

What readers are saying about Release It!

Agile development emphasizes delivering production-ready code every
iteration. This book finally lays out exactly what this really means for
critical systems today. You have a winner here.

Tom Poppendieck
Poppendieck.LLC

It’s brilliant. Absolutely awesome. This book would’ve saved [Really
Big Company] hundreds of thousands, if not millions, of dollars in a
recent release.

Jared Richardson
Agile Artisans, Inc.

Beware! This excellent package of experience, insights, and patterns
has the potential to highlight all the mistakes you didn’t know you
have already made. Rejoice! Michael gives you recipes of how you
redeem yourself right now. An invaluable addition to your Pragmatic
bookshelf.

Arun Batchu
Enterprise Architect, netrii LLC

Release It!
Design and Deploy Production-Ready Software

Michael T. Nygard

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Michael T. Nygard.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-1-3

ISBN-13: 978-0-9787392-1-8

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, April 2007

Version: 2007-3-28

http://www.pragmaticprogrammer.com

Contents
Preface 10

Who Should Read This Book? 11
How the Book Is Organized . 12
About the Case Studies . 13
Acknowledgments . 13

Introduction 14
1.1 Aiming for the Right Target 15
1.2 Use the Force . 15
1.3 Quality of Life . 16
1.4 The Scope of the Challenge 16
1.5 A Million Dollars Here, a Million Dollars There 17
1.6 Pragmatic Architecture 18

Part I—Stability 20

The Exception That Grounded an Airline 21
2.1 The Outage . 22
2.2 Consequences . 25
2.3 Post-mortem . 27
2.4 The Smoking Gun . 31
2.5 An Ounce of Prevention? 34

Introducing Stability 35
3.1 Defining Stability . 36
3.2 Failure Modes . 37
3.3 Cracks Propagate . 39
3.4 Chain of Failure . 41
3.5 Patterns and Antipatterns 42

CONTENTS 6

Stability Antipatterns 44
4.1 Integration Points . 46
4.2 Chain Reactions . 61
4.3 Cascading Failures . 65
4.4 Users . 68
4.5 Blocked Threads . 81
4.6 Attacks of Self-Denial . 88
4.7 Scaling Effects . 91
4.8 Unbalanced Capacities 96
4.9 Slow Responses . 100
4.10 SLA Inversion . 102
4.11 Unbounded Result Sets 106

Stability Patterns 110
5.1 Use Timeouts . 111
5.2 Circuit Breaker . 115
5.3 Bulkheads . 119
5.4 Steady State . 124
5.5 Fail Fast . 131
5.6 Handshaking . 134
5.7 Test Harness . 136
5.8 Decoupling Middleware 141

Stability Summary 144

Part II—Capacity 146

Trampled by Your Own Customers 147
7.1 Countdown and Launch 147
7.2 Aiming for QA . 148
7.3 Load Testing . 152
7.4 Murder by the Masses 155
7.5 The Testing Gap . 157
7.6 Aftermath . 158

Introducing Capacity 161
8.1 Defining Capacity . 161
8.2 Constraints . 162
8.3 Interrelations . 165

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=6

CONTENTS 7

8.4 Scalability . 165
8.5 Myths About Capacity 166
8.6 Summary . 174

Capacity Antipatterns 175
9.1 Resource Pool Contention 176
9.2 Excessive JSP Fragments 180
9.3 AJAX Overkill . 182
9.4 Overstaying Sessions . 185
9.5 Wasted Space in HTML 187
9.6 The Reload Button . 191
9.7 Handcrafted SQL . 193
9.8 Database Eutrophication 196
9.9 Integration Point Latency 199
9.10 Cookie Monsters . 201
9.11 Summary . 203

Capacity Patterns 204
10.1 Pool Connections . 206
10.2 Use Caching Carefully 208
10.3 Precompute Content . 210
10.4 Tune the Garbage Collector 214
10.5 Summary . 217

Part III—General Design Issues 218

Networking 219
11.1 Multihomed Servers . 219
11.2 Routing . 222
11.3 Virtual IP Addresses . 223

Security 226
12.1 The Principle of Least Privilege 226
12.2 Configured Passwords 227

Availability 229
13.1 Gathering Availability Requirements 229
13.2 Documenting Availability Requirements 230
13.3 Load Balancing . 232
13.4 Clustering . 238

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=7

CONTENTS 8

Administration 240
14.1 “Does QA Match Production?” 241
14.2 Configuration Files . 243
14.3 Start-up and Shutdown 247
14.4 Administrative Interfaces 248

Design Summary 249

Part IV—Operations 251

Phenomenal Cosmic Powers, Itty-Bitty Living Space 252
16.1 Peak Season . 252
16.2 Baby’s First Christmas 253
16.3 Taking the Pulse . 254
16.4 Thanksgiving Day . 256
16.5 Black Friday . 256
16.6 Vital Signs . 257
16.7 Diagnostic Tests . 259
16.8 Call in a Specialist . 260
16.9 Compare Treatment Options 262
16.10 Does the Condition Respond to Treatment? 262
16.11 Winding Down . 263

Transparency 265
17.1 Perspectives . 267
17.2 Designing for Transparency 275
17.3 Enabling Technologies 276
17.4 Logging . 276
17.5 Monitoring Systems . 283
17.6 Standards, De Jure and De Facto 289
17.7 Operations Database . 299
17.8 Supporting Processes . 305
17.9 Summary . 309

Adaptation 310
18.1 Adaptation Over Time 310
18.2 Adaptable Software Design 312
18.3 Adaptable Enterprise Architecture 319
18.4 Releases Shouldn’t Hurt 327
18.5 Summary . 334

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=8

CONTENTS 9

Bibliography 336

Index 339

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=9

Preface
You’ve worked hard on the project for more than year. Finally, it looks
like all the features are actually complete, and most even have unit
tests. You can breathe a sigh of relief. You’re done.

Or are you?

Does “feature complete” mean “production ready”? Is your system really
ready to be deployed? Can it be run by operations staff and face the
hordes of real-world users without you? Are you starting to get that
sinking feeling that you’ll be faced with late-night emergency phone
calls or pager beeps? It turns out there’s a lot more to development
than just getting all the features in.

Too often, project teams aim to pass QA’s tests, instead of aiming for life
in Production (with a capital P). That is, the bulk of your work probably
focuses on passing testing. But testing—even agile, pragmatic, auto-
mated testing—is not enough to prove that software is ready for the
real world. The stresses and the strains of the real world, with crazy
real users, globe-spanning traffic, and virus-writing mobs from coun-
tries you’ve never even heard of, go well beyond what we could ever
hope to test for.

To make sure your software is ready for the harsh realities of the real
world, you need to be prepared. I’m here to help show you where the
problems lie and what you need to get around them. But before we
begin, there are some popular misconceptions I’ll discuss.

First, you need to accept that fact that despite your best laid plans, bad
things will still happen. It’s always good to prevent them when possible,
of course. But it can be downright fatal to assume that you’ve predicted
and eliminated all possible bad events. Instead, you want to take action
and prevent the ones you can but make sure that your system as a
whole can recover from whatever unanticipated, severe traumas might
befall it.

WHO SHOULD READ THIS BOOK? 11

Second, realize that “Release 1.0” is not the end of the development
project but the beginning of the system’s life on its own. The situa-
tion is somewhat like having a grown child leave its parents for the
first time. You probably don’t want your adult child to come and move
back in with you, especially with their spouse, four kids, two dogs, and
cockatiel.

Similarly, your design decisions made during development will greatly
affect your quality of life after Release 1.0. If you fail to design your
system for a production environment, your life after release will be filled
with “excitement.” And not the good kind of excitement. In this book,
you’ll take a look at the design trade-offs that matter and see how to
make them intelligently.

And finally, despite our collective love of technology, nifty new tech-
niques, and cool systems, in the end you have to face the fact that none
of that really matters. In the world of business—which is the world that
pays us—it all comes down to money. Systems cost money. To make
up for that, they have to generate money, either in direct revenue or
through cost savings. Extra work costs money, but then again, so does
downtime. Inefficient code costs a lot of money, by driving up capital
and operation costs. To understand a running system, you have to fol-
low the money. And to stay in business, you need to make money—or
at least not lose it.

It is my hope that this book can make a difference and can help you and
your organization avoid the huge losses and overspending that typically
characterize enterprise software.

Who Should Read This Book?

I’ve targeted this book at architects, designers, and developers of enter-
prise-class software systems—this includes websites, web services, and
EAI projects, among others. To me, enterprise-class simply means that
the software must be available, or the company loses money. These
might be commerce systems that generate revenue directly through
sales or perhaps critical internal systems that employees use to do their
jobs. If anybody has to go home for the day because your software stops
working, then this book is for you.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=11

HOW THE BOOK IS ORGANIZED 12

How the Book Is Organized

The book is divided into four parts, each introduced by a case study.
Part 1 shows you how to keep your systems alive—maintaining system
uptime. Distributed systems, despite promises of reliability through
redundancy, exhibit availability more like “two eights” rather than the
coveted “five nines.”1 Stability is a necessary prerequisite to any other
concerns. If your system falls over and dies every day, nobody is going
to care about any aspects of the far future. Short-term fixes—and short-
term thinking—will dominate in that environment. You’ll have no viable
future without stability, so you’ll start by looking at ways to ensure
you’ve got a stable base system from which to work.

Once you’ve achieved stability, your next concern is capacity. You’ll
look at that in Part 2, where you’ll see how to measure the capacity
of the system, learn just what capacity actually means, and learn how
to optimize capacity over time. I’ll show you a number of patterns and
antipatterns to help illustrate good and bad designs and the dramatic
effects they can have on your system’s capacity (and hence, the number
of late-night pager or cell calls you’ll get).

In Part 3, you’ll look at general design issues that architects should con-
sider when creating software for the data center. Hardware and infras-
tructure design has changed significantly over the past ten years; for
example, practices such as multihoming, which were once relatively
rare, are now nearly universal. Networks have grown more complex—
they’re layered and intelligent. Storage area networking is common-
place. Software designs must account for and take advantage of these
changes in order to run smoothly in the data center.

In Part 4, you’ll examine the system’s ongoing life as part of the overall
information ecosystem. Too many production systems are like Schro-
dinger’s cat—locked inside a box, with no way to observe its actual
state. That doesn’t make for a healthy ecosystem. Without informa-
tion, it is impossible to make deliberate improvements.2 Chapter 17,
Transparency, on page 265 discusses the motives, technologies, and
processes needed to learn from the system in production (which is
the only place you can learn certain lessons). Once the health, per-
formance, and characteristics of the system are revealed, you can act

1. That is, 88% uptime instead of 99.999% uptime.
2. Random guesses might occasionally yield improvements but are more likely to add
entropy than remove it.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=12

ABOUT THE CASE STUDIES 13

on that information. And in fact, that’s not optional—you must take
action in the light of new knowledge. Sometimes that’s easier said than
done, and in Chapter 18, Adaptation, on page 310 you’ll look at the
barriers to change and ways to reduce and overcome those barriers.

About the Case Studies

I have included several extended case studies to illustrate the major
themes of this book. These case studies are taken from real events and
real system failures that I have personally observed. These failures were
very costly—and embarrassing—for those involved. Therefore, I have
obfuscated some information to protect the identities of the companies
and people. I have also changed the names of the systems, classes, and
methods. Only “nonessential” details have been changed, however. In
each case, I have maintained the same industry, sequence of events,
failure mode, error propagation, and outcome. The costs of these fail-
ures are not exaggerated. These are real companies, and this is real
money. I have preserved those figures to underscore the seriousness of
this material. Real money is on the line when systems fail.

Acknowledgments

This book grew out of a talk that I originally presented to the Object
Technology User’s Group.3 Because of that, I owe thanks to Kyle Lar-
son and Clyde Cutting, who volunteered me for the talk and accepted
the talk, respectively. Tom and Mary Poppendieck, authors of two fan-
tastic books on “lean software development”4 have provided invaluable
encouragement. They convinced me that I had a book waiting to get out.
Special thanks also go to my good friend and colleague, Dion Stewart,
who has consistently provided excellent feedback on drafts of this book.

Of course, I would be remiss if I didn’t give my warmest thanks to my
wife and daughters. My youngest girl has seen me working on this for
half of her life. You have all been so patient with my weekends spent
scribbling. Marie, Anne, Elizabeth, Laura, and Sarah, I thank you.

3. See http://www.otug.org.
4. See Lean Software Development [PP03] and Implementing Lean Software Develop-
ment [MP06].

http://www.otug.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=13

Chapter 1

Introduction
Software design as taught today is terribly incomplete. It talks only
about what systems should do. It doesn’t address the converse—things
systems should not do. They should not crash, hang, lose data, violate
privacy, lose money, destroy your company, or kill your customers.

In this book, we will examine ways we can architect, design, and build
software—particularly distributed systems—for the muck and tussle of
the real world. We will prepare for the armies of illogical users who do
crazy, unpredictable things. Our software will be under attack from the
moment we release it. It needs to stand up to the typhoon winds of a
flash mob, a Slashdotting, or a link on Fark or Digg. We’ll take a hard
look at software that failed the test and find ways to make sure your
software survives contact with the real world.

Software design today resembles automobile design in the early 90s:
disconnected from the real world. Cars designed solely in the cool com-
fort of the lab looked great in models and CAD systems. Perfectly curved
cars gleamed in front of giant fans, purring in laminar flow. The design-
ers inhabiting these serene spaces produced designs that were elegant,
sophisticated, clever, fragile, unsatisfying, and ultimately short-lived.
Most software architecture and design happens in equally clean, dis-
tant environs.

You want to own a car designed for the real world. You want a car
designed by somebody who knows that oil changes are always 3,000
miles late; that the tires must work just as well on the last sixteenth
of an inch of tread as on the first; and that you will certainly, at some
point, stomp on the brakes while you’re holding an Egg McMuffin in
one hand and a cell phone in the other.

AIMING FOR THE RIGHT TARGET 15

1.1 Aiming for the Right Target

Most software is designed for the development lab or the testers in the
Quality Assurance (QA) department. It is designed and built to pass
tests such as, “The customer’s first and last names are required, but
the middle initial is optional.” It aims to survive the artificial realm of
QA, not the real world of production.

When my system passes QA, can I say with confidence that it is ready
for production? Simply passing QA tells me little about the system’s
suitability for the next three to ten years of life. It could be the Toy-
ota Camry of software, racking up thousands of hours of continuous
uptime. It could be the Chevy Vega (a car whose front end broke off
on the company’s own test track) or a Ford Pinto, prone to blowing up
when hit in just the right way. It is impossible to tell from a few days or
weeks of testing in QA what the next several years will bring.

Product designers in manufacturing have long pursued “design for
manufacturability”—the engineering approach of designing products
such that they can be manufactured at low cost and high quality.
Prior to this era, product designers and fabricators lived in different
worlds. Designs thrown over the wall to production included screws
that could not be reached, parts that were easily confused, and cus-
tom parts where off-the-shelf components would serve. Inevitably, low
quality and high manufacturing cost followed.

Does this sound familiar? We’re in a similar state today. We end up
falling behind on the new system because we’re constantly taking sup-
port calls from the last half-baked project we shoved out the door. Our
analog of “design for manufacturability” is “design for production.” We
don’t hand designs to fabricators, but we do hand finished software to
IT operations. We need to design individual software systems, and the
whole ecosystem of interdependent systems, to produce low cost and
high quality in operations.

1.2 Use the Force

Your early decisions make the biggest impact on the eventual shape of
your system. The earliest decisions you make can be the hardest ones
to reverse later. These early decisions about the system boundary and
decomposition into subsystems get crystallized into the team structure,
funding allocation, program management structure, and even time-
sheet codes. Team assignments are the first draft of the architecture.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=15

QUALITY OF LIFE 16

(See the sidebar on page 150.) It’s a terrible irony that these very early
decisions are also the least informed. This is when your team is most
ignorant of the eventual structure of the software in the beginning, yet
that is when some of the most irrevocable decisions must be made.

Even on “agile” projects,1 decisions are best made with foresight. It
seems as if the designer must “use the force” to see the future in order
to select the most robust design. Since different alternatives often have
similar implementation costs but radically different lifecycle costs, it is
important to consider the effects of each decision on availability, capac-
ity, and flexibility. I’ll show you the downstream effects of dozens of
design alternatives, with concrete examples of beneficial and harmful
approaches. These examples all come from real systems I’ve worked on.
Most of them cost me sleep at one time or another.

1.3 Quality of Life

Release 1.0 is the beginning of your software’s life, not the end of the
project. Your quality of life after Release 1.0 depends on choices you
make long before that vital milestone.

Whether you wear the support pager, sell your labor by the hour, or pay
the invoices for the work, you need to know that you are dealing with a
rugged, Baja-tested, indestructible vehicle that will carry your business
forward, not a fragile shell of fiberglass that spends more time in the
shop than on the road.

1.4 The Scope of the Challenge

The “software crisis” is now more than thirty years old. According to These terms come from
the agile community. The
gold owner is the one
paying for the software.
The goal donor is the one
whose needs you are
trying to fill. These are
seldom the same person.

the gold owners, software still costs too much. (But, see Why Does Soft-
ware Cost So Much? [DeM95] about that.) According to the goal donors,
software still takes too long—even though schedules are measured in
months rather than years. Apparently, the supposed productivity gains
from the past thirty years have been illusory.

1. I’ll reveal myself here and now as a strong proponent of agile methods. Their emphasis
on early delivery and incremental improvements means software gets into production
quickly. Since production is the only place to learn how the software will respond to
real-world stimuli, I advocate any approach that begins the learning process as soon as
possible.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=16

A MILLION DOLLARS HERE, A MILLION DOLLARS THERE 17

On the other hand, maybe some real productivity gains have gone into
attacking larger problems, rather than producing the same software
faster and cheaper. Over the past ten years, the scope of our systems
expanded by orders of magnitude.

In the easy, laid-back days of client/server systems, a system’s user
base would be measured in the tens or hundreds, with few dozen con-
current users at most. Now, sponsors glibly toss numbers at us such
as “25,000 concurrent users” and “4 million unique visitors a day.”

Uptime demands have increased, too. Whereas the famous “five nines”
(99.999%) uptime was once the province of the mainframe and its care-
takers, even garden-variety commerce sites are now expected to be
available 24 by 7 by 365.2 Clearly, we’ve made tremendous strides even
to consider the scale of software we build today, but with the increased
reach and scale of our systems come new ways to break, more hostile
environments, and less tolerance for defects.

The increasing scope of this challenge—to build software fast that’s
cheap to build, good for users, and cheap to operate—demands con-
tinually improving architecture and design techniques. Designs appro-
priate for small brochureware websites fail outrageously when applied
to thousand-user, transactional, distributed systems, and we’ll look at
some of those outrageous failures.

1.5 A Million Dollars Here, a Million Dollars There

A lot is on the line here: your project’s success, your stock options or
profit sharing, your company’s survival, and even your job. Systems
built for QA often require so much ongoing expense, in the form of
operations cost, downtime, and software maintenance, that they never
reach profitability, let alone net positive cash for the business, which
is reached only after the profits generated by the system pay back the
costs incurred in building it. These systems exhibit low levels of avail-
ability, resulting in direct losses in missed revenue and sometimes even
larger indirect losses through damage to the brand. For many of my
clients, the direct cost of downtime exceeds $100,000 per hour.

2. That phrase has always bothered me. As an engineer, I expect it to either be “24 by
365” or be “24 by 7 by 52.”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=17

PRAGMATIC ARCHITECTURE 18

In one year the difference between 98% uptime and 99.99% uptime
adds up to more than $17 million.3 Imagine adding $17 million to the
bottom line just through better design!

During the hectic rush of the development project, you can easily make
decisions that optimize development cost at the expense of operational
cost. This makes sense only in the context of the project team being
measured against a fixed budget and delivery date. In the context of the
organization paying for the software, it’s a bad choice. Systems spend
much more of their life in operation than in development—at least, the
ones that don’t get canceled or scrapped do. Avoiding a one-time cost
by incurring a recurring operational cost makes no sense. In fact, the
opposite decision makes much more financial sense. If you can spend
$5,000 on an automated build and release system that avoids down-
time during releases, the company will avoid $200,000.4 I think that
most CFOs would not mind authorizing an expenditure that returns
4,000% ROI.

Don’t avoid one-time
development expenses
at the cost of recurring
operational expenses.

Design and architecture decisions are also
financial decisions. These choices must be
made with an eye toward their implementation
cost as well as their downstream costs. The
fusion of technical and financial viewpoints is
one of the most important recurring themes in

this book.

1.6 Pragmatic Architecture

Two divergent sets of activities both fall under the term architecture.
One type of architecture strives toward higher levels of abstraction that
are more portable across platforms and less connected to the messy
details of hardware, networks, electrons, and photons. The extreme
form of this approach results in the “ivory tower”—a Kubrickesque
clean room, inhabited by aloof gurus, decorated with boxes and arrows
on every wall. Decrees emerge from the ivory tower and descend upon
the toiling coders. “Use EJB container-managed persistence!” “All UIs
shall be constructed with JSF!” “All that is, all that was, and all that

3. At an average $100,000 per hour, the cost of downtime for a tier-1 retailer.
4. This assumes $10,000 per release (labor plus cost of planned downtime), four releases
per year, and a five-year horizon. Most companies would like to do more than four releases
per year, but I’m being conservative.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=18

PRAGMATIC ARCHITECTURE 19

shall ever be lives in Oracle!” If you’ve ever gritted your teeth while cod-
ing something according to the “company standards” that would be ten
times easier with some other technology, then you’ve been the victim
of an ivory-tower architect. I guarantee that an architect who doesn’t
bother to listen to the coders on the team doesn’t bother listening to the
users either. You’ve seen the result: users who cheer when the system
crashes, because at least then they can stop using it for a while.

In contrast, another breed of architect rubs shoulders with the coders
and might even be one. This kind of architect does not hesitate to
peel back the lid on an abstraction or to jettison one if it does not
fit. This pragmatic architect is more likely to discuss issues such as
memory usage, CPU requirements, bandwidth needs, and the benefits
and drawbacks of hyperthreading and CPU bonding.

The ivory-tower architect most enjoys an end-state vision of ringing
crystal perfection, but the pragmatic architect constantly thinks about
the dynamics of change. “How can we do a deployment without reboot-
ing the world?” “What metrics do we need to collect, and how will we
analyze them?” “What part of the system needs improvement the most?”
When the ivory-tower architect is done, the system will not admit any
improvements; each part will be perfectly adapted to its role. Contrast
that to the pragmatic architect’s creation, in which each component is
good enough for the current stresses—and the architect knows which
ones need to be replaced depending on how the stress factors change
over time.

If you’re already a pragmatic architect, then I’ve got chapters full of
powerful ammunition for you. If you’re an ivory-tower architect—and
you haven’t already stopped reading—then this book might entice you
to descend through a few levels of abstraction to get back in touch with
that vital intersection of software, hardware, and users: living in pro-
duction. You, your users, and your company will all be much happier
when the time comes to finally release it!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=19

Part I

Stability

Chapter 2

Case Study: The Exception That
Grounded An Airline

Have you ever noticed that the incidents that blow up into the biggest
issues start with something very small? A tiny programming error starts
the snowball rolling downhill. As it gains momentum, the scale of the
problem keeps getting bigger and bigger. A major airline experienced
just such an incident. It eventually stranded thousands of passengers
and cost the company hundreds of thousands of dollars. Here’s how it
happened.

It started with a planned failover on the database cluster that served the
Core Facilities (CF).1 The airline was moving toward a service-oriented
architecture, with the usual goals of increasing reuse, decreasing devel-
opment time, and decreasing operational costs. At this time, CF was in
its first generation. The CF team planned a phased rollout, driven by
features. It was a sound plan, and it probably sounds familiar—most
large companies have some variation of this project underway now.

CF handled flight searches—a very common service for any airline
application. Given a date, time, city, airport code, flight number, or any
combination, CF could find and return a list of flight details. When this
incident happened, the self-service check-in kiosks, IVR, and “channel Interactive Voice

Response: the dreaded
telephone menu systempartner” applications had been updated to use CF. Channel partner

applications generate data feeds for big travel-booking sites. IVR and
self-service check-in are both used to put passengers on airplanes—

1. As always, all names, places, and dates are changed to protect the confidentiality of
people and companies involved.

THE OUTAGE 22

“butts in seats” in the vernacular. The development schedule had plans
for new releases of the gate agents and call center applications to tran-
sition to CF for flight lookup, but those had not been rolled out yet,
which turned out to be a good thing, as you will soon see.

The architects of CF were well aware of how critical it would be. They
built it for high availability. It ran on a cluster of J2EE application
servers with a redundant Oracle 9i database. All the data was stored
on a large external RAID array with off-site tape backups taken twice
daily and on-disk replicas in a second chassis that were guaranteed to
be at most five minutes old.

The Oracle database server would run on one node of the cluster at
a time, with Veritas Cluster Server controlling the database server,
assigning the virtual IP address, and mounting or unmounting filesys-
tems from the RAID array. Up front, a pair of redundant hardware load
balancers directed incoming traffic to one of the application servers.
Calling applications like the self-service check-in kiosks and IVR sys-
tem would connect to the front-end virtual IP address. So far, so good.

If you’ve done any website or web services work, Figure 2.1, on the
next page probably looks familiar. It is a very common high-availability
architecture, and it’s a good one. CF did not suffer from any of the usual
single-point-of-failure problems. Every piece of hardware was redun-
dant: CPUs, fans, drives, network cards, power supplies, and network
switches. The servers were even split into different racks in case a sin-
gle rack got damaged or destroyed. In fact, a second location thirty
miles away was ready to take over in the event of a fire, flood, bomb, or
meteor strike.

2.1 The Outage

As was the case with most of my large clients, a local team of engi-
neers dedicated to the account operated the airline’s infrastructure. In
fact, that team had been doing most of the work for more than three
years when this happened. On the night this started, the local engi-
neers had executed a manual database failover from CF database 1
to CF database 2. (See Figure 2.1, on the following page.) They used
Veritas to migrate the active database from one host to the other. This
allowed them to do some routine maintenance to the first host. Totally
routine. They had done this procedure dozens of times in the past.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=22

THE OUTAGE 23

CF App 1 CF App 2 CF App 3 CF App n

Virtual IP Address

SCSI SCSI

Hardware Load Balancer

Virtual IP Address

CF Database 1 CF Database 2

RAID 5
Array

Heartbeat

Figure 2.1: CF Deployment Architecture

Veritas Cluster Server orchestrates the failover. In the space of one
minute, it can shut down the Oracle server on database 1, unmount the
filesystems from the RAID array, remount them on database 2, start
Oracle there, and reassign the virtual IP address to database 2. The
application servers can’t even tell that anything has changed, because
they are configured to connect to the virtual IP address only.

The client scheduled this particular change for a Thursday evening,
at around 11 p.m., Pacific time. One of the engineers from the local
team worked with the operations center to execute the change. All went
exactly as planned. They migrated the active database from database 1
to database 2 and then updated database 1. After double-checking that
database 1 was updated correctly, they migrated the database back

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=23

THE OUTAGE 24

to database 1 and applied the same change to database 2. The whole
time, routine site monitoring showed that the applications were contin-
uously available. No downtime was planned for this change, and none
occurred. At about 12:30 a.m., the crew marked the change as “Com-
pleted, Success” and signed off. The local engineer headed for bed, after
working a 22-hour shift. There’s only so long you can run on double
espressos, after all.

Nothing unusual occurred until two hours later.

At about 2:30 a.m., all the check-in kiosks went red on the monitoring
console—every single one, everywhere in the country, stopped servicing
requests at the same time. A few minutes later, the IVR servers went
red too. Not exactly panic time, but pretty close, because 2:30 a.m. in
Pacific time is 5:30 a.m. Eastern time, which is prime time for com-
muter flight check-in on the Eastern seaboard. The operations center
immediately opened a Severity 1 case and got the local team on a con-
ference call.

In any incident, my first priority is always to restore service. Restoring
service takes precedence over investigation. If I can collect some data
for post-mortem root cause analysis, that’s great—unless it makes the
outage longer. When the fur flies, improvisation is not your friend. For-
tunately, the team had created scripts long ago to take thread dumps of
all the Java applications and snapshots of the databases. This style of
automated data collection is the perfect balance. It’s not improvised, it
does not prolong an outage, yet it aids post-mortem analysis. According
to procedure, the operations center ran those scripts right away. They
also tried restarting one of the kiosks’ application servers.

The trick to restoring service is figuring out what to target. You can
always “reboot the world” by restarting every single server, layer by
layer. That’s almost always effective, but it takes a long time. Most of
the time, you can find one culprit that is really locking things up. In a
way, it is like a doctor diagnosing a disease. You could treat a patient
for every known disease, but that will be painful, expensive, and slow.
Instead, you want to look at the symptoms the patient shows to fig-
ure out exactly which disease to treat. The trouble is that individual
symptoms aren’t specific enough. Sure, once in a while, some symptom
points you directly at the fundamental problem, but not usually. Most
of the time, you get symptoms—like a fever—that tell you nothing by
themselves.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=24

CONSEQUENCES 25

Hundreds of diseases can cause fevers. To distinguish between possible
causes, you need more information from tests or observations.

In this case, the team was facing two separate sets of applications that
were both completely hung. It happened at almost the same time, close
enough that the difference could just be latency in the separate moni-
toring tools that the kiosks and IVR applications used. The most obvi-
ous hypothesis was that both sets of applications depended on some
third entity that was in trouble. As you can see from Figure 2.2, on the
next page, that was a big finger pointing at CF, the only common depen-
dency shared by the kiosks and the IVR system. The fact that CF had
a database failover three hours before this problem also made it highly
suspect. Monitoring hadn’t reported any trouble with CF, though. Log
file scraping did not reveal any problems, and neither did URL probing.
As it turns out, the monitoring application was only hitting a status
page, so it did not really say much about the real health of the CF
application servers. We made a note to fix that error through normal
channels later.

Remember, restoring service was the first priority. This outage was
approaching the one-hour SLA limit, so the team decided to restart Service-level agreement:

A contract between the
service provide and the
client, usually with
substantial financial
penalties for breaking
the SLA

each of the CF application servers. As soon as they restarted the first
CF application server, the IVR systems began recovering. Once all CF
servers were restarted, IVR was green, but the kiosks still showed red.
On a hunch, the lead engineer decided to restart the kiosks’ own appli-
cation servers. That did the trick; the kiosks and IVR systems were all
showing green on the board.

The total elapsed time for the incident was a little more than three
hours, from 11:30 p.m. to 2:30 a.m. Pacific time.

2.2 Consequences

Three hours might not sound like much, especially when you com-
pare that to some legendary outages. (EBay’s 24-hour outage from 1999
comes to mind, for example.) The impact to the airline lasted a lot longer
than just three hours, though. Airlines don’t staff enough gate agents
to check everyone in using the old systems. When the kiosks go down,
the airline has to call in agents who are off-shift. Some of them are over
their 40 hours for the week, incurring union-contract overtime (time
and a half). Even the off-shift agents are only human, though. By the

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=25

CONSEQUENCES 26

Check-in
Kiosk

Check-in
Kiosk

Check-in
Kiosk

Check-in
Kiosk

IVR
Blade

IVR
Blade

IVR
Blade

CF

IVR
App
Cluster

Sabre

Travel
Sites

CCVS

Kiosk
West
Cluster

Kiosk
East
Cluster

Figure 2.2: Common Dependencies

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=26

POST-MORTEM 27

time the airline could get more staff on-site, they could deal only with
the backlog. It took until nearly 3 p.m. to deal with the backlog.

It took so long to check in the early-morning flights that planes could
not push back from their gates. They would have been half empty. Many
travelers were late departing or arriving that day. Thursday happens to
be the day that a lot of “nerd-birds” fly: commuter flights returning
consultants to their home cities. Since the gates were still occupied,
incoming flights had to be switched to other unoccupied gates. So, even
travelers who were already checked in still got inconvenienced. They
had to rush from their original gate to the reallocated gate.

The delays were shown on Good Morning America (complete with video
of pathetically stranded single moms and their babies) and the Weather
Channel’s travel advisory.

The FAA measures on-time arrivals and departures as part of the air-
line’s annual report card. They also measure customer complaints sent
to the FAA about an airline.

The CEO’s compensation is partly based on the FAA’s annual report
card.

You know it’s going to be a bad day when you see the CEO stalking
around the operations center to find out who cost him his vacation
home in St. Thomas.

2.3 Post-mortem

At 10:30 a.m. Pacific time, eight hours after the outage started, Tom,2

our account representative, called me to come down for a post-mortem.
Because the failure occurred so soon after the database failover and
maintenance, suspicion naturally condensed around that action. In
operations, “post hoc, ergo propter hoc”3 turns out to be a good starting
point most of the time. It’s not always right, but it certainly provides a
place to begin looking. In fact, when Tom called me, he asked me to fly
there to find out why the database failover caused this outage.

Once I was airborne, I started reviewing the problem ticket and prelim-
inary incident report on my laptop.

2. Not his real name.
3. Literally “after this, therefore because of this.” It refers to the common logical fallacy
of attributing causation based on close timing. Also known as “you touched it last.”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=27

POST-MORTEM 28

My agenda was simple: conduct a post-mortem investigation, and
answer some questions:

• Did the database failover cause the outage? If not, what did?

• Was the cluster configured correctly?

• Did the operations team conduct the maintenance correctly?

• How could the failure have been detected before it became an out-
age?

• Most important, how do we make sure this never, ever happens
again?

Of course, my presence there also served to demonstrate to the client
that we were serious about responding to this outage. Not to mention,
my investigation should also allay any fears about the local team white-
washing the incident. They would never do such a thing, of course, but
managing perception after a major incident can be just as important as
managing the incident itself.

Manage perceptions
after a major incident.
It’s as important as
managing the incident
itself.

A post-mortem is like a murder mystery. You
have a set of clues. Some are reliable, such
as server logs copied from the time of the out-
age. Some are unreliable, such as statements
from people about what they saw. As with real
witnesses, people will mix observations with
speculation. They will present hypotheses as

facts. The post-mortem can actually be harder to solve than a murder,
because the body goes away. There is no corpse to autopsy, because
the servers are back up and running. Whatever state they were in that
caused the failure no longer exists. The failure might have left traces in
the log files or monitoring data collected from that time, or it might not.
The clues can be very hard to see.

As I read the files, I made some notes about data to collect. From the
application servers, I would need log files, thread dumps, and configu-
ration files. From the database servers, I would need configuration files
for the databases and the cluster server. I also made a note to compare
the current configuration files to those from the nightly backup. The
backup ran before the outage, so that would tell me whether any con-
figurations were changed between the backup and my investigation. In
other words, that would tell me whether someone was trying to cover
up a mistake.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=28

POST-MORTEM 29

By the time I got to my hotel, my body said it was after midnight. All
I wanted was a shower and a bed. What I got instead was a meeting
with our account executive to brief me on developments while I was
incommunicado in the air. My day finally ended around 1 a.m.

In the morning, fortified with quarts of coffee, I dug into the database
cluster and RAID configurations. I was looking for common prob-
lems with clusters: not enough heartbeats, heartbeats going through
switches that carry production traffic, servers set to use physical IP
addresses instead of the virtual address, bad dependencies among
managed packages, and so on. At that time, I didn’t carry a check-
list; these were just problems that I had seen more than once or heard
about through the grapevine. I found nothing wrong. The engineering
team had done a great job with the database cluster. Proven, textbook
work. In fact, some of the scripts appeared to be taken directly from
Veritas’s own training materials.

Next, it was time to move on to the application servers’ configuration.
The local engineers had made copies of all the log files from the kiosk
application servers during the outage. I was also able to get log files
from the CF application servers. They still had log files from the time
of the outage, since it was just the day before. Better still, there were
thread dumps in both sets of log files. As a longtime Java programmer,
I love Java thread dumps for debugging application hangs.

Armed with a thread dump, the application is an open book, if you
know how to read it. You can deduce a great deal about applications
for which you’ve never seen the source code. You can tell what third-
party libraries an application uses, what kind of thread pools it has,
how many threads are in each one, and what background processing
the application uses. By looking at the classes and methods in each
thread’s stack trace, you can even tell what protocols the application
uses.

It did not take long to decide that the problem had to be within CF. The
thread dumps for the kiosks’ application servers showed exactly what
I would expect from the observed behavior during the incident. Out of
the forty threads allocated for handling requests from the individual
kiosks, all forty were blocked inside SocketInputStream.socketRead0(), a
native method inside the internals of Java’s socket library. They were
trying vainly to read a response that would never come.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=29

POST-MORTEM 30

Getting Thread Dumps

Any Java application will dump the state of every thread in the
JVM when you send it a signal 3 (SIGQUIT) on UNIX systems or
press Ctrl+Break on Windows systems.

To use this on Windows, you must be at the console, with a Com-
mand Prompt window running the Java application. Obviously,
if you are logging in remotely, this pushes you toward VNC or
Remote Desktop.

On UNIX, you can use kill to send the signal:

kill -3 18835

One catch about the thread dumps: they always come out on
“standard out.” Many canned start-up scripts do not capture
standard out, or they send it to /dev/null. (For example, Gen-
too Linux’s JBoss package sets JBOSS_CONSOLE to /dev/null by
default.) Log files produced with Log4J or java.util.logging can-
not show thread dumps. You might have to experiment with
your application server’s start-up scripts to get thread dumps.

Here is a small portion of a thread dump from JBoss 3.2.5:
"http-0.0.0.0-8080-Processor25" daemon prio=1 tid=0x08a593f0 \

nid=0x57ac runnable [a88f1000..a88f1ccc]
at java.net.PlainSocketImpl.socketAccept(Native Method)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:353)
- locked <0xac5d3640> (a java.net.PlainSocketImpl)
at java.net.ServerSocket.implAccept(ServerSocket.java:448)
at java.net.ServerSocket.accept(ServerSocket.java:419)
at org.apache.tomcat.util.net.DefaultServerSocketFactory.\

acceptSocket(DefaultServerSocketFactory.java:60)
at org.apache.tomcat.util.net.PoolTcpEndpoint.\

acceptSocket(PoolTcpEndpoint.java:368)
at org.apache.tomcat.util.net.TcpWorkerThread.\

runIt(PoolTcpEndpoint.java:549)
at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.\

run(ThreadPool.java:683)
at java.lang.Thread.run(Thread.java:534)

"http-0.0.0.0-8080-Processor24" daemon prio=1 tid=0x08a57c30 \
nid=0x57ab in Object.wait() [a8972000..a8972ccc]

at java.lang.Object.wait(Native Method)
- waiting on <0xacede700> (a org.apache.tomcat.util.threads.\

ThreadPool$ControlRunnable)
at java.lang.Object.wait(Object.java:429)
at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.\

run(ThreadPool.java:655)
- locked <0xacede700> (a org.apache.tomcat.util.threads.\

ThreadPool$ControlRunnable)
at java.lang.Thread.run(Thread.java:534)

They do get verbose.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=30

THE SMOKING GUN 31

Getting Thread Dumps (cont.)

This fragment shows two threads, each named like http-0.0.0.0-
8080-ProcessorN. Number 25 is in a runnable state, whereas
thread 24 is blocked in Object.wait(). This trace clearly indicates
that these are members of a thread pool. That some of the
classes on the stacks are named ThreadPool$ControlRunnable()
might also be a clue.

The kiosk application server’s thread dump also gave me the pre-
cise name of the class and method that all forty threads had called:
FlightSearch.lookupByCity(). I was surprised to see references to RMI and
EJB methods a few frames higher in the stack. CF had always been
described as a “web service.” Admittedly, the definition of a web service
was pretty loose at that time, but it still seems like a stretch to call a
stateless session bean a “web service.”

Remote Method Invocation (RMI) provides EJB with its remote proce-
dure calls. EJB calls can ride over one of two transports: CORBA (dead
as disco) or RMI. As much as I like RMI’s programming model, it’s really
dangerous because calls cannot be made to time out. As a result, the
caller is vulnerable to problems in the remote server.

2.4 The Smoking Gun

At this point, the post-mortem analysis agreed with the symptoms from
the outage itself: CF appeared to have caused both IVR and kiosk
check-in to hang. The biggest remaining question was still, “What hap-
pened to CF?”

The picture got clearer as I investigated the thread dumps from CF.
CF’s application server used separate pools of threads to handle EJB
calls and HTTP requests. That’s why CF was always able to respond to
the monitoring application, even during the middle of the outage. The
HTTP threads were almost entirely idle, which makes sense for an EJB
server. The EJB threads, on the other hand, were all completely in use
processing calls to FlightSearch.lookupByCity(). In fact, every single thread
on every application server was blocked at exactly the same line of code:
attempting to check out a database connection from a resource pool.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=31

THE SMOKING GUN 32

It was circumstantial evidence, not a smoking gun, but considering the
database failover before the outage, it seemed that I was on the right
track.

The next part would be dicey. I needed to look at that code, but the
operations center had no access to the source control system. Only
binaries were deployed to the production environment. That’s usually a
good security precaution, but it was a bit inconvenient at the moment.
When I asked our account executive how we could get access to the
source code, he was reluctant to take that step. Given the scale of the
outage, you can imagine that there was plenty of blame floating in the
air looking for someone to land on. Relations between the operations
center and Development—never all that cozy—were more strained than
usual. Everyone was on the defensive, wary of any attempt to point the
finger of blame in their direction.

So, with no legitimate access to the source code, I did the only thing I
could do. I took the binaries from production and decompiled them.4

The minute I saw the code for the suspect EJB, I knew I had found the
real smoking gun. This particular session bean turned out to be the
only facility that CF implemented yet. The actual code is show on the
facing page.

Actually, at first glance, this method looks well constructed. Use of the
try..finally block indicates the author’s desire to clean up resources. In
fact, this very cleanup block has appeared in some Java books on the
market. Too bad it contains a fatal flaw.

It turns out that java.sql.Statement.close() can throw a SQLException. It
almost never does. Oracle’s driver does only when it encounters an
IOException attempting to close the connection—following a database
failover, for instance.

Suppose the JDBC connection was created before the failover. The IP
address used to create the connection will have moved from one host
to another, but the current state of TCP connections will not carry over
to the second database host. Any socket writes will eventually throw an
IOException (after the operating system and network driver finally decide
that the TCP connection is dead). That means every JDBC connection
in the resource pool is an accident waiting to happen.

4. My favorite tool for decompiling Java code is still JAD. It is fast and accurate, though
it is beginning to creak and groan when used on Java 5 code.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=32

THE SMOKING GUN 33

package com.example.cf.flightsearch;

. . .

public class FlightSearch implements SessionBean {

private MonitoredDataSource connectionPool;

public List lookupByCity(. . .) throws SQLException, RemoteException {
Connection conn = null;
Statement stmt = null;

try {
conn = connectionPool.getConnection();
stmt = conn.createStatement();

// Do the lookup logic
// return a list of results

} finally {
if (stmt != null) {
stmt.close();

}

if (conn != null) {
conn.close();

}
}

}
}

Amazingly, the JDBC connection is still willing to create statements. To
create a statement, the driver’s connection object checks only its own
internal status.5 If the JDBC connection thinks it is still connected,
then it will create the statement. Executing that statement will throw a
SQLException when it does some network I/O. But, closing the statement
will also throw a SQLException, because the driver attempts to tell the
database server to release resources associated with that statement.

In short, the driver is willing to create a Statement Object that cannot
be used. You might consider this a bug. Many of the developers at the
airline certainly made that accusation. The key lesson to be drawn here,
though, is that the JDBC specification allows java.sql.Statement.close() to
throw SQLException, so your code has to handle it.

In the previous offending code, if closing the statement throws an
exception, then the connection does not get closed, resulting in a

5. This might be a quirk peculiar to Oracle’s JDBC drivers. I’ve decompiled only Oracle’s.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=33

AN OUNCE OF PREVENTION? 34

resource leak. After forty of these calls, the resource pool is exhausted,
and all future calls will block at connectionPool.getConnection(). That is
exactly what I saw in the thread dumps from CF.

The entire globe-spanning, multibillion dollar airline with its hundreds
of aircraft and tens of thousands of employees was grounded by one
programmer’s rookie error: a single uncaught SQLException.

2.5 An Ounce of Prevention?

When such staggering cost results from such a small error, the natural
response is to say, “This must never happen again.” But how can it be
prevented? Would a code review have caught this bug? Only if one of the
reviewers knew the internals of Oracle’s JDBC driver or the review team
spent hours on each method. Would more testing have prevented this
bug? Perhaps. Once the problem was identified, the team performed a
test in the stress test environment that did demonstrate the same error.
The regular test profile didn’t exercise this method enough to show the
bug. In other words, once you know where to look, it’s simple to make
a test that finds it.

Ultimately, it is just fantasy to expect every single bug like this one to
be driven out. Bugs will happen. They cannot be eliminated, so they
must be survived instead.

The worst problem here is that the bug in one system could propagate
to all the other affected systems. A better question to ask is, “How do we
prevent bugs in one system from affecting everything else?” Inside every
enterprise today is a mesh of interconnected, interdependent systems.
They cannot—must not—allow bugs to cause a chain of failures. You’re
going to look at design patterns that can prevent this type of problem
from spreading.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=34

Chapter 3

Introducing Stability
New software emerges like a new college graduate, full of optimistic
vigor, suddenly facing the harsh realities of the world outside the lab.
Things happen in the real world that just do not happen in the lab,
usually bad things. In the lab, all the tests are contrived by people who
know what answer they expect to get. In the real world, the tests aren’t
designed to have answers. Sometimes they’re just setting your software
up to fail.

Enterprise software must be cynical. Cynical software expects bad
things to happen and is never surprised when they do. Cynical soft-
ware doesn’t even trust itself, so it puts up internal barriers to protect
itself from failures. It refuses to get too intimate with other systems,
because it could get hurt.

The airline’s Core Facilities project discussed in the previous chapter
was not cynical enough. As so often happens, the team got caught up
in the excitement of new technology and advanced architecture. It had
lots of great things to say about leverage and synergy. Dazzled by the
dollar signs, it didn’t see the stop sign and took a turn for the worse.

Poor stability carries significant real costs. The obvious cost is lost rev-
enue. The retailer I discussed in Chapter 1, Introduction, on page 14
loses $100,000 per hour of downtime, and that’s during the off-season.
Trading systems can lose that much in a single missed transaction!

A common rule of thumb says that it costs from $25 to $50 for an
online retailer to acquire a customer. With 5,000 unique visitors per

DEFINING STABILITY 36

hour, assume 10 percent of those would-be visitors walk away for good.
That means $12,500 to $25,000 in wasted customer acquisition costs.1

Less tangible, but just as painful, is lost reputation. Tarnish to the
brand might be less immediately obvious than lost customers, but try
having your holiday-season operational problems reported in Business-
Week. Millions of dollars in image advertising—touting online customer
service—can be undone in a few hours by a batch of bad hard drives.

A highly stable design
usually costs the same
to implement as an
unstable one.

Good stability does not necessarily cost a lot.
When building the architecture, design, and
even low-level implementation of a system,
there are many decision points that have high
leverage over the system’s ultimate stability.
Confronted with these leverage points, two

paths might both satisfy the functional requirements (aiming for QA).
One will lead to hours of downtime every year while the other will not.
The amazing thing is that the highly stable design usually costs the
same to implement as the unstable one.

3.1 Defining Stability

To talk about stability, I need to define some terms. A transaction is an
abstract unit of work processed by the system. This is not the same as
a database transaction. A single unit of work might encompass many
database transactions. In an ecommerce site, for example, one common
type of transaction is “Customer Places Order.” This transaction spans
several pages, often including external integrations such as credit card
verification. Transactions are the reason that the system exists. A sin-
gle system can process just one type of transaction, making it a dedi-
cated system. A mixed workload is a combination of different transac-
tion types processed by a system.

When I use the word system, I mean the complete, interdependent set of
hardware, applications, and services required to process transactions
for users. A system might be as small as a single application, or it might
be a sprawling, multitier network of applications and servers.

I use system when I mean a collection of hosts, applications, network
segments, power supplies, and so on, that process transactions from
end to end.

1. http://retailindustry.about.com/library/weekly/aa122599a.htm

http://retailindustry.about.com/library/weekly/aa122599a.htm
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=36

FAILURE MODES 37

A resilient system keeps processing transactions, even when there are
transient impulses, persistent stresses, or component failures disrupt-
ing normal processing. This is what most people mean when they just
say stability. It’s not just that your individual servers or applications
stay up and running but rather that the user can still get work done.

The terms impulse and stress come from mechanical engineering. An
impulse is a rapid shock to the system. An impulse to the system is
when something whacks it with a hammer. In contrast, stress to the
system is a force applied to the system over an extended period.

A flash mob pounding the Xbox 360 product detail page, thanks to
a rumor about discounts, causes an impulse. Ten thousand new ses-
sions, all arriving within one minute of each other, is very difficult to
withstand. Getting Slashdotted is an impulse. Dumping twelve million
messages into a queue at midnight on November 21st is an impulse.
These are things that can fracture the system in the blink of an eye.

On the other hand, getting slow responses from your credit card pro-
cessor, because it doesn’t have enough capacity for all of its customers,
is a stress on the system. In a mechanical system, a material changes
shape when stress is applied. This change in shape is called the strain.
Stress produces strain. The same thing happens with computer sys-
tems. The stress from the credit card processor will cause strain to
propagate to other parts of the system, which can produce odd effects.
It could manifest as higher RAM usage on the web servers or excess
I/O rates on the database server or as some other far distant effect.

Run longevity tests. It’s
the only way to catch
longevity bugs.

A system with longevity keeps processing
transactions for a long time. What is a long
time? It depends. A useful working definition
of a long time is the time between code deploy-
ments. If new code is deployed into production
every week, then it doesn’t matter if the system can run for two years
without rebooting. On the other hand, a data collector in western Mon-
tana really shouldn’t need to be rebooted by hand once a week. (Unless
you want to live in western Montana, that is.)

3.2 Failure Modes

Sudden impulses and excessive strain both can trigger catastrophic
failure. In either case, some component of the system will start to
fail before everything else does. In Inviting Disaster [Chi01], James R.
Chiles refers to these as cracks in the system. He draws an analogy

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=37

FAILURE MODES 38

Extending Your Life Span

The major dangers to your system’s longevity are memory leaks
and data growth. Both kinds of sludge will kill your system in pro-
duction. Both are rarely caught during testing.

Testing makes problems visible so you can fix them (which is I
why I always thank my testers when they find bugs). Follow-
ing Murphy’s law, whatever you do not test against will hap-
pen. Therefore, if you do not test for crashes right after midnight
or out-of-memory errors in the application’s forty-ninth hour of
uptime, those crashes will happen. If you do not test for memory
leaks that show up only after seven days, you will have memory
leaks after seven days.

The trouble is that applications never run long enough in the
development environment to reveal their longevity bugs. How
long do you usually keep an application server running in your
development environment? I’ll bet the average life span is less
than the length of a sitcom on TiVo.∗ In QA, it might run a little
longer but is probably still getting recycled at least daily, if not
more often. Even when it is up and running, it’s not under con-
tinuous load. These environments are not conducive to long-
running tests, such as leaving the server running for a month
under daily traffic.

These sorts of bugs usually aren’t caught by load testing either.
A load test runs for a specified period of time and then quits.
Load-testing vendors charge large dollars per hour, so nobody
asks them to keep the load running for a week at a time. Your
development team probably shares the corporate network, so
you cannot disrupt such vital corporate activities as email and
web browsing for days at a time.

So, how do you find these kinds of bugs? The only way you can
catch them before they bite you in production is to run your
own longevity tests. If you can, set aside a developer machine.
Have it run JMeter, Marathon, or some other load-testing tool.
Don’t hit the system hard; just keep driving requests all the time.
(Also, be sure to have the scripts slack for a few hours a day to
simulate the slow period during the middle of the night. That will
catch connection pool and firewall timeouts.)

∗. Once you skip commercials and the opening and closing credits: about 21
minutes.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=38

CRACKS PROPAGATE 39

Extending Your Life Span (cont.)

Sometimes the economics don’t justify setting up a complete
environment. If not, at least try to test important parts while
stubbing out the rest. It’s still better than nothing.

If all else fails, production becomes your longevity testing envi-
ronment by default. You’ll definitely find the bugs there, but it’s
not a recipe for a happy lifestyle.

between a complex system on the verge of failure and a steel plate with
a microscopic crack in the metal. Under stress, that crack can begin
to propagate, faster and faster. Eventually, the crack will propagate
faster than the speed of sound, and the metal breaks with an explosive
sound. The original trigger and the way the crack spreads to the rest
of the system, together with the result of the damage, are collectively
called a failure mode.

No matter what, your system will have a variety of failure modes. Deny-
ing the inevitability of failures robs you of your power to control and
contain them. Once you accept that failures will happen, you have the
ability to design your system’s reaction to specific failures. Just as auto
engineers create crumple zones—areas designed to protect passengers
by failing first—you can create safe failure modes that contain the dam-
age and protect the rest of the system. This sort of self-protection deter-
mines the whole system’s resilience.

Chiles calls these protections crackstoppers. Like building crumple
zones into cars to absorb impacts and keep passengers safe, you can
decide what features of the system are indispensable and build in fail-
ure modes that keep cracks away from those features. If you do not
design your failure modes, then you will get whatever unpredictable—
and usually dangerous—ones happen to emerge.

3.3 Cracks Propagate

Let’s see how this applies to the grounded airline I investigated before.
The airline’s Core Facilities project had not designed its failure modes.
The crack started at the improper handling of the SQLException, but
it could have been stopped at many other points. Let’s look at some
examples, from low-level detail to high-level architecture.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=39

CRACKS PROPAGATE 40

Because the pool was configured to block requesting threads when
no resources were available, it eventually tied up all request-handling
threads. (This happened independently in each application server
instance.) The pool could have been configured to create more connec-
tions if it was exhausted. It could also have been configured to block
callers for a limited time, instead of blocking forever when all connec-
tions were checked out. Either of these would have stopped the crack
from propagating.

At the next level up, a problem with one call in CF caused the calling
applications on other hosts to fail. Because CF exposed its services as
Enterprise JavaBeans (EJBs), it used RMI. By default, RMI calls will
never time out. In other words, the callers blocked waiting to read their
responses from CF’s EJBs. The first twenty callers to each instance
received exceptions: a SQLException wrapped in an InvocationTargetExcep-

tion wrapped in a RemoteException, to be precise. After that, the calls
started blocking.

The client could have been written to set a timeout on the RMI sockets.2

At a certain point in time, CF could also have decided to build an HTTP-
based web service instead of EJBs. Then, the client could set a timeout
on its HTTP requests.3 The clients might also have written their calls so
the blocked threads could be jettisoned, instead of having the request-
handling thread make the external integration call. None of these were
done, so the crack propagated from CF to all systems that used CF.

At a still larger scale, the CF servers themselves could have been par-
titioned into more than one service group. That would keep a problem
within one of the service groups from taking down all users of CF. (In
this case, all service groups would have cracked in the same way, but
that would not always be the case.) This is another way of stopping
cracks from propagating into the rest of the enterprise.

Looking at even larger architecture issues, CF could have been built
using request/reply message queues. In that case, the caller would
know that a reply might never arrive. It would have to deal with
that case, as part of handling the protocol itself. Even more radi-
cally, the callers could be searching for flights by looking for entries

2. For example, by installing a socket factory that calls Socket.setSoTimeout() on all new
sockets it creates.
3. Unless it used java.net.URL and java.net.URLConnection, though. Until Java 5, it was
impossible to set a timeout on HTTP calls made through the standard Java library.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=40

CHAIN OF FAILURE 41

in a tuplespace that matched the search criteria. CF would keep the
tuplespace populated with flight records. The more tightly coupled the
architecture, the greater the chance that this coding error can propa-
gate. Conversely, the less coupled architectures act as shock absorbers,
diminishing the effects of this error instead of amplifying them.

Any of these approaches could have stopped the SQLException problem
from spreading to the rest of the airline. Sadly, the designers had not
considered the possibility of “cracks” when they created the shared ser-
vices.

3.4 Chain of Failure

Underneath every system outage, there is a chain of events like this.
One small thing leads to another, which leads to another. Looking at
the entire chain of failure after the fact, the failure seems inevitable.
If you tried to estimate the probability of that exact chain of events
occurring, it would look incredibly improbable. But, it looks improba-
ble only if you consider the probability of each event independently. A
coin has no memory; each toss has the same probability, independent
of previous tosses. The combination of events causing the failure is not
independent. A failure in one point or layer actually increases the prob-
ability of other failures. If the database gets slow, then the application
servers are more likely to run out of memory. Because the layers are
coupled, the events are not independent.

At each step in the chain of failure, the crack can be accelerated,
slowed, or stopped. High levels of complexity provide more directions
for the cracks to propagate in.

Tight coupling accelerates cracks. For instance, the tight coupling of
EJB calls allowed a resource exhaustion problem in CF to create larger
problems in its callers. Coupling the request-handling threads to the
external integration calls in those systems caused a remote problem to
turn into downtime.

One way to prepare for every possible failure is to look at every external
call, every I/O, every use of resources, and every expected outcome
and ask, “What are all the ways this can go wrong?” Think about the
different types of impulse and stress that can be applied:

• What if I can’t make the initial connection?
• What if it takes ten minutes to make the connection?

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=41

PATTERNS AND ANTIPATTERNS 42

• What if I can make the connection and then it gets disconnected?
• What if I can make the connection and I just can’t get any response

from the other end?

• What if it takes two minutes to respond to my query?
• What if 10,000 requests come in at the same time?

• What if my disk is full when I try to log the error message about
the SQLException that happened because the network was bogged
down with a worm?

I’m getting tired already, and that’s just the beginning of everything that
can go wrong. So, the exhaustive brute-force approach is impractical for
anything but life-critical systems or Mars rovers. What if you actually
have to deliver in this decade? You need to look at some patterns that
let you create shock absorbers to relieve those stresses.

3.5 Patterns and Antipatterns

I’ve dealt with hundreds of production failures. Each one was unique.
(They were mostly unique, anyway, since I try not to have the same
failure happen twice!) I can’t think of two incidents where the precise
chain of failure happened the same way: same triggers, same fracture,
same propagation. Over time, however, patterns of failure do emerge.
A certain brittleness along an axis, a tendency for this problem to
amplify that way. These are the stability antipatterns. Chapter 4, Sta-
bility Antipatterns, on page 44 deals with these patterns of failure.

If there are systematic patterns of failure, you might imagine that some
common solutions would apply. You would be correct. Chapter 5, Sta-
bility Patterns, on page 110 deals with design and architecture patterns
to defeat the antipatterns. These patterns cannot prevent cracks in the
system. Nothing can. There will always be some set of conditions that
can trigger a crack. These patterns stop cracks from propagating. They
help contain damage and preserve partial functionality instead of allow-
ing total crashes.

It should come as no surprise that these patterns and antipatterns
interact with each other. The antipatterns have a tendency to rein-
force each other. Like matching garlic, silver, and fire to their respective
movie monsters,4 each of the patterns alleviate specific problems.

4. That would be vampires, werewolves, and Frankenstein’s monster.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=42

PATTERNS AND ANTIPATTERNS 43

Integration Points

Cascading Failures

Users

Blocked Threads

Attacks of
Self-Denial

Scaling Effects

Unbalanced
Capacities

Slow Responses

SLA Inversion

Unbounded
Result Sets Use Timeouts

Circuit Breaker

Bulkheads

Steady State

Fail Fast

Handshaking

Test Harness

Decoupling
Middleware

counters

prevents

counters

counters

reduces impact

mitigates

finds problems in

damage

mutual
aggravation

found
near

leads to

leads to
leads to

results from
violating

counters

counters

counters

can avoid

leads to

avoids

counters

counters

exacerbates

lead to

works with

countersleads to

Chain Reactions

Figure 3.1: Interaction of Patterns and Antipatterns

Figure 3.1 maps the most important of these interactions. You’ll start
now by looking at the common sources of failure: the antipatterns.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=43

Chapter 4

Stability Antipatterns
Once upon a time, application crashes were just about the most com-
mon type of bug, with operating system crashes a near second. I could
make snide remarks about how little has changed, but that would be
dishonest. Applications rarely crash these days, thanks in large part to
the wide adoption of Java, PHP, Ruby, and other interpreted languages.
Operating systems have generally gotten more stable and reliable due
to the hard work of many thousands of programmers. We used to think
of a hundred concurrent users as representing a large system; now
we think in the tens of thousands. Instead of application uptime in
the hours, we now look for months of continuous uptime. The breadth
of our applications’ reach has exploded, first as we integrate systems
within the enterprise and then again as we integrate across enterprises.

Of course, this also means bigger challenges. As we integrate the world,
tightly coupled systems are the rule rather than the exception. Big
systems serve more users by commanding more resources; but, in
many failure modes, big systems fail faster than small systems. The
size and the complexity of these systems push us to what Inviting Dis-
aster [Chi01] calls the technology frontier, where the twin specters of
highly interactive complexity and tight coupling conspire to turn rapidly
moving cracks into full-blown failures.

Highly interactive complexity arises when systems have enough mov-
ing parts and hidden, internal dependencies that most operators’ men-
tal models are either incomplete or just plain wrong. In The Design
of Everyday Things [Nor88], Don Norman describes the disconnect
between the users’ mental model and the implementation model that
can occur when the implementation is invisible and the surface appear-
ance is not obvious. He describes his experience with the two dials in
his refrigerator that appear to directly control the temperature in the

CHAPTER 4. STABILITY ANTIPATTERNS 45

refrigeration section and the freezer section. Adjusting the dials under
that mental model resulted in frozen milk and thawed meat, because
the actual mechanism was controlling the proportion of chilled air sent
to each section. In a system exhibiting highly interactive complexity, the
operator’s instinctive actions will have results ranging from ineffective
to actively harmful. With the best of intentions, the operator can take
an action, based on his own mental model of how the system functions,
that triggers a completely unexpected linkage. Such linkages contribute
to problem inflation, turning a minor issue into a major incident. Hid-
den linkages in cooling monitoring and control systems are partly to
blame for the Three Mile Island reactor incident.1 These hidden link-
ages often appear obvious during the post-mortem analysis but are in
fact devilishly difficult to anticipate.

Tight coupling allows cracks in one part of the system to propagate
themselves—or multiply themselves—across layer or system bound-
aries. In the physical world, you can think of a catwalk held up by four
bolts threaded through a metal plate. The catwalk, the nuts and bolts,
the plate, and the ceiling are obviously tightly coupled. (In fact, that’s
sort of the point of the bolts!) The failure of a single bolt will radically
increase the stress on the other bolts, the ceiling, and the catwalk. This
increased stress makes it extremely likely that another component in
the system will fail—probably the catwalk itself. In your systems, tight
coupling can appear within application code, in calls between systems,
or anyplace a resource has multiple consumers.

In this chapter, we’ll look at eleven stability antipatterns I’ve observed.
These are common forces that I’ve seen at the root cause of more than
one system failure. Some of these are like the guy who goes into the
doctor and says, “Doc, whenever I do this, it hurts,” and hits himself in
the head with a hammer. Quoth the doctor, “Don’t do that!” Each of the
antipatterns will create, accelerate, or multiply cracks in the system.
These bad behaviors are to be avoided.

Antipatterns create,
accelerate, or multiply
cracks in the system.

In all cases, however, the main point to
remember is that things will break. Don’t pre-
tend you can eliminate every possible source of
failure, because either nature or nurture will
create bigger failures to wreck your systems.
Assume the worst, because cracks happen.

1. Inviting Disaster [Chi01], pages 37–63.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=45

INTEGRATION POINTS 46

4.1 Integration Points

I haven’t seen a “pure-website” project since about 1996. If your
projects are like mine, they have probably been enterprise integration
projects that happen to have an HTML-based front end. Indeed, despite
lip service, companies didn’t really get off the starting line for enter-
prise integration until they needed to create dynamic websites. Those
projects were the impetus that finally forced many companies to inte-
grate systems that have never played well together. Look at the sys-
tem context diagram from any of these projects, and you’ll see the site
squatting in the center of the diagram with lines stretching in every
direction. Feeds come in from inventory, pricing, content management,
CRM, ERP, MRP, SAP, WAP, BAP, BPO, R2D2, and C3P0. Data extracts
fly off toward CRM, fulfillment, booking, authorization, fraud checking,
address normalization, scheduling, shipping, and so on. Reports are
generated (one hopes) showing business statistics to business people,
technical statistics to technical people, and management statistics to
management.

Integration points are the number-one killer of systems. Every single
one of those feeds presents a stability risk. Every socket, process, pipe,
or remote procedure call can and will hang. Even database calls can
hang, in ways obvious and subtle. Every feed into the system can hang
it, crash it, or generate other impulses at the worst possible time. You’ll
look at some of the specific ways these integration points can go bad
and what you can do about them.

Socket-Based Protocols
Many higher-level integration protocols run over sockets. In fact, pretty
much everything except named pipes and shared-memory IPC is socket
based. The higher protocols introduce their own failure modes, but they
are all susceptible to failures at the socket layer.

The simplest failure mode occurs when the remote system refuses con-
nections. The calling system must deal with connection failures. Usu-
ally, this is not much of a problem, since everything from C to Java
to Ruby has clear ways to indicate a connection failure—either a -1
return value in C or an exception in Java, C#, and Ruby. Because the
API makes it clear that connections don’t always work, programmers
deal with that case.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=46

INTEGRATION POINTS 47

How Many Feeds?

I was helping launch a replatform/rearchitecture project for a
huge retailer. It came time to identify all the production firewall
rules so we could open holes in the firewall to allow authorized
connections to the production system. We had already gone
through the usual suspects: the web servers’ connections to
the application server, the application server to the database
server, the cluster manager to the cluster nodes, and so on.

When it came time to add rules for the feeds in and out of
the production environment, we were pointed at the project
manager for enterprise integration. That’s right, the site rebuild
project had its own project manager dedicated to integration.
That was our second clue that this was not going to be a simple
task. (The first clue was that nobody else could tell us what all
the feeds were.) The PM understood exactly what we needed.
He pulled up his database of integrations and ran a custom
report to give us the connection specifics.

On one hand, I was impressed that he had a fully pop-
ulated database to keep track of the various feeds (syn-
chronous/asynchronous, batch or trickle feed, source system,
frequency, volume, cross-reference numbers, business stake-
holder, and so on). On the other hand, however, I was dismayed
that he needed a database to keep track of it!

It probably comes as no surprise, then, that the site was
plagued with stability problems when it launched. It was like
having a newborn baby in the house; I was awakened up every
night at 3 a.m. for the latest crash or crisis. We kept document-
ing the spots where the app crashed and feeding them back
to the maintenance team for correction. I never kept a tally, but
I’m sure that every single synchronous integration point caused
at least one outage.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=47

INTEGRATION POINTS 48

Remote ServerLocal Server

Calling
Application

Remote
Application

Figure 4.1: Simplest Topology: Direct Connection

One wrinkle to watch out for, though, is that it can take a long time to
discover that you can’t connect. Hang on for a quick dip into the details
of TCP/IP networking.

Every architecture diagram ever drawn has boxes and arrows, like the
ones in Figure 4.1. Like a lot of other things we work with, this arrow
is an abstraction for a network connection. Really, though, that means
it’s an abstraction for an abstraction. A network “connection” is a logi-
cal construct—an abstraction—in its own right. All you will ever see on
the network itself are packets.2 This is the Internet Protocol (IP) part
of TCP/IP. Transmission Control Protocol (TCP) is an agreement about
how to make something that looks like a continuous connection out of
discrete packets. Figure 4.2, on the next page shows the “three-way
handshake” that TCP defines to open a connection. The connection
starts when the caller (the client in this scenario, even though it is
itself a server for other applications) sends a SYN packet to a port on
the remote server. If nobody is listening to that port, the remote server
immediately sends back a TCP “reset” packet to indicate that nobody’s
home. The calling application then gets an exception or a bad return
value. All this happens very quickly, in less than ten milliseconds if
both machines are plugged into the same switch.

