

What Readers Are Saying About

Manage Your Project Portfolio

If you leave the office with more projects than you started the day

with, this book is for you. This isn’t an abstract or theoretical book;

Johanna offers practical advice that will help you manage your project

portfolio—whether you are a team lead, a middle manager, or a senior

executive.

Esther Derby

Author and consultant, Esther Derby Associates, Inc.

At last! Now, we can get serious about extending an agile approach

beyond individual projects and begin to extract further value from our

agile programs and portfolios. Johanna’s book lays out many ways to

manage your portfolio—agile or otherwise—and will give you, the man-

ager, the practical tools to apply agile principles beyond the project.

Managers in the field will be relieved to be able to get crucial insights

from a thought leader in the agile space, and I believe this book will

take its place among the best in the field.

Sanjiv Augustine

President, LitheSpeed

Author, Managing Agile Projects

The hardest thing about managing an agile enterprise is prioritizing

across projects. Johanna’s book shows how to do this, and it should

be on every manager’s desk.

Dan Rawsthorne, PhD

Certified Scrum trainer, Danube Technologies

Businesses improve (and profit) by finishing projects, not starting

them. In this book Johanna Rothman clearly shows managers how, by

making just a few simple changes, they can finish more projects and

make considerably more money. This is an important book—a book

that should be read by every manager.

Clarke Ching

Theory of constraints consultant, SpiceUpIT.com

While many books focus only on tools and methodologies, Johanna

highlights the importance of the critical but often overlooked “soft

skills”—trust, influence, negotiation, collaboration—in successful

portfolio management. Her approaches are extremely flexible and

easily adapted to various life cycles as well as to the culture of your

company and team. This book is a must-read for all software develop-

ment management (and read Manage It! first)!

Ellen R. Salisbury

Managing director, Cambridge West Ventures

Juggling competing priorities is what managers are paid to do, but few

get the coaching they need to do it well. Manage Your Project Portfolio

brings expert coaching within reach.

Dave W. Smith

Software development coach

Johanna offers us a down-to-earth pragmatic book on portfolio man-

agement. Her conversational style is very engaging. When I picked

up the book, I couldn’t put it down until I read it cover to cover. She

anticipated many of my questions and provides practical answers.

This book is filled with solid advice on all aspects of project portfolio

management for the individual as well as the enterprise. It belongs

on the bookshelf of anyone serious about delivering business value

through good portfolio management practices.

Bob Wysocki

President, Enterprise Information Insights

You need to read Johanna Rothman’s Manage Your Project Portfolio. If

you are a confirmed “agileist,” you will see how core agile principles

have been used to deal with the value an organization expects from

its projects. If you are a traditional PMO professional, you will find the

insights and points of reference are uncomfortably familiar, because

the examples and the outcomes she presents come from her (and our)

experiences. Take note of the lessons learned in getting things done,

and you should be able to avoid the fate of your colleagues who didn’t

take the time to read this book.

Mike Dwyer

Principal agile coach, BigVisible Solutions, Inc.

Manage Your Project Portfolio
Increase Your Capacity and Finish More Projects

Johanna Rothman

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Johanna Rothman.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-29-8

ISBN-13: 978-1-934356-29-6

Printed on acid-free paper.

P1.0 printing, July 2009

Version: 2009-8-17

http://www.pragprog.com

To anyone who’s ever been asked to focus

on more than one project at a time.

And, to Mark, Shaina, and Naomi,

who help me realize what is most important.

Contents
Foreword by Ron Jeffries 13

Foreword by Tim Lister 15

Preface 17

1 Meet Your Project Portfolio 22

1.1 What a Project Portfolio Is 23

1.2 See the High- and Low-Level Views 25

1.3 Now Try This . 28

2 See Your Future 29

2.1 Managing with a Project Portfolio 29

2.2 Managing Without a Project Portfolio 30

2.3 What Are Your Emergency Projects? 33

2.4 Lean Approaches to the Project Portfolio 34

2.5 Why You Should Care About the Project Portfolio . . . 35

2.6 Your Portfolio Reflects Your Influence Level 38

2.7 Now Try This . 39

3 Create the First Draft of Your Portfolio 40

3.1 Know What Work to Collect 40

3.2 Is the Work a Project or a Program? 43

3.3 Organize Your Projects into Programs As Necessary . . 44

3.4 Organize the Portfolio . 48

3.5 Using Tools to Manage a Portfolio 49

3.6 Now Try This . 50

4 Evaluate Your Projects 51

4.1 Should We Do This Project at All? 51

4.2 Decide to Commit, Kill, or Transform the Project 52

4.3 Commit to a Project . 53

4.4 Kill a Project . 56

CONTENTS 10

4.5 How to Kill a Project and Keep It Dead 58

4.6 Killing a Senior Manager’s Pet Project 59

4.7 Kill Doomed Projects . 60

4.8 Transform a Project . 62

4.9 Now Try This . 64

5 Rank the Portfolio 65

5.1 Never Rank Alone . 65

5.2 Rank Order the Projects in the Portfolio Using Points . 66

5.3 Leftover Points Provide Metadata 69

5.4 Rank the Projects by Risk 73

5.5 Use Your Organization’s Context to Rank Projects . . . 74

5.6 Who’s Waiting for Your Projects to Be Completed? . . . 76

5.7 Rank the Work by Your Products’ Position in the Mar-

ketplace . 77

5.8 Use Other Comparison Methods to Rank Your Projects 78

5.9 Don’t Use ROI to Rank 81

5.10 Your Project Portfolio Is an Indicator of Your Organiza-

tion’s Overall Health . 83

5.11 Publish the Portfolio Ranking 83

5.12 Now Try This . 85

6 Collaborate on the Portfolio 86

6.1 Organize to Commit . 86

6.2 Build Trust . 87

6.3 Prepare for Collaboration 89

6.4 Set the Stage for Collaboration 90

6.5 Facilitate the Portfolio Evaluation Meeting 91

6.6 How to Say No to More Work 93

6.7 Fund Projects Incrementally 95

6.8 Never Make a Big Commitment 96

6.9 Discover Barriers to Collaboration 98

6.10 Who Needs to Collaborate on the Portfolio? 105

6.11 Now Try This . 106

7 Iterate on the Portfolio 107

7.1 Decide When to Review the Portfolio 107

7.2 Select an Iteration Length for Your Review Cycles . . . 109

7.3 Defend the Portfolio from Attack 115

7.4 How to Decide If You Can’t Change Life Cycles, Road

Maps, or Budgets . 115

7.5 Make Decisions as Late as Possible 117

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=10

CONTENTS 11

7.6 Now Try This . 118

8 Make Portfolio Decisions 119

8.1 Keep a Parking Lot of Projects 119

8.2 Conduct a Portfolio Evaluation Meeting 120

8.3 Conduct a Portfolio Evaluation Meeting at Least Quar-

terly to Start . 125

8.4 Review Your Decisions 127

8.5 Now Try This . 127

9 Evolve Your Portfolio 128

9.1 Lean Helps You Evolve Your Portfolio Approach 128

9.2 Choose What to Stabilize 129

9.3 Stabilize the Timebox . 130

9.4 Stabilize the Number of Work Items in Progress 132

9.5 Fix the Queue Length for a Team 136

9.6 When You Need to Fix Cost 138

9.7 Management Changes When You Stabilize Something

About Your Projects . 138

9.8 Now Try This . 139

10 Measure the Essentials 140

10.1 Measure Value . 140

10.2 What You Need to Measure About Your Projects 142

10.3 Measure Project Velocity: Current and Historical 144

10.4 Measure Cumulative Flow for the Project 147

10.5 Measure Obstacles Preventing the Team’s Progress . . 149

10.6 Measure the Product Backlog Burndown Chart 153

10.7 Measure Run Rate and Other Cost Data, If Necessary . 153

10.8 Don’t Even Try to Measure Individual Productivity . . . 154

10.9 What You Need to Measure About the Portfolio 155

10.10 Measure Capacity by Team, Not by Individual 158

10.11 People Finish More with Lean and Agile 159

10.12 Now Try This . 160

11 Define Your Mission 161

11.1 Define the Business You Are In 161

11.2 What Good Is a Mission, Anyway? 162

11.3 Define an Actionable Mission for the Organization . . . 163

11.4 Draft a Mission from Scratch 165

11.5 Brainstorm the Essentials of a Mission 166

11.6 Refine the Mission . 168

11.7 Derive Your Mission from Your Work 169
Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=11

CONTENTS 12

11.8 How to Define a Mission When No One Else Will 170

11.9 Beware of the Mission Statement Traps 171

11.10 Test Your Mission . 173

11.11 Make the Mission Real for Everyone 173

11.12 Now Try This . 174

12 Start Somewhere . . . But Start 175

13 Glossary 177

Bibliography 180

Index 184

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=12

Foreword by Ron Jeffries
Quite often I have the chance to visit a team to help management figure

out why they’re not making much progress. When I get there, I find a

small team working on more projects than they have people. The good

news is that now I know what the problem is. The bad news is that I

have to explain to management that what they’re doing is causing the

problem they’re complaining about.

Johanna’s book is about this issue, including how to identify it and how

to resolve it.

I believe that inside every complex solution is a simple solution trying to

get out, and I’m very pleased to find that Johanna begins with simple

ways to understand our collection of work. Better yet, she returns to

those simple approaches again and again. Yes, we have hard decisions

and difficult communication with our peers and colleagues ahead of

us. To make those communications work, we need to understand the

situation and express it clearly. Johanna helps us do that.

No matter where in the organization you find yourself, you’ll recognize

situations in Johanna’s book that are familiar. Then she’ll use that

familiar context to take you to a new level of understanding of what to

do when that sort of thing happens again. There’s nothing better than

someone who shows she understands your situation and then shows

you what you can do to make it better.

Johanna tells us that there are three things to do with each project as

we consider our portfolio: we can commit to the project, we can kill it, or

we can transform it. Have you seen projects that don’t deserve to die but

that hang around not coming to life? Maybe they need to be considered

at the portfolio level and be transformed. There are definitely some like

that in my past! Where was this book when I really needed it?

Then we are shown how to rank the remaining projects, and very

eloquently Johanna reminds us of a number of ranking dimensions,

FOREWORD BY RON JEFFRIES 14

including why sometimes those orphan internal projects are among the

most important ones to do. She describes several ways to approach

ranking. It’s likely one of them is right for you, and if not, you can mix

and match from the approaches in the book.

Throughout the book, Johanna gives us stories from her own expe-

riences and stories from the experiences of others. She weaves those

stories into a consistent, growing understanding that is compelling and

easy to understand. Each step along the way, she gives us things to

try—things that fit right in with the current chapter’s ideas.

The book moves forward steadily, reminding us to collaborate so that

the decisions will be better...and better accepted. We learn how and

when to iterate and evolve on our portfolio. We learn why and how to

stabilize it, what to measure under differing circumstances, and what

not to measure as well.

From beginning to end, Johanna takes us from a never-ending list of

things to do all the way to a consistent, understandable mission. Most

important, she helps us get to a mission that we can actually accom-

plish, one where we can be successful.

In my life, I’ve been successful and I’ve been unsuccessful, and I like

being successful a lot better. If you also prefer to be successful, then

Johanna’s book can help you. Read it, and try what Johanna suggests.

You’ll be glad you did.

Ron Jeffries

www.XProgramming.com

www.XProgramming.com/blog

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=14

Foreword by Tim Lister
I am writing this in June 2009, and we are currently living in interesting

times. These interesting times are demanding that we step up from

project management to projects management, and the book in your

hand, Manage Your Project Portfolio, is going to help you do just that.

There are plenty of good resources on project management that will

help you run a project efficiently, but darned few help you get the pri-

orities right. We have spent years as managers worrying about getting

the process right, and don’t get me wrong, the process does matter, but

first things first, let’s get the valuable projects to the front of the queue.

Let’s not worry about starting those projects; let’s worry about finishing

those projects.

With this book Johanna shows that she understands priorities; first be

effective, and then worry about efficiency. Effective means that you are

investing in the right projects—those with meaningful value and with

risk you can deal with. And as Johanna points out, it is not a mat-

ter of “commit” or “kill.” It can be “transform”—a chance to mold the

value and slough off the project fluff. As a manager, the commit-kill-

transform debate leads to the most critical set of decisions a project

organization can make. Have some beautifully executed projects that

deliver marginal value, and you are spiraling down. Have some com-

plex, wild-animal projects that stress the organization but deliver big

value to your customers, and you’re on the way up.

Setting priorities is hard; it means that not everybody will be thrilled.

Some will be downright angry, but setting priorities and then resetting

them as the world changes, without being simply reactive to pressure,

has a name. It is management. Management is political, in the best

Aristotelian sense of the word. Politics is making decisions for the best

interests of the community as a whole.

FOREWORD BY TIM LISTER 16

If you can get to a prioritized portfolio of projects, you have made a

great step forward, and Johanna urges us to consider an even more

difficult change. She wants you to consider making your organization

focus on finishing, not starting. She starts Chapter 1 with these three

sentences: “Your customers want your products to be filled with great

features that are well-tested and run smoothly. They don’t care about

your projects, and they certainly don’t care about your portfolio. Your

customers care about your products.” Where is the value in a piece of

software? It’s always in its outputs—what it delivers to the world. The

only things that matter are what you deliver to the world. You don’t

deliver value until you deliver. Somehow we have become a group of

starters, not finishers. Many organizations can’t seem to say “No” or

“Not now” to anybody. They have many understaffed projects crawling

along in the name of satisfying all customers. Of course, as Johanna

points out, with this “strategy,” you are satisfying no customers at all.

This is a book to read in a group, especially if you are starting from

scratch, so to speak. This is a book to discuss and debate. It is chock-

full of ideas, and it is up to you, the managerial and technical leaders of

your organization, to figure out what changes you want to give a con-

certed effort. To paraphrase the last section of each chapter, now try

this book. It’s time.

Tim Lister

Principal, The Atlantic Systems Guild, Inc.

New York City

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=16

Preface
So many things can bring a project to its knees. Maybe there’s too

much multitasking. . . or so much technical debt that the project team

can’t make progress on the current release. . . or so many emergency

projects that emergencies have become normal. . . or so many high-

priority projects that no one knows which to work on first.

Sure, there are other things that could be a problem: technical staff

estimations are way off, your major competitor just released a huge

update and your project won’t be ready for another six months, the

technical challenges of testing (or writing or developing) are more than

your testers (or writers or developers) can manage, the project needs

more machines or memory or disk drives. . . and the list goes on. But

if you dig down far enough, you will often find that multitasking—and

its associated issues of emergency projects, technical debt, or people

spread across way too many projects—is what has led to most of your

problems.

Multitasking occurs when managers don’t make decisions about which

projects to do first, second, third, last, and, even more important, never.

Some managers don’t realize it’s their job to make those decisions—they

think it’s their job to try to staff every project. Some managers don’t

know how to make those decisions. Some management teams can’t

agree on the decisions. Whatever the reason, when managers don’t

decide in which order to execute projects and which projects to leave

alone, the project teams suffer from multitasking.

Why am I so passionate that you should manage your project portfolio

and shouldn’t multitask? I fell into managing the project portfolio when

I was working at a company that made complex hardware/software sys-

tems. I had first been hired as the director of SQA and continuing engi-

neering. Then they decided they needed a program manager to man-

age the largest program the engineering organization had attempted. I

stopped being the director and ran that program.

PREFACE 18

About four months before our planned release, we had a customer can-

cel a contract. Management decided to lay off about half the engineering

staff. They assigned someone else to manage the program and asked me

to be the director of software engineering.

We were down to about thirty to forty people in development. We had to

finish the development work on the program and continue to respond

to problems in the field. Each field problem was a crisis and required

several weeks of work. So here I am a director, with an interim VP,

people who’d been working crazy hours for months, and a release we

had to get out. And huge problems we had to fix. We had to do it all. We

had no choice.

I made a spreadsheet of what everyone was working on so I could

understand where the time was going. I’d made spreadsheets like that

before when I’d managed testers and developers who were matrixed

into projects, but I had never had to staff quite so many simultaneous

projects.

After two weeks of people working the way they’d been assigned, I real-

ized no one was making progress on anything. I sat down with the

managers who reported to me. We discussed what work we would staff

and not staff. We assigned people to no more than two projects in any

given week. We made sure people had team members they could work

with to finish the work.

I took the heat from senior management—and there was plenty of it.

“You have to do this project and that one and that other one and that

other one over there. This week.”

I said, “Sorry, we can’t do that much in one week. You have to choose.”

And of course they rebutted with, “No, you have to do it all.”

I said, “Well, then I’ll choose.”

“You’d better be right.”

After another two weeks, we started to make progress, but it still wasn’t

fast enough. I had a team meeting with my managers and asked, “What

will it take to finish this project? Just this one here?” One of the man-

agers said, “If Tom and Harry and Jane can concentrate on just that

project for a week, we can finish it.”

I said, “OK, have them do that. Now, what about that crisis over there?”

“Well, we need Harry....”

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=18

PREFACE 19

“Sorry, you can’t have him. Who else can you use, and how long will it

take?”

We had that conversation for all the outstanding work. Now we had

small teams assigned to a bunch of the problems so we could fix them

and get some breathing room. In about a week, we would be half-

staffed on the program, and in about two weeks, we would be back

to full staffing on the program. The developers were thrilled to finish

something. The managers were happy about not having to move people

around. I was happy that we finally got some things done. My senior

managers were unhappy with my progress.

After two months of this, we finally had just new development to do on

the program, because the continuing engineering department was able

to keep up with the field problems. That’s when we started to make

huge progress on the release, because we were working by feature and

assessing our progress biweekly.

We used a combination of approaches: continuing engineering used a

kanban approach because the problems were smaller than the fea-

tures for a release. They could limit their work in progress and work

on one problem at a time until it was fixed. Development (and the test

group) used two-week timeboxes, working in features, so we could fin-

ish chunks of work.

By the end of the four months, we had a release, although we didn’t

have all the features our senior management wanted. We had the field

problems under control. We hadn’t added a ton of technical debt.

But the people who remained learned that they could work on one

project at a time, one task at a time, until it was done. They could

make more progress doing one thing at a time than splitting their time

among several pieces of work, even if the work was related.

If I could manage the project portfolio with an organization reeling from

a layoff, where we had an unstated strategic plan, where the senior

managers had trouble deciding what to do on any given day, you can

do this for your work. You may need different approaches for different

groups. One group might need to limit the work in progress, especially

if you’re in a serial life cycle and people with different specialties cycle

in and out of the project. One group might need to work in one-week

or two-week timeboxes, while another might find three-week timeboxes

easier to manage.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=19

PREFACE 20

Here’s the secret of project portfolio management: you can do it all. Just

not all at the same time.

Whether you’re a manager or not, you need to have a view of all the

work underway and all the work you want to do. That’s the only way

you can make good decisions about which projects to do when and with

which people. Even if those people are only you.

Effective managers and leaders create and use a pipeline view of all

of the projects, those in progress and those desired. They can see all

the potential work, as well as the people and other resources available,

and then match the work to the company’s (or group’s) mission and

strategic direction. This collection of projects is an essential tool called

the project portfolio.

Managers who lead make the difficult portfolio decisions. They look at

their company’s mission, they look at their mission, and they decide.

They decide on the mix of projects the technical staff can start at one

time, how long they are willing to let those projects run, and when they

need results. They decide on the strategically and tactically important

work. Then they do it.

Managers who manage the project portfolio decide when they need to

review project status. They have criteria by which to decide whether

the projects should continue. And if a project is not providing value to

the organization and should not continue, these managers kill those

projects. These managers learn their technical staff’s capacity so they

can plan. And, they make all of these difficult decisions that will allow

the organization to be successful.

Managers are leaders when they make the portfolio decisions. Managers

are leaders when they guide a team to success. Managers are leaders

when they request the team commit to finishing a doable amount of

work in a reasonable amount of time.

You don’t need to be a senior manager to manage the portfolio. Sure, it

helps if the organization has a strategy that translates into a mission,

which guides the top-level portfolio development down to the bottom-

most level. But let’s face it, most organizations don’t have that.

You need to understand your mission, understand all the missions

between you and the top of the organization, and know how to col-

laborate across the organization. Then you can develop and manage a

project portfolio successfully. Once you’ve defined the project ranking,

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=20

PREFACE 21

you communicate that project ranking to the entire organization, staff

the highest-ranked projects, and let your staff know which projects they

can ignore for now.

You may never have heard of project portfolio management. Or, maybe

you’ve heard of a bunch of mathematical formulas that even if you

can understand, you’ll never get your peers or managers to understand

and see. We’ll use some measurements, but no math. It’s easy to under-

stand, and it will help you make decisions. But the hard part of portfolio

management is not the math. You may find some of the decisions diffi-

cult, but the hard part is sticking with those decisions until it’s time to

reevaluate the portfolio.

Great managers build trusting relationships with their teams (Behind

Closed Doors [RD05]). In addition, great managers lead their organi-

zations by selecting the work to do and not to do, and therefore they

deliver results to the organization and build capacity in their teams.

This book is about that kind of leadership.

Before we get started, I thank all the people who took the time to review

and help prepare this book. They are Clarke Ching, Linda Cook, Esther

Derby, Mark Druy, Mike Dwyer, George Dinwiddie, Don Gray, Ron Jef-

fries, Andy Hunt, Hannu Kokko, Tim Lister, Hal Macomber, Robert

McBride, Steve Peter, Dwayne Phillips, Dave W. Smith, Daniel Stein-

berg, Dave Thomas, Gerald M. Weinberg, and Kim Wimpsett.

Any remaining mistakes are mine.

If you’re ready to lead your team, group, or organization, this book is

for you. Let’s start.

Johanna Rothman

July 2009

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=21

Chapter 1

Meet Your Project Portfolio
Your customers want your products to be filled with great features that

are well-tested and run smoothly. They don’t care about your projects,

and they certainly don’t care about your portfolio. Your customers care

about your products.

