

What Readers Are Saying About Debug It!

Paul does an excellent job of explaining the technical, intellectual, and

psychological aspects of all phases of debugging: preventing bugs in

the first place, diagnosing and fixing bugs, and making sure that the

same bugs don’t happen again. Applying any or all of the ideas from

this book will improve the overall quality of your software projects.

Sure, the technical issues are well covered but how Paul also explains

the psychological angles is what makes this book exceptional.

Frederic Daoud

Author, Stripes...and Java Web Development Is Fun Again

I wholeheartedly recommend this book to software engineers generally

but more specifically to team leads who need to know how to set up

their teams for best practice.

Allan McLeod

Founder and CTO, Isaacc Software

Debug It! does a great job of setting the scene for debugging and get-

ting you into the right mind-set while also talking about the complica-

tions that can arise once the bug is found and squashed. It’s worth a

look for the anecdotes alone, to see the lengths that people go to when

trying to understand truly bizarre defects.

Jon Dickinson

Author, Grails 1.1 Web Application Development

Debugging has been a folk art for so long that it’s great to have some-

one put all the tried-and-true techniques together. Debug It! is the

perfect book to pull out when you’re disillusioned with the brain-

breaking process of creating good software. With this tool chest of

assertions, logging, refactoring, and other good stuff, you’ll feel like

you’re Sherlock Holmes and solving the case is inevitable.

Craig Riecke

Author, Mastering Dojo: JavaScript and Ajax Tools for Great

Web Experiences

This book is like a companion volume to The Pragmatic Programmer,

applying the same focus on craftsmanship to the debugging process.

Ian Dees

Author, Scripted GUI Testing with Ruby

Paul Butcher has brought long overdue attention to the methods of

debugging, a fundamental activity for every software developer yet one

that remains an exercise of intuition and guesswork for most in the

profession. Paul’s gentle writing style belies the discipline in his tech-

nique. Before you know it, you’ll be an engineer instead of a hacker.

Bill Karwin

Software Engineer, Karwin Software Solutions, LLC

Debug It!
Find, Repair, and Prevent Bugs in Your Code

Paul Butcher

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Paul Butcher.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-28-X

ISBN-13: 978-1-934356-28-9

Printed on acid-free paper.

P1.0 printing, November 2009

Version: 2009-11-4

Contents
Preface 10

About This Book . 10

Acknowledgments . 11

I The Heart of the Problem 13

1 A Method in the Madness 14

1.1 Debugging Is More Than “Making the Bug Go Away” . 14

1.2 The Empirical Approach 16

1.3 The Core Debugging Process 17

1.4 First Things First . 18

1.5 Put It in Action . 22

2 Reproduce 23

2.1 Reproduce First, Ask Questions Later 23

2.2 Controlling the Software 25

2.3 Controlling the Environment 26

2.4 Controlling Inputs . 28

2.5 Refining Your Reproduction 36

2.6 What If You Really Can’t Reproduce It? 45

2.7 Put It in Action . 48

3 Diagnose 49

3.1 Stand Back—I’m Going to Try Science 49

3.2 Stratagems . 56

3.3 Debuggers . 62

3.4 Pitfalls . 63

3.5 Mind Games . 67

3.6 Validate Your Diagnosis 72

3.7 Put It in Action . 73

CONTENTS 8

4 Fix 74

4.1 Clearing the Decks . 75

4.2 Testing . 76

4.3 Fix the Cause, Not the Symptoms 78

4.4 Refactoring . 80

4.5 Checking In . 82

4.6 Get Your Code Reviewed 83

4.7 Put It in Action . 84

5 Reflect 85

5.1 How Did It Ever Work? 85

5.2 What Went Wrong? . 86

5.3 It’ll Never Happen Again 89

5.4 Close the Loop . 92

5.5 Put It in Action . 93

II The Bigger Picture 94

6 Discovering That You Have a Problem 95

6.1 Tracking Bugs . 95

6.2 Working with Users . 100

6.3 Working with Support Staff 105

6.4 Put It in Action . 107

7 Pragmatic Zero Tolerance 108

7.1 Bugs Take Priority . 108

7.2 The Debugging Mind-Set 111

7.3 Digging Yourself Out of a Quality Hole 113

7.4 Put It in Action . 118

III Debug-Fu 119

8 Special Cases 120

8.1 Patching Existing Releases 120

8.2 Backward Compatibility 121

8.3 Concurrency . 126

8.4 Heisenbugs . 128

8.5 Performance Bugs . 130

8.6 Embedded Software . 132

8.7 Bugs in Third-Party Software 135

8.8 Put It in Action . 140

CONTENTS 9

9 The Ideal Debugging Environment 141

9.1 Automated Testing . 141

9.2 Source Control . 144

9.3 Automatic Builds . 149

9.4 Put It in Action . 157

10 Teach Your Software to Debug Itself 158

10.1 Assumptions and Assertions 158

10.2 Debugging Builds . 168

10.3 Resource Leaks and Exception Handling 173

10.4 Put It in Action . 180

11 Anti-patterns 181

11.1 Priority Inflation . 181

11.2 Prima Donna . 182

11.3 Maintenance Team . 184

11.4 Firefighting . 186

11.5 Rewrite . 187

11.6 No Code Ownership . 189

11.7 Black Magic . 189

11.8 Put It in Action . 190

A Resources 192

A.1 Source Control and Issue-Tracking Systems 192

A.2 Build and Continuous Integration Tools 195

A.3 Useful Libraries . 197

A.4 Other Tools . 199

B Bibliography 203

Index 205

Preface
I’ve always been mystified why so few books are available on debugging.

You can buy any number on every other aspect of software engineering

such as design, code construction, requirements capture, methodolo-

gies...the list is endless. And yet, for some reason, debugging has been

almost (not quite but very nearly) ignored by authors and publishers. I

hope that this book can help remedy the situation.

If you write code, it’s a certainty that at some point (possibly very soon

afterward) you’re going to have to debug it. Debugging is, more than

anything else, an intellectual process—it doesn’t take place within a

debugger or your code but inside your mind. Reaching an understand-

ing of the root cause of the problem is the cornerstone upon which

everything else depends.

Over the years, I’ve been fortunate to work with a number of incredi-

bly talented teams on a wide range of software. I’ve worked at all levels

of abstraction from microcode on bit-slice processors through device

drivers, embedded code, mainstream desktop software, and web appli-

cations. I hope that I can pass along some of the lessons I’ve learned

from my colleagues along the way.

About This Book

This book is divided into three parts, each of which considers a partic-

ular aspect of debugging:

“The Heart of the Problem”:

This part introduces the empirical approach, which leverages our

software’s unique ability to show us what’s going on, and the core

debugging method (reproduce, diagnose, fix, reflect) that relies

upon it.

ACKNOWLEDGMENTS 11

“The Bigger Picture”:

How do we find out that there’s a problem that needs fixing in

the first place? And how does debugging integrate into the wider

software development process?

“Debug-Fu”:

In the third and final part, we’ll turn our attention to a number of

advanced topics:

• Although the approaches discussed earlier in the book apply

to all bugs, certain types of bugs benefit from special treat-

ment.

• Debugging starts long before the irate telephone call from the

user affected by it. What tools and processes can we put in

place ahead of time to help when the phone rings?

• Finally, we’ll consider a number of common pitfalls to avoid.

Acknowledgments

It’s not until I embarked upon the task of writing a book of my own

that I realized the true importance of the acknowledgments section. My

name might be on the front cover, but it wouldn’t have come to fruition

without the help of many and the forbearance of many more.

Thanks to everyone who joined the book’s email discussion list and

provided inspiration, criticism, and encouragement—Andrew Eacott,

Daniel Winterstein, Freeland Abbott, Gary Swanson, Jorge Hernandez,

Manuel Castro, Mike Smith, Paul McKibbin and Sam Halliday. Partic-

ular thanks to Dave Strauss, Dominic Binks, Frederick Cheung, Mar-

cus Gröber, Sean Ellis, Vandy Massey, Matthew Jacobs, Bill Karwin,

and Jeremy Sydik who have kindly allowed me to share their anec-

dotes and insights with you. Thanks also to Allan McLeod, Ben Coppin,

Miguel Oliveira, Neil Eccles, Nick Heudecker, Ron Green, Craig Riecke,

Fred Daoud, Ian Dees, Evan Dickinson, Lyle Johnson, Bill Karwin, and

Jeremy Sydik for taking the time to participate in technical review.

To my editor, Jackie Carter, thank you for being so patient with a first-

time author learning the ropes, and thanks to Dave and Andy for taking

the chance.

ACKNOWLEDGMENTS 12

Apologies to my colleagues at Texperts who have had to endure me

talking about nothing but the book for too long (don’t worry—I’ll get a

new race car soon, and then you’ll have to endure me talking about that

instead). And to my family, sorry for the long evenings and weekends

during which I’ve been incommunicado, and thanks for the support.

Finally, thank you to everyone I’ve had the privilege of working with

over the years. The best aspect of a career in software development is

the caliber of the people, and I’ve been particularly lucky to work with

a truly great selection.

Paul Butcher

August 2009

paul@paulbutcher.com

Part I

The Heart of the Problem

Chapter 1

A Method in the Madness
So, your software doesn’t work. Now what?

Some developers seem to have a knack of unerringly zeroing in on the

root cause of a bug, whereas others thrash around apparently aimlessly

and without concrete results. What separates the first group from the

second?

In this chapter, we will examine a debugging method that has been

repeatedly proven in the trenches of professional software development.

It’s not a silver bullet—you’re still going to have to rely on your intellect,

intuition, detective skills, and, yes, even a little luck. But it will allow

you to target your efforts most effectively, avoid chasing phantoms, and

get to the heart of the problem as quickly as possible.

Specifically, we’ll cover the following:

• The difference between debugging and “making the bug go away”

• The empirical approach—using the software itself to show you

what’s going on

• The core debugging process (reproduce, diagnose, fix, reflect)

• First things first—things to think about before diving in

1.1 Debugging Is More Than “Making the Bug Go Away”

Ask an inexperienced programmer to define debugging, and they might

answer that it is “finding a fix.” In fact, that is only one of several goals,

and not even the most important of them.

DEBUGGING IS MORE THAN “MAKING THE BUG GO AWAY” 15

Effective debugging requires that we take these steps:

1. Work out why the software is behaving unexpectedly.

2. Fix the problem.

3. Avoid breaking anything else.

4. Maintain or improve the overall quality (readability, architecture,

test coverage, performance, and so on) of the code.

5. Ensure that the same problem does not occur elsewhere and can-

not occur again.

Of these, by far the most important is the first—identifying the root

cause of the problem is the cornerstone upon which everything else

depends.

Understanding Is Everything

Inexperienced developers (and sometimes, unfortunately, those of us

who should know better) often skip diagnosis altogether. Instead, they

immediately implement what they think might be a fix. If they’re lucky,

it won’t work, and all they will have done is waste their time. The real

danger comes if it works, or seems to work, because now they’ve made

a change to the source that they don’t really understand. It might fix

the bug, but there is a real chance that in reality it is only masking

the true underlying cause. Worse, there is a good chance that this kind

of change will introduce regressions—breaking something that used to

work correctly beforehand.

Wasted Time and Effort

Some years ago, I found myself working in a team containing a number of

very experienced and talented developers. Most of their experience was

with UNIX, but when I joined the team, they were in the late stages of

porting the software to Windows.

One of the bugs found during the port was a performance issue when

running many threads simultaneously. Some threads were being starved,

while others were running just fine.

Given that everything worked just fine under UNIX, the problem was

clearly broken threading in Windows, so the decision was made to

implement a custom thread scheduling system and avoid using that

provided by the operating system. This would be a lot of work, obviously,

but quite within the capabilities of a team of this caliber.

THE EMPIRICAL APPROACH 16

I joined the team when they were some way into the implementation, and

sure enough, threads were no longer suffering from starvation. But

thread scheduling is subtle, and they were still working through a

number of issues that had been caused by the change (not least of which

was that the changes had slowed the whole system down somewhat).

I was intrigued by this bug, because I’d previously experienced no

problems with Windows’ threading. A little investigation demonstrated

that the performance issue was caused by the fact that Windows

implements a dynamic thread priority boost. The bug could be fixed by

disabling this with a single line of code (a call to SetThreadPriorityBoost()).

The moral? The team had decided that Windows’ threads were broken

without really investigating the behavior they were seeing. In part, this

might have been a cultural issue—Windows doesn’t have a good

reputation among UNIX hackers. Nevertheless, if they had taken the time

to identify the root cause, they would have saved themselves a great deal

of work and avoided introducing complications that made the system both

less efficient and more error-prone.

Without first understanding the true root cause of the bug, we are out-

side the realms of software engineering and delving instead into voodoo

programming1 or programming by coincidence.2

1.2 The Empirical Approach

There are many different approaches you can adopt to gain the under-

standing you seek. And as long as the approach you choose gets you

closer to your goal, it has served its purpose.

Having said that, it turns out that in most instances one particular

approach, the empirical approach, tends to be by far the most produc-

tive.

Construct experiments,

and observe the results.

Empiricism relies upon observation or expe-

rience, rather than theory or pure logic. In

the context of debugging, this means directly

observing the behavior of the software. Yes,

you could read the entire source code and use pure reason to work

out what’s going on (and on occasion you may have no other choice),

1. “The use by guess or cookbook of an obscure or hairy system, feature, or algorithm

that one does not truly understand. The implication is that the technique may not work,

and if it doesn’t, one will never know why.” Taken from The Jargon File [ray].
2. See The Pragmatic Programmer [HT00].

THE CORE DEBUGGING PROCESS 17

On the Nature of Software

Software is remarkable stuff. Sometimes, perhaps because we
work with it all the time, we forget just how remarkable it is.

Very little else in human experience is as malleable, allowing
us free rein to exercise our ingenuity and inventiveness almost
without limits. Also, with a very few exceptions that we’ll cover
later, software is deterministic—the next state is completely
determined by the current state, and (crucially) we have com-
plete access to all of that state whenever we want it.

Compared to traditional engineering, we are spoiled. What
do you think a Formula One engineer would give to be able
to instantaneously stop an engine when it’s rotating at 19,000
revolutions per minute and examine every aspect of it in
minute detail? To see the precise state of each component
while under pressure and stress, for example, or to dynamically
record the shape and position of the flame front within the
combustion chambers during ignition?

It is exactly this kind of trick that we are able to perform with our
software, which is why the empirical approach is particularly
powerful when debugging.

but doing so is usually inefficient and dangerous. You can track the

problem down much more effectively by carefully constructing experi-

ments and observing how the software behaves. Not only is this faster,

but these observations force you to reexamine flawed assumptions in

your mental model about how the software behaves. The software itself

is the most powerful tool in your toolbox—allow it to show you what’s

going on.

The method described in the next section leverages this approach to

provide a structured means of zeroing in on your quarry.

1.3 The Core Debugging Process

The core of the debugging process consists of four steps:

Reproduce:

Find a way to reliably and conveniently reproduce the problem on

demand.

FIRST THINGS FIRST 18

Diagnose:

Construct hypotheses, and test them by performing experiments

until you are confident that you have identified the underlying

cause of the bug.

Fix:

Design and implement changes that fix the problem, avoid intro-

ducing regressions, and maintain or improve the overall quality of

the software.

Reflect:

Learn the lessons of the bug. Where did things go wrong? Are there

any other examples of the same problem that will also need fixing?

What can you do to ensure that the same problem doesn’t happen

again?

Debugging is an

iterative process.

As shown in Figure 1.1, on the following page,

broadly speaking, these steps take place one

after the other, but this is no strict “waterfall”

method. Although you certainly don’t want to

start upon diagnosis until you have a reproduction or design a fix

before you understand the problem, this is an iterative process. Lessons

learned during diagnosis might suggest ways to improve your repro-

duction, or those learned when implementing a fix might cause you to

reconsider your diagnosis.

We’ll go into each of these steps in much more detail in the following

chapters. Before then, however, there are a few preliminaries to get out

of the way.

1.4 First Things First

As tempting as it might be to dive right in, it’s worth taking a little time

before doing so to make sure that we first have all our ducks in a row.

Do You Know What You’re Looking For?

What is happening, and

what should?

Before you start trying to reproduce the prob-

lem or hypothesizing about its cause, you need

to know exactly what is happening. And just

as important, you need to know what should

happen instead. If you’re working from a formal bug report, it should

already contain all the information you need. (We’ll talk about bug

FIRST THINGS FIRST 19

Reproduce

Diagnose

Fix

Reflect

Figure 1.1: Core debugging method

reports in more detail in Chapter 6, Discovering That You Have a Prob-

lem, on page 95.) Take the time to read it carefully to make sure you

understand it.

If you don’t have a formal bug report (perhaps you’re working on a bug

that you’ve stumbled upon yourself or was reported to you during a

watercooler conversation), then it’s even more important to pause and

make sure that you really can see the full picture before forging ahead.

Remember that bug reports are no less fallible than any other docu-

ment. Just because the bug report says that this should happen instead

of that, does that really agree with the software’s specification? If it’s

not immediately obvious what the behavior should be, don’t make any

changes until you’ve gotten to the bottom of it—changing correct behav-

ior to incorrect, just because the bug report says so, is not going to be

helpful.

FIRST THINGS FIRST 20

Battling Bug Reports

I once found myself working on a very simple bug—a report was being

generated without taking daylight saving time (DST) into account and was

therefore incorrect when the clocks changed. I implemented a nice quick

fix, and I moved on to the next problem.

A little later, however, another bug was reported saying that our

accountant can’t make the books balance. The numbers generated by the

report didn’t agree with the invoices we were receiving from our suppliers.

Sure enough, it turned out that these invoices didn’t take DST into

account, which explains the discrepancy. A little historical digging

showed that we had already discovered this a year ago, at which point

we’d addressed the problem by deliberately ignoring DST.3

Clearly, the problem here wasn’t that the software wasn’t doing what we

wanted it to do but that we didn’t know what we wanted the software to

do. Because the report was used in different contexts, in some cases DST

should be taken into account, and in others it shouldn’t. The correct

solution was to add an option to the report to allow the user to choose.

One Problem at a Time

It’s sometimes tempting, when faced with several problems, to work on

them in parallel. This is especially true if the bugs are all in the same

general area. Don’t give in to this temptation.

Debugging is difficult enough without “muddying the waters” unneces-

sarily. However careful you are, there’s a good chance that the experi-

ments you perform to try to track down one bug will interfere in some

way with the other. This makes it hard to come to a clear understanding

of what’s happening. In addition (as we will see in Section 4.5, Check-

ing In, on page 82), when you eventually come to check in your fix, you

want to stick to one check-in per logical change. This is very difficult to

achieve if you work on several bugs simultaneously.

Occasionally, you’ll find that what you thought was one bug turns out

to have more than one root cause. Normally, the point at which this

becomes obvious is when you find yourself in the twilight zone—weird

things happening that seem to have no obvious explanation. See Sec-

tion 3.4, Multiple Causes, on page 65 for further discussion.

3. Incidentally, the developer who originally changed the behavior could have saved us

quite a bit of trouble by simply adding a comment in the code explaining why DST was

ignored in this instance, making it clear that the behavior was intentional.

FIRST THINGS FIRST 21

Check Simple Things First

Most bugs are caused by simple oversights. Yes, occasionally you will

be faced by something very subtle, but don’t overlook the simple things.

For some reason, we developers seem to suffer from a feeling that

we have to do everything ourselves. This is most obvious in the “Not

Invented Here” syndrome in which we end up implementing something

ourselves when a perfectly good solution already exists elsewhere. The

debugging equivalent of this mistake is assuming that you have to per-

sonally debug every problem you encounter.

Asking other team members whether they’ve seen something similar

before is very low cost and yet has the potential to short-circuit a huge

amount of wasted effort. This is especially true if you’re working in an

area you’re unfamiliar with.

Subversion Confusion

by Sean Ellis

This week, one of my newer guys was having a particular problem with svn

export. Nasty one, this—same version of SVN on the server and his

workstation, different behavior, lots of quiet hair pulling.

So, eventually he cracked. He asked me whether there were any problems

with this particular command and gave me a cut-and-pasted command

line to SVN.

“Yes,” I say. There’s a defect in the Apache libraries that handles ../../.. in a

path wrongly. Two seconds later we confirm that this is indeed the

problem, and in a couple of minutes we confirmed that the server has a

different version of the Apache runtime DLL.

Of course, much hair pulling had also ensued several months previously

while discovering this bug the first time.

So, communication is always important—not just in the odd, subtle,

geeky, hard-to-describe ways but in the good old “standing up and asking

whether anyone has seen this before” way.

In the next chapter, we’ll look at the first step in the process, reproduc-

tion, in detail.

PUT IT IN ACTION 22

1.5 Put It in Action

• Make sure to do the following:

– Work out why the software is behaving unexpectedly.

– Fix the problem.

– Avoid breaking anything else.

– Maintain or improve overall quality.

– Ensure that the same problem does not occur elsewhere and

cannot occur again.

• Leverage your software’s ability to show you what’s happening.

• Work on only one problem at a time.

• Make sure that you know exactly what you’re looking for:

– What is happening?

– What should be happening?

• Check simple things first.

Chapter 2

Reproduce
As we saw in the previous chapter, the empirical approach to debugging

leverages your software’s unique ability to show you what’s going on.

The key that unlocks this potential is finding a way to reproduce the

problem.

In this chapter, we’ll cover the following:

• Why finding a reproduction is so important

• How to exert the necessary control over your software to find one

• What makes a good reproduction and how you can close in on this

ideal through iterative refinement

2.1 Reproduce First, Ask Questions Later

Why is reproducing the problem so important? Because if you can’t,

then it’s almost impossible to make progress. Specifically:

• The empirical process relies upon our ability to watch the software

executing in the presence of the bug. If we can’t get the software to

misbehave in the first place, then this, the most powerful weapon

in our armory, is lost.

• Even if you do somehow manage to come up with a theory about

why the software might be misbehaving, how are you going to

prove it if you can’t reproduce the problem?

• If you think that you’ve implemented a fix, how are you going to

demonstrate that it really does fix the problem?

REPRODUCE FIRST, ASK QUESTIONS LATER 24

Not only is it critical to reproduce the problem, but it’s critical that this

is the first thing you do. If you start modifying the source code before

you’ve managed to reproduce the problem, the changes you’ve made

might mask it or introduce some other problem.1

So, how exactly do you go about this crucial stage of debugging?

Start with the Obvious

The first thing to try is simply following the steps described (or implied)

by the bug report.

This holds true even for a one-line bug report. I’ve seen developers reject

(as “needs more info”) a bug report like “Crash on canceling the change

password dialog box,” without even trying to reproduce it. We’ve all been

frustrated by bug reports that don’t include vital information, but some

bugs simply don’t depend upon which operating system you’re running,

the software’s current configuration, what else you were doing at the

time, or any of the other boilerplate information your bug report tem-

plate includes. Try opening the change password dialog box and then

hitting Cancel—chances are that the software will crash and you can

start your diagnosis without bothering the user for further information.

And even if it doesn’t, it’s not as if you’ve wasted much time.

If this simplistic approach doesn’t bear fruit, then the nature of the bug

will provide you with good clues about what to try next.

Targeting Your Effort

Successful reproduction is all about control. If you control all the rele-

vant variables, you will reproduce your problem. The trick, of course, is

identifying which variables are relevant to the bug at hand, discovering

what you need to set them to, and finding a way to do so.

As a developer, your situation is different from your users’. You’re work-

ing with the very latest source code, whereas they’re likely to be run-

ning something compiled several weeks, months, or even years ago.

Your configuration will be different, as will your network environment,

the peripherals you’re using, and so on. One or more of these differ-

ences are what is stopping the bug from reproducing—your first task,

therefore, is to identify and eliminate those differences.

1. This is analogous to the rule in test-first development that you shouldn’t write any

new code until you have a failing test. In this case, your “failing test” is the reproduced

bug.

CONTROLLING THE SOFTWARE 25

A huge number of things could potentially affect the behavior of your

software. In most cases, few of them will actually be relevant. How do

you know which to concentrate on first?

The things you need to control break down into three areas:2

The software itself:

If the bug is in an area that has changed recently, then ensuring

that you’re running the same version of the software as it was

reported against is a good first step.

The environment it’s running within:

If interaction with an external system (some particular piece of

hardware or a remote server perhaps) is involved, then you prob-

ably want to ensure that you’re using the same.

The inputs you provide to it:

If the bug is related to an area that behaves very differently

depending upon how the software is configured, then start by

replicating the user’s configuration.

In the following sections, we’ll look at each of these areas in more detail.

2.2 Controlling the Software

If you can’t immediately reproduce the bug with the latest source code,

instead of whatever version the user is running, then it’s possible

that this is because it has already been fixed. You can’t assume that,

however—it’s just as possible that the bug is still there but in a sub-

tly different form. You can be certain only after you’ve completed your

diagnosis, which starts by finding a reproduction.

Simply compiling from the same source doesn’t guarantee that you will

be running the same object code. You also need to ensure that you use

the same compiler, configured in the same way, and the same runtime,

libraries, and any third-party code that is integrated with your software.

Of course, using the same tools gets you nowhere if you don’t use them

in exactly the right sequence and with the same configuration as the

software was originally built with. The best way to ensure that you do

2. The boundaries between these areas are somewhat fuzzy—one person’s environment

is another’s input. Don’t get too hung up on this. It doesn’t matter how you categorize

what you need to control, only that you successfully control it.

CONTROLLING THE ENVIRONMENT 26

is to create an automated build process, something we’ll discuss in

more detail in Section 9.3, Automatic Builds, on page 149.

2.3 Controlling the Environment

What constitutes your software’s environment depends on what kind of

software it is. For traditional desktop software, the operating system is

probably most relevant. For web software, it’s the browser. For network

software, it’s the other software you’re communicating with, and for

embedded code, it’s the hardware you’re interfacing with.

Despite these differences, the key in all cases is first knowing what

environment the bug manifests in. We’ll discuss how to achieve that in

Section 6.1, Environment and Configuration Reporting, on page 98. You

then need convenient access to all the possible environments so that

you can test in whichever is relevant.

Some of us are lucky enough to work in a development environment

that is the same as (or similar enough to) the production environ-

ment. This means that we can probably reproduce problems easily on

our development machine (and conversely, if everything works on our

development machine, we can be pretty sure that it will work when

deployed). But if you’re targeting multiple platforms, writing embedded

software, or developing on a laptop but hosting on a server, then you’re

going to have to find some way to replicate a production environment.

Reproducing different environments used to be a logistical nightmare—

it wasn’t unusual for software development houses to have entire rooms

filled from floor to ceiling with different makes and models of comput-

ers so that every variation of hardware and operating system was avail-

able. Two things have helped immeasurably with this issue. The first

is hardware abstraction—the days in which the graphics card in your

computer might significantly affect your software’s behavior are thank-

fully long gone.3 The second is virtual machines—it’s now possible to

run many different operating systems and configurations on a single

computer simultaneously, with very little effort indeed. This is of obvi-

ous use if you’re working on cross-platform software, but it can also be

helpful in a wide range of other circumstances.

If you’re writing web software, for example, the chances are that you’re

going to need to support a wide range of different browsers, and prob-

3. Outside of a few specialist areas such as gaming, that is.

CONTROLLING THE ENVIRONMENT 27

ably several different versions of each. The easiest way to achieve this

(particularly given the difficulty of having multiple versions of some

browsers installed on a single system) may be to have a number of

different virtual machines available, each configured with a different

operating system and browser combination.

Another example is if you’re writing software that runs on a number of

different computers simultaneously—maybe your software is deployed

to a cluster of several machines? If so, you can create a “virtual data

center” on a single development machine by running several virtual

machines in parallel.

Your software’s

environment is anything

that might affect its

behavior.

Finally, remember that the environment con-

stitutes anything that might affect your soft-

ware’s behavior. Sometimes, as the following

story shows, this can include some unlikely

suspects.

It’s the Pixies!

Dave was working on the device driver for a printer. After several weeks of

work, he decided that it was ready and handed it off to our testing guys

upstairs. Very quickly they found an intermittent bug in which spurious

horizontal lines appeared in the output.

Try as hard as he might, Dave couldn’t reproduce the problem. He printed

page after page, with not a single failure. We started looking for

differences between the test and development environments, but nothing

we tried worked. This included shipping the entire test system

downstairs. We picked up a system that reproduced the problem and

carried it down a flight of stairs—after which it behaved itself perfectly.

This was the point when Dave suggested that the bug was caused by a

clan of pixies who lived upstairs and got their kicks from interfering with

printer innards. His theory turned out to be surprisingly close to the

truth.

Our office was a very nice old stately home in the middle of the

Cambridgeshire countryside. It was a lovely place to work, but it had its

downsides. One of these downsides was that the wiring, although not

quite as old as the building, was older than most of the people working in

it. It turns out that the power upstairs wasn’t very well conditioned, and

these random fluctuations were enough to cause timing differences with

the results we observed.

CONTROLLING INPUTS 28

2.4 Controlling Inputs

Your software’s inputs may be files on disc, sequences of user interface

operations, or responses from third-party servers or hardware. What-

ever form they take, the key is to first identify them so that you can

then replay them exactly.

If you’re lucky, the relevant inputs will be specified in the bug report,

but this isn’t always the case. It may be obvious to you that a bug

report needs to enumerate every step involved, but your customers are

unlikely to realize the importance of doing so. Or they may allow their

preconceptions about how the software works (which may bear very

little resemblance to what really goes on under the hood) to color their

description.

Even if the user has conscientiously reported everything they did, it still

may not be enough. Often the important details simply aren’t obvious or

even available to the end user. The bug might depend upon subtleties

of timing, for example, or receiving certain input from a third-party

system behind the scenes.

If you don’t have all the information you need, you have two choices.

You can either infer what the inputs might be or record them.

Inferring Inputs

The starting point for inferring the right inputs to reproduce the prob-

lem is to assume that the problem really does exist and then reverse

engineer the necessary conditions that would lead to that behavior.

Work Backward

Often we know what has happened, but it’s not obvious why it has

happened.

For example, imagine that we have a bug report that specifies that the

application crashed with a null dereference. We know which line of

source code the null dereference occurred on from the error message,

but we don’t know what sequence of actions led to this point.

What we can do is work backward. We can infer that if variable a is

null there, then that must mean that a nonexistent item identifier was

passed to method b(), which in turn means that action c must have

been invoked with a particular kind of input. . . .

CONTROLLING INPUTS 29

If you are lucky, this kind of logic will lead directly to a reproduc-

tion. Even if it’s not entirely conclusive, however, it can still provide

clues that can be used together with additional evidence to eliminate

possibilities.

Explore the Landscape

Even if the sequence of inputs in the bug report don’t reproduce the

problem, there’s an excellent chance that something close to them will.

Perhaps some vital step is missing, or they said they clicked that button

when in reality it was this one. In that case, you can find the right

sequence by exploring those that are similar to what’s been reported.

Many of the techniques you’re familiar with from testing will serve you

well here, in particular boundary value analysis and branch coverage:

Boundary value analysis:

Experience shows that the boundaries between input ranges are

where errors are most likely to show up. If your software should

do one thing when given a number up to 10 and do another thing

when given 11 or more, then there’s an excellent chance that giv-

ing it 10 or 11 will show up bugs. Other common boundary con-

ditions are zero-length inputs or the point at which something

changes from positive to negative.

Branch coverage:

Branch coverage is the white-box equivalent of boundary value

analysis (a black-box technique).4 If you’re unable to reproduce a

problem with a particular sequence of inputs, try creating inputs

that exercise different code branches in the same area.

Effectively identifying input sequences that reproduce a problem can

require a shift of mental gears—you’re not trying to prove that the sys-

tem works; you’re trying to prove that it’s broken.

There Are Other Directions?

In The Pragmatic Programmer [HT00], Andy Hunt tells the story of a

colleague who was struggling to reproduce a problem in a graphics

application. The bug report said that the software crashed whenever a

stroke was drawn with a particular brush, but he insisted that everything

worked just fine.

4. Black-box techniques derive test cases without knowledge of the internals of the sys-

tem under test. White-box techniques, by contrast, make use of our knowledge of how

the system itself is constructed to create test cases.

CONTROLLING INPUTS 30

After several days and with tempers fraying, they eventually worked out

that whenever he “tested” the brush, he always drew a stroke from bottom

left to top right (in other words, increasing both x- and y-coordinates). As

soon as he tried a stroke in another direction, the application misbehaved

on cue.

Force Error Conditions

It’s human nature to focus on the “happy path” when writing code. We

have a particular goal in mind and tend to concentrate on achieving

it, without worrying about all the ways in which things could go wrong

along the way. Couple that with the fact that testing error conditions

can be tricky, and the result is that error conditions can be a rich

source of bugs.

When trying to reproduce a problem, consider whether there’s some

error condition that could manifest somewhere in the middle of the

process, and explain why the problem occurred. Then work out how

you can either force that error condition to manifest or simulate it, and

see whether that gives you your reproduction.

Introduce Randomness

One way to explore a range of different inputs is to introduce some

random variability into the equation. If you’re looking for a bug that

seems to depend upon the exact details of timing, then introducing

random variations into that timing is likely to increase the chances of

the bug manifesting, for example.

Fuzz testing involves providing random data (fuzz) to a program,

and a fuzzer automates the process (see Section A.4, Testing Tools,

on page 199). Fuzzers create fuzz data through either generation or

mutation:

Generation: Generational fuzzers build input based upon a data model,

either from scratch or by combining existing data in interesting

ways. This data model encodes an understanding of the soft-

ware being tested in order to increase the chance of discovering

problems.

Mutation: Mutating fuzzers start from a known-good template that is

then modified according to a set of rules. Again, these rules are

constructed in such a way as to increase the chance of the result-

ing input uncovering problems.

CONTROLLING INPUTS 31

A crucial feature of all fuzzers is that they can re-create any of the

input they generate so that if a problem does come to light, it can be

reproduced at will.

When working through the process of inferring the inputs necessary to

reproduce a problem, keep in mind that you need to verify your conclu-

sions against the bug report. Just because you’ve found a way to cause

the software to misbehave doesn’t mean that you’ve found the one that

the bug report is referring to (although you clearly have found a bug

that you should fix).

Recording Inputs

An alternative to trying to infer the right inputs to reproduce the prob-

lem is to directly record them through logging. If your software already

has built-in logging, this may simply be a case of asking the user to

switch it on and send you the results. Alternatively, you may have to

ship them a custom build of the software or some other logging solution

(such as a debugging shim or proxy). Whichever solution you decide to

use, seeing exactly what the user is really doing can be worth its weight

in gold.

Logging

At its simplest level, capturing logging is simply a question of strategi-

cally placing calls to System.out.println() or similar throughout the code.

And indeed this simplistic approach might be all you need. If your log-

ging requirements are at all complex, however, you should consider

using one of the many logging frameworks available (see Section A.3,

Logging, on page 198).

A logging framework provides you with a great deal of useful function-

ality for free:

• The ability to switch logging on or off in particular areas as needed.

• Different log levels, allowing you to fine-tune the amount of logging

generated. During normal operation, maybe you record only those

occasions where the software hit a fatal error or just the headlines

of what the software is up to without any of the detail. But when

you need to, you can increase it to generate more detail, perhaps

even to the extent of creating a detailed trace of exactly which

functions were called when and with what parameters.

CONTROLLING INPUTS 32

• Log messages that can be decorated with useful information such

as which log level or module the message is associated with or

even the exact source file line number.

• Standard tools to help analyze log files.

• Automatic logging of certain events, like unhandled exceptions.

What does using a logging framework look like in practice? Here’s an

example of a Java class that uses the java.util.logging framework:

import java.util.logging.Logger;

public class Dispatcher {
Ê private static final Logger log = Logger.getLogger(Dispatcher.class.getName());

public static void dispatchLoop() {

while(true) {

try {

long start = System.currentTimeMillis();

Item item = WorkQueue.getNextItem();
Ë log.fine("Processing item: " + item);

item.process();

long timeInMillis = System.currentTimeMillis() - start;
Ì log.info("Processing " + item + " took " + timeInMillis + "ms");

} catch(Exception e) {
Í log.severe("Unhandled exception: " + e);

}

}

}

}

At Ê, we create a Logger instance, passing it the name of our class.

Not only does this automatically annotate our log messages with the

class name, but it also enables us to control messages generated here

independently of other logging elsewhere. And then at Ë, Ì, and Í, we

generate messages at different log levels (FINE, INFO, and SEVERE, respec-

tively). Which of these is actually output will depend on how we have

things configured—perhaps normally we output only messages at level

WARNING and above, but when we’re trying to debug a problem, we

reduce that level to FINEST?

Although we’ve been discussing logging in the context of accurately

identifying the inputs used to reproduce a problem, it can be helpful in

a wide range of other circumstances, as the following story shows.

CONTROLLING INPUTS 33

Joe Asks. . .

Should I Leave My Logging in the Code?

Some topics are guaranteed to create an argument among
developers, and logging is one of them.

If you’ve added logging to the code to help while tracking
down a problem, it’s tempting to leave this instrumentation
in place so that you can find the problem again quickly if it
happens again. This is especially true if you’re using a logging
framework that allows it to be enabled and disabled easily.
What’s not to like?

So, why the controversy? Detractors will tell you the following:

• Logging obscures the code, making it difficult to see the
wood for the trees.

• Logging can suffer from the same problems as
comments—as the code evolves, often the logging
isn’t updated to match, meaning that you can’t trust
what it says and making it worse than useless.