If there is an application listening to the destination port, then the
remote server sends back a SYN/ACK packet, indicating its willingness
to accept the connection. The caller gets the SYN/ACK and sends back

2. Of course, a “packet” is an abstraction, too. On the wire, it’s just electrons. Between
electrons and a TCP connection, there are many layers of abstraction. Fortunately, we
get to choose whichever level of abstraction is useful at any given point in time.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=48

INTEGRATION POINTS 49

Remote ServerLocal Server

Remote
Application

2. SYN/ACKCalling
Application

1. SYN

3. ACK

time

Figure 4.2: Three-Way Handshake

its own ACK. These three packets have now established the “connec-
tion,” and the applications can send data back and forth.3

Suppose, though, that the remote application is listening to the port
but is absolutely hammered with connection requests, until it cannot
service the incoming connections. The port itself has a listen queue that
defines how many pending connections (SYN sent, but no SYN/ACK
replied) are allowed by the network stack. Once that listen queue is full,
further connection attempts are refused quickly. The listen queue is
the worst place to be. While the socket is in that partially formed state,
whichever thread called open() is blocked inside the OS kernel until
the remote application finally gets around to accepting the connection
or until the connection attempt times out. Connection timeouts vary
from one operating system to another, but they are usually measured
in minutes! The calling application’s thread could be blocked waiting for
the remote server to respond for ten minutes!

Nearly the same thing happens when the caller can connect and send
its request but the server takes a long time to read the request and send
a response. The read() call will just block until the server gets around
to responding. In Java, the default is to block forever. You have to call
Socket.setSoTimeout() if you want to break out of the blocking call. In that
case, be prepared for an IOException.

3. TCP also defines the “simultaneous open” handshake, in which both machines send
SYN packets to each other before a SYN/ACK. This is relatively rare in systems that are
based on client/server interactions.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=49

INTEGRATION POINTS 50

Networks failures can hit you in two ways: fast or slow. Fast network
failures cause immediate exceptions in the calling code. “Connection
refused” is a very fast failure; it takes a few milliseconds to come back
to the caller. Slow failures, such as a dropped ACK, let threads block for
minutes before throwing exceptions. The blocked thread can’t process
other transactions, so overall capacity is reduced. If all threads end
up getting blocked, then for all practical purposes, the server is down.
Clearly, a slow response is a lot worse than no response.

The 5 a.m. Problem
One of the sites I launched developed this very nasty pattern of hang-
ing completely at almost exactly 5 a.m. every day. This was running
on around thirty different instances, so something was happening to
make all thirty different application server instances hang within a five-
minute window (the resolution of our URL pinger). Restarting the appli-
cation servers always cleared it up, so there was some transient effect
that tipped the site over at that time. Unfortunately, that was just when
traffic started to ramp up for the day. From midnight to 5 a.m., there
were only about 100 transactions per hour of interest, but the num-
bers ramped up quickly once the East Coast started to come online
(one hour ahead of us Central Time folks). Restarting all the applica-
tion servers just as people started to hit the site in earnest was what
you’d call a suboptimal approach.

On the third day this occurred, I took thread dumps from one of the
afflicted application servers. The instance was up and running, but all
request-handling threads were blocked inside the Oracle JDBC library,
specifically inside of OCI calls. (We were using the thick-client driver for
its superior failover features.) In fact, once I eliminated the threads that
were just blocked trying to enter a synchronized method, it looked as if
the active threads were all in low-level socket read or write calls.

The next step was tcpdump and ethereal.4 The odd thing was how little
that showed. A handful of packets were being sent from the application
servers to the database servers, but with no replies. Also nothing was
coming from the database to the application servers. Yet, monitoring
showed that the database was alive and healthy. There were no blocking
locks, the run queue was at zero, and the I/O rates were trivial.

4. Ethereal has since been renamed Wireshark.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=50

INTEGRATION POINTS 51

Packet Capture

Abstractions provide great conciseness of expression. We can
go much faster when we talk about fetching a document from
a URL than if we have to discuss the tedious details of con-
nection setup, packet framing, acknowledgments, receive win-
dows, and so on. With every abstraction, however, there comes
a time when you must peel the onion, shed some tears, and
see what’s really going on—usually when something is going
wrong. Whether for problem diagnosis or performance tuning,
packet capture tools are the only way to understand what is
really happening on the network.

tcpdump is a common UNIX tool for capturing packets from a
network interface. Running it in “promiscuous” mode instructs
the network interface card (NIC) to receive all packets that
cross its wire—even those addressed to other computers. (In a
data center, the NIC is almost certainly connected to a switch
port that is assigned to a virtual LAN [VLAN]. In that case, the
switch guarantees that the NIC receives packets bound for
addresses only in that VLAN. This is an important security mea-
sure, because it prevents bad guys from doing exactly what
we’re doing: sniffing the wire to look for “interesting” bits of infor-
mation.) Wireshark∗ is a combination sniffer and protocol ana-
lyzer. It can sniff packets on the wire, as tcpdump does. Wire-
shark goes farther, though, by unpacking the packets for us.
Through its history, Wireshark has experienced numerous secu-
rity flaws—some trivial, some serious. At one point, a specially
crafted packet sent across the wire (by a piece of malware on
a compromised desktop machine, for example) could trigger
a buffer overflow and execute arbitrary code of the attacker’s
choice. Since Wireshark must run as root to put the NIC into
promiscuous mode—as any packet capture utility must—that
exploit allowed the attacker to gain root access on a network
administrator’s machine.

Beyond the security issues, Wireshark is a big, heavy GUI pro-
gram. On UNIX, it requires a bunch of X libraries (which might
not even be installed on a headless system). On any host, it
takes up a lot of RAM and CPU cycles to parse and display the
packets. That is a burden that should not be on the production
servers. For these reasons, it is best to capture packets nonin-
teractively using tcpdump and then move the capture file to a
nonproduction environment for analysis.

∗. http://www.wireshark.org

http://www.wireshark.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=51

INTEGRATION POINTS 52

Packet Capture (cont.)

The screenshot below shows Ethereal analyzing a capture from
my home network. The first packet shows an address routing
protocol (ARP) request. This happens to be a question from
my wireless bridge to my cable modem. The next packet was
a surprise: an HTTP query to Google, asking for a URL called
/safebrowsing/lookup with some query parameters. The next two
packets show a DNS query and response, for the “michaelny-
gard.dyndns.org” hostname. Packets five, six, and seven are
the three-phase handshake for a TCP connection setup. We
can trace the entire conversation between my web browser
and server. Note that the pane below the packet trace shows
the layers of encapsulation that the TCP/IP stack created
around the HTTP request in the second packet. The outermost
frame is an Ethernet packet. The Ethernet packet contains an
IP packet, which in turn contains a TCP packet. Finally, the pay-
load of the TCP packet is an HTTP request. The exact bytes of
the entire packet appear in the third pane.

I strongly recommend keeping a copy of The TCP/IP
Guide [Koz05] or TCP/IP Illustrated [Ste93] open beside you for
this type of activity!

/safebrowsing/lookup
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=52

INTEGRATION POINTS 53

By this time, we had to restart the application servers. Our first priority
is restoring service. We do data collection when we can, but not at the
risk of breaking an SLA. Any deeper investigation would have to wait Service-level agreement:

a contractual obligation
to provide a service to a
measurable, quantitative
level. Financial penalties
accompany the violation
of an SLA.

until it happened again. None of us doubted that it would happen again.

Sure enough, the pattern repeated itself the next morning. Application
servers locked up tight as a drum, with the threads inside the JDBC
driver. This time, I was able to look at traffic on the databases’ network.
Zilch. Nothing at all. The utter absence of traffic on that side of the
firewall was like Sherlock Holmes’ dog that didn’t bark in the night—
the absence of activity was the biggest clue. I had a hypothesis. Quick
decompilation of the application server’s resource pool class confirmed
that my hypothesis was plausible.

I said before that socket connections are an abstraction. They exist
only as objects in the memory of the computers at the endpoints. Once
established, a TCP connection can exist for days without a single packet
being sent by either side.5 As long as both computers have that socket
state in memory, the “connection” is still valid. Routes can change, and
physical links can be severed and reconnected. It doesn’t matter; the
“connection” persists as long as the two computers at the endpoints
think it does.

There was a time when that all worked beautifully well. These days,
a bunch of paranoid little bastions have broken the philosophy and
implementation of the whole Net. I’m talking about firewalls, of course.

A firewall is nothing but a specialized router. It routes packets from
one set of physical ports to another. Inside each firewall, a set of access
control lists define the rules about which connections it will allow. The
rules say such things as “connections originating from 192.0.2.0/24 to
192.168.1.199 port 80 are allowed.” When the firewall sees an incom-
ing SYN packet, it checks it against its rule base. The packet might be
allowed (routed to the destination network), rejected (TCP reset packet
sent back to origin), or ignored (dropped on the floor with no response at
all). If the connection is allowed, then the firewall makes an entry in its
own internal table that says something like “192.0.2.98:32770 is con-
nected to 192.168.1.199:80.” Then all future packets, in either direc-
tion, that match the endpoints of the connection are routed between
the firewall’s networks.

5. Assuming you set suitably perverse timeouts in the kernel.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=53

INTEGRATION POINTS 54

Remote
Server

9. data/ACK

1. SYN

5. ACK

time2. SYN

4. SYN/ACK

6. ACK

8. data

10. data/ACK

1 hour idle time

11. data

idle time

Local
Server

Firewall

check ruleset

expunge cxn

drop packet
on floor

Figure 4.3: Idle Connection Dropped by Firewall

So far, so good. How is this related to my 5 a.m. wake-up calls?

The key is that table of established connections inside the firewall. It’s
finite. Therefore, it does not allow infinite duration connections, even
though TCP itself does allow them. Along with the endpoints of the
connection, the firewall also keeps a “last packet” time. If too much
time elapses without a packet on a connection, the firewall assumes
that the endpoints are dead or gone. It just drops the connection from
its table, as shown in Figure 4.3. But, TCP was never designed for that
kind of intelligent device in the middle of a connection. There’s no way
for a third party to tell the endpoints that their connection is being torn
down. The endpoints assume their connection is valid for an indefinite
length of time, even if no packets are crossing the wire.

After that point, any attempt to read or write from the socket on either
end does not result in a TCP reset or an error due to a half-open socket.
Instead, the TCP/IP stack sends the packet, waits for an ACK, doesn’t
get one, and retransmits. The faithful stack tries and tries to reestab-
lish contact, and that firewall just keeps dropping the packets on the
floor, without so much as an “ICMP destination unreachable” message.
(That could let bad guys probe for active connections by spoofing source
addresses.) My Linux system, running on a 2.6 series kernel, has its
tcp_retries2 set to the default value of 15, which results in a twenty-

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=54

INTEGRATION POINTS 55

minute timeout before the TCP/IP stack informs the socket library that
the connection is broken. The HP-UX servers we were using at the time
had a thirty-minute timeout. That application’s one-line call to write to
a socket could block for thirty minutes! The situation for reading from
the socket is even worse. It could block forever.

When I decompiled the resource pool class, I saw that it used a last-in,
first-out strategy. During the slow overnight times, traffic volume was
light enough that one single database connection would get checked out
of the pool, used, and checked back in. Then the next request would
get the same connection, leaving the thirty-nine others to sit idle until
traffic started to ramp up. They were idle well over the one-hour idle
connection timeout configured into the firewall.

Once traffic started to ramp up, those thirty-nine connections per appli-
cation server would get locked up immediately. Even if the one connec-
tion was still being used to serve pages, sooner or later it would be
checked out by a thread that ended up blocked on a connection from
one of the other pools. Then the one good connection would be held by
a blocked thread. Total site hang.

Once we understood all the links in that chain of failure, we had to find
a solution. The resource pool has the ability to test JDBC connections
for validity before checking them out. It checked validity by executing a
SQL query like SELECT SYSDATE FROM DUAL. Well, that would just
make the request-handling thread hang anyway. We could also have
the pool keep track of the idle time of the JDBC connection and discard
any that were older than one hour. Unfortunately, that involves sending
a packet to the database server to tell it that the session is being torn
down. Hang.

We were starting to look at some really hairy complexities, such as
creating a “reaper” thread to find connections that were close to getting
too old and tearing them down before they timed out. Fortunately, a
sharp DBA recalled just the thing. Oracle has a feature called dead
connection detection that you can enable to discover when clients have
crashed. When enabled, the database server sends a ping packet to
the client at some periodic interval. If the client responds, then the
database knows it is still alive. If the client fails to respond after a few
retries, the database server assumes the client has crashed and frees
up all the resources held by that connection.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=55

INTEGRATION POINTS 56

We weren’t that worried about the client crashing, but the ping packet
itself would be enough to reset the firewall’s “last packet” time for the
connection, keeping the connection alive. Dead connection detection
kept the connection alive, which let me sleep through the night.

Next, you’ll look at problems with HTTP-based protocols, including web
services.

HTTP Protocols
Service-oriented architectures are a hot topic these days, certainly if
you listen to application server vendors. One reason to pursue SOA
is the renewed hope of getting the reusability that RPC, OOP, CORBA,
and EJB have not delivered on. Another commonly cited reason is more
efficient use of data center resources by providing shared hardware for
commonly used services. Other organizations desire the flexibility and
nimbleness that SOA promises.

Whether based on the WS-I family of protocols, SOAP, XML-RPC, or
REST, the common feature of service-oriented architecture is HTTP.6

All of these ultimately involve shipping some chunk of XML as an HTTP
request and waiting for an HTTP response.

Of course, all HTTP-based protocols use sockets so are vulnerable to
all of the problems described previously. HTTP adds its own flavor
of issue, mainly centered around the client library. Any Java devel-
oper has a built-in HTTP client available through the java.net.URL and
java.net.URLConnection classes.

Line 1 URL url = new URL("http://www.google.com/search?q=foo");
- URLConnection conn = url.openConnection();
- HttpURLConnection httpConnection = (HttpURLConnection)conn;
- httpConnection.setRequestProperty("User-Agent",
5 "Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O; en-US; rv:1.8.0.1) " +
- "Gecko/20060111 Firefox/1.5.0.1");
- InputStream response = httpConnection.getInputStream();

Java’s highly generic URL class tries to hide the differences between
HTTP, HTTPS, FTP, and other protocols. In line 1 we construct a query
URL to hit Google. Opening the connection on line 2 doesn’t actually
send the request; it just acts as a factory method to create the concrete
subclass of URLConnection that does the real work. We have to downcast

6. Technically, SOAP and the WS-I protocols allow for other message transports, but, in
practice, only TIBCO and IBM MQ devotees are using them. More people should be using
asynchronous message transport.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=56

INTEGRATION POINTS 57

the returned URLConnection to that specific class to call the setRequest-

Property() on line 4.7 Finally, in line 7, the HttpURLConnection actually
opens a socket to the remote host, sends the HTTP request, waits for
and parses the HTTP response, and returns an InputStream on the bytes
of the response body.

There’s a lot going on in line 7. It’s one big blocking call, with no chance
to set any parameters. If you wanted to set the socket timeout by call-
ing Socket.setSoTimeout(), for example, you’d have to install a SocketIm-

plFactory that would affect all sockets, not just the ones for this HTTP
interaction. Also, notice that there’s no timeout on the getInputStream()
call. The remote system could dribble back one byte per second for the
next ten years, and your thread would still be stuck on that one call.

A cynical system would never put up with such an unprotected call.
Fortunately, other available HTTP clients allow much more control.
For example, the Apache Jakarta Common’s HttpClient package offers
granular control over both the connection and read timeouts, not to
mention request headers, response headers, and cookie policies.

Vendor API Libraries
It would be nice to think that enterprise software vendors must have
hardened their software against bugs, just because they’ve sold it and
deployed it for lots of clients. That might be true of the server software
they sell, but it’s rarely true for their client libraries. Usually, software
vendors provide client API libraries that have a lot of problems and often
have hidden stability risks. These libraries are just code, coming from
regular developers. They have all the variability in quality, style, and
safety that you see from any other random sampling of code.

The worst part about these libraries is that you have so little control
over them. About the best thing you can do is decompile the code, find
issues, and report them as bugs. If you have enough clout to apply pres-
sure to the vendor, then you might be able to get a bug fix to their client
library, assuming, of course, that you are on the latest version of their
software. In the past, I have been known to fix their bugs and recompile
my own version for temporary use while waiting for the patched version
from the vendor.

7. We have to lie about our user agent, or else Google will return a 403 “Forbidden”
response!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=57

INTEGRATION POINTS 58

The prime stability killer with vendor API libraries is all about blocking.
Whether it’s an internal resource pool, socket read calls, HTTP con-
nections, or just plain old Java serialization, vendor API libraries are
peppered with unsafe coding practices.

Here’s a classic example. Whenever you have threads that need to syn-
chronize on multiple resources, you have the potential for deadlock.
Thread 1 holds lock A and needs lock B, while thread 2 has lock B and
needs lock A. The classic recipe for avoiding this deadlock is to make
sure you always acquire the locks in the same order and release them in
the reverse order. Of course, this helps only if you know that the thread
will be acquiring both locks and you can control the order in which they
are acquired. Let’s take an example in Java. This illustration could be
from some kind of message-oriented middleware library:

Download code/stability_anti_patterns/UserCallback.java

public interface UserCallback {
public void messageReceived(Message msg);

}

Download code/stability_anti_patterns/Connection.java

public interface Connection {
public void registerCallback(UserCallback callback);

public void send(Message msg);
}

I’m sure this looks quite familiar. Is it safe? No idea. Without knowing
what thread messageReceived() gets called on, you cannot be sure what
monitors the thread will be holding. It could have a dozen synchronized
methods on the stack already. Deadlock minefield.

In fact, even though the UserCallback interface does not declare mes-

sageReceived() as synchronized (you can’t declare an interface method
as synchronized), the implementation might make it synchronized.
Depending on the threading model inside the client library and how
long your callback method takes, synchronizing the callback method
could block threads inside the client library. Like a plugged drain, those
blocked threads can cause threads calling send() to block. Odds are that
means request-handling threads will be tied up. As always, once all the
request-handling threads are blocked, your application might as well
be down.

http://media.pragprog.com/titles/mnee/code/code/stability_anti_patterns/UserCallback.java
http://media.pragprog.com/titles/mnee/code/code/stability_anti_patterns/Connection.java
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=58

INTEGRATION POINTS 59

Countering Integration Point Problems
A stand-alone system that doesn’t integrate with anything is rare, not
to mention almost useless. What can you do to make integration points
safer? The most effective patterns to combat integration point failures
are Circuit Breaker and Decoupling Middleware.

Combat integration
point failures with the
Circuit Breaker and
Decoupling Middleware
patterns.

Testing helps, too. Cynical software should
handle violations of form and function, such
as badly formed headers or abruptly closed
connections. To make sure your software is
cynical enough, you should make a test har-
ness—a simulator that provides controllable
behavior—for each integration test. Setting the
test harness to spit back canned responses facilitates functional test-
ing. It also provides isolation from the target system when you are test-
ing. Finally, each such test harness should also allow you to simulate
various kinds of system and network failure.

This test harness will immediately help with functional testing. To test
for stability, you also need to flip all the switches on the harness while
the system is under considerable load. This load can come from a
bunch of workstations running JMeter or Marathon, but it definitely
requires much more than a handful of testers clicking around on their
desktops.

Remember This
Beware this necessary evil

Every integration point will eventually fail in some way, and you
need to be prepared for that failure.

Prepare for the many forms of failure
Integration point failures take several forms, ranging from vari-
ous network errors to semantic errors. You will not get nice error
responses delivered through the defined protocol; instead, you’ll
see some kind of protocol violation, slow response, or outright
hang.

Know when to open up abstractions
Debugging integration point failures usually requires peeling back
a layer of abstraction. Failures are often difficult to debug at the
application layer, because most of them violate the high-level pro-
tocols. Packet sniffers and other network diagnostics can help.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=59

INTEGRATION POINTS 60

Failures propagate quickly
Failure in a remote system quickly becomes your problem, usually
as a cascading failure when your code isn’t defensive enough.

Apply patterns to avert Integration Points problems
Defensive programming via Circuit Breaker, Timeouts, Decoupling
Middleware, and Handshaking will all help you avoid the dangers
of Integration Points.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=60

CHAIN REACTIONS 61

4.2 Chain Reactions

In Section 8.1, Defining Capacity, on page 161, I’ll talk a lot about the
two main flavors of scalability: horizontal and vertical scaling. Hori-
zontal scaling refers to adding capacity by adding servers. This is the
Google and Amazon approach. A web farm is an example of horizontal
scaling—each server adds nearly the same amount of capacity as the
previous server. The alternative, vertical scaling, means building bigger
and bigger servers: replacing x86 pizza boxes with four-way, eight-way,
and then thirty-two-way servers. This is the approach Oracle would
love to see you use. Each type of scaling works best under different
circumstances.

If your system scales horizontally, then you will have load-balanced
farms or clusters where each server runs the same applications. The
multiplicity of machines provides you with fault tolerance through
redundancy. A single machine or process can completely bonk while
the remainder continues serving transactions.

Still, even though horizontal clusters are not susceptible to single
points of failure (except in the case of attacks of self-denial, see Antipat- Single point of failure

(SPOF): Any device,
node, or cable that,
when removed, results in
the complete failure of a
larger system. For
example, a server with
only one power supply
and a network switch
with no redundancy are
both SPOFs.

tern 4.6, Attacks of Self-Denial, on page 88), they can exhibit a load-
related failure mode. When one node in a load-balanced group fails,
the other nodes must pick up the slack. For example, in the eight-
server farm shown in Figure 4.4, on the next page, each node handles
12.5% of the total load.

After one server pops off, you have the distribution shown in Figure 4.5,
on page 64. Each of the remaining seven servers must handle about
14.3% of the total load. Even though each server has to take only 1.8%
more of the total workload, that server’s load increases by about 15%.
In the degenerate case of a failure in a two-node cluster, the survivor’s
workload doubles. It has its original load (50% of the total) plus the
dead node’s load (50% of the total).

If the first server failed because of some load-related condition, such
as a memory leak or intermittent race condition, the surviving nodes
become more likely to fail. With each additional server that goes dark,
the remaining stalwarts get more and more burdened and therefore are
more and more likely to also go dark.

A chain reaction occurs when there is some defect in an application—
usually a resource leak or a load-related crash. We’re already talking
about a homogeneous layer, so that defect is going to be in each of the
servers. That means the only way you can eliminate the chain reaction

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=61

CHAIN REACTIONS 62

Load Balancer /
Cluster Manager

Server 1
12.5%

Server 2
12.5%

Server 3
12.5%

Server 4
12.5%

Server 5
12.5%

Clients

Server 6
12.5%

Server 7
12.5%

Server 8
12.5%

Figure 4.4: Eight-Way Horizontal Farm

is to fix the underlying defect. Splitting a layer into multiple pools—
as in the Bulkhead pattern—can sometimes help by splitting a single
chain reaction into two separate chain reactions that occur at different
rates.

What effect could a chain reaction have on the rest of the system? Well,
for one thing, a chain reaction failure in one layer can easily lead to a
cascading failure in a calling layer.

Chain reactions are sometimes caused by blocked threads. This hap-
pens when all the request-handling threads in an application get
blocked and that application stops responding. Incoming requests will
then get distributed out to the applications on other servers in the same
layer, increasing their chance of failure.

Remember This
One server down jeopardizes the rest

A chain reaction happens because the death of one server makes
the others pick up the slack. The increased load makes them more
likely to fail. A chain reaction will quickly bring an entire layer
down. Other layers that depend on it must protect themselves, or
they will go down in a cascading failure.

Hunt for resource leaks
Most of the time, a chain reaction happens when your applica-
tion has a memory leak. As one server runs out of memory and
goes down, the other servers pick up the dead one’s burden. The
increased traffic means they leak memory faster.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=62

CHAIN REACTIONS 63

Searching...

I was dealing with a retailer’s primary online brand. It has a
huge catalog—half a million SKUs in 100 different categories.
For its site, search isn’t just useful; it’s necessary. To handle all
the customers during the holidays, the retailer was running a
dozen search engines sitting behind a hardware load balancer.
The application servers were configured to connect to a virtual
IP address∗ instead of specific search engines. The load bal-
ancer then distributed the application servers’ queries out to
the search engines. It also performed health checks to discover
which servers were alive and responsive so it could make sure
to send queries only to search engines that were alive.

Those health checks turned out to be useful. The search engine
had some bug that caused a memory leak. Under regular traf-
fic (not a holiday season), the search engines would start to
go dark right around noon. Because each engine had been
taking the same proportion of load throughout the morning,
they would all crash at about the same time. As each search
engine went dark, the load balancer would send their share of
the queries to the remaining servers, causing them to run out
of memory even faster. When I looked at a chart of their “last
response” time stamps, I could see an accelerating pattern of
crashes very clearly. The gap between the first crash and the
second would be five or six minutes. Between the second and
third would be just three or four minutes. The last two would go
down within seconds of each other.

This particular system also suffered from cascading failures and
blocked threads. Losing the last search server caused the entire
front end to lock up completely.

Until we got an effective patch from the vendor (which took
months), we had to follow a daily regime of restarts that brack-
eted the peak hours: 11 a.m., 4 p.m., and 9 p.m.

∗. See Section 11.3, Virtual IP Addresses, on page 223 for more about load
balancing and virtual IP addresses.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=63

CHAIN REACTIONS 64

Load Balancer /
Cluster Manager

Server 1
14.3%

Server 2
14.3%

Server 3
14.3%

Server 4
14.3%

Server 5
14.3%

Clients

Server 6
14.3%

Server 7
14.3%

Server 8
0.00%

Figure 4.5: Formerly an eight-way cluster

Hunt for obscure timing bugs
Obscure race conditions can also be triggered by traffic. Again,
if one server goes down to a deadlock, the increased load on the
others makes them more likely to hit the deadlock too.

Defend with Bulkheads
Partitioning servers, with Bulkheads, can prevent Chain Reactions
from taking out the entire service—though they won’t help the
callers of whichever partition does go down. Use Circuit Breaker
on the calling side for that.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=64

CASCADING FAILURES 65

4.3 Cascading Failures

The standard system architecture for enterprise systems, including
websites and web services, comprises a collection of functionally dis-
tinct farms or clusters that are interconnected through some form of
load balancing. We usually refer to the individual farms as layers—
for example, as in Figure 4.6, on the following page—even though they
might not really be a single stack.

In a service-oriented architecture, these look even less like traditional
layers and more like a directed, acyclic graph.

System failures start with a crack. That crack comes from some fun-
damental problem. Various mechanisms can retard or stop the crack,
which are the topics of the next chapter. Absent those mechanisms, the
crack can progress and even be amplified by some structural problems.
A cascading failure occurs when a crack in one layer triggers a crack in
a calling layer.

A cascading failure
occurs when problems
in one layer cause
problems in callers.

An obvious example is a database failure. If
an entire database cluster goes dark, then any
application that calls the database is going to
experience problems of some kind. If it handles
the problems badly, then the application layer
will start to fail. One system I saw would tear
down any JDBC connection that ever threw a SQLException. Each page
request would attempt to create a new connection, get a SQLException,
try to tear down the connection, get another SQLException, and then
vomit a stack trace all over the user.

Cascading failures require some mechanism to transmit the failure
from one layer to another. The failure “jumps the gap” when bad behav-
ior in the calling layer gets triggered by the failure condition in the
called layer.

Cascading failures often result from resource pools that get drained
because of a failure in a lower layer. Integration Points without Time-
outs is a surefire way to create Cascading Failures.

Just as integration points are the number-one source of cracks, cas-
cading failures are the number-one crack accelerator. Preventing cas-
cading failures is the very key to resilience. The most effective patterns
to combat cascading failures are Circuit Breaker and Timeouts.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=65

CASCADING FAILURES 66

.com Web
Servers

Commerce
Application

Commerce
Database

Order Queues Inventory Service

Inventory
Database

Order
Management

System

Figure 4.6: Layers Often Found in Commerce Systems

Remember This
Stop cracks from jumping the gap

A cascading failure occurs when cracks jump from one system or
layer to another, usually because of insufficiently paranoid inte-
gration points. A cascading failure can also happen after a chain
reaction in a lower layer. Your system surely calls out to other
enterprise systems; make sure you can stay up when they go
down.

Scrutinize resource pools
A cascading failure often results from a resource pool, such as
a connection pool, that gets exhausted when none of its calls
return. The threads that get the connections block forever; all
other threads get blocked waiting for connections. Safe resource
pools always limit the time a thread can wait to check out a
resource.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=66

CASCADING FAILURES 67

Hammer Time

The layer-jumping mechanism often takes the form of blocked
threads, but I’ve also seen the reverse—an overly aggressive
thread. In one case, the calling layer would get a quick error,
but, because of a historical precedent, it would assume that
the error was just an irreproducible, transient error in the lower
layer. At some point, the lower layer was suffering from a race
condition that would make it kick out an error once in a while
for no good reason. The upstream developer decided to retry
the call when that happened. Unfortunately, the lower layer
didn’t provide enough detail to distinguish between the tran-
sient error and a more serious one. As a result, once the lower
layer started to have some real problems (losing packets from
the database because of a failed switch), the caller started to
pound it more and more. The more the lower layer whined and
cried, the more the upper layer yelled, “I’ll give you something
to cry about!” and hammered it even harder. Ultimately, the
calling layer was using 100% of its CPU making calls to the lower
layer and logging failures in calls to the lower layer. A circuit
breaker would really have helped here.

Defend with Timeouts and Circuit Breaker
A cascading failure happens after something else has already gone
wrong. Circuit Breaker protects your system by avoiding calls out
to the troubled integration point. Using Timeouts ensures that you
can come back from a call out to the troubled one.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=67

USERS 68

4.4 Users

Users are a terrible thing.8 Systems would be infinitely more stable
without them. The human users of a system have this knack for cre-
ative destruction. When your system is teetering on the brink of disaster
like a car on a cliff in a movie, some user will be the seagull landing on
the hood. Down she goes! Human users have a gift for doing exactly the
worst possible thing at the worst possible time.

Users are a terrible thing.
Worse yet, other systems that call ours march
remorselessly forward like an army of Termi-
nators, utterly unsympathetic about how close

we are to crashing.

Traffic
Every user consumes some system resources. Unless you are building
a peer-to-peer system such as BitTorrent, your system’s capacity is
limited. It scales with the amount of hardware and bandwidth you’ve
bought, not the number of users you’ve attracted.

As traffic grows, it will eventually surpass your capacity.9 Then comes
the biggest question: How does your system react to excessive demand?

Remember the definition of capacity from Section 8.1, Defining Capac-
ity, on page 161: when transactions take too long to execute, it means
that the demand on your system has exceeded its capacity. Internally
to your system, however, there are some harder limits. Passing those
limits makes cracks in the system, and cracks always propagate faster
under stress.

One such hard limit is memory available, particularly in Java or J2EE
systems. Excess traffic can stress the memory system in several ways.
First and foremost, in web systems, every user has a session. The ses-
sion stays resident in memory for a certain length of time after the last
request from that user. Every additional user means more memory.

8. Obviously, I’m being somewhat tongue-in-cheek. Although users do present numer-
ous risks to stability, they are also the reason our systems exist.
9. If traffic isn’t growing, then you have other problems to worry about!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=68

USERS 69

First
Request

Last
Request

Session
Timeout

Dead TimeSession Active

During that dead time, the session still occupies valuable memory. A
session is not a magic “Bag of Holding.”10 Every object you put into
the session sits there in memory, tying up precious bytes that could be
serving some other user.

Every user consumes
more memory.

When memory gets short, a large number of
very surprising things can happen. Probably
the least offensive is throwing an OutOfMemo-

ryError exception at the user. If things are really
bad, the logging system might not even be able to log the error. For
example, Log4j and java.util.logging both create objects to represent a
log event. If no memory is available to create the log event, then nothing
gets logged. (This, by the way, is a great argument for external moni-
toring in addition to log file scraping.) A supposedly recoverable low-
memory situation will rapidly turn into a serious stability problem. In
fact, if you are making any native calls, then a low-memory condition
will cause “malloc” to fail in the native code, for example, inside a Type
2 JDBC driver. It seems that few programmers of native code do good
error checking, because I’ve seen JVM crashes result from native calls
during a memory crisis.

Your best bet is to keep as little in the session as possible. For example,
it’s a bad idea to keep an entire set of search results in the session
for pagination. It’s better if you requery the search engine for each new
page of results. For every object you put in the session, consider that
it might never be used again. It could spend the next thirty minutes
uselessly taking up memory and putting your system at risk.

10. In case you didn’t play Dungeons & Dragons, a Bag of Holding was much bigger on
the inside than on the outside. Things you put into it were available but weighed almost
nothing. It was a convenient explanation for characters that could keep two broadswords,
a mace, full-plate armor, and half a million gold pieces with them all the time.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=69

USERS 70

Expensive
Object

SoftReference
payload

Figure 4.7: SoftReference and Its Payload

It would be wonderful if there was a way to keep things in the session
(therefore in memory) when memory is plentiful but automatically be
more frugal when memory is tight. Good news! There is a way to do
exactly that. java.lang.ref.SoftReference objects hold a reference to some
other payload object.

You construct a SoftReference with the large or expensive object as an
argument. The SoftReference object actually is a Bag of Holding. It keeps
the payload for later use.

MagicBean hugeExpensiveResult = ...; SoftReference ref = new
SoftReference(hugeExpensiveResult);

session.setAttribute(EXPENSIVE_BEAN_HOLDER, ref);

This is not a transparent change. Any JSPs or servlets that access this
object will know that they are going through a layer of indirection. If
memory gets low, the garbage collector is allowed to reclaim the payload
of a SoftReference, so long as there is no hard reference to that payload.

Reference reference = (Reference)session.getAttribute(EXPENSIVE_BEAN_HOLDER);
MagicBean bean = (MagicBean) reference.get();

What is the point of adding this level of indirection? When memory gets
low, the garbage collector is allowed to reclaim any “softly reachable”
objects. An object is softly reachable if the only references to it are held
by SoftReference objects. The expensive object in Figure 4.7 is softly
reachable. The expensive object in Figure 4.8, on the next page, on the
other hand, not softly reachable. It is strongly reachable because of the
hard reference from the servlet.

The actual decision about when to reclaim softly reachable objects, how
many of them to reclaim, and how many to spare is totally up to the
garbage collector. The only guarantee is this: all softly reachable objects
will be reclaimed before an OutOfMemoryError is thrown.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=70

USERS 71

Expensive
Object

SoftReference
payload

Some
Servlet

direct reference

Figure 4.8: Strongly Reachable Payload Object

In other words, the garbage collector will take advantage of all the help
you give it before it gives up. Be careful to note that it is the pay-
load object that gets garbage collected, not the SoftReference itself. After
the payload gets garbage collected, any calls to SoftReference.get() will
return null. Any code that uses the payload object must be prepared to
deal with a null payload, as shown in Figure 4.9, on the following page.
It can choose to recompute the expensive result, redirect the user to
some other activity, or take any other protective action.

SoftReference is a useful way to respond to changing memory conditions,
but it does add complexity. Generally, it’s best to just keep things out
of the session. Use the SoftReference approach when you cannot keep
large or expensive objects out of the session. SoftReferences let you serve
more users with the same amount of memory.

Expensive to Serve
Some users are way more demanding than others. Ironically, these are
usually the ones you want more of. For example, in a retail system,
users who browse a couple of pages, maybe do a search, and then go
away are both the bulk of users and the easiest to serve. Their con-
tent can usually be cached (however, see Pattern 10.2, Use Caching
Carefully, on page 208 for important cautions about caching). Serving
their pages usually does not involve external integration points. You
will likely do some personalization, maybe some clickstream tracking,
and that’s about it.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=71

USERS 72

SoftReference
payload

null

Figure 4.9: SoftReference After Payload Is Garbage Collected

But then there’s that user who actually wants to buy something. Unless
you’ve licensed the one-click checkout patent, checkout probably takes
four or five pages. That’s already as many pages as a typical user’s
entire session. On top of that, checking out can involve several of those
troublesome integration points: credit card authorization, sales tax cal-
culation, address standardization, inventory lookups, and shipping. In
fact, more buyers don’t just increase the stability risk for the front-end
system, they can place back-end or downstream systems at risk too.
(See Antipattern 4.8, Unbalanced Capacities, on page 96.) Increasing
the conversion rate might be good for the profit-and-loss statement,
but it is definitely hard on the systems.

There is no effective defense against expensive users. They are not a
direct stability risk, but the increased stress they produce increases
the likelihood of triggering cracks elsewhere in the system. Still, I don’t
recommend measures to keep them off the system, since they are usu-
ally the ones who generate revenue. So, what should you do?

The best thing you can do about expensive users is test aggressively.
Identify whatever your most expensive transactions are, and double or
triple the proportion of those transactions. If your retail system expects
a 2% conversion rate (which is about standard for retailers), then your Conversion rate: the

percentage of site
visitors who actually buy
something.

load tests should test for a 4%, 6%, or 10% conversion rate.

Unwanted Users
We would all sleep easier if the only users to worry about were the
ones handing us their credit card numbers. In keeping with the gen-
eral theme of “weird, bad things happen in the real world,” there are
definitely weird, bad users out there.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=72

USERS 73

Total Conversion

If a little is good, then a lot must be better, right? In other words,
why not test for a 100% conversion rate? As a stability test, that’s
not a bad idea. I wouldn’t use the results to plan capacity for
regular production traffic, though. By definition, these are the
most expensive transactions. Therefore, the average stress on
the system is guaranteed to be less than what this test pro-
duces. Build the system to handle nothing but the most expen-
sive transactions, and you will spend ten times too much on
hardware.

Some of them don’t mean to be bad. For example, I’ve seen badly config-
ured proxy servers start re-requesting a user’s last URL over and over
again. I was able to identify the user’s session by its cookie and then
trace the session back to the registered customer. Logs showed that the
user was legitimate. For some reason, fifteen minutes after the user’s
last request, the request started reappearing in the logs. At first, these
requests were coming in every thirty seconds. They kept accelerating,
though. Ten minutes later, we were getting four or five requests every
second. These requests had the user’s identifying cookie but not his
session cookie. So, each request was creating a new session. It strongly
resembled a DDoS attack except that it came from one particular proxy DDoS: distributed

denial-of-service attack.
Many computers ganging
up on a site with the
purpose of saturating the
bandwidth, CPU, or
memory of the site’s
servers. Think Gulliver
and the Lilliputians.

server on one Navy base.

Once again, we see that sessions are the Achilles heel of web applica-
tions. Want to bring down nearly any dynamic web application? Pick a
deep link from the site, and start requesting it, without sending cook-
ies. Don’t even wait for the response; just drop the socket connection
as soon as you’ve sent the request. Web servers never tell the appli-
cation servers that the end user stopped listening for an answer. The
application server just keeps on processing the request. It sends the
response back to the web server, which funnels it into the bit bucket.
In the meantime, the 100 bytes of the HTTP request causes the applica-
tion server to create a session (which may consume several kilobytes of
memory in the application server). Even a desktop machine on a broad-
band connection can generate hundreds of thousands of sessions on
the application servers.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=73

USERS 74

In extreme cases, such as the flood of sessions originating from the
Navy base, you can run into problems worse than just heavy memory
consumption. In our case, the business users wanted to know how
often their most loyal customers came back. The developers wrote a
little interceptor that would update the “last login” time whenever a
user’s profile got loaded into memory from the database. During these
session floods, though, the request presented a user ID cookie but no
session cookie. That meant each request was treated like a new login,
loading the profile from the database and attempting to update the “last
login” time.

Imagine 100,000 transactions all trying to update the same row of the
same table in the same database. Somebody is bound to get dead-
locked. Once a single transaction with a lock on the user’s profile got
hung (because of the need for a connection from a different resource
pool), all the other database transactions on that row got blocked.
Pretty soon, every single request-handling thread got used up with
these bogus logins. As soon as that happens, the site is down.

So, one kind of bad user just blunders around leaving disaster in his
wake. There are more crafty sorts, however, who deliberately do abnor-
mal things that just happen to have undesirable effects. The first group
isn’t deliberately malicious; they just do damage inadvertently. This
next group belongs in its own category.

There is an entire parasitic industry that exists by consuming resources
from other companies’ websites. Collectively known as competitive intel-
ligence companies, these outfits leech data out of your system one web
page at a time.

These companies will argue that their service is no different from a
grocery store sending someone into a competing store with a list and
a clipboard. There is a big difference, though. Given the rate that they
can request pages, it’s more like sending a battalion of people into the
store with clipboards. They would crowd out the aisles so legitimate
shoppers could not get in.

Worse yet, these rapid-fire screen scrapers do not honor session cook-
ies, so if you are not using URL rewriting to track sessions, each new
page request will create a new session. Like a flash mob, pretty soon
the capacity problem will turn into a stability problem. The battalion of
price checkers could actually knock down the store.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=74

USERS 75

Session Tracking

HTTP is a singularly unlikely protocol. If you were tasked with cre-
ating a protocol to facilitate arts, sciences, commerce, free
speech, words, pictures, sound, and video, one that could
weave the vastness of human knowledge and creativity into
a single web, it is unlikely that you would arrive at HTTP. HTTP
is stateless, for one thing. To the server, each new requester
emerges from the swirling fog and makes some demand like
“GET /site/index.jsp.” Once answered, they disappear back into
the fog without so much as a “thank you.” Should one of these
rude, demanding clients reappear, the server, in perfectly egal-
itarian ignorance, does not recognize it has seen them before.

Some clever folks at Netscape found a way to graft an extra bit
of data into the protocol. Netscape originally conceived this
data, called cookies (for no compelling reason), as a way to
pass state back and forth from client to server, and vice versa.
Cookies are a clever hack. They allowed all kinds of new appli-
cations, such as personalized portals (a big deal back then)
and shopping sites. Security-minded application developers
quickly realized, however, that unencrypted cookie data was
open to manipulation by hostile clients. After all, just because
some browser sends a User-Agent string that says “Mozilla,” that
doesn’t mean it actually is Mozilla. (As of version 7 beta 1, Inter-
net Explorer still claims to be Mozilla and probably always will.
Its User-Agent string is “Mozilla/4.0 [compatible; MSIE 7.0b; Win-
dows NT 6.0].”) So, security dictates that the cookie either can-
not contain actual data or must be encrypted. At the same
time, high-volume sites found that passing real state in cookies
uses up lots of expensive bandwidth and CPU time. Encrypting
the cookies was right out.

So, cookies started being used for smaller pieces of data, just
enough to tag a user with a persistent cookie or a temporary
cookie to identify a session.

A session is an abstraction that makes building applications
easier. All the user really sends are a series of HTTP requests. The
web server receives these and, through a series of machina-
tions, returns an HTTP response. There is no “begin a session”
request by which the web browser can indicate it is about to
start sending requests, and there is no “session finished” request.
(The web server could not trust that such an indicator would be
sent anyway.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=75

USERS 76

Session Tracking (cont.)

Sessions are all about caching data in memory. Early CGI appli-
cations had no need for a session, since they would fire up a
new process (usually a Perl script) for each new request. That
worked fine. There’s nothing quite as safe as the “fork, run,
and die” model. To reach higher volumes, however, developers
and vendors turned to long-running application servers, such
as Java application servers and long-running Perl processes
via mod_perl. Instead of waiting for a process fork on each
request, the server is always running, waiting for requests. With
the long-running server, you can cache state from one request
to another, reducing the number of hits to the database. Then,
you need some way to identify a request as part of a session.
Cookies work well for this.

Application servers handle all the cookie machinery for you,
presenting a nice programmatic interface with some resem-
blance to a Map or Dictionary. As usual, though, the trouble with
invisible machinery is that it can go horribly wrong when mis-
used. When that invisible machinery involves layers of kludges
meant to make HTTP look like a real application protocol, it can
really tip over badly. For example, home-brew shopping bots
do not handle session cookies properly. Each request creates
a new session, consuming memory for no good reason. If the
web server is configured to ask the application server for every
URL, not just ones within a mapped context, then sessions can
get created by requests for nonexistent pages. As you will see
in Capacity Killers, keeping a tight reign on your sessions is vital
to scalability.

Keeping out legitimate robots is fairly easy through the use of the
robots.txt file.11 Keep in mind, though, that robots.txt is nothing but a
request from your site to the incoming robot. The robot has to ask for
the file and choose to respect your wishes. It’s a social convention—not
even a standard—and definitely not enforceable. Some sites also choose
to redirect robots and spiders, based on the User-Agent header. In the
best cases, these agents get redirected to a static copy of the product
catalog, or the site generates pages without prices. (The idea is to be
searchable by the big search engines but not reveal pricing. That way,

11. See http://www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1.

http://www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=76

USERS 77

you can personalize the prices, run trial offers, partition the country or
the audience to conduct market tests, and so on.) In the worst case, the
site just sends the agent into a dead end.

The Spider Trap

Around 1998, when AltaVista was the big thing, I saw a site get brought
down by a developer’s bad case of “clever.” He built what he called a
spider trap. It was a page with some randomly generated links. The link
text was some plausible-sounding phrase from a Markov chain-based
generator. The URL had a big random hash in it, but effectively, it led
back to the same page. So, the indexer kept seeing pages with differing
content leading to new links. He thought that by tying up the spider in
this spider trap, he would keep it off of the rest of his site, thereby
keeping his content from being deep-linked from search engines. Just to
be sure the spider would stay trapped, he put five of these random links
on each page.

The trap worked like a charm. Once AltaVista hit the site, the spider kept
requesting page after page of random links. In fact, they appeared to run
multiple threads, because we’d see the number of requests increase
geometrically. And there was the problem. Just accept this fact as an
absolute law of the Net. Search engines always have more bandwidth
than you. The indexer used up all of the company’s bandwidth. It blew
right through the committed rate, used up the allowed burst rate, and
pegged against the bandwidth cap. By the time we discovered why our
users were complaining about the site being slow, the spider trap had
cost us more than $10,000 in bandwidth charges. The spider trap is like a
Rube Goldberg machine set up to pull the trigger on a shotgun. It is really
nothing more than an elaborate way to DDoS yourself. (See Antipattern
4.6, Attacks of Self-Denial, on page 88.)

I think he ended up selling the Markov chain text generator as a business
plan writer.

So, the robots most likely to respect robots.txt are the ones that might
actually generate traffic (and revenue) for you, while the leeches will
ignore it completely.

I’ve seen only two approaches work.

The first is technical. Once you identify a screen scraper, block it from
your network. If you’re using a content distribution network such as
Akamai, this is a service it can provide for you. Otherwise, you can do
it at the outer firewalls. Some of the leeches are honest. Their requests
come from legitimate IP addresses with real reverse DNS entries. ARIN
(http://www.arin.net) is your friend here. Blocking the honest ones is easy.

http://www.arin.net
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=77

USERS 78

Others stealthily mask their source addresses or make requests from
dozens of different addresses. Some of these even go so far as to change
their User-Agent strings around from one request to the next. (When a
single IP address claims to be running Internet Explorer on Windows,
Opera on Mac, and Firefox on Linux in the same five-minute window,
something is up. Sure, it could be an ISP-level supersquid or somebody
running a whole bunch of virtual emulators. When these requests are
sequentially spidering an entire product category, it’s more likely to be
a screen scraper.) You may end up blocking quite a few subnets, so
it’s good idea to periodically expire old blocks to keep your firewalls
performing well. This is a form of Circuit Breaker.

The second approach is legal. Write some “terms of use” for your site
that say users can view content only for personal or noncommercial
purposes. Then, when the screen scrapers start hitting your site, sic
the lawyers on them. (Obviously, this requires enough legal firepower
to threaten them effectively.) Neither of these is a permanent solutions.
Consider it pest control—once you stop, the infestation will resume.

Malicious Users
The final group of undesirable users are the truly malicious. These
bottom-feeding mouth breathers just live to kill your baby. Nothing
excites them more than destroying the very thing you’ve put blood,
sweat, and tears into building. Personally, I think they were the kids
who always got their sand castles kicked over when they were little.
That deep-seated bitterness compels them to do the same thing to oth-
ers that was done to them.

Truly talented crackers who can analyze your defenses, develop a cus-
tomized attack, and infiltrate your systems without being spotted are
blessedly rare. You may be targeted by such a cracker for a variety of
reasons, but the odds are against it. You usually have to incur their
wrath for some reason or another. The overwhelming majority of mali-
cious users are script kiddies. Don’t let the diminutive name fool you. Script kiddie: An

attacker who does not
create his or her own
attacks but downloads
and employs tools
created by “real”
crackers.

Script kiddies are dangerous because of their sheer numbers. Although
the odds are low that you will be targeted by a true cracker, your sys-
tems are probably being probed by script kiddies right now.

This book is not about information security or online warfare. A robust
approach to defense and deterrence is beyond the scope of this book.
I will restrict my discussion to the intersection of security and sta-
bility as it pertains to system and software architecture. The primary

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=78

USERS 79

risk to stability is the now-classic distributed denial-of-service (DDoS)
attack. The attacker causes many computers, widely distributed across
the Net, to start generating load on your site.12 Sometimes this load
takes the form of raw TCP connections, with no application-level proto-
col involved. Other attacks attempt to cripple your network devices by
breaking the TCP/IP protocol in devious ways. Well-configured, modern
network gear can guard against these attacks.

Newer attacks vector in against the applications rather than the net-
work gear. These force you to saturate your own outbound bandwidth,
denying service to legitimate users, and racking up huge bandwidth
charges.

As you have seen before, session management is the most vulnerable
point of a J2EE- or Rails-based web application. Application servers are
particularly fragile when hit with a DDoS, so saturating the bandwidth
might not even be the worst issue you have to deal with. A specialized
Circuit Breaker can help to limit the damage done by any particular
host. This also helps protect you from the accidental traffic floods too.

Cisco, Juniper, CheckPoint, and other network vendors all have prod-
ucts that detect and mitigate DDoS attacks. Configuring and monitor-
ing of these products properly is essential. For instance, many admin-
istrators set a limit of fifteen connections per minute from a single
source IP address (based on an example used in Cisco’s documenta-
tion). By that definition, every AJAX application is a denial-of-service
attack. (Given some of the abusive applications I’ve seen slap-happy
AJAX developers create, that may not be far from the truth.)

Remember This
Users consume memory

Each user’s session requires some memory. Minimize that mem-
ory to improve your capacity. Use a session only for caching so
you can purge the session’s contents if memory gets tight.

12. The load typically comes from a botnet, or network of compromised computers. A
daemon on the compromised computer subscribes to an IRC channel, through which
the botnet master issues commands. Some script kiddies have been found to control
botnets with tens of thousands of nodes, and there are rumors of nets with a million
compromised nodes. Most of these are personal Windows machines running outdated
operating systems.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=79

USERS 80

Users do weird, random things
Users in the real world do things that you won’t predict (or some-
times understand). If there’s a weak spot in your application,
they’ll find it through sheer numbers. Test scripts are useful for
functional testing but too predictable for stability testing. Hire a
bunch of chimpanzees to hammer on keyboards for more realistic
testing.

Malicious users are out there
Become intimate with your network design; it should help avert
attacks. Make sure your systems are easy to patch—you’ll be
doing a lot of it. Keep your frameworks up-to-date, and keep your-
self educated. There’s no excuse for a successful SQL injection
attack in 2007.

Users will gang up on you
Sometimes they come in really, really big mobs. Picture the
Slashdot editors giggling as they point toward your site, saying,
“Release the legions!” Large mobs can trigger hangs, deadlocks,
and obscure race conditions. Run special stress tests to hammer
deep links or hot URLs.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=80

BLOCKED THREADS 81

4.5 Blocked Threads

Interpreted languages such as Java and Ruby almost never really
crash. Sure, they get application errors, but it’s relatively rare to see
the interpreter or virtual machine crash. I still remember when a rogue
pointer in C could reduce the whole machine to a navel-gazing heap.
(Anyone else remember Amiga’s “Guru Meditation” errors?) Here’s the
catch about interpreted languages, though. The interpreter can be run-
ning, and the application can still be totally deadlocked, doing nothing
useful.

As often happens, adding complexity to solve one problem creates the
risk of entirely new failure modes. Multithreading makes application
servers scalable enough to handle the web’s largest sites, but it also
introduces the possibility of concurrency errors. The most common
failure mode for applications built in these languages is naval-gazing—
a happily running interpreter with every single thread sitting around
waiting for Godot. Multithreading is complex enough that entire books
are written about it.13 Moving away from the “fork, run, and die” exe-
cution model brings you vastly higher capacity but only by introducing
a new risk to stability.

The majority of system failures I’ve dealt with do not involve outright
crashes. The process runs and runs but does nothing because every
thread available for processing transactions is blocked waiting on some
impossible outcome.

Blocked threads can happen anytime you check resources out of a con-
nection pool, deal with caches or object registries, or make calls to
external systems. If the code is structured properly, a thread will occa-
sionally block whenever two (or more) threads try to access the same
critical section at the same time. This is normal. Assuming that the
code was written by someone sufficiently skilled in multithreaded pro-
gramming, then you can always guarantee that the threads will even-
tually unblock and continue. If this describes you, then you are in a
highly skilled minority.

The problem has four parts:

• Error conditions and exceptions create too many permutations to
test exhaustively.

13. The only book Java programmers actually need, however, is the excellent Concurrent
Programming in Java [Lea00], by Doug Lea.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=81

BLOCKED THREADS 82

The System Isn’t Down! It’s Just in a Funk!

I’ve probably tried 100 times to explain the distinction between
saying “The system crashed” and “The system is hung.” I finally
gave up when I realized that it’s a distinction only an engineer
bothers with. It’s like a physicist trying to explain where the pho-
ton goes in the two-slit experiment from quantum mechanics.
Only one observable variable really matters—whether the sys-
tem is able to process transactions or not. The business sponsor
would frame this question, “Is it generating revenue?”

From the user’s perspective, a system they can’t use might as
well be a smoking crater in the earth. The simple fact that the
server process is running doesn’t help the user get work done,
books bought, flights found, and so on.

That is why I advocate supplementing internal monitors (such
as log file scraping, process monitoring, and port monitoring)
with external monitoring. A mock client somewhere (not in the
same data center) can run synthetic transactions on a regular
basis. That client experiences the same view of the system that
real users experience. When that client cannot process the syn-
thetic transactions, then there is a problem, whether or not the
server process is running.

• Unexpected interactions can introduce problems in previously
safe code.

• Timing is crucial. The probability that the app will hang goes up
with the number of concurrent requests.

• Developers never hit their application with 10,000 concurrent
requests.

Taken together, these conditions mean that it is very, very hard to find
hangs during development. You cannot rely on “testing them out of the
system.” The best way to improve your chances is to carefully craft your
code. Use a small set of primitives in known patterns. It’s best if you
download a well-crafted, proven library.14

14. If you are using Java 5 and you are not using the primitives in java.util.concurrent,
then shame on you. If you are not using Java 5, then download the util.concurrent
library from http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html. It’s
the same library before adoption into the JCP.

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=82

BLOCKED THREADS 83

Incidentally, this is another reason why I oppose anyone rolling their
own connection pool class. It is always more difficult than you think to
make a reliable, safe, high-performance connection pool. If you’ve ever
tried writing unit tests to prove safe concurrency, you know how hard
it is to achieve confidence in the pool. Once you start trying to expose
metrics, as I discuss in Section 17.2, Designing for Transparency, on
page 275, rolling your own connection pool goes from a fun Computer
Science 101 exercise to a tedious grind.

Distrust synchronized
methods on domain
objects.

If you find yourself synchronizing methods
on your domain objects, you should proba-
bly rethink the design. Find a way that each
thread can get its own copy of the object in
question. This is important for two reasons.
First, if you are synchronizing the methods to ensure data integrity,
then your application will break when it runs on more than one server.
In-memory coherence doesn’t matter if there’s another server out there
changing the data. Second, your application will scale better if request-
handling threads never block each other.

Spot the Blocking
Can you find the blocking call in the following code?

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

You might suspect that globalObjectCache is a likely place to find some
synchronization. You would be correct, but the point is that nothing
in the calling code tells you that one of these calls is blocking and the
other is not. In fact, the interface that globalObjectCache implemented
didn’t say anything about synchronization either.

In Java, it is possible for a subclass to declare a method synchronized
that is unsynchronized in its superclass or interface definition. Object-
oriented purists will tell you that this violates the Liskov Substitution
principle. They are correct.

You cannot transparently replace an instance of the superclass with
the synchronized subclass. This might seem like nit-picking, but it can
be vitally important.

The basic implementation of the GlobalObjectCache interface is a rela-
tively straightforward object registry:

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=83

BLOCKED THREADS 84

Synchronization and the Liskov Substitution Principle

In object theory, the Liskov Substitution principle (see Family Val-
ues: A Behavioral Notion of Subtyping [LW93]) states that any
property that is true about objects of a type T should also be
true for objects of any subtype of T. In other words, a method
without side effects in a base class should also be free of side
effects in derived classes. A method that throws the exception
E in base classes should throw only exceptions of type E (or sub-
types of E) in derived classes.

Java does not allow other declared violations of the substitu-
tion principle. It is not clear whether the ability to add synchro-
nization in a subclass was a deliberate weakening of Liskov or
whether it was just an oversight.

public synchronized Object get(String id) {
Object obj = items.get(id);
if(obj == null) {

obj = create(id);
items.put(id, obj);

}

return obj;
}

You should hear mental alarm bells when you see the “synchronized”
keyword on a method. While one thread is executing this method, any
other callers of the method will be blocked. In this case, synchronizing
the method is the right thing to do.15 It executes quickly, and even if
there is some contention between threads trying to get into this method,
they should all be served fairly quickly. (A word of caution, however.
GlobalObjectCache could easily become a capacity constraint if every
transaction uses it heavily. See Antipattern 9.1, Resource Pool Con-
tention, on page 176 for an example of the effect that blocked requests
have on throughput.)

15. Some of you Java programmers might have seen an idiom called the double-checked
lock that is meant to avoid synchronizing the whole method. Unfortunately, it just doesn’t
work. See http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html for a
complete rundown of why it doesn’t work and why all the attempts to fix the pattern also
don’t work.

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=84

BLOCKED THREADS 85

Part of the system needed to check the in-store availability of items
by making expensive inventory availability queries to a remote system.
These external calls took a few seconds to execute. The results were
known to be valid for at least fifteen minutes because of the way the
inventory system worked. Since nearly 25% of the inventory lookups
were on the week’s “hot items” and there could be as many as 4,000
(worst case) concurrent requests against the undersized, overworking
inventory system, the developer decided to cache the resulting Availabil-

ity object.

The developer decided that the right metaphor was a read-through
cache. On a hit, it would return the cached object. On a miss, it would
do the query, cache the result, and then return it. Following good object
orientation principles, the developer decided to create an extension of
GlobalObjectCache, overriding the create() method to make the remote
call. It was a textbook design. The new RemoteAvailabilityCache was
a cache proxy, as described in Pattern Languages of Program Design
2 [VCK96], pages 111–112. It even had a time stamp on the cached
entries so they could be expired when the data became too stale. This
was an elegant design, but it wasn’t enough.

The problem with this design had nothing to do with the functional
behavior. Functionally, RemoteAvailabilityCache was a nice piece of work.
In times of stress, however, it had a nasty failure mode. The inventory
system was undersized (see Antipattern 4.8, Unbalanced Capacities,
on page 96), so when the front end got busy, the back end would be
flooded with requests. Eventually, it crashed. At that point, any thread
calling RemoteAvailabilityCache.get() would block, because one single
thread was inside the create() call, waiting for a response that would
never come. There they sit, Estragon and Vladimir, waiting endlessly
for Godot.

No one designed this
failure mode in, but no
one designed
it out either.

This example shows how these antipatterns
interact perniciously to accelerate the growth
of cracks. The conditions for failure were cre-
ated by the blocking threads and unbalanced
capacities. The lack of timeouts in the inte-
gration points caused the failure in one layer
to become a cascading failure. Ultimately, this combination of forces
brought down the entire site.

Obviously, the business sponsors would laugh if you asked them,
“Should the site crash if it can’t check availability for in-store pickup?”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=85

BLOCKED THREADS 86

If you asked the architects or developers, “Will the site crash if it can’t
check availability?” they would assert that it would not. Even the devel-
oper of RemoteAvailabilityCache would not expect the site to hang if
the inventory system stopped responding. No one designed this failure
mode into the combined system, but no one designed it out either.

Third-Party Libraries
Third-party libraries are notorious sources of blocking threads. Iron-
ically, client libraries for enterprise-class software often do their own
resource pooling inside the library. These often make request threads
block forever when there is a problem. Of course, these never allow you
to configure their failure modes, like what to do when all connections
are tied up waiting for replies that will never come.

Your first problem with these libraries is determining exactly how they
behave. I recommend writing some small test cases that deliberately
try to break the library. Have the test case connect to a really devious
test harness (see Pattern 5.7, Test Harness, on page 136) that ties up
all connections, and then see what the vendor’s library does with calls
from more and more threads. Try issuing the same query or call twenty
times in parallel, and see what happens. If the vendor library is doing
its own connection pooling, then you will see a drop in throughput once
the number of requests exceeds the size of the connection pool. (Take
a look at Antipattern 9.1, Resource Pool Contention, on page 176 to see
what that looks like.) You will probably be able to provoke a deadlock
inside the vendor library. It is a sad fact of the universe, however, that
you cannot prove a negative. Even if you can’t force a deadlock in the
library during testing, it might still be vulnerable.

If the library breaks easily, you need to protect your request-handling
threads. If the library allows you to set timeouts, use them. If not,
you might have to resort to some complex structure such as a pool of
worker threads external to the vendor library that the request-handling
thread can ask to execute the dangerous operation. If the call makes
it through the library in time, then the worker thread and the original
request handling-thread rendezvous on a result object. If the call does
not complete in time, the request-handling thread abandons the call,
even though the worker thread might eventually complete. Once you’re
in this territory, beware. Here there be dragons. You’ll need a good com-
mand of concurrent programming, thread pooling, and your language’s
specific threading model to pull this off, and it will still be a kludge.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=86

BLOCKED THREADS 87

Before you go down this path, spend some time beating up your vendor
for a better client library.

A blocked thread is often found near an integration point. They can
quickly lead to chain reactions. Blocked threads and slow responses
can create a positive feedback loop, amplifying a minor problem into a
total failure.

Remember This
The Blocked Threads antipattern is the proximate cause of most
failures

Application failures nearly always relate to Blocked Threads in
one way or another, including the ever-popular “gradual slow-
down” and “hung server.” The Blocked Threads antipattern leads
to Chain Reactions and Cascading Failures.

Scrutinize resource pools
Like Cascading Failures, the Blocked Threads antipattern usually
happens around resource pools, particularly database connection
pools. A deadlock in the database can cause connections to be lost
forever, and so can incorrect exception handling.

Use proven primitives
Learn and apply safe primitives. It might seem easy to roll your
own producer/consumer queue; it isn’t. Any library of concur-
rency utilities has more testing than your newborn queue.

Defend with Timeouts
You cannot prove that your code has no deadlocks in it, but you
can make sure that no deadlock lasts forever. Avoid Java’s infinite
wait() method; use the version that takes a timeout parameter.
Always use Timeouts, even if it means you have to catch Interrupt-

edException.

Beware the code you cannot see
All manner of problems can lurk in the shadows of third-party
code. Be very wary. Test it yourself. Whenever possible, acquire
and investigate the code for surprises and failure modes.16

16. You might also prefer open source libraries to closed source for this very reason. I do.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=87

ATTACKS OF SELF-DENIAL 88

4.6 Attacks of Self-Denial

Self-denial is only occasionally a virtue in people and never in systems.
A self-denial attack describes any situation in which the system—or the
extended system that includes humans—conspires against itself.

The classic example of a self-denial attack is the email from marketing
to a “select group of users” that contains some privileged information
or offer. These things replicate faster than the Anna Kournikova Trojan
(or the Morris worm if you’re really old-school). Any special offer meant
for a group of 10,000 users is guaranteed to attract millions. The com-
munity of networked bargain hunters can detect and share a reusable
coupon code in milliseconds.

One great instance of self-denial occurred when the Xbox 360 was just
becoming available for preorder. It was clear that demand would far out-
strip supply in the United States, so when a major electronics retailer
sent out an email promoting preorders, it helpfully included the exact
date and time that the preorder would open. This email hit FatWallet,
TechBargains, and probably other big deal-hunter sites the same day.
It also thoughtfully included a deep link that accidentally bypassed
Akamai, guaranteeing that every image, JavaScript file, and style sheet
would be pulled directly from the origin servers.

One minute before the appointed time, the entire site lit up like
Chernobyl chocolate milk, and then it went dark. It was gone in sixty
seconds.

Amazon ran into trouble with the Xbox 360, too. In November 2006,
Amazon decided to offer 1,000 units for just $100. News of the offer
spread far and wide. Not surprisingly, the 1,000 units sold within five
minutes. Unfortunately, nothing else sold during that time, because
millions of visitors hammered on their Reload buttons, trying to load
the special offer page and score a huge discount on the hot console.

Apparently, Amazon had not created a dedicated cluster of servers to
handle the special offer (see Pattern 5.3, Bulkheads, on page 119). The
special offer, probably intended as a loss leader or traffic generator,
generated more bad publicity than it did revenue. I can only hope Ama-
zon got some good information about weak spots in its architecture—
though finding out about them the day before Black Friday hardly
seems worth it.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=88

ATTACKS OF SELF-DENIAL 89

Everyone who has ever worked a retail site has a story like this. Some-
times it’s the coupon code that gets reused a thousand times or the
pricing error that makes one SKU get ordered as many times as all
other products combined. As Paul Lord says, “Good marketing can kill
you at any time.”

Good marketing can kill
you at any time.

Not every self-inflicted wound can be blamed
on the marketing department (although we
sure can try). In a horizontal layer that has
some shared resources, it is possible for a sin-
gle rogue server to damage all the others. For example, in an ATG-
based17 infrastructure, there is always one lock manager that handles
distributed lock management to ensure cache coherency. (Any server
that wants to update a RepositoryItem with distributed caching enabled
must acquire the lock, update the item, release the lock, and then
broadcast a cache invalidation for the item.) This lock manager is a
singular resource. As the site scales horizontally, the lock manager
becomes a bottleneck and then finally a risk. If a popular item is inad-
vertently modified (because of a programming error, for example), then
you can end up with thousands of request-handling threads on hun-
dreds of servers all serialized waiting for a write lock on one item.

You can avoid machine-induced self-denial by building a “shared-
nothing” architecture. (See the sidebar on page 94.) Where that is
impractical, apply decoupling middleware to reduce the impact of
excessive demand, or make the shared resource itself horizontally scal-
able through redundancy and a backside synchronization protocol. You
can also design a fallback mode for the system to use when the shared
resource is not available or responding. For example, if a lock manager
that provides pessimistic locking is not available, the application can
fall back to using optimistic locking. Optimistic locking:

Modify objects freely,
and detect collisions
when saving them.
Pessimistic locking:
Require positive locks on
objects before modifying
them. Pessimistic’ is
safer, but it’s slower and
requires more
coordination.

If you have plenty of time to prepare and are using hardware load
balancing for traffic management, you can set aside a portion of your
infrastructure to handle the promotion or traffic surge. Of course, this
works only if the extraordinary traffic is directed at a portion of the
system. (Think promotional pricing or lingerie fashion show.) In this
case, even if the dedicated portion melts down, at least the rest of the
system’s regular behavior is available.

17. ATG Commerce Suite, a competing J2EE application server and commerce frame-
work. See http://www.atg.com.

http://www.atg.com
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=89

ATTACKS OF SELF-DENIAL 90

In this case, when the dedicated servers go dark, be sure to apply Fail
Fast. That way, at least other front-end resources, such as web server
and load balancer connections, are not tied up waiting for a useless or
nonexistent response.

As for the human-facilitated attacks, training, education, and commu-
nication are the keys. At the very least, if you keep the lines of commu-
nication open, you might have a chance to protect the systems from the
coming surge. You might even be able to help them achieve their goals
without jeopardizing the system.

Remember This
Keep the lines of communication open

Attacks of Self-Denial originate inside your own organization,
when clever marketers cause self-inflicted wounds by creating
their own flash mobs and traffic spikes. You can aid and abet these
marketing efforts and protect your system at the same time, but
only if you know what’s coming. Make sure nobody sends mass
emails with deep links. Create static “landing zone” pages for the
first click from these offers. Watch out for embedded session IDs
in URLs.

Protect shared resources
Programming errors, unexpected scaling effects, and shared
resources all create risks when traffic surges. Watch out for Fight
Club bugs, where increased front-end load causes exponentially
increasing back-end processing.