Keep that in mind as you work with your project portfolio. The portfolio

is not an end—it’s a means. Think of your portfolio as a pipeline of

potential work.

You will use your project portfolio to help you make the right decisions

to release valuable products frequently enough to fulfill your customers’

needs. The best way to do this is to use a lean and agile approach to

your projects and to your project portfolio.

In this chapter I’ll introduce you to what a project portfolio might look

like for you at your level of influence and for your kinds of projects. In a

way, that’s like saying I’ll introduce you to your appointment calendar.

You don’t value an appointment calendar or a project portfolio until you

start using it to shape your days, weeks, and months. That’s the job of

the rest of the book.

In the following chapters you’ll learn how to create, evaluate, rank the

contents of, collaborate on, iterate on, evolve, and measure your project

portfolio.

WHAT A PROJECT PORTFOLIO IS 23

You’ll follow this flow:

List of collected

work in rank order

....

Commit/Kill/

Transform

Decision

Kill

Project comes off the list of collected work.

If you must keep it, put it into the parking lot.

Decide how to transform

the project and commit to it once

itʼs been transformed

Transform

Commit

Fund the project and get

out of the teamʼs way

Pipeline of projects: emergencies,

status quo projects, projects that

could lead to growth, projects that

could lead to transformation

You collect all the work from the pipeline of projects and rank it. Then,

make the commit to/kill/transform decision so you can provide maxi-

mum value to the organization. Repeat as often as you decide you need

to make the project portfolio decision.

1.1 What a Project Portfolio Is

The portfolio is an organization of projects, by date and value, that the

organization commits to or is planning to commit to. In a sense, the

portfolio is a Big Visible Chart.

It will help you decide the following:

• When to commit to a project so a product development team can

start or continue a project.

• When it’s time to end a project and free a team for other work.

• When to transform a project and commit to the changed project.

• And, when it’s difficult to decide between projects, the portfolio

provides a visual tool that helps you negotiate which project to do

when.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=23

WHAT A PROJECT PORTFOLIO IS 24

Agile Approaches Help Project Portfolio Management

If everyone in your organization (senior managers, middle man-
agers, technical leads, functional managers, and project man-
agers) is wedded to a serial life cycle and no one is willing to
consider finishing valuable chunks of work frequently, you can’t
use a pragmatic approach to managing the project portfo-
lio. But if you’re willing to consider frequent releases of running,
tested features as in Extreme Programming Installed [JAH02],
you can be successful.

If you’re already using an agile approach for your projects or
an iterative or incremental life cycle where you have an oppor-
tunity before the end of the project to finish features, you can
use the ideas here to be a successful leader in the organization,
no matter what level you are.

If you use a serial life cycle where you can’t see any progress
until the end of a project, you will find these ideas more difficult
to use. If you use a serial life cycle, try to create interim deliver-
ables. The more frequently the projects deliver something you
can see, the easier it will be to manage the project and to man-
age the project portfolio.

You’ll keep all of the work in progress and all of the planned work in

your project portfolio. This is not a static document or useless artifact.

This is a tool the product development teams and managers use to

make the necessary trade-offs of which work to start and finish now,

what to do later, and what to do never.

The teams use the portfolio to see which projects to spend time on now

and what they might do in the future. Most important, they know where

not to spend their time. The managers use the portfolio to make sure

the organization is working on the most valuable work—the strategi-

cally important work.

Those product development teams may have any number of names:

IT, R&D, engineering, or even something else. The name doesn’t mat-

ter. What matters is that there are knowledge workers available to the

organization to innovate, to create, and to develop the products the

organizations uses or sells to improve its business.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=24

SEE THE HIGH- AND LOW-LEVEL VIEWS 25

The portfolio is the closest thing to the product development organiza-

tion’s backlog, because it’s organized by priority. But the portfolio also

provides you with a picture of the projects over time, so you can manage

project interactions, who’s assigned to which projects, and the general

risk and value of each project.

Managing the project portfolio is context-dependent. Your project life

cycles, your budgeting process, and how you do road maps all affect

the project portfolio.

If you’re willing to adopt lean concepts, you’ll find it easy to manage the

portfolio. These ideas include eliminating waste as you work your way

through projects; discovering and eliminating roadblocks to through-

put; evening the workload for people and teams; optimizing for the

entire organization, not just one piece of it; completing valuable fea-

tures in short time periods; and not creating inventory of partially com-

pleted work.

1.2 See the High- and Low-Level Views

Just as you want to see your calendar in high-level views (yearly and

monthly) and in more detailed views (weekly and daily), you’ll need to

look at your portfolio the same way. Sometimes, you need to see the

big picture for the whole organization to see where people are working.

Sometimes, you need to see the details to understand who is doing what

and when.

Throughout this book we’ll look at a variety of tools for working with

the information you store in your portfolio. You often have to decide

whether you need to take a high-level look at your portfolio to get a feel

for all of the projects you have working or a low-level view that shows

you more of the details but less of the overall pattern.

The following is a high-level picture of the portfolio for the organization.

You can see when the projects start and when everyone expects them

to finish. This portfolio is at too high a level to see who’s doing what.

But, if you are looking at the chart in January, you can see which

projects have actually started, which ones you want to start (Project3),

and which ones are scheduled to start.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=25

SEE THE HIGH- AND LOW-LEVEL VIEWS 26

Unstaffed

Work

Month/

Projects

Project5 Project5

Project4 Project4 Project4

Project3 Project3Project3

Project2Project2 Project2

Project1Project1Project1

MayAprilMarchFebruaryJanuary

I like using “unstaffed” for projects that haven’t started yet or for ones

I wish I could start but don’t have the staff to start yet. That’s because

I want to know the following:

• Have we started to work on this project at all? If so, can the project

team measure its velocity and use that as a prediction when we’ll

be done enough with this project?

• Do we need to reevaluate the portfolio if we have not yet started

this project?

• Based on changing market or business needs, do we need to

change who is assigned to the project, whether we should staff

this project, or whether we should change the project?

Answering yes to any of these questions means it’s time to rethink your

management decisions about projects.

If you use an agile life cycle, see how your portfolio might look, espe-

cially if you have to support already-existing projects:

Project 3 Project 3 Project 3Project 3Unstaffed work Project 3

Week 5

Project 4

Project 1

Project 2 Support Work

Irene, Stuart,

Steve, Sandy,

Betty, Brian

Project 4Project 2

Project 1Support Work

Tina, Tristan,

Isabel, Inge,

Sebastian

Project 1Project 1

Week 4Week 3Week 2Week 1
Week

Team

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=26

SEE THE HIGH- AND LOW-LEVEL VIEWS 27

In this portfolio, you can see that the teams work on one project for a

two-week timebox, do a week of support, and then work on a project for

another two-week timebox.1 This is not the only way to manage support

work, but the portfolio makes that decision transparent.

This next figure is another view of a low-level portfolio, where you can

see who is assigned to which projects and, in this case, features for the

projects.

This organization is using an incremental life cycle, not an agile life

cycle.

Week1 Week2 Week3 Week4

Tina Project1 Feature 1 Project1 Feature 1 Project1 Feature 4 Project1 Feature 4

Terri Project1 Feature 1 Project1 Feature 1 Project1 Feature 4 Project1 Feature 4

Tristan Project1 Feature 2 Project1 Feature 2 Project1 Feature 5 Project 2 Feature 1

Isabel Project1 Feature 2 Project1 Feature 2 Project1 Feature 5 Project 2 Feature 1

Irene Project 3 Feature 17 Project 3 Feature 17 Project 3 Feature 17 Project 2 Feature 1

Inge Project 3 Feature 17 Project 3 Feature 17 Project 3 Feature 17 Project 1 Feature 7

Stuart Project 3 Feature 17 Project 3 Feature 17 Project 3 Feature 17 Project 1 Feature 7

Steve Project 1 Feature 3 Project 1 Feature 3 Project1 Feature 6 Project 1 Feature 7

Sandy Project 1 Feature 3 Project 1 Feature 3 Project1 Feature 6 Project 1 Feature 7

Betty Project 1 Feature 3 Project 1 Feature 3 Project1 Feature 6 Project 1 Feature 7

Brian Project 1 Feature 3 Project 1 Feature 3 Project1 Feature 6 Project 1 Feature 7

Mary ManagerManagement Management Management Management

Unstaffed work

Project 3, Feature 18 Project 3, Feature 18 Project 3, Feature 18 Project 2, Features 2, 3, 4

Project 3, Feature 18

This portfolio reflects who’s working on which feature in an incremental

life cycle. It’s clear who is assigned to which feature and what work this

group cannot start until some people finish what they are doing—or

until someone in management changes the priority of the work.

Connecting Management’s Desires with Reality

by Vijay, Development Manager/Project Manager

My manager came to me with yet another project. So, I showed him my

monthlong project portfolio, with all the unstaffed work. He said, “But we

want these three projects done,” as he pointed to the high-level portfolio. I

swallowed and said, “Well, we can’t do them in this time with the other

work we have.”

He sighed. With the evidence in front of him, in a picture with colors, he

couldn’t argue. Well, he could, but it wouldn’t have helped. I said, “Look,

we can work in shorter timeboxes. We can start—and finish—fewer

1. Notice that all of these portfolio pictures start and end neatly on month or week

boundaries. That’s not because portfolios work like that but because it’s easier to show

the month or week boundary in a picture. If you finish a project or a feature on a Wednes-

day, your next project or feature would start on Thursday.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=27

NOW TRY THIS 28

features. You could even give me more open reqs so I can hire more

people. I guess we could incur some technical debt, but that would anger

Major Big Customer. Have you really ranked the projects in the order you

want them? If you have, we need magic. But maybe you can rerank and

have everyone in the group work on just one project. We could finish that

one and then go on to the next one.

Having the high-level perspective helps the whole organization see what

the company expects each group to do. Having the low-level perspective

helps the project team and first-level managers make the current reality

match expectations.

There is nothing like showing your manager data to help set their expec-

tations about what you can—and cannot—do.

1.3 Now Try This

• Are you concerned about using a portfolio to organize your proj-

ects? If so, write down why you’re concerned. Keep that list in front

of you as you read this book, so you can address your concerns.

• Is there any reason you would not want the transparency a project

portfolio provides you? Keep those reasons in mind as you read the

next chapter.

• If you work on projects with a serial life cycle, see whether there

are natural completion points where you can assess the project

state for the purposes of a project portfolio.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=28

Chapter 2

See Your Future
Portfolios do one thing extremely well: they make the organization’s

choices crystal clear. In this chapter, we’ll look at what your life might

look like when you decide to change how you manage.

2.1 Managing with a Project Portfolio

Portfolios make choices clear because they help leaders restrict which

work the project staff starts and finishes. If you use project portfolios,

you have the maximum flexibility as a manager. But if you’ve never seen

a portfolio or you’ve never used one, you might be concerned, as one of

my colleagues explained, “But, JR, if I commit to a project portfolio, I

won’t have the flexibility I need to manage what my group does when. I

can’t be responsive to the needs of the organization. I won’t be a team

player.”

A portfolio can help you be responsive, especially when project teams

work feature by feature in short time periods. When you manage the

portfolio, you limit the number of active projects. The fewer number

of active projects you have, the less competition the projects have for

the same people. That lack of competition for people allows them to

finish projects faster. You increase the number of completed projects,

which reduces the total number of projects the organization needs to

manage and allows new projects to start. That makes it easier to man-

age the portfolio. Managing the portfolio increases your organization’s

throughput.

The cause and effects of managing the project portfolio are shown in

Figure 2.1, on the following page. You’ll still have difficult decisions to

make. You may not know if your mission needs to change. You may

MANAGING WITHOUT A PROJECT PORTFOLIO 30

Ease of managing

the portfolio

Competition for peopleʼs time

Number of completed projects

Ability of people to finish projects quickly

reduces

reduces

reduces

leads to

Number of active projects

Number of new projects

 that start

leads to

leads to

reduces

Stabilizing Feedback Loop

Stabilizing Loop

leads to
Reinforcing

Feedback Loop

Figure 2.1: A dynamic view of what a project portfolio does for the orga-

nization

have loud discussions about which project really is number one. And,

as you work through those decisions, you’ll discover that you are per-

forming the difficult work of leading the organization by deciding what

to do now, what to do later, and what not to do.

When you live with a project portfolio, the portfolio allows you to create

a master plan. It creates a transparent link from the projects with their

schedules and iterations to the portfolio.

2.2 Managing Without a Project Portfolio

Managing without a project portfolio leaves you and everyone around

you with all sorts of debt.

When you don’t manage the project portfolio, you incur management

debt by having to make more and more critical decisions without suf-

ficient data. The products incur technical debt in the form of people

taking shortcuts to complete projects because they have too much to

work on to take the time to do whatever they need to do right. And as

an organization, you incur capability debt, because people (managers

and technical staff) can’t improve their capabilities when they’re over-

burdened with too much work to do. Without a portfolio, your situation

looks something like Figure 2.2.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=30

MANAGING WITHOUT A PROJECT PORTFOLIO 31

Number of emergency projects that must start

reduces

perpetuates

Ease of managing the portfolio

Competition for peopleʼs time

Number of completed projects

Ability of people to finish projects quickly

reduces

reduces

reduces

leads to

Number of active projects

Number of new projects

that start

leads to

leads to
reduces

Reinforcing Feedback Loop

Balancing

Feedback

LoopStabilizing Loop

leads to

Figure 2.2: A dynamic view of what happens when no one manages the

project portfolio

When your organization’s management refuses to make a project port-

folio, that lack of decision making is guaranteeing at least one or more

schedule games (see Manage It! [Rot07]). Or, people will decide which

project to work on first, and that decision may not agree with yours.

Without project portfolio management, you have more projects compet-

ing for the same—and limited—number of people. You find you can’t

commit to which people work on which projects when, you’re awash

in emergency projects, and you and your staff are running yourselves

ragged multitasking.1

When you don’t manage the project portfolio, you prevent the people

from finishing projects quickly. You have more and more unfinished

projects and fewer completed projects. That increases the number of

projects you have. And, the more projects you have competing for the

same staff, the more disorganized and split you become, and the more

emergencies you generate for overlooked and neglected projects (like

the ones you or your manager forgot about until they became emergen-

cies). All this increases organizational complexity and makes it harder

to manage the portfolio and, even worse, to finish anything of value for

the organization.

1. These can be seen in the Split Focus or Pants on Fire schedule games.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=31

MANAGING WITHOUT A PROJECT PORTFOLIO 32

The lack of decision making at the top flows down to lower-level man-

agers and technical leads. It’s tough to be a senior manager. If you’re in

a tight financial situation, making the wrong decision can make things

much worse. I’ve worked with senior managers who were paralyzed by

the fear of not making enough money, not having the right mix of prod-

ucts, or some other issue. They literally could not decide how to rank

the project priorities in a portfolio. If you’re in that position, start at Sec-

tion 11.8, How to Define a Mission When No One Else Will, on page 170.

The mission will help guide your decisions. An agile approach to your

projects allows you to take on risky projects, by helping you manage

the risk, as in Section 5.4, Rank the Projects by Risk, on page 73.

If you’re a first-level or middle manager, it’s possible your management

hasn’t decided on a corporate strategy. If that’s true, you can use your

portfolio to help them decide by defining your mission along with your

portfolio. See Chapter 11, Define Your Mission, on page 161.

Whatever you do, don’t hide from ranking the projects in your portfolio.

When you or your manager refuses to make a project portfolio, your

lack of decision making is guaranteeing at least one or more schedule

games (see Manage It! [Rot07]). Or, people will decide which project to

work on first—and that decision may not agree with yours. Look at the

feedback loop in Figure 2.1, on page 30.

If you don’t decide which project is first, second, and third, you encour-

age people to work on zero projects.

A Tale of Three Projects

by Aiden, Hapless Developer

I’m sitting at my desk, completely stuck. I have three must-finish-now,

ultra-high crisis projects. Every time I start one, someone interrupts me

with a question on one of the others. I can’t escape anywhere—people

have found me in the cafeteria, in the meeting room, in the lab. My

manager came by yesterday morning to tell me the first project needs to

be done now. Then he came by after lunch to tell me the second project

needs to be done now. I stopped working on the first and started on the

second. Then he told me at the end of the day that I need to finish the

third.

I can’t decide what to do first. What’s the point of working on any one of

these projects? He’ll just come by and tell me to change before I finish

anything. Maybe I’ll work on my resume or play a game of solitaire.

You want people excited about working for your company. That’s part

of creating a great work environment. Continuous multitasking doesn’t

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=32

WHAT ARE YOUR EMERGENCY PROJECTS? 33

just prevent people from accomplishing work; it also creates low morale.

Managing the project portfolio isn’t easy. But it’s necessary.

Everyone, no matter where you are in the organization, needs to know

enough about portfolios to collect their work, to organize their work, to

help evaluate each piece of work against the other work, and to be able

to say no to more work.

2.3 What Are Your Emergency Projects?

When I was developing the feedback loops (in Figure 2.2, on page 31)

so you could see the difference between managing the portfolio and not

managing the portfolio, I was explaining to a colleague what I meant

by emergency projects—those projects that start because of technical

debt. But my colleague asked, “What if the world changes and you need

to change everything you do?”

When the world changes, you may have to throw out most of your

projects and start all over again. That’s because of disruptive change.

Highsmith discussed this in Adaptive Software Development [Hig99] as

early as 1999. That’s why you need your mission. With a mission, you

can update your strategy and tactics (which projects to do when) so you

can respond to disruptive change without going out of business. Sure,

you might have to change your mission or strategy, but if you don’t

know where you are, you can’t go someplace else.

But emergency projects that arise from technical debt don’t occur with

disruptive change. Emergency projects exist to satisfy a customer who’s

not getting what he or she wants, e.g., a lack of features, too many

defects or other obvious technical debt, a project that was later than

desired. If you don’t rank the backlog, you might be missing a feature

when you need it. If you don’t check the design as you implement fea-

tures, the next feature may not fit into the system. If you don’t write the

code, you certainly won’t have the feature. If you don’t test the product

well enough, some features might not work or might not work in tan-

dem in the system. Emergency projects are the result of technical debt

and managerial debt.

If you’re collecting all the work and actively managing the portfolio by

reviewing it frequently enough, you rarely have emergency projects.

That’s because you see little problems before they become big prob-

lems; because you see progress or lack of it in a project; and because

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=33

LEAN APPROACHES TO THE PROJECT PORTFOLIO 34

project teams rarely incur technical debt because you’re using the mea-

sure of running, tested features to manage the portfolio. And, if the

world changes, you’re reviewing the portfolio often enough that you can

choose to commit to different projects if the world shifts.

2.4 Lean Approaches to the Project Portfolio

I’ve said you need to consider lean and agile approaches to your projects

and the portfolio. Agile thinking is the frequent—no more than four

weeks—release of valuable chunks of product. If you’re not familiar with

lean, consider some of the principles of lean in Lean Thinking [WJ96],

Lean Product and Process Development [War07], and The Toyota Way

[Lik04]:

• Think in terms of value. Producers create value, but customers

define it.

• Know how you create value. The value stream is how you identify

the problem you want to solve, how you manage creating the solu-

tion to that problem, and how the customer acquires the solution.

• Create process flow to make problems more transparent. The team

has what they need (people, knowledge, material, whatever) to

work in small chunks that they can handle and complete. When a

problem arises, they fix it.

• Use pull systems to avoid overproduction. Instead of creating “in-

ventory,” you create just the piece of the product you need now.

For those of you who are accustomed to attempting to define all

the requirements up front, you instead define the most valuable

requirement, and the team implements that. You avoid all the

work of gathering and defining requirements that are wrong, as

well as the work to implement them.

• Level out the workload. Make sure people finish the work already

in process before they start on new work. That eliminates multi-

tasking.

• Stop when there is a quality problem. If you work in small, doable

chunks and you finish one chunk before starting a new one, you

will immediately know whether there is a quality problem. If there

is, you fix it before going on to another task.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=34

WHY YOU SHOULD CARE ABOUT THE PROJECT PORTFOLIO 35

• Use visual control so no problems are hidden. Information radia-

tors such as velocity charts, burndown or burnup charts, and the

project portfolio backlog burndown charts make the state clear to

everyone.

If you keep these approaches in mind as you create and manage the

project portfolio, you’ll discover you can shift your focus from math

based on prediction to collaboration with others in the organization.2

2.5 Why You Should Care About the Project Portfolio

If you’re a senior or middle manager, you care about the project port-

folio, because that’s how you predict whether the organization can get

enough value out of its projects to remain on track—or, even better,

to grow. The more projects your organization can complete, the more

value you can realize from the work (assuming you’re evaluating the

projects in a way that makes sense), and the more value you provide to

the larger organization.

As a middle manager, you are trying to finish and then start more proj-

ects. Without real data about project progress, or without the ability

to make a reasonable prediction of how long a project might take, you

can’t be successful with all of your responsibilities.

As a technical lead or first-level manager, you care about finishing

projects, but you likely have a more immediate problem—how to get

enough people to finish the projects your management wants you to

finish. The portfolio helps you show your managers when you need

more people and what types of people they are.

2.5.1 Why Technical Leads Care About Portfolio Management

If you’re a technical lead, do you still need to care about the project

portfolio? Yes. If you have responsibility for a product, you are a tech-

nical lead and need to make sure you and your team are working on

the highest-value work and that your work is transparent to the rest of

the organization.

2. Another idea that’s key to learn is continuous improvement. You’ll see throughout this

book that your portfolio is not a static document. You will continue to work to improve it

to meet your current needs.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=35

WHY YOU SHOULD CARE ABOUT THE PROJECT PORTFOLIO 36

Do You Always Need to Manage the Project Portfolio?