• No matter how much logging you add, it’s never what you
need. The next time you find yourself debugging in that
area, you’ll just have to add more, and if you leave it in
the code when you’re done, you just exacerbate the first
two problems.

As with most disputes of this nature, the answer is to be prag-
matic. Logging is a useful tool, but it can be overused. Consider
implementing permanent logging if you believe that it will add
value, but be disciplined about how you do so. Make sure that
your logging is up-to-date and agrees with the code and that
you don’t add it for its own sake.

As a general rule, the most useful logging is at the highest
(strategic) level—a record of what happened, such as the
access log generated by an HTTP server, for example. Lower-
level, more tactical logging can be of questionable long-term
value, so make sure you know what it’s giving you before you
decide to add it.

If you find that logging is getting in the way but you don’t want
to lose its benefits, you might want to look at aspect-oriented
programming, which may give you a way to separate it from
the main body of the code (a good reference is AspectJ in
Action [Lad03]).

CONTROLLING INPUTS 34

The Ticking Time Bomb

While I was writing this chapter, we experienced a hardware failure on the

server cluster hosting one of our applications—a SAN system suddenly

marked all its drives as bad. We were fairly sure that the problem wasn’t

that all the drives had simultaneously failed, so clearly there was a

problem with the SAN system itself.

Happily, the system in question kept a log, which the vendor was able to

use to identify a timing window that arose once every 49.7 days. Within

three days of the outage, they had diagnosed the problem and

implemented a patch. Without the logging, all they would have had to go

on was a mysterious failure. They would have had to spend a great deal of

time trying to reproduce it (at least 49 days until the window opened

again, and probably longer, because there was no guarantee that it would

happen even then). By capturing key details of the inputs being received

by the system and its internal state, they were able to short-circuit this

whole process and implement and install a fix long before our system

became vulnerable for a second time.

External Logging

Adding logging directly into the software isn’t your only choice. You can

also obtain a great deal of useful information from outside the software

by intercepting traffic between it and elsewhere.

If, for example, your software communicates with another system over

the network, you can insert a proxy in between the two systems, as

shown in Figure 2.1, on the following page. If a proxy doesn’t exist

for the protocol that you’re using or you can’t find a way to configure

things so that the proxy can intercept traffic, you can consider using a

network analyzer to capture all network traffic. You can find pointers

to both of these tools in Section A.4, Other Tools, on page 199.

This approach isn’t restricted to network communication. If your soft-

ware communicates with a third-party library through an API, you

might be able to intercept this communication by creating a shim that

sits between your software and the library.5 The shim links to the

library and exports an identical API, forwarding all calls verbatim while

logging.

5. In engineering, a shim is a thin piece of material used to fill the space between objects.

In computing we’ve borrowed the term to mean a small library that sits between a larger

library and its client code. It can be used to convert one API to another or, as in the case

we’re discussing here, to add a small amount of functionality without having to modify

the main library itself.

CONTROLLING INPUTS 35

Client Server

Client Server
Logging
Proxy

Log File

Production:

Debugging:

Figure 2.1: Logging proxy

You might also find that the systems you’re integrating with already

provide more than enough support in this area. If you’re writing a web

application, for example, your application server will almost certainly

already implement detailed and comprehensive logging.

Load and Stress

Some bugs manifest only when the software is under some kind of

stress. This may be because of what the software itself is having to

do (handle a large number of simultaneous requests, for example, or

particularly large data sets). Or it may be because of something within

the environment (high levels of general network traffic, say, or restricted

free memory).

For obvious reasons, it can be difficult to reproduce this kind of load to

debug such a problem—not many of us have testing departments with

thousands of people on standby to replicate periods of heavy use.

REFINING YOUR REPRODUCTION 36

A load-test tool executes a script that simulates a more-or-less real-

istic usage pattern. It can be configured to create as many concur-

rent sessions (possibly running on multiple client machines if a single

client doesn’t suffice) as you need to replicate whatever level of load you

need.6

The issue with load-test tools is normally finding a way to get them

to duplicate realistic load. It’s easy to create a large number of simple

interactions, but that may not generate load that is realistic enough to

replicate the problem you’re trying to debug. One way to address this is

to use logging to record real usage and then use your load testing tool

to replay it.

Stress-testing tools are similar, except they generate load indirectly.

You might use one to allocate and deallocate lots of memory while your

software is running, for example, or to consume lots of CPU time.

You can find pointers to some popular load testing tools in Section A.4,

Testing Tools, on page 199.

Reproducing the problem once is an important hurdle—there’s now no

doubt that you’re chasing a real bug, and you’ve made a significant step

on the path to diagnosis. But there are helpful and less helpful ways to

reproduce the bug. In the next section, we’ll look at how to refine your

reproduction and make it as effective as possible.

2.5 Refining Your Reproduction

Any means of reproducing the problem at all is better than none. But

you’re aiming for a reproduction that is both reliable and convenient.

You’re going to have to use it over and over again during diagnosis, so

you need to be able to do so on demand and with minimal effort.

Minimizing the Feedback Loop

When running experiments to track your bug down, it’s important that

these experiments are as efficient as possible. A completely reliable

reproduction that takes more than an hour to run, or requires you

to perform 50 different actions in the right sequence, is not efficient.

6. The recent availability of cloud computing platforms, of which Amazon’s Elastic Com-

pute Cloud (EC2) is probably the best known, has made access to a large number of

clients for load and stress testing much more convenient than it used to be.

REFINING YOUR REPRODUCTION 37

You want to be able to

run lots of experiments

quickly.

What you’re aiming for is the shortest

and least error-prone edit-compile-execute-

reproduce cycle you can create. You want to be

able to run lots of experiments quickly so that

you can understand all aspects of the problem

(and eventually test possible solutions) as thoroughly as possible.

As with so many other areas of software development, it’s all about

minimizing the feedback loop. The shorter the loop, the more timely

and relevant the feedback.

In the absence of a short cycle, there is a real danger that you will

find yourself tempted to make several changes at a time—as we will see

when we come to discuss diagnosis, multiple simultaneous changes

lead to all sorts of problems.

As Simple as Possible

Aim for a minimal

reproduction.

It’s unlikely that the first reproduction you

discover will be minimal. In other words, it’s

probably more complicated than it needs to

be. Your first concern, therefore, is to find out

which aspects of the reproduction are unnecessary and can be dis-

carded.

For example, imagine that your software reads XML files, and you’ve

determined that it crashes when reading a particular file containing

100 tags. There’s an excellent chance that you don’t need to read the

entire file to reproduce the problem. If it crashes on one particular tag,

perhaps you need a file containing just that single tag? Or just the few

tags surrounding it?

It may not be that simple—there may be something earlier in the file

that sets up the right context or that tag to subsequently invoke the

bug. Nevertheless, you may find that large swathes of the file can be

deleted.

Your intuition is often a good guide to which elements of a reproduction

can be discarded. You understand your software and know which mod-

ules are likely to be affected by a particular piece of input and which

aren’t. If intuition fails, however, less direct approaches can be surpris-

ingly effective.

Imagine that you’re faced with a 100-line input file and it’s not clear

which line of the file invokes the bug. Try simply deleting the last half

REFINING YOUR REPRODUCTION 38

Automatically Minimizing Input

It turns out that minimizing the input required to reproduce a
bug can be automated. Andreas Zeller discusses one way of
achieving this (by automating a binary chop) in Beautiful Code:
Leading Programmers Explain How They Think [OW07].

Personally speaking, I’ve never seen this kind of approach used
in the wild, but it is very cute. And perhaps it points to a fertile
area for future tool support?

of the file, and see whether it still reproduces the problem. If it does,

you’ve restricted the problem to the first half. If not, try deleting the first

half; you may find that the second still invokes the bug. A few iterations

of this, and you can quickly reduce the file to a handful of lines. The

same approach can be applied to any kind of input (actions performed

via the UI, responses from hardware, and so on).

This approach is one particular instance of binary chop, a search algo-

rithm that turns out to be very useful in a wide range of debugging sce-

narios. We’ll talk about it further in Section 3.2, Divide and Conquer,

on page 58.

Youthful Exuberance

In between my degree and PhD research, I was lucky enough to be able to

spend a summer internship at Microsoft within the compilers and tools

team. I was working on the CodeView debugger and in the process

discovered a bug in the then-unreleased version of the C compiler.

Thinking that I was being conscientious and helpful, I submitted a bug

report in which I included the complete preprocessed output of the source

file (several thousand lines by the time all of the #include directives had

been processed).

A week or so later, the bug was closed as a duplicate, with a terse

message from the developer who’d worked on it saying that after he’d

whittled the several thousand lines down to the essential ten, it was

obviously a duplicate of a bug that had been reported a few weeks earlier.

A little more effort from me to make sure that my report was minimal

would allowed me to have spotted the duplicate and save a colleague, with

little spare time, a lot of work.

REFINING YOUR REPRODUCTION 39

Don’t get too disheartened if you can’t find a means of minimizing your

reproduction. Sometimes it really is irreducible, and on other occasions

even though it could be simplified, you need to gain some insight into

the problem before you can do so. As we’ll discuss later, refining your

reproduction isn’t a one-time-only thing but something to keep in mind

throughout diagnosis.

Minimize the Time Required

Some bugs just take time to reproduce—it’s not what you do so much

as how long you do it for. An example might be a web app that crashes

after handling a few thousand requests. More often than not, this kind

of problem turns out to be a resource leak of some variety (memory, file

handles, or similar).

If you suspect this might be what’s up, there are several approaches you

might take to make it happen earlier. Most obviously, you can restrict

the quantity of whatever resource is running out, either directly or by

modifying the code to allocate a fair chunk of it during startup so that

there’s less left during normal operation. Alternatively, you can fake the

resource running out, perhaps by replacing the function that allocates

it with one that pretends to fail at the appropriate point.

Make Nondeterministic Bugs Deterministic

Part of the beauty of software is that it’s deterministic—the computer

does exactly what you tell it to do, and, given the same starting point, it

will do exactly the same thing every time. Nevertheless, anyone who has

developed software for any length of time will have come across nonde-

terministic software where—as far as you can tell—you do the same

thing every time, but sometimes it behaves in one way, and sometimes

another.

Nondeterminism can

have only a few causes.

So, where does this nondeterminism come

from? Well, it certainly isn’t cosmic rays flip-

ping bits at random (no matter how many old

programmers’ tales you hear). Nondetermin-

ism can have only a few causes:

• Starting from an unpredictable initial state

• Interaction with external systems

• Deliberate randomness

• Multithreading

We’ll consider each of these in turn.

REFINING YOUR REPRODUCTION 40

Joe Asks. . .

Why Are Nondeterministic Bugs a Problem?

Imagine that you are dealing with a bug that you can repro-
duce only every other time you try. You think that you’ve just
implemented a fix. But because your reproduction is intermit-
tent, you can’t simply test your fix and infer that if the bug
doesn’t manifest, then it’s good, because it might be simple
chance that the bug didn’t occur that time. Each time you
try, you increase your confidence, but you can never be com-
pletely certain that you’ve fixed it.

If working out whether you’ve fixed an intermittent bug is diffi-
cult, then diagnosing one is even worse. Every time you run an
experiment, you’re not sure whether you’re observing a run that
is going to fail or one that isn’t. This makes it very difficult to make
progress. It’s incredibly easy to get confused, draw broken infer-
ences, and reach erroneous conclusions. On top of which, it’s
just plain frustrating!

Starting from an Unpredictable Initial State

This is normally a problem only if your software reads from uninitial-

ized memory. Modern operating systems that always initialize memory

before making it available, and modern languages that make it impossi-

ble to use memory without initializing it first, mean that this is a much

less important source of nondeterminism than it used to be. C/C++

programmers running in certain environments will still have to worry

about this, however. And even if your code is written in Java, you may

well find yourself interfacing with third-party systems that have this

issue, so you can’t ignore it entirely.

If you have reason to believe that this might be the source of your

nondeterminism, your best bet is probably using a debugging memory

allocator (see Section A.3, Debugging Memory Allocators, on page 197)

to force memory to be initialized to a well-known value, or a memory

integrity checker (see Section A.4, Runtime Analysis Tools, on page 200)

to detect references to uninitialized memory.

REFINING YOUR REPRODUCTION 41

Interaction with External Systems

Often nondeterminism arising from interaction with an external sys-

tem doesn’t arise because it does something differently but because

of subtleties of timing. Because it isn’t running in lock-step with your

software, sometimes its input will arrive when your software is in one

state and sometimes when it’s in another.

If you’re faced with this issue, the trick is to control exactly what arrives

from the external system and when. To this end, your best bet is prob-

ably not trying to control the external system directly but to replace it

with something that you can control, such as a debugging subsystem

or a test double (we’ll discuss test doubles in Section 9.1, Mocks, Stubs,

and Other Test Doubles, on page 143).

Deliberate Randomness

Randomness forms an intrinsic element of some software—games that

deal cards, for example, or security software that generates random

keys. It should come as no surprise that software that deliberately

incorporates randomness behaves nondeterministically.

Luckily, most so-called random numbers used by software aren’t really

random at all but instead are pseudo-random numbers generated by a

deterministic algorithm that does a good job of appearing to be random.

They have the very useful property that if you set the seed (a value used

to initialize the random number generator) to a known value, you’ll

always get the same sequence of numbers from the random number

generator (and, therefore, completely predictable behavior).

Multithreading

Nondeterminism arising from multithreading can be especially difficult

to deal with. On a single CPU, one thread can interrupt another at just

about any point, and in these days of multicore systems, more often

than not we’re dealing with genuine concurrency.

If it’s possible and you can still reproduce the problem that way, the

simplest solution is often to run the software without any threading

at all. If not, then you need to think about ways to force the soft-

ware to context switch under your control, rather than at the whim

of the scheduler. How easy this will be depends on how your software

is designed and whether you’ve built such control in.

In the absence of a structured means of controlling concurrency, you’re

going to have to fall back on a more ad hoc approach. To that end, one

REFINING YOUR REPRODUCTION 42

of the most useful tools at your disposal is the humble sleep() method,

which allows you to force a thread to wait long enough to force a race

condition (behavior that depends critically upon the precise sequence

or timing of events) to occur.

For example, imagine that you’re working on software in which multiple

worker threads process work items in parallel (a common pattern in

multithreaded software). Workers obtain work items with the following

Java code:

if(item = workQueue.lockWorkItem()) {

item.process();

workQueue.writeResultAndUnlock(item);

}

You are trying to track down an intermittent bug in which it appears

that occasionally the same work item is given to two workers simul-

taneously. Unfortunately, it happens only rarely. You can increase the

chance of reproducing the problem by modifying the code as follows:

if(item = workQueue.lockWorkItem()) {
Ê Thread.sleep(1000);

item.process();

workQueue.writeResultAndUnlock(item);

}

The call to sleep() at Ê greatly enlarges the window during which the

race condition can occur, making it much more likely to happen.

Note that although sleep() can be useful during reproduction or diagno-

sis, it is almost never the right tool to use when fixing a bug. We’ll look

at this in more depth in Section 8.3, Concurrency, on page 126.

Automate

Automating the steps necessary to reproduce a bug both speeds the

process up and decreases the chance of making a mistake. The more

complicated the reproduction, the greater the benefit, but it’s worth

considering even for relatively simple cases.

Automating with Tests

Perhaps the most fruitful avenue to explore is your automated test

framework (assuming that you have one). A custom test is not only

convenient to run but can also be an excellent starting point for the

tests that you’re going to end up writing when diagnosis is over and

you start working on the fix.

REFINING YOUR REPRODUCTION 43

Client Server
Logging
Proxy

Log File

Record:

Client

Replay:

Emulated
Server

Log File

Figure 2.2: Replaying from a log file

Alternatively, if your reproduction requires a long sequence of user

interface actions, you might consider using one of the user interface

test tools referenced in Section A.4, Testing Tools, on page 199.

Replaying Log Files

If you’ve identified your reproduction via logging, then you have another

option—replaying the log file. In Figure 2.1, on page 35, we showed

how a logging proxy can be used to record the interactions between the

software you’re trying to debug and a third-party server. In Figure 2.2,

we can see that an emulated version of the third-party server, which

reads from that log, can be used to re-create the same sequence of

operations at will.

REFINING YOUR REPRODUCTION 44

Start

Find a

reproduction

Use reproduction

to learn lessons

Found the

problem?

Stop

Use new knowledge to

refine reproduction

No

Yes

Figure 2.3: Refining your reproduction

Iterate

As you work your way through diagnosis, you build up more and more

information about how and why the software is behaving as it is. You

can and should use this information to continually refine your repro-

duction, as shown in Figure 2.3.

Imagine, for example, that you initially reproduce the problem by pro-

viding a large input file to your application. Your initial attempts to

minimize the size of this file were unsuccessful, and (even worse) the

WHAT IF YOU REALLY CAN’T REPRODUCE IT? 45

bug occurs only one time in three. You might iteratively refine your

reproduction as follows:

1. You determine that one particular module is involved, which

allows you to pinpoint a particular element of the file that invokes

the bug. This allows you to create a much smaller file.

2. As your diagnosis proceeds, you discover that you can force

the problem to occur every time by replacing a subsystem that

communicates with a third-party server with a stub that simply

returns a canned response.

3. Finally, you track the problem down to a particular function and

create a unit test that reproduces it by calling that function with

a specific set of arguments.

Part of the art of good debugging is to always be on the lookout for

opportunities to make life simpler for yourself like this.

2.6 What If You Really Can’t Reproduce It?

Occasionally, no matter how hard you try, you simply find yourself

unable to reproduce the bug you’re chasing. So, what to do?

Does It Really Exist?

One possibility, of course, is that you’re chasing a chimera and the

bug doesn’t really exist. If you have good evidence to support this, fine.

But be careful that you really have exhausted all the avenues available

to you—in my experience, we software developers tend to reach this

conclusion too readily.

If you do decide to close the bug as “needs more info” or “works

for me” (or whatever the equivalent status is in your bug-tracking

system), don’t simply stop there. Users don’t (normally) report bugs

maliciously. There’s a good chance that something has gone wrong

for them. Perhaps they haven’t explained it as clearly as they might

have done or have misunderstood some aspect of the software. Take

the time to describe what you have done and identify any additional

information that might help you get to the bottom of what they’re really

experiencing.

WHAT IF YOU REALLY CAN’T REPRODUCE IT? 46

Work on a Different Problem in the Same Area

Are there any other bugs that you can reproduce in the same area? If

so, even if they aren’t (on the face of things) as serious or as urgent

as the one you’re currently chasing, it might be worth attacking them

instead. There are two reasons why this might help.

First, this can be a good way to tidy up the code in the area. You may

find that the problem you were really looking for was being masked by

other issues. Get them out of the way, and you can see what you were

originally looking for more clearly.

Second, working on a problem that you can reproduce is an excellent

way of gaining a better understanding of the code in general. There’s an

excellent chance that this increased understanding will provide some

insight that will enable you to find the key to reproducing the problem

you originally started looking for.

And even if none of this helps, the worst that happens is that you end

up fixing a few less urgent bugs.

Get Others Involved

We developers can easily develop blind spots. We necessarily have a dif-

ferent perspective from our users, and that can mean we miss impor-

tant information that would be obvious to someone who understands

things from their point of view. Furthermore, our focus tends to be

on working out how to make the software work, not proving that it’s

broken.

To that end, it can help to bring in someone who can attack the problem

from an alternative direction. Your customer support team, for exam-

ple, is likely to have a good understanding of your users. And your test

team’s entire raison d’être is finding ways to prove that the software is

broken.

If you can, the best person to talk to is whoever reported the bug in the

first place. We’ll discuss this further in Section 6.2, Working with Users,

on page 100.

Leverage Your User Community

If the bug manifests in the wild but not in your development system,

you might be able to get your users to gather the information you need.

This is far from an ideal situation because:

WHAT IF YOU REALLY CAN’T REPRODUCE IT? 47

• You’ll need to find some way to get instrumented versions of the

software to these users.

• It works only with some user communities—they will need to be

prepared to go to some trouble to help you out and may need to

be reasonably technically competent.

• The iteration length, from you deciding what information you need

to gather to receiving it back from the field, is much longer than

you would prefer.

But if your situation allows you to consider this, it can be very effec-

tive. This approach is particularly worthwhile if you’re working on open

source software because open source user communities can be much

more open to participating in the debugging process.

Dead Reckoning

Although the empirical approach to debugging is normally the best, it

certainly isn’t the only way to proceed. If you can’t reproduce the bug,

then a crucial tool that enables empirical debugging is missing, and

you have to explore other avenues.

One such avenue is purely logical proof of why the software is behav-

ing as it is. This is likely to be very time-consuming and may prove

intractable. But it can work where other approaches have failed.

What you’re aiming to do is to “think yourself into the software,” exe-

cuting it in your imagination. At each step, think about what could go

wrong, which might explain the bug you’re trying to track down.

Replication Woes

We were working on a web application sitting on top of a MySQL

database. MySQL provides a very useful replication feature, which we

were using to configure two servers into a master and a slave. The master

did all the work, while the slave replicated everything happening on the

master. This meant that it could be used as a hot spare if the master

failed. Life was good.

Most of the time.

Every once in a while the slave would crash with a very obscure error

message. The only way that we could resurrect the system was to

re-create the slave’s copy of the master database and reconfigure

replication from scratch. Sometimes the slave would crash within a few

days of restarting replication, and sometimes it would run for months

without a problem.

PUT IT IN ACTION 48

Clearly something was wrong, but we had no idea what it might be. We

eliminated hardware as a possible cause, because we could swap the

master and slave, and it was still the machine that was acting as the slave

that failed. We couldn’t replicate the problem in a test system—it occurred

only on the production servers, and none of the logging we put in place

gave us any insight into what was happening.

We feared that the only way that we’d be able to reproduce it would be to

buy two more servers for testing and write a very complicated test

harness that would simulate realistic load. Clearly this was going to be a

long, involved, and expensive bug to track down.

Before doing so, however, I decided to go over the scripts we were using to

create the replication relationship in detail. I sat down with a printout of

them, a copy of the MySQL documentation, and everything that I could

find via Google about ways in which MySQL replication could go wrong.

After a day of crawling through the scripts, drawing diagrams on the

whiteboard, and acting out possible scenarios with other members of the

team (“I’m the master, you’re the slave, and Thomas is going to be a

client—what happens when. . . ?”), we eventually detected a race condition

in the locking we used to ensure that we got a consistent snapshot of the

database.

Having identified it, the fix was easy, and the slave has replicated

perfectly ever since.

Happily, situations such as the previous are very rare—normally you

will be able to reproduce the problem. In the next chapter, we’ll look at

how to use that reproduction to reach a diagnosis.

2.7 Put It in Action

• Find a reproduction before doing anything else.

• Ensure that you’re running the same version as the bug was

reported against.

• Duplicate the environment that the bug was reported in.

• Determine the input necessary to reproduce the bug by:

– Inference

– Recording appropriate inputs via logging

• Ensure that your reproduction is both reliable and convenient

through iterative refinement:

– Reduce the number of steps, amount of data, or time

required.

– Remove nondeterminism.

– Automate.

Chapter 3

Diagnose
Diagnosis is the key element of debugging. This is where the rubber

meets the road and you arrive at the understanding of the root cause

of the behavior you’re seeing.

In this chapter, we will cover the following:

• The core diagnostic process

• Different types of experiment and what makes a good experiment

• Useful stratagems

3.1 Stand Back—I’m Going to Try Science

Although you’re going to be using various tools and techniques and

leveraging your software itself to help you, your primary asset is and

always will be your intellect. Diagnosis takes place within your mind,

not within your computer.

Balance creativity with

rigor.

The mind-set you need to cultivate when

debugging is similar (because the problem is

similar) to that of a detective solving a crime

or a scientist investigating a new phenomenon.

Open-minded at the same time as methodical, creative at the same time

as thorough—as with so many other aspects of software development,

effective bug fixing is all about finding the appropriate balance between

these apparently contradictory demands.

STAND BACK—I’M GOING TO TRY SCIENCE 50

The scientific method can work in two different directions.1 In one

case, we start with a hypothesis and attempt to create experiments,

the results of which will either support or refute it. In the other, we

start with an observation that doesn’t fit with our current theory and

as a result modify that theory or possibly even replace it with something

completely different.

In debugging, we almost always start from the latter. Our theory (that

the software behaves as we think it does) is disproved by an observa-

tion (the bug) that demonstrates that we are mistaken. In the words of

Thomas Huxley, “The great tragedy of Science—the slaying of a beauti-

ful hypothesis by an ugly fact.”

A Debugging Method

Having discovered that things aren’t as you believed them to be, your

task is to modify your understanding of the software until you do

understand what’s really going on. To do that, you operate in the other

of the two possible directions—create a hypothesis that might provide

an explanation and then construct experiments to test it.

So, here’s our idealized process (see Figure 3.1, on the next page):

1. Examine what you know about the software’s behavior, and con-

struct a hypothesis about what might cause it.

2. Design an experiment that will allow you to test its truth (or oth-

erwise).

3. If the experiment disproves your hypothesis, come up with a new

one, and start again.

4. If it supports your hypothesis, keep coming up with experiments

until you have either disproved it or reached a high enough level

of certainty to consider it proven.

That’s all well and good but rather abstract. How do you translate this

into action?

Different Types of Experiments

Your starting point is the reproduction we discussed at length in the

previous chapter. From that starting point, you can run several types

1. Students of the history and philosophy of science will realize that I am skating over

many subtleties.

STAND BACK—I’M GOING TO TRY SCIENCE 51

Start

Construct a

hypothesis

Hypothesis

disproved?

Construct an

experiment

No

Need more

evidence?

Yes

Yes

Stop

No

Figure 3.1: A debugging method

STAND BACK—I’M GOING TO TRY SCIENCE 52

of experiment—each of which involves changing one aspect of how you

reproduce the problem:

• You can examine an aspect of the software’s internal state (either

by instrumenting it directly or by running it under a debugger).

• You can modify some aspect of how you run the software (mod-

ified inputs, for example, or an alternative environment) and see

whether it behaves differently.

• You can change the logic encoded within the software itself and

examine the effect of that change.

Which of these you choose depends upon the nature of your hypothesis,

and making the best choice comes down to experience and intuition.

Whichever you choose, however, the most important thing to bear in

mind is that your experiment must have a clear goal.

Experiments Must Prove Something

Experiments are a means to an end, not an end in themselves. There is

no point performing an experiment unless it proves something.

What is your experiment

going to tell you?

Before investing time and effort to construct

and run an experiment, ask yourself what it’s

going to tell you. What are the possible out-

comes? If none of those outcomes would move

you closer to your diagnosis, you need to come up with a different

experiment. Beware of confusing activity with progress—if an experi-

ment cannot increase your understanding, it’s a waste of your time.

You can design experiments that are intended to prove your hypothe-

sis or to disprove it. It might seem counterintuitive, but frequently the

latter are the more useful. In part, this is because it’s difficult to incon-

trovertibly prove something (just because you see what you expect to

see doesn’t mean that you’re seeing it for the reason you think you are),

but mainly it’s a question of psychology.

If you have a plausible explanation for what’s happening, it’s very easy

to talk yourself into seeing what you want to see. Playing devil’s advo-

cate and trying to disprove your hypothesis can be very productive,

helping you spot possible holes in the explanation that you wouldn’t

see otherwise. If, after you’ve tried your hardest to disprove it, it’s still

standing at the end, then you can have a lot of confidence that you’ve

STAND BACK—I’M GOING TO TRY SCIENCE 53

nailed it. And every once in a while you will surprise yourself and find

that something very different from what you thought was happening.

One Change at a Time

One of the basic rules of constructing experiments is that you should

make only a single change at a time.

Multiple changes lead

to misleading

conclusions.

If you make a single change and see an effect,

you can be pretty certain that the one caused

the other.2 If you make more than one change,

however, it can be very difficult to be sure

which change resulted in which effect. Or the

changes may interact in unpredictable ways. At best, this might mean

that you are unable to conclude anything useful. At worst, you may

reach misleading conclusions that lead you down completely the wrong

path.

This rule applies to any kind of change—changes to the source, the

environment, input files, and so on. It applies to anything, in fact, that

might have an effect on the software.

For some reason, this principle is forgotten surprisingly frequently—I

don’t know how many times I’ve seen someone make several changes all

at once and then try to make sense of the results afterward. Although

it can seem as though you’re saving yourself time by making several

changes simultaneously, all that you really achieve is the risk of invali-

dating your results. Maintain your discipline, and avoid falling into this

trap.

Finally, once you see a change in behavior, undo whatever apparently

caused it, and verify that the behavior returns to what it was before-

hand. This is a very powerful indication that you’re looking at cause

and effect rather than serendipity.

Keep a Record of What You’ve Tried

If you find yourself working on a bug that takes days or weeks to track

down, you will end up carrying out many different experiments. Ideally,

each one will eliminate a set of possible causes, and eventually you will

zero in on the root cause.

2. Not completely certain—a changing underlying system can get in the way of this kind

of reasoning, but it’s an excellent starting hypothesis.

STAND BACK—I’M GOING TO TRY SCIENCE 54

When the diagnosis goes on this long and involves this many experi-

ments, there is a danger that you will lose track of what you’ve done.

This may mean that you waste time investigating possibilities that have

already been eliminated by previous experiments, or it could result in

you heading down a blind alley. In the worst case, it could lead you to

a broken conclusion and subsequent misdiagnosis.

Periodically review what

you’ve already tried

and learned.

The best defense is to maintain a record of the

experiments you’ve tried and what the results

were. This doesn’t have to take a long time or

include huge amounts of detail—just enough

to ensure that you don’t forget what you’ve

already done. Periodically review your notes to refresh your memory

and help you identify the most promising next steps.

Many developers find it helpful to maintain a daybook. They might use

it to record notes from meetings, design sketches, a record of the steps

necessary to install a piece of software—anything, in fact, that might

prove useful to refer to in the future. A daybook can be an excellent

place to record your experiments. Or alternatively, if you prefer to keep

your notes electronically, you might consider keeping a personal wiki.

Ignore Nothing

Occasionally you will notice odd behavior. You run an experiment,

expecting one of result A or result B, and instead get result C. Or you

work through a set of instructions about how to reproduce the bug, and

the software does something very different from what you expect.

It can sometimes be tempting to shrug it off as “one of those things” and

try a different tack. Don’t! The software is trying to tell you something,

and it’s in your interest to listen.

If something unexpected happens, it means that some assumption

you’re making is broken. This might be an assumption about how the

software should behave, what the bug you’re trying to hunt down is,

how you’ve constructed your experiment, or anything else. If you have

a broken assumption, then the most valuable thing that you can do is

to stop, identify, and fix it. If you don’t, then all bets are off, and you

can’t trust any conclusions you reach.

This kind of thing can turn out to be a blessing in disguise—a shortcut

to what’s really going on. Getting to the bottom of unexpected behavior

can save you a huge amount of wasted time chasing will-o’-the-wisps.

STAND BACK—I’M GOING TO TRY SCIENCE 55

Joe Asks. . .

How Else Can a Daybook Help When Debugging?

As well as maintaining a record of your experiments, a daybook
can also be useful for the following:

• Writing out hypotheses. Getting things onto paper can
help identify flaws in assumptions, especially when the
hypothesis is complex.

• Keeping track of details such as stack traces, argument
values, and variable names. Not only does this help with
finding things again, but it also helps you communicate
with colleagues when explaining the problem, avoiding
the need to rely upon memory.

• Keeping a list of ideas to try. Often you will notice some-
thing else you want to investigate, or a possible follow-
up experiment will occur to you, but you don’t want to
abandon the current experiment to pursue it. A “to-do”
list ensures that you don’t forget to come back to it later.

• Doodling when you need to take your mind off the
problem.

Anything that you don’t

understand is potentially

a bug.

Even if the odd behavior you notice doesn’t

have any bearing on the problem at hand, the

fact that you’ve discovered something unex-

pected is valuable. Anything that you don’t

understand is potentially a bug. Once you’ve

demonstrated to your satisfaction that it isn’t relevant to what you’re

working on, feel free to put it aside, but don’t forget about it. Keep a

record (file a bug report perhaps) and come back to it. Often things dis-

covered in passing like this prove to be real issues that need fixing. And

you would much rather fix them having discovered them this way than

wait until they’re reported by an irate customer.

Sneaky!

I was crawling through yesterday’s server log file gathering evidence that

would help me diagnose the problem I was working on. In passing, I

noticed that one of our users seemed to be having connection

problems—he was logging out and then back in over and over again.

STRATAGEMS 56

This had nothing whatsoever to do with the problem I was chasing, and I

very nearly let it pass. Connection problems aren’t that unusual, after all.

But something didn’t feel right—the pattern was too regular. My “spidey

sense” was tingling.

Sure enough, it turns out that the user in question had found a sneaky

way to bypass one of the security mechanisms implemented by the

software (which rationed how much of a certain resource each user could

consume). By logging out and then immediately back in again, he could

reset his quota. It was an easy bug to fix now that we knew about it.

3.2 Stratagems

Although every bug is different, certain techniques and approaches

have repeatedly proven their value in tracking down a wide range of

problems. They won’t suffice for every problem you find yourself faced

with, but every programmer should have them at their fingertips.

Instrumentation

Diagnosis is all about information—divining precisely the state of, and

the execution path taken by, the software. Although there are many

ways through which you can either infer or derive this information,

by far the simplest and most direct is adding instrumentation to the

software itself.

Instrumentation is code that doesn’t affect how the software behaves

but instead provides insight into why it behaves as it does. In the pre-

vious chapter, we already discussed the most common and important

type of instrumentation, logging. Possibly the oldest debugging tech-

nique is adding ad hoc logging to the code3 in order to confirm or refute

our beliefs about what it’s doing.

The full facilities of the

language are at your

disposal.

Instrumentation isn’t limited to simple output

statements, however—you have the full facil-

ities of the language at your disposal. You

can collect and collate data, evaluate arbi-

trary code, and test for relevant conditions—

the only limit is your imagination.

3. Often called printf() debugging after the C function of the same name.

STRATAGEMS 57

Beware of Heisenberg

One of the lessons of quantum physics is that the act of observ-
ing a system can change the system itself. Computer software
isn’t quantum mechanical (not yet, anyway), but we still need
to be wary.

Instrumenting software intrinsically involves changing it, which
raises the specter of affecting, instead of simply observing, its
behavior. This is dangerous during diagnosis, because introduc-
ing an unintentional change during a series of experiments can
easily lead to you draw invalid conclusions.

Fundamentally speaking, there is no way that you can guar-
antee to avoid introducing some side effects. The fact that
you’ve modified the source code means that the layout of the
object code in memory and the timing of its execution will be
affected. Happily, most of the time this remains a purely hypo-
thetical problem—as long as you’re careful to avoid the more
obvious side effects, you can normally ignore the issue.

Nevertheless, it is very good practice to keep the source code
as close to its pristine form as possible. Don’t allow failed exper-
iments, along with their possible side effects, to accumulate
over time. Keeping things neat also helps ensure that the code
remains easy (or at least, no harder) to understand and will help
ensure that you don’t check in unintended changes when you
eventually come to fixing the problem.

Let’s look at an example. Imagine that you’re trying to track down a

bug in some Java code that traverses a data structure, processing each

node in turn:

while(node != null) {

node.process();

node = node.getNext();

}

You’re seeing behavior that suggests that nodes are being processed

more than once (in other words, getNext() is returning one or more

nodes more than once). It’s not clear which nodes are being processed

more than once, however.

STRATAGEMS 58

One way to find the problem would be to instrument the code as follows:

Ê HashSet processed = new HashSet();

while(node != null) {
Ë if(!processed.add(node)) {

System.out.println("The problem node is: " + node);

}

node.process();

node = node.getNext();

}

At Ê, we create a HashSet that we’ll use to store the nodes that have

already been processed. At Ë, we add the current node to the set. The

add() method returns false if the object is already in the set, meaning

that we’ve already processed this node.

Often, we create instrumentation like this on the fly and remove it once

it has served its purpose. Instrumentation doesn’t have to be tempo-

rary, however—there are good reasons why you might choose to leave

it in the code, creating self-debugging software. We’ll look at ways in

which you can do so in Section 10.1, Assumptions and Assertions, on

page 158.

Divide and Conquer

Divide and conquer, or binary chop, is the Swiss Army knife of

debugging—it crops up again and again in a wide variety of situations.

Binary chop is a search strategy. Imagine, for example, that you have

a sorted array of 1 million integers and are trying to identify whether a

particular number appears within the array. You could simply examine

each in turn but on average would expect to have to examine half of

them before you found the one you were looking for. And in the worst

case, you would have to examine all million.

Alternatively, you can find the midpoint of the array (dividing it into

two halves, each of length 500,000). If the value at the end of the first

half is less than the value you’re looking for, then you know that you

need to search only the second half. If not, you need to search only

the first. Choose the relevant half, and divide it in half again (250,000

this time). Continue in this fashion, and you’re guaranteed to find your

target after twenty steps (in general, binary chop will require no more

than log2N steps where N is the number of items being searched).

STRATAGEMS 59

Figure 3.2: Binary chop

The last few steps of this process are shown graphically in Figure 3.2.

We’ve already discussed one instance in which binary chop can help

during debugging (in Section 2.5, Refining Your Reproduction, on

page 36), but there are many others.

