

We cover each of these topics in the chapters that follow.

Chapter 5

Accessing a Repository
In Chapter 3, Getting Started with Subversion, on page 28,

we created a repository and learned how to access it via a

file-based URL. This is great for a single user but doesn’t

really help a whole development team collaborate properly.

In this chapter we’ll discuss the three main ways you can

make an existing repository available over the network, what

they mean for a user accessing a repository, and the pros and

cons of the various access mechanisms.

Appendix A on page 151 includes a guide for administrators

who are installing, networking, and securing Subversion.

5.1 Network Protocols

After creating our sandbox repository, we used a repository

URL to tell Subversion what we wanted to check out. This repository URL

URL included both a definition of where the repository was

and also what path inside the repository we were interested

in. Once we had a working copy we didn’t need to keep using

the repository URL, since Subversion remembers where our

working copy came from.

Repository URLs are important whenever we want to directly

access a repository (when we’re creating branches and tags or

merging big sets of changes, for example). Figure 5.1 on the

following page shows how the URL for our sandbox repository

is composed.

The first part of this URL is file. This specifies the scheme scheme

we’re using to locate the repository, in this case the local

NETWORK PROTOCOLS 56

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � ! " # $ % & ' $ () * $ � + ' & $, - + ' � . & ' � & , (# $ % & ' $ ()

Figure 5.1: Components of a Repository URL

filesystem. The next part, c:/svn-repos, tells Subversion

the repository database files are in a particular directory on

the C: drive. Finally, /sesame/trunk/ specifies the path

within the repository that we’re interested in.

Subversion supports a number of different schemes in repos-

itory URLs and even allows you to define custom extensions

yourself. Each different scheme tells Subversion to access

the repository via a particular network protocol. We’ll start by

looking at the simple svn protocol.

svn

The easiest way to network a repository is to use the svn

scheme. Subversion comes with svnserve, a small server that

listens for network connections, allows repository access over

the network, and supports simple authentication of users.

svnserve is probably most suitable for teams on a private LAN

who want to get going quickly.

If an administrator (possibly you!) has used the instructions

in Section A.2, Networking with svnserve, on page 153 to put

the Sesame repository online, you can check it out by running

work> svn co svn://olio/sesame/trunk vizier

A vizier/Number.txt

A vizier/Day.txt

Checked out revision 7.

Success! We used the svn scheme to access a repository on a

machine called olio, and we checked out the Sesame project

to a new vizier working directory.

If you’ve tried playing with the working copy on your client

machine, you might find that Subversion doesn’t let you com-

NETWORK PROTOCOLS 57

mit any changes. For example, try adding a new data file,

Month.txt, to the project:

vizier> svn add Month.txt

A Month.txt
vizier> svn commit -m "Added month data"

svn: Commit failed (details follow):

svn: Connection is read-only

If this happens, your administrator has forgotten to enable

write access to the repository (it’s read-only by default). Get

them to look at Section A.5, svnserve, on page 163 and set up

some users. Once they’ve done this, you should be asked for

a username and password when you try to commit a change:

vizier> svn commit -m "Added month data"

Authentication realm: <svn://olio:3690> sesame/trunk

Password for 'mike':
Adding Month.txt

Transmitting file data .

Committed revision 8.

Subversion decided to try username mike because that’s my

username on the client machine. If this isn’t right, just hit

Enter at the password prompt, and Subversion will let you

specify a different username.

svn+ssh

svnserve does a great job of getting a repository up on the net-

work, but it has a couple of drawbacks. Firstly, although

passwords are never transmitted in clear text over the net-

work, the contents of your files travel unencrypted. Anyone

who can sniff your network traffic can see what your files con-

tain. This might be okay for a team all on the same LAN, but if

you want to use the public Internet for accessing your repos-

itory it simply isn’t secure. Secondly, passwords are stored

in plain text in the server’s conf directory and can only be

changed by an administrator with access to the password file.

Subversion solves both of these security problems by leverag-

ing the Secure Shell (SSH). If you’re a Unix user, you might Secure Shell

already have SSH infrastructure in place for connecting to

your server. SSH employs strong encryption to protect the

contents of a client-server session. It is widely used for admin-

istering servers over the Internet. Figure 5.2 on the next page

shows how Subversion secures an svn connection using SSH.

NETWORK PROTOCOLS 58

/ 0 1

/ / 2

/ 0 1 / 3 4 0 3

/ / 2 5

6 7 8 9 : ; < = 7 1 1 3 : > 9 7 1

? @ A B C D E F G H I @ @ F A E J I @

Figure 5.2: Tunnel Subversion Over SSH

Subversion needs an SSH client installed on your machine

in order for you to access a repository using svn+ssh. Unix

users are likely to have SSH already installed, but if you’re on

Windows, you’ll need to do a bit of work. Putty is an excel-

lent SSH client and is available from http://www.chiark.

greenend.org.uk/˜sgtatham/putty/. Download plink.exe,

and save it somewhere in your path; C:\Windows\system32 usu-

ally works. If you’re using TortoiseSVN you don’t need to

worry about installing an SSH client since Tortoise comes with

TortoisePlink.

Next you need to edit your Subversion client configuration

settings. Windows applications store user-specific data inside

a special folder, which changes location depending upon how

your computer is set up and which version of Windows you’re

using. If you’re not sure where your application data directory

is, open a command prompt and run the following:

work> echo %APPDATA%

C:\Documents and Settings\mike\Application Data

Once you’ve found your application data directory, open the

Subversion subdirectory, and edit the config file that’s inside.

Edit the section on tunnels so it looks like this:

[tunnels]

ssh=plink

You need to specify a svn+ssh scheme if you’d like Subversion

to use SSH to protect your connections. If your server accepts

SSH connections, try running

NETWORK PROTOCOLS 59

work> svn checkout \

svn+ssh://olio/home/mike/svn-repos/sesame/trunk \
princess

mike@olio's password:

A princess/Month.txt

A princess/Number.txt

A princess/Day.txt

Checked out revision 8.

This looks just like the repository URL we used earlier with

svnserve, except we changed the scheme to svn+ssh. If you’re

having problems accessing your repository, Section A.3, Trou-

bleshooting an SSH Connection, on page 156 contains a guide

to diagnosing the problem.

Subversion is now using SSH to open a connection to the

server and authenticate you as a Unix user. Subversion uses

the standard Unix user and group permissions to determine

whether the user with which we connect has permission to

access the repository. If you’re using SSH public/private keys

or an SSH agent to manage your credentials, the Subver-

sion client automatically takes advantage of this, which might

mean you don’t get asked for a password at all.

Using svn+ssh is appealing if you already have SSH accounts

for your users, because you can leverage all your existing

infrastructure. The extra security lets you connect over the

Internet without fear that someone might steal your Sesame

project code and without all the hassle of setting up a full

VPN. svn+ssh is a straightforward solution that should have

you up and running pretty fast.

http

Subversion can also host a repository over the web by using

the Apache web server. A special Subversion module, called

mod dav svn, does the hard work and allows Subversion to

share the web server with traditional web sites. Apache is

highly configurable, and Subversion takes full advantage of

its built-in security and scalability. You can host a reposi-

tory using standard http and https and leverage any of the

authentication mechanisms already supported by Apache.

You may have heard that Subversion requires Apache—this

actually isn’t true; neither svn nor svn+ssh need anything

CHOOSING A NETWORKING OPTION 60

extra to network your repository. Most prebuilt Unix pack-

ages have a dependency on Apache because they install all

three networking options, which is where the misunderstand-

ing comes from. Using Subversion with Apache is probably

the most popular solution for sharing a repository over the

Internet.

Apache provides a wealth of authentication options for users.

From basic authentication using password files to integra-

tion with a Windows domain or an LDAP server, Apache is

supremely flexible. You can even set up directory-based secu-

rity, dividing your repository into read-only or even completely

private sections. You can take advantage of standard SSL

certificates for encrypting connections to the server and avoid

firewall hassles by using standard web server port numbers.

To access a repository hosted by Apache on server olio, use

the following command:

work> svn checkout \

http://olio.mynetwork.net/svn-repos/sesame/trunk \
sesame

Authentication realm: ... Subversion repository

Password for 'mike': ******
A sesame/Month.txt

A sesame/Number.txt

A sesame/Day.txt

Checked out revision 8.

This particular repository requires an authenticated user even

for read-only access. Subversion automatically tries user-

name mike; if that’s wrong, just hit Enter instead of typing a

password, and Subversion will let you specify the username.

5.2 Choosing a Networking Option

All three network protocols for Subversion (svn, svn+ssh and

http) offer different trade-offs in terms of ease of setup, secu-

rity, and administration overhead. Which you choose will

depend on what kind of infrastructure you already have, your

security needs, and your familiarity with Apache.

It’s important to note that the networking option you choose

today doesn’t have to be the one you stick with tomorrow. Net-

working a repository simply puts it on the network—you can

change between svnserve and Apache (for example) as often as

CHOOSING A NETWORKING OPTION 61

you like. It’s also possible to support multiple different access

mechanisms at the same time, although you have to be careful

with permissions.

If your team is on a reasonably secure LAN, or even a larger

network connected by a VPN, using the simple svnserve server

and svn protocol is a quick way to get up and running with

Subversion. You’ll have some administrative overhead when

adding new users or changing passwords, but this should be

offset by the easy startup. Subversion 1.3 added directory-

based authorization to svnserve making it almost as flexible as

Apache for teams on the same LAN.

If you already have existing SSH infrastructure in place, using

svn+ssh makes a lot of sense. You get strong crypto protect-

ing your connections and can take advantage of all of the key-

management and authentication options that SSH provides.

Make sure your Unix administrator understands how groups,

umasks, and sticky bits need to be set up before proceeding,

though.

If you want to host a repository over the Internet, leverage

Apache’s wide range of authentication mechanisms, or simply

play with the big boys and run a “real” server, using Apache

to host your Subversion repository is the way to go. You’ll be

able to use SSL and client-server certificates for encryption

and verifying you’re really talking to whom you think you’re

talking to, and you’ll be able to authorize users using a Win-

dows domain, LDAP, or any other authentication mechanism

that Apache supports. You’ll also be able to be much more

precise about which parts of a repository users have access

to, by leveraging the mod authz svn Apache module. Using

Apache on standard HTTP ports also means fewer holes need

to be opened on your firewalls. Your network administrator

will thank you for that.

Chapter 6

Common Subversion
Commands

In Chapter 3, Getting Started with Subversion, on page 28 we

created a simple project and experimented with basic Sub-

version commands. In this chapter we’ll take this further by

presenting a set of recipes: the Subversion commands that

you use to do everyday tasks.

This section is not exhaustive. Later in this book we’ll be look-

ing at more advanced issues, such as release management,

workspaces, and third-party code. However, the commands

and techniques in this chapter should handle 90 percent of

the work you do with Subversion.

These examples assume you have your repository up and run-

ning and that you’ve enabled network access. We’ll assume

the Sesame project’s main code line (the trunk) is located at

svn://olio/sesame/trunk. You’ll need to use your own

server name instead of olio and the right access scheme if

you’re using http or svn+ssh instead of the basic svn.

6.1 Checking Things Out

The svn checkout command (often abbreviated co) gets Subver-

sion to create a new working copy from a directory stored in

the repository. In its simplest form, the checkout command

creates a working copy in a directory with the same name as

the repository directory:

svn://olio/sesame/trunk

CHECKING THINGS OUT 63

work> svn checkout svn://olio/sesame/trunk

A trunk/Month.txt

A trunk/Number.txt

A trunk/Day.txt

Checked out revision 8.

Here, Subversion created the working copy in a local trunk

directory, because that’s the name of the directory in the

repository. This might not be what you want, especially if

you’re following the conventions recommended in Chapter 8,

Organizing Your Repository, on page 107. You can use an

extra argument when checking out to specify the name of the

directory Subversion should use for your working copy:

work> svn checkout svn://olio/sesame/trunk sesame

A sesame/Month.txt

A sesame/Number.txt

A sesame/Day.txt

Checked out revision 8.

By default, Subversion checks out the latest revision stored in

the repository. If you’d like an older version, use the -r option

to specify the revision number or date you’d like. Section 6.6,

Using Subversion Revision Identifiers, on page 80 contains full

details on how to refer to a particular revision.

To check out a copy of the Sesame project before we added

Month.txt, we can specify revision 7:

work> svn checkout -r 7 svn://olio/sesame/trunk old-sesame

A old-sesame/Number.txt

A old-sesame/Day.txt

Checked out revision 7.

If you’re like us, you’ll probably end up with a bunch of differ-

ent working copies in your work directory. To figure out where

a working copy came from, use the svn info command:

work> svn info sesame

Path: sesame
URL: svn://olio/sesame/trunk

Repository UUID: d6959e13-a0e3-0310-8d55-a8c2e0b5e323

Revision: 34
Node Kind: directory

Schedule: normal
Last Changed Author: mike

Last Changed Rev: 7

Last Changed Date: 2004-10-05 13:07:15 -0700 (Tue 5 Oct 2004)

The important bit here is the URL on the second line. Sub-

version is telling us that the sesame directory on the local

machine originally came from svn://olio/sesame/trunk/.

KEEPING UP-TO-DATE 64

6.2 Keeping Up-to-Date

If you’re not the only person working on a project, the chances

are pretty good that the repository is being updated by others

even as you are working. It’s a good idea to incorporate their

changes into your working copy fairly frequently; the longer

you leave it, the bigger the hassle of fixing any conflicts.1 We

typically update our working copies every hour or so through-

out the day.

The svn update command is used within a working copy and

brings all the files in the directory (and its subdirectories) up-

to-date with the repository. Files and directories added to

the repository will be added to the working copy, and files

and directories removed from the repository will be removed

from the working copy. The following command updates the

working copy of the Sesame project:

work> cd sesame

sesame> svn update

You can choose to update just part of your checked-out tree.

If you issue the command in a subdirectory of a project, then

only files at or below that point will be updated. This may

save time, but it also leaves you exposed to working on an

inconsistent set of files.

You can also specify one or more individual files or directories

to update by naming them on the command line:

main> svn update build.xml src/ test/

During the update process, Subversion will show the status

of each file with significant activity. For example, the follow-

ing is the logging produced when updating the directory tree

containing the Subversion source code itself:

subversion> svn update

U include/svn repos.h

G libsvn client/status.c

A bindings/java/javahl/build

A bindings/java/javahl/build/build.xml

U bindings/swig/perl/native/Repos.pm

1Frequent merges serve another purpose. If another developer is going

down the wrong path, or if their changes are promising to be problematic in

the long term, you’ll find out sooner if you merge often. The earlier you get

this feedback, the less the pain involved in fixing the problem.

KEEPING UP-TO-DATE 65

U bindings/swig/perl/native/Base.pm

A bindings/swig/perl/native/Makefile.PL.in

UU bindings/swig/perl/native/h2i.pl

U bindings/swig/perl/native/Ra.pm

D bindings/swig/perl/native/Makefile.PL

U bindings/swig/perl/native

U clients/cmdline/propedit-cmd.c

A po/pt BR.po

U po/zh TW.po

Updated to revision 11141.

Subversion prints the following characters to indicate what

has happened to each file or directory:

• A indicates Subversion has added a file to your working

copy in order to bring it up-to-date with a new file in the

repository.

• U shows a file that was out-of-date in your working copy

because a newer version was checked into the repository.

Subversion has updated your working copy of the file to

the new version.

• D indicates that Subversion has removed a file from your

working copy because the file has been deleted from the

repository.

• G shows a file that was out-of-date in your working copy,

which you had modified locally. Subversion successfully

merged the changes from the repository with your local

modifications.

• C shows a file that was out-of-date in your working copy,

which you had also modified locally. Subversion tried to

merge the changes from the repository with your local

modifications but encountered a conflict. You’ll need to

resolve the conflict before you can check in.

You might have noticed the line Subversion printed for h2i.pl

starts with UU and that the line for the bindings/swig/perl/native

directory has a space followed by a U. These aren’t typeset-

ting errors—Subversion is actually printing two columns of

information. The second column indicates changes to a file’s

properties, rather than to a file itself. Subversion properties

are discussed in more detail in Section 6.4, Properties, on the

following page.

ADDING FILES AND DIRECTORIES 66

6.3 Adding Files and Directories

The svn add command tells Subversion to add files and direc-

tories to the repository. When you add a directory, Subversion

automatically adds all the files within the directory and its

subdirectories, unless you specify the --non-recursive option:

sesame> mkdir timelib

sesame> cd timelib

timelib> # ..create and edit Time.java..#

timelib> cd ..

sesame> svn add timelib

A timelib
A timelib/Time.java

Note that at this point Subversion has just remembered the

names of the files you’d like to add to the repository; it hasn’t

actually added the files or made the change visible to anyone

else. You need to use svn commit to commit the new files into

the repository.

Subversion stores all files in the repository in a binary format,

using an efficient binary-delta algorithm to figure out what

has changed between revisions. This works great for text as

well as real binaries, so you don’t need to tell Subversion if a

file is binary when adding it to the repository.

Subversion treats text and binary files differently as we’ll see

in Section 6.4, Setting Mime Types, on page 73, which means

it’s sometimes worth checking that Subversion detected the

“binaryness” of a file correctly. When you add a file that Sub-

version thinks is binary, it’ll automatically set the svn:mime-

type property to application/octet-stream. The next sec-

tion covers properties in detail.

6.4 Properties

Whilst we are mostly concerned with Subversion storing file

contents it can also store metadata associated with each file

(and directory) in the repository.2 Subversion calls this meta-

data properties and manages changes to properties in the properties

same way as a file’s contents. Properties can be changed

2Subversion actually stores properties on revisions too. For example, the

log message associated with a particular commit is stored in a text property

on the revision.

PROPERTIES 67

by different users and are updated in each working directory

when users run svn update. This can lead to merges and con-

flicts just like those encountered when changing file contents.

Properties are named using simple strings and can contain

any content that a normal file could contain—this specifically

includes binary content. Properties can be used to associate

extra data with a file, in whatever format you’d like. For exam-

ple, a Java source file could have an associated Reviewer prop-

erty that tells you who last performed a code review on that

file. A repository storing music files might have a short sam-

ple of each file stored in a binary property, rather than storing

the samples in files alongside the main file and using some

naming convention to link the two.

You can use Subversion’s properties however you like, but you

should be aware of a few special properties. These properties

change the way Subversion behaves when it encounters a file,

and all start with the svn: prefix.

Manipulating Properties

To set a property on a file, use the svn propset command:

sesame> svn propset checked-by "Mike Mason" Number.txt

property 'checked-by' set on 'Number.txt'

sesame> svn status

M Number.txt

Here we’re setting the checked-by property on Number.txt to

value Mike Mason. Maybe our project’s release procedure

requires each of our files to have this property set so that

we can figure out who approved the contents. It’s important

to note that we’re making a change to the file’s properties,

which Subversion handles in the same way as a change to

the contents. Subversion records the file in our local copy as

modified, and we must commit the change to the repository if

we want anyone else to see it.

To edit a property, use svn propedit. This will bring up an editor

so that you can easily manage multiline text properties:

sesame> svn propedit checked-by Number.txt

.. edit the property, then save and quit the editor ..

Set new value for property 'checked-by' on 'Number.txt'

PROPERTIES 68

The svn proplist and svn propget commands list all the properties

for a file and print out the current value of a property:

sesame> svn proplist Number.txt

Properties on 'Number.txt':

checked-by

sesame> svn propget checked-by Number.txt

Mike
Ian

Finally, you can use svn propdel to delete a property entirely.

Remember that the property is not lost forever—Subversion

tracks changes to properties just like changes to files, so you

can always go back in time and find any previous revision.

Keyword Expansion

If you’ve used another version control system, you may be

familiar with keyword expansion. This basically means get- keyword expansion

ting your version control system to modify your working copy

files as it checks them out and updates them so it can fill

in useful information for you. Each of these useful pieces of

information is represented by a keyword, usually surrounded keyword

by dollar signs, which you put strategically inside the files

you’re storing in version control. Keywords in Subversion

are stored unexpanded in the repository to make diffing and

merging a little easier.

We really recommend not using this Subversion feature, since

it can get you into lots of bother. We tried to make this page of

the book perforated so readers could tear it out and forget all

about keyword expansion, but our printers said it’d add too

much to the production costs....

To switch on keyword expansion, you need to set svn:keywords

on each file containing keywords. The property value should

list the keywords you’d like to expand for that particular file.

Subversion offers the following keywords:

$LastChangedDate$

Also abbreviated $Date$, this keyword describes the last

time the file was committed to the repository. It expands

to a string such as 2004-09-26 18:11:03 -0700 (Sun, 26 Sep

2004).

$LastChangedRevision$

Also known as $Revision$ or Rev, this keyword expands

PROPERTIES 69

to the revision number the last time the file was commit-

ted to the repository.

$LastChangedBy$

Also abbreviated $Author$, this keyword expands to the

name of the last user to have committed the file.

$HeadURL$

Also abbreviated URL, this keyword expands to the full

URL of the file in the repository.

Id

This keyword expands to a short summary of the other

keywords, suitable for use in a file’s header section.

Let’s suppose we want to turn on keyword expansion for the

file Number.txt in our Sesame project. First we need to set

svn:keywords to the list of keywords we want to expand:

sesame> svn propset svn:keywords "HeadURL Id" Number.txt

property 'svn:keywords' set on 'Number.txt'

Now edit Number.txt, and add two header lines with the key-

words we want expanded. Here we’re using $HeadURL$ and

Id:

$HeadURL$

Id

ZERO
ichi
due
three
four
five
SIX

Now when we commit our changes, Subversion will notice that

we’ve asked for keyword expansion and modify the working

copy file. Each keyword is expanded to the latest information

Subversion has for the file:

sesame> svn commit -m "Added file keywords"

Sending Number.txt

Transmitting file data .

Committed revision 10.
sesame> cat Number.txt

$HeadURL: svn://olio/sesame/trunk/Number.txt $

$Id: Number.txt 10 2004-09-27 00:09:05Z mike $

ZERO
ichi
due
three
four
five
SIX

PROPERTIES 70

Joe Asks. . .

Where’s the Log keyword?

The keywords available in other version control sys-
tems, including CVS, often include a Log keyword.
This expands to list all of the log messages ever used
when committing changes to the file.

The practical problem is that all this extra stuff in the
source files gets in the way of reading the code.
We’ve seen source with two or three full pages of log
messages at the top of it, all before you get to a sin-
gle line of real code. Code is there to be read, and
anything that gets in the way of reading it is bad.

The philosophical problem is that you’re duplicating
information. Everything that can be inserted using
keywords is already stored within Subversion (it has to
be; otherwise Subversion couldn’t add it in the first
place). So why not just go to the horse’s mouth and
ask Subversion directly? That way you’ll get authorita-
tive information that’s guaranteed to be up-to-date.

The Subversion developers think the use of keywords,
especially anything that includes verbose possibly
long commit messages, should not be encouraged.
The result is they haven’t included a Log keyword.

Keyword expansion really doesn’t have many bene-
fits, and it has several drawbacks. We recommend
not using it.

Whilst writing this book using the Pragmatic Program-
mers’ CVS-based system, Mike got caught out by the
expansion of Log and Id keywords and had to
switch it off for various chapters. The irony of using
CVS to write a Subversion book is not lost on him.

Editor’s note: Mike’s first edition of this book moved us
so deeply that we now do all book production using
Subversion.

PROPERTIES 71

If you want to use keyword expansion on lots of files, say, all

your .java files, that’s a lot of property setting to remember

to do. Fortunately, Subversion has a feature called autoprops autoprops

that can set properties for you. Autoprops are explained in

detail in Section 6.4, Automatic Property Setting, on page 74.

Ignoring Certain Files

Most of the time your working copy will contain both files you

want under version control (source code, build scripts, graph-

ics for your application, and so on) and files that you’re happy

to have lying around but that don’t need to be stored in the

repository (temporary files, compiled code, and logfiles). Some

Subversion commands, notably svn status, svn add, and svn

import assume you’re interested in all the files in your working

copy. For example, svn status displays files that aren’t under

revision control in case you’ve forgotten to add them.

This extra output for files you really don’t want Subversion

to worry about can be annoying, or just plain dangerous (try

accidentally adding a few large temporary files to your repos-

itory, and see if your administrator comes running your way

with a big stick...). Fortunately, there’s an easy way to avoid

these problems: setting the svn:ignore property on a directory

specifies files you’d like Subversion to ignore.

Suppose we’ve been working on the time library in our Sesame

project. Ask Subversion for a status report, and we might see:

sesame> svn status timelib/

? timelib/Time.class

? timelib/Time.java.bak

M timelib/Time.java

Here we can see that we’ve changed Time.java but that Subver-

sion is also reporting on Time.class and Time.java.bak, neither of

which we actually care much about.

Use svn propedit svn:ignore timelib to bring up an editor for the

svn:ignore property on timelib. Enter the following contents:

*.class
*.bak

Now running svn status will ignore the .class and .bak files:

sesame> svn status

M timelib
M timelib/Time.java

PROPERTIES 72

The timelib directory is listed as modified because we changed

its svn:ignore property.

Once your changes are committed, everyone will receive the

update to the svn:ignore property on timelib, causing Subver-

sion to ignore files in their working copies too. The svn:ignore

property applies only to the contents of a particular directory;

it doesn’t apply recursively to subdirectories.

Setting End-of-Line Style

Computer systems store text files using a combination of nor-

mal characters—the alphabet, numbers, and so on—and spe-

cial control characters. A combination of up to two of these control characters

are used to denote the end of a line of text. Depending on

the operating system, a computer will use a carriage-return

followed by a linefeed (CRLF, used by Windows computers),

simply a linefeed (LF, used by Unix and Mac OS X), or some-

times just a plain carriage-return (CR, used by older versions

of Mac OS).

If you’re storing files that should be usable on clients where

the line-ending style differs, you might be worried about how

line endings are stored. Subversion stores all files, whether

they’re text, graphics, compiled object code, or movies, using a

binary format in the repository. Unless you ask it to, Subver-

sion will never convert a file’s line-ending style, which might

mean you can ignore this section entirely.

If you do need to share files across different operating sys-

tems, you may already have noticed strange behavior. Open-

ing a Unix-formatted file using Windows’ Notepad, for exam-

ple, produces a file with lots of little squares in it instead of

newlines. Opening a Windows-formatted file in Unix might

result in lots of ˆM characters at the end of each line.

Whilst your editor or IDE might claim to be able to do conver-

sions for you, or to maintain the end-of-line style that exists

in a file when editing it, we often find the best thing is to stick

with native linefeed formats for each operating system. Sub-

version will do a conversion for you if you set the svn:eol-style

property to one of the values in the following table.

PROPERTIES 73

native Subversion will translate end-of-line characters to

whatever the client operating system expects, and so

will use CRLF on Windows and LF on Unix.

CRLF Subversion will always use CRLF as an end-of-line

marker when it creates files in the working copy.

LF Subversion will always use LF as an end-of-line

marker on the client.

CR Subversion will always use CR as an end-of-line

marker on the client.

Setting Mime Types

Setting the svn:mime-type property on a file tells Subversion

exactly what type of content a file has. Mime types are used a

lot on the Internet—especially by e-mail and web servers—to

describe files that are being transferred around or sent as e-

mail attachments. For example, XML documents have a mime

type of text/xml, JPEG graphics are of type image/jpeg, and

Microsoft Word documents have an application/msword mime

type.

Setting svn:mime-type on a file is useful for a couple of reasons.

Firstly, Subversion assumes files that don’t have a text mime

type (starting text/) have binary contents, so it should treat

them differently on the client when merging and displaying

diffs. A diff on a binary file probably won’t be human readable,

so Subversion skips trying to show you a diff and just tells

you the file has changed. A merge on a binary file is equally

unlikely to work very well, so when you’re receiving changes

from the repository to a binary file you’ve changed in your

working directory, Subversion renames your version of the

file with a .orig file extension and replaces your file with new

data from the repository.

Secondly, when Subversion is being used with Apache as its

network server, you can browse the repository using a normal

web browser. When you click on a link, Subversion uses the

svn:mime-type property to figure out what the type of the file

PROPERTIES 74

should be when Apache returns it to your web browser. This

helps avoid seeing a screenful of binary data when you click

on a zip file in the repository.

Executable Flags

Some operating systems, most notably Unix, treat simple data

files differently than program files. To be able to run a pro-

gram on Unix it must have its “execute bit” set. If you’re

checking executable files or scripts into your repository, users

checking the files out won’t automatically get the execute bit

set. Setting the svn:executable property on a file means that

Subversion will set the execute bit for you whenever that file is

checked out. It doesn’t matter what the property is set to—if

it’s set at all, Subversion will set the execute bit.

On Windows, all files are executable, so you probably won’t

have to worry about this.

Automatic Property Setting

Subversion properties are very useful, but unfortunately they

need to be applied to each file or directory we’re interested in.

It’s easy to forget to set a property, and that might lead to

problems later.

Fortunately, Subversion includes a feature called autoprops

that allows you to specify properties that should be added

automatically. For example, you might decide that .java files

should have svn:keywords set to LastChangedDate and have

svn:eol-style set to native. You might also decide that whenever

someone adds a .gpg file to the repository it should have its

svn:mime-type set to application/pgp-encrypted.

Autoprops are a client-side setting, so if you want all your

developers to use them you’ll need some kind of policy for

making sure everyone is set up correctly. Unfortunately, Sub-

version doesn’t (yet) have the ability to “broadcast” configura-

tion settings from the server to clients, so you’ll have to do

this by hand.

Subversion stores your settings in a user-specific application

data folder. Where this actually is depends on whether you’re

using Unix or Windows. Section 5.1, svn+ssh, on page 57

COPYING AND MOVING FILES AND DIRECTORIES 75

covers finding the folder on Windows, and on Unix Subversion

uses ˜/.subversion.

Edit Subversion’s config file, and uncomment the following

line:

enable-auto-props = yes

Next scroll down a little, and uncomment the autoprops sec-

tion, adding whatever properties you’d like to set. To enable

a mime type on .gpg files and native end-of-line style on .java

files, you’d want a section like this:

[auto-props]

*.java = svn:eol-style=native

*.gpg = svn:mime-type=application/pgp-encrypted

6.5 Copying and Moving Files and Directories

Subversion remembers every file and directory you ever com-

mit to the repository. This is great in most cases, but if

you make a mistake and add a file to the wrong directory,

or add it with the wrong name, you might want to move or

rename something. Modern programming includes a tech-

nique called refactoring, which often involves renaming a pro-

gram file when you come up with a better name for what that

file does or a more logical location for it in your project.