Expect rapid redistribution of any cool or valuable offer
Anybody who thinks they’ll release a special deal for limited dis-
tribution is asking for trouble. There’s no such thing as limited
distribution. Even if you limit the number of times a fantastic
deal can be redeemed, you’ll still get crushed with people hoping
beyond hope that they, too, can get an Xbox 360 for $99.18

18. If you’re reading this after the Xbox 360 gets down to $99 dollars, then substitute the
next “next-gen” game console.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=90

SCALING EFFECTS 91

Dev Server

App 1

Development
Environment

QA Server 1

QA / Test
Environment

App 1

QA Server 2

App 2

Figure 4.10: Point-to-Point Communication in Development and Test

4.7 Scaling Effects

In biology, the square-cube law explains why we’ll never see elephant-
sized spiders. The bug’s weight scales with volume, so it goes as O(n∧3).
The strength of the leg scales with the area of the cross section, so it
goes as O(n∧2). If you make the critter ten times as large, that makes
the strength-to-weight ratio one-tenth of the small version, and the legs
just won’t hold it up.

We run into scaling effects all the time. Anytime you have a “many-
to-one” or “many-to-few” relationship, you can be hit by scaling effects
when one side increases. For instance, a database server that holds
up just fine when two application servers call it might crash miserably
when you add the next eight application servers.

In the development environment, every application looks like one
server. In QA, pretty much every system looks like one or two servers.
When you get to production, though, some applications are really, really
small, and some are medium, large, or humongous. Because the devel-
opment and test environments rarely replicate production sizing, it can
be hard to see where scaling effects will bite you.

Point-to-Point Communications
One of the worst places that scaling effects will bite you is with point-
to-point communication. Point-to-point communication between appli-
cation servers probably works just fine when there are only one or two
instances communicating, as in Figure 4.10.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=91

SCALING EFFECTS 92

Prod Server 1

App 1

Prod Server 2

Production
Environment

App 2

Prod Server n

App n

Figure 4.11: Point-to-Point Communication in Production—Ouch!

With point-to-point connections, each instance has to talk directly to
every other instance, as in Figure 4.11. The total number of connections
goes up as the square of the number of instances. Scale that up to a
hundred instances, and the O(n∧2) scaling becomes quite painful. This
is a multiplier effect driven by the number of application instances.
Depending on the eventual size of your system, O(n∧2) scaling might be
fine. Either way, you should know about this effect before your system
hits production.

Unfortunately, unless you are Microsoft or Google, it is unlikely that
you can build a test farm the same size as your production environ-
ment. This type of defect cannot be tested out; it must be designed out.

This is one of those times where there is no “best” choice, just a good
choice for a particular set of circumstances. If the application will only
ever have two servers, then point-to-point communication is perfectly
fine.19 As the number of servers grows, then a different communication
strategy is needed. Depending on your infrastructure, you can replace
point-to-point communication with the following:

• UDP broadcasts

• TCP or UDP multicast

• Publish/subscribe messaging

19. As long as the communication is written so it won’t block when the other server dies!
(See Antipattern 4.5, Blocked Threads, on page 81.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=92

SCALING EFFECTS 93

App 1 App 2

Common
Service

App 3 App 4 App 5 App 6

Figure 4.12: Many-to-One Dependencies

• Message queues

Broadcasts do the job but are not bandwidth efficient. They also cause
some additional load on servers that are not interested in the mes-
sages, since the servers’ NIC gets the broadcast and must notify the
TCP/IP stack. Multicasts are more efficient, since they permit only the
interested servers to receive the message. Publish/subscribe messag-
ing is better still, since a server can pick up a message even if it wasn’t
listening at the precise moment the message was sent. Of course, pub-
lish/subscribe messaging often brings in some serious infrastructure
cost. This is a great time to apply the XP principle that says, “Do the
simplest thing that will work.”

Shared Resources
Another scaling effect that can jeopardize stability is the “shared
resource” effect. Commonly seen in the guise of a service-oriented
architecture or “common services” project, the shared resource is some
facility that all members of a horizontally scalable layer need to use.
With some application servers, the shared resource will be a cluster
manager or lock manager. When the shared resource gets overloaded,
it will become a bottleneck limiting capacity (see Section 8.1, Defining
Capacity, on page 161). Figure 4.12 should give you an idea of how the
callers can put a hurting on the shared resource.

When the shared resource is redundant and nonexclusive—meaning it
can service several of its consumers at once—then there is no problem.
If it saturates, you can add more, thus scaling the bottleneck.

Too often, though, the shared resource will be allocated for exclusive

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=93

SCALING EFFECTS 94

“Shared Nothing”

The most scalable architecture is the shared-nothing architec-
ture. Each server operates independently, without need for
coordination or calls to any centralized services. In a shared
nothing architecture, capacity scales more or less linearly with
the number of servers.

The trouble with a shared nothing architecture is that it might
scale better at the cost of failover. For example, consider ses-
sion failover. A user’s session resides in memory on an applica-
tion server. When that server goes down, the next request from
the user will be directed to another server. Obviously, we would
like that transition to be invisible to the user, so the user’s session
should be loaded into the new application server. That requires
some kind of coordination between the original application
server and some other device. Perhaps the application server
sends the user’s session to a session backup server after each
page request. Maybe it serializes the session into a database
table or shares its sessions with another designated applica-
tion server. There are numerous strategies for session failover, but
they all involve getting the user’s session off the original server.
Most of the time, that implies some level of shared resources.

You can approximate a shared-nothing architecture by reduc-
ing the fan in of shared resources, that is, cutting down the num-
ber of servers calling on the shared resource. In the example of
session failover, you could do this by designating pairs of appli-
cation servers that each act as the failover server for the other.

use while a client is processing some unit of work. In these cases, the
probability of contention scales with the number of transactions pro-
cessed by the layer and the number of clients in that layer. (See Antipat-
tern 9.1, Resource Pool Contention, on page 176 for an illustration of the
effect that contention has on throughput.) When the shared resource
saturates, you get a connection backlog. When the backlog exceeds the
listen queue, you get failed transactions. At that point, nearly anything
can happen. It depends on what function the caller needs the shared
resource to provide. Particularly in the case of cache managers (provid-
ing coherency for distributed caches), failed transactions lead to stale
data or, worse, loss of data integrity.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=94

SCALING EFFECTS 95

Remember This
Examine production versus QA environments to spot Scaling
Effects

You get bitten by Scaling Effects when you move from small one-
to-one development and test environments to full-sized production
environments. Patterns that work fine in small environments or
one-to-one environments might slow down or fail completely when
you move to production sizes.

Watch out for point-to-point communication
Point-to-point communication scales badly, since the number of
connections increases as the square of the number of participants.
Consider how large your system can grow while still using point-
to-point connections—it might be sufficient. Once you’re dealing
with tens of servers, you will probably need to replace it with some
kind of one-to-many communication.

Watch out for shared resources
Shared resources can be a bottleneck, a capacity constraint, and
a threat to stability. If your system must use some sort of shared
resource, stress test it heavily. Also, be sure its clients will keep
working if the shared resource gets slow or locks up.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=95

UNBALANCED CAPACITIES 96

4.8 Unbalanced Capacities

The trade press is bursting with stories about utility computing. The
concept is fabulous: as demand on your application changes, it auto-
matically gets more CPU, memory, and I/O resources assigned to it.
Who does the assigning? Some entity in the infrastructure monitors
your application’s performance and adds resources whenever it sees
that performance doesn’t meet the required service levels. This “mas-
ter control program” lurks in the background, measuring your system’s
performance and dynamically reallocating resources. It is supposed to
guarantee that you will never have a resource crunch again. Of course,
it also bills you according to your usage—the same way you pay for
water, sewer, and electrical utilities. It sounds fantastic, as in “it’s a
fantasy.” The trade magazines are in cahoots with the vendors, who
sense that they can sell a whole lot of products to make all this hap-
pen. True utility computing centers are on the horizon, but right now,
the only real ones are a pale approximation of this vision.

In the world that the other 99.9% of us inhabit, production systems are
deployed to some relatively fixed set of resources. Applications run on
operating systems, which run on hardware.20 The hardware contains
network interfaces, which have cables plugged into them. The other
end of the cable plugs into a switch. In a traditional data center, adding
capacity to a production system requires weeks. (Validate the hardware
request; check port availability, cooling capacity, power capacity, and
rack space; procure the hardware; file change tickets; rack, stack, and
cable the device; install the operating system; update the asset man-
agement database; allocate LUNs on the SAN; configure filesystems;
deploy applications; and add applications to the cluster.) In a crisis, it
can be done in days, particularly if you can rob someone else’s servers
for a while, thereby skipping the whole procurement and installation
phase. Three years ago, I saw six extra servers get recabled, reinstalled,
and reconfigured with new applications, all in a single heroic 36-hour
marathon by one rock-star engineer. Todd, my hat is off to you. Those
six extra servers rescued the launch and turned it from an unmitigated
disaster to simply a mitigated disaster.

20. Increasingly, the “hardware” may be a virtual machine. Nevertheless, in practice,
adding, removing, or migrating virtual machines in response to changes in demand hap-
pens much slower than you might think. The most aggressive operations team I know of
rebalances virtual machines only daily—and they expect that to slow down because vir-
tual machine migration is being brought under a more rigorous change control process.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=96

UNBALANCED CAPACITIES 97

Front End

20 Hosts
75 Instances

3,000 Threads

Back End

6 Hosts
6 Instances
450 Threads

Figure 4.13: Unbalanced Capacities

All of which is to say that—barring crises of the most extreme sort—
you are more or less stuck with the amount of resources you have. It is
infeasible to add resources for demand spikes of short duration (that is,
a few hours or days). Although the system’s capacity can change over
time because of code releases, tuning, optimization, network reconfig-
uration, or architecture changes, at any particular point in time, it is
essentially static.

Over short periods of
time, your hardware
capacity is fixed.

This produces the potential for a failure mode
in multitiered systems or systems that rely on
other applications in the enterprise.

In Figure 4.13, the front-end website has
3,000 request-handling threads available.
During peak usage, the majority of these will be serving product catalog
pages or search results. Some smaller number will be in various corpo-
rate “telling” pages. A few will be involved in a checkout process. Of the
threads serving a checkout-related page, a tiny fraction will be querying
the scheduling system to see whether the item can be installed in the
customer’s home by a local service team. You can do some math and
science to predict how many threads could be making simultaneous
calls to the scheduling system. The math is not hard, though it does
rely on statistics and numerous assumptions, which is a notoriously
easy-to-manipulate combination. But, as long as the scheduling sys-
tem can service enough simultaneous requests to meet that demand
prediction, then you’d think it should be sufficient.

Not necessarily.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=97

UNBALANCED CAPACITIES 98

Suppose marketing executes an attack of self-denial by offering the
free installation of any big-ticket appliance for one day only. Suddenly,
instead of a tiny fraction of a fraction of front-end threads involving
scheduling queries, you could see two times, four times, or ten times as
many. The fact is that the front end always has the ability to overwhelm
the back end, because their capacities are not balanced.

It might be impractical to evenly match capacity in each system for a
lot of reasons. In this example, it would be a gross misuse of capital to
build up the scheduling system to the same size as the website, just on
the off chance that it will someday need it. The infrastructure would be
99% idle except for one day out of five years!

So if you can’t build the scheduling system large enough to meet the
potentially overwhelming demand from the front end, then you must
build both the front and back ends to be resilient in the face of a
tsunami of requests. For the front end, Circuit Breaker will help by
relieving the pressure on the back end when responses get slow or con-
nections get refused. For the back end, use Handshaking to inform the
front end to throttle back on the requests. Also consider Bulkheads to
reserve capacity on the back end for other transaction types.

Drive Out Through Testing
Unbalanced capacities is another problem rarely observed during QA.
The main reason is that QA for every system is usually scaled down to
just two servers. So during integration testing, there are two servers
representing the front-end system and two servers representing the
back-end system, resulting in a one-to-one ratio.

In production, where the big budget gets allocated, the ratio could be
ten to one or worse.

Should you should make QA an exact scale replica of the entire enter-
prise? It would be nice, wouldn’t it? Of course, you can’t do that. You
can apply a test harnesses, though. (See Pattern 5.7, Test Harness, on
page 136.) By mimicking a back-end system wilting under load, the test
harness helps you verify that your front-end system degrades grace-
fully.

On the flip side, if you provide the back-end system, you probably
expect a “normal” workload. That is, you reasonably expect that today’s
distribution of demand and transaction types will closely match yester-
day’s workload. If all else remains unchanged, then that is a reasonable

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=98

UNBALANCED CAPACITIES 99

assumption. Many factors can change the workload coming at your
system, though: marketing campaigns; publicity; new code releases in
the front-end systems; and even links on “funnel” sites such as Slash-
dot, Fark, and Digg. As a back-end system provider, you are even fur-
ther removed from the marketers who would deliberately cause these
traffic changes. Surges in publicity are even less predictable.

So, what can you do if your system serves such unpredictable callers?
Be ready for anything. First, use capacity modeling to make sure you’re
at least in the ballpark. Three thousand threads calling into seventy-five
threads is not in the ballpark. Second, don’t just test your system with
normal workloads. See what happens if you take the number of calls the
front end could possibly make, double it, and direct it all against your
most expensive transaction. If your system is resilient, it might slow
down—even start to Fail Fast if it can’t process transactions within the
allowed time—but it should recover once the load goes down. Crashing,
hung threads, empty responses, or nonsense replies all indicate that
your system won’t survive and might just start a cascading failure.

Remember This
Examine server and thread counts

In development and QA, your system probably looks like one or
two servers, and so do all the QA versions of the other systems
you call. In production, the ratio might be more like ten to one
instead of one to one. Check the ratio of front-end to back-end
servers, along with the number of threads each side can handle,
in production compared to QA.

Observe near scaling effects and users
Unbalanced Capacities is a special case of Scaling Effects: one
side of a relationship scales up much more than the other side. A
change in traffic patterns—seasonal, market-driven, or publicity-
driven—can cause a usually benign front-end system to suddenly
flood a back-end system, in much the same way as a Slashdot or
Digg post causes traffic to suddenly flood websites.

Stress both sides of the interface
If you provide the back-end system, see what happens if it sud-
denly gets ten times the highest ever demand, hitting the most
expensive transaction. Does it fail completely? Does it slow down
and recover? If you provide the front-end system, see what hap-
pens if calls to the back end stop responding or get very slow.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=99

SLOW RESPONSES 100

4.9 Slow Responses

As you saw in Section 4.1, Socket-Based Protocols, on page 46, gener-
ating a slow response is worse than refusing a connection or returning
an error, particularly in the context of middle-layer services in an SOA.

A quick failure allows the calling system to finish processing the trans-
action rapidly. Whether that is ultimately a success or a failure depends
on the application logic. A slow response, on the other hand, ties up
resources in the calling system and the called system.

Slow responses usually result from excessive demand. When all avail-
able request handlers are already working, there is no slack to accept
new requests. They can also happen as a symptom of some underly-
ing problem. Memory leaks often manifest via Slow Responses, as the
virtual machine works harder and harder to reclaim enough space to
process a transaction. This will appear as a high CPU utilization, but
it is all due to garbage collection, not work on the transactions them-
selves. I have occasionally seen Slow Responses resulting from network
congestion. This is relatively rare inside a LAN but can definitely hap-
pen across a WAN—especially if the protocol is too chatty. More fre-
quently, however, I see applications letting their socket’s send buffers
get drained and their receive buffers get full, causing a TCP stall. This
usually happens in a hand-rolled, low-level socket protocol, in which
the read() routine does not loop until the receive buffer is drained.

Slow responses tend to propagate upward from layer to layer in a grad-
ual form of cascading failure.

If you give your system the ability to monitor its own performance (see
Chapter 17, Transparency, on page 265), then it can also tell when
it isn’t meeting its service-level agreement. Suppose that your system
is a service provider that is required to respond within one hundred
milliseconds. When a moving average over the last twenty transactions
exceeds one hundred milliseconds, your system could start refusing
requests. This could be at the application layer, in which the system
would return an error response within the defined protocol. Or, it could
be at the connection layer, by refusing new socket connections. Of
course, any such refusal to provide service must be well-documented
and expected by the callers. (Since the developers of that system will
surely have read this book, they will already be prepared for failures,
and their system will handle them gracefully.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=100

SLOW RESPONSES 101

Remember This
Slow Responses triggers Cascading Failures

Upstream systems experiencing Slow Responses will themselves
slow down and might be vulnerable to stability problems when
the response times exceed their own timeouts.

For websites, Slow Responses causes more traffic
Users waiting for pages frequently hit the Reload button, generat-
ing even more traffic to your already overloaded system.

Consider Fail Fast
If your system tracks its own responsiveness,21 then it can tell
when it is getting slow. Consider sending an immediate error
response when the average response time exceeds the system’s
allowed time (or at the very least, when the average response time
exceeds the caller’s timeout!).

Hunt for memory leaks or resource contention
Contention for an inadequate supply of database connections
produces Slow Responses. Slow Responses also aggravates that
contention, leading to a self-reinforcing cycle. Memory leaks
cause excessive effort in the garbage collector, resulting in slow
response. Inefficient low-level protocols can cause network stalls,
also resulting in slow response.

21. See Chapter 17, Transparency, on page 265.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=101

SLA INVERSION 102

4.10 SLA Inversion

A service-level agreement (SLA) is a contractual agreement about how
well the organization must deliver its services. These are quantita-
tive measures of service delivery with financial penalties if the service
provider does not meet them. A number of trends are combining to
make SLAs increasingly important. Outsourcing—of people, infrastruc-
ture, and operations—is a major driver. Increased awareness of the IT
Infrastructure Library (ITIL, soon to be ratified as ISO 20000)22 and
the IT Service Management Framework (itSMF)23 also drives interest in
SLAs. Beyond those, however, there is a general trend in IT operations
toward higher degrees of professionalism. IT managers regard them-
selves as providers of a critical service, necessary for their organiza-
tions to continue functioning. They need quantitative SLAs so they can
allocate resources according to business need rather than responding
to the generic complaint, “My application is too slow; make it faster.”

In the Figure 4.14, on the following page, a company’s new website—
Project Frammitz—is built for high availability. It’s mission critical, so
redundancy is built in at every level: power, network, storage, server
hardware, and applications. It uses a shared-nothing (see the sidebar
on page 94) architecture to allow maximum horizontal scalability with-
out bottlenecks. Frammitz is required to meet a 99.99% availability
SLA. That’s slightly more than four minutes of downtime allowed per
month.

Despite the careful engineering, Frammitz can meet that SLA only
through sheer luck.

The system itself is designed for high availability, but it relies on
numerous other services. A stand-alone web system with no links to
settlement, accounting, fulfillment, or inventory systems probably can’t
sell much. Add fraud detection, channel partner integration, outsourc-
ing of key services, spam cannons, geocoding services, address verifi-
cation, and credit card authorization, and you’ve got a real spiderweb.
Each of those dependencies is vulnerable to the SLAs on the other end
of the connection. Figure 4.15, on page 104 shows the systems that
Frammitz depends upon, and their respective SLAs.

22. See http://www.itil.co.uk/.
23. See http://www.itsmf.com/.

http://www.itil.co.uk/
http://www.itsmf.com/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=102

SLA INVERSION 103

Web 1 Web 2

Load
Balancer

App 1 App 2

Virtual
IP

Clustered

DB 1 DB 2

Figure 4.14: Project Frammitz Architecture

For every service, inside your company or outside, your system depends
on transport layer availability, naming services (DNS), and application-
level protocols. Any one of those layers for any one of the external con-
nections can fail. Unless every one of your dependencies is engineered
for the same SLA you must provide, then the best you can possibly
do is the SLA of the worst of your service providers. In the case of
Project Frammitz, because it depends on partner 1 and pricing and
promotions, neither of which offer any SLA at all, then strictly speak-
ing, Project Frammitz cannot offer an availability SLA.

According to the laws of probability, the situation is even worse. If built
naively, the probability of failure in Project Frammitz is the joint prob-
ability of a failure in any component or service. That is, a single failure
in a dependency is enough to make Frammitz fail; therefore, P(frammitz
up) = (1 - P(internal failure)) * P(partner 1 up) * P(inventory up) ...]. If
Frammitz requires five external services that each have a 99.9% avail-
ability, then the best Frammitz can possibly do is 99.5%.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=103

SLA INVERSION 104

Frammitz
99.99%

Corporate MTA
99.999%

SpamCannon's
DNS

98.5%

SpamCannon's
Applications

99%

Corporate DNS
99.9%

Inventory
99.9%

Message
Broker

99%

Partner 1's
Application

No SLA

Partner 1's
DNS
99%

Message
Queues
99.99%

Pricing and
Promotions

No SLA

Figure 4.15: Project Frammitz External Dependencies

If Frammitz were perfectly decoupled from all external systems, then
the probability of failure is just P(internal failure). Most systems will
fall somewhere in between.

When calling third
parties, service levels
only decrease.

This is an SLA inversion: a system that must
meet a high-availability SLA depends on sys-
tems of lower availability. You have to operate
on wishful thinking to commit to that high-
availability SLA. There are two basic responses

to an SLA inversion. First, you can decouple from the lower-SLA sys-
tem. Make sure your application can continue to function without the
remote system. Degrade gracefully. Decoupling middleware is an excel-
lent approach to decoupling, but depending on the nature of the remote
service, it might not be an option. At the least, employ circuit break-
ers to protect your application from each of the allies/potential ene-
mies. Second, be careful when crafting your service-level agreements.
Do not simply state “99.99% availability.” (See Chapter 13, Availability,
on page 229.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=104

SLA INVERSION 105

Instead, reorient the discussion around the availability of specific func-
tions or features in the system. Features that do not depend on any
external parties can have your maximum SLA. Features that require
third-party services can have only whatever service-level agreement the
third party offers, degraded by the probability of a failure in your own
system. This is the IT equivalent of the Second Law of Thermodynam-
ics:24 service levels only go down.

Remember This
Don’t make empty promises

An SLA inversion means you are operating on wishful thinking:
you’ve committed to a service level that you can achieve only
through luck.

Examine every dependency
SLA Inversion lurks in unexpected places, particularly in the net-
work infrastructure. For example, what is the SLA on your cor-
porate DNS cluster? (I hope it’s a cluster, anyway.) How about on
the SMTP service? Message queues and brokers? Enterprise SAN?
SLA dependencies are everywhere.

Decouple your SLAs
Be sure you can maintain service even when your dependencies
go down. If you fail whenever they do, then it’s a mathematical
certainty that your availability will always be less than theirs.

24. Entropy always increases.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=105

UNBOUNDED RESULT SETS 106

4.11 Unbounded Result Sets

Design with skepticism, and you will achieve resilience. Ask, “What can
system X do to hurt me?” and then design a way to dodge, duck, dip,
dive, and dodge whatever wrench your supposed ally throws.

If your application is like most, it probably treats its database server
with far too much trust. I’m going to try to convince you that a healthy
dose of skepticism will help your application dodge a bullet or two.

A common structure in the code goes like this: send a query to the
database, and then loop over the result set, processing each row. Often,
processing a row means adding a new data object to a collection. What
happens when the database suddenly returns five million rows instead
of the usual hundred or so? Unless your application explicitly limits the
number of results it is willing to process, it can end up exhausting its
memory or spinning in a while loop long after the user loses interest.

Black Monday
Have you ever had a surprising discovery about an old friend? You
know, like the most boring guy in the office suddenly tells you he’s
into BASE jumping? That happened to me about my favorite commerce
server. One day, with no warning, every instance in the farm—more
than 100 hundred individual, load-balanced instances—started behav-
ing badly. It seemed almost random. An instance would be fine, but
then a few minutes later it would start using 100% of the CPU. Three
or four minutes later, it would crash with a HotSpot memory error. The
operations team was restarting them as fast as they could, but it took
a few minutes to start up and preload cache. Sometimes, they would
start crashing before they were even finished starting. We could not
keep more than 25% of our capacity up and running.

Imagine (or recall, if you’ve been there) trying to debug a totally novel
failure mode while also participating in a 5 a.m. (with no coffee) confer-
ence call with about twenty people. Some of them are reporting the cur-
rent status, some are trying to devise a short-term response to restore
service, others are digging into root cause, and some of them are just
spreading disinformation.

We sent a system admin and a network engineer to go looking for
denial-of-service attacks. Our DBA reported that the database was
healthy but under heavy load. That made sense, because at start-up,
each instance would issue hundreds of queries to warm up its caches
before accepting requests. Some of the instances would crash before

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=106

UNBOUNDED RESULT SETS 107

they started accepting requests, which told me it was not related to
incoming requests. The high CPU condition looked like garbage collec-
tion to me, so I told the team I would start looking for memory problems.
Sure enough, when I watched the “heap available” on one instance, I
saw it heading toward zero. Shortly after it hit zero, the JVM got a
HotSpot error.

Usually, when a JVM runs out of memory, it throws an OutOfMemoryEr-

ror. It crashes only if it is executing some native code that doesn’t check
for NULL after calling malloc(). The only native code I knew of was in
the Type 2 JDBC driver.25 Type 2 drivers use a thin layer of Java to call
out to the database vendor’s native API library. Sure enough, dumping
the stack showed execution deep inside the database driver.

But what was the server doing with the database? For that, I asked
our DBA to trace queries from the application servers. Soon enough,
we had another instance crash, so we could see what a doomed server
did before it went into the twilight zone. The queries all looked totally
innocuous, though. Routine stuff. None of the hand-coded SQL mon-
sters that I had seen elsewhere (eight-way unions with five joins in each
subquery, and so on). The last query I saw was just hitting a message
table that the server used for its database-backed implementation of
JMS. The instances mainly used it to tell each other when to flush their
caches. This table should never have more than 1,000 rows, but our
DBA saw that it topped the list of most expensive queries.

For some reason, that usually tiny table had more than ten million
rows. Because the app server was written to just select all the rows
from the table, each instance would try to receive all ten-million-plus
messages. This put a lock on the rows, since the app server issued a
“select for update” query. As it tried to make objects out of the mes-
sages, it would use up all available memory, eventually crashing. Once
the app server crashed, the database would roll back the transaction,
releasing the lock. Then the next app server would step off the cliff by
querying the table.

We did an extraordinary amount of hand-holding and manual work to
compensate for the lack of a LIMIT clause on the app server’s query. By
the time we had stabilized the system, Black Monday was done...it was
Tuesday.

25. For non-Java programmers, native code just means fully compiled instructions for
the host processor. Typically, this is C or C++ code in dynamically linked libraries. Native
code is notorious as a source of crashes under stress.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=107

UNBOUNDED RESULT SETS 108

We did eventually find out why there were more than ten million mes-
sages in that table, but that’s a different story.

This failure mode can occur when querying databases, access dis-
tributed objects, or web services. It can also occur via AJAX requests to
web servers.

A common form of this happens when traversing master/detail links.
Because datasets in development tend to be small, the application
developers may never experience negative outcomes. After a system is
in production for a year, however, even a traversal such as “fetch cus-
tomer’s orders” can return huge result sets.

In the abstract, an unbounded result set occurs when the caller allows
the other system to dictate terms. It is a failure in handshaking. In
any API or protocol, the caller should always indicate how much of a
response it is prepared to accept. TCP does this in the “window” header
field. Search engine APIs allow the caller to specify how many results
to return and what the starting offset should be.

There is no standard SQL syntax to specify result set limits. ORM tools
(such as Hibernate and iBatis) support query parameters that can limit
results returned from a query but do not usually limit results when
following an association (such as container to contents). Therefore,
beware any relationship that can accumulate unlimited children, such
as orders to order lines or user profiles to site visits. Entities that keep
an audit trail of changes are also suspect.

If you are handcrafting your own SQL, use one of these recipes to limit
the number of rows to fetch:

-- Microsoft SQL Server
SELECT TOP 15 colspec FROM tablespec

-- Oracle (since 8i)
SELECT colspec FROM tablespec
WHERE rownum <= 15

-- MySQL and PostgreSQL
SELECT colspec FROM tablespec
LIMIT 15

An incomplete solution (but better than nothing) would be to query
for the full results but break out of the processing loop after reaching
the maximum number of rows. Although this does provide some added
stability on the application server, it does so at the expense of wasted
database capacity.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=108

UNBOUNDED RESULT SETS 109

Unbounded result sets are a common cause of slow responses. They
can result from violation of steady state.

Remember This
Use realistic data volumes

Typical development and test data sets are too small to exhibit
this problem. You need production-sized data sets to see what
happens when your query returns a million rows that you turn
into objects. As a side benefit, you’ll also get better information
from your performance testing when you use production-sized test
data.

Don’t rely on the data producers
Even if you think a query will never have more than a handful
of results, beware: it could change without warning because of
some other part of the system. The only sensible numbers are
“zero,” “one,” and “lots,” so unless your query selects exactly one
row, it has the potential to return too many. Don’t rely on the
data producers to create a limited amount of data. Sooner or later,
they’ll go berserk and fill up a table for no reason, and then where
will you be?

Put limits into other application-level protocols
Web service calls, RMI, DCOM, XML-RPC: all are vulnerable to
returning huge collections of objects, thereby consuming too
much memory.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=109

Chapter 5

Stability Patterns
Now that you’ve seen some antipatterns to avoid, you’ll look at the flip
side. In this chapter, you’ll examine some patterns that are the inverse
of the killers from the last chapter. These eight healthy patterns provide
architecture and design guidance to reduce, eliminate, or mitigate the
effects of cracks in the system. Not one of these will help your software
pass QA, but they will help you get a full night’s sleep, or an uninter-
rupted dinner with your family, once your software launches.

Don’t make the mistake of assuming that a system that includes more
of these patterns is superior to one with less of them. “Count of pat-
terns applied” is never a good quality metric. Instead, I want you to
develop a recovery-oriented mind-set. At the risk of sounding like a
broken record, I’ll say it again: expect failures. Apply these patterns
wisely to reduce the damage done by an individual failure.

USE TIMEOUTS 111

5.1 Use Timeouts
In the early days, networking issues affected only programmers work-
ing on low-level software: operating systems, network protocols, remote
filesystems, and so on. Today, all but the most trivial applications deal
with networks, in some form or another, thus exposing every appli-
cation to the fundamental rule of networks: networks are fallible. The
wire could be broken, some switch or router along the way could be
broken, or the computer you are addressing could be broken. Even if
you’ve already established communication, any of these elements could
become broken at any time. When that happens, your code can’t just
wait forever for a response that might never come; sooner or later, it
needs to give up. Hope is not a design method.

Now and forever,
networks will always be
unreliable.

The timeout is a simple mechanism allowing
you to stop waiting for an answer once you
think it will not come.

I once had a project to port the BSD sockets
library to a mainframe-based UNIX environ-
ment. I attacked the project with a stack of RFCs and a dusty pile Request for comments:

the Internet Engineering
Task Force’s version of a
standard.

of source code for UNIX System V Release 4. Two issues nagged at me
throughout the entire project. First, heavy use of “#ifdef” blocks for dif-
ferent architectures made it look less like a portable operating system
than twenty different operating systems intermingled. Second, the net-
working code was absolutely riddled with error handling for different
flavors of timeouts. By the project’s end, I had grown to understand
and appreciate the significance of timeouts.

Well-placed timeouts provide fault isolation; a problem in some other
system, subsystem, or device does not have to become your problem.
Unfortunately, at higher and higher levels of abstraction, away from the
dirty world of hardware, good placement of timeouts becomes increas-
ingly rare. Indeed, many high-level APIs have few or no explicit timeout
settings. Vendor-provided client libraries are notoriously devoid of time-
outs. API libraries often handle socket communication on behalf of the
application. When these libraries hide the actual socket from the appli-
cation, they also prevent the application from setting vital timeouts.

Timeouts can also be relevant within a single application. Any resource
pool can be exhausted. Conventional usage dictates that the calling
thread should be blocked until one of the resources is checked in. (See
Antipattern 4.5, Blocked Threads, on page 81.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=111

USE TIMEOUTS 112

Joe Asks. . .
Is All This Clutter Really Necessary?

You may think, as I did when porting the sockets library, that
handling all the possible timeouts creates undue complexity
in your code. It certainly adds complexity. You may find that
half your code is devoted to error handling instead of provid-
ing features. I argue, however, that the essence of aiming for
production—instead of aiming for QA—is handling the slings
and arrows of outrageous fortune. That error-handling code, if
done well, adds resilience. Your users may not thank you for it,
because nobody notices when a system doesn’t go down, but
you will sleep better at night.

It is essential that any resource pool that blocks threads must have a
timeout to ensure threads are eventually unblocked whether resources
become available or not.

Also beware of java.lang.Object.wait(). Use the form that takes a timeout

argument, instead of the simpler no-argument form. The same goes for
classes in the new1 java.util.concurrent library. Always use the form of
poll(), offer(), or tryLock() that can take a timeout argument. If you don’t,
you might end up waiting forever.

An approach to dealing with pervasive timeouts is to organize long-
running operations into a set of primitives that you can reuse in many
places. For example, suppose you need to check out a database connec-
tion from a resource pool, run a query, turn the ResultSet into objects,
and then check the database connection back into the pool. At least
three points in that interaction could hang indefinitely. Instead of cod-
ing that sequence of interactions dozens of places, with all the asso-
ciated handling of timeouts (not to mention other kinds of errors),
create a QueryObject (see Patterns of Enterprise Application Architec-
ture [Fow03]) to represent the part of the interaction that changes.

1. Added in Java 5. In earlier versions of Java, you can download the “util-concurrent”
library. Substitute package names appropriately.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=112

USE TIMEOUTS 113

Use a generic Gateway to provide the template for connection handling,
error handling, query execution, and result processing. (See Spring’s
JdbcTemplate.2) Collecting this common interaction pattern into a single
class also makes it easier to apply the Circuit Breaker pattern.

Timeouts are often observed together with retries. Under the philos-
ophy of “best effort,” the software attempts to repeat an operation
that timed out. Immediately retrying an operation after a failure has
a number of consequences, but only some of them are beneficial. If the
operation failed because of any significant problem, it is likely to fail
again if retried immediately. Some kinds of transient failures might be
overcome with a retry (for example, dropped packets over a wireless
WAN). Within the walls of a data center, however, the failure is prob-
ably because of something wrong with the other end of a connection.
Despite Cisco’s advertisements about “self-healing networks,” my expe-
rience has been that problems on the network, or with other servers,
tend to last for a while. Thus, fast retries are very likely to fail again.

From the client’s perspective, making me wait longer is a very bad thing.
If you cannot complete an operation because of some timeout, it is
better for you to return a result. It can be a failure, a success, or a note
that you’ve queued the work for later execution (if I should care about
the distinction). In any case, just come back with an answer. Making
me wait while you retry the operation might push your response time
past my timeout.

On the other hand, queuing the work for a slow retry later is a very
good thing, making the system much more robust. Imagine if every
mail server between the sender and receiver had to be online, ready to
process your mail, and had to respond within sixty seconds in order
for email to make it through. The store-and-forward approach obvi-
ously makes much more sense. In the case of failure in a remote server,
queue-and-retry ensures that once the remote server is healthy again,
the overall system will recover. Work does not need to be lost com-
pletely just because part of the larger system is not functioning. How
fast is fast enough? It depends on your application and your users. For
a website using service-oriented architectures, “fast enough” is proba-
bly anything less than 250 milliseconds. Beyond that, you will start to
lose capacity and customers.

2. See http://static.springframework.org/spring/docs/1.2.x/api/org/springframework/jdbc/core/JdbcTemplate.html.

http://static.springframework.org/spring/docs/1.2.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=113

USE TIMEOUTS 114

Timeouts have natural synergy with circuit breakers. A circuit breaker
can tabulate timeouts, tripping to the “off” state if too many occur.

The Timeouts and Fail Fast patterns both address latency problems.
The Timeouts pattern is useful when you need to protect your system
from someone else’s failure. Fail Fast is useful when you need to report
why you won’t be able to process some transaction. Fail Fast applies to
incoming requests, whereas the Timeouts pattern applies primarily to
outbound requests. They’re two sides of the same coin.

Timeouts can also help with unbounded result sets by preventing the
client from processing the entire result set, but they aren’t the most
effective approach to that particular problem. I’d consider that a stop-
gap but not much more than that.

Timeouts apply to a general class of problems. As such, they help sys-
tems recover from unanticipated events.

Remember This
Apply to Integration Points, Blocked Threads, and Slow Responses

The Timeouts pattern prevents calls to Integration Points from
becoming Blocked Threads. Thus, they avert Cascading Failures.

Apply to recover from unexpected failures
When an operation is taking too long, sometimes we don’t care
why...we just need to give up and keep moving. The Timeouts pat-
tern lets us do that.

Consider delayed retries
Most of the explanations for a timeout involve problems in the
network or the remote system that won’t be resolved right away.
Immediate retries are liable to hit the same problem and result in
another timeout. That just makes the user wait even longer for his
error message. Most of the time, you should queue the operation
and retry it later.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=114

CIRCUIT BREAKER 115

5.2 Circuit Breaker
Not too long ago, when electrical wiring was first being built into
houses, many people fell victim to physics. The unfortunates would
plug too many appliances into their circuit. Each appliance drew a
certain amount of current. When current is resisted, it produces heat
proportional to the square of the current times the resistance (I2R).
Because they lacked superconducting home wiring, this hidden cou-
pling between electronic gizmos made the wires in the walls get hot,
sometimes hot enough to catch fire. Pfft. No more house.

The fledgling energy industry found a partial solution to the problem of
resistive heating, in the form of fuses. The entire purpose of an electrical
fuse is to burn up before the house does. It is a component designed
to fail first, thereby controlling the overall failure mode. This brilliant
device worked well, except for two flaws. First, a fuse is a disposable,
one-time use item; therefore, it is possible to run out of them. Second,
residential fuses (in the United States) were about the same diameter as
copper pennies. Together, these two flaws led many people to conduct
experiments with homemade, high-current, low-resistance fuses (that
is, a 3/4-inch disk of copper). Pfft. No more house.

Residential fuses have gone the way of the rotary dial telephone. Now,
circuit breakers protect overeager gadget hounds from burning their
houses down. The principle is the same: detect excess usage, fail first,
and open the circuit. More abstractly, the circuit breaker exists to allow
one subsystem (an electrical circuit) to fail (excessive current draw, pos-
sibly from a short-circuit) without destroying the entire system (the
house). Furthermore, once the danger has passed, the circuit breaker
can be reset to restore full function to the system.

You can apply the same technique to software by wrapping dangerous
operations with a component that can circumvent calls when the sys-
tem is not healthy. This differs from retries, in that circuit breakers
exist to prevent operations rather than reexecute them.

In the normal “closed” state, the circuit breaker executes operations as
usual. These can be calls out to another system, or they can be internal
operations that are subject to timeout or other execution failure. If the
call succeeds, nothing extraordinary happens. If it fails, however, the
circuit breaker makes a note of the failure. Once the number of fail-
ures (or frequency of failures, in more sophisticated cases) exceeds a

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=115

CIRCUIT BREAKER 116

Closed
on call / pass through
call succeeds / reset count
call fails / count failure
threshold reached / trip breaker

Open
on call / fail
on timeout / attempt reset

trip breaker

Half-Open
on call/pass through
call succeeds/reset
call fails/trip breaker

attempt
reset

reset

trip
breaker

Figure 5.1: Circuit Breaker State Transitions

threshold, the circuit breaker trips and “opens” the circuit, as shown
in Figure 5.1.3 When the circuit is “open,” calls to the circuit breaker fail
immediately, without any attempt to execute the real operation. After a
suitable amount of time, the circuit breaker decides that the operation
has a chance of succeeding, so it goes into the “half-open” state. In this
state, the next call to the circuit breaker is allowed to execute the dan-
gerous operation. Should the call succeed, the circuit breaker resets
and returns to the “closed” state, ready for more routine operation. If
this trial call fails, however, the circuit breaker returns to the “open”
state until another timeout elapses.

When the circuit breaker is open, all calls will immediately fail. This
should probably be indicated by some type of exception. To provide
good feedback to the user, it is useful to throw a different exception
when the circuit is open. This allows the calling code to handle this
type of exception differently.

3. The Leaky Bucket pattern from Pattern Languages of Program Design 2 [VCK96] pro-
vides a wonderful implementation for this type of counter.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=116

CIRCUIT BREAKER 117

Depending on the details of the system, the circuit breaker may track
different types of failures separately. For example, you may choose to
have a lower threshold for “timeout calling remote system” failures than
“connection refused” errors.

Circuit breakers are a way to automatically degrade functionality when
the system is under stress. This can have an impact on the business of
the system. Therefore, it is essential to involve the system’s stakehold-
ers when deciding how to handle calls made when the circuit is open.
For example, should a retail system accept an order if it cannot confirm
availability of the customer’s items? What about if it cannot verify the
customer’s credit card or shipping address? Of course, this conversa-
tion is not unique to the use of a circuit breaker, but discussing the
circuit breaker can be a more effective way of broaching the topic than
asking for a requirements document.

The state of the circuit breakers in a system is important to another set
of stakeholders: operations. Changes in a circuit breaker’s state should
always be logged, and the current state should be exposed for querying
and monitoring. (See Chapter 17, Transparency, on page 265 for more
detail.) In fact, the frequency of state changes is a useful metric to
chart over time; it is a leading indicator of problems elsewhere in the
enterprise.

Likewise, operations needs some way to directly trip or reset the circuit
breaker.

Circuit breakers are effective at guarding against integration points,
cascading failures, unbalanced capacities, and slow responses. They
work so closely with timeouts that they often track timeout failures
separately from execution failures.

Remember This
Don’t do it if it hurts

Circuit Breaker is the fundamental pattern for protecting your
system from all manner of Integration Points problems. When
there’s a difficulty with Integration Points, stop calling it!

Use together with Timeouts
Circuit Breaker is good at avoiding calls when Integration Points
has a problem. The Timeouts pattern indicates that there is a
problem in Integration Points.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=117

CIRCUIT BREAKER 118

Expose, track, and report state changes
Popping a Circuit Breaker always indicates there is a serious
problem. It should be visible to operations.4 It should be reported,
recorded, trended, and correlated.

4. See Chapter 17, Transparency, on page 265.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=118

BULKHEADS 119

5.3 Bulkheads
In a ship, bulkheads are metal partitions that can be sealed to divide the
ship into separate, watertight compartments. Once hatches are closed,
the bulkhead prevents water from moving from one section to another.
In this way, a single penetration of the hull does not irrevocably sink
the ship. The bulkhead enforces a principle of damage containment.

You can employ the same technique. By partitioning your systems, you
can keep a failure in one part of the system from destroying everything.
Physical redundancy is the most common form of bulkheads. If there
are four independent servers, then a hardware failure in one can’t affect
the others. Likewise, if there are two application instances running on
a server and one crashes, the other will still be running (unless, of
course, the first one crashed because of some external influence that
would also affect the second).

Protect critical clients by
giving them their own
pool to call.

At the largest scale, a mission-critical ser-
vice might be implemented as several inde-
pendent farms of servers, with certain farms
reserved for use by critical applications and
others available for noncritical uses. For exam-
ple, a ticketing system could provide dedicated servers for customer
check-in. These would not be affected if other, shared servers are over-
whelmed with “flight status” queries (as sometimes happens during
severe weather). Such a partitioning would have allowed the airline
in Chapter 2, The Exception That Grounded an Airline, on page 21 to
keep checking passengers at airports, even if channel partners could
not look up fares for that day’s flights.

In Figure 5.2, on the next page, Foo and Bar both use the enterprise
service Baz. Because they both depend on a common service, each sys-
tem has some vulnerability to the other. If Foo suddenly gets crushed
under user load, goes rogue because of some defect, or triggers a bug in
Baz, Bar—and its users—will also suffer. This kind of unseen coupling
makes diagnosing problems (particularly performance problems) in Bar
very difficult. Scheduling maintenance windows for Baz also requires
coordination with both Foo and Bar, and it may be difficult to find a
window that works for both clients.

Assuming both Foo and Bar are critical systems with strict SLAs, it’d
be safer to partition Baz, as shown in Figure 5.3, on the following page.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=119

BULKHEADS 120

Foo Bar

Baz

Figure 5.2: Hidden Linkages

Foo Bar

Baz

Baz
Pool 1

Baz
Pool 2

Figure 5.3: Partitioned System

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=120

BULKHEADS 121

Bulkheads vs. Capacity

With a pool of servers for each client, Baz requires much more
accurate demand projections. Foo and Bar must be more
accurate about their needs, because each one has strictly lim-
ited resources available to it. If the server pool were combined,
then excess demand from one client could be compensated
by surplus capacity from the other. There is more overall toler-
ance.

If Foo and Bar have different peak seasons—or even just differ-
ent peak hours—then the shared pool needs less total capacity
than the sum of the individual capacities would be. This effi-
ciency is one of the major motivators for IT to move toward
service-oriented architectures in the first place. How can we
keep that efficiency while gaining the safety of bulkheads?

One way to get both is with virtualization. Baz can use the same
pool of physical hardware to create virtual servers dedicated
to Foo and Bar. Then, shifting capacity between the clients
becomes an administrative change to the virtual machines.
Booting an additional virtual machine takes just a few minutes.
The latest versions of VMware ESX can even move the virtual
machines automatically, based on their service-level policies.
Migrating a live virtual machine typically takes less than ten sec-
onds.

Virtual servers provide an excellent mechanism for implement-
ing bulkheads.

Dedicating some capacity to each critical client removes most of the
hidden linkage. They probably still share a database and are, therefore,
subject to deadlocks across instances, but that’s another antipattern.

Of course, it would be better to preserve all capabilities. Assuming that
failures will occur, however, you must consider how to minimize the
damage caused by a failure. It is not an easy effort, and one rule can-
not apply in every case. Instead, you must examine the impact to the
business of each loss of capability and cross-reference those impacts
against the architecture of the systems. The goal is to identify the nat-
ural boundaries that let you partition the system in a way that is both
technically feasible and financially beneficial. The boundaries of this
partitioning may be aligned with the callers, with functionality, or with
the topology of the system.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=121

BULKHEADS 122

At smaller scales, CPU binding is an example of partitioning via bulk-
heads. Binding a process to a CPU or CPU group ensures that the oper-
ating system schedules that process’ threads on only the designated
CPU or CPU group. Because it reduces the cache bashing that happens
when processes migrate from one CPU to another, CPU binding is often
regarded as a performance tweak. If a process goes berserk and starts
using all CPU cycles, it can usually drag down an entire host machine.
I’ve seen eight CPU servers consumed by a single process. If that pro-
cess is bound to a CPU, however, it can use all available cycles only on
that one CPU.

You can partition the threads inside a single process, with separate
thread groups dedicated to different functions.5 For example, it is often
helpful to reserve a pool of request-handling threads for administrative
use. That way, even if all request-handling threads on the application
server are hung, it can still respond to admin requests—perhaps to
collect data for post-mortem analysis or a request to shut down.

Bulkheads are effective at maintaining service, or partial service, even
in the face of failures. They are especially useful in service-oriented
architectures, where the loss of a single service could have repercus-
sions throughout the enterprise. In effect, a service inside an SOA rep-
resents a single point of failure for the enterprise.

Remember This
Save part of the ship

The Bulkheads pattern partitions capacity to preserve partial
functionality when bad things happen.

Decide whether to accept less efficient use of resources
When the system is not in jeopardy, partitioning the servers means
each partition needs more reserve capacity. If all servers are
pooled, then less total reserve capacity is needed.

Pick a useful granularity
You can partition thread pools inside an application, CPUs in a
server, or servers in a cluster.

5. For example, prior to version 9, WebLogic allowed you to allocate a set of threads to a
particular activity by creating a custom activity queue. (In version 9.x, this is now called
a constraint on a work manager.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=122

BULKHEADS 123

Bulkheads vs. Performance

Binding a multithreaded application server to one CPU may
decrease its performance, particularly if it is tested in isolation.
When there are multiple instances of the application server run-
ning on the host, the situation is less clear. If each application
server’s threads can be scheduled across all CPUs, then con-
text switching and cache flushing may reduce overall through-
put. Optimizing performance here is a multivariate problem; it
requires balancing the right number of server instances, the
right number of threads per server, the amount of memory ded-
icated, and the probability of contention inside the application
itself. Be sure to test for the maximum overall throughput, not just
the best response time from an individual server.

Very important with shared services models
In a service-oriented architecture, there may be many enterprise
systems dependent on your application. If your application goes
down because of Chain Reactions, does the entire company come
to a halt? Then you’d better put in some Bulkheads.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=123

STEADY STATE 124

5.4 Steady State
Roget’s Thesaurus (3rd ed.) offers the following definition for the word
fiddling: “To handle something idly, ignorantly, or destructively.” It
offers helpful synonyms such as fool, meddle, tamper, tinker, and mon-
key. Fiddling is often followed by the “ohnosecond”: that very short
moment in time during which you realize that you have pressed the
wrong key and brought down a server, deleted vital data, or otherwise
damaged the peace and harmony of stable operations. Every single time
a human touches a server is an opportunity for unforced errors.6

It’s best to keep people off of production systems to the greatest extent
possible. If the system needs a lot of crank-turning and hand-holding to
keep running, then administrators develop the habit of staying logged
in all the time. This inevitably leads to fiddling. To that end, the system
should be able to run indefinitely without human intervention.

Don’t encourage
fiddling. Systems should
run indefinitely without
intervention.

Unless the system is crashing every day (in
which case, look for the presence of the sta-
bility antipatterns), the most common reason
for logging in will probably be cleaning up log
files or purging data.

Any mechanism that accumulates resources
(whether it is log files in the filesystem, rows in the database, or caches
in memory) is like the bucket from those high-school calculus prob-
lems. The bucket fills up at a certain rate, based on the accumula-
tion of data. It must be drained at the same rate, or greater, or it will
eventually overflow. When this bucket overflows, bad things happen:
servers go down, databases get slow or throw errors, response times
head for the stars. The Steady State pattern says, for every mechanism
that accumulates a resource, some other mechanism must recycle that
resource. You’ll look at several types of sludge that can accumulate and
how to avoid the need for fiddling.

Data Purging
It certainly seems like a simple enough principle. Computing resources
are always finite; therefore, you cannot continually increase consump-
tion without limit. Still, in the rush of excitement about rolling out a

6. I know of one incident in which an engineer, attempting to be helpful, observed that a
server’s root disk mirror was out of sync. He executed a command to “resilver” the mirror,
bringing them back into synchronization. Unfortunately, he made a typo and synced the
good root disk from the new, totally empty drive that had just been swapped in to replace
a bad disk, thereby instantly annihilating the operating system on that server.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=124

STEADY STATE 125

new killer application, the next great mission-critical, bet-the-company
whatever, data purging always gets the short end of the stick. It cer-
tainly doesn’t demo as well as...well, anything else in the world demos
better than purging, really. It sometimes seems that you’ll be lucky if
the system ever runs at all in the real world. The notion that it will
run long enough to accumulate too much data to handle seems like a
“high-class problem”—the kind of problem you’d love to have.

Data purging never
makes it into the first
release, but it should.

Nevertheless, someday your little database will
grow up. When it hits the teenage years—
about two in human years—it will get moody,
sullen, and resentful. In the worst case, it will
start undermining the whole system (and it
will probably complain that nobody understands it, too).

The most obvious symptom of data growth will be steadily increasing
I/O rates on the database servers. You may also see increasing latency
at constant loads.

Data purging is nasty, detail-oriented work. Referential integrity con-
straints in the database are half the battle. It can be very difficult to
cleanly remove obsolete data without leaving orphaned rows. The other
half of the battle is ensuring that applications still work once the data
is gone.

For example, will the applications work if items are missing from the
middle of collections? (Hint: under Hibernate, they won’t!) As a conse-
quence, data purging always gets left until after the first release is out
the door. The thin rationale is, “We’ve got six months after launch to
implement purging.” (Somehow, they always say “six months.” It’s kind
of like a programmer’s estimate of “two weeks.”)

Of course, after launch, there are always emergency releases to fix crit-
ical defects or add “must-have” features from marketers tired of waiting
for the software to be done. The first six months can slip away pretty
quickly, but when that first release launches, a fuse is lit.

Purging in Practice

I gave a talk at OTUG7 that eventually led to this book. I was thrilled to
see most of my project’s team in attendance, including the sponsor. When
I was presenting this very issue about the importance of data purging and

7. The Object Technology Users’ Group in the Twin Cities of Minneapolis and St. Paul,
Minnesota. See http://www.otug.org/.

http://www.otug.org/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=125

STEADY STATE 126

its usual neglect, I could see everyone from my project nodding along
(with their eyes open!). So you can imagine my chagrin when we launched
our first release without data purging!

We eventually implemented a very thorough purge process, based on
measuring our shortest fuse to see how long we had. It ended up being a
very close thing when we rolled out the first iteration of purging, which
took care of the highest-volume data items. That bought us time.
Subsequent releases rolled out more rigorous routines for lower-volume
accumulations.

Another type of sludge you will commonly encounter is old log files.

Log Files
Last week’s log files are about as interesting as a book full of actuarial
tables. A few rare, special people would be delighted to pore through
them. The rest of us regard them as warmly as the dumpster behind a
sushi restaurant. Last month’s log files are even worse. The main thing
these old log files do is take up valuable disk space.

Left unchecked, however, they become more than just a meaningless
pile of uninterpreted bytes. When log files grow without bound, they will
eventually fill up their containing filesystem. Whether that’s a volume
set aside for logs, the root disk, or the application installation directory
(I hope not), it means trouble. When log files fill up the filesystem, they
jeopardize stability. That’s because of the different negative effects that
can occur when the filesystem is full. On a UNIX system, the last 5% to
10% percent (depending on the configuration of the filesystem) of space
is reserved for root. That means an application will start getting I/O
errors when the filesystem is 90% or 95% full. Of course, if the applica-
tion is running as root, then it can consume the very last byte of space.
On a Windows system, an application can always use the very last byte.
In either case, the operating system will report errors back to the appli-
cation. For a Java-based system, that means java.io.IOException. For
.NET, it’s a System.IO.IOException. For C, it’s an errno value of ENOSPC.
(Show of hands, please: Who checks errno for ENOSPC after every call
to write()?) In almost every case, logging libraries do not handle the I/O
exception themselves. Instead, they wrap it or translate it and then
throw a new exception at the application code.8

8. Log4J is a pleasant exception in this regard. It uses a pluggable ErrorHandler policy to
dispose of exceptions in any of the “appenders.”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=126

STEADY STATE 127

What happens next is anyone’s guess. In the best-case scenario, the
logging filesystem is separate from any critical data storage (such as
transactions), and the application code protects itself well enough that
users never realize anything is amiss. Significantly less pleasant, but
still tolerable, is a nicely worded error message asking the users to have
patience with us and please come back when we’ve got our act together.
Several rungs down the ladder is serving a stack trace to the user.

Worse yet, I saw one system where the developers had added a “uni-
versal exception handler” to the servlet pipeline. This handler would
log any kind of exception. It was reentrant, so if an exception occurred
while logging an exception, it would log both the original and the new
exception. As soon as the filesystem got full, this poor exception handler
went nuts, trying to log an ever-increasing stack of exceptions. Because
there were multiple threads, each trying to log its own Sisyphean excep-
tion, this application server was able to consume eight entire Ultra-
SPARC III CPUs—for a little while, anyway. The exceptions, multiplying
like Leonardo da Pisa’s rabbits, rapidly consumed all available memory.
This was followed shortly by a JVM crash.

Don’t leave log files on
production systems.
Copy them to a staging
area for analysis.

A less dramatic problem with large log files
is their poor signal-to-noise ratio. Consider
access logs from a web server. Other than
WebTrends-type analysis, it’s very unlikely
that you will find value in last month’s access
logs. With eight million requests, which corre-
sponds to 800,000 to 4,000,000 page views, depending on the number
of assets per page, Apache’s common log format produces more than a
1GB a day in access logs. No human being can find an event of inter-
est in that volume of data. And by the way, there’s no reason to leave
those log files on production systems. Copy them off to a staging area
for analysis.

Of course, it’s always better to avoid filling up the filesystem in the first
place. Log file rotation requires just a few minutes of configuration.

The various translations of Log4J, including Log4R (Ruby) and Log4Net
(any .NET language), all support a RollingFileAppender, which can be con-
figured to rotate log files based on size. You should always use Rolling-

FileAppender in place of the default FileAppender. In java.util.logging, the
default FileHandler can also be configured to rotate logs based on size by
setting its limit property to the maximum number of bytes to write to the
current file. The count variable controls how many old files to keep. The

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=127

STEADY STATE 128

Joe Asks. . .
What About Sarbannes-Oxley? Don’t We Have to Keep All

Our Log Files Forever?

You will sometimes hear people talking about logging in terms
of Sarbannes-Oxley (SOX) requirements. SOX makes many
heavy demands on IT infrastructure and operations. One of
these demands is that the company must be able to demon-
strate adequate controls on any system that produces finan-
cially significant information. In other words, if a billing system
feeds into the company’s financial reports, the company must
be able to demonstrate that nobody can monkey with the
billing system’s data.

For most customer-facing websites, this is irrelevant in reality
but often perceived as necessary. Financials come from order
management systems or credit card settlement systems, not
from web and application servers. The website cannot possibly
retain web server logs for the years required by SOX, not even
on tape or DVD. Further, could web server access logs actually
prove anything about the integrity of the financial controls? Not
likely. That comes from tracking administrator login sessions.

Unfortunately, legal issues are not always decided based on
rational probability analysis, particularly in an area as fuzzy and
ill-defined as SOX compliance. Your best bet is to work with your
company’s CIO or compliance staff. (Many companies have
dedicated SOX consultants.) They will help define how your sys-
tem can stay in compliance. Start these discussions early. They
involve legal, IT, and finance departments, so you should not
expect speedy resolution.

product of limit and count obviously determines how much space the log
files can possibly consume.

In the case of legacy code, third-party code, or code that doesn’t use
one of the excellent logging frameworks available, the logrotate utility is
ubiquitous on UNIX. For Windows, you can try building logrotate under
Cygwin, or you can hand roll a .vbs or .bat script to do the job. Logging
can be a wonderful aid to transparency. Make sure that all log files will
get rotated out and eventually purged, though, or you will eventually
spend time fixing the tool that’s supposed to help you fix the system.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=128

STEADY STATE 129

Between data in the database and log files on the disk, there are plenty
of ways for persistent data to clog up your system. Like jingles from old
commercials, sludge stuck in memory can clog up your application.

In-Memory Caching
Pattern 10.2, Use Caching Carefully, on page 208 has much more to
say on the subject of caching. To a long-running server, memory is like
oxygen. Cache, left untended, will suck up all the oxygen. Low memory
conditions are a threat to both stability and capacity. Therefore, when
building any sort of cache, it’s vital to ask two questions:

• Is the space of possible keys finite or infinite?

• Do the cached items ever change?

If there is no upper bound on the number of possible keys, then cache
size limits must be enforced. Unless the key space is finite and the items
are static, then the cache needs some form of cache invalidation. The
simplest mechanism is a time-based cache flush. You can also investi-
gate least recently used (LRU) or working-set algorithms, but nine times
out of ten, a periodic flush will do.

Improper use of caching is the major cause of memory leaks, which in
turn lead to horrors like daily server restarts. Nothing gets administra-
tors in the habit of being logged on to production like daily (or nightly)
chores.

Sludge buildup is a major cause of slow responses, so steady state
helps avoid that antipattern. Steady state also encourages better oper-
ational discipline by limiting system administrators’ need to log on to
the production servers.

Remember This
Avoid fiddling

Human intervention leads to problems. Eliminate the need for
recurring human intervention. Your system should run at least
for a typical deployment cycle without manual disk cleanups or
nightly restarts.

Purge data with application logic
DBAs can create scripts to purge data, but they don’t always know
how the application behaves when data is removed. Maintaining
logical integrity, especially if you use an ORM tool, requires the
application to purge its own data.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=129

STEADY STATE 130

Limit caching
In-memory caching speeds up applications, until it slows them
down. Limit the amount of memory a cache can consume.

Roll the logs
Don’t keep an unlimited amount of log files. Configure log file rota-
tion based on size. If you need to retain them for compliance, do it
on a nonproduction server.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=130

FAIL FAST 131

5.5 Fail Fast
If slow responses are worse than no response, the worst must surely be
a slow failure response. It’s like waiting through the interminable line
at the DMV, only to be told you need to fill out a different form and go
back to the end of the line. Can there be any bigger waste of system
resources than burning cycles and clock time only to throw away the
result?

If the system can determine in advance that it will fail at an operation,
it’s always better to fail fast. That way, the caller doesn’t have to tie up
any of its capacity waiting; it can get on with other work.

How can the system tell whether it will fail? What kind of secret heuris-
tics am I about to reveal? Is this the application-level equivalent of
Intel’s branch-prediction algorithms?

It’s actually much more mundane than that. There is a large class of
“resource unavailable” failures. For example, when a load balancer gets
a connection request but not one of the servers in its service pool is
functioning, it should immediately refuse the connection. Some con-
figurations have the load balancer queue the connection request for a
while, in the hopes that a server will become available in a short period
of time. This violates the Fail Fast pattern.

Check resource
availability at the start of
a transaction.

In any service-oriented architecture, the appli-
cation can tell from the service requested
roughly what database connections and exter-
nal integration points will be needed. The ser-
vice can very quickly check out the connec-
tions it will need and verify the state of the circuit breakers around
the integration points. It can tell the transaction manager to start a
transaction. This is sort of the software equivalent of the cook’s mise en
place—gathering all the ingredients it will need to service the request
before it begins. If any of the resources are not available, it can fail
immediately, rather than getting partway through the work.

Black

One of my more interesting projects was for a studio photography
company. Part of the project involved working on the software that
rendered images for high-resolution printing. The previous generation of
this software exhibited a problem that generated more work for humans
downstream: if any color profiles, images, backgrounds, or alpha masks
were not available, it “rendered” a black image—full of zero-valued pixels.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=131

FAIL FAST 132

This black image went into the printing pipeline and was printed, wasting
paper, chemicals, and time. Quality checkers would pull the black image
and send it back to the people at the beginning of the process for
diagnosis, debugging, and correction. Ultimately, they would fix the
problem (usually by calling developers to the printing facility) and remake
the bad print. Since the order was already late getting out the door, they
would expedite the remake—meaning that it interrupted the pipeline of
work and went to the head of the line.

When my team started on the rendering software, we applied the Fail Fast
pattern. As soon as the print job arrived, the renderer would check for the
presence of every font (missing fonts caused a similar remake, but not
because of black images), image, background, and alpha mask. It
preallocated memory, so it couldn’t fail an allocation later. The renderer
reported any such failure to the job control system immediately, before it
wasted several minutes of compute time. Best of all, “broken” orders
would be pulled from the pipeline, avoiding the case of having partial
orders waiting at the end of the process. Once we launched the new
renderer, software-induced remake rate9 dropped to zero.

The only thing we didn’t preallocate was disk space for the final image. We
violated “steady state” under the direction of the customer, who indicated
that they had their own rock-solid purging process. Turns out the
“purging process” was one guy who occasionally deleted a bunch of files.
A little less than one year after we launched, the drives filled up. Sure
enough, the one place we broke the Fail Fast principle was the one place
our renderer failed to report errors before wasting effort. It would render
images—several minutes of compute time—and then throw an IOException

in the log file.

Another way to fail fast in a web application is to perform basic para-
meter-checking in the servlet or controller that receives the request,
before loading EJBs or domain objects. Be cautious, however, that you
do not violate encapsulation of the domain objects. If you are checking
for more than null/not-null or number formatting, you should move
those validity checks into the domain objects or an application facade.

Even when failing fast, be sure to report a system failure (resources
not available) differently than an application failure (parameter viola-
tions or invalid state). Reporting a generic “error” message may cause
an upstream system to trip a circuit breaker just because some user
entered bad data and hit Reload three or four times.

9. Orders could still be remade because of other quality problems: dust in the camera,
poor exposure, bad cropping, and so on.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=132

FAIL FAST 133

The Fail Fast pattern improves overall system stability by avoiding slow
responses. Together with timeouts, failing fast can help avert impend-
ing cascading failures. It also helps maintain capacity when the system
is under stress because of partial failures.

Remember This
Avoid Slow Responses and Fail Fast

If your system cannot meet its SLA, inform callers quickly. Don’t
make them wait for an error message, and don’t make them wait
until they time out. That just makes your problem into their prob-
lem.

Reserve resources, verify Integration Points early
In the theme of “don’t do useless work,” make sure you will
be able to complete the transaction before you start. If critical
resources aren’t available—for example, a popped Circuit Breaker
on a required call out—then don’t waste work by getting to that
point. The odds of it changing between the beginning and the mid-
dle of the transaction are slim.

Use for input validation
Do basic user input validation even before you reserve resources.
Don’t bother checking out a database connection, fetching domain
objects, populating them, and calling validate() just to find out that
a required parameter wasn’t entered.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=133

HANDSHAKING 134

5.6 Handshaking
Handshaking refers to signaling between devices that regulate com-
munication between them. Serial protocols such as RS-232 (now EIA-
232C) rely on the receiver to indicate when it is ready to receive data.
Analog modems used a form of handshaking to negotiate a speed and a
signal encoding that both devices would agree upon. And, as illustrated
earlier, TCP uses a three-phase handshake to establish a socket con-
nection. TCP handshaking also allows the receiver to signal the sender
to stop sending data until the receiver is ready. Handshaking is ubiqui-
tous in low-level communications protocols but is almost nonexistent
at the application level.

The sad truth is that HTTP doesn’t handshake well. HTTP-based pro-
tocols, such as XML-RPC or WS-I Basic, have few options available for
handshaking. HTTP provides a response code of “503 Service Unavail-
able,” which is defined to indicate a temporary condition.10 Most clients,
however, will not distinguish between different response codes. If the
code is not a “200 OK,”11 “403 Authentication Required,” or “302 Found
(redirect),” the client probably treats the response as a fatal error.

Similarly, the protocols underneath CORBA, DCOM, and Java RMI are
equally bad at signaling their readiness to do business.

Handshaking is all about letting the server protect itself by throttling
its own workload. Instead of being victim to whatever demands are
made upon it, the server should have a way to reject incoming work.
The closest approximation I’ve been able to achieve with HTTP-based
servers relies on partnership between a load balancer and the web or
application servers. The web server notifies the load balancer—which is
pinging a “health check” page on the web server periodically—that it is
busy by returning either an error page (HTTP response code 503 “Not
Available” works) or an HTML page with an error message. The load
balancer then knows not to send any additional work to that particular
web server. Of course, this helps only for web services and still breaks
down if all the web servers are too busy to serve another page.

In a service-oriented architecture, the server can provide a “health
check” query for use by clients. The client would then check the health
of the server before making a request. This provides good handshak-
ing at the expense of doubling the number of connections and requests

10. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
11. Many clients even treat other 200 series codes as errors!

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=134

HANDSHAKING 135

the server must process. On the downside, most of the time for a typi-
cal web service call is spent just setting up and tearing down the TCP
connection, so making a health check call before the actual call just
doubles that connection overhead.

Handshaking can be most valuable when unbalanced capacities are
leading to slow responses. If the server can detect that it will not be able
to meet its SLAs, then it should have some means to ask the caller to
back off. If the servers are sitting behind a load balancer, then they have
the binary on/off control of stopping responses to the load balancer,
which would in turn take the unresponsive server out of the pool. This
is a crude mechanism, though. Your best bet is to build handshaking
into any custom protocols that you implement.

Circuit breakers are a stopgap you can use when calling services that
cannot handshake. In that case, instead of asking politely whether the
server can handle the request, you just make the call and track whether
it works.

Overall, handshaking is an underused technique that could be applied
to great advantage in application-layer protocols. It is an effective way
to stop cracks from jumping layers, as in the case of a cascading failure.

Remember This
Create cooperative demand control

Handshaking between client and server permits demand throt-
tling to serviceable levels. Both client and server must be built to
perform Handshaking. Most common application-level protocols—
such as HTTP, JRMP, IIOP, and DCOM—do not perform Hand-
shaking.

Consider health checks
Health-check requests are an application-level workaround for the
lack of Handshaking in the protocols. Consider using them when
the cost of the added call is much less than the cost of calling and
failing.

Build Handshaking into your own low-level protocols
If you create your own socket-based protocol, build Handshaking
into it, so the endpoints can each inform the other when they are
not ready to accept work.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=135

TEST HARNESS 136

5.7 Test Harness
As you’ve seen in previous chapters, distributed systems have failure
modes that are extraordinarily difficult to provoke in development or QA
environments. To be more thorough about testing various components
together, we often resort to an “integration testing” environment. In this
environment, our system is fully integrated to all the other systems it
must interact with.