You may be tracking down a memory corruption. You have a means of

detecting it (perhaps after the corruption, a variable that should be null

is no longer) but don’t know which of several thousand lines of code

is causing it. Insert your check halfway through the suspect body of

code, and reproduce your problem. If the check detects the corruption,

then you can infer that the culprit lies somewhere in the first half of

the code. If not, then the memory remained uncorrupted when your

check executed, and the problem must lie somewhere in the second

half. Rinse and repeat, and before long you will have identified the exact

line of code.

Sometimes you won’t be able to follow this approach all the way to a

conclusion, but it can still provide you with a quick and easy way to

exclude a large number of candidates. Perhaps your software contains

a number of modules that can be enabled and disabled independently?

If so, try disabling them all and see whether the bug still occurs. If

it does, then you’ve eliminated a lot of code that you won’t need to

examine (and won’t confuse matters). If it doesn’t, then you can quickly

identify the problem module by enabling half and rerunning your test.

STRATAGEMS 60

Ultimately, this will allow you to narrow your search to only a single

module, but that’s still a considerable help.

Don’t get too hung up on the binary aspect of this approach. Binary

chop works most efficiently if you can divide your search space into

approximately equal halves, but all you really need is some way to elim-

inate significant chunks of it at a time.

In the next section, we’ll discuss how your source control system can

help you find a regression. And guess what? It’s yet another instance

in which binary chop helps.

Leveraging Source Control

Occasionally, you will find yourself chasing a regression—a bug in func-

tionality that used to work correctly but was broken by some subse-

quent change. Your normal diagnostic toolbox remains just as appli-

cable to this kind of problem as any other, but there is one tool of

particular value when regression hunting—your source control system.

If you can identify exactly which change introduced the problem, then

diagnosing why it did so may be trivial. Your source control system

maintains a complete history of every change that’s ever been made to

the software. All you need to do is identify exactly which one was the

culprit.

The first step is to review check-in comments—it may be that the culprit

is obvious. If not, however, you can quickly pinpoint the change using

the following procedure.

Imagine that you know that the bug wasn’t present in version 2.3, but

it is present in the current version, 3.0. In between 2.3 and 3.0 are 200

different check-ins. You know the drill by now—check out and build

the middle revision, and see whether the bug is present. If not, it was

introduced by a more recent change; otherwise, it was one of the earlier

ones. A few iterations later, and you know exactly which change it was.4

Sometimes you’ll look at the change in question and be none the wiser.

But it’s not as if pinpointing the change could possibly hurt—at the

very least, it’s likely to eliminate a wide range of source code from your

investigation.

4. This technique is so useful that the Git source control system provides direct support

for it in the form of the git bisect command; see Pragmatic Version Control Using Git [Swi08]

for more details.

STRATAGEMS 61

Focus on the Differences

Your software normally works. So, the feature affected by the bug you’re

trying to diagnose probably works correctly in almost all situations or

for almost everyone else. So, what you’re looking for is something that

makes this particular situation or customer special. You already know

that part of the solution will be something that is unique to this one

case—all you need to do is find out what it is.

Often these differences come to light when trying to reproduce the prob-

lem. Does it happen in only one particular environment? In that case,

the problem is most likely in environment-specific code. Does it happen

only with large input files? Most likely you’re looking for a resource leak

or a limit being exceeded.

If the differences didn’t come to light during reproduction, it might

prove helpful to “find the boundaries” of the bug. If you can identify

several similar ways of running the software, some of which reproduce

the problem and some of which don’t, the chances are that it will teach

you something.

Learn from Others

Many bugs will be completely specific to your own code, and therefore

only you, or someone else on your team, will be able to address them.

But sometimes the bug will relate to a widely used technology (your

compiler, for example, or a library or framework you’re using) in which

case there’s a chance that someone else has run afoul of the same

problem before you.

In such instances, a little research on the Web can play dividends. Per-

haps someone has asked a question about the same kind of failure

module on a forum or has written a blog post describing the pitfall they

fell into, which turns out to be exactly the one you find yourself in.

Occam’s Razor

All other things being

equal, the simplest

explanation is the best.

The oft-quoted Occam’s Razor can be para-

phrased as “All other things being equal, the

simplest explanation is the best.”

It’s nothing more than a rule of thumb—any

explanation that fits the facts could be the real

one, including the most involved, convoluted, and implausible. But you

have to pick one to explore first, and often it’s the simple one that

proves the most fruitful.

DEBUGGERS 62

3.3 Debuggers

Debuggers vary dramatically in both sophistication and capabilities,

from simple command line–oriented examples to those that are fully

integrated into a graphical IDE. What they all have in common is that

they allow us to examine the code as it executes, setting breakpoints,

single-stepping, and examining program state.

It may seem odd that I’ve left discussing debuggers until this late in

the chapter (and indeed, the book). For some developers, debugging is

using a debugger—it’s the first, and possibly only, tool that they reach

for.

There’s no doubt that your debugger is one of the most powerful tools in

your toolbox, and you should certainly take the time to become familiar

with what it can do and proficient in its use. But here’s the thing—as

time goes on, I find myself using the debugger less and less. And it

seems that I’m not alone—many other developers I talk to tell me that

they’re finding the same thing. So, what’s going on?

What has changed is test-first development (see Section 9.1, Automated

Testing, on page 141). Where in the past my first instinct might have

been to break out the debugger, now it’s to write a test. To understand

why, it helps to think about why we might use a debugger. It’s particu-

larly helpful at three different points of the development life cycle:

1. During initial development, it’s helpful when single-stepping

through code helps to convince us that what it’s really doing

agrees with what we thought we were implementing.

2. If we have a theory about why the code is behaving in a particular

way, we can use the debugger to confirm or refute this theory.

3. Finally, a debugger helps us explore code that is behaving in a way

we simply don’t understand.

Debugging sessions are

ephemeral; tests are

permanent.

But add test-first development into the equa-

tion, and the picture changes. Now, rather

than stepping through the code to check that

it behaves as we expect, we write one or more

tests that demonstrate that it does. If we have

a theory about what’s causing a bug, we create a test that proves it.

And the beauty of this is that unlike stepping through in a debugger,

the results of which are ephemeral, a test is permanent. Not only does

PITFALLS 63

The Interactive Console

If you’re working in an interpreted language like Python or
Ruby, another tool is available to you—the interactive con-
sole. This allows you to enter language statements directly and
have them execute immediately, even redefining functions if
the mood takes you. The console can be a wonderfully useful
exploratory tool, either when debugging or when trying some-
thing new to see how it works.

If you’re working in a compiled language, you may not be
completely left out—some of the more sophisticated debug-
gers for compiled languages manage to provide something
that comes very close to an interactive console. It’s not quite
the same thing, but it might be close enough.

it prove that the code works now, but it continues to do so in the future

and can be run (and even improved) by other team members. Not only

does it prove that our theory is correct, but we can subsequently use it

to verify that our fix addresses the issue.

So, that leaves the debugger as an exploratory tool. It’s a vital role to be

sure, but it’s a smaller one than it held a few years ago.

As an aside, this fact turns out to be very convenient if you’re using a

relatively new environment such as Ruby. The current Ruby debugger

could charitably be described as “primitive,” but that’s much less of an

issue than it might have been a few years ago, because the debugger is

less of a crutch than it used to be.

3.4 Pitfalls

There are innumerable ways to trip up during diagnosis, but there are a

few that crop up repeatedly. In this section, we’ll look at some hard-won

lessons from the trenches.

PITFALLS 64

Are You Changing the Right Thing?

If the changes you’re

making have no effect,

you’re not changing

what you think you are.

If the changes you’re making don’t seem to be

having an effect, you’re not changing what you

think you are. Perhaps you’re editing a file in

one source tree but compiling a different one?

Or you’re compiling the right file but running

the wrong executable? Or the code that you’re

editing is disabled by the preprocessor? Or your browser is pointing at

the production server instead of the development server? Or. . . .

This pitfall is so common, so easy to fall into, and so confusing (until

the eureka moment hits and you suddenly realize your mistake) that

you will fall prey to it. The only defense is to always have the possibility

at the back of your mind.

The easiest way to prove that you have succumbed can be to introduce

deliberate, very obvious failures in the code. Perhaps an obvious syntax

error or an #error directive if you’re using C++? Or a call to System.exit()?

When your compilation fails to break or your application stubbornly

runs, it’s time to search for your (now obvious) mistake.

Validate Your Assumptions

Everything you do is based upon a foundation of assumptions. You

can’t possibly avoid making them, and it’s crazy to try—you can’t work

from first principles every time.

But assumptions are dangerous, because they create blind spots—

things you treat as true without necessarily having direct evidence.

Some are less dangerous than others. Assuming that your compiler

faithfully translates your source code into correct object code is proba-

bly safe, for example. Assuming that the method written by a colleague

last week works exactly as intended maybe less so.

Know what assumptions

you’re making, and

examine them critically.

The key is to understand what assumptions

you’re making, as well as when to examine

them critically. A particularly good time to do

so is when you’re stuck—it may be because

one of them is blinding you to what’s really

going on.

PITFALLS 65

How Coherent Is Coherent?

Back in the early 90s, I was working on a performance-intensive,

cross-platform application. It was already running successfully on several

different shared-memory multiprocessor architectures, so when I was

asked to port it to the then-new DEC Alpha, everyone expected that it

would be a breeze. If only.

After weeks of crawling through thousand-line log files, I couldn’t come

up with any explanation of the behavior I was seeing. It was as though

one CPU was seeing things written by another in a different order. But

that couldn’t possibly be true, could it?

Like just about every other machine of this type, the Alpha implemented

coherent caches to guarantee that each CPU has a consistent view of

shared memory. And we had assumed that “coherent” meant that writes

to memory by one CPU would be seen by another in the order they were

originally made.

In desperation, I created a tiny (less than twenty lines long) test program

that spawned a couple of threads and screamed loudly if it ever saw

reordered writes. And within seconds it was screaming. Coherent didn’t

mean what we thought it did—we needed to use memory barriers to

guarantee ordering where it was important.5

Multiple Causes

Most commonly during diagnosis, you’re looking for the cause of the

problem, and normally, this is the right thing to do. As Occam’s Razor

tells us, simple explanations tend to be the most fruitful, and assuming

that there’s a single cause is much simpler than imagining several.

Sometimes, things really

are complicated.

Nevertheless, as we’ve already seen, Occam’s

Razor is only a guide, and sometimes things

really are complicated.

The most common warning that you might

face multiple causes is a feeling that you’re in the twilight zone—weird

things happening that seem to have no obvious explanation.

The most fruitful approach to multiple causes is to isolate the prob-

lems and find a way to reproduce a bug that depends upon one of the

causes and not the other. How easy this will be depends upon how far

through your diagnosis you’ve come. If you already have a good feeling

5. Nowadays we’re all used to highly optimized CPUs that reorder things to improve

performance, but it was a new one on us back then.

PITFALLS 66

for where one of the problems may reside, that can help you construct

an alternative reproduction that bypasses the other.

An alternative approach is to start by looking at any other bugs you

might be aware of in the same area. Addressing these can sometimes

clear things up or improve your understanding enough to throw your

original problem into sharper relief.

If neither of these approaches works, then take a deep breath—this one

is going to be a challenge. You’re going to have to continue with your

diagnosis as before, while bearing in mind that your experiments might

behave unpredictably because they are being affected by more than one

underlying issue. But then nobody said that debugging was easy.

Shifting Sands

Another cause of that “twilight zone” feeling is a changing underlying

system. The rock upon which the empirical method we’re relying upon

depends is that we can reproduce the problem over and over again,

obtaining the same results each and every time. Take that certainty

away, and making progress becomes extremely difficult.

It’s at times like this that the record you’ve been keeping (you have

been keeping a record?) of what you’ve already tried and the results

you obtained becomes worth its weight in gold. If you rerun an exper-

iment that gave you one result yesterday and get a different result

today, that’s an excellent indication that something has changed in the

interim.

If faced with a changing

underlying system, stop

and work out what’s

changing and why.

If you suspect that you might be suffering from

this issue, stop immediately—forging ahead

will just dig you into an even deeper hole. Your

primary goal is identifying what, exactly, is

changing so you can control it.

The most obvious candidates are things such

as databases or third-party systems that the software interacts with,

but remember that your software’s behavior can be affected by a myriad

different things. Perhaps you now have less free disk space and there’s

no longer room for a temporary file? Or you installed a new software

package that updated a system library? Or if your software depends

upon the time of day, it might even be reacting differently just because

the time has changed?

MIND GAMES 67

What Do You Mean There Are Twelve Months?

One of my first experiences of working within a team was the group

programming task we had to solve during my degree course. It was an

education in more ways than one.

My team contained one member who was, frankly, useless. We threw all

the code that he wrote (not that he wrote much) away with one

exception—a function to return the number of days in a month.

Anyway, the code worked just fine, and we submitted it on time, passing

all the tests. And then our professor contacted us to tell us that it crashed

every single time it was executed. We very quickly tracked the problem

down to the one function we hadn’t rewritten, which looked like this:

int days_in_month(int month) {

switch(month) {

case APRIL: return 30;

case MAY: return 31;

}

}

We submitted in May, but our professor didn’t start his evaluation until

June. Hey ho. . . .

3.5 Mind Games

Debugging is hard. On occasion, it’s really hard. In the course of your

career, you are guaranteed to hit situations where (for a while, at least)

you simply can’t see a way forward.

Sometimes it will seem as though what the software is doing is clearly

impossible. Every piece of evidence contradicts what you’re seeing. If it

wasn’t for the fact that it is happening, you would swear that it couldn’t.

On other occasions, every avenue you investigate turns into a blind

alley, and you simply can’t think of anything else to try.

Don’t be disheartened. Rest assured that we’ve all been there—and we

all will be again. This is just part and parcel of developing software. You

will find a way through eventually.

If you find yourself confronted by a roadblock, here are some tech-

niques you might find helpful to break through it.

Cardboard Cutout Debugging

The single most powerful unblocking tactic at your disposal is to ask

for help. Having a fresh pair of eyes examine the problem, someone

MIND GAMES 68

Joe Asks. . .

What Makes a Good Cardboard Cutout?

Although the name suggests that a cardboard cutout would
be just as effective, in fact the technique is much weaker if
the helper isn’t a living, breathing human being. Some people
might be able to treat their cat as though it could really under-
stand what they’re saying, but most of us struggle to suspend
disbelief.

This suggests that there are things that you can do when you’re
playing the cardboard cutout role to help:

• Pay attention. It will be obvious to the person you’re “help-
ing” if you’re really balancing your checkbook in the back
of your mind.

• Ask questions. Unclear aspects of the explanation are
a warning flag; they are likely to contain unexamined
assumptions.

• Keep an eye out for unexplored avenues. Don’t assume
that what’s obvious to you is obvious to the person you’re
helping—they’ve asked you over because they’re stuck,
and often we get stuck on what seem to be trivialities.

• Do your best to understand what’s going on. If you under-
stand, you’re likely to ask better questions. And it may be
that lightning strikes you, not the person with the problem.

who hasn’t been immersed in the problem for the last several hours (or

days or weeks), can bring a new perspective. Even if they don’t imme-

diately spot the problem, two minds are better than one, and there’s an

excellent chance that between you, you’ll work it out.

What’s Going on Here?

by Jeremy J. Sydik

My two-year-old son, Aidan, caught a bug once. He started pointing at a

screen of Lisp code that I’d been sorting through for fifteen to twenty

minutes. He’d noticed that the indentation pattern didn’t look like the

others on the screen.

But, as anyone who’s ever done this will know, often the simple act of

explaining the problem is all it takes for inspiration to strike. Some-

MIND GAMES 69

Joe Asks. . .

What If I Don’t Have Anyone to Talk To?

If you don’t have someone to play the role of cardboard
cutout, all is not necessarily lost. Try scribbling down a narra-
tive of the problem on paper or perhaps composing an email
to a friend. The trick is not to censor yourself—just like a writer
would.

times, the person who’s helping you doesn’t even have to say a word—

they might just as well be a cardboard cutout6 (or rubber duck, wooden

Indian, or any of the other myriad inanimate objects this effect has been

named after).

Explaining the problem

helps get your thoughts

in order.

There are excellent reasons why things work

this way—explaining your problem to someone

else forces you to get your thoughts in order,

enumerate your assumptions, and construct

an argument from basic principles. Very often,

putting that structure in place is all it takes for you to see the solution

yourself. And if not, what have you lost?

Role-Play

Role-playing can be a helpful way to explain and explore problems,

especially those involving interactions between largely independent sys-

tems. “You play client 1, I’ll be client 2, and Fred can play the server—

now how do we set up an interclient session?”

Don’t forget to use props if appropriate. Index cards can represent mes-

sages exchanged over the network. Or whoever is holding the stuffed

“Tux” doll owns the database lock. Most development rooms I’ve been

in are full of bits and pieces collected from various trade shows over the

years—make them work for you for a change.

6. An ex-colleague of mine kept an actual cardboard cutout of Posh Spice, Victoria Beck-

ham (or Adams as she was at the time), for this purpose. Or at least that’s why he told

us he had it.

MIND GAMES 70

Let Problems Lie Fallow

You spent a frustrating day making no progress against a seemingly

intractable problem. In disgust, you call it a day. That evening, while

you’re doing something completely unconnected to the problem, the

answer pops fully formed into your head. While you were cooking sup-

per, talking to your mother on the phone, and reading bedtime stories

to the kids, your subconscious was steadily working on the problem.

And it has just worked its magic again.

Help your subconscious

help you.

This happens to all of us—the scales fall from

our eyes, and what was previously opaque is

suddenly perfectly transparent. The bad news

is that there’s no way to choreograph this

effect. Sometimes your subconscious will deliver the goods, and other

times it will remain stubbornly silent. But there are certainly things

you can do to help.

If you find yourself getting frustrated or thrashing (lots of action but

little forward progress), that can be a sign that you need to take a break.

Work on a different problem for a while, make a cup of tea, take a walk,

practice your juggling for a while—anything that will take your mind off

the problem.

At worst, you’ll return to the problem refreshed and more likely to make

significant progress. And at best, if you’re lucky, the magic will happen,

and your subconscious will deliver the goods.

When the stroke of genius arrives out of nowhere, write it down. If a

pen and paper isn’t available, send yourself an SMS or tell whoever you

happen to be with—there’s nothing more frustrating than being unable

to recall your insight the following day.

Particularly difficult problems can benefit from a longer break. The

fresh perspective of a new morning often helps immeasurably. But

beware of overdoing it—tracking down an involved bug means that you

need to understand a lot of different things. Take too much time off,

and you might find that you’re having to remind yourself of too much.

And some bugs, unfortunately, are resistant to shortcuts and will sub-

mit only to sustained pressure.

MIND GAMES 71

Change Something. Anything!

As we’ve already discussed, it’s very important that you think carefully

about your experiments. You should know why you’re running them

and what you expect them to tell you.

But sometimes, if you’re completely stuck, it’s worth just making a

change for its own sake. Any change. Probably it won’t tell you any-

thing, but sometimes it will surprise you—and surprises always teach

you something.

Not What I Thought Was Going On at All

by Matthew Rudy Jacobs

I had a bug recently that seemed to be “a form multiselect intermittently

doesn’t autoselect.” It was jumping between being empty and what I

expected.

Each time I reproduced the problem, I was using the same inputs (“Fire”

and “Health”) or leaving the field blank.

After spending a while dumbfounded, I tried a different data set

(“Charities” and “Probation”). To my surprise, it still jumped

intermittently between “Fire” and “Health” and being empty. The problem

had nothing to do with defaulting—it was that the form was cached (on

two different servers), and I was missing this fact because I was always

using the same select options.

The Sherlock Holmes Principle

When you have

eliminated the

impossible, whatever

remains, however

improbable, must be

the truth.

Sherlock Holmes famously said, “When you

have eliminated the impossible, whatever

remains, however improbable, must be the

truth.”

It is a valuable reminder that, although most

of the time simple explanations are the most

likely, sometimes what’s going on really is

weird. Occasionally, all the planets really do

align in just the right way—don’t reject an explanation just because it

seems too unlikely to be true.

It’s Always the Butler

by Frederick Cheung

One of the controllers in my Ruby on Rails application was claiming that

its start() action didn’t exist. The code hadn’t changed in months, and I

VALIDATE YOUR DIAGNOSIS 72

could see the method definition in the source—so, what was stopping

Rails from finding it?

I fired up my trusty debugger and went stepping through ActionController.

For security reasons, not all methods should be exposed as actions, so

Rails removes anything defined in ActionController::Base. For some reason,

ActionController::Base had suddenly gained a method called start()—mystery

solved.

Except that I couldn’t find where this start() was coming from. It certainly

wasn’t anywhere in the source. I fired up the interactive console to do

some more digging, and the mystery deepened—no start(), even though I

was running the same code.

After a lot of to-ing and fro-ing and following blind alleys, it finally

occurred to me that the problem was the debugger itself. I had a look at

the source of the debugger, and sure enough, it defines Kernel#start(),

which was being imported into ActionController. So, the seemingly random

factor that was causing the action to fade in and out of existence was

whether or not I was debugging something else.

Persevere

Although on occasion it may not seem like it, there is no such thing as a

bug that can’t be diagnosed. All the software running on any computer

is created by humans, and we can always extract enough information

to understand precisely what it’s doing. In this way, software is very

different from almost any other field of human endeavor.

Of course, this doesn’t in any way mean that diagnosis is easy. But

when you’re despairing that you will ever get to the bottom of the cur-

rent problem, keep in mind that there’s always a way through. Given

enough time, effort, and determination, you will get there.

3.6 Validate Your Diagnosis

We humans are multitalented creatures. Unfortunately, one of our tal-

ents is self-deception—we’re very good at convincing ourselves of some-

thing we want to be true. With that in mind, time spent validating that

your diagnosis really stands up to scrutiny is time very well spent.

• Explain your diagnosis to someone else. They might spot a flaw,

or the cardboard cutout effect might work its magic allowing you

to do so.

PUT IT IN ACTION 73

• Check out a pristine copy of the source code, without any of the

changes you’ve made along the way, and verify that your analysis

still holds. You may have been careful not to introduce any unin-

tended side effects, but nothing gives you more confidence that

you succeeded than starting again from a known-good copy.

• Now that you understand the problem, are there any other ways

in which you can prove that it really does work the way that you

think it does? Try them quickly—do you see what you expect to?

• Play devil’s advocate, and imagine that you are wrong—what mis-

take did you make?

These checks and balances shouldn’t take long, and I hope they will

just convince you that you were right after all. If not, then they have

saved you both embarrassment and time, a very worthwhile exercise

indeed.

Now that you have a diagnosis you trust, all that remains is implement-

ing the fix, which is what we’ll cover in the next chapter.

3.7 Put It in Action

• Construct hypotheses, and test them with experiments.

– Make sure you understand what your experiments are going

to tell you.

– Make only one change at a time.

– Keep a record of what you’ve tried.

– Ignore nothing.

• When things aren’t going well:

– If the changes you’re making don’t seem to be having an

effect, you’re not changing what you think you are.

– Validate your assumptions.

– Are you facing multiple interacting causes or a changing

underlying system?

• Validate your diagnosis.

Chapter 4

Fix
So, you’ve completed your diagnosis. It’s time to pat yourself on the

back—chances are that you’ve completed the hardest part of your task.

Now that you understand the problem, fixing it should be a breeze.

Be careful, however. Up until now, your focus has been on doing what-

ever it takes to work out just what exactly has been going on and why

your software has been misbehaving. You’ve created ad hoc experi-

ments, modified the code to insert logging, forced error conditions to

arise, or otherwise bent the software to your will. You’ve cultivated a

deliberately creative and open frame of mind as you’ve thought up and

subsequently proved or disproved various different hypotheses.

Now you’re about to embark on an altogether different kind of exer-

cise. The “anything goes” flavor of diagnosis needs to be replaced with

the more disciplined and structured approach required to create high-

quality, accurate, and trustworthy modifications to the source. In short,

you’re no longer a sleuth—it’s time to be a software engineer again.

There’s more to a good

fix than just making the

software behave

correctly.

Your primary goal, of course, is to fix the

problem. But there’s more to a good fix than

just making the software behave correctly—

you also need to lay the groundwork for the

future. Without care, software can quickly fall

foul of entropy, or bit rot as it’s often known.

One fix after another, and, little by little, your originally clean design is

lost underneath a patchwork of inadequately thought-out changes.

CLEARING THE DECKS 75

In this chapter, we’ll explore how to simultaneously achieve the follow-

ing goals:

• Fixing the problem

• Avoiding introducing regressions

• Maintaining or improving the overall quality (readability, architec-

ture, test coverage, performance, and so on) of the code

4.1 Clearing the Decks

Before diving in and starting to design your fix, there’s some house-

keeping to perform. The first order of business is to ensure that you

start from a clean slate.

While hot on the heels of the problem, you’ve likely modified source

files and configuration settings, created experiments on the fly, and left

data files lying around. You don’t want to end up accidentally checking

in any of these ad hoc changes. If you don’t clean up before starting to

make the changes you do want to check in, there’s a danger that you’ll

find it hard to tell one from the other.

You don’t want to simply discard everything, however, because there’s

a good chance that some of the changes you’ve made, or data files you

created during diagnosis, will form an excellent basis for the test cases

you’re about to write as part of the fix. Here, as in so many other situ-

ations, your source control system proves its value.

First, you need to perform a quick audit of the changes you’ve made.1

Don’t skip this step. You’ll be amazed how often you discover changes

you’d forgotten about.

Start from a clean

source tree.

Often, discarding these changes will be the

right thing to do.2 If, however, there are

changes you want to hold on to, resist the

temptation to leave them in place and mod-

ify the code around them. Remember that one of our goals is to avoid

regressions, and these changes haven’t been made in such a way that

means they can be trusted. Feel free to take notes, or a copy of relevant

files, but when you start implementing a fix, it’s crucial to start from a

1. svn status followed by svn diff if you’re using Subversion.
2. svn revert --recursive

TESTING 76

clean source tree. If the changes you made during diagnosis were par-

ticularly far reaching, it may even be easier to check out a whole fresh

source tree and start from there, leaving the polluted tree around as a

reference.

This gives you a trustworthy starting point. The next thing to think

about is how you’re going to prove to yourself that your fix really does

address the problem at hand.

4.2 Testing

Let’s assume that your development process includes test-first (or test-

driven) development and that you have, therefore, an automated test

framework and an extensive body of unit tests in place already. It’s

now, when you’re about to start making changes to the source, that this

approach really pays off. Not only can you use it to ensure that your

fix addresses the problem, but it also provides an invaluable safeguard

against regressions.

Start by ensuring that all

your tests pass.

Because you’re going to rely on the tests so

heavily, start by ensuring that they all pass

(which should certainly be the case because

you’ve just ensured that you’re working on a

clean source tree). If they don’t all pass, stop immediately, and deter-

mine why. Maybe a colleague checked in a broken change? Or some-

thing in your local environment is configured incorrectly? Whatever, if

the tests don’t pass, you can’t use them to help with the changes you’re

about to make.

One of the rules of test-first development is that you shouldn’t modify

the source until you have a failing test. So, having demonstrated that

you’re standing on the firm foundation of a test suite that passes all

the tests, you had better make sure you have one that fails.

Given that a bug slipped through, clearly either your existing tests don’t

adequately test the functionality in question or the tests are themselves

broken. Consequently, you either need to add one or more new tests or

fix the existing ones.

Here’s the sequence to follow:

1. Run the existing tests, and demonstrate that they pass.

2. Add one or more new tests, or fix the existing tests, to demonstrate

the bug (in other words, to fail).

TESTING 77

3. Fix the bug.

4. Demonstrate that your fix works (the failing tests no longer fail).

5. Demonstrate that you haven’t introduced any regressions (none of

the tests that previously passed now fail).

Of course, in reality (and depending upon just how intricate a fix you’re

dealing with), the process is unlikely to be as neatly linear as this.

You’re likely to have to iterate between constructing tests and modifying

code several times as you work toward the final solution.

The experiments, data files, and anything else you created to reproduce

and diagnose the problem form a rich source of ideas. With luck, in

fact, all you need to do is tidy up and formalize what you created then.

Remember, however, that what we’re trying to do here is come up with

something of production quality. Tests created while you didn’t really

understand the problem may well be a good starting point, but you

should take the time to ensure that they’re well constructed and test

everything that needs to be tested.

Make sure you know

how you’re going to test

it before designing your

fix.

What if you’re not using test-first develop-

ment? Even then, testing remains critical. If

you don’t have a reliable test that demon-

strates the problem, how can you be sure that

you’ve fixed it? The major difference is that the

test may be something you perform manually

rather than automatically and that you discard after you’re done. Oh,

and you’re going to have to be really careful because in the absence

of a set of regression tests, the chances of accidentally introducing a

regression are much higher.

How My Test Suite Saved My Ass

by Dominic Binks

I was working on an application written in PHP. Luckily, we had an

extensive suite of automated tests. I made a change (a really simple one),

and the tests broke on a web service interface that I hadn’t touched.

Certainly my change had nothing to do with it.

Sigh.

It turns out the reason the test failed was that the web service was

returning invalid XML. I looked at the XML, and it looked valid to me. I’m

no XML guru, so I got a colleague to look at it, and he said it looked valid

too. I had always been led to believe that XML was relatively

simple—certainly it should be easy to see whether it’s well formed.

FIX THE CAUSE, NOT THE SYMPTOMS 78

Eventually I tracked down a stray newline at the start of the XML

document, which is illegal in XML—hence the XML document was

reported as invalid.

So, how was that stray newline appearing? Well, I had accidentally added

a newline to the end of the file after the closing <php> tag. The result is

that the PHP processor interpreted it as a piece of HTML to be sent to the

“browser.”

Normally an extra newline would make no different whatsoever. However,

when the PHP code was added into the web service code path, the newline

got emitted before the rest of the XML document, which led to the invalid

XML.

Without the autotests, this would have probably gone into production and

then would need to be pulled to figure out why part of the service wasn’t

working anymore.

4.3 Fix the Cause, Not the Symptoms

Some years ago, when working on embedded code written in C, I

tracked a bug down to a function that looked something like this:

int process_items(item* item_array, int array_size)

{

int i;

/* For some reason array_size is off by one, so fix it up here */

array_size++;

for(i = 0; i < array_size; i++) {

«Process item_array[i]»

}

}

The developer in question (whose blushes I will save) had correctly

determined, some months earlier, that the bug he was working on was

“caused” by a bad value for array_size. However, instead of continuing

his analysis to determine why the function was being called with a bad

argument, he decided to make the bug “go away” by fixing it up in the

function.

Of course, as I subsequently discovered, it turned out that pro-

cess_items() could be called from multiple locations, and, very occasion-

ally, array_size wasn’t off by one. This resulted in an array overflow that

(this being C) caused obscure problems that only surfaced later and

required quite a bit of effort to track down.

FIX THE CAUSE, NOT THE SYMPTOMS 79

Joe Asks. . .

Is It Ever OK to “Paper Over the Cracks?”

Sometimes, even if we do understand the root cause, there’s
still a temptation to “paper over the cracks.” Perhaps the bug is
deeply rooted in the architecture, and a true fix would involve
dangerously widespread changes. Or there might be a danger
of introducing compatibility issues with previous versions (see
Section 8.2, Backward Compatibility, on page 121). Or a true
fix might simply be much more effort than a judiciously applied
patch.

Well, this is a pragmatic book, and as such, it would be foolish
for us to deny that there are occasions where this isn’t the right
approach. They are, however, very rare.

Every occasion where we choose not to address the root cause
of a problem, we are significantly reducing the overall quality
of the codebase. This doesn’t just have practical implications
but also psychological (see Section 7.1, No Broken Windows,
on page 110).

So yes, there are occasions where it is appropriate for us to
choose not to address the underlying problem—but only as a
means of last resort and only with our eyes open to the conse-
quences.

Unfortunately, this kind of thing occurs all too frequently. All of us will,

at some time in our careers, find ourselves chasing such a bug.

There are two reasons why we end up making this kind of mistake. Most

frequently it is because we haven’t taken our analysis far enough and

haven’t yet uncovered the true root cause of the problem. Occasionally

it can arise as a misguided response to time pressure.

Let’s take the last of these, time pressure, first. Somewhere in the world,

there may be a software engineering project that doesn’t operate under

constant time pressure. I’ve never worked on such a project, though.

Even if you’re lucky enough to find yourself in this happy situation, the

users affected by the bug you’re working on are unlikely to want to wait

a minute more than they have to for the fix.

REFACTORING 80

The upshot is that you’re very likely to be under pressure to just “make

the bug go away” and move onto the next task. In the cold light of day,

it’s easy to vow never to do such a thing, but in the heat of the moment,

with irate users shouting at you on one side and impatient managers

on the other, the temptation can be almost irresistible.

However bad giving in to this temptation might be, it’s nothing com-

pared to the dangers associated with fixing a bug before you fully

understand the root cause. At least if you understand the root cause

and take an educated (if misguided) decision to implement a quick

workaround, you understand the implications of your actions. If you

don’t really understand what’s going on, it’s effectively impossible to

predict the effect that your actions will have.

Recall that fixing the problem at hand is only one of three goals we’ve set

ourselves. We also need to avoid introducing regressions and maintain

the overall quality of the code. Our focus naturally tends to be on the

first goal, but the second two are just as important (from a long-term

point of view, possibly even more important). With this in mind, making

changes we don’t understand is therefore the height of recklessness.

How do you know when you really understand the root cause of a prob-

lem? Well, there are some rules of thumb (for example, would I feel

comfortable explaining this to a colleague, and would my explanation

entail the use of phrases like “For some reason. . . ” or “I’m not sure why,

but. . . ”). But the simple truth of the matter is that most of the time you

know whether you understand the root cause. What is called for here is

intellectual honesty—the courage to admit to yourself that, even though

you seem to have found a way to fix the bug, you haven’t yet reached

the point where you can be confident that you really understand the

cause, and you can’t, therefore, trust your fix.

4.4 Refactoring

The last few years have seen a sea change in software development

with the increasing popularity of agile approaches. As far as code con-

struction (as opposed to project management) is concerned, the most

significant effect has been the widespread adoption of two techniques—

automated testing and refactoring.

Refactoring is the process of improving the design of existing code

without changing its behavior. It is this latter, and sometimes over-

looked, aspect of refactoring that will mostly concern us here. For a

REFACTORING 81

Joe Asks. . .

What Are the Key Insights of Refactoring?

Many people’s reaction to refactoring when first exposed to it is
“so what?” This is just “tidying up” the code, something that pro-
grammers have been doing for almost as long as programmers
have existed. Certainly, to some extent all that Martin Fowler
did when he published Refactoring was to catalog techniques
that developers have been using for years.

But there’s more to refactoring than just a catalog of useful
techniques. It relies on Fowler’s two key insights:

• Modifying existing code can be carried out safely only
with the safety net of a comprehensive suite of unit tests.

• We should never attempt to refactor the code at the
same time as modifying its behavior.

In other words, you can modify the behavior of the code, or
you can refactor it. You should never attempt to do both at the
same time.

Upon reflection, it’s easy to see why this is the case. Imagine
that you attempt to modify both the structure of your code and
its functionality at the same time, and after doing so one of your
tests fails. This might indicate that you made a mistake when
modifying its structure. Or it might be an expected result of the
change in functionality. It’s difficult, however, to be sure which.
The more complicated the change in functionality or structure,
the harder it is to be certain.

By doing only one or the other, you avoid this issue entirely
and can forge ahead with potentially far-reaching refactorings
involving dramatic changes to the code with confidence.

full introduction to refactoring, see Martin Fowler’s classic Refactoring

[FBB+99].

Bug fixing often uncovers opportunities for refactoring. The very fact

that you’re working with code that contains a bug indicates that there

is a chance that it could be clearer or better structured. It is very likely

that you will spot areas of code that could be improved as you go.

CHECKING IN 82

Furthermore, the changes necessary to fix the bug may well, if per-

formed naïvely, introduce duplication that should be DRYed up (accord-

ing to the Don’t Repeat Yourself principle described in The Pragmatic

Programmer [HT00]).

Performing these refactorings is every bit as important as fixing the

bug (remember that one of our goals is to maintain or improve the

overall quality of the code). There will be occasions where you choose

to refactor after fixing and other occasions where it makes sense to

refactor first (because doing so gets you to a state where it’s easier to

fix the bug). Occasionally, when working on a particularly intricate fix,

you’ll iterate back and forth between refactoring and bug fixing.

Refactor or change

functionality—one or

the other, never both.

But remember that refactoring should never

be combined with modifying the functionality

of the code, and that very definitely includes

fixing bugs.

This leads us on to the topic of interacting with

source control when fixing bugs.

4.5 Checking In

Our source control system is one of the most powerful weapons in our

armory. We can squander much of its value if we don’t use it carefully,

though.

It can be tempting to collect a number of small changes together and—

in one go—check them all in. You’re on a roll, after all, and it would be

a pity to break the flow. Unfortunately, doing so significantly decreases

the utility of using source control.

From the point of view of debugging, source control’s main value is as

an audit trail. If someone does introduce a regression, you should be

able to find out exactly which change did so (and therefore what you

need to do to fix it) by searching back through previous versions (see

Section 3.2, Leveraging Source Control, on page 60). The effectiveness

of this approach is inversely proportional to the size of each check-

in, however. Discovering which check-in introduced a bug is of little

value if the check-in in question includes changes to hundreds of files

scattered throughout the project.