A senior manager asked me, “Hey, life is good. We’re making
money hand over fist. Why do we need to keep managing the
portfolio?”

In a great economy, you don’t have enough people for all
the projects you want to do. So, ranking the projects by value
and making sure you finish the most valuable projects buys you
enough time and money to find the people to do the work and
to keep you profitable.

A down economy is the ideal time to choose the projects with
the highest value to the organization. This keeps the organiza-
tion going through the hard times. And, in a really tough econ-
omy, you need the portfolio with a lean and agile approach
to take on the risky projects that might make the difference
between your organization thriving and going under.

If you can predict the future, quit your management job, and
make a killing on the stock market. But if you’re like the rest of
us, you’ll need to keep evaluating and reviewing the portfolio
so you can deliver the highest value to the organization. It’s a
tough job, and you’ll be great at it.

Keeping Up with All My Projects

by John, Technical Lead

I haven’t been here long, but I’ve already accumulated projects that only I

have worked on. One of the projects encompasses the financial reports for

the CFO out of our site. It was supposed to be a short, small project two

years ago. It was, then. Since then, I’ve added at least twenty new

features and fixed a bunch of cosmetic problems.

It’s not hard work, but every time I got heads-down on something else, the

CFO called my manager and asked me to do something else. I finally got

tired of it and created a portfolio for my boss and me and a product

backlog for the CFO. Now when he calls, I can show my manager what I’m

doing, and we can schedule his changes in a way that make sense for

everyone.

Sure, I had to do a quick fix last week when we got a new request from

our auditors. That was an interruption—it didn’t go on the backlog. But

that’s just one problem out of the last few where I’ve had to interrupt

myself. The portfolio helps me organize my work. And, the backlog helps

my customers know when I’ll get to their problem and in which order.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=36

WHY YOU SHOULD CARE ABOUT THE PROJECT PORTFOLIO 37

Managing the Project Portfolio Reduces Schedule Games

Until you set your priorities, you are susceptible to various sched-
ule games. If you can’t decide which project is the number-one
project for you or your team to work on, you might be suffering
from the Pants on Fire schedule game. Or, if you are attempting
to work on more than one project at a time, you are suffering
from the Split Focus schedule game.

If you have a project portfolio where the organization’s priori-
ties are set, these schedule games become irrelevant, you get
more work done, and you finish more projects.

Project portfolios make your work visible. Without them, no one realizes

all the little pieces of work you’re doing. You have to make that visible,

and a portfolio is an ideal tool.

2.5.2 Why Some Managers Don’t Like Project Portfolios

Some managers are concerned that project portfolios restrict their op-

tions. They do. You are committed to honor these restrictions until the

next time you evaluate the portfolio. Several managers have said, “But

I won’t get to move people around day by day to where I need them.”

Exactly. I assume you want your staff to complete projects. Moving

people around frequently—and incurring the costs of multitasking—

is the wrong action. The books Quality Software Management: Volume

1, Systems Thinking [Wei92]; Slack: Getting Past Burnout, Busywork,

and the Myth of Total Efficiency [DeM01]; and Multiprojecting: The Illu-

sion of Progress [Rot04b] all discuss this. To see a collection of arti-

cles that discuss the costs of multitasking, see http://www.umich.edu/

~bcalab/multitasking.html.

Project portfolios don’t restrict your options as a manager. In fact, if

you use a project portfolio, you will find you have more choices of

when to start and finish which work, assuming you use lean and agile

approaches to your product development; see Chapter 9, Evolve Your

Portfolio, on page 128.

Report erratum

this copy is (P1.0 printing, July 2009)

http://www.umich.edu/~bcalab/multitasking.html
http://www.umich.edu/~bcalab/multitasking.html
http://books.pragprog.com/titles/jrport/errata/add?pdf_page=37

YOUR PORTFOLIO REFLECTS YOUR INFLUENCE LEVEL 38

Avoid Using the Portfolio as Wishful Artifact

A colleague told me about their project portfolio. “We plan
and faithfully reevaluate the project portfolio every quarter. We
make a nice spreadsheet. And then, the next day—or at least
the next week—we change who’s working on what. Our portfo-
lios look like our project Gantt charts: they look nice until reality
sets in, and then the next day or week they are wrong.”

Although the portfolio is a living document, if you change your
mind more often than you change the portfolio, you’re wast-
ing your time attempting to rank the portfolio and explain what
people need to work on and not work on.

The project portfolio is most valuable when the decision makers
agree that for the next month (or two or three) the technical
staff will work on these projects in this order. Then the techni-
cal staff do the work. At the end of the evaluation period, the
decision makers decide the ranking for the next period.

2.6 Your Portfolio Reflects Your Influence Level

Your portfolio will reflect the work you influence. Without regard to

your title, consider the level at which you work. That level depends on

how much of a product you can produce by yourself and who makes

the decision about who to assign to projects when.

Your level How you make portfolio decisions

Middle manager
You decide which projects to do when, possibly with your boss’ input. Your boss

or a senior management committee has the final decision.

Your boss tells you which projects to do when. You might make the decision

jointly with your boss. You do not interact with your peers or with senior

managers.

First-level manager

Senior manager
You make all the project portfolio decisions independently, or with a peer group

of senior managers who can commit the organization to work.

Even if you produce a whole product, as in the case of an agile team

or even a program of agile teams, but you don’t have the ability to

determine which project is number one, you’re a first-level manager for

the purposes of the project portfolio.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=38

NOW TRY THIS 39

Joe Asks. . .

What If My Organization Doesn’t Want to Change?

Change what you can.

Throughout this book I talk about making decisions for you, your
team, and your organization based on business value. Your real-
ity may make this difficult. Even if you don’t get buy-in or support
from above, you can still benefit from creating and managing
a project portfolio. It will provide the support and stability your
team needs. Your portfolio will help you answer your managers’
questions more quickly and completely—even if they don’t buy
into the notion of portfolios.

As you read this book, think about your level so you can make the best

decisions in your sphere of influence.

2.7 Now Try This

• Do you know the cost of multitasking in your organization? If not,

ask everyone in your group to track their time for no more than

one week. Ask each person to count the number of times they

multitask during the day. Ask them to estimate how long it took

to move away from the first task to the second one and how long

it took to reenter the context of the original task. You will be dis-

mayed. Determine an average cost per day of multitasking.

• If your manager thinks this is a bunch of hooey, walk him or her

through the cause-and-effect diagrams. Then discuss what multi-

tasking is costing your department.

• Track the number of emergency projects you have to see whether

you are falling into the traps of working with no portfolio.

• If you’ve been managing your own project portfolio for a while,

this part may seem like a review for you. In that case, consider

how you’ll help your peers collect their work and how you’ll work

together to evaluate, rank, and collaborate on the portfolio, espe-

cially over time.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=39

Chapter 3

Create the First Draft
of Your Portfolio

Now that you understand the basics, it’s time to collect all the work you

and your group are supposed to be doing. It’s easy to get caught up in

evaluating the work while you are collecting it. Don’t. First, make sure

you know about all the work people across the organization expect of

you. Then and only then will you be able to assign the work to your

portfolio by evaluating it and determining whether you need to do it

now. Don’t try to do everything at once; start collecting all the work

before you attempt to evaluate it.

3.1 Know What Work to Collect

You can collect work only in your immediate sphere of influence. That’s

because you don’t know what people two levels up or down from you

are actually doing. If you’re a first-level manager, you can ask each

person in your group what they are working on. But the more middle- or

senior-level management you are, the more you have to work through

your staff. Explain what you want to know and how you want to see it.

You might even use the next few paragraphs to help them understand.

Don’t be afraid to depend on others to help collect the work; be clear on

what you want to see.

KNOW WHAT WORK TO COLLECT 41

As you collect your work or as you ask others to collect theirs, remem-

ber to look at all five categories of work—periodic work, ongoing work,

emergency work, management work, and project work—to see who’s

doing what in your portfolio, as in Behind Closed Doors: Secrets of Great

Management [RD05]. Although you might think of project work first,

remember all the other work, too.

Some of your work is organized by time:

• Periodic work, such as monthly reports or yearly budgets or train-

ing or vacation. If it’s something you need to do at a specific time

but is not part of a project, it’s periodic work.

• Ongoing work, such as support for the operation of an organiza-

tion or department. You might need to check on the status of a

product owner building a product backlog. You might not want to

make this periodic (every Tuesday at 11 a.m.), but you don’t want

to forget it.

• In-process ad hoc work, such as emergency projects, work you are

doing as the result of crises, or other surprises.

In addition, you have work organized by intent:

• Management work, such as meetings with your managers, peers,

or staff; strategic planning; coaching; feedback; coordinating the

work of other people—anything that helps you make a decision

about who should do what and when. You don’t need to be a man-

ager to perform “management” work.

• Project work, such as the project to save the company, a hotfix,

or work to determine whether you want to acquire another orga-

nization. Projects are not limited to technical staff. A project has a

specific objective and a projected end date.

Once you gather all the work, you can organize it week by week and

person by person so you can see what’s really going on.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=41

KNOW WHAT WORK TO COLLECT 42

One way to do this is to make a chart like this:

Tasks Week 4Week 3Week 2Week 1

Unstaffed work

Make a yellow sticky of each piece of work you are supposed to do. If

you are working on a project for several weeks, make a sticky for that

project for each week. Put all the stickies in the appropriate week, above

the “Unstaffed work” line. Just get them all in.

If you’re a middle or senior manager, ask the managers who work for

you to do this with their groups also. I suggest you start this as a

person-by-person bottom-up activity so you can see what each per-

son in the organization is doing and planning to do for the next few

weeks. This will provide you with an early warning of multitasking or

emergency projects. When you start with the projects and work down,

people sometimes forget all the other little pieces of work, and it’s more

difficult to see the multitasking.

If you are working on just one project, especially if your project is using

timeboxes of up to four weeks and you work feature by feature so you

finish valuable work at the end of each timebox, this is a trivial step.

However, even if you’re working in an agile way or if you’re working on

several projects, collect all your work anyway. You need to see what

other people expect of you.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=42

IS THE WORK A PROJECT OR A PROGRAM? 43

Turn Ongoing Work into Periodic Work

I admit it, I forget things unless I’ve written them down. I’m espe-
cially bad with ongoing work, which is why I like to turn ongoing
work into periodic work as quickly as possible.

If you know you need to check on something, schedule it as a
periodic to-do in your calendar, on the same day of the week
and at the same time, and make it a repeating task. When
I’m a manager, I do this with one-on-ones. When I’m a project
manager, I turn my informal check-withs into repeating tasks.
A check-with is “Check with Ted to see whether he’s updating
the backlog for the next iteration’s planning.” If you realize you
don’t need to do this task this week, that’s great. You’ve freed
yourself from a task. If you don’t need to do it three times in
a row, maybe you don’t need to do it at all. Or, maybe you
change the periodicity of it.

Now, be honest with yourself, and put the work you can’t do in a given

week into the unstaffed work row. Now you have something to discuss

with your manager or your customers. You may have to say no to some

work, as in Section 6.6, How to Say No to More Work, on page 93.

3.2 Is the Work a Project or a Program?

I meet lots of technical leads, project managers, and functional man-

agers who claim to be working on seven, eight, nine, ten, twenty, and

forty-seven projects. No one can manage that many projects. When

I ask more questions, I discover I can clump the projects into these

categories:

• Large projects that keep evolving because the project team is not

working feature by feature in timeboxed iterations. Because it’s

not clear when the project will be done, people across the orga-

nization request more and more features, resulting in the “never-

ending project.” The project is valuable to the organization; it’s

just not clear if or when it will ever be done.

• Small projects that are unique and that result in a particular valu-

able deliverable.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=43

ORGANIZE YOUR PROJECTS INTO PROGRAMS AS NECESSARY 44

• Small pieces that are needed for a single deliverable but have lim-

ited use by themselves. These projects are part of a program and

need a program manager.

• Large projects that aren’t due yet but will be an emergency when

they are due if the project teams don’t start on them. Because

they aren’t due yet and the project managers and the teams have

so much to do, they postpone working on these projects until they

are an emergency.

In your portfolio, you want to manage the different kinds of work dif-

ferently. Any project that has a valuable deliverable, whether it’s small

or large, needs to be in your portfolio, with a unique team and due date

associated with it. But those small pieces of projects—those are not

projects per se.

If you have a collection or series of small pieces that individually don’t

add up to significant value—but together do create substantial value,

consider collecting them as a program. Then you add that program to

your project portfolio.

3.3 Organize Your Projects into Programs As Necessary

As you collect the work, especially if you have many projects, think

about how to organize the projects.

Are some of the programs from several subprojects? Do some programs

have phased releases? Do some products need to be separated into

smaller salable or releasable products?

A program is a collection of projects that all together deliver significant

value. Each project may have some value by itself. But the real value

is the collection of projects into one deliverable: a program. You might

have a program of a number of subprojects all with one release date. Or,

you might have a program of phased work, where each phase delivers

some significant value.

Many of My Projects Are One Program

by Pam, IT Project Manager

I was trying to manage about twenty-five projects. I was going nuts.

Then I realized we didn’t have a system unless all twenty-five projects

were done. Our system was a program. Even though all my projects were

subprojects, I could work with the business to define when the business

side wanted to see which feature.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=44

ORGANIZE YOUR PROJECTS INTO PROGRAMS AS NECESSARY 45

That meant I didn’t have to manage each project separately; I had a

context for all of them. I could sequence them and still provide a status

report for my managers. And, if they canceled the system, I didn’t have to

keep managing all of those projects.

Now it made sense for me to make sure I had people assigned just to the

subprojects we needed done now, not the ones that could wait.

Programs can take several shapes. Be ready to organize the projects

into programs where several projects have one interdependent goal,

whether that goal is one release, phases of releases, or several products.

3.3.1 Organize Projects into Programs

You might work in an organization that needs program management

but doesn’t realize it. Here’s a simple test. Do you work in an organi-

zation where Joe has one project, Sally has another, and Tim has a

third but none of them can release their project until all of the projects

are ready? If you have interdependencies between projects, you need

program management.

Program management can take several forms, but a common form is

the mechanism of organizing several interdependent projects together

as one program so that the program manager and project managers can

manage the interdependencies and successfully release the product.

Here Joe, Sally, and Tim all need to complete their projects so that the

program can release at one time:

Product you want to sell to customers

Joeʼs project Sallyʼs project Timʼs project

If you’re a project manager, your management may not realize they’ve

created a program when they initiated Joe’s, Sally’s, and Tim’s projects.

As you collect the work, talk with Joe, Sally, and Tim to see whether

they should be working as a program team. If so, it’s time to help

your colleagues realize the program is one entry in the portfolio, not

three entries as separate projects. If you’re a middle or senior manager,

assign a program manager to bring interdependent projects together.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=45

ORGANIZE YOUR PROJECTS INTO PROGRAMS AS NECESSARY 46

3.3.2 Organizing Projects into a Phased Program

Another form of a program is a phased series of projects for one prod-

uct. Sometimes, Joe, Sally, and Tom are working on “independent”

projects because they are phased development. That is, Joe’s project is

responsible for a feature set. Sally and Tom are working on “indepen-

dent” feature sets—independent as far as what the customer sees. This

looks complex, because it is complex. It’s also much harder to manage

a phased program and to make portfolio decisions about it.

Product you want to

sell to customers,

Release n

Joeʼs project

Sallyʼs project

Timʼs project

Product you want to

sell to customers,

Release n+1

Product you want to

sell to customers,

Release n+2

Common code base

Time

If the projects access the same code base, the projects are not indepen-

dent. The work may be sufficiently long or challenging that you want

the projects working at the same time. They are another kind of a pro-

gram: a phased program where you have release 1, followed by release

2, followed by release 3, and so on. You might need to start working

on follow-on releases (which your management thinks are projects) in

order to complete them by a desired release date. But those projects

are interdependent and need to be managed that way.

You especially want to avoid the situation that release 1 has been re-

leased, the market changes, release 2’s goals are completely changed,

but release 3 doesn’t change. If you manage the projects as a phased

program, you will at least ask whether release 3’s goals should be

changed—or even whether you should continue with this project (see

Section 4.1, Should We Do This Project at All?, on page 51).

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=46

ORGANIZE YOUR PROJECTS INTO PROGRAMS AS NECESSARY 47

Part of the problem with a phased program is that you want to under-

stand how much planning went into these phases. In a number of agile

environments, you might see five levels of planning:

• Product vision: A long-term guiding vision for the entire product

created by the product owner and/or product manager.

• Product road map: A time-based view of high-level features that

the product owner and product manager may want in the product.

• Release plan: For a given release, which of those features the prod-

uct owner wants the team to deliver.

• Iteration plan: For a specific iteration, what the team commits to

deliver.

• Daily commitment: For a specific day, what the team commits to

do.

Phased programs occur when one team cannot—by themselves—deliver

on the product road map via a release plan in the time the organization

wants the features.

3.3.3 Creating One or Several Products

Imagine that you start and complete a project with a limited scope.

You add more scope over several releases and some time and realize

that this one product actually should be several products.

Original product

Feature set 1 Feature set 2 Feature set 3 Feature set 4 Feature set 5

The problem is that you’re organized as a massive project or as a pro-

gram. What can you do?

First, if you’re the first-level manager, create a picture of how all the

pieces do something different and how they are connected—or not. If

you’re a higher-level manager, ask the project or program manager to

create this picture. This picture helps your peers and managers see

when and how to make a decision about several projects or one product

and how to organize it.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=47

ORGANIZE THE PORTFOLIO 48

You might decide to organize it like this:

Original product, as itʼs
currently released

Feature set 1 Feature set 2 Feature set 3 Feature set 4 Feature set 4

Evolved product, as itʼs
currently released

More likely, you will need some phases to separate the products and to

help the customers move.

As you collect the work, keep thinking about how the products or sys-

tems work together.

3.4 Organize the Portfolio

When it’s time to organize the portfolio from the work, organize it so

you can see the timeline of the work moving in one direction (I like left

to right) and can see the work from top to bottom, in rank-order prior-

ity. If you don’t know the rank order now, guess. You can see several

approaches to evaluate the portfolio in Chapter 5, Rank the Portfolio, on

page 65. Use a simple template to help you organize the work.

This starting point doesn’t need to be fancy. You are just capturing in-

formation. Don’t become involved in the formatting and making things

look pretty. You can start with something as bare bones as this:

Unstaffed

Work

...

Name the

person

Name the

person
...

...
Name the

person

Describe

the work

Week 4Week 3Week 2Week 1Who

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=48

USING TOOLS TO MANAGE A PORTFOLIO 49

Notice a few things about the blank portfolio. Since we’re starting from

gathering the work, the time frame is only a few weeks in duration. You

can’t predict further out than that, so don’t waste your time trying. If

you have more than four weeks of work to put in a portfolio, extend

the date to the right, and put the work you’re planning to do in the

“Unstaffed Work” area. Yes, I know you (or your group) are planning

to do it. But unless you can guarantee yourself that you (or whomever

is assigned) is definitely going to do that work at that time, such as

a vacation or some external date-driven event like a conference, it’s

unstaffed work.

If you’re working with a group of people to organize the portfolio, have

them write their work on stickies or index cards. You can write the

blank template on a whiteboard or flip chart, and everyone can post

their stickies on the template. You want to end up with a portfolio that

could look something like this:

Sept

Project 1

not clear!

User

group

meeting

User

group

meeting

demo,

tutorial

August

some

vacations

and User

group

meeting

prep

Some

vacations

and some

user group

meeting

prep

Project 3 Project 3 Project 3Project 3
Unstaffed

work

User

group

meeting

demo,

tutorial

July

Project 4

and

several

vacation

weeks

Project 1

and

several

vacation

weeks

Project 2 Project 4

Irene,

Stuart,

Steve,

Sandy,

Betty,

Brian

Project 4Project 2

Project 1Project 1

Tina,

Tristan,

Isabel,

Inge,

Sebastian

Project 1Project 1

Iteration 2Iteration 2 Iteration 1Iteration 1
Week

Team

This sample portfolio has a clear perspective on the next four weeks

and a high-level perspective for another three months, so you can see

the user group meeting demo and tutorial work are at risk. Given the

unstaffed work, it’s not clear what the teams will be doing past June.

3.5 Using Tools to Manage a Portfolio

When I work with managers and management teams, they always want

to know what tools they should use to manage the portfolio. When you

start with portfolio management, start with stickies on the wall. As you

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=49

NOW TRY THIS 50

Joe Asks. . .

How Do I Create a Portfolio with a Geographically Dis-
tributed Team?

OK, index cards won’t work with a distributed team. If you can’t
gather the team together in one room to collect all the work
the first time, consider using a wiki, a shared spreadsheet, or a
shared drawing. Be ready to iterate so you are collecting all the
work and people can see it.

become more facile with developing the portfolio and making decisions,

decide whether index cards will work better for you. If you have to share

information across a number of sites, a spreadsheet might work. Digital

pictures always work.

I’m reluctant to use any high-tech tool to manage the portfolio, because

any tool can be difficult to use and prevent people from making deci-

sions as frequently as they need. I much prefer stickies and index cards.

Whatever you use, don’t use a Gantt chart to manage the portfolio.

Yes, the projects may have interdependencies, but the Gantt chart is

the wrong tool. Gantts organize tasks in service to one deliverable: a

particular release of a specific product. Project portfolios, especially if

you color code them in some way, help you see interactions among

projects in service of creating value to the organization.

3.6 Now Try This

• Make yourself a project portfolio template, and post it on your

whiteboard or on a flip chart.

• Take ten minutes, and write down everything you’re doing on

stickies. If you’re managing a team of people or several teams or

an organization, ask your managers to do this with you. The more

people in your organization, the longer this step will take. Timebox

it so people aren’t staring into space but are writing.

• Post the stickies on the template in the correct weeks.