Fortunately, Subversion includes copy and move commands

allowing you to move and rename3 files and directories. Sub-

version’s history tracking also knows about these operations,

so it’s much better to move a file using a Subversion command

than to move it yourself manually.

Copying a File

Whilst you could manually copy a file using Windows Explorer

or the Unix cp command, then add the new file to version

control, Subversion provides the svn copy command to allow

copying of files.

3A “rename” is just a “move” that happens to move a file to the same

directory. Unix gurus will probably be able to explain exactly why this makes

sense, but Subversion’s move and rename commands do the same thing.

COPYING AND MOVING FILES AND DIRECTORIES 76

Copying is the fundamental operation in Subversion upon

which everything else is based. Successive revisions of a file

are copies of the file with the contents changed. Branches are

copies of entire directories to a new location. Tags are copies

of a set of files that provide a snapshot of the repository at a

particular point in time.

Given that copying is such an epic activity, why would you

want to do it just to add another copy of a file to your reposi-

tory? Ultimately you might not, but when you copy a file using

svn copy, Subversion can track the history of both the original

and the copy back to the same source. In fact, Subversion

doesn’t even store a complete copy of the file; it just stores a

reference to where it was copied from. This might be useful if

you have a lot of big files that came from the same source and

have just been changed a little.

Enough evangelism. Using svn copy is a good idea, and it

works like this:

sesame> svn copy Number.txt Data.txt

A Data.txt
sesame> svn commit -m "Created example data file"

Adding Data.txt

Committed revision 24.

Copying a file or directory creates copies in your local working

directory and schedules them for addition to the repository. A

normal svn commit will check them in and complete the copy.

Since Subversion remembers the shared history of the files,

asking for the log for Data.txt also gives us the history for the

file Number.txt:

sesame> svn log Data.txt
--

r24 | mike | 2004-11-17 16:00:37 -0700 (Wed, 17 Nov 2004)

Created example data file
--

r11 | mike | 2004-10-04 21:05:37 -0600 (Mon, 04 Oct 2004)

Added Ian as reviewer
--

r10 | mike | 2004-09-26 18:09:05 -0600 (Sun, 26 Sep 2004)

Added file keywords
--

r7 | mike | 2004-09-08 23:22:06 -0600 (Wed, 08 Sep 2004)

One is Japanese, two Italian
--

COPYING AND MOVING FILES AND DIRECTORIES 77

Renaming a File

Let’s suppose that our Sesame project’s Time.java has actually

become more of a “clock” class and that we’d like to rename

it. We could rename the file in our working copy using Win-

dows Explorer or the Unix mv command, then use svn delete

to delete Time.java and svn add to add Clock.java, but that won’t

allow Subversion to track the file history for us.

First let’s examine the history for Time.java:

timelib> svn log Time.java
--

r14 | mike | 2004-10-04 21:12:48 -0600 (Mon, 04 Oct 2004)

Added freeze/unfreeze time methods
--

r13 | mike | 2004-10-04 21:10:50 -0600 (Mon, 04 Oct 2004)

Added getCurrentDate() method
--

Our most recent change to the file, adding methods for freez-

ing and unfreezing the system time, really means that our

class would be better named Clock. We know that things can

get out of hand if we don’t name our classes well, so we decide

to make the change sooner rather than later. Use the svn move

command to rename the file:

timelib> svn move Time.java Clock.java

A Clock.java

D Time.java

Here Subversion is letting us know that our “move” is really an

add and a delete. Someday Subversion may support renames

as first-class operations, but for the moment a Subversion

move is stored in the repository as a history-aware copy from

the old name to the new name and a delete of the old name.

Before you get all excited and commit the change, you should

crank up your unit tests and make sure you didn’t break

anything. At the very least, this Java file now won’t com-

pile because it contains a Time class in a file called Clock.java.

Open your favorite editor, and change the class name to Clock.

Then make sure your tests pass. You might need to change

code that references the class so it uses the new name too.4

4Renaming a Java file requires quite a few steps, as does a rename in

other programming languages. Fortunately, some development environments

integrate directly with version control and will perform all the renames, adds,

and deletes for you automatically. Check your IDE for “refactoring support.”

COPYING AND MOVING FILES AND DIRECTORIES 78

What’s in a Name?

Subversion’s move command can also be referred to
as svn mv, rename, and ren. The svn copy command
can be shortened to svn cp if you’re into the whole
brevity thing.

While we’re on the subject of naming, it’s worth point-
ing out that naming things (classes, variables, meth-
ods, tests, data files, machines, processes, etc.) is
both really difficult and really important. Most peo-
ple don’t name stuff completely right the first time
around, but a well-named object helps avoid misun-
derstanding and speeds communication. Once you
realize there’s a better name for something, make the
effort to rename it. Your colleagues will thank you!

Once everything is working, commit your changes:

timelib> svn commit -m "Renamed Time to Clock"

Adding timelib/Clock.java

Deleting timelib/Time.java

Transmitting file data .

Committed revision 15.

Now if we view the history for the new Clock.java, we’ll see the

hard work has paid off, as Subversion follows the history of

the file across the rename:

timelib> svn log -v Clock.java
--

r15 | mike | 2004-10-04 21:13:40 -0600 (Mon, 04 Oct 2004)

Changed paths:

A /sesame/trunk/timelib/Clock.java

(from /sesame/trunk/timelib/Time.java:14)

D /sesame/trunk/timelib/Time.java

Renamed Time to Clock
--

r14 | mike | 2004-10-04 21:12:48 -0600 (Mon, 04 Oct 2004)

Changed paths:

M /sesame/trunk/timelib/Time.java

Added freeze/unfreeze time methods
--

r13 | mike | 2004-10-04 21:10:50 -0600 (Mon, 04 Oct 2004)

Changed paths:

M /sesame/trunk/timelib/Time.java

Added getCurrentDate() method
--

COPYING AND MOVING FILES AND DIRECTORIES 79

Renaming a Directory

With Subversion, directories are first-class objects just like

files. We can happily move or rename a directory using the

svn move command. Maybe the time library has had a few

extra utilities added to it and should be renamed util.

timelib> cd ..

sesame> svn move timelib util

A util
D timelib/Clock.java

D timelib
sesame> svn commit -m "Renamed timelib to util"

Deleting timelib

Adding util

Adding util/Clock.java

Committed revision 16.

Using Repository URLs

The svn move command we’ve seen so far has been running on

the working copy—moves, renames, adds, and deletes hap-

pen on the client before being committed to the server. This is

appropriate in most cases, because program code often needs

to be edited after being moved so that the code will still com-

pile and the tests will still pass.

Subversion also allows you to run these commands using a

repository URL, without the need for a working copy at all.

The changes are made instantly in the repository and require

a commit message. It might be appropriate to use this kind

of renaming if you have a lot of big files and don’t want to

move them around using a working copy. If you’re moving

code, however, think twice—you won’t be able to run your

tests without a working copy and might well break stuff.

To perform a repository-based rename, use two URLs like the

one initially used for a checkout. Let’s rename the util directory

common instead:

work> svn move -m "Renamed util to common" \

svn://olio/sesame/trunk/util \
svn://olio/sesame/trunk/common

Committed revision 17.

Back in the Sesame working copy, performing an update will

get the new common directory and delete the old util directory:

sesame> svn update

A common
A common/Clock.java

D util
Updated to revision 17.

SEEING WHAT HAS CHANGED 80

6.6 Seeing What Has Changed

The svn diff command shows you the differences between ver-

sions of files. You can compare the version of a file in the

repository with your locally modified copy, and you can see

the differences between two versions of a file in the reposi-

tory.

Seeing What You’ve Changed in Your Working Copy

The simplest use of svn diff is to show you what you’ve changed

since you last updated your working copy from the repository:

common> svn diff Clock.java

Index: Clock.java
==
--- Clock.java (revision 21)

+++ Clock.java (working copy)

@@ -20,6 +20,11 @@

frozen = true;

}

+ public static void setTime(long time)

+ {

+ frozenTime = time;

+ }
+

public static void unfreezeTime()

{

frozen = false;

Here we can see that we last updated to revision 21 of the file

Clock.java and that since then we added the setTime() method.

The basic svn diff command shows the changes between the file

in your workspace and the version to which you last updated.

Subversion can do this without contacting the server because

it stores a pristine, local copy of each file in your working

directory. If someone else has changed the file and committed

their changes into the repository, however, you won’t see them

in the diff. We’ll see how to handle this shortly.

Using Subversion Revision Identifiers

We looked at Subversion’s -r option when checking out and

updating, and it turns out referring to revisions is something

we’ll be doing a lot with Subversion. The option you supply

after -r is called a revision identifier. When you’re using a revision identifier

revision identifier, Subversion will accept revision numbers,

dates, and a few symbolic names, shown in the following

table.

SEEING WHAT HAS CHANGED 81

number A revision number within the repository, for

example 87.

{ date } A revision at the start of the date, for exam-

ple {"2004-09-26 13:35:06"}. The curly

braces tell Subversion you’re using a date,

and the quotes are required if you’re using

a date format containing spaces. Subversion

supports a variety of date formats, including

the basic HH:mm denoting a particular time

on today’s date.

HEAD The latest revision stored in the repository.

BASE The base revision of an item’s working copy—

this is the revision you last checked out or

updated to.

COMMITTED The last revision in which an item changed at

or before BASE.

PREV The revision just before COMMITTED.

Some commands accept a revision range, which is simply two revision range

revision identifiers separated by a colon. Revision ranges are

used to refer to two revisions separated over time.

The symbolic revisions BASE, COMMITTED, and PREV can be

used only to refer to an item in a working copy, because they

don’t make sense otherwise.

Figure 6.1 on the following page shows Subversion’s symbolic

revisions. In this scenario, you have revision 2 of Graph.java

in your working copy, and another developer checks in some

changes, creating revision 3 in the repository. Since you

haven’t updated your working copy, the BASE revision for

your copy of Graph.java is revision 2. The PREV revision is

one earlier than this, namely revision 1. HEAD is always the

newest version in the repository, in this case revision 3.

SEEING WHAT HAS CHANGED 82

K L M N

O P Q R S T U Q V Q W X W Y W Z

W Y [\ W] ^ _ ` a \ b c

d e f gh f i ej k e l

m n o p q rq s t u

Figure 6.1: Symbolic Revisions for a Working Copy File

Finding Differences between Versions

To compare two revisions of a particular file, use the -r option

to specify a revision range:

common> svn diff -r19:21 Clock.java

Index: Clock.java
==
--- Clock.java (revision 19)

+++ Clock.java (revision 21)

@@ -1,9 +1,11 @@

package timelib;

+import java.util.Date;
+
public class Clock

{

- private boolean frozen = false;

- private long frozenTime = 0;

+ private static boolean frozen = false;

+ private static long frozenTime = 0;

public static Date getCurrentDate()

{

Here we used a file in the working copy to produce the diff,

even though a working copy doesn’t contain any historical

information. Under the hood, Subversion translates the file

path into a repository URL so it can retrieve the earlier ver-

sions as needed.

If you don’t have a working copy, you can diff directly against

the repository:

SEEING WHAT HAS CHANGED 83

common> svn diff -r19:21 \
svn://olio/sesame/trunk/common/Clock.java

Index: Clock.java
==
--- Clock.java (revision 19)

+++ Clock.java (revision 21)

@@ -1,9 +1,11 @@

package timelib;

+import java.util.Date;
+
public class Clock

{

- private boolean frozen = false;

- private long frozenTime = 0;

+ private static boolean frozen = false;

+ private static long frozenTime = 0;

public static Date getCurrentDate()

{

Earlier we noted that a common gotcha with svn diff is that it

doesn’t show changes that have happened in the repository.

To get Subversion to compare your working copy against the

latest revision in the repository, use the HEAD keyword:

common> svn diff -r HEAD Clock.java

Index: Clock.java
==
--- Clock.java (revision 26)

+++ Clock.java (working copy)

@@ -1,6 +1,7 @@

package timelib;

import java.util.Date;

+import java.util.Calendar;

public class Clock

{
@@ -24,6 +25,11 @@

frozenTime = System.currentTimeMillis();

}

+ public static void switchToGMT()

+ {

+ frozenTime -= Calendar.getInstance()

+ .get(Calendar.ZONE OFFSET);

+ }
+

public static void setTime(long time)

{

frozenTime = time;

@@ -38,10 +44,5 @@

{

frozen = false;

}
-
- public static boolean isFrozen()

- {

- return frozen;

- }

}

SEEING WHAT HAS CHANGED 84

In our working copy of Clock we’ve added the switchToGMT()

method. Meanwhile, another developer added the isFrozen()

method and checked in. When we ask for a diff against HEAD,

we can see our local changes as additions and the other devel-

oper’s changes as deletions—if we check in Clock.java exactly

as it is in our working copy, we’ll undo the change adding

isFrozen().

Fortunately, Subversion won’t let us do this—we’ll need to

update before checking in, which will add the isFrozen() method

to our working copy.

Sometimes it’s useful to see the most recent change to a file

before you start working on it. You can do this by using the

PREV symbolic revision:

common> svn diff -r PREV:BASE Clock.java

Index: Clock.java
==
--- Clock.java (revision 22)

+++ Clock.java (working copy)

@@ -26,6 +26,11 @@

frozenTime = time;

}

+ public static void setTime(Date date)

+ {

+ frozenTime = date.getTime();

+ }
+

public static void unfreezeTime()

{

frozen = false;

Here Subversion is showing us that the previous change to

Clock.java was the addition of the setTime() method.

Subversion’s diff command can also examine changes between

different development branches or show you what changed

since a certain version of the code was tagged. Chapter 9,

Using Tags and Branches, on page 111 covers diffing and

merging across tags and branches.

Diffs and Patch

If you’ve spent any time in the open-source community, you’ll

have come across folks flinging source patches around the

world. These patches are based on the same diffs that Sub-

version generates, which turns out to be remarkably useful.

SEEING WHAT HAS CHANGED 85

Perhaps you’re working with an open-source library, and you

need to make a change. The library is on CodeHaus,5 which

among other things provides free Subversion repositories for

open-source developers. As a member of the public, Code-

Haus lets you check the source code of the project out of the

repository, but because you aren’t on the list of developers,

you can’t check changes back in.

This is where patches come in. Simply ask Subversion to give

you a list of all the changes you’ve made (using svn diff). E-

mail the file containing the diff output to the library’s main-

tainer, who will be able to use the patch program to apply

those patches to their source.

The following command creates a file called mychanges.patch

containing all the changes that have been made to files in or

below the directory oslibrary:

oslibrary> svn diff > mychanges.patch

You can then e-mail this file to the maintainer, who can apply

the patch to his or her version of the source using (surprise!)

the patch command:

oslibrary> patch -p0 -i mychanges.patch

Correct use of patch is a mystic art that probably cannot be

taught in a book this size, but here’s a rough breakdown of

what’s going on:

• The patch is being applied in oslibrary, the same directory

in which it was created.

• The -p0 option is instructing patch to strip zero direct-

ories from files named in the patch before applying it. If

you don’t include this option, patch will complain about

being unable to find the right files.

• The -i option is telling patch to use mychanges.patch as

input.

patch is pretty clever and can usually ignore “garbage” text

surrounding a patch, so you can save an e-mail containing

someone’s changes and apply the whole thing. What most

5http://codehaus.org/

http://codehaus.org/

HANDLING MERGE CONFLICTS 86

people forget is the magic -p0 that lets patch find the right

files.

Patches are useful outside the context of open source. You

can use patches to send suggested changes to other members

of your project team. If your clients have your source code,

you can even use patches to distribute those urgent three-

in-the-morning fixes that seem to crop up from time to time.

Just remember to check in the changes you’ve made into the

repository as well.

6.7 Handling Merge Conflicts

Subversion doesn’t lock files:6 everyone in a project can edit

any file at any time. This feature of Subversion seems to give

some people sleepless nights. “What stops two people editing

the same file at the same time?” they ask. “Won’t work get

lost?”

The simple answers are “nothing, and no.” If they edit differ-

ent parts of that same file, Subversion will happily merge the

two changes together, and life carries on.

Sometimes, however, two people edit the same parts of the

same file (although it happens far more rarely than you might

first think). When that happens, Subversion cannot automat-

ically perform a merge: it wouldn’t know whose changes to

keep. In these cases, Subversion declares that the two ver-

sions of a file conflict and passes the matter back to a human

(you) to solve.

To illustrate a conflict, we’ll use our old friend Numbers.txt

again. This time, we’ll check it out into two separate work-

ing directories:7

6At least, Subversion doesn’t lock files by default. Subversion 1.2 sup-

ports optional locking, sometimes known as reserved checkouts, which we

discuss in Chapter 7, File Locking and Binary Files, on page 99.
7Eagle-eyed readers will notice these examples take us back to revision 1

of the repository, when we had only two files and no timelib directory. This was

possible through some Subversion administration magic—we made a backup

of our repository including just revision 1 and loaded the backup into a new

repository. Section A.6, Backing Up Your Repository, on page 170 covers this

magic in detail.

HANDLING MERGE CONFLICTS 87

work> svn checkout svn://olio/sesame/trunk sesame1

A sesame1/Number.txt

A sesame1/Day.txt

Checked out revision 1.
work> svn checkout svn://olio/sesame/trunk sesame2

A sesame2/Number.txt

A sesame2/Day.txt

Checked out revision 1.

In the sesame1 directory, we’ll change the first line of Num-

bers.txt so that it contains the following:

ZERO
one
two

We’ll check this change in:

sesame1> svn commit -m "Made zero uppercase"

Sending Number.txt

Transmitting file data .

Committed revision 2.

Now we’ll bop over to sesame2. Remember that we want to

create a merge conflict, so we’ll pretend that we don’t know

that someone changed the file we’re about to work on. In

sesame2 we’ll alter Numbers.txt, changing the first line to read

Zero:

sesame2> svn commit -m "Capitalized 'Zero'"

Sending Number.txt

Transmitting file data .svn: Commit failed (details follow):

svn: Out of date: '/sesame/trunk/Number.txt' in transaction '9'

So far, so good. Subversion has detected that Number.txt is

out-of-date, so we do an svn update:

sesame2> svn update

C Number.txt
Updated to revision 2.

Subversion marks the file with a C to let us know there’s a

conflict in the merge, and it’s our job to fix it.

Fixing a Conflict

The first question to be answered when fixing a merge conflict

is, “why did this happen in the first place?” This isn’t an issue

of blame, but it often is one of communication. What are two

developers doing editing the same lines of code in the same

file at the same time?

Sometimes there’s a good reason. Perhaps they both discover

the same bug at the same time, and both decide to fix it. Or

HANDLING MERGE CONFLICTS 88

perhaps they’re both adding functionality which uses a com-

mon data structure, and both add fields to that structure at

the same time. These are reasonable changes, and they might

lead to a conflict.

But often conflicts happen because folks aren’t doing a good

job of letting others know what’s going on. So, we strongly

recommend that if you come across a merge conflict without a

sensible explanation you make a point of mentioning it at the

next team meeting. The goal here is to discuss the cause and

to come up with ways of improving communication so that

the chances of something similar happening in the future are

reduced.

Now that’s all fine, but you’re still left with a conflict. Subver-

sion marks these in the local copy of the file using sequences

of <<< and >>> characters:

<<<<<<< .mine
Zero
=======
ZERO
>>>>>>> .r2
one
two N

u
m

b
e

r.t
xt

Here we can see our change, Zero, helpfully labeled mine,

and the change from the repository, ZERO, with the hint that

it came from revision 2.

We now have to decide how to fix this. In the real world, this

involves a negotiation with the other person who made the

change; simply blowing their hard work away and replacing it

with yours is a great way to jeopardize your invitation to the

next project picnic.

The resolution could go a number of ways:

• You decide to scrap your changes and use the version

in the repository. All you have to do is svn revert your

changes—Subversion will back out your change and use

the version of the file from the repository:

sesame2> svn revert Number.txt

Reverted 'Number.txt'

sesame2> svn update Number.txt

At revision 2.

• You decide to keep your changes and lose those in the

repository. Subversion saves a copy of each version of

HANDLING MERGE CONFLICTS 89

Conflicts and Curly Brace Wars

Suppose two developers like to lay their code out dif-
ferently. Fred likes his code indented with two spaces
and likes all his curly braces to sit on the same line as
a declaration. His code would look like this:

for (i = 0; i < max; i++) {

if (values[i] < 0) {
process(values[i]);

}

}

Wilma, however, likes her code indented with four
spaces and doesn’t appreciated the cluttered look
of Fred’s code. She puts her curly braces on a dif-
ferent line to declarations. If Wilma were writing the
same piece of code, it would look like this:

for (i = 0; i < max; i++)

{

if (values[i] < 0)

{

process(values[i]);

}

}

One day Fred is editing some of Wilma’s code and
decides he dislikes the indentation. He tells his editor
to reindent the whole file to two-character offsets and
to put the curly braces where he likes them. He then
makes a small change to one line, saves the file, and
commits the changes to the repository.

The problem is that as far as Subversion is concerned,
every line in the file has changed. If Wilma (or any-
one else) changes something, they’ll get a merge
conflict, because Fred’s change to the indentation
means that the corresponding line in the repository is
different from the line in Wilma’s workspace.

Now you can get around this: you can tell Sub-
version to use an external diff program that ignores
changes in whitespace when determining the dif-
ference between files, for example. However, this
doesn’t get around the fact that you have changed
the whole file and that folks with local changes to that
file will get conflicts the next time they update.

HANDLING MERGE CONFLICTS 90

Conflicts and Curly Brace Wars (continued)

The rule is simple: don’t wantonly change the layout
of a shared file. If you absolutely must change the
indentation, first make sure no one else on the team
has made local changes to the file. Then change the
layout and check in the changed file, without chang-
ing anything else. Then tell folks to update, so they’ll
all be working on the new version. This’ll cut down on
the number of conflicts people experience, and will
reduce the amount of hate mail you receive.

the file when a conflict arises, with extensions .mine, .r1,

.r2, etc. Copy your version of the file, the one with the

.mine extension, over the original, and tell Subversion

you’ve fixed the conflict:

sesame2> cp Number.txt.mine Number.txt

sesame2> svn resolved Number.txt

Resolved conflicted state of 'Number.txt'

Subversion will clean up all the various .mine and .r2 files

when you tell it you’ve resolved the conflict.

• If you decide you want to use parts of both versions, then

you’ll need to do some manual editing. Simply edit the

file that contains the conflict markers, making it look the

way you want. Be sure to remove the conflict markers.

For example, in our case we might decide that the first

line shouldn’t be Zero or ZERO but Empty:

<<<<<<< .mine Empty

Zero one
======= becomes => two
ZERO
>>>>>>> .r2
one
two

Subversion won’t let you commit a file that is still in a con-

flicted state.8 In order to let Subversion know you’ve fixed a

8This is probably reassuring for folks who have big projects and lots of

files—“What if I don’t see a C next to a file as it scrolls past my screen?” is

a common question. If you miss the conflict, and by some chance having

a bunch of <<< characters in your code doesn’t horribly break your build,

COMMITTING CHANGES 91

conflict, use the svn resolved command:

sesame2> svn resolved Number.txt

Resolved conflicted state of 'Number.txt'

6.8 Committing Changes

After you make a set of changes (and, in an ideal world, after

you’ve tested they don’t break anything), you’ll want to store

them in the repository. We’ve already done this many times in

this book; you simply use svn commit.

However, we’d like to recommend a slightly more complex

sequence of commands to follow at every commit:

myproject> svn update

myproject> #... resolve conflicts ...

myproject> #... run tests ...

myproject> svn commit -m "check in message"

The first line brings our local workspace into step with the

current state of the repository. This is important; although

our code may work fine with the project files as they were

when we last updated our workspace, other folks may have

changed things that break our new code. After updating, we

might have to resolve conflicts.

Even if there are no conflicts, we should compile and test our

code again, fixing any problems that arise. This ensures that

when we do check in we’ll be checking in something that actu-

ally works in the larger project context. You’ll need a fast test

suite for this to work—developers won’t want to hang around

more than a few minutes while their tests run.

Once we’ve checked that everything is correct, we can commit

our changes, using the -m option to add a meaningful mes-

sage. If you omit the -m option, Subversion will bring up an

editor and let you type in a longer comment.

6.9 Examining Change History

You can look at the log messages that you and your team have

entered using the svn log command:

Subversion will complain about any files remaining unresolved when you try

to commit.

EXAMINING CHANGE HISTORY 92

Meaningful Log Messages

What makes a good log message? To answer this
question, imagine you are another developer com-
ing to this code base a couple of years from now. You
are puzzling over a particular piece of the system, try-
ing to work out why something is done a certain way.
You notice that changes were made in this area, and
hope that the log messages will give you hints as to
the motivation for the particular design chosen.

Now, back to the present. What little breadcrumbs
can you drop into the log messages today to help
your fellow developers a couple of years from now?

Part of the answer comes from realizing that Subver-
sion already stores the actual details of the changes
you made to the code. There’s no point in writing
a log message that says “changed timeout to 42.”
when a simple diff could show that setTimeout(10)
became setTimeout(42). Instead, use the log mes-
sage to answer the question “why?”:

If the round-robin DNS returns a machine that
is unavailable, the connect() method attempts

to retry for 30mS. In these circumstances our

timeout was too low.

If a change is being made in response to a bug
report, include the tracking number in the log mes-
sage: the description of the problem is already in
the bug database and doesn’t need to be repeated
here.

EXAMINING CHANGE HISTORY 93

sesame> svn log Number.txt

r4 | mike | 2004-09-08 22:45:16 -0600 (Wed, 08 Sep 2004)

Make 'six' important

r3 | mike | 2004-09-08 22:05:32 -0600 (Wed, 08 Sep 2004)

Customer wants more numbers

r1 | mike | 2004-09-08 21:50:13 -0600 (Wed, 08 Sep 2004)

If you’d just like to get a general idea of what has changed

recently, you can ask Subversion for a log of everything that

happened in a particular directory. Doing this at the top of a

large tree might produce quite a bit of output, so use a pipe9

through the more command to paginate Subversion’s output:

work> svn log sesame | more

Subversion will accept a -r option to specify which revisions

you’re interested in. Using a single revision number will show

just what changed in that revision, and using a revision range

will show a section of history:

sesame> svn log -r 19:24 Clock.java
--

r19 | mike | 2004-10-04 21:47:09 -0600 (Mon, 04 Oct 2004)

Renamed util to common
--

r21 | mike | 2004-10-09 16:33:00 -0600 (Sat, 09 Oct 2004)

Fixed compilation problems
--

r22 | dave | 2004-10-09 16:48:23 -0600 (Sat, 09 Oct 2004)

Added setTime() method
--

r23 | ian | 2004-10-09 17:00:23 -0600 (Sat, 09 Oct 2004)

Added setTime() method taking a Date
--

r24 | dave | 2004-10-10 18:07:08 -0600 (Sun, 10 Oct 2004)

Added Log class
--

Here we asked to see revisions 19 through 24 of Clock.java. We

didn’t actually change Clock.java in revision 20 of the reposi-

tory, which is why we’re missing a revision here. Also notice

how Subversion printed the revisions with the newest at the

bottom—retrieving a log without using the -r option prints

the newest revision at the top.

The final message says “Added Log class” but is being shown

as part of the history for Clock.java. This looks a bit strange,

9The pipe character is Shift+\ on a U.S. keyboard.

EXAMINING CHANGE HISTORY 94

so let’s get more information using the -v (verbose) option:

common> svn log -r 24 -v Clock.java
--

r24 | dave | 2004-10-10 18:07:08 -0600 (Sun, 10 Oct 2004)

Changed paths:

M /sesame/trunk/common/Clock.java

A /sesame/trunk/common/Log.java

Added Log class
--

Now that Subversion is being more talkative, we can see that

revision 24 added Log.java and also made a change to the

file Clock.java. In this case, the new Log class depends on

some extra functionality in Clock. When Dave committed his

change, he committed both the files at once, since they make

logical sense together.

Subversion’s ability to track changes to multiple files in a sin-

gle commit is extremely powerful. If you’re browsing history

for a particular file and see a change you’re interested in,

adding the -v option to svn log will show all the files that were

changed in that particular commit. This comes in handy when

tracking down what needed to be changed for a particular bug

fix, for example.

Line-by-Line History

The svn blame10 command displays the contents of one or

more files. For each line in each file it shows the latest revi-

sion number to change that line, along with the author of the

change:

sesame> svn blame Number.txt

10 mike # $HeadURL$

10 mike # Id

5 dave ZERO
7 mike ichi
7 mike due
1 mike three
1 mike four
3 andy five

4 ian SIX

This is a great tool when you’re involved in software archeol-

ogy; you can quickly find the patterns to changes and identify

exactly which lines were changed by a particular revision.

10It’s called blame because it’s often used to determine who is responsible

for a particular piece of code (or a particular bug!). svn blame, praise, annotate

and ann all mean the same thing.

REMOVING A CHANGE 95

svn blame accepts a -r option specifying a revision or revision

range to use when displaying the file. This stops Subversion

from examining the entire history of the file when displaying

annotations.

6.10 Removing a Change

Sometimes we make changes to code that we’d rather forget.

If the change is a set of changes in our local workspace that

have yet to be checked in, then we can simply throw the

changes away using svn revert.

CVS Hint: CVS users will be used to simply deleting a file with local

modifications and then doing an update to restore the file. Whilst

this will work with Subversion too, doing an actual revert is safer and

faster—an update will contact the server and possibly pull down new

changes that you’re not ready to receive, whilst a revert will not need

to contact the server and will not retrieve new changes from the

repository.

If the change is already committed, Subversion can help us

remove it. There are a number of ways of doing this; here

we’ll show a sequence of steps that we consider to be the sim-

plest and least error prone. For this example, let’s assume

we’re working on a contact management system. We’ve been

making preliminary releases to beta sites, and things have

been going well until a client phones up in a panic; when they

removed a client contact from their address list, it removed all

the client’s information from the database too.

The first step is to make sure we’re up-to-date.

contacts> svn update

U Contacts.java

Updated to revision 28.