GET YOUR CODE REVIEWED 83

One logical change,

one check-in.

To avoid this problem, stick to the rule one log-

ical change, one check-in.

For simple fixes, this may mean a single

check-in, but most cases involve more than

one logical change (and therefore more than one check-in). If the fix

requires two logically independent changes to the functionality and

two independent refactorings, that probably means four independent

check-ins.

As ever, you should use your judgment. It’s probably overkill to use

three check-ins for a fix requiring three single-line changes, even if

each is independent of the others. But if you err on the side of checking

in early and often, you will rarely go wrong. And remember that you can

also help a great deal by ensuring that your check-in comments are as

meaningful (and specific) as possible.

Diff before check-in.
One final point—whether fixing bugs or imple-

menting new functionality, it’s good practice to

always examine exactly what it is that you’re

about to check in before every check-in.3 It won’t take long, and every

once in a while, you’ll catch a change that you really didn’t intend to

make from slipping through.

4.6 Get Your Code Reviewed

No matter how careful you are, sooner or later you’re going to create an

intended fix that makes things worse rather than better. This is partic-

ularly true when it comes to code quality and maintainability, which no

amount of testing (automated or otherwise) is able to guarantee. Code

reviews, formal or otherwise, are an extremely good means to catch

problems like this before they do any permanent damage.

Reviews are an intrinsic part of some development methodologies. XP,

for example, ensures that two pairs of eyes see every change via pair

programming. It doesn’t have to be a formal element of your methodol-

ogy to be useful, however.

Who and When?

There is no single right time for a review. On occasion, getting a col-

league involved in the very early stages of a fix is appropriate. On

3. svn diff if you’re using Subversion.

PUT IT IN ACTION 84

other occasions, you might ask them to simply sign off on a completed

change.

The rule of thumb is to consider a review whenever you reach an area

of uncertainty or risk. Remember that reviews aren’t one-time-only

things—there’s no rule that you can’t ask for help repeatedly if it makes

sense to do so.

As for who to ask to perform the review, you’re likely to reap significant

benefit whoever does so. Simply having a second pair of eyes examine

your work is a big step forward. If you’re working in an area that’s

relatively new to you, it probably makes sense to ask someone who is

already familiar with it (the original author, for example). By contrast,

if you know the code extremely well, consider asking someone who is

new to it and has a fresh perspective.

Successfully fixing the bug is a great milestone, but it’s not the end of

the process. Before moving on to the next task, take a moment to reflect

upon how the problem snuck into your software in the first place. Are

there any other instances of the same issue elsewhere, and could it

happen again?

4.7 Put It in Action

• Bug fixing involves three goals:

– Fix the problem.

– Avoid introducing regressions.

– Maintain or improve overall quality (readability, architecture,

test coverage, and so on) of the code.

• Start from a clean source tree.

• Ensure that the tests pass before making any changes.

• Work out how you’re going to test your fix before making changes.

• Fix the cause, not the symptoms.

• Refactor, but never at the same time as modifying functionality.

• One logical change, one check-in.

Chapter 5

Reflect
Bug fixing, by its very nature, tends to be tightly focused. You’re work-

ing on a very specific problem, and the chances are that, more often

than not, the fix will involve an isolated area of code. Despite this nar-

row focus, you need to keep your eye on the big picture. To that end,

it’s well worth taking a few moments of reflection after implementing

your fix.

In this chapter, we’ll consider the following:

• How did it ever work?

• When and why did the problem slip through the cracks?

• Ensuring that the problem never happens again.

5.1 How Did It Ever Work?

One of the humorous emails that turns up in my inbox every once in a

while is entitled “The six stages of debugging” and reads as follows:

1. That can’t happen.

2. That doesn’t happen on my machine.

3. That shouldn’t happen.

4. Why is that happening?

5. Oh, I see.

6. How did that ever work?

As with most humor, it’s funny because it’s based in truth. In particu-

lar, it’s not at all unusual to find yourself thinking “How did that ever

work?” after you’ve completed your diagnosis.

WHAT WENT WRONG? 86

If you do find yourself thinking this, pause for a moment. It’s a good sign

that you haven’t really fully understood all the possible implications of

the bug. Keep going until you understand how it did ever work—there’s

an excellent chance that you will learn something in the process.

Not As Secure As We Thought

We had a suite of web applications that delegated security to a shared

“gatekeeper” application, enabling a single username and password to

work for all. If the user had logged into any application in the suite, they

could use any other without logging in again, all controlled through an

encrypted cookie stored in the user’s browser.

I found myself working on a bug in which one particular user was unable

to log in—it turned out that under certain circumstances, the code that

generated the cookie could go wrong. It was easily fixed once I’d worked

out what was wrong, so it was another bug squashed.

But I had a nagging doubt. The circumstances in which the cookie was

generated incorrectly weren’t that obscure. Why was only one user having

problems? How was everyone else able to log in successfully? Something

was up.

Sure enough, deeper investigation demonstrated that the system wasn’t

as secure as we had intended it to be. It was supposed to be changing the

secret used to encrypt the cookie periodically, but this turned out to be

broken. So, users who would otherwise have fallen foul of the bug I’d just

fixed weren’t doing so, because they were able to continue to use an old

cookie.

If I hadn’t listened to the little voice in the back of my mind saying

“Something is wrong—you don’t really understand what’s going on yet,”

we would never have found this.

Kent Beck talks about a similar effect in Test-Driven Development

[Bec02]. Occasionally, we find that we write a test expecting it to fail,

but in fact it passes. When this happens, invariably it teaches us some-

thing important.

But there’s something missing from these six steps. There should really

be a seventh—“It’ll never happen again!” In the next sections, we’ll look

at what you can do to ensure that it doesn’t.

5.2 What Went Wrong?

The first step toward learning the lessons of the bug is determining

what went wrong.

WHAT WENT WRONG? 87

The Five Whys

A useful trick when performing root cause analysis is to ask
“Why?” five times. For example:

• The software crashed. Why?

• The code didn’t handle network failure during data trans-
mission. Why?

• There was no unit test to check for network failure. Why?

• The original developer wasn’t aware that he should cre-
ate such a test. Why?

• None of our unit tests check for network failure. Why?

• We failed to take network failure into account in the origi-
nal design.

Why five? It’s just a rule of thumb—sometimes you will need
fewer steps, sometimes more. And sometimes it won’t help at all
(it will help you identify only the root causes you already know
about). But it can be helpful, and five seems to be about right
in most cases.

Haven’t We Just Done That?

Isn’t determining what went wrong exactly what diagnosis is all about?

Yes it is, but what we’re talking about here is the bigger picture—how

did the mistake make its way into the software in the first place?

For example, your diagnosis might be that the bug was caused by a

failure to take into account the possibility of a network outage while

receiving data from a server. That’s as far as you need to go during

diagnosis. What we’re looking to do here is to work out why the original

developer of the code didn’t realize that they had to handle network

failure.

Root Cause Analysis

The fact that a bug crept into the code in the first place means that

something went wrong somewhere in your process. When, exactly? And

why?

Requirements:

Were the requirements complete and correct? Perhaps they were

ambiguous, interpreted incorrectly, or misunderstood?

WHAT WENT WRONG? 88

Blame

Proactively identifying process issues can work wonders for over-
all quality. Be careful, however—the object is to learn lessons,
not to apportion blame.

Yes, someone somewhere probably screwed up, but we all
make mistakes occasionally. Pointing the finger is unlikely to be
productive or helpful.

A blame culture is corrosive, eroding the team ethos that is vital
for success. If they fear that they will be pilloried or punished for
their mistakes, your colleagues will start worrying more about
how to protect their back than doing what’s best for the team
and wider organization. In the worst cases, this can even lead
to lying, setting up fall guys, and other dysfunctional behavior.

Leading by example is particularly powerful, for good or for ill.
If you start ranting about the culprit after tracking down a par-
ticularly sticky problem, other members of the team are likely
to adopt the same behavior. If, by contrast, a problem of your
own making comes to light, own up and admit mea culpa to
demonstrate that there’s nothing to be ashamed about. How
you handle a problem after it comes to light is more important
than the fact that the problem existed in the first place.

Architecture or design:

Was there an oversight within the architecture or design—

something we failed to take into account or allow for? Or perhaps

they’re fine, but we failed to follow the design correctly?

Testing:

Did we have adequate tests covering this area? Or maybe the error

was in the tests themselves?

Construction:

This is what most commonly comes to mind when thinking about a

bug. Perhaps the author made a simple mistake when writing the

code, or maybe they misunderstood some aspect of the underlying

technology (libraries, compilers, and so forth).

IT’LL NEVER HAPPEN AGAIN 89

5.3 It’ll Never Happen Again

Once you’ve identified the source of the error, you can take steps to

ensure that it doesn’t happen again. In some cases, this might mean

nothing more than a “note to self” to be more careful in that area in

the future, or a quiet word with a colleague to let them know about

their mistake. On other occasions, it might be something to raise at

your next end-of-iteration post-mortem—especially if you’ve noticed a

pattern of mistakes occurring at a particular point or for a particular

reason. Very occasionally, it may be time to “ring the alarm bells.”

Automatic Validation

Something to keep a watchful eye for are problem areas, common mis-

takes, and other instances of the same problem. Imagine that you’ve

just fixed a memory leak in some C++ code that started out like this:

void f(void)

{

T* pt = new T;

«Do something with pt»

delete pt;

}

This code is fine, unless one of the functions it calls might throw an

exception, in which case pt will not be deleted. There are various ways

to fix this, such as by using auto_ptr() from the standard library:

void f(void)

{

auto_ptr<T> pt(new T);

«Do something with pt»

// auto_ptr ensures that pt is deleted even if an exception is thrown

}

Great—another bug bites the dust. But before moving onto the next,

consider whether the original mistake was a one-off. It seems at least

possible that the author of the original code might not understand how

to write exception-safe code in C++. In which case, might there be other

instances of the same issue elsewhere? Rather than wait for the bugs

that are possibly lurking undetected to be reported, now is the time to

do an audit to see whether there are other examples of the problem and

fix them.

IT’LL NEVER HAPPEN AGAIN 90

Talking to Colleagues

Letting a colleague know that they’ve made a mistake can
be a minefield. On the one hand, it’s extremely valuable
information—you owe it to them to let them know so that they
can avoid the same mistake in the future. On the other hand,
we programmers are not always known for our interpersonal
skills, and telling someone that they’ve screwed up can easily
go wrong if done without tact.

There are no hard and fast rules. Sometimes, no matter how
careful you are, your well-intentioned feedback might be taken
badly. But there are certainly things you can do to improve the
chances of it being taken in the intended spirit:

• Most important, give feedback for the right reason. If
you’re really telling someone about their mistake because
you like the feeling of superiority it gives you, hold your
tongue. However you word your “helpful” feedback, your
true motivation will be obvious.

• Think before you speak and plan what you’re going to say
before the conversation. Imagine how you might react
if someone said the same thing to you, while bearing in
mind that not everyone is the paragon of reason you are.
;-)

• Avoid personal comments. It can be helpful to use “I” and
“we” language instead of ”you” language.

• Be constructive.

• Remember that you might be mistaken. Don’t simply
announce that they’ve made a mistake—explore the pos-
sibility with them. You may discover that they had good
reason for their actions, that the fault wasn’t theirs, or that
you’ve misdiagnosed the problem.

IT’LL NEVER HAPPEN AGAIN 91

Even better, can you find a way to automatically detect errors of this

type so that we avoid similar problems in the future? In Section 10.3,

Resource Leaks and Exception Handling, on page 173, we will discuss a

technique that allows exactly this kind of problem to be automatically

detected. And it turns out that we can achieve the same for a wide

variety of errors.

Most projects of any size tend to accrete their own foibles over time.

Before you create a new customer, make sure that you update the

accounts table first—that kind of thing. Wherever these kind of rules

exist, it’s possible for someone to get them wrong, and often there’s no

way to avoid doing so unless you just happen to know the pitfalls. In

Chapter 10, Teach Your Software to Debug Itself , on page 158, we will

discuss how you can create self-debugging software that automatically

alerts you if you inadvertently fall foul of this kind of thing.

Refactor

Something else to consider is whether the code is leading people astray.

If you notice several examples of a particular problem, maybe the struc-

ture or the interface is making it too easy to make the same mistake

repeatedly?

Imagine that you notice that people tend to pass the wrong arguments

to the following C function:

void drawRectangle(int x, int y, int width, int height,

bool border, bool fill, bool client_coordinates);

If you think about what a typical call might look like, it becomes obvious

why people struggle to get the arguments right. For example:

drawRectangle(10, 10, 30, 50, true, true, false);

This could hardly be described as self-documenting. Changing the def-

inition to something along the following lines, however:

const int NO_BORDER = 0x00;

const int DRAW_BORDER = 0x01;

const int NO_FILL = 0x00;

const int FILL_BODY = 0x02;

const int GLOBAL_COORDINATES = 0x00;

const int CLIENT_COORDINATES = 0x04;

void drawRectangle(int x, int y, int width, int height,

unsigned int options);

CLOSE THE LOOP 92

means that it can now be called like this:

drawRectangle(10, 10, 30, 50,

DRAW_BORDER | FILL_BODY | GLOBAL_COORDINATES);

That is much clearer (and much harder to get wrong).1

Process

The benefit of the techniques we’ve just looked at is that they’re

unequivocal. An improved interface that makes incorrect use impos-

sible completely removes the opportunity to make the same mistake

again. An automatic check will always detect the issue it’s looking for.

So, if you can address the root cause this way, you should.

Unfortunately, it’s not always possible to find a way to completely elim-

inate the opportunity to make a mistake, and examining your process

might be your only remaining option.

Perhaps you need to look at the quality of your requirements documen-

tation? Or consider introducing design reviews? Maybe a checklist of

common pitfalls to watch for during code reviews would prove useful?

5.4 Close the Loop

The project that you are working on will have its own set of norms, for

example:

• Coding standards

• Testing standards

• Documentation standards

• Reporting/tracking processes

• Design guidelines

• Performance requirements

Whenever you fix a bug, you need to bear these in mind. Do you need to

update the end-user documentation as a result of the fix? Or the change

log for the next release? Does the work need to be tracked against a

particular client or project? Do you need to resolve a ticket in your

1. If you’re lucky enough to be working in a language that supports named arguments,

you won’t need to jump through these hoops.

PUT IT IN ACTION 93

bug-tracking package? Or hand it off to the QA department (and what

supporting materials do they need)?

So, that’s it—we’ve covered the life cycle of a bug all the way from repro-

duction through diagnosis, fixing and reflection. In the next section,

we’ll look at the bigger picture—how do we find out that there’s a prob-

lem to be addressed in the first place, and how does bug fixing fit into

the software life cycle?

5.5 Put It in Action

• Take the time to perform a root cause analysis:

– At what point in your process did the error arise?

– What went wrong?

• Ensure that the same problem can’t happen again:

– Automatically check for problems.

– Refactor code to remove the opportunity for incorrect usage.

– Talk to your colleagues, and modify your process if appropri-

ate.

• Close the loop with other stakeholders.

Part II

The Bigger Picture

Chapter 6

Discovering That
You Have a Problem

In the first part of the book, we started from the point at which we

already knew that we had a bug. In this chapter, we’ll look at what

comes before this.

Bugs can come to light at any point in the software development cycle—

from seconds after the code is written to months or years after it’s

released. Ideally, you’ll find them yourself and as early as possible—

it’s easier to fix bugs that are detected quickly, and doing so avoids the

embarrassment (or worse) of allowing a bug to escape into the wild.

Nevertheless, there will be occasions where, despite your best efforts,

a customer is affected by a bug. In this chapter, we’ll talk about what

happens after they have been. Specifically, we’ll cover the following:

• Tracking bugs

• Working with users

• Working with the customer support and QA teams

6.1 Tracking Bugs

Whatever kind of software you’re working on, you’re going to need to

create some process through which your users can tell you about prob-

lems (and ultimately, through which you can tell them about fixes).

TRACKING BUGS 96

Bug-Tracking Systems

Bug-tracking systems vary dramatically in size, scope, and approach.

At one end of the scale are simple single-purpose systems, and at the

other end are fully fledged workflow management systems that control

and log every aspect of the software development process (of which bug

tracking is just one small part). Nevertheless, the basic goals of a bug-

tracking system remain constant:

• First and foremost, it ensures that we don’t forget about a bug.

• By providing a standard format for bug reports, it increases the

chance that all relevant information will be included.

• As an audit trail, it ensures that for each release we know which

bugs are outstanding, which were fixed, by whom and how. It can

be an important source of information for release notes (we might

even be able to automatically generate them).

• It allows us to prioritize bugs and determine which to work on

first.

• By providing a means of communication between various stake-

holders, it ensures that everyone understands the current state of

the bug and that all relevant information is provided as responsi-

bility moves between individuals or teams.

• As a management tool, it provides an overview of the current state

of the project.

• On the rare occasion we choose not to fix a bug, we can store

the reasoning behind that decision so we don’t have to repeat the

process in the future.

However good your bug-tracking system, it’s only as good as the infor-

mation it contains.

What Makes a Good Bug Report?

We’ve all experienced the frustration of having to deal with an unhelpful

bug report, something that says little more than “it’s broken” and gives

you nothing more to go on. So, we know what we don’t want, but in an

ideal world what would we see in a bug report?

At first glance, it’s obvious—whatever information is necessary to allow

us to diagnose the problem. Unfortunately, until we’ve performed that

diagnosis, we don’t know what might and what might not be relevant.

So, a good bug report errs on the side of more rather than less.

TRACKING BUGS 97

Joe Asks. . .

Do I Need to Track My Bugs Electronically?

Because we work with it every day, there is a natural tendency
for us to assume that all problems should be solved with tech-
nology. On occasion, however, it can just get in the way.

If you’re working in a small colocated team, don’t have many
bugs to track, and don’t need to provide remote access to your
bug database, then a nontechnical solution (index cards stuck
to a whiteboard?) may well be right for you.

Don’t confuse a low-technology system with a casual
approach, though. Handling bugs responsibly is a key part
of professional software development—just because your bug
reports are handwritten doesn’t mean that you can treat them
any less carefully.

A report should be

specific, unambiguous,

and detailed...

It should be specific, unambiguous, and

detailed. If an error message was displayed,

what exactly did it say? If data became cor-

rupted, how? Precisely what actions led up to

the problem? If the output was incorrect, in

what way? If there are supporting resources (input files that repro-

duce the problem, screenshots of incorrect output, and so forth), these

should be attached to the report.

...but also minimal and

unique.

As a counterpoint to the previous, a bug report

should also be minimal. If it can be repro-

duced with a 10,000-line input file, can that

file be cut down at all? Which elements of the

sequence of actions leading up to the bug are essential, and which can

be discarded? If it manifests on one version of the software, are there

other versions that don’t display the problem?

Related to this, a bug report should also be unique. If the problem

has already been reported, reporting it again is unlikely to be help-

ful (although there may be additional information to add to the existing

report).

TRACKING BUGS 98

My Favorite Bug Report

The product I was working on had a catchall exception handler that

displayed a “crash screen” in the event that things broke irretrievably. It

didn’t happen often, thank goodness, but could help considerably when

tracking down the cause.

And then we received a bug report that read “The crash screen has no

undo button.”

You have to hand it to the user who reported it—it would undeniably have

been a great feature if we could have implemented it!

Environment and Configuration Reporting

Almost every bug-tracking system has an environment field. If you’re

working on desktop software, this might be used to record the operating

system the bug manifests in. Or for web software the browser.

So far, so good. But is it enough?

There are two reasons why it isn’t. The first is that most nontechni-

cal users typically have no idea about their environment. Does your

mother know which browser she uses? Do your colleagues in the sales

department know which Windows Service Pack they have installed?

Second, and more to the point, computing environments are becoming

more complicated and more interconnected all of the time. Is it enough

to know that your user is using Firefox to view your site? Almost cer-

tainly not—you probably also need to know which exact version of Fire-

fox they’re using, what platform they’re using it on, which plug-ins they

have installed, whether they have cookies and JavaScript enabled, and

so on.

Collect environment

and configuration

information

automatically.

You can cut through this Gordian knot by

adding an option to your software to record

whichever aspects of the environment might

affect its behavior. Sure, for many bugs, much

or all of this information will be irrelevant, but

if automated, it’s virtually free to collect, and

you can rely on its accuracy. And when it is relevant, it’s invaluable.

What Did You Say It Was Again?

For my sins (and it has felt like purgatory on occasion), I’ve spent much of

my career working on software for mobile phones. If you think that users

have trouble working out what they’re running on their laptop, you

should try asking them about their mobile.

TRACKING BUGS 99

Figure 6.1: Firefox’s about:config page

Pop quiz (don’t look). What make and exact model is your mobile? Not

sure? Now take a look. Chances are you’re still none the wiser. How

exactly are you supposed to work out what it is if you don’t already know?

Now imagine what working in technical support must be like when

customers can’t even answer the most basic questions about their

hardware. “Err—it’s silver with black buttons. Does that help?”

The same argument applies to any configuration options your soft-

ware supports. If you provide a means by which this can be recorded

automatically, then questions like “Are you sure you had feature X

enabled?” become a thing of the past.

A good example of this kind of reporting are the various about: URLs

supported by many web browsers. Try typing about:config (Figure 6.1),

about:buildconfig, or about:cache into Firefox to see what I mean.

WORKING WITH USERS 100

6.2 Working with Users

As a software engineer, you understand the value of a bug report. If

nobody takes the time and trouble to tell you about problems, you won’t

find out about them. And you can’t fix bugs you don’t know about.

Streamline the Process

Unfortunately, there’s nothing you can do to guarantee that users will

take the time to report bugs or that those they report are of a high qual-

ity. But you can increase the likelihood by removing as many barriers

as you can.

Make it obvious how to report a bug:

Place instructions (or better yet, a direct link) to how to report a

bug in your software’s About dialog box, online help, website, and

anywhere else you think appropriate.

Automate:

Install a top-level exception handler, and give the user the option

to file a bug report that automatically contains all the relevant

details.

Provide multiple options:

Some will prefer to report bugs electronically; others will prefer to

talk to a human being. Some will prefer email, others an online

form.

Keep it simple:

Each action you ask your users to perform will reduce the number

who complete a transaction by half. In other words, ask them to

click three times, and only 12.5 percent of them will complete.

Five times, and you’ve reduced that figure to a little more than 3

percent.

Don’t have too rigid a template:

It can be a good idea to have a standard template for bug reports,

but beware of making that template too strict. Make sure that you

have sensible options for each field including “none of the above.”

Respect your users’ privacy:

Your users’ data belongs to them, not to you. Make it clear that

you understand this with a transparent privacy policy.

WORKING WITH USERS 101

Joe Asks. . .

Surely I Can Rely on My Users to Tell Me About Bugs?

You would think so, wouldn’t you? After all, presumably they’re
using the software because they want to achieve something,
and the bug is stopping them from doing so.

Well, whatever you might think, most users won’t tell you when
things go wrong. Some will assume that it was their fault—that
they “clicked the wrong button.” Some will sigh resignedly (mut-
tering imprecations under their breath), restart the software,
and carry on from where they left off. Others will go to extraor-
dinary lengths to find workarounds for bugs you could fix in sec-
onds.

As a rule of thumb, for every user who tells you about a prob-
lem, there will be between 10 and 100 other users who experi-
enced the same problem and didn’t think to get in touch.

Effective Communication

Talking to customers can be tricky. Effective communication relies

upon shared context, but your point of view is necessarily different from

your users’. They don’t share your deep understanding of the code, and

you don’t share their deep understanding of their problem domain. You

use different vocabularies, possess different skills, and utilize different

problem-solving approaches. You need to be aware of these differences

and the issues that potentially arise from them.

There are no simple solutions to these communication issues. All you

can do is appreciate that they’re inevitable, remain calm, and work your

way through them.

Mental Models

We deal with the world by creating mental models. As software engi-

neers, we’re particularly aware of this—software is a reification of those

models.

Your users create their own mental models too. It may surprise you to

discover just how different theirs are from yours, though.

WORKING WITH USERS 102

The danger arises when you think that you’re both working from the

same model. This can lead to myriad misunderstandings that will take

a great deal of effort to unpick.

Imagine how things

might appear from your

user’s perspective.

The most powerful remedy to this situation is

to put yourself in the user’s shoes and imagine

how things might appear from their perspec-

tive. Your aim is to tease apart their observa-

tions (which you can trust) from their interpre-

tations (which will be colored by their mental model).

I See What the Problem Is

by Marcus Gröber

I write software for the blind, using speech synthesis on mobile phones,

and sometimes I get reports from our users saying “My phone hangs

when I do X.” But I’ve learned that what this often really means is “Audio

output stops when I do X.” The phone becomes so useless without speech

that for a blind user it is indistinguishable from a “hang.”

Talking to the Nontechnical

Unless you’re in the rare situation of creating software that is used by

other programmers (in which case you have a slightly different, but

no less challenging, set of communication issues), your users probably

aren’t technically minded. They are unlikely to understand things you

take for granted or to appreciate the subtleties involved in diagnosing a

problem.

The biggest issue is often extracting accurate details. You know that the

slightest detail might be the vital clue, but your user probably doesn’t

realize how crucial this is. There’s an excellent chance that they will

paraphrase error messages instead of quoting them exactly or gloss

over “irrelevant” details. And they may not react well when you dig

deeper to unearth those details.

The only solution is to be patient—explain why the details matter, and

talk them through the steps required to collect the relevant data. This

can be frustrating—something you could achieve in seconds could well

take them much longer—but it’s worth the investment of your time.

How Technical Is the Person You’re Talking To?

by Vandy Massey

Judging just how technically proficient someone is can be particularly

challenging over email or telephone. It’s an issue we have to deal with

when we’re talking to users. Telling them to start Internet Explorer by

WORKING WITH USERS 103

Users Have No Monopoly on Misunderstanding

You don’t get to be a successful software engineer without
being bright. Most of us excelled at school and are proud of
our intellect. But that doesn’t mean that we can’t get things
wrong.

When it’s obvious that there’s a misunderstanding, remember
that it could be you who’s got the wrong idea. You may have
a better understanding of the software, but you’re unlikely to
understand the application area better than your users. That’s
their speciality.

saying “Look for the big blue E” is just going to annoy them if they’re

computer literate, but equally it’s surprising just how often we do end up

having to talk to users in that sort of language.

I remember how angry I was with the company that developed an EPOS

system when I reported a problem with one of their reports. There was a

figure being reported on their “end-of-day” report that was consistently

wrong. They simply told me that they knew what they were doing and that

I was incorrect. They were absolutely set on the idea that because I was a

user and therefore “nontechnical,” I couldn’t possibly know what I was

talking about. Even when I told them that I was an accountant by

training (and therefore knew perfectly well that the figure on the

end-of-day financial report was wrong) and that I had a modest

knowledge of development, they dismissed everything I was saying. The

problem has never been resolved, so we just work around it because we

can. However, I was left with a lasting impression of arrogance, stupidity,

and a complete lack of customer focus. I’ve never bothered to contact

them again with any queries, let alone suggestions for upgrades. And we’ll

definitely not buy any more software from them.

Publish Your Bug Database

Make your bug-tracking system available to all users.1 If it isn’t some-

thing you’ve done before, then allowing everyone to see your “dirty laun-

dry” can be a scary prospect, but the benefits are significant.

1. This is extremely easy to achieve if you use a hosted solution—see Section A.1, Source

Control and Issue-Tracking Systems, on page 192 for some options.

WORKING WITH USERS 104

• Seeing that others’ reports are taken seriously, responded to, and

ultimately addressed gives your users confidence that it’s worth

their while to take the time to make a report.

• If a user can search your database before reporting a bug, you’re

much less likely to have duplicate bugs reported.

• One of your users seeing another’s bug report may jog a memory

or insight that provides the vital clue allowing you to unlock that

particular problem.

• Access to existing examples is an excellent way for a user who is

unsure to get a feel for what constitutes a helpful bug report.

If you do decide to publish your bug database, remember to make your

users aware that information they add to their bug will become public.

Privacy Problems

by Bill Karwin

At one company I worked at, tech support maintained a bug database for

years and assumed it was private. When users wanted us to publish this

database, we couldn’t because it was full of private details about our

customers, including names, phone numbers, IP addresses, and so on.

Provide Feedback

When a user submits a bug report, show your gratitude by responding

and keeping them in the loop throughout the process.

This need not be an onerous task. Many bug-tracking systems imple-

ment the ability to email “interested parties” whenever the status of the

bug changes. As long as you keep your bug-tracking system up-to-date,

such a system will ensure that whoever reported the bug, plus anyone

else you deem appropriate, is kept up-to-date.

Visit the Customer

For really tricky bugs, nothing beats visiting the customer. Watching

the user can tell you much more than any bug report.

A Tale of Two Double-Clicks

I was working on what seemed, on the face of things, to be a very simple

bug. The bug report described a short sequence of user interface actions

and claimed that the bug could be reproduced completely reliably. Try as

hard as I might, I couldn’t reproduce it and eventually closed it as “works

for me.”

Within minutes, the program manager who reported it had reopened it

and asked me to come over to his desk, where he demonstrated the bug to

me several times, completely reliably.

WORKING WITH SUPPORT STAFF 105

Where it got weird is that whenever I tried to reproduce it—on his

computer with him watching and verifying that I was performing the same

sequence of actions—it didn’t happen.

We eventually worked out that the difference was that when I

double-clicked the mouse, I kept it in the same position. He, on the other

hand, moved the mouse very slightly between the first and second click.

He moved it only a couple of pixels, but this was enough to explain the

difference in behavior.

We would never have discovered this without watching each other use the

software.

6.3 Working with Support Staff

Most organizations employ a number of technical or semitechnical staff

who don’t work directly on the construction of the software. Customer

support, QA, customer engineering, technical account managers, and

so forth, can be an invaluable help during debugging.

Your QA team doesn’t only help you by detecting bugs before they make

it out into the field. Their expertise and perspective can also be particu-

larly helpful when you’re struggling to either find or refine a reproduc-

tion. Perhaps you might consider pairing with a colleague from the QA

team during this phase of diagnosis?

A good customer support team can really prove their value by bring-

ing their relationship with, and knowledge of, your customers to bear

during bug fixing—which can help immeasurably with some of the com-

munication issues we discussed earlier in this chapter. They should be

able to use their judgment to ensure that all relevant information is

identified and communicated without passing everything along verba-

tim and overwhelming development with irrelevancies. You might con-

sider asking them to implement a characterization process to improve

the quality of bug reports from the field (see the sidebar on the next

page).

Work in customer

support occasionally.

No matter how good your customer support

team is at communicating with users on your

behalf, there is a danger that you can become

insulated from your users. To foster the inti-

mate understanding of, and empathy with, your users that you need

to effectively develop software for them, you might consider working in

support occasionally. As well as helping you understand your users,

WORKING WITH SUPPORT STAFF 106

Characterization

Sometimes it makes sense for bugs to pass through a character-
ization process before being handed over to the development
team for diagnosis. This isn’t appropriate in all cases but can be
very helpful, particularly for larger projects and teams.

The line between characterization and diagnosis is a fuzzy one,
but broadly speaking, it’s a black-box process, which takes
place from “outside” the software without consideration of its
internal workings. Diagnosis, by contrast, is a white-box process.

The objective of characterization is to find the “boundaries” of
the bug. Can it be reproduced reliably? Does it happen on all
different platforms or just on one? Can the inputs be varied and
still reproduce the problem (and if so, how)?

nothing else will give you a better appreciation of the challenges faced

by your colleagues in customer support and respect for their ability.

The Great Wall of QA

Because much of the value your QA team brings to the table is a different

perspective, one of the things that they have to guard against is becoming

“polluted” with the development team’s preconceptions. You can take this

too far, however.

I once worked in an organization where there was a Chinese wall between

development and QA—we weren’t allowed to talk to the test team at all.

The only information that could flow from development to testing was a

compiled binary. The only information that could pass back in the

opposite direction was a “pass” or “fail.”

When I asked the architect of this team structure why he thought it made

sense, he answered that if we were allowed to talk to the test team, we

might create software that was constructed in order to pass the tests by

“cheating.” While this may be theoretically possible, the cure was much

worse than the imagined disease.

In the next chapter, we’ll turn our attention to psychology—what con-

stitutes an effective debugging mind-set?

PUT IT IN ACTION 107

6.4 Put It in Action

• Make the most of your bug-tracking system:

– Pick one at an appropriate level of complexity for your partic-

ular situation.

– Make it directly available to your users.

– Automate environment and configuration reporting to ensure

accurate reports.

• Aim for bug reports that are the following:

– Specific

– Unambiguous

– Detailed

– Minimal

– Unique

• When working with users, do the following:

– Streamline the bug-reporting process as much as possible.

– Communication is key—be patient and imagine yourself in

the user’s shoes.

• Foster a good relationship with customer support and QA so you

can leverage their support during bug fixing.

Chapter 7

Pragmatic Zero Tolerance
How does bug fixing integrate with the wider software development pro-

cess? How do you estimate how long it will take to fix a bug or to fix all

the bugs currently within your software? How do you ensure that your

project doesn’t end up struggling in the tar pit of endless bug fixing

described so eloquently by Brooks in The Mythical Man Month [Bro95]?

In this chapter, we’ll cover the following:

• When to fix bugs

• The debugging mind-set

• How to dig yourself out of a quality hole

7.1 Bugs Take Priority

Some teams choose to fix bugs as soon as they come to light (early

bug fixing). Others “save them up” until the end of the development

cycle (late bug fixing). Of these, early bug fixing is by far the superior

strategy.

Early bug fixing depends upon two principles:

• Processes that are likely to uncover bugs (testing, code reviews,

getting running software into users’ hands) happen continuously

during development.

• Bug fixing takes priority over everything else.

The aim is to keep the number of bugs in the software (both those we

know about and those we haven’t yet found) as small as possible.

BUGS TAKE PRIORITY 109

Development Debugging

Time

Done

Done? Done? Done?

Project A

Project B

Figure 7.1: Detecting and fixing bugs early provides certainty.

Early Bug Fixing Decreases Uncertainty

Until you start looking for them, you can have little or no idea how

many bugs remain to be found. And until you start fixing them, you

can’t know how long they’re going to take to fix. Early bug detection

and fixing allows you to measure how much of your time you need to

spend on bug fixing and adjust your plan accordingly. Late bug fixing,

on the other hand, gives you the illusion that you’re making progress,

but you’re just storing up technical debt—a backlog of problems lurking

under the surface of the software. You can have no idea when you will

be done—it’s impossible to predict how many more issues are waiting

to be found.

We can see this graphically in Figure 7.1. In Project A (at the top), bugs

are detected and fixed as soon as possible. As a result, we can measure

our true velocity and accurately predict the point where the project is

complete (and bug free). By contrast in Project B (at the bottom), we

save testing and bug fixing until the end, by which point we have no

idea how many outstanding bugs there are or how long they might

take to fix. Will we be done next week? Next month? Six months from

now? There’s really no way to be sure because, even if we knew how

much work remained (which we do not), we have no historical data

upon which to base our estimate of how long it might take.

BUGS TAKE PRIORITY 110

Joe Asks. . .

How Do I Estimate How Long a Bug Will Take to Fix?

In general, it’s impossible to estimate how long a particular bug
will take to fix. Diagnosis is intrinsically uncertain—any estimate
you come up with, until you’ve resolved that uncertainty, will be
of very little value.

Once you’ve completed your diagnosis, you can probably
come up with a good estimate for how long it will take to fix.
But that’s not likely to be much help because, for the majority
of bugs, diagnosis is the most time-consuming element.

All is not lost, however. Although you can’t estimate how long
a particular bug will take to fix, you can make useful statistical
statements about a collection of bugs. So, if in the run-up to
a release you notice that on average you fixed twenty bugs
last week, it’s probably reasonable to estimate that you’ll do
approximately the same in the next week.

Early bug fixing exploits this effect—if we detect and fix bugs as
soon as possible, we quickly discover what percentage of our
time we need to spend on debugging to achieve bug-free soft-
ware. Better, we do this without estimating—we simply measure
how much time is spent bug fixing.

No Broken Windows

Writing and (particularly) maintaining software is a continual battle

against entropy. Keeping on top of quality is tough, requiring high levels

of discipline. This discipline is difficult enough to maintain under the

best of circumstances, let alone when faced with concrete evidence that

the software is uncared for, such as a long-unfixed bug. As soon as

discipline slips, quality can go into a self-reinforcing downward spiral,

and you’re in real trouble.

Poor quality is

contagious.

Problems multiply, and poor quality is

contagious—the only sure remedy is to stamp

out bugs as soon as they come to light. The

goal is to maintain a zero (or as close to zero

THE DEBUGGING MIND-SET 111

as possible) bug count at all times. This approach is commonly called

no broken windows.1

Detect bugs early, and

do so from day one.

To many of us, jaded by experience of death-

march projects, a project that successfully fol-

lows a “no broken windows” policy can seem

an impossible pipe dream. It is definitely pos-

sible, however, if you detect bugs early and do so from day one. That

way, the number of outstanding bugs (both those you know about and

those lurking as yet undetected) never grows out of control.

7.2 The Debugging Mind-Set

As we’ve already seen, debugging is first and foremost a mental activity.

A healthy debugging mind-set can be a difficult balance to strike. Occa-

sionally, it can feel as though you’ve joined Alice Through the Looking-

Glass [Car71]:

Alice: There’s no use trying, one can’t believe impossible things.