• Leave the portfolio on your wall for a few days to a week. As you

discover other work, make more stickies and post them.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=50

Chapter 4

Evaluate Your Projects
Once you have collected all your work into a draft portfolio, you’ll eval-

uate each project or program. For the purposes of managing the project

portfolio, treat your programs and projects in the same way. You don’t

have to do anything special to evaluate programs.

It’s difficult to decide which work is most valuable and which work

should be done first, so separate those decisions. The first time you

organize your work into a portfolio, you don’t have to make the ranking

decision. Your very first decision is about whether you want to commit

to this project, kill the project, or transform the project in some way

before continuing.

Resist the temptation to say “I want to do this project first” or third or

seventh as you proceed with the initial evaluation. When you separate

the evaluation from the ranking, it’s easier to make all the decisions.

You’ll have an opportunity to rank after you evaluate each project or

program.

4.1 Should We Do This Project at All?

Before you try to decide where each project fits in the portfolio, ask,

“Should we do this project at all?” If the answer is no, take the project

off the list. If the answer is yes, select a way or ways to rank order the

projects in the portfolio. Take the time to ask this simple question of

each and every project in your portfolio.

You may not feel as if you have the right to ask this question. You do.

If you’re a first-level manager in terms of influence, you have intimate

knowledge of the project and the product it will create or extend. You

DECIDE TO COMMIT, KILL, OR TRANSFORM THE PROJECT 52

know about the strategic importance of this project with respect to the

product. If you’re a middle manager, you can see all the initiatives and

can consider the evaluation of this project with respect to the others. If

you’re a senior manager, you can see the entire organization’s strategic

direction and see whether this project should be done at all with respect

to all the initiatives across the organization.

Any time you have a chance to eliminate a project from consideration,

do so. As you review the portfolio over time, note which projects you

don’t ever give many points. Can you take those projects off the list

altogether? If not, can you create a small project or a short iteration to

provide you with some information about whether this project is worth

the aggravation of considering?

Sometimes, you’ll put projects into the portfolio and not get to them

for a while. Sometimes a very long while. If that’s the case with some

of your projects, check to see whether you still need to consider these

projects. It could be that the answer is no. If you’re not sure, move the

project to the parking lot, Section 8.1, Keep a Parking Lot of Projects,

on page 119. Whatever you do, remove projects that you don’t need

to consider now. At some point, you can address the projects in the

parking lot. But keep projects you don’t have to consider out of your

immediate decision making. Don’t waste your energy on decisions you

don’t have to make right now.

4.2 Decide to Commit, Kill, or Transform the Project

Once you’ve decided you should do this project, you have a limited

number of decisions to make. You can commit to a project, kill a

project, or transform a project to increase its chances of success.

Making a commit/kill/transform decision requires data about project

progress, project value, and obstacles. If your projects are all using a

serial life cycle, the data doesn’t exist. In a serial life cycle, you have

no data about whether this project is valuable until very near the end

of the project—after you’ve spent virtually all the money and assigned

people to this project, excluding other potential projects.

Schedule games occur often in serial life cycles. Schedule games can

occur in other life cycles, but serial life cycles hide the games longer.

For example, if your project teams have been implementing through the

architecture instead of by feature, they run a high chance of encoun-

tering the 90% Done schedule game near the end. If you’re a manager

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=52

COMMIT TO A PROJECT 53

responsible for a number of serial life-cycle projects, you may have

succumbed to the Split Focus or Pants on Fire schedule games as a

way to manage the risk of any one project being a true failure. If you

feel you have no other choices in life cycles, please read “What Lifecy-

cle?” [Rot08b] or the appendixes in Manage It! [Rot07] and reconsider.

And, read Return on Software: Maximizing the Return on Your Software

Investment [Toc05] to try to do the project evaluation math that a serial

life cycle requires.

A project team that chooses any life cycle other than a serial life cycle

can provide you with data about the project much earlier than a serial

life cycle. And, because they can provide data, they also receive feed-

back about the work and risks in the project and can manage those

risks by reorganizing, replanning, or even redoing the work. You can

manage the project portfolio with a life cycle other than serial.

Let’s examine each of the decisions: commit to, kill, or transform.

4.3 Commit to a Project

When you commit to a project, it’s a real commitment, not a partial

commitment. Here’s what a real commitment means: that until you

make another conscious portfolio decision, you commit to funding this

project. You commit to assigning the necessary people to the project—

and only to this project. If the project needs something else (space,

capital equipment, desks, whatever), you commit to delivering that to

the project.

When managers don’t fully commit, they revisit their projects again and

again. This creates both management debt and project technical debt.

They also create capacity debt because people (managers and techni-

cal) can’t improve their capabilities when they’re overburdened with too

much work.

Recommitment Is Easy Now

by Sam, Scrum Master

We just finished our management review with senior management. Now

that we’re using agile, we take only about five to ten minutes to explain

our status in the meeting. We just show them our velocity and a demo. I

let them know about project-level obstacles. Management calls them

risks—which is fine with me.

Our management meets with us only quarterly, because our market isn’t

changing that fast, so quarterly is fast enough. But it takes me only about

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=53

COMMIT TO A PROJECT 54

ten minutes to prepare. The hardest part is noting what has changed in

the product since the last time we demo’d. Once we demo and show our

velocity data, management recommits to this project, assuming there is

more valuable work on our product backlog.

Before we moved to an agile life cycle, it took us a full week to prepare for

the meeting, and then our management took hours and sometimes days

to decide whether we should finish a project.

4.3.1 Understand the Requirements of Commitment

A commitment to an ongoing project is not a blind commitment. If the

project requires two DBAs and you have only one available because the

other is on another project, think about your options.

If you have agile teams that have been fully staffed up until now, let the

team tell you what they need. Sometimes, the team needs to have a con-

versation with the product owner about organizing this much database

work into this iteration’s backlog. Sometimes, the team will estimate

more time for the features so that other people can learn more about

what the DBA does. With those discussions, the product owner might

make other decisions.

What I most often hear is not a discussion about which features to

commit to when but a blind request or demand from people who say,

“We need these features now.” If you are not working in an agile way

now, it’s easy to encounter those demands. If you or your team receives

a demand for this feature now and you don’t have another DBA, you

have to decide which project is more important than the other. If you

can’t fully commit to a specific project, don’t start it in this time period.

Wait until the next time you evaluate the portfolio.

You might tell the project team you are happy with their progress and

the potential value on the product backlog, you recommit, and they

continue. If you’re ready to recommit to an ongoing project, do so. If

you’re ready to commit to a new project, do that. If you’re not ready to

commit, you might need to kill or transform the project.

4.3.2 Commit Fully

Commitment is not a “We’ll give you part of what you need, but. . . .” It’s

a full commitment.

This is a hard line. Here’s the problem. If you can’t fully commit the

necessary people and money to a project, you are guaranteeing the

project will not provide the value you want it to provide. Why would

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=54

COMMIT TO A PROJECT 55

you waste your people, time, and money on a project you can’t fully

commit to? If you have open reqs and you haven’t filled them yet, know

that part of the value the project team will provide to the organization

is the interviewing and hiring work. You won’t get the benefit of those

people on the project, but the project will be providing value to the

organization.

But if you don’t have open reqs and if you know you need more people,

you are fooling yourself if you think you can somehow commit to a par-

tially funded or staffed project. You would be better off, from a through-

put perspective, either having generalists or having at least a pair of

specialists so you can fully staff a project when you need to do so.

If you are trying to staff a project with people who are working part-time

on your project and part-time on other projects, you have an uncom-

mitted project. That’s because the cost of context switching will erase

any potential ability to focus on this project. Don’t partially commit to

a project; that’s a lack of commitment. Be honest. Take that project off

the committed list. You may have to move the project to the parking lot.

You might have to transform it. But never make a partial commitment.

4.3.3 Not Filling a Req Costs You Real Money

You have twenty projects you want to staff. You have people to staff

ten of them. You also have enough open reqs to staff another five. And,

you know that to interview will take time away from the people on the

projects. What’s a leader to do?

First, try to avoid this problem of having to hire many people. Hiring

costs you time and money and slows down people on the projects. The

project delays are not just from interviewing; they also occur when you

bring someone on and have to train that person (see Hiring the Best

Knowledge Workers, Techies & Nerds [Rot04a]).

If you are faced with the problem of open reqs and too many projects

and a decision to hire, try this approach. First, look at your top-ranked

project. Can you fully staff all of those projects? If you can, do. When

you stop being able to fully staff and not disturb already-jelled teams,

start hiring for the higher-ranked projects.

As you hire for those highest-ranked projects, keep the other projects

in mind. If you find someone who will fit in another project, great. But

watch out for hiring just for the lower-ranked projects. You might be

hiring people who don’t have the skills to finish more valuable projects.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=55

KILL A PROJECT 56

Two Part-Time People Do Not Make One Full-Time Equivalent

If you are trying to staff a project with people who are working
part-time on your project and part-time on other projects, you
have an uncommitted project. Don’t do that.

You may have heard of the term full-time equivalent (FTE). Orig-
inally it was used by accounting departments to explain that
several part-time staff added up to one full-time person. Grad-
ually, it moved from part-time staff to multitasked staff.

The problem is that if you have two people, each half on your
project and half on another, you don’t have a half-time person
at all. You might have someone who’s closer to 40 percent. If
you’re unlucky and each of those people are context switching
like crazy, you might have the equivalent of 10 percent of a
person. But you definitely do not have one FTE.

Some number of multitasked people are not an FTE. Some num-
ber of part-time people who are assigned to just one project
could be close to some number of FTEs, because they don’t
have the cost of context switching. But counting multitasked
people is wrong arithmetic.

Remember, the projects you’ve ranked higher return more value to the

organization. If you can’t fully commit to those projects, the organiza-

tion loses that value. For many of you, that’s real money.

4.4 Kill a Project

Your second possible decision is the decision to kill a project. The key to

killing a project is to make sure all activity associated with the project

stops. Sometimes, that’s harder than it should be. (See Section 4.5,

How to Kill a Project and Keep It Dead, on page 58 for more information

on good ways to kill a project and keep it dead.)

If the need for this project has changed, it’s time to kill the project—and

just the project. Move the people to another project. You may find that

if a project is too ambitious, you’ll have to kill it. Or, it may be that the

market has vanished or your organization’s strategy has changed.

The most serious form of killing a project is to stop all work on the

project and throw away all of the intellectual property associated with

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=56

KILL A PROJECT 57

Don’t Recommit Because of Sunk Cost

Sunk cost is not a good reason to commit to a project again.
In fact, you might need to kill the project and not throw money
away on it anymore. When you hear “But we’ve already spent
so much on this project,” that’s a cue to reconsider any more
commitment.

If sunk cost keeps projects alive, reconsider your ranking mech-
anism (see Chapter 5, Rank the Portfolio, on page 65). You may
need a different ranking approach.

And, consider closing the project quickly if you think you must
finish something to take advantage of the value created so
far. An iterative-incremental life cycle for the project makes this
possible.

that project—not the people, just the code or tests or drawings or what-

ever you have as intellectual property. Don’t throw away the people.

Assign them to other projects.

Postponing a project is another form of killing the project. If all the

team was supposed to do was learn about an architecture or proof

of concept or your customer doesn’t want that project now and won’t

fund it, you can postpone the rest of the project, realizing there will be a

startup cost later if you choose to restart it. You can choose to put this

project on the parking lot (Section 8.1, Keep a Parking Lot of Projects,

on page 119) if you don’t want to lose track of it.

The kill decision is difficult to make when you’re using a nonagile life

cycle. (Any decision is difficult with a serial life cycle. You have more

data with an iterative or incremental life cycle. You have the most

data with an agile life cycle.) If the project teams don’t have to get to

releasable product at the end of every iteration, the project team will

have some putting-away work before it’s safe to kill the project. This is

where many project teams and managers get confused. How much time

do they need to clean up? No matter how much time you give them, it’s

not going to be enough, which is why I recommend you give the project

team no more than two working days. At the end of two working days,

ask the team to conduct a retrospective, and assign the project team to

another project.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=57

HOW TO KILL A PROJECT AND KEEP IT DEAD 58

My Project Was Canceled, Parked, and Restarted

by Vu, Project Manager

We started a new project, trying for a particular kind of communication

product. We had to achieve a certain level of performance and reliability.

We tried a number of ideas for several timeboxes, but we encountered the

“laws of physics” and just couldn’t do what we needed to without different

hardware. So, our project was canceled.

In another company, that might have been the end of the story. But our

managers knew we had to keep this project in mind, so it went onto the

“parked projects” list. I’d thought that’s where projects went to die, but

every quarter our managers assessed this list. One day, my boss came to

me and asked about a new chip he’d heard about. Would it work on our

project to give us the speed we needed? I had no idea.

At the next portfolio evaluation review meeting, our project was

reinstated. We had a couple of different people—it had been two years

since we’d tried to do this project. But that was OK. It was cool to see that

we could kill a project for excellent reasons and then reinstate it for

excellent reasons.

4.5 How to Kill a Project and Keep It Dead

Think you’ve killed a project? Maybe you have never worked with

Marty. Marty is a well-meaning manager who didn’t want to kill a par-

ticular product or its associated projects because of his strong cus-

tomer relationships.

I Kept Several Dead Projects Alive Until I Realized the Cost

by Marty, Group Manager

I was responsible for several products for three years. After the third

year, my management decided to phase out Product2 in favor of Product4.

So, I was responsible for Product1, Product2 phase out, Product3, and

Product4. I was supposed to finish the Product2 phase out in two months.

Well, we did. Except, not all of our customers wanted to move to Product4.

I’ve known these customers for years and had personal relationships with

them. I wanted to be responsive, so I kept an active branch open on

Product2 and provided updates to those customers for about a year. And

then, my manager, Shelley, learned about project portfolio management.

Shelley realized I’d been staffing the Product2 phase out for more than a

year, not the three months she’d expected. Luckily, Shelley was nice

about it and didn’t fire me. I’d explained that the customers had paid for

support. She agreed with me and explained how the company had

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=58

KILLING A SENIOR MANAGER’S PET PROJECT 59

prorated the support from Product2 to Product4. So, I had not only

delayed Product4 releases because my staff was still working on

Product2, but I had used up their support time.

I was so embarrassed. I asked if we could do something for the

customers, and she said that we would have to! I kept my job, but it took

me a long time to get over that mistake. I’d cost the company the

opportunity to transition customers to Product4. I’d spent too much

money on Product2. And, Shelley kept a pretty tight rein on me after that.

But I learned my lesson.

Marty is an example of managers I’ve met in organizations many times.

Sometimes those managers are closer to the first-level manager, who

don’t know or understand the organization’s product strategy. They

make mistakes because the strategy isn’t clear. Sometimes, as Marty

was, they are midlevel managers who don’t understand why it’s so crit-

ical to work on just the strategically important projects. If you assign

a value to each project, especially as in Section 5.2, Rank Order the

Projects in the Portfolio Using Points, on page 66, these managers might

discuss the relative merits of their project, but they’ll follow your direc-

tion. But sometimes you have senior managers with pet projects who

are unwilling to kill these projects or leave them dead.

4.6 Killing a Senior Manager’s Pet Project

If a senior manager has a pet project that you think should be killed

and you think that senior manager is making this decision based on

personal values or feelings, you have several options:

• Ask about the strategic importance of this project. This is a good

time to meet with that manager, prepared with a list of all the

projects, possibly already ranked. Now you can ask, “Is this project

more important than this one?” as you walk down the list. If the

senior manager says yes, you can ask, “Tell me about its impor-

tance and for how long you expect it to be more important. Can we

phase releases and reevaluate its strategic importance at a par-

ticular time?” If you are lucky, you can move the project to the

parking lot.

• Offer to postpone it for a while for a more strategically important

project. This is one excellent use of the parked projects list.

• Say yes but mean no. This alternative can get you fired.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=59

KILL DOOMED PROJECTS 60

• Say no but mean yes. This alternative either causes multitasking

or trains your managers that you will do what they want without

standing up for your team.

Avoid giving your senior manager any ultimatums. Ultimatums push

people into positions instead of understanding each others’ principles

behind the decisions. For more information on principled negotiation,

see Getting to Yes [FUP91]. Ultimatums rarely result in anything except

a career-limiting conversation for you.

4.7 Kill Doomed Projects

As you evaluate each project, you might realize you have some doomed

projects in your portfolio. Here are some questions to ask if you suspect

your project is doomed:

• When do we need this project to release? Do we have enough time

to do something useful before that date?

• Can we make progress fast enough to meet the market window?

• Do we have people with problem-space domain expertise to staff

this project?

• Do we have any insights into what real customers might want out

of this project?

Let’s take each one of these in turn.

4.7.1 “We don’t have enough time to provide anything useful.”

If you haven’t started a project in time to meet its release date, you are

creating a doomed project. If you can’t meet a project’s release date,

don’t start it. At least, don’t start it under no-win conditions. Make

sure the project environment (staffing, tools, and other resources) will

support the release date. One way to do that is to start a short timebox

(two weeks is good), estimate the team’s velocity, and at the end of the

timebox see what the team has delivered for an actual velocity.

4.7.2 “We can’t proceed fast enough to meet the release date.”

If you can’t release this project in time to meet its due date, is it worth

doing anything at all for this project? Sometimes, it is worth delivering

a prototype, because you can then show the prototype to the customer

and gain more schedule. But if you’ve been working on the project and

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=60

KILL DOOMED PROJECTS 61

you know you can’t meet the deadline, stop the project now. You have

a doomed project.

4.7.3 “We don’t have people with enough knowledge to staff the

project.”

Sometimes, you have an appealing problem with significant technical

risk. Your staff might know just enough to think about this project but

not enough to deliver the project. (You’ve met a number of almost-PhDs

with that problem. Those are the people who’ve done all the course-

work but couldn’t finish their thesis because they couldn’t finish the

research.)

If you haven’t done all the necessary investigation, you don’t really

know whether the project is doable. Consider rethinking your project

so you have an initial goal from a short timebox of providing informa-

tion to research questions, not to release a usable product.

If the project is not feasible (an “otherworld” project), see whether you

can figure out how to bring it back down to Earth to what is feasible.

Otherwise, this project is doomed.

4.7.4 “We don’t know what real customers or users want.”

If you don’t know who your customers are or you haven’t talked to them

in six months, you will not deliver what your customers want. This is

a slow but sure way to create a doomed project.

Find out who your customers are, and keep talking to them. If the

customers or users don’t want to see the project team’s demos, you

have a doomed project. Kill that project now, and put everyone out of

their misery.

You might ask these questions at the beginning of a project, before you

even start it. Or, if you decide to try one iteration’s worth of work, ask

these questions at the end of that iteration so you can avoid recommit-

ting to doomed projects.

Review and evaluate your portfolio periodically. If you don’t see some

progress from the project team, you may have a doomed project. If you

and the team can’t figure out a way to make the project succeed, it will

become a doomed project.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=61

TRANSFORM A PROJECT 62

4.8 Transform a Project

The third option is to change the project in some way and continue the

project. However, this decision to continue is not a blind continue. You

might say, “We need different information before we next evaluate the

portfolio.” That tells the project team they need to change what they’re

doing to provide that information.

Demos Made the Difference

by Angie, Business Analyst

We were making progress on our project but hadn’t paid enough attention

to how the demo looked for our management. We had what we called

“hold-the-hand-of-the-demo” demo. We were early in the project and

could demo, but from the inside out. We didn’t have enough structure

finished that we could demo from the user interface. We had to prove to

ourselves that certain features would work before we organized around

the architecture. But that made our demo hard to see.

At a portfolio evaluation meeting, we had to explain our demo as we

demo’d the product. Management thought we were making things up and

that the software didn’t actually work. But it did. Our management

explained they needed to see a more real demo.

We changed our definition of done from “demoable” to “releasable” and

then showed them a demo the next time where we could start the demo

from the GUI, not from another program. That helped our management

see what we were doing.

Sometimes, the project is in trouble because of some of the project

staff, such as the project manager or some team members. First, gather

some data by talking with the project team, not just looking at the

quantitative data. When you transform a project, it can be as small

as clearing up misconceptions about the product backlog to changing

the entire team. Transformation means to change either appearance or

structure. Changing the team is certainly a transformation!

Sometimes, the team you have on the project is the wrong team for that

project. Sometimes, the team can’t make the velocity you require, or

the project manager isn’t helping the team—he or she is hurting the

team, or the backlog needs to change based on new information. What-

ever the cause, make the decision to change in the portfolio evaluation

meeting, and make sure a project sponsor meets with the affected peo-

ple to change the tasks or the staff.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=62

TRANSFORM A PROJECT 63

If you have the wrong team because they don’t have enough of some

kind of skill, then decide whether you want to reassign the team to a

different project or reconfigure the team or arrange for training. All have

a cost—and the reassignment and reconfiguring have a much larger

cost. Make a conscious decision.

If you desire a higher velocity, look at all the other decisions you can

make with changing the makeup of the team. Does the team have every-

thing they need in an environment? Are there policies that prevent the

team from working as quickly as they should? Does the team need

tools? Do you have unreasonable expectations about the team’s poten-

tial velocity? Any number of things can depress a team’s velocity.

Maybe you can add more people to the team. Adding more people to a

team may not increase its velocity. Adding more people will change the

team and has an initial cost while people learn to work with each other.

Again, make a conscious decision.

Project teams don’t work for many reasons. One common way is to have

a person who doesn’t work well with others—an unjeller, as in Manage

It! [Rot07] and Behind Closed Doors [RD05]. If your team explains you

have someone hurting their ability to work well together and they’ve

tried everything, move that person off the team. Sometimes that per-

son a technical team member. Sometimes that person is the project

manager.

You may not realize if a person on the project is hurting the team. If

you have an unjeller, do what you need to do to move that person off

the team. But, maybe you have someone who doesn’t fit the way you

want to work.