Integration testing presents problems of its own, however. What version
should we test against? For greatest assurance, we’d like to test against
the versions of our dependencies that will be current when we release
our system. I could construct a mathematical proof, using set theory,
that shows this approach constrains the entire company to testing only
one new piece of software at a time, but I’ll leave that as “an exercise
for the reader.” Furthermore, the interdependencies of today’s systems
create such an interlocking web of systems that the integration testing
environment really becomes unitary—one global integration test that
shadows the real production systems of the entire enterprise. Such a
unitary environment would need change control just as rigorous—or
perhaps more so—than the actual production environments.

There is a more abstract difficulty. (“More abstract than set theory?”
you may ask.) Integration test environments can verify only what the
system does when its dependencies are working correctly. Although it
may be possible to provoke the remote system into returning errors, it’s
still functioning more or less within specifications. If the specifications
say, ”The system shall return an error code 14916 unless the request
includes the date of the last telephone sanitization,” then the caller can
force that error condition to occur. Nevertheless, the remote system is
still operating within specifications.

The main theme of this book, however, is that every system will even-
tually end up operating outside of spec; therefore, it’s vital to test the
local system’s behavior when the remote system goes wonky. Unless the
designers of the remote system built in modes that simulate the whole
range of out-of-spec failures that can occur naturally in production,
there will be behaviors that integration testing does not verify.

A better approach to integration testing would allow you to test most
or all of these failure modes. It should preserve or enhance system iso-
lation to avoid the version-locking problem and allow testing in many

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=136

TEST HARNESS 137

locations instead of the unitary enterprise-wide integration testing envi-
ronment I described earlier.

To do that, you can create test harnesses to emulate the remote system
on the other end of each integration point. Hardware and mechanical
engineers have used test harnesses for a long time. Software engineers
have used test harnesses, but not as maliciously as they should. A
good test harness should be devious. It should be as nasty and vicious
as real-world systems will be. The test harness should leave scars on
the system under test. Its job is to make the system under test cynical.

Consider building a test harness that substitutes for the remote end of
every web services call. Because the remote call uses the network, the
socket connection is susceptible to the following failures:

• It can be refused.

• It can sit in a listen queue until the caller times out.

• The remote end can reply with a SYN/ACK and then never send
any data.

• The remote end can send nothing but RESET packets.

• The remote end can report a full receive window and never drain
the data.

• The connection can be established, but the remote end never
sends a byte of data.

• The connection can be established, but packets could be lost caus-
ing retransmit delays.

• The connection can be established, but the remote end never
acknowledges receiving a packet, causing endless retransmits.

• The service can accept a request, send response headers (suppos-
ing HTTP), and never send the response body.

• The service can send one byte of the response every thirty seconds.

• The service can send a response of HTML instead of the expected
XML.

• The service can send megabytes when kilobytes are expected.

• The service can refuse all authentication credentials.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=137

TEST HARNESS 138

Joe Asks. . .
Why Not Mock Objects?

Mock objects are a technique commonly applied with unit test-
ing.∗ A mock object supplies an alternative implementation—
to be used by the object under test—that can be controlled by
the unit test itself. For example, suppose an application uses a
DataGateway object as a layer facade for the entire persistence
layer. The real implementation of DataGateway would deal with
connection parameters, a database server, and a bunch of
test data. That’s a lot of coupling for a single test, which often
results in irreproducible test results or hidden dependencies
between tests. A mock object improves the isolation of a unit
test by cutting off all the external connections. Mock objects
are often used at the boundaries between layers.

Some mock objects can be set up to throw exceptions when
the object under test invokes their methods. This does permit
the unit test to simulate some kinds of failures, especially those
that map to exceptions (assuming that the underlying code in
the real implementation would generate exceptions).

A test harnesses differs from mock objects, in that a mock
object can be trained to produce behavior that conforms
only to the defined interface. A test harnesses runs as a sep-
arate server, so it is not obliged to conform to any interface. It
can provoke network errors, protocol errors, or application-level
errors. If all low-level errors were guaranteed to be recognized,
caught, and thrown as the right type of exception, there would
be no need for test harnesses.

∗. See http://www.junit.org.

http://www.junit.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=138

TEST HARNESS 139

These failures fall into distinct categories: network transport problems,
network protocol problems, application protocol problems, and appli-
cation logic problems. With a little mental exercise, you can find failure
modes in every layer of the seven-layer OSI model. It would be costly
and bizarre to add switches and flags to applications that would allow
them to simulate all of these failures. Who would want to risk turning
on a “simulated failure” once the system is promoted into production?
Integration testing environments are good at examining failures only in
the seventh layer—the application layer—and not even all of those.

Make your test harness
act like a hacker.

A test harness “knows” that it is meant for
testing; it has no other role to play. Whereas
the real application would not be written to call
the low-level network APIs directly, the test
harness can. Therefore, it is able to send bytes too quickly, or very
slowly. It can set up extremely deep listen queues. It can bind to a
socket and then never service a single connection attempt. The test
harness should act like a little hacker, trying all kinds of bad behavior
to break callers.

Many kinds of bad behavior will be similar for different applications
and protocols. For example, refusing connections, connecting slowly,
and accepting requests without reply would apply to any socket proto-
col: HTTP, RMI, or RPC. For these, a single test harness can simulate
many types of bad network behavior. One trick I like is to have different
port numbers indicate different kinds of misbehavior. On port 10200, it
would accept connections but never reply. Port 10201 gets a connection
and a reply, but the reply will be copied from /dev/random. Port 10202
will open a connection, then drop it immediately, and so on. That way,
I don’t need to change modes on the test harness, and a single test
harness can break many applications. It can even help with functional
testing in the development environment by letting multiple developers
hit the test harness from their workstations. (Of course, it’s also worth-
while to let the developers run their own instances of the killer test
harness.)

Bear in mind that your test harness might be really, really good at
breaking, even killing applications. It’s not a bad idea to have the test
harness log requests, in case your application dies without so much as
a whimper to indicate what killed it.

The test harness can be designed like an application server; it can have
pluggable behavior for the tests that are related to the real application.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=139

TEST HARNESS 140

A single framework for the test harness can be subclassed to implement
any application-level protocol, or any perversion of the application-level
protocol, necessary.

Remember This
Emulate out-of-spec failures

Calling real applications lets you test only those errors that the
real application can deliberately produce. A good Test Harness
lets you simulate all sorts of messy, real-world failure modes.

Stress the caller
The Test Harness can produce slow responses, no responses, or
garbage responses. Then you can see how your application reacts.

Leverage shared harnesses for common failures
You don’t necessarily need a separate Test Harness for each inte-
gration point. A “killer” server can listen to several ports, creating
different failure modes depending on which port to which you con-
nect.

Supplement, don’t replace, other testing methods
The Test Harness pattern augments other testing methods. It does
not replace unit tests, acceptance test, FIT tests, and so on. Each
of those techniques help verify functional behavior. Test Harness
helps verify “nonfunctional” behavior while maintaining isolation
from the remote systems.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=140

DECOUPLING MIDDLEWARE 141

5.8 Decoupling Middleware
Middleware is a graceless name for tools that inhabit a singularly messy
space—integrating systems that were never meant to work together.
Rebranded as enterprise application integration, middleware became a
hot property for a few years in the early 2000s and then faded back
into its shadowy, thankless realm. Middleware occupies the essential
interstices between enterprise systems. It is the connective tissue that
bridges gaps between different islands of automation. (How’s that for a
mixed metaphor?)

Often described as “plumbing”—with all the connotations—middleware
will always remain inherently messy, since it must work with different
business processes, different technologies, and even different defini-
tions of the same logical concept. This “unsexiness” must be part of the
reason why service-oriented architectures are currently stealing atten-
tion from the less glamorous, but more necessary, job of middleware.

Done well, middleware simultaneously integrates and decouples sys-
tems. It integrates them by passing data and events back and forth
between the systems. It decouples them by letting the participating
systems removing specific knowledge of and calls to the other systems.
Since integration points are the number-one cause of instability, this
looks like a good thing.

Any kind of synchronous call-and-response or request/reply method
forces the calling system to stop what it’s doing and wait. In this model,
the calling system and the receiving system must both be active at the
same time—they are synchronous in time—though they may be in dif-
ferent places. This category covers remote procedure calls (RPC), HTTP,
XML-RPC, RMI, CORBA, DCOM, and any other analog of local method
calls. Tightly coupled middleware amplifies shocks to the system. Syn-
chronous calls are particularly vicious amplifiers that facilitate cascad-
ing failures.

Less tightly coupled forms of middleware allow the calling and receiving
systems to process messages in different places and at different times.
The venerable IBM MQseries and any of the publish/subscribe mes-
saging systems fall into this category, as do system-to-system messag-
ing via SMTP or SMS. (These latter two protocols frequently have mes-
sage brokers implemented with carbon, hydrogen, oxygen, and nitrogen
rather than silicon. Latency also tends to be high.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=141

DECOUPLING MIDDLEWARE 142

Same Time
Same Host

Same Process

Different Time
Different Host

Different Process

In-Process
Method Calls

Shared Memory
Pipes

Semaphores
Windows Events

Interprocess
Communication

C Functions
Java Calls

Dynamic Libs

DCE RPC
DCOM

RMI
XML-RPC

HTTP

Remote
Procedure Calls

Same Time
Different Host

Different Process

MQ
Pub-Sub

SMTP
SMS

Message
Oriented

Middleware

JavaSpaces
TSpaces

GigaSpaces

Tuple Spaces

Figure 5.4: Coupling Spectrum of Middleware

Figure 5.4 depicts the spectrum of coupling exhibited by different mid-
dleware technologies.

Message-oriented middleware decouples the endpoints in both space
and time. Because the requesting system doesn’t just sit around wait-
ing for a reply, this form of middleware cannot produce a cascading
failure.

The main advantage of synchronous (tightly coupled) middleware lies
in its logical simplicity. Suppose a customer’s proposed credit card
purchase needs to be authorized. If this authorization is implemented
using a remote procedure call or XML-RPC, the application can clearly
decide whether to proceed with the next step of the checkout process
or to send the user back to the payment methods page. By comparison,
if the system just sends a message asking for credit card authoriza-
tion, without waiting for a reply, then it must somehow decide what
to do if the authorization request ultimately fails or, worse, remains
unanswered. Designing asynchronous processes is inherently harder.
The process must deal with exception queues, late responses, callbacks
(computer-to-computer as well as human-to-human), and assump-
tions. These decisions even involve the business sponsors of the calling
system, who will occasionally have to decide what the acceptable level
of financial risk is.

You can apply most of the patterns in this chapter without greatly
affecting the implementation cost of the system. Middleware decisions
are not the same. First, the products are expensive. Second, different

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=142

DECOUPLING MIDDLEWARE 143

styles of middleware necessitate very different designs. That makes the
cost of changing your mind very high. Switching from a request/reply
RPC model to a tuplespace requires different thinking at all levels.

Finally, middleware is often purchased at an enterprise level, so these
decisions will often be made for you, before you even start architecture
or design work on your project.

Remember This
Decide at the last responsible moment

Other stability patterns can be implemented without large-scale
changes to the design or architecture. Decoupling Middleware is
an architecture decision. It ripples into every part of the system.
This is one of those nearly irreversible decisions that should be
made early rather than late.

Avoid many failure modes through total decoupling
The more fully you decouple individual servers, layers, and
applications, the fewer problems you will observe with Integra-
tion Points, Cascading Failures, Slow Responses, and Blocked
Threads. You’ll find that decoupled applications are also more
adaptable, since you can change any of the participants indepen-
dently of the others.

Learn many architectures, and choose among them
Not every system needs to look like a three-tier application with
an Oracle database. Learn many architectural styles, and select
the best architecture for the problem at hand.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=143

Chapter 6

Stability Summary
In time, even shockingly unlikely combinations of circumstances will
eventually occur. If you ever catch yourself saying, “The odds of that
happening are astronomical,” or some similar utterance, consider this:
ten million page views per day over three years (assuming fifty assets
per page) gives your system 547,500,000,000 chances for something
to go wrong. That’s more than five hundred billion opportunities for
bad things to happen. Recent astronomical observations indicate there
are four hundred billion stars in the Milky Way galaxy. Astronomically
unlikely coincidences happen daily.

Astronomically unlikely
coincidences happen
daily.

Failures are inevitable. Our systems, and
those we depend on, will fail in ways large and
small. Stability antipatterns amplify transient
events. They accelerate cracks in the system.
Avoiding the antipatterns does not prevent bad

things from happening, but it will help minimize the damage when bad
things do occur.

Judiciously applying these stability patterns result in software that
stays up, come hell or high water. The key to applying these patterns
successfully is judgment. Examine the software’s requirements cyni-
cally. View other enterprise systems with suspicion and distrust—any
of them can stab you in the back. Identify the threats, and apply stabil-
ity patterns appropriate to each threat. Paranoia is just good thinking.

Staying up is more than half the battle. Consider the odds against your
system. Approximately half of all projects are canceled in development.
Of the survivors, another half are late, overbudget, and do not meet

CHAPTER 6. STABILITY SUMMARY 145

requirements. Of the remainder (less than 25% of all projects) that
make it to production, the majority incur major costs through down-
time, lost revenue, and maintenance costs.

You’ve already stepped over the decaying carcasses of other systems on
your way to production. Be proud!

Sadly, the absence of a problem is not usually noted. You might be
salvaging a badly botched implementation in which case you now have
an opportunity to look like a hero. On the other hand, if you’ve done a
great job of designing a stable system from the beginning, it’s unlikely
that anyone will notice your system’s lack of downtime. That’s just the
way it is. Deliver an unbreakable system, and users will surely go on to
complain about something else. That’s just what users do.

In fact, with a system that never goes down, the users will most likely
complain that it’s slow. Next, you’ll look at capacity and performance
and how to get the most out of your resources.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=145

Part II

Capacity

Chapter 7

Case Study: Trampled by Your
Own Customers

7.1 Countdown and Launch

After years of work, the day of launch finally arrived. I had joined
this huge team (more than three hundred in total) nine months ear-
lier to help build a complete replacement for this retailer’s online store,
content management, customer service, and order-processing systems.
Destined to be the company’s backbone for the next seven years, it was
already more than a year late when I joined the team. For the previ-
ous nine months, I had been in crunch mode: taking lunches at my
desk and working late into the night. Minnesota winter will test your
soul even under the best of times. Dawn rises late, and dusk falls early.
None of us had seen the sun for months. It often felt like an inescapable
Orwellian nightmare. We had crunched through spring, the only season
worth living here for. One night I went to sleep in winter, and the next
time I looked around, I realized summer had arrived.

After nine months, I was still one of the new guys. Some of the develop-
ment teams had crunched for more than a year. They had eaten lunches
and dinners brought in by the client every day of the week. Even today,
some of them still shiver visibly remembering turkey tacos.

Today, however, was the day of triumph. All the toil and frustration,
the forgotten friends, and the divorces were going to fade away after we
launched.

The marketing team—many of whom hadn’t been seen since the
requirements-gathering meetings two years earlier—gathered in a

AIMING FOR QA 148

grand conference room for the launch ceremony, with champagne to
follow. The technologists who had turned their vague and ill-specified
dreams into reality gathered around a wall full of laptops and monitors
that we set up to watch the health of the site.

At 9 a.m., the program manager hit the big red button. (He actually
had a big red button, which was wired to an LED in the next room
where a techie clicked Reload on the browser being projected on the
big screen.) The new site appeared like magic on the big screen in the
grand conference room. Where we lurked in our lair on the other side
of the floor, we heard the marketers give a great cheer. Corks popped.
The new site was live and in production.

Of course, the real change had been initiated by the CDN.1 They had CDN: Content Delivery
Network, also known as
an “edge network”. An
accelerator that caches
images and static
content near the browser.
This removes up to 80%
of requests from your
site’s web servers.

a scheduled update to their metadata set to roll out across their net-
work at 9 a.m. Central time. The change would propagate across the
CDN’s network of servers, taking about eight minutes to be effective
worldwide. We expected to see traffic ramping up on the new servers
starting at about 9:05 a.m. (The browser in the conference room was
configured to bypass the CDN and hit the site directly, going straight
to what the CDN calls the “origin servers.” Marketing people aren’t the
only ones who know how to engage in smoke and mirrors.) In fact, we
could immediately see the new traffic coming in to the site.

By 9:05 a.m., we already had 10,000 sessions active on the servers.

At 9:10 a.m., more than 50,000 sessions were active on the site.

By 9:30 a.m., there were 250,000 sessions active on the site. Then, the
site crashed.

7.2 Aiming for QA

To understand why the site crashed so badly, so quickly, we must take
a brief look back at the three years leading up to that point.

1. In fact, the CDN had given the world a sneak preview of the new site the Saturday
before our Monday launch. Somehow, the metadata change was entered incorrectly, and
the origin server switch took place on Saturday afternoon. From the time when an exec-
utive at the client noticed the new site was visible (and taking orders!) with its partially
loaded content until we identified the CDN as the cause of the problem took about an
hour. It was then another hour to get the change reversed and propagated across the
CDN’s network. Oops!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=148

AIMING FOR QA 149

Every website project is
really an enterprise
integration project.

It’s rare to see such a greenfield project these
days, for a number of good reasons. For
starters, there’s no such thing as a website
project. Every one is really an enterprise inte-
gration project with an HTML interface. Most

projects have at least some kind of back end with which they must inte-
grate. When the back end is being developed along with the front end,
you might think the result would be a cleaner, better, tighter integra-
tion. It’s possible that could happen, but it doesn’t come automatically;
it depends on Conway’s law. The more common result is that both sides
of the integration end up aiming at a moving target.

Replacing the entire commerce stack at once also brings a significant
amount of technical risk. If the system is not built with the stability pat-
terns, it probably follows a typical tightly coupled architecture. In such
a system, the overall probability of system failure is the joint probability
that any one component fails.

Even if the system is built with the stability patterns (this one wasn’t),
a completely new stack means that nobody can be sure how it will run
in production. Capacity, stability, control, and adaptability are all giant
question marks.

Early in my time on the project, I realized that the development teams
were building everything to pass testing, not to run in production.
Across the fifteen applications and more than five hundred integration
points, every single configuration file was written for the integration-
testing environment. Hostnames, port numbers, database passwords:
all were scattered across thousands of configuration files. Worse yet,
some of the components in the applications assumed the QA topol-
ogy, which we knew would not match the production environment. For
example, production would have additional firewalls not present in QA.
(This is a common “penny-wise, pound-foolish” decision that saves a
few thousand dollars on network gear but costs more in downtime and
failed deployments.) Furthermore, in QA, some applications had just
one instance that would have several clustered instances in produc-
tion. In many ways, the testing environment also reflected outdated
ideas about the system architecture that everyone “just knew” would
be different in production. The barrier to change in the test environ-
ment was high enough, however, that most of the development team
chose to ignore the discrepancies rather than lose one or two weeks of
their daily build-deploy-test cycles.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=149

AIMING FOR QA 150

Conway’s Law

In a Datamation article in 1968, Melvin Conway described a
sociological phenomenon: “Organizations which design sys-
tems are constrained to produce designs whose structure are
copies of the communication structures of these organizations.”
It is sometimes stated colloquially as, “If you have four teams
working on a compiler, you will get a four-pass compiler.”

Although this sounds like a Dilbert cartoon, it actually stems from
a serious, cogent analysis of a particular dynamic that occurs
during software design. For an interface to be built within or
between systems, Conway argues, two people must—in some
fashion—communicate about the specification for that inter-
face. If the communication does not occur, the interface can-
not be built.

Note that Conway refers to the “communication structure” of
the organization. This is usually not the same as the formal struc-
ture of the organization. If two developers embedded in differ-
ent departments are able to communicate directly, that com-
munication will be mirrored in one or more interfaces within the
system.

I’ve found Conway’s law useful in a proscriptive mode—
creating the communication structure that I wanted the soft-
ware to embody—and in a descriptive mode—mapping the
structure of the software to help understand the real communi-
cation structure of the organization.

Conway’s original article is available on the web at the author’s
site http://www.melconway.com/research/committees.html.

http://www.melconway.com/research/committees.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=150

AIMING FOR QA 151

When I started asking about production configurations, I thought it was
just a problem of finding the person or people who had already figured
these issues out. I questioned, “What source control repository are the
production configurations checked into?” and “Who can tell me what
properties need to be overridden in production?”

Sometimes when you ask questions but don’t get answers, it means
nobody knows the answers. At other times, though, it means nobody
wants to be seen answering the questions. On this project, it was some
of both.

I decided to compile a list of properties that looked as if they might need
to change for production: hostnames, port numbers, URLs, database
connection parameters, log file locations, and so on. Then I hounded
developers for answers. A property named “host” is ambiguous, espe-
cially when the host in QA has five applications on it. It could mean “my
own hostname,” it could mean “the host that is allowed to call me,” or
it could mean “the host I use to launder money.” Before I could figure
out what it should be in production, I had to know which it was.

Once I had a map of which properties needed to change in produc-
tion, it was time to start defining the production deployment structure.
Thousands of files would need changes to run in production. All of them
would be overwritten with each new software release. The idea of man-
ually editing thousands of files, in the middle of the night, for each new
release was a nonstarter. In addition, some properties were repeated
many, many times. Just changing a database password looked as if
it would necessitate editing more than a hundred files across twenty
servers, and that problem would only get worse as the site grew.

Faced with an intractable problem, I did what any good developer does:
I added a level of indirection. The key was to create a structure of over-
rides that would remain separate from the application code base. The
overrides would be structured such that each property that varied from
one environment to the next existed in exactly one place. Then each
new release could be deployed without overwriting the production con-
figuration. These overrides also had the benefit of keeping production
database passwords out of the QA environment (which developers could
access) and out of the source control system (which anyone in the com-
pany could access), thereby protecting our customers’ privacy.

In setting up the production environment, I had inadvertently volun-
teered to assist with the load test.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=151

LOAD TESTING 152

7.3 Load Testing

With a new, untried system, the client knew that load testing would be
critical to a successful launch. The client had budgeted a full month for
load testing, longer than I had ever seen. Before the site could launch,
marketing had declared that it must support 25,000 concurrent users.

Load testing is usually a pretty hands-off process. You define a test
plan, create some scripts (or let your vendor create the scripts), con-
figure the load generators and test dispatcher, and fire off a test run
during the small hours of the night. The next day, after the test is done,
you can analyze all the data collected during the test run. You analyze
the results, make some code or configuration changes, and schedule
another test run. Time elapsed before the next test: about three or four
days.

We knew that we would need much more rapid turnaround. So, we got
a bunch of people on a conference call: the test manager, an engineer
from the load test service, an architect from the development team,
a DBA to watch database usage, and me (monitoring and analyzing
applications and servers).

Load testing is both art and science. It is impossible to duplicate real
production traffic, so you use traffic analysis, experience, and intu-
ition to achieve as close a simulation of reality as possible. Traffic
analysis gives you nothing but variables: browsing patterns, number
of pages per session, conversion rates, think time distributions, con-
nection speeds, catalog access patterns, and so on. Experience and
intuition help you assign importance to different variables. We expected
think time, conversion rate, session duration, and catalog access to be
the most important drivers. Our first scripts provided a mix of “grazers,”
“searchers,” and “buyers.” More than 90% of the scripts would view
the home page and one product detail page. These represented bargain
hunters who hit the site nearly every day. We optimistically assigned
4% of the virtual users to go all the way through checkout. On this site,
as with most ecommerce sites, checkout is one of the most expensive
things you can do. It involves external integrations (CCVS, address nor-
malization, inventory checks, and available-to-purchase checks) and
requires more pages than almost any other session. A user who checks
out often accesses twelve pages during the session, whereas a user who
just scans the site and goes away typically hits no more than seven
pages. We believed this mix of virtual users would be slightly harsher
on the systems than real-world traffic would be.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=152

LOAD TESTING 153

What Is a Concurrent User?

Load testing companies often talk about “concurrent users,”
when they really mean “bots.” Some business sponsors have
picked up on the term and use it when they really mean “ses-
sions.” There is no such thing as a “concurrent user.” Unless you
are building a pure two-tier client/server system where users
connect directly to the database, the concurrent user is fiction.

Counting concurrent users is a misleading way of judging the
capacity of the system. If 100% of the users are viewing the
front page and then leaving, your capacity will be much, much
higher than if 100% of the users are actually buying something.

You cannot measure the concurrent users. There is no long-
standing connection, just a series of discrete impulses. The
servers receive this sequence of requests that they tie together
by some identifier. This series of requests gets identified with
a session—an abstraction to make programming applications
easier.

First
Request

Last
Request

Session
Timeout

Dead TimeSession Active

Notice that the user actually goes away at the start of the dead
time. The server cannot tell the difference between a user who
is never going to click again and one who just has not clicked
yet. Therefore, the server applies a timeout. It keeps the session
alive for some number of minutes after the user last clicked.

That means the session is absolutely guaranteed to last longer
than the user. Counting sessions overestimates the number of
users.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=153

LOAD TESTING 154

What Is a Concurrent User? (cont.)

5 sessions
2 users

t

sessions

When you look at all of the active sessions, some of them
are destined to expire without another request. The number
of active sessions is one of the most important measurements
about a web system, but it should not be confused with count-
ing users.

On the first test run, the test had ramped up to only 1,200 concurrent
users when the site got completely locked up. Every single application
server had to be restarted. Somehow, we needed to improve capacity by
twenty times.

We were on that conference call twelve hours a day for the next three
months, with many interesting adventures along the way. During one
memorable evening, the engineer from the load-testing vendor saw all
the Windows machines in their load farm start to download and install
some piece of software. The machines were being hacked while we
were on the call using them to generate load! On another occasion, it
appeared that we were hitting a bandwidth ceiling. Sure enough, some
AT&T engineer had noticed that one particular subnet was using “too
much” bandwidth, so he capped the link that was generating 80% of
our load. But, aside from the potholes and pitfalls, we also made huge
improvements to the site. Every day, we found new bottlenecks and
capacity limits. We were able to turn configuration changes around
during a single day. Code changes took a little longer, but they still
got turned around in two or three days.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=154

MURDER BY THE MASSES 155

We even accomplished a few major architecture changes in less than a
week. I’ll discuss these improvements in the next chapter.

This early preview of operating the site in production also gave us an
opportunity to create scripts, tools, and reports that would soon prove
to be vital.

After three months of this testing effort and more than sixty new appli-
cation builds, we had achieved a tenfold increase in site capacity. It
could handle 12,000 active sessions, which we estimated to represent
about 10,000 customers at a time (subject to all the caveats about
counting customers). Furthermore, when stressed over the 12,000 ses-
sions, the site didn’t crash anymore, although it did get a little “flaky.”
During these three months, marketing had also reassessed their tar-
get for launch. They decided they would rather have a slow site than
no site. Instead of requiring 25,000 concurrent users, they thought
12,000 sessions would suffice for launch during the slow part of the
year. Everyone expected that we would need to make major improve-
ments before the holiday season.

7.4 Murder by the Masses

So after all that load testing, what happened on the day of the launch?
How could the site crash so badly and so fast? Our first thought was
that marketing was just way off on their demand estimates. Perhaps
the customers had built up anticipation for the new site. That theory
died quickly when we found out that customers had never been told
the launch date. Maybe there was some misconfiguration or some mis-
match between production and the test environment?

Sessions are the Achilles
heel of every
application server.

The session counts led us almost straight to
the problem. It was the number of sessions
that killed the site. Sessions are the Achilles
heel of every application server. Each session
consumes resources, mainly RAM. With ses-
sion replication enabled (it was), each session gets serialized and trans-
mitted to a session backup server after each page request. That meant
the sessions were consuming RAM, CPU, and network bandwidth.
Where could all the sessions have come from?

Eventually, we realized noise was our biggest problem. All of our
load testing was done with scripts that mimicked real users with real
browsers. They went from one page to another linked page. The scripts

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=155

MURDER BY THE MASSES 156

all used cookies to track sessions. They were polite to the system. In
fact, the real world can be rude, crude, and vile.

Things happen in production—bad things that you can’t always pre-
dict. One of the difficulties we faced came from search engines. Search
engines drove something like 40% of visits to the site. Unfortunately, on
the day of the switch, they drove customers to old-style URLs. The web
servers were configured to send all requests for .html to the application
servers (because of the application servers’ ability to track and report
on sessions). That meant that each customer coming from a search
engine was guaranteed to create a session on the app servers, just to
serve up a 404 page.

Another huge issue we found was with the search engines spidering
the site. Some of the spiders (particularly for the lesser-known search
engines) do not keep track of cookies, for legitimate reasons. They
do not want to influence marketing data or advertising revenue. The
spiders generally expect the site to support session tracking via URL
rewriting. Without the cookies, however, they were creating a new ses-
sion on each page request. That session was then going resident in
memory until it expired (thirty minutes). We found one search engine
that was creating up to ten sessions per second.

Then there were the scrapers and shopbots. We found nearly a dozen
high-volume page scrapers. Some of them were very clever about hid-
ing their origins. One in particular sent page requests from a variety
of small subnets to disguise the fact that they were all originating at
the same source. In fact, even consecutive requests from the same IP
address would use different User-Agent strings to mask the true origin. User-Agent: an HTTP

header sent by the
browser to identify itself.
Nearly all browsers
claim to be some form of
Mozilla, even Microsoft’s
Internet Explorer.

ARIN2 can still identify the source IP addresses as belonging to the same
entity, though. These commercial scrapers actually sell a subscription
service. A retailer wanting to keep track of a competitor’s prices can
subscribe to a report from one of these outfits. It delivers a weekly or
daily report of the competitor’s items and prices. That’s one reason why
some sites won’t show you a sale price until you put the item in your
cart. Of course, none of these scrapers properly handled cookies, so
each of them was creating additional sessions.

We also had the amateur shopbots to handle. Several source IPs hit the
same product detail page URL from the old site once per minute. It took

2. See http://www.arin.net.

http://www.arin.net
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=156

THE TESTING GAP 157

us a while to identify the product, which ultimately turned out to be a
PlayStation 2. Three years after PS2’s famous shortages, scripts were
still running to look for the quantity available on the console, which
created even more sessions.

Finally, there were the sources that we just called “random weird
stuff.”3 For example, one computer on a Navy base would show up
as a regular browsing session, and then about fifteen minutes after the
last legitimate page request, we’d see the last URL get requested again
and again. More sessions.

7.5 The Testing Gap

Despite the massive load-testing effort, the site still crashed when it
confronted the real world. Two things were missing in our testing.

First, we tested the application the way it was meant to be used. Test
scripts would request one URL, wait for the response, and then request
another URL that was present on the response page. None of the load-
testing scripts tried hitting the same URL, without using cookies, 100
times per second. If they had, we probably would have called the test
“unrealistic” and ignored that the servers crashed. Since the site used
only cookies for session tracking, not URL rewriting, all of our load test
scripts used cookies.

In short, all the test scripts obeyed the rules. It would be like an applica-
tion tester who only ever clicked buttons in the right order. Most testers
I’ve known are perverse enough that if you tell them the “happy path”
through the application, that’s the last thing they’ll do. It should be the
same with load testing. “Noise” might just bleed away some amount of
your capacity, but it could bring your site down.

Don’t just follow the
“happy path.”

Second, the application developers did not
build in the kind of safety devices that would
cut off bad things. When something was going
wrong, the application would keep sending
threads into the danger zone. Like a car crash on a foggy freeway, the
new request threads would just pile up into the ones that were already
broken or hung.

3. OK, we didn’t really use the word stuff.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=157

AFTERMATH 158

7.6 Aftermath

The grim march in the days and weeks following launch produced
impressive improvements. The CDN’s engineers redeemed themselves
for their “sneak preview” error before launch. In one day, they used
their edge server scripting to help shield the site from some of the worst
offenders. They added a gateway page that served three critical capa-
bilities. First, if the requester did not handle cookies properly, the page
redirected the browser to a separate page that explained how to enable
cookies. Second, we could set a throttle to determine what percentage of
new sessions would be allowed. If we set the throttle to 25%, then only
25% of requests for this gateway page would serve the real home page.
The rest of the requests would receive a very politely worded message
asking them to come back later. Over the next three weeks, we would
have an engineer watching the session counts at all times, ready to pull
back on the throttle anytime the volume appeared to be getting out of
hand. If the servers got completely overloaded, it would take nearly an
hour to get back to serving pages, so it was vital to use the throttle to
keep them from getting saturated. By the third week, we were able to
keep the throttle at 100% all day long. Third, we could block specific
IP addresses from hitting the site. Whenever we observed one of the
shopbots or request floods, we would add them to the blocked list.

All those things could have been done as part of the application, but
in the mad scramble following launch, it was easier and faster to have
the CDN handle them for us. We had our own set of rapid changes to
pursue.

The home page was completely dynamically generated, from the
JavaScript for the drop-down category menus to the product details
and even to the link on the bottom of the page for “terms of use.” One of
the application platform’s key selling points was personalization. Mar-
keting was extremely keen on that feature but had not decided how
to use it. So, this home page being generated and served up five mil-
lion times a day was exactly the same every single time it got served.
It required more than 1,000 database transactions to build the page.
(Even if the data was already cached in memory, a transaction was still
created because of the way the platform works.) The JavaScript drop-
down menus with nice rollover effects required traversal of eighty-odd
categories. Also, traffic analysis showed that a significant percentage
of visits per day just hit the main page. Most of them did not present
an identification cookie, so personalization wasn’t even possible. Still, if

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=158

AFTERMATH 159

the application server got involved in sending the home page, it would
take time and create a session that would occupy memory for the next
thirty minutes. So, we quickly built some scripts that would make a
static copy of the home page and serve that for any unidentified cus-
tomers.

Have you ever looked at the legal conditions posted on most commerce
sites? They say wonderful things like “By viewing this page you have
already agreed to the following conditions....” It turns out that those
conditions exist for one reason. When the retailer discovers a screen
scraper or shopbot, they can sic the lawyers on the offending party.
We kept the legal team busy those first few days. After we identified
another set of illicit bots hitting the site to scrape content or prices, the
lawyers would send cease-and-desist notices; most of the time, the bots
would stop. (Like shooing a dog away from the dinner table, though,
they always come back—sometimes even in disguise.)

One of the most heroic efforts in that chaotic time happened the week
of launch. The IT operations manager identified six extra servers that
matched our configuration. They had been requisitioned by a differ-
ent department but were not in use yet. The manager reallocated them
for the commerce site (and presumably ordered replacements) as extra
application servers. One of our sysadmins spent a marathon 36-hour
shift provisioning them: operating system install, network configura-
tion, filesystem configuration, SAN access, and monitoring. Once he
got to that point, we had someone drive him back to his hotel room
where he could crash. I was then able to get the application server and
applications installed and configured the same day. We doubled the
capacity of the application server layer in two days, from bare metal to
serving requests.

This particular application server’s session failover mechanism is based
on serialization. The user’s session remains bound to the original server
instance, so all new requests go back to the instance that already has
the user’s session in memory. After every page request, the user’s ses-
sion is serialized and sent over the wire to a “session backup server.”
The session backup server keeps the sessions in memory. Should the
user’s original instance go down—deliberately or otherwise—the next
request gets directed to a new instance, chosen by the load manager.
The new instance then attempts to load the user’s session from the
session backup server. This mechanism works well (and scales surpris-
ingly well), considering that the sessions are all kept in memory rather

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=159

AFTERMATH 160

than in a database or on disk; that is, it scales well so long as the ses-
sion data is kept small. For instance, it is common to include the user’s
ID, her shopping cart ID, and maybe some information about her cur-
rent search, such as keywords and results page index. It would not be
typical to put the entire shopping cart in the session in serialized form
or the entire search results (up to 2,000 results). Sadly, that is exactly
what we found in the sessions. We had no choice but to turn off session
failover.

All these rapid response actions share some common themes. First,
nothing is as permanent as a temporary fix. Most of these remained
in place for the next year or two. Second, they all cost a tremendous
amount of money, mainly in terms of lost revenue. Clearly, customers
who get throttled away from the site are less likely to place an order. (At
least, they are less likely to place an order at this site.) Disabling session
failover meant that any user in the checkout process on an instance
would not be able to finish checking out when that instance went down.
Instead of getting an order confirmation page, for example, they would
get sent back to their shopping cart page. Most customers who got
sent back to their cart page, when they had been partway through the
checkout process, just went away. Making the home page static made
personalization difficult, even though it had been one of the original
goals of the whole rearchitecture project. The direct cost of doubling
the application server hardware is obvious, but it also brought added
operational cost. Finally, there is the opportunity cost of spending the
next year in remediation projects instead of rolling out new, revenue-
generating features.

The worst part is that no amount of those losses were necessary. It
is now more than two years since that site launched. Today, the site
handles more than four times the load, on fewer servers, without hav-
ing gone through a hardware refresh. The software has improved that
much. If the site had originally been built the way it is now, the engi-
neers would have been able to join marketing’s party and pop a few
champagne corks instead of popping fuses.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=160

Chapter 8

Introducing Capacity
Back before the dot-com crash, one IBM commercial perfectly captured
the paradox of deploying systems. A group of anxious entrepreneurs
gathered around a screen to observe the launch of their new site.
The “orders received” counter ticked upward a few clicks, and the
group cheered. Their cheers turned into uncomfortable silence when
the counter started to zoom toward the stratosphere.

I know the feeling. It is the same sinking, helpless feeling that the
launch team had on the ecommerce site from the previous chapter.
On the other hand, I’ve seen a system improve over eighteen months to
handle four times the demand with two-thirds of the original hardware.
The improved capacity came entirely from software design changes.

This chapter presents a way of thinking about capacity and some spe-
cific patterns and antipatterns that will affect your system’s capacity.
The next chapter will examine the financial aspects of capacity plan-
ning.

8.1 Defining Capacity

Marketers and managers toss words such as performance and capacity
around with casual abandon. Architecture and development requires
more precision. At the risk of being pedantic, let me define some terms.

Performance measures how fast the system processes a single trans-
action. This can be measured in isolation or under load. The system’s
performance has a major impact on its throughput. Even if using the
word performance, the customer does not really care about perfor-
mance. Customers are interested in either throughput or capacity. End

CONSTRAINTS 162

users, on the other hand, don’t care about overall capacity; they care
only about the performance of their own transactions. They can’t log
in to the servers to see whether the applications are running. As far
as they know, when the response time exceeds their expectation, the
system is down.

Throughput describes the number of transactions the system can pro-
cess in a given time span. The system’s performance clearly affects its
throughput but not necessarily in a linear way. Throughput is always
limited by a constraint in the system—a bottleneck. Optimizing per-
formance of any nonbottleneck part of the system will not increase
throughput.

Scalability is commonly used two different ways. First, it can describe
how throughput changes under varying loads. A graph of requests per
second versus response time measures scalability. In the second sense,
it refers to the modes of scaling supported by a system. I will use the
word scalability in the sense of adding capacity to the system.

Finally, the maximum throughput a system can sustain, for a given
workload, while maintaining an acceptable response time for each indi-
vidual transaction is its capacity.

Notice that the definition of capacity includes several important vari-
ables. There is no single fixed number that you can regard as your
capacity. If the workload changes—perhaps because users are inter-
ested in different services around the holidays—then your capacity
might be dramatically different.

This definition also requires a judgment. What constitutes an “accept-
able response time?” For an ecommerce retailer, any response time
longer than two seconds will cause customers to walk away. For a
financial exchange, it could be shorter—on the order of milliseconds.
A travel reservation system, on the other hand, might be allowed five
hundred milliseconds for any availability search but thirty seconds to
confirm a reservation.

8.2 Constraints

The hardest thing about dealing with capacity is working with nonlin-
ear effects. Our brains can subconsciously integrate differential equa-
tions fast enough to drive a car or catch a baseball. Somehow, though,
whenever we start talking about capacity, everybody wants to fall back

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=162

CONSTRAINTS 163

to linear projection. Have you ever been asked, “So, if we can handle
10,000 users at 50% CPU usage, we should be able to handle 20,000
users total, right?”

In every system, exactly one constraint determines the system’s capac-
ity.1 This constraint is whatever limiting factor hits its ceiling first. Once
the constraint is reached, all other parts of the system will begin to
either queue up work or drop it on the floor. For example, suppose that
the constraint is your database server. If you are using Oracle with the
multithreaded server option (MTS) enabled, then the server can process
as many simultaneous requests as there are daemon processes config-
ured. Let’s say that it’s a small database server, with just fifty pro-
cesses handling all the incoming requests. The fifty-first request just
has to wait its turn. The application server that issued the fifty-first
request could probably serve more pages, if it could just get its data
back. Likewise, the web server’s worker is certainly idling, waiting for
the application server to respond.

Suppose instead that the application servers’ RAM is the constraint.
Each user session consumes a certain amount of RAM. Once all avail-
able RAM is consumed, any new sessions cause the application server
to start paging. Again, the web server is probably just waiting for a
response from the application server. The database server will actually
be happier once the application server starts thrashing—it gets to kick
back and relax for a change.

Any nonconstraint metric is useless for projecting or increasing capac-
ity. If smoke is trickling out of your database, it does no good to look
at your web server’s CPU usage to project the total number of sessions
your system can handle. This also means that once you have found the
constraint, you can reliably predict capacity improvements based on
changes to that constraint. If memory is the constraint, then increas-
ing the memory will increase capacity, until, of course, something else
becomes the constraint.

Understanding the capacity of any system requires systems thinking, as
described by Peter Senge in The Fifth Discipline [Sen90]—the ability to
think in terms of dynamic variables, change over time, and interrelated
connections. No one simple formula will produce an all-encompassing
“capacity number.” Start by considering the system as a whole. Find
the driving variables. A driving variable is something like “page requests

1. See The Goal [Gol04] for more information about the Theory of Constraints.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=163

CONSTRAINTS 164

per second.” At the “whole-system” level, an easy way to find the driv-
ing variables is to look for things that are outside your control, such
as user demand, the clock, the calendar, and so on. Driving variables
are causally correlated to following variables. Following variables move
in response to driving variables. All directly measurable performance
statistics are following variables: CPU usage, free memory, I/O rates,
page-swapping rates, network bandwidth, and so on. Load testing,
stress testing, observations of production systems, and data analysis
will help you determine following variables correlated to each driving
variable.2 Be aware that a single following variable might have signifi-
cant correlation to more than one driving variable.

From the whole-system view, you can begin decomposing into layers or
subsystems, again looking for driving variables and following variables.
These will often change their nature from one layer to the next. For
example, database I/O drives application server response time, which
drives web server memory usage. In this way, a following variable in
one relationship can be a driving variable in another relationship. This
web of interrelations shows you how changes in the primary driving
variables ripple through the entire system.

The constraint in your system will be a limit in one of the following
variables. When the constraining variable approaches its limit, it can no
longer satisfy the demands of the driving variable. In a correlation anal-
ysis with variable windows, you will see a strong correlation between
the constraining variable and the primary driving variables up until
the constraint is reached. At that point, the correlation breaks down,
because the demand continues to rise, but servicing of that demand
must fall off. This produces the well-known knee in load-testing charts.
The rapid falloff at the knee indicates that a constraint has already
been reached.

Once you have identified the constraint, the rest is easy. To improve
capacity, you must elevate the constraint by increasing the resource
needed for the constraining variable or decreasing your usage of the
resource.

2. You’re looking for a high correlation coefficient, somewhere between 0.8 (highly cor-
related) and 1.0 (perfect correlation).

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=164

INTERRELATIONS 165

8.3 Interrelations

You will often see effects in one layer surface as causes in another
layer. For example, if demand on one layer exceeds its capacity, then
that layer’s performance degrades. It responds slowly or not at all. Slow
response is actually worse than no response. When that happens, the
slowdown in one layer can trigger a cascading failure in another layer.
This can make it difficult to separate capacity questions from stability
questions. During the launch of the retail site described in Chapter 7,
Trampled by Your Own Customers, on page 147, the team experienced
a severe capacity problem that led directly to a stability problem.

8.4 Scalability

Successful systems get more demand placed on them over time. At
some point, the system will need more capacity, which often requires
additional hardware. A horizontally scalable system can grow by adding
more servers. A vertically scalable system requires upgrades to the
existing servers. These are sometimes described as “getting wide” or
“getting big.”

Any server that can be placed in a homogeneous pool of resources,
behind a load balancer or virtual IP address, allows horizontal scaling,
as shown in Figure 8.1, on the following page. You get perfect horizontal
scaling when each server can run without knowing anything about any
other server. These “shared-nothing” architectures provide nearly lin-
ear growth in capacity. Doubling the number of servers should almost
double the capacity (unless the added load pummels some other service
into submission). Cluster architectures also allow horizontal scaling,
though they usually have somewhat less than linear benefit, because
of the overhead of cluster management.

Web servers are perfectly horizontally scalable. So are Ruby on Rails
servers. J2EE application servers such as WebSphere, WebLogic, and
JBoss are horizontally scalable via clustering.

Sometimes, it’s impractical or impossible to add more servers in par-
allel. When that happens, each individual server needs to be as large
as possible. Database servers, for example, get very unwieldy when you
try to cluster three or more redundant servers. It’s better to run a beefy
pair with failover.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=165

MYTHS ABOUT CAPACITY 166

Load Balancer /
Cluster Manager

Server 1
50%

Server 2
50%

Clients

Before

Load Balancer /
Cluster Manager

Server 1
33%

Server 2
34%

Clients

After

Server 3
33%

Figure 8.1: Horizontal Scaling

Scaling vertically requires enough headroom in the server chassis to
allow more CPUs and RAM to be added. See Figure 8.2, on the next
page. Once the chassis is maxed out, it’s a forklift upgrade to add more Forklift upgrade:

replacing the entire
chassis of a server.
Large database servers
can weigh hundreds of
pounds.

horsepower to the individual machines. Since boxes that can grow to
large numbers of CPUs tend to be the most expensive end of the product
line, a vertically scalable architecture has a higher initial cost than a
horizontally scalable one. A horizontally scalable architecture lets you
spend your infrastructure dollars more flexibly; you won’t have so much
capital tied up in a few huge chassis. Instead, you can start with the
smallest number of servers you need and spend incrementally. (This
also helps you take advantage of the time value of money, instead of
forcing you to put your largest expenditures up front.)

8.5 Myths About Capacity

People have been known to believe some strange things, such as the
medieval notion that witches would float like a duck or that linear pro-
jection of CPU usage can tell you the capacity of a system. Some of
these beliefs are harmless. If the operations manager thinks that the
system crashes whenever he wears his Hawaiian shirt, you might actu-
ally be better off not disabusing him of his superstition. On the other
hand, some fallacious beliefs cost the company millions of dollars.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=166

MYTHS ABOUT CAPACITY 167

Server 1
4 CPUs

8 GB RAM

Server 2
4 CPUs

8 GB RAM

Clients

Before

Virtual IP

Server 1
16 CPUs

32 GB RAM

Server 2
16 CPUs

32 GB RAM

Clients

After

Virtual IP

Figure 8.2: Vertical Scaling

CPU Is Cheap
I’ve seen terrible offenses committed by bad developers justifying their
sloppiness with a glib assertion that CPU is cheap. It would be like
saying, “Peanut butter is cheap, so I’ll use three times the usual amount
to make this sandwich.” In the 1960s, a computer cost several years
worth of a programmer’s salary. It was natural to spend hours or days
of a programmer’s time squeezing every last cycle out of a program.
That’s a case of using the cheap resource to maximize usage of the
expensive resource. Today, however, a CPU typically costs less than
half a days worth of programmer time. So, why bother spending the
programmers’ time optimizing for CPU usage?

The silicon microchips themselves might be cheap (relative to times
past, anyway), but CPU cycles are not cheap. Every CPU cycle con-
sumes clock time. Clock time is latency. A wasteful application makes
its users wait longer than they need to, and if there’s anything users
hate, it’s waiting. For web systems, latency in the application has a
dual effect. The added processing directly increases the burden on the
application servers themselves. Suppose that an application takes just
250 milliseconds of extra processing per transaction. If the system pro-

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=167

MYTHS ABOUT CAPACITY 168

cesses a million transactions a day, that extra 250 milliseconds per
transaction makes for an extra 69.4 hours of compute time every day.
Assuming an 80% load factor on each server, you’ll need four additional
servers to handle this load.

In reality, 250
milliseconds per
transaction adds up to
69.4 hours of CPU time
every day.

Since most application servers process trans-
actions on threads from a pool, there’s a
nonlinear effect on the throughput lurking
here. The longer a request-handling thread
is checked out from the pool, the higher the
probability that an incoming request must be
queued instead of executing immediately.

Latency in the application servers harms the web servers, too. While
a web server is waiting for the application server to respond, it’s hold-
ing certain idle resources: at least two sockets (one for the incoming
HTTP request and one to the application server), some memory for the
request state, and some memory for a partially buffered response. Even
if the web server does nothing at all to service that connection, those
resources are scarce. Application server CPU usage directly drives web
server memory usage.

Finally, some CPUs cost more than others. I don’t just mean that PA-
RISC chips cost more than Intel x86 chips. I mean that only so many
chips fit into a single machine. If you are building with four-way boxes,
then the fifth CPU has a disproportionate cost because you have to
buy a new chassis. The extra chassis requires its own RAM, probably
some local disk, NICs, possibly a Fibre Channel adapter, cooling fans,
and so on. It needs its own rack space, or floor space if it is large
enough. Your software might be licensed per host, rather than per CPU.
Monitoring/managing an extra box costs more. The extra box puts more
burden on the data center’s cooling system.

These charts show the marginal cost per CPU vs. the CPU count. These
assume no disk space, software cost, or management costs. This is just
the cost of the CPU chips, the chassis, and RAM.

For these entry-level servers in Figure 8.3, on the following page, the
cost differential is not large, because the chassis itself does not cost
much. The differential comes mostly from the extra RAM and disk space
needed. Still, the multiplier for a “breaking” CPU vs. a “nonbreaking”
CPU is about 1.2. That is, the cost of the third CPU is about 1.2 times
the cost of the second CPU.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=168

MYTHS ABOUT CAPACITY 169

Marginal Cost per CPU - Sun v440�

$0�

$2,000�

$4,000�

$6,000�

$8,000�

$10,000�

$12,000�

$14,000�

$16,000�

2� 5� 8� 11
�

14
�

17
�

20
�

23
�

26
�

29
�

32
�

35
�

38
�

41
�

44
�

47
�

50
�

53
�

56
�

59
�

62
�

65
�

68
�

71
�

74
�

77
�

80
�

83
�

86
�

89
�

92
�

95
�

Total CPUs Needed�

C
o

st
 o

f
ea

ch
 a

d
d

ed
 C

P
U

�

Figure 8.3: Cost per CPU for Sun 440 Servers

On a bigger iron, this picture changes radically. More advanced systems
have a much higher cost when you cross that threshold. The chassis for
a Sun Fire 6900—shown in Figure 8.4, on the next page—costs more
than $200,000. A new chassis for an Sun E25K, with just the mini-
mal configuration, costs more than a million dollars. The breakpoint
comes at a much higher CPU count, of course—the E25K can take 72
processors—but a million dollars will pay for a lot of profiling and opti-
mization in the application stack. You want to be sure that there are no
wasted cycles before laying down a million dollars. You definitely want
to make sure you need it before committing to that 73rd CPU!

Storage Is Cheap
It is common to hear people assert that disk space is cheap. Who could
argue with that? After all, ten years ago storage cost around a dollar per
megabyte; now it is less than fifty cents per gigabyte.3 True, there’s still

3. Source: Pricewatch (http://www.pricewatch.com), January 13, 2007; 500GB SATA drive
for $147.

http://www.pricewatch.com
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=169

MYTHS ABOUT CAPACITY 170

Marginal Cost per CPU - Sun Fire 6900�

$-�

$100,000�

$200,000�

$300,000�

$400,000�

$500,000�

$600,000�

$700,000�

$800,000�

$900,000�

16
�

20
�

24
�

40
�

44
�

48
�

64
�

68
�

72
�

88
�

92
�

96
�

Total CPUs Needed�

C
o

st
 o

f
ea

ch
 a

d
d

ed
 C

P
U

�

Figure 8.4: Cost per CPU for Sun Fire 6900

the SCSI premium, if that’s the direction you are going, but drives are
cheap enough that a laptop can carry every picture you’ve ever taken.
(You professional photographers are excluded.)

Storage is a service, not
a device.

The trouble is that the modern definition of
storage is much more than just individual
drives. Storage is the entire managed system of
drives, interconnects, allocation, redundancy,

and backups needed to deliver high levels of service at efficient costs.
Storage is more of a service than a piece of commodity hardware in
today’s large enterprise. It begins with drives, but it does not end there.

Disks might be local to a server. In that case, each server has to have
space enough for the following:

• The operating system
• The applications

• The local configurations or data
• The log files

• The temporary working space needed by the applications

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=170

MYTHS ABOUT CAPACITY 171

Every single server needs that much space. Here is another multiplier
effect: 1GB of disk might be cheap to purchase, but you actually have
to purchase that 1GB of disk n times over, once for each server. Twenty
servers makes 20GB, not 1GB.

Also, don’t forget to consider the effects of RAID. Almost all data center
class servers boot from RAID 1 volumes. RAID 1 mirrors drives, which
requires 100% overhead, or double the number of disks. Data tends to
get stored on RAID 5 volumes, which has 20% overhead. Either way,
there’s another multiplier effect. If you’re using mirrored drives, double
the space required. That 1GB now looks like 40GB (1GB, mirrored, for
each of the twenty servers).

It gets even worse when you consider backups. An extra gigabyte of
data across twenty servers could be the added data that pushes your
backups out of their window. That would force you to get more tape
drives running in parallel to finish the backups in time. More tapes
might also be needed.

A gigabyte of data on local storage costs less than one dollar. In the
enterprise, however, managed storage can be charged back at rates Managed storage: space

on disk drives plus such
high-availability features
as RAID striping or
mirroring plus backups.

of up to $7 per gigabyte. It’s very important to discuss storage and
storage management with your company’s IT group when designing for
production.

Bandwidth Is Cheap
This myth is less frequently said but is just as often assumed. In today’s
market an OC3 connection costs from $7,500 to $12,000 per month.
A serious business will have at least a pair of connections, preferably
from different carriers. Load balancing both connections gets you a the-
oretical maximum of 310Mb per second of bandwidth for $15,000 to
$24,000 per month.

Based on the shape of your traffic, you might find it advantageous to get
a burstable connection instead of a dedicated one. A dedicated connec-
tion offers the most predictable pricing. You have the same bandwidth
available every second of every day for a flat rate. With a burstable con-
nection, you pay a flat rate, usually much less than the dedicated rate
charge, for the “committed” bandwidth. As long as you stay below that
committed level, you pay nothing extra.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=171

MYTHS ABOUT CAPACITY 172

Joe Asks. . .
What Are SAN and NAS, and What’s the Difference?

Don’t you just love when vendors work so hard to brand them-
selves and position themselves differently that they end up
sounding almost exactly the same? SAN and NAS are radically
different under the covers, but those differences get masked by
palindromic acronyms.

Network-attached storage (NAS) refers to a storage appliance
that plugs into your IP network that provides space via NFS
or CIFS (Windows shares). NAS devices often support multiple
ancillary protocols such as HTTP and FTP, all from one set of disks
and their filesystems. NAS devices are commonly built on top of
Linux or embedded Windows, though some are available with
other flavors of UNIX on them. Most NAS appliances have multi-
ple drives that can be configured as RAID 0, 1, or 5.

Storage area networks (SANs) are a completely different ani-
mal. A SAN is really a completely separate network from your
existing IP network. SANs use Fibre Channel (FC) networks that
run at 2GB per second. If you are using a SAN, then somewhere
there is a large frame with many disk drives plugged into it. SAN
management software allows the administrators to create log-
ical volumes—with any RAID level—out of the physical drive. To
the client operating system, the SAN host bus adapter (HBA)
makes the remote drives appear just like local, physical drives.

Because a SAN is really an entirely new and separate net-
work, it requires lots of costly infrastructure. Because the SAN will
immediately become business-critical, that infrastructure must
be fast, reliable, and redundant. SAN reliability comes from mul-
tipathing; every server should have multiple paths to each of its
volumes. That means dual-channel cards on the server, dual
switches, and dual controllers on the storage frame.

NAS has very low start-up costs; 500GB NAS units are available
for less than $700 today. Terabyte NAS units can be had for less
than $1,000. By contrast, you should expect to pay at least a
million dollars for an enterprise SAN. SAN also requires ongo-
ing systems management, whereas a NAS generally turns into a
dumping ground with little structure or ongoing management.
NAS is a choice that a department or even a project team can
make, but a SAN is a CIO-level decision.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=172

MYTHS ABOUT CAPACITY 173

If your transfer rate exceeds the committed bandwidth, you get charged
per megabit minute.4 Burstable connections can be cheaper than dedi-
cated. The costs can mount quickly, however, if your daily peak always
goes over your committed bandwidth. If you get Slashdotted, hang on
to your wallet!

So, how many concurrent requests can you get out of that pair of OC3s?
Let’s look at some of the variables. Ironically, the more users you have
on broadband, the worse your bandwidth looks. TCP/IP handshaking
guarantees that they will try to pull data as fast as they can receive
it. Because they can receive data faster than dial-up users, broadband
users will each use a larger share of your available bandwidth. A typ-
ical dial-up user is still connecting at 44Kbps. Once you factor in the
overhead of PPP, they are probably pulling data from your site at only
38Kbps or 39Kbps. Some cable-modem customers these days are get-
ting download rates of 6Mbps. Back-of-the-envelope calculations say
you could service thirteen times as many dial-up users as cable-modem
users.

If most of your users will be connecting from other businesses, the
picture is about the same as home broadband users. Corporate net-
works generally limit their employee’s computers to 10Mbps (though
you’ll see a move toward 100Mbps connections to the desktop in the
next few years). Even though many corporate networks now have giga-
bit Ethernet backbones, they still try to prevent bandwidth hogs from
monopolizing the network. Plus, corporate firewall/proxy servers tend
to be saturated during prime time anyway. So, the time when users are
most likely to hit your site (the key post-lunch email and web hour) is
also when they are most likely to be slowed by an overburdened proxy
server. Therefore, corporate users end up at about the same bandwidth
as DSL or cable-modem users.

When you consider the cost of bandwidth, just as with CPU and storage,
you must look at the multiplier effects. Dynamically generated pages
tend to have a lot of junk characters in them. Suppose each page has
just 1,024 bytes of junk in it. For a million pages per day, you are
sending 1,024,000,000 excess bytes. That’s just short of one gigabyte
of unnecessary transfers. Most pages have far more than 1,024 unnec-
essary bytes. I’ll discuss page-building techniques that eliminate this
waste in the next chapter.

4. Like kilowatt hours for electricity: the product of the excess transfer rate in megabits
times the number of minutes at that level.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=173

SUMMARY 174

8.6 Summary

Capacity management is an ongoing process of monitoring and opti-
mization. It involves many dimensions and opposing dynamics. Soft-
ware changes, traffic changes, and even marketing campaigns can all
cause different forces to dominate your capacity. Working with capacity
requires a big-picture view of the system as a whole. Overly simplistic or
linear models for capacity will mislead you and can cost your company
a great deal of money in excess spending or lost revenue.

Capacity is fundamentally a measure of how much revenue the sys-
tem can generate during a given period of time. Therefore, bad design
choices that reduce capacity directly reduce the company’s top-line rev-
enue numbers. Offsetting those bad choices requires additional capital
expenditure and ongoing operational expense. To get the most from
your investments, you should always do the following:

• Always look for the multiplier effects. These will dominate your
costs.

• Understand the effects that one layer has on another.

• Improving nonconstraint metrics will not improve capacity.

• Try to do the most work when nobody is waiting for it.

• Place safety limits on everything: timeouts, maximum memory
consumption, maximum number of connections, and so on.

• Protect request-handling threads.

• Monitor capacity continuously. Each application release can affect
scalability and performance. Changes in user demand or traffic
patterns change the system’s workload.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=174

Chapter 9

Capacity Antipatterns
As you saw in the previous chapter, if CPU, disk, and bandwidth are
actually expensive, then it behooves you to maximize the value you get
from them. In this chapter, you’ll take a look at the antipatterns that
harm your system’s capacity.

These capacity antipatterns make your applications do more work than
necessary, turning electricity into heat instead of revenue. Hardware is
expensive, so we need to get as much out of it as possible.

RESOURCE POOL CONTENTION 176

9.1 Resource Pool Contention

I have a love/hate relationship with database connection pools. I view
them as a necessary evil. Because it takes up to 250 milliseconds to
establish a new database connection, it is worth reusing database con-
nections when possible. Used well, connection pools, like all resource
pools, can improve capacity by improving throughput. Left untended,
however, resource pools can quickly become the biggest bottleneck in
an application.

The bottleneck arises when there is contention for the resources. More
threads require one of the resources than are available. In this case,
most connection pools will simply block the requesting thread indef-
initely until a resource becomes available. This clearly cannot help
throughput. Figure 9.1, on the following page, illustrates the percent-
age of processing time spent in resource pool contention for threads
using pools of various sizes. In each case, the contention is zero until
the number of threads exceeds the number of resources available. The
uppermost curve shows what happens when the threads fight over just
four database connections. By the time thirty requests are active, more
than 80% of CPU time is spent uselessly waiting for one of the connec-
tions to become available.

If the request-handling threads spend most of their time blocked, wait-
ing for resources, they are obviously not processing requests. Indeed,
Figure 9.2, on page 178, shows the throughput (in “tasks per minute”)
of various numbers of request-handling threads with resource pools of
different sizes. The lines represent resource pools of different sizes. In
the left side of the graph, each curve appears to be more or less linear,
and all curves have a similar slope. Each curve begins to flatten out
when the number of threads exceeds the number of resources. This
is the “knee”—that artifact familiar to everyone who has ever run load
tests. To a substantial degree, additional request-handling threads do
nothing for throughput, once resource contention begins.

Ideally, every thread immediately gets the resource it needs. To guar-
antee this, make the resource pool size equal to the number of threads.
Although this alleviates the contention in the application server, it
might shift the problem to the database server. With Oracle, for exam-
ple, each connection spawns a process on the database server. Depend-
ing on configuration, this process will use a few megabytes of RAM. If
there are many application servers, then the database server is on the
wrong end of another multiplier effect.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=176

RESOURCE POOL CONTENTION 177

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60

%
 T

im
e

in
 C

on
te

nt
io

n

Threads

4 Resources
8 Resources

16 Resources
32 Resources
64 Resources

Figure 9.1: Contention Among Threads

For example, with a server farm with twenty machines, each running
five application server instances and each instance using a pool of fifty
database connections, the database server must bear 5,000 connec-
tions. If each connection uses just 1MB of RAM, then the database
server requires 5GB of RAM just for these connections. Worse yet, some
proportion of the connections will be idle most of the time. (If they were
all busy 100% of the time, then the database would be the constraint.)
Other databases do not spawn processes for each connection,1 but they
must all devote some resources to each connection.

1. Oracle also supports the more complex multithreaded server (MTS) configuration,
which multiplexes connections to processes. DBAs who can properly configure MTS
occupy the highest tier of the Oracle priesthood.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=177

RESOURCE POOL CONTENTION 178

 0

 5

 10

 15

 20

 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

ta
sk

s)

Threads

4 Resources
8 Resources

16 Resources
32 Resources
64 Resources

Figure 9.2: Effects of Contention on Throughput

Blocking indefinitely when resources are exhausted ensures a stability
problem. (See Antipattern 4.5, Blocked Threads, on page 81.) The sys-
tem will be better served if the resource pool is configured to block for
a limited time only. Each application server is configured differently, so
it pays to become expert in your particular resource pool’s behavior.2

When the time expires with no available resource, the pool will either
return null or throw an exception. The application code must also be
prepared for this to happen.

The common resource pool classes all suffer from some degree of poor
transparency. At runtime, you want to know how often callers are

2. The Jakarta Commons’ BasicDataSource supports this via the maxWait property. JBoss
uses the <blocking-timeout-millis> element in its data source configuration files. Check
your documentation.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=178

RESOURCE POOL CONTENTION 179

blocking, what’s the highest number of resources checked out since
start-up is (the high-water mark), and how many resources have been
created and destroyed. All these metrics can highlight capacity prob-
lems. JBoss and WebLogic allow access to some of this information
through JMX, but it is up to you to poll the metrics on some periodic
basis for offline analysis.

Remember This
Eliminate contention under normal loads

During “regular peak” operation, there should be no contention for
resources. Regular peak load would occur on a typical day outside
your company’s peak season.

If possible, size resource pools to the request thread pool
If there’s always a resource ready when a request-handling thread
needs it, then you have no efficiency loss to overhead. For
database connections, the added connections mainly consume
RAM on the database server, which, while expensive, is less costly
than lost revenue. Be careful, however, that a single database
server can handle the maximum number of connections. During
a failover situation, one node of a database cluster must serve all
the queries—and all the connections.

Prevent vicious cycles
Resource contention causes transactions to take longer. Slower
transactions cause more resource contention. If you have more
than one resource pool, this cycle can cause throughput to drop
exponentially as response time goes up.

Watch for the Blocked Threads pattern
The capacity problem of resource pool contention can quickly turn
into a stability problem if threads block forever when a resource
is not available.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=179

EXCESSIVE JSP FRAGMENTS 180

9.2 Excessive JSP Fragments

In the Java realm, JSP is the standard page-templating language. JSP
files are compiled in two passes. First, the application server generates
a .java file with application server–specific servlet code. Second, the
application server compiles that source file into bytecode. After the sec-
ond compilation step, the new class file is loaded into the JVM. Like all
Java classes, compiled JSPs are loaded into the JVMs permanent gen-
eration. The permanent generation is exactly what it says. The objects
in the permanent generation are the actual class and method defini-
tions.

J2EE application servers almost always come with start-up scripts that
use the -noclassgc JVM argument. This option tells the JVM to not
unload classes from the permanent generation. It’s usually billed as
a performance improvement, and sometimes it is. The problem arises
when you have large numbers of JSP classes being loaded during one
execution of the application server. In that situation, the default per-
manent generation size might not be large enough. If there is no limit to
the number of JSPs that your JVM might have to load, then there is no
upper bound on the permanent generation size you need. Because each
JSP gets compiled and loaded into the permanent generation, with-
out class garbage collection, the permanent generation will eventually
fill up. When that is happening, enabling class garbage collection by
removing the -noclassgc option will alleviate some of the pain. Essen-
tially, you would move from a deteriorating performance that will even-
tually be indistinguishable from a crash to consistently lower, but not
degeneration, performance.

Remember This
Don’t use code for content

Loading JSP classes into memory is a kind of caching. If you have
enough JSP files, you will fill the permanent generation. Even if
you don’t, it’s a waste of otherwise useful memory to keep a class
in memory when it might not be accessed again before you restart
the application server.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=180

EXCESSIVE JSP FRAGMENTS 181

JSPs as Content

I’ve seen this happen when JSPs are treated like content rather
than code. One site I worked on had more than 25,000 JSP frag-
ments. The vast majority of them were chunks of content for
product promotions or category-level pages. The trouble was
that none of them ever got retired. As a server ran through
the day, more and more of the content JSPs got loaded as
classes into the permanent generation. This can lead to seri-
ous garbage collection issues, because the JVM tries harder
and harder to fit all of the classes into the permanent genera-
tion (especially if you’ve used the -XX:MaxPermSize option to limit
that portion of the heap). In this case, the JSPs did not even
need to be executable code. They presented only static con-
tent. It would have been better to use HTML fragments with a
caching content repository to manage those 25,000 page frag-
ments. (See Pattern 10.2, Use Caching Carefully, on page 208,
for other warnings about the proper use of caching.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=181

AJAX OVERKILL 182

9.3 AJAX Overkill

AJAX (Asynchronous JavaScript plus XML) has become synonymous
with “Web 2.0” sites like Google Maps and del.icio.us. An AJAX applica-
tion embeds JavaScript in its web pages that will send requests to the
website in the background, typically while the user is doing something
else. The server’s response is used to update a portion of the current
browser page, instead of the “Web 1.0” technique of loading a new page
for each content update.

Although the pieces of the AJAX technique have been around for several
years, Google brought them into the spotlight with Gmail and Google
Maps. These applications got everyone’s attention more for what they
didn’t do rather than what they did. Gmail can autocomplete addresses
or expand and collapse sections of a conversion without reloading the
page. Google Maps takes it even further. You can pan and zoom a map
without ever reloading a page. New map tiles get loaded asynchronously
and just pop into view as they become available.