White Queen: I daresay you haven’t had much practice. When I was

your age, I always did it for a half hour a day. Why, sometimes I’ve

believed as many as six impossible things before breakfast.

Taken naïvely, the “no broken windows” approach could be interpreted

to mean that only perfection will do. But as anyone who’s ever worked

on a nontrivial software project knows, bugs are inevitable. No matter

how hard we try, some problems will always slip through the cracks.

So, how do we square this circle?

At one end of the spectrum, we could give in to the inevitable, stop

worrying, and simply accept that bugs will happen. Although based on

a kernel of truth, taken to its ultimate conclusion, this line of reasoning

leads to poisonous fatalism—don’t worry about the fact that you have

bugs; they’re a simple fact of life that you can do nothing about. Don’t

knock yourself out attempting to achieve the impossible; just deal with

bugs as and when they arise.

At the other end of the spectrum, as conscientious software developers

who aim to both deliver value and take pride in what we do, we want to

strive for perfection. Zero tolerance for bugs! Unfortunately, although

1. First popularized in the context of software by Andy Hunt and Dave Thomas in The

Pragmatic Programmer [HT00].

THE DEBUGGING MIND-SET 112

Joe Asks. . .

Is It a Bug or a Feature?

If you’re going to adopt a policy of no broken windows and pri-
oritize all bugs ahead of other development, then you’re very
quickly going to find yourself having the “is it a bug, or is it a
feature?” debate.

From your users’ point of view, it’s almost entirely meaningless—
they just know that what the software is doing is wrong and
want you to fix it. They’re likely to view the bug vs. feature
debate in much the same light as the infamous “How many
angels can dance on the head of a pin?”

From the no broken windows point of view, however, the dis-
tinction is critical. You don’t want to allow your carefully consid-
ered prioritization of tasks to be subverted by simply redefining
features as bugs. Nor do you want to allow quality to slip by
miscategorizing bugs as features.

The distinction is, thankfully, relatively clear. Bugs are uninten-
tional behavior, where the software isn’t behaving according
to its design. Anything else, where the software is doing exactly
what it’s designed to do, is a feature.

Of course, just because the behavior that your users are com-
plaining about is a feature doesn’t mean that it doesn’t need
changing. It just means that it doesn’t receive an automatic
boost to the head of the queue.

well intentioned, this line of reasoning can also end up being unhelpful

if taken to its logical conclusion. I’ve seen it lead to fragile software—

why spend time writing software that can fail safe if it’s never going to

fail in the first place? And it can mean that when the inevitable bugs

do slip through, we constantly feel as though we’ve failed. At its worst,

this can lead to rancorous witch hunts and a blame culture.

So, if both extremes are unhelpful, where on this continuum should we

aim to be?

DIGGING YOURSELF OUT OF A QUALITY HOLE 113

PerfectionismFatalism

Pragmatic
Zero Tolerance

Figure 7.2: Pragmatic zero tolerance

Temper perfectionism

with pragmatism.

The most productive mind-set is pragmatic

zero tolerance—very close to zero tolerance but

tempered with pragmatism (Figure 7.2).

We need to act as though bug-free software is

an attainable goal—leaving no stone unturned and ignoring no tool or

technique that might get us closer. When a bug does slip through the

cracks, we should learn as many lessons from it as possible and take

whatever action we can to ensure that it doesn’t happen again.

But we need to do all this while maintaining a realistic outlook on how

close to our ultimate goal we can expect to get. Yes, we should be ruth-

less in our quest to unearth the cause of any problems but without

beating ourselves up when we fall short or trying to apportion blame.

And we need to understand that some bugs are inevitable and create

software that behaves as robustly as possible in their presence.

It’s OK to cut ourselves a little slack, but only a little. Perfection is

beyond our reach, but we can get very close with the right approach.

7.3 Digging Yourself Out of a Quality Hole

Occasionally, you’re going to find yourself faced with a codebase con-

taining an excess of bugs. Maybe it’s a situation that you got yourself

into; maybe it’s one you inherited. It doesn’t matter—if you’re faced

with a deluge of bugs, how do you get yourself out of the hole?

DIGGING YOURSELF OUT OF A QUALITY HOLE 114

There Is No Silver Bullet

The sad truth is that there is no quick fix. Although there are strategies

available to you that will help, the only sure way out of the problem

is to fix all the bugs, and that requires time, effort, and dedication. No

shortcuts and no free pass.

From a purist point of view, the obvious solution is to call a halt to

proceedings and announce that no new development will take place

whatsoever until you are on top of your quality problem. Unfortunately,

most organizations don’t react well to being told that you’re not going

to deliver any new features whatsoever for the next six months.

So, what are your options?

Stop the Rot

Your first order of business is to stop things from getting worse. You

might not be able to immediately bring all the existing code up to stan-

dard, but you can ensure that any new code starts out that way.

Put the basics in place.
If you don’t already have the basics in place,

then your first step should be to put them

there—without them, you’re simply going to

dig yourself further into the hole you already find yourself in. As a bare

minimum, this means the following:2

• Source control

• A fully automated build system

• A fully automated test harness

• Overnight builds or continuous integration

Once these are in place, make sure that you use them. You’re trying

to reverse entropy, and it’s not going to be easy to break free from its

hold. It’s much harder to retrofit quality than it is to build it in from the

outset or maintain it.

Separate Clean from Unclean

One challenge you’re going to face is that you’ll be fighting against the

broken windows effect—when you’re surrounded by broken windows,

it takes a strong effort of will to avoid backsliding.

2. We’ll cover these in detail in Chapter 9, The Ideal Debugging Environment, on

page 141.

DIGGING YOURSELF OUT OF A QUALITY HOLE 115

Boarding Up Broken Windows

In The Pragmatic Programmer [HT00], Andy Hunt and Dave
Thomas mention that, on occasion, you might consider “board-
ing up” broken windows:

“If there is insufficient time to fix it properly, then board it up.
Perhaps you can comment out the offending code, or dis-
play a ‘Not Implemented’ message, or substitute dummy data
instead. Take some action to prevent further damage and to
show that you’re on top of the situation.”

A variation of this approach is to sandbox a problem module. If
the code itself is too awful for you to fix with confidence, isolate
it as much as you can from the surrounding code. Control its
interface so you know exactly how it’s being used, and verify
the results it returns. Over time, you can eventually excise or
rewrite it.

A good strategy can be to clearly demarcate “clean” (well-written, well-

tested, and debugged) code from “unclean.” Make sure that everyone in

the team understands that the clean code must stay that way.

Take the opportunity to move the boundary further into the old code

whenever you have an opportunity to do so. If you’re working on that

code, write tests for any bugs you fix and anything else you touch along

the way. After a while, bit by bit, you’ll discover that you’ve incremen-

tally created tests that cover a significant amount of the codebase. At

least all of the areas that are currently in flux (which are likely to be the

most interesting from a quality standpoint) should end up reasonably

well tested.

Bug Triage

Many teams faced with a large and growing bug database choose to put

some variety of bug triage in place.3 The purpose of a triage meeting

is to review the list of bugs, both old and new, and ensure that you

understand their implications and that you have them appropriately

prioritized relative to each other.

3. Sometimes called a bug scrub meeting (in the sense of cleaning your bugs).

DIGGING YOURSELF OUT OF A QUALITY HOLE 116

Prioritizing bugs requires

an overview of the

entire bug database.

These meetings can be the most soul-

destroying way to spend time you’re likely to

find. They tend to go on interminably, and you

regularly find yourself having to make impos-

sible trade-offs arising from limited resources.

Nevertheless, if you find yourself in the position where you have a large

body of outstanding bugs, it’s difficult to see any other way to manage

the process. Someone needs to have an overview of the entire database

in order to be able to make those difficult trade-offs, and the only way

to achieve this is to review that database on a regular basis and ensure

that new entries are created with the appropriate priorities.

Worthy of Heroism?

by Bill Karwin

At one job, we developed a metaphor that became a running joke. We were

down to the last week of development before shipping our product, and

there were still open bugs we had earlier marked top priority. Only some

of them could be fixed. I asked the triage team to imagine that our

product still has these bugs, and the truck loaded with finished product

is rolling away from the loading dock. Do you feel so strongly that these

bugs must not get into customers’ hands that you’ll go down there and lie

down in the driveway in front of the truck? It got some laughs, put things

in perspective, and helped us decide whether each remaining

“top-priority” bug was so important that it would warrant such heroism.

In some cases, yes. But in other cases, people had to admit the bug was

obscure or else had mild enough consequences.

Bug Blitz

A popular strategy adopted by some teams is to institute a bug blitz

(sometimes called a bug fest or similar). Some relatively short period (a

day, a week, or maybe even an iteration) is put aside during which time

everyone on the team works on nothing but bug fixing.

The object of the exercise is to decrease the number of outstanding bugs

as much as possible in the time available, irrespective of their priority.

Often, this means the simple bugs—the ones that might otherwise be

overlooked as too unimportant—receive time and attention.

Done well, a bug blitz can have both practical and psychological bene-

fits. It can help by simply getting the number of bugs down to a man-

ageable level, helping you see the wood for the trees. And it can give a

jaded or demoralized team a sense that they’re making progress.

DIGGING YOURSELF OUT OF A QUALITY HOLE 117

Joe Asks. . .

How Do I Refactor Untested Code?

Once you start to get on top of your quality issues, you’re going
to want to start refactoring the old, crufty, untested code. And
you should—the point of the exercise is to clean up problems,
and refactoring is a key element of that process.

Remember, however, that refactoring crucially depends upon
the support of an extensive suite of automated tests. Without
tests, you’re not refactoring. You’re hacking.

So, how do you refactor untested code? You don’t. The first
thing you do is write the tests.

It’s a technique that needs to be used sparingly and carefully, however.

A bug blitz can be fun for a short period—everyone pulling together, the

bug count visibly decreasing, shared pizza paid for by the company.

But it’s fun only for a short period; it can quickly become wearing. We

all need to feel as though we’re making progress, and nothing but bug

fixing for weeks on end will wear anyone down.

You also need to bear in mind that the purpose of a bug blitz is to

improve the overall quality. That means you don’t get to scrimp on your

normal processes—the checks and balances are there for a reason and

are just as applicable during a bug blitz.

SWAT Team

A slight variation on the bug blitz is the SWAT team—a small team

brought together for a limited time for the express purpose of sorting

out a specific quality issue.

It’s particularly appropriate if you’ve identified that you have a problem

area—a module with an unacceptably high bug count, for example. A

typical SWAT team consists of the best, most experienced members of

the team who can identify the root cause and bring the right skills and

techniques to bear in order to fix the problem once and for all.

In the next part of the book, we’ll look at a few special cases that need

particular care, how to set up an environment that helps rather than

hinders bug fixing, and finally some pitfalls to avoid.

PUT IT IN ACTION 118

7.4 Put It in Action

• Detect bugs as early as possible, and fix them as soon as they

come to light.

• Act as though bug-free software was an attainable goal, but tem-

per perfectionism with pragmatism.

• If you find yourself faced with a poor quality codebase, do the

following:

– Recognize there is no silver bullet.

– Make sure that the basics are in place first.

– Separate clean code from unclean, and keep it clean.

– Use bug triage to keep on top of your bug database.

– Incrementally clean up bad code by adding tests and refac-

toring.

Part III

Debug-Fu

Chapter 8

Special Cases
Some kinds of bugs benefit from specialized treatment. In this chapter,

we’ll examine some of these special cases.

8.1 Patching Existing Releases

For excellent reasons, all well-run software projects work to a release

schedule. A traditional project might call for one every six months, an

Agile project every two weeks, but they both make releases at well-

defined, planned, and controlled points.

This process shouldn’t be subverted lightly. Nevertheless, on rare occa-

sions you may be faced with a bug so severe that you have no choice

but to break from the normal schedule and patch an existing release.

When patching an

existing release,

concentrate on

reducing risk.

Diagnosing such a bug is no different from any

other. The point at which things become tricky

is when you start to design your fix, because

when designing a patch, your goals are differ-

ent from normal. Your primary goal is usually

fixing the root cause. By contrast, when patch-

ing an existing release, it’s minimizing risk.

A true fix might involve extensive refactoring or even deep architec-

tural changes. In the absence of the normal checks and balances of

the full release process, it’s difficult to be certain that these changes

won’t introduce regressions and end up making things worse rather

than better.

As a result, a workaround that addresses the symptoms instead of the

root cause can sometimes be the better choice when implementing a

BACKWARD COMPATIBILITY 121

patch. This is a very difficult balance to strike—you normally avoid

“papering over the cracks” for good reasons.

If you do decide to take this route, don’t fall into the trap of assuming

that because your fix is a “hack,” you can take less care. The converse

is true—you need to take more care to counteract the potential issues

associated with such a fix. Although you can’t perform all the checks

you normally would for a full release, you should carry out as many

as possible. It’s at times like this that you really appreciate the effort

you’ve put into automating your test and release process.

The bug will need fixing

in the development

version too.

As well as patching the current release, you’re

also going to need to fix the same bug in the

development version. You don’t want someone

using a patched release to upgrade at some

point in the future and suddenly discover that

whatever problem the patch addressed has come back again. But don’t

blindly apply the same changes—the development version will even-

tually go through a full release cycle and should, therefore, receive a

properly designed fix that addresses the root cause. We will discuss

ways in which your source control system can help with this in Sec-

tion 9.2, Taming Branches, on page 147.

Unfortunately, having one fix in the patch and another in subsequent

versions raises the specter of incompatible behavior between releases—

an issue we’ll cover next.

8.2 Backward Compatibility

On the face of it, addressing a bug is a clear-cut process. The behavior

should be this, but it’s actually that—just work out why and fix it.

Many bugs are indeed that straightforward. Sometimes, however, if the

bug manifests in a version of the software that is already in users’

hands, you might need to worry about backward compatibility.

The problem is that, if they’ve been using a version containing the bug

for a while, your users may have come to rely upon it doing the wrong

thing in some way. So, if you fix it without thinking about the conse-

quences, you’re likely to have a number of very unhappy users.

BACKWARD COMPATIBILITY 122

Joe Asks. . .

What If I Need to Patch Existing Releases All the Time?

Patching existing releases is appropriate only under excep-
tional circumstances. If it’s becoming routine, you have a seri-
ous problem.

Releasing patches is expensive, dangerous, and wastes time.
Doing so continuously leads to thrashing, digging you deeper
into the mire. Don’t persevere with a broken process—take the
time to identify and fix the underlying cause.

• Perhaps the interval between releases is too long? Con-
sider moving to a more Agile process, which will allow you
to release more frequently, or creating a maintenance
schedule to bring structure to maintenance releases.

• Do you have customers who are “stuck” on old releases?
What can you do to get them to upgrade? Perhaps you
need to make the upgrade process easier or more reli-
able? Or remove political constraints (counterproductive
upgrade fees, for example)? Or reimplement the key miss-
ing feature in version 2.0 that’s leading them to stick with
1.4?

• Is your problem simply that you’re struggling to cope with
an excess of bugs? If so, consider applying the reme-
dies we discussed in Section 7.3, Digging Yourself Out of
a Quality Hole, on page 113.

Of course, nobody deliberately relies upon broken behavior.1 Unfortu-

nately, it can be very easy to end up relying upon it accidentally:

• If the bug affects files saved by your application, perhaps your

users have built up a collection of corrupt files? Files that

won’t give the expected results when subsequently opened by an

upgraded version of the software? Or even worse, can’t be opened

at all?

1. Apart, perhaps, from crackers exploiting flaws in your software to achieve their nefar-

ious goals.

BACKWARD COMPATIBILITY 123

• If the bug affects your APIs, then any code that interacts with your

application might fail when run against a fixed version.

• Fixes that affect the user interface might result in users having

to relearn how to operate the software (with associated retraining

costs).

Identifying That You Have a Problem

Your first order of business is to determine whether the fix that you’re

working on is likely to have compatibility implications. Unfortunately,

this can be tricky—users can come to rely on all sorts of subtleties, and

it’s very difficult to predict what they might be.

Asking them directly is very unlikely to bear fruit—such dependencies

are almost always accidental and, therefore, unconscious.

Add identifying

compatibility issues to

your bug-fixing checklist.

Your primary tool is simply thinking about the

change you’re considering in the context of

your understanding of the big picture to see

whether you can think of any way in which it

might cause compatibility issues. To that end,

it can make sense to have this as one of the items on your bug-fixing

checklist as a prompt to make sure that it’s not forgotten.

Your regression test suite can sometimes help with identifying back-

ward compatibility issues. Unfortunately, hand-constructed tests tend

to be simple, exercising a simple use case, whereas the kinds of problem

we’re trying to identify here tend to depend upon complex interactions

between loosely connected areas of the software. So, it’s an excellent

idea to build up a library of “real-world” examples collected from the

field that you can use for this purpose. The wider the range of such

examples in your library, the more likely you are to identify problems

before they reach the outside world.

Addressing Compatibility Issues

Once you’ve determined that the fix you’re working on might cause

compatibility problems, what can you do about it?

You’re looking to find a balance between two potentially antagonistic

goals. On the one hand, you want to implement a high-quality fix for

the problem. On the other, you want to minimize any pain caused by

BACKWARD COMPATIBILITY 124

Figure 8.1: Microsoft Word’s compatibility mode

a lack of backward compatibility. Unfortunately, achieving both simul-

taneously might be impossible—you may end up looking for the best

compromise.

A range of options are open to you.

Provide a Migration Path

Give your users some way to modify their existing data, code, or other

artifacts to fit in with the new order, such as a utility that converts

existing files so they work correctly with the new software, for example.

It might be possible to automate this so that data is automatically

upgraded during installation. Make sure that you both test this care-

fully and save a backup, though—your users will not thank you if the

upgrade fails and destroys all their data in the process.

Implement a Compatibility Mode

Alternatively, you can provide a release that contains both the old and

new code, together with some means of switching between them. Users

can start by using the compatibility mode, which runs the old code,

and switch to the new after they’ve migrated. Ideally this switch is

automatic—when the software detects an old file, for example.

Microsoft Word is a good example of this approach. When it opens an

old file (with a .doc extension), it does so in a compatibility mode (see

Figure 8.1). Save that file in the new format (.docx), and Word’s behav-

ior, and possibly your document’s layout, changes.

BACKWARD COMPATIBILITY 125

A compatibility mode is

an expensive solution.

This is not a solution to be adopted lightly. It’s

very high cost, both for you and for your users.

From your point of view, it does nothing for the

quality of the code. From the user’s point of

view, it’s confusing—they need to understand that the software sup-

ports two different behaviors, what the differences are, and when each

is appropriate. Turn to it only if this cost is truly justified.

If you’re lucky, you will need to support compatibility code only for a

limited time (one or two releases maybe) to provide your users with a

grace period during which they can migrate. After that, you can clean

the code up again. That’s nice in theory, but these things have a habit

of “sticking”—you will be able to clear out your compatibility code only

if you successfully persuade your users to migrate. And why should

they when everything is working fine?

Provide Forewarning

If you know that you’re going to have to make a significant change but

don’t have to make it immediately, you can provide users with fore-

warning that they will eventually need to migrate. Sun, for example,

does this frequently when it deprecates Java APIs.

Of course, this works only if you can afford to delay your fix for long

enough to enable your users to migrate—and whether your users do

migrate.

Don’t Fix the Bug

The final option is to leave the bug in place—the pain of fixing the as-

sociated compatibility issues might outweigh the advantages of fixing it.

This isn’t a palatable solution, but very occasionally it might be the

pragmatic choice.

It’s Not Just Your Bugs You Need to Worry About

PostScript is a Page Description Language used (among other things) to

control printers. The language was created by Adobe Systems, but several

third parties have developed their own implementation. Back in the early

90s, I worked on one of them.

There was a test suite widely used at the time that consisted of thousands

of reference pages occupying several meters of shelf space.2

2. Shelves that were above my desk and that almost killed me one day when the shelf

supports collapsed!

CONCURRENCY 126

The problem was that these reference pages had to be generated by a real

implementation (in this case Adobe’s), and, like any sizable software

system, it contained the occasional bug. So, when there was a

discrepancy between what our software produced and the test suite,

occasionally it wasn’t our bug.

In theory.

The point of a printer is to create output. Customers aren’t interested in

philosophical debates about why their pages don’t match their

expectations—it prints fine on that printer, so why does the one running

your software get it wrong? So in a number of cases, we decided that the

pragmatic approach was to emulate the bugs in the reference

implementation. It’s not pretty maybe, but that’s the way the world works

sometimes.

8.3 Concurrency

Concurrent software can be a rich source of difficult-to-reproduce,

difficult-to-diagnose, and difficult-to-fix problems. Bugs in such soft-

ware often exhibit nondeterminism, depend upon subtle and difficult

to understand interactions, and suffer from mysterious failure modes.

Simplicity and Control

You can build a number of things into your concurrent software that

will help during debugging. The two keys are simplicity and control.

Simplicity is a key element of any software design, but it’s particularly

valuable when dealing with concurrency. Keep the interactions between

independent threads straightforward, and constrain them to as small a

number of areas of code as possible. You might be surprised how simple

you can make the interactions.

The Simplest Thing That Could Possibly Work

We were designing a server that, when eventually deployed, would have to

handle thousands of concurrent requests. These threads needed to share

data, accessing and modifying it concurrently.

The shared data took the form of a tree, and we debated the merits of

various ways of providing safe concurrent access to it for a long time. We

had grand plans in which different subtrees could be locked for reading or

writing and schemes to avoid the danger of deadlock in the event of

threads requiring multiple simultaneous locks. It was all very clever, but

was it necessary?

CONCURRENCY 127

Eventually, we created a harness that simulated thousands of users

accessing the server and ran some load tests. It turned out that a single

“multiple-reader, single-writer” lock was more than adequate for the kind

of access patterns we envisaged. This simplified things dramatically—you

can’t have deadlock with a single lock.

Not only does a simple design make your software easier to understand

and less likely to contain bugs in the first place, it also makes it easier

to control—which is particularly useful when trying to reproduce prob-

lems in concurrent software. If your threads interact with each other

only in a few well-defined ways and at a few well-defined places, then

it’s much easier to ensure that they always interact in exactly the way

that you want them to during debugging.

Most bugs in concurrent software are perfectly “normal” and have noth-

ing to do with the fact that it’s concurrent. But having to deal with mul-

tiple threads during diagnosis can complicate things considerably. As

a result, it’s particularly useful to build in the option to be able to run

the software with no concurrency whatsoever—either by restricting it

to a single thread or by forcing threads to run serially in a well-defined

sequence (instead of context switching at the whim of the scheduler).

Most bugs that are related to the concurrent nature of the software

reproduce only if context switches occur at very specific places and

times. Reliably reproducing the bug depends upon accurately control-

ling exactly when these context switches take place. As we saw in Sec-

tion 2.5, Multithreading, on page 41, sometimes you can achieve this

with judicious use of sleep(), but it’s much preferable to build the ability

to control exactly what order things happen in into your synchroniza-

tion code.

Fixing Concurrency Bugs

There is one key thing to remember when you come to fixing bugs

in concurrent software—making them less likely to happen is not an

acceptable fix.

Often you will find that there’s a specific “window” in which a race

condition can arise. It might be easy to see how to make the window

smaller, but not so easy to see how to close it entirely.

For example, you might launch a number of threads at approximately

the same time and find that if their initialization code runs simultane-

ously, then you can end up with problems. An obvious, but incorrect,

fix would be to stagger launching the threads on the assumption that

HEISENBUGS 128

by the time the second thread is starting, the first will have finished its

initialization.

The problem with any fix of this nature is that if a window isn’t com-

pletely closed, sooner or later your software will fall into it. Except that

now it will do so only under unusual circumstances (perhaps when the

system is heavily loaded and running more slowly than normal). All

you’ve managed to do is make it even harder to reproduce and track

down the next time.

Avoid usingsleep() when

fixing concurrency bugs.

In particular, sleep() is almost never the right

way to go. As we’ve already discussed, it can

be fantastically useful as a means of forcing

a bug to reproduce reliably or to test a theory

about how the software is behaving, but it is not the right tool for fixing

concurrency bugs. Think of it as the goto of concurrent programming—

if you find yourself considering it, that is a red flag.

8.4 Heisenbugs

A heisenbug—a bug that “goes away” the instant you start looking

for it—is so named by analogy with the Heisenberg Uncertainty Prin-

ciple from quantum mechanics, which (loosely speaking) states that it’s

impossible to observe a system without changing its behavior.3 The typ-

ical heisenbug reproduces reliably in the field but goes into hiding the

instant you start looking for it. They can be very frustrating to diagnose.

The problem is that all the techniques available to you to examine

your software’s behavior affect that behavior to some degree or another.

Whether you capture the information you need by adding instrumen-

tation directly to the code or by running it under a debugger, doing so

will almost certainly change its timing, its layout in memory, or both.

For most bugs, this doesn’t matter, but a heisenbug relies on some

nondeterministic aspect of your software. This in itself can be a useful

clue. As you recall from Section 2.5, Make Nondeterministic Bugs Deter-

ministic, on page 39, nondeterminism can arise only from a very limited

range of causes, so the fact that you’re faced with a heisenbug means

that it must in some way or another be affected by one of them.

3. This is more correctly known as the Observer Effect—the Heisenberg Uncertainty

Principle actually relates to the accuracy with which we can perform measurements of

quantum mechanical systems. But it’s a cute name, so pedantry be damned.

HEISENBUGS 129

The quickest and easiest thing to try is to switch from one method

of collecting information to another. If you tried running the software

under the debugger, try adding instrumentation directly to the source,

or vice versa. The simple fact that the effect of the debugger is different

from that of direct instrumentation may be all you need.

Minimize the side effects

of collecting the

information you need.

If your luck isn’t with you, then your task

becomes finding some way to gather the infor-

mation you need that affects the software with

a sufficiently light touch as to leave its behav-

ior unchanged.

Logging is a prime source of timing changes—calling System.out.println(),

for example, takes thousands of clock cycles and probably involves at

least one context switch.

You can use your knowledge of which areas might be the source of

nondeterminism to avoid affecting those areas. If, for example, the

code contains a tight loop in which it interacts with another thread,

there’s a good chance that affecting the timing of the loop will change

its behavior. Remove any instrumentation you’ve added to the loop, and

see whether your bug comes out of hiding. If it does, then see whether

you can find a way to collect the information you need without affecting

its timing too heavily.

In-Memory Logging

Some years ago, when working on a large multithreaded product, I found

myself trying to track down a particularly slippery heisenbug. We had

plenty of logging scattered throughout the code that had repeatedly

proven its value in diagnosing thread synchronization issues.

Unfortunately, the instant I switched it on, the code behaved flawlessly.

I didn’t want to lose the logging, because I was pretty sure that it would

tell me what I needed to know. If only I could find a way to reduce its

impact on the code’s execution.

The solution was to reimplement the log functions so that instead of using

the normal output functions, they wrote to large in-memory buffers (one

for each thread, so I didn’t need to worry about synchronizing access to a

shared buffer). These buffers were output after the sensitive portion of the

code had finished executing and subsequently interleaved (so that log

messages appeared in the right order).

Although clearly the new logging functions still had some effect, this

turned out to be small enough that the problem now reproduced. And as I

hoped, the output gave me exactly what I needed to identify its cause.

PERFORMANCE BUGS 130

Joe Asks. . .

How Can I Be Certain That I’ve Fixed a Heisenbug?

The fact that a heisenbug seems to fade in and out of existence
as readily (and as frustratingly) as the Cheshire Cat can make
it particularly difficult to be sure that you really have fixed it. If
you can make the bug “go away” by simply running the soft-
ware under a debugger or adding a single output statement,
then who’s to say that your fix isn’t just triggering the same dis-
appearing act?

The only solution is to be even more careful than normal to be
certain that you really understand the underlying root cause. If
there’s any doubt whatsoever, err on the side of caution, and
assume that you’ve only masked, not fixed, it.

Say, for example, you determine that the bug is caused by an
uninitialized variable and fix it by initializing it to NULL. Don’t stop
there—how, exactly, does the fact that the variable was unini-
tialized cause the behavior you observed? Could it ever take
that value? If you explicitly initialize it to this “bad” value, do
you see what you expect?

8.5 Performance Bugs

Donald Knuth’s famous pronouncement that “premature optimization

is the root of all evil”4 should be etched in the mind of every professional

software engineer. More bad code has been written in the misguided

pursuit of efficiency than any other cause.

But that doesn’t mean that you can ignore efficiency. If your software

is taking ten minutes to perform a task it should be performing in ten

seconds, then you definitely have a problem.

Find the Bottleneck

As with any kind of bug, the key to solving a performance problem is

identifying the root cause. And nine times out of ten, what that means

is that you’re looking to find the bottleneck—the particular area of the

code that is restricting overall performance.

4. From Structured Programming with go to Statements [Knu74].

PERFORMANCE BUGS 131

In most software, a small minority of the code accounts for a large

majority of the execution time. Your first task is to identify where the

software is spending all of its time. Once you have done so, then you

can move on to work out why.

Profile your code before

diagnosing a

performance bug.

For this reason, one tool stands head and

shoulders above all others when tracking

down performance bugs—the profiler.

Profilers vary in the details of how they work

(some require specific hooks to be compiled in,

for example, whereas others operate against unmodified code) and in

the amount of detail they generate. What they all have in common is

that they examine your code as it executes to generate a report (or

profile) of where it’s spending most of its time. This is invaluable data—

after you’ve tracked down a few performance bugs, you will quickly

discover that predicting bottlenecks by examining the code is virtually

impossible. The only way to be sure is to act on real data gathered from

running software.

Your main concern, therefore, is to ensure that the profile you generate

accurately reflects your software’s true behavior.

Accurate Profiling

The Observer Effect applies to profiling just as much as any other

means of observing your code—the simple fact that you’re looking at

its performance will, theoretically at least, change the very thing you’re

trying to examine. Knowing this, the authors of such tools have invested

a huge amount of effort to ensure that they affect the software they’re

profiling as little as possible. So, in most cases, you don’t have to worry

about the profiler itself skewing the results of your investigation.

Far more likely to adversely affect the quality of your results is how you

build and run your software. You need to make sure of the following:

• You profile a build that is as close as possible to a production

release. In particular, make sure that you build it with the same

level of optimization.

• The environment you run in is as similar as possible to the soft-

ware’s ultimate target environment. The machine you use for

development might, or might not, fit this bill depending upon the

variety of software you develop.

EMBEDDED SOFTWARE 132

Joe Asks. . .

What If There Is No Bottleneck?

Occasionally, instead of there being one or a handful of bot-
tlenecks, the software is just “generally slow,” or the slowdowns
seem to happen in random places at random times. In that
case, you need to start looking for things that can affect the
software’s performance holistically. Prime candidates include
the following:

Resource exhaustion: Is the operating system having to page
in order to satisfy your software’s memory requirements?
Do you have a memory or other resource leak? Are you
suffering from memory fragmentation?

Garbage collection: If your software allocates a lot of short-lived
objects, the garbage collector may have to run very fre-
quently.

Caching: If your software implements or relies upon some kind
of cache (memory, disk, or otherwise), are you getting an
excessive number of cache misses?

• You run the software with representative data. It can be tempt-

ing, for example, to run with small data sets because they’re more

convenient than real production data, but this can generate mis-

leading profiles (perhaps overemphasizing the effect of tasks that

represent a constant overhead or failing to bring caching or paging

effects to light).

8.6 Embedded Software

Debugging embedded software can be particularly tricky, not because

it’s complicated or involved (although it can be) but because of the envi-

ronment it runs within. Embedded systems typically run on hardware

that is very different from your development environment, with limited

performance and facilities, which can make gaining access to the infor-

mation required for efficient debugging very difficult indeed.

Embedded Debugging Tools

A number of specialized tools have evolved to help:

EMBEDDED SOFTWARE 133

Joe Asks. . .

How Do I Detect Performance Regressions?

Performance regressions can sneak into software very easily—
as we’ve already seen, predicting software’s performance by
inspection is very difficult and so is predicting the performance
implications of changes.

It is an excellent idea, therefore, to incorporate performance
tests into your regression test suite. They might run representa-
tive operations on large data sets and report if the time taken
falls outside of acceptable bounds, for example.

It can even be worth having tests that fail when things become
unexpectedly faster. If a test suddenly runs twice as fast after
a change that shouldn’t have affected performance notice-
ably, that can also indicate a problem. Perhaps some code
you were expecting to be executed isn’t any longer?

Emulation: Emulators and simulators vary in sophistication and the

precise details of how they work (some, for example, run the same

binary as the target hardware, and others require a slightly differ-

ent build), but they all have the same goal—allowing you to run

and debug your software on your development machine instead

of having to use the target hardware. By simplifying and shorten-

ing the edit/build/test cycle, they can save you a huge amount

of time and effort. In addition, they provide enhanced access to

information difficult to obtain from the production hardware.

Remote debugging: Many embedded environments provide support for

remote debugging. The target hardware is connected to a develop-

ment machine (via a serial cable, network connection, or similar),

and the debugger runs on the development machine and controls

the embedded system.

Development hardware: A development board is a version of the target

hardware designed for development purposes. It will have addi-

tional interfaces and possibly support test facilities such as error

simulation. One of the major benefits of development hardware is

that it often provides built-in support for an in-circuit emulator.

EMBEDDED SOFTWARE 134

Joe Asks. . .

Is It a Hardware Problem or a Software Problem?

One of the challenges of developing embedded software is
that it often takes place in parallel with the development of the
hardware it’s going to run on. There is an unfortunate tendency
when there’s a problem for the hardware guys to blame the
software guys, and vice versa.

Whatever the rights and wrongs of the matter, it’s typically
much harder to fix a problem in hardware than it is to find a
way to work around it in the software. So, whether or not it’s
“your” problem, you’re likely to be the person fixing it.

In-circuit emulator (ICE): In-circuit emulation is a somewhat over-

loaded term, but in general an ICE is a debugger that uses a com-

bination of hardware and software to provide detailed access to the

internals of an embedded system. These days many systems have

standardized on the JTAG interface, which (among other things)

provides a standard means of accessing the debugging features

present in embedded hardware.

These tools are invaluable, but they aren’t always available (sadly, sup-

porting the poor software developer tends to be close to the bottom of

the hardware guys’ to-do list), so on occasion you’re likely to find your-

self having to cope with primitive or nonexistent debugging facilities.

And sometimes, even if they are available, the bug you’re chasing will

reproduce only on the production hardware.

Extracting Information the Hard Way

Given its limited facilities, the major challenge of debugging a problem

directly on the target hardware is often getting access to the information

you need. A little imagination, however, and you can normally find some

way to communicate it.

The system you’re working on is controlling something. You can use that

control as a communication channel. Perhaps there’s an LCD display

you can use? Or a serial port you can write to?

BUGS IN THIRD-PARTY SOFTWARE 135

One bit is enough.

It doesn’t have to be a rich channel—one bit is

enough. Is there an LED you can light up? Or

a motor you can run? Getting information out

this way isn’t convenient, but it is possible.

The Logic Analyzer As a Software Debugging Tool

I was working on the device driver for a printer. It was working just fine,

most of the time. But occasionally the output was getting corrupted. The

code was very simple, just taking a bitmap and feeding it out to the printer

piecemeal. I couldn’t see how it could be corrupting the data en route.

Eventually we reasoned that the cause might be a timing

problem—perhaps the device driver wasn’t responding to interrupts fast

enough? But how could we measure accurately enough to confirm our

theory?

The solution turned out to be a logic analyzer, a hardware-debugging tool

that displays signals within digital circuits. I modified the device driver to

raise a signal on an unused interface line at the end of its interrupt

routine, and we connected the logic analyzer to that line. By triggering the

analyzer when the interrupt was raised, we could accurately measure the

interval between the interrupt and it being handled successfully.

Sure enough, most of the time the interrupt was being handled in plenty

of time. But every once in a while it was being delayed long enough for

things to go wrong. By moving the point at which the device driver raised

a signal on the line we were monitoring, we could accurately pinpoint

exactly where the delay was occurring.

The solution wasn’t easy—it turned out to be caused by the operating

system’s virtual memory architecture and required a lot of effort to

address. But at least we knew what we were up against.

8.7 Bugs in Third-Party Software

The days of self-contained software are long gone. Modern software

has to interface with a diverse array of code written by third-parties—

building upon libraries and frameworks, consuming data provided by

servers, and providing data to clients in turn.

Sooner or later, you’re going to be faced with a bug that is (or appears to

be) within something you didn’t write, don’t control, and may not have

source for. Handling this kind of bug brings its own unique challenges.

BUGS IN THIRD-PARTY SOFTWARE 136

Don’t Be Too Quick to Point the Finger

Third-party code is just code. And like any code, it can contain bugs.

So yes, it’s quite possible that the problem you’re trying to track down

isn’t of your own making.

But beware—it’s very easy to point the finger of blame too eagerly.

Most of the third-party code you’re likely to interface with is going to be

used in many more products or by many more people than yours. That

means it’s been well tested, and most of the more obvious bugs have

already been found.

Three Months Getting Nowhere

by Dave Strauss

One member of our team had been working on a bug full-time for more

than three months. He ended up spending a lot of time trying to

understand the inner workings of a fairly complicated third-party library

and getting nowhere.

And then a colleague fixed the problem in half a day almost by

accident—he needed to use the feature that was affected by the bug, and

he noticed that (for the particular case he was interested in) the library

was being invoked incorrectly.