Then we identify the exact revision we want to remove. svn

log is useful for this. Let’s have a look at the log for the main

contact manager class:

contacts> svn log Contacts.java
--

r28 | mike | 2004-10-11 10:54:08 -0600 (Mon, 11 Oct 2004)

Reformat PMB Addresses
--

r27 | fred | 2004-10-11 10:52:47 -0600 (Mon, 11 Oct 2004)

Remove from database too
--

r26 | ian | 2004-10-11 10:51:38 -0600 (Mon, 11 Oct 2004)

REMOVING A CHANGE 96

Sort clients into alpha order (Bug 2942)
--

Revision 27 looks suspicious, so we use svn diff to see exactly

what changed between revisions 26 and 27:

contacts> svn diff -r 26:27 Contacts.java

Index: Contacts.java
==
--- Contacts.java (revision 26)

+++ Contacts.java (revision 27)

@@ -25,6 +25,7 @@

public void removeClient(Client client)

{
+ database.deleteAll(client);

clientList.remove(client);

}

}

This looks like the problem. However, before we start wan-

tonly hacking someone else’s change, let’s do some investi-

gating. Looking at the log, we see that this particular change

was made by Fred, so we wander over and chat. It turns out

that this was a simple misunderstanding; Fred hadn’t real-

ized that the call would delete all the client records. It’s okay

to remove the change.11

We now have to remove the changes to Contacts.java that were

made in revision 27. We use the svn merge command to back

out the change:

contacts> svn merge -r 27:26 Contacts.java

U Contacts.java

We’re asking Subversion to calculate the changes between

revisions 27 and 26 for Contacts.java and apply those changes

to our working copy. We used revision range 27:26 because

we’d like to reverse the change. We can use svn diff to verify

that Subversion has correctly undone the change:

contacts> svn diff Contacts.java

Index: Contacts.java
==
--- Contacts.java (revision 28)

+++ Contacts.java (working copy)

@@ -26,7 +26,6 @@

public void removeClient(Client client)

{

- database.deleteAll(client);

clientList.remove(client);

}

11It would also be prudent to do a quick search of the rest of the code to

see if Fred has used the deleteAll() call in other places.

REMOVING A CHANGE 97

At this point, we’re back into a normal flow. We’ve made a

change to the source, so we should test it then commit the

change to the repository:

contacts> svn commit -m "Revert deleteAll change from r27"

Sending contacts/Contacts.java

Transmitting file data .

Committed revision 29.

Reverting Bigger Changes

The recipe we just showed was for reverting changes to a sin-

gle file. How can we handle changes that involve many files?

Fortunately, Subversion tracks all the files we changed in

each commit; as long as changes are grouped together in log-

ical chunks, they’re easy to undo. If r27 had actually been

a change to a bunch of different files in the contacts direc-

tory, we can undo all those changes by using “.” (the current

directory) as the target:

contacts> svn merge -r 27:26 .

U Contacts.java

U Database.java

It’s very important to commit related changes together in a

single revision. If a single logical change, such as “add date of

birth field,” is spread over several commits, it becomes more

difficult to revert the change and also more difficult to track

which files the change touched. When browsing history, you

can use the -v (verbose) option to list all the files that changed

in a particular revision.

The svn merge command also allows you to specify repository

URLs when merging. We’ll be using this in Chapter 9, Using

Tags and Branches, on page 111 for merging changes between

branches.

Checking Your Workspace

You work in your local working copy, editing files and adding

new files (and occasionally deleting files too). At the same

time, other folks on your team are doing the same thing,

checking their changes into the repository. As a result, it’s

easy to lose track of the state of your working copy. In partic-

ular, a common problem is forgetting to add new files in your

working copy to the repository.

REMOVING A CHANGE 98

The svn status command can get information about the files in

your working directory:

proj> svn status

? common/Calendar.java

M contacts/Contacts.java

Here Subversion is telling us that Calendar.java is in our work-

ing directory but that it has not been added to version control.

We can also see that we’ve modified Contacts.java.

By default Subversion just displays information about your

working copy and doesn’t need to hit the network to do so. If

someone else has changed a file in the repository and we’re

out-of-date we won’t know about it. However, Subversion will

talk to the server and display extra information if you specify

the --show-updates option (you can use -u if you’re trying to

avoid RSI):

proj> svn status --show-updates

? common/Calendar.java

* 26 common/Log.java

M * 27 contacts/Contacts.java

Status against revision: 30

Now we know that both Log.java and Contacts.java are out-

of-date in our working copy. We have revision 26 of Log.java

and revision 27 of Contacts.java (which we’ve also modified).

The repository is currently at revision 30, and when we do

an update, we’ll get those extra changes incorporated into our

working copy.

Chapter 7

File Locking and Binary Files
A common question when learning about version control is,

“But what happens if two people edit the same file? Won’t

we waste our time undoing each others’ changes?” Thanks to

the magic of text merging, most of the time it isn’t a problem.

But what if the file is a picture or CAD model and cannot

be merged? Subversion 1.2 introduced optional file locking

which can help avoid problems with unmergeable files.

7.1 File Locking Overview

Many projects contain unmergeable files. Sound, graphics,

and even many document formats cannot be merged in any

meaningful way. If Alice and Bob both decide to edit Currency-

ConversionRates.xls at the same time, one of them will be first to

commit and the other will have to re-do their changes.

Fundamentally, this problem is about your team not commu-

nicating effectively. It’s unlikely that Alice and Bob should

both be editing the project theme song audio file at the same

time, but without asking everyone else on the team whether

they have that file open there’s a chance they might be wast-

ing their time. Subversion provides a mechanism to help the

team communicate through optional file locking. file locking

Any file can be set to require a lock before it is edited by set-

ting its needs-lock property (it doesn’t matter what the property

contains—if it’s set, Subversion will enable locking on that

file). Any file with locking enabled will be checked out read-

FILE LOCKING IN PRACTICE 100

only in the working copy. Most modern editors will refuse to

edit a read-only file, or will at least warn that you are doing

so, in an effort to remind the user that the file needs to be

locked before editing.

We can issue a svn lock command to obtain a lock on the file.

The Subversion client will chat with the server ensuring the

file isn’t already locked, obtain a lock token, and then mark lock token

the file read-write in the working copy. Additionally we can

specify a lock comment informing other users why we locked

the file.

If a file is locked, another user cannot lock the file or commit

a change to it without first destroying the original lock (we’ll

talk more about situations in which this is appropriate later).

When the user who locked the file is done and commits their

changes, the lock is released.

Let’s see how this works in practice. If you want to follow

along with these examples, create separate working copies for

Alice and Bob similar to those we created in Section 6.7, Han-

dling Merge Conflicts, on page 86.

7.2 File Locking in Practice

The Sesame project is moving up in the world. In addition

to all of its existing features, our customers now want the

software to work in many different countries. As part of this

initiative we’ll need to convert between local currencies. The

real system will use some kind of web service to find out what

the exchange rates are, but for testing, Bob would like to use

something simple such as an Excel spreadsheet.

Why File Locking is Important

Bob creates a spreadsheet file, CurrencyConversionRates.xls, and

adds it to the repository:

sesame>svn add CurrencyConversionRates.xls

A (bin) CurrencyConversionRates.xls

sesame>svn commit -m "Added conversion rates for testing"

Adding (bin) CurrencyConversionRates.xls

Transmitting file data .

Committed revision 32.

FILE LOCKING IN PRACTICE 101

Subversion automatically detects that the spreadsheet is a

binary file when it’s added, which also flags it as being non-

mergeable. If Alice checks out revision 32 and both Bob and

Alice change the file and attempt to commit, only one of them

will succeed. Here’s what Bob might see:

sesame>svn commit -m "Added Norwegian Krona conversion rate"

Sending CurrencyConversionRates.xls

Transmitting file data .svn: Commit failed (details follow):

svn: Out of date: '/trunk/CurrencyConversionRates.xls'

in transaction '43-1'

Bob’s working copy is out of date because Alice snuck her

changes in first. If this were a text file, Bob could simply

update his working copy and Subversion would merge Alice’s

committed changes with Bob’s pending changes. This doesn’t

work for the spreadsheet, however; it just produces a conflict:

sesame>svn up

C CurrencyConversionRates.xls

Updated to revision 33.

Subversion tells Bob his copy of CurrencyConversionRates.xls is

conflicting with the new revision in the repository. Bob has

some options now. He can do some detective work with svn log

to see who else changed the file, and he can choose to keep

his changes, keep Alice’s changes, or manually merge the two

files. All of this seems to be quite a lot of work.

Enabling Locking on a File

Bob decides he’ll throw away his changes and redo them.

After all, he only added a single line to the spreadsheet and

can quickly re-apply his change to the latest version. He’d like

to avoid the same problem in the future, though, so he adds

the svn:needs-lock property to the spreadsheet.

sesame>svn propset svn:needs-lock true CurrencyConversionRates.xls

property 'svn:needs-lock' set on 'CurrencyConversionRates.xls'

sesame>svn commit -m "Enabled locking for spreadsheet"

Sending CurrencyConversionRates.xls

Committed revision 34.

Bob sets svn:needs-lock to “true” (remember it doesn’t actually

matter what the property contains; if it is present Subversion

enables locking for the file). This property change doesn’t take

effect until it is committed to the repository. If you’re adding

an unmergeable file and would like to enable locking, it’s good

FILE LOCKING IN PRACTICE 102

practice to set the svn:needs-lock property right away. Subver-

sion’s autoprops, covered in Section 6.4, Automatic Property

Setting, on page 74, can help with this.

Basic File Locking

Once Alice and Bob update their working copies, Subver-

sion will make the CurrencyConversionRates.xls file read-only.

The idea behind making the working copy read-only is that

next time a user edits the file, they will be reminded they are

attempting to change a read-only file and remember to lock

the file before continuing. Depending on the application used

to edit the file you may or may not get a warning. Excel will

happily open a read-only file and let you change it without giv-

ing any warning—it’s only when you come to save the mod-

ified spreadsheet that you’re prompted for a new filename.

This isn’t usually too much of a problem, though, as many

users instinctively hit “save” quite often. Other applications

such as graphics or sound editors may treat read-only files

differently. You will have to experiment with your particular

application to find out.

After setting svn:needs-lock, Bob decides to add the Norwegian

Krona exchange rate again. This time, he locks the file before

editing it.1

sesame>svn lock CurrencyConversionRates.xls \

-m "Adding Norwegian Krona"

'CurrencyConversionRates.xls' locked by user 'bob'.

It’s advisable to always include a comment indicating why you

are locking the file. Subversion can provide the lock comment

to other users and it’s a good way to improve communication.

Bob can now examine the file and see that it’s locked:

sesame>svn info CurrencyConversionRates.xls

Path: CurrencyConversionRates.xls

Name: CurrencyConversionRates.xls

URL: svn://olio/sesame/trunk/CurrencyConversionRates.xls

Repository Root: svn://olio/sesame

Repository UUID: 63a31077-dc47-8e48-8372-099aabc6682c

Revision: 34
Node Kind: file
Schedule: normal
Last Changed Author: bob

1Subversion will only let you lock a file if it is up to date—you cannot lock

an old revision.

FILE LOCKING IN PRACTICE 103

Last Changed Rev: 34

Last Changed Date: 2006-03-06 15:31:04 -0700 (Mon, 06 Mar 2006)

Text Last Updated: 2006-03-06 15:29:58 -0700 (Mon, 06 Mar 2006)

Properties Last Updated: 2006-03-06 15:30:40 -0700 (Mon, 06 Mar 2006)

Checksum: 7cd95b6dcf6b3ce39baf073f56253e20
Lock Token: opaquelocktoken:42eef8ec-0355-d548-805b-16b5a8e830aa

Lock Owner: bob
Lock Created: 2006-03-06 17:10:17 -0700 (Mon, 06 Mar 2006)

Lock Comment (1 line):

Adding Norwegian Krona

There’s a lot of information here, but the stuff we’re interested

in is the final five lines. We can see that Bob’s working copy

has a lock token and that Bob is the lock owner. We can also

see when the lock was created and Bob’s comment explaining

why he locked the file.

If Alice now attempts to lock the file, she’ll receive an error.

sesame>svn lock CurrencyConversionRates.xls \

-m "Adding Euro conversion rate"

svn: warning: Path '/trunk/CurrencyConversionRates.xls'

is already locked by user 'bob'

in filesystem '/home/svnroot/sesame/db'

Subversion lets her know that Bob has already locked the file.

If Alice runs svn info on her working copy she won’t see a lock

token, indicating she doesn’t have a lock (she couldn’t, Bob

has a lock already). For Alice to find out more about why the

file is locked, she can ask Bob directly (improving team com-

munication) or she can ask the Subversion server. Running

svn info with the full URL for the file yields more information:

sesame>svn info svn://olio/sesame/trunk/CurrencyConversionRates.xls

Path: CurrencyConversionRates.xls

Name: CurrencyConversionRates.xls

URL: svn://olio/sesame/trunk/CurrencyConversionRates.xls

Repository Root: svn://olio/sesame

Repository UUID: 63a31077-dc47-8e48-8372-099aabc6682c

Revision: 34
Node Kind: file
Last Changed Author: bob

Last Changed Rev: 34

Last Changed Date: 2006-03-06 15:31:04 -0700 (Mon, 06 Mar 2006)

Lock Token: opaquelocktoken:42eef8ec-0355-d548-805b-16b5a8e830aa

Lock Owner: bob
Lock Created: 2006-03-06 17:10:17 -0700 (Mon, 06 Mar 2006)

Lock Comment (1 line):

Adding Norwegian Krona

Alice needs to use the full URL to find out about Bob’s lock—

if she uses just the file name, Subversion shows information

about her working copy. Alice’s working copy doesn’t have the

FILE LOCKING IN PRACTICE 104

lock, so she needs to ask the server about the latest version

of the file.

Once Bob is done editing the file he can commit. When you

commit a file or directory, Subversion automatically releases

any locks you are holding.2

Breaking Locks

The owner of a lock can always use svn unlock to release it.

But what if the lock owner isn’t currently available? Suppose

Alice tries to lock the exchange rates file to add some data.

Subversion warns her the file is already locked, so she does a

bit of investigation:

sesame>svn info \

svn://olio/sesame/trunk/CurrencyConversionRates.xls | grep Lock

Lock Token: opaquelocktoken:42eef8ec-0355-d548-805b-16b5a8e830aa

Lock Owner: bob
Lock Created: 2006-03-06 17:10:17 -0700 (Mon, 06 Mar 2006)

Lock Comment (1 line):

Alice can see that Bob has a lock on the file, but he created it

yesterday and still hasn’t released the lock. Since Bob is off

sick today, Alice decides to break the lock so she can make

her change. She also makes a mental note to remind Bob not

to leave important files locked for too long in the future.

The svn unlock command can be used to release someone else’s

lock on a file. Alice needs to pass the --force option because

she doesn’t own the lock herself:

sesame>svn unlock svn://olio/sesame/trunk/CurrencyConversionRates.xls

svn: warning: User 'alice' is trying to use a lock owned

by 'bob' in filesystem '/home/svnroot/sesame/db'

sesame>svn unlock --force \

svn://olio/sesame/trunk/CurrencyConversionRates.xls

'CurrencyConversionRates.xls' unlocked.

If Alice forgets to tell Bob that she broke his lock, when he

tries to commit the change Subversion will let him know he no

longer has a matching lock token. The token in Bob’s working

copy corresponds to the lock that Alice broke, so Bob will have

to attempt to lock the file again before he can commit it.

2Subversion releases locks for all files in your working copy, not just those

you are committing. This encourages users to release locks as quickly as

possible, but might catch you by surprise the first few times you do it.

FILE LOCKING IN PRACTICE 105

sesame>svn commit -m "Added Norwegian Krona"

Sending CurrencyConversionRates.xls

Transmitting file data .svn: Commit failed (details follow):

svn: Cannot verify lock on path '/trunk/CurrencyConversionRates.xls';

no matching lock-token available

Given that Alice can just forcibly unlock the file, you might

think that Subversion’s file locking is a bit pointless. Bob is

in the same situation as if there were no locking at all—he

has to decide whether to throw away his changes or overwrite

Alice’s. What we have achieved, however, is better commu-

nication between people editing the file. Alice knew she was

breaking Bob’s lock, and did so for a good reason—Bob wasn’t

at work that day and Alice needed to get on with the project.

Subversion allows you to restrict who can lock and unlock

files, and who can break locks, through the use of special

hook scripts. The pre-lock and pre-unlock hooks run before

a file is locked or unlocked (respectively). These hooks can

examine whether a file is already locked and, depending on

site policy, restrict lock breaking operations to certain users.

The post-lock and post-unlock hooks can be used, for example,

to send email after a lock is broken. That way Alice can’t forget

to tell Bob she broke his lock, there will be an email waiting

for him to let him know.

After forcibly releasing Bob’s lock, Alice should then lock the

spreadsheet so she can make modifications to it. But there’s

a small chance someone else will lock the file in between Alice

typing those two commands, so Subversion also provides the

ability to steal the lock from another user.

Using the --force option with svn lock will steal the lock without

giving anyone else the chance to lock the file.

sesame>svn lock --force CurrencyConversionRates.xls

'CurrencyConversionRates.xls' locked by user 'alice'.

sesame>svn info CurrencyConversionRates.xls | grep Lock

Lock Token: opaquelocktoken:b8c434ce-98ef-1046-a553-7479abccdbca

Lock Owner: alice
Lock Created: 2006-03-07 14:44:26 -0700 (Tue, 07 Mar 2006)

It’s important to note that a lock is specific to a working copy

as well as being owned by a particular user. If Bob locks a file

using his office computer, then works from home the next day

on his laptop, the lock is still stored on the office machine. If

WHEN TO USE LOCKING 106

he wants to edit the file at home he’ll have to break the lock

held by the office working copy.

7.3 When to use Locking

Subversion’s optional locking is very useful for controlling

access to unmergeable files. Adding svn:needs-lock to a file

can help your team communicate more effectively about who

is working on the file, and can help prevent wasted effort.

Try to lock as few files as possible for as short a time as possi-

ble. Don’t be like Bob—locking a file and then going home for

the night. The longer a file is locked, the greater the chance

someone else has to wait around before they can make their

changes. In the worst case, Alice might be waiting for Bob to

finish work on a file while Bob waits for Alice to finish work

on a different file. The two of them will wait forever for the

other’s lock to be released. Developers moving to Subversion

from systems such as Visual Source Safe will be familiar with

this “deadlock” situation.

If your files are text, such as program code, Subversion can

usually merge changes for you and you don’t need to lock

them. There can be cases where it seems attractive to start

locking mergeable files, such as an important source code

file that developers update quite often and which seems to

encounter a lot of conflicts. Usually the best solution isn’t

to start locking the file, it’s to figure out how to split the file

into several logical pieces so the whole team doesn’t need to

continually trip over each other when making changes.

Chapter 8

Organizing Your Repository
When using a version control system, you’ll most likely want

to store more than one project. A single Subversion repository

can be used to store files used by developers across an orga-

nization, whether those developers are working on the same

team or not. Version control systems use a variety of tech-

niques for splitting a repository into projects, subprojects,

modules, and so on. Subversion uses a fairly simple mech-

anism, organizing everything into directories.

8.1 A Simple Project

Throughout this book, we’ve been using the Sesame project

as our main example. Back in Section 3.3, Creating a Simple

Project, on page 34, we imported our Sesame project files to

/sesame/trunk inside the repository. At the time we deferred

explanation of why we needed trunk instead of putting files

directly in the sesame directory—now it’s time to explain a

little more.

Most projects will have a main line of development, where the main line

majority of development activity occurs. Projects also tend

to have release branches where code that has been finished release branches

and shipped to production is stored. A release branch won’t

change very much, except for bug fixes that need to be made.

Finally, significant events in the life cycle of a project are often

recorded in tags. A tag might contain the exact code used for tags

releasing version 5 of Sesame, for example.

MULTIPLE PROJECTS 108

v w v x y w z

{ x | v z

{ } ~ � � �

� � � � � � � �

� } x � � � w v z
� � � � � � z

� � �

� � �

� � �

Figure 8.1: The Sesame Project Trunk and Branches

Chapter 9, Using Tags and Branches, on page 111 has lots of

information about tags and branches, but for now you just

need to know that both tags and branches are created by

copying directories in the Subversion repository. The recom-

mended location for tags is a tags/ directory and (surprise!) for

branches a branches/ directory.

Both of these directories need to be easy to find for your

project, so for Sesame we’d end up with /sesame/trunk for the

main development area, /sesame/tags for storing tags, and

/sesame/branches for storing branches. Figure 8.1 shows this

a little more visually.

Storing the code for your project in a trunk directory corre-

sponds to the SCM “mainline” pattern.

8.2 Multiple Projects

So far we have a repository storing the Sesame project. It’s

easy to see how we could store other projects, Aladdin and

Rapunzel, as shown in Figure 8.2 on the following page.

MULTIPLE REPOSITORIES 109

� � � � � � �

� � � � �

� � � � � �

� � �

� � � � � � � � �
� � �
� � �

� � � � � � �

� � � � �

� � � � � �

� � �

� � � � � � � � �
� � �
� � �

� � ¡ � � ¢ � � �

� � � � �

� � � � � �

� � �

� � � � � � � � �
� � �
� � �

� � ¡ £ � � £ � ¤ �

Figure 8.2: Aladdin and Rapunzel Projects

It’s important to realize that because Subversion uses direc-

tory copies for branching and tagging, you don’t have to name

your tags directory tags. It might be confusing for your users,

however, if you’re using a different name. You also don’t have

to put your trunk, tags, and branches directories all together

in a single directory. You don’t need to have each project at

the root directory of the repository—depending on how your

developers and IT department are organized, something like

/finance/revenue/ali-baba might work best for you.

Subversion’s ability to move directories means that if your

repository gets out of control—perhaps you have a few dozen

projects at the root level and things are getting unwieldy—

you can move projects around easily. Using svn move with two

repository URLs, as discussed in Section 6.5, Using Repository

URLs, on page 79, will do a server-side rename and instantly

move directories. You should coordinate with developers to

make sure they have checked in any outstanding changes,

perform the move, and then get everyone to run svn update to

get the new directory structure.

8.3 Multiple Repositories

Splitting your projects into different directories makes a lot

of sense—developers can easily find the project they should

MULTIPLE REPOSITORIES 110

be working on and make changes. It’s also possible to split

projects across multiple repositories. Since a repository exists

on disk as a set of files in a particular directory, you can create

multiple repositories in different directories on a single server

or create repositories on entirely separate servers.

If you’re accessing a Subversion repository using file://

and svn+ssh:// URLs, the first part of the URL specifies the

path to the repository directory on the server. You can easily

change this to specify a different directory for the repository.

When using svnserve, its --root option specifies a virtual root

directory for your repositories. If you create directories named

(for example) repos1 and repos2 inside the virtual root, with a

repository in each, these repository directory names become

part of the repository URL. In this case you’d access repos1

using svn://myserver/repos1/....

If you’re using Apache to network a Subversion repository,

you might define a virtual directory for each repository on

the server. Apache configuration is covered in Appendix A

on page 151.

Of course, separating projects across multiple repositories is

extra administration overhead—you’ll have to back up each

repository separately. Users might also need more informa-

tion on where to find a particular project. The upside to this

extra admin overhead is flexibility. If you need to take down

a repository for maintenance,1 you can do so without affect-

ing other repositories. If a particular project is outgrowing the

server on which it’s hosted, it might make sense to split the

repository in two so you can add a second server.

You don’t have to make a final decision on day one. Sub-

version provides tools to allow you to migrate data between

repositories, so you can change your mind when you know

more about your requirements. To keep things as simple as

possible, we recommend using just a single repository until

you’ve got a concrete problem that will be solved by using

multiple repositories.

1This is somewhat unlikely, since most Subversion maintenance, includ-

ing performing backups, can be done without taking down the server.

Chapter 9

Using Tags and Branches
Day-to-day use of Subversion is pretty simple: you update

from your repository, edit files, and save the changes back

after you’ve tested. However, many developers are put off

by tags and branches. Perhaps they’ve worked previously

in teams that abused branches and where a diagram of the

repository structure would have looked like a bowl of spaghetti

rather than a controlled, linear development. Or perhaps

they worked in a team where merges between branches were

delayed and delayed, so when they did finally occur, it was

a nightmare resolving the conflicts. Or perhaps it’s just the

incredible flexibility that branches offer; with so much choice,

it’s hard to know what to do.

In reality, tags and branches can (and should) be simple to

use. The trick is to use them in the correct circumstances.

In this chapter we present two scenarios where we believe

branches should be used by teams: generating releases and

giving developers a place to experiment.

Beyond these two circumstances, we suggest you think hard

before adding branches to a repository. Excessive branching

can quickly render any project’s repository unusable.

Before we go into the specific recipes, we need to discuss tags

and branches in general.

TAGS AND BRANCHES 112

¥ ¦ § ¨ © ª ¨ « ¬ © ©
¥ ® ¦ ª ¯ « ¬ © ©
° © ± « ¬ © ©

² ³ ´

µ ¶ · µ ¶ ·
² ³ ´

² ³ ´
² ³ ´

Figure 9.1: Tags as Slices Through the Repository

9.1 Tags and Branches

Your Subversion repository probably contains a lot of informa-

tion. Apart from the sheer number of source files that com-

prise a typical project, Subversion also stores every revision of

each file. Adding time as a dimension to locating information

in your repository means the complexity just explodes—how

can we possibly keep track of it all? A tag is a symbolic name

for a set of files, each with a particular revision number. You

can think of a tag as making a slice through your repository

and labeling everything inside, as shown in Figure 9.1 .

Tags are really useful for keeping track of important events in

the life cycle of your project. Instead of having to remember

that you built a release for your customer using revision 16

of Calendar.java, revision 23 of Schedule.java, and revision 12

of contacts.dat, you can use a tag to remember this for you.

Since a Subversion revision number is also a slice through

the repository, you might think we could just use revision

numbers or maybe the date we checked the code out in order

to build a release. This could work, but tags can also be

made from a mixed revision working copy—a set of files you’ve

checked out that doesn’t correspond to a single repository

revision number. This might be needed if you want to pick

and choose which versions of project components should be

packaged together during a release.

To create a tag in Subversion, copy your code (typically from

the trunk) in the tags directory for your project. Subversion

TAGS AND BRANCHES 113

Joe Asks. . .

How Do I Make a Tag Read-Only?

Tags are just copies of your repository at a particular
revision, so there’s nothing to stop people from check-
ing changes into the tags directory. Whilst sometimes
it’s useful to be able to change a tag, most of the
time it’s best to treat tags as being read-only.

You can make your tags directory read-only (or more
correctly create-only—new tags should be allowed)
by using one of the repository permissions scripts cov-
ered in Section A.5, Access Control with Hook Scripts,
on page 168. Often, though, this is overkill since devel-
opers will be working on the trunk or a release branch,
rather than on a tag.

handles this copy process very efficiently, making the copy

instantly and requiring very little space to store it. The direc-

tory to which you copy the code is the symbolic name for the

tag. The copy serves as a reference point, storing the files in

your project as they were when the tag was created.

Directory copies in Subversion are just that—simple copies.

By convention, you’ll never make changes to the code stored

underneath tags, but there’s nothing actually stopping you

from doing so. If you do check in changes to a tag direc-

tory, the tag effectively becomes a branch. Subversion won’t

move it to your branches directory or anything clever like that,

but the tag will no longer contain a fixed snapshot of your

repository. This could be useful in certain cases—for exam-

ple, you could set up a latest tag that always contains your

most recently built (and tested) code.

We first talked about branches in Section 2.7, Branches, on

page 19, when we discussed how we can use them to handle

releases in a version control system. A branch represents a

fork in the history of the repository; the same file may have

two or more sets of independent changes made to it, each set

existing in a separate branch.

TAGS AND BRANCHES 114

To create a branch in Subversion, you’ll copy your trunk code

to a directory underneath branches for your project. The new

directory names the branch, and initially just stores a Subver-

sion “cheap copy” of the files as they were when the branch

was made. When you check in a change to files on a branch,

Subversion remembers the changes in parallel with changes

made to the original on the trunk. Subversion also remembers

that the two files have a common history.

Tags and Branches in Practice

Tags and branches have many possible uses. However, exces-

sive tagging and branching can end up being remarkably con-

fusing. So to keep things simple, we suggest that initially you

use them for four different purposes:

Release Branches

We recommend putting each release of a project onto

a separate branch. The directory used inside branches

names the branch.

Releases

The release branch will contain one (and possibly more)

releases: points at which the project is shipped. The

release tags identify these points.

Bug Fixes

Bugs in the release are fixed on the release branch. If

appropriate the fix is then merged into the trunk and

other release branches. In cases where a bug is fixed

in one commit, a Subversion revision number is enough

to identify what changed and perform any merges. For

more complicated bugs a branch is created for the bug

fix and merged into the release branch and trunk when

the fix is complete. Tags are created to mark the start

and end of the bug fix in order to make merging easier.

Developer Experiments

Sometimes a subteam has to make far-reaching changes

to a project’s code base. During the time that these

changes are being made, the code is incompatible with

the rest of the system and will break the main build. The

developers may choose to create a branch labeled as a

developer experiment and perform their changes there.

CREATING A RELEASE BRANCH 115

Thing to Name Name Style Examples

Release branch RB-rel RB-1.0

RB-1.0.1a

Releases REL-rel REL-1.0

REL-1.0.1a

Bug fix branches BUG-track BUG-3035

BUG-10871

Pre–bug fix PRE-track PRE-3035

PRE-10871

Post–bug fix POST-track POST-3035

POST-10871

Developer experiments TRY-initials-desc TRY-MGM-cache-pages

TRY-MR-neo-persistence

Figure 9.2: Tag and Branch Naming Conventions

It’s a good idea to agree upon a naming convention for tags

and branches with your team. The table in Figure 9.2 shows

one simple scheme; this is what we’ll be using in this book.

In this table, rel stands for the release number, and track is a

bug tracking number.

Next we’ll take a look at branches and tags in action, starting

with (we hope!) a common event in your project life cycle—

creating a release branch so we can ship some code.

9.2 Creating a Release Branch

At intervals throughout the life of your software you’ll want to

generate releases. As the date for each release nears, atten-

tion will start to focus away from adding new features, instead

concentrating on tidying the smaller release-specific details.

Although initially the whole team may participate in this pro-

cess, there’ll come a time when the law of diminishing returns

takes effect, and it becomes more efficient to have a release

subteam focus on polishing the code for release. If this sub-

CREATING A RELEASE BRANCH 116

¸ ¹ º » ¹¼ ½ ¾ ¿ » ¹ À Á º Â ¿ Ã
Ä º ¾ ¿ ¼ ½

Figure 9.3: Release Branch Merges to the Trunk

team was working in the trunk, the rest of the team would be

stalled, waiting for them to finish.

Instead, at this point in the process, move the code to be

released into its own branch. While the release team works

in that branch, the rest of the project can continue in the

trunk. When the release itself is made, we tag the state of the

release branch with the release number (remember that a tag

is simply a copy of the release branch at a particular point

in time). Changes made by the release team in the release

branch can then be merged back in to the trunk, as shown in

Figure 9.3 .