Agile Is Not for Me

by Stu, Project Manager

Look, I’ll be the first to admit it. I hate agile. I have to be nice to the team,

the team makes all the decisions, and I don’t get to build a Gantt chart.

It’s nuts. It’s no way to run a project. Man, that Scrum training was just

stupid.

So when they asked me to manage an agile project, I told them I was the

wrong person. They asked me to try. I did. But why did I have to build

velocity charts when I really needed a Gantt? What about design? These

people didn’t do design first. How could they possibly know what they had

to do in the product? It was nuts.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=63

NOW TRY THIS 64

I guess I wasn’t so surprised when my manager explained I was coming

off that project at the end of a portfolio evaluation meeting. Now I manage

facilities projects! What a crock. I’m good at managing software projects,

but my manager said my style conflicted with the team. I’ll be looking for

a new job.

If you make team changes, especially at the project or program man-

ager level, don’t be surprised if your staff decides to leave. Let them.

If you have people who don’t have enough flexibility to work toward

organizational value, you don’t want them.

Sometimes the product scope needs to change. In that case, make sure

you understand what the project team is working toward and how you

want to transform the project to manage that change. If the team is

using a product backlog, you can discuss the backlog with the product

owner. But if the team is not using a backlog, you might need to act to

change scope.

When There’s More Project Than Time

by Rich, Product Manager

We had a product requirements document (PRD) that told us what we

needed to do for Release 5.3. And, we were implementing by feature. But

we realized during the second month of feature building that we were not

going to be able to fit everything from the PRD into 5.3 when management

wanted to release it. We were able to raise this issue at the portfolio

evaluation meeting.

I was amazed by the conversation about the release. Instead of

management insisting that the team produce the work in the time, when

the team showed they couldn’t, management had a conversation about

the release: was it more important to release on time or release all the

features? The project manager had had that conversation earlier, so they

quickly agreed that it was more important to release on time. They

descoped the project early—something I had not seen management do in

other companies.

4.9 Now Try This

• Have you asked the question of each project: should we do this

project at all? If not, make sure you do.

• Can you make a commit/kill/transform decision for each project?

If not, why not?

• Make a decision about each project, so when it’s time to rank

the projects, you are just trying to rank the projects you want to

commit to.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=64

Chapter 5

Rank the Portfolio
Now that you’ve evaluated each project the first time, it’s time to refine

your approach to the portfolio. You have a list of projects you would like

to commit to. But you need to rank them against each other so that you

staff only the most important projects.

The most important projects are the ones that provide the most busi-

ness value. Business value might be a way to obtain more customers

or retain the ones you have or create a new market altogether. It might

be a way to release products faster or make more money on support or

spend less money on support. Business value will be unique for your

organization and your projects.

The fastest way is to rank each project according to its business value

without any discussion. That would provide you with an ordinal rank-

ing: 1, 2, 3, 4, 5, 6, and so on. But, how do you decide what the project’s

value is to the organization without discussion?

5.1 Never Rank Alone

It’s difficult to decide which work is most valuable and should be done

first. If you try making all the decisions yourself, you’ll likely be wrong

about something. Murphy’s law says you’ll be wrong at the worst pos-

sible time. You’ll achieve the best results by collaborating across the

organization to rank the portfolio with your peers so you can make

decisions for the organization, not just for yourself. See The Wisdom of

Team: Creating the High-Performance Organization [KS99] and Wisdom

of Crowds [Sur05].

RANK ORDER THE PROJECTS IN THE PORTFOLIO USING POINTS 66

Even if you are the CEO, bring in your senior management so they

understand why you rank projects the way you do. If you’re not the

CEO, you need to collaborate with others to make sure you can finish

the projects that encompass the products your organization wants to

release. If you’re a first-level manager or a technical leader, you need to

support your manager’s mission.

One way to collaborate is to bring in a draft portfolio that you’ve devel-

oped yourself. This doesn’t sound much like collaborating, but it is a

way to help other people see what you are thinking and why you think

certain projects deliver more business value than others. Don’t fall in

love with your draft or assume you can stop with your draft; engage

others in discussing it. Then you can decide together, as in Chapter 6,

Collaborate on the Portfolio, on page 86.

If you work in an organization where all your managers don’t want to

decide, you can decide. But before you decide without them, consider

facilitating their decision making—if they will let you. Remind them that

you don’t have to all be thrilled with the current portfolio; you all have

to live with it only until the next evaluation time, a form of limited con-

sensus. The more often you iterate on the portfolio (as in Section 7.1,

Decide When to Review the Portfolio, on page 107), the easier it will be

to reach consensus about which projects are most important for now.

5.2 Rank Order the Projects in the Portfolio Using Points

One easy way is to use points to rank the projects. Points help you

see the relative business value and ignite discussion about the rela-

tive value of each project. When you rank with points, you’re separat-

ing business value from funding. The number of points you assign to a

project is a representation of its value to the organization, not the fund-

ing you will provide. This separation of value from funding works in a

similar way that separating project sizing from duration helps project

staff estimates better.

Start with a large total number of points. You will assign a unique num-

ber of points to each project, showing its relative value to other peo-

ple. The larger the total number of points, the easier it is to see each

project’s relative value. If you have up to eight projects, you might be

able to use just 10,000 points. If you have more than eight projects,

start with 100,000 points. If you have thirty or more projects, partition

them in some way—by division or team or by internal or external—

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=66

RANK ORDER THE PROJECTS IN THE PORTFOLIO USING POINTS 67

because it’s close to impossible for human beings to understand that

many projects and their relative value at one time. If you can, partition

the ranking to no more than ten at a time; five to seven projects at a

time is best.

Now, assign a unique point number to each project. The number of

points you assign to a project helps you see each project’s relative rank

in relationship to all the other projects. Since I said not to rank alone,

I’m assuming the “you” here is a group of you. Don’t expect everyone

to be in complete agreement with everyone the first (or even second

or third) time you try to assign points to any specific project. Each

person will benefit from the discussion of how to decide how many

points a project receives. Consider adding the issues discussed later in

this chapter to the point discussion; see Section 5.4, Rank the Projects

by Risk, on page 73; Section 5.5, Use Your Organization’s Context to

Rank Projects, on page 74; Section 5.6, Who’s Waiting for Your Projects

to Be Completed?, on page 76; and Section 5.7, Rank the Work by Your

Products’ Position in the Marketplace, on page 77.

If you have two projects that are critical to the success of your orga-

nization, you might decide to assign one 5,001 points and the other

4,999 points. (Or, if you don’t mind points left over, you could assign

one project 5,000 points and the other 4,999 points.) That would show

everyone that no one needs to work on any other projects and that

these two must be completed before considering work on any others.

The project with 5,000 points needs to be completed first. You would

figure out how to create two teams to work on these projects simul-

taneously. I’m not saying to create one team to work on both projects

simultaneously; that’s multitasking. But I am saying that if these two

projects are by far the most important work you can do for the organi-

zation, then you would staff these two projects to the exclusion of all

other projects and have the two teams work on them concurrently.

With just two projects, if you have only enough staff to work on one

project at a time, you can even ask the project staff to work in one-

week or two-week timeboxes, alternating on each project. If one project

becomes more valuable, you can decide then to have the staff work

on just that one project for more than one timebox, assuming you

review the portfolio after every timebox. See Section 7.1, Decide When

to Review the Portfolio, on page 107 for more information on how often

to review the portfolio.

What if instead you have a situation like this?

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=67

RANK ORDER THE PROJECTS IN THE PORTFOLIO USING POINTS 68

Total Points 10,000

550Project 6

770Project 5

Project 4 780

Project 3 1,000

Project 2 3,000

3,500Project 1

PointsProject

Here you have two projects that have a relatively higher priority and

a whole bunch of other projects with low point values. You have more

choices now. One great choice is to fully staff the projects worth 3,500

and 3,000 points. Now you see who you have available. If those people

can start work on the 1,000-point project and make sufficient progress

without interrupting anyone from the top two projects, great. Staff the

1,000-point project. But if they can’t make progress without needing

help from the top two projects, either don’t start that third project,

because it’s not that valuable, or ask those people to work on one of

the top two projects. Or, ask them to work on the next project down on

the list. When you have two clear winners in the ranking and a number

of other much less valuable projects, do what you can to complete the

first two ranked projects without distraction.

You might find that those “extra” people can work on the top two proj-

ects in ways you might not have considered before, such as breaking

the product backlog items for each project into smaller chunks so you

can have more people working in small groups on small features. Or,

maybe the “extra” people can pay off some technical debt somewhere

or something else that does not require an interruption for the top two

projects. Don’t overstaff one of your top two projects, and don’t under-

staff any other project just to keep people busy.

Is there an ideal team size? Maybe. Schwaber in Agile Project Manage-

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=68

LEFTOVER POINTS PROVIDE METADATA 69

ment with Scrum [Sch04] says seven people give or take two is the right

number. In The Mythical Man Month: Essays on Software Engineering

[Bro95], Brooks discusses a ten-person team. Katzenbach, in The Wis-

dom of Team: Creating the High-Performance Organization [KS99], says

the number is “less than ten.” Weinberg1 says there is a factor of three

with teams, and teams larger than nine break into groups by them-

selves. My experience with teams is that teams smaller than five people

may not have enough people to finish features, and teams larger than

nine break apart into subgroups.

If you add more people to a project in the hopes of finishing it faster, you

may well slow it down. Every time you add more people to a project, you

increase the number of communication paths. Don’t move someone on

to a project just to keep them busy. Optimize at the team level to ensure

finished projects so you don’t create bottlenecks as in The Goal [Gol04].

To see more about productivity, take a look at Section 10.10, Measure

Capacity by Team, Not by Individual, on page 158.

Keeping people “fully productive” if they can’t add value to the most

valuable projects is not keeping them productive or adding value to the

organization—it’s splintering the efforts of the people who are adding

value. To see more about productivity, take a look at Section 10.10,

Measure Capacity by Team, Not by Individual, on page 158.

This is the whole point of going through the aggravation of relative rank-

ing of all the projects in the portfolio. You know what’s worth your time

to start. You know what’s not worth your time to interrupt. You know

which projects you have to staff now and which ones can wait until

later.

5.3 Leftover Points Provide Metadata

As you rank the projects, you might find you have points left over.

That’s fine. There’s no rule that says you need to use all your points.

Beware, however, of a lack of high-demand projects. You can think

about your projects in this way:

• Projects that keep the lights on—that support the organization

• Projects that grow the business

• Projects that create new opportunities

1. In personal communication

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=69

LEFTOVER POINTS PROVIDE METADATA 70

Are any of them high-demand projects? If you have more projects that

keep the organization running and no projects that grow the busi-

ness or that create new opportunities, you may not have high-demand

projects. Review your mission (Section 11.3, Define an Actionable Mis-

sion for the Organization, on page 163), or initiate some strategic plan-

ning to see how to grow or create new opportunities.

If you have many points remaining, say up to a third of your points, it’s

time to review your mission to see whether you should consider other

projects. Many points remaining might indicate no one is demanding

your projects. How do you provide value to the organization? Consider

and propose projects that reflect that value.

Or, if all the projects have a relatively small number of points, other

people in the organization don’t care much about these projects. Again,

review your mission to see what other projects you might offer to move

the organization forward.

A project portfolio with projects that aren’t valuable enough to have peo-

ple clamoring for each of them is a sign that your organization is losing

sight of its strategy or mission—or that the marketplace doesn’t want

what you offer. The more “keep the lights on” projects you have, the

less people care about your projects. Reconsider where you’re headed.

I bet you have many more than two projects. As you assign points,

make sure each project has some point value—unless a project has

no value. In that case, remove the project from your portfolio list now.

That’s why it’s worth asking the question for every project: “Should we

do this project at all?” (see Section 4.1, Should We Do This Project at

All?, on page 51 for more information). Read Section 4.5, How to Kill a

Project and Keep It Dead, on page 58 for ways to kill projects and keep

them dead. Now, you can rank order the projects you want to consider.

Now that every project has a unique number of points, identify the

highest-ranking project, and assign a team to that project. Proceed

down the project list, assigning a team to each project, until you have

no more teams to assign to a project.2

When you assign teams, assign an entire cross-functional team so that

the project is fully staffed. Staffing a project with just developers or

just testers doesn’t provide you with a “completed” project—it means

2. If your organization has been agile for a while, let the teams self-assign.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=70

LEFTOVER POINTS PROVIDE METADATA 71

Project Costs Can Affect Ranking

If you’re trying to decide whether to bid a fixed-price contract
or if you have a limited budget for your projects, you may have
to estimate the cost or duration of a project when you are mea-
suring its value of the project.

First, you can start a project for a short timebox, measure its
velocity, and see whether you want to continue it. Second, you
can talk to your customer if it’s a fixed-price bid and explain
that if you have to guarantee a fixed price, your price will
have to be high enough to manage your risks. That’s not a
good deal for the customer, so maybe you can do a little, get
some feedback, and refine the total price along with the date
and the feature set as you proceed. If you have a team that
knows about agile and has practice working in timeboxed iter-
ations, getting to releasable product, you can show your cus-
tomer your progress and explain the cost of a timebox. Then, it’s
the customer’s decision about how many timeboxes and how
many features. The third alternative is to stop using projects and
rank each feature, as in Section 9.4.1, Fix the Number of Tasks In-
Process, Kanban-in-the-Small, on page 133. Here, the customer
pays by feature.

You can’t definitively predict any project’s cost before you’ve
started it. You can estimate the project’s cost, preferably with
some experience delivering a chunk of value. (For other estima-
tion approaches, see Manage It! Your Guide to Modern, Prag-
matic Project Management [Rot07].) You can work with your
customer to bound the project’s cost as you proceed. You can
work on pieces of functionality for all of your customers—one
at a time—until you’ve finished the work the customer wants to
pay for.

But don’t think you can accurately predict project cost. You
can’t. No one can. If you think you must, make sure you add
plenty of padding, because no matter what you add, it won’t
be enough. A better idea is to work feature by feature, reassess-
ing and, if necessary, reestimating your project at the end of
every feature.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=71

LEFTOVER POINTS PROVIDE METADATA 72

Joe Asks. . .

Who Should Assign a Value to Each Project?

In an ideal world, there would be a group of people with the
responsibility to decide the relative value of each project. These
people would meet often enough that you would always know
how each project is ranked. In some organizations, a project
management office (PMO) does this. In other organizations,
product management does this. Some agile organizations ask
their product owners to get together and rank. In other organi-
zations, your senior managers would do this. But your world may
not be ideal.

If you don’t have someone else to rank order the projects, rank
order them yourself, using the approaches in this chapter. Even
if you’re wrong, you’ve provided the organization information
about what’s not first. Use your mission (as in Chapter 11, Define
Your Mission, on page 161) to help guide you. You can always
ask for help from your peers to help you assign points.

No matter what, make sure someone decides on the rank
ordering. Otherwise, you won’t know which projects to start and
finish first.

you have unknown technical debt because the project staff isn’t getting

feedback from the other people who help create an entire product.

If you’re a functional manager, you can’t assign a cross-functional team

to each project, because you don’t have responsibility or authority for

those other people. In that case, make sure your ranking reflects the

value of the project to the entire organization, not just your group. And,

work with your peer functional managers, as in Chapter 6, Collaborate

on the Portfolio, on page 86, so you and your peers are all staffing the

same projects at the same time for the most value to the organization.

You will probably run out of teams before you run out of projects.

If you have more people available than projects to finish, make sure

you’ve staffed the projects with enough people, and revisit your mis-

sion, Section 11.3, Define an Actionable Mission for the Organization,

on page 163. You might not be considering all the projects you could

offer to the organization to add value.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=72

RANK THE PROJECTS BY RISK 73

5.4 Rank the Projects by Risk

If you’re working with other people to decide about the project portfolio

for the organization, recognize what senior management needs to know:

the risk of doing this project, what the project will provide, and whether

the return outweighs the risk.

You may have seen risk/return decision matrixes like this before:

Low ReturnHigh Return
Return/

Risk

Low Risk

High Risk

Low risk, low
return

Low risk, high
return

 High risk, low
return

 High risk, high
return

You’re not supposed to start the high-risk projects, because they’re too

risky. You’re not supposed to start the low-return projects, because

they don’t provide enough value to the organization. I have two ques-

tions, and I bet you do, too. How are you supposed to know in advance?

And, is there a way to start some of those high-risk projects and see

whether they are as risky as you think they are or have the potential to

return as much as you think?

You can’t know in advance of starting the project. But you can start a

project for a short timebox, ask the team to measure their velocity and

report on their obstacles, and ask them to predict their future velocity.

You can even leave those projects for several short timeboxes before you

actually assess the relative risk of the project.

In all honesty, the only projects that are too risky to start are the ones

that can’t return anything you can see in a few weeks. Once you can

see some progress (or lack thereof), the project is no longer as risky

because you know how long it took for you to see this much progress.

Now you just have to evaluate the potential return.

This means that the period in which you want to reevaluate the portfolio

dictates how long your waterfall life-cycle projects can be. If you want

to evaluate the portfolio every quarter, your waterfall projects have to

be no longer than a quarter in duration. Otherwise, you’re not being

honest about the portfolio evaluation.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=73

USE YOUR ORGANIZATION’S CONTEXT TO RANK PROJECTS 74

Joe Asks. . .

Why Should I Consider Highly Risky Projects?

Highly risky projects may offer you opportunities you may not
have considered, such as helping you either consolidate or
expand your business capabilities and offerings. Consolidating
your business helps you refine your mission and refine your strate-
gic planning so you can keep your projects focused on your
core market. Expanding your business helps you find new mar-
kets and customers. Healthy organizations both consolidate
and expand, possibly at different times. But what they don’t do
is only consolidate, reducing all risk and opportunity.

If you’re not considering any risky projects, you have a limited
life span as an organization. If you always play it safe, you’re
preventing the organization from moving forward in any dimen-
sion. After a while, you’ll have only risky projects. You won’t
have enough data about the true project risk or value to select
from among them.

If you’re in a position where you have only risky projects, use
agile and lean approaches to reduce the risk of starting them.
Choose the project with the most risk and the highest potential
return and start work in short timeboxes, making sure the project
team knows you want to see demonstrable progress at the end
of every iteration.

Many of the high-return projects are high risk, which is why I sug-

gest you forget the idea of looking at risk at all. Manage the risk by

using an incremental or, even better, agile approach to the project. Start

with your organization’s context of what moves the organization ahead

instead of risk.

5.5 Use Your Organization’s Context to Rank Projects

Sometimes, assigning points is too difficult, or you really can’t tell

which project is most valuable. In that case, look at the entire con-

text: where you are as an organization regarding your portfolio man-

agement, who’s waiting for your product to solve their problems (and

reduce waste), your product’s position in its life cycle, and the overall

health of the product development organization.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=74

USE YOUR ORGANIZATION’S CONTEXT TO RANK PROJECTS 75

5.5.1 Define Your Organization’s Context

If you’re new to managing the portfolio, you may have a bazillion proj-

ects, all of which are emergencies and all of which need to be done now.

In that case, you will have to make choices, but you’ll need to look at

who’s waiting for which release, how many products you have, where

they are in the marketplace, and the overall health of your organization.

When you look at who’s waiting for your running, tested features—

your customers—you may be able to define who is more important. You

can use who’s more important to help you rank the projects. It’s not

always a C-level person, such as CEO, CFO, COO, or any senior man-

ager, who’s most important. It may not be Very Important Customer if

you’re in a product development organization. Sometimes, you need to

do work that’s blocking your ability to produce products.

Our Most Important Project Was the Build System

by Drew, Senior Architect

We were having a terrible time releasing products. Our releases got longer

and longer. We had at least thirty projects in the pipeline, and customers

were screaming for more releases. We decided we had to rank the projects

so we’d know which ones to do first.

Because our builds took longer than three weeks to complete, we decided

that spending a month fixing the build system would help us release

products faster, so that became our top-ranked project. I, along with three

other senior people, worked on it for one month. Between adding a few

more computers and a rearchitecture of our build system and a little

rearchitecture of the main product, we’d gotten the build system down to

building in a day. It wasn’t perfect, but that was enough to allow the

product teams to make progress much faster.

We actually did calculate ROI for the project. We’d originally thought we

would save about thirty person-days a month. Turns out we saved about

100 person-days a month. We had no idea how much our build system

had been costing us. We would have just kept complaining about it and

living with it until we looked at all the work and realized we couldn’t move

toward a more agile approach for any of our projects until we fixed the

build system.

Some organizations have many products in various stages of their life-

times. You may have only one project team attempting to develop new

products, adding new feature sets to existing products, and fixing what

needs to be fixed for more mature products. In that case, you need to

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=75

WHO’S WAITING FOR YOUR PROJECTS TO BE COMPLETED? 76

look at who’s waiting for your projects to be completed and who’s feeling

the pain of the waste in the products.

5.6 Who’s Waiting for Your Projects to Be Completed?

If you are working in an IT organization, you may know who your

customers are by name. Some of them might have titles such as CFO

or CEO. And, although it’s tempting to finish projects for people in the

organization who are C-level people, they may not need the projects

done as much as some of the other people. If you’re working in a

product organization, you likely have people who represent your cus-

tomers (product managers or product owners) in addition to your other

managers.

Whoever your customers are, the base question is the same: “How do

you calculate the value of the projects to each of your customers?” One

way is to look at the waste in your customers’ current work now. You

can build a waste matrix that helps you quantitatively evaluate the

current waste.