I talked to him afterward, and he told me that what he did was make the

assumption that the library basically worked, which led him to examine

how it was being used, and the answer just “jumped out” at him. He said

that assuming the library worked was pretty safe because this code was

widely distributed and used in many places.

Suspect your own code

first.

Treat your own code with suspicion. Start by

assuming that’s where the bug is. If you even-

tually conclude that the bug is elsewhere, go

back to your own code again and look harder.

Only blame third-party code when you really have exhausted all other

avenues.

Dealing with Bugs in Third-Party Code

If you have found a bug in third-party code, you need to work out what

to do about it. You may have no choice other than to report it and wait

for the author or vendor to fix it for you, but you may be able to find a

workaround for the problem.

Or, if you have access to the source code, you might even be able to fix

it yourself. But that raises the question of whether you should.

BUGS IN THIRD-PARTY SOFTWARE 137

Reporting Bugs in Others’ Code

You can dramatically improve the chances of getting a bug in
third-party code fixed if you do a good job of reporting it. Think
carefully about what you would want to see in a bug report if
you were in their shoes. Make sure that it meets the criteria in
Section 6.1, What Makes a Good Bug Report?, on page 96.

Remember that all code has bugs. No doubt you’re frustrated
at the time that it’s taken you to track down the problem, and
as a result, you may not feel well-disposed toward the author.
Keep that frustration out of your communication, stick to the
constructive and factual, and you’re much more likely to make
progress.

Why wouldn’t you fix the problem yourself if you have the option? Bug

fixes are supposed to address the underlying cause, aren’t they?

Think carefully before

using your own patched

version of third-party

code.

Under normal circumstances, yes. But a bug

in third-party code isn’t the normal case. The

problem with any modification you make to

third-party code, including bug fixes, is that

you’re now working with something different

from everyone else. That is likely to cause you

problems if you need support and, particularly, when upgrading to a

new release—reapplying your custom fix is an error-prone process rais-

ing the specter of regressions.

The best solution is often, therefore, to work around the problem in the

short-term and get your fix incorporated into the official release in the

long-term. How easy this is depends in large part upon who owns the

code and what your relationship with them is like.

Open Source

An increasingly important category of third-party code is open source.

BUGS IN THIRD-PARTY SOFTWARE 138

Linus’ Law

Given enough eyeballs,

all bugs are shallow.

Many believe that open source changes debug-

ging fundamentally. This argument was most

famously made by Eric S. Raymond in The

Cathedral and The Bazaar [Ray01] in which he

coins Linus’ Law—“Given enough eyeballs, all bugs are shallow.”5

This may indeed be true for open source projects on the scale of Linux.

But there are a colossal number of open source projects and a limited

number of eyeballs. So, open source won’t mean the end of traditional

debugging any time soon.

The Open Source Build Process

Everything we’ve discussed so far applies to open source development

as much as any other approach, but there are a couple of issues that

are particularly pertinent—build configuration and reporting.

The nature of open source means that you aren’t going to be able

to build the software centrally. Anyone can build it at any time they

choose, and the computer they build it on is going to differ from yours

in significant ways. It’s going to be built on different operating systems,

with varying compilers, library versions, and configurations. You’re not

going to be able to control this, but you can make sure that you auto-

mate the build process as completely as possible (avoiding “finger trou-

ble” on the part of whoever is building the software) and that you collect

all the information necessary to allow you to understand, and if neces-

sary replicate, the environment in which it was built.

For good examples of this, take a look at Firefox’s about:buildconfig page

(Figure 8.2, on the next page) or the results of passing the -V command-

line option to the Apache HTTP Server.

Participating in the Community

One of the great things about open source communities is that they

are so wonderfully helpful. Not only can you get high-quality software

completely free, but often technical support of an equally high quality

is also freely available.

5. More formally, “Given a large enough beta-tester and codeveloper base, almost every

problem will be characterized quickly, and the fix will be obvious to someone.”

BUGS IN THIRD-PARTY SOFTWARE 139

Figure 8.2: Firefox’s about:buildconfig page

But there’s an art to asking for help effectively:

• Do your due diligence first. Check the documentation and fre-

quently asked questions, and search mailing lists and blog entries

to see whether anyone else has encountered the same problem.

• Give as much information as possible. What have you tried

already, what results are you seeing, and why are you expecting

to see something different?

• Remember that open source community members are typically

volunteers. If they choose to help you out, as they probably will,

that’s their decision.

If you rely upon open source, then you owe the other members of the

community to contribute what you can. Participate in Linus’ Law by

reporting and characterizing bugs. If you fix a bug, then submit the

PUT IT IN ACTION 140

fix back to the central distribution. Contribute documentation, tutori-

als, and examples, and answer others’ questions on mailing lists and

forums.

8.8 Put It in Action

• When patching an existing release, concentrate on reducing risk.

• Keep on the lookout for compatibility implications when fixing

bugs.

• Ensure that you have completely closed any timing windows, not

just decreased their size.

• When faced with a heisenbug, minimize the side effects of collect-

ing information.

• Fixing performance bugs always starts with an accurate profile.

• Even the most restricted communication channel can be enough

to extract the information you need.

• Suspect your own, ahead of third-party, code.

Chapter 9

The Ideal Debugging Environment
Debugging doesn’t take place in a vacuum. By taking the time to make

sure that the basics are in place before you’re faced with a bug, you

can save yourself a huge amount of time, effort, and frustration when

you do face one.

In this chapter, we’ll discuss these basics:

• A fully automated test harness

• Source control

• A fully automated build system

• Overnight builds or continuous integration

9.1 Automated Testing

As we’ve already discussed, agile software development has dramati-

cally changed software construction through the widespread adoption

of automated testing and refactoring. We looked at refactoring in Sec-

tion 4.4, Refactoring, on page 80; in this section, we’ll cover testing.

Effective Automated Testing

There’s more to effective automated testing than simply automating

your tests. To achieve maximum benefit, your tests need to satisfy the

following goals:

Unambiguous pass/fail: Each test outputs a single bit—pass or fail. No

shades of gray, no qualitative output, no interpretation required.

Just a simple yes or no.

AUTOMATED TESTING 142

Self-contained: No setup required before running a test. Before it runs,

it sets up whatever environment it needs automatically, and just

as important, it undoes any changes to the environment after-

ward, leaving everything as it found it.

Single-click to run all the tests: All tests can be run in one step without

interfering with each other. As with a single test, the output of

the complete test suite is a simple pass or fail—pass if every test

passes, fail otherwise.

Comprehensive coverage: It’s easy to prove that achieving complete

coverage for any nontrivial body of code is prohibitively expen-

sive. But don’t allow that theoretical limitation to put you off—it is

possible to achieve close enough to complete coverage as to make

no practical difference.1

Automated Tests as an Aid to Debugging

So, what makes automated tests valuable when debugging? They help

out at all stages:

• First and foremost, well-tested code tends to have fewer bugs in

the first place. The easiest bug to fix is the bug that never existed.

• The shorter the delay between a mistake being made and subse-

quently being discovered, the easier and cheaper it is to fix. Early

testing means that most bugs are discovered very shortly (often

immediately) after they’re introduced.

• Automated testing is a key enabler of continuous integration, in

which code is integrated with the whole product as soon as it’s

complete. We’ll discuss this further later in this chapter.

• Automated tests allow you to frequently release new versions of

the software with high confidence that the new release is func-

tional. This means that you get end-user feedback on new fea-

tures and bug fixes much more quickly than would otherwise be

the case (again, reducing the time between code being written and

bugs being discovered within the code). It can also reduce the need

to back-port bug fixes to previous versions of the software or to

release patches.

1. Testing “everything that could possibly break” in XP parlance.

AUTOMATED TESTING 143

• For code to be tested, it needs to be structured in such a way as

to provide access to intermediate results and internal state that

might otherwise be unavailable. This kind of access turns out to

be a great help during later debugging.

• Writing a test is an excellent way to reproduce a bug during the

diagnostic process. Many of the techniques created to support

automated testing are extremely useful for reliably reproducing

bugs.

• After you’ve completed your diagnosis, automated tests provide

powerful protection against the fix introducing regressions.

• If, during diagnosis, you make a habit of always writing a test that

reproduces the bug, you naturally end up with a regression test

that ensures that the bug won’t be reintroduced at some point in

the future.

• Automated tests are a key enabler of refactoring, which is the most

powerful weapon at your disposal to ensure that code remains

well-structured and flexible throughout its lifetime.

Automated tests are a particularly powerful debugging tool when allied

with a technique that has risen in popularity alongside them—test dou-

bles.

Mocks, Stubs, and Other Test Doubles

Test doubles are “pretend” objects used in place of the real object during

a test. There are several kinds of test double, most commonly mock

objects and stubs.

Mocks are active; stubs

are passive.

Mocks and stubs are often confused. Stubs

are passive, simply responding with canned

data when called, whereas mocks are active,

validating expectations about how and when

they are called. For a detailed description of the difference, see Martin

Fowler’s Mocks Aren’t Stubs [Fow].

For our purposes, test doubles are most useful when we’re trying to

reliably reproduce a bug in which interaction with some other portion

of the system is important.

SOURCE CONTROL 144

Consider, for example, a Java class (which fetches data from a server

over the network) with the following interface:

public interface DataServer {

boolean connect(String serverAddress);

String fetchItem(int itemId);

void disconnect();

}

Imagine that we’ve found a bug in code that calls this, which occurs

only if fetchItem() raises a SocketTimeoutException on the third time it’s

called. Reproducing this bug by pulling the network cable out of the

back of our computer at just the right moment is not likely to be an

efficient way to proceed.

Instead, we can create a stub that simply returns exactly the right data

to invoke the bug:

public class StubDataServer implements DataServer {

public boolean connect(String serverAddress) {

return true;

}

public String fetchItem(int ItemId) {

switch(itemId) {

case 1: return «Data item 1»; break;

case 2: return «Data item 2»; break;

case 3: throw new SocketTimeoutException("Timeout from stub");

}

}

public void disconnect() {

}

}

Note that StubDataServer is really “dumb.” If it’s used anywhere other

than in a test that we’re using to reproduce this specific bug, nothing

good will happen.2 But that doesn’t matter—what we’ve created will be

used only in this specific context and doesn’t need to operate elsewhere.

9.2 Source Control

A source control or configuration management system is a repository

that keeps track of your source code, together with a history of all of

the changes that have been made to it over its lifetime. Other than your

2. Contrast this with Section 10.2, Debugging Subsystems, on page 170 in which we

discuss a technique that can be used more generally.

SOURCE CONTROL 145

compiler or interpreter, it’s probably the single most important tool at

your disposal.

From a debugging standpoint, source control helps across the board.

It’s a key element of a controlled build process that ensures that you

know what you’re debugging and that you’re running exactly the same

code as the user. During diagnosis, it can pinpoint the precise change

that introduced the bug and help you keep track of the experiments

you’ve tried. When you come to implement your fix, it ensures that

you make only the changes you mean to and, in concert with your

continuous integration server (we’ll cover continuous integration later

in this chapter), that they work as intended.

Most of the tricky issues with source control are related to branching.

Branching is a means by which we can support parallel development

of more than one version of a piece of software at a time. There are

two common reasons why this might be necessary—stabilization and

maintenance.

Stabilization

Imagine that we’re working on version 2.0 of a widely used desktop

application. Things have been going well, and we’ve gotten to a point

where we think we have something almost ready for release. Many

teams in this situation implement some form of change freeze—a mora-

torium on checking in any changes that might destabilize the software

while it goes through the final stages of the release life cycle (such as

alpha and beta testing). Often this means something like “only critical

bug fixes.” For some projects, this period can last several months.3

This makes perfect sense, but what if we want to make a start on fea-

tures we expect to ship in version 2.1 while we’re waiting for 2.0 to

stabilize and ship?

A common answer is to create a release branch—a copy of the source

from which the 2.0 release will be made. Any changes we need to make

before release go into this branch, and in the meantime development

can proceed unhindered in the trunk. For a graphical representation of

release branches, see the left side of Figure 9.1, on the following page.

3. When Firefox 3 when through this process, for example, Beta 1 was released in

November 2007, the first release candidate was released in May 2008, and the final

release took place in the following month.

SOURCE CONTROL 146

�
ersion 1.1
Branch

Trunk
(Version 2.0 develoment)

Release Branches Release Branch with “point”
maintenance releases

Version 1.0

Version 1.0.1

Version 1.0.2

Version 1.0
Branch

Figure 9.1: Branches

Maintenance

The release went well, many happy users are enjoying 2.0, and we’re

making good progress with the exciting new features we’re going to wow

them with in 2.1. Life is good.

And then the bug report arrives—there’s a critical problem with 2.0 that

absolutely has to be fixed. What to do?

Well, we certainly can’t make a release from the trunk, because we’ve

made extensive changes to it—changes that haven’t yet been through

enough testing for us to trust them “in the wild.” This is where the

release branch we made during stabilization proves its worth a second

time, as a maintenance branch.

We fix the bug in the branch, increase the version number to 2.0.1, and

life is good again. For a graphical representation of point releases on a

maintenance branch, see the right side of Figure 9.1.

SOURCE CONTROL 147

This all sounds simple enough, so why is it that the subject of branch-

ing causes battle-weary software engineers to blanch?

The Problem with Branches

Branching results in

duplicate work.

Branching results in duplicate work. Every

time we fix a problem in the branch, we almost

certainly need to make the same—or worse, a

similar but different—change in the trunk. If

we don’t, then we’re going to end up with a regression when we release

the next version. If we have more than one branch active, we might

even have to make it in other branches as well.

Merging changes made in one branch into another is difficult to under-

stand and error prone, especially if the branches have diverged signifi-

cantly. What’s more, there’s a temptation to skimp on the testing of the

merged fix—after all, we’ve already tested it in the branch we’re merging

from, so testing it again in the trunk is wasted time, surely? And it is,

right up until the unforeseen problem bites us.

Support for branching in source control systems varies considerably,

both in terms of how branches are implemented (some behave as

though the source had been copied, whereas others treat branches as a

different “view” of a single copy) and how well branches are supported.

They can be difficult to understand, even when you’ve been using them

for a long time.4 The interface often leaves a lot to be desired, and they

can interact in surprising ways with other source control features.5

As a result, it’s not unusual for changes that should have been merged

to be forgotten or for changes to merge badly, breaking the build or

introducing regressions. In general, branches tend to consume a lot of

time, effort, and emotional energy.

Taming Branches

The best solution to the previous is not to branch at all. But this isn’t

always possible—sometimes branches are a necessary evil.

4. I’ve lost track of how many times I’ve drawn a “How branches work in Subversion”

diagram on the whiteboard while explaining them to a member of my team—often to the

same person I was explaining it to a couple of months ago.
5. External items in Subversion, for example, aren’t branched when the project they’re

included within is branched.

SOURCE CONTROL 148

Joe Asks. . .

Are There Any Other Reasons to Use Branches?

Stabilization and maintenance aren’t the only valid use cases
for branches—they can also be useful during exploration and
collaboration.

A private branch can be very useful if you want to safely
“play” with some potentially destructive changes. Or a branch
can provide a means by which two or more developers can
exchange code and collaborate on something that’s not (yet)
ready to be part of the main system.

Branches created for these purposes are different from those
created for stabilization and maintenance because they’re ad
hoc and (should be) short-lived. You should worry if they hang
around for too long because they can provide a “back alley”
through which code can bypass important elements of your
process.

A number of rules of thumb will help minimize the pain, however:

• Branch as late as possible. It may be tempting to create your sta-

bilization branch well in advance (after all, if some stabilization is

good, more must be better?), but the chances are that the produc-

tivity you lose by doing so isn’t worth it.

• Stick to a single level of branching. If you find yourself branching

your branches, you know that you’re in trouble.

• Set up your continuous integration server to build all the branches

that are actively being worked on.

• Check in small changes often. Small changes are easier to under-

stand, merge, and roll back if necessary.

• Make only those changes that really need to be in the branch in

the branch.

• Merge from the branch to the trunk, not the other way around. The

branch represents released software, so a problem in the branch

is likely to have more severe consequences than a problem in the

trunk.

AUTOMATIC BUILDS 149

• Merge changes from the branch into the trunk immediately. This

ensures that the merge isn’t forgotten and that you do it while the

change is fresh in your memory. Don’t collect several changes and

merge them all at once.

• Keep an audit trail so that you know which changes have been

merged and when (not all source control systems do this for you

automatically).

Source control becomes particularly powerful when allied with the next

technique we’re going to cover—an automated build process.

9.3 Automatic Builds

One the most important variables you need to control during debugging

is the software itself. You need to be able to identify and re-create the

same software in which the bug manifests. Specifically, you need to

control the following:

• The source that the software is built from

• The tools used to build it

• The options passed to those tools at build time

• Any third-party libraries linked or shipped with the software

Building modern software can be an involved process utilizing many

different tools that need to be invoked in a specific order and manner.

Some teams choose to address this by having a long “How to build Pro-

jectXYZ” document. A much better solution is to encode all this knowl-

edge in software as part of an automated build process.

The One-Button Build

What you’re aiming for is a “one-button” build process. You know that

you’ve succeeded when a new developer can join your team, check out

the source onto a completely virgin machine, run a single command,

and end up with a fully built version of the product that is identical to

that built by the established members of the team.

Plenty of tools exist to help you achieve this (Maven if you’re working

in Java, say, or Boost.Build if you’re working in C++—see Section A.2,

Build Tools, on page 196 for more). If your software follows a reasonably

standard architecture, you may be lucky and discover that these tools

give you everything you need out of the box. If not, you may find yourself

AUTOMATIC BUILDS 150

Joe Asks. . .

What About My IDE’s Build System?

The value of an automated build system is significantly reduced
if it isn’t used by everyone on the team. Sometimes developers
might prefer the build system provided by their choice of IDE,
for example.

Most IDEs can call out to an external build, so see whether
you can integrate your automatic build system that way. If not,
spend time making it as slick as possible so it’s just as easy to use
as the integrated system. Alternatively, some IDEs now support
a sophisticated enough build system that, if every member of
the team is happy to use the same IDE, you could use it as the
basis for your automatic build.

The team needs to agree how to build the software and stick
with it—if different developers build in different ways, it’s only a
matter of time before you hit problems.

having to write custom rules. The time you spend doing so will repay

itself many times over—even one manual step is one too many.

Automate your entire

build process, from start

to finish.

Your system should automate the process all

the way through to whatever you’re going to

finally release. If your software is packaged

into an installer, building that installer should

be automatic. If you record what you’ve built

with a tag in source control, creating that tag should be automatic. You

may not perform these steps every time you run a build (when building

on your own machine during development, for example), but that just

makes automation more important—the things you do infrequently are

precisely those you’re likely to get wrong.

Build Machine

Your automated build process should guarantee that everyone gets

exactly the same result whenever they build. But developers’ machines

tend to be in flux—we have local modifications to the source for new

features we’re writing, or we have new versions of build tools we’re

experimenting with.

AUTOMATIC BUILDS 151

Never release software

built on a developer’s

machine.

When making a release, it’s important that

everything is in a well-known state, which can

be difficult and error prone to achieve on a

development machine. So, it’s a good idea to

have a build machine that is used to make

release builds (possibly several build machines if you’re working on

cross-platform software). It should always be kept pristine and not be

used for anything else so that you can trust that it’s in the right state.

A build machine is worth having, but you can increase its value to

the team immeasurably by taking the next step and turning it into a

continuous integration server.

Continuous Integration

Some points in the software development life cycle are intrinsically

higher risk than others. One of the riskiest is when integrating (sup-

posedly) independent changes made by different members of the team.

Everything works just fine when you test your changes locally but

breaks when you integrate your changes with everyone else’s.

Run your tests every time

you change the

software.

This is where your build machine becomes

worth its weight in gold as a continuous inte-

gration server. Every time any changes are

checked into source control, it automatically

checks them out, builds them, and runs the

entire test suite (a typical continuous integration system is shown in

Figure 9.2, on the next page). If the build or any of the tests fail, it

sends a mail message to the team so that the problem can be fixed

ASAP.

A number of very nice continuous integration server packages are avail-

able (see Section A.2, Continuous Integration Tools, on page 197 for a

list), but given a good automated build system, creating one for yourself

is very easy, so don’t be put off if you need to roll your own.

Versioning

So, the bug report tells you that it manifests in 3.6.209(e3). Great. Now

what does that tell you?

It’s useful information only if you can identify exactly what went into

building it, which means tying the version number to source control.

Therefore, whenever you make a release, you need to make sure that

you keep a record of what source was used to create that release.

AUTOMATIC BUILDS 152

Figure 9.2: A continuous integration server

Depending upon the source control system you’re using, this might

mean creating a tag, a branch, a label, or something else. Whatever

mechanism you use, you need to ensure that there is a one-to-one

relationship between version numbers and source.

Different source,

different version number.

This has a very important corollary—never

reuse a version number. If, immediately after

you release something, you discover a critical

bug and need to make another release to fix it,

change the version number for the new release. This applies no matter

how small the change is—different source, different version number.

Static Analysis

Much of debugging relies upon dynamic analysis—examining the soft-

ware as it executes. But it turns out that many bugs can be identi-

fied just by examining the source code statically. Even better, this kind

of static analysis can be automated, integrated into your development

AUTOMATIC BUILDS 153

Joe Asks. . .

What About an Overnight Build and Smoke Test?

Some teams use an overnight build and smoke test (named
after the test that hardware engineers perform when they flip
the power switch for the first time—does the hardware expire
with a puff of magic blue smoke?). Microsoft famously used this
approach in the development of Windows NT, as described in
Show-stopper! [Zac94].

As you might imagine, continuous integration and an overnight
build and smoke test have much in common and convey many
of the same advantages. Under normal circumstances, con-
tinuous integration is preferable (why integrate only overnight
if you can do so continuously?), but if your test suite takes a
prohibitively long time to run, then overnight may be your only
choice.

If you do have problems with tests that take too long to run,
consider creating a suite of short tests that you can run for every
check-in, as well as running the full suite overnight.

process, and used to detect bugs before you’ve even executed the code

once.

If you’ve spent any time reading someone else’s code, you will know that

some bugs “leap out at you.” There are certain patterns that, although

they’re legal code, almost certainly aren’t what the author meant to

write.

Here’s a simple Java example—can you spot the bug in the following?

if(«first condition» &&

«second condition» ||

«third condition»);

{

«some code»

}

Anyone who’s ever worked in a C-like language (C, C++, Java, C#, and

the rest) will have been bitten by this at some point. If you haven’t seen

it yet, the problem is the semicolon after the if condition, which means

that the following block will always be executed, whatever the condition

evaluates to.

AUTOMATIC BUILDS 154

Don’t Forget the Compiler

Before you start hunting for new tools, don’t forget your humble
compiler. Over the years, modern compilers have acquired a
slew of warnings that, in some cases, can even put dedicated
static analysis tools to shame.

The trick is that often they’re not enabled by default. So,
don’t assume that just because your code compiles warning-
free right now, there aren’t lurking issues that the compiler
could dig out for you. Take the time to read your compiler’s
documentation—often you will find that there are some use-
ful warnings that have to be enabled separately. GCC’s -Wall

option, for example, which you might naïvely assume would
enable all warnings, actually leaves many very useful ones dis-
abled. You can enable a wider set with -Wextra, but even that
leaves a number you might want to enable separately.

It turns out that there are lots of patterns of code that experience tells

us are, to some degree, questionable. Other simple examples include

unreachable code (which can never be executed, whatever state the

program is in) and unused variables (which are declared, possibly even

written to, but never read from). In the following Java method, for exam-

ple, the variable at Ê is unused, and the code at Ë is unreachable:

public static boolean allUpper(String s) {
Ê int length = s.length();

if (s == null) {

return false;
Ë System.out.println("Null string passed to allUpper");

}

CharacterIterator i = new StringCharacterIterator(s);

for (char c = i.first(); c != CharacterIterator.DONE; c = i.next())

if (Character.isLowerCase(c))

return false;

return true;

}

One interesting case is when we accidentally write code that depends

upon undefined behavior. Many language specifications contain dark

AUTOMATIC BUILDS 155

corners where it’s possible to write what seems to be perfectly sensible

code, where in fact it’s impossible to predict what its behavior will be.

Here’s an example in C++ (a language replete with dark corners):

int x = 1;

x = x++;

// What value does x have here?

The answer is that x could have any value whatsoever—the C++ stan-

dard simply doesn’t define what this code does. In practice, most com-

pilers will do something “sensible” with it, and typically x will end up

equal to either 1 or 2. But theoretically speaking, it could end up equal

to 42, the program could crash, or anything else could happen. That,

unfortunately, is what undefined means.

Interestingly, if you compile the same code in Java, then its behavior is

defined—x will always end up with the value 1. But don’t feel too smug

if you’re a Java developer—the behavior may be defined, but it’s still

almost certainly a bug. Presumably whoever wrote this code intended

it to do something, where in fact it’s a no-op. So, whatever it was they

intended it to do, it’s not doing it.

Just about every language has a number of tools available that crawl

over your code looking for exactly this kind of problem. The granddaddy

of them all is lint, which was finding bugs in C programs back in the

70s, to the extent that lint has become a generic term for any tool of

this nature.

Using Static Analysis

The great thing about static analysis is that it gives us a way to detect

bugs almost for free. Instead of waiting for a bug to manifest (either

during testing or in the field) and then going through the long process

of reproduction, diagnosis, and fix, we can simply run our code through

one of these tools and address the problems it finds. What’s not to like?

So, the first rule is to use static analysis. Switch on all of the warnings

supported by your compiler and get hold of any other tools that might

prove useful in your environment.

Integrate static analysis

into your build process.

The second rule is to integrate your chosen

tool or tools tightly into your development pro-

cess. Don’t run them only occasionally—when

you’re looking for a bug, for example. Run

AUTOMATIC BUILDS 156

Joe Asks. . .

How Do I Become Warning Free?

If you’re starting a new project from scratch, writing warning-
free code is easy. But if you’re starting from an existing code-
base, it can be much less straightforward. The chances are that
the first time you increase your compiler’s warning level or run
a new tool, you will disappear under a tidal wave of warnings.
Often these result from systemic issues with the code—common
mistakes you’ve made over and over again, which have gone
unnoticed until now, but each instance of which generates a
warning. There are also issues that tend to “percolate” through
the code generating many warnings (const-correctness in C++
is a classic example).

The solution is to be pragmatic. Most static analysis tools provide
fine-grained control over which warnings are generated where
(via comments embedded in the source code, for example).
Very often you can get the number down to a manageable
level by switching off the one or two warnings that account for
the majority or by excluding a “problem” module. You can go
back and fix these other warnings at a later date, but you gain
most of the benefit of static analysis in the interim.

The same approach can help on the rare occasions where a
buggy tool generates spurious warnings for legitimate code,
where you knowingly choose to write “questionable” code, or
where a third-party library generates warnings.

them every single time you compile your source. Treat the warnings

they generate as errors, and fix them immediately.6

This chapter has covered a number of techniques that are external to

the software. But there are others that are built into the software itself.

These are the subject of the next chapter.

6. Most compilers provide an option to treat warnings as errors, such as -Werror for GCC,

for example.

PUT IT IN ACTION 157

9.4 Put It in Action

• Automate your tests, ensuring that they do the following:

– Unambiguously pass or fail

– Are self-contained

– Can be executed with a single click

– Provide comprehensive coverage

• Use branches in source control sparingly.

• Automate your build process:

– Build and test the software every time it changes.

– Integrate static analysis into every build.

Chapter 10

Teach Your Software
to Debug Itself

Plenty has been written about how to write good software. Much less

has been written about how to create software that is easy to debug.

The good news is that if you follow the normal principles of good soft-

ware construction—separation of concerns, avoiding duplication, infor-

mation hiding, and so on—as well as creating software that is well

structured, easy to understand, and easy to modify, you will also create

software that is easy to debug. There is no conflict between good design

and debugging.

Nevertheless, you can put a few additional things in place that will help

when you find yourself tracking down a problem. In this chapter, we’ll

cover some approaches that can make debugging easier or even, on

occasion, unnecessary:

• Validating assumptions automatically with assertions

• Debugging builds

• Detecting problems in exception handling code automatically

10.1 Assumptions and Assertions

Every piece of code is built upon a platform of myriad assumptions—

things that have to be true for it to behave as expected. More often than

not, bugs arise because one or more of these assumptions are violated

or turn out to be mistaken.

ASSUMPTIONS AND ASSERTIONS 159

Joe Asks. . .

Do I Need Assertions If I Have Unit Tests?

Some people argue that automated unit tests are a better solu-
tion to the problem that assertions are trying to solve. This line of
thought probably arises to some extent from the unfortunate
fact that the functions provided by JUnit to verify conditions
within tests are also (confusingly) called assertions.

It isn’t a question of either/or but of both/and. Assertions and
unit tests are solving related but different problems. Unit tests
can’t detect a bug that isn’t invoked by a test. Assertions can
detect a bug at any time, whether during testing or otherwise.

One way to think of unit tests is that they are (in part) the means
by which you ensure that all your assertions are executed
regularly.

It’s impossible to avoid making such assumptions and pointless to try.

But the good news is that not only can we verify that they hold, we can

do so automatically with assertions.

What does an assertion look like? In Java, they can take two forms—the

first, simpler form is as follows:

assert «condition»;

The second form includes a message that is displayed if the assertion

fails:

assert «condition» : «message»;

Whichever form you use, whenever it’s executed, an assertion evaluates

its condition.1 If the condition evaluates to true, then it takes no action.

If, on the other hand, it evaluates to false, it throws an AssertionError

exception, which normally means that the program exits immediately.

So much for the theory; how does this work in practice?

An Example

Imagine that we’re writing an application that needs to make HTTP

requests. HTTP requests are very simple, comprising just a few lines of

1. If assertions are enabled, which we’ll get to soon.

ASSUMPTIONS AND ASSERTIONS 160

text. The first line specifies the method (such as GET or POST), a URI,

and which version of the HTTP protocol we’re using. Subsequent lines

contain a series of key/value pairs (one per line).2 For a GET request,

that’s it (other requests might also include a body).

We might define a small Java class called HttpMessage that can generate

GET requests as follows:3

public class HttpMessage {

private TreeMap<String, String> headers = new TreeMap<String, String>();

Ê public void addHeader(String name, String value) {

headers.put(name, value);

}

Ë public void outputGetRequest(OutputStream out, String uri) {

PrintWriter writer = new PrintWriter(out, true);

writer.println("GET " + uri + " HTTP/1.1");

for (Map.Entry<String, String> e : headers.entrySet())

writer.println(e.getKey() + ": " + e.getValue());

}

}

It’s very simple—addHeader() Ê just adds a new key/value pair to the

headers map and outputGetRequest() Ë generates the start line, followed

by each key/value in turn.

Here’s how we might use it:

HttpMessage message = new HttpMessage();

message.addHeader("User-Agent", "Debugging example client");

message.addHeader("Accept", "text/html,text/xml");

message.outputGetRequest(System.out, "/path/to/file");

That will generate the following:

GET /path/to/file HTTP/1.1

Accept: text/html,text/xml

User-Agent: Debugging example client

So far, so simple. What could possibly go wrong?

Well, our code is very trusting. It’s just taking what it’s given and

passing it through as is. This means that if it is called with bad

2. See the Hypertext Transfer Protocol [iet99] specification for further details.
3. Of course, you wouldn’t write this code yourself given the number of well-debugged

HTTP libraries available. But it’s a nice simple example for our purposes.

ASSUMPTIONS AND ASSERTIONS 161

Joe Asks. . .

How Do I Choose a Good Assert Message?

An early reviewer of this book spotted a poster in, of all places,
Google’s Beijing offices that read, “Make sure that your error
messages aid in debugging and don’t just tell you that you
need to debug.”

The example that they cited was an assertion of the general
form:

assert_lists_are_equal(list1, list2);

If this fails, it tells you that the lists are not equal. You still have
to go through the code trying to find where the lists started to
differ. It would be better to highlight the first element where the
difference occurs, whether the order has changed, or some-
thing else that gives you a head start diagnosing the problem.

arguments, it will end up generating invalid HTTP requests. If, for exam-

ple, addHeader() is called like this:

message.addHeader("", "a-value");

then we’ll end up generating the following header, which is sure to con-

fuse any server we send it to:

: a-value

We can automatically detect whether this happens by placing the fol-

lowing assertion at the start of addHeader():

assert name.length() > 0 : "name cannot be empty";

Now, if we call addHeader() with an empty string, when assertions are

enabled, the program exits immediately with this:

Exception in thread "main" java.lang.AssertionError: name cannot be empty

at HttpMessage.addHeader(HttpMessage.java:17)

at Http.main(Http.java:16)

Wait a Second—What Just Happened?

Let’s take a moment to reflect on what we’ve just done. We may have

added only a single, simple line of code to our software, but that line

has achieved something profound. We’ve taught our software to debug

ASSUMPTIONS AND ASSERTIONS 162

itself. Now, instead of us having to hunt down the bug, the software

itself notices when something is wrong and tells us about it.

Ideally this happens during testing, before the embarrassment of it

being discovered by a user, but assertions are still helpful when track-

ing down bugs reported from the field. As soon as we find a way to

reproduce the problem, there’s a good chance that our assertions will

immediately pinpoint the assumption that’s being violated, dramati-

cally saving time during diagnosis.

Example, Take Two

Now that we’ve started down this road, how far can we go? What other

kinds of bugs can we detect automatically?

Detecting empty strings is fair enough, but are there any other obvi-

ously broken ways in which our class might be used? Once we start

thinking in this way, we can find plenty.

For a start, empty strings aren’t the only way that we could create an

invalid header—the HTTP specification defines a number of characters

that aren’t allowed to appear in header names. We can automatically

ensure that we never try to include such characters by adding the fol-

lowing to the top of addHeader():4

assert !name.matches(".*[\\(\\)<>@,;:\\\"/\\[\\]\\?=\\{\\}].*") :

"Invalid character in name";

Next, what does the following sequence of calls mean?

message.addHeader("Host", "somewhere.org");

message.addHeader("Host", "nowhere.com");

HTTP headers can appear only once in a message, so adding one twice

has to be a bug.5 This is a bug that we can catch automatically by

adding the following to the top of addHeader():

assert !headers.containsKey(name) : "Duplicate header: " + name;

4. Don’t worry too much about the hairy regular expression in this code—it’s just match-

ing a simple set of characters. It looks more complicated than it might because some of

the characters need to be escaped with backslashes, and those backslashes themselves

also need to be escaped.
5. Note to HTTP specification lawyers—I am aware that there are occasions where head-

ers can legitimately appear more than once. But they can always be replaced by a single

header that combines the values, and for the sake of a simple example, I’m choosing to

ignore this subtlety.

ASSUMPTIONS AND ASSERTIONS 163

Other checks we might consider (depending on exactly how we foresee

our class being used) might include the following:

• Verifying that outputGetRequest() is called only once and that

addHeader() isn’t called afterward

• Verifying that headers we know we always want to include in every

request are always added

• Checking the values assigned to headers to make sure that they

are of the correct form (that the Accept header, for example, is

always given a list of MIME types)

So much for the example—are there any general rules we can use to

help us work out what kind of things we might assert?

Contracts, Pre-conditions, Post-conditions, and Invariants

One way of thinking about the interface between one piece of code and

another is as a contract. The calling code promises to provide the called

code with an environment and arguments that confirm to its expecta-

tions. In return, the called code promises to carry out certain actions

or return certain values that the calling code can then use.

It’s helpful to consider three types of condition that, taken together,

make up a contract:

Pre-conditions: The pre-conditions for a method are those things that

must hold before it’s called in order for it to behave as expected.

The pre-conditions for our addHeader() method are that its argu-

ments are nonempty, don’t contain invalid characters, and so on.

Post-conditions: The post-conditions for a method are those things that

it guarantees will hold after it’s called (as long as its pre-conditions

were met). A post-condition for our addHeader() method is that the

size of the headers map is one greater than it was before.

Invariants: The invariants of an object are those things that (as long as

its method’s pre-conditions are met before they’re called) it guar-

antees will always be true—that the cached length of a linked list

is always equal to the length of the list, for example.

If you make a point of writing assertions that capture each of these

three things whenever you implement a class, you will naturally end

up with software that automatically detects a wide range of possible

bugs.

ASSUMPTIONS AND ASSERTIONS 164

Switching Assertions On and Off

One key aspect of assertions that we’ve already alluded to is that they

can be disabled. Typically we choose to enable them during develop-

ment and debugging but disable them in production.

In Java, we switch assertions on and off when we start the application

by using the following arguments to the java command:

-ea[:<packagename>...|:<classname>]

-enableassertions[:<packagename>...|:<classname>]

enable assertions

-da[:<packagename>...|:<classname>]

-disableassertions[:<packagename>...|:<classname>]

disable assertions

-esa | -enablesystemassertions

enable system assertions

-dsa | -disablesystemassertions

disable system assertions

In other languages, assertions are enabled and disabled using other

mechanisms. In C and C++, for example, we do so at build time using

conditional compilation.

Why might we choose to switch them off? There are two reasons—

efficiency and robustness.

Evaluating assertions takes time and doesn’t contribute anything to the

functionality of the software (after all, if the software is functioning cor-

rectly, none of the assertions should ever do anything). If an assertion

is in the heart of a performance critical loop or the condition takes a

while to evaluate (thinking back to our earlier example, an assertion

that involved parsing the HTTP message to check that it’s well-formed),

it is possible to have a detrimental effect on performance.