Create the release branch by copying your project’s trunk to a

new directory underneath branches/. It’s best to do this using

repository URLs, because then the branch creation will hap-

pen entirely on the server and be a lot quicker. You should

make sure everyone has checked their local working copy in

and is ready for the branch to be created.1

In the following example, we create a branch for release 1.0

of our project. We also need to create the /sesame/branches

directory, because this is the first branch we’ve made:

work> svn mkdir -m "Creating branches directory" \
svn://olio/sesame/branches

Committed revision 32.

1Using repository URLs to create a branch, it’s possible to make the

branch start from any revision in the repository. If you’re a bit late mak-

ing a branch, it’s always possible to talk to other developers, figure out which

revision the branch should have started at, and use that instead.

WORKING IN A RELEASE BRANCH 117

work> svn copy -m "Creating release branch for 1.0" \

svn://olio/sesame/trunk \
svn://olio/sesame/branches/RB-1.0

Committed revision 33.

Both the branches directory creation and the creation of the

actual branch require a commit message since they change

the repository.

At this point, all we’ve done is to create the release branch.

Any working copies checked out by developers will still be

pointing at the trunk. To start actually using the release

branch, we’ll need to check it out into a new working copy.

9.3 Working in a Release Branch

To access a release branch, you need to check out the project

from its branch directory instead of the trunk. You can check

out to a separate directory or switch an existing working copy switch

to the branch. We recommend the former; it leads to less con-

fusion and simplifies working on both branches at the same

time. The svn switch command is useful for assembling differ-

ent code branches in a working copy, so we’ll discuss both

methods.

Checking Out a Release Branch

If you’re like us, you have plenty of disk space and would

rather waste a bit of it than have to remember what branch a

particular working copy is looking at. We tend to keep a work-

ing copy checked out for each active development branch, just

to make things easy.

Change back to your work directory, and then check out from

the branch directory overriding the default directory name, so

the source will be checked out under the directory rb1.0. When

you check out a branch, you are checking out the most recent

files in that branch; it’s equivalent to the way that checking

out in the trunk returns the latest development copies of the

files:

work> svn co svn://olio/sesame/branches/RB-1.0 rb1.0

A rb1.0/Month.txt

A rb1.0/Number.txt

A rb1.0/common

A rb1.0/common/Log.java

A rb1.0/common/Clock.java

WORKING IN A RELEASE BRANCH 118

A rb1.0/Day.txt

A rb1.0/contacts

A rb1.0/contacts/Contacts.java

Checked out revision 33.

If we now edit a file in this checked-out release directory and

commit the changes, Subversion adds the changes into the

branch, not into the trunk. We can now continue to refine the

files in preparation for the actual release.

Switching a Working Copy to a Release Branch

The svn switch command alters all or part of a working copy so

that it points to a different branch. Since most branches con-

tain only a few differences from the trunk, Subversion can do

this operation extremely efficiently, transmitting only changed

files to the client. Switching a working copy to point at a dif-

ferent branch is much faster than checking out a new working

copy for that branch.

To switch your working copy of the Sesame trunk to the 1.0

release branch, run the following svn switch command:

work> cd sesame

sesame> svn switch svn://olio/sesame/branches/RB-1.0

U common/Clock.java

U contacts/Contacts.java

Updated to revision 36.

Subversion updates the files in the Sesame working copy so

that they reflect the latest files in the release branch, in this

case updating two Java files to reflect bug fixes made on the

branch.

The svn switch command also accepts a --revision argument

to specify which revision of the branch you’d like to switch to.

By default, Subversion switches to the latest revision of the

branch (the HEAD revision).

You can switch your working copy back to the trunk like this:

sesame> svn switch svn://olio/sesame/trunk

U common/Clock.java

U contacts/Contacts.java

Updated to revision 36.

Subversion can also switch a subdirectory or even a single file

to a different branch. This ability is used in the next section to

assemble a working copy with a precise bug fix for a customer.

GENERATING A RELEASE 119

9.4 Generating a Release

After all the tweaking is over, and the acceptance tests run,

the team decides to generate a release. The most important

consideration is to ensure that we tag the correct combination

of files on the correct branch so that we know precisely what’s

in the release.

The simplest way to create a release tag is to copy the branch

to a new directory under tags. This will tag the latest code in

the release branch.

Sometimes you might want to tag files or directories that are

not all at the same revision. Generally, wanting to tag any-

thing other than the latest code on a branch is an indication

that something has gone wrong somewhere, so we don’t advise

making a habit of it. Subversion can tag the state of any work-

ing copy, copying a mixture of revisions into a tag, from which

you can potentially create a release.

These two methods are a little confusing at first, so let’s start

with the simplest. Once you’re happy with the latest code in

the release branch, copy it to a new directory under tags:

work> svn mkdir -m "Creating tags directory" \

svn://olio/sesame/tags

Committed revision 34.

work> svn copy -m "Tag release 1.0.0" \

svn://olio/sesame/branches/RB-1.0 \
svn://olio/sesame/tags/REL-1.0.0

Committed revision 35.

The previous svn copy copied the latest code, revision 34 in

this case, from the release branch to the new tag REL-1.0.0.

Sometimes you’ll need to tag something other than the lat-

est code in a branch. Suppose release 1.0.0 was a couple of

months ago, and the team has successfully shipped a bunch

of small fixes, taking them to release 1.0.4. An important

client requires a fix to release 1.0.0 but doesn’t want to wait

for 1.0.5 to get the fix. The bug is pretty trivial, so we’d like to

add the fix for it to the 1.0.0 code and ship that to the client.2

2This is really a pretty nasty kludge, but if your client really doesn’t want

to upgrade, it might be the only solution.

GENERATING A RELEASE 120

We’ll check out a working copy with everything as it was in

1.0.0 and then update a few files for our client. In this exam-

ple, Clock.java contained the bug we’re trying to fix:

work> svn checkout svn://olio/sesame/tags/REL-1.0.0 \

client-fix
A client-fix/Month.txt

A client-fix/Number.txt

A client-fix/common

A client-fix/common/Log.java

A client-fix/common/Clock.java

A client-fix/Day.txt

A client-fix/contacts

A client-fix/contacts/Contacts.java

Checked out revision 37.

Next use svn switch to change where the common directory in

your working copy is pointing. We’d like to get the bug fixes

from the release branch that have been made since the 1.0.0

tag was created, so we switch and point at RB-1.0:

work> cd client-fix

client-fix> svn switch \

svn://olio/sesame/branches/RB-1.0/common \
common

U common/Clock.java

Updated to revision 37.

Now your working copy contains what the client wants—the

code as it was when 1.0.0 was shipped, with the critical bug

fix that was made on the release branch since then.

After running tests and verifying the code in our working copy

does fix the problem, we can create the new tag. We use svn

copy to copy our client-fix working copy into a new tag directory

REL-1.0.0-clientfix:

client-fix> cd ..

work> svn copy -m "Tagging client's 1.0.0 fix" client-fix \

svn://olio/sesame/tags/REL-1.0.0-clientfix

Committed revision 37.

Developers can retrieve the code used to build a particular

release using svn checkout and the tag’s URL:

work> svn co svn://olio/sesame/tags/REL-1.0.0

A REL-1.0.0/Month.txt

A REL-1.0.0/Number.txt

A REL-1.0.0/common

A REL-1.0.0/common/Log.java

A REL-1.0.0/common/Clock.java

A REL-1.0.0/Day.txt

A REL-1.0.0/contacts

A REL-1.0.0/contacts/Contacts.java

Checked out revision 37.

FIXING BUGS IN A RELEASE BRANCH 121

9.5 Fixing Bugs in a Release Branch

Bugs happen. The trick is to handle them in a controlled

manner. In a release branch, this means we need to keep

track of the changes made to fix the bug and then make sure

we apply those fixes to every other branch that might contain

the same problem. That last point is particularly important.

By their nature, branches contain duplicate code. That means

if you find a bug in the source code in one branch, there’s

always the possibility the same bug exists in another branch

(after all, originally the source code was the same, bugs and

all). In the case of a release branch, we need to be able to

apply our fix to the trunk. We might also need to apply it to

other release branches (if they also contain the buggy code).

Without version control, this is a tricky problem. With version

control, we can manage the process better. We do this by

getting the version control system to keep track of the source

code changes made while fixing the bug and then merging

those changes into the code in other affected branches.

With Subversion, how exactly we track the bug fix depends on

how “difficult” the bug is to fix. If it’s a small bug, the fix might

be a couple of lines changed in a few files. For a more major

defect, the fix might involve changing quite a bit of code, and

adding and removing some files, and might be a group effort

involving more than one developer.

Subversion tracks changes using revision numbers, as we

saw in Section 3.6, Updating the Repository, on page 41. If

you can fix a bug in a single commit, just remembering the

revision number is enough for us to copy the change to other

branches. If the bug is more complicated and requires several

commits to fix (or includes a number of failed attempts to fix

it), you might need to create a branch to track the fix.

Simple Bug Fixes

Let’s assume we’re trying to fix a reasonably simple problem,

where the fix just requires changes to a couple of files. The

process is described in the following list.

1. Check out the code containing the bug into a local work-

ing copy.

FIXING BUGS IN A RELEASE BRANCH 122

2. Generate a test to reveal the bug, fix the code so the new

test passes, and verify the build.

3. Commit your changes into the repository, and remember

the new revision number. A good way of remembering

this revision number is to add it to your bug tracking

system so everyone can find it later.

4. Use the new revision number to merge the change to all

other affected branches (potentially including the trunk).

As an example, let’s fix bug 3065 on the release branch. First

we go into the release branch working copy, fix the bug, and

check in:

rb1.0> # .. edit contacts/Contacts.java and fix the bug .. #

rb1.0> svn commit -m "Fix bug 3065 (address formatting)"

Sending contacts/Contacts.java

Transmitting file data .

Committed revision 38.

Subversion tells us our fix was committed as revision 38. To

merge the fix to the trunk, we go to the trunk working copy

and ask Subversion to merge revision 38. More specifically,

we ask for the difference between revisions 37 and 38 to be

merged to the trunk working copy:

rb1.0> cd ../sesame

sesame> svn update

At revision 38.
sesame> svn merge -r37:38 svn://olio/sesame/branches/RB-1.0

U contacts/Contacts.java

sesame> svn commit -m "Merge r38 (fix bug 3065)"

Sending contacts/Contacts.java

Transmitting file data .

Committed revision 39.

Complex Bugs

If you’re dealing with a difficult bug that might take several

developers a few days to fix, plain old Subversion revision

numbers might not cut it. Cheap copies to the rescue once

again—we’ll create a branch where the bug fixing can be car-

ried out and use tags to identify when we start and finish the

fix. These tags will help us merge the fix to other branches.

The process works like this:

1. Branch the code containing the bug into a new bug fix

branch.

FIXING BUGS IN A RELEASE BRANCH 123

2. Tag the new branch to mark the start of the bug fix.

3. Generate a test to reveal the bug, fix the code so the new

test passes, and verify the build.

4. Commit your changes into the repository. If it takes a

few tries to fix the bug, don’t worry.

5. Once you’re happy with the fix, tag the branch again to

mark the end of the bug fix.

6. Use the two tags to merge the fix to all the other affected

branches.

When creating a branch for the bug fix, we’re using the nam-

ing convention BUG-track, where track is a bug tracking num-

ber. We use tags named PRE-track and POST-track to mark

the start and end of the bug fix:

work> svn copy -m "create bugfix branch" \

svn://olio/sesame/branches/RB-1.0 \
svn://olio/sesame/branches/BUG-10512

Committed revision 40.

work> svn copy -m "tag bugfix start" \

svn://olio/sesame/branches/BUG-10512 \

svn://olio/sesame/tags/PRE-10512

Committed revision 41.

We’ve tagged the start of the bug fix using the tag PRE-10512

and can do the actual bug fixing work in branch BUG-10512.

Check out a new working copy of the branch, and fix the bug:

work> svn checkout svn://olio/sesame/branches/BUG-10512

A BUG-10512/Month.txt

A BUG-10512/Number.txt

A BUG-10512/common

A BUG-10512/common/Log.java

A BUG-10512/common/Clock.java

A BUG-10512/Day.txt

A BUG-10512/contacts

A BUG-10512/contacts/Contacts.java

Checked out revision 41.
work> cd BUG-10512

BUG-10512> # .. Fix bug, possibly adding and removing files .. #

BUG-10512> svn commit -m "Fixing bug 10512"

Adding Year.txt

Sending common/Log.java

Transmitting file data ..

Committed revision 42.

BUG-10512> # .. Bug wasn't fixed, ask Bob to help out too .. #

BUG-10512> svn commit -m "Still fixing bug 10512"

Sending Number.txt

Transmitting file data .

Committed revision 43.

DEVELOPER EXPERIMENTAL BRANCHES 124

At this point we’ve fixed the bug. It took us a couple of

attempts, and maybe we even asked a colleague to check out

branch BUG-10512 and take a look at it for us. Now we should

tag the bug fix branch so we can identify the end of the bug

fix:

BUG-10512> cd ..

work> svn copy -m "tag bugfix finish" \

svn://olio/sesame/branches/BUG-10512 \
svn://olio/sesame/tags/POST-10512

Committed revision 44.

Now merge the bug fix to the release branch, which is where

we wanted the fix in the first place. After merging, run the

test suite to make sure nothing is broken, and then check in:

work> cd rb1.0

rb1.0> svn update

At revision 44.

rb1.0> svn merge svn://olio/sesame/tags/PRE-10512 \
svn://olio/sesame/tags/POST-10512

U Number.txt
U common/Log.java

A Year.txt
rb1.0> # ... run tests ... #

rb1.0> svn commit -m "Merged fix for bug 10512"

Sending Number.txt

Adding Year.txt

Sending common/Log.java

Transmitting file data ..

Committed revision 45.

The same svn merge command can be used to pull the bug

fix into other branches and the trunk. Just change into your

trunk working copy, make sure it’s up-to-date, and use the

same merge command to get the fix.

In many cases the simpler method of just tracking the revi-

sions committed during a bug fix will work fine, so use it if

you can. Some bug tracking software includes a place to track

revision numbers explicitly, but if yours doesn’t you can just

put revision numbers into the bug’s comments field.

9.6 Developer Experimental Branches

Sometimes developers need to make wide-ranging changes to

a project (for example, to change a persistence layer or intro-

duce a new security mechanism). These kinds of things take

a minimum of several days to code, and (unfortunately) they

can’t be introduced incrementally: they just affect too much

DEVELOPER EXPERIMENTAL BRANCHES 125

code. These changes are typically at a low level in the appli-

cation and normally have a far-reaching impact on the rest of

the system.

If a single developer wants to make a wide-ranging change

to the source, they could work in their local workspace. How-

ever, this has a couple of potential downsides. First, the devel-

oper loses the benefit of version control while they’re working

on the change; also, they lose the ability to revert just sec-

tions of their work, they lose revision history, and so on. They

also don’t have their work in a central repository, so there’s a

chance it won’t be backed up.

If multiple developers are working on a wide-ranging change,

then they have bigger problems; they need to be able to share

changes and work on the same (experimental) code base.

The answer is to put the experimental code into a branch in

the version control system. The developers working on the

changes use that branch in their workspace. When they’ve

finished their work, they can make the decision about inte-

grating their work into the trunk. If they decide that exper-

iment is a failure, they can abandon the branch. Otherwise

they simply merge the changes made in the branch into the

trunk. Whatever their decision, future work continues in the

trunk, and the branch becomes history.

Creating a developer branch is effectively the same as creating

a release branch. We copy the trunk into a new experimental

branch directory, stored alongside release branches:3

work> svn copy -m "new hibernate persistence spike" \

svn://olio/sesame/trunk \

svn://olio/sesame/branches/TRY-MGM-hbn-spike

Committed revision 45.

To start using the branch, you need to either check it out into

a new working copy or switch an existing working copy to the

new branch.

3You might not want experimental branches cluttering up your release

branches directory, and Subversion is perfectly happy to let you put a branch

anywhere you like. Just make sure you remember that /branches/cb/fluffy

contains that new persistence framework you’re betting the company on....

WORKING WITH EXPERIMENTAL CODE 126

9.7 Working with Experimental Code

If you have a working copy of your project already checked

out, you can switch it to the new experimental branch using

svn switch. Here we’ll switch our sesame working copy:

work> cd sesame

sesame> svn switch svn://olio/sesame/branches/TRY-MGM-hbn-spike

At revision 45.

To switch the sesame working copy back to the trunk, we use

svn switch again:

sesame> svn switch svn://olio/sesame/trunk

At revision 45.

Instead of reusing a working copy, you can check out the

branch into a new directory. This is our preferred option,

because it’s harder to get confused about what you’re work-

ing on:

work> svn co svn://olio/sesame/branches/TRY-MGM-hbn-spike hbn-spike

A hbn-spike/Month.txt

A hbn-spike/Number.txt

A hbn-spike/common

A hbn-spike/common/Log.java

A hbn-spike/common/Clock.java

A hbn-spike/Day.txt

A hbn-spike/Year.txt

A hbn-spike/contacts

A hbn-spike/contacts/Contacts.java

Checked out revision 45.

9.8 Merging the Experimental Branch

Once you’re happy with the changes you’ve made in an exper-

imental branch, you’ll need to merge them back to the trunk.

To do this, first make sure all the developers have checked in

their changes and that you have an up-to-date working copy

of the trunk (this little dance is the reason we suggest check-

ing out the experimental branch in a different directory).

We need to tell Subversion to merge all the changes in the

experimental branch, from when it was created to its latest

state, into the trunk. For this, we need to know when the

branch was created. Fortunately, svn log has a --stop-on-

copy option that will tell us exactly:

work> svn log --stop-on-copy \
svn://olio/sesame/branches/TRY-MGM-hbn-spike

MERGING THE EXPERIMENTAL BRANCH 127

--

r47 | mike | 2004-11-12 13:47:13 -0700 (Fri, 12 Nov 2004)

Added hibernate utils
--

r46 | mike | 2004-11-12 13:46:27 -0700 (Fri, 12 Nov 2004)

Made Contacts a hibernate mapped class
--

r45 | mike | 2004-11-12 12:55:21 -0700 (Fri, 12 Nov 2004)

new hibernate persistence spike
--

This tells us the TRY-MGM-hbn-spike branch was created at revi-

sion 45 (Subversion also told us this when we created the

branch, but we might have forgotten by the time we want to

merge). Now we can merge all the changes between revision

45 and HEAD into our trunk working copy:

work> cd sesame

sesame> svn update

At revision 47.

sesame> svn merge -r 45:HEAD \
svn://olio/sesame/branches/TRY-MGM-hbn-spike

A common/HibernateHelper.java

A contacts/Contacts.hbm.xml

U contacts/Contacts.java

Now we resolve any conflicts produced during the merge, run

our unit tests to make sure everything works, and check in:

sesame> # .. run unit tests to make sure everything's ok .. #

sesame> svn commit -m "Merged TRY-MGM-hbn-spike to the trunk"

Adding common/HibernateHelper.java

Adding contacts/Contacts.hbm.xml

Sending contacts/Contacts.java

Transmitting file data .

Committed revision 48.

The techniques in this chapter map directly to a number of

SCM Patterns. Using a release branch corresponds to the

“release line” and “release-prep codeline” patterns. Experi-

mental developer branches correspond to the “task branch”

pattern. Branches usually have an associated “codeline pol-

icy” (even if the policy is fairly informal), helping developers

understand how they should handle the code on each branch.

Chapter 10

Creating a Project
The word project is fairly loosely defined. One person working

for a week to implement a web form can be a project, as can

many hundred laboring for many years. But most projects

share a set of common characteristics:

• Each project has a name. This may sound trivial, but we

tend to give things names when we want to identify them

as independent entities. Names don’t have to be external

brands, approved by marketing and subject to field tests

in major metropolitan areas. Project names are simply

internal to your organization.

• Each project is cohesive; the components of the project

work together to achieve some business aim.

• The components within a project tend to be maintained

as a unit; you’ll release a version of the project as a

whole.

• The stuff in a project shares a common set of engineering

standards and guidelines and uses a common architec-

ture.

It is important to consider this list when putting projects into

a version control system, as it’s often hard to know where to

draw the boundaries between different projects. Getting the

project structure wrong is a major source of frustration when

using version control and can lead to a lot of wasted effort

as time goes on. Subversion does make it straightforward

CREATING THE INITIAL PROJECT 129

to move things around once a project has started, but this

requires coordination with everyone using the repository.

Subversion organizes everything by directory, so projects will

correspond to directory locations inside your repository. Sub-

projects might correspond to subdirectories, and so on. This

scheme gives you the flexibility to dream up a directory struc-

ture that works for your projects, but it can also be a little

hard to know where to start.

So, before creating projects in your repository, spend some

time planning. For example, is your project going to imple-

ment a framework that the company will use in future devel-

opment efforts? If so, then perhaps that framework should be

a separate project in its own right, with your current project

and those other future projects sharing in its use. Is your

project developing multiple independent components? Per-

haps each should be its own project. Or is your project writ-

ing an extension for an existing chunk of code? Perhaps then

it should be a subproject of that original project.

10.1 Creating the Initial Project

There are basically three ways to create directories (and thus

projects) within a Subversion repository:

• Import existing source into a directory in the repository.

• Manually create directories using svn mkdir until you have

the desired project structure.

• Convert an existing source code repository. There are

Subversion tools to convert CVS, RCS, Visual Source-

Safe, and Perforce repositories.

Converting from some other version control system is a big

topic and is covered in detail in Appendix B on page 174.

That leaves us with two options: import and manual directory

creation.

Importing Into Subversion

If you have existing source files (even if it’s just the project’s

README file), you can use the svn import command to pull those

CREATING THE INITIAL PROJECT 130

files into your repository. In the examples that follow, we’ll

assume you’re working on the Wibble project (the Wickedly

Integrated Business-to-Business Lease Exchange).

You’ll need a directory tree containing the files you want to

import (and only the files you want to import; be sure to clean

up all the various backup files and other dross before going

any further). Make sure you’re in the top-level directory of

this tree (in our case, in the directory wibble), and then issue

an svn import command:

wibble> svn import -m "Wibble initial import" \
svn://olio/wibble/trunk

Adding wibble.build

Adding src

Adding src/Wibble.cs

Adding src/WibbleTest.cs

Adding README

Committed revision 49.

This tells Subversion to import the contents of the current

directory, storing it in the repository in /wibble/trunk. Subver-

sion automatically creates parent directories as needed dur-

ing an import, but you will probably also want the tags and

branches directories for your project:

wibble> svn mkdir -m "Create tags directory" \
svn://olio/wibble/tags

Committed revision 50.

wibble> svn mkdir -m "Create branches directory" \

svn://olio/wibble/branches

Committed revision 51.

Your project is now checked in. You should check it out using

svn checkout, and, if everything is okay, you can delete the

original directory tree you used for the import.

Manually Creating Directories

If you don’t already have files for your project, an easy way to

get started is to create a skeletal directory structure and then

flesh things out by adding files.

We can use the svn mkdir command to create directories in the

repository. For a Java project, you might want something like

Figure 10.1 on the following page. Helpfully, svn mkdir allows

you to create multiple directories with a single command.

STRUCTURE WITHIN THE PROJECT 131

Å Æ Ç Ç È É Ê

Ë Ì Í Ê
Î Ï Ð Ñ Ò Ó

Ô Ï Í Ê
Õ É Ñ Ë Ì Ï Ê

Figure 10.1: Wibble Project Layout

work> svn mkdir -m "Creating initial structure" \

svn://olio/wibble \

svn://olio/wibble/trunk \

svn://olio/wibble/trunk/src \

svn://olio/wibble/trunk/doc \

svn://olio/wibble/trunk/vendor

Committed revision 54.

The Wibble project is now ready to check out into a local work-

ing copy. You’ll be able to add source code, documentation,

and libraries in the same way you’d add files during regular

development, using the svn add command.

10.2 Structure within the Project

Your company may well already have standards that dictate

how to organize the source code and directories within your

projects. If you’re developing with Java, for example, you

might be using the Jakarta conventions for laying out directo-

ries.1 If you don’t currently use a standard, what follows are

some basic suggestions.

1http://jakarta.apache.org/site/dirlayout.html

http://jakarta.apache.org/site/dirlayout.html

STRUCTURE WITHIN THE PROJECT 132

Top-Level Files

These are the typical files you’ll find at the top-level of each

project:

README

Incredible though it seems, a couple of years from now

the latest red-hot project will have faded down to a dull

gray, and you’ll have a hard time remembering exactly

what the Wibble project was all about. So create a file

called README in the top-level project directory. Write

a small paragraph describing the project: the business

problems it is solving, the basic technologies used, and

so on. This isn’t meant to be a full description; it’s just

an aide-memoir intended to trigger those long-dormant

neurons when you come back after a long absence.

BUILDING

Create another top-level file called BUILDING, containing

simple hints to future code archaeologists who have the

unenviable task of rebuilding this project from source.

Because you’ll be automating the build, this document

will be short; Figure 10.2 on the next page shows an

example.

GLOSSARY

Create one more top-level file called GLOSSARY. Make it a

habit to document all project-specific jargon in this file.

Not only will this make it easier for future developers

when they’re trying to work out what a “wibble channel”

is, but it will also guide the project team when it comes

to naming classes, methods, and variables.

Top-Level Directories

Most projects have at least the following top-level directories:

doc/

Check all project documentation into doc and its sub-

directories. Don’t forget to add memos and e-mails that

describe decisions reached. It’s normal to have directo-

ries under doc that contain different document types or

for different phases of the project.

STRUCTURE WITHIN THE PROJECT 133

Prerequisites:

* Oracle 9.6i (perhaps later versions but

that configuration's not tested)

* GCC 2.96

Building:

./configure [--with-oracle=<dir>]

make
make test
make install

More info:
docs/building.html

Figure 10.2: Sample BUILDING file

If your project needs external documentation (for exam-

ple, the description of an algorithm or a third-party file

format), consider copying this and storing it under the

doc directory tree (copyright permitting, of course). This

will make it easier for future maintainers if the external

site has since gone away. If you can’t copy this material

into your project, create a file in doc called BIBLIOGRAPHY

and add links and a brief description in it.

data/

Many projects carry along data (for example, information

needed to populate lookup tables in the database). Keep

this data in a single location (if for no other reason that

someone, at sometime, will urgently need to find out why

we’re charging 127 percent sales tax in Guam).

db/

If your project uses a database, store all the schema-

related stuff here. Work hard not to fall into the habit of

modifying schemas online. Have your database admin-

istrator create SQL scripts for each update—scripts that

both update the schema and migrate the data. By keep-

ing these in the repository, you’ll be able to migrate any

version of the database to any other version.

src/

The project’s source code should be stored under this

directory. You might want subdirectories to separate

different types of source code, for example, src/java and

src/eiffel.

STRUCTURE WITHIN THE PROJECT 134

Ö × Ø Ù Ú ÛÜ Ý Þ ß à Ýá â ã ä ß ã å ææ ä ç è è Þ Ü é
Ø Ö ê ë Ûì ì ì í × î Ûï Ø ê ë ð ì ñ ò ë ð ó î Ûì ì ì ô õ Ù ð ó × Û ô õ Ù ð ó × í × î Û

î ë ê õ Ù Ö ÛÞ ì ö ÷ ô ÷á ì ö ÷ ô ÷ í õ × ô õ × Ûé ì ö ÷ ô ÷ø ì ö ÷ ô ÷
ë ê ï Ûö Ø Ù ê Ö ì ö ÷ ×

í ù × ê Ù ú ì ö ÷ × ö Ø Ù ê Ö Ûì ì í ó Ø × î õ í ù × ê Ù ú Ûì ì í ó Ø × î õ

û ê ï ï ë õ Û
Ö ÷ ú í Ûì ì ì ï × ÷ Ù î ü õ í Ûì ì ì

Figure 10.3: Wibble Project Layout

util/

A directory to hold various project-specific utility pro-

grams, tools, and scripts. Some teams have a directory

called tools instead.

vendor/

If your project uses third-party libraries or header files

that you want to archive along with your own code, do it

under a top-level vendor directory.

vendorsrc/

Sometimes a project will import and include code from

a third party (for example, if it is using an open-source

library and needs to ensure that it will have access to a

particular version of the source for the life of the appli-

cation). You’ll include the binary libraries (and possibly

the header files) in the vendor directory, but you’ll also

want to retain the source from which these libraries were

built. Store these sources under the vendorsrc directory.

We have more to say about vendor source code in Chap-

ter 11, Third-Party Code, on page 141.

A possible file layout for the Wibble project is shown in Fig-

ure 10.3 . In this project we have our own source code (divided

into client and server components) along with some imported

open-source code (the JUnit and Spring frameworks).

SHARING CODE BETWEEN PROJECTS 135

In addition, many projects will have a standard set of direc-

tories that are used during the build or release of the project.

These directories do not contain files that should be stored in

the repository (as their contents are generated on the fly), but

some teams still find it convenient to have these directories

appear in every developer’s workspace. To do this, you can

add these empty directories to the repository; they’ll appear

in the working copy when developers check out.

An equally valid alternative is not to store these directories in

Subversion. Instead, have your build scripts create them as

needed, and then tidy them up when you’re done with them.

If you use this scheme, you can add the directory names to

the svn:ignore property on your project’s top-level directory to

stop Subversion cluttering your screen with question marks.

You’ll also want to keep your test code somewhere, but opin-

ions vary wildly on where this should be. Some teams like

keeping it in parallel directories to their source tree; others

put the tests in subdirectories of the source files being tested.

To some extent the “correct” answer depends on the language

being used. For example, the Java package naming rules

mean that if you want to test protected methods you’ll need to

construct parallel trees (or put your tests in the same direc-

tory as the source being tested). We cover this in more detail

in the companion book Pragmatic Unit Testing [HT03], [HT04].

There are no hard-and-fast rules for structuring directories

in a project. However, being consistent across projects will

greatly help people who come along in future and will give you

the flexibility to move between projects without experiencing

that “I’m totally lost” feeling.

10.3 Sharing Code between Projects

Projects rarely exist in a vacuum, instead being surrounded

by other work in an organization. Once a set of projects begins

to mature, you’ll often find that there are common areas of

functionality that could be reused across projects. In a large

enterprise it’s common to have teams specifically working on

reusable frameworks and libraries.

SHARING CODE BETWEEN PROJECTS 136

ý þ ÿ � �

� � �

ý � � � � �
� � 	 	 � �

� � �

� � þ � � � � � �
� � � � � �

� � 	 	 � � �

� � � � � � ý � � � �

� � �
� þ ý þ þ � � � � �

� � �
� � �
� � � � � �

	 þ � ý þ �

! " # $ % "� � �

� � �
& � � � ' �

� � �
� � �
� � � � � �

� þ ý þ þ � � � � � �

	 þ � ý þ � �
& � � � ' � �

� � �

� � �
� � �

� � �

� () � � � � �
� � 	 	 � � �

� þ ý þ þ � � � � � �

	 þ � ý þ � �
& � � � ' � �

� � �

� � �
� � �

Figure 10.4: Repository Layout with an Über-project

The Subversion “everything is a directory” approach means

that your common code will need to live in a shared directory

in the repository. There are two main ways to accomplish this:

• Store all your projects in a single “über-project” and use

a build script to manage dependencies between projects.