Unfortunately, not everyone has a server farm the size of Google’s. For
many sites, AJAX applications mean many more requests coming from
the browser to the web servers. They will also come more rapidly. An
average user has a five- to ten-second “think time” between page clicks
on a typical site. (It is likely that part of the “think time” is really “wait
time” as the user waits for the page to finish downloading and ren-
dering.) With an AJAX-based site, the time between HTTP requests is
more like one to three seconds. The individual requests will tend to
be smaller, and since the response typically consists of a partial page
instead of a full page, the responses will be smaller as well. The com-
bined effect depends greatly on the specific way you employ AJAX tech-
niques. Used well, it can reduce your bandwidth costs. Used poorly,
AJAX techniques will place more burden on the web server and appli-
cation server layers.

A full treatment of AJAX is beyond the scope of this book (see Pragmatic
Ajax [JG06] for a wealth of detail), but since it can be such a double-
edged sword, here are some ways to apply it without cutting yourself.

Interaction Design
AJAX is a technique, not a goal. The user experience should be pri-
mary, so apply AJAX only where it actually makes the user interac-
tion smoother. For example, I’ve seen a site built on an “AJAX home
page”—a single master page that contained the only HTML for the site.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=182

AJAX OVERKILL 183

All interactions for the site went through AJAX requests and were dis-
played within the same page. It was awful. The site seemed to break the
browser! The Back button caused the browser to leave the site, instead
of backing up a page. Worse yet, since updates happened some short
time after the user’s action but that time varied depending on the com-
plexity of the request, the page seemed to change randomly without any
of the browser’s usual feedback.

The best places to apply AJAX are those interactions that represent a
single task in the user’s mind. In Gmail’s case, that task is “send an
email.” It could be any multistep interaction that would ordinarily take
a few pages to complete. If you have “wireframes” for your site, look
for a linear chain of pages that eventually returns to the home page or
some other nexus.

Request Timing
Some of the early AJAX libraries’ tutorials show autocomplete requests
happening every quarter second, which will obviously increase the
demand on the site’s servers. Newer libraries support configurable
delays, so they send only an autocomplete request some length of time
(often 500 milliseconds) after the user stops typing. Of course, that’s
the delay before the request is sent. The user will experience that delay
plus the latency involved in sending the request, waiting for the server
to process it, and receiving the results.

Session Thrashing
Be sure to configure session affinity so the AJAX requests go to the
same application server that the user’s session resides on. Avoid unnec-
essary session failover.

Response Formatting
Do not return HTML pages or fragments. HTML is needlessly verbose; it
wastes bandwidth. Instead, return just the data—without formatting—
that the client can use to dynamically update the elements on the page.

Use JavaScript object notation (JSON) for data,3 rather than XML. I
know XML is in the name, but that’s mainly because it makes a catchier
buzzword than “AJAS” would. JSON is much easier to parse in the
browser and can be a lot less verbose (reducing bandwidth consump-
tion). See http://www.json.org/example.html for some examples of JSON’s
brevity compared with XML.

3. See http://www.json.org/.

http://www.json.org/example.html
http://www.json.org/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=183

AJAX OVERKILL 184

JSON Goes to the Dark Side

One note of caution regarding JSON: some examples use the
JavaScript eval() function to execute the JSON string, thereby
putting objects directly into the interpreter’s scope. This is a ter-
rible idea! Even if you’ve used SSL and strong certificates to ver-
ify the site to the browser, how are you verifying the application
code to the site? It takes only one rogue programmer to craft a
nasty bit of JSON to be executed on the user’s machine. A mali-
cious JSON script can do a lot of damage, from sending private
data to a third party to submitting phony orders. It is certainly
true that a “black hat” developer can do tremendous dam-
age in other areas, but why make it easy for them to attack
your users, too?

Remember This
Avoid needless requests

Don’t use polling requests for fizzy features such as autocom-
pletion. If you must have autocompletion—for an address book,
part number, department name, or whatever—send a request only
when the input field actually changes. (Some of the online tutori-
als send the request every quarter second!)

Respect your session architecture
Make sure your AJAX requests include a session ID cookie or
query parameter. (This is much easier with session cookies than
query parameters!) If you don’t, your application server will create
a new, wasted session for every AJAX request.

Minimize the size of replies
Return the least amount of data necessary. Reply with XML or
JSON, not HTML.

Increase the size of your web tier
Your web servers will be dealing with more requests. Be sure to
increase the maximum number of connections your web tier can
handle, either by adding servers or by increasing the number of
clients each server will handle.4

4. For Apache, this is the MaxClients configuration parameter.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=184

OVERSTAYING SESSIONS 185

9.4 Overstaying Sessions

Somewhere back in the dim reaches when the original Java Servlet
specification was being created, it was decided that the default session
timeout should be thirty minutes. That is the length of time a session
will stay resident in memory after the user’s last request. As discussed
in Chapter 7, Trampled by Your Own Customers, on page 147, the user
actually goes away at the beginning of the session timeout period. The
trouble is that you cannot predict which request will be the user’s last.
(Sounds ominous, doesn’t it?) All you can say for certain is that the
session resides in memory after the user is long gone.

As long as the session is active, it consumes resources—mainly mem-
ory. Java application servers are perpetually memory constrained.
(Many would say they are memory pigs, too.) Abundant free memory
is critical to the stability and performance of Java-based applications.
Therefore, sessions residing in memory are a direct threat to the health
and well-being of the system. They are a threat to the system in direct
proportion to their tenure in memory.

Your system’s goal should be to expunge these sessions at the earliest
opportunity. The common default timeout of thirty minutes is overkill.
For a live site, examine your traffic patterns to find the average and
standard deviation of the time between page requests that you would
still call a session. In other words, two visits in the same day but hours
apart are not the same workflow. Likewise, two visits from the same
user, both starting at the home page one hour apart are probably not
the same session either. On the other hand, two requests twenty-nine
minutes apart but from one deep page to another deep page, probably
are the same activity in the user’s eyes. A good bet is to set the session
timeout to one standard deviation past the average of that delay. In
practice, this will be about ten minutes for a retail site, five for a media
gateway, and up to twenty for travel-industry sites.

Set the session timeout
to one standard
deviation past the
average think time.

An even better bet is to make the session itself
unnecessary. If the session holds a bunch of
transient state that goes away when the user
does, then it is important to keep the session
around longer. On the other hand, if every-
thing in the session is just an in-memory copy
of persistent state, then the session can be discarded and re-created
anytime. Under that approach, the session is purely an in-memory

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=185

OVERSTAYING SESSIONS 186

cache. I strongly endorse this model, both for its benefits to capacity
and stability and for its benefits to the user. Only developers get the
idea behind sessions. Users do not appreciate being put on the clock.
Getting kicked back to the starting line just because a new episode of
24 came on is intensely frustrating. A user expects to come and go at
will and pick up an interaction where it left off.

This means there should be no such thing as a transient shopping
cart and that the user’s search results should still be available later—
whether that’s using a search engine or just database queries. The
user’s identity and preferences should still be active. (However, the user
should be able to dissociate his identity from the particular device he
is using, such as a terminal in a library or airport.)

The only exception is financially sensitive data such as credit cards or
Social Security numbers.5

Remember This
Curtail session retention

Keep sessions in memory for as short a time as reasonable. This
time will vary from one domain to another.

Remember that users don’t understand sessions
Users understand automatic logout for security reasons. They
won’t understand why their shopping cart disappears because
they spent twenty minutes researching a product on another web-
site. Things shouldn’t disappear just because the user goes away
for a while.

Keep keys, not whole objects
If you keep whole objects in the session, do it with soft references.
Keep keys to persistent objects instead. You will get better capac-
ity, and your users will have a better experience: they can come
back in an hour or a week and pick up where they left off.

5. Social Security numbers are the U.S. equivalent of a national identification number.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=186

WASTED SPACE IN HTML 187

9.5 Wasted Space in HTML

I’ve seen a lot of bad things justified with arguments that “bandwidth
is cheap” and “CPU is cheap.” As you saw in Section 8.5, Myths About
Capacity, on page 166, neither of those statements is true. You should
not excuse inefficiency.

Web applications harbor a lot of inefficiency that makes users suffer
every day. Suppose a page could be reduced from 200KB to 150KB—
not an uncommon reduction, by the way. That’s 25% fewer bytes the
user has to download. Those 50KB take ten seconds on an average dial-
up connection. The extra bytes matter for broadband users, too. Here’s
why.

The application server uses CPU cycles to generate those 50KB of
wasted space. As they stream out of the application server’s NIC, they
use bandwidth. They go into a network switch, get checksummed,
buffered, routed, rechecksummed, and serialized out some other port
on the switch. That port might be connected to a firewall—a special-
purpose router—that does the same network operations as the switch,
plus some security checks. The same 50KB now goes back to a switch—
maybe the same one, maybe not—and goes through the same low-level
network rigamarole and then heads out to a web server. The web server
buffers the 50KB in memory, along with the meaningful part of the
page. If each request uses 200KB instead of 150KB of web server mem-
ory, then the web servers need 33% more RAM to handle their users.
Once the whole page is done being generated, the web server sends it
down to the browser...through another firewall, switch, and at least one
router.

Those 50KB cover a lot of ground! At each step, they either use more
RAM or more network bandwidth than necessary.

There’s another effect at work here. The larger the page, the longer
the browser and web server keep their connection open. While that
connection is open, obviously no other request can use it. But, the web
server can handle only a finite number of connections! The same way
that threads can contend for database connections,6 end users can
contend for web server connections. When a user can’t get a web server
connection, your site might as well be down.

6. See Antipattern 9.1, Resource Pool Contention, on page 176.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=187

WASTED SPACE IN HTML 188

It’s in your best interest to see to it that those connections are serviced
and released as quickly as possible.

So, if they’re so pernicious, then who sets out to make bloated HTML
pages? Nobody, of course. Bloat is never invited; it sneaks in where
nobody looks. Designers create stylish page layouts in Dreamweaver.
Application programmers carve those into ASP, JSP, or .rhtml templates.
Application servers generate full pages from the templates. Each step
of that process allows inefficiency to creep in. We’ll look at some of the
most common types.

Whitespace
Web applications are built of page fragments, whether they are JSPs,
JHTMLs, tiles, or .rhtmls. These fragments make life easier for the pro-
grammer by allowing bits and bobs of HTML to be reused from one
page to another and by separating them from the superstructure of the
pages. The flip side is that stitching together those page fragments can
lead to extremely large pages. The easiest way for waste to creep in is as
whitespace. All the custom tags used by these various templating lan-
guages get replaced with their generated content, but the whitespace
used to format the files in a readable way gets preserved. This includes
newlines after template tags, even when the template tag “expands” to
nothing, such as a conditional tag with a false condition.

One particularly egregious site had a front page that consisted of more
than 100 separate JSP fragments. The generated HTML was more than
600KB, with one-third of that consisting entirely of newline characters
on lines full of spaces.

Whitespace would have
cost $15,000 a year.

It sounds trivial, but think of the dial-up user
waiting an extra five seconds to download
nothing but spaces! The effect on the systems
was profound as well. The whitespace was eat-

ing an extra 200KB per page request on the web servers, because they
buffered the response page before sending it to the browser. Since the
web servers tended to be memory bound instead of CPU bound, this
reduced the site’s overall capacity. That excess whitespace would have
cost the company more than $15,000 a year just in bandwidth costs,
without considering the cost of extra web servers.

You can add an interceptor to the application server that filtered out
the excess whitespace. I’ve often seen that the CPU cost of filtering was
less than the RAM and bandwidth cost of not filtering.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=188

WASTED SPACE IN HTML 189

Expensive Spacer Images
Almost every dynamically generated HTML page has one or more spacer
images on it. These little transparent GIFs, or 1-pixel images, of various
colors (sometimes called shims) are ubiquitous. They turn out to be bad
for bandwidth and bad for the user’s experience.

Suppose you have a table cell that needs to be a certain size to make
the layout work. You can already set the width and height of the cell
itself, but it is common to see a spacer image as the cell’s contents. For
example:

That’s 53 bytes for the image reference. It could be replaced with this:

Those 5 bytes take the place of 53, saving 48 bytes. Forty-eight bytes
doesn’t sound like much, except that a typical page will have anywhere
from twelve to forty spacers in various places.

Don’t forget to consider the multiplier effect either. Forty-eight bytes
saved in twelve places on a page times a million page requests per day
equals 576,000,000 bytes. Will your switches and routers notice an
extra 576,000,000 bytes a day in traffic?

For the user, each different spacer image (not the reference from the
page but the actual URL) means an extra request to the server. Even if
the user’s browser already has the image in cache, the browser often
asks, “Is the image I have still current?” This is especially true for
dynamically generated pages that usually tell the browser not to cache
the page content.

Each one of those requests for spacer images—or checking the cache
status of the spacers—eats up a web server connection for some small
amount of time. Although the web server sends the spacer image for the
umpteenth time, it could have been processing a revenue-generating
transaction for some other user.

Excess HTML Tables
While we’re putting HTML pages on a diet, let’s examine the use of
tables for formatting.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=189

WASTED SPACE IN HTML 190

All current browser versions support Cascading Style Sheets (CSS).
Clever use of CSS and styles can provide every bit as much control over
formatting as tables. The capacity difference is striking. Table struc-
tures must be sent on every page, every time the page is served. A style
sheet has to be downloaded only once.

Even if the style sheet is larger than a typical HTML page, the net
savings is more important. I’ve seen side-by-side comparisons of CSS-
formatted pages vs. HTML-formatted pages where the CSS version was
less than one half of the HTML version. For fantastic examples of the
designs possible with pure CSS and HTML, spend some time looking
at http://www.csszengarden.com/. I have at least one “I didn’t know you
could do that!” moment every time I look at that site.

Remember This
Omit needless characters

Omit wasted characters in HTML. Generating it takes CPU cycles
on the application server. It takes bandwidth on the application
servers’ network cards, bandwidth on the network switches, band-
width on the web servers, and bandwidth on the users’ connec-
tions. Downloading it takes time, particularly for users on slow
connections. Eliminate whitespace to save your users’ time and
your company’s money.

Remove whitespace
Whitespace sneaks into generated pages near loops, conditionals,
and includes. The directive gets replaced, maybe by a zero-length
string, but the coder’s nice formatting remains. I’ve seen pages
with 400KB of tabs, spaces, and newlines.

Replace spacer images with nonbreaking spaces or CSS
Web design programs leave spacer images such as mouse drop-
pings in a page. Tiny but noisome. When turning a page design
into code, eliminate every image possible.

Replace HTML tables with CSS layout
Aside from being more “Web 2.0,” CSS style sheets don’t have to be
downloaded on every page the way a table-based superstructure
does. HTML files with styles and classes can be much smaller than
their table-driven counterparts.

http://www.csszengarden.com/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=190

THE RELOAD BUTTON 191

9.6 The Reload Button

I swear, sometimes users are the worst thing that can happen to a sys-
tem. That’s never more true than when the system is already under
stress. Suppose your site is getting slow. If it’s a J2EE site, then some
user sometime will hit a full garbage collector and have a fifteen-second
response time. (I’ve always found it ironic that because most garbage
collections happen because of a failed memory allocation, they are vir-
tually guaranteed to happen while processing some user’s request.) A
user sitting in front of a web browser has no idea how much work is
or is not going on at the other end of the network. If the user doesn’t
see a page within ten seconds, he or she is likely to hit Reload. When
that happens, the browser abandons its connection from the previous
request, opens a new socket, and fires a new HTTP request at you.

Nobody tells the application server to stop processing the previous
request. In fact, if the connector between the web server and the appli-
cation server buffers responses, it might not even be possible to find
out that the previous connection was dropped until the entire page
has been built and buffered into the web server’s memory. At best,
the application server might get an IOException when trying to send the
response, which is still hardly ideal.

If the page request causes something transactional to happen, such as
updating a user’s profile or logging some tracking data, then the second
request could actually block waiting on the first one to complete. In
really bad cases, it could deadlock with the first request.

There is no good answer about what to do with the Reload button. Just
make sure your site is fast enough that users don’t click it.

Remember This
Make the Reload button irrelevant

Fast sites don’t provoke the user into hitting the Reload button.
You want your site to serve pages so fast that the Reload but-
ton never comes into it. Reload requests hurt your site when it’s
already suffering.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=191

THE RELOAD BUTTON 192

Serialize on Source Address

I’ve seen some application servers try to ensure that they pro-
cess just one request from a source IP address at a time. This
fails in two ways. First, if you use a caching network such as Aka-
mai, then all requests appear with the same source IP address.
This also occurs if the user is on a corporate network with a sin-
gle “gateway” proxy server. Second, once the user hits Reload,
the user’s browser is no longer waiting for a response to the
first request. Serializing requests just exacerbates the problem,
because now the user’s second request won’t even process
until the first one completes. This means the frustrated user will
still be looking at a spinning logo instead of a page and may
well hit Reload two or three more times before leaving your site
for a competitor.

Depending on your load balancing and session affinity config-
uration, the second request might not even go to the same
application server as the first. Therefore, your application code
should be prepared for a single user to be executing the same
transaction several times without causing deadlocks.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=192

HANDCRAFTED SQL 193

9.7 Handcrafted SQL

Essentially every application today must work with a relational
database. Many applications rely on object/relational mapping to
bridge the gap. Whether you’re using Ruby on Rails’ ActiveRecord,
Hibernate, or any of the three EJB persistence models, some form of
object/relational mapping is in play. ORM packages generate very pre-
dictable, repetitive SQL. Predictable access patterns of SQL are good
for capacity, because a competent DBA can tune the database to make
those queries perform well.7

Each of these ORM layers allows the developer to get down to direct
SQL access in one way or another. Hibernate, for example, allows you
to embed a named SQL query directly in your mapping files, which you
can then reference by name in your application. Even if it’s just getting
access to a database connection and issuing a query directly, it’s always
possible to send handcrafted SQL directly to the database. This capa-
bility is usually described as a way to improve performance, so why do
I call it a capacity killer? Well, it’s mainly because object-oriented devel-
opers do weird, wonderful, and torturous things to a perfectly innocent
database.

The problem is that developer-crafted SQL tends to be so idiomatic and
unpredictable. All the database tuning for the rest of the application
won’t help for these beastly one-offs, and it might actually harm them.
Likewise, tuning for these oddities does no good to the rest of the appli-
cation and might harm it.

What makes these handcrafted SQL queries so bad? They usually suf-
fer from a handful of common mistakes. First, they often join on nonin-
dexed columns. Second, they usually join too many tables. If it were a
simple relationship, then the developer would just use the ORM pack-
age to follow the relations. Since they’re already dropping down into
handwritten SQL, you know there’s some unusual access pattern going
on. Third, developers try to treat SQL as if it were either a procedural
language or an object-oriented language instead of the set-based rela-
tional language it really is. They will issue some query that joins five
tables to select exactly the one row they’re looking for, and then they’ll

7. Watch out, though, for the “N+1” problem with ORM tools. This problem arises when
accessing the members of a collection. Some ORM frameworks send one query to find
the membership of the collection and then send one query per member to populate the
individual objects.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=193

HANDCRAFTED SQL 194

issue that query 100 more times to find other individual rows. Fourth,
developers like to exercise features of SQL that they shouldn’t. I once
saw an eight-way union, where each subselect in the union was joining
five tables by nonindexed columns. It took a full page just to print the
thing out. The query plan had about forty table scans in it. Table scan: the slowest

way to find something in
a large table. The
database server iterates
over every row in the
table to find matching
rows.

Properly tuned databases are important for production use, to a degree
that is sometimes hard to believe. Every DBA has stories about some
process that was reduced from eighteen hours to three minutes, just
by adding an index here or analyzing table statistics there. An order-of-
magnitude gain is common. Developers do not see these effects because
they work with such unrealistically small data sets during development
and QA. Characterizing performance requires realistic data volumes.
Sometimes, data is available from the existing production system. It
will probably need “scrubbing” before it can be used in nonproduction
environments. Scrubbing usually involves replacing private data with a
random scramble of characters to protect confidential customer data—
particularly since test data is often sent outside the company or off-
shore altogether. For new development, there might not be any existing
data sets available. In that case, an hour or two of development time
spent creating a data generator will pay off many times over.

Handcrafted SQL is closely related to dynamically generated SQL.
Dynamically generated SQL from an ORM tool is just fine, because it
is predictable. That’s not the kind of dynamically generated SQL I’m
warning you about. The kind that keeps me awake at night is where
some piece of code is doing query-by-example by looping over attributes
and tacking on bits of a WHERE clause or where the tables and joins
are being assembled dynamically. Save those for the reporting system.
They don’t belong in transactional systems.

Each query like this has a risk of hitting some very, very slow condi-
tion. You can tune the database to respond well only to certain pre-
dictable access patterns. You cannot make it respond well to every pos-
sible query.

Remember This
Minimize handcrafted SQL

You might be tempted to roll your own SQL as a performance
optimization. It’s always a good idea to see whether there are ways
to do the same in the database itself—through hinting, indexing,
or views.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=194

HANDCRAFTED SQL 195

See whether the DBA laughs at the queries
If it doesn’t pass the laugh test, it shouldn’t go into production.
Period.

Verify gains against real data
Try your handcrafted SQL against production-sized data. Gains
observed in a development database sometimes evaporate when
they hit radically different query plans in production.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=195

DATABASE EUTROPHICATION 196

9.8 Database Eutrophication

In ecology, a lake “ages” through a process called eutrophication. This is
the slow buildup of sludge from dead microbes, rotting fish, and algae.
In advanced stages, the sludge removes enough oxygen from the water
that nothing can live in the lake any more, and the lake dies. The same
thing can happen to your database, only it will be your system that
goes belly-up.

In development and QA, testing typically proceeds with data sets rang-
ing from tiny to laughably miniscule. Combined with the short time
systems typically spend in QA, it is easy for database schemas to slip
into production without any serious high-volume testing. Once users
start pouring through the doors (or load balancers), however, this can
change rapidly.

Indexing
Object/relational mapping (ORM) tools make it easy to create and tra-
verse relationships between tables. Connections defined in the ORM
tool’s mapping file don’t trigger any DBA review. Thus, whereas a data
architect defining referential integrity rules is likely to slap an index
on any foreign key relationship, tables related via object properties
probably do not get the same careful attention. Selecting a row—in
other words, traversing an object relationship—by an unindexed col-
umn results in the dreaded “table scan.” It’s exactly what it sounds
like, a linear search through all rows, looking for rows with a column
that matches the query.

With the size of data set typically used in development, you can’t even
measure the time difference between querying by an indexed column
and querying by an unindexed column. (Indeed, on the “laughably
miniscule” end of the spectrum, a table scan might even be the fastest
query plan! This is especially true if the whole table is already cached
in memory, which it usually is for toy data.) Give it a year or two in
production, though, and your users could end up waiting minutes for
some simple operation to complete. In general, any column that is the
target of an association in the ORM mapping should be indexed.

Database schemas are often designed well in advanced of the applica-
tion code that will use the schema. As a result, indexes created dur-
ing design might not match the actual access patterns implemented

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=196

DATABASE EUTROPHICATION 197

in the application. The database architect should remain involved dur-
ing application development to ensure that the schema is continuously
adapted to be as efficient as possible for the application’s functionality.
This is particularly true in the case of agile projects, wherein relation-
ships between entities come and go far more often than in a traditional
“big design up-front” project.

Partitioning
Another key design consideration relates to the ability to keep
the database well-structured during production operations. Database
architects always want to know as much as possible about table growth
rates and the amount of churn to expect in each table. This informa-
tion helps them lay out the tables on disk. Mapping the logical tables to
physical storage well has a tremendous impact on the long-term perfor-
mance of the database. Unfortunately, the early guesses about growth
rates and retention often turns out to just be flat wrong. Sometimes,
it also changes radically from one release to the next. For example, I
saw an order management system go from generating 1GB of audit logs
per year in one release to creating 1GB per day in the next release.
When that happens, the storage layout for the database gets “spaghet-
tified” as tables get spread across multiple physical extents. Response
times suffer as the database performs excessive disk I/O. One solu-
tion would be to achieve perfect knowledge, with perfect specifications,
before developing the application. Right.

Another solution would be to segment or partition the tables. (Exact ter-
minology varies with the database vendor.) If there is some column that
has a small finite set of values, where each value indicates a cluster of
related rows, then that column is a good candidate for partitioning. For
example, a table that holds orders while they are being processed will
have a lot of churn. By adding a “day of the week” column, that table
can be split into seven partitions. Each partition can be reorganized or
moved to another physical extent separately, even while another par-
tition of the table is in heavy use. This permits restructuring of the
storage underneath the table without taking downtime.

Historical Data
The best answer to slowdowns due to data growth in the database is a
rigorous routine of archival and elimination. We are dealing with trans-
actional systems. The data should be only that needed to process the

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=197

DATABASE EUTROPHICATION 198

users’ transactions. That means you don’t need to keep all historical
data online in the same database. In particular, reporting and ad hoc
analysis should never be done in the production database. (A sneaky
way to discourage this abusive practice is to ensure that the results
would show only the last ninety days or six months of data!)

Data mining, reporting, or any other kind of analysis should be done
in a true warehouse anyway. The OLTP schema is no good for data OLTP: online transaction

processing. This is a
schema optimized for
fast inserts of
transactional records.
This is typically very bad
for producing reports or
performing ad-hoc
queries.

warehousing.

Users might need, or just want, visibility into historical data. For exam-
ple, Amazon now has almost ten years worth of my orders. (I wonder
how many decades they plan to keep those orders online?) How often
would an order from the spring of 1998 be needed? Multilevel storage
allows you to keep historical data online, in a low-cost system, while
keeping the most current transactional data in a higher-performance
system.

Don’t mix transactions
and reporting.

This section can only scratch the surface of
data and storage architecture. The subject
merits an entire series of books. Over and
above all else is this: a rigorous regimen of

data purging is vital to the long-term stability and performance of your
system.

Remember This
Create indexes; it’s not just the DBA’s responsibility

You know your application’s intentions better than the DBA. You
should know which columns will be used for lookups, which tables
are read-mostly, and which are write-mostly. It’s your responsibil-
ity to come up with the first iteration of indexes.

Purge sludge
Old data just slows down queries and inserts. Unless the user
cares about it—such as an order history table—you should get it
off the production servers.

Keep reports out of production
Reports can, and should, be served elsewhere. Don’t jeopardize
production operations by letting reports run expensive queries.
Besides, reports are better served from a star schema than an
OLTP schema anyway.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=198

INTEGRATION POINT LATENCY 199

9.9 Integration Point Latency

Every communication with another system entails a certain amount
of latency. A remote call takes at least 1,000 times as long as a local
call. Whether that remote call is via DCOM, CORBA, web services, or
a binary socket protocol, the caller will sit around doing nothing while
waiting for a response. The caller must be processing some transaction,
or it wouldn’t be calling. Therefore, you know the caller takes at least
as long to respond as the remote system.

Integration point latency can be a serious performance problem. The
problem becomes acute when the integration point uses some flavor
of remote object protocol. The “location transparency” philosophy for
remote objects claims that a caller should be unaware of the difference
between a local call and a remote call. This philosophy has been widely
discredited for two major reasons. First, remote calls exhibit different
failure modes than local calls. They are vulnerable to network failures,
failure in the remote process, and version mismatch between the caller
and server, to name a few. Second, location transparency leads develop-
ers to design remote object interfaces the same way they would design
local objects, resulting in a chatty interface. Such designs use multiple
method calls for a single interaction. Each method call incurs its own
latency penalty. The cumulative effect is a very slow response time.

Performance problems for individual users become capacity problems
for the entire system. Even if the thread processing a transaction
is temporarily idle while it waits for a response, it still holds many
resources. It certainly consumes memory and CPU time slices. It might
also hold database connections that other threads need. Further down,
the idle thread might have row or page locks in the database, causing
contention at that level.

More abstractly, there is an opportunity cost to having a blocked thread
wait for response from an integration point. It cannot do other work,
even if other work is queued and waiting for a thread to process it.

Remember This
Expose yourself to latency as seldom as possible

Integration point latency is like the house advantage in blackjack.
The more often you play, the more often it works against you.
Avoid chatty remote protocols. They take longer to execute, and
they tie up those precious request-handling threads.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=199

INTEGRATION POINT LATENCY 200

RMI Across the Seas

I once worked on a fat-client Java system that used RMI to
communicate with its server. The server provided a highly func-
tional object-oriented view of the client’s enterprise data ware-
house. The client application allowed marketers to make con-
nections between products from a hierarchy and media such
as pictures, PDF files, and text documents.

Domestically, the system worked fine. Once we got a few users
in the United Kingdom, however, they started clamoring for a
local server and data warehouse, a multimillion-dollar invest-
ment. We found that expanding a node in the hierarchy (a
tree control), which took less than a second for U.S. users, took
twenty minutes from the United Kingdom!

Expanding a node in the tree control required the client to look
up some details about the children of that node: its name, type,
and number of children. The trouble was that the client would
make one remote call to the parent node, asking it for a col-
lection of children, and then the client would enumerate that
list, calling each child three times. This is an example of a “1+N”
problem: one call for the list plus one (or more) call for each
element in the list.

We added a method to the parent that returned a collection
of “Summary Objects” that contained the three bits of infor-
mation needed for the tree control. Once we deployed that
update, the U.K. users enjoyed the same subsecond response
time as the U.S. users, without installing a replica of the entire
data warehouse!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=200

COOKIE MONSTERS 201

9.10 Cookie Monsters

Some technologies just beg to be misused. Take bottle rockets. No mat-
ter how many warning labels manufacturers put on bottle rockets, it’s
still a firecracker with a handle. Ask Don Norman—handles are meant
to be held.8 You could take someone who had never seen fireworks in
his life, and in ten minutes he’ll be holding them in his hand, shooting
them at his buddies. It might be a bad idea, but it still gets rediscovered
by every generation.

HTTP cookies stand right there with bottle rockets in the “things that
invite you to blow yourself up” category. They have legitimate uses, but
some of their abuses will make your eyes bug out. On the surface, HTTP
cookies appear to be a harmless, if somewhat inelegant, kluge around
the stateless nature of web interactions. The server sends back an extra
header or two with some data that it wants the client to send back at
some point in the future. The original authors of RFC 21099 clearly
intended cookies to be used for session management. In fact, RFC 2109
is titled “HTTP State Management Mechanism.” To their great credit,
David Kristol and Lou Montulli did not just add a new HTTP header for
a session identifier. Their invention, the HTTP cookie, applies far more
generally. It can be used for session identification, but it can be used for
much more. (Giving credit where credit is due, Tim Berners-Lee made
the first set of good choices in making HTTP extensible via headers and
requiring that agents ignore headers they do not understand, instead
of throwing errors.)

Several developers have independently discovered the antipattern of
storing anonymous persistent data via cookies. One group, for exam-
ple, added an interceptor to the request-handling pipeline that would
use Java serialization to persist anonymous users’ shopping carts as
cookies. The idea, of course, was to avoid creating database records for
anonymous visitors who might never return. With the shopping cart
cookie, then, a returning, anonymous visitor would have the items in
her cart that were there when she was on the site before.

This idea has so many problems; it’s hard to know where to begin. First,
Java serialization presents some issues. Browsers keep cookies until
their expiration date (or until the user upgrades computers, installs
a different browser, or clears the browser’s private data, and so on).

8. See The Design of Everyday Things [Nor88] about “affordances.”
9. See http://www.ietf.org/rfc/rfc2109.txt.

http://www.ietf.org/rfc/rfc2109.txt
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=201

COOKIE MONSTERS 202

As a result, the serialized form of the cart object could be months or
years old. The odds are that a code change will make the serialized
form invalid long before the user returns. Errors in deserializing Java
objects are thrown as IOExceptions, which most developers treat as very
unlikely occurrences. Serialization makes IOException a routine part of
doing business.

Even if the source code is the same, the products in the user’s cart
may well be different—or missing. Now the interceptor needs to handle
referential integrity checking as well as code versioning problems.

And what if the browser just lies? HTTP, like any protocol, is nothing
but an agreement about how two parties should interact. Either side
of that interaction can be subversive or malicious. What would keep
a malicious user from altering the cookie to set all prices to $0.01?
Given a sophisticated enough attacker, armed with information about
the company’s software platform, it might be possible to use a serial-
ized Cart object to subvert a lot of business rules about pricing and
promotions. Even if the cookie is just data, don’t trust it! Plenty of tools
out there let users monkey around with HTTP requests and responses
(Firefox extensions, smart HTTP proxies, session replay, and so on).

Then there’s the capacity question. Cookies were meant to send small
chunks of data, less than 100 bytes or so. That’s all you need for a
session identifier. With that little data, it does not matter much that
the browser resends the cookie on each new HTTP request. Bump that
up to a 4KB serialized object or XML fragment, and the bandwidth
starts to add up. It’s mostly wasted too. For something like the seri-
alized cart idea, you need to deserialize the cart only once. After that, it
is in memory in the user’s session. Sending and resending the data on
every request is a needless drain on your bandwidth.

On receiving a request, the web server must parse all the headers into
its own internal structure. If there’s an application server, then the web
server resends the request parameters to the application server. All told,
the extra cookies cross the wire twice (sometimes four times) and get
parsed twice. Again, the extra time taken for a single request might not
be much, but there’s that multiplier effect to worry about.

It hurts the user too. Even broadband users typically have much less
upstream bandwidth than downstream. Uploading the extra 4KB on
each request adds up. (Hey, a few milliseconds here, a few milliseconds
there, and pretty soon you’re talking about real time!)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=202

SUMMARY 203

All of this extra processing adds up to an ongoing operational cost in
production—day in and day out. The extra code to handle the cookie
has an ongoing maintenance cost, all to avoid adding rows to the
database for carts for anonymous visitors. The only argument against
putting the carts in the database was the cost and complexity of writing
a purge job to clean out unused carts periodically.

As a general mechanism, cookies produce some cool effects. Just
remember that the client can lie, might send back stale or broken cook-
ies, and might not send the cookies back at all.

Remember This
Serve small cookies

Use cookies for identifiers, not entire objects. Keep session data
on the server, where it can’t be altered by a malicious client.

9.11 Summary

Statistics guarantee that the majority of programmers have never
worked on really large, mission-critical software. First, salary surveys
consistently show that most programmers have less than ten years of
experience. Once they reach that ten-year mark, many programmers
move into management or just out of programming. Second, the his-
togram of project sizes is heavily weighted toward the smaller end of
the scale. So, take a young population with relatively few opportunities
to work on giant projects, and it’s no surprise that experience at that
level is hard to find.

Without that experience, programmers are likely to re-create many of
the capacity killers discussed in this section, either through ignorance
or misguided intentions. These issues certainly aren’t covered in col-
leges and universities, where optimization refers to tweaking up some
search algorithm.

The capacity killers seem like obvious errors, and perhaps they are
obvious when drawn out from a system and held up for examina-
tion. Nevertheless, I have seen them created and re-created by differ-
ent development teams at different clients. Nobody deliberately selects
a design with the purpose of harming the system’s capacity; instead,
they select a functional design without regard to its effect on capacity.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=203

Chapter 10

Capacity Patterns
C.A.R. Hoare famously said, “Premature optimization is the root of all
evil.” This has often been misused as an excuse for sloppy design.
Hoare’s full quote said, “We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all evil.”
His true warning was against chasing small gains at the expense of
complexity and development time.

The problem is that optimization happens late, which often means “not
at all” when schedules are tight. (When aren’t they tight?) Further-
more, optimization can increase the performance of individual routines
by percentages, but it cannot lead you to fundamentally better designs.
You would never optimize your way from a bubble-sort to a quicksort.
Choosing a better design or an architecture optimized for scaling effects
is the opposite of premature optimization; it obviates the need for opti-
mization altogether.

Likewise, you ignore performance and capacity while designing your
distributed system at your own peril. As I showed in Section 8.5, Myths
About Capacity, on page 166, small changes in CPU, memory, and disk
consumption get multiplied by some really big numbers when your sys-
tem goes into production. I’ve seen poorly performing code cause an
organization to budget ten million dollars for extra hardware to make it
through one holiday season. Fixing a few of the antipatterns and imple-
menting a couple of these capacity patterns1 allowed them to avoid that
ten-million-dollar expense. That was the equivalent of nearly one week
of sales.

1. Precompute Content and Use Caching Carefully, as it happens.

CHAPTER 10. CAPACITY PATTERNS 205

Avoiding the antipatterns is an important step, but there is more than
just avoiding self-inflicted wounds. The capacity patterns in this chap-
ter will take your application from Fight Club to Rocky.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=205

POOL CONNECTIONS 206

10.1 Pool Connections
As I mentioned in Antipattern 9.1, Resource Pool Contention, on
page 176, resource pools can dramatically improve capacity. Resource
pools eliminate connection setup time. Establishing a new database
connection requires a TCP connection, database authentication, and
database session setup. Taken together, this can easily take 400 to 500
milliseconds. Only starting a new thread is more expensive than creat-
ing a database connection.

In the early days of Perl CGI scripts, a script would open a connection,
do some work, and then tear down the connection. This strategy was
safe, clean, and easy to debug. Unfortunately, this approach hits the
wall when the database server spends as much time managing con-
nections as it does on processing transactions. To get past that point,
individual page requests must share or reuse connections. These days,
nearly every language and programming style permits connection pool-
ing. There really is no excuse not to use it, except if you do it poorly.

Connection pooling does impose some considerations. Connections can
get into a bad state. When that happens, every request that attempts
to use the connection will get an error. The bad connection will get
checked out, cause an error, and get thrown back into the pool. The
good connections get used for actual work, so they stay checked out
longer. As a result, the bad connection is more likely to be available
when a request comes in. It therefore causes a disproportionate number
of errors. One bad connection out of ten will cause more than 10% of
requests to error out.

Connection pool sizing is a vital issue. An undersized connection pool
leads to resource pool contention (again, see Antipattern 9.1, Resource
Pool Contention, on page 176). An oversized connection pool can cause
excess stress on the database servers.

A related issue is the design for checking connections out and in to
the pool. For a web-based system, several strategies are possible. The
simplest is the “per-page” model: a connection is checked out for the
entire page. It is checked in when the page is completed. When multi-
ple connection pools are involved, this model tends to be safer against
deadlocks, since the same order of connection checkout and checkin
can be enforced on all requests. On the other hand, this model does
require a higher ratio of connections to request-handling threads, since
each connection will be checked out for longer periods.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=206

POOL CONNECTIONS 207

The “per-page” model is usually implemented with a transaction man-
ager set to create a single transaction containing the entire page.

If individual pages are dynamically built from numerous fragments, it
might not be possible to apply the “per-page” model. The “per-fragment”
approach allows each fragment to check out its own connection, do
some work, and check the connection back in to the pool. This model
is more susceptible to deadlock but can achieve higher throughput
than the “per-page” model. Fewer connections per request-handling
thread are required, because the individual connections are checked
in faster. The main advantage is individual fragments do not require
global knowledge about the transaction context. Each can operate inde-
pendently.

A hybrid approach allows each fragment to manage its own connections
but creates a database transaction around the entire page. The con-
nections then get attached to the transaction until it is rolled back or
committed. This model combines the deadlock safety of the “per-page”
model with the simplicity and isolation of the “per-fragment” model.
It does require the larger connection pools of the “per-page” model.
The hybrid approach can be hard to debug, since individual fragments
might see uncommitted data that previous fragments have introduced
in the transaction. The result will be a fragment that sees data you
can’t. It’s very difficult to diagnose a fragment’s behavior then.

No matter which strategy your application applies, you must monitor
your connection pools for contention, or this capacity enhancer will
quickly become a killer.

Remember This
Pool connections

Connection pooling is basic. There’s no excuse not to do it.

Protect request-handling threads
Do not allow callers to block forever. Make sure that any checkout
call has a timeout and that the caller knows what to do when it
doesn’t get a connection back.

Size the pools for maximum throughput
Undersized resource pools lead to contention and increased
latency. This defeats the purpose of pooling the connections in
the first place. Monitor calls to the connection pools to see how
long your threads are waiting to check out connections.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=207

USE CACHING CAREFULLY 208

10.2 Use Caching Carefully
Caching can be a powerful response to a performance problem. It can
reduce the load on the database server and cut response times to a frac-
tion of what they would be without caching. When misused, however,
caching can create new problems.

The maximum memory usage of all application-level caches should be
configurable. Caches that do not limit maximum memory consumption
will eventually eat away at the memory available for the system. When
that happens, the garbage collector will spend more and more time
attempting to recover enough memory to process requests. The cache,
by consuming memory needed for other tasks, will actually cause a
serious slowdown.

No matter what memory size you set on the cache, you need to monitor
hit rates for the cached items to see whether most items are being used
from cache. If hit rates are very low, then the cache is not buying any
performance gains and might actually be slower than not using the
cache. Keeping something in cache is a bet that the cost of generating
it once, plus the cost of hashing and lookups, is less than the cost of
generating it every time it is needed. If a particular cached object is
used only once during the lifetime of a server, then caching it is of no
help.

It’s also wise to avoid caching things that are cheap to generate. I’ve
seen content caches that had hundreds of cache entries that consisted
of a single space character. A particular fragment of JSP had a condi-
tional that checked to see whether a user was an employee by looking
at a Boolean flag in the user’s profile. It evaluated to false most of the
time and rendered itself as nothing. Somehow, I doubt that a condi-
tional on a Boolean was really expensive enough to warrant caching
the outcome, especially when the cached object was relevant only for a
single user.

In Java, caches should be built using SoftReference objects to hold the
cached item itself. If memory gets low, the garbage collector is permitted
to reap any object that is reachable only via soft references. As a result,
caches that use soft references will help the garbage collector reclaim
memory instead of preventing it.

In extreme cases, it might be necessary to move to a multilevel caching
approach. In this approach, you keep the most frequently accessed data
in memory but use disk storage for a secondary cache. This works well if

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=208

USE CACHING CAREFULLY 209

the objects to cache are extremely large (such as images) or the working
set is larger than what you can hold in memory. If fetching uncached
data involves access over WAN connections, a multilevel cache is also
helpful.

Precomputing results can reduce or eliminate the need for caching.

Finally, any cache presents a risk of stale data. Every cache should
have an invalidation strategy to remove items from cache when their
source data changes. The strategy you choose can have a major impact
on your system’s capacity. For example, a point-to-point notification
might work well when there are ten or twelve application servers. If
there are hundreds of application servers, then point-to-point unicast
is not effective, and you need to look at either a message queue or some
form of multicast notification. Of course, with multicast, it’s a good idea
to make sure that the application servers are not all going to hammer
the database at the same time to reload the invalidated item.

Remember This
Limit cache sizes

Unbounded caches consume memory that is better spent han-
dling requests. Holding every object you’ve ever loaded in memory
doesn’t do the users any good.

Build a flush mechanism
Whether it’s based on the clock, the calendar, or an event on the
network, every cache needs to be flushed sooner or later. A cache
flush can be expensive, though, so consider limiting how often a
cache flush can be triggered, or you just might end up with attacks
of self-denial.

Don’t cache trivial objects
Not every domain object and HTML fragment is worth caching.
Seldom-used, tiny, or inexpensive objects aren’t worth caching:
the cost of bookkeeping and reduced free memory outweighs the
performance gain.

Compare access and change frequency
Don’t cache things that are likely to change before they get used
again.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=209

PRECOMPUTE CONTENT 210

10.3 Precompute Content
As application architects and designers, we like dynamic content on
the web. It’s more interesting than static content, for one thing. For
another, nobody needs programmers to put up static content. We even
have a derogatory term for it—brochureware. When the requirements
state that the content can change at any time, we tend to accept that
and immediately jump to a database-driven, dynamically generated
site. All of the common technologies drive us in that direction: JSP,
ASP, Ruby on Rails, and so on.2

The trouble comes from that multiplier effect again. Consider a typi-
cal retail site. Almost every retail site allows shoppers to browse some
kind of hierarchical structure of product categories. Whether these cat-
egories are represented as a single-rooted tree, a forest of trees, or a
directed acyclic graph, they eventually deliver the user to some kind of
product detail page. At least the top-level categories are shown on every
page. Usually, a second level of categories is shown as well. The usual
approach to generating the category menu is to query the database for
the categories to show and then iterate over the categories in a page
fragment, rendering HTML or JavaScript for each category. That chunk
of code probably executes a million times a day. How often does the top-
level categorization change? Once every three months? Small changes
might happen once a week. But the code still runs a query and dynam-
ically generates the HTML, just on the off chance that the categories
have changed in the ten milliseconds since the HTML was generated
last. Even if you cache the results of the database query, rendering
HTML still takes a long time because of the sheer number of strings
involved.

Why spend time rendering the HTML at all? If you can identify sections
of the site where the content changes much less often than pages are
generated, it’s worth precomputing the rendered HTML fragments. This
is especially valuable when you can identify the precise point in time
when the content changes. Regenerate the precomputed content at that
time, and then just serve that up as it is, instead of recomputing the
same HTML millions of times.

News portal sites such as Slashdot and Fark precompute their main
pages. Their stories change at least hourly, sometimes more often.
Comment totals change every minute. Nevertheless, the main page of

2. Not to mention Struts, Tiles, Tapestry, WebWork, WebObjects, SpringMVC, and so on.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=210

PRECOMPUTE CONTENT 211

both of those sites is a template that pulls in a handful of large pieces
of precomputed content. The sites get their “liveness” by recomputing
the content every few minutes, but each version of the page still gets
viewed hundreds or thousands of times before the next update.

The Profanity Master

One of the most egregious examples of excessively dynamic content I’ve
ever seen came from the retail launch discussed in Chapter 7, Trampled
by Your Own Customers, on page 147. Tracing through garbage collection
statistics showed that almost 10MB of garbage was being created for each
page request. Now, the Java garbage collector has gotten a lot better in
the Java 2 and Java 5 virtual machines, but, really, 10MB? Something
had to be seriously wrong in the code. When I found it, I couldn’t decide
whether to laugh, cry, or curse someone. I found the developer
responsible and shouted “0x7f” at him. (I hexed him.)

Each product detail page, and each “product insert”—the little boxes on
the home page and category pages—used a custom component called the
Profanity Masker. This little gem was an ATG droplet, which is like a
custom JSP tag. A droplet processes its contents and generates some
output. Droplet input is buffered before the droplet is invoked, and the
output is buffered before it gets included in the page. The Profanity
Masker was being used around the product name, short description, long
description, and specifications. For music, it was used once around each
track name. For movies, it was used around each actor’s name. A single
product detail page could have twenty of these little buggers on it.

The Profanity Masker parsed its contents using StringTokenizer, and then
compared each and every word in the content to its list of eleven dirty
words. If the word was not in the list, it would append the word to the
StringBuffer it was using to build the output. If the word was a match, it
would replace the original, dirty word with its first letter, followed by the
right number of asterisks so everyone could figure out what the original
word was.

Think about that for a minute. Every single bit of textual content was
being tokenized, compared word-for-word against a Vector (yes, a Vector

not an ArrayList) of bad words, and then stitched back together. This was
being done twenty times a page, with more than five million page views a
day. That makes for somewhere around a gazillion string comparisons
and 10MB of garbage for each and every page request. All that content
was published nightly. Was there some chance that dirty words would
spontaneously appear during the day? Why go to all that work on every
single page view?

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=211

PRECOMPUTE CONTENT 212

The funniest part of the story is the postscript. When we started asking
whether it was OK to stop masking profanity (thus endangering young
minds but protecting the site), the business sponsor in charge of content
went ballistic. Product descriptions, album names, sample lyrics, and
song titles are all copyrighted material. It’s aggregated by a data vendor,
but it ultimately comes from record companies and movie studios. By
contract, you cannot just go altering the content, even if you’re doing it
for noble reasons. He was very upset to hear that the content was being
changed when it got displayed on the site. We removed the Profanity
Masker, but we never did find out why it was written in the first place.

Precomputing content does have some costs of its own. It requires stor-
age space for each piece of computed content. There is some runtime
cost to mapping an identifier to a file and reading the file. For commonly
used content, this cost might motivate you to cache the content itself
in memory. The cost of generating the content mainly occurs when the
content changes. If the content gets used many times before it changes,
then precomputing it is worthwhile.

Personalization works against precomputed content. If entire pages are
personalized, then precomputed content is impossible. On the other
hand, if just a few fragments or sections are personalized, then the
majority of the page can be precomputed with a “punch out” for the
personalized content.

Precompute most of a
page. Use “punch outs”
for personalized
content.

Precomputing content is different from
caching. Caching database results in memory
is a trade-off, increasing stress in one variable
(application server RAM) in order to relieve
stress in another variable (either database
CPU or database I/O, depending on which

hurts worse in your system). Caching page fragments in memory is a
similar trade-off, balancing application server response time against
application server memory requirements. The first problem, though, is
that caching page fragments in memory can ultimately hurt response
time. If memory gets short or the cache size is less than the working
set of fragments being served, then the application server will spend
time thrashing the cache. Worse yet, it will be working with reduced
memory for transient use while serving pages. Java application servers
get very, very slow when you starve them for memory because you’ve
got megabytes of cached content sitting in the old generation heap
space. The second problem is that in-memory caches take time to
“warm up.” Whatever poor sap asks for the first page from a server

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=212

PRECOMPUTE CONTENT 213

with cold caches might end up waiting minutes to get a single page
back. In-memory caching has its place, but storing rendered page
fragments for large amounts of content is not the right way to employ
caching.

Precomputed content does not need to be an all-or-nothing approach.
Some high-traffic areas of the site can be precomputed, while less fre-
quently visited pages can be fully dynamic. Except for Amazon, retailers
decide what you will see on the home page, and everyone sees the same
products on the home page. The site might greet customers by name,
and it might show a saved shopping cart, so there are probably 100 or
so bytes that are customer specific. The remaining 100KB (I’m being
generous) are exactly the same for every single customer.

Remember This
Precompute content that changes infrequently

Any content that you present many times before it changes could
be precomputed to save time during request handling. Factor the
cost of generating the content out of individual requests and into
the deployment process.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=213

TUNE THE GARBAGE COLLECTOR 214

10.4 Tune the Garbage Collector
In Java applications, garbage collection tuning is the quickest and eas-
iest way to see some capacity improvements. An untuned application
running at production volumes and traffic will probably spend 10% of
its time collecting garbage. That should be reduced to 2% or less.

Modern garbage collectors are optimized for the typical bimodal distri-
bution of object life spans. Most objects are ephemeral; they are created
and discarded within microseconds. (Sun refers to this as infant mor-
tality.) A much smaller population of objects are long-lived, often with
life spans that match the program execution (singletons, service reg-
istries, server sockets, and so on). Objects are allocated in the eden
space. If they survive a garbage collector pass, they get moved into a
survivor space. Both the eden and survivor spaces are in the “young
generation.”

When the garbage collector runs, the first step it takes is to check the
eden space for live objects. If no objects are live, then the entire eden
space is recycled very quickly. Any live objects in that space will be
moved into one of the survivor spaces. So, quickly disposing of objects
is not a problem for the garbage collector. Different garbage collec-
tor phases can eventually move survivors into the tenured generation,
which is examined by the garbage collector much less frequently than
the young generation. (The third generation is the permanent generation
that holds class and method definitions.)

You can get visibility into the garbage collector’s behavior by passing
the -verbosegc argument to the JVM at start-up time. Garbage collector
reports go into the console output, so you need to ensure that stan-
dard out is directed somewhere. (For application servers, this usually
requires changing a start-up script.) If you are using Java 5 or later,
then you can use the jconsole tool that comes with the Java SDK. Fig-
ure 10.1, on the next page shows some of what jconsole can tell you. The
Memory tab shows heap usage, broken down by generation and space,
as well as the amount of time spent in garbage collection. This is a rel-
atively idle calendar server that is clearly not suffering from excessive
garbage collection.

Once you can see the garbage collection patterns, tuning the garbage
collector is largely a matter of ensuring sufficient heap size and adjust-
ing the ratios that control the relative sizes of the generations.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=214

TUNE THE GARBAGE COLLECTOR 215

Figure 10.1: JConsole Memory Tab

Sun has excellent guides for garbage collection tuning available online.3

As an added bonus, going through the exercise of tuning the garbage
collector will often bring memory leaks to your attention!

Garbage collector tuning is part science, part art. Garbage collector
behavior derives entirely from the application’s behavior and demand
patterns. Each code release changes the environment in some way.
Even relatively small code releases can induce new behavior from users:
promotions, ease of use changes, prominence of an expensive feature,
and so on. Perfectly tuned (if there is such a thing) settings for one
release can be totally wrong for the next release. As I will discuss in
Chapter 17, Transparency, on page 265, you need a routine process to
keep tuning and retuning settings.

3. For JDK 1.4.2, see http://java.sun.com/docs/hotspot/gc1.4.2/index.html. For Java 5, see
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html.

http://java.sun.com/docs/hotspot/gc1.4.2/index.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=215

TUNE THE GARBAGE COLLECTOR 216

Joe Asks. . .
What About Object Pooling?

In early versions of Java (around the 1.2 time frame), the idea
that long-lived objects were good gained currency. I specifi-
cally remember being told that “creating an object is the sec-
ond most expensive thing you can do in Java” (the first being
creation of a new thread). The answer, supposedly, was to
avoid creating objects whenever possible. Instead, you were
supposed to keep objects around and reuse them.

Whether that was ever true is the subject of heated debate
in the Java community. Either way, with current JVMs, object
pooling is not the answer. Some systems have gone to ridicu-
lous lengths to avoid creating new objects. They add so much
complexity and bookkeeping that any possible performance
gains will be wiped out.

The following table shows timing from a simple application that
uses a NameFormatter to format 50,000 names. In the “pooled”
configuration, the Jakarta “commons-pool” package is used
to make an object pool to reuse the NameFormatter. In the
“unpooled” configuration, 50,000 individual NameFormatters are
created. The data clearly show that the bookkeeping over-
head of the pool overwhelms the expense of constructing the
objects. (All tests are against JDK 1.4.2.)

OS CPU Speed Overhead Overhead
Pooled Disposable

Windows XP Pro 1.86 GHz 20.30% 10.17%
Linux 2.6.14 2.66 GHz 31.46% 23.42%
Mac OS 10.4.4 1.67 GHz 24.69% 15.69%

Reserve object pooling for objects that really are expensive to
create, such as network connections, database connections,
and worker threads.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=216

SUMMARY 217

Remember This
Tune the garbage collector in production

User access patterns make a huge difference in the optimal set-
tings, so you can’t tune the garbage collector in development or
QA.

Keep it up
You will need to tune the garbage collector after each major appli-
cation release. If you have an annual demand cycle, you will also
need to tune it at different times during the year, as user traffic
shifts between features.

Don’t pool ordinary objects
The only objects worth pooling are external connections and
threads. For everything else, rely on the garbage collector.

10.5 Summary

Resource pools can be a source of capacity-killing contention. Done
well, however, they are a significant capacity enhancer. A connection
pool eliminates up to 500 milliseconds from every transaction. Several
strategies for connection management are available, each with bene-
fits and drawbacks. These include the “per-page,” “per-fragment,” and
hybrid models.

Caching is a double-edged sword. Done well, it will greatly increase a
system’s capacity to support users. As typically practiced, caches can
grow too large, cached items never get flushed, and cheap objects are
cached with no benefit. Limiting cache sizes is crucial. Java developers
should make use of the SoftReference objects to collaborate with the
garbage collector in managing cached objects.

Examine multiplier effects to find the right leverage points to make
improvements. For example, dynamically rendered content a million
times a day, when the content changes once a week, puts your system
on the wrong side of a multiplier effect. The benefit is gained once a
week, while the cost is borne a million times a day. The act of rendering
that content once, whenever the underlying data changes, and storing
the precomputed result provides a benefit a million times a day with
the cost of managing the cache borne once a week.

Garbage collector tuning is vital to Java applications. It is not a one-
time operation but rather an ongoing process. Each code release can
change garbage collection patterns enough to merit retuning.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=217

Part III

General Design Issues

Chapter 11

Networking
Networking in the data center goes far beyond the application-level
sockets API. Data center network designs favor redundancy, security,
and flexibility far more than networks to the desktop. An application
requires some additional work to behave properly in this environment.

11.1 Multihomed Servers

Multihoming is the most striking difference between a machine in devel-
opment or QA environments and the data center. Nearly every server
in a data center will be multihomed. A server with more than one IP
address is a multihomed server; it exists on several networks simulta-
neously. This architecture improves security by separating administra-
tion and monitoring onto its own highly secured network. It improves
performance by segmenting high-volume traffic, such as backups,
away from the production traffic. I’m sure you’ve experienced a network
slowdown due to system backups. Backups can saturate any network,
since they always run at full throttle. If you make a faster network, it
just means the backups finish faster (up to a point, of course). These
networks have very different security requirements, and an application
that is not aware of the multiple network interfaces will easily end up
accepting connections from the wrong networks. For example, it could
accept administrative connections from the production network or offer
production functionality over the backup network.

As shown in Figure 11.1, on the next page, this single server has four
different network interfaces. In Linux, these would be eth0 through eth3.

MULTIHOMED SERVERS 220

Server

Switch 1 Switch 2

Backup
Switch

Admin
Switch

nic0 nic1

nic2nic3

172.16.64.190 172.16.32.190

10.10.1.190192.168.104.190

Figure 11.1: Multiple Network Interfaces

For Solaris, they could be ce0 through ce3 or qfe0 through qfe3, depend-
ing on the network card and driver version. Windows would give the
interfaces incredibly long and unwieldy names by default.

Of the four interfaces, two of them are dedicated to “production” traf-
fic. These handle the application’s functionality. If the server is a
web server, then these handle the incoming requests and send the
replies back. In this example, both interfaces are for production traffic.
Because these are running to different switches, the server appears to
be configured for high availability. These two interfaces might be load
balanced, or they might be set up as a failover pair. As shown, two dif-
ferent IP addresses will get packets to this server. That means there are
probably DNS entries for both addresses. In other words, this machine
has more than one name! It has its own internal hostname—the string
returned by the hostname command—but from the outside, more than
one name reaches this host.

Another common configuration for multiple production interfaces is
bonding, or teaming. In this configuration, both interfaces share a
common IP address. The operating system ensures that an individ-

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=220

MULTIHOMED SERVERS 221

ual packet goes out over only one interface. Bonded interfaces can be
configured to automatically balance outbound traffic or to prefer one
link or the other. Bonding interfaces that connect to different switches
requires some additional configuration on the switches, or else routing
loops can result. You’ll be very famous if you cause a routing loop in
the data center, but not in a good way.

The two additional “back-end” interfaces are dedicated to special-
purpose traffic. Because backups transfer huge volumes of data in
bursts, they can clog up a production network. Therefore, good network
design for the data center partitions the backup traffic onto its own net-
work segment. These are sometimes handled by separate switches and
sometimes just by separate VLANs on the production switches. With
backup traffic partitioned off from the production network, application
users do not necessarily suffer when the backups run. (They might,
if the server doesn’t have enough I/O bandwidth to process backups
and application traffic at the same time. Nevertheless, users of other
applications don’t suffer when this server is being backed up.)

Finally, many data centers have a specific network for administrative
access. This is an important security protection, because services such
as SSH can be bound only to the administrative interface and are there-
fore not accessible from the production network. This can help if a fire-
wall gets breached by an attacker or if the server handles an internal
application and does not sit behind a firewall.

This multitude of interfaces affects the application software. By default,
an application that listens on a socket will listen for connection
attempts on any interface. For example, the Java ServerSocket class has
four constructors as of Java 5. Three of these constructors bind to every
interface on the server. Only the long form of the constructor can take
a specific local address to define to which interface it should bind.

InetAddress addr = InetAddress.getByName("alpha.example.com");
ServerSocket socket = new ServerSocket(80, 50, addr);

Socket local = socket.accept();
...

Without the address, ServerSocket will bind to all interfaces, which
would allow connections over the backup or administration networks
to the production server. Or, conversely, it could allow connections over
the production network to the administrative interface!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=221

ROUTING 222

To determine which interfaces to bind to, the application must be
told its own name or IP addresses. This is a big difference with mul-
tihomed servers. In development, the server can always call InetAd-

dress.getLocalHost(), but on a multihomed machine, this simply returns
the IP address associated with the server’s internal hostname. This
could be any of the interfaces, depending on local naming conventions.
Therefore, server applications that need to listen on sockets must add
configurable properties to define to which interfaces the server should
bind.

11.2 Routing

Because servers in production usually have multiple network inter-
faces, questions will sometimes arise about which interfaces particular
kinds of traffic should traverse. For example, it is relatively common to
see an application server with a front-end network interface connected
to one VLAN for communication to the web servers and with a back-end
network interface connected to a different VLAN for communication to
the database servers. In this case, the server must be told which inter-
face to use in order to reach a particular destination IP address.

In the case of nearby servers, the routes are probably easy; they will
just be based on the subnet addresses. In the example of the applica-
tion server, the back-end interface probably shares a subnet with the
database server, while the front-end interface probably shares a subnet
with the web servers. Routing gets a bit more complicated when distant
services—perhaps third-party services—are involved.

Consider the case of a third-party spam cannon service. Data sent by Spam cannon: a vendor
doing high-volume email
transmission, usually
based on an XML feed of
names and addresses.
They fill in pretty,
predefined HTML
templates with personal
data collected by the
subscriber. They have
high-bandwidth
connections and, not
often enough, algorithms
to avoid crushing SMTP
servers at small ISPs.
Their hard work usually
goes straight into “spam”
folders.

application servers to the spam cannon should probably not go straight
over the public Internet. Instead, it is probably routed over the back-
end interface of the application servers through a VPN to the service.

Getting these routing issues right requires attention to each and every
integration point. Getting them wrong risks reduced availability or,
worse, exposure of customer data. For each connection to a remote
system, I recommend keeping a record in a spreadsheet or a Microsoft
Access database of the destination name, address, and desired route.
Someday, somebody is going to need that information to write firewall
rules anyway.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=222

VIRTUAL IP ADDRESSES 223

Server 1
active

Switch 1

Real IP
172.16.64.190

Server 2
passive

Real IP
172.16.64.191

Virtual IP
172.16.67.10

Before Failover

Server 1
failed

Switch 1

Real IP
172.16.64.190

Server 2
active

Real IP
172.16.64.191

Virtual IP
172.16.67.10

After Failover

Figure 11.2: Virtual IP Address Migration

11.3 Virtual IP Addresses

Believe it or not, not every application is written to run across a clus-
ter. For whatever reason, these applications can be active on only one
server at a time. How can you get high availability out of an application,
without the redundancy of running it on multiple servers?

Cluster servers are the answer. A cluster server is an application that
acts like a controller for other applications. A cluster server such as
HP ServiceGuard, Veritas Cluster Server, or Microsoft Cluster Server1

runs on multiple servers, collaborating across the servers to ensure
that a specific “package” runs exactly once somewhere in the cluster.
By configuring packages for applications, filesystems, and IP addresses,
it is possible to have the cluster server orchestrate a clean shutdown
on one server and startup on another server. Most of the time, the
application itself is unaware that it has been clustered.

Suppose the server hosting a critical—but not natively clustered—
application goes down. The cluster server on its failover node will notice
the lack of a regular heartbeat from the failed server. This cluster server
then decides that the original server has failed.

1. Now renamed to Microsoft Windows Server 2003 Clustering Services. Say that three
times fast.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=223

VIRTUAL IP ADDRESSES 224

Two Flavors of Virtual IP

Unfortunately, the term virtual IP is overloaded. Generally
speaking, it means an IP address that is not strictly tied to an
Ethernet MAC address. Cluster servers use it to migrate owner-
ship of the address between the members of the cluster. Load
balancers use virtual IPs to multiplex many services (each with
its own IP address) onto a smaller number of physical inter-
faces. There is some overlap here, since load balancers typi-
cally come in pairs, so the virtual IP—as in “service address”—
can also be a virtual IP as in “migrating address.”

It starts up the application on the secondary server, including mounting
any required filesystems. It will also take over the virtual IP address
assigned to the clustered network interface.

A virtual IP address is just an IP address that can be moved from one
NIC to another as needed. At any given time, exactly one server claims
the IP address. When the address needs to be moved, the cluster server
and the operating systems collaborate to do some funny stuff in the
lower layers of the TCP/IP stack. They associate the IP address with
a new MAC address (hardware address) and advertise the new route
(ARP). Figure 11.2, on the preceding page depicts a virtual IP address
before and after the active node fails.

Virtual IP addresses are often used for active/passive database clus-
ters. Clients are instructed to connect only to the DNS name for the
virtual IP address, not to the hostnames of either node in the cluster.
That way, no matter which node currently holds the IP address, the
client can connect to the same name.

Of course, this approach cannot migrate the in-memory state of the
application. As a result, any nonpersistent state about interactions will
be lost. For databases, this includes uncommitted transactions. Some
database drivers—such as a Oracle’s JDBC and ODBC drivers—will
automatically reexecute queries that are aborted because of a failover.
Updates, inserts, or stored procedure calls cannot be automatically
repeated. Therefore, any application calling a database through a vir-
tual IP should be prepared to get a SQLException when such a failover
occurs.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=224

VIRTUAL IP ADDRESSES 225

In general, if your application calls any other service through a virtual
IP, it must be prepared for the possibility that the next TCP packet
isn’t going to the same interface as the last packet. This can cause
IOExceptions in strange places. The application logic must be prepared
to handle that error—and handle it differently than just a “destination
unreachable” error. If at all possible, the application should retry its
request against the new node (but see Pattern 5.2, Circuit Breaker, on
page 115 for some important safety limits on retries).

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=225

Chapter 12

Security
Full treatment of application security is way beyond the scope of this
book. The topics covered in this chapter earned their place by sitting in
the intersection of software architecture, operations, and security.

12.1 The Principle of Least Privilege

The principle of “least privilege” mandates that a process should have
the lowest level of privilege needed to accomplish its task. For appli-
cation software, this never includes running as root (UNIX/Linux) or
Administrator (Windows). Anything these applications need to do, they
can do as nonadministrative users.

I’ve seen Windows servers left logged in as Administrator for weeks at a
time—with remote desktop access—because that’s what some piece of
software required. (This particular package also was not able to run as
an NT service, so it was essentially just a Windows desktop application
left running for a long time. That is not what I call data center ready!)

Software that requires execution as root is automatically a target
for crackers. Any vulnerability in root-level software automatically
becomes a critical issue. Once a cracker has gained root access, the
only way to be sure the server is safe is to reformat and reinstall. Worse
yet, for horizontally scalable applications, you might have to reinstall
the entire cluster.

To further contain vulnerabilities, each major application should have
its own user. The “apache” user should not have any access to the
“websphere” user, for example.

CONFIGURED PASSWORDS 227

Opening a socket on a port numbered less than 1024 would be the only
thing for which a UNIX application might require root privilege. Web
servers often want to open port 80 by default. Any web server sitting
behind a load balancer (see Section 13.3, Load Balancing, on page 232)
can use any port, including ones numbered 1024 or greater. Only the
load balancer needs to listen to port 80.

A web server that is not behind a load balancer (I assume there’s a
good reason, though I can’t think of one right now) will need to run as
root in order to listen on port 80. Peel back the lid on Apache, however,
and you’ll find that it uses “privilege separation” to deliberately give
up root access after it opens the socket. It uses low-level C functions
to downgrade its own status to the configured user (usually “apache”).
This is a one-way trip; the process cannot regain root privileges once it
gives them up.

12.2 Configured Passwords

Passwords are the Achilles heel of application security. There’s obvi-
ously no way that somebody can interactively key in passwords every
time an application server starts up. Therefore, database passwords
and credentials needed to authenticate to other systems must be con-
figured in persistent files somewhere.

As soon as a password is in a text file, it is vulnerable. Any password
that grants access to a database with customer information is worth
thousands of dollars to an attacker and could cost the company thou-
sands in bad publicity or extortion. These passwords must be protected
with the highest level of security achievable.