A more pertinent reason for disabling assertions, however, is robust-

ness. If an assertion fails, the software unceremoniously exits with a

terse and (to an end user) unhelpful message. Or if our software is

a long-running server, a failed assertion will kill the server process

without tidying up after itself, leaving data in who-knows-what state.

Although this may be perfectly acceptable (desirable in fact) when we’re

developing and debugging, it almost certainly isn’t what we want in

production software.

Instead, production software should be written to be fault tolerant or

to fail safe as appropriate. How you go about achieving this is outside

ASSUMPTIONS AND ASSERTIONS 165

the scope of this book, but it does bring us onto the thorny subject of

defensive programming.

Defensive Programming

Defensive programming is one of the many terms in software develop-

ment that means different things to different people. What we’re talk-

ing about here is the common practice of achieving small-scale fault

tolerance by writing code that operates correctly (for some definition of

correctly) in the presence of bugs.

Software should be

robust in production

and fragile when

debugging.

But defensive programming is a double-edged

sword—from the point of view of debugging,

it just makes our lives harder. It transforms

what would otherwise be simple and obvious

bugs into bugs that are obscure, difficult to

detect, and difficult to diagnose. We may want

our software to be as robust as possible in production, but it’s much

easier to debug fragile software that falls over immediately when a bug

manifests.

A common example is the almost universal for loop idiom, in which,

instead of writing this:

for (i = 0; i != iteration_count; ++i)

«Body of loop»

we write the following defensive version:

for (i = 0; i < iteration_count; ++i)

«Body of loop»

In almost all cases, both loops behave identically, iterating from zero

to iteration_count - 1. So, why do so many of us automatically write the

second, not the first?6

The reason is because if the body of the loop happens to assign to i so

that it becomes larger than iteration_count, the first version of our loop

won’t terminate. By using < in our test instead of !=, we can guarantee

that the loop will terminate if this happens.

The problem with this is that if the loop index does become larger than

iteration_count, it almost certainly means that the code contains a bug.

And whereas with the first version of the code we would immediately

6. Actually, this idiom is starting to fall out of favor in the C++ community thanks to the

Standard Template Library, but nevertheless there are millions of examples in existence.

ASSUMPTIONS AND ASSERTIONS 166

notice that it did (because the software hung inside an infinite loop),

now it may not be at all obvious. It will probably bite us at some point

in the future and be very difficult to diagnose.

As another example, imagine that we’re writing a function that takes a

string and returns true if it’s all uppercase and false otherwise. Here’s

one possible implementation in Java:

public static boolean allUpper(String s) {

CharacterIterator i = new StringCharacterIterator(s);

for (char c = i.first(); c != CharacterIterator.DONE; c = i.next())

if (Character.isLowerCase(c))

return false;

return true;

}

That’s a perfectly reasonable function—but if for some reason we pass

null to it, our software will crash. With this in mind, some developers

would add something along these lines to the beginning:

if (s == null)

return false;

So, now the code won’t crash—but what does it mean to call this func-

tion with null? There’s an excellent chance that any code that does so

contains a bug, which we’ve now masked.

Assertions provide us with a very simple solution to this problem.

Wherever you find yourself writing defensive code, make sure that you

protect that code with assertions.

So, now our protective code at the start of allUpper() becomes the fol-

lowing:

assert s != null : "Null string passed to allUpper";

if (s == null)

return false;

And our earlier for loop becomes the following:

for (i = 0; i < iteration_count; ++i)

«Body of loop»

assert i == iteration_count;

We now have the best of both worlds—robust production software and

fragile development/debugging software.

ASSUMPTIONS AND ASSERTIONS 167

Assertions and Language Culture

A programming language is more than just syntax and seman-
tics. Each language has one or more communities built up
around their own idioms, norms, and practices. How (or if) asser-
tions are habitually used in a language depends in part on that
community.

Although assertions can be used in any language, they are
more widespread in the C/C++ community than any other
of the major languages. In particular, they aren’t particularly
widely used in Java, probably because they became only offi-
cially supported in Java 1.4 (although there are signs that asser-
tions are catching on within the wider Java community with
JVM-based languages such as Groovy and Scala encouraging
their use).

In part, this may be because there are more opportunities for
things to go wrong in C/C++. Pointers can wreak havoc if used
incorrectly, and strings and other data structures can overflow.
These kinds of problems simply can’t occur in languages like
Java and Ruby.

But that doesn’t mean that assertions aren’t valuable in these
languages—just that we don’t need to use them to check for
this kind of low-level error. They’re still extremely useful for check-
ing for higher-level problems.

Assertion Abuse

As with many tools, assertions can be abused. There are two com-

mon mistakes you need to avoid—assertions with side effects and using

them to detect errors instead of bugs.

Cast your mind back to our HttpMessage class, and imagine that we

want to implement a method that removes a header we added pre-

viously. If we want to assert that it’s always called with an existing

header, we might be tempted to implement it as follows (the Java

remove() method returns null if the key doesn’t exist):

public void removeHeader(String name) {

assert headers.remove(name) != null;

}

DEBUGGING BUILDS 168

The problem with this code is that the assertion contains a side effect.

If we run the code without assertions enabled, it will no longer behave

correctly because, as well as removing the check for null, we’re also

removing the call to remove().

Better (and more self-documenting) would be to write it as follows:

assert headers.containsKey(name);

headers.remove(name);

An assertion’s task is to check that the code is working as it should,

not to affect how it works. For this reason, it’s important that you test

with assertions disabled as well as with assertions enabled. If any side

effects have crept in, you want to find them before the user does.

Assertions are not an

error-handling

mechanism.

Assertions are a bug detection mechanism, not

an error-handling mechanism. What is the dif-

ference? Errors may be undesirable, but they

can happen in bug-free code. Bugs, on the

other hand, are impossible if the code is oper-

ating as intended. Here are some examples of conditions that almost

certainly should not be handled with an assertion:

• Trying to open a file and discovering that it doesn’t exist

• Detecting and handling invalid data received over a network

connection

• Running out of space while writing to a file

• Network failure

Error-handling mechanisms such as exceptions or error codes are the

right way to handle these situations.

We’ve mentioned that assertions are typically disabled in production

builds and enabled in development or debug builds. But what exactly

is a debug build?

10.2 Debugging Builds

Many teams find it helpful to create a debugging build, which differs

from a release build in various ways designed to help reproduce and

diagnose problems.

DEBUGGING BUILDS 169

Joe Asks. . .

But Aren’t Debugging Builds Different?

Compiler writers go to great lengths to ensure that switch-
ing optimization off, or additional checks on, doesn’t change
behavior. And if you care about preserving your nerves, you’ll
do the same for your assertions and logging.

But the simple truth of the matter is that a debugging build is dif-
ferent from the production build. Most of the time it won’t mat-
ter, but bear it in mind. If you have problems getting a bug to
reproduce in the debug build, try the production build instead.

Compiler Options

Most compilers provide you with a wide range of options that allow you

to control exactly how they translate your source code into object code.

Often it makes sense to use a different set of options during develop-

ment and debugging from those used in production. Here are a few

examples:

Optimization: Modern compilers can perform wonders, generating

object code that is as efficient, or better, than hand-rolled machine

code. In the process of doing so, however, they often restructure

things so much that the relationship between source code and

object code can become muddied. This can, for example, make

single-stepping in a debugger confusing or even impossible. As a

result, debug builds often disable optimization.

Debugging information: To be able to single step through the source,

debuggers need to know how to map lines of source code to regions

of object code. Typically these are excluded from a production

release because they add size and may give away information we

would rather keep to ourselves.

Bounds checking: Some C/C++ compilers provide an ability to add

bounds checking to arrays and other data structures.

There’s more to a debugging build than just choosing different compiler

options, however.

DEBUGGING BUILDS 170

Debugging Subsystems

Sometimes it’s worth thinking about replacing an entire subsystem

with a version specifically designed to make debugging easier. This

can be particularly useful if we can’t easily control the behavior of the

production version of the subsystem (because it’s under the control of

a third-party, for example, or because its behavior has some random

element).

Imagine, for example, that our software interfaces with a server pro-

vided by a third-party and we’re trying to debug a problem that occurs

only when it returns a specific sequence of results. It may not be easy,

or even possible, to find a way to ensure that it always returns that

exact sequence on demand. Even if we can, its owners may not thank

us for bombarding it with requests—especially if those requests aren’t

well-formed (which is likely to be the case during debugging).

There is some overlap between a debugging subsystem and the test

doubles we discussed earlier in Section 9.1, Mocks, Stubs, and Other

Test Doubles, on page 143. The difference is one of scale and scope. A

test double is a short-lived object only intended for use within a single

test. A debugging subsystem is normally a complete replacement for

its associated production subsystem, implementing all of its interfaces

and operating correctly across a wide range of use cases. It may even

make sense for us to ship a debugging subsystem with the software so

that end users can enable it in order to help us debug a problem in

situ.

A debugging subsystem either can entirely replace its corresponding

production system (emulating its entire behavior) or can be imple-

mented as a shim that sits between the rest of the software and the

production system, modifying its behavior as appropriate.

One particular subsystem you might want to consider bypassing during

debugging is the user interface.

Solving the User Interface Problem

The needs of the end user and the needs of a developer are often very

different. A graphical or web-based user interface might make it very

easy for end users to achieve their goals, but it can get in the way dur-

ing development and debugging because such interfaces are difficult to

control programmatically.

DEBUGGING BUILDS 171

Joe Asks. . .

What If I’m Using an Interpreted Language?

The same general principle—that it’s occasionally appropriate
for our software to behave differently during development and
debugging from production—holds no matter what language
it’s written in, whether compiled or interpreted. The mechanism
by which this is achieved will have to be at runtime in an inter-
preted language, however, given that conditional compilation
isn’t an option.

For this reason (among others), it makes sense to ensure that the user

interface layer is as thin as possible, just looking after the details of

displaying information and soliciting input from the user. In particular,

it should contain no business logic whatsoever. This should mean that

you can replace it with an alternative such as a scripting language that

can drive the rest of the software, which is likely to be much easier to

work with from a debugging standpoint.

This might fall out in the wash if your software implements an object

model such as (OLE) Automation under Windows or AppleScript sup-

port on the Mac. It might even be worth adding support for such an

object model exclusively for debugging.

Another subsystem commonly replaced with a debugging version is the

memory allocator.

Debugging Memory Allocators

In languages like C and C++, which don’t provide automatic memory

management, a debugging memory allocator can be worth its weight in

gold. A debugging allocator can help you detect and solve a number of

common problems:

• By keeping track of memory allocation and deallocation, it can

detect memory leaks (memory that is allocated but not freed).

• By placing guards before and after allocated memory, it can detect

buffer overflows and memory corruption.

• By filling memory regions with known patterns, it can detect

instances where memory is used without being initialized.

DEBUGGING BUILDS 172

Memory Integrity Checkers

A debugging memory allocator requires that you modify your
object code to use it. Memory integrity checkers are tools that
can perform a similar analysis on any program by using the pro-
cessor’s virtual memory architecture.

Personally speaking, I prefer to use a debugging allocator
because it typically works at a more fine-grained level, giving
you greater control and insight. But an integrity checker can
prove useful if you find yourself having to debug a problem that
shows up only in a production build or when working with a
legacy application.

There is a list of such tools in Section A.4, Runtime Analysis Tools,
on page 200.

• By filling deallocated memory with a known pattern and holding

onto it, it can detect instances where memory is written to after it

has been deallocated.

For a list of debugging allocators, see Section A.3, Debugging Memory

Allocators, on page 197.

Built-in Control

As well as modifying the behavior of third-party code, we can also

choose to have our own code behave differently in a debug build, build-

ing in the control that will prove useful during diagnosis. Examples

include the following:

Disabling features: Sometimes your software might include features

that are valuable in production but obfuscate things during

debugging. Communication between one part of the application

and another might be encrypted for security reasons, for example.

Or data structures might be optimized to improve memory usage

and execution speed. You are likely to make problems in these

areas much easier to diagnose if you allow such features to be

selectively disabled.

Providing alternative implementations: Sometimes there is more than

one way to implement a module—one that is simple and easy

to understand and another that is complex and optimized. By

RESOURCE LEAKS AND EXCEPTION HANDLING 173

including both within the code and providing a means to switch

between them, you can validate the results of the complex version

against the simple one. This can help pinpoint whether the bug

resides in the optimized version or elsewhere, and it can help with

debugging even if it does lie elsewhere by making things simpler

to understand.

Although we tend to talk about two different builds, debug and release,

there’s nothing to stop you from building other flavors. Many teams,

for example, have an integration build that acts as a halfway house

between a debug and a release build. It might, for example, have debug-

ging symbols and assertions enabled like a debug build but have opti-

mizations enabled like a release build.

10.3 Resource Leaks and Exception Handling

It’s always a good idea to do everything you can to detect problems

early rather than wait until they surface in production. But this is par-

ticularly true for some classes of problem, foremost among which are

resource leaks and exception-handling bugs.

Don’t wait for resource

leaks to manifest—

detect them

automatically and early.

These problems tend to be related (resource

leaks often arise from incorrect exception han-

dling) and tend to be systemic. If you make

a mistake in one place, you’re very likely to

make the same mistake elsewhere. Wait until

the symptoms come to light, and you’re going

to find yourself faced with a massive task—by that time, the code will

be riddled with problems.

Happily, both types of problem can be detected automatically. In this

section, we’ll look at an example of how to do so in C++, although the

same general approach can be applied to any language.

Automatically Throwing Exceptions in Tests

The approach builds upon two widely used tools—a debugging memory

allocator and a unit test framework. We’re going to create our own very

simple unit test framework that adds one new facility—the ability to

indicate points at which an exception might be thrown. Each test is

then run multiple times. The first time it’s run as normal, and the test

framework simply keeps a record of which exceptions might be thrown.

RESOURCE LEAKS AND EXCEPTION HANDLING 174

It’s then run again, once for each possible exception, and that exception

is thrown.

This is useful anywhere an exception might be thrown, but there’s

one particular place that’s especially appropriate—whenever memory

is allocated. Our example overrides global operator new() and operator

delete() as follows:

void* operator new(size_t size) {
Ê TEST_ERROR(bad_alloc());

void *p = malloc(size);

if(!p)

throw bad_alloc();

return p;

}

void operator delete(void *p) {

free(p);

}

The key is the call to TEST_ERROR() on line Ê, which lets the test frame-

work know that operator new() might throw a bad_alloc exception. We’ll

look at the implementation of TEST_ERROR() later. For the time being, let’s

see how this helps us debug our exception handling.

An Example

Imagine that we’re writing a class that implements a simple binary tree.

Here’s a first attempt:

class TreeNode {

public:

TreeNode(int value) : m_value(value), m_left(0), m_right(0) {}

~TreeNode() {

delete m_left;

delete m_right;

}

int value() const { return m_value; }

TreeNode* left() const { return m_left; }

TreeNode* right() const { return m_right; }

void setLeft(TreeNode* left) { m_left = left; }

void setRight(TreeNode* right) { m_right = right; }

private:

int m_value;

TreeNode* m_left;

TreeNode* m_right;

};

RESOURCE LEAKS AND EXCEPTION HANDLING 175

The implementation is simplicity itself—each TreeNode maintains an

integer value together with pointers to its left and right subtrees. A few

simple getter and setter functions and we’re done.

We can test that everything is working as expected by creating a simple

test function:

void testTree() {

auto_ptr<TreeNode> root(new TreeNode(42));

assert(!root->left());

assert(!root->right());

root->setLeft(new TreeNode(10));

assert(root->left()->value() == 10);

assert(!root->right());

root->setRight(new TreeNode(20));

assert(root->left()->value() == 10);

assert(root->right()->value() == 20);

}

And this is what running the test might look like:

Running test: testTree

exception run: 1

exception run: 2

exception run: 3

In total, the test runs four times—the first time is the “normal” run,

followed by three further runs, one for each memory allocation.

So far, so good. Now, let’s get a bit more adventurous and implement

a copy() method that copies an entire tree. That shouldn’t be too hard,

should it?

TreeNode* copy() {

TreeNode* node = new TreeNode(m_value);

if(m_left)

node->m_left = m_left->copy();

if(m_right)

node->m_right = m_right->copy();

return node;

}

Looks simple enough.

RESOURCE LEAKS AND EXCEPTION HANDLING 176

Let’s see what happens when we add a call to it at the end of our test:

Running test: testTree

exception run: 1

exception run: 2

exception run: 3

exception run: 4

exception run: 5

Memory leaks found during test: testTree(5)

0 bytes in 0 Free Blocks.

12 bytes in 1 Normal Blocks.

0 bytes in 0 CRT Blocks.

0 bytes in 0 Ignore Blocks.

0 bytes in 0 Client Blocks.

Largest number used: 0 bytes.

Total allocations: 48 bytes.

exception run: 6

Memory leaks found during test: testTree(6)

0 bytes in 0 Free Blocks.

24 bytes in 2 Normal Blocks.

0 bytes in 0 CRT Blocks.

0 bytes in 0 Ignore Blocks.

0 bytes in 0 Client Blocks.

Largest number used: 0 bytes.

Total allocations: 60 bytes.

I guess that implementing an exception-safe version of copy() isn’t as

easy as it seemed.

The problem, of course, is that if one of the recursive calls to copy()

throws an exception, then the node allocated at the start of the method

isn’t deleted. For completeness, here’s one way to fix it by using auto_ptr:

TreeNode* copyFixed() {

auto_ptr<TreeNode> node(new TreeNode(m_value));

if(m_left)

node->m_left = m_left->copyFixed();

if(m_right)

node->m_right = m_right->copyFixed();

return node.release();

}

The Test Framework

So, how does the framework know how many times to run the test

and which exceptions to throw? The heart of it is the Test class, each

instance of which represents a single test.

RESOURCE LEAKS AND EXCEPTION HANDLING 177

Joe Asks. . .

Surely Running Out of Memory Isn’t a Problem Anymore?

In these days of virtual memory, running out of memory just isn’t
an issue. So, why bother testing for bad_alloc being thrown when
it’ll never happen in practice?

The point isn’t to check that the code copes when it runs out
of memory (although that is a side benefit). The point is to
check that the code is exception safe. Because most C++ pro-
grams allocate memory regularly, checking that we can han-
dle bad_alloc is an excellent way to exercise a wide variety of
possible exception-handling paths.

Writing exception safe code in C++ is tricky—much more dif-
ficult than it might appear at first. For an excellent discussion
of the subtleties involved, see Herb Sutter’s Exceptional C++
[Sut99].

class Test {

public:

Test(const char* name, void (*testFunction)());

~Test();

void run();

static bool testError();

private:

const char* m_name;

void (*m_testFunction)();

void runInternal();

// Count of errors that can be triggered

static int m_errorCount;

static int m_throwOnError;

};

Test maintains two static variables, m_errorCount and m_throwOnError.

How these variables control test execution is shown in Figure 10.1, on

the following page. During “normal” test runs, m_throwOnError is set to

zero, and each time TEST_ERROR() is called, m_errorCount is incremented.

RESOURCE LEAKS AND EXCEPTION HANDLING 178

TEST_ERROR

TEST_ERROR

TEST_ERROR

Normal test execution

(m_throwOnError == 0)

m_errorCount == 1

TEST_ERROR

TEST_ERROR

Exception run 1

(m_throwOnError == 1)

TEST_ERROR

TEST_ERROR

Exception run 2

(m_throwOnError == 2)

TEST_ERROR

TEST_ERROR

Exception run 3

(m_throwOnError == 3)

TEST_ERROR

TEST_ERROR

TEST_ERROR

m_errorCount == 2

m_errorCount == 3

Figure 10.1: TEST_ERROR() in action

During “exception” runs, m_throwOnError indicates which instance

of TEST_ERROR() should throw. Our TEST_ERROR() macro just calls

Test::testError(), throwing an exception if it returns true.

#define TEST_ERROR(e) \

if(Test::testError()) \

throw e;

In turn, all that testError() does is keep track of how many possible

exceptions we’ve come across, returning true if the count has reached

the value indicated by m_throwOnError.

bool Test::testError() {

++m_errorCount;

return m_errorCount == m_throwOnError;

}

RESOURCE LEAKS AND EXCEPTION HANDLING 179

Here’s the run() method, which (surprise) runs a test:

void Test::run() {

cout << "Running test: " << m_name << endl;
Ê m_throwOnError = 0;

runInternal();

Ë int additionalTestRuns = m_errorCount;
Ì for(int i = 1; i <= additionalTestRuns; ++i) {

cout << " exception run: " << i << endl;

m_throwOnError = i;

runInternal();

}

}

Ê Test::run() starts by calling runInternal() with m_throwOnError set to

zero to ensure that testError() always returns false.

Ë After runInternal() has finished, m_errorCount contains the number

of possible exceptions that can be thrown during this particular

test, which we take a copy of.

Ì Then, runInternal() is called once for each possible exception with

m_throwOnError set to the number of the exception we want to throw

this time.

And finally, the runInternal() method simply calls the test after wrapping

it up in checks to detect memory leaks and unexpected exceptions:

void Test::runInternal() {

m_errorCount = 0;

takeMemorySnapshot();

try {

(*m_testFunction)();

} catch(exception& e) {

// An unhandled exception is only a problem if this is a normal

// run - we expect unhandled exceptions during error simulation

if(m_throwOnError == 0)

cerr << "Unhandled exception in test: " << m_name << "\n" <<

e.what() << endl;

}

reportMemoryLeaks();

}

So, there you have it—completely automatic detection of both memory

leaks and exception-unsafe code that comes almost entirely for free.

What’s not to like?

PUT IT IN ACTION 180

10.4 Put It in Action

• Use assertions to do the following:

– Both document and automatically validate your assumptions

– Ensure that your software, although robust in production, is

fragile during debugging

• Create a debug build that

– Is compiled with debug-friendly compiler options

– Allows key subsystems to be replaced by debugging equiva-

lents

– Builds in control that will prove useful during diagnosis

• Detect systemic problems, such as resource leaks and exception

handling issues, preemptively.

Chapter 11

Anti-patterns
We’re all familiar with patterns—solutions to common problems that

arise again and again.

Anti-patterns are the dark side of patterns—common mistakes we fall

into repeatedly. Sometimes they seem to be good solutions that experi-

ence has demonstrated don’t work in practice. On other occasions, we

know that they’re not a good idea, but we fall into them anyway.

Forewarned is forearmed. Knowing about an anti-pattern is the first

step toward avoiding it.

11.1 Priority Inflation

Early in my career, the team of which I was a member had a problem. As

was (and still is) common practice, we were using a bug-tracking sys-

tem in which each bug was allocated a numeric priority. Our priorities

ranged from 1, which was appropriate for trivial bugs of limited severity

and impact, to 4, for “drop everything” bugs that took precedence over

everything else. So far, so good.

Unfortunately, we had so many bugs that the only ones that were guar-

anteed to get any attention were those with the highest priority. Of

course, people soon worked out that if you didn’t give a bug the highest

priority, there was very little point in reporting it at all. So, very rapidly

we ended up with a database in which almost every bug was priority 4.

This was a problem because all bugs became effectively equal—how

were we supposed to know which were really the most important to

work on?

PRIMA DONNA 182

Our solution was to create a new priority 5 for “really critical” bugs,

which worked for a while. You can probably see the flaw in the plan,

though—after a while, we were back where we started, except this time

all the bugs were of priority 5.

By the time I left, we were up to priority 7.

Remedies

You can apply a few tactical remedies if you find yourself faced with

priority inflation:

• Scrub your bugs regularly. Keep on top of the bug database—

review it regularly, and make sure that bug priorities really do

reflect their true priority (representative of the value of their fix to

the organization).

• Control bug priorities. Allow users to specify severity but not pri-

ority. Have a well-defined process by which priorities are allocated

(a triage team, for example).

• Switch away from numeric priorities, and keep your bugs as a

simple list in priority order. This is similar to the product backlog

recommended by Scrum (see Agile Project Management with Scrum

[Sch04]).

None of these solutions addresses the root cause—poor quality lead-

ing to an excess of bugs. If their number is constantly increasing, no

solution that concentrates on merely managing your bugs is going to

help.

It’s not going to be easy, but the only true remedy is to get on top of

your quality problem.

11.2 Prima Donna

I once worked with a superstar. He was the “go-to guy”—the team mem-

ber who could be relied upon to come up with the goods when the

chips were down. Very bright and hugely productive—much more so

than anyone else on the team—he had an encyclopedic knowledge of

the entire product line and could turn his hand to anything.

Management, you won’t be surprised to know, loved him. If only we

could clone him, all our problems would be solved.

PRIMA DONNA 183

Occasionally there were a few problems with the code he wrote, but

these were trivial issues that could easily be handled by lesser team

members while he moved on to the next challenge.

If only.

Although on the face of things he was incredibly productive, a cursory

examination of his code was all it took for myriad problems to become

obvious. It had been thrown together quickly, and it showed in poorly

thought-out design, inadequate testing, and unnecessary duplication.

The consequences were bugs, both in the new functionality he’d just

implemented and in regressions in other areas.

It’s a small wonder he was so productive—he was doing only half the

job. And small wonder that everyone else was so unproductive—they

were spending all their time cleaning up his mess. Of course, none of

the dirt stuck to him because by the time the problems surfaced, he

was long gone, working on the next high-profile problem that needed

superstar attention.

Prima donnas destroy

teams.

Allowed to persist, this anti-pattern is particu-

larly corrosive. It sends exactly the wrong mes-

sage. Team members learn that being consci-

entious is counterproductive. Quick-and-dirty

solutions get the plaudits—forget quality, feel the width. Some other

poor schmuck can tidy up the loose ends.

Those schmucks, of course, aren’t likely to enjoy their role. Their morale

is going to suffer, which is either going to lead to poor quality work (why

bother—clearly nobody cares) or intensive résumé polishing.

Remedies

Nobody gets to be a prima donna without talent. Potentially they can

and should become an exceptionally valuable member of the team. The

trick is working out how to harness their talent.

Prima donnas behave as such because they can. Ensure that your

development process contains adequate checks and balances, and they

won’t be able to get away with it anymore:

• Ensure that “done means done.” Don’t allow anyone to move onto

the next task until they’ve dotted every i and crossed every t.

That means all the functionality working, tested, reviewed, doc-

umented, and anything else your process calls for.

MAINTENANCE TEAM 184

Joe Asks. . .

What If I’m Not in Charge?

An early reviewer of this chapter asked, “These are great ideas,
but what if it isn’t you (the reader) who decides and manage-
ment just won’t do this?”

Well, some of these processes can be introduced through
a “grassroots” movement, and peer pressure can be surpris-
ingly effective. Unfortunately, however, if that doesn’t work and
nobody in power will take action, then sometimes polishing your
résumé really is the rational response.

• Break large tasks up into small, concrete chunks. Treat each indi-

vidual chunk as either “done” or “not done”—no shades of gray.

Five items that are 80 percent complete equals nothing done. Four

done, one not started, equals 80 percent done. This gives you a

true picture of how much progress you’ve really made.

• Adopt a “polluter pays” policy—whoever caused a bug fixes it. If

problems with your prima donna’s work come to light at a later

date, they stop whatever it is they’ve moved on to, no matter how

important it is, and address them. If what they were doing is

too important to remain on hold while they’re cleaning up their

own mess, someone else gets to work on the new project, not the

cleanup task.

11.3 Maintenance Team

Some organizations choose to have separate development and main-

tenance teams. The development team creates the software and then,

once it’s ready for deployment, hands it over to the maintenance team,

which is responsible for bug fixing and any enhancements that become

necessary during operation.

If you start from the assumption that the skills required to develop

software are different from those required to maintain it, this can seem

a sensible way to arrange things. Unfortunately, this structure has a

number of problems that lead to a range of pathologies:

MAINTENANCE TEAM 185

• First and foremost, the skills required to develop software are not

significantly different from those required to maintain it. Software

engineering is software engineering, whether you’re working on a

“greenfield” project or enhancing an existing product.

• The only way to be certain that your design works in practice is

to see it working in practice. Some problems will come to light

only when real customers are using the software. It’s much more

efficient for those problems to be fixed by the original designer,

who understands the code better than anyone else.

• Related to the previous, how is the designer going to learn how

their work fares when it really matters if by that point they’ve

moved on to something else? Learning these lessons is critical if

they’re not going to make the same mistakes over and over again.

• Although your project plan might call for clearly separated devel-

opment and maintenance phases, the reality is likely to be very

different. Most software has more work performed upon it when

it’s in maintenance than it ever does during its initial develop-

ment. There are good reasons for this, not least of which is the

fact that users often realize only what they should have asked for

in the first place when you deliver something to them.

• You might intend that part of what’s delivered with the software

is comprehensive documentation providing the maintenance team

with all the information they need. In practice, this is almost

impossible to achieve, not just because documentation is often

the first thing to suffer when schedules become tight. An awful

lot of knowledge about the software is unavoidably tacit informa-

tion that is particularly difficult to capture in documentation, no

matter how conscientious you are.1

• Maintenance teams almost always become second-class citizens.

Because of this perceived second-class status, stronger developers

tend to find their way into the development team and weaker ones

into the maintenance team. This leads to a “them and us” situ-

ation. The development team can’t understand why those idiots

in the maintenance team can’t get things running smoothly—the

hard work has already been done, after all. And the maintenance

1. For a discussion of how communication works within and between teams, see Agile

Software Development: The Cooperative Game [Coc06].

FIREFIGHTING 186

team can’t understand why the development team have (yet again)

been allowed to get away with supplying another buggy pile of

poorly documented crap.

• If the team that created the software in the first place knows that

it’s going to be maintaining it, then the team members will be

motivated to ensure that it’s as easy to debug and enhance as

possible. As we’ve already seen, there are numerous things we

can build in at the outset that help considerably. If someone else

is responsible, however, the temptation to push this to the bottom

of the to-do list can be irresistible.

This anti-pattern also applies to individual developers. Having a new

team member work on fixing a few bugs can be a good, gentle introduc-

tion to the project. But relegating them to nothing but bug fixing does

neither them nor the rest of the team any favors in the long term.

Remedies

Keep one team from

initial concept through

to deployment.

Make a single team responsible for a prod-

uct from its initial concept through deploy-

ment and beyond. This gives you continu-

ity, ensures that team members’ priorities are

aligned with those of the whole organization,

and allows them to learn the lessons of maintaining the software while

it’s in production.

Note that a “SWAT team” (Section 7.3, SWAT Team, on page 117) isn’t

a maintenance team in the sense we’re discussing here. A SWAT team

is a short-lived entity, formed to cope with a specific problem, not a

long-term part of the organizational structure.

11.4 Firefighting

Firefighting is a mode of behavior in which, faced with a number of

critical problems, we rush from one to another doing just enough to

put out the worst fire before moving on to the next.

We’re all prone to it. When customers, managers, or colleagues are

screaming at you and critical deadlines are approaching, it can seem

as though you have no choice. Rarely, it can be appropriate behavior—

sometimes you really do just have to do whatever it takes to get the

immediate problems out of the way.

REWRITE 187

It’s a big problem, however, if you find yourself falling into firefighting

mode regularly or for extended periods.

Remedies

Extended or repeated firefighting will destroy both code quality and

team morale. If you find yourself falling into it, you need to take a

step back, determine the root cause of the problems you’re facing, and

address them directly.

This is easier said than done. You have no time to search for root

causes—you’re spending all your time rushing from one problem to

the next. It can be difficult to see how you can possibly afford to take a

step back and look at the big picture.

Firefighting will never fix

a quality problem.

Unfortunately, no amount of firefighting will

ever dig you out of a quality problem. Quite

the reverse, in fact.

If you’ve been firefighting for a week and still

haven’t gotten on top of things, simply working harder will not and

cannot work. Whatever the short-term consequences, you need to stop

and allow yourself to identify and fix the root cause.

This may mean that you have to take some unpalatable decisions. You

may need to suffer some short-term pain in order to build stronger

foundations for the long term (see Section 7.3, Digging Yourself Out of a

Quality Hole, on page 113 for suggestions about how to go about doing

so).

11.5 Rewrite

It can be tempting, when faced with a particularly troublesome body of

software, to apply the Alexandrian solution—cut through the Gordian

knot by discarding the code and rewriting it from scratch.

Sometimes this really is the right solution, but experience shows that

we software engineers have a tendency to adopt it too readily.

From a psychological point of view, it’s just nicer to be working on

greenfield code instead of having to fight against the crusty old stuff.

And our natural optimism leads us to underestimate how much effort

and time it’s going to take to replicate the old functionality.

REWRITE 188

Old and Rusty vs. New and Shiny

Outside the world of software, my passion is motor racing. As a result, I

spend many weekends fettling my race car, performing routine

maintenance, fixing damage incurred at the last event, or upgrading

components in the search for that last crucial tenth of a second.

I’ve built a new car from the ground up on a couple of occasions.

Compared to normal, it’s a wonderful experience. Instead of fighting with

recalcitrant nuts and bolts that were last undone years ago and have

seized solid in the interim and getting covered in dirty oil and grease in

the process, you’re working with shiny new components that fit together

with ease. If only it could be like this all the time.

But race cars are never fast “out of the box.” The first few races, you’re

constantly finding and fixing teething problems—small issues that either

slow you down or mean that you don’t finish the race at all. Only after

you’ve sorted all of these out can you extract the car’s full potential.

The drivers at the sharp end of the field are the ones who’ve persevered,

developing their cars incrementally over time.

Even if the code as it stands isn’t well structured, tested, or docu-

mented, if it has been in production for any length of time, then it

probably mostly works. This means that it encodes a huge amount of

knowledge about the problem domain—knowledge that is unlikely to be

captured anywhere else.

This knowledge is the subtle kind that’s difficult to recapture dur-

ing requirements analysis. The special cases that always crop up in

production—“Yes, it should normally do that, but for records of this

particular type, it should behave differently”—may not be captured

in any documentation or anywhere else other than the source code.

Rewrite the software, and unless you’re very careful, you’re going to be

chasing lots of regressions as you relearn those lessons.

Remedies

Be very suspicious of any proposal to rewrite. Perform a very careful

cost/benefit analysis. Sometimes the old code really is so terrible that

it’s not worth persevering with it, but take the time to prove this to

yourself.

If you do decide to go down this road, minimize your exposure as much

as possible. Try to find a way to rewrite the code incrementally instead

of in a “big bang.”

NO CODE OWNERSHIP 189

Avoid “big bang”

rewrites.

Test against the existing code, and verify that

you get the same results. Be particularly care-

ful to find the corner cases that the existing

code handles correctly and that you need to

replicate.

11.6 No Code Ownership

One of the practices of Extreme Programming (see Extreme Program-

ming Explained: Embrace Change [wCA04]) is collective code ownership,

in which every team member is responsible for all the code. In partic-

ular, anyone can fix any bug anywhere in the code without necessarily

liaising with the original author.

The popularity (notoriety?) of XP has led to a number of teams adopt-

ing the practice, not always within an XP framework. This can lead to

problems. Collective code ownership can work extremely effectively, but

applied incorrectly, it can easily degenerate into a situation in which

there is no code ownership. Anyone can change anything they want at

any time, leading to poor quality and even thrashing, in which code is

refactored back and forth depending upon the whim of whoever hap-

pens to be looking at it.

Remedies

Collective code ownership works in XP because it’s supported by a

number of other XP practices, in particular pair programming, test-first

development, and agreed coding standards. Adopt collective code own-

ership without these or other practices that provide similar support,

and you’re in danger.

If you aren’t able to adopt such supporting practices, perhaps shared

code ownership isn’t for you? Consider a more traditional model in

which one team member (or a small team within the wider team) owns

each module.

11.7 Black Magic

You wouldn’t think that we software engineers would be at all supersti-

tious. Software is the most transparent entity you could possibly work

with—if you ever want to know why it’s behaving as it is, everything you

could ever need to work it out is in the source code.

PUT IT IN ACTION 190

Nevertheless, many projects seem to have their own little bits of black

magic:

• “Yeah—for some reason builds created on that server always show

that bug. Dunno why, just make sure that you always take the

build from that other server instead.”

• “Oh, you’re getting that error. You need to make sure that you

start things in the right order. It shouldn’t make a difference, but

for some reason it does.”

• “Yup, the first time always fails, but after that it always works

perfectly. Don’t worry about it.”

The trouble is that anything of this nature indicates that there’s some

aspect of the software that you don’t understand. And anything that

you don’t understand is a potential source of bugs.

Remedies

Treat anything you don’t

understand as a bug.

The only remedy in this case is discipline.

Treat anything you don’t understand as a bug.

Even if, after investigating it, you decide that

it isn’t a bug, you’re sure to learn something.

This chapter has covered a number of common anti-patterns. As you

can imagine, it’s not an exclusive list. Human ingenuity being what it is,

we’ve invented plenty of other ways to make life difficult for ourselves.

Combat this by continually examining your process and structures with

a critical eye, making sure that they’re really moving you closer to your

goal.

In the course of your career as a software engineer, you’re going to

find yourself faced with software that behaves in frustrating, irritating,

obscure, and occasionally downright bizarre ways. I hope that the tools,

techniques, and approaches I’ve covered will give you a little help and

the inspiration to realize that you will win in the end. The “eureka”

moment when you do will repay all the hard work that gets you there.

Bon voyage!

11.8 Put It in Action

• Keep on top of your bug database to ensure that it accurately

reflects your true priorities.

