
































































http://agilemanifesto.org/








































http://ruby-doc.org/core/classes/Struct.html























































































































































































































































































































































































































































	Contents
	Foreword
	Introduction
	Acknowledgments
	About the Author
	1 Object-Oriented Design
	In Praise of Design
	The Problem Design Solves
	Why Change Is Hard
	A Practical Definition of Design

	The Tools of Design
	Design Principles
	Design Patterns

	The Act of Design
	How Design Fails
	When to Design
	Judging Design

	A Brief Introduction to Object-Oriented Programming
	Procedural Languages
	Object-Oriented Languages

	Summary

	2 Designing Classes with a Single Responsibility
	Deciding What Belongs in a Class
	Grouping Methods into Classes
	Organizing Code to Allow for Easy Changes

	Creating Classes That Have a Single Responsibility
	An Example Application: Bicycles and Gears
	Why Single Responsibility Matters
	Determining If a Class Has a Single Responsibility
	Determining When to Make Design Decisions

	Writing Code That Embraces Change
	Depend on Behavior, Not Data
	Enforce Single Responsibility Everywhere

	Finally, the Real Wheel
	Summary

	3 Managing Dependencies
	Understanding Dependencies
	Recognizing Dependencies
	Coupling Between Objects (CBO)
	Other Dependencies

	Writing Loosely Coupled Code
	Inject Dependencies
	Isolate Dependencies
	Remove Argument-Order Dependencies

	Managing Dependency Direction
	Reversing Dependencies
	Choosing Dependency Direction

	Summary

	4 Creating Flexible Interfaces
	Understanding Interfaces
	Defining Interfaces
	Public Interfaces
	Private Interfaces
	Responsibilities, Dependencies, and Interfaces

	Finding the Public Interface
	An Example Application: Bicycle Touring Company
	Constructing an Intention
	Using Sequence Diagrams
	Asking for “What” Instead of Telling “How”
	Seeking Context Independence
	Trusting Other Objects
	Using Messages to Discover Objects
	Creating a Message-Based Application

	Writing Code That Puts Its Best (Inter)Face Forward
	Create Explicit Interfaces
	Honor the Public Interfaces of Others
	Exercise Caution When Depending on Private Interfaces
	Minimize Context

	The Law of Demeter
	Defining Demeter
	Consequences of Violations
	Avoiding Violations
	Listening to Demeter

	Summary

	5 Reducing Costs with Duck Typing
	Understanding Duck Typing
	Overlooking the Duck
	Compounding the Problem
	Finding the Duck
	Consequences of Duck Typing

	Writing Code That Relies on Ducks
	Recognizing Hidden Ducks
	Placing Trust in Your Ducks
	Documenting Duck Types
	Sharing Code Between Ducks
	Choosing Your Ducks Wisely

	Conquering a Fear of Duck Typing
	Subverting Duck Types with Static Typing
	Static versus Dynamic Typing
	Embracing Dynamic Typing

	Summary

	6 Acquiring Behavior Through Inheritance
	Understanding Classical Inheritance
	Recognizing Where to Use Inheritance
	Starting with a Concrete Class
	Embedding Multiple Types
	Finding the Embedded Types
	Choosing Inheritance
	Drawing Inheritance Relationships

	Misapplying Inheritance
	Finding the Abstraction
	Creating an Abstract Superclass
	Promoting Abstract Behavior
	Separating Abstract from Concrete
	Using the Template Method Pattern
	Implementing Every Template Method

	Managing Coupling Between Superclasses and Subclasses
	Understanding Coupling
	Decoupling Subclasses Using Hook Messages

	Summary

	7 Sharing Role Behavior with Modules
	Understanding Roles
	Finding Roles
	Organizing Responsibilities
	Removing Unnecessary Dependencies
	Writing the Concrete Code
	Extracting the Abstraction
	Looking Up Methods
	Inheriting Role Behavior

	Writing Inheritable Code
	Recognize the Antipatterns
	Insist on the Abstraction
	Honor the Contract
	Use the Template Method Pattern
	Preemptively Decouple Classes
	Create Shallow Hierarchies

	Summary

	8 Combining Objects with Composition
	Composing a Bicycle of Parts
	Updating the Bicycle Class
	Creating a Parts Hierarchy

	Composing the Parts Object
	Creating a Part
	Making the Parts Object More Like an Array

	Manufacturing Parts
	Creating the PartsFactory
	Leveraging the PartsFactory

	The Composed Bicycle
	Deciding Between Inheritance and Composition
	Accepting the Consequences of Inheritance
	Accepting the Consequences of Composition
	Choosing Relationships

	Summary

	9 Designing Cost-Effective Tests
	Intentional Testing
	Knowing Your Intentions
	Knowing What to Test
	Knowing When to Test
	Knowing How to Test

	Testing Incoming Messages
	Deleting Unused Interfaces
	Proving the Public Interface
	Isolating the Object Under Test
	Injecting Dependencies Using Classes
	Injecting Dependencies as Roles

	Testing Private Methods
	Ignoring Private Methods During Tests
	Removing Private Methods from the Class Under Test
	Choosing to Test a Private Method

	Testing Outgoing Messages
	Ignoring Query Messages
	Proving Command Messages

	Testing Duck Types
	Testing Roles
	Using Role Tests to Validate Doubles

	Testing Inherited Code
	Specifying the Inherited Interface
	Specifying Subclass Responsibilities
	Testing Unique Behavior

	Summary

	Afterword
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