• Use svn:externals to pull the dependencies for each project

into your working copy before you build.

Both approaches can work, but using svn:externals is more flex-

ible with respect to project organization and branching.

Code Sharing with an Über-project

The repository directory structure when using an über-project

is shown in Figure 10.4 .

Directly beneath the trunk/ directory are directories for each of

the shared projects, in this case common and dataaccess. The

directories maitai and wibble store the actual project code for

the MaiTai and Wibble projects.

SHARING CODE BETWEEN PROJECTS 137

A developer would check out this über-project into a single

working copy containing all the projects. What to call this

working copy requires creativity and inspiration, neither of

which comes cheap, so we’ll go with uber-project:

work> svn checkout svn://olio/trunk/ uber-project

A uber-project/wibble

A uber-project/wibble/doc

A uber-project/wibble/doc/UserRequirements.doc

A uber-project/wibble/src

A uber-project/wibble/src/WibbleTest.java
: : :

A uber-project/dataaccess/lib/neo-1.3.0.dll

A uber-project/dataaccess/src

A uber-project/dataaccess/src/DataMapper.cs

A uber-project/dataaccess/README

Checked out revision 17.

When a developer comes to build the MaiTai project, they’d

(quite rightly) expect the build script to first build the projects

on which MaiTai depends. In this case it might first build the

data access project. Once all the dependencies are built—and

assuming the data access project produces a library as part

of its build—the MaiTai project can use that library and build

happily.

This strategy has a couple of drawbacks. First, developers

have to check out all the code for all the projects in your

repository. This might not be desirable if you have a large

repository or if some of the source is sensitive and requires

stricter access controls. Second, the branching options are

limited—you pretty much have to branch all the code at once,

rather than on a project-by-project basis.

Code Sharing with Externals

A special Subversion directory property, svn:externals, lets you

include the contents of another repository in your working

copy. Subversion properties and how to manipulate them are

covered more fully in Section 6.4, Properties, on page 66.

The svn:externals property is set on a directory and specifies

a list of repository URLs to include when checking out. You

can use any Subversion repository you like in an externals

definition—the client will do the work of checking out for you.

This means that it is possible to include code from Subversion

repositories that aren’t under your direct control, for example,

open-source projects hosted on the Internet.

SHARING CODE BETWEEN PROJECTS 138

* + , + + - - . / / 0
, 1 2 3 4 5

6 7 8 5

9 + : , + : 0
, 1 2 3 4 5

1 . ; < / : , < 1 = 0

> ? 8 5

@ A B 5

6 7 8 5
> ? 8 5
C D E 6 7 ? 5
6 F G F F 8 8 D > > 5H I J KL M N L O J P Q

C D E 6 7 ? 5

6 7 8 5
> ? 8 5

@ A B 5
C D E 6 7 ? 5

Figure 10.5: Repository Layout Using Externals

Figure 10.5 and Figure 10.6 on the next page show views

of a repository that uses externals to link shared code into

particular projects. There’s a lot going on here, so we’ll cover

it piece by piece.

Let’s look at the MaiTai project first. It is stored in /maitai/trunk

(shown in Figure 10.5). This has a dependency on the data

access project, in particular on /dataaccess/trunk. The file-

names in boxes show where these files are imported to the

MaiTai tree using externals. In order to set up the depen-

dency, we check out a working copy of the MaiTai project and

set the svn:externals property:

work> svn checkout svn://olio/maitai/trunk maitai

A maitai/lib

A maitai/src

Checked out revision 19.

work> svn propset svn:externals \

"dataaccess svn://olio/dataaccess/trunk" \

maitai

property 'svn:externals' set on 'maitai'

Here we’ve set the svn:externals property to include just a single

external. You can use svn propedit to bring up an editor if you

have multiple dependencies, which should each be listed on a

different line.

SHARING CODE BETWEEN PROJECTS 139

R S T T S U V
W X Y U Z [

\] ^ [
_ ` a a b c V

W X Y U Z [

W d e f V
g h i [

X c j S f ` W S X k V

l m ^ [

W d e f [
g h i [

\] ^ [
l m ^ [

\] ^ [
l m ^ [
n o p \] m [
^] q q] p [

\] ^ [
l m ^ [

\] ^ [
l m ^ [
n o p \] m [
^] q q] p [

\] ^ [
l m ^ [

r s t u v w x v y t z {

r s t u v w x v y t z {

Figure 10.6: Repository Layout Using Externals

The externals definition has two parts: first we name the

directory inside the MaiTai project where Subversion should

include /dataaccess/trunk, and then we provide the repository

URL we’d like to include. Performing an update on the work-

ing copy will cause the Subversion client to pull in the data

access project:

work> cd maitai

maitai> svn update

Fetching external item into 'dataaccess'

A dataaccess/lib

A dataaccess/src

Updated external to revision 19.

Updated to revision 19.

We still need to commit the property change on the maitai

directory to let other developers see this new external item.

maitai> svn commit -m "Added dataaccess project as an external"

Sending .

Committed revision 20.

SHARING CODE BETWEEN PROJECTS 140

Externals provide much more flexibility when working with

branches. Figure 10.6 on the page before shows that the Wib-

ble project depends on common. Furthermore, the trunk of

Wibble depends on the trunk of common, but the 1.0 branch

of Wibble depends on the 1.0 branch of common. We can

do this by changing the svn:externals definition for the Wibble

project after we branch it. Externals also allow you to be very

precise about the dependencies each project has—developers

don’t have to check out every piece of code in the repository

in order to start working.

An important point to note is that Subversion will not auto-

matically commit changes you make to a checked-out external

when you commit changes to the project that included it. You

need to explicitly commit changes to each external by chang-

ing to the directory in which it’s included and running svn

commit, or by naming each of the externals directories during

a commit.

We recommend treating dependencies as “read-only” in each

project—if a developer working on MaiTai needs to fix a bug in

the data access project, he should check out /dataacess/trunk,

fix the bug, check in, and then do an update in his MaiTai

working copy to get the fix.

Chapter 11

Third-Party Code
All projects rely to some extent on external libraries: Java

programs use rt.jar, .NET programs use mscorlib.dll, and so on.

Should these libraries form part of your working copy when

you check out from the repository?

To answer that question, ask yourself another. You need to

be able to rebuild a working program at some arbitrary time

in the future. Will you be able to use the versions of these

libraries that will be available then?

11.1 Binary Libraries

If you feel comfortable that the libraries used by your code will

be available (and compatible) over the life of your application,

then there’s no need to do anything special with them; just

use them as installed on your machine.

Looking beyond standard language facilities, many projects

include other, less stable libraries in their projects. For exam-

ple, many .NET developers will use the NUnit1 framework to

test their code. Compared to the standard libraries, these

frameworks are fairly volatile (as of May 2006, NUnit is up

to version 2.2.8). Although the changes between versions are

mostly compatible, changes can affect your application. As

a result, we recommend you include these libraries in your

project’s repositories.

1http://www.nunit.org/

http://www.nunit.org/

BINARY LIBRARIES 142

Having made the decision you want to include a third-party

library in your workspace and repository, you now have to

decide what to include and where to put it.

The first decision is what files to include. This is relatively

easy. If you use the library in the form distributed by the

maker, and you feel confident that the library will continue

to work unmodified through the life of the application, then

storing the binary form of the library is all that is needed. We

suggest putting all these libraries in subdirectories of a top-

level vendor/ directory inside your project.

If the library is architecture independent (for example, a Java

.jar file), then it can simply sit in a subdirectory called lib. If

the file as packaged by the vendor has a version number in the

name, such as junit-3.8.1.jar, we suggest giving it a more generic

name. In this case, you’d add junit.jar to your repository. This

makes upgrading easy—just copy over a new version of the

library and check in. You won’t need to change your build

scripts or include files. In any case, you should state the

version number of the library in your commit message so later

you can figure out what version you’re using.

If instead you have libraries that depend on the target archi-

tecture (assuming your application is targeted at more than

one architecture), you’ll need to have subdirectories below

vendor for each architecture and operating system combina-

tion. A common naming scheme for these subdirectories is to

use arch-os where arch is the target architecture (i586 for an

Intel Pentium, ppc for a PowerPC, and so on) and os is the

operating system (linux, win2k, osx, and so on).

Languages such as C and C++ require that you include source

header files in application code that uses a particular library.

These header files are supplied with the library and should

also be stored in the repository. We suggest storing them in

an include subdirectory beneath vendor. Structure the direc-

tories beneath vendor/include in such a way that the compilers

can find the libraries’ include files naturally. As an example,

consider a C library called datetime, which performs date and

time calculations. It comes with a binary library archive, lib-

datetime.a, and two header files, datetime.h and extras.h. The

datetime.h header library is intended to be installed at the top

BINARY LIBRARIES 143

| } ~ � � � � � } � ~ � } � � � |� � � � �

� � � � � � �
� � � �

� � � � � � � �
� � � � � � � � � �
� � �

� � � � � � � �

� � � � � � � � � � � � �

Figure 11.1: Sample Repository with Third-Party Library

level of the include hierarchy, extras.h is expected to be in a

subdirectory called dt. That is, a program that used both

header files would normally start like this:

#include <datetime>

#include <dt/extras>

// . . .

In this case, we’d organize our repository (and our working

copy) as shown in Figure 11.1 .

Integrating with the Build Environment

If you include vendor libraries or header files in your repos-

itory, you’ll need to make sure your compilers, linkers, and

IDEs can get to them. There’s a minor problem: you need

to make sure you don’t check anything into the repository

that contains absolute path names (as this might not work on

some other developer’s machine). Instead, you have a couple

of options:

• Arrange your build tools so that all path names are rela-

tive to (say) the top-level project directory. This is work-

able if you’re using an external build tool such as make

or ant, but it can get tricky.

• Set up some external environment variable to point to

the top of the project tree, and make all references in the

LIBRARIES WITH SOURCE CODE 144

build relative to this variable. This allows each developer

to have different values in the external variable but then

to share a common build environment layout.

The external variable need not be a true operating sys-

tem environment variable. The Eclipse IDE, for example,

allows each user to set internal variables and then to

have a common shared build structure that references

these variables. This means all developers can share a

common Eclipse build definition but that developers can

still install the source in different locations.

We recommend the second approach.

11.2 Libraries with Source Code

Sometimes a library comes with source code (or is distributed

only as source code). If you have both source and binary

versions of the library available, which should you store in the

repository, and how should you set up your working copy?

The answer is an exercise in risk management. Having the

source available means you are always in the position (tech-

nically, at least) to fix bugs and add features, something you

can’t do with a binary library. This is clearly a good thing. At

the same time, including the source code for all the libraries

used by your project can slow down builds and complicate

the structure of your project. It also gives future maintainers

a headache. If there’s a bug, do they need to consider poten-

tial changes to the library source, or can they concentrate on

the code written by your organization?

Our recommendation is to add vendor source to your reposi-

tory, but to treat it specially. To do this you have to do a bit

of role playing.

Imagine for a minute that you are the writer of this particular

library and that every now and then you release an updated

version of the code to your user base. Being a high-quality

library writer, you naturally put all your source in a version

control system and practice all the necessary release control

procedures.

LIBRARIES WITH SOURCE CODE 145

Now come back from the role play (remember, breathe in,

breathe out, breathe in, breathe out). In an ideal world, we

should be able to hook straight into our vendor’s repository

and extract releases directly from there. But we can’t, so we

have to do the work ourselves. Whenever we receive code,

bug fixes, and new releases from a vendor, we have to pre-

tend that we generated the code and handle it in our version

control system as if we were the vendor handling it in theirs.

Importing Vendor Source for the First Time

When we first receive the source code for a third-party library,

we need to import it into our repository. Vendor code is stored

on a vendor branch, and each time we receive code and import vendor branch

it it’s called a vendor drop. We recommend keeping vendor vendor drop

branches separate from the code of your project. If you antici-

pate importing code from multiple sources over time, it proba-

bly makes sense to keep it all under a common top-level direc-

tory; we suggest calling it /vendorsrc.

Each library or product you want to track will live in its own

vendor branch beneath /vendorsrc, such as /vendorsrc/sun/jdbc.

Within the vendor branch directory we’ll have a current direc-

tory storing the most recent vendor drop (kind of like the trunk

directory for a regular project). Alongside this we’ll have direc-

tories containing tags for each vendor drop.

To make this more concrete, let’s assume we’ve decided to

use version 1.0.0 of the jMock2 mock objects library (after

checking the license terms, of course).

Start by downloading the latest release from the jMock web

site. Save jmock-1.0.0-src.jar to a temporary directory, and then

use WinZip (or plain old jar) to extract the contents. This

should leave you with a folder called jmock-1.0.0 containing all

the jMock source code, documentation, and examples.

Now we can import the drop into the repository. We’ll store

it under /vendorsrc/codehaus/jmock/current. In this case, the

vendor is CodeHaus, and the “product” is jMock. Run svn

import from the directory above jmock-1.0.0:

2http://jmock.codehaus.org/

http://jmock.codehaus.org/

LIBRARIES WITH SOURCE CODE 146

tmp> svn import --no-auto-props -m "Import jMock 1.0.0" \

jmock-1.0.0 \
svn://olio/vendorsrc/codehaus/jmock/current

Adding jmock-1.0.0/extensions

Adding jmock-1.0.0/extensions/cglib

Adding jmock-1.0.0/extensions/cglib/acceptance-tests

Adding jmock-1.0.0/extensions/cglib/acceptance-tests/atest

Adding jmock-1.0.0/extensions/cglib/acceptance-tests/atest/jmock
: : : :

Adding (bin) jmock-1.0.0/examples/classes/.../Calculator.class

Adding (bin) jmock-1.0.0/examples/classes/.../ParseException.class

Adding (bin) jmock-1.0.0/examples/classes/.../InfixParser.class

Committed revision 3.

Next, tag the vendor drop, marking it as version 1.0.0. If

CodeHaus releases a new version of jMock, you’ll be able track

the two versions effectively:

tmp> svn copy -m "Tag 1.0.0 vendor drop" \

svn://olio/vendorsrc/codehaus/jmock/current \
svn://olio/vendorsrc/codehaus/jmock/1.0.0

Committed revision 4.

Updating to a New Vendor Release

When jMock 1.0.1 comes along, we’d like to be able to incor-

porate it into our repository. To do this, think back to our

role play—we are pretending to be CodeHaus, maintaining our

code in /vendorsrc/codehaus/jmock/current. When we released

1.0.0, we tagged the code by copying it to jmock/1.0.0. We con-

tinue to develop our code, working on our “trunk.” Once we

reach our next release, we make another tag to mark 1.0.1.

Outside of the role play, we don’t actually get to see any of

the changes that are made to the jMock code. We see only

the result, jmock-1.0.1-src.jar. In order to emulate what’s going

on in the jMock repository, we need to update the contents of

our directory /vendorsrc/codehaus/jmock/current so that it looks

like the new release. We update our copy of the jMock code so

that it looks like we did all the work to get us to 1.0.1.

How do we get our copy to look like the new release? Well,

since the last release CodeHaus will have modified some files,

added some new files, maybe moved a few files around, and

occasionally deleted files. We need to perform all these opera-

tions in current.

LIBRARIES WITH SOURCE CODE 147

Whilst this synchronization could be done by hand, it’s all

pretty labor intensive and prone to mistakes. Fortunately,

Subversion has a utility to import new vendor drops automat-

ically, performing the adds and deletes for you. The magic is

provided by a Perl script called svn load dirs.pl.3

The script requires Perl to be installed on your system, along

with a few modules (such as the URI module for manipulating

URLs). When run, it requires three arguments:

Base URL

The base URL of the Subversion repository to work with.

It expects to find all the drops for a particular product

beneath this directory. In our example so far, this would

be svn://olio/vendorsrc/codehaus/jmock.

“Current” Directory

The directory beneath the base URL in which the latest

vendor drop can be found. We’re using current in this

example.

Directory to Import

The directory on the local machine from which to import

the new vendor drop.

You can also specify a -t tagname option to automatically

tag the new vendor drop.

Download the new release of jMock, storing it in jmock-1.0.1 in

your temporary directory. Now run svn load dirs.pl to load the

new release and tag it:

tmp> svn load dirs.pl -t 1.0.1 \
svn://olio/vendorsrc/codehaus/jmock current jmock-1.0.1

Directory jmock-1.0.1 will be tagged as 1.0.1

Please examine identified tags. Are they acceptable? (Y/n) y

We’re being asked if tagging the new source from jmock-1.0.1

as “1.0.1” is okay. That’s what we want to do, so type y and

hit Enter. The rest of the process is hands free:

Checking that the base URL is a Subversion repository.

Running /usr/local/bin/svn log -r HEAD svn://olio/vendorsrc/codehaus/jmock

Finding the root URL of the Subversion repository.

Running /usr/local/bin/svn log -r HEAD svn://olio

Determined that the svn root URL is svn://olio.

3http://svn.collab.net/repos/svn/trunk/contrib/client-side

http://svn.collab.net/repos/svn/trunk/contrib/client-side

LIBRARIES WITH SOURCE CODE 148

Native EOL on this system is \012.

Finding if any directories need to be created in repository.

Running /usr/local/bin/svn log -r HEAD svn://olio/.../jmock/current

No directories need to be created to prepare repository.

Checking out svn://olio/.../jmock/current into /tmp/...

Running /usr/local/bin/svn checkout svn://olio/.../jmock/current my import wc

Loading jmock-1.0.1 and will save in tag 1.0.1.

U build.properties

U VERSION
U CHANGELOG
U core/src/test/jmock/core/InvocationTest.java

U core/src/test/jmock/core/testsupport/MockInvocationMatcher.java

U core/src/test/jmock/core/matcher/InvokedRecorderTest.java

U core/src/org/jmock/core/matcher/InvokeAtLeastOnceMatcher.java
: : :

Running /usr/local/bin/svn propget svn:eol-style VERSION

Running /usr/local/bin/svn propget svn:eol-style CHANGELOG
: : :

Running /usr/local/bin/svn commit --file /tmp/svn load ...

Running /usr/local/bin/svn update
: : :

Cleaning up /tmp/svn load dirs ZH6k9TLxFM

Examining the Subversion log, we can see that the changes

between jMock 1.0.0 and 1.0.1 have been applied to our copy

of the code:

tmp> svn log -v svn://olio/vendorsrc/codehaus/jmock/current

r5 | mike | 2004-11-18 17:03:06 -0700 (Thu, 18 Nov 2004)

Changed paths:

M /vendorsrc/codehaus/jmock/current/CHANGELOG

M /vendorsrc/codehaus/jmock/current/VERSION

M /vendorsrc/codehaus/jmock/current/build.properties
: : :

Load jmock-1.0.1 into vendorsrc/codehaus/jmock/current.
--

We can follow the same process to import new releases of

jMock, as they become available.

Using Vendor Code in a Project

All this fancy importing is great so far—you’ve got your own

copy of the jMock source code and have tagged it for posterity.

Now we need to actually use that source in a project. To do

this, copy the vendor branch into your project, storing it in

vendor/jmock:

work> svn mkdir -m "" svn://olio/maitai/trunk/vendor

work> svn copy -m "MaiTai needs jMock" \

svn://olio/vendorsrc/codehaus/jmock/1.0.0 \

svn://olio/maitai/trunk/vendor/jmock

Committed revision 12.

When we check out MaiTai, we’ll get a copy of the jMock code:

LIBRARIES WITH SOURCE CODE 149

work> svn checkout svn://olio/maitai/trunk maitai

A maitai/doc

A maitai/src

A maitai/vendor

A maitai/vendor/jmock

A maitai/vendor/jmock/extensions
: : : :

A maitai/vendor/jmock/build.xml

Checked out revision 12.

Modifying Vendor Code

Now that you have the vendor’s source code, you’re free to

make modifications to it, safe in the knowledge that you’ll be

able to easily incorporate new releases whilst preserving your

custom changes.

Let’s say we want to make some tweaks to jMock’s excep-

tion handling and expectation framework. Make your changes

within the MaiTai working copy, and commit them as normal:

maitai> svn status

M vendor/jmock/core/src/org/jmock/expectation/ExpectationList.java

M vendor/jmock/core/src/org/jmock/util/NotImplementedException.java

maitai> svn commit -m "Made some custom changes to jMock"

Sending vendor/jmock/core/src/org/jmock/expectation/ExpectationList.java

Sending vendor/jmock/core/src/org/jmock/util/NotImplementedException.java

Transmitting file data ..

Committed revision 13.

Subversion tracks the change you’ve made just like regular

changes to code you authored yourself.

Updating Modified Code

Life is good. The MaiTai project is doing well and is a suc-

cess for your company. The guys at CodeHaus release a new

version of jMock, and you’d like to incorporate that into the

MaiTai project. After loading and tagging the new vendor

drop, you’re ready to upgrade MaiTai.

We need to merge the changes made to jMock between 1.0.0

and 1.0.1. To do this, use the svn merge command:

maitai> svn merge svn://olio/vendorsrc/codehaus/jmock/1.0.0 \

svn://olio/vendorsrc/codehaus/jmock/1.0.1 \
vendor/jmock

U vendor/jmock/VERSION

U vendor/jmock/CHANGELOG
: : :

U vendor/jmock/build.properties

KEYWORD EXPANSION DURING IMPORTS 150

Subversion applies the changes to your working copy. If any

conflicts arise between your custom modifications and the

1.0.1 changes, you’ll need to fix them as you would a conflict

between two developers. Once any conflicts are resolved, and

you’ve run the tests to make sure everything’s still working,

commit the changes to the repository:

maitai> svn commit -m "Updated MaiTai with jMock 1.0.1"

Sending vendor/jmock/CHANGELOG

Sending vendor/jmock/VERSION

Sending vendor/jmock/build.properties
: : :

Transmitting file data

Committed revision 14.

11.3 Keyword Expansion during Imports

In these examples, we’re importing third-party code (probably

from a version control system other than Subversion) into our

repository. If we’re importing code from CVS, for example,

the authors may have included $Author$ or Id keywords.

We discussed keywords more fully in Section 6.4, Keyword

Expansion, on page 68.

The problem is that the keywords are expanded every time

the file is checked out. If the vendor has used these tags,

then the source you receive will have the vendor’s informa-

tion in these fields. However, if you just import these files as

they stand and check them back out, Subversion will update

the tags, and suddenly your name will appear in the author

field. While this may be vaguely satisfying, it will cause prob-

lems later when you come to merge in changes with the next

vendor release. Subversion will notice that these tag lines

have changed, and you’ll get conflicts when merging with the

vendor’s code.

Fortunately, keyword expansion isn’t switched on for new files

by default. However, if you’ve enabled autoprops as described

in Section 6.4, Automatic Property Setting, on page 74, and

are setting svn:keywords automatically, keyword expansion

might occur. Use the --no-auto-props switch when import-

ing to disable any potential keyword expansion.

The SCM Pattern for handling third party code using branches

is, unsuprisingly, named “third party codeline.”

Appendix A

Install, Network, Secure, and
Administer Subversion

Subversion client installation is pretty straightforward, often

just requiring the right download for your operating system.

Running a server is a little more complicated, and many peo-

ple, especially those migrating from CVS, will want to run a

Subversion server on a Unix platform. Subversion’s database

backend also requires a different backup strategy than a plain

file-based version control system. This chapter includes Win-

dows and Linux instructions for installing Subversion, getting

your repository on the network, and backing it up in case the

worst should happen. There’s also a discussion on securing

your repository so prying eyes can’t get at your data.

A.1 Installing Subversion

Subversion comes packaged for a variety of operating sys-

tems.1 If you’re using a Unix-based system, Subversion might

be available as an official package, so check first using your

package manager.

Windows Installation

The friendly Windows installer makes short work of installing

Subversion, even putting the binaries in your path. If you’re

1Go to http://subversion.tigris.org/project_packages.html for

the full set of packages.

http://subversion.tigris.org/project_packages.html

INSTALLING SUBVERSION 152

planning on installing Apache as well, install it before Sub-

version. That way, the Subversion installer will automatically

copy Subversion’s Apache modules to the right places.

Linux Installation

Here we’ll cover installation on Fedora Core 5, which happens

to include Subversion 1.3 as a standard package. You can

either use the Fedora Package Manager to install the packages

or download them by hand.

To use the GUI package manager, choose Applications > Add/

Remove Software. In the “Servers” category, make sure “Web

Server” is selected. Under “Development,” check “Develop-

ment Tools” then click the Optional Packages button to make

sure Subversion is selected. Hit the Update button to apply

the changes.

To install from the command line, use the yum package man-

ager:

root> yum install httpd subversion mod dav svn

Dependencies Resolved
===
Package Arch Version Repository Size

===
Installing:

httpd i386 2.2.0-5.1.2 core 1.1 M

mod dav svn i386 1.3.0-4.2 core 65 k
subversion i386 1.3.0-4.2 core 2.1 M

Transaction Summary
===
Install 3 Package(s)

Update 0 Package(s)

Remove 0 Package(s)

Total download size: 3.3 M
Is this ok [y/N]:

yum lets you know it’s going to install the requested packages,

along with apr and apr-util which are required for Subver-

sion to work. After downloading the packages you should see

something like this:

Running Transaction

Installing: httpd ######################### [1/3]

Installing: subversion ######################### [2/3]

Installing: mod dav svn ######################### [3/3]

Installed: httpd.i386 0:2.2.0-5.1.2 mod dav svn.i386

0:1.3.0-4.2 subversion.i386 0:1.3.0-4.2
Complete!

Subversion is now installed and ready to go.

NETWORKING WITH SVNSERVE 153

A.2 Networking with svnserve

svnserve is a simple network server for Subversion. It’s fast

and lightweight, and it’s suitable for use on a corporate LAN

where traffic is safe from eavesdroppers.

svnserve on Windows

To start svnserve on Windows, go to your command prompt

and type

C:\> start svnserve --daemon --root c:\svn-repos

A new window will pop open with the title svnserve.exe. If

you’re using Windows XP or have other firewalling software

installed, you may be asked whether the server should be

allowed to accept network connections, in which case choose

to unblock svnserve. We’ve asked svnserve to start in daemon

mode with the --daemon option (Windows doesn’t actually run

it as a daemon; this option is a quirk needed to get svnserve to

start), and we’re allowing access to the repository named with

the --root argument.

Popping open a new window isn’t great, since you might close

it accidentally. You can add a /B just after the start command

if you want svnserve to run without its own window, but in this

case you’ll need to use Task Manager to kill it off when you’re

done.

If you’d like svnserve to run whenever your Windows server

boots, you’ll need to install it as a service. Magnus Norddahl

maintains a simple service wrapper called svnservice, available

from http://dark.clansoft.dk/˜mbn/svnservice/.

svnserve on Unix

Starting svnserve is very similar on Unix:

home> svnserve --daemon --root /home/mike/svn-repos

Your command prompt returns immediately leaving svnserve

running as a daemon. Running ps should show the process

still running.

Try accessing the repository from a different machine on your

network. The example server for this book is called olio, so

you’d run

http://dark.clansoft.dk/~mbn/svnservice/

NETWORKING WITH SVN+SSH 154

work> svn co svn://olio/sesame/trunk vizier

A vizier/Number.txt

A vizier/Day.txt

Checked out revision 7.

If this doesn’t work, you might need to check if there’s a

firewall between the two machines. If there is (for example,

ZoneAlarm, Windows XP’s built-in firewall, or a Unix firewall),

you’ll need to make sure the machine running svnserve can

accept connections on TCP port 3690.

Once set up, you should secure your repository, because by

default svnserve allows read-only anonymous access to every-

thing. Refer to Section A.5, svnserve, on page 163 for more

details.

A.3 Networking with svn+ssh

Windows doesn’t usually support incoming SSH connections,

so this section covers Unix configuration only. You might be

able to get Putty working as a Windows SSH server, but it’s

definitely not for the faint of heart!

When a user specifies a svn+ssh scheme to access the repos-

itory, the Subversion client runs SSH to connect to the server.

This means each user needs an account on the server, and the

password they’re asked for is their Unix account password.

If your users have public/private key pairs or are running

an SSH agent, Subversion automatically takes advantage of

those features.

Subversion tries to run svnserve -t on the server in order to

access the repository. If Subversion complains it can’t find

svnserve, make sure the default path on the server contains the

svnserve binary. Because Subversion starts svnserve using

the -t (tunnel) option, you don’t need to have it running as a

daemon like you do with plain svn connections.

Once the SSH connection is established and svnserve is run-

ning in tunnel mode, Subversion will attempt to access the

repository’s files. It does this as the same user who authen-

ticated via SSH, which means all the users of your repository

need read and write access to the repository files. Further-

NETWORKING WITH SVN+SSH 155

more, any new files that are created need to be readable and

writable for all the other users.2

In order for multiple Unix users to access the repository, they

should all be in a single Unix group and have a umask of 002

when running svnserve via SSH. You also need to set the group

“sticky bit” on the repository directories. Here’s a step-by-step

guide to setting this up.

First create a Unix group for everyone using Subversion, and

add each user to the group. These commands are Linux spe-

cific, so you might need to tweak them a bit for your flavor of

Unix:

root> /usr/sbin/groupadd subversion

root> /usr/sbin/usermod -G subversion mike

root> /usr/sbin/usermod -G subversion ian

Next, change the ownership of your repository directory and

files to the new group, and set the group sticky bit for the

repository db directory:

root> chgrp -R subversion /home/svn-repos

root> chmod -R 770 /home/svn-repos

root> chmod g+S /home/svn-repos/db # g+t on BSD systems

Now try checking out from the repository. Here we’ll specify

an exact username for the remote machine, and the password

we’re asked for is our Unix password:

work> svn checkout \

svn+ssh://mike@olio/home/svn-repos/sesame/trunk \
sesame

mike@olio's password:

A sesame/Number.txt

A sesame/Day.txt

Checked out revision 7.