We can't
release more
often than
once a year
and that's

optimistic. We
need to

release every
six months

This project
will helps us
do all the

other projects

75
developers,
30 testers

105 people
will be able to

work in a
more flexible

way

We can't do
release 6.5
without this

We can't build
every day or
even every
week so the
changes pile

up

Build System
Performance

Relative
importance of
eliminating
this waste to
your company

Relative value
for managing
this waste as
opposed to all

the other
projects

total
customers

Value= total
customers *
kind of waste

* relative
importance to
your company

Trigger date:
After this date,

there's no
point in

delivering the
product

Kind of wasteProject

Too often, we forget that waste begins at home. I bet you have projects

on your list that will reduce your staff’s waste. Those projects are the

“figure out how to automate the testing” project, the “rearchitect the

build system” project, and the “measure the performance for this sce-

nario so we know why when we touch that code performance tanks”

projects. Use the waste matrix to calculate your staff’s wasted time

to rank those projects. That matrix will help you move those projects

higher up on the portfolio.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=76

RANK THE WORK BY YOUR PRODUCTS’ POSITION IN THE MARKETPLACE 77

5.6.1 Qualitative Questions That Help You Determine Waste

Start with the qualitative questions, no matter whom you ask. The qual-

itative questions help you see the problems your customers are trying

to manage.

• What kinds of workarounds are you using now?

• After this project is complete, what changes?

• Do we know what success looks like for this project?

5.6.2 Quantitative Questions That Help You Determine Waste

Once you’ve finished with the qualitative questions, ask questions

about data.

• How will this project affect revenue?

• How will this project help us acquire new customers or retain

existing customers?

• How will this project reduce our operating costs?

• How will this project move the organization forward?

Once you know the answers to these questions, your customers can

calculate their ROI. Listen to them. If they can’t see enough value to

somehow increase revenue, obtain or retain their customers, or reduce

their operating costs, your product has little value for them.

5.7 Rank the Work by Your Products’ Position in the Marketplace

If you’re selling a product outside the organization, you may have a

tough time calculating your customers’ waste, especially if you’re trying

to decide which feature has to be built when. Yes, that’s part of the

product backlog decision, but if some of your customers are clamoring

for feature 10 and others are clamoring for feature 47, which one do

you really do first?

The key is to review where your product is in its marketing life cycle.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=77

USE OTHER COMPARISON METHODS TO RANK YOUR PROJECTS 78

Early Market

End of Life

Innovators Early Adopters Early Majority Late Majority Laggards

The
Chasm

Time

Size of
Customer
Base

Mainstream

The earlier you are in Moore’s marketing model Crossing the Chasm

[Moo91], the more you have a wide variety of customers who want a lot

right now. In that case, take your loudest customers (people who will

be reference accounts), ask them where their waste is, and finish those

projects. The more iterative and incremental the projects are, the faster

you will finish their projects and be able to go on to the next projects.

Once you’ve hit the early majority, you don’t need to release a given

product as often as you do before the chasm. But it still makes sense to

finish projects internally so you have choices of when to release which

product for which marketplace. Now you can ask your best customers

where their waste is so you can make your choices.

Those early adopters are valuable customers, but you need to be care-

ful. The more you ask them what they want, the more they think you

have promised them something. That’s a problem when you reach a

larger audience and the early adopters still think they have the same

influence and that you’ve promised them features. Careful management

of your project portfolio can save you here.

5.8 Use Other Comparison Methods to Rank Your Projects

If you can’t use points or it’s too hard to calculate waste, you still have

several choices to rank your projects. Try pairwise comparison, single

elimination, or double elimination.

5.8.1 Use Pairwise Comparison to Rank Projects

For pairwise comparison, make a simple list of all the projects. For

our purposes, a project is a unique release of some collected set of

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=78

USE OTHER COMPARISON METHODS TO RANK YOUR PROJECTS 79

features. (That specification may be vague where you work.) If you wrote

your projects on stickies when you were collecting all the work, as in

Section 3.1, Know What Work to Collect, on page 40, this part is easy.

If you didn’t make stickies or index cards before, make them now.

Place all the stickies on a wall. If you’re using index cards, put them

on a table. Take two stickies. Hold them up so everyone can see them,

and ask, “Which one of these is first compared to each other?” Of the

two projects, one is a higher priority than the other. Put the higher-

priority project at the top of the list, and put the next one underneath

it. Now, take the third project. Compare it to the first project: “Which

one of these is first compared to each other?” If the third is higher

priority than the first, put it at the top of the list. If the first one is still

top priority, compare the third to the second. Keep going until you’ve

looked at all the projects and compared them to each other. At the end,

you have ranked your entire project list.

This is just like what the eye doctor does when you’re being fitted for

new glasses. My eye doctor says, “Which one of these is clearer: this

one or that one?” first for the left eye, then for the right eye, and then

finally for both. You have to make only one decision at a time. Imagine

if you had to look at each image with each eye before she changed both

at the same time. Too confusing.

5.8.2 Consider Single- or Double-Elimination Tournament Decision

Making

Sometimes you have groups of projects and need to pit some projects

against others before looking at the entire picture. This is especially

helpful if you have groups of projects serving different constituencies.

A colleague in an IT group explained, “We have internal projects for

our finance and sales groups, but we have external projects that allow

our customers to update their information via our website. We have to

organize the projects into internal projects and external projects, eval-

uate them inside their groups, and then compare against the groups.”

Single-elimination or double-elimination tournaments may help.

In single-elimination tournaments, such as in tennis tournaments, you

start by pitting each project against another project. The “winner”—

the higher-priority project—goes on to the next round. In the previous

single-elimination picture, you can see of the eight projects, “Project 3”

comes out as the winner.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=79

USE OTHER COMPARISON METHODS TO RANK YOUR PROJECTS 80

Project 1

Project 2

Project 3

Project 4

Project 5

Project 6

Project 7

Project 8

Project 1

Project 3

Project 6

Project 8

Project 3

Project 8

Project 3

Figure 5.1: Single-Elimination Tournament

If you have groups of projects and don’t know which group to do first,

single elimination is a top-down approach to choosing.3

However, you might need a slightly different approach to eliminating

projects from consideration. In that case, try double elimination, espe-

cially if you have many options for which projects you can staff.

Double elimination is a form of pairwise comparison and helps every-

one feel as if they have fairly evaluated all projects against one another,

because it forces all projects to be compared to each other. In the pre-

vious picture, the initially “losing” projects run off each other on the

bottom. A project isn’t “out” until it loses twice. Double elimination

helps you see the first project and the second project. If you have many

projects in competition for the next slots down, consider using points

to help you see the relative business value of each project.

3. Enthiosys has collaboration games for deciding about the relative ranking of projects,

similar to single and double elimination.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=80

DON’T USE ROI TO RANK 81

Project 1

Project 2

Project 3

Project 4

Project 1

Project 3

Project 2

Project 3

Project 2 (L)

Project 4 (L)

Project 6 (L)

Project 2

Project 5

Project 6

Project 5

Project 3

Project 2

Figure 5.2: Double-Elimination Tournament

5.9 Don’t Use ROI to Rank

Many managers and organizations want to calculate ROI to decide how

to rank or whether to fund projects. In my experience, ROI is almost

always a lie or, at the least, fun with numbers. Many organizations

attempt to calculate ROI as the total return for a product divided by

the money invested into developing that product.

That’s because for product companies who sell to a mass market—one

where you cannot identify each customer—you can’t predict sales over

the product’s lifetime. Much of the time, you can’t even predict the sales

for a given year. If you can’t predict sales, you can’t calculate your ROI,

the producer’s ROI. The consumer’s ROI is a different question. See

Section 5.6.1, Qualitative Questions That Help You Determine Waste, on

page 77 for ways to start reviewing your consumers’ ROI.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=81

DON’T USE ROI TO RANK 82

Joe Asks. . .

Is There One Right Ranking Approach?

No. Select a ranking approach that fits your sphere of influence
and your organization’s general approach to projects.

For example, if you are a group of first-level or middle-level man-
agers and all your projects are agile, try points. Do consider
your entire organization’s context: the perceived relative risk of
your projects, what your customers expect, who’s waiting for
your product, and so on. If you are a first- or middle-level man-
ager and you’re transitioning to agile or prefer an incremental
approach to projects, you might need to consider more con-
text or who’s waiting for your project or who has waste you
need to eliminate. If you’re part of a senior management team
and agile doesn’t mean anything to you, single or double elim-
ination might work best.

If the ranking approach you selected isn’t working, try another
approach. Remember, the more you discuss why you rank a
project one way or another is most important to defining the
relative ranking for each project, not the actual approach you
use.

IT organizations and custom development organizations might be able

to calculate ROI, but only if they have a commitment from their cus-

tomers to use or buy the product and they know how many customers

they will have over time. That’s almost impossible for IT organizations.

Custom development groups might be able to calculate ROI.

Return on investment is really a look at revenue over time. Most often,

you want to understand how soon you will see any revenue and how

long it lasts. That’s where you need a crystal ball. You need to know

how many people would buy the product, how much you can sell it for,

and for how long you can keep selling the product. That’s too many

unknowns for me. Sure, I can make up the numbers, but even if I do,

how can you believe me?

A better and simpler approach is to take a lean approach to the port-

folio. Lean says, “We have finished valuable stuff. We can sell it.” Once

you’ve finished work, you can make a product to sell. Work in progress

means you have nothing finished and therefore have nothing to sell.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=82

YOUR PROJECT PORTFOLIO IS AN INDICATOR OF YOUR ORGANIZATION’S OVERALL HEALTH 83

You will still have to make decisions about which projects to fund, and

for how long. The difference, once you take a lean approach, is that you

have data about the current cost of the waste in the organization, or for

your customers, and an approximation of how long it takes to finish a

feature or a set of features. And, you might even obtain data about how

long it takes to sell the product to a customer. With that data, you don’t

need to calculate ROI. All you need to do is look at the waste and finish

the projects that reduce the most waste first.

5.10 Your Project Portfolio Is an Indicator of Your Organization’s

Overall Health

There are plenty of indicators of a product development organization’s

overall health. For the purposes of the project portfolio, you only need

to look at the backlog of projects.

Healthy organizations have a number of high-demand projects. Once

they have passed the startup point, they have several, if not many,

projects. A healthy organization with an actionable mission has too

many projects to do and has to decide among them.

If you have many projects you never finish, many projects in your park-

ing lot you never remove, or no high-demand projects, then your orga-

nization is not healthy. Your mission may not be specific enough, or you

may not know how to finish projects. You may not know what business

you are in.

If you have an unhealthy organization because no one knows what to do

next, consider some strategic planning. If you have too many projects

to consider, review your mission, and consider some strategic planning.

If your organization doesn’t know how to finish projects, read Manage

It! [Rot07].

Sometimes, the first step is to get a handle on the portfolio. Sometimes

you start with a mission or with strategic planning. Start somewhere so

you can finish one project and then another and another.

5.11 Publish the Portfolio Ranking

By now, you’ve ranked every project in your portfolio. You need to

publicize that information to everyone who needs to know.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=83

PUBLISH THE PORTFOLIO RANKING 84

Decide whether you want to publish a ranked order of the projects along

with the points like this:

7,500Total Points

Project 4 750

Project 3 1,250

Project 2 2,500

3,000Project 1

PointsProject

Instead, you could just list the rank order of the projects like this:

Ranking

1

4

3

2

Calendar
integration

Missile
exploration

Performance
mini release

Data Integration

Project

If you have a number of projects and some of them are finishing before

the next time you evaluate the portfolio, you may want to show that like

this:

Calendar integration4 Calendar integration

Calendar integration
Missile exploration
(2 iterations)

3
Missile exploration
(2 iterations)

Performance mini-
release

Performance mini-
release

Performance mini-
release

2

Data integration1 Data integrationData integration

January
Month/

Project Rank
MarchFebruary

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=84

NOW TRY THIS 85

I’ve chosen to move projects up as other projects are scheduled to com-

plete. If that’s confusing to you, don’t do it.

The larger your active portfolio, the more you need to explain the rel-

ative ranking of the projects. Even if you think you have not assigned

people to multiple projects, your staff will talk to each other (a good

thing) and ask for help (another good thing). They need to judge where

to spend their time. If a senior developer chooses to mentor a junior

developer working on a higher-ranked project once a month, that might

be a good use of the developer’s time. If the senior developer is working

on a higher-ranked project, it might not be. The key is that your tech-

nical staff understands how to best use their time and how to avoid

context switching.

As you rank the projects, especially if you’re building a strawman port-

folio to discuss with others, define your principle behind your decisions

—why you rank the projects as you do. Once you’ve defined your prin-

ciple, you’ll be able to collaborate on the portfolio.

5.12 Now Try This

• As you review each project collaboratively, make sure you ask

again, “Should we do this project?” You do not need to rank a

project that doesn’t have enough value to the organization to com-

mit to it.

• Can you explain to other people how each staffed project moves

the organization forward?

• Try ranking each project in your portfolio with points. Are you able

to rank with points? If not, what is preventing you from ranking

with points?

• Test that ranking by looking at the waste you are managing and

your customers are managing. Is the ranking different?

• If you can’t rank in any other way, try double elimination, and

see how people choose projects. Other people will choose projects

based on their values, and it’s helpful for you to know what those

values are.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=85

Chapter 6

Collaborate on the Portfolio
Making portfolio decisions is never a single person’s problem.

To make the hard decisions about the portfolio, you need to work

with other people, no matter what level you are in the organization.

Since you can’t make the decisions about the portfolio alone, you’ll need

to collaborate across the organization. When I talk about collaboration,

I do mean the Webster’s definition:

Collaborate: to work jointly with others or together especially in an

intellectual endeavor

Collaboration to arrive at decisions can take many different forms. You

might discuss, write, vote, provide data about your current thoughts,

and more. For some ideas, see The Facilitator’s Guide to Participatory

Decision-Making [KLT+96] as well as The Art of Focused Conversation

[Sta00].

6.1 Organize to Commit

Work at the highest span of influence you can in the organization, and

you will maximize the return your work brings to the organization.

Avoid optimizing decisions at the lowest possible level, maximizing your

group’s return instead of maximizing the organization’s return. Instead,

optimize the decisions for the organization.

Maximize Value for the Organization, Not Our Departments

by Tony and Joyce, Director, Software Development and Director,

Software Quality

As directors, we each have two primary responsibilities: to make sure our

groups are producing at the highest level of capacity and to build that

capacity. But we had problems with each other, because our

BUILD TRUST 87

measurements were about our individual capacities, not building

organizational capacity jointly.

Tony started, “My objectives were all about delivery date, without thinking

about the quality of the product. Joyce’s objectives were all about defects

and the numbers of them, not whether they actually improved what the

customer wanted. After a couple of years of fighting with each other, we

decided to take a higher-level perspective of organizational capacity.”

Joyce continued, “Once we started thinking in terms of value to the

organization, we started thinking about completed work. We stopped

counting things that weren’t completely done and releasable. That way,

Tony’s features and my defects became our product.”

Tony explained, “When we started thinking about whole products and

working together, we were able to present a united front, convincing our

management to change how we worked. We’d both been using timeboxes

for our work, but when we started working together to complete first

features and then projects, we were able to improve our value to the

organization.”

Joyce added, “Given that we have functional groups, we don’t add value

by ourselves. We add value when we work together to provide a complete

product. We’re able to work for our organization by collaborating with

each other and by helping our manager see that our objectives needed to

be interdependent. If our manager had insisted on measuring each of us

by what only our departments could deliver as a silo, there’s no way we

could have provided the value for the organization. We each would have

optimized what our groups could do and damn the organization. But now,

we can work for the greater good, not for our personal good.”

6.2 Build Trust

The biggest barrier to collaborating on the project portfolio is not how

you muddle through the meeting. The biggest barrier to collaboration

is lack of trust.

If your colleagues trust you, they will collaborate with you.1 Building

trust can be difficult if you’ve never tried to work as a leadership team

before. To build trust, do these things, as suggested by Building Trust

in Business, Politics, Relationships, and Life [SF01]:

• Deliver what you promise to deliver.

• Be consistent in your actions and reactions.

1. There are other barriers to collaboration, but trust is a necessary prerequisite.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=87

BUILD TRUST 88

• Make integrity a cornerstone of your work.

• Be willing to discuss, influence, and negotiate. Don’t get stuck on

your position.

• Trust in yourself and your colleagues.

To build trust with your colleagues, first identify your goal: a project

portfolio for your group or organization so everyone is focused on the

same work. For your team, determine how you will deliver consistently.

For me, that means an agile approach to project work. Make sure you

determine how your project teams will deliver.

Personal integrity, active listening skills, self-trust, and extending trust

all are parts of your relationships with your colleagues at work. One

way to think about all of these is to consider congruence. See Wein-

berg’s fine description and application of congruence in Quality Soft-

ware Management, Volume 3: Congruent Action [Wei94]. Congruence in

relationships means considering yourself, the other person, and the

context of the situation for each and every interaction. When you bal-

ance all three, it’s easy to have integrity, to listen, and to believe in

yourself and the other person. It’s easy to understand but sometimes

hard to do.

Here’s an example of congruence. Assume you work in a matrixed orga-

nization, where the functional managers assign people to projects. If the

development and test manager blame each other for the quality of the

code, they are not being congruent; they are considering themselves

and the context and ignoring the other person. On the other hand, if

the development manager and test manager work together to determine

what causes defects and work together to eliminate those problems for

this project, they are congruent.

Building trust is the first step in building a collaborative team. In addi-

tion, collaborative teams show these characteristics: Group Genius: The

Creative Power of Collaboration [Saw07]

• They have a common goal.

• They listen closely.

• They concentrate on just the issue at hand.

• They are in control of their work.

• They are willing to blend their work.

• Everyone participates.

• They are familiar with each other and the problem at hand.

• They practice their communication often.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=88

PREPARE FOR COLLABORATION 89

Joe Asks. . .

Must I Collaborate?

You might be rolling your eyes, “Collaborate, JR? Come on. If I
define a portfolio that meets my needs, why do I need to spend
this time and aggravation working with other people to arrive
at a portfolio that might not be as good?”

You collaborate on a portfolio for this reason: to make decisions
at the organizational level—the highest level—not the lowest
level. When you define a portfolio for the organization, you and
your colleagues are moving the whole organization forward,
not just one team or group forward.

As a side effect, you’ll build relationships with your colleagues,
which makes the portfolio management and day-to-day prob-
lem solving easier.

I won’t be the collaboration police, checking on you. I urge you
to collaborate to generate a portfolio that makes sense for your
entire organization, not just your piece of it.

• They move the conversation forward.

• They learn from failure and move on.

Keep these characteristics in mind as you consider how to prepare for

the portfolio evaluation meeting and how to work in the meeting.

6.3 Prepare for Collaboration

You’ll be using collaboration, influence, and negotiation to arrive at a

portfolio that will fit the needs of the organization.

As you prepare for this discussion, make sure you know why you

ranked each project as you did—the principle behind your ranking.

That information provides you with the foundation for collaboration,

because you can use that principle to articulate how you think you can

arrive at the team’s common goal. Being able to discuss your principle

behind the ranking will help you with the portfolio collaboration.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=89

SET THE STAGE FOR COLLABORATION 90

Context Defines My Principle

by Dave, Director, Software Development

I’m at a startup now, and the principle behind all my portfolio decisions is

this: How do we make forward progress on the product?

Sometimes, that means we choose a few features and fix the few known

defects. More often, it means how many major features and how many

minor features can we put into a given release? Our portfolio

management is much more at the product backlog level. When we have

more than one product, I’m sure this will change.

A few years ago, when I was at a large product company, it was harder.

We had several legacy products, each with tons of technical debt, and we

had a bunch of long-standing customers and were acquiring new

customers slowly. We had a couple of newer products where we were

acquiring customers quickly. We changed our principle every quarter or

so. Sometimes, we received more value by doing something to get new

customers for the new products. Sometimes, it was by adding something

or fixing something for our long-standing customers for the legacy

products. Sometimes, it was fixing problems. But it changed based on the

market and where our customers were.

Your principle can be as short as “We have to release our flagship prod-

uct because it has been two years and we promised in our support con-

tracts a yearly release.” Your principle could be “We commit to projects

that move our website forward for our customers so we build loyalty

before we commit to internal projects.”

It doesn’t matter what your principle is—what’s important is that you

have one. Once you have a principle behind your decisions, you can

collaborate, because you have a vision that’s driving your decisions.

6.4 Set the Stage for Collaboration

You need this information to collaborate on the portfolio with your

peers: your mission, which is what drives you (and your group) to suc-

ceed; the principle by which you will make portfolio decisions; and a

strawman portfolio if you created one.

To be honest, you also need a corporate mission so you can discuss

each project’s value to the organization. You can’t manage your port-

folio without a mission because you won’t have a clearly articulated

big picture of where you are headed. Part of what you do might have

to include defining the corporate strategy. It doesn’t matter whether

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=90

FACILITATE THE PORTFOLIO EVALUATION MEETING 91

Joe Asks. . .

Can We Collaborate Across Levels?

Yes, you can. It may be easier when everyone is at the same
level, because no one can play the “I have more organiza-
tional power, so I win” card. But, even if someone does, as
long as everyone is working toward a similar principle that opti-
mizes for the whole organization, you will have a project portfo-
lio that’s reasonable.

you’re a product company or an IT organization—you need a corporate

mission to drive this collaboration.

If your organization has not defined a mission, the first part of collab-

oration is to define your mission. Try some of the approaches in Chap-

ter 11, Define Your Mission, on page 161. Once you have a mission,

you can define your strategy and refine it as you complete projects. If

you have a strategy, review each project to make sure it supports the

strategy, as in Section 8.2, Conduct a Portfolio Evaluation Meeting, on

page 120.

If you’ve separated the projects from each other or organized them into

programs, make sure you continue to evaluate the projects using one

of the approaches in Chapter 5, Rank the Portfolio, on page 65.

6.5 Facilitate the Portfolio Evaluation Meeting

Let’s assume you’re in a portfolio evaluation meeting. The purpose of

that meeting is to gather data so you can make the portfolio decisions

across the organization. That means you need to evaluate each project,

rank it, and see which projects you can commit to so you can create

the unstaffed project list or the project backlog.