At the absolute minimum, passwords to production databases should
be kept separate from any other configuration files. They should espe-
cially be kept out of the installation directory for the software. (I’ve
seen operations zip up the entire installation folder and ship it back
to development for analysis. This happens most often when questions
arise about the production configuration and whether the software was
installed and configured correctly.) Files containing passwords should
be made readable only to the owner, which should be the application
user. If the application is written in a language that can execute priv-
ilege separation, then it is reasonable to have the application read the
password files before downgrading its privileges. In that case, the pass-
word files can be owned by root. Beware! If the application keeps these

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=227

CONFIGURED PASSWORDS 228

files in memory, then memory dumps will also contain the passwords.
For UNIX systems, core files are just memory dumps of the application.
If an attacker can provoke a core dump and has access to a server’s
filesystem, then he can get the passwords. It’s best to disable core
dumps on production applications. For Windows systems, the “blue
screen of death” indicates a kernel error, with an accompanying mem-
ory dump. This dump file can be analyzed with Microsoft kernel debug-
ging tools, and depending on the configuration of the server, it can con-
tain a copy of the entire physical memory of the machine—passwords
and all.1

Password vaulting keeps passwords in encrypted files, which reduces
the security problem to that of securing the single encryption key rather
than securing multiple text files. This can assist in securing the pass-
words, but is not, by itself, a complete solution. Because it is easy
to inadvertently change or overwrite file permissions, intrusion detec-
tion software such as Tripwire2 or Open Source Tripwire3 should be
employed to monitor permissions on those vital files.

1. In fact, there’s a registry edit to enable a key combination (no, I’m not going to give it
here) that will force a memory dump and system halt. If you ever see a “blue screen
of death” with the text “the end-user manually generated the crashdump,” then you
are under attack. In fact, it’s best to make sure that “feature” is not enabled on any
production server.
2. See http://www.tripwire.com/.
3. See http://www.sourceforge.net/projects/tripwire.

http://www.tripwire.com/
http://www.sourceforge.net/projects/tripwire
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=228

Chapter 13

Availability
Divorcing a “want” from its cost always leads to unrealistic desires. Ask
a group of children how much ice cream they want, and the answer is
usually, “All of it.” The young ones have no concept of the various costs
of eating a gallon of ice cream: there’s the direct cost of paying for the
ice cream and the indirect costs of damaged health, weight gain, and
that queasy, flip-floppy feeling in your tummy.

This section discusses the difficult feat of balancing the tension
between the dual forces of desire for greater availability and desire to
minimize cost. These forces are in direct opposition; guaranteed avail-
ability necessarily increases costs.

13.1 Gathering Availability Requirements

Asking the sponsors of your system, “How highly available should this
be?” probably results in one of two answers. The less experienced spon-
sors will simply reply, “100%.” The more knowledgeable will say, “five
nines” because it sounds cool and technical. But are five nines really
required?

The proper way to frame the availability decision is in straightforward
financial terms: actual cost vs. avoided losses. For example, “98% avail-
ability” translates to 864 minutes of downtime each month. That down-
time has a direct cost because of lost revenue. Suppose the site brings
in $1,500 per hour during the peak of the day—the worst possible time
to be down. Then the worst-case loss with 98% availability is about
$21,600. Now compare the minutes of downtime avoided by building a
more reliable system. Improving the availability to 99.99% reduces the
expected cost of downtime to just $108 per month—gaining $21,492
per month over the 98% availability case.

DOCUMENTING AVAILABILITY REQUIREMENTS 230

So, should the system be built to achieve 99.99% availability? It’s like
that ice cream question. Without considering the cost, of course the
desire will be unlimited. Each “9” of availability increases the imple-
mentation cost by about a factor of ten and the operational cost per
year by about a factor of two. In this example, the additional lifecy-
cle cost—implementation cost plus operational cost for the five-year life
span of the system—amounted to $98,700. Spending $98,700 to save
$1,289,520 seems like a sound financial choice.

Availability 98% 99.99%
Downtime Min/Month 864 4
Downtime $/Month $21,600 $108
Added Cost $0 $98,700
Net Savings $0 $1,289,520

13.2 Documenting Availability Requirements

Want to guarantee nasty conflicts? Take a word with multiple, fuzzy
definitions, force people to strike an agreement about it, attach large
amounts of money to it, and then watch them fight about it a year or
two later.

I’m describing, of course, the inevitable effect of poorly defined service-
level agreements about availability. SLA definitions are like the details
in your medical insurance plan. Nobody reads them too closely until
something awful happens. If you’re having a conversation about SLA
definitions a year after the system launched, odds are it’s a heated
discussion following an incident. Once you’re in that situation, it’s too
late.

You can prevent (or at least diminish) the blamestorming by working
out a precise service-level agreement with the system’s sponsors in the
beginning. It is not enough to write down, “The system shall be available
99.9% of the time” on a piece of paper. Vagueness lurks behind every
word of that sentence.

What is “the system?” Unless it is trivial, “the system” probably includes
calls to other systems inside and outside the enterprise. Are you really
going to take accountability for all of those? I wouldn’t! Also, if the sys-
tem employs stability patterns like Circuit Breaker, then at any given
time, the system as a whole might be up and running—responding to
requests or generating web pages—but specific features might not be
working. Rather than stating that “the system” will be available, it is

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=230

DOCUMENTING AVAILABILITY REQUIREMENTS 231

better to define the SLAs in terms of specific features or functions of
the system. A hotel chain, for example, might be interested in several
key functions of its website: property locator, online reservations, sub-
scription to the loyalty club, event bookings, and so on. Each of these
features has different levels of importance to the business. Event book-
ings and online reservations both generate revenue, so they are likely
to have the highest SLAs attached to them. Beware of the SLA Inver-
sion antipattern (see Antipattern 4.10, SLA Inversion, on page 102); you
cannot offer a better SLA than the worst of the external dependencies
involved in a feature. For example, loyalty club programs are often han-
dled by a third party, so this SLA can only be a pass-through, at best,
of the vendor’s own SLA.

Once you’ve isolated each feature or business process, you can define
the required level of availability. Not to sound too much like a lawyer,
but “availability” itself needs to be defined. How is the feature being
checked? Is it a human clicking a mouse around? (I hope not.) Maybe
it’s the army of users, and problems are reported via a help desk. (I
really hope not!) It’s best to have some automated system checking
the availability of a feature by executing synthetic transactions against
it. The SLA should define what device or devices will be monitoring Synthetic transaction:

work submitted to a
system that emulates a
real user. You must have
some way to indicate
this is for monitoring—
such as a designated
user ID—to avoid pol-
luting the production
data.

the availability of the feature. Furthermore, it should define how that
monitoring device will report problems.

If a feature is functioning but takes twenty-seven-and-a-half minutes to
respond, most users would not consider it to be “available.” So, there’s a
time component involved. What if the transaction responds in fifty mil-
liseconds but returns errors to everyone? That’s also not really avail-
able, so there must be some definition about what a good response
looks like. How about a feature that’s wobbling up and down but acts
like a car at the mechanic and seems OK whenever the monitoring
device checks it? A good definition should nail down each of these vari-
ables:

• How often will the monitoring device execute its synthetic trans-
action?

• What is the maximum acceptable response time for each step of
the transaction?

• What response codes or text patterns indicate success?

• What response codes or text patterns indicate failure?

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=231

LOAD BALANCING 232

• How frequently should the synthetic transaction be executed?

• From how many locations?

• Where will the data be recorded?

• What formula will be used to compute the percentage availability?
Based on time or number of samples?

When the fur flies, paper makes a thin shield, but having this definition
might help focus attention on the data rather than making it a personal
issue.

13.3 Load Balancing

Horizontally scalable systems achieve both availability and scalability
through multiplicity. Adding more machines to increase capacity simul-
taneous improves resiliency to impulses. The smaller servers used in Impulse: a short, sharp

shock to the system. A
whack with a hammer.horizontally scalable architectures also cost far less and allow you to

add capacity in small increments. What’s not to like?

Building systems for horizontal scaling automatically implies some
form of load balancing. Load balancing is all about distributing requests
across a pool or farm of servers to serve all requests correctly in the
shortest feasible time. Throughout the remainder of this book, I will
commonly refer to designs and situations involving one of these forms
of load balancing.

DNS Round-Robin
DNS robin-robin load balancing is the oldest of the techniques I’ll dis-
cuss here—dating back to the early days of the web. It operates at the
application layer (layer 7) of the OSI stack, but instead of operating
during an actual request, it operates during address resolution.

This technique simply associates several IP addresses with the ser-
vice name. This is most commonly used with small-to-medium busi-
ness websites, so instead of finding a single IP address for “bobsclean-
ers.example.com,” a client would get one of several addresses. Each IP
address points to a single server. The client therefore connects to one
out of a pool of servers, as shown in Figure 13.1, on the following page.

Although this serves the basic purpose of distributing work across a
group of machines, it does poorly on other essential criteria. For one
thing, all the servers in the pool must be “routable.” That is, though

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=232

LOAD BALANCING 233

DNS Server
ns1.example.com

Web Server 2
www2.example.com

10.1.1.142

www.example.com?

User's Browser

10.1.1.142

GET /index.html HTTP/1.1

200 OK ...

Web Server 3
www3.example.com

10.1.1.143

www.example.com?

GET /index.html HTTP/1.1

200 OK ...

10.1.1.143

Figure 13.1: DNS Round-Robin Load Balancing

they can sit behind a firewall, their front-end IP addresses are visible
and reachable from clients. These days, that just invites attacks.

In addition to the security concerns, the DNS round-robin approach
suffers from putting too much control in the client’s hands. Since the
client connects directly to one of the servers, there is no opportunity to
redirect that traffic if one particular server is down. The DNS server has
no information about the health of the web servers, so it can keep vend-
ing out IP addresses for web servers that are toast. Furthermore, doling
out IP addresses in round-robin style does not guarantee that the load
is distributed evenly, just the initial connections. Some clients consume
more resources than others, leading to unbalanced workloads. Again,
when one of the servers gets busy, the DNS server has no way to know,
so it just keeps sending every eleventh connection (or whatever) to the
staggering server.

DNS round-robin load balancing is inappropriate whenever the call-
ing system is another long-running enterprise system. Anything built
on Java will cache the first IP address received from DNS, guarantee-
ing that every future connection targets the same host and completely
defeating load balancing.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=233

LOAD BALANCING 234

Reverse Proxy Server
www.example.com

Web Server 1
ws1.example.com

GET /index.html

User's Browser

200 OK ...

GET /index.html

200 OK ...

Figure 13.2: Reverse Proxy Server

Some Apache configurations also perform round-robin style URL
rewriting. This is visible to the user, when “www.example.com” sud-
denly becomes “www7.example.com.” Unfortunately, this approach
performs even worse than DNS round-robin, because of a user’s
tendency to bookmark individual servers instead of the “front door”
address.

Reverse Proxy
A reverse proxy server addresses limitation in the DNS round-robin
approach by acting as an interceptor for every request. In this case,
DNS resolves the service name to exactly one IP address. The device
listening to that IP address will be a typical host, running a proxy server
configured in “reverse proxy server” mode, as shown in Figure 13.2.

A normal proxy multiplexes many outgoing calls into a single source
IP address. A reverse proxy server does the opposite: it demultiplexes
calls coming in to a single IP address and fans them out to multiple
addresses. In the case of web servers, Squid, the popular open source
proxy server, makes a great reverse proxy server.1 Apache’s mod_proxy

also allows a special-purpose server to act as a reverse proxy for a farm
or cluster of other Apache servers.

Like the DNS round-robin trick, reverse proxy servers do their magic at
the application layer. As such, they are not transparent, but adapting
to them is not onerous. Application servers and web servers must be

1. See http://www.squid-cache.org/ for configuration instructions.

http://www.squid-cache.org/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=234

LOAD BALANCING 235

configured to generate URLs for hostnames not their own. Logging the
source address of the request (as is done by Apache’s “Common” log
format) is useless, because it will represent only the proxy server.2

In addition to load balancing, you can configure reverse proxy servers
to reduce the load on the web servers by caching static content. This
provides some benefits in reducing the traffic on the internal network.
(By sending static content from the reverse proxy server, it traverses
only one or two links on its way out of the network. Coming from the
web server, it would probably cross two or three.) If the web servers are
the capacity constraint in the system (see Section 8.2, Constraints, on
page 162), then offloading this traffic will improve the system’s overall
capacity. Of course, if the proxy server itself is the constraint, then this
will not help or hurt.

The biggest reverse proxy server “cluster” in the world is Akamai. Aka-
mai’s basic service functions exactly like Squid, configured as a caching
proxy. Akamai has certain advantages over Squid, including a large
number of servers located near the end users, but is otherwise logically
equivalent.3

Because the reverse proxy server is involved in every request, it can
get burdened very quickly. Once you start having to add a layer of
load balancing in front of your reverse proxy servers, it’s time to look
at other options. Also, because the proxy server is in the middle of
every request, it should be able to keep track of which origin servers
are healthy and responsive. Unfortunately, the most commonly used
reverse proxy servers—Squid and Apache—do not. They will happily
direct an incoming request to a dead server, wait for a timeout, and
then return an error to the caller.

Hardware Load Balancer
Hardware load balancers are specialized network devices that serve a
similar role to the reverse proxy server. These devices, such as Cisco’s

2. It is possible, however, to use a custom log format to log the X-Forwarded-For header
that Akamai and other well-behaved proxies add to the request. Note that ill-behaved or
malicious proxies are unlikely to conform to that part of the standard. As a result, that
header will be least reliable when you most need to trace the origin of some traffic, such
as an attack. In such cases, you have to rely on correlating your log files with the proxy’s
log files.
3. Please note, I’m talking only about Akamai’s basic service, currently called Web Appli-
cation Accelerator. Its other services go far beyond Squid!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=235

LOAD BALANCING 236

Load Balancing with Apache 2.2

As of version 2.2, Apache includes the new mod_proxy_balancer
module. This is a very intelligent load-balancing module with
more capability. It can “balance” a load proportionally to the
capacity of the web servers behind it—although you have to
configure the proportions yourself.

Apache operates at layer 7 of the venerable OSI model;∗ it’s
an application. Dedicated hardware will tend to be faster and
reach higher volumes. For many sites, however, avoiding the
$50,000 expense of a pair of dedicated hardware load bal-
ancers will matter more than the reduced ceiling. Besides, no
design is static, so if the site starts to bump up against a con-
straint in the open source load balancers, they can always be
replaced with the higher-capacity hardware solution.

∗. See http://en.wikipedia.org/wiki/OSI_model.

11500 Series Content Services Switch or F5’s BigIP products, provide
the same kind of interception and redirection capabilities as the reverse
proxy software. Because the operate closer to the network, hardware
load balancers frequently provide better administration and redun-
dancy features. For example, the CSS can periodically check on the
health of the servers in its pool, as shown in Figure 13.3, on the next
page. The load balancer removes dead servers from its service pool,
directing connections to the healthy ones.

Hardware load balancers are application-aware and can provide switch-
ing at layers 4 through 7 of the OSI stack. In practice, this means they
can load balance any connection-oriented protocol, not just HTTP or
FTP. I have seen these successfully employed to load balance a group
of search servers that didn’t have their own load managers. They can
also hand off traffic from one entire site to another, which is particularly
useful for diverting traffic to a failover site for disaster recovery.

SSL poses challenges for any of these solutions. Hardware load bal- SSL: Secure Sockets
Layer. Connections
encrypted for
confidentiality and
integrity. Relatively CPU
intensive.

ancer are often used as SSL “accelerators.” Frankly, in my opinion, that
puts the load balancer on the wrong end of both Moore’s law—that web
servers can be replaced with faster machines every eighteen months—
and scalability; after all, there are going to be more web servers than
hardware load balancers. Furthermore, the web servers are probably

http://en.wikipedia.org/wiki/OSI_model
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=236

LOAD BALANCING 237

HW Load Balancer
www.example.com

Web Server 1
ws1.example.com

GET /index.html

User's Browser

200 OK ...

GET /index.html

200 OK ...

Web Server 1
ws1.example.com

GET /healthy.html

200 OK ...

GET /healthy.html

Figure 13.3: Hardware Load Balancer

not doing much, whereas the load balancer is involved in every single
request. Using the load balancer to handle SSL decryption does make
managing SSL certificates easier, since there is just a pair of devices to
update, rather than a dozen or so web servers. In fact, if the load bal-
ancers handle multiple VIPs for different domains, then all of your SSL
certificates could be on the same pair of machines (assuming they’re
big enough to handle the load!).

Hardware load balancers can provide a number of application-level ser-
vices, including checking for HTTP error codes and redirecting to dif-
ferent error pages based on the web servers’ reply. For HTTPS, you
have two choices: you can use the load balancer for SSL and keep the
application-level services, or you can terminate SSL connections at the
web servers, essentially using the load balancer as a smart switch and
giving up the application-level services. If it tried to pass SSL connec-
tions directly to web servers while also examining the content, then
the load balancer would essentially be performing a man-in-the-middle
attack against the encrypted channel between the browser and server.

The big drawback to these machines is—of course—their price. Expect
to pay in the five digits for a low-end configuration. High-end configu-
rations, such as those needed for a first-tier retailer, easily run into the
six digits.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=237

CLUSTERING 238

13.4 Clustering

Load balancing does not require collaboration between the separate
servers. When the servers are aware of each other and actively par-
ticipate in distributing load, then they form a cluster. Clusters can be
used for load balancing, in the case of active/active clusters. They can
also be used for redundancy in the case of failure. These are called
active/passive clusters, meaning that one server handles all the load
until it fails and then the passive one takes over and becomes active.

Fully load-balanced farms scale close to linearly. Load-balanced clus-
ters do not. Clusters incur some communication overhead in heartbeats Heartbeat: packets sent

between clustered
servers, usually on a
separate network,
indicating “I’m still
alive.”

and state synchronization. As a result of this overhead, the capacity of
a cluster scales less than linearly and might flatten out severely as the
number of servers increases. This imposes a practical size limit on clus-
ters, though the limit varies depending on the servers being clustered.

Some applications build in their own clustering. WebSphere, WebLogic,
Oracle, and Microsoft SQL Server all have their own clustering tech-
nology built in. With these, the application software coordinates its
own availability and failover. Such applications inevitably have cer-
tain “master control” nodes responsible for directing work to different
nodes in the cluster. These control nodes can be a weak point in the
architecture—for example, if there is only one—and will usually be the
first nodes to hit capacity limitations.

For applications that do not have their own native clustering, it is pos-
sible to run them under the control of a cluster server, such as Ver-
itas Cluster Server or Microsoft Windows Server Clustering Services
(whew). The cluster server acts like an exoskeleton, running the clus-
tered application as a child process. The cluster servers pass heartbeats
between themselves and often use a “quorum volume” on a network
drive to synchronize their activities. If the cluster servers detect that a
node has failed, they run a predetermined sequence of actions to bring
the clusters applications back up on a surviving node. These actions
include some variation of taking over one or more filesystems, starting
an application from scratch or activating an application from memory
image, and taking over a virtual IP address.

I am ambivalent about cluster servers. At the same time, they are mar-
velous and kludgy. They can add redundancy and failover to applica-
tions that weren’t designed for it. Configuring the cluster server itself

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=238

CLUSTERING 239

is finicky, though, and applications usually have a few small glitches
when failing over. The biggest drawback is probably that these run in
active/passive mode. So, redundancy is achieved, but scalability is not.
I consider cluster servers a Band-Aid for applications that don’t do it
themselves.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=239

Chapter 14

Administration
If your system is easy to administer, it will have good uptime. What’s
more, you’ll find it easy to get help and resources from operations. On
the other hand, if your system is difficult or annoying to administer, it
will be neglected, deprecated, and probably implemented incorrectly. It
might even get sabotaged.

Administrators have a difficult, thankless job. They’re almost never
consulted or involved during the design and architecture of a system.
Instead, they get some partially baked software thrown over the wall at
them, which they must then somehow fit into their routine of opera-
tions.

There’s another, more fundamental conflict, too. Developers and users
both view change as positive. Each new release means new features—
with corresponding increases in revenue—bugs corrected and design
improvements. Releases add value. For administrators, it’s exactly the
opposite. They have to do more work to deploy the new release. Fur-
thermore, after each release, the system will behave differently than it
did before. Old log messages or commands disappear, replaced by new
ones. Old failure modes might be fixed, but there might be new ones,
too, that nobody knows how to detect. When every lesson has to be
learned the hard way, you become very conservative. Both views are
simultaneously correct!

Administrators can be powerful allies or enemies. (After all, they prob-
ably talk to the IT managers much more often than you do.) The good
news is that it doesn’t require bribes or loyalty oaths to win their alle-
giance. Just understand their motivations, and commit to making their
work easier. When their work is easier, they will do a better job—both
because they can and because they will want to do so.

“DOES QA MATCH PRODUCTION?” 241

Here are some ways you can make your administrators happy by mak-
ing your software easier to administer.

14.1 “Does QA Match Production?”

File this question under, “I wish I had a nickel.” Anytime a deployment
fails or some bug surfaces in production, people will naturally ask why
the issue wasn’t discovered during testing. It is an important question
to ask and answer. Nine times out of ten, the immediate corollary ques-
tion will be, “Are there any differences in configuration between QA and
production?”

This question is what I call a “gimme.” It is easy to ask, very expen-
sive to answer, and guaranteed to find something different such as
hostnames and IP addresses, if nothing else. You might be thinking,
“Why should that be expensive to answer? Isn’t that what configuration
management systems are all about?” Yes and no. Configuration man-
agement systems can tell you exactly when a change was made, who
made it, and sometimes why. Some of the good ones have operational
modules that can interrogate systems and identify discrepancies. The
expensive part is figuring out which discrepancies are known, expected,
and harmless and which are unexpected and risky. For instance, it
is common for QA to run on scaled-down hardware. Some vendors,
typically integrated hardware/software vendors such as HP, deliver
firmware patches, device driver patches, operating system functionality
upgrades, and security patches through the same patch bundle mech-
anism. In these cases, different hardware models might require entirely
different patch sets.

At another level, you can also say that QA must differ from production.
After all, if it were identical down to the last hostname and port number,
then it wouldn’t be QA...it would be production!

In my experience, the most common causes of failure are not config-
urations anyway. I’ve spent at least of hours scrubbing configuration
files, reconciling expected differences, and highlighting unexpected dif-
ferences. Once in a while that will turn up something significant, but
configuration discrepancies are usually not the culprit.

Most of the time, the real culprit is a mismatch in topology between QA
and production. What do I mean by topology? Topology is the number
and connectivity of the servers and applications. If you consider each
server and application instance to be a node and each connection or

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=241

“DOES QA MATCH PRODUCTION?” 242

dependency to be an arc, you can define a graph that represents the
system topology. UML deployment diagrams are a useful, but under-
used, way to depict this.

Obviously, the main barrier to making QA’s topology match production
is cost. Here are some ways to make the production topology match QA
without busting the budget.

Keep Them Separated
Keep them separated. Often, applications will share hosts in QA that
run separately in production. This can lead to hidden dependencies:
two applications might expect a directory to have synchronized con-
tent. They would just work in QA, since it’s the same directory. In
production, however, there would be no mechanism to keep them in
sync. (Last-minute cron jobs running rsync don’t count!) Assuming that
you cannot simply buy the same number of servers for QA that you
will have in production, what can you do to avoid this kind of hidden
dependency?

In cases like this, I recommend VMware. VMware allows you to cre-
ate multiple virtual hosts on a single physical machine. Each virtual
machine looks and acts like its own independent server, complete with
its own operating system installation, IP address, and hostname. If
two applications will run on separate hosts in production but must
share the same hardware in QA, you can run them in separate VMware
instances on the shared machine. (This also has the nice benefit of
allowing you to keep snapshots of particular versions of the applica-
tions, which can be a huge help when testing deployment processes!)

Zero, One, Many
There’s an old saying that the only sensible numbers in computer sci-
ence are 0, 1, and many. There is a fundamental difference between
one-to-one and one-to-many. Sometimes, you will find a single instance
in QA where production will run multiple instances in a cluster or farm.
This can make the difference between a point-to-point cache invalida-
tion strategy and a multicast or broadcast strategy, for example. This
is another case where server virtualization such as VMware will allow
you to match the production multiplicity in QA. If you are going to run
a dozen instances in production, you probably don’t need to run a full
dozen in QA (though see my later remarks about proportionality). You
should definitely run more than one, however.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=242

CONFIGURATION FILES 243

You Play the Way You Practice

In sports, a team will play the real game the same way it prac-
tices. Likewise, if the development team works with firewalls in
the architecture from day one, the team will design accord-
ingly. There’s almost nothing as painful as sitting down with a
system that’s 95% complete and trying to identify all the firewall
rules needed to let it function in production. If the development
team has been working with the firewalls all along, however,
they will already have the rules documented.

Keeping track of the firewall rules goes right along with keep-
ing track of integration points. (See Antipattern 4.1, Integration
Points, on page 46.) Why would there be a hole in the firewall
if not to call some other system? That’s an integration point.
An added benefit: these are also the configuration parameters
most likely to need changes for production.

Just Buy the Gear
I’ve seen hours of downtime result from the presence of firewalls or
load balancers in production that did not exist in QA. The cost of this
downtime exceeds the cost of the network gear. QA probably doesn’t
need the top-of-the-line model, but it should have a product from the
same vendor and product line. After all, where are you testing your
firewall configuration changes?

14.2 Configuration Files

Ruby on Rails might favor convention over configuration, but every
piece of enterprise-class software I’ve seen has scads of configura-
tion files containing hostnames, port numbers, filesystem locations, ID
numbers, magic keys, usernames, passwords, and lottery numbers. (I
made that last one up.) Get any of these properties wrong, and the sys-
tem is broken. Even if the system seems to work, it could be broken
without anyone knowing it!

Configuration files are often obscurely named, buried deep in the direc-
tory structure of the code base, or just plain inscrutable. When a
property is named hostname, is that “my hostname,” “the name of the
authorized caller,” or “the host I call during the autumnal solstice?”
Property files suffer from hidden linkages and high complexity—two

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=243

CONFIGURATION FILES 244

of the biggest factors leading to operator error. These files contain the
most sensitive information in the entire enterprise, short of the CEO’s
actual compensation—production database passwords. Therefore, they
are highly secret and accidental errors in other parts of the configura-
tion are not very likely to be discovered by the developers who know
and care about the difference between “wsdlServer” and “uddlServer.”

One of the most common errors I see in designing a configuration
scheme is mixing production configuration with basic plumbing. For
instance, using the Spring framework to wire beans is wonderful, but
Spring wants me to put all of my configuration in a single file.1 That
includes not only the properties that should change between devel-
opment and production but also vital details such as object instan-
tiation and relationship. As a result, administrators have to edit, by
hand, 5,000-line XML files to update a single database password, and
4,999 of those lines are just land mines, waiting for an errant edit.
All that painful-sounding “dependency injection” turns out to be pretty
important for the application to work. Mess it up by accidentally edit-
ing something other than the password, and the application breaks in
obtuse ways. The opportunities for collateral damage are endless.

It should never be possible for an administrator to break object asso-
ciations inside the application. That’s just wearing your guts on the
outside. Whenever possible, keep production configuration properties
separate from the basic wiring and plumbing of the application. They
should be in separate files so the administrators do not accidentally
edit internals.

Equally importantly, the production configuration files should not be
anywhere underneath the installation directory of the software itself.
The installation directory is likely to be overwritten on the next upgrade.
Would you really want to count on the administrators remembering
every change they made to configurations over the past six months and
reapplying them manually after installing the update? Not to mention,
admins commonly copy entire install trees from one server to another
to skip the time-consuming installation process. (For example, the first
step of installation BEA WebLogic 9 is uncompressing the entire 500MB
file. This step alone takes ten minutes on a 2GHz x86 pizza box.) Back-
ups and restores are issues, too. A restore from tape can easily over-
write the latest production configuration with something much older.

1. There are ways to modularize these files, but I think the cure is as bad as the disease.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=244

CONFIGURATION FILES 245

Joe Asks. . .
Why Don’t They Keep Config Files in Version Control?

Long ago, programmers coded themselves a solution to the
problem of lost files and missing revisions: version control. If con-
figuration files are such a big issue for administrators, why don’t
they just use version control to manage them?

Some do. In some more advanced shops, administrators use
tools such as Subversion∗ and cfengine† to manage and
deploy configurations. An increasing number of IT shops use
system management suites such as HP OpenView, BladeLogic,
and Opsware to control configurations.

In many cases, though, administrators in IT operations haven’t
had the time to implement and roll out version control, or they
are not aware of the concept. Some are aware of version con-
trol but have never thought of applying it to system configura-
tion files. (I didn’t say it would be a good reason.)

In any case, I definitely recommend using version control for
configuration files, with a few constraints:

• Use a secure repository. These files have database pass-
words in them!

• Link version control with a larger change control process.
You should be able to see why a configuration change
was made, not just that one happened.

• Automate the deployment of authorized changes,
directly from the repository.

• Make an automated audit process. Files sometimes get
changed during incident management to restore service
in a crisis. They sometimes don’t get updated in version
control afterward. You need to be able to find the deltas
without automatically overwriting them.

As an alternative, you could buy and deploy the twenty-seven
products from BMC that do all of that for you.

∗. See subversion.tigris.org.
†. See www.cfengine.org.

subversion.tigris.org
www.cfengine.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=245

CONFIGURATION FILES 246

Because the same application probably runs on several machines, it
is likely that some subset of the configuration properties should be
the same on each machine and some subset should differ. Keep these
properties in separate places so nobody ever has to ask, “Are those
supposed to be different?” Also, I’ve found it helpful to have some peri-
odic verification that the machines in a horizontally scaled layer—which
should remain synchronized—actually are synchronized. Even with
strong change management procedures, the rule should be, “Trust, but
verify.”

Finally, configuration properties are part of the system’s user interface.
They are the interface the system provides to one of its most overlooked
constituency: the people who keep it running every day. As such, prop-
erty names should be clear enough to help the user (the administrator)
do her job without making “unforced errors.”

One helpful convention is to name the properties according to their
function, not their nature. Don’t call it hostname just because it is a
hostname. That’s like naming a variable integer because it’s an inte-
ger or string because it’s a string. It might be true, but it isn’t helpful.
Instead, name the property authenticationServer. If an administrator sees
that, she will go looking for an LDAP or Active Directory host.

The most popular Java application servers are a mixed bag when it
comes to managing configuration. WebLogic, WebSphere, and JBoss
each provide spiffy HTML GUIs for editing configurations.

WebSphere and WebLogic do a credible job of identifying the proper-
ties that belong to your application rather than to the system. JBoss
encourages somewhat more mixing. All of these keep configurations
thoroughly mixed within the application server installation directory.
WebSphere at least has a notion of a “configuration repository,” which
can be used as a master copy of the properties and a source for
deployment when promoting applications from one environment to the
next. Still, none of them has separate locations for storing application-
specific properties and system-level properties.

.NET developers have a better picture, but only when using the latest
version of Visual Studio to manage configurations. Of course, only the
bravest (and most foolhardy) developers would attempt .NET develop-
ment without Visual Studio anyway.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=246

START-UP AND SHUTDOWN 247

14.3 Start-up and Shutdown

When a developer starts up an application and it bonks, the devel-
oper sees the error, kills the app, and fixes the error. When a host gets
rebooted in the middle of the night and an application fails on start-up,
nobody is going to know unless the application itself announces the
problem. This can be as simple as an error in a log file, if a monitor-
ing system (see Chapter 17, Transparency, on page 265) is already in
place. Of course, for the application to announce that it failed to start
up correctly, it first has to know that it failed to start up correctly.

Build a clean start-up sequence into applications to ensure that compo-
nents are started in the right order and that the start-up sequence must
complete successfully before the application starts accepting work. It
can bind to sockets, for example, but should not accept any connec-
tions until the master switch is flipped. Think of it as like getting a
store ready to open in the morning. You don’t start letting people in
through the doors just because one employee arrives. Instead, you wait
until everyone is in place and ready to serve customers properly.

Don’t accept
connections until
start-up is complete.

If the application requires a connection pool,
at least some of the connections should be ini-
tialized when the application boots up. This is
another form of Fail Fast (see Pattern 5.5, Fail
Fast, on page 131) and provides a useful self-
test. The app certainly won’t be able to process transactions very well
without the database! Therefore, if the connection pool initialization
fails because it cannot create any connections, the entire application
should be in a failure state.

Note that this is very different from aborting and exiting if something
fails during start-up. A running application can be interrogated for its
internal state (see Chapter 17, Transparency, on page 265), but a halted
one cannot.

Clean shutdown is equally important to production readiness. Just
as that hypothetical retailer wouldn’t lock the doors while customers
were still inside, applications should not shut down by rudely aborting.
Instead, each application needs a mode in which it will complete exist-
ing transactions but will not accept any new work. Once the in-flight
transactions have all completed, then the application can exit. Be sure
to moderate this rule with a timeout (see Pattern 5.1, Use Timeouts, on
page 111), however, or shutdown might never finish.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=247

ADMINISTRATIVE INTERFACES 248

14.4 Administrative Interfaces

Spiffy Java GUIs demo very well. They make software look more “enter-
prisey.” Unfortunately, they are a nightmare in production. The chief
problem with a GUI is all the dang clicking. I can’t script a bunch of
clicking. Java GUIs will slow down operations by forcing administra-
tors to do the same manual process on each server (there might be
many!) every time the process is needed. For example, the clean shut-
down sequence on a particular order management system I worked on
required clicking—and waiting several minutes—on each of six different
servers. Guess how often the clean shutdown sequence was observed?
If the change window is only one hour long, I cannot afford to spend
half of it waiting on a GUI.

Remote access to Java GUIs can be a challenge, too. Administrators
often reach their boxes through a tortured route of SSH tunnels. Rout-
ing either X connections or HTTP connections through those tunnels is
a big pain. There’s no way that something so difficult will be used. So
much for clean shutdown—I predict a lot of kill -9 commands.

The net result is that Java GUIs make terrible administrative interfaces
for long-term production operation. The best interface for long-term
operation is the command line. Given a command line, admins can
easily build a scaffolding of scripts, logging, and automated actions to
keep your software happy. A big step back, but still workable, is the
pure HTML administrative GUI. Because Perl and Ruby have such great
client libraries for HTTP, it is not too hard to script against an HTML
administrative interface.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=248

Chapter 15

Design Summary
It can be hard to draw attention to these topics during the hustle and
rush of a development project, especially once crunch mode begins.
There’s good and bad news here; you can choose not to deal with these
issues during development. If so, you will deal with them in produc-
tion...time and time again. Dealing with these issues in development
does not necessarily cost much, in time or effort, and what it does cost
is far outweighed by the long-term cost of ignoring them.

Remember that your application will run on a server with multiple net-
work interfaces. Be sure it binds to the correct address for any sockets
it listens to, and be sure that any special routing requirements are set
up and documented. Administrative functions should be exposed on
the administration and monitoring network, not the production net-
work.

Be sure to use virtual IP addresses to access clustered services, such
as database servers or web services provided by other systems. Using
the VIP allows the service provider to fail over—whether planned or
unplanned—without necessitating the reconfiguration of your system.

Applications should be able to run as application users; they should
not require root or Administrator permissions. Sensitive configuration
parameters, such as database passwords or encryption keys, should be
kept in their own configuration files.

Not every system requires five nines of availability. The cost of greater
availability increases radically at each level. Considering the availabil-
ity requirements as a cost/benefit trade-off (well, a cost/cost trade-off,
really) with the sponsors helps move the discussion forward.

CHAPTER 15. DESIGN SUMMARY 250

Rather than defining the availability of the entire system as a whole,
I prefer to define the availability of specific features or functions per-
formed by the system. Be sure to write exclusions for loss of availability
caused by external systems.

Load balancing and clustering are two prerequisites for high availabil-
ity. You can employ a variety of techniques, with a wide range of costs.
Armed with your availability requirements, you can apply various load-
balancing and clustering solutions as needed to meet the requirements
at efficient cost. Each of these solutions has its own unique set of con-
siderations, so defining the high-availability architecture early makes
development and deployment much easier.

Your application’s administrators will never know as much about its
internals as you will. You can help reduce the likelihood of operator
error by making your application obvious to configure. This means
separating essential plumbing, such as Spring’s beans.xml files, from
environment-specific configuration. Mixing them is the equivalent of
putting the ejection seat button next to the radio tuner. Sooner or later,
something bad will happen.

Spend some time making your application simple to operate. Start-
up and shutdown should be nondisruptive to users, and any admin-
istration duty must be scriptable. Pretty Java desktop administration
GUIs help the novice learn his way around, but nobody wants to click
through the pretty GUI for the thousandth time.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=250

Part IV

Operations

Chapter 16

Case Study: Phenomenal Cosmic
Powers, Itty-Bitty Living Space

16.1 Peak Season

In the middle 1500s, a Calabrian doctor named Aloysius Lilius invented
a new calendar to fix a bug in the widely used Julian calendar. The
Julian calendar had an accumulating drift. After a few hundred years,
the official calendar date for the solstice would occur weeks before
the actual event. Lilius’s calendar used an elaborate system of cor-
rections and countercorrections to keep the official calendar dates for
the equinoxes and solstices close to the astronomical events. Over a
400-year cycle, the calendar dates vary by as much as 2.25 days, but
they vary predictably and periodically; overall, the error is cyclic, not
cumulative. This calendar, decreed by Pope Gregory XIII, was eventu-
ally adopted by all European nations, although not without struggles,
and even by Egypt, China, Korea, and Japan (with modifications for the
latter three). Some nations adopted the Gregorian calendar as early as
1582, while others adopted it in only the 1920s.

It’s no wonder that the Catholic church created the calendar. The Gre-
gorian calendar, like most calendars, was created to mark holy days
(that is, holidays). It has since been used to mark useful recurring
events in certain other domains that depend on the annual solar cycle,
such as agriculture. No business in the world actually lives by the Gre-
gorian calendar, though. The business community uses the dates as a
convenient marker for its own internal business cycle.

BABY’S FIRST CHRISTMAS 253

Each industry has its own internal almanac. For an insurance com-
pany, the year is structured around “open enrollment.” All plans take
their bearings from the open enrollment period. Florists’ thinking is
dominated by Mother’s Day and Valentine’s Day. These landmarks hap-
pen to be marked with specific dates on the Gregorian calendar, but
in the minds of florists, and their entire extended supply chain, those
seasons have their own significance, with no bearing on the official cal-
endar date.

For retailers, the year begins and ends with the euphemistically called
“holiday season.” Here we see a correspondence between various reli-
gious calendars and the retail calendar. Christmas, Hanukkah, and
Kwanzaa all occur relatively close together. Since “Christmahannuk-
wanzaakah” turns out to be difficult to say in meetings with a straight
face, they call it “holiday season” instead. Don’t be fooled, though.
Retailers’ interest in the holiday season is strictly ecumenical—some
might even call it cynical. Up to 50% of a retailer’s entire annual rev-
enue occurs between November 1 and December 31.

In the United States, Thanksgiving—the fourth Thursday1 in
November—is the de facto start of the retail holiday season. By long
tradition, this is when consumers start getting serious about gift shop-
ping, because there are usually a little less than 30 days left at that
point. Apparently, motivation by deadline crosses religious boundaries.
Shopper panic sets in, resulting in a collective phenomenon known
as Black Friday. Retailers encourage and reinforce this by changing
their assortment, increasing stocks in stores, and advertising wondrous
things. Traffic in physical stores can quadruple overnight. Traffic at
online stores can increase by 1,000%. This is the real load test, the
only one that matters.

16.2 Baby’s First Christmas

My client had launched a new online store in the summer. The weeks
and months following launch proved, time and time again, why launch-
ing a new site is like having a baby. You must expect certain things,
such as being awakened in the middle of the night and routinely uncov-
ering horrifying discoveries (as in, “Dear God! What have you been feed-
ing this child? Orange Play-Doh?” or “What? Why would they parse con-

1. Some retailers have lobbied Congress asking the government to move Thanksgiving
two weeks earlier.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=253

TAKING THE PULSE 254

tent during page rendering?”) Still, for all the problems we experienced
following the launch, we approached the holiday season with cautious
optimism.

Our optimism was rooted in several factors. First, we had nearly dou-
bled the number of servers in production. Second, we had hard data
showing that the site was stable at current loads. A few burst events
(mispriced items, mainly) had given us some traffic spikes to measure.
The spikes were large enough to see where page latency started to
climb, so we had a good feel for what level of load would cause the
site to bog down. The third reason for our optimism sprang from the
confidence that we could handle whatever the site decided to throw at
us. Between the inherent capabilities of the application server and the
tools we had built around the application server, we had more visibil-
ity and control over the internals of the online store than any other
system on which I’ve worked. This would ultimately prove to be the dif-
ference between a difficult but successful Thanksgiving weekend and
an unmitigated disaster.

A few of us who had pulled weekend duty through Labor Day had been
granted weekend passes. I had a four-day furlough to take my family
to my parents’ house three states away for Thanksgiving dinner. We
had also scheduled a twenty-four-hour onsite presence through the
weekend. As I said, we were executing cautious optimism. Bear in mind,
we were the local engineering team; the main Site Operations Center
(SOC)—a facility staffed with highly skilled engineers twenty-four hours
a day—was in another city. Ordinarily, they were the ones monitoring
and managing sites during the nights and weekends. Local engineering
was there to provide backup for the SOC, an escalation path when they
encounter problems that have no known solution. Our local team was
far too small to be on-site twenty-four hours a day all the time, but
we worked out a way to do it for the limited span of the Thanksgiving
weekend. Of course, as a former Boy Scout (“Be prepared”), I crammed
my laptop into the packed family van, just in case.

16.3 Taking the Pulse

When we arrived on Wednesday night, I immediately set up my laptop in
my parents’ home office. I can work anywhere I have broadband and a Jumphost: a single

machine, very tightly
secured, that is allowed
to connect via SSH to the
production servers.

cell phone. Using their 3Mb cable broadband, I used Putty—my favorite
SSH client—to log into our jumphost and start up my sampling scripts.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=254

TAKING THE PULSE 255

Way back during the run-up to launch, I was part of load testing this
new site. Most load tests deliver results after the test is done. Since
the data come from the load generators rather than inside the systems
under test, it is a “black-box” test. To get more information out of the
load test, I had started off using the application server’s HTML admin-
istration GUI to check such vitals as latency, free heap memory, active
request-handling threads, and active sessions.

If you don’t know in advance what you are looking for, then a GUI is a
great way to explore the system.2 If you know exactly what you want,
the GUI gets tedious. If you need to look at thirty or forty servers at a
time, the GUI gets downright impractical.

To get more out of our load tests, I wrote a collection of Perl modules
that would screen-scrape the admin GUI for me, parsing the HTML for
values. These modules would let me get and set property values and
invoke methods on the components of the application server—built-in
as well as custom. Because the entire admin GUI was HTML based, the
application server never knew the difference between a Perl module or
a web browser. Armed with these Perl modules, I was able to create a
set of scripts that would sample all the application servers for their vital
stats, print out detail and summary results, sleep a while, and loop.

They were simple indicators, but in the time since site launch, all of
us had learned the normal rhythm and pulse of the site by watch-
ing these stats. We knew, with a single glance, what was normal for
noon on Tuesday in July. If session counts went up or down from the
usual envelope, if the count of orders placed just looked wrong, we
would know. It’s really surprising how quickly you can learn to smell
problems. Monitoring technology3 provides a great safety net, pinpoint-
ing problems when they occur, but nothing beats the pattern-matching
power of the human brain.

2. This particular application server, ATG Dynamo, still has the best admin GUI. It’s
not as pretty as WebLogic or WebSphere, but it exposes every single component of the
application server. Like the original Volkswagen Beetle engine, you can see every part,
how well it’s working, and how it’s wired to other components. ATG was doing dependency
injection long before Martin Fowler coined the term and way, way before Spring had
sprung.
3. See Transparency for a discussion of various monitoring technologies.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=255

THANKSGIVING DAY 256

16.4 Thanksgiving Day

As soon as I woke up Thanksgiving morning, before I even had a cup
of coffee, I hopped into my parents’ office to check the stats windows
that I left running all night. I had to look twice to be sure of what I saw.
The session count in the early morning already rivaled peak time of the
busiest day in a normal week. The order counts were so high that I
called our DBA to verify orders were not being double-submitted. They
weren’t.

By noon, customers had placed as many orders as in a typical week.
Page latency, our summary indicator of response time and overall site
performance, was clearly stressed but still nominal. Better still, it was
holding steady over time, even as the number of sessions and orders
mounted. I was one happy camper over turkey dinner. By evening, we
had taken as many orders in one day as in the entire month to date.
By midnight, we had taken as many orders as in the entire month of
October—and the site held up. It passed the first killer load test.

16.5 Black Friday

The next morning, on Black Friday, I ambled into the office after break-
fast to glance at the stats. Orders were trending even higher than the
day before. Session counts were up, but page latency was still down
around 250 milliseconds, right where we knew it should be. I decided
to head out around town with my mom to pick up the ingredients for
chicken curry. (It would be Thanksgiving leftovers for dinner on Fri-
day, but I wanted to make the curry on Saturday, and our favorite Thai
market was closed on Saturday.)

Of course, I wouldn’t be telling this story if things didn’t go horribly
wrong. And, things wouldn’t go horribly wrong until I was well away
from my access point. Sure enough, I got the call when I was halfway
across town.

“Good morning, Michael. This is Daniel from the Site Operations Cen-
ter,” said Daniel.

“I’m not going to like this, am I Daniel?” I asked.

“SiteScope is currently showing red on all DRPs. We’ve been doing
rolling restarts of DRPs, but they are failing immediately. David has
a conference call going and has asked for you to join the bridge.”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=256

VITAL SIGNS 257

In the terse code we’ve evolved in our hundreds of calls, Daniel was
telling me that the site was down, and down hard. SiteScope—our
external monitoring tool—shown in Figure 16.1, on the next page
access the site the same way that real customer’s access it. When
SiteScope goes red, we know that customers aren’t able to shop and
we’re losing revenue. In an ATG site,4 page requests are handled by
instances that do nothing but serve pages. The web server calls the
application server via the Dynamo Request Protocol, so it’s common
to refer to the request-handling instances as DRPs. A red DRP indi-
cates that one of those request-handling instances stopped responding
to page requests. “All DRPs red” meant the site was down, losing orders
at the rate of about a million dollars an hour. “Rolling restart” meant
they were shutting down and restarting the application servers as fast
as possible. It takes about ten minutes to bring up all the application
servers on a single host. You can do up to four or five hosts at a time,
but more than that and the database response time starts to suffer,
which makes the start-up process take longer. All together, it meant
they were trying to tread water but were still sinking.

“OK. I’ll dial in now, but I’m thirty minutes from hands on keyboard,” I
told him.

Daniel said, “I have the conference bridge and passcode for you.”

“Never mind. I’ve got it memorized,” I said.

I dialed in and got a babel of voices. Clearly, a speakerphone in a con-
ference room was dialed in to the bridge as well. There’s nothing like
trying to sort out fifteen different voices in an echoing conference room,
especially when other people keep popping in and out of the call from
their desks, announcing such helpful information as, “There’s a prob-
lem with the site.” Yes, we know. Thank you, and hang up, please.

16.6 Vital Signs

The incident had started about twenty minutes before Daniel called
me. The operations center had escalated to the on-site team. David, the
operations manager, had made the choice to bring me in as well.

4. A J2EE application server that is well-suited to commerce applications. See the site
at http://www.atg.com.

http://www.atg.com
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=257

VITAL SIGNS 258

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts
75 DRPs

3,000 Threads

Figure 16.1: SiteScope Hits Front-End Store, Simulates Users

Too much was on the line for our client to worry about interrupting a
vacation day. Besides, I had told them not to hesitate to call me if I was
needed.

We knew a few things at this point, twenty minutes into the incident:

• Session counts were very high, higher than the day before.

• Network bandwidth usage was high but not hitting a limit.

• Application server page latency (response time) was high.

• Web, application, and database CPU usage were low—really low.

• Search servers, our usual culprit, were responding well. System
stats looked healthy.

• Request-handling threads were almost all busy. Many of them had
been working on their requests for more than five seconds.

In fact, the page latency wasn’t just high. Because requests were timing
out, it was effectively infinite. The statistics showed us only the average
of requests that completed.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=258

DIAGNOSTIC TESTS 259

Requests that didn’t complete never got averaged in. Other than the
long response time, which we already knew about since SiteScope was
failing to complete its synthetic transactions, none of our usual sus-
pects looked guilty.

To get more information, I started taking thread dumps of the appli-
cation servers that were misbehaving. While I was doing that, I asked
Ashok, one of our rock-star engineers who was on-site in the confer-
ence room, to check the back-end order management system. He saw
similar patterns on the back end as on the front end: low CPU usage
and most threads busy for a long time.

It was now almost an hour since I got the call, or ninety minutes since
the site went down. This means not only lost orders for my client but
also that we were coming close to missing our SLA for resolving a high
severity incident. I hate missing an SLA. I take it personally, as do all
of my colleagues.

16.7 Diagnostic Tests

The thread dumps on the front-end applications servers revealed a sim-
ilar pattern across all the DRPs. A few threads were busy making a call
to the back end, and most of the others were waiting for an available
connection to call the back end. The waiting threads were all blocked
on a resource pool, one that had no timeout. If the back end stopped
responding, then the threads making the calls would never return, and
the ones that were blocked would never get their chance to make their
calls. In short, every single request-handling thread, all 3,000 of them,
were tied up doing nothing, perfectly explaining our observation of low
CPU usage: all 100 DRPs were idle, waiting forever for an answer that
would never come.

Attention swung to the order management system. Thread dumps on
that system revealed that some of its 450 threads were occupied making
calls to an external integration point, as shown in Figure 16.2, on the
following page. As you probably have guessed, all other threads were
blocked waiting to make calls to that external integration point. That
system handles scheduling for home delivery. We immediately paged
the operations team for that system. (It’s managed by a different group
that does not have 24/7 support staff. They pass a pager around on
rotation.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=259

CALL IN A SPECIALIST 260

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts
75 DRPs

3,000 Threads

Order
Management

6 Hosts
6 Instances
450 Threads

Figure 16.2: Front-End Store Hits Back-End Order Management

I think it was about this time that my wife brought me a plate of leftover
turkey and stuffing for dinner. In between status reports, I muted the
phone to take quick bites. By that point, I had used up the battery on
my cell phone and was close to draining the cordless phone. (I couldn’t
use a regular phone because none of them took my headset plug.) I
crossed my fingers that my cell phone would get enough of a charge
before the cordless phone ran out.

16.8 Call in a Specialist

It felt like half of forever (but was probably only half an hour) when the
support engineer dialed in to the bridge. He explained that of the four
servers that normally handle scheduling, two were down for mainte-
nance over the holiday weekend, and one of the others was malfunc-
tioning for reasons unknown. To this day, I have no idea why they
would schedule maintenance for that weekend of all weekends! Fig-
ure 16.3, on the next page shows the relative sizes of the three systems
involved.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=260

CALL IN A SPECIALIST 261

Figure 16.3: Order Management Hits “Enterprise” Scheduling System

The sole remaining server could handle up to twenty-five concurrent
requests before it started to slow down and hang. We estimated that
the order management system was probably sending it ninety requests
right at that moment. Sure enough, when the on-call engineer checked
the lone scheduling server, it was stuck at 100% CPU. He had gotten
paged a few times about the high CPU condition but had not responded,
since that group routinely gets paged for transient spikes in CPU usage
that turn out to be false alarms. All the false positives had quite effec-
tively trained them to ignore high CPU conditions.

Our business sponsor, on the conference call, gravely informed us that
marketing had prepared a new insert that hit newspapers Friday morn-
ing. The ad offered free home delivery for all online orders placed before
Monday. The entire line, with fifteen people in a conference room on
speakerphone and a dozen more dialed in from their desks, went silent
for the first time in four hours.

So, to recap, we have the front-end system, the online store, with 3,000
threads on 100 servers and a radically changed traffic pattern. It’s
swamping the order management system, which has 450 threads that
are shared between handling requests from the front end and process-
ing orders. The order management system is swamping the scheduling
system, which can barely handle twenty-five requests at a time.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=261

COMPARE TREATMENT OPTIONS 262

And it’s going to continue until Monday. It’s the nightmare scenario.
The site is down, and there’s no playbook for this situation. We’re in
the middle of an incident, and we have to improvise a solution.

16.9 Compare Treatment Options

Brainstorming ensued. Numerous proposals were thrown up and shot
down, generally because the application code’s behavior under that cir-
cumstance is unknown. It quickly became clear that the only answer
was to stop making so many requests to check schedule availability.
With the weekend’s marketing campaign centered around free home
delivery, we knew requests from the users were not about to slow down.
We had to find a way to throttle the calls. The order management sys-
tem had no way to do that.

We saw a glimmer of hope when we looked at the code for the store. It
used a subclass of the standard resource pool to manage connections
to order management. In fact, it had a separate connection pool just
for scheduling requests. I’m not sure why the code was designed with
a separate connection pool for that, probably an example of Conway’s
law, but it saved the day—and the retail weekend. Because it had a
component just for those connections, we could use that component as
our throttle.

If the developers had added an enabled property, it would have been a
simple thing to set that to false. Maybe we could do the next best thing,
though. A resource pool with a zero maximum is effectively disabled
anyway. I asked the developers what would happen if the pool started
returning null instead of a connection. They replied that the code would
handle that and present the user with a polite message stating that
delivery scheduling was not available for the time being. Good enough.

16.10 Does the Condition Respond to Treatment?

One of my Perl scripts could set the value of any property on any com-
ponent. As an experiment, I used the script to set max for that resource
pool (on just one DRP) to zero, and I set checkoutBlockTime to zero. Noth-
ing happened. No change in behavior at all. Then I remembered that
max has an effect only when the pool is starting up.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=262

WINDING DOWN 263

I used another script, one that could invoke methods on the compo-
nent, to call its stopService() and startService() methods. Voila! That DRP
started handling requests again! There was much rejoicing.

Of course, because only one DRP was responding, the load manager
started sending every single page request to that one DRP. It was
crushed like the last open beer stand at a World Cup match. But at
least we had a strategy.

I ran my scripts, this time with the flag that said “all DRPs.” They set
max and checkoutBlockTime to zero and then recycled the service.

The ability to restart components, instead of entire servers, is a key con-
cept of recovery-oriented computing. (See the “Recovery-Oriented Com-
puting” sidebar.) Although we did not have the level of automation that
ROC proposes, we were able to recover service without rebooting the
world. If we had needed to change the configuration files and restart all
the servers, it would have taken more than six hours under that level
of load. Dynamically reconfiguring and restarting just the connection
pool took less than five minutes (once we knew what to do).

Almost immediately after my scripts finished, we saw user traffic getting
through. Page latency started to drop. About ninety seconds later, the
DRPs went green in SiteScope. The site was back up and running.

16.11 Winding Down

I wrote a new script that would do all the actions needed to reset that
connection pool’s maximum. It set the max property, stopped the ser-
vice, and then restarted the service. With one command, an engineer in
the operations center or in the “command post” (that is, the conference
room) at the client’s site could reset the maximum connections to what-
ever it needed to be. I would later learn that script was used constantly
through the weekend. Because setting the max to zero completely dis-
abled home delivery, the business sponsor wanted it increased when
load was light and decreased to one (not zero) when load got heavy.

We closed out the call. I hung up and then went to tuck my kids into
bed. It took a while. They were full of news about going to the park,
playing in the sprinkler, and seeing baby rabbits in the backyard. I
wanted to hear all about it.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=263

WINDING DOWN 264

Recovery-Oriented Computing

The Recovery-Oriented Computing (ROC) project is a joint
Berkley and Stanford research project.∗ The project’s founding
principles are as follows:

• Failures are inevitable, in both hardware and software.

• Modeling and analysis can never be sufficiently complete.
A priori prediction of all failure modes is not possible.

• Human action is a major source of system failures.

Their research runs contrary to most work in system reliability.
Whereas most work focuses on eliminating the sources of fail-
ure, ROC accepts that failures will inevitably happen—a major
theme in this book! Their investigations aim to improve surviv-
ability in the face of failures.

Many of the concepts of ROC can be implemented in today’s
languages and platforms. Follow their focus on damage con-
tainment, automatic fault detection, and component-level
restartability, and you’ll derive great benefits.

∗. See http://roc.cs.berkeley.edu/.

http://roc.cs.berkeley.edu/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=264

Chapter 17

Transparency
Experienced engineers on ships can tell when something is about to
go wrong by the sound of the giant diesel engines. They’ve learned, by
living with their engines, to recognize normal, nominal, and abnormal.
In their case, they cannot help being surrounded by the sounds and
rhythms of their environment. When something is wrong, the engineers’
knowledge of the linkages within the engines can lead them to the prob-
lem with a speed and accuracy—and with just one or two clues—in a
way that can seem psychic.

Our systems are not so naturally exposed. They run in faceless boxes.
There are no moving parts to watch, and the steady whir of the fans
communicates little about what’s happening. (Though, if the fans stop,
we do know there’s a problem!) We sit in different rooms from the
hardware, often in different buildings, and sometimes even in different
cities. If we are to get the kind of “environmental awareness” that the
shipboard engineers naturally acquire, we must facilitate that aware-
ness by building transparency into our systems.

Transparency refers to the qualities that allow operators, developers,
and business sponsors to gain understanding of the system’s historical
trends, present conditions, instantaneous state, and future projections.
Transparent systems communicate, and in communicating, they train
their attendant humans. The giant diesel power plant in a cruise ship
radiates information through ambient sounds and vibration, through
gauges with quantitative information, and in extreme (usually bad)
cases through smell.

In debugging the “Black Friday problem” (see Section 16.1, Peak Sea-
son, on page 252), we relied on component-level visibility into the

CHAPTER 17. TRANSPARENCY 266

system’s current behavior. That visibility was no accident. It was the
product of enabling technologies implemented with transparency and
feedback in mind. Without that level of visibility, we probably could
have told that the site was slow (if a disgruntled user called us or some-
one in the business happened to hit the site) but with no idea why. It
would be like having a sick goldfish—nothing you do can help, so you
just wait and see whether it lives or dies.

Transparency has practical and psychological benefits. On the practical
side, debugging a transparent system is vastly easier, so transparent
systems will mature faster than opaque ones. Psychologically speaking,
imagine sitting down once a year to have your future determined by
peeking at the top face of a die labeled “Bonus,” “Promotion,” “Layoff,”
“Massive Overtime,” “Public Scorn,” and “Peer Acclaim,” but someone
else has either rolled the die for you or placed it with one face up. You
don’t know and have no control. Anyone accountable for the success
of the system—from application development to business analysts to
the project sponsors—has a large part of their future predicated on the
system’s behavior but with no idea how it will turn out.

When you have to add capacity, you are totally dependent on data col-
lected from the existing infrastructure. You will need a combination
of technical data and business metrics to understand the past and
present state of your system in order to predict the future. Good data
enables good decision making. In the absence of trusted data, decisions
will be made for you, based on somebody’s political clout, prejudices,
or hair styles.

Finally, a system without transparency cannot survive long in produc-
tion. If administrators do not know what it is doing, it cannot be tuned
and optimized. If developers do not know what works and does not work
in production, they cannot increase its reliability or resilience over time.
And, if the business sponsors do not know whether they are making
money on it, they will not fund future work. Without transparency, the
system will drift into decay, functioning a bit worse with each release.
Systems can mature well if, and only if, they have some degree of trans-
parency.

This chapter discusses the four perspectives of transparency: his-
torical trending, predictive forecasting, present status, and instanta-
neous behavior. It also examines existing technology that enables trans-
parency and gaps in the technology that have yet to be filled. For web
systems, a number of vendors smelled opportunity around performance

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=266

PERSPECTIVES 267

measurement and reporting. These are currently undergoing a wave of
consolidation to create integrated “enterprise application management”
suites. This is a rich space, so I will be talking about specific prod-
ucts more than usual. It is likely that, by the time you read this, many
of these companies will have been acquired and integrated with some
larger suite.

17.1 Perspectives

Different constituencies require different perspectives. These perspec-
tives will not all be served by the same views into the systems. Just
as the question, “How’s the weather?” means very different things to a
gardener, a pilot, and a meteorologist, the question, “How’s it going?”
means something decidedly distinct when coming from the CEO or the
system administrator.

Historical Trending
History is a fairly plastic word. There aren’t too many fields in which
“last week” is a plausible definition of “history.” That might be the only
connection between the worlds of IT operations and high fashion.

Still, even if myopic, we have to be concerned about historical views.
Despite the Wall Street–style disclaimers,1 it is possible to predict
tomorrow’s system behavior by extrapolating yesterday’s results. This
applies to business metrics (customers, orders, conversion rate, rev-
enue, cost of delivering service, and so on) as well as system metrics
(free storage, average CPU utilization, network bandwidth, and number
of errors logged).

Obviously, historical records have to be stored somewhere for a period
of time. The historical perspective is best served by a database. Sec-
tion 17.2, Designing for Transparency, on page 275 refers to this as the
OpsDB. The OpsDB can be used to investigate anomalies or trends.
Because it contains system- and business-level metrics, it can be used
to identify correlations in time and across layers.

The historical perspective can be represented by spreadsheets, charts,
Microsoft PowerPoint presentations, or analysis reports. It lacks the
immediacy of the present and is usually not appropriate for a dash-
board view.

1. You know, “Past performance is no guarantee of future results.”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=267

PERSPECTIVES 268

Because it can be used to discover new and interesting relationships,
the historical data should be broadly available through tools such as
Microsoft Access and Microsoft Excel. If your company has purchased a
business intelligence (BI) or reporting tool, it should clearly be using the
historical data. Just beware the temptation to have these tools directly
access the production transactional database. (See Section 9.8, Histor-
ical Data, on page 197.)

Some common questions indicate the historical perspective:

• How many orders did we take yesterday?

• How does that compare to this day last year?2

• How much disk space did we consume during the first quarter?

• The last time we had a spike in traffic, which system was the
limiting factor?

• How does the growth in customer traffic compare to the growth in
CPU usage over the past three years?

Predicting the Future
In Planning Extreme Programming [BF01], Kent Beck and Martin Fowler
popularized the expression “yesterday’s weather.” They relate an apoc-
ryphal story about a sophisticated weather prediction system beaten by
a much simpler algorithm: a prediction that today’s weather will be the
same as yesterday’s weather will be accurate about 70% of the time.
However shaky the meteorological foundation might be, the concept
nicely encapsulates the recognition that we can predict the future by
extrapolating the past.

In the case of our systems, the backward-facing historical informa-
tion is also our crystal ball. Future predictions are almost always
about correlations and linkages, rather than direct measurements. By
far, the most common question is, “What’s our capacity?” (See Sec-
tion 8.1, Defining Capacity, on page 161 and Section 8.3, Interrelations,
on page 165.) Although this appears to be a question about a single
metric, the implied qualifier is “if the next N users have a proportional
impact to the previous N users.”

2. Note that “this day” doesn’t always mean the same calendar date—the correspon-
dence almost certainly is with the same day of the week rather than the day of the
month.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=268

PERSPECTIVES 269

Predictions are always built on a model of the system. Bad predic-
tions result from bad models (for example, linear projections). Really
excellent models are hard to develop. They require people with deep
understanding of wicked topics such as queuing theory and stochas-
tic modeling—operations research specialists. These folks can build a
model to predict system performance to three decimal places—based on
just the architecture diagrams. I’m not convinced that the level of effort
(and cost) is worth it for well-trodden territory like web-based ebusiness
systems. I would probably reserve this for jobs such as modeling global
communication networks.

On the other hand, it’s possible to develop “good enough” models by
finding correlations in past data, which can then be used—within a
certain domain of applicability3—to make predictions. These correlative
models can be built into spreadsheets to allow less technical users to
perform “what if” scenarios.

Projections into the future tend to be sensitive information. They also
do not have the urgency of immediate data. Therefore, they should gen-
erally not be built into a dashboard.

An application release can alter or invalidate the correlations on which
the projections are built. Since these projections act like derivatives of
the system’s behavior, they must be reexamined after each application
release to see whether they still apply. (Of course, you must wait for
an adequate body of new measurements to build up before you can
tell.) This also implies that anything based on these projections should
include a reference to indicate which set of projections were used.4

Here are some common questions that indicate the future perspective:

• How many customers per day can we handle?

• When do I have to buy more servers (or disk, bandwidth, or any
other computing resource)?

• Can we make it through this holiday season? (Notice that this
requires a projection about a projection, which doesn’t just double
the possibility for error but squares it.)

3. However, please note that Newton’s Laws of Motion are applicable only within a cer-
tain domain...but that domain works well enough to get a spacecraft to Neptune after a
twenty-year flight!
4. I know, spoken like an academic. I don’t expect the business sponsors to be rigorous
about their methodology, but I do hope that the developers and system engineers will be!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=269

PERSPECTIVES 270

Present Status
The distinction between the present status and the behavior at this
instant can be illustrated by imagining a fat man jogging. The instanta-
neous behavior is one associated with improving health, but his present
status might be one “thump” away from a heart attack.

“Present status” describes the overall state of the system. This is not so
much about what it is doing as what it has done. This should include
the state of each piece of hardware and every application server, appli-
cation, and batch job.

The status of each component is defined by a combination of events and
parameters. Events are point-in-time occurrences. Some indicate nor-
mal, or even required, occurrences, while others indicate abnormalities
of concern. A daily inventory feed is an example of a required event.
The occurrence of that event is expected; its absence should be cause
for alarm. Abnormal events are commonly categorized as “low-medium-
high” or “warn-severe-critical.”

Parameters are continuous metrics or discrete states that can be
observed about the system. This is where transparency is most vital.
Applications that reveal more of their internal state provide more accu-
rate, actionable parameters. At the most basic level, we have the oper-
ating system metrics: CPU usage, memory free, memory swap rate,
network bandwidth per interface, and disk space free. Within an appli-
cation server, a large number of metrics and states are generally appli-
cable.

Memory
Minimum heap size, maximum heap size, generation sizes

Garbage collection
Type, frequency, memory reclaimed, size of request

Worker threads, for each thread pool
Number of threads, threads busy, threads busy more than five
seconds, high-water mark (maximum concurrent threads in use),
low-water mark, number of times a thread was not available,
request backlog

Database connection pools, for each pool
Number of connections, connections in use, high-water mark, low-
water mark, number of times a connection was not available,
request backlog

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=270

PERSPECTIVES 271

Traffic statistics, for each request channel
Total requests processed, average response time, requests
aborted, requests per second, time of last request, accepting traffic
or not

The application itself should reveal plenty of information about its own
metrics.

Business transaction, for each type
Number processed, number aborted, dollar value, transaction
aging, conversion rate, completion rate

Users
Demographics or classification, technographics, percentage of
users who are registered, number of users, usage patterns, errors
encountered

Integration points
Current state, manual override applied, number of times used,
average response time from remote system, number of failures

Circuit breakers
Current state, manual override applied, number of failed calls,
time of last successful call, number of state transitions

As you can see, for even a medium-sized application, there could be
hundreds of parameters. For each one, there is some range normal and
acceptable values. This might be a tolerance around a discrete value,
or it might be a threshold that should not be exceeded. The parameter
is nominal as long as its metric is within acceptable range. Often, a
second, tighter range will indicate a “caution” signal, warning that the
parameter is approaching its threshold.

For continuous metrics, a handy rule-of-thumb definition for nominal
would be “the mean value for this time period plus or minus two stan-
dard deviations.” The choice of time period is where it gets interesting.
For most traffic-driven metrics, the time period that shows the most
stable correlation will be the “hour of the week”—that is, 2 p.m. on
Tuesday. The day of the month means little. In certain industries—
such as travel, floral, and sports—the most relevant measurement is
counting backward from a holiday or event.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=271

PERSPECTIVES 272

For a retailer, the “day of week” pattern will be overlaid on a strong
“week of year” cycle. There is no one right answer for all organizations.5

The Infamous Dashboard

Status is commonly represented on a dashboard in the familiar “red-
yellow-green” schema. Categorizing the entire state of a complex, multi-
layered distributed system with a three-level color coding system might
seem like oversimplification, but it certainly has the virtue of famil-
iarity. It helps if everyone has a common agreement about what the
colors mean. Figure 17.1, on the next page shows a definition that has
worked for me in the past. In particular, this definition accommodates
an often-overlooked trouble condition: too much of a good thing.