This is all a bit complicated, but well worth it if you’d like to

take advantage of SSH for securing your connections. More

information is available online.3

2Getting this part wrong is the most common cause for “wedged” reposito-

ries. During the commit BDB might decide to create new files that are part of

the repository. If these aren’t writable by other users their Subversion clients

will hang trying to access the repository.
3http://svnbook.red-bean.com/en/1.1/ch06s03.html#

svn-ch-6-sect-3.4

NETWORKING WITH SVN+SSH 156

Troubleshooting an SSH Connection

Connecting to a repository using svn+ssh requires quite a few

programs to be working and configured correctly. Unfortu-

nately, Subversion’s error messages are sometimes less infor-

mative than they could be. Here’s a rough guide to things that

can go wrong and how to fix them.

svn: The system cannot find the file specified. (Windows)

Subversion is complaining that it can’t find “the file speci-

fied.” In this case it’s looking for ssh in order to make a secure

connection (the svn command is being found just fine). The

usual fix for this is to edit your Subversion configuration as

described back in Section 5.1, svn+ssh, on page 57 and make

sure that plink.exe is available in your path.

svn: No such file or directory (Unix)

Similar to the Windows “cannot find file specified” problem,

Subversion is unable to find the ssh command on your system.

This might mean ssh isn’t installed on your computer.

Subversion just seems to hang (Windows)

Bring up Task Manager, and see if plink.exe is running. If it’s

running but Subversion isn’t displaying any output, it could

be because plink is waiting for user input. This can happen

when you connect to an SSH server for the first time and need

to accept the server key. Try running plink on its own, saying

“yes” when asked to store the key in Putty’s cache:

work> plink mike@olio.mynetwork.net echo hello

The server's host key is not cached in the registry. You

have no guarantee that the server is the computer you

think it is.

The server's rsa2 key fingerprint is:

ssh-rsa 1024 c3:82:fd:a6:b4:5d:23:f2:1a:f8:8b:04:be:c3
If you trust this host, enter "y" to add the key to

PuTTY's cache and carry on connecting.
: : :
Store key in cache? (y/n) y

mike@olio.mynetwork.net's password:

hello

NETWORKING WITH APACHE 157

svnserve: command not found

svn: Connection closed unexpectedly

Either or both of these lines is printed by the Subversion client

when it can’t find svnserve on the server. The SSH connection

has been established and you’ve authenticated as a Unix user,

but svnserve isn’t in the user’s path.

Subversion always attempts to run svnserve -t on the remote

server, so unfortunately you can’t fix the problem by telling

the client where Subversion is installed. You’ll need to change

the default path on the server, perhaps by editing /etc/profile.

Once you’ve got svnserve in the path, you should be able to

test from the client like this:

work> ssh mike@olio.mynetwork.net svnserve -t

(success (1 2 (ANONYMOUS EXTERNAL) (edit-pipeline)))

The success message with all the brackets is the start of the

svn protocol between the Subversion client and server and

means svnserve has been found correctly.

svn: No repository found in

’svn+ssh://myserver/home/svn-repos’

Subversion has successfully connected using SSH and started

svnserve. However, svnserve can’t find the repository. Check

that you’re using the correct path to the repository and that

you have sufficient permissions to read and create files in the

repository directory.

A.4 Networking with Apache

In this section we’ll show how to install Apache and configure

it to host a Subversion repository. Unix installation instruc-

tions vary a bit depending on the exact flavor of Unix, but

good instructions are available online. We’ll again be using

Fedora Core 5 as our example Unix platform.

The Subversion book from the Subversion developers them-

selves is probably the best complete reference and is available

at http://svnbook.red-bean.com/[CSFP].

http://svnbook.red-bean.com/

NETWORKING WITH APACHE 158

The “How-To” section on the Subversionary web site4 includes

networking instructions for a number of operating systems,

including RedHat and Windows.

Apache on Windows

Download and Install Apache

Apache is open-source software, and you can download it for

free from http://httpd.apache.org/download.cgi.

For a Windows installation, you can download either an .exe

or an .msi. The MSI is a Windows Installer package and is a

smaller download, so that’s probably your best bet. Subver-

sion requires at least Apache 2.0.48—in this example we’re

using 2.0.50.

Run the installer, read the first couple of screens including

the license agreement and installation notes, and you should

get to a screen similar to that in Figure A.1 on the next page.

It’s important to get the info on this screen correct, or users

might have trouble connecting to Apache. If you’re not sure of

the settings to use, ask a network administrator to help you.

We’ll install Apache for the current user only, on port 8080.

Windows machines often already have a web server enabled

using the normal HTTP port 80, and we don’t want our new

Apache server to conflict. If you’re setting up a Subversion

repository and want to use port 80, make sure Internet Infor-

mation Services (IIS) has its web server switched off.

At the next step choose Typical Installation, and stick with

the default directory for installing Apache. You’ll see a few

command windows pop open as Apache installs, followed by

a message informing you that installation was successful.

At the moment, Apache isn’t running because we selected the

“just for the current user” option when installing. To start

Apache, choose Start > All Programs > Apache HTTP Server

2.0.50 > Control Apache Server > Start Apache in Console. A

command prompt window will appear, which means Apache is

4http://www.subversionary.org/

http://httpd.apache.org/download.cgi
http://www.subversionary.org/

NETWORKING WITH APACHE 159

Figure A.1: Apache Server Name Configuration

running.5 Open a web browser to http://localhost:8080

and you should see a test page like the one in Figure A.2 on

the following page.

Install Subversion’s Apache Modules

Subversion integrates with Apache using a number of binary

modules that need to be installed in the right places for every-

thing to work properly.

If you’re using Windows, open C:\Program Files\Subversion\httpd

and copy mod authz svn.so and mod dav svn.so into the direc-

tory C:\Program Files\Apache Group\Apache2\modules. Then go

to C:\Program Files\Subversion\bin, and copy the file libdb42.dll

into C:\Program Files\Apache Group\Apache2\bin. If you already

5We were going to include a screenshot of the Apache console window,

but Dave decided it looked like one of those “Bournemouth by Night” joke

postcards, so it got the boot. Don’t worry when the Apache window comes up

and there’s no output—this is how it’s supposed to look.

NETWORKING WITH APACHE 160

Figure A.2: Apache Test Page

have Apache installed, the Subversion installer will do this

copying for you when you install Subversion.

Configuring Apache

Configuring Apache requires editing .conf files inside your

Apache install. The files you need to edit vary a little between

systems—Windows uses a single httpd.conf, as do many fla-

vors of Unix, and Red Hat Linux uses a number of smaller

files within a conf.d directory.

Choose Start > All Programs > Apache HTTP Server 2.0.50 >

Configure Apache Server > Edit the Apache httpd.conf Config-

uration file. This will open Notepad, everyone’s favorite editor,

with the main Apache configuration file.

Scroll down to the section of the file that reads “Dynamic

Shared Object (DSO) Support.” You’ll see a large number of

LoadModule commands, each of which activates extra func-

tionality in Apache. At the bottom of the list, add the following

two lines:

NETWORKING WITH APACHE 161

Joe Asks. . .

DAV, WebDAV, DeltaV??

As part of its integration with Apache, Subversion uses
WebDAV as the protocol between client and server.
WebDAV stands for “Web-based Distributed Author-
ing and Versioning” and is an extension of the HTTP
protocol. Instead of rolling their own network proto-
col, the Subversion developers decided to leverage
WebDAV.

Reuse brings a number of advantages, in both speed
of development and compatibility with other clients.
For example, both Windows and Mac OS X can con-
nect to a WebDAV server and make it available as a
network drive.

For further information on WebDAV, including client
configuration, see http://www.webdav.org/.

LoadModule dav svn module modules/mod dav svn.so

LoadModule authz svn module modules/mod authz svn.so

Next, scroll up a little, and uncomment the existing line for

dav module:

LoadModule dav module modules/mod dav.so

Finally, scroll down to the bottom of the file, and add the

following section:

<Location /svn-repos>

DAV svn

SVNPath c:\svn-repos
</Location>

This tells Apache that URLs starting with /svn-repos should

use the Subversion DAV module and that the repository is in

c:\svn-repos.

If Apache is still running, stop it by closing its command

window. Then start Apache by using the Start Apache in

Console menu item. Now open your web browser, and hit

http://localhost:8080/svn-repos/. If Subversion and

Apache are configured correctly, you’ll see your repository

http://www.webdav.org/
http://localhost:8080/svn-repos/

NETWORKING WITH APACHE 162

Figure A.3: Subversion Repository Browsing

and the Sesame project, as in Figure A.3 . Try browsing

around the repository—clicking any file will display the lat-

est checked-in version of that file, and clicking a directory will

navigate you around.

Apache on Red Hat Linux

Fedora Core 5 usually comes with Apache installed as stan-

dard. If you’re following the installation instructions in this

chapter, you probably already installed Apache, Subversion,

and the Apache integration module mod dav svn. If not, fire

up your package manager and get those installed.

Configure Apache

On Red Hat Linux, Apache uses a number of conf files within

/etc/httpd/conf.d. Installing mod dav svn adds a new subver-

sion.conf file to that directory, which you’ll need to edit in order

to point at your repository. Other flavors of Unix stick with a

single httpd.conf file inside /etc/httpd.

SECURING SUBVERSION 163

The contents of subversion.conf hint at security settings we’ll be

covering in Section A.5, Apache Security, on page 165, but for

now just uncomment enough that it points to your repository:

<Location /svn-repos>

DAV svn
SVNPath /home/svn-repos

</Location>

Make sure the svn-repos directory is owned by the Apache user,

and restart the Apache web server:

root> chown -R apache /home/svn-repos

root> service httpd restart

Stopping httpd: [OK]

Starting httpd: [OK]

At this point your repository is unsecured, allowing read and

write access to anonymous users. Don’t leave it like this! Sec-

tion A.5, Apache Security, on page 165 details how to secure

your Apache hosted repository.

A.5 Securing Subversion

When it comes to accessing a Subversion repository, security

lies in two main areas: user authentication and path-based

permissions. User authentication is about making sure peo-

ple connecting to the repository are authorized to do so; it’s

basically password-protecting your data. Anyone supplying a

valid username and password is granted access to the reposi-

tory. Path-based security goes further, differentiating between

users and granting or denying access to individual directories

in the repository.

svnserve

By default, svnserve sets up a read-only repository. To get

read/write access, we’ll need to edit svnserve.conf, which lives

inside the svn-repos/conf directory. When you create a repos-

itory, svnserve.conf looks something like the one in Figure A.4

on the following page.

If you’re familiar with .conf files, you’ll see that the entire file

is commented out (lines starting with # are comments). Whilst

Subversion is trying to be helpful and give us some hints for

writing a config file, most people just end up confused by

SECURING SUBVERSION 164

Figure A.4: Defaultsvnserve.conf

the file. Let’s just ignore the defaults and create a simple

svnserve.conf:

[general]

anon-access = read
auth-access = write
password-db = passwd

sv
n

re
p

o
s/

c
o

n
f/

sv
n

se
rv

e
.c

o
n

f
This tells svnserve to allow anonymous read-only access to the

repository and to allow read/write access for authenticated

users. We also tell svnserve to look for usernames and pass-

words in a file called passwd. In the same conf directory, create

a password file as follows:

[users]

mike=secret
dave=n1nja123

ian=b4n4n4 sv
n

re
p

o
s/

c
o

n
f/

p
a

ss
w

d

We’ve defined three users, each with their own password. In

order to commit a change to the repository, a client will have

to provide a valid username and password.

If you are using Subversion 1.3, svnserve can provide path-

based security using the same security configuration file as

mod authz svn. If you’re using an earlier version of Subver-

SECURING SUBVERSION 165

sion or have not configured path-based security, a user who

has read or write access can get to the whole repository.

To enable path-based security, add the following line to your

svnserve.conf file:

authz-db = authz

Next, create the authorization database authz as described in

Section A.5, Path-Based Security, on page 167.

svn+ssh

Connecting to a repository using svn+ssh uses Unix security

to determine if a user can access the repository. If they can

access the repository’s database files they have read/write

access to the repository.

As with svnserve, it’s possible to use a hook script to achieve

path-based security with svn+ssh. It’s also possible to host

more than one repository on the same Unix server, with dif-

ferent groups of users granted access to each one, using stan-

dard Unix permissions.

Apache Security

If you’ve been following the instructions in this chapter so far,

you’ll have a repository online using Apache with only a very

basic configuration. When set up like this, your repository will

have read/write access for everyone, including anonymous

users.

We’d better fix that up quickly.

Apache provides a wealth of authentication options for users.

Here we’ll just set up basic password authentication, but you

can do fancier stuff including authenticating against a Win-

dows domain. Basic authentication requires a password file

with all your usernames and passwords in it, and you need to

use the htpasswd utility that comes with Apache to create it.

If you’re on Windows, open a command prompt and change to

the C:\Program Files\Apache Group\Apache2\bin directory, and

then run

bin> htpasswd -c -m c:\svn-repos\conf\htpasswd mike

New password: ******

Re-type new password: ******

Adding password for user mike

SECURING SUBVERSION 166

On Unix, htpasswd should be in your path already, so run

home> htpasswd -c -m /home/svn-repos/conf/htpasswd mike

New password: ******

Re-type new password: ******

Adding password for user mike

Once the file is created, you can add new users to it by drop-

ping the -c flag:

bin> htpasswd -m c:\svn-repos\conf\htpasswd dave

New password: ********

Re-type new password: ********

Adding password for user dave

Next we need to tell Apache to authenticate users before they

are allowed to access the repository. We can do this by requir-

ing a valid user for all operations, or just for those folks who

actually modify the repository (and thus leave anonymous

browsing enabled). To lock things down completely, modify

your Apache Location directive as follows:

<Location /svn-repos>

DAV svn

SVNPath c:\svn-repos

AuthType Basic

AuthName "Subversion Repository"

AuthUserFile c:\svn-repos\conf\htpasswd
Require valid-user

</Location>

If instead you’d like anonymous read-only access, configure

Apache like this:

<Location /svn-repos>

DAV svn

SVNPath c:\svn-repos

AuthType Basic

AuthName "Subversion Repository"

AuthUserFile c:\svn-repos\conf\htpasswd

<LimitExcept GET PROPFIND OPTIONS REPORT>

Require valid-user

</LimitExcept>

</Location>

Your configuration changes will take effect once you restart

Apache.

If you have an SSL certificate for your Apache server, you can

require a secure connection when accessing the repository.

This will encrypt all traffic between the Subversion client and

the repository, including passwords and file contents, and is

SECURING SUBVERSION 167

generally a good idea if you’re making your repository avail-

able over the Internet. Edit your Apache configuration once

more, and add SSLRequireSSL:

<Location /svn-repos>

DAV svn

SVNPath c:\svn-repos

AuthType Basic

AuthName "Subversion Repository"

AuthUserFile c:\svn-repos\conf\htpasswd

Require valid-user

SSLRequireSSL

</Location>

Path-Based Security

Both svnserve and Apache can be configured to use path-based

security, which can restrict access to directories within the

repository. This is accomplished using mod authz svn (for

Apache) or the authz-db configuration setting (for svnserve).

Both use a common file format for defining the authorization

database.

To enable the authorization database in Apache, edit your sub-

version.conf file and add the following section to your repository

definition:

AuthzSVNAccessFile c:\svn-repos\conf\authz

The authorization database file contains group definitions and

path security definitions. The [groups] config section names

groups and the users within them. Path security definitions

associate repository paths with access permissions for users

or groups of users. The access granted can be read-only, read-

write, or no access, using “r”, “rw” or “”, respectively.

As an example, suppose we have developers Fred and Wilma

who should be able to read and write the Sesame project tree,

with everyone else just able to read the tree. The authz file

would look like this:

[groups]

developers = fred, wilma

[/projects/sesame]

@developers = rw

* = r sv
n

re
p

o
s/

c
o

n
f/

a
u

th
z

The new, top-secret “Project Blue” can only be accessed by

Barney, our smartest and most trustworthy developer. We’ll

need the following security definition:

SECURING SUBVERSION 168

[/projects/blue]

barney = rw

* =

Security permissions are inherited from parent directories to

their children. You can tighten (or loosen) permissions by

including a more specific security definition. To provide the

test team write access to Sesame’s testing directory, the au-

thorization file should look like this:

[/projects/sesame]

@developers = rw

* = r

[/projects/sesame/testing]

@testers = rw

If you’re using the SVNParentPath directive to network mul-

tiple repositories, you can use [repository:path] syntax to

refer to a specific repository. If the administrators group

should get read-write access to documents stored under the

admin repository, use the following security definition:

[admin:/docs]

@administrators = rw

In the previous example the only people able to access the

docs directory will be the administrators. In fact, the only

path within the admin repository that anyone can access will

be docs because Subversion disables access to all directo-

ries unless explicitly instructed otherwise. It’s often useful to

specify read-only access everywhere in every repository, which

looks like this:

[/]

* = r

Access Control with Hook Scripts

Subversion can be configured with a number of hook scripts hook scripts

that are run on the server at certain times during a commit.

The pre-commit hook runs before a commit is allowed to pro-

ceed, and if it returns a nonzero exit status, Subversion dis-

allows the commit.

Pre-commit hooks have access to information about which

files are being changed, as well as the user attempting to

change them. We can use this information to set up path-

based security—if a user attempts to change a file or directory

SECURING SUBVERSION 169

to which they have not been granted access, our hook script

exits with a one and Subversion stops the commit.

Subversion comes with commit-access-control.pl, which should

get installed somewhere on your machine when you install

Subversion. For Fedora Core 5, for example, it’s bundled with

the Subversion documentation in /usr/share/doc.

Copy commit-access-control.pl to the hooks directory in your

repository. Also copy commit-access-control.cfg.example, which

you should rename to ditch the .example extension.

Inside your hooks directory, rename pre-commit.tmpl and make

it executable:

hooks> mv pre-commit.tmpl pre-commit

hooks> chmod +x pre-commit

The pre-commit template does two things – it checks that the

log message being used contains some text (which you may or

may not be worried about) and then calls the access control

script to check the user’s permissions.

Configure the permissions in commit-access-control.cfg, and

you should be ready to go. Python fans might be interested

in svnperms.py, included in the Subversion distribution, which

works in a similar fashion.

Hook scripts that do more than simple read-only file access

may require you configure security settings on your system.

If you are using Apache to host your Subversion repository

the hook scripts will run as the Apache user, usually httpd or

nobody, rather than a regular user. This may mean that your

scripts cannot perform operations such as modifying files or

sending emails, depending on your exact configuration. Many

Linux distributions now include SELinux security enhance-

ments that make it impossible for particular programs—such

as the Apache web server—to access files outside of their

usual configuration and web site directories. In this case you

may need to relax the restrictions to get your hook scripts to

work properly. You can usually check the security log in order

to see whether your scripts are being blocked by SELinux or

other security settings.

BACKING UP YOUR REPOSITORY 170

A.6 Backing Up Your Repository

Backing up your source code makes a lot of sense—after all,

your developers are assuming the repository is a safe place to

store all their hard work. Subversion uses either Berkeley DB

or the “fsfs” filesystem as the backend for your repository, and

these can’t be backed up like a regular file. If someone makes

a change to the repository during a backup, the repository

files may be in an inconsistent state, causing the backup to

be invalid.6

Subversion provides the svnadmin dump command to extract

the contents of a repository into a portable dumpfile. A dump- dumpfile

file contains information about each revision in the repository

and can be backed up like a regular file. The svnadmin load

command takes the contents of a dumpfile and loads it into a

repository. This can be used to restore from a backup or to

copy a repository to another location.

Full Backups

Depending on how large your repository is, and how often you

want to make a backup, you might be able to get away with

just doing complete dumps of your repository. The following

command creates a complete dump of the repository:

mike> svnadmin dump ˜/svn-repos > dumpfile.041113

* Dumped revision 0.

* Dumped revision 1.
: : :

* Dumped revision 48.

Subversion dumps every revision in the repository to the con-

sole, which we then save in dumpfile.041113. The resulting file

contains everything the repository contains. A typical dump

is highly compressible and ready to back up.

Creating a dumpfile using svnadmin will always produce a con-

sistent snapshot of your repository, even if changes are being

committed whilst the dump is created. This means you don’t

6Using an “fsfs” repository you’re more likely to get a consistent

backup, especially if you back up the files in a particular order.

See http://svn.collab.net/repos/svn/trunk/notes/fsfs for more

details.

http://svn.collab.net/repos/svn/trunk/notes/fsfs

BACKING UP YOUR REPOSITORY 171

need to shut down access to the repository whilst svnadmin

dump is running.

To restore from the dumpfile into a new repository, use svnad-

min load. First we create a new repository (the old one might

not be totally corrupt, so don’t delete it), and then load the

dumpfile:

mike> svnadmin create svn-repos2

mike> svnadmin load svn-repos2 < dumpfile.041113

<<< Started new transaction, based on original revision 1

* adding path : sesame ... done.

* adding path : sesame/trunk ... done.

* adding path : sesame/trunk/Day.txt ... done.

* adding path : sesame/trunk/Number.txt ... done.

------- Committed revision 1 >>>

: : :
<<< Started new transaction, based on original revision 48

* adding path : sesame/trunk/common/HibernateHelper.java COPIED... done.

* adding path : sesame/trunk/contacts/Contacts.hbm.xml COPIED... done.

* editing path : sesame/trunk/contacts/Contacts.java ... done.

------- Committed revision 48 >>>

Subversion replays each revision from the dumpfile and com-

mits to the repository. Once the load is complete, the reposi-

tory is ready to go and looks exactly as it did when the dump

was created.

Incremental Backups

Doing full backups every day is going to eat disk space pretty

fast. Fortunately, svnadmin dump takes an --incremental option,

along with --revision specifying a revision range, to produce

smaller dump files.

Let’s say you already have a dump file containing revisions

1 to 100, but the repository is up to revision 104. You can

create an incremental dump file by running

work> svnadmin dump --incremental --revision 100:104 \
/home/svn-repos

Combining weekly backups with daily incrementals should

give you peace of mind without requiring crazy amounts of

disk space. With a bit of scripting, we can create a weekly

and daily backup routine that remembers the revision num-

bers for each backup.

The program that follows is the weekly backup script. As pre-

sented it’s a very basic Perl script, but it does demonstrate

BACKING UP YOUR REPOSITORY 172

how to use svnlook youngest to find out what revision your

repository is currently on.

#!/usr/bin/perl -w

#
Perform a weekly backup of a Subversion repository,

logging the most-recently-backed-up revision so an

incremental script can be run other days.

$svn repos = "/home/mike/svn-repos";

$backups dir = "/home/mike/svn-backup";

$next backup file = "weekly-full-backup." . ‘date +%Y%m%d‘;

$youngest = ‘svnlook youngest $svn repos‘;

chomp $youngest;

print "Backing up to revision $youngest\n";

$svnadmin cmd = "svnadmin dump --revision 0:$youngest " .

"$svn repos > $backups dir/$next backup file";

‘$svnadmin cmd‘;

print "Compressing dump file...\n";

print ‘gzip -9 $backups dir/$next backup file‘;

open(LOG, ">$backups dir/last backed up");

print LOG $youngest;

close LOG; sv
n

-b
a

c
ku

p
/w

e
e

kl
y
-b

a
c

ku
p

.p
l

Running this script dumps your repository into a file called

weekly-full-backup.yyyymmdd and compresses it using gzip. It

also saves the most recent revision to be backed up into a file

called last backed up:

svn-backup> ./weekly-backup.pl

Backing up to revision 638

* Dumped revision 0.

* Dumped revision 1.

* Dumped revision 2.
: : :

* Dumped revision 638.

Compressing dump file...

The daily backup script uses the revision number saved by the

weekly script to dump just what has changed, rather than the

whole repository:

#!/usr/bin/perl -w

#
Perform a daily backup of a Subversion repository,

using the previous most-recently-backed-up revision

to create just an incremental dump.

$svn repos = "/home/mike/svn-repos";

$backups dir = "/home/mike/svn-backup";

$next backup file = "daily-incremental-backup." . ‘date +%Y%m%d‘;

open(IN, "$backups dir/last backed up");

$previous youngest = <IN>;

chomp $previous youngest;

close IN;

$youngest = ‘svnlook youngest $svn repos‘;

BACKING UP YOUR REPOSITORY 173

chomp $youngest;

if($youngest eq $previous youngest) {

print "No new revisions to back up.\n";
exit 0;

}

We need to backup from the last backed up revision

to the latest (youngest) revision in the repository

$first rev = $previous youngest + 1;

$last rev = $youngest;

print "Backing up revisions $first rev to $last rev...\n";

$svnadmin cmd = "svnadmin dump --incremental " .

"--revision $first rev:$last rev " .

"$svn repos > $backups dir/$next backup file";

‘$svnadmin cmd‘;

print "Compressing dump file...\n";

print ‘gzip -9 $backups dir/$next backup file‘;

open(LOG, ">$backups dir/last backed up");

print LOG $last rev;

close LOG; sv
n

-b
a

c
ku

p
/d

a
ily

-b
a

c
ku

p
.p

l

Running this script after some changes have been made will

dump just the new revisions:

svn-backup> ./daily-backup.pl

Backing up revisions 639:641

* Dumped revision 639.

* Dumped revision 640.

* Dumped revision 641.

Compressing dump file...

The daily incremental backups are much smaller than a full

backup but don’t contain enough information to restore your

repository if disaster strikes. To do a restore, you need to

first load your most recent full backup, followed by each daily

backup:

svn-backup> mkdir newrepos

svn-backup> svnadmin create newrepos

svn-backup> zcat weekly-full-backup.20041129.gz | \
svnadmin load newrepos

<<< Started new transaction, based on original revision 1

* adding path : branches ... done.

* adding path : tags ... done.

* adding path : trunk ... done.
: : : :

svn-backup> zcat daily-incremental-backup.20041130.gz | \
svnadmin load newrepos

<<< Started new transaction, based on original revision 639

* editing path : trunk/ccnet/lib/NetReflector.dll ... done.

------- Committed new rev 639 (loaded from original rev 639) >>>

: : : :

Appendix B

Migrating to Subversion
So you’re sold on the benefits of using Subversion. You like

its support for atomic commits, its changesets, its speedy net-

work protocols, and its real branching and merging. You’ve

even convinced your boss that Subversion is right for your

team. The only minor problem standing between you and

a glorious subversive victory is the half-dozen projects and

years of history you have in your existing version control tool.

Fortunately, the Subversion developers thought people might

like to keep their old history around and have provided tools

to convert an existing CVS1 repository to Subversion. You can

also find third-party tools to convert from ClearCase, Perforce,

and Visual SourceSafe.

Before jumping headfirst into the rest of this chapter, it’s

worth noting that not converting your old repository is also

a reasonable migration strategy. If you’re not too bothered

about being able to see historical information past the point

you started using Subversion, just export your source code

from the old version control tool, import it into Subversion,

and make the old repository read-only. If you really do need

that historical information it’s still there, albeit not in the new

Subversion repository.

In the rest of this chapter we’ll assume you want to convert all

your history and that we’re performing a migration from CVS

to Subversion.

1cvs2svn will also convert an RCS repository to Subversion, since RCS is

the underlying format used by CVS.

GETTING CVS2SVN 175

B.1 Getting cvs2svn

The cvs2svn project, along with the main Subversion project, is

hosted at Tigris.2 Download the package corresponding to the

version of Subversion you’re using. As of this writing, cvs2svn

is only available for Subversion 1.2 or 1.3, the older versions

are no longer maintained.

cvs2svn is a Python script designed to run on Unix. Whilst you

might be able to get it to work on Windows, possibly using the

Cygwin3 Linux emulation tools, we recommend using a real

Unix box. You’ll also need rcs installed because cvs2svn uses

it to access the contents of your CVS repository (you can get

away with having just CVS installed, but using “real” RCS is

a safer bet).

You can install cvs2svn on your system so everyone can see it

or just run it as a normal user. Both will work, but installing

system-wide is less work if you’re not Python savvy. Log in as

root, and run the following commands:

tmp> tar -xzf cvs2svn-1.2.1.tar.gz

tmp> cd cvs2svn-1.2.1

cvs2svn-1.2.1> make install

./setup.py install

running install
: : :

copying build/lib/cvs2svn rcsparse/compat.py -> ...

copying build/lib/cvs2svn rcsparse/debug.py -> ...
: : :

byte-compiling /usr/lib/python2.3/.../default.py to default.pyc

byte-compiling /usr/lib/python2.3/.../texttools.py to texttools.pyc

running install scripts

copying build/scripts-2.3/cvs2svn -> /usr/bin

changing mode of /usr/bin/cvs2svn to 775

B.2 Choosing How Much to Convert

cvs2svn will do a thorough job of converting your existing CVS

repository, including all your branches and tags. It will also

analyze the history, looking for files that were all changed at

about the same time with the same log message and con-

verting from CVS’s per-file revision history to Subversion’s

changeset style. All of this is quite a bit of work and will

take a while depending on the size of your CVS repository.

2http://cvs2svn.tigris.org/
3http://www.cygwin.com/

http://cvs2svn.tigris.org/
http://www.cygwin.com/

CONVERTING YOUR REPOSITORY 176

If you don’t want to convert all of the history, you don’t have to

do so. Specifying which branches you’re interested in will save

both conversion time and space in the new Subversion repos-

itory. cvs2svn takes a whole bunch of command-line argu-

ments, but probably the most useful is --exclude, which

sets a regular expression for matching tags and branches

you’d like to skip during conversion.

It’s important to note that cvs2svn is designed for one-time

conversions from CVS to Subversion; it can’t be used to incre-

mentally sync changes between the two systems.

B.3 Converting Your Repository

Let’s assume you’d like a complete conversion of everything

in your CVS repository. The first step is to make sure every-

one has their changes checked into CVS and is aware you’re

about to do the conversion. Next take your CVS repository

offline so no more changes are committed to it. The final

preparation step, and the most important, is to make a copy

of your CVS repository. You need to copy the whole of your

CVSROOT because that’s what cvs2svn runs against. We’ll say

that again: make a copy of your CVS repository and use the

copy when converting.

cvs2svn works by creating a Subversion dumpfile, just like

those created with svnadmin dump. The dumpfile can then be

loaded into a Subversion repository with svnadmin load. You

can shortcut this process using cvs2svn’s -s option, specifying

a directory in which you’d like to create the new Subversion

repository.

Here we’ll do a conversion of the Testsweet project, which is

hosted on SourceForge. The great thing about SourceForge

projects is the daily CVS snapshot where you can download a

compressed copy of the project’s repository, precisely the files

cvs2svn needs for conversion.4 If you’d like to play with cvs2svn

but don’t want to use your own CVS repository to do so, this

might be just what you need.

4Testsweet’s daily CVS snapshot is at http://cvs.sourceforge.net/

cvstarballs/testsweet-cvsroot.tar.bz2.