Everyone arrives with two pieces of data: his or her ranked portfolio

and the principle by which each person ranked the projects. If you’re

facilitating the meeting and you are not the most senior manager, be

ready for some people to be unprepared for the meeting.

The portfolio evaluation meeting has four parts: looking at each project

to evaluate it, ranking each project, the commit/kill/transform deci-

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=91

FACILITATE THE PORTFOLIO EVALUATION MEETING 92

sion, and the publication of the decisions. Make sure you manage each

piece on its own. You may have to stop projects that are proceeding well

because circumstances have changed.

6.5.1 Facilitate the Ranking Part of the Meeting

If you need some background on facilitating meetings, I recommend

The Facilitator’s Guide to Participatory Decision-Making [KLT+96]. There

are three parts to the ranking part of the meeting: making sure you’ve

collected all the work, discussing the ranking, and actually ranking the

projects.

Mail an agenda like this a couple of days before the meeting so people

have time to prepare.

• Part 1: Evaluate each project.

1. Review each project’s demo and velocity.

2. Should we do this project at all?

• Part 2: Rank each project.

1. Rank all the projects.

• Part 3: Make commit decision.

1. Do we have enough project teams to fully commit to each

project? See where we run out of people.

2. Make a ranked list for publication.

• Part 4: Publish the ranking and expected date of the next ranking

meeting.

1. Write the ranked list.

2. Agree on date for the next ranking meeting.

Make sure you separate all the parts. You need to see each project’s

state before you rank it in relationship to each other project. You need

to rank each project before you can make the commit/kill/transform

decision. And, you have to make that decision before you can publish

the portfolio.

6.5.2 Facilitate the Commit/Kill/Transform Part of the Meeting

Once you’ve ranked all the projects, each manager has to make sure

he or she has sufficient staff to assign to each project. This is espe-

cially challenging in organizations where managers have responsibility

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=92

HOW TO SAY NO TO MORE WORK 93

for functional groups, who then are matrixed into projects. If you have

enough people to assign to all the projects, no problem.

But, most of the time, one or more functional managers do not have

sufficient people to staff all the projects. In that case, consider asking

the incomplete project team to list the lack of specific people as a risk

and to transform their project.

6.6 How to Say No to More Work

As you proceed with the collaborative decisions, you may find you have

too much work for the people you have available. In fact, in many

healthy organizations, you do have too much work to do for the people

you have available. See Section 5.10, Your Project Portfolio Is an Indicator

of Your Organization’s Overall Health, on page 83 to know whether your

organization is healthy. No matter who you are, at some point you will

have to say no to someone asking you to do more work. One way is not

have projects at all and make all your decisions in a lean and agile way,

as in Section 2.4, Lean Approaches to the Project Portfolio, on page 34.

But, if your organization has to have projects instead of just timeboxed

work, consider these approaches.

If you have a portfolio and someone—especially someone higher in

authority—asks you to do more, try these approaches.

6.6.1 We Could Add More People

As you show this person the portfolio, you can say, ”If we need to staff

this project, we need more people.” If you could add more people, either

as additions to your current project or as another cross-functional team

to increase velocity for the project, explain how that would work. Maybe

one project should come off the current portfolio list and be moved to

unstaffed work to allow the requested project to be staffed.

This is a great alternative if you have many people working solo on little

bits and pieces of a project. Sometimes, a group of people swarming

around a problem makes the problem easier to solve and helps the

team progress faster. This is not a good idea if you are in danger of

violating Brooks’ law from The Mythical Man Month: Essays on Software

Engineering [Bro95]: adding more people to a late project makes it later.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=93

HOW TO SAY NO TO MORE WORK 94

6.6.2 What Should We Drop?

It might be time to discuss the unstaffed work and see whether your

ranking was successful. You can say, “Here’s what we can do. What

should we drop?” Once you’ve assigned the teams to the projects, you’ve

staffed all the projects you can do. It’s time to either reevaluate or move

more projects to the unstaffed list.

This is a good time to make sure the same people are not attached

to multiple projects. For managers new to portfolio management, the

idea of stopping work, even just for now, is a foreign concept. They are

tempted to ask people to multitask instead of stopping work on one or

more projects. Asking what to stop doing, what to drop, is a good first

step.

6.6.3 I See These Alternatives

Let’s assume you’ve ranked the portfolio with your peers, and you all

agree on what to do first, second, and third, as well as what to leave

on the unstaffed list. If your manager comes to you—and only you—

explain that the portfolio is a contract among you and your peers. In

addition, walk your manager through the alternatives as you and your

peers discussed them.

If your manager wants all of you to change your minds, explain the

alternatives as you saw them and why you ranked the portfolio this

way. “Here are the alternatives we discussed.” Sometimes your man-

ager can see some alternatives that you can’t. Maybe you can break a

current project into smaller groups of related features and have several

teams work on that project in parallel. When they finish, maybe those

teams can all work on this project that’s not currently staffed.

6.6.4 I See These Risks

Sometimes your manager will come to you with a demand for a doomed

project or a pet project. You can’t make a case for this project. Try

saying, “Here are the risks I can see.” Explain the risks you see. This is

good if you can explain risks in terms of customers.

Whatever you do, don’t just blindly accept more work into your portfo-

lio. Explain which work you will not be doing to accomplish this work.

6.6.5 Give Us One Timebox and We Can Estimate the Rest

Sometimes, a manager wants to push a project into a smaller overall

duration than the project team’s estimate or your experience suggests

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=94

FUND PROJECTS INCREMENTALLY 95

is reasonable. Instead of saying no, ask for just one timebox worth of

time, where the team can measure velocity.

First, say, “If we do one timebox worth, we can estimate how long it

will really take.” If the team’s velocity meets the project duration, you

return to evaluating all the projects. But if not, this project goes on the

unstaffed list.

6.6.6 Please Explain Your Principle Behind Your Ranking

If you’ve been working with your peers, and a senior manager (espe-

cially a CIO, VP, or equivalent) insists that you need to staff a particular

project, ask that manager for his or her principle behind the selection of

that project over others. When you ask for an explanation, be careful.

The person hearing this can hear sarcasm or feel defensive without you

meaning to sound that way. You do not want a non-career-enhancing

conversation.

Showing your curiosity, say, “Please explain your ranking of this

project.” If the senior manager has a principle that makes sense, rerank

the portfolio, and make sure everyone can live with the resulting rank-

ing. If the senior manager appears to have a pet project, see whether the

ideas in Section 4.6, Killing a Senior Manager’s Pet Project, on page 59

will help.

Never say “maybe” to an additional portfolio request. It doesn’t matter

what level you are in the organization. Saying “maybe” leads to disaster.

When you say “maybe,” your managers hear “yes.” Your peers and staff

hear “no.” You can’t win.

6.7 Fund Projects Incrementally

Since you commit to a project only for a short period of time, you need

to fund the projects only for a short period of time as well. Make sure

each project has the people it needs to make progress. That’s the whole

point of assigning teams to projects and stopping when you run out of

people (see Section 5.2, Rank Order the Projects in the Portfolio Using

Points, on page 66). Don’t starve projects of money either. Fund them

money as they need it.

When my children were old enough for a clothing allowance, I asked

them if they wanted all the money at once (with my heart pounding) or

if I should give them money quarterly or half-yearly. They each decided

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=95

NEVER MAKE A BIG COMMITMENT 96

Joe Asks. . .

Do You Incrementally Fund Must-Do Projects?

Sure. It’s a good check-and-balance procedure. You’ll know
if your project team is running into trouble early. Just because
you’ve decided you “must do” this project doesn’t mean you
might not change project staff to make the project run more
smoothly.

on half-yearly. That way, they had enough money to buy fall clothes

but not run out of money for the summer.

Periodic decision making about the portfolio allows you to fund projects

incrementally. That’s because:

• As you show value to someone, preferably your customer, you are

much more likely to get more funding. This works with fixed-price

contracts, internal customers, and external customers.

• If a project isn’t showing value early and often, you may not get

feedback early enough to change the portfolio before you start a

death march for something your customers don’t want.

• You can start highly risky projects because you’re not committing

a ton of money and time to that much risk. You’re just committing

two, three, or four weeks.

Because the projects show you visible progress, you have enough infor-

mation to make the commit/kill/transform decision. You never have to

throw good money after bad.

6.8 Never Make a Big Commitment

The big rule of project portfolio management is that you never make a

big decision where you commit an entire organization to a huge project

for a long time. I define huge as more than 50 percent of your people,

and I define long as more than three months. That’s not very big, and

it’s not very long. So, why am I so adamant about not making a big

decision?

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=96

NEVER MAKE A BIG COMMITMENT 97

How Can I Be Adaptive If Hardware Is Part of My Product?

If your product has a hardware component, it’s more difficult—
but not impossible—to be an adaptive manager. You can use
lean and agile approaches for projects with a hardware com-
ponent also. You may have to change what done means for a
given iteration while the hardware is in design. Once you have
hardware in physical form, you can use adaptive approaches.

If you have hardware as part of your project, start by prototyp-
ing or building what you can without hardware for as long as
possible. Make sure you keep evaluating the value you’re see-
ing as part of the project. When you need to start paying for
capital expenses, or nonrecurring expenses (NREs), then—and
only then—do you allocate the budget.

Make sure you know something about the value you’re going
to receive from the project before you allocate big money. Big
money means big decisions, and you want to make as few of
those as you must.

In three months, if you’ve allocated more than half your people to one

project, that project better deliver something you can see, at least as a

demo. If not, you don’t know whether you have three months of valuable

work or three months of waste. You just don’t know.

Some of you might be saying, “Look, we allocate budgets once a year.

We assign people once a year. We have to plan for a year at a time.”

You may well do formal planning once a year, but you actually replan

more often than once a year. Every time you ask people to work on

another project, you are replanning. Every time you allow a support or

operations problem to interrupt a project, you are replanning.

If you never have to make a big decision (a bet-the-organization deci-

sion) you are never in the position to throw good money after bad. Make

your replanning explicit so you can take advantage of it, not be a victim

of it.

So if you’re not supposed to make a big decision, how can you make

funding decisions? By funding projects incrementally. Just as you don’t

receive your yearly salary all at once, don’t assume you have an entire

year’s worth of funding for your project all at once.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=97

DISCOVER BARRIERS TO COLLABORATION 98

If you’ve been involved with management, you know about yearly plan-

ning and fiscal cycles. You’re supposed to plan the projects—and, espe-

cially the budget—for an entire year. You’re supposed to be able to pre-

dict what you need, who you need, and when you need it and when.

How’s that working for you? It has never worked well for me.

Instead of being a predicting manager, try being an adaptive manager.

Adapting to reality means seeing data from your project teams and

maybe from the accounting department if you need to track project

cost. It means taking that data to predict—just for a short while—what

you want to fund for projects, when you need to fund it, and how much

you need. The shorter the predicting horizon, the safer the funding deci-

sions. The longer the horizon, the riskier the funding decisions.

If you have the project teams work in relatively short timeboxes (no

more than four weeks), you don’t have to worry about whether a project

is highly risky. The risk profile for every project is much lower.

6.9 Discover Barriers to Collaboration

There are times when some of your peers won’t collaborate. Once you

figure out why, you may be able to address the specific issues.

These are some reasons people don’t collaborate:

• Someone is playing a zero-sum game.

• Someone feels as if information hiding will help their career, in-

stead of sharing information with everyone.

• You and your colleagues do not share a common goal or strategy.

• Managers reward people for individual achievements instead of for

the success of the larger group.

• You don’t have enough senior managers involved who can make

decisions that stick.

• People are stuck on their positions about projects in the portfolio

and have not articulated their principles.

• You are not meeting in one location at one time, so the geographic

and meeting distance prevents you from collaborating.

Project portfolio decisions are difficult enough when everyone collabo-

rates. They are next to impossible if some people play zero-sum games.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=98

DISCOVER BARRIERS TO COLLABORATION 99

To dissuade people from playing the zero-sum games, do the following:

• Make sure you have people with enough authority to make the

right decisions deciding on the overall ranking of projects in the

portfolio.

• Ask everyone to discuss their principles behind their ranking.

• Stop negotiating, and allow someone to “win.” As long as you plan

to review the portfolio on a frequent basis, reality will show the

value of that decision.

6.9.1 Someone Believes in Zero-Sum Games

In a zero-sum game, someone wins, and the other person loses. People

who believe that their projects must win (be ranked first) and everyone

else’s project must lose (be ranked last) are playing a zero-sum game.

Project portfolio management is a zero-sum game—between you and

your competitors, not your organizational peers. It works when you

rank the projects and collaborate at the highest level in the organi-

zation. However, if someone attempts to optimize the portfolio at a

lower level, that person is playing a zero-sum game against peers in the

organization.

Everybody Wins, Now

by Andrea, Director, Software Development

I’ve had a difficult relationship with our QA director. She didn’t believe in

metrics except for defects, she wanted to assign testers to the project only

after all the development was “done,” and she insisted that she have the

responsibility for release decisions.

We started working in three-month release trains so we could release

each product once a quarter. That played havoc with her assignment (and

reassignment) of people to products. All of a sudden, it was clear she

couldn’t work the same way and allow us as an organization to release

every quarter.

So, she started saying things like this in the project portfolio ranking

meetings: “Well, I can assign people to that project, but if you decide

what’s most important, my people won’t be successful. You need to let me

make all the decisions.”

My boss, the VP, got tired of hearing this, and finally said, “OK, you can

make all the decisions for the next quarter. But here are the products I

want released next quarter. You get to rank which ones go first, and we’ll

work with that.”

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=99

DISCOVER BARRIERS TO COLLABORATION 100

Now that she had no one to fight against, she was scared that she would

make the wrong decisions. She came to see me one day before the start of

the quarter and asked me to review her ranking. I explained that

development has less work on the projects she’d ranked 1 and 2 and that

I thought the projects she’d ranked 5 and 6 would provide more value to

the organization. I explained I would go along with whatever she decided.

No way was I going to fight with her!

It took only one quarter of portfolio planning for her to realize we were not

trying to make her lose or win—that we wanted to win as an organization,

not individually. She stopped playing the zero-sum game.

6.9.2 Someone Believes in Information Hiding

Portfolio management can succeed when project teams are transparent

with their progress and with what they have left on their backlog.

If teams, including product owners, attempt to hide their velocity or

demos or their backlog, the people who need to collaborate don’t have

enough information to make good decisions.

We Need All the Information to Make Good Portfolio Decisions

by Vince, PMO Director

We’ve been trying to manage the project portfolio for years. We’d run into

trouble with project teams not telling us the whole story—mostly because

they didn’t know but partly because the project managers didn’t provide

us with all the information.

We had a project manager who refused to give us status, except for “The

project is on track.” I finally asked, “How do you know?” The project

manager answered, “I have faith in my team.”

Since we’d been working in more of a serial life cycle, that was just about

all the answer the project manager could give. So, we instituted a few

things: a quarterly review of each project and a demand that each project

show us progress in the form of a demo. In addition, we asked to see what

was left to do.

Those few requests first had the project managers up in arms, especially

those who were planning to leave all the integration and testing until the

end. We explained we didn’t care how they organized the project, as long

as they could show us a demo so we could see what was complete and

what they had remaining to do.

A number of the project teams struggled, but once they decided to show

us their progress and what they had remaining, the project managers

reported an interesting side effect: the teams seemed to be finishing work

faster.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=100

DISCOVER BARRIERS TO COLLABORATION 101

Now, because the teams show us completed work, they are willing to

move onto other projects when we say, “OK, that’s enough for that

project. Please release it.” We have very few projects that take as long as

we anticipate they will. Yeah, it took us about a year to get here. But

everyone can see what everyone else has done and what’s left. The project

teams can see as well as we can when a project is done enough and when

it’s time to move on.

6.9.3 There Is No Common Goal

If you don’t have a corporate strategy, you can’t be successful at man-

aging the portfolio.

Part of what you do might have to include defining the corporate strat-

egy. It doesn’t matter if you’re a product company or an IT organization

—you need a corporate strategy to drive the portfolio collaboration.

Once We Had a Mission, We Had a Portfolio

by Audrey, PMO Director

We had a devil of a time ranking the projects. We’re an IT department in a

large engineering company. We have projects for our infrastructure and

projects that affect our customers. We had trouble deciding which

projects to do first and which ones to postpone for a while. Part of the

problem is that we didn’t define the value that we as a department

provided to the company.

We built our mission from the bottom up, looking at both kinds of

projects, so we could talk about the value each of the groups provided to

the organization. Then we discussed the departmental value we brought

to the organization. What a surprise—it was a double-pronged value.

Our mission is “Create and maintain the infrastructure for the entire

organization.” It’s not an inspiring mission, but it tells us what to work

on. Now, when we work on our portfolio, our CIO first has conversations

with his peers and learns about the quarter’s and year’s initiatives. That

allows us to make the month-by-month decisions.

6.9.4 Incentives Push People Toward Zero-Sum Behavior

Sometimes your organization inadvertently encourages behavior they

don’t want. For example, some incentives encourage managers to think

about their project or customer first while you really want everyone

to think about the overall picture. These incentives are based on an

individual’s ability to push through his or her initiatives using a com-

mon pool of developers, testers, and business analysts, regardless of

whether that individual’s project is a higher rank than any others.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=101

DISCOVER BARRIERS TO COLLABORATION 102

This confusion happens when an organization misapplies Management

by Objective (MBO) and senior managers respond by optimizing from

the bottom of the organization instead of from the top.

Competing Product Managers, Nothing Gets Done

by Max, Ruth, Development Manager, Test Manager

We’re part of a centralized development group for a product group. All the

developers report to me (Max), and all the testers report to Ruth. Jointly,

we create cross-functional teams for the projects and work on projects.

We have a standard product and several custom variations.

Several years ago, we had a deadly situation. We had three teams of

people working on projects but seven product managers trying to direct

our work. When we tried to talk to them about ranking their requirements

so we could work on just one project per team, each one of them

stonewalled us. I finally took one of them, Peter, for coffee, off-site.

“Peter, what’s going on? Ruth and I want to organize the work so we’re

doing only one project at a time.” I’d heard of people looking like they were

going to faint, but I’d never seen it before. Peter paled and looked as if he

was going to have a heart attack. “Max, you can’t do that. My pay

depends on getting this project out the door.”

“Peter, we can’t do what you need fast enough.”

“That’s not the point. I don’t get paid if you’re fast enough; I get paid as

long as you make progress. If you stop working on my project, my pay

and my bonus are in jeopardy. You’ve got to keep working on my project.”

It was clear that Ruth and I were working at the wrong level in the

organization. Ruth tried next, to work with the VP of marketing and sales,

to whom the product managers reported. She had a similar conversation,

with the same results. It was clear we needed to work on senior

management. But not by ourselves.

We enlisted the help of our VP to bring the problem to the senior

management meeting. It took us more than a year to change the MBOs for

the VPs, who then had to change the MBOs for the product managers. We

also got senior management to discuss why we had so many product

managers and so few development teams. This transition was not easy,

but once we changed the MBOs, we were able to make progress on the

projects, because we had to work on only one project at a time.

The product managers now meet together as a group. They think about

what they can accomplish together to meet their group performance. Now,

they drive the strategy with their goal of using the project portfolio to

optimize their product performance to reflect the organization’s strategy.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=102

DISCOVER BARRIERS TO COLLABORATION 103

6.9.5 The People Making Portfolio Decisions Don’t Have Enough

Authority

Even if you work with your peers, you may not have enough authority

to make the portfolio decisions. If that’s the case, make sure you know

who is making the final decisions, and suggest a strawman portfolio

you and your peers have developed.

We Can Suggest, Not Commit

by Susan, Drew, Vinny, Sam, Test Manager, Development Manager, Tech

Pubs Manager, Project Manager

We were having trouble with our projects—every single one was late, every

one had too many defects, and the customers always wanted something

different once they received the product. We had too many concurrent

projects. So, we decided to organize the portfolio.

It took us the better part of a day, but we finally came up with a ranked

list of five projects. We assigned people to those projects and put the other

projects on our unstaffed work list. That worked for all of three days.

Then our director, Dave, came up to Susan and asked why she wasn’t

working on Project6. She replied at the time, “Because it’s not on our list

of projects to do now; it’s on our list to start after these five projects.”

Sam interjected, “By the time Dave got to me, I thought he was going to

have a stroke because he was so upset. I asked him, if he had to choose

five projects, which projects would he choose, in what order?” He

explained. I told him I would call the managers together and staff those

projects in that order.

We learned a huge lesson. We don’t know everything we need to know

about the portfolio. We can suggest a ranking to our management, but we

can’t commit to projects ourselves. It helps Dave when we give him a

strawman portfolio, given what we know about the projects. But Dave and

the VP get to decide, not us.

6.9.6 People Are Arguing Based on Position, Not Principle

Sometimes, when everyone brings a strawman portfolio, someone is

attached to a particular project or attached to a particular ranking. If

that occurs, it can feel similar to the zero-sum game. In this case, read

Getting to Yes [FUP91]. Their negotiation scheme is to do the following:

1. Separate the people from the problem.

2. Focus on interests, not positions.

3. Generate a variety of possibilities.

4. Use an objective standard to judge the results.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=103

DISCOVER BARRIERS TO COLLABORATION 104

This is why everyone needs a principle they can articulate before arriv-

ing at the portfolio meeting. If you and I can state our principles, we

can separate the people from the problem. If you and I have different

principles and we discuss that at the beginning of the meeting, we have

a good chance of resolving that problem before we start fighting about

the portfolio.

6.9.7 You Are Geographically Separated

If you are geographically separated and need to agree on which projects

you tackle first, make sure you separate all the geographically dis-

tributed problems from each other. Let’s assume you have teams who

can complete pieces of functionality in their own sites and your problem

is to know which features or projects have to be completed first.