PUT IT IN ACTION 191

• The polluter pays—don’t allow anyone to move onto a new task

until they’ve completely finished their current one. If bugs come

to light in their work, they fix them.

• Make a single team responsible for a product from its initial con-

cept through deployment and beyond.

• Firefighting will never fix a quality problem. Take the time to iden-

tify and fix the root cause.

• Avoid “big bang” rewrites.

• Ensure that your code ownership strategy is clear.

• Treat anything you don’t understand as a bug.

Appendix A

Resources
It may be trite, but there are good reasons why the saying “If all you

have is a hammer, everything looks like a nail” exists. One of the hall-

marks of a professional is a knowledge of which tools are available and

the ability to select the appropriate one to help with the task at hand.

This appendix provides pointers to some of the more widely used.

A.1 Source Control and Issue-Tracking Systems

The problem with choosing a source control and issue-tracking system

isn’t so much finding one that’s right for you as picking through the

huge range available. So, what might sway your decision? Some things

(not an exhaustive list) to consider include the following:

• Open source or commercial?

• Do you need to host it yourself (behind your firewall, for exam-

ple), or do you want to use one of the many services that provide

hosting for you?

• Do you need your source control and issue-tracking systems to be

tightly integrated with each other?

• What level of support for distributed development do you need?

I can’t possibly give a complete survey of all the different source control

and issue-tracking systems here, but I can give you pointers to a few of

the major players and why you might consider them.

SOURCE CONTROL AND ISSUE-TRACKING SYSTEMS 193

Open Source Solutions

CVS: http://www.nongnu.org/cvs/

Until fairly recently, the only real open source choice was CVS.

CVS has a number of well-known limitations, however, not least

of which are the fact that check-ins aren’t atomic and it doesn’t

version directory structures.

Subversion: http://subversion.tigris.org/

Over the last few years, CVS has been almost entirely supplanted

by Subversion, which addresses most of CVS’s obvious weak-

nesses and has become the default open source choice.

Git: http://git.or.cz/

Coming up fast on the rails is Git, which is gaining mind share

with a number of high-profile projects switching to it, in part

because of its excellent support for distributed development.

Mercurial: http://www.selenic.com/mercurial/

This is a cross-platform, distributed system with very similar goals

to Git and particularly good support for branching.

Bazaar: http://bazaar-vcs.org/

This is designed to just work and adapt to your team’s workflow

instead of imposing its own model.

Bugzilla: http://www.bugzilla.org/

For a long time, Bugzilla, developed as part of the Mozilla project,

was the default open source choice for issue tracking. Recently a

number of alternatives have become available, however.

Trac: http://trac.edgewall.org/

Trac uses a minimalist approach, aiming to keep out of the way of

developers as much as possible. It’s particularly notable for tight

integration with its integrated wiki.

Redmine: http://www.redmine.org/

A relative newcomer on the scene, Redmine seems to be well sup-

ported and making good progress.

Where open source solutions have traditionally been weak is integration

between source control and issue tracking and with development envi-

SOURCE CONTROL AND ISSUE-TRACKING SYSTEMS 194

ronments. The situation has improved considerably recently with IDEs

such as Eclipse providing excellent Subversion support, for example.

Hosted Solutions

SourceForge: http://sourceforge.net/

SourceForge is the best known of a number of similar sites that

provide hosting for open source projects, integrating a number of

tools such as source control, issue tracking, documentation tools,

and so on. Others include Google Code (http://code.google.com/

hosting/) and language-specific sites such as RubyForge (http://

rubyforge.org/).

GitHub: http://github.com/

GitHub provides Git hosting and has recently gained a lot of atten-

tion when it started hosting the Ruby on Rails project.

Lighthouse: http://lighthouseapp.com/

This is a hosted issue-tracking system with integration for Sub-

version and Git.

Unfuddle: http://unfuddle.com/

This is a secure, hosted project management solution providing

Subversion or Git hosting together with integrated issue tracking.

Rally: http://www.rallydev.com/

Rally provides Agile life-cycle management tools.

VersionOne: http://www.versionone.com/

This is a project management and planning tool designed specifi-

cally for agile software development. This is also available for local

installation as well as hosted.

Pivotal Tracker: http://www.pivotaltracker.com/

Tracker is a free, award-winning, story-based project-planning

tool that allows teams to collaborate in real time.

Commercial Solutions

Perforce: http://www.perforce.com/

Perforce is a source control system that particularly concentrates

on cross-platform support and performance. It also includes a

BUILD AND CONTINUOUS INTEGRATION TOOLS 195

simple issue-tracking system or can integrate with various open

source or commercial solutions.

FogBugz: http://www.fogcreek.com/FogBugz/

FogBugz, from Fog Creek Software, is a flexible bug tracking and

project planning tool, available for local installation or as a hosted

solution. It’s traditionally been available for Windows, but is in the

process of being ported to Linux and Macintosh.

Visual Studio Team System: http://msdn.microsoft.com/teamsystem/

Microsoft’s Visual SourceSafe has long been a favorite punch bag,

criticized for a range of failings. To be fair, Microsoft can hardly

complain about this given that it never seemed to use it itself

despite its famous policy of eating its own dog food. Thankfully,

Microsoft’s offering in this area seems to have improved to no end

recently with the introduction of Visual Studio Team System, a

fully integrated source control and project management solution.

Rational ClearCase and ClearQuest: http://ibm.com/software/awdtools/

clearcase/

The ClearCase source control system and its associated issue-

tracking solution ClearQuest used to be considered the default

enterprise choice. They are expensive and complex, however, and

inappropriate for anything other than large teams with dedicated

support organizations.

StarTeam: http://www.borland.com/starteam/

This is a fully integrated source control and project management

system.

BitKeeper: http://www.bitkeeper.com/

This is a distributed system with similar goals to Git.

A.2 Build and Continuous Integration Tools

We’ve examined at length the benefits of automating your build process,

and as you would expect, there are many off-the-shelf tools that will

help you to do so.

BUILD AND CONTINUOUS INTEGRATION TOOLS 196

Build Tools

The granddaddy of build tools is the venerable make. Things have

moved on, however, and several much better choices are now available.

GNU Make: http://www.gnu.org/software/make/

Although based upon make, GNU Make supports a number of sig-

nificant extensions allowing much more sophisticated control over

the build process than has traditionally been available.

Autoconf: http://www.gnu.org/software/autoconf/

Autoconf is particularly appropriate for open source software that

needs to support building in a wide range of different environ-

ments. It allows the build system to automatically determine what

facilities are available on the host system and behave accordingly.

Jam: http://www.perforce.com/jam/jam.html

Jam is an alternative to make that typically requires much less

configuration to build a given project.

Boost.Build: http://www.boost.org/doc/tools/build/

Built on top of Jam, Boost.Build provides a standard build system

particularly appropriate to building C++ software.

SCons: http://www.scons.org/

This is a make replacement integrating autoconf-like functionality.

Ant: http://ant.apache.org/

Ant is a make replacement that has become the de facto standard

build tool within the Java world.

Maven: http://maven.apache.org/

Maven is a software project management tool that does much

more than simply manage the build process, bringing package

management, deployment, and other facilities to the Java world

and rapidly gaining mind share from Ant.

Capistrano: http://www.capify.org/

Not a build tool per se, Capistrano manages the task of deploying

software on a number of different servers. Although particularly

associated with Ruby on Rails, it can be used to deploy products

created with any technology.

USEFUL LIBRARIES 197

Continuous Integration Tools

Many of the proprietary systems we’ve already discussed (such as

Microsoft’s Visual Studio Team System) come with their own contin-

uous integration solutions. In addition, there are a number of open

source systems available:

CruiseControl: http://cruisecontrol.sourceforge.net/

This is probably the best known open source continuous integra-

tion system. As well as the main Java implementation, there are

also .NET and Ruby on Rails variants.

Hudson: http://hudson.dev.java.net/

This is an open source J2EE continuous integration server.

A.3 Useful Libraries

Not all tools are stand-alone—many, covered in this section, come in

the form of libraries that we need to link with our own code.

Testing

The last few years have seen an explosion in the number of test frame-

works, many of which are based upon the seminal JUnit. There’s no

way that I can begin to cover them all here, so I will restrict myself to

referencing the “big two” in the Java community:

JUnit: http://www.junit.org/

This is the library that started it all.

TestNG: http://testng.org/

This is a more recent test framework, which builds upon the ideas

in JUnit but takes a few different approaches and is starting to

gain a considerable following.

Debugging Memory Allocators

As we discussed in Section 10.2, Debugging Memory Allocators, on

page 171, in languages like C and C++ that don’t provide memory man-

agement, a debugging memory allocator is an essential tool to avoid

memory leaks, corruption, and other common issues.

USEFUL LIBRARIES 198

libcwd: http://libcwd.sourceforge.net/

This is an open source debugging support library that provides

memory debugging along with other features.

Microsoft Visual C++: http://msdn.microsoft.com/visualc/

Microsoft’s Visual C++ ships with a debugging memory allocator

built in. Search for Memory Leak Detection and Isolation in the

documentation for further information.

Mudflap: http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging

Mudflap is a technology built into some versions of the GNU C

and C++ compiler that instruments all risky pointer and array

dereferencing operations, some standard library string and heap

functions, and some other associated constructs with range and

validity tests.

Dinkumware: http://www.dinkumware.com/

Dinkumware sells C and C++ standard libraries that include com-

prehensive support for memory debugging.

Electric Fence: http://perens.com/works/software/ElectricFence/

This uses virtual memory hardware to detect memory overwrites

and reuse of freed memory.

Logging

Logging frameworks provide the ability for your code to contain con-

figurable logging that can be enabled, disabled, or increased in detail,

typically at runtime and by individual feature.

log4j: http://logging.apache.org/log4j/

Apache log4j is probably the best-known Java logging library, and

ports exist to most major languages.

Logback: http://logback.qos.ch/

Logback was designed by Ceki Gülcü, the founder of log4j, to be

its successor.

java.util.logging: http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

As of 1.4.2, Java includes a standard logging API java.util.logging,

commonly known as JUL.

OTHER TOOLS 199

SLF4J: http://www.slf4j.org/

The Simple Logging Facade for Java is an attempt to tame the

plethora of Java logging APIs by providing a common interface

that can write to different implementations at deployment time.

syslog-ng http://www.balabit.com/network-security/syslog-ng/

syslog-ng is the most popular implementation of The BSD syslog

Protocol, allowing log data to be integrated from many different

systems into a central repository and rich content-based filtering.

A.4 Other Tools

Finally, here’s a quick survey of some other candidates for every pro-

grammer’s toolbox.

Testing Tools

FitNesse: http://fitnesse.org/

FitNesse is an acceptance testing tool that allows tests to be

expressed as tables of input data and expected output data,

described in Fit for Developing Software: Framework for Integrated

Tests [MC05].

Watir: http://wtr.rubyforge.org/

Watir is an open source library for automating web browsers allow-

ing automated testing of web applications. It started out on Inter-

net Explorer on Windows but is in the process of being ported to

other browsers.

Selenium: http://selenium.openqa.org/

Selenium is a cross-platform suite of tools to automate web appli-

cation testing.

Sahi: http://sahi.co.in/

Sahi is an automation and testing tool for web applications that

runs as a proxy server.

The Grinder: http://grinder.sourceforge.net/

This is an open source load testing tool in which scripts are written

Jython.

OTHER TOOLS 200

JMeter: http://jakarta.apache.org/jmeter/

This is an open source load testing tool in which scripts are written

in Java.

QuickTest Professional and LoadRunner: http://www.hp.com/

QuickTest Professional is an automated functional GUI testing

tool, and LoadRunner is a performance and load testing product.

Peach Fuzzing Platform: http://peachfuzzer.com/

Peach is a fuzzer that is capable of performing both generation-

and mutation-based fuzzing.

RFuzz: http://rfuzz.rubyforge.org/

RFuzz is a Ruby library that allows web applications to be easily

fuzz tested.

Runtime Analysis Tools

Valgrind: http://valgrind.org/

Valgrind is an instrumentation framework for Linux and includes,

among other things, memory analysis and profiling tools.

BoundsChecker: http://www.compuware.com/products/devpartner/

visualc.htm

BoundsChecker is part of Compuware’s DevPartner for Visual C++

BoundsChecker Suite. It analyzes running programs to detect

memory and other issues.

Purify: http://www.ibm.com/software/awdtools/purify/

IBM’s Rational Purify detects memory leaks and corruption within

running programs.

DTrace: http://opensolaris.org/os/community/dtrace/

DTrace is a highly regarded dynamic tracing framework created

by Sun Microsystems for troubleshooting kernel and application

problems. It is also incorporated in Mac OS X “Leopard,” including

a GUI called Instruments.

OTHER TOOLS 201

Network Analyzers

If your software relies upon network communication (and it’s becoming

difficult to find software which doesn’t), it can be very useful to see

what’s really being transferred over the network.

A network analyzer (sometimes called a packet sniffer) sits on the net-

work capturing and analyzing all the packets crossing it. You can then

filter these packets to extract only those that you’re interested in and

examine their contents. Broadly speaking, a packet sniffer is a low-level

tool. It can capture all the traffic on the network but doesn’t necessarily

have a deep understanding of the protocol being used. So if, for exam-

ple, the communication is encrypted, a packet sniffer is unlikely to be

able to display the information being exchanged.

TCPDUMP: http://www.tcpdump.org/

TCPDUMP is a widely distributed open source packet sniffer.

Wireshark: http://www.wireshark.org/

Wireshark (previously known as Ethereal) is an open source tool

that provides similar functionality to TCPDUMP, but it has a

graphical front end and a wider selection of built-in analysis tools.

Debugging Proxies

A debugging proxy is a higher-level tool than a network analyzer, tar-

geted to a particular protocol. You normally need to configure your soft-

ware slightly differently so that it communicates via the proxy rather

than directly, but having done so very often you can get a deeper

analysis of the conversation. Some debugging proxies can even view

encrypted data.

Charles: http://www.charlesproxy.com/

Charles is a cross-platform HTTP proxy that, among other things,

supports debugging encrypted communications.

Fiddler: http://www.fiddlertool.com/

Fiddler is a Windows HTTP proxy that, as its name suggests,

allows you to “fiddle” with incoming or outgoing data.

OTHER TOOLS 202

Debuggers

In most cases, your choice of debugger is going to be governed by your

choice of language, IDE, or tool chain, so there’s little value in me pro-

viding a list of choices here. There is one particular debugger that I

have to mention, however:

Firebug: http://getfirebug.com/

Firebug has transformed web development by providing dramat-

ically improved client-side debugging facilities. It allows you to

inspect and edit the DOM and CSS, as well as monitor and pro-

file network activity, and it provides full JavaScript debugging

support.

Appendix B

Bibliography

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-

Wesley, Reading, MA, 2002.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man Month: Essays

on Software Engineering. Addison-Wesley, Reading, MA,

anniversary edition, 1995.

[Car71] Lewis Carroll. Through the Looking-Glass, and What Alice

Found There. Macmillan, 1871.

[Coc06] Alistair Cockburn. Agile Software Development: The Cooper-

ative Game. Addison Wesley Longman, Reading, MA, second

edition, 2006.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[Fow] Martin Fowler. Mocks aren’t stubs.

http://www.martinfowler.com/articles/mocksArentStubs.html.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[iet99] Hypertext transfer protocol – http/1.1.

http://www.w3.org/Protocols/rfc2616/rfc2616.txt, 1999.

[Knu74] Donald E. Knuth. Structured programming with go to state-

ments. ACM Comput. Surv., 6(4):261–301, 1974.

APPENDIX B. BIBLIOGRAPHY 204

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-

Oriented Programming. Manning Publications Co., 2003.

[MC05] Rick Mugridge and Ward Cunningham. Fit for Developing

Software: Framework for Integrated Tests. Prentice Hall PTR,

Englewood Cliffs, NJ, 2005.

[OW07] Andy Oram and Greg Wilson, editors. Beautiful Code: Lead-

ing Programmers Explain How They Think. Theory in Prac-

tice. O’Reilly Media, Inc., Sebastopol, CA, 2007.

[ray] The jargon file. http://catb.org/jargon/.

[Ray01] Eric S. Raymond. The Cathedral and The Bazaar. O’Reilly

& Associates, Inc, Sebastopol, CA, 2001.

[Sch04] Ken Schwaber. Agile Project Management with Scrum.

Microsoft Press, Redmond, WA, 2004.

[Sut99] Herb Sutter. Exceptional C++: 47 Engineering Puzzles, Pro-

gramming Problems, and Solutions. Addison-Wesley, Read-

ing, MA, 1999.

[Swi08] Travis Swicegood. Pragmatic Version Control using Git. The

Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,

2008.

[wCA04] Kent Beck with Cynthia Andres. Extreme Programming

Explained: Embrace Change. Addison-Wesley, Reading, MA,

second edition, 2004.

[Zac94] G. Pascal Zachary. Show Stopper!: The Breakneck Race to

Create Windows NT and the Next Generation at Microsoft.

Little, Brown, 1994.

Index
A
about: URLs, 99f, 99

about:buildconfig, 139f

addHeader(), 160–162

Adobe printer bug story, 125

Agile Project Management with Scrum

(Schwaber), 182

Agile Software Development: The

Cooperative Game (Cockburn),

185n

Alice, 111

Anti-patterns, 181–190

code ownership, 189

defined, 181

firefighting, 186–187

maintenance teams, 184–186

overview, 190

prima donnas, 182–184

priority inflation, 181–182

rewriting, 187–189

superstitions (black magic), 189–190

Aspect-oriented programming, 33

AspectJ in Action: Practical

Aspect-Oriented Programming

(Laddad), 33

Assert messages, writing, 161

AssertionError exception, 159

Assertions, 158–168

abuse of, 167

disabling, 164

vs. error-handling mechanisms, 168

evaluating, 164

language culture and, 167

side effects and, 168

writing assert messages, 161

Assumptions, 64, 158–168

Automated testing, 141–144

Automatic builds, 149–156

build machines, 150–151

compilers, 154

continuous integration, 151, 152f

IDE, 150

one-button builds, 149–150

smoke tests, 153

static analysis, 152, 155

versioning, 151

warning-free, 156

Automatically minimizing input, 38

Automation

bug reporting, 100

collection of environment and

configuration information, 98

debugging and, 158–168

reproduction and, 42–43

B
Backsliding, 114

Backward compatibility, 124f, 121–126

bad_alloc, 177

Beautiful Code: Leadng Programmers

Explain How They Think (Zeller),

38

Beck, Kent, 86

Binary chop, 58, 59f

Binks, Dominic, 77

Bit rot, 74

Black magic, 189–190

Black-box techniques, 29n, 106

Blame, 88, 136

Blind software story, 102

Board it up, 115

Bottlenecks, 130, 132

Boundary value analysis, 29

Bounds checking, 169

Branch coverage, 29

Branches, 146f, 147, 148

Branching, 145, 147

Breaks, taking, 70

BROKEN WINDOWS CUSTOMER SUPPORT STORY

Broken windows, 111, 114, 115

Browsers, support for, 27

Bug blitz, 116

Bug database, publishing, 103

Bug fest, 116

Bug reports, 18, 20

approaching, 24

characteristics of, 96, 97

feedback, 104

streamlining, 100

support staff, 105–106

third-party code, 136, 137

users and, 100–105

see also Record keeping; Tracking

bugs

Bug scrub, 115

Bug triage, 115

Bug-tracking systems, 96

Bugs

concurrency, 126

defined, 112

heisenbugs, 128–129

performance, 130–133

third-party software and, 139f,

135–140

Build machines, 150–151

Build, debugging, 168–173

compiler options, 169

control and, 172

memory allocator, 171

vs. production, 169

subsystems, 170

user interface, 170

Butler story, 71

C
Caching, 132

Car racing story, 188

Cardboard cutout, 67–69

Carroll, Lewis, 111

The Cathedral and the Bazaar

(Raymond), 138

Causes of bugs, fixing, 78–80

see also Diagnosis; Root causes

Cell phone story, 98

Change, 53

auditing, 75

checking in, 148

checking in code and, 83

clean up of, 75

effect of making, 64

getting unstuck and, 71

heisenbugs and, 128

observation and, 57

regression bugs, 60

underlying system and, 66

Change freeze, 145

Characterization process, 106

Checking in code, 82

Cheung, Frederick, 71

Chinese wall story, 106

Clean vs. unclean code, 115

Cloud computing platforms, 36

Code ownership, 189

Code reviews, 83, 89

CodeView debugger story, 38

Coherent caches story, 65

Collective code ownership, 189

Communication

bug triage, 115

clean vs. unclean code, 115

code reviews, 83

common bugs, 61

customers and, 101

effective, 101

help, asking for, 68

mental models and, 102

mistakes and, 90

open source community, 138

options for, 100

problem-solving and, 21

replication help, 46–47

tacit information, 185

technical, with customers, 102

with test team, 106

Compatibility mode, 124f, 124

Compatibility, backward, 124f,

121–126

Compiler options, 169

Compilers, 154

Concurrency, 126–128

Concurrency story, 126

Configuration, reporting, 98

Connection problem story, 55

Continuous integration, 151, 152f

Contracts, 163

Control, 24–25, 126

Cookie story, 86

copy(), 175

Core debugging process, 17–18, 19f

Crash screen story, 98

Customer support story, 102

DATABASE FIVE WHYS

D
Database, bugs, 103

Daybook, 54, 55

see also Record keeping

Death-march projects, 111

Debugger story, 71

Debuggers, 62–63, 134

Debugging

automated tests and, 142

automation of, 158–168

defining, 14–16

diagnosis, 22

empirical approach to, 16–17

vs. feature debate, 112

mind-set, 113f, 111–113

multiple problems, 20

quality and, 113–117

remotely, 133

research, 18–21

simplicity and control in, 126

six stages of (humorous), 85

steps, 15, 17–18, 19f

see also Fixing bugs; Special cases

Debugging build, 168–173

compiler options, 169

control and, 172

memory allocator, 171

vs. production, 169

subsystems, 170

user interface, 170

Debugging information, compilers and,

169

Debugging method, 51f, 50–56

Defensive programming, 165

Deliberate randomness, 41

Deterministic bugs, 39, 40

Development board, 133

Development teams, 184–186

Diagnosis, 15, 18, 22, 49–73

assert messages and, 161

challenges, techniques for, 67–72

debuggers, 62–63

debugging method (experiments),

51f, 50–56

five whys, 87

mind-set for, 49–50

pitfalls, 63–67

stratagems for, 56–61

time and, 15–16

time to fix bugs, 110

validation of, 72–73

Differences, focus on, 61

Disabling features, 172

Distance, from problem-solving, 70

Divide and conquer, 58, 59f

Don’t Repeat Yourself (DRY) principle,

82

Double-click story, 105

Dynamic analysis, 152

E
Early bug fixing, 108, 109f, 110, 142

Electronic bug tracking, 97

Ellis, Sean, 21

Embedded software, 132–135

Empirical approach, 16–17, 23, 47

Empty strings, 162

Emulators, 133

Encrypted cookie story, 86

Environment, 25–27

Environment, reporting, 98

Error conditions, forcing, 30

Error messages, writing, 161

Error-handling mechanisms, 168

Exception handling, 173–179

tests, 173

Exception safe, 177

Exceptional C++ (Sutter), 177

Exceptions, see Special cases

Experiments, 51f, 50–56

observation of, 57

purpose of, 52

recording, 53–55

types of, 50

varaibles (changes), 53

External logging, 34

External system interaction, 41

Extreme Programming Explained:

Embrace Change (Beck), 189

Extreme programming, 189

F
Fail safe, 164

Fault tolerant, 164

Favorite bug report story, 98

Feature vs. bug debate, 112

Features, disabling, 172

Feedback, 104

Feedback loop, 36

Firefighting, 186–187

Firefox, 99f, 99, 139f

Five whys, 87

FIXING BUGS MENTAL MODELS

Fixing bugs, 74–84

avoiding, 79

cause of, 78–80

checking in (source control), 82–83

code reviews, 83–84

early, 109f

estimating time for, 110

honesty in, 80

mind-set for, 113f, 111–113

overview, 74, 118

polluter pays policy, 184

preparation for, 75–76

as priority, 108–112

quality and, 113–117

refactoring, 80–82

testing, 76–78

see also Anti-patterns; Special cases

for loop idiom, 165

Forewarning, 125

Formal bug reports, see Bug reports

Fowler, Martin, 81, 143

Fuzz testing, 30

Fuzzers, 30

G
Garbage collection, 132

Generation fuzzers, 30

GET requests, 160

getNext(), 57

git bisect, 60n

Graphics application bug story, 29

Gröber, Marcus, 102

Guards, 171

H
Hardware abstraction, 26

Heisenberg, 57, 128, 131

Heisenbugs, 128–129

Heroism story, 116

Holes, digging oneself out of, 113–117

see also Anti-patterns

Honesty, 80

HTTP headers, 162

HTTP request example, 159

Hunt, Andy, 111n, 115

Huxley, Thomas, 50

Hypotheses, 51f, 50–53

I
In-circuit emulator (ICE), 134

In-memory logging story, 129

Inputs, 25

automatically minimizing, 38

controlling, 28–36

inferring, 28–31

load and stress, 35–36

logging, 35f, 31–35

randomness and, 30

Instrumentation, 56, 57

Integration builds, 173

Interactive console, 63

Interface, challenges with, 170

Interpreted languages, 171

Invariants, 163

J
Jacobs, Matthew Rudy, 71

The Jargon File (Raymond), 16n

java, 164

JUnit, assertions and, 159

K
Karwin, Bill, 104, 116

Knuth, Donald, 130

L
Late bug fixing, 109

lint, 155

Linus’ Law, 138

Load and stress, 35–36

Log files, replaying, 43f, 43

Logging, see Record keeping

Logging framework, 31–33

Logging inputs, 31–35

in code, 33

external, 34

proxy, 35f

Logging, timing changes and, 129

Logic analyzer story, 135

M
Maintenance, 145, 146

Maintenance teams, 184–186

Massey, Vandy, 102

Memory, 177

Memory allocators, 171

Memory barriers, 65

Memory guards, 171

Memory integrity checkers, 172

Mental models, 101

MICROSOFT’S COMPATIBILITY MODE REFACTORING

Microsoft’s compatibility mode, 124f

Migration path, 124

Mind-set

for debugging, 113f, 111–113

for diagnosis, 49–50

Mistakes, see Anti-patterns; Fixing

bugs

Misunderstandings, 102, 103

Mobile phone story, 98

Mock objects, 143

Mocks Aren’t Stubs (Fowler), 143

Months story, 67

Motor racing story, 188

Multithreading, 41

Mutating fuzzers, 30

MySQL replication story, 47

The Mythical Man Month (Brooks), 108

N
No broken windows, 111, 114, 115

Nondeterministic bugs, 39

causes of, 40

external systems and, 41

multithreading, 41

randomness, 41

unpredictable initial state, 40

Numeric priority, 181

O
Object model, 171

Observation, 57

see also Empirical theory

Observer effect, 128n, 131

Occam’s Razor, 61, 65

One-button build, 149

Open source code, 137, 138

operator delete(), 174

operator new(), 174

Optimization, 169

Overnight build, 153

Ownership, of code, 189

P
Page Description Language, 125

Pair programming, 83

Pass vs. fail, 141

Patching existing releases, 120–122

Patterns, 181

see also Anti-patterns

Peer pressure, 184

Perfectionism vs. pragmatism, 113

Performance bugs, 130–133

Performance regressions, 133

Pitfalls, 63–67

assumptions and, 64

changes and, 64

coherent caches story, 65

multiple causes, 65

Pixie story, 27

Polluter pays policy, 184

Post-conditions, 163

PostScript, 125

The Pragmatic Programmer: From

Journeyman to Master (Hunt &

Thomas), 16, 29, 30, 82, 111, 115

Pragmatic Version Control Using Git

(Swicegood), 60n

Pragmatic zero tolerance, 113f, 113

Pre-conditions, 163

Premature optimization, 130

Prima donnas, 182–184

Printers, 125

Priority inflation, 181–182

Privacy policy, 100, 104

Privacy problem story, 104

Private branches, 148

Problem-solving, see Diagnosis;

Reflection

Product backlog, 182

Profilers, 131

Programming by coincidence, 16

Proxy, 34, 35f

Pseudo-random numbers, 41

Publishing bug database, 103

Q
QA wall story, 106

Quality, 110, 112–117

compatibility mode and, 125

firefighting and, 187

prima donnas and, 183

R
Race car story, 188

Race condition, 42

Randomness, 30, 41

Raymond, Eric S., 138

Record keeping, 53–55, 66

bugs, 99f, 95–99

Refactoring, 80–82, 91

untested code, 117

Refactoring:Improving the Design of Existing Code (FOWLER ET AL.) STRINGS

Refactoring:Improving the Design of

Existing Code (Fowler et al.), 81

Reflection, 18, 85–93

blame and, 88

closing the loop, 92–93

of design process, 92

prevention and, 89–92

six stages of debugging, 85

what went wrong, 86–88

Regression, 60, 147

Regressions, 15, 75, 80, 133

Release branch, 145

Release schedule, 120

Releases

build machines, 151

patching, 120–122

Remote debugging, 133

Repairs, see Fixing bugs

Replaying log files, 43f, 43

Replication story, 47

Reporting bugs, see Bug reports

Reproduction, 23–48

automation, 42–43

controlling variables, 24–25

environment and, 26–27

failure in, 45–48

importance of, 23–25

inputs and, 28–36

randomness and, 30

refinement, 43f, 44f, 36–45

feedback loop, 36

software and, 25–26

stress and load, 35–36

Researching a bug, 18–21, 61

Resource leak, 39

Resource leaks, 173–179

Resources, 132, see Time and effort

Reviews, of code, 83

Rewriting, 187–189

Role-playing, 69

Root cause, see Diagnosis

Root cause analysis, 87

Ruby debugger, 63

run(), 179

runInternal(), 179

Rusty vs. shiny story, 188

S
SAN system failure story, 34

Sandbox approach, 115

Schedule, 120

Scientific method, see Experiments

Scrum, 182

Seeds, 41

Sherlock Holmes Principle, 71

Shims, 34

Show-stopper! (Zachary), 153

Side effects, 168

Simplicity, 61, 126

Simplicity story, 126

Six stages of debugging, 85

sleep(), 42, 128

Smoke tests, 153

Software, 17, 25

bug reproduction, 25–26

embedded, 132–135

environment and, 26

failed assertions, 164

fault tolerant or fail safe, 164

vs. hardware problems, 134

third-party, 139f, 135–140

Source control, 60, 75, 82, 146f,

144–149

versioning, 152

Source tree, 76

Special cases, 120–140

backward compatibility, 124f,

121–126

concurrency, 126–128

embedded software, 132–135

heisenbugs, 128–129

overview, 140

performance bugs, 130–133

releases, patching, 120–122

third-party software, 139f, 135–140

Speech synthesis story, 102

Stabilization, 145

start(), 71

Static analysis, 152, 155

Stratagems, 56–61

binary chop, 58, 59f

differences, 61

instrumentation, 56

learn from others, 61

Occam’s Razor, 61

regression, 60

Strategems

instrumentation, 57

Strauss, David, 136

Streamlining bug reporting, 100

Stress and load, 35–36

Strings, empty, 162

Structured Programming with go to Statements (KNUTH) VIRTUAL MACHINES

Structured Programming with go to

Statements (Knuth), 130

StubDataServer, 144

Stubs, 143, 144

Subsystems, debugging, 170

Subversion story, 21

Superstars, 182–184

Superstitions, 189–190

Support staff, 105–106

Sutter, Herb, 177

svn diff, 75n, 83n

svn status, 75n

SWAT teams, 117, 186

Sydik, Jeremy J., 68

T
Tacit information, 185

Teams

code ownership and, 189

development vs. maintenance, 184,

186

prima donnas and, 183

Technical debt, 109

Templates, bug reporting, 100

Temptation, 80

Test doubles, 143

Test suite story, 77

Test-Driven Development by Example

(Beck), 86

Test-first development, 62, 76

TEST_ERROR(), 174, 178f, 178

Test framework, 176

Testing

assertions and, 159

automated, 141–144

automating, 42–43

backward compatibility, 123

communication with, 106

exception handling, 173

fixing bugs, 76–78

fuzzers and, 30

performance, 133

refactoring and, 81, 117

smoke tests, 153

Third-party library bug, 136

Third-party software, 139f, 135–140

Thomas, Dave, 111n, 115

Thrashing, 70

Thread investigation story, 15

Through The Looking Glass (Carroll),

111

Time and effort, 15–16

branches and, 147

bug fixing and, 114

communication and, 21

communication with users, 102

early bug fixing, 109

to fix bugs, 110

reproduction and, 39

rewriting code, 187

Timing changes, 129

Tracking bugs, 99f, 95–99

electronically, 97

environment and configuration, 98

support staff, 105–106

systems for, 96

users and, 100–105

see also Bug reports

Tracking data, see Record keeping

Triage, 115

Truck story, 116

Twelve months story, 67

U
Undo button story, 98

Unit tests, 159

Unpredictable initial state, 40

Untested code, refactoring, 117

User interface challenges, 170

Users

backward compatibility and, 121

bug reports and, 100–105

bug severity, 182

communication with, 101, 102

feedback for, 104

maintenance period and, 185

mental models and, 101

migration path, 124

privacy policy, 100

releases and patches, 122

reporting by, 101

streamlining bug reporting process

for, 100

visiting, 104

V
Validation, of diagnosis, 72–73

Variables, 24–25

see also Change

Velocity, 109

Versioning, 151

Virtual machines, 26

211

VIRTUAL MEMORY ZERO TOLERANCE (FOR BUGS)

Virtual memory, 177

Voodoo programming, 16

W
Warning-free code, 156

White-box techniques, 29n, 106

Wiring story, 27

Workarounds, 120, 137

Working backwards, 28

Writing, 69

X
XML story, 77

XP, 189

Y
Youthful exhuberance story, 38

Z
Zeller, Andreas, 38

Zero tolerance (for bugs), 113f, 113

Agile Techniques

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragprog.com/titles/dlret

More Techniques

The RSpec Book
RSpec, Ruby’s leading Behaviour Driven

Development tool, helps you do TDD right by

embracing the design and documentation aspects

of TDD. It encourages readable, maintainable

suites of code examples that not only test your

code, they document it as well. The RSpec Book will

teach you how to use RSpec, Cucumber, and other

Ruby tools to develop truly agile software that gets

you to market quickly and maintains its value as

evolving market trends drive new requirements.

The RSpec Book: Behaviour Driven

Development

with RSpec, Cucumber, and Friends

David Chelimsky, Dave Astels, Zach Dennis, Aslak

Hellesøy, Bryan Helmkamp, Dan North

(350 pages) ISBN: 978-1-9343563-7-1. $42.95

http://pragprog.com/titles/achbd

Naked Objects
Naked Objects is an open-source Java framework

that lets you build working applications by writing

just the core domain classes—the framework does

the rest. This book shows how you can rapidly

develop and test domain applications, and then

deploy to either conventional architectures or onto

Naked Objects itself. Get ready to write some of the

best business software of your career.

Domain-Driven Design Using Naked Objects

Dan Haywood

(375 pages) ISBN: 978-1934356-44-9. $36.95

http://pragprog.com/titles/dhnako

Develop Your Career

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(200 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Debug It!’s Home Page

http://pragprog.com/titles/pbdp

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/pbdp.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

	Debug it
	Contents
	Preface
	About This Book
	Acknowledgments

	The Heart of the Problem
	A Method in the Madness
	Debugging Is More Than ``Making the Bug Go Away''
	The Empirical Approach
	The Core Debugging Process
	First Things First
	Put It in Action

	Reproduce
	Reproduce First, Ask Questions Later
	Controlling the Software
	Controlling the Environment
	Controlling Inputs
	Refining Your Reproduction
	What If You Really Can't Reproduce It?
	Put It in Action

	Diagnose
	Stand Back---I'm Going to Try Science
	Stratagems
	Debuggers
	Pitfalls
	Mind Games
	Validate Your Diagnosis
	Put It in Action

	Fix
	Clearing the Decks
	Testing
	Fix the Cause, Not the Symptoms
	Refactoring
	Checking In
	Get Your Code Reviewed
	Put It in Action

	Reflect
	How Did It Ever Work?
	What Went Wrong?
	It'll Never Happen Again
	Close the Loop
	Put It in Action

	The Bigger Picture
	Discovering That You Have a Problem
	Tracking Bugs
	Working with Users
	Working with Support Staff
	Put It in Action

	Pragmatic Zero Tolerance
	Bugs Take Priority
	The Debugging Mind-Set
	Digging Yourself Out of a Quality Hole
	Put It in Action

	Debug-Fu
	Special Cases
	Patching Existing Releases
	Backward Compatibility
	Concurrency
	Heisenbugs
	Performance Bugs
	Embedded Software
	Bugs in Third-Party Software
	Put It in Action

	The Ideal Debugging Environment
	Automated Testing
	Source Control
	Automatic Builds
	Put It in Action

	Teach Your Software to Debug Itself
	Assumptions and Assertions
	Debugging Builds
	Resource Leaks and Exception Handling
	Put It in Action

	Anti-patterns
	Priority Inflation
	Prima Donna
	Maintenance Team
	Firefighting
	Rewrite
	No Code Ownership
	Black Magic
	Put It in Action

	Resources
	Source Control and Issue-Tracking Systems
	Build and Continuous Integration Tools
	Useful Libraries
	Other Tools

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