CONVERTING YOUR REPOSITORY 177

Copy your CVS repository to a scratch directory. In this exam-

ple we’ve put the Testsweet CVS repository into a local direc-

tory called testsweet, and we’re converting it to a Subversion

repository in testsweet-repos. cvs2svn will create the repository

directory and initialize it for us during the conversion:

tmp> cvs2svn -v -s testsweet-repos testsweet

----- pass 1 -----

Examining all CVS ',v' files...

testsweet/CVSROOT/checkoutlist,v

testsweet/CVSROOT/commitinfo,v

testsweet/CVSROOT/config,v
: : :

We asked for verboseness (the -v option), so cvs2svn produced

a whole bunch of output during the conversion. Testsweet is

a pretty small project so takes only a few seconds to convert.

When it’s done, cvs2svn prints a few statistics for us:

cvs2svn Statistics:

Total CVS Files: 161
Total CVS Revisions: 218
Total Unique Tags: 1

Total Unique Branches: 0

CVS Repos Size in KB: 2716

Total SVN Commits: 10
First Revision Date: Fri Nov 21 18:12:21 2003
Last Revision Date: Thu Jun 24 12:35:29 2004

We can now use svn ls to browse the new repository, observing

how we have the usual trunk, tags, and branches directories:

tmp> svn ls file:///tmp/testsweet-repos

branches/

tags/

trunk/

tmp> svn ls file:///tmp/testsweet-repos/trunk

CVSROOT/

testsweet/

We now have the Testsweet project at the root level of the

repository, which might not be quite what you want. cvs2svn

allows us to specify the trunk, tags, and branches directories:

tmp> cvs2svn --trunk=testsweet/trunk \

--branches=testsweet/branches \

--tags=testsweet/tags \
-s testsweet-repos testsweet

Your newly converted repository is ready for use immediately.

Just fire up networking using svnserve or Apache, check out a

working copy, and carry on coding!

Appendix C

Third-Party Subversion Tools
Subversion comes as a set of command-line applications—svn,

svnadmin, svnserve, etc. Whilst the command line is fairly easy

to use, most people like to use something a little more friendly.

Fortunately, Subversion provides a rich set of APIs to third-

party developers, so they can make add-on clients and tools.

C.1 TortoiseSVN

Tortoise is a front end for Subversion that integrates directly

with Windows Explorer. Once installed, you can see the state

of your files and directories just by browsing around your

computer. Tortoise puts little green ticks next to files that are

up-to-date and little red exclamation points next to files you’ve

modified. Tortoise also provides handy automation for tasks

such as resolving conflicts and managing tags and branches.

In this section we’ll use Tortoise to carry out some everyday

tasks that we’ve previously seen using the command line.

Downloading and Installing

Download TortoiseSVN,1 and run the appropriate installer for

your version of Windows, which should pop up a welcome

screen. Pick a location to install to (or accept the default

directory C:\Program Files\TortoiseSVN), and choose whether Tor-

toise should be available to every user on the computer or just

1TortoiseSVN can be found at http://tortoisesvn.tigris.org/.

http://tortoisesvn.tigris.org/

TORTOISESVN 179

Figure C.1: The Tortoise Context Menu

yourself. That’s all you need to decide on; the installer will

take care of everything else.

The Tortoise installer will ask you to restart your computer.

Unlike most installers Tortoise is actually serious about this;

because it integrates with the Windows Explorer, it needs a

reboot to properly register itself.

Checking Out

Bring up an Explorer window, and change to a directory in

which you’d like to check out a working copy. Here we’ll be

using C:\work. Right-clicking in the directory will bring up a

menu including Tortoise’s Subversion integration, as shown

in Figure C.1 .

Choose Checkout... from the context menu, which will bring

up a dialog box asking what you’d like to check out. Use the

sandbox repository file:///C:/svn-repos/sesame/trunk, and check

TORTOISESVN 180

Figure C.2: The Freshly Checked-Out Sesame Project

out to C:\work\princess (sesame is already a working copy, so

we’ll be starting fresh as Princess).

Tortoise will flash a progress box as it checks out the Sesame

project, leaving you with a new princess directory. Looking in

the directory, you’ll see Day.txt, Number.txt, and the rest of the

Sesame project. Since all the files are up-to-date, Tortoise

flags them with a little green check mark, as shown in Fig-

ure C.2 .

Making Changes

Make some changes to Number.txt, maybe capitalizing three.

After you save the file, Tortoise will flag it with a red exclama-

tion point.2 The parent directory princess will also be flagged

red. Right-click Number.txt, and choose TortoiseSVN > Diff.

2You might need to hit F5 to get Windows to refresh the screen and display

the new icon.

TORTOISESVN 181

Figure C.3: Examining Your Changes

This will display a TortoiseMerge window showing the changes

you’ve made, similar to Figure C.3 .

Adding a new file is equally straightforward. Create a new file

called Year.txt, and save it in your working copy. Subversion

doesn’t know anything about this file yet, so Tortoise leaves

it undecorated. Right-click the new file, and choose Tortoise-

SVN > Add. Tortoise will pop up a window asking you to con-

firm the addition, which is more useful when you’re adding

a bunch of files at once. Click the OK button, and Tortoise

will add the file. Since Subversion now knows about Year.txt,

it displays it with a blue “plus” icon.

Checking In

Right-click on the princess directory, and choose Commit....

Tortoise will show you all the files you’ve changed and prompt

you for a commit message, as shown in Figure C.4 on the next

page. At this point, you can decide not to commit a particular

file by unchecking its tickbox. If you’re not sure what you’ve

changed, double-clicking a file will pop up a diff window so

you can review your changes.

TORTOISESVN 182

Figure C.4: The TortoiseSVN Commit Window

Enter a commit message describing your changes (and more

important why you made those changes) and hit OK. Tortoise

will flash a window as it commits your changes to the reposi-

tory.

Resolving Conflicts

As part of our lightning-fast tour through Tortoise, let’s see

how it helps us when a conflict arises. Check out another

copy of the Sesame project, this time to C:\work\aladdin. We’ll

use this directory to simulate the actions of Aladdin, another

developer on our team. Edit Number.txt, changing five to cinco,

and then commit the changes.

TORTOISESVN 183

Figure C.5: Number.txt in Conflict

Now go back to the princess working copy, and edit the same

file, changing five to cinq, this time to keep our French cus-

tomers happy. Right-click the princess directory, choose Com-

mit, enter a log message, and hit OK. Tortoise will tell you that

Number.txt is out-of-date and the commit has failed. Tortoise

will also suggest you update your working copy in order to

commit.

Follow Tortoise’s suggestion, and run an update on princess by

right-clicking and choosing Update. The Tortoise update win-

dow will pop up whilst Tortoise gets the latest revision from

the repository, and depending on how fast your machine is

you might notice a line in red as it gets to Number.txt, denoting

a conflict. Tortoise will leave both Number.txt and princess dec-

orated with a warning triangle, as shown in Figure C.5 , to let

you know there’s a conflict.

Tortoise also saves some extra copies of Number.txt to help

resolve the conflict. You’ll notice .mine, .r9, and .r10 in our

TORTOISESVN 184

Figure C.6: The Tortoise Merge Window

example so far. The first, .mine, is your version of the file,

including your modifications. The second, .r9, contains the

base revision on which your changes are based—this is the

revision of the file before Princess started editing it. Finally,

.r10 contains the revision that conflicts with your changes.

These are the changes that Aladdin committed.

Fortunately, Tortoise comes with a three-way3 merge tool that

makes it easy to resolve the conflicts. Right-click on the file

Number.txt, and choose TortoiseSVN > Edit Conflicts. Tortoise

will pop up a merge window like that in Figure C.6 .

TortoiseMerge displays the two sets of changes side by side,

along with a merge result in the bottom half of the window.

In this particular case we’re sure that cinq is correct, so we’re

going to pick our changes (the Princess’s changes rather than

Aladdin’s). Right-click the word cinq, and choose Use this text

block. Tortoise will update the merge result in the bottom

half of the window to show the result. If you have more than

3Three-way merging is so called because it merges an original version of

a file with two people’s changes.

IDE INTEGRATION 185

one conflict, you can pick and choose between the two sets

of changes until you’re happy. Now just close the merge win-

dow. Tortoise will ask you if you’d like to save your changes;

say “yes” since you’re happy with the merge, and Tortoise will

close the merge window.

You’ll notice Tortoise is still decorating the file with a little

warning triangle. Now that we’ve resolved the conflict, we

need to tell Tortoise everything is okay. Right-click Number.txt,

and choose TortoiseSVN > Resolved. Tortoise will clean up the

.mine, .r9, and .r10 files and mark Number.txt with an exclama-

tion point showing you’ve modified it. Now finish checking in

as normal.

TortoiseSVN provides shortcuts for branching, tagging, and

merging, and whilst we don’t have space here to detail every-

thing, we do suggest you try it. We do just about have room

to plug the excellent repository browser, which you can get

to by choosing TortoiseSVN > Repo-Browser. This nifty little

tool enables you to nose around a repository without needing

a working copy. This comes in handy if you’re trying to figure

out where all the branches are for a project or where exactly

they’ve imported vendor source code. Figure C.7 on the fol-

lowing page shows us perusing the Subversion repository at

http://svn.collab.net.

C.2 IDE Integration

Subversion’s IDE integration has greatly matured since Sub-

version 1.0, and many popular IDEs now include official sup-

port. It’s possible to use just the command line or Tortoise,

but many users are used to tight integration between their

editor and version control, so do investigate Subversion sup-

port if you can.

Eclipse, the popular open-source Java IDE, has a plug-in

called Subclipse that integrates with Subversion, available

from http://subclipse.tigris.org/.

IntelliJ IDEA, another popular Java IDE, has full support for

Subversion as of release 5.0. IDEA is available from http://www.jetbrains.com/.

Ankhsvn provides integration with Visual Studio and is avail-

able from http://ankhsvn.tigris.org/. Note that if you’re

http://svn.collab.net
http://subclipse.tigris.org/
http://www.jetbrains.com/
http://ankhsvn.tigris.org/

OTHER TOOLS 186

Figure C.7: Tortoise Repo-Browser in action

using Visual Studio web projects, they may be incompatible

with Subversion’s .svn administrative directories. TortoiseSVN

has a special “directory hack” option that will use svn as a

directory name instead. Bear in mind that a working copy cre-

ated like this will be incompatible with a normal working copy,

so you might need to re-checkout after enabling the hack.

C.3 Other Tools

SVN::Notify sends colored HTML e-mails when a developer

checks changes into your repository. This can be a great com-

munication tool for your team. SVN::Notify is available from

CPAN: http://search.cpan.org/dist/SVN-Notify/.

If you’re using XCode on the Mac, you might need a key man-

ager to get SSH connections to work. SSHKeychain provides

“painless key management for Mac OS X” and is available

from http://www.sshkeychain.org/.

The Putty suite of SSH client tools for Windows4 also works

4http://www.chiark.greenend.org.uk/˜sgtatham/putty/

http://search.cpan.org/dist/SVN-Notify/
http://www.sshkeychain.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

OTHER TOOLS 187

great for getting an svn+ssh connection working and includes

Pageant, a key management agent. Chapters 8 and 9 of the

Putty Manual5 are worth reading if you’d like to avoid typing

passwords everytime you access an svn+ssh repository.

5http://the.earth.li/˜sgtatham/putty/0.56/htmldoc/Chapter9.html

http://the.earth.li/~sgtatham/putty/0.56/htmldoc/Chapter9.html

Appendix D

Advanced Topics
D.1 Programmatic Access to Subversion

Subversion features a number of language bindings, allowing

you to access the Subversion API through your favorite pro-

gramming language. The language bindings use Swig, the

Simplified Wrapper and Interface Generator, and essentially

expose the original C APIs to other languages. Swig bindings

exist for C, C++, C#, Java, Perl, Python and Ruby. Of these

the Python bindings are probably the most popular and def-

initely the most mature, but expect bindings to improve over

time.

Installing language bindings will be different depending on

your operating system, but tends to be best supported on

Unix. For Fedora Core 5, installing the Perl bindings is as

simple as yum install subversion-perl.

As an alternative to wrapping the C API, a group of program-

mers decided to implement a Subversion client in pure Java.

When they started the advice from the Subversion developers

was “don’t bother, just use the Swig bindings,” but they per-

severed and have produced an excellent implementation. The

JavaSVN library is used by JetBrains as the basis of their IDE

integration with Subversion, which is as good a recommenda-

tion as they could ever wish for.

The TMate JavaSVN library is available from http://tmate.org/svn/

and we’ll be using it for examples in the next section.

http://tmate.org/svn/

PROGRAMMATIC ACCESS TO SUBVERSION 189

A Simple Subversion Client

Download the standalone version of JavaSVN from the TMate

website and unzip it to your hard drive. You’ll find .jar files

used for development and a doc subdirectory containing full

JavaDoc documentation for the library. To use JavaSVN in a

project simply include javasvn.jar in your classpath.

The JavaSVN library contains a rich assortment of functions

for talking to a Subversion repository and manipulating a

local working copy. As a first example we’ll connect to the

Subversion repository at CollabNet and print out a directory

listing.

Remote operations are conducted through instances of SVN-

Repository. Since we’re using the http scheme to access the

repository we must initialize the DAV repository factory before

we use it:

String reposUrl = "http://svn.collab.net/repos/svn";

SVNURL url = SVNURL.parseURIEncoded(reposUrl);

DAVRepositoryFactory.setup();

SVNRepository repository = SVNRepositoryFactory.create(url);

Now that we have a repository instance we can perform func-

tions against the remote repository. For instance, to retrieve

a directory listing we can use the getDir() method:

Map<String, String> dirProps = new HashMap<String, String>();

List<SVNDirEntry> dirEntries = new ArrayList<SVNDirEntry>();

repository.getDir("/trunk/subversion", -1, dirProps, dirEntries);

We provide a path within the repository, /trunk/subversion, and

a revision number, in this case -1 to indicate we’re inter-

ested in the HEAD revision. We also provide an empty map

into which JavaSVN will place the properties for the directory

being listed, and an empty list into which the actual directory

entries will be fetched.

Each SVNDirEntry represents a file or directory within the direc-

tory being listed. Entries have a wealth of properties such as

name, size, revision, creation date, last-changed-by, and so

on. Here’s an example program listing files within the Collab-

Net Subversion repository:

import org.tmatesoft.svn.core.*;

import org.tmatesoft.svn.core.io.*;

import org.tmatesoft.svn.core.internal.io.dav.*;

import java.util.*;

PROGRAMMATIC ACCESS TO SUBVERSION 190

public class ListDirectory

{
public static void main(String[] args)

throws SVNException

{

String reposUrl = "http://svn.collab.net/repos/svn";

SVNURL url = SVNURL.parseURIEncoded(reposUrl);

DAVRepositoryFactory.setup();

SVNRepository repository = SVNRepositoryFactory.create(url);

Map<String, String> dirProps = new HashMap<String, String>();

List<SVNDirEntry> dirEntries = new ArrayList<SVNDirEntry>();

repository.getDir("/trunk/subversion", -1, dirProps, dirEntries);

for (SVNDirEntry dirEntry : dirEntries) {
printEntry(dirEntry);

}

}

private static void printEntry(SVNDirEntry entry) {

if(entry.getKind() == SVNNodeKind.DIR) {

System.out.println("Directory: " + entry.getName());

} else {

System.out.println("File: " + entry.getName()

+ ", size " + entry.getSize()

+ ", last modified by " + entry.getAuthor());

}

}

} ja
v
a

/L
is

tD
ire

c
to

ry
.ja

v
a

Watching a Repository for Changes

Subversion’s hook scripts allow you to intercept interesting

events (such as changes being committed), but you might not

always want to use a hook script. In some cases you may

be unable to use hooks due to security or access restrictions

on your repository. Many Continuous Integration tools use

a “polling” strategy to check whether anything has changed

within a repository, and if it has, to automatically do some-

thing useful like building the latest code and running tests.

The JavaSVN library can be used to poll a repository and look

for changes using the getLatestRevision() method.

The following example program watches a given repository

and prints out the log message when someone commits a

change. It only checks once per minute, so it creates a very

light load on a Subversion server.

import org.tmatesoft.svn.core.*;

import org.tmatesoft.svn.core.io.*;

import org.tmatesoft.svn.core.internal.io.dav.*;

import java.util.*;

PROGRAMMATIC ACCESS TO SUBVERSION 191

public class DetectChanges

{
public static void main(String[] args)

throws SVNException

{

String reposUrl = "http://svn.collab.net/repos/svn";

SVNURL url = SVNURL.parseURIEncoded(reposUrl);

DAVRepositoryFactory.setup();

SVNRepository repository = SVNRepositoryFactory.create(url);

long lastSeenRevision = repository.getLatestRevision();

while(true) {

long latestRevision = repository.getLatestRevision();

if(latestRevision != lastSeenRevision) {

displayChanges(lastSeenRevision + 1,

latestRevision, repository);

lastSeenRevision = latestRevision;

}
pause(60);

}

}

private static void displayChanges(long startRev, long endRev,

SVNRepository repository)

throws SVNException {

String[] targetPaths = { "/" };

List<SVNLogEntry> entries = new ArrayList<SVNLogEntry>();

repository.log(targetPaths, entries, startRev,

endRev, false, false);

for (SVNLogEntry entry : entries) {

System.out.println("New revision " + entry.getRevision()

+ " by " + entry.getAuthor());

System.out.println("Log message: " + entry.getMessage());

}

}

private static void pause(int seconds) {

try {

Thread.sleep(seconds * 1000);

} catch (InterruptedException e) {
// Do nothing

}

}

} ja
v
a

/D
e

te
c

tC
h

a
n

g
e

s.
ja

v
a

Instead of simply printing the log message, you could modify

the program to send emails, run build scripts, or whatever

else is useful.

Managing a Working Copy

JavaSVN lets you access a working copy in the same way

as the svn command-line tool. In particular, the SVNWCClient

class provides doXYZ() methods that mirror the command line

PROGRAMMATIC ACCESS TO SUBVERSION 192

client. For example, we can use the doInfo() method to mimic

the svn info command:

import org.tmatesoft.svn.core.*;

import org.tmatesoft.svn.core.wc.*;

import java.io.File;

public class WorkingCopyInfo

{

public static void main(String[] args)

throws SVNException

{

File workingCopyRoot = new File("c:\\work\\subversion");
SVNWCClient wcClient = new SVNWCClient(null, null);

SVNInfo info = wcClient.doInfo(workingCopyRoot,

SVNRevision.WORKING);

System.out.println("Working Copy Info for " +

workingCopyRoot);

System.out.println("URL: " +

info.getURL());

System.out.println("Repository root: " +

info.getRepositoryRootURL());

System.out.println("Last Changed Author: " +

info.getAuthor());

System.out.println("Last Changed Rev: " +

info.getCommittedRevision());

System.out.println("Last Changed Date: " +

info.getCommittedDate());

System.out.println("URL: " +

info.getURL());

}

} ja
v
a

/W
o

rk
in

g
C

o
p

y
In

fo
.ja

v
a

Running this example will produce output similar to the reg-

ular svn info:

Working Copy Info for c:\work\subversion

URL: http://svn.collab.net/repos/svn/trunk/subversion

Repository root: http://svn.collab.net/repos/svn

Last Changed Author: mbk

Last Changed Rev: 19040

Last Changed Date: Sun Mar 26 08:26:13 MST 2006

URL: http://svn.collab.net/repos/svn/trunk/subversion

SVNWCClient will let you perform operations including add,

delete, lock and unlock, but you need to use the SVNCom-

mitClient class to commit changes from a working copy to the

repository.

Hopefully this tour of some of JavaSVN’s functionality will give

you ideas for embedding Subversion support into your own

applications. If you’re not coding in Java, remember there are

plenty of other language options too.

ADVANCED REPOSITORY MANAGEMENT 193

D.2 Advanced Repository Management

When setting up Subversion within an organization, a com-

mon question is “How many repositories should I create?”

Our advice is to create only one repository until you have a

concrete need for more. We take this approach because it’s

easy to split an existing repository into two should the need

arise. The more repositories you have, the more administra-

tion will be required backing them up, managing users, and

so on. Remember that it’s not the end of the world if you cre-

ate multiple repositories and eventually need to merge them,

because Subversion has good support for splitting, merging,

and reorganizing repositories. This section covers exactly how

to perform these advanced repository operations.

Splitting a Repository

First, make sure you tell everyone you’re going to split the

repository. The ideal situation is one in which everyone can

check in, go home for the night, leave you to organize stuff,

and then come in the next day and start on something fresh.

If people can’t commit all their changes you may need to help

them relocate1 their working copy once you’ve finished the

split. Once everyone’s committed their changes, close down

network access to your repository to be sure no one can com-

mit further changes. This might be overkill depending on your

situation, but it’s nice to be safe.

Next, back up your repository using svnadmin dump to create a

dump file, as described in Section A.6, Backing Up Your Repos-

itory, on page 170. Make sure you perform a complete dump,

not an incremental. A dump file is a portable representation

of the Subversion repository which we can use to recreate the

repository elsewhere.

home> svnadmin dump /home/svnroot/log4rss > log4rss.dump

* Dumped revision 0.

* Dumped revision 1.
: : :

* Dumped revision 37.

* Dumped revision 38.

1The svn switch command includes the --relocate option that can match up

an old working copy with a new server location.

ADVANCED REPOSITORY MANAGEMENT 194

We’re going to load the dump file into a new repository, which

you should create and initialize:

home> mkdir tools-repos

home> svnadmin create tools-repos

The dump file contains complete history of all files within your

repository. For the new tools repository we’re only interested

in a particular path within the repository, log4rss/trunk/tools.

Use the svndumpfilter command to select just the directories

you wish to move to the new repository, then pipe its output

into the svnadmin load command.

home> cat log4rss.dump \

| svndumpfilter include log4rss/trunk/tools \

| svnadmin load tools-repos

Including prefixes:

'/log4rss/trunk/tools'

Revision 0 committed as 0.
Revision 1 committed as 1.
Revision 2 committed as 2.

: : :
<<< Started new transaction, based on original revision 38

------- Committed revision 38 >>>

svndumpfilter will be quite verbose, listing information about

the items included in the filter and the items which were

dropped. Now the new tools-repos repository contains just

the tools directory.

At this point you can make the new repository available and

tell developers where to find it. It’s probably also wise to

delete the log4rss/trunk/tools directory from the original reposi-

tory, just so people can’t accidentally use the old stuff. Sub-

version doesn’t have an “obliterate” command so the tools

directory is still using space in the old repository—if this is

an issue you’ll need to consider loading your dump file into

a new repository using an “exclude” command to weed out

the directory you no longer want. In most cases this isn’t an

issue, but if your repository contains lots of large files it might

pay to do a little housekeeping.

Merging Two Repositories

In some cases you might wish to merge two existing reposito-

ries. An example of this could be two separate project teams

merging into one, or a new project team taking over an exist-

ADVANCED REPOSITORY MANAGEMENT 195

ing codebase and wanting to use their own repository to man-

age the code.

Merging one repository into another is as simple as creating

a dump of the “donor” repository and using svnadmin load to

load the dump into the target repository. The load process

will replay each action that took place in the old repository

and although revision numbers won’t match your history will

be preserved.

This kind of merging will only work when the two reposito-

ries have different directory structures—if any directories are

shared by the two repositories the load will fail. To get around

this, use the --parent-dir option to load into a different location.

For example, we can load a dump of the Log4RSS repository

into itself in a new merged directory:

svnroot> svn mkdir file:///home/svnroot/log4rss/merge \
-m "Create merge directory"

Committed revision 36.
svnroot> svnadmin load --parent-dir merge log4rss < log4rss.dump

<<< Started new transaction, based on original revision 1

* adding path : merge/trunk ... done.

------- Committed new rev 37 (loaded from original rev 1) >>>

: : :
<<< Started new transaction, based on original revision 25

* editing path : merge/trunk/build.xml ... done.

------- Committed new rev 61 (loaded from original rev 25) >>>

In the above session snippet, you can see that the load com-

mand created revision 61 from an original revision 25, and

that instead of editing trunk/build.xml, merge/trunk/build.xml was

used instead, thus avoiding a conflict with the files already in

the repository.

Organizing a Repository

After merging two repositories you’ll probably want to reor-

ganize, especially if you used the --parent-dir option to avoid

conflicts. You might also want to rearrange a repository for

other reasons—maybe the repository has been around for a

while and isn’t really structured as you’d like. Fortunately

Subversion is great at moving things around.

Before moving directories in Subversion, make sure all your

users have checked in their changes. After a significant repos-

itory reorganization it’s often easier to check out a fresh work-

ADVANCED REPOSITORY MANAGEMENT 196

ing copy than try to update to the latest version. For this rea-

son you might want to reorganize at the weekend or after work

one evening.

Using repository URLs rather than working copy paths as

arguments to svn mv means the moves occur instantly on the

server. This is often important if you’re juggling large directo-

ries full of files.

We recommend using a graphical client such as TortoiseSVN

for large repository reorganizations, simply because it’s much

easier to keep track of the directory structure. The Tortoise

repository browser allows you to drag and drop files and direc-

tories to move them—very convenient indeed!

Appendix E

Command Summary and
Recipes

E.1 Subversion Command Summary

Most Subversion commands have common options, which we

list first in order to avoid repeating them for each command.

If you’re unsure which options a particular command accepts,

just run svn help command for a quick summary.

Common options:

--targets list Read in list and interpret it as a list of argu-

ments on which to operate.

--non-recursive, -N Operate on a single directory only; don’t try to

process subdirectories.

--verbose, -v Print additional information.

--quiet, -q Print as little as possible.

--username name Specify the name to be used when connecting

and authorizing.

--password pswd Specify the password to be used.

--no-auth-cache Do not cache authentication tokens.

--non-interactive Do not prompt for extra information.

--config-dir dir Read user configuration from dir.

--editor-cmd cmd Use cmd as log message editor.

SUBVERSION COMMAND SUMMARY 198

svn add

Add names of files and directories to version control. They will be

added to the repository in the next commit.

svn add path...

Options:

--auto-props Automatically set properties on files when adding them.

--no-auto-props Disable automatic property setting.

svn blame (also known as ann, annotate, praise)

Show revision and author information for each line of a file

svn blame target...

Options:

--revision, -r rev If specified as a single revision rev, shows blame informa-

tion for the targets at revision rev. If specified as a revi-

sion range rev1:rev2, shows blame information for the

targets at revision rev2, but examines revisions only as

far back as rev1 (for this to be useful, rev1 should be less

than rev2).

svn cat

Output the contents of specified files or URLs.

svn cat target...

Options:

--revision, –r rev Output the contents of target at revision rev.

svn checkout (also known as co)

Check out a working copy from a repository.

svn checkout url... path

Checks out the given URLs. With no path argument, checks out into

local directories named using the base names of the URLs. If path is

given with one URL argument, checks out into path. If path is given

with multiple URL arguments, checks out into subdirectories of path

named for the base names in the urls.

Options:

--revision, -r rev The revision to check out.

SUBVERSION COMMAND SUMMARY 199

svn cleanup

Clean up the working copy, removing locks, resuming unfinished

operations, etc.

svn cleanup path...

svn commit (also known as ci)

Send changes from your working copy to the repository.

svn commit path...

Options:

--message, –m msg Use msg as the commit log message.

--file, –F file Use the contents of file as the commit log message.

--no-unlock Do not release locks during the commit.

svn copy (also known as cp)

Duplicate something in working copy or repository, remembering

history.

svn copy src dest

src and dest can each be either a working copy (WC) path or a URL.

src dest Effect...

WC WC Copy and schedule for addition (with history).

WC URL Immediately commit a copy of WC to URL.

URL WC Check out URL into WC, schedule for addition.

URL URL Complete server-side copy; used to branch and tag.

Options:

--revision, -r rev The revision of src to copy. Only makes sense if src is a

repository URL.

svn delete (also known as del, remove, rm)

Remove files and directories from version control.

svn delete target...

Deletes files and directories from the repository. If target is a work-

ing copy file or directory, it is removed from the working copy and

scheduled for deletion at the next commit. If target is a repository

URL, it is deleted from the repository via an immediate commit.

Options:

--message, –m msg Use msg as the commit log message.

--file, –F file Use the contents of file as the commit log message.

SUBVERSION COMMAND SUMMARY 200

svn diff (also known as di)

Display the differences between two paths.

svn diff -rrev1:rev2 target...

svn diff oldurl newurl

In the first form, display changes made to target between revisions

rev1 and rev2. Targets may be working copy paths or URLs.

In the second form, display the differences between the HEAD revi-

sions of oldurl and newurl.

Options:

--old arg Use arg as the older target.

--new arg Use arg as the newer target.

svn export

Create an unversioned copy of a tree.

svn export -rrev URL path

Exports a clean directory tree from the repository specified by URL,

at revision rev if it is given, otherwise at HEAD, into path. If path is

omitted the last component of the URL is used as the local directory

name.

Options:

--revision, -r rev Export from the repository at revision rev.

--native-eol style Use a different end-of-line marker than the standard

system marker for files with a native svn:eol-style prop-

erty. style must be one of LF, CR, or CRLF.

svn import

Commit an unversioned file or tree into the repository.

svn import path URL

Recursively commit a copy of path to URL. If path is omitted, the

current directory is assumed. Parent directories are created as nec-

essary in the repository.

Options:

--auto-props Automatically set properties on files when importing

them.

--no-auto-props Disable automatic property setting on imported files.

SUBVERSION COMMAND SUMMARY 201

svn info

Display information about a file or directory.

svn info path...

Print information about each path.

Options:

--recursive, -r Descend recursively.

svn list (also known as ls)

List directory entries in the repository.

svn list target...

List each target file and the contents of each target directory as they

exist in the repository. If target is a working copy path, the corre-

sponding repository URL will be used.

Options:

--verbose, -v Show extra information about each directory entry.

svn lock

Lock files so that other users cannot commit changes.

svn lock target

Communicates with the repository server to obtain a lock on one or

more working copy files. Once locked, other users cannot commit

changes to the files unless the lock is released or broken.

Options:

--message, –m msg Use msg as the lock information message.

--force Force the lock to succeed by stealing the lock from

another user or working copy.

svn log

Show the log messages for a set of revisions and/or files.

svn log target

Print the log messages for a local path or repository URL. For a local

path the default revision range is BASE:1, and for a URL the default

revision range is HEAD:1.

SUBVERSION COMMAND SUMMARY 202

Options:

--revision, -r rev If rev is a single revision, show the log entry only for

that revision. If rev is a revision range, show only the

log entries for those revisions.

--verbose, -v Print all affected paths with each log message.

--stop-on-copy Do not cross copies while traversing history (useful

for determining the start point of a branch).

svn merge

Apply the differences between two sources to a working copy path.

svn merge sourceURL1@rev1 sourceURL2@rev2 wcpath

svn merge sourceWCPATH1@rev1 sourceWCPATH2@rev1 wcpath

svn merge -r rev1:rev2 SOURCE wcpath

In the first form, the source URLs are specified at revisions rev1

and rev2. These are the two sources to be compared. The revisions

default to HEAD if omitted.