The present status of the system is obviously amenable to a dash-
board presentation. (It practically defines a dashboard.) The dashboard
should be broadly visible; projecting it on a wall in the lunchroom
isn’t out of the question. The more people who understand the nor-
mal daily behavior of the system, the better. For the most utility, the
dashboard should be able to present different facets of the overall sys-
tem to different users. An engineer in operations probably cares first
about the component-level view. A developer is more likely to want an
application-centric view, whereas a business sponsor probably wants
a view rolled up to the feature or business process level. Clearly, this
implies that the dashboard should know the linkages between these
different views. When observing a component-level outage—for exam-
ple, a network failure—an administrator should be able to see which
business processes are affected. This facilitates both communication
with the sponsors and proper prioritization of the problem.

Most systems have a daily rhythm of expected events. Those might be
feeds from other systems, extracts to ship out to other systems, or
just batch jobs to integrate with legacy systems. Whatever the pur-
pose, those jobs become just as much a part of the system as the web
or database servers. Their execution falls in the category of “required
expected events.” The dashboard should be able to represent those
expected events, whether or not they’ve occurred, and whether they
succeeded or not. A startling number of business-level issues can be
traced back to batch jobs failing invisibly for 33 days straight.

5. For a vivid illustration, sample the literature on “automatic workload characteriza-
tion.” Though it might be couched in the dry language of academics, a heated battle has
raged for years.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=272

PERSPECTIVES 273

Green All of the following must be true:
• All expected events have occurred.
• No abnormal events have occurred.
• All metrics are nominal.
• All states are fully operational.

Yellow At least one of the following is true:
• An expected event has not occurred.
• At least one abnormal event, with a medium severity,

has occurred.
• One or more parameters is above or below nominal.
• A noncritical state is not fully operational. (For example,

a circuit breaker has cut off a noncritical feature.)

Red At least one of the following is true:
• A required event has not occurred.
• At least one abnormal event, with high severity, has

occurred.
• One or more parameters is far above or below nominal.
• A critical state is not at its expected value. (For example,

“accepting requests” is false when it should be true.)

Figure 17.1: Color Coding for Accuracy

Present status will be important to anyone with a financial or career
stake in the day-to-day function of the systems. IT obviously falls in
this category. There are certainly sponsors outside of IT who have their
careers tied to the systems. All of these people will develop their situa-
tional awareness by spending time observing the present status of the
system at various times and under various conditions.

Instantaneous Behavior
Instantaneous behavior answers the question, “What the **** is going
on?” People will be most interested in instantaneous behavior when an
incident is already underway.

Obviously, instantaneous behavior relates to present status. Anoma-
lies in instantaneous behavior often, but not always, result in incorrect

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=273

PERSPECTIVES 274

status. Stack traces, thread dumps, errors thrown in log files, and bad
responses to users are all examples of behavior problems that might
or might not show up in the status perspective. For example, users
don’t like having errors thrown at them. They tend to leave when that
happens. As a result, errors to users will eventually result in a “trans-
actions per hour” metric dropping below its nominal range. It’s better
to catch the aberrant behavior before users start walking away.

Instantaneous behavior is the realm of monitoring systems. Ranging
from homegrown log file scraping to multimillion-dollar HP OpenView
installations, monitoring systems sit outside your system, watching like
Big Brother for conformance to the plan.

This is also the realm of thread dumps (see the sidebar on page 30).
Frameworks such as JMX also enable a view into instantaneous behav-
ior, because they allow administrators to view the internals of a running
application.

Who gets to see the instantaneous behavior? Some portions have to
be restricted because of their potential for harm. Not everyone will get
access to the JMX console, because they could do bad things like shut
down servers or change vital parameters. Some methods of gathering
status (thread dumps, for instance) require privileged access to servers.
Outside of those clearly dangerous channels, however, be aware that
the operations department often feels threatened when developers or
business sponsors ask for a view into the system’s immediate behavior,
especially if there is already a lack of trust or even a hostile atmosphere.
Operations worries that they will be deluged with inquiries about every
blip and anomaly. Worse yet, they fear that their customers—the people
who pay for the systems—will spot problems before they do. Nothing is
more embarrassing than getting a call from some director of marketing
asking, “Why is one server’s CPU running higher than all the others?”
and having to reply, “I don’t know. I haven’t looked at the chart all day.”

One way to defuse that tension is to improve the transparency of the
present status. When sponsors ask for more information, what they
usually want is status, not instantaneous behavior. (This is one of the
reasons I separate these two concerns in the first place.) Standing in
their shoes, it’s totally understandable. They are accountable for the
financial success of this system, so they should have some idea of
what’s happening with it. But, they don’t really need to know every
time an application burps out a stack trace in a log file. What they
need to know is, “Is our revenue tracking to plan?” or “Did our last

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=274

DESIGNING FOR TRANSPARENCY 275

campaign increase conversion rates?” or “Should we buy more kiosks
or staff more agents?” These concerns are served with a status dash-
board, historical trends, and future projections. They are not served by
looking at SNMP traps and thread dumps.

17.2 Designing for Transparency

Transparency arises from deliberate design and architecture. “Adding
transparency” late in development is about as effective as “adding qual-
ity.” Maybe it can be done, but only with greater effort and cost than if
it had been built in from the beginning.

Visibility inside one application or server is not enough. Strictly local
visibility leads to strictly local optimization. For example, a retailer ran
a major project to get items appearing on the site faster. The nightly
update was running until 5 or 6 a.m., when it needed to complete closer
to midnight. This project optimized the string of batch jobs that fed con-
tent to the site. The project met its goals, in that the batch jobs finished
two hours earlier. Items still did not appear on the site, however, until
a long-running parallel process finished, at 5 or 6 a.m. The local opti-
mization on the batch jobs had no global effect.

Visibility into one application at a time can also mask problems with
scaling effects. For instance, observing cache flushes on one applica-
tion server would not reveal that each server was knocking items out
of all the other servers’ caches. Every time an item was displayed, it
was accidentally being updated, therefore causing a cache invalidation
notice to all other servers. As soon as all the caches’ statistics appeared
on one page, the problem was obvious. Without that visibility, we would
have added many servers to reach the necessary capacity—and each
server would have made the problem worse.

In designing for transparency, keep a close eye on coupling. It’s rela-
tively easy for the monitoring framework to intrude on the internals of
the system. Use the standards discussed next to avoid this excessively
tight coupling. The monitoring and reporting systems should be like an
exoskeleton built around your system, not woven into it. In particular,
decisions about what metrics should trigger alerts, where to set the
thresholds, and how to “roll up” state variables into an overall system
health status should all be left outside of the application itself. These
are policy decisions that will change at a very different rate than the
application code itself will.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=275

ENABLING TECHNOLOGIES 276

17.3 Enabling Technologies

By nature, a process running on a server is totally opaque. Unless
you’re running a debugger on the process, it reveals practically noth-
ing about itself. It might be working fine, it might be running on its
very last thread, or it might be spinning in circles doing nothing. Like
Schrodinger’s cat, it is impossible to tell whether the process is alive or
dead until you look at it.

The very first trick, then, is getting information out of the process. This
section examines the most important enabling technologies that reduce
the opacity of that process boundary. You can classify these as either
“white-box” or “black-box” technologies.

A black-box technology sits outside the process, examining it through
externally observable things. Black-box technologies can be imple-
mented after the system is delivered, usually by operations. Even
though black-box technologies are unknown to the system being
observed, there are still helpful things you can do during development
to facilitate the use of these tools.

By contrast, white-box technology runs inside the thing being
observed—either a process or a whole system. The system deliberately
exposes itself through these tools. These must be integrated during
development. White-box technologies necessarily have tighter coupling
to the system than black-box technologies.

17.4 Logging

Despite millions of R&D dollars on “enterprise application manage-
ment” suites and spiffy operations centers with giant plasma monitors
showing color-coded network maps, good old log files are still the most
reliable, versatile information vehicle. It’s worth a chuckle once in a
while to realize that here we are, in the 21st century, and log files are
still one of our most valuable tools.

Logging is certainly a white-box technology; it must be integrated per-
vasively into the source code. Nevertheless, logging is ubiquitous for a
number of good reasons.

Log files reflect activity within an application. Therefore, they reveal the
instantaneous behavior of that application. They are also persistent, so
they can be examined to understand the system’s status—though that
often requires some “digestion” to trace state transitions into current
states.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=276

LOGGING 277

If you want to avoid tight coupling to a particular monitoring tool
or framework (see Section 17.5, Commercial Monitoring Systems, on
page 286), then log files are the way to go. Nothing is more loosely
coupled than log files; every framework or tool that exists can scrape
log files. This loose coupling means log files are also valuable in devel-
opment, where you are unlikely to find OpenView or its kin.

Despite this value, log files are badly abused. Here are some keys to
successful logging.

Configuration
Despite the developer’s instinct to put a logs directory under the appli-
cation’s install directory, administrators often want to keep logs on a
different “spindle” (hard drive or LUN) than the operating system or
content. Log files can be large. They grow rapidly and consume lots of
I/O. Keeping them on a separate drive uses more I/O bandwidth in
parallel and reduces contention for the busy drives.

If you make the log file locations configurable, the administrator can
just set the right property to locate the files. If you don’t make the
location configurable, then they’ll probably relocate the files anyway,
but you might not like how it gets done.

On UNIX systems, symlinks are the most common workaround. This
involves creating a symbolic link from the logs directory to the actual
location of the files. There’s a small I/O penalty on each file open,
but not much compared to the penalty of contention for a busy drive.
I’ve also seen a separate filesystem dedicated to logs, mounted directly
underneath the installation directory.

Fortunately, all the common logging frameworks support configurable
paths (which is reason number 72 not to roll your own logging).

Logging Levels
As humans read (or even just scan) log files for a new system, they are
learning what “normal” means for that system. Some applications, par-
ticularly young ecommerce applications, are very noisy; they generate a
lot of errors in their logs. Some are quiet, reporting nothing during nor-
mal operation. In either case, the applications will train their humans
on what’s healthy or normal.

Most developers implement logging as though they are the primary con-
sumer of the log files. In fact, administrators and engineers in opera-
tions will spend far more time with these log files than developers will.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=277

LOGGING 278

Debug Logs in Production

While I’m on the subject of logging levels, I’ll address a pet
peeve of mine: “debug” logs in production. This is rarely a
good idea and can create so much noise that real issues get
buried in tons of method traces or trivial checkpoints. It’s easy
to leave debug messages turned on in production. All it takes
is one cvs or svn commit while the logging configuration has
some debug levels enabled. I recommend adding a step to
your build process that automatically removes any configs that
enable debug or trace log levels.

Logging should be aimed at production operations rather than devel-
opment or testing. One consequence is that anything logged at level
“ERROR” or “SEVERE” should be something that requires action on the
part of operations. Not every exception needs to be logged as an error.
Just because a user entered a bad credit card number and the valida-
tion component threw an exception doesn’t mean anything has to be
done about it. Log errors in business logic or user input as warnings (if
at all). Reserve “ERROR” for a serious system problem. For example, a
circuit breaker tripping to “open” is an error. It’s something that should
not happen under normal circumstances, and it probably means action
is required on the other end of the connection. Failure to connect to a
database is an error—there’s a problem with either the network or the
database server. A NullPointerException isn’t automatically an error.

Catalog of Messages
One of the common requests from operations is a list of all the log
messages the system can produce. This always used to make me groan.
These days, though, a few hours with the internationalization tools in
IDEs such as Eclipse, IDEA, and NetBeans are all it takes to externalize
all the log messages. Once they’ve been collected into a single resource
bundle, it’s easy to send it to operations.

What’s more, you can even add unambiguous codes to each message.
There are two great things about message codes. First, they make
for accurate communications between operations and development. If
you’ve ever been told, “I’m not sure what the whole message was, but
it said something about a fatal system error,” you need message codes.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=278

LOGGING 279

Second, message codes are easy for operations to look up in a run book
or knowledge base. Suppose your code has many occurrences of the
following pattern:

try {
...

} catch (TimeoutException e) {
LOGGER.log(Level.SEVERE, "Timeout failure connecting to fulfillment system.", e);

}

Applying Eclipse’s “Externalize Strings” command results in a new file,
messages.properties, and a new class, Messages. Here is what Eclipse put
into messages.properties:

Download code/transparency/messages.properties

FulfillmentClient.0=Connection refused.
FulfillmentClient.1=Authorization failed. Credentials refused.
FulfillmentClient.2=Timeout failure connecting to fulfillment system.

These messages are accessed via getString(String key) on the new util-
ity class Messages, which Eclipse created in the same package as the
original class:

Download code/transparency/Messages.java

public static String getString(String key) {
// TODO Auto-generated method stub
try {

return RESOURCE_BUNDLE.getString(key);
} catch (MissingResourceException e) {

return '!' + key + '!';
}

}

Even though “Externalize Strings” was created to make internation-
alization easier, you can use it for a different type of interface. Once
Eclipse collects all the strings together in a single file, with a util-
ity method to return them, you have a great leverage point to make
changes. For instance, the key parameter to getString(String key) makes a
great message code, with just one small tweak to Messages:

Download code/transparency/Messages.java

public static String getString(String key) {
// TODO Auto-generated method stub
try {

return "(" + key + ") " + RESOURCE_BUNDLE.getString(key);
} catch (MissingResourceException e) {

return '!' + key + '!';
}

}

http://media.pragprog.com/titles/mnee/code/code/transparency/messages.properties
http://media.pragprog.com/titles/mnee/code/code/transparency/Messages.java
http://media.pragprog.com/titles/mnee/code/code/transparency/Messages.java
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=279

LOGGING 280

Figure 17.2: Impossible to Scan

Human Factors
Above all else, log files are human-readable. That means they consti-
tute a human-computer interface and should be examined in terms
of human factors. This might sound trivial—even laughable—but in
a stressful situation, such as a Severity 1 incident, human misinter-
pretation of status information can prolong or aggravate the problem.
Operators in the Three Mile Island reactor misinterpreted the mean-
ing of coolant pressure and temperature values, leading them to take
exactly the wrong action at every turn. (See Inviting Disaster [Chi01],
pages 49–63.) Although most of our systems will not vent radioactive
steam when they break, they will take thousands of dollars with them.
Therefore, it behooves us to ensure that log files convey clear, accurate,
and actionable information to the humans who read them.

If log files are a human interface, then they should also be written such
that humans can recognize and interpret them as rapidly as possible.
The format should be as readable as possible. The human visual sys-
tem is a pattern-matching machine of unparalleled speed and sophis-
tication. Why do so many vendors work so hard to defeat that abil-
ity? Figure 17.2, shows an example of a log format that was made for
computers or perhaps Martians to read—not humans. This is from the
start-up log of WebLogic 9.2. How rapidly can you spot the warning
message?

Figure 17.3, on the next page comes from WebSphere 6.1. It uses the
same java.util.logging API that the previous example used, but it replaces

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=280

LOGGING 281

Figure 17.3: A Format That Aids Scanning

the awful default format with a much more helpful one. This is a format
that the human eye can scan. Once you know that I, W, and A indicate
different severity levels (“information,” “warning,” and “audit”), then
scanning for warnings and errors becomes trivial. The space-padded,
columnar format helps humans read the file. Note the message code
field, which aids in automated parsing of the file. This log format helps
both humans and computers.

Figure 17.4, on the following page, shows the same output as from
WebSphere’s start-up sequence but using the default format for JDK’s
java.util.logging package. I don’t know who thought up this two-line for-
mat, but it makes scanning through logs utterly impossible. For that
matter, the two-line format makes parsing the logs with other programs
difficult, too. grep has no idea how to deal with two-line formats. You’ll
have to dig up an old-school UNIX hacker to do some awk trickery. This
format defeats man and machine.

Voodoo Operations

As I said before, humans are very good at detecting patterns. In fact, we
appear to have a natural bias toward detecting patterns, even when they
aren’t there. In Why People Believe Weird Things [She97], Michael
Shermer discusses the evolutionary impact of pattern detection. Early
humans who failed to detect a real pattern—such as a pattern of light and
shadow that turned out to be a leopard—were less likely to pass on their
genes than those who detected patterns that weren’t there and ran away
from a clump of bushes that happened to look like a leopard.

In other words, the cost of a false positive—“detecting” a pattern that
wasn’t—was minimal, whereas the cost of a false negative—failing to
detect a pattern that was there—was high. Shermer claims that this
evolutionary pressure creates a tendency toward superstitions. I’ve seen it
in action.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=281

LOGGING 282

Figure 17.4: java.util.logging Default Format

Given a system on the verge of failure, administrators in operations have
to proceed through observation, analysis, hypothesis, and action very
quickly. If that action appears to resolve the issue, it becomes part of the
lore, possibly even part of a documented knowledge base. Who says it was
the right action, though? What if it’s just a coincidence?

I once found a practice in the operations group for one of my early
commerce applications that was no better than witchcraft. I happened to
be in one of the administrator’s cubicle when her pager went off. On
seeing the message, she immediately logged into the production server
and started a database failover. Curious, and more than a little alarmed, I
asked what was going on. She told me that this one message showed that
a database server was about to fail, so they had to fail over to the other
node and restart the primary database. When I looked at the actual
message, I got cold shivers. It said, “Data channel lifetime limit reached.
Reset required.”

Naturally, I recognized that message, having written it myself. The thing
was, it had nothing at all to do with the database. It was a debug message
(see the sidebar on page 278!) informing me that an encrypted channel to
an outside vendor had been up and running long enough that the
encryption key would soon be vulnerable to discovery, just because of the
amount of encrypted data that the channel had served. It happened about
once a week.

Part of the problem was the wording of the message. “Reset required”
doesn’t say who has to do the reset. If you looked at the code, it was clear

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=282

MONITORING SYSTEMS 283

that the application itself reset the channel right after emitting that
message—but the consumers of the message didn’t have the code. Also, it
was a debug message that I had left enabled so I could get an idea of how
often it happened at normal volumes. I just forgot to ever turn it off.

I traced the origin of this myth back about six months to a system failure
that had happened shortly after launch. That “Reset required” message
was the last thing logged before the Sybase server went down. There was
no causal connection, but there was a temporal connection. (There was
no advance warning about the database crash—it required a patch from
Sybase, which we had applied shortly after the outage.) That temporal
connection, combined with an ambiguous, obscurely worded message, led
the administrators to perform weekly database failovers during peak
hours for six months.

Final Notes
Messages should include an identifier that can be used to trace the
steps of a transaction. This might be a user’s ID, a session ID, a trans-
action ID, or even an arbitrary number assigned when the request
comes in. When it’s time to read 10,000 lines of a log file (after an
outage, for example), having a string to grep will save tons of time.

Interesting state transitions should be logged, even if you plan to use
SNMP traps or JMX notifications to inform monitoring about them. Log-
ging the state transitions takes a few seconds of additional coding, but
it leaves options open downstream. Besides, the record of state transi-
tions will be important during post-mortem investigations.

17.5 Monitoring Systems

Even the best use of logging can help only when the application is actu-
ally running. Dead processes log no tales. Neither do hung processes.
For those, some entity outside the process itself must be watching—
some black-box tool monitoring the health and well-being of the appli-
cation and its host.

This is the domain of monitoring systems. Figure 17.5, on the follow-
ing page depicts a vastly simplified view of a monitoring system. The
essential components of this third-party inspector are agents that col-
lect information, a reliable transport mechanism, and the display and
processing of the information.

Most monitoring systems run agents on the hosts being observed.
These agents perform periodic observations, including at least

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=283

MONITORING SYSTEMS 284

Administrator

Application Host

Application
Server

Agent logs

Monitoring
Console

view alerts
fire actions

Message
Broker

Viewer

management
network

Database Host

Dead
Database

Server

Agent logs

!

!

Figure 17.5: Conceptual View of a Monitoring System

operating system performance statistics, process health, log file pat-
tern matching, and port listeners. For UNIX hosts, they scan syslog and
any other log files the administrator configures. On Windows hosts, the
agents also scan the Windows event logs. In this example, an agent on
the database server detects that the database is down. It fires an event
to the message broker—an embedded component running as part of the
monitoring system itself. The message broker notifies all active clients
about the alert. In this case, an administrator’s monitoring console—a
client application that accesses the monitoring system—shows the alert
as a textual message and a color change on the icon representing the
database.

These agents are very good at detecting events they’ve been told to look
for: patterns in log files, SNMP traps (covered in a moment), processes
that are down or consuming more than their fair share of resources,
filesystems that are close to full, and so on. Unanticipated or novel
behavior might not be detected, unless it triggers one of these events.
For example, if all errors in a log file are reported with the same for-

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=284

MONITORING SYSTEMS 285

Agentless Monitoring

Some monitoring systems advertise “agentless” installations,
with the premise that obviating the need for agents on the
hosts under observation reduces the CPU overhead of moni-
toring them. This is essentially a marketing ploy. Even if obser-
vations are collected from another host, they still require col-
laboration by the operating system on the observed host. For
example, Microsoft’s Operations Manager, MS MOM, can run in
agentless mode. In this configuration, the management server
uses the built-in event log and remote administration capabili-
ties of the host under observation. So, the information gathering
still happens, and it still consumes resources on the host under
observation.

mat, then unexpected errors can be caught. On the other hand, if one
type of error isn’t logged or is logged with a different format, then the
monitoring system cannot catch it.

The agents are like reporters embedded with Army units. They are close
to the action. One implication is that the agents themselves are at risk.
Should the entire host go down, the agent surely goes with it. Therefore,
monitoring systems always use some kind of heartbeat to detect a failed
agent—or a network failure between the agent and the mothership.

Embedded reporters must have some way to submit their stories; the
same is true for monitoring agents. Monitoring systems are critically
dependent on their reliable message transport. In small-to-medium-
sized corporate deployments, monitoring traffic sometimes crosses the
same network segments as production traffic. This is a bad idea. For
one thing, it means a problem with the production network—such
as a network worm, DDoS attack, or plain old configuration error—
automatically disables monitoring. Monitoring traffic often contains
sensitive information. Even though it doesn’t contain passwords, it
often has hostnames, user names, internal IP addresses, snippets of
log files, process names, and process IDs, among other things. None
of these should be public, so they should not cross VLANs that carry
public traffic.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=285

MONITORING SYSTEMS 286

Commercial Monitoring Systems
Previously, only massive enterprises were interested in the big commer-
cial monitoring systems. Vendors such as IBM, Computer Associates,
and Hewlett-Packard went after only multimillion-dollar deals in the
Fortune 500. As the entire business world has shifted onto a 24-by-7
schedule, the systems have gotten bigger. At the same time, the vendors
have discovered opportunities in new segments of the market. Hurri-
cane Katrina in 2005 and the 9/11 attacks of 2001 raised awareness of
the urgent need for business continuance plans and disaster recovery.
(Many IT operations managers had been trying to raise this alarm well
before Katrina, but disaster recovery planning never had “sex appeal”
to CEOs and boards of directors until they saw companies going out of
business for the lack of a plan.) The strict regulatory environment cre-
ated by totalitarian implementations of Sarbannes-Oxley section 4046

has also made security controls and monitoring more important than
ever. This convergence of forces means that the commercial monitoring
systems are now a standard part of doing business.

Gaps in Commercial Systems
The big vendors toolsets are stable, mature, and well supported. In the
language of Crossing the Chasm [Moo91], these systems have now pen-
etrated even the “late mainstream”—absolutely the toughest market to
sell technology to. If they have a flaw, it is in their orientation toward IT
(but see the sidebar on the next page). It is no longer acceptable—and,
indeed, was never a good idea—to divorce the operation of production
systems from business results.

Linking operations to business results requires the ability to correlate
“systems” information with “business” information. For example, in a
typical distributed system today, can you always identify which server
provides a particular feature? Probably not. More likely, a single fea-
ture is served by groups of servers across multiple tiers. Therefore, the
monitoring system should be aware not only of the systems but also of
the business features those systems serve. In fact, it should be able to
identify the impact to those features anytime there is a system event—
whether that event is a problem or metric deviating from normal. So

6. I find it endlessly entertaining that section 404 requires controls on sensitive infor-
mation, and the ability to verify where every piece of financial information has come from,
when a “404 error” means “not found” on the web. I’ll warn you, though, that this joke
seems to fall flat at most parties I’ve attended.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=286

MONITORING SYSTEMS 287

Enterprise Application Management

By and large, these systems focus on network and server man-
agement. A quick crop of smaller companies sprang up in the
late 90s that focused on applications. Unlike their pre-Cambrian
cousins, these considered application availability and perfor-
mance primary determinants of the user’s experience. Big fish
ate small fish, and these small companies have disappeared
from the market. The major vendors—HP, EMC, BMC, IBM, CA
(you can’t play in this space unless you’re big enough to be
known by just two or three letters)—are now integrating these
application-aware products with their flagship suites to cre-
ate the emerging enterprise application management (EAM)
suites.

EAM suites combine network, server, and application aware-
ness to (in theory) deliver complete visibility into your systems.
They support the automatic discovery of dependencies by sniff-
ing network packets and automatic performance baselining.
EAM holds promise and might deliver great things, especially as
they begin to further annex application lifecycle features such
as configuration management, automated deployments, and
load and stress testing. This segment of the market is evolving
quickly.

far, most of the commercial systems seem to assume that the applica-
tion does not provide any visibility of its own. They are beginning to
implement this type of awareness but have far to go.

If there’s another major gap in these systems, it is that they can tell
you only what the systems think is happening. It is totally possible for
every component in the environment to be up and running by itself
but still have bad results for the end user. This often happens in the
event of blocked threads or cascading failures. Even if most users are
served correctly, some users might have problems because of issues
with their profiles, browsers, cookies, or other external factors. So far,
the major systems do not represent an individual user’s perspective
on the system; they just represent the system’s view of itself. There are
some newer products (not yet swallowed by big fish) that put themselves
in the users’ perspective.7

7. Tealeaf, for example. See http://www.tealeaf.com/.

http://www.tealeaf.com/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=287

MONITORING SYSTEMS 288

Ambient Awareness

In Ambient Displays: Turning Architectural Space into an Inter-
face between People and Digital Information [WID+98], some
researchers from MIT’s Media Lab argue for ambient displays.
These include subtle sounds, lighting, and patterns of move-
ment such as ripples in water, each mapped to some piece
of data. For example, a pinwheel might map to incoming traf-
fic on a website. The soundscape could represent the internal
health of the systems.

When everything is normal, the inhabitant’s perception of the
sounds fades into the background, just as the sound of crick-
ets on a summer evening fades into the background. Part of
the human brain’s great pattern recognition system suppresses
unchanging input, at least when it is nonthreatening. Even bet-
ter, after a day or two in the environment, the inhabitant will
automatically understand what “normal” sounds like, just like
the shipboard engineer.

When the underlying data changes, the ambient display
mapped to that data changes its sound or pattern. Imagine
those crickets suddenly fell silent. The crickets chirping might
fade into the background but would not disappear entirely. At
some level, awareness remains, and the sudden silence would
seem shockingly loud.

Not everyone can live in the MIT Media Lab, but there is an
open source project to provide ambient awareness through
soundscapes. Peep∗ can monitor states and events on a net-
work and turn them into pleasant sounds of brooks and birds.
That project hasn’t seen a new release in more than four years.
It seems to be languishing in neglect, just waiting for someone
new to pick up the torch.

The Pragmatic Project Automation [Cla04] site has
many posts about physical devices used to monitor
the health of a system (typically a build server). See
http://www.pragmaticautomation.com/cgi-bin/pragauto.cgi/Monitor/Devices
for lots of ideas. On a previous project, my team was inspired
by this site. We wired up a stoplight to monitor our build server.
“When the light is green, the build is clean.”

∗. See http://peep.sourceforge.net/.

http://www.pragmaticautomation.com/cgi-bin/pragauto.cgi/Monitor/Devices
http://peep.sourceforge.net/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=288

STANDARDS, DE JURE AND DE FACTO 289

Designing for Monitoring Systems
In almost every case, the selection of a monitoring system will be done
for you. These are expensive systems that require pervasive implemen-
tation to deliver value. Once chosen and implemented, the system will
be embedded deeply into IT operations for many years. That decision
will outlast corporate commitments to operating systems, programming
languages, hardware vendors, and org charts. In other words, the prob-
ability of the monitoring system being “in play” at the same time as you
are designing a new system is vanishingly small. Therefore, the moni-
toring system becomes part of the environment for which you design.

In such an environment, it would be easy to build in support for that
particular monitoring system, resulting in tight coupling and vendor
lock-in. You can avoid those pitfalls by designing to a small set of appli-
cable standards, both official and de facto.

17.6 Standards, De Jure and De Facto

The world of monitoring systems is dominated by standards. Oddly,
these standards don’t seem to provide as much interoperability as you
might expect. Let’s look at SNMP, the 800-pound gorilla of monitoring
standards, as well as some up and coming contenders.

Simple Network Management Protocol
The granddaddy of standards around monitoring and system manage-
ment is definitely the Simple Network Management Protocol (SNMP).
SNMP dates back to 1988, with SNMP version 1. Although it was orig-
inally written specifically for management of network devices (which is
why “Network” appears in the name), SNMP has expanded far beyond
its original boundaries. It can now be used with everything from carrier-
grade Cisco routers that handle half the traffic of the Internet down to
USB peripherals.

Even in its first version, the “Simple” in SNMP really was a bit of spin.
SNMP has a conceptual elegance that makes it simple in the same sense
that LISP is simple: it’s one idea, distilled to its purest essence and then
applied to every possible problem. Internalize that concept, grok it, and
the rest becomes clear and simple. Before you grok it, it just seems
kludgy. SNMP’s essential concept is “Everything is a variable.” Every-
thing a node can report on or do is a variable. There are no commands,
just variable assignments.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=289

STANDARDS, DE JURE AND DE FACTO 290

Instead of telling a device to do something, SNMP sends a “set request”
asking the device to set the variable to a desired state. For example,
using SNMP to tell a Packeteer traffic shaper about a new trap receiver
looks like a write to a variable called 1.3.6.1.4.1.2334.2.1.6.2.0, also
known as trapDestAdd. (You have to be part of a standards committee
to come up with names like 1.3.6.1.4.1.2334.2.1.6.2.0.)

Although SNMP refers to itself as a protocol, the full standards define
much more than just a network protocol. The RFCs that define SNMP
also define an information model and a kind of metastandard about
how new modular portions of the information model might be defined.

The information model is called the Structure of Management Informa-
tion. It defines the Management Information Base (MIB). The Internet
Assigned Numbers Authority8 (IANA) maintains the master list of mod-
ule owners at http://www.iana.org/assignments/smi-numbers. In another
display of overloaded nomenclature, the modular definitions are usu-
ally also referred to as MIBs. Vendors provide MIBs to describe the
management interface to their devices and software. Here is a portion
of the MIB defined by Packeteer:9

Download code/transparency/packeteer.mib

trapDestAdd OBJECT-TYPE
SYNTAX DisplayString
ACCESS write-only
STATUS mandatory
DESCRIPTION

"A shortcut for adding a host to trapDestTable. If the name is not
in n.n.n.n IP address form, then the agent attempts to look it up
via DNS. If the operation fails with BADVALUE, try again with
an IP address. The associated
IP address is added to the trapDestTable if the operation succeeded.
The table should be queried afterward to
insure that the action took place. "

::= { psAdmin 2}

As you can see, MIBs are defined by a portable language.10 Given a MIB,
the monitoring system knows how to talk with a device or application.
(The MIB usually has to be compiled into a proprietary format first, as
part of importing it into the monitoring system.) Armed with the MIB’s
definitions of tables, types, and variables, the monitoring system can
define thresholds, triggers, and alerts based on the present status of the

8. See http://www.iana.org.
9. From http://www.packeteer.com/support/resources/utilities/mibs/8.0/packeteer.mib.
10. ASN.1, if you’re interested. See http://www.asn1.org/.

http://www.iana.org/assignments/smi-numbers
http://media.pragprog.com/titles/mnee/code/code/transparency/packeteer.mib
http://www.iana.org
http://www.packeteer.com/support/resources/utilities/mibs/8.0/packeteer.mib
http://www.asn1.org/
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=290

STANDARDS, DE JURE AND DE FACTO 291

observed system. SNMP also allows the “agent”—the daemon or library
on the server that handles SNMP itself—to notify the monitoring system
asynchronously when interesting or alarming events occur. These alerts
are referred to as traps. Traps are less versatile than variables; they
mainly serve to get the monitoring system’s attention.

Many software vendors have gotten on board with SNMP. Microsoft has
an SNMP service available for Windows that allows any Windows 2000
(or later) computer to expose itself (as if they weren’t exposed enough
already). There’s an SNMP module for Apache. It’s built in to both Web-
Sphere and WebLogic. Oracle supports several MIBs, both standard and
private.

So, what does all this mean for your systems? Using any of these
platforms automatically brings a high degree of SNMP support and,
therefore, immediate transparency. Using an SNMP-based monitoring
system together with SNMP-supporting platforms provides immediate
exposure for thousands of variables. The monitoring system will also
allow you to define the thresholds and policies about alerts that reveal
both instantaneous behavior and abnormal status.

For your application code, however, the picture is far less rosy. The
trouble is that creating a MIB for custom software is a huge undertak-
ing of a very specialized nature. Even if you do write your own MIB, the
administrators of the monitoring system are often reluctant to install
MIBs from “untrusted” parties. (I don’t know why it should be the case
that a development group can be trusted to create applications respon-
sible for millions of dollars in revenue but cannot be trusted to create
a plug-in MIB for the monitoring system. Nevertheless, I’ve often seen
strenuous resistance from these administrators.)

Beyond that, after you create the MIB, you must have an SNMP agent
embedded in your application that can bridge between the SNMP vari-
ables and the objects in your application, as shown in Figure 17.6, on
the following page. (Even though the standards define port 161 as stan-
dard for an agent, it is possible to run multiple SNMP agents, each on
their own port.) Even though SNMP refers to MIB variables as objects,
they’re really more like C structs. A MIB essentially defines a big pile
of global variables—some are arrays, and some are structs—that don’t
necessarily map well into objects.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=291

STANDARDS, DE JURE AND DE FACTO 292

Network Management
Station (NMS)

SNMP
Manager

Managed Node

SNMP
Agent

MIBs

Operating
System

Managed
Application

SNMP
Agent

Figure 17.6: SNMP Communication Structure

In the Java community, SNMP compatibility is best achieved by writing
application code to support the Java Management Extensions (JMX)
and by using a JMX-to-SNMP connector.

CIM
In 1996, the Distributed Management Task Force11 (DMTF) introduced
a successor and competitor to SNMP in 1996. Called the Common
Information Model (CIM), this model replaces the awkward ASN.1 and
MIB structure with a metaobject protocol and a brokered structure
that allows for the dynamic registration and discovery of managed
resources.

In many ways, CIM is technically superior to SNMP. CIM’s object-
oriented model is a more natural fit for today’s programming styles,
and its dynamic discovery of capabilities means that management plat-
forms will no longer need to be “big-bang” purchases.

At this point, CIM is far less widely implemented than SNMP. So
far, most operating system vendors are supporting CIM, including
Microsoft, Sun, HP, and IBM. Linux support exists but is not gener-

11. See http://www.dmtf.org.

http://www.dmtf.org
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=292

STANDARDS, DE JURE AND DE FACTO 293

Java Application

MBean Interfaces

System Object Layer

ResourcePoolMBean

OrderDbConnections

CacheMBean

CatalogCache

HTTP Connector

RMI Connector

MBeanServer

Figure 17.7: MBeans as Proxies

ally integrated into distributions. Many hardware vendors are support-
ing CIM for their enterprise-class lines. Some application vendors sup-
port it, notably Oracle. Application-level support is far from widespread,
however, which is the major reason that I still regard CIM as a future
concern rather than something to address today.

JMX
Java Management Extensions (JMX) has historically been one of the
most overlooked, underappreciated APIs in Java. Introduced in 1998
as JSR 3, it was initially expected to be part of the Java Enterprise
Edition only. As time has passed, JMX has proven its value to such a
degree that it became part of the Standard Edition as of JDK 1.5. Every
JVM running Java 5 or later will automatically be JMX-enabled.

Where SNMP resembles procedural languages, with its global variables,
structs, and tables, JMX presents an object-oriented view of managing
applications. The fundamental unit of management is an MBean, a kind
of “management proxy” for some underlying system object, as shown in
Figure 17.7. Public properties—in the JavaBean sense of the word—and
methods of the MBeans can be invoked remotely.

MBeans have names, registered with an MBeanServer. It sits between the
external connectors that allow remote access and the internal MBeans.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=293

STANDARDS, DE JURE AND DE FACTO 294

JMX Gone Berserk

The full JMX specification permits much more sophisticated
behavior than most application developers will ever need.
MBeans can be instantiated dynamically, which might cause
entire subsystems to be activated. Domain objects can have
their own MBeans, which pop up and disappear dynamically.
Model MBeans are so dynamic that they don’t even exist at
compile time—they are assembled by defining the interface
programmatically and attaching any object whatsoever.

In terms of creating a transparent application, MBeans serve
well when attached to long-lived components of the applica-
tion’s architecture: resource pools, caches, repositories, inter-
faces to external systems, and so on.

These dynamic, whizzy features really pay off for platform
developers—the open source crew working on JBoss, the
hordes of true-blue WebSphere developers in IBM—but they
have little value for application developers. Odds are, if you’re
that far into JMX, you’ve gotten lost in the weeds. Back up, take
a cleansing breath, and start working on a story card instead
of polishing JMX’s tail fins.

External connectors adapt protocols such as HTTP and RMI to calls
on the MBeanServer itself. (It is also possible to call the MBeanServer

from within the same JVM as the managed resources. Application code
should not be doing this. It is an utterly circuitous way of talking to
yourself.) Using the RMI connector, it is possible to retrieve a remote
proxy representing the managed bean. Methods invoked on the remote
proxy get invoked on the managed bean itself. These can be simple
property accessors or control methods.

Figure 17.8, on the following page, shows a simple management inter-
face for a circuit breaker component. The setResetTime(long timestamp)

and getResetTime() methods define a property, JavaBeans style. The
reset() method forces a state transition in the managed object. This is
just an interface, so there must be some class implementing it. Indeed,
the object being managed typically implements this interface. Fig-
ure 17.9, on the next page, shows an example of a managed resource.
This means that a direct use of JMX leaves the code “aware” of its future
as a closely watched application under management.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=294

STANDARDS, DE JURE AND DE FACTO 295

Download code/transparency/CircuitBreakerMBean.java

package com.example.util;

import java.io.IOException;

public interface CircuitBreakerMBean {
public void setResetTime(long timestamp) throws IOException;
public long getResetTime() throws IOException;

public CircuitBreakerState getState() throws IOException;

public void reset() throws IOException;
}

transparency/CircuitBreakerMBean.java

Figure 17.8: Sample MBean Interface

Download code/transparency/CircuitBreaker.java

package com.example.util;

public class CircuitBreaker implements CircuitBreakerMBean {
private CircuitBreakerState state = CircuitBreakerState.CLOSED;
private long resetTime = -1;

public void setResetTime(long timestamp) {
this.resetTime = timestamp;
checkForReset();

}

public long getResetTime() {
return resetTime;

}

public CircuitBreakerState getState() {
return state;

}

public void reset() {
setState(CircuitBreakerState.CLOSED);

}

...
}

transparency/CircuitBreaker.java

Figure 17.9: MBean Interface Implemented

http://media.pragprog.com/titles/mnee/code/code/transparency/CircuitBreakerMBean.java
http://media.pragprog.com/titles/mnee/code/code/transparency/CircuitBreaker.java
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=295

STANDARDS, DE JURE AND DE FACTO 296

Another type of MBean—the “dynamic MBean”—does not require
compile-time information. Similar to CORBA’s Dynamic Invocation
Interface or Java’s own reflection API, dynamic MBeans get to describe
their own methods, rather than being stuck with a static, compile-time
definition. This means that a sufficiently generic dynamic MBean should
be able to act as a management proxy for any old Java object. Sure
enough, the StandardMBean does exactly that. Given an object and an
interface class, it becomes an MBean, exposing that interface on that
object. This is absolutely the fastest way to add JMX support to your
application, with the added benefit of removing the JMX pollution from
the system objects themselves.

Prior to Java 5 (JDK 1.5), JMX was an extension. To use it, applications
had to include some implementation of the JMX specification. The most
common were the JMX Reference Implementation from Sun and the
open source MX4J project. Since Java 5, JMX has been integrated into
the JVM itself, so any application can now draw on the MBeanServer.

Although still little used by application developers, JMX has gained
broad support among platform developers. JBoss’s kernel has shrunk
to nothing more than a JMX-based registry and module loader. IBM
WebSphere uses JMX to expose itself. BEA WebLogic sits somewhere
in the middle; significant parts of WebLogic are activated and managed
by JMX, but not to the radical extreme of JBoss. Since version 1.2, the
Spring framework has provided an automatic dynamic MBean genera-
tor. In typical Spring fashion, it requires a bunch of squirrely XML and
no code. (OK, the XML eventually makes sense, but like an Oracular
prophecy, it makes sense only in retrospect.)

JMX support in these platforms brings one of the best benefits: script-
ability. BEA and IBM have both created command-line shells that
access MBeans through the remote connectors. BEA’s wsadmin.sh and
IBM’s wslt both provide scriptable shell interfaces to MBean-enabled
application servers. (See Section 14.4, Administrative Interfaces, on
page 248 for my rant about graphical administration interfaces.) JBoss
has “twiddle,” which is not a complete shell but does allow invocation
of commands on arbitrary beans.

Make administration
interfaces scriptable.

It’s remarkably tough to get praise from people
in operations. They’re a hard-bitten lot. Nev-
ertheless, make your application’s administra-
tive functions scriptable, and they will bless

your name. I cannot overstate the value of a scriptable administration

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=296

STANDARDS, DE JURE AND DE FACTO 297

interface. Providing a useful set of MBeans through JMX is the easiest
way you can offer scriptable administration for Java applications.

What to Expose
If you could predict which metrics would limit capacity, reveal stability
problems, or expose other cracks in the system, then you could monitor
only those. There are two problems with that prediction. First, you’re
likely to guess wrong. Second, even if you guess right, the key met-
rics change over time. Code changes and demand patterns change. The
linchpin a year from now might not even exist now.

Within the application, the ideal is to expose every state variable,
counter, and metric. Since you don’t know what you’ll need down the
road, expose everything. Since you can’t predict what the thresholds
should be or how to react when they’re breached, you should stick to
providing visibility. Leave the policy for later. Provide universal visibility
now, but externalize the policy so you can defer those decisions.

Of course, you could spend an unlimited amount of effort creating
MBeans or SNMP variables for absolutely everything. Since your sys-
tem still has to do something other than just collecting data, I’ve found
a few heuristics to help decide which variables or metrics to expose.
Some of these will be available right away. For others, you might need
to add code to collect the data in the first place. Here are some things
I’ve consistently found useful.

Traffic indicators
Page requests total, page requests, transaction counts, concurrent
sessions

Resource pool health
Enabled state, total resources,12 resources checked out, high-
water mark, number of resources created, number of resources
destroyed, number of times checked out, number of threads
blocked waiting for a resource, number of times a thread has
blocked waiting

Database connection health
Number of SQLExceptions thrown, number of queries, average
response time to queries

12. This applies to connection pools, worker thread pools, and any other resource pools.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=297

STANDARDS, DE JURE AND DE FACTO 298

Integration point health
State of circuit breaker, number of timeouts, number of requests,
average response time, number of good responses, number of net-
work errors, number of protocol errors, number of application
errors, actual IP address of the remote endpoint, current number
of concurrent requests, concurrent request high-water mark

Cache health
Items in cache, memory used by cache, cache hit rate, items
flushed by garbage collector, configured upper limit, time spent
creating items

All of the counters have an implied time component. You should read
them as if they all end with “in the last n minutes” or “since the last
reset.”

JMX and SNMP Together
JMX was built to support different connectors and protocol adapters.
It seems only natural to open Java applications up to SNMP through
JMX itself. Indeed, several JMX-to-SNMP connectors are available, of
varying quality. AdventNet (http://www.adventnet.com) appears to be the
market leader in this (admittedly small) space.

The largest challenge such a connector must overcome is not bridging
the protocols. Mapping the protocol operations between SNMP and JMX
is trivial. After all, SNMP really has only three types of operation: get
variable, set variable, and enumerate variables.

Recall that SNMP’s information model is based on a schema of vari-
ables, tables, and structures. JMX is object-oriented. The JMX-to-
SNMP connector bridges this impedance mismatch. It must determine
which variables map to properties on MBeans, which variables will trig-
ger method calls, and how to turn collections of objects into entries
in a table. Finally, the JMX-to-SNMP connector must also map JMX’s
notifications (asynchronous events) to SNMP traps.

The result is a fully configured SNMP agent that uses the MBeanServer

inside the JVM, and a MIB for import into the monitoring system. Once
that hurdle is cleared, integrating a JMX-enabled Java application into
an SNMP-based monitoring system is trivial.

http://www.adventnet.com
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=298

OPERATIONS DATABASE 299

Logging Monitoring OpsDB
Historical

Future

Behavior

Unsuitable

Poor Fit

Workable, with effort

Well Suited

Status

Figure 17.10: Suitability for Purpose of Transparency Technologies

17.7 Operations Database

Logging and monitoring are both good for exposing and understanding
the immediate behavior of an application or system. Neither is particu-
larly good at serving the historical or future perspective. Figure 17.10,
judges each of these approaches against the four perspectives. It is
possible to derive a system’s current status from log files alone, but
it’s very difficult, since it requires tracing backward for the last state
transition for each relevant status variable. (Of course, spitting out the
status variables on a recurring timer would aid this analysis.)

Monitoring systems are great at representing instantaneous behavior.
They do a good job of representing present status, but, as I discussed
in Section 17.5, Gaps in Commercial Systems, on page 286, they serve
only one constituency. When it comes to historical and future trends,
they have a way to go. Until the enterprise application management
suites mature, I have to consider this a gap.

Figure 17.11, on the next page, introduces a complementary technol-
ogy that serves the time-oriented views of the system. This “opera-
tions database”13 (OpsDB) accumulates status and metrics from all the
servers, applications, batch jobs, and feeds that make up the extended

13. I’d love to call it an “operational data store,” but that name is already taken for some-
thing else.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=299

OPERATIONS DATABASE 300

Servers

Apps

Batch Jobs

OpsDB

start, end, abort
completion status
items processed

status variables
business metrics
internal metrics

performance
utilitzation

Reports

Dashboard

Capacity
Planning
Process

Figure 17.11: Role of the Operations Database

system. It provides the “single pane of glass” that can present the
business-oriented metrics in the dashboard, the system statistics, and,
best of all, the correlations between them. Whereas logging provides vis-
ibility into a single application, the broader view of the OpsDb unifies
status and metrics reporting across the entire system.

The OpsDB serves as a source for the ever-popular dashboard, for the
present status crowd. Because it contains demand metrics as well as
system metrics, a few exercises in data mining will reveal the correlation
factors needed for capacity planning. The historical record contained in
the OpsDB also allows automatic baselining to determine what “nor-
mal” looks like for the metrics across the site.

The records of job execution make troubleshooting faster when
application-level problems arise, such as stale data from a channel
partner. Examining the normal start and end times, and correlating
them with the number of items processed, also illustrates when we
should expect jobs to complete and if any of them are in danger of
breaking their windows.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=300

OPERATIONS DATABASE 301

*

Node

Feature

*

*

*

needs

Measurement Event

Observation*1

Observation
Type
1
*

Status

Figure 17.12: OpsDb Object Model: Observations

OpsDb High-Level Structure
Figure 17.12 shows the UML class diagram representing the informa-
tion in the OpsDb.14 Mapping this object model to a SQL schema is left
as an exercise for the reader (in part, because the form of that mapping
should be driven by your particular ORM tool and database server).

A Feature represents a unit of business-significant functionality. These
should be the same features the system’s availability SLAs are written
about and the same ones that capacity planning will be measuring.

A Feature does not come from a server. A single Feature is proba-
bly implemented across at least three hosts (web, application, and
database), applications on each tier, a pair of firewalls, a network
switch, and a storage array or SAN. The Node class represents any of
these active nodes. In practice, it is usually sufficient to represent the
hosts and applications. If the system includes hardware firewalls, SSL
accelerators, content caching servers, or other network equipment that
plays an active role in delivering the application (mainly with respect to

14. Readers of Martin Fowler’s Analysis Patterns [Fow96] will recognize this as similar to
the Observation pattern. That pattern described a medical diagnosis system for assessing
the health or diseases of a patient. The concepts transfer directly. Here, instead of a
human patient, you are dealing with networked computer systems—a far less complex
animal.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=301

OPERATIONS DATABASE 302

layer 7 interactions), then it probably pays to include them as nodes.
Each Node has its own unique ID. The individual servers, applications,
and batch jobs use this ID when reporting their observations, so it
is important to track them carefully. (I find that assigning blocks of
IDs to particular teams or subteams works well. That keeps their node
IDs contiguous and lets them use up their node IDs without having to
wait for a new allocation.) Nodes use other Nodes, but capturing these
dependencies can be burdensome, so this is optional. If you use them,
Node dependencies can be a powerful aid to troubleshooting. Those
same dependencies are the pathways by which cascading failures will
propagate.

Observations are the heart of the OpsDb. Each Observation is a single
data point collected from a Node. For server nodes, the observations are
mainly performance statistics, which are recorded as Measurements. A
Measurement is typically periodic, and all records are kept. For an appli-
cation, these will include performance statistics as well as the status
of important system objects. For example, an application server should
record its database connection pool high-water mark and resources
checked out (among other things), but it should also record the state
change from “enabled” to “disabled.” Likewise, a circuit breaker should
record each of its state transitions. State transitions are recorded as Sta-

tus objects. For a dashboard (present status), only the last Status entry
is of interest. For troubleshooting or historical trending, the frequency
and type of state changes is often significant.

Every Observation requires an ObservationType to make sense. The set of
all ObservationTypes defines the universe of information in the OpsDb.
ObservationType defines the name and concrete subtype of the Observa-

tion.

Feeding the Database
I recommend creating a client-side API to feed observations to the
OpsDb. This should be in whatever language most of the system will
be in. Above all, keep it simple. Everything can fail, including this new
database. It is not critical to the financial success of the system, so
there is absolutely no reason that a failure in the OpsDb should have a
noticeable effect on the system’s primary function.

If the system includes shell scripts or batch files, they will need to
invoke some command-line utility for writing to the OpsDb.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=302

OPERATIONS DATABASE 303

Observation

Observation
Type
1
*

Expectation
Type

Expectation
*

1

1
1

NominalRange ExpectedStatusExpectedTime

Figure 17.13: OpsDb Expectations

The script should call the command-line at start-up time, with a record
of how many items need work. When finished, it should record how
many items were actually processed (as opposed to the number that
had issues). If the job fails completely, it should record an abnormal
termination.

If this is a Java system and you are feeling ambitious, you could write
a generic MBean to record periodic samples. It could even receive notifi-
cations about state changes and record them, too. Then, instrumenting
any application would just be a matter of instantiating and configuring
that MBean.

Using the Operations Database
Once a body of data has built up in the OpsDb, it becomes even more
useful. Figure 17.13, adds new classes to the model from Figure 17.12,
on page 301. (Feature and Node are omitted from this diagram, but they
still exist.)

An ExpectationType corresponds to an ObservationType. It defines the
name and characteristics of its Expectation. An Expectation represents
an allowed range for a metric, a time frame in which an event must (or
must not) occur, or an allowed status. Violating any of these expecta-
tions should trigger alerts in the monitoring system.

The best source for the expectations is the same historical data already
contained in the database. Expectations should be set to match reality
so you can avoid the negative effects of false positives.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=303

OPERATIONS DATABASE 304

The Danger of False Positives

In Inviting Disaster [Chi01], James Chiles relates the story of
a plant supervisor who saw an operator reflexively override a
warning chime in a control room. When confronted, the oper-
ator vehemently denied that he had done so, not because he
feared consequences but because he had no conscious rec-
ollection of shutting off the warning. The system had trained him
to so completely disregard the chime that he could shut it off
without being aware of doing so.

I commonly hear from developers or managers who wear
pagers. One woman told me that her pager went off three
times every night. She knew that indicated normalcy. If the third
page did not come in by a certain time of night, she knew there
was a problem. If a fourth page arrived, she knew there was a
problem. That’s a form of situational awareness that might be
better than nothing, but I can’t endorse it as a way of life.

In the beginning, expectations can be somewhat loose. Over time, as
processes come under better control, those expectations can be tight-
ened and made more sophisticated. For example, an early expectation
for “web server CPU utilization” could state that “>0% and <80%” is
acceptable. As you learn more about the system linkages, that expecta-
tion can be tightened to “>5% and <50%.” At the next level of maturity,
the business rhythm can come into it, either as a continuous envelope
or as a step function. For example, as a step function, that expecta-
tion can require low CPU utilization during the night, moderate in the
morning, and high in the mid-afternoon. Deviation greater than or less
than that expectation would trigger alerts.

Over time, the OpsDb allows the system to grow more mature and
introspective. It will know itself better and know how it should react
to external stimuli.

For large systems, the OpsDb can accumulate a lot of data over time.
Don’t forget about the Steady State stability pattern. (See Pattern 5.4,
Steady State, on page 124.) If you don’t condense the data, your system
will eventually bog down in data collection. Obviously, it’s not good to
jeopardize capacity because you’re keeping too much ancient perfor-
mance data. (What’s ancient? That depends on your system, but I’d say
that minute-by-minute samples older than a week are not helpful.)

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=304

SUPPORTING PROCESSES 305

17.8 Supporting Processes

How many times have you seen this one: some reporting system gener-
ates a report and sends it to a distribution list, and half the people on
the list have a rule in Microsoft Outlook that automatically deletes the
report? It’s classic. Of course, anytime I see that, I immediately know
that the report is useless. In fact, it’s probably worse than useless. Not
only does it take time and effort to generate the report, but somebody
has to maintain that report through changes in the underlying system.
Worse still, once in a blue moon, the report might actually show some-
thing serious, but all of the supposed consumers of the report stopped
reading it long ago.

That report is an example of transparency without a closed-loop feed-
back process. It costs money to implement and operate but provides no
value. It creates a false sense of security. The best data in the world
can’t help if nobody is looking. In this section, I will take a step back
from the systems themselves to discuss the larger dynamic system: the
organization that is creating and operating these computer systems.

An effective feedback process can be described as “acting responsively
to meaningful data.” Transparency in the systems only provides access
to the data. Humans in the loop still need to view and interpret the
information.

Various forms of feedback loops exist in different schools of process,
such as the Deming Cycle’s15 spiral through “Plan-Do-Check-Act” or
John Boyd’s nonlinear “O-O-D-A.”16 Ultimately, they all boil down to
some execution of each of the following:

• Examine the system: current state, historical patterns, and future
projections.

• Interpret the data. This always occurs within the context of some
person’s mental model of the system.

• Evaluate potential actions, including the costs of each and, per-
haps, taking no action at all.

• Decide on a course of action.

• Implement the chosen course of action.
• Observe the new state of the system.

15. See Deming and Goldratt [LC99].
16. See Certain to Win [Ric04].

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=305

SUPPORTING PROCESSES 306

Colonel John Boyd and O-O-D-A

This style of feedback process draws directly from the work
of Colonel John Boyd, an Air Force pilot and strategist. Col.
Boyd’s key concept was the “O-O-D-A Loop,” an acronym
for Observe-Orient-Decide-Act. Boyd argued that complete
knowledge of a situation is impossible and, even if it were
attainable, quickly irrelevant. He viewed the battlefield situa-
tion as fluidly, even chaotically, changing. In that realm, vic-
tory would go to the force best able to react and control the
changing tactical and strategic dynamics.

The O-O-D-A Loop requires correct observations, unclouded by
wishful thinking or confirmation bias—definitely a tall order. Ori-
entation is the process of updating a mental map of possibili-
ties and options according to the previous map and the new
observations.

Good orientation acknowledges what is possible and impos-
sible. In the military and the corporation, political filtering of
observations and orientation is fatal. “Spin” is antithetical to O-
O-D-A, which requires engagement with the real environment,
not a fanciful or idealized picture of the environment.

O-O-D-A contains many feedback steps. Observe, Decide,
and Act all affect the actor’s orientation. As you act, you
change the external environment as well as your own under-
standing of the evolving conditions. In this way, the result of an
iteration of O-O-D-A affects the next iteration in two ways: once
through the environment itself and once through your own per-
ception of the environment.

Each time through the loop, you know more than before, cre-
ating reinforcing feedback. Anytime you see reinforcing feed-
back loops, you should suspect that the system can go nonlin-
ear and chaotic, in the modern sense of those words.

This capacity for chaos separates O-O-D-A from a mere stimu-
lus/response reaction, where an increase in stimulus creates a
proportional increase in response. Think trench warfare in World
War I or trying to get faster software by “doing more process.”
You can gain tremendous creative power to disrupt your oppo-
nents by going through O-O-D-A faster than they can.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=306

SUPPORTING PROCESSES 307

Colonel John Boyd and O-O-D-A (cont.)

Boyd called this getting “inside” the enemy’s decision cycle:
both anticipating and constraining his actions.∗

∗. I also view O-O-D-A as a powerful argument for agile develop-
ment methods. Each development iteration should map to an iter-
ation of O-O-D-A. The resulting control of the environment allows a
company to take over the initiative and unravel the competition. See
http://www.steveadolph.com/articles%20and%20papers/Adolph%202006%20agile%20lessons_final.pdf
for a paper from Steve Adolph that further examines the connection between
O-O-D-A and agile.

Keys to Observation
First and foremost, observers should watch for both trends and out-
liers. Both provide insight. It helps to build an operational rhythm that
makes improvement a routine occurrence rather than a spasmic effort.
Here are a few helpful routines to aid observations:

• Every week, review the past week’s problem tickets. Look for
recurring problems and those that consume the most time. Look
for particular subsystems that cause a lot of problems or a devel-
opment team (if there is more than one). Look for problems related
to a particular third party or integration point.

• Every month, look at the total volume of problems. Consider
the distribution of problem types. The overall trend should be
a decrease in severity as serious problems are corrected. There
should also be an overall decrease in volume. (There will be a saw-
tooth pattern as new code releases introduce new problems.)

• Either daily or weekly, look for exceptions and stack traces in log
files. Correlate these to find the most common sources of excep-
tions. Consider whether these indicate serious problems or just
gaps in the code’s error handling.

• Review help desk calls for common issues. The can point toward
user interface improvements as well as places the system needs to
be more robust.

• If there are too many tickets and help desk calls to review thor-
oughly, look for the top categories. Also sample tickets randomly
to find the things that make you go “hmmm.”

http://www.steveadolph.com/articles%20and%20papers/Adolph%202006%20agile%20lessons_final.pdf
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=307

SUPPORTING PROCESSES 308

• Every four to six months, recheck that old correlations still hold
true.

• At least monthly, look at data volumes and query statistics.

• Check the database server for the most expensive queries. Have
the query plans changed for any of these? Has a new query hit
the most expensive list? Either of these changes could indicate an
accumulation of data somewhere. Do any of the most common
queries cause a table scan? That probably indicates a missing
index.

• Look at the daily and weekly envelope of demand (driving vari-
ables) and system metrics. Are traffic patterns changing? If you
suddenly see that a popular time is dropping in popularity, it prob-
ably indicates that the system is too slow at those times. Is there
a plateau in the driving variables? That indicates some limiting
factor, probably responsiveness of the system.

Remember that the focus of interest will shift over time. In the early
days, the issues will mainly be reactive. Ticket reviews, post-mortem
reports from incidents, and recent trends will be of most interest. As
root causes get corrected, as new code releases come out, and as traf-
fic patterns change, the emphasis will shift from reactive to predictive
analysis. What will happen next quarter? Where do you need to be this
time next year? As this emphasis shifts, stop reviewing some old things,
and start reviewing new trends. Once a metric stops producing useful
information, stop reviewing it. The same reports you live by one month
after launch will be worthless—or even misleading—two years later.

For each metric being reviewed, consider each of the following. How
does it compare to the historical norms? (This is easy if the OpsDb has
enough data to start forming expectations.) If the metrics continues its
recent trend, what happens to other correlated metrics? How long could
the trend continue—what limiting factor will kick in? What will result
from that limiting factor?

For example, consider the relationship between “orders received” and
“application server CPU utilization.” On any kind of retail site, these
metrics will be correlated to some degree. (“Orders received” is a deriva-
tive of “unique visits.” The beta of “orders received” to “unique visits”
is just what the marketers call conversion rate.) Therefore, if you see
“orders received” increasing, you can ask, “How long can that con-
tinue to increase?” The answer to this question should motivate inter-
pretation and decision. The decision might be to do nothing, to add

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=308

SUMMARY 309

resources, to drive away customers, or to optimize the application code.
Any of those decisions represent a successful conclusion of the feed-
back loop.

17.9 Summary

Strange things happen to systems when they encounter the real world.
Anomalies and events can remain forever mysterious, or they can be
valuable lessons learned. Transparency makes the difference between
a system that improves over time in production and one that stagnates
or decays.

Management systems are prevalent. SNMP version 3 currently domi-
nates the landscape. CIM/WBEM overcomes many of SNMP’s disadvan-
tages and will be a major force in the near future. For Java developers,
JMX offers a path into either the SNMP or CIM/WBEM world.

Transparency requires access to the internals of the computers and
software. Exposing those internals is the first prerequisite. Next, some
means for collecting and understanding the data points is required.
This can be facilitated with the commercial monitoring systems and the
OpsDb. Finally, some feedback process is needed to act on the acquired
knowledge.

The next chapter examines what to do when transparency reveals a
need for change. Adaptation takes the long view, examining how to
build systems that can change gracefully over time.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=309

... pity us all,

Who vainly the dreams of youth recall.

For of all sad words of tongue or pen,

The saddest are these: “It might have been!”
John Whittier, Maud Muller, 1854

Chapter 18

Adaptation
No matter how bold the vision or how severe the crunch mode, the sys-
tem that launches will always be less than it might have been. The new
system is a flawed and diminished thing, barely suited to its purpose
in life. Will it remain so, or will it grow into its creators’ vision?

The true birth of a system comes not on the day that design and devel-
opment begins, or even when the project is conceived, but on the day it
launches into production. This is a beginning, not an end. Over time,
the system will grow and mature. It will gain new features. It will lose
defects and perhaps gain some, too. It will become what it was meant to
be, or, even better, it will become what it needs to be. Most of all, it must
change. A system that cannot adapt to its environment is stillborn.

18.1 Adaptation Over Time

The fledgling system must do some things right, or it would not have
been launched, and it might do other things as well as the design-
ers could conceive. Still other features might work as built but not
as intended, or they might be more difficult than they should be. In
essence, there are gaps and protrusions between the shape of the sys-
tem and the solution space it is meant to occupy.

A new system does not automatically become better fitting through use.
Most of the time, the system trains its users—painfully. The system can
be changed to fit its solution space better—even as the solution space
continues to change over time—thereby filling the gaps and filing the
bumps, but only by deliberate action.

ADAPTATION OVER TIME 311

In The Evolution of Useful Things [Pet92], Henry Petroski1 argues that
the old dictum “form follows function” is false. In its place, he offers
the rule of design evolution, “form follows failure.” That is, changes in
the design of such commonplace things as forks and paper clips are
motivated more by the things early designs do poorly than those things
they do well. Not even the humble paper clip sprang into existence in
its present form. Each new attempt differs from its predecessor mainly
in its attempts to correct flaws.

In the world of software development, each new release is motivated
by either new features (filling in gaps) or defects (filing down bumps).
Just as the shape of the paper clip evolved over time, the architecture
and design of software systems adapt over time in response to real and
perceived failures in each iteration.

But, adaptation has a price. Any action to change the system has a
cost: design, development, and testing effort, plus the cost of release.
Physicists and chemists recognize this as “activation energy.” If the cost
of making these changes exceeds the value returned by filling a gap or
removing a bump, then the rational choice is to not make the change.
The value returned might be strictly in terms of cash flows. On the other Cash flow: the lifeblood

of every business.
Money in, money out.
Thanks to the time value
of money, cash flows
now are more valuable
than cash flows in the
future.

hand, the value might lie in protecting the large investment already
made in the system itself.

Finally, as a matter of simple economics, somewhere between 40% and
90% of a system’s cost of development will be incurred after the first
release. This might be labeled “maintenance,” or it might be considered
new development. Either way, development costs continue to appear
long after release 1.0. This is an old, thoroughly recognized problem for
design and architecture. The difficulty and cost incurred in releasing
changes into the wild is less well understood.

The remainder of this chapter examines how small- and large-scale
architecture choices affect a system’s ability to adapt. These are the
“implementation cost” portions of the activation energy. The balance of
the activation energy requirement is the cost of releasing changes—a
hidden cost that can mount to surprising levels. Our ultimate goal is
to ensure that changes to our systems—filling the gaps and filing the
bumps—release more cash than they consume.

1. I have to admire any author who can enthrall me with eighteen pages on the emer-
gence of the fork.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=311

ADAPTABLE SOFTWARE DESIGN 312

Chemical reactions that produce more energy than is required to initi-
ate them are called exothermic. We want changes to our systems to be
exoeconomic, producing more money than is required to create them.

18.2 Adaptable Software Design

Thousands of pages have been written on the subject of adaptable soft-
ware design. Dozens of named methodologies aim to produce software
perfectly fitted to its functional space. Many of the newer of these even
incorporate the principles of change over time under the rubric of “agile
methods.” It would be impossible to recapitulate them here.

The overwhelming majority of these methodologies focus on creating
the correct functionality or allowing functionality to change over time.
However, there are some other aspects of software design, related to
a system’s ability to adapt without disrupting production operations.
We’ll look at those aspects here. Think of these issues as an “overlay”
that you should consider on top of whatever design methods you choose
to employ.

Dependency Injection
There is power in names. Martin Fowler gave a name to a relatively
commonplace technique, and the programming world suddenly blazed
with “dependency injection” frameworks.2 (See also AJAX.) The prin-
ciple of dependency injection is simply that components should inter-
act through interfaces and shouldn’t directly instantiate each other.
Instead, some other agency should “wire up” the application out of
loosely coupled components.

Done well, dependency injection encourages loose coupling. To that
extent, it has real power. It also facilitates unit testing, which is even
better. Defining and using interfaces is the main key to successfully
achieving flexibility with dependency injection. Objects collaborating
through interfaces can have either endpoint swapped out without notic-
ing. That swap can replace the existing endpoint with new functional-
ity, or the substitute can be a mock object used for unit testing. Depen-
dency injection using interfaces preserves your ability to make localized
changes.

2. See http://www.martinfowler.com/articles/injection.html.

http://www.martinfowler.com/articles/injection.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=312

ADAPTABLE SOFTWARE DESIGN 313

Dependency Injection

Back when J2EE started lumbering around the landscape, a
number of framework developers started creating things such
as Pico, Spring, and Apache Avalon. They had a markedly dif-
ferent quality to them than typical J2EE applications did. In
particular, applications written with these “lightweight” frame-
works tended to focus on small, stand-alone components that
implemented interfaces. These components did not instantiate
other components directly. Instead, they called other services
through interfaces and just “assumed” that an implementation
of that interface would be provided by the container.

At first, this was described as Inversion of Control, a commonly
identified characteristic of application frameworks. Inversion of
Control as commonly practiced in framework design, however,
applies to the more general practice of extending a framework
by plugging application code in as subclasses or callbacks,
thereby placing the framework in control rather than the appli-
cation code. (The framework calls into the application, which
is the characteristic inversion that distinguishes a “framework”
from a “class library.”)

Martin Fowler popularized the term dependency injection to
describe the case of, well, injecting references into compo-
nents. The container wires components together at runtime
based on a configuration file or application definition. The com-
ponents themselves do not need to know exactly to whom
they’re talking. Dependency injection leads to highly adapt-
able code that can be easy to unit test and easy to “rewire” as
requirements change over time.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=313

ADAPTABLE SOFTWARE DESIGN 314

Object Design
It’s amazing how much energy and emotion the phrase “good object-
oriented design” can generate, even now, twenty years after the “object
revolution” began. I will assert, without further proof, that there exists
such a thing as good object-oriented design. Those who already believe
in it will agree with me without evidence, and those who refute its exis-
tence would not be swayed by any argument I could offer.

In the context of adaptation, the best rules to follow are those crusty
old proscriptions: loose coupling and tight cohesion. When originally
written, those rules applied to source modules. Loose coupling meant
“Don’t touch another file’s global variables.” Tight cohesion meant
“Most or all of the subroutines in this file should use most or all of
the file’s global variables.” It seems that the rules could use a bit of
updating.