In the second form, the URLs corresponding to the source working

copy paths define the sources to be compared. The revisions must

be specified.

In the third form, SOURCE can be a URL or working copy item, in

which case the corresponding URL is used. This URL is compared as

it existed between revisions rev1 and rev2.

wcpath is the working copy path that will receive the changes. If

wcpath is omitted, a the current directory is assumed, unless the

sources have identical basenames that match a file within the cur-

rent directory, in which case the differences will be applied to that

file.

Options:

--diff3-cmd cmd Use cmd as merge command.

--ignore-ancestry Ignore ancestry when calculating merges.

svn mkdir

Create a new directory under version control.

svn mkdir target...

Each directory specified by a working copy path is created locally and

scheduled for addition upon the next commit. Each directory speci-

fied by a URL is created in the repository via an immediate commit.

In both cases, all the intermediate directories must already exist.

SUBVERSION COMMAND SUMMARY 203

svn move (also known as mv, rename, ren)

Move and/or rename something in working copy or repository.

svn move src dest

src and dest must both be either working copy paths or repository

URLs. In the working copy, the move is performed and the new

location scheduled for addition. For repository URLs, a complete

server-side rename is performed immediately.

Options:

--revision, -r rev Use revision rev of the source when performing the move.

svn propdel (also known as pdel, pd)

Remove property from files or directories.

svn propdel propname path...

Delete property propname from path in the local working copy.

svn propedit (also known as pedit, pe)

Edit property from files or directories.

svn propedit propname path...

Start an external editor, and edit propname on path in the local work-

ing copy.

svn propget (also known as pget, pg)

Print property values from files or directories.

svn propget propname path...

Print the contents of propname from each path. By default, Subver-

sion will add an extra newline to the end of the property values so

that the output looks pretty. Also, whenever there are multiple paths

involved, each property value is prefixed with the path with which it

is associated.

Options:

--strict Disable extra newlines and other beautifications (useful when

redirecting binary property values to a file).

SUBVERSION COMMAND SUMMARY 204

svn proplist (also known as plist, pl)

List all properties on files or directories.

svn proplist path...

List properties on path.

Options:

--verbose, -v Print extra information.

--recursive, -R Descend recursively.

--revision, -r rev List properties defined in revision rev of path.

svn propset (also known as pset, ps)

Set a propery on files or directories.

svn propset propname propval path...

Set property propname to value propval on path. If propval is not

specified, you must use the -F option to specify a file whose contents

should be used as the property value.

Options:

--file, -F file Read the contents of file and use it as the property

value.

--recursive, -R Descend recursively.

--encoding enc Treat value as being in character set encoding enc.

svn resolved

Remove conflicted state on working copy files or directories.

svn resolved path...

Mark a file that previously contained conflicts as “resolved.” Note

that this command does not semantically resolve conflicts or remove

conflict markers; it merely removes the conflict-related artifact files

and allows path to be committed.

Options:

--recursive, -R Descend recursively.

SUBVERSION COMMAND SUMMARY 205

svn revert

Restore pristine working copy file (undo most local edits).

svn revert path...

This command does not require network access and undoes any

changes you have made to path. It does not restore removed direc-

tories.

Options:

--recursive, -R Descend recursively.

svn status (also known as stat, st)

Print the status of working copy files and directories.

svn status path...

With no args, print only locally modified items (no network access).

With -u, add working revision and server out-of-date information.

With -v, print full revision information on every item.

The first six columns in the output are each one character wide.

First column: Says if item was added, deleted, or otherwise changed.

“ ” No modifications.

A Added.

C Conflicted.

D Deleted.

G Merged.

I Ignored.

M Modified.

R Replaced.

X Item is unversioned, but is used by an externals definition.

? Item is not under version control.

! Item is missing (removed by non-svn command) or incomplete.

˜ Versioned item obstructed by some item of a different kind.

Second column: Modifications of a file’s or directory’s properties.

“ ” No modifications.

C Conflicted.

M Modified.

Third column: Whether the working copy directory is locked.

“ ” Not locked.

L Locked.

SUBVERSION COMMAND SUMMARY 206

Fourth column: Scheduled commit will contain addition with his-

tory.

“ ” No history scheduled with commit.

+ History scheduled with commit.

Fifth column: Whether the item is switched relative to its parent.

“ ” Normal.

S Switched.

Sixth column: Lock token information (to show repository informa-

tion, use -u).

“ ” No lock token present, not locked in the repository.

K Lock token present, item locked in the repository.

O Item locked in the repository, lock token present in some other

working copy.

T Item locked in the repository, lock token present in working copy

but stolen by some other working copy.

B Item not locked in the repository, but broken lock token present

in working copy.

The out-of-date information appears in the eighth column (with -u).

* A newer revision exists on the server.

“ ” The working copy is up-to-date.

The remaining fields are variable width and delimited by spaces: the

working revision (with -u or -v), the last-committed revision, and last-

committed author (with -v). The working copy path is always the final

field, so it can include spaces.

Options:

--show-updates, -u Contact the server to display update information.

--verbose, -v Print extra information.

--non-recursive, -N Operate on single directory only.

--no-ignore Disregard default and svn:ignore property ignores.

SUBVERSION COMMAND SUMMARY 207

svn switch (also known as sw)

Update the working copy to a different URL.

svn switch URL path

Update the working copy to mirror a new URL within the repository.

This behavior is similar to svn update and is the way to move a work-

ing copy to a branch or tag within the same repository.

Options:

--revision, -r rev Switch to revision rev.

--non-recursive, -N Operate on single directory only.

--diff3-cmd cmd Use cmd as merge command.

svn unlock

Unlock working copy files or repository URLs.

svn unlock target...

Release locks currently held on target so other users can commit

changes.

Options:

--force Break an existing lock on target, even if it is not owned by the

current working copy.

svn update (also known as up)

Bring changes from the repository into the working copy.

svn update path...

If no revision given, bring working copy up-to-date with HEAD revi-

sion. Otherwise synchronize working copy to revision given by -r.

For each updated item a line will start with a character reporting the

action taken. These characters have the following meaning:

A Added.

D Deleted.

U Updated.

C Conflict.

M Merged.

A character in the first column signifies an update to the actual file,

and updates to the file’s properties are shown in the second column.

RECIPES 208

Options:

--revision, -r rev Update to revision rev.

--non-recursive, -N Operate on single directory only.

--diff3-cmd cmd Use cmd as merge command.

E.2 Recipes

Checking out. .Page 63

svn checkout URL path

Checking out a specific revision . Page 63

svn checkout -r rev URL

Checking out a specific date .Page 63

svn checkout -r "{date}" URL

Finding out where a working copy came fromPage 63

svn info path

Updating a working copy . Page 64

svn update

Updating specific items in a working copy.Page 64

svn update path...

Adding files to the repository. .Page 66

svn add path...

Setting a property on a file or directory Page 67

svn propset propname propvalue path...

Editing a property on a file or directory Page 67

svn propedit propname path...

Listing the properties on a file or directory Page 67

svn proplist path...

Printing the contents of a property .Page 67

svn propget propname path...

Deleting a property . Page 68

svn propdel propname path...

Enabling keyword expansion for a file Page 69

svn propset svn:keywords "keywords" file...

Ignoring certain files in a directory. .Page 71

svn propedit svn:ignore path...

RECIPES 209

Setting end-of-line style for a file . Page 72

svn propset svn:eol-style style path...

Setting the mime-type of file . Page 73

svn propset svn:mime-type mime-type path...

Marking a file executable. .Page 74

svn propset svn:executable true path...

Copying a file or directory . Page 76

svn copy source destination

Renaming a file or directory . Page 77

svn rename oldname newname

Moving a file or directory . Page 77

svn move source destination

Showing changes to a file or directory Page 80

svn diff path...

Comparing two revisions of a file . Page 81

svn diff -rrev1:rev2 file

Showing changes between a file and the latest revision in

the repository. .Page 83

svn diff -r HEAD file...

Showing the most recent change to a file.Page 84

svn diff -r PREV:BASE file...

Creating a patch file . Page 85

svn diff > patchfile

Applying a patch file .Page 85

patch -p0 -i patchfile

Discarding your changes in the face of a conflict Page 88

svn revert file...

svn update file...

Discarding someone else’s changes in the face of a con-

flict Page 90

cp file.mine file

svn resolved file

Marking a conflict resolved . Page 90

svn resolved file...

RECIPES 210

Checking in changes . Page 91

svn commit -m "message"

Showing history for a file . Page 91

svn log file

Showing recent activity in a directory Page 93

svn log path | more

Showing detailed history for a file . Page 93

svn log -v file...

Annotating files with author information Page 94

svn blame file...

Reverting an already committed change Page 96

svn merge -r rev:rev-1 path...

Checking the working copy status . Page 98

svn status

Showing updates pending from the repository Page 98

svn status --show-updates

Enabling locking on a file . Page 101

svn propset svn:needs-lock true file...

svn commit -m "Enabled locking" file...

Obtaining a lock on a file. .Page 102

svn lock file... -m "lock comment"

Examining lock information for a file Page 103

svn info file... | grep Lock

Breaking another user’s lock on a file Page 104

svn unlock --force URL

Stealing another user’s lock on a file Page 105

svn lock --force file... -m "lock message"

Creating a release branch . Page 116

svn copy \

svn://myserver/project/trunk \

svn://myserver/project/branches/RB-x.y

RECIPES 211

Checking out a release branch. .Page 117

cd work

svn checkout \

svn://myserver/project/branches/RB-x.y

Switching a working copy to a release branch Page 118

cd myproj

svn switch \

svn://myserver/project/branches/RB-x.y

Switching a working copy back to the trunk Page 118

cd myproj

svn switch svn://myserver/project/trunk

Creating a release tag . Page 119

svn copy \

svn://myserver/project/branches/RB-x.y \

svn://myserver/project/tags/REL-x.y

Checking out a release. .Page 120

svn checkout \

svn://myserver/project/tags/REL-x.y

Merging a simple bug fix from a release branch to the

trunk . Page 122

cd project

svn update

svn merge -rrev-1:rev \

svn://myserver/project/branches/RB-x.y

Creating a branch for a complex bug fix Page 123

svn copy \

svn://myserver/project/branches/RB-x.y \

svn://myserver/project/branches/BUG-track

svn copy \

svn://myserver/project/branches/BUG-track \

svn://myserver/project/tags/PRE-track

Checking out a bug fix branch . Page 123

svn checkout \

svn://myserver/project/branches/BUG-track

Tagging the end of a bug fix. .Page 124

svn copy \

svn://myserver/project/branches/BUG-track \

svn://myserver/project/tags/POST-track

RECIPES 212

Merging a complex bug fix to a release branch Page 124

cd RBx.y

svn merge \

svn://myserver/project/tags/PRE-track \

svn://myserver/project/tags/POST-track

Creating experimental branches. .Page 125

svn copy \

svn://.../trunk \

svn://.../branches/TRY-initials-mnemonic

Using an experimental branch . Page 125

svn switch \

svn://.../branches/TRY-initials-mnemonic

Returning to the trunk . Page 125

svn switch svn://.../trunk

Finding out when a branch was created Page 126

svn log --stop-on-copy \

svn://.../branches/branch

Merging an experimental branch . Page 127

svn log --stop-on-copy \

svn://.../branches/TRY-initials-mnemonic

cd trunk-working-copy

svn merge \

-r branch-start-revision:HEAD \

svn://.../branches/TRY-initials-mnemonic

svn commit

Importing a project into the repository Page 130

cd project

svn import svn://myserver/project/trunk

Manually creating directories for a project Page 130

svn mkdir svn://myserver/project/

svn mkdir svn://myserver/project/trunk

svn mkdir svn://myserver/project/tags

svn mkdir svn://myserver/project/branches

Importing third-party code. .Page 145

svn import vendor-tree \

svn://.../vendorsrc/vendor/product/current

RECIPES 213

Tagging a vendor drop . Page 146

svn copy \

svn://.../vendorsrc/vendor/product/current \

svn://.../vendorsrc/vendor/product/version

Loading a new vendor drop. .Page 147

svn load dirs.pl \

svn://.../vendorsrc/vendor/product \

current vendor-tree

Using vendor code in a project . Page 148

svn copy \

svn://.../vendorsrc/vendor/product/ver \

svn://.../project/trunk/vendor/product

Upgrading vendor code in a project . Page 149

svn merge \

svn://.../vendorsrc/vendor/product/oldver \

svn://.../vendorsrc/vendor/product/newver \

vendor/product

Starting svnserve on Windows . Page 153

start svnserve --daemon --root repos-dir

Starting svnserve on Unix . Page 153

svnserve --daemon --root repos-dir

Creating a full backup of your repository Page 170

svnadmin dump repos > dumpfile

Creating an incremental backup of your repository . Page 171

svnadmin dump --incremental \

--revision rev1:rev2 repos

Appendix F

Other Resources
There are a wealth of Subversion and version control related

resources available out there—here are just a few to get you

started.

F.1 Online Resources

Subversion Home Page http://subversion.tigris.org/
The official Subversion web site is an excellent resource for anyone

getting started with Subversion. The site contains all sorts of doc-

umentation, including the excellent Subversion FAQ that contains

common questions and answers. The project links page is a great

place to find Subversion-related software, plug-ins, articles, and doc-

umentation.

You can also join the Subversion users’ mailing list; just send an

e-mail to users-subscribe@subversion.tigris.org. The list is

the place to ask questions and is populated by some very friendly

people, including Subversion’s core developers.

Pragmatic Programmers. . .
. . . http://www.pragmaticprogrammer.com/titles/svn/

The companion web site for this book where you’ll find code samples,

errata, and links to other pragmatic things.

Subversion Book.http://svnbook.red-bean.com/
The official Subversion book is available online and in print form

and contains in-depth discussion of even Subversion’s most esoteric

features.

Better SCM.http://better-scm.berlios.de/
The Better SCM project aims to promote alternatives to CVS and

includes a comparison between various version control systems.

http://subversion.tigris.org/
http://www.pragmaticprogrammer.com/titles/svn/
http://svnbook.red-bean.com/
http://better-scm.berlios.de/

BIBLIOGRAPHY 215

CM Crossroads http://www.cmcrossroads.com/
Configuration Management is a larger topic than version control but

usually requires decent version control to achieve its aims. Through-

out the book we’ve mentioned the various “SCM Patterns” by name,

so if you’d like to find out about the patterns in more detail or are

interested in how source code, builds, projects, and releases are

organized, this site contains articles and discussion groups that may

interest you.

F.2 Bibliography

[BA03] Stephen P. Berczuk and Brad Appleton. Soft-

ware Configuration Management Patterns: Effec-

tive Teamwork, Practical Integration. Addison-Wes-

ley, 2003.

[Cla04] Mike Clark. Pragmatic Project Automation. How to

Build, Deploy, and Monitor Java Applications. The

Pragmatic Programmers, LLC, Raleigh, NC, and

Dallas, TX, 2004.

[CSFP] Ben Collins-Sussman, Brian W. Fitzpatrick, and

C. Michael Pilato. Version Control with Subversion.

[HT03] Andrew Hunt and David Thomas. Pragmatic Unit

Testing In Java with JUnit. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX,

2003.

[HT04] Andrew Hunt and David Thomas. Pragmatic Unit

Testing In C# with NUnit. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, 2004.

http://www.cmcrossroads.com/

Index
Symbols
<<<< conflict marker, 88

A
Access rights, 57, 59, 155

securing Subversion, 163

svnserve command, 163

svn add command, 66, 198

--non-recursive option, 66

Alias module, 16

svn ann command, 94

svn annotate command, 94

Ant script, 11

Apache web server

install on Linux, 162

mod authz svn, 159

mod dav svn, 59, 159, 162

security, 165–168

virtual directories, 110

on Windows, 151, 158

Appleton, Brad, vi, 26

Artifact (store or not), 13

Atomic commit, 7

Audit functionality, 1

$Author$ keyword, 69

Autoprops, 74, 150

B
Backing up (repository), 170–173

BASE revision, 81

Berczuk, Stephen, 26

Binary vs. text files, 73

Binary files (locking), 99–106

Binary libraries, 141

svn blame command, 94, 198

-r option, 95

Branch, 19–22

to avoid code freeze, 19

as a copy, 76

creating, 113

creating retrospectively, 116n

experimental, 114, 124

and externals, 140

merge, 22, 122, 124

naming, 115f

release, 107, 114, 115

trunk, 19, 37, 107

Bug fix

identifying revision containing,

121, 122

merging, 22, 122, 124

in release branch, 121

tagging, 114

Build

and environment variables,

144

organizing paths for, 143

build.xml, 11

BUILDING file, 132

sample, 133f

C
Carriage return (EOL style), 72

svn cat command, 198

Check out, 12

svn checkout command, 39, 45,

62, 198

-r option, 63

Čibej, Branko, vi

svn cleanup command, 199

Client/server access to

repository, 10

Code freeze, avoiding, 19

CodeHaus, 85, 145, 145n

Command line, 29, 30

Commit, 14

atomic nature of, 7

e-mail notification on, 186

SVN COMMIT COMMAND 217 FILE

sequence of commands to

follow, 91

svn commit command, 41, 66,

76, 91, 199

-m option, 41, 91

COMMITTED revsion, 81

Compiler, finding header files,

143

Configuration file, 58, 75

Configuration Management, 26

Conflict

during merge, 24, 48

graphical front end, 183

markers, 88

resolution, 23, 87

Conventions, typographic, viii

svn copy command, 75, 199

to create release branch, 119

svnadmin create command, 34

Creating a project, 34, 128–140

Creating a repository, 33

CVS

.cvsignore equivalent in

Subversion, 71

keywords (Log etc), 68, 70

migrating to Subversion,

174–177

modules are Subversion

directories, 16

vs. Subversion, 6

version numbering, 17

cvs2svn command, 175

D
data/ directory, 133

$Date$ keyword, 68

Date, accessing revision by, 81

DAV, 161

db/ directory, 133

svn delete command, 199

DeltaV, 161

Developers

experimenting in branches,

114, 124

misunderstandings, 49

sharing code, 1, 24

svn diff command, 40, 80, 85,

200

binary file, 73

--diff-cmd option, 41

-r option, 46, 82

--diff-cmd option

to svn diff, 41

Difference

conflict resolution, 23

determining, 80

and file type, 73

merging, 22, 122, 124

and patch, 85

stored in repository, 16

unified format, 40

between versions, 82

between working copy and

repository, 83

Directory

for branches and tags, 108

Jakarta conventions for laying

out, 131

linking with svn:externals, 137

in repository, 16

structure in project, 131, 134f

top-level in project, 132

versioning, 7

doc/ directory, 132

Download Subversion, 33

dumpfile, 170

E
Eclipse IDE, 144, 185

Editing, 23, 39

EDITOR environment variable, 43

Editor, choosing, 43

E-mail notification of commit,

186

End-of-line style, 72

Environment variable

in build, 144

EDITOR, 43

SVN EDITOR, 43

VISUAL, 43

Executable file, 74

svn export command, 200

External repositories, 109, 137

F
File

adding to repository, 66

changing contents, 39

checked out read-only, 23

commiting changes, 91

copy, 75

difference with repository, 83

FILE-SPECIFIC VERSION NUMBERING 218 LOCKING

editing, 23, 39

entity in repository, 15

executable, 74

generated, 13

header (include), 142

ignoring, 71

locking, 99–106

mime type of, 73

move (rename), 77

top-level in project, 132

unmergeable, 99

versioning, 7

File-specific version numbering,

16

Firewall, 153, 154

using HTTP to minimize holes,

61

Framework as separate project,

129

Fred and Wilma, 2, 22

G
Gemkow, Steffen, vi

Generated file (store or not), 13

GLOSSARY file, 132

GUI front end, 178

H
HEAD revision, 81

Header (include) files, 142

$HeadURL$ keyword, 69

Hook scripts, 168

http protocol, 59, 157

I
Id keyword, 69

IDE

configuration variables, 144

Eclipse, 144, 185

IntelliJ IDEA, 185

method-level check in, 15n

organizing libraries for, 143

Subversion integration, 185

Visual Studio, 185

Ignoring files, 71

svn import command, 36, 129,

200

-m option, 36

--no-auto-props option, 150

Import into repository, 36

existing source, 129

manual directory creation, 130

third-party source, 145

svn info command, 63, 103,

201

Install Subversion, 28, 151–173

firewall issues, 153, 154

HTTP protocol, 157

on Linux, 152

svn+ssh protocol, 154

svnserve, 153

on Windows, 151

as Windows service, 153

IntelliJ IDEA IDE, 185

Internet, access repository over,

61

J
Java (Jakarta) conventions, 131

jMock library, 145, 149

K
Keyword

$Author$, 69

$Date$, 68

$HeadURL$, 69

Id, 69

$LastChangedBy$, 69

$LastChangedDate$, 68

$LastChangedRevision$, 68

Rev, 68

$Revision$, 68

URL, 69

Keyword expansion, 68

in third-party source, 150

L
$LastChangedBy$ keyword, 69

$LastChangedDate$ keyword, 68

$LastChangedRevision$

keyword, 68

lib/ directory, 142

Line feed (EOL style), 72

Linker, finding libraries, 143

Linux installation, 152

and Apache, 157, 162

setting groups and sticky bits,

155

svn list command, 201

svn lock command, 100, 201

Locked-out of repository, 155

Locking, 22, 99–106

LOG 219 PROJECT

breaking, 104

enabling, 101–102

hook scripts, 105

importance of, 100–101

optimistic, 23

strict, 23, 86

token, 103, 104, 206

unmergeable files, 106

when to use, 106

Log

of changes, 1, 91

making messages meaningful,

92

svn log command, 41, 91, 101,

201

-r option, 93

--stop-on-copy option, 126

-v option, 94

--verbose option, 42

Log keyword (not supported), 70

svn ls command, 177

M
-m option

to svn commit, 41, 91

to svn import, 36

Merge, 22, 64

automatic on update, 23

bug fix, 122, 124

changes, 44, 47

conflict, 24, 48, 87

graphical, 184

svn merge command, 97, 124,

202

to revert changes, 96

Metadata

project, stored, 11

Method

IDE versioning of, 15n

Migrating CVS or RCS to

Subversion, 174–177

Mime type, 73

svn mkdir command, 130, 202

mod authz svn, 159

mod dav svn, 59, 159, 162

svn move command, 77, 203

refactor repository, 109

Multiple projects, 108, 128, 135

using externals, 137

über project technique, 136

Multiple repositories, 109

N
Naming projects, 128

Naming tags and branches, 115f,

123

Network, 55–61

choosing right type, 60

firewall, 153, 154

offline access, 11

to access repository, 10

repository URLs, 79

scheme, 55

with syn+ssh, 154–157

with synserve, 153–154

VPN, 10

NFS (Network File System), 35

--no-auto-props option

to svn import, 150

--non-recursive option

to svn add, 66

Norddahl, Magnus, 153

Notepad editor, 43

NUnit (example of library), 141

O
Offline access, 11

Open-source

free repositories for, 85

Optimistic locking, 23

P
Password, 164

patch command, 85

Path names, relative in build, 143

philosophy, 53

plink.exe, 58

Pragmatic Starter Kit, vi, 53

svn praise command, 94

PREV revsion, 81

Project, 15

characteristics, 128

code freeze (avoiding), 19

communication, 49

creating, 34, 128–140

directory structure, 131, 132,

134f

importing, 36

incorporate third-party code,

148

multiple ˜s, 108

release, 115, 119

PROMPT 220 SSH

sharing code, 24

subprojects, 129

tagging latest build, 113

Prompt, 29, 31

svn propdel command, 68, 203

svn propedit command, 67,

203

Properties, 66–75

naming, 67

setting automatically, 74, 150

svn:eol-style, 72

svn:executable, 74

svn:externals, 137

svn:ignore, 71, 135

svn:keywords, 68, 69, 150

svn:mime-type, 66, 73

versioning, 7

svn propget command, 68, 203

svn proplist command, 68,

204

svn propset command, 67, 204

Putty (SSH on Windows), 58, 154,

186

R
-r option

to svn blame, 95

to svn checkout, 63

to svn diff, 46, 82

to svn log, 93

r1:r2, 81

Rasmussen, Robert, vi

RCS, migrating to Subversion,

174–177

README file, 132

Recipes, 208

Refactoring, 75, 77

Release

fixing bugs in, 121

generating, 119

Remote file system, 35

Removing a change, 95

svn rename command, 77

Repositories

directories in, 129

Repository

access rights, 57, 59

add file to, 66

backing up, 170–173

creating, 33

defined, 9

directories in, 16

external, 137

files stored in, 15

free for open-source, 85

importing into, 36, 145

over Internet, 61

locking, 22

migrating from CVS or RCS,

174–177

multiple ˜ies, 109

˜-wide numbering, 16, 41

projects in, 15, 108, 128

stores differences, 16

tag, 18

updating, 41

URL, 36, 37, 55, 79

wedged, 155

what to store in, 11–12

Reserved checkout (Subversion

1.2), 86

svn resolved command, 90,

204

Rev keyword, 68

svn revert command, 88, 95,

205

Revision

BASE, 81

COMMITTED, 81

by date, 81

HEAD, 81

identifiers, 80

mixed, 42, 112

PREV, 81

range, 81

$Revision$ keyword, 68

--revision option

to svn switch, 118

Roberts, Mike, vi

Rupp, David, vi

S
Secure Socket Layer (SSL), 61

Security, 163–169

Shell, 29

--show-updates option

to svn status, 46, 98

Source code, 11

importing third party, 144

src/ directory, 133

SSH, 57

SSL (SECURE SOCKET LAYER) 221 TAG

key manager (SSHKeychain),

186

troubleshooting, 155

SSL (Secure Socket Layer), 61

Starter Kit, vi, 53

svn status command, 40, 45,

98, 205

--show-updates option, 46,

98

-u option, 46, 98

Sticky bit (Unix groups), 155

--stop-on-copy option

to svn log, 126

Strict locking, 23

Subversion

benefits, 6

command summary, 197–207

compared to CVS, 7

config file, 58, 75

download URL, 33

file locking, 99–106

free repositories, 85

hook scripts, 105

installation, 151–153

migrating from CVS or RCS,

174–177

offline access to, 11

philosophy of using, 53

recipes, 208

security, 163

third-party clients, 178

troubleshooting, 156, 157

user name, 57

versions, 34

svn command

--version option, 32

svn commands

add, 66, 198

ann, 94

annotate, 94

blame, 94, 198

cat, 198

checkout, 39, 45, 62, 198

cleanup, 199

commit, 41, 66, 76, 91, 199

copy, 75, 119, 199

delete, 199

diff, 40, 73, 80, 85, 200

export, 200

import, 36, 129, 200

info, 63, 103, 201

list, 201

lock, 100, 201

log, 41, 91, 101, 201

ls, 177

merge, 96, 97, 124, 202

mkdir, 130, 202

move, 77, 109, 203

praise, 94

propdel, 68, 203

propedit, 67, 203

propget, 68, 203

proplist, 68, 204

propset, 67, 204

rename, 77

resolved, 90, 204

revert, 88, 95, 205

status, 40, 45, 98, 205

switch, 117, 118, 120, 207

unlock, 104, 207

update, 44, 49, 64, 87, 207

svn protocol, 56

svn+ssh protocol, 57, 154

svn:eol-style property, 72

svn:executable property, 74

svn:externals property, 137

svn:ignore property, 71, 135

svn:keywords property, 68, 69,

150

svn:mime-type property, 66, 73

SVN EDITOR environment

variable, 43

svnadmin command

--version option, 32

svn load dirs.pl script, 147

SVN:Notify, 186

svnserve command, 56, 153, 163

--daemon option, 153

invoked by svn+ssh, 154

--root option, 110, 153

svn switch command, 117, 118,

120, 207

--revision option, 118

T
Tag, 18, 107, 112–113

bug fix, 114

as a copy, 76

making read-only, 113

naming, 115f

release, 114, 119

TEST CODE 222 WORKING COPY

as slice through repository,

112

third-party source, 146

Test code, 135

Testsweet project, 176

Text vs. binary files, 73

Third-party, 141–150

binary libraries, 141

header (include) files, 142

import ˜ source, 145

including code in project, 148

modifying, 149

source code, 134, 144

tagging their release, 146

updating source, 146

version numbers, 142

what to include, 142

Time machine, 2

Tortoise

graphical merge, 184

TortoisePlink SSH client, 58

TortoiseSVN client, 178

Transactional commit, 7

Troubleshooting, 156, 157

Tunnel, 61

configuration, 58, 75

Tunnel over SSH, 57

Typographic conventions, viii

U
-u option

to svn status, 46, 98

Über project technique, 136

umask, 155

UNDO button, 1, 18

Undoing a change, 95

svn unlock command, 104, 207

Update, 14, 41

svn update command, 44, 64,

207

conflict and, 87

status flags, 49, 64

URL, 55

file://..., 37

http://..., 59

repository, 36, 37, 79

scheme, 55

svn://..., 56

svn+ssh://..., 57

URL keyword, 69

User name, 57, 164

connecting via SSH, 154

util/ directory, 134

V
-v option

to svn log, 94

vendor/ directory, 134, 142

vendorsrc/ directory, 134, 145

--verbose option

to svn log, 42

Version, 16

numbering, 16, 41

what gets ˜ed, 7

--version option

to svn, 32

to svnadmin, 32

Version control

advantages, 1

philosophy, 53

Virtual Private Network (VPN), 10,

61

VISUAL environment variable, 43

Visual Studio IDE, 185

W
WebDAV, 161

Wedged repository, 155

Wilma and Fred, 2, 22

Windows

installation, 151

Putty (SSH), 58, 154, 186

shell, 29

svnserve, 153

Visual Studio IDE, 185

Windows Explorer

adding Subversion to, 178

Working copy

checkout into, 62

definition, 12

difference with repository, 83

ignoring files, 71

location, 38

seeing what’s changed, 80

status of, 97

file://...
http://
svn://
svn+ssh://

	Pragmatic Version Control using Subversion
	Contents
	1 Introduction
	2 What is Version Control?
	3 Getting Started with Subversion
	4 How To...
	5 Accessing a Repository
	6 Common Subversion Commands
	7 File Locking and Binary Files
	8 Organizing Your Repository
	9 Using Tags and Branches
	10 Creating a Project
	11 Third-Party Code
	A Install, Network, Secure, and Administer
	B Migrating to Subversion
	C Third-Party Subversion Tools
	D Advanced Topics
	E Command Summary and Recipes
	F Other Resources
	Index