The modern object-oriented definition of coupling has more to do with
behavior than variables. Whenever a class uses behavior from another
class, it is coupled by that behavior. The number of behaviors that one
class requires from another class defines the “width” of the interface
between those classes.

Obviously, some degree of coupling is required. Objects that don’t call
each other can’t do very much. So, what does “loose coupling” mean
in this context? Consider all the public methods exposed by a class.
Now look at the subsets of those methods that are called by other
classes. A perfectly cohesive class will have just one set, containing all
the methods, that are called by all users of the class. This is highly
unlikely. More likely, there are a small number of sets of methods.
Different users of the class use different subsets of its methods. The
more distinct these subsets are—that is, the fewer methods that are
found across multiple subsets—the easier it will be to change the class’s
behavior later. It will be more adaptable. Not coincidentally, it will also
be easier to create classless interfaces to group, name, and abstract out
those subsets of methods.

With the methods grouped into subsets, cohesiveness describes how
much of the object’s internal state affects and is affected by the sets of
methods. In other words, if a set of methods touches only a subset of
the object’s state but is unaffected by other aspects of the object’s state,
then the object is not cohesive. This might indicate there is another
object hiding inside, waiting to be refactored into its own class.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=314

ADAPTABLE SOFTWARE DESIGN 315

Coupling affects adaptation more than cohesion. Highly coupled
classes require more external context to be useful. For example, con-
sider a simple geometry class representing a point in two dimensions.
It is unlikely that the point requires any external context at all to func-
tion. It works fine by itself without the application setting up any other
relationships or global state (such as singletons or object registries). In
a sense, it is a brick; it can be used in the same way wherever you need
something blocky to stack together.

Also, consider an overly smart domain object, such as a typical Customer

object. It probably collaborates with three or four other classes, such
as Account, Address, CreditCard, and perhaps others. If Customer also
knows anything about its own persistence, it might collaborate with Per-

sistenceManager, TableDataGateway, or others of that sort. Each of these
collaborations is both necessary and problematic. Without them, the
object is useless; with them, it depends on larger and larger substruc-
tures to be present and to be behaving in an expected manner. Rather
than a brick, this is more like a jigsaw puzzle piece in many dimen-
sions. It has knobs, sockets, and joints that must match up exactly
with some other pieces to work.

A cluster of objects that can exist together only in a tight collaboration
resembles a crystal in a metal. The objects stay together in a tightly
bound relationship, just as the atoms in a crystal are tightly bound. In
metal, small crystals mean greater malleability. More malleable metals
recover from stress better. Large crystals encourage crack formation. In
software, large “crystals” make it harder to change the software. When
objects in one grain participate in multiple collaboration patterns, they
bridge two crystals, forming a larger grained crystal—further reducing
the malleability of the software.

There is no limit to how far this region of tightly bound crystals can
spread. In the extreme case, the crystal grows until it is the boundary
of the application. When that happens, every object suits exactly one
purpose to which it is supremely adapted. It fits perfectly into place and
ultimately relates to every other object. These crystal palaces might
even be beautiful in a baroque sort of way. They admit no improve-
ment, in part, because no incremental change is possible and, in part,
because nothing can be moved without moving every other object.
These tend to be dead structures. Developers tiptoe through crystal
palaces, speaking in hushed tones and trying not to touch anything.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=315

ADAPTABLE SOFTWARE DESIGN 316

Collaborations and Design Patterns

It might sound as though I have a dim view of collabora-
tions. Not at all. In fact, when it comes to object design, I am
an avowed behaviorist. Collaborations are central. I do insist,
however, that collaborations should be designed with an eye
toward cohesiveness and reducing the crystal grain of the soft-
ware. When I see an object that participates in multiple design
patterns, each collaborating with a different group of objects, I
see a Gordian knot that will be difficult or impossible to change.

Where different crystals need to be linked, those links should be
minimized with as few ties across the boundary as possible.

This, by the way, is where many novices go wrong when apply-
ing newfound knowledge from the great book Design Pat-
terns [GHJV95]. This book encourages a more collaborative,
behavioral view of object interactions. The newly awakened
object designer will be tempted to measure the quality of a
design by how many patterns it employs, even though Gamma,
et al, directly caution against this. Overloading pattern roles on
a single object cause larger and larger crystal growth until the
code base becomes one giant, rigid, rock.

XP Coding Practices
Programmers’ religious wars are legendary: emacs vs. vi, tabs vs.
spaces, VMS vs. UNIX, Java .vs .NET. To that list, we should now add
agile methods vs. traditional methods.

Unfortunately, any religious war polarizes the passionate minority,
leading the opposition—and the ambivalent majority that reacts with
distaste—to reject an approach in its entirety. This clearly happens in
the case of Extreme Programming (XP). Many developers and devel-
opment managers have rejected XP as undisciplined or unrealistic.
(They happen to be wrong, but that’s a different book.) That’s a shame,
because they’re cutting themselves off from two of the most valuable
coding practices to be developed since object orientation was invented:
refactoring and unit testing.

In Refactoring [FBB+99], Martin Fowler collected and documented the
growing practice. He called it “improving the design of existing code
without changing its functionality.” Far from an exercise in futility,

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=316

ADAPTABLE SOFTWARE DESIGN 317

refactoring is key to adaptability. Refactoring acts as a constant pres-
sure to keep the design complexity at the minimum necessary to sup-
port the features of the software. It combats the spread of crystalization
and promotes increasing levels of generalization in the core classes of
the software.

Unit testing is the twin to refactoring. Indeed, many people argue that
without unit tests, there is no such thing as refactoring. Changing
designs without the safety net of the unit tests amounts to just ran-
dom mucking around in the code base and is more likely to produce
new bugs rather than design improvements.

The extreme form of unit testing is test-driven design (TDD). In TDD,
you write the unit test first. It then serves as a functional specification.
You write just enough code to make the test pass and not one line more.
(See also YAGNI—“You Ain’t Gonna Need It!”) Once the test passes, you
are allowed to refactor the code to improve the design, making sure that
the unit tests always pass. The combination of TDD, refactoring, and
YAGNI very naturally lead to a highly adaptable code base.

A second, more subtle effect is produced through consistent unit test-
ing. You should never call an object “reusable” until it has been reused.
When an object is subjected to unit testing, it is immediately used in
two contexts: the production code and the unit test itself. This forces
the object under test to be more reusable. Testing the object means you
will need to supply stubs or mocks in place of real objects. That means
the object must expose its dependencies as properties, thereby making
them available for dependency injection in the production code. When
an object requires extensive configuration in its external context (like
the previously mentioned Customer object), it becomes difficult to unit
test. One common—and unfortunate—response is to stop unit testing
such objects. A better response is to reduce the amount of external con-
text required. In the example of the Customer domain object, extracting
its persistence responsibilities reduces the amount of external context
you have to supply. This makes it easier to unit test and also reduces
the size of Customer’s crystal—thereby making Customer itself more mal-
leable. The cumulative effect of many such small changes is profound.

Agile Databases
The term agile databases is not an oxymoron, but an agile database
never happens accidentally. If there’s an area of IT that resists change
more than database schema definitions, it could only be CICS trans-

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=317

ADAPTABLE SOFTWARE DESIGN 318

actions on mainframes—you know, like the kind that can’t be changed
because the original programmer died in the late 70s.

If behavior is primary, then it is obvious that changing functionality in
the application code requires corresponding changes to the database
schema. Why then are databases so often resistant to change? First of
all, beware that not everyone agrees that behavior is primary! Many
organizations explicitly or tacitly argue that data is more important
than application functionality.3 Other organizations wall the database
architects away from application developers. Each group thinks its
needs trump the other’s. Application developers want schema changes
to adapt to the application’s needs. Database architects view them-
selves as keepers of the data—not only its representation but also its
essential meaning. What’s more, the database itself often has multiple
consumers, each with an embedded knowledge of the schema and its
interpretation.

This is a false dichotomy. Neither behavior nor data can take abso-
lute precedence. Programmers can and will invent their way around
any obstructions, including a rigid schema. They will overload col-
umn definitions, add type indicators, or pack data into XML strings
in CLOBs. They will implement relationships in code that have no ref-
erential integrity checking in the schema or invent coding schemes
based on reference tables that exist only as “enum” types in the code.
Changing behavior with an unchanging schema will result in ever more
convoluted abuses of the schema, eventually resulting in uses that
would make the data architect recoil in horror. This semantic pollu-
tion spreads to other consumers of the data, too, making their use of
the data more complex and error-prone.

So, I have established that database schemas must change. Now, you
need to consider how to make those changes as painless as possible.
The first concern is the application code’s own dependencies on the
schema. Object/relational mapping makes it easy to update the appli-
cation. There are, however, some limitations, particularly regarding ver-
sioning and version control. Starting an application against a database
schema that doesn’t match the ORM metadata produces unpredictable
results. For example, Hibernate can be configured to verify that it’s
mapping files against the database’s metadata at start-up, but this is

3. An early warning sign of these organizations will be data-flow diagrams or giant Zach-
man Framework charts.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=318

ADAPTABLE ENTERPRISE ARCHITECTURE 319

time-consuming and depends on your database vendor’s level of meta-
data support. If not verified at start-up, a schema-metadata mismatch
will cause strange runtime errors that will either cause transaction roll-
backs (with error reports to the users) or, worse, cause corrupted data.

Every schema should include a table that indicates the current struc-
ture revision. This table can be as simple as a single row with one
column—the version number. At a minimum, applications should
check for a compatible version number during start-up. Following the
Fail Fast principle, the application should refuse to start if it can’t use
the database schema. The version number can also be used to trig-
ger automated schema updates, such as Migrations in Ruby on Rails.4

The version number will also be significant later in the zero-downtime
deployment. Because the semantics of the data can change even with-
out a direct change to the schema itself, be sure to bump the version
number for changes in interpretation, too.

18.3 Adaptable Enterprise Architecture

Some architects aspire to create a modern day Colossus: The Forbin
Project (or Tron if you’re of my generation).5 They labor under a vision
of the seamless enterprise, working as a united machine. Every part
is a necessary piece of the whole, perfectly suited to its role. Programs
and programmers dwell inside the machine, serving its needs. I regard
such utopians with deep suspicion.

Such an architecture proceeds from the top down, usually beginning
with a giant framework like Zachman or TOGAF. They regard the archi-
tecture as an entity of its own, with mere systems filling in the cells
of the enterprise architecture matrix. If this group has power, they will
put projects on hold until the enterprise architecture is defined. If they
do not have power, they will gnaw on their own livers as project after
nonconforming project rolls into production without the benefit of their
architecture.

This view rests atop two flawed assumptions. First, this assumes that
the architecture can ever be finished. To state that the enterprise archi-
tecture is “in place” means an end to change. If the enterprise architec-
ture stops changing, the organization will be frozen in time.

4. See ActiveRecord::Migration in RDoc.
5. If neither of these rings a bell, then check out http://www.imdb.com.

http://www.imdb.com
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=319

ADAPTABLE ENTERPRISE ARCHITECTURE 320

The only stasis is in death. Second, the top-down approach assumes
that the organization can hold back time, denying change while the
enterprise architecture is defined. This is costly in real terms and in
opportunity cost.

To some extent, I’m exaggerating to make a point. My intention is not
to create a straw man but to highlight the totalitarian tendency of the
top-down architect. The notion of an enterprise as a cleanly integrated,
well-defined whole implies a mechanistic view of systems. Large com-
plex machines, however, exhibit many undesirable failure modes. They
break often. They might be crippled when one part breaks. Design-
ing and building such architectures requires the kind of command and
control hierarchy that has failed time and time again.

Most damning, these require that changes occur simultaneously across
widely separated groups—another application of Conway’s law. As the
number of these version-locked systems proliferates, the enterprise suf-
fers from an exponential problem: each system is required to change
when any of its counterparts changes (because that is the nature of
tight coupling). In an extreme case, such as an enterprise service bus
(ESB) protocol change, every participating system must upgrade simul-
taneously. Imagine the risks inherent in deploying a new release of
every mission-critical enterprise system at the same time! In fact, the
costs and risks associated with these changes are such that large-scale
protocol changes will never happen. The ESB will either ossify or be
subverted in the same way as the static database schema was at a
smaller scale. Once it becomes sufficiently outdated, the ESB will be
supplanted with some newer technology that claims to tame the cost of
complexity.

Mechanistic metaphors for the enterprise trouble me. Mechanical sys-
tems exhibit exactly those attributes we don’t want our organizations
to share; they are both rigid and fragile. To avoid these attributes, we
can draw inspiration from biological and ecological metaphors instead.
I view an organization as an ecosystem. People and systems occupy
niches in this ecosystem. They exchange resources with the environ-
ment, mainly in terms of information flows. Individual niches in the
ecosystem might have more than one inhabitant. For instance, I’ve seen
companies with no less than seven independent, partially interoperable
implementations of SAP’s ERP systems. Each one had its own geneaol-
ogy, depending on which of the corporate acquisitions it came with.
Each had its own constituents, food sources (systems that fed it data),

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=320

ADAPTABLE ENTERPRISE ARCHITECTURE 321

and symbionts (systems that used its output). As is often the case,
it was terribly inefficient but very robust. Each implementation could
change independently of the others, allowing the individuals to adapt
much more quickly than if they were developed under the “one and only
one” view of the enterprise architects.

Real enterprises are always messier than the enterprise architecture
would ever admit. New technologies never quite fully supplant old ones.
A mishmash of integration technologies will be found, from flat-file
transfer with batch processing to publish/subscribe messaging. Any
strategy formulated predicated on creating a monoculture—whether it
is a single integration technology or a single programming language—is
doomed to be a costly failure. Imagine a company that was successful
in imposing a single-language dictum. The entire company would be
built on Ada, Smalltalk, Pascal, C, or some other old language. (The
time needed for a language to gain enough currency to be selected
ensures that it will be at least ten years old before it is a candidate
for consideration. As an example of this pattern, I submit Java, which
is now considered the “corporate-standard” language in a number of
large IT shops.) Again, this artificial rigidity ensures that IT will not be
serving its organization’s needs.

Ask, “Does this
architecture make IT
respond better to users’
needs?”

In fact, the most useful criterion for evaluat-
ing architectures is this: “Does it make IT bet-
ter at responding to its users’ needs?” Most
enterprise architectures are not constructed
with this goal in mind. Rather, they are con-
structed with the needs of the IT group in
mind. (“What’s good for IT is good for the company.”) With that end
in mind, it’s possible to let the enterprise architecture emerge from the
patterns of interactions among the individual systems. I’m not suggest-
ing total anarchy; that would not make IT better at responding to its
users’ needs either. Rather, there is a mix of forces in tension: bud-
get pressure, schedule pressure, desire for features, direct and indirect
costs of those features, technological mastery, and losses due to fric-
tion. Successful enterprise architecture requires a dynamic resolution
of these forces—patterns of interactions that promote healthy organi-
zations.

Dependencies Within a System
Systems should exhibit loose clustering. In a loose cluster, the loss of
an individual is no more significant to the larger entity than the loss of

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=321

ADAPTABLE ENTERPRISE ARCHITECTURE 322

Cluster 1

App A
App AApp

Instances

Cluster 2

App A
App AApp

Instancesport

Figure 18.1: Dependencies on Services, Not Individual Instances

a single tree in a forest. For example, losing one Apache instance out
of a dozen has little impact on the overall service.6 Likewise, losing a
single application server instance should not matter to the health of the
application or service being delivered.

This implies that individual servers do not have differentiated roles or at
least that any differentiated roles are present in more than one service.
WebLogic and WebSphere both violate this principle. They require the
existence of unique nodes that manage clusters. Loss of these nodes is
damaging to the overall service.

The members of a loose cluster can be brought up or down indepen-
dently of each other. There should be no time-ordering requirements
for the activation of the members of the cluster.

The members of one cluster or tier should have no specific
dependencies—or knowledge of—the individual members of another
tier. The dependencies should be on a virtual IP address or service
name that represents the cluster as a whole. Direct member-to-member
dependencies create hard linkages that prevent the endpoints from
changing independently. Figure 18.1, illustrates this notion. The calling
application instances refer only to the service name provided by Cluster
2. The exact hosts and applications that supply this service should be
unknown to the members of Cluster 1.

6. Assuming adequate capacity exists (see Chapter 8, Introducing Capacity, on
page 161).

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=322

ADAPTABLE ENTERPRISE ARCHITECTURE 323

The members of a cluster should never need to know the identi-
ties of every other member in the cluster. This sets up an O(N∧2)
change requirement that makes it harder to add or remove members
of the cluster. It also encourages one-to-many communication patterns,
which are capacity killers. Broadcast notifications, such as cache inval-
idation messages, should go through a publish/subscribe topic or com-
mand queue.

Dependencies Between Systems: Protocols
Just as you saw with coupling between clusters of objects, coupling
between systems in the enterprise can cause the same kind of calcifi-
cation. Tight coupling among systems increases the barrier to change
on each side of the interface. Once again, good architecture embraces
the need for change as fundamental—an engine to drive improvement,
rather than a beast to be controlled.

Any interface is defined by a protocol. It might be low-level, tossing
packets at sockets; high-level, such as CORBA, DCOM, or RMI; or in
between, such as XML over HTTPS. No matter the protocol, both ends
of the interface must both speak and understand the same language.
Sooner or later, the language will inevitably need to change. When that
happens, one of two situations will result. In Figure 18.2, on the fol-
lowing page, both systems change at the same time. This requires
downtime for both systems, since deployments are not instantaneous.
If each system integrates with only the other, this might be accept-
able (although it will make the zero-downtime deployment impossible).
Once these systems develop the usual spiderweb of integrations with
other systems, the change calendar starts to become untenable. Just
the downtime required to support all the deployments becomes unten-
able.

Worse yet, each protocol revision requires enough lead time to get
through a development cycle and a test cycle. Suppose that system
Alpha from Figure 18.2, on the next page, has a fast development team,
using agile methods, on a two-week iteration. They will be able to adapt
to the new protocol in about two weeks. But, if the development team
behind Gamma takes anything more than two weeks, either because
they have a longer iteration or because the current iteration is full, then
Alpha must slow down to match Gamma’s pace, and Gamma could be
on a quarterly release cycle! Again, extrapolating to the other systems
that Alpha integrates with shows that the fast, two-week development

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=323

ADAPTABLE ENTERPRISE ARCHITECTURE 324

Caller 1

Protocol N
in use

"Big Bang" Upgrade

Protocol N + 1
in use

Caller 2Provider A

Upgrade ProviderUpgrade Caller 1

Upgrade Caller 2

t

Figure 18.2: Simultaneous Change at Both Endpoints

cycle will get throttled back to match the slowest development cycle in
the enterprise.7

Clearly, there is value in avoiding this coupling. It has undesirable
effects on the time to market, deployment cost, and system availability.
We must design protocols so that either endpoint can change indepen-
dently of the other. The solution lies in protocol versioning. Figure 18.3,
on the following page, shows how Alpha and Gamma can change at
different times. Clearly, there is a time during which Alpha is willing to
speak and understand either version 1 or 2, but Gamma can speak and
understand only version 1. Both systems have to agree on a compatible
protocol version in order to work together. Good use of test harnesses
(see Pattern 5.7, Test Harness, on page 136) is helpful when ensur-
ing that a system can handle all combinations of protocol versions it
supports. The definition of a protocol version varies depending on the
implementation technology. For low-level socket protocols—the kind
that send a bag of bytes—the version should be part of early handshak-
ing. Note that changes to the way the protocol version is sent will be
next to impossible, so keep this part simple enough that it will not need

7. In The Goal [Gol04], Eli Goldratt describes this phenomenon when his character Alex
watches a Boy Scout troop on a hike. No matter how the scouts are ordered, the fastest
hiker ultimately gets throttled back to the speed of the slowest.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=324

ADAPTABLE ENTERPRISE ARCHITECTURE 325

Caller 1

Protocol N
in use

Upgrade Provider
Both protocols
N and N + 1
in use

Caller 2Provider A

Upgrade Caller 1

Protocol N + 1
in use

Upgrade Caller 2

t

Figure 18.3: Independent Change at Each Endpoint

to change. For remote object protocols, a system might expose multiple
interface definitions simultaneously, bound to different names. XML-
based protocols have an easy way to send and receive the protocol ver-
sion and can be more challenging to implement internally, especially if
using XML-to-object mapping tools.8

The same problem also holds for file format versions, though handshak-
ing is not an option in that case. A system should be prepared to accept
and generate old formats as needed. It should automatically detect the
appropriate format on input. When the newer formats embody different
semantics, there can be more than just a mapping problem here; defin-
ing format changes requires defining how to interpret older versions.

The duration of the overlap in Figure 18.3 can be on the order of min-
utes or hours if it occurs only during the deployment of one of the
systems. On the other hand, if Gamma’s developers are on a quarterly
(or worse) release cycle, it could be a long time.

8. For example, JAXB generates XML schemas from objects, or vice versa. Keeping two
sets of classes with the same names and different binding structures is really difficult.
This is one reason I do not favor these tools.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=325

ADAPTABLE ENTERPRISE ARCHITECTURE 326

Dependencies Between Systems: Databases
Integration databases—don’t do it! Seriously! Not even with views. Not
even with stored procedures. Take it up a level, and wrap a web ser-
vice around the database. Then make the web service redundant and
accessed through a virtual IP. Build a test harness to verify what hap-
pens when the web service is down. That’s an enterprise integration
technology. Reaching into another system’s database is just...icky.

Nothing hobbles a system’s ability to adapt quite like having other sys-
tems poking into its guts. Database “integrations” are pure evil. They
violate encapsulation and information hiding by exposing the most inti-
mate details about a system’s inner workings. They encourage inappro-
priate coupling at both the structural and semantic levels.

Even worse, the system that hangs its database out for the world cannot
trust the data in the database at all. Rows can be added or modified by
other entities even while the owner has objects in memory mapped from
those rows. Vital application logic can be bypassed, resulting in illegal
or unreachable states.9

A database with multiple systems accessing it becomes a nexus of
rigidity. Every one of those systems must be upgraded simultaneously
whenever the underlying schema changes. (Once again, the most likely
outcome is that the schema just never changes.)

Still, sometimes other systems really do need access to large volumes of
data from others. Maybe it’s for reporting or business intelligence tools,
or maybe it’s for distribution to channel partners or financial analysis.
In these cases, we can find a number of alternatives that do not incur
the evil of reaching into the guts of another system.

Outside of the trading floor, most purposes do not require immediate,
up-to-the-second access to production data. If a need is expressed or
perceived for that kind of immediacy, examine the latency inherent in
the analysis and decision-making process. (See Section 17.8, Support-
ing Processes, on page 305.)

Odds are, the data will be hours stale (at least) by the time any action
can be taken on it anyway. In that case, how important is it to get the

9. The true database bigot will now pipe up that the database itself should be the reposi-
tory of all business logic. I’ve heard that before. In principle, it seems plausible. Databases
have Turing-complete languages available. In practice, it’s the wrong logic in the wrong
place with the wrong tools and processes for change.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=326

RELEASES SHOULDN’T HURT 327

production data? A snapshot from the previous hour would be just as
timely. (If that feedback process takes only a few seconds to go around
the loop, then you have a different story.)

Transporting large volumes of data out of production is sometimes nec-
essary. In these cases, look toward extract-transform-load (ETL) tools
to handle the physical and semantic mapping. Once the transforms
are defined, they can be tuned and put under a quota to avoid risk-
ing production capacity. The ID that runs the extracts can be set to
allow “select” but not “insert,” “delete,” or “update.” Oracle’s “material-
ized views” also serve well when transporting large volumes. Depending
on your storage architecture, you might also be able to play games with
so-called business continuance volumes (BCVs) to move data from one
SAN to another.

18.4 Releases Shouldn’t Hurt

One of my favorite retailers has a release process that rivals a NASA
launch sequence. It starts in the afternoon and runs until the wee
hours of the morning. In the early days, more than twenty people
had active roles to play during the release. These days, that is down
to less than a dozen. As you might imagine, any process involving
that many people requires detailed planning and coordination. Because
each release is arduous, they don’t do many of them a year. Because
there are so few releases, each one tends to be unique. That uniqueness
requires additional planning with each release, making the release a bit
more painful—further discouraging more frequent releases.

Releases should about as big an event as getting a haircut (or compiling
a new kernel, for you gray-ponytailed UNIX hackers). The literature on
agile methods, lean development, and incremental funding all make a
powerful case for frequent releases in terms of user delight and busi-
ness value.10 With respect to production operations, however, there’s
an added benefit of frequent releases. It forces you to get really good at
doing releases and deployments.

As discussed in Chapter 17, Transparency, on page 265, a closed feed-
back loop is essential to improvement. The faster that feedback loop

10. If Agile Software Development [Coc01], Lean Software Development [PP03], Software
by Numbers [DCH03], and Extreme Programming Explained [Bec00] don’t convince you,
nothing will.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=327

RELEASES SHOULDN’T HURT 328

operates, the more accurate those improvements will be. This demands
frequent releases. Frequent releases with incremental functionality also
allows your company to outpace its competitors and set the agenda in
the marketplace.

As commonly practiced, releases cost too much and introduce too much
risk. The kind of manual effort and coordination I described previously
is barely sustainable for three or four releases a year. It could never
work for twenty a year. One solution—the easy but harmful one—is to
slow down the release calendar. Like going to the dentist less frequently
because it hurts, this response to the problem can only exacerbate the
issue. The right response is to reduce the effort needed, remove peo-
ple from the process, and make the whole thing more automated and
standardized.

Deployments Cost Too Much
Except for product companies, the cost of releasing software is almost
never accounted for in budgeting. Planning, analysis, development, and
testing all get recognized, but the release itself often has substantial
direct and indirect costs.

The direct costs come primarily from the labor used during the run-up
to the release. Aside from testing, there are tasks in four areas.

Configuration management
Creating the release branch, labeling the code base, creating the
release build

Documentation
Release notes and new or updated training materials

Marketing communications
Updated marketing materials and announcements inside and out-
side the company

Deployment
Planning, executing, and verifying the deployment

Support
Emergency bug fixes, updates to monitoring, updates to the run
book

The largest indirect cost of releases comes from downtime during the
release. It is a rare system that operates only during “business hours.”

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=328

RELEASES SHOULDN’T HURT 329

The View from Operations

One of my favorite operations managers often reminds peo-
ple to “assume positive intent”—that is, when conflict arises
between people or groups, assume that all parties are moti-
vated by the same desire to do good by the company. During
the worst “us” vs. “them” conflicts, it can seem that so-and-so is
“just out to screw us,” but that’s seldom the case. Conflict usu-
ally arises from different imperatives operating on the different
groups.

Assuming positive intent is essential when discussing the fre-
quency of releases. Business sponsors and development groups
view new releases as the generator of positive change. When
development looks at a release, they see requirements fulfilled,
bugs fixed, and architecture improved. When the sponsors look
at a new release, they see features to generate revenue, retain
customers, and match or exceed their competitors. For them,
change brings improvement.

When the operations department looks at a new release, they
see the potential for new failure modes, the need for new pro-
cedures, and new monitoring. They see that old monitoring
might not apply anymore. They see that the new release proba-
bly needs more of the “core four” resources: CPU, memory, stor-
age, and bandwidth. Above all, they see risk. There’s risk in the
deployment itself, risk in the new release, and risk just because
the release is an unknown quantity compared to the existing
code base.

Business sponsors, development teams, and operations man-
agers: they are all correct. A new release is all of these things to
each of these people.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=329

RELEASES SHOULDN’T HURT 330

Or, looking at it from a different perspective, “business hours” have
expanded to cover the entire clock. The days of nightly “system mainte-
nance time” are long gone.

Operations probably computes availability based on unplanned down-
time, so 99.5% availability means only that the system had less than
216 minutes of surprises that month. This is a dodge. The system might
have been down for five hours during change windows. Do the users
of the system care whether downtime is planned or unplanned? No!
To a user, down is down. If I can’t get my work done, the system is
down! Always keep in mind that the users generally don’t know the
development or operations calendars. Users care only about their own
calendars.

Timing Releases
Why do we place so much emphasis on release dates? For shrink-
wrap product vendors such as Microsoft or Adobe, release dates mat-
ter. They are announced a year in advance, with giant product launch
events, media attention, and massive planning and preparation from
customers and the sales channel. Nobody is lining up at midnight to
get their hands on the latest version of software from the other 99.9%
of us.

For the most part, our customers don’t even know the scheduled
release dates. For web-based software, it just changes one day, with-
out much ado on the customer’s part. If the release is a day or a week
late, the customer never knows or cares. The customer cares that the
system is available and that it works without too many bugs.

Don’t risk customers for
an arbitrary release
date.

Yet, I’ve seen organizations try to rush releases
into production before they’re ready. In one
case, I was in a “go/no-go” meeting at 4 p.m.
on the day of release. QA told us the release
hadn’t passed testing yet, but they would

know more in an hour. Despite that, the table gave the release a
thumbs-up! I objected, pointing out that the release couldn’t be ready
if it hadn’t passed QA. Why jeopardize customers just to hit a release
date that was chosen arbitrarily from a distance of several months?
The answer is obvious, and it has nothing to do with what’s best for the
customer!

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=330

RELEASES SHOULDN’T HURT 331

Zero Downtime Deployments
With high-availability servers and high-availability architectures, we no
longer accept downtime for hardware maintenance, so why do we tol-
erate it for software changes?

Somehow, though, almost every code release requires downtime during
the release. Whether that’s an hour or a day, calling it “planned down-
time” doesn’t remove the cost. If your company’s cost of downtime is
$10,000 an hour, then a four-hour deployment costs $40,000 whether
it’s on the operations calendar or not.

Why do application releases seem to require downtime? Ironically, it’s
exactly because of the same architecture feature that is supposed to
increase uptime: redundancy. The fact that multiple servers handle
incoming requests means that during the deployment itself there will
always be some servers on the new version of the code and some on
the old version. During that period of overlap, version N and N+1 are
both present. If the software is totally self-contained, then the presence
of two versions doesn’t pose a problem. Of course, enterprise applica-
tions are rarely self-contained. They use databases, web services, and
search engines. For websites, they generate URLs that refer to style
sheets, JavaScript files, and media files. All these external references
leave plenty of opportunities for version conflict. The easiest approach
is to just take downtime for the deployment.

It’s possible, however, to execute a deployment over an extended period
of time—days or even weeks—that avoids these version conflicts and
allows two versions of the software to coexist. Structuring a zero-
downtime deployment requires collaboration between development and
operations, which is why it so seldom happens. Nevertheless, with a
small bit of up-front architecture, you can eliminate deployment down-
time.

The key is to break up the deployment into phases. Instead of adding,
changing, and removing stuff—such as database columns and tables,
constraints, services—all at once, add the new items early, with ways
to ensure forward compatibility for the old version of the code. Later,
after the release is rolled out, remove stuff that is no longer referenced,
and add any new constraints that would have broken the old version.
The next sections describe these phases in detail.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=331

RELEASES SHOULDN’T HURT 332

Expansion

The first step is to add new “stuff.” The stuff consists of URL-based
assets, web service endpoints, database tables and columns, and so
on. All the stuff can be added without breaking the old version of the
software, under certain conditions.

URL-based resources, such as style sheets, images, animations, or
JavaScript files, should be given a new URL for each new revision. If
the application generates web pages that refer to /static/styles.css, then
any changes to styles.css is likely to cause a version conflict. On the
other hand, if the application refers to /static/1.1/styles.css instead, then
it’s trivial to deploy /static/1.2/styles.css without conflicts.

For web services, each revision of the interface should be given a new
endpoint name. Similarly, for remote object interfaces, defining a new
interface name (for example, with a numeral after the interface name)
for each version ensures that the old version of the software gets the
interface it wants while the new version gets the interface it wants. A
single implementation class can accommodate multiple interface def-
initions, as long as the changes are just adding or removing exposed
methods. Changing the semantics of existing methods requires a differ-
ent class definition, usually via an adapter or an extracted superclass.

For socket-based protocols, the protocol itself should contain a version
identifier. This definitely requires that the receiving applications must
be updated before the senders. It also implies that the receiving appli-
cation must support multiple versions of the protocol. If there are other
callers of the receiving application, then this helps loosen the coupling
with those systems, too. Deploying a new version of code to the servers
that receive these calls can be done as its own “recursive zero-downtime
deployment.”

If it’s simply impractical to support multiple protocol revisions, another
option is to define multiple service pools in the load balancer on differ-
ent ports. Then the old version of the calling application will hit the port
number that maps to the original version of the receiving application,
while the new version of the calling application will hit the new port
number that maps to the new version of the receiving application.

By far, the most conflicts—and the most troublesome conflicts—will
arise in the database. Schema changes are rarely forward compati-
ble, and they’re never by accident. Still, it is possible to break schema
changes into phases. In the “expansion” phase, tables and columns

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=332

RELEASES SHOULDN’T HURT 333

get added. Any columns that will eventually be NOT NULL are added
as nullable, because the old version doesn’t know how to fill these in.
Later, in the cleanup phase, constraints will be added. This goes for
referential integrity rules, too. They cannot be added during expansion
because the old version would immediately violate the relationships.

So, even if the old version of the application doesn’t break because
of the new tables and columns, it doesn’t do anything useful with
them either. The new version probably expects some meaningful data
in these. It might even include a migration script to populate the new
tables and columns with data from the old ones. The application prob-
ably just uses INSERT to create rows in the database.11 You can use
a trick to pass this data through to the new tables and columns: trig-
gers. Assuming that the new structure can be filled in from the existing
data—and there’s an example of how to do that in the forward migration
script—then a trigger can do the same thing, one row at a time. Thus,
the old version of the application will create data that the new applica-
tion can also use. After all, the new version will be creating data, too. It
will use the new structure; so, if nothing is done, the old version would
view data from the new version as corrupt or incomplete. Triggers can
bridge this direction, too, by filling in the old structure based on the
new data.

Of course, in order to prepare for this, any SQL INSERT or UPDATE
statements must be explicit about columns and values. SELECT * is
also unlikely to be helpful. Once again, ORM tools come to the rescue.
They mechanically generate SQL statements that include the specific
columns to select, insert, or update. Any ancillary queries—such as
business intelligence or reporting—should also be specific about the
columns of interest. This is not difficult to do if you do it consistently
from the beginning. Trying to replace every SELECT * to get a release
out the door will not be met well.

Rollout

With the preparations from the “expansion” phase in place, the actual
rollout of the new software on the application servers should be trivial.
This could take a few hours to a few days, depending on how cautiously
you want to approach it. For example, this might include letting a cou-

11. If the application uses stored procedures to add entries to the database, then the
stored procedures should be updated at this point to fill in data when invoked by the old
version of the application.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=333

SUMMARY 334

ple of servers “bake” on the new code base for a day or more. (While both
versions are in use, it might be helpful to create two service pools in the
load balancers in order to keep request or session failover confined to
the group of servers on the same version as the original session.)

If downtime were required for the deployment, then there would be a
great deal of pressure to get this phase done in the minimum time
possible. With that pressure removed, there is enough time for an
orderly shutdown. This should follow good practices for clean shut-
down and start-up, thereby avoiding the user frustration that accom-
panies abrupt shutdown.12 (See Section 14.3, Start-up and Shutdown,
on page 247.)

Cleanup

After the new release has baked long enough to be accepted, it is time to
clean up. This includes removing the bridging triggers and extra service
pools. Any columns or tables that are no longer being used can be
removed. Old versions of static files can be removed, too.

At this point, all the application servers are running on the new version
of the code. This is the time to convert columns to NOT NULL that need
it, as well as to add referential integrity relations (though constraints
enforced in the database can cause large problems for the ORM layer).
This is also the time to drop any columns and tables that are no longer
needed.

18.5 Summary

Change is the defining characteristic of software. That change—that
adaptation—begins with release. Release is the beginning of the soft-
ware’s true life; everything before that release is gestation. Either sys-
tems grow over time—adapting to their changing environment—or they
decay until their costs outweigh their benefits and then die.

12. Lost session state, mainly. I’ve never seen session failover work perfectly.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=334

SUMMARY 335

Figure 18.4: Zero-Downtime Deployment: Detailed Timeline

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=335

Appendix A

Bibliography

[Bec00] Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, MA, 2000.

[BF01] Kent Beck and Martin Fowler. Planning Extreme Program-
ming. Addison-Wesley, Reading, MA, 2001.

[Chi01] James R. Chiles. Inviting Disaster: Lessons From the Edge of
Technology. Harper Business, New York, NY, 2001.

[Cla04] Mike Clark. Pragmatic Project Automation. How to Build,
Deploy, and Monitor Java Applications. The Pragmatic Pro-
grammers, LLC, Raleigh, NC, and Dallas, TX, 2004.

[Coc01] Alistair Cockburn. Agile Software Development. Addison
Wesley Longman, Reading, MA, 2001.

[DCH03] Mark Denne and Jane Cleland-Huang. Software by Num-
bers: Low-Risk, High-Return Development. Prentice Hall,
Englewood Cliffs, NJ, 2003.

[DeM95] Tom DeMarco. Why Does Software Cost So Much? Dorset
House, New York, NY, 1995.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wesley Longman, Reading, MA, 1999.

[Fow96] Martin Fowler. Analysis Patterns: Reusable Object Models.
Addison Wesley Longman, Reading, MA, 1996.

APPENDIX A. BIBLIOGRAPHY 337

[Fow03] Martin Fowler. Patterns of Enterprise Application Architec-
ture. Addison Wesley Longman, Reading, MA, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Gol04] Eliyahu Goldratt. The Goal, 3rd ed. North River Press, Great
Barrington, MA, 2004.

[JG06] Dion Almaer Justin Gehtland, Ben Galbraith. Pragmatic
Ajax: A Web 2.0 Primer. The Pragmatic Programmers, LLC,
Raleigh, NC, and Dallas, TX, 2006.

[Koz05] Charles Kozierok. The TCP/IP Guide: A Comprehensive, Illus-
trated Internet Protocols Reference. No Starch Press, San
Francisco, CA, 2005.

[LC99] Domenico Lepore and Oded Cohen. Deming and Goldratt:
The Theory of Constraints and the System of Profound Knowl-
edge. North River Press, Great Barrington, MA, 1999.

[Lea00] Doug Lea. Concurrent Programming in Java, Second Edition:
Design Principles and Patterns. Addison-Wesley, Reading,
MA, 2000.

[LW93] Barbara Liskov and Jeannette Wing. Family values:
A behavioral notion of subtyping. Technical Report
MIT/LCS/TR-562b, 1993.

[Moo91] Geoffrey A. Moore. Crossing the Chasm. Harper Business,
New York, NY, 1991.

[MP06] Mary and Tom Poppendieck. Implementing Lean Software
Development: From Concept to Cash. Addison-Wesley, Read-
ing, MA, 2006.

[Nor88] Donald A. Norman. The Design of Everyday Things. Double-
day/Currency, New York, NY, 1988.

[Pet92] Henry Petroski. The Evolution of Useful Things. Alfred A.
Knopf, Inc, New York, NY, 1992.

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software
Development: An Agile Toolkit for Software Development Man-
agers. Addison-Wesley, Reading, MA, 2003.

http://books.pragprog.com/titles/mnee/errata/add?pdf_page=337

APPENDIX A. BIBLIOGRAPHY 338

[Ric04] Chet Richards. Certain To Win. Xlibris Corporation,
Philadelphia, PA, 2004.

[Sen90] Peter Senge. The Fifth Discipline: The Art and Practice of the
Learning Organization. Currency/Doubleday, New York, NY,
1990.

[She97] Michael Shermer. Why People Believe Weird Things. W.H.
Freeman and Company, New York, NY, 1997.

[Ste93] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Proto-
cols. Addison-Wesley, Reading, MA, 1993.

[VCK96] John M. Vlissides, James O. Coplien, and Norman L. Kerth.
Pattern Languages of Program Design 2. Addison-Wesley,
Reading, MA, 1996.

[WID+98] Craig Wisneski, Hiroshi Ishii, Andrew Dahley, Matt Gorbet,
Scott Brave, Brygg Ullmer, and Paul Yarin. Ambient dis-
plays: Turning architectural space into an interface between
people and digital information. Lecture Notes in Computer
Science, 1370:22, 1998.
http://citeseer.ist.psu.edu/wisneski98ambient.html.

http://citeseer.ist.psu.edu/wisneski98ambient.html
http://books.pragprog.com/titles/mnee/errata/add?pdf_page=338

Index
A
Adaptation, 310–312

and software design, 312–319
agile databases, 318–319
dependency injection, 312
object design, 314–315
XP coding practices, 316–317

enterprise architecture
databases, 326–327
overview, 319–321
protocols, 324f, 325f, 323–325
system dependencies, 322f,
322–323

overview, 310–312
releases, 327–334, 335f

Administration, 240–248
application separation, 242
command line vs. GUIs, 248
configuration files, 243–246
interfaces for, 248, 297
overview, 240–241
QA vs. production, 241–243
start-up and shutdown, 247
zero, one, many, 242

Adolph, Steve, 307n
AdventNet, 298
Agentless system monitoring, 285
Agents, 284
Agile databases, 318–319
Agile Software Development

(Cockburn), 327
Airline case study, see Core Facilities

case study
AJAX Overkill, 182–184

interaction design, 183
and JSON, 184
request timing, 183
response formatting, 183
session thrashing, 183

Akamai, 235
Ambient awareness, 288
Ambient Displays: Turning Architectural

Space into an Interface between
People and Digital Information
(Wisneski et al), 288

Antipatterns
AJAX Overkill, 182–184
Attacks of Self-Denial, 88–90
Blocked Threads, 81–87
Cascading Failures, 66f, 65–67
Chain Reactions, 62f, 64f, 61–64
Cookie Monsters, 201–203
Database Eutrophication, 196–198
defined, 45
Excessive JSP Fragments, 180
Handcrafted SQL, 193–195
Integration Point Latency, 199
Integration Points, 60
interaction with patterns, 43f
Overstaying Sessions, 185–186
overview, 42–45
Reload button, 191
Resource Pool Contention, 177f,

178f, 176–179
Scaling Effects, 91f, 92f, 93f, 91–95
Slow Responses, 100–101
Unbalanced Capacities, 97f, 96–99
users, 68–80
Wasted Space in HTML, 187–190

Apache
and DNS round-robin, 234
load-balancing module, 236
privilege separation, 227
reverse proxy servers, 235

Application crashes, 44
Applications

connection pool, 247
CPU time, 168

ARCHITECTURE 340 CAPACITY

data vs. function, 318
passwords, 227–228
principle of least privilege, 226–227
separation, 242
start-up and shutdown, 247
see also Releases

Architecture
“ivory tower” vs. pragmatic, 18–19
of Core Facilities plan, 22, 23f
for enterprise systems, 65, 319–327
of project Frammitz, 103f
service-oriented, 65
session, 184
shared nothing, 94

ARIN, 77, 156
Assuming positive intent, 329
Asynchronous JavaScript plus XML,

see AJAX Overkill
ATG site, 257
Attacks of Self-Denial, 88–90

and unbalanced capacity, 98
Availability, 229–239

clustering, 238–239
documenting requirements, 230–232
gathering requirements, 229–230
load balancing, 233f, 234f, 237f,

232–237
overview, 229
zero downtime deployments,

331–334, 335f

B
Bandwidth costs, 171–173
Beck, Kent, 268
Berners-Lee, Tim, 201
Black-box technology, 255, 276, 283
Blocked Threads, 81–87

and Chain Reactions, 62
and Decoupling Middleware, 143
error conditions, 82
and internal monitors, 82
Liskov Substitution principle, 84
locating block in code, 83
overview, 81
and Resource Pool Contention, 179
synchronizing methods, 83
third-party libraries, 86, 87

Bonding interfaces, 220
Bots, 153, 159
Boyd, John, 305, 306
Brochureware, 210

Budgeting, see Costs
Bugs

debug logs, 278
and longevity tests, 37, 38
timing and Chain Reactions, 64
see also Core Facilities case study

Bulkheads, 119–123
background, 119
vs. capacity, 121
and Chain Reactions, 64
hidden linkages, 120f
partitioned system, 120f
vs. performance, 123

Business continuance volumes (BCVs),
327

C
Caching, 129, 130, 208–209, 212
Calendars, 252
Capacity

antipatterns, 175–203
AJAX Overkill, 182–184
Cookie Monsters, 201–203
database eutrophication, 196–198
Excessive JSP Fragments, 180
Handcrafted SQL, 193–195
Integration Point Latency, 199
Overstaying Sessions, 185–186
Reload button, 191
Resource Pool Contention, 177f,
178f, 176–179
Wasted Space in HTML, 187–190

bandwidth costs, 171–173
vs. Bulkheads, 121
case study, 147–160
constraints, 163–164
CPU costs, 169f, 167–169, 170f
defining, 161–162
interrelations, 165
myths about, 166
NAS vs. SAN, 172
optimization patterns, 204–217

caching, 208–209
garbage collector tuning, 215f,
214–217
overview, 204–205, 217
pool connections, 206–207
precomputing content, 210–213

overview, 161, 174
and performance, 161
scalability, 166f, 165–166, 167f

CAPACITY IMPROVEMENTS 341 COSTS

and scalability, 162
storage costs, 169–172
and throughput, 162
unbalanced, 97f, 96–99

Capacity improvements, 214
Cascading Failures, 65–67

and Circuit Breaker, 117
commerce system layers, 66f
and Decoupling Middleware, 143
and Fail Fast, 133
and Handshaking, 135
and Integration Points, 65
interrelations and, 165
and middleware, 142
and resource pool, 66
and Slow Responses, 100, 101

Cascading style sheets and formatting,
189

Case studies
airline, 21–34
online store, 252–263
retail online store, 147–160

Cash flow, 311
Certain to Win (Richards), 305
CF case study, see Core Facilities case

study
cfengine, 245
Chain of failure, 41–42
Chain Reactions, 61–64

and Blocked Threads, 62
and Bulkheads, 123
causes of, 62
effects of, 62
eight-way cluster, former, 64f
eight-way horizontal farm, 62f
scalability, 61

Checkout costs, 152
Chiles, James R., 37
Circuit Breaker, 115–118

and Cascading Failures, 67
execution of, 115
and failure types, 117
metrics, 271
principle of, 115
state transitions, 116f
and Timeouts, 114
and Unbalanced Capacities, 98

Cleanup, 334, 335f
Clients

and DNS round-robin, 233
responding to, 28

and Timeouts, 113
and virtual IP addresses, 224

Cluster servers, 223
Clustering, 238–239
Cohesion, 314, 315
Collaborations, 316
Color coding, transparency, 273f
Commercial monitoring systems, 286
Common Information Model (CIM),

292–293
Communication, 90, 150
Competitive intelligence companies, 74
Concurrent Programming in Java (Lea),

81n
Concurrent users, 153
Configuration, 277
Configuration files, 243–246

basic wiring of, 244
installation directory, 244
naming conventions, 243, 246
and version control, 245

Configured passwords, 227–228
Connection pool, 206–207, 247, 262
Constraints, 163–164
Content, precomputing, 210–213

vs. caching, 213
costs of, 212
example, 211
vs. personalization, 212

Conversion rates, 72, 73
Conway’s law, 150
Conway, Melvin, 150
Cookie Monsters, 201–203
Cookies and session tracking, 75
Core Facilities case study, 21–34

consequences, 27
deployment architecture, 23f
the error, 31–34
outage of, 22–25, 26f
overview, 21–22, 34
post-mortem investigation, 27–31
preventing, 39–41

Costs
of adaptation, 311
of bandwidth, 171–173
checkout, 152
of CPU capacity, 169f, 167–169, 170f
of downtime, 229–230
image and reputation, 36
and middleware decisions, 142, 143

COUPLING 342 ENTERPRISE APPLICATION INTEGRATION

of poorly performing code, 149, 160,
204

and releases, 328–330
and software design, 17
spacer images, 189
and stability, 35, 36
of storage, 169–172
of whitespace, 188

Coupling
and adaptation, 314–315
and Bulkheads, 119
clusters of objects, 322f, 322–323
and dependency injection, 312
and log files, 277
and middleware, 141, 142f, 142
between systems, 324f, 325f,

323–325
transparency, 275

CPU binding, 122
CPU costs, 169f, 167–169, 170f
Crashes, 44
Crossing the Chasm (Moore), 286
Crystalization, 315, 317

D
Dashboard, 273f, 272–273
Data growth, 38, 194, 197
Data purging, 124–126
Data, historical, 197
Database eutrophication, 196–198
Database failover, see Core Facilities

case study
Databases

agile, 318–319
connection pools, 270
dependencies, 326–327
indexing, 197
operations, 299f, 300f, 301f, 303f,

299–304
relational, 193
revisions and releases, 333

Debug logs, 278
Decoupling Middleware, 141–143

costs, 142, 143
coupling, 142f
dual purpose of, 141

Deming and Goldratt: The Theory of
Constraints and the System of
Profound Knowledge (Lepore and
Cohen), 305

Denial-of-service attacks, 106

Dependencies
between systems (databases),

326–327
between systems (protocols), 324f,

325f, 323–325
many-to-one-relationship, 93f
and SLAs, 105
within a system, 322f, 322–323

Dependency injection, 312
Design

of adaptable software, 312–319
and HTML tables, 189
interaction, 183
for manufacturability, 15
for monitoring systems, 289
object-oriented, 314–315
partitioning, 197
patterns in, 316
for transparency, 275
and XP coding, 316–317

Design issues
administration, 240–248
availability, 229–239
networking, 219–225
overview of, 249–250
security, 226–228

The Design of Everyday Things
(Norman), 44, 201

Design Patterns: Elements of Reusable
Object-Oriented Software (Gamma,
et al), 316

Developers vs. administrators, 240
Diagnostic tests, 259
Distributed denial-of-service (DDoS)

attacks, 73, 78
Distributed management task force

(DMTF), 292
DNS round-robin, 232–234
Double-checked lock, 84n
Downtime, 229–230, 243, 330
Driving variables, 163
Droplets, 211
Dynamo Request Protocol (DRP), 257

E
Eclipse, 279
Eden space, 214
Eight-Way Horizontal Farm, 62f
Enterprise application integration, see

Middleware, decoupling

ENTERPRISE APPLICATION MANAGEMENT 343 INTEGRATION POINTS

Enterprise application management,
287

Enterprise architecture
adaptability, overview, 319–321
dependencies between systems,

324f, 325f, 323–327
dependencies within a system, 322f,

322–323
vs. websites, 149

Enterprise service bus (ESB), 320
The Evolution of Useful Things

(Petroski), 311
Exceptions, 69

in airline case study, 32
Excessive JSP Fragments, 180
Expansion, 335f
Expectation, 303
Extract-transform-load (ETL) tools, 327
Extreme Programming Explained (Beck),

327

F
Fail Fast, 101, 114, 131–133
Failovers

and hardware load balancing, 236
and cluster servers, 224

Failure
and Bulkheads, 121
chain of, 41–42
and decoupling, 143
and mock objects, 138
opportunities for, 103, 144
partitioning with Bulkheads, 119
resource unavailable, 131
of socket connections, 137
system vs. application, 132
and Unbalanced Capacities, 97

Failure modes, 37–39
False positives, 261, 304
Family Values: A Behavioral Notion of

Subtyping (Liskov and Wing), 84
Feature, 301, 302
Feedback process, 305
Feedback, O-O-D-A, 306
Fibre Channel (FC) networks, 172
The Fifth Discipline (Senge), 163
Finances, see Costs and Revenue
Firewalls, 149, 243
Forklift upgrade, 166
Fowler, Martin, 268, 312, 313, 317
Fragments and connection pools, 207

G
Garbage collection, 215f, 214–217, 270

and errors, 107
example of, 211

GC, see Garbage collection
The Goal (Goldratt), 163n, 324
Goal donors, 16
Gold owners, 16
GUIs, 248, 255

H
Handcrafted SQL, 193–195
Handshaking, 134–135

and health checks, 135
and HTTP, 134
and TCP, 134
and Unbalanced Capacities, 98
and Unbounded Result Sets, 108

Hardware load balancer, 237f, 236–237
Heartbeats, 238, 285
Hidden linkages, 120f
Historical data, 197
Historical trending, 267–268
Hoare, C.A.R., 204
Horizontal scaling

defined, 61
and load balancing, 232
and scalability, 165, 166f
single points of failure, 61

Host bus adapter (HBA), 172
HotSpot error, 107
HTML tables, 189
HTML wasted space, 187–190
HTTP cookies, 201
HTTP requests, timeouts, 40

I
Image and reputation, 36
Impulse, 232

application of, 41
defined, 37
failure modes, 37–39

In-memory caching, 129, 130
Indexing, 196, 198
Instantaneous behavior, 273–275
Integration Point Latency, 199
Integration Points, 60

and Cascading Failures, 65
and Circuit Breaker, 117
and Decoupling Middleware, 143

INTEGRATION TESTING 344 MIDDLEWARE

and Fail Fast, 133
and firewalls, 243
metrics, 271
and Test Harness, 140
and Timeouts, 114
and users, 71

Integration testing, 136
Interaction design, 183
Interfaces for administration, 248, 297
Internet assigned numbers authority

(IANA), 290
Interrelations, 165
Inversion of control, 313
Inviting Disaster: Lessons from the Edge

of Technology (Chiles), 37, 44,
280, 304

IP addresses
and DNS round-robin, 233
reverse proxy servers, 234–236
virtual, 223f, 223–225

IT Infrastructure Library (ITIL), 102
IT Service Management Framework

(itSMF), 102
Ivory tower architecture, 18–19

J
JAD, 32n
Java Management Extensions (JMX),

293–297
MBeans, 293f, 294, 295f
prior to Java 5, 296
and SNMP, 298
vs. SNMP, 293
support for, 296

Java, decompiling, 32n
JConsole Memory Tab, 215f
JSON, 184
JSP fragments, 180
JSPs as content, 181
Jumphost, 254

K
Kristol, David, 201

L
Latency, 167
Lea, Doug, 81n
Lean Software Development

(Poppendieck and Poppendieck),
327

Least privilege, 226–227
Liskov Substitution principle, 83, 84
Load balancing, 233f, 232–237

and bandwidth, 171
DNS round-robin, 232–234
hardware, 237f
hardware load balancer, 236–237
ports for, 227
reverse proxy, 234f, 234–236

Load testing, 38, 255
retail store case study, 152–155

Log files, 126–130, 276, 280
Logging, 276–283

catalog of messages, 278–279
configuration, 277
debug logs, 278
human factors, 280f, 281f, 282f,

280–283
identifiers for, 283
levels, 277
state transitions, 283

Longevity
dangers to, 38
defined, 37

Loose coupling, 312
Lord, Paul, 89

M
Malicious users, 78–80
Managed storage, 171
Management information bases (MIBs),

290–292
Managing perceptions, 28
Many-to-few relationship, 91
Many-to-one relationship, 91, 93
MBeans, 293

dynamic, 296
interface implemented, 295f
as proxies, 293f
sample interface, 295f

Memory, 68, 79, 270
Memory dumps, and security, 228
Memory leaks, 38

and Chain Reactions, 62
and in-memory caching, 129
and Slow Responses, 101

Metrics, 267, 270, 271, 297
Middleware, decoupling, 141–143

costs, 142, 143
coupling, 142f
dual purpose of, 141

MIXED WORKLOAD 345 PASSWORDS

Mixed workload, 36
Mock objects, 138
Monitoring systems, 283–289

agentless, 285
agents, 284
CIM, 292–293
commercial, 286
commercial, gaps in, 286–288
conceptual view of, 284f
designing for, 289
enterprise application management,

287
JMX, 293–297
JMX and SNMP together, 298
online store case study, 255
SNMP, 292f, 289–292
transparency, 297–298

Montulli, Lou, 201
Multicast notification, 209
Multihomed servers, 220f, 219–222

and bonding, 220
defined, 219

Multilevel caching, 208
Multipathing, 172
Multiple network interfaces, 220f
Multithreaded server option (MTS), 163

N
Native code, 107
Network-attached storage (NAS), 172
Networking, 219–225

multihomed servers, 220f, 219–222
overview, 219
routing, 222
and Timeouts, 111
virtual IP addresses, 223f, 223–225

News portal sites, 210
Nodes, 200, 322
Norman, Don, 44, 201

O
O-O-D-A loop, 306
Object pooling, 216
Observation, 302
Observations and transparency,

306–309
Online store case study, 252–263

back-end order management, 260f
background, 252–253
Black Friday (problem), 256–257,

258f

comparing solutions, 262
diagnostic tests, 259
launch of, 253–254
load testing, 255, 256
order management and enterprise

scheduling, 261f
recovery-oriented computing, 263
thread dumps, 259
vital signs, 259
see also Retail online store case

study
Online transaction processing (OLTP),

198
Open Source Tripwire, 228
Operating system crashes, 44
Operations

catalog of messages, 278–279
and Circuit Breaker, 117, 118
conflict/positive intent, 329
and downtime, 330
linking to business results, 287
and online store case study, 258–259

Operations database, 299–304
expectations, 303f
high-level structure of, 301–302
observations, 301f
role of, 300f
suitability for transparency

technologies, 299f
using, 303–304
writing to, 302

OpsDB, 267, 301f, 303f
Optimistic locking, 89
Optimization, 204–217

caching, 208–209
garbage collector tuning, 215f,

214–217
overview, 204–205, 217
pool connections, 206–207
precomputing content, 210–213

ORM layers, 193
ORM tools, 196
Outsourcing, 102
Overstaying Sessions, 185–186

P
Parameters, 270
Partitioned system, 120f
Partitioning, 197
Password vaulting, 228
Passwords

PATTERN DETECTION 346 REVENUE

and configuration files, 244
configured, 227–228

Pattern detection, 255, 281
Pattern Languages of Program Design 2

(Vlissides), 85, 116
Patterns

interaction with antipatterns, 43f
overview, 42–43, 110

Patterns of Enterprise Application
Architecture (Fowler), 112

Payload Object, 71f
Peep, 288n
Per-fragment model, 207
Per-page model, 207
Performance, 123, 161
Performance problems, see

Antipatterns
Personalization, 159
Perspectives

instantaneous behavior, 273–275
and operations databases, 299

Petroski, Henry, 311
Planning Extreme Programming (Beck

and Fowler), 268
Point-to-point communications, 91f,

91, 92f, 92, 95
Point-to-point notification, 209
Pool connections, see Connection pool
Pooling objects, 216
Post-mortem investigation

airline case study, 27
Pragmatic AJAX: A Web 2.0 Primer

(Almaer et al), 182
Pragmatic Project Automation (Clark),

288
Precomputing content, 210–213

vs. caching, 213
costs of, 212
example, 211
vs. personalization, 212

Predictions, 268–269
Present status, 270–272
Principle of least privilege, 226–227
Privilege separation, 227
Production

and GUIs, 248
properties to change for, 151
testing a site in, 155
unit testing, 317

Programmers and XP coding, 316–317

Project Frammitz (example), 102, 103,
104f

Protocols, 324f, 325f, 323–325
SNMP, 290
types, 325

Punch outs, 212

Q
QA

retail store case study, 148–151
and Scaling Effects, 95
vs. production, 241–243

R
Recovery-oriented computing, 263
Refactoring (Fowler), 317
Releases

and administrators, 240
cleanup, 334
expansion, 332–333
and garbage collectors, 215
naming revisions, 332
overview, 327–329
retail case study, 151
rollout, 334
timing of, 330
zero downtime, 331, 335

Reload button, 191
Remote method invocation (RMI)

in airline case study, 31, 40
Request for comments (RFCs), 111
Request timing, 183
Resource pool, 66, 87, 178
Resource Pool Contention, 177f, 178f,

176–179
Response formatting, 183
Restoring service, as priority, 24
Retail online store case study, 147–160

background, 147–148
and Conway’s law, 150
and issues to correct, 155–157
and load testing, 152–155
and QA process, 148–151
and resolution/solutions, 158–160
and testing issues, 157

Retailers
and Attacks of Self-Denial, 88
calendar, 253
websites for, 210

Revenue
cash flow, 311

REVERSE PROXY SERVER 347 STABILITY

loss, 17
see also Costs

Reverse proxy server, 234f, 234–236
RFC 2109, 201
RMI, see Remore method invocation
RMI communication, 200
Robots, 76, 77
robots.txt file, 76, 77
RollingFileAppender, 127
Rollout, 334, 335f
Round-robin load balancing, 233f
Routing, 222

S
Sarbanes-Oxley (SOX) requirements,

128
Scalability, 162, 166f, 165–166, 167f
Scaling Effects, 91f, 92f, 93f, 91–95

Point-to-point communications, 92
point-to-point communications, 91,

95
shared nothing architecture, 94
shared resources, 93
and Unbalanced Capacities, 99

Script kiddie, 78
Secure sockets layer (SSL)

defined, 236
and hardware load balancer, 237

Security, 226–228
configured passwords, 227–228
overview, 226
principle of least privilege, 226–227
spam cannon service, 222
and version control, 245

Self-denial attacks, 88–90, 98
Senge, Peter, 163
Serializing requests, 192
Servers

application, 168
cluster, 223
clustering, 238–239
cost of, 169f
and handshaking, 134
hardware load balancer, 236–237
and health checks, 135
and load balancers, 227
load balancing, 232–237
multihomed, 220f, 219–222
reverse proxy, 234–236
routing, 222
security, 226–228

Service-level agreement (SLA), 25
inversion, 103f, 104f, 102–105, 231
online store case study, 259
requirements, documenting,

230–232
Session thrashing, 183
Session tracking, 75–76
Sessions, counting, 153, 155
Shared nothing architecture, 94
Shermer, Michael, 281
Shutdown and start-up, 247, 334
Signal-to-noise ratio, 127
Simple Network Management Protocol

(SNMP), 289–292
communication structure, 292f
competitor, 292
JMX connectors, 292, 298
variables in, 290

Single point of failure (SPOF), 61
SiteScope, see Online store case study
SLA, see Service-level agreement (SLA)
SLA Inversion, 103f, 104f, 102–105
Slow Responses, 100–101

and Circuit Breaker, 117
and Decoupling Middleware, 143
and Fail Fast, 133
and Handshaking, 135
and Unbounded Result Sets, 108

Sludge, see Data purging
Socket connection susceptibility, 137
SoftReference, 70, 71
SoftReference, 70f, 72f
Software

cynical, 35
design for adaptability, 312–319
design needs for, 15
early-on decisions, 16
vulnerability of, 226

Software by Numbers (Denne and
Cleland-Huang), 327

Source addresses, 192
Spacer images, 189
Spam cannon service, 222
Spiders, 77, 156
SQL, handcrafted, 193–195
SQLException, 32, 33
Squid, 234, 235
Stability

airline case study, 21–34
consequences, 27
deployment architecture, 23f

STABILITY PATTERNS 348 TIMEOUTS

outage of, 22–25, 26f
overview, 21–22, 34
post-mortem investigation, 27–31
preventing, 39–41

antipatterns
Attacks of Self-Denial, 88–90
Blocked Threads, 81–87
Cascading Failures, 66f, 65–67
Chain Reactions, 62f, 64f, 61–64
Integration Points, 60
overview, 44–45
scaling, 91f, 92f, 93f, 91–95
SLA Inversion, 103f, 104f,
102–105
Slow Responses, 100–101
Unbalanced Capacities, 97f,
96–99
Unbounded Result Sets, 106–109
users, 68–80

chain of failure, 41–42
cost of, 35–36
defining, 36–39
airline case study

the error, 31–34
failure modes, 37–39
patterns

Bulkheads, 119–123
Circuit Breaker, 115–118
Decoupling Middleware, 141–143
Fail Fast, 131–133
Handshaking, 134–135
overview, 43f, 42–43, 144–145
Steady State, 124–130
Test Harness, 136–140
Timeouts, 111–114

Stability patterns
Bulkheads, 120f
Circuit Breaker, 116f
overview, 110

Start-up and shutdown, 247, 334
Static content, 210
Steady State, 124–130

data purging, 124–126
in-memory caching, 129, 130
log files, 126–130
overview, 124
and Sarbanes-Oxley, 128
and Unbounded Result Sets, 108

Storage area networks (SANs), 172
Storage costs, 169–172
Strain

defined, 37
failure modes, 37–39

Stress
application of, 41
defined, 37

Subnet addresses, 222
Subversion, 245
Synthetic transactions, 231, 232
System

defined, 36
dependencies in, 322f, 322–323
with hidden linkages, 120f
monitoring, 284f, 283–289
partitioned, 120f
scalability, 165
and SLAs, 230

T
Table scans, 194
Teaming interfaces, 220
Technologies, 276
Test Harness, 136–140

and bad behavior, 139
and integration tests, 136
vs. mock objects, 138

Test-driven design (TDD), 317
Testing

coding for, 149
harness, 136–140
load, 38, 152–155, 255
longevity, 37, 38
QA vs. production, 241–243
retail online store case study, 157
and Unbalanced Capacities, 98
unit, 317
see also QA

Third-party libraries, 86, 87
Thread dumps, 259

airline case study, 29
example of, 30
getting, 30
online store case study, 259

Throughput, 162, 178f
Tight coupling

challenges of, 44
danger of, 41, 45
and middleware, 141, 142f, 142

Timeouts, 111–114, 207
benefits of, 111, 112, 114
and Blocked Threads, 87
dealing with, 112

TOPOLOGY 349 WEBSITES

defined, 111
and retries, 113
setting, 185

Topology, 241, 242
Total conversion, 73
Traffic, 68–71
Traffic and multihomed servers,

219–222
Transaction, 36
Transparency, 265–309

color coding, 273f
designing for, 275
logging, 276–283

catalog of messages, 278–279
configuration, 277
human factors, 280f, 281f, 282f,
280–283
levels, 277

and logging, 128
monitoring systems, 297–298
and observations, 307–309
operations database, 299f, 300f,

301f, 303f, 299–304
overview, 265–267, 309
perspectives, 267–275

dashboard, status, 273f, 272–273
historical trending, 267–268
instantaneous behavior, 273–275
predictions, 268–269
present status, 270–272

supporting processes, 305–309
system monitoring, 284f, 283–289
technologies, 276

Traps, 291
Triggers, 333
Tripwire, 228

U
Unbalanced Capacities, 97f, 96–99

and Circuit Breaker, 117
and Handshaking, 135

Unbounded Result Sets, 106–109, 114
Unit testing

and loose coupling, 312
and mock objects, 138
and refactoring, 317

Unwanted users, 72–78
Uptime demands, 17
User-Agent, 156
Users, 68–80

concurrent, 153

and downtime, 330
expensive, 71
legal approaches to, 78
malicious, 78–80
metrics, 271
nonadministrative, 226–227
and payload objects, 70, 71f
and performance, 162
and releases, 330
and session tracking, 75–76
and softly reachable objects, 72f
and traffic, 68–71
unwanted, 72–78

Utility computing center, 96

V
Variables, driving, 163
Version control, 245

in Agile databases, 319
Vertical scaling

defined, 61
and scalability, 165, 166, 167f

Virtual IP addresses, 63, 223f, 223–225
clusters, 223

Virtualization, 121
Visibility, see Transparency
VMware, 242

W
Wasted Space in HTML, 187–190
Web servers, see Servers
Websites

for AdventNet, 298
for ARIN, 77, 156n
for ASN.1, 290n
for ATG, 257n
for cfengine, 245n
for Conway’s law, 150
for CSS and HTML designs, 190
for dependency injection article,

312n
for Distributed management task

force, 292n
for garbage collection tuning, 215n
for Internet assigned numbers

authority, 290n
for ITIL, 102n
for itSMF, 102n
for JSON, 183
for O-O-D-A/Agile article, 307n

WEBSPHERE 6.1 350 ZERO

for Object technology users group,
125n

for Open Source Tripwire, 228n
for OSI model, 236n
for Packeteer’s MIB, 290n
for Peep, 288n
for Pragmatic project automation,

288
for Recovery-oriented computing

project, 264
for robots.txt file, 76n
for Spring’s JdbcTemplate, 113n
for Squid, 234n
for Subversion, 245n
for Tealeaf, 287n
for Tripwire, 228n

WebSphere 6.1, 281

White-box technologies, 276
White-box technology

see also Logging
Whitespace, 188, 190
Why Does Software Cost So Much

(DeMarco), 16
Why People Believe Weird Things

(Shermer), 281
Worker threads, 270

Y
Young generation, 214

Z
Zero downtime deployments, 331–334,

335f
Zero, one, many, 242

	Contents
	Part I—Stability
	Part II—Capacity
	Part III—General Design Issues
	Part IV—Operations
	Bibliography
	Index