If you’ve built enough trust as a management team or a group of peers,

have one in-person meeting first to define your first portfolio. Now,

you’ve likely built enough trust with your peers to have remote meetings

for the rest of the year. However, consider using email for prework, such

as each of you articulating your principle behind your choices for the

portfolio, showing each other your strawman portfolios, and discussing

any constraints.

For the portfolio meeting, use as many online collaboration tools as

possible so you can all see the data. For example, you won’t be able to

see cards or stickies on the wall when some people are remote. This is

knotty and delicate work. Expect your portfolio evaluation meetings to

take much longer than if you could have the meeting with all of you in

one place.

Unfortunately, when you have teams that cannot complete pieces of

functionality at their sites and instead the team members need to rely

on each other, make sure the most senior level of management decides

on the portfolio. Lower-level managers and project managers have

enough aggravation trying to get an entire piece of functionality done

to worry about the portfolio. If you are part of that most senior level of

management, I urge you to reorganize your team bits into site-based

teams that can complete pieces of functionality. Until you do, you need

to make the decisions about which projects are which rank, and you

will need help knowing who to assign to which projects. A kanban

approach, where you limit the work in progress, may help you, as in

Section 9.4, Stabilize the Number of Work Items in Progress, on page 132.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=104

WHO NEEDS TO COLLABORATE ON THE PORTFOLIO? 105

Results and Relationships

As you manage the portfolio over time, you’ll notice that you
deliver better results to the organization and that your relation-
ships with your managers and peers across the organization
improve.

The improved results make sense, but the relationships, too?
That might come as a surprise to you. But your relationships
improve (or make problems obvious) because you have fewer
emergency projects, because you collaborate more often,
and because you know how your managers and peers are
judging the organization’s success.

That is a level of transparency you do not normally see in
organizations.

This might seem like a lot of work to you. It is. You might even think you

can delegate this to other managers below you in the hierarchy. Forget

about it. You created a situation in which the project teams have limited

bandwidth, so you need to solve this problem.

You may find you have other barriers to collaboration. Recognize that

the barrier is a symptom of an organizational problem, and think about

how you need to solve it.

6.10 Who Needs to Collaborate on the Portfolio?

I’ve been deliberately vague about who collaborates on the portfolio. In

some organizations, the people who define the portfolio are the oper-

ating committee; a project management office (PMO); the senior man-

agers, including the CEO; and rarely, the functional managers of the

technical staff. Any of these groups of people can succeed. Any of them

can fail.

Every time I’ve seen the project portfolio work succeed, it’s because the

group of people optimized at the highest level of the organization and

worked to determine how to support the mission and goals of the orga-

nization. If you and your peers can do that, you are ready to manage

the project portfolio. If you can’t, determine the people who can do that,

and invite them to collaborate with you. The results will be worth it.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=105

NOW TRY THIS 106

6.11 Now Try This

• Review all the projects in your portfolio. Based on how you are

organized (functional, matrix, project), how will you need to col-

laborate? Decide whether you need to collaborate just with your

manager, with your peers and a manager (or two), or with the rest

of a senior management team.

• Review how your projects are interrelated. If they are, should they

be programs of some sort? If so, which kind of program?

• If you have rethought how your projects fit together in

programs, make sure you reevaluate the ranking of each project

and program.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=106

Chapter 7

Iterate on the Portfolio
If you want to consciously make portfolio decisions rather than have

the projects whip you around, you’ll need to plan how often you will

want to review and adjust the project portfolio. If you don’t plan to

iterate, you will have emergency projects (Figure 2.2, on page 31), which

throw the whole organization and the portfolio into disarray. If you plan

your iteration period, you will prevent emergencies and help the project

teams make the most of their time for their projects.

When most people slot their projects into a portfolio, they easily have

twelve to eighteen months of planned work in the portfolio. That’s way

too long. You can’t possibly predict the future a year in advance.

At some point—way before you finish the projects—something happens,

and you’ll need to readjust the portfolio. You and your colleagues need

to determine how often you need to review the portfolio so you can

adjust the relative priority of each project and the staffing or funding

for each project.

Reviewing the portfolio includes the actions of planning and replanning

the portfolio. Your job is to make decisions as you review.

7.1 Decide When to Review the Portfolio

You can plan for the adjustment in a portfolio review, but how often

should you review the portfolio? Too often, and you aggravate every-

one involved, because nothing has changed. Not often enough, and

the projects underway have no relationship to the list of staffed and

unstaffed work. Match the frequency of your portfolio review to your

DECIDE WHEN TO REVIEW THE PORTFOLIO 108

development style, and make sure that if you’re using a serial life cycle,

you don’t wait until the end of any project.

If you’re using iteration boundaries for your projects, that’s a good time

to review the portfolio. If you’re using a serial life cycle, review the port-

folio at least quarterly to ensure the projects are still valuable. If you

opt for more frequent reviews and decrease the project scope, you can

avoid or better respond to emergencies. With an iterative or incremen-

tal life cycle, you can review the portfolio after the teams complete a

prototype or a feature chunk.

If you plan to review and readjust the portfolio periodically, your project

teams will adjust to your time period. That’s because you need a demo

and data to make decisions about committing to the project again. If

you explain to the teams what results you want (a demo and project

progress data) and you tell them when you need it, you will get it.

You might need to review the portfolio when release dates change, when

your customers want something new, when your competitors announce

or release new products, or when new technology is possible. Because

you can’t control most of these events, you’ll need to be flexible about

your review cycle. But you do have ways to decide when is the right

time to review the portfolio.

The ideal time to review the portfolio is:

• When a project finishes something you can see (the project cycles)

• When you have enough information about the next version of a

product (the planning cycles)

• When it’s time to allocate budget and people to a new project (the

business cycles)

These cycles are interdependent. Here’s a true story about how one

group recognized the interdependencies.

Competing Product Managers

by Leah, Product Manager

Leah, a product manager at a large company, was talking with Alex,

another product manager. “Alex, I need the development team to work on

my product upgrade. When are they going to be done with your product?”

“Not for another three months.”

Leah sat up. “Wait a minute. You’ve had that team for six months already.

My product needs another release sooner than that. I have requests from

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=108

SELECT AN ITERATION LENGTH FOR YOUR REVIEW CYCLES 109

our customers, and the corporate road map says I need to release in just

three months. If they can’t work on my project, how can I get a release out

in three months? What’s the delay from?”

Alex sighed and said, “Well, we had trouble getting the requirements

done, so that was a delay. Then we had trouble with the functional specs.

It turns out the requirements were still a bit vague, so we had to revisit

everything during the spec stage. I insisted that they work on all the

features at the same time, so the testers can’t start because nothing is

done enough for them to test.”

Leah stalked away from Alex and strode into her manager’s office. “I need

help. I won’t get the project team for months. I’m so frustrated. We need

to work toward the whole organization’s goal, not just one product

manager’s goal.”

Alex and his managers made several classic mistakes:

• Thinking that his project was alone—not considering the rest of

the portfolio in his planning

• Insisting on a serial life cycle when there was a known time con-

straint for his project

• Not encouraging the project team to implement and test by fea-

ture, so they could stop at some time, even if that time was not

when the project would complete all the requirements

If Leah and Alex—or their management—had reviewed the portfolio

more often, Alex would have avoided the first mistake of thinking he

had the only project and would have had a chance to revisit the other

mistakes earlier in the project. Without someone making portfolio deci-

sions, Alex quite correctly thinks he has access to all the people he

needs for as long as he needs. That’s fine for Alex’s project, but not for

the rest of the organization.

7.2 Select an Iteration Length for Your Review Cycles

Your project portfolio review cycles depend on the choice of life cycles

for your projects and how long the projects are, on how frequently you

need to plan or replan the product road map, and on how much budget

planning and replanning you need to do.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=109

SELECT AN ITERATION LENGTH FOR YOUR REVIEW CYCLES 110

7.2.1 Project Life Cycles Affect Project Portfolio Management

Because your review cycles depend on your projects’ durations, you’ll

need to adjust your iteration length to match your projects’ durations.

If you use an iterative, incremental, or agile life cycle, you have oppor-

tunities during a given project to review and replan the portfolio. But

if you use a serial life cycle, such as a waterfall or phase-gate, your

portfolio review cycle is the entire duration of the project. If you contain

the requirements, the team is familiar with the product, they don’t run

into technical difficulties, and the schedule is short enough, then you

may be able to make serial life-cycle projects work for your portfolio

management.

But too often, I see time-bound projects with high technical risk try

to fit everything into a serial life cycle for a project that’s more than

three months long. That’s not a recipe for success, for the project, or

for managing the portfolio. Instead, consider another life cycle for your

projects.

If one project takes longer than six months to complete, you are decid-

ing not to staff other projects that might need to start, and even finish,

before the team is done with their original project. If you feel enough

pressure, you’ll ask people to work on more than one project, leading to

multitasking and waste. Help the project team choose a life cycle that

fits your business requirements of when the project needs to finish and

that fits your time need to review the portfolio. As an organizational

leader, this is where to put your energy.

If you use an iterative life cycle and integrate the product as you pro-

ceed, leaving only final testing for the end, your project portfolio review

cycle can be as short as the time it takes to implement one feature,

integrate it, and test it. If you use an incremental life cycle, such as

staged delivery, your review cycle can be as short as the time it takes to

finish one feature. If you’re using an agile life cycle, your review cycle is

the duration of one timebox, not more than four weeks long.

If one of the projects in your portfolio requires many features and a

tight schedule, the more you want that project team to use an agile

or incremental life cycle. Because the project team completes features

inside a timebox, you have the most flexibility in replanning the project

portfolio. You might not care what kind of a life cycle you use for a

relatively mature product, assuming you don’t want to release it more

often than once a year or so, and you don’t need that project team for

other work.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=110

SELECT AN ITERATION LENGTH FOR YOUR REVIEW CYCLES 111

The more projects compete for fewer project teams, the more you need

an agile life cycle for your projects. If you have only a few projects wait-

ing for project teams, you might be able to use an incremental life cycle.

But if you have many more projects than you can staff, it’s time to move

to agile. You can’t get the throughput out of your teams and the ability

to decide and change quickly in any other life cycle.

Two Teams, More Than Twenty Projects

by Paul, CEO

We’re a small software company doing custom development, and we want

to retain our independence. We can pay people the way we want and not

have to answer to anyone if we stay independent. But a couple of years

ago, we were in trouble and were considering looking for financing.

We had way too many projects to do and not enough time or people to do

them. We had only two project teams and about twenty-two projects. At

first, I told my VP that we needed everyone to work on more than one

project at a time. That didn’t work. So, I told him to find another way.

First, he had all the project teams work in timeboxes so we could see

what they could do in three weeks. Then he changed things so they were

implementing and testing by feature inside the timeboxes. That worked

really well, because we could demo to the customers. If the customers

wanted some time to think about it, we could say, “Take three weeks.

We’ll be ready for you then.” We got great feedback from them.

Long story short, we started using two-week timeboxes. We still have a ton

of projects—way more than twenty now—and we’re able to juggle things

because we know how to slot the work into the portfolio, and we can allow

our customers enough time to review our work to date. Some of our

customers know they have a three-month wait before we’ll show them the

first demo, and they are willing to wait because of how we work with them.

Now, when we close a contract, we work with our customers to slot them

into the portfolio. We always have people working on only one project.

And, because people are so focused on one project at a time, they really

learn the guts of the product. They’re much faster on that project, and

they can take their knowledge and apply it to the other projects more

easily.

7.2.2 Product Road Map Planning Affects Project Portfolio Management

It makes sense to make your planning cycle—the readjustment of the

product road map, which features you want in which quarter—occur

every quarter, especially for less mature products or for a market in

flux. If you’re using an agile life cycle, you can readjust the road map

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=111

SELECT AN ITERATION LENGTH FOR YOUR REVIEW CYCLES 112

every timebox, fine-tuning which features the project team will finish

when, as well as when you can release the product.

With an incremental life cycle, you have almost the same flexibility as

with an agile life cycle, but you’ll have the project startup time, plus

the varying time to complete a feature. For an iterative life cycle, you’ll

have to allow for the time to add in all the prototypes for a given feature

and test it. For a serial life cycle, you’ll have to restrict the number

of requirements you can address in one project to meet your need to

review the portfolio.

Knowing What We Want in the Product When

by Steve, Product Manager

I’ve always kept a road map for my products, but I wasn’t very specific

about when we wanted which features. It’s a big product, and I honestly

thought it didn’t make much of a difference, until last year.

Last year, my management finally decided to stop multitasking. They told

all of us product managers that we needed to provide two things: a

quarterly list of features for our products for them and a ranked product

backlog for the project team. Anyone who didn’t have those two pieces of

information would not have funded projects for the quarter.

One guy decided he wasn’t going to—he was working on the product

requirements document (PRD) for the company’s flagship product. They

didn’t fund that project for that quarter. That turned out not to be that big

a deal; they’d just released a major version, and there’s no way he could

have finished the PRD in time for the project team to work on the project.

That made the rest of us realize our management was serious. We now all

have quarterly product road maps for at least two quarters out. I have

ranked product backlogs for all of my products—only the first twenty to

thirty requirements are ranked, because the teams never do more than

that in a timebox, and usually less. I actually have more time to talk to

my customers and see what they think of our demos and what they want

for the future.

As a manager in the organization, work with your peers to create or use

product road maps so you can anticipate what projects need which life

cycles and which people when. Use your political power to influence the

project managers and first-level managers to use timeboxes wherever

possible and to implement by feature. That way, as the project teams

implement the features and as the product road maps evolve, you and

your peers can make better and faster portfolio decisions.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=112

SELECT AN ITERATION LENGTH FOR YOUR REVIEW CYCLES 113

7.2.3 Budgeting Affects Project Portfolio Management

Many organizations budget once a year. Everyone is supposed to pull

out their magic wands and crystal balls and see the future perfectly.

Well, I don’t understand how to predict the future, and I can’t tell what

the competitors are going to do—and neither do my clients. The result

is that managers and project managers spend crazy amounts of time

forecasting the budget, and by the third month into the fiscal year, the

budgets are all wrong.

Since the budget is wrong in three months or less, we’ll move to rolling-

wave budgeting along with rolling-wave portfolio management. We’ll still

create a budget target for the year, but we’ll allocate funds only for a

maximum of three months. If you’re using an agile life cycle with a

shorter timebox than three months, you can have a budget cycle as

short as the timebox.

Instead of thinking about the budget driving the amount of time and

the number of features, use a fixed time and a fixed budget to see how

much value you can deliver in that time period. The money folks commit

to some money for some amount of time—as little as a month if they

want—and you commit to some set of running, tested features at the

end of that time.

The money people cannot change funds during this time. If you’re

using a nonagile life cycle and you don’t have an interim deliverable

for six months, the money people have to keep their commitment for

six months. What happens if the economy crashes and you need to

revisit your strategy and your decisions? Revisit. But, this is why an

agile life cycle provides you with the most flexibility.

Most of the time, you don’t have dramatic strategy changes. Most of

the time, you want to make smaller course corrections that allow you

more flexibility. When the money is fixed and the time period is fixed,

the iteration is stable enough for the project team to create a valuable

product.

A side benefit of rebudgeting more often is that you don’t have to create

a detailed budget for everything—you just have to budget for the fore-

seeable future. You’ll spend less time budgeting and more time seeing

just what you need.

An additional benefit is that for a nonagile life cycle, the project team

has to reestimate how much longer they will need to finish the project.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=113

SELECT AN ITERATION LENGTH FOR YOUR REVIEW CYCLES 114

Too often, project teams have no idea how much time they need. If their

estimates are off, they will gain feedback on their estimates and become

better estimators.

For you project managers, even if you can’t use an agile life cycle, you

can use historical information to organize your project and its budget. If

you know from past experience that your budget will change sometime

between the six-week mark and the four-month mark, you can plan to

deliver something valuable, such as a demo, a prototype, or running,

tested features every six weeks. That way, you’ve shown value each

budgeting cycle. You’ll get more funding. (Tricky, eh?)

We’re Actually Staying Within Our Budget

by Lakshmi, IT Accounting Manager

We’re an IT group, so we’re on a strict budget. We used to budget once a

year—what a nightmare. We tried every year to allocate money toward

training or conferences, and that money got taken by projects. It was

awful.

But now, we don’t buy anything in advance for a project unless we’re

going to need it in the next month. Sure, for servers and big equipment, I

need to anticipate and order early, so we actually receive the equipment

when we need it, but most things we order only when we need them. So

when we have new people starting, I don’t buy all the furniture at the

beginning of the year. That money doesn’t vanish because the projects ate

the money. I buy laptops and phones only when we need them. And, best

of all, we have almost no overtime, so my budget predictions are darn

close to accurate.

I have a predicted budget for the year—our accounting department wants

to see that. But I manage the budget week by week, a quarter at a time,

and I don’t allocate money to projects unless they actually start. The CIO

wants to move to monthly budgeting with a monthly portfolio review, and

that will be a piece of cake for me. I bet we stick to the budget better, too.

As a senior manager, you can stop the budgeting madness. You can use

your span of influence to create a rolling-wave budget and portfolio. You

can help your managers drive the discipline of managing the portfolio

into the project teams.

As you consider what the iteration length for your portfolio review, con-

sider your project life cycles, how much change you have in your prod-

uct planning, and how fixed your budget is. The more risk you have in

budget and product planning, the more you want the projects to work

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=114

DEFEND THE PORTFOLIO FROM ATTACK 115

in short timeboxes. That way, you can review the portfolio at the end of

every timebox.

Review the portfolio as often as you can and no more often. Consider

working with other leaders around the organization both to know what

to do and to organize your projects so you could release something at

least once a quarter. You don’t have to actually release, but if your

project is in a releasable state, you have the option of moving a project

team to another project and satisfying the needs of the project portfolio.

Then you’ll be able to review the portfolio and know you can make new

choices about the work the organization is doing.

7.3 Defend the Portfolio from Attack

In any organization, there are people who think they can request “extra”

work from developers, testers, writers, whomever. “Can you please do

this as a favor to me?” is one of their favorite lines. Too often, the tech-

nical staff say yes, because they think they’re doing something good for

the organization.

The problem is that people who circumvent a product backlog also cir-

cumvent the project portfolio planning. You need to defend the portfolio

from their attacks.

You will have your own way of dealing with these folks, but here’s what

has worked for me. I requested all the technical staff work on the port-

folio in rank order. If they received other requests, or requests for work

not in the backlog, I asked them to use this phrasing: “That sounds

great. Please talk to JR about slotting that request in.” That’s all they

had to say. They were the good guys and could continue their work. I

would work with the managers and product managers across the orga-

nization to determine what to do.

7.4 How to Decide If You Can’t Change Life Cycles, Road

Maps, or Budgets

You might be working in an organization desperate to start project port-

folio management. Not because they know about managing the portfo-

lio, but because they can’t get anything done. You might be a first-level

manager of some variety who wants to stop the multitasking madness.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=115

HOW TO DECIDE IF YOU CAN’T CHANGE LIFE CYCLES, ROAD MAPS, OR BUDGETS 116

If so, consider selecting a specific replanning period, such as every

quarter. Quarterly portfolio management isn’t the One Ideal Time, but

for people starting with a lean or agile approach, it might help projects

deliver value earlier.

The problem with setting a quarterly planning and budgeting cycle is

that you need your projects to deliver some finished set of features by

the time you get to the review. Many organizations spend more than

three months getting started on a project, which is quite common in

waterfall or iterative life cycles. If you’re careful with an incremental life

cycle, you can make a quarterly planning and budget cycle work. Only

agile life cycles, with their short timeboxes and emphasis on finishing

pieces inside the timebox, can work with quarterly planning and budget

cycles reliably.

We’re the Only Ones Managing Our Portfolio

by Ted, Director, Software Development

I have total development responsibility for several related products in our

product line. I have to beg for testers and writers. We have

cross-functional teams because I make the test managers and tech pubs

managers assign people for the duration of a project.

I started managing our portfolio when I just couldn’t take it anymore. I

didn’t know what everyone was working on, we weren’t making progress,

and I was spending too much time in meetings explaining why we were

always late. I decided two things: that we would work in timeboxes and

that we would work on only one project at a time.

I started with two-week timeboxes so we could finish something, even if it

was just a little bit. I assigned people to just one project at a time. It took

me a few weeks to get the hang of evaluating each project with my

managers, but once we did, it just took us about an hour every two weeks

to review and replan the portfolio. I started publishing what we would

work on for the next two timeboxes, sort of rolling-wave portfolio planning.

I explained to the director of testing and to the director of tech pubs that

this was how I was having my teams work. I wanted them to also assign

their people for the duration of a timebox. I wasn’t going to make them; I

requested that they do so. I told our product manager that he had to rank

requirements. I worked with accounting about the budget, but they

refused to think about anything other than a yearly budgeting cycle. Fine.

It wasn’t easy, but we’re at a place where we have a ranked product

backlog for each of our products. We still don’t have road maps, so I get

surprised by product changes that require budget changes, but I have

many fewer of them. I have convinced the test and tech pubs folks that

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=116

MAKE DECISIONS AS LATE AS POSSIBLE 117

working in timeboxes, with a result of running, tested features, helps

them, so they’re along for the ride—most of the time. Sometimes, they still

have emergencies, because they still haven’t organized their portfolios,

but they have fewer emergencies.

This would be easier if we had an R&D-wide portfolio, but we don’t. But

I’m managing what my folks do, and we have many fewer disasters, less

confusion, and very few emergencies. Even better, we actually finish

projects.

7.5 Make Decisions as Late as Possible

Maybe you’ve decided you’ll try this portfolio management business.

But you need to fund some projects now to see what they can deliver.

One of the lean principles is to defer commitment to a project until the

last responsible moment.1 The problem is, with software projects and

with software/hardware combination projects, you might need to fund

prototypes or some early development until you know what the project

will be able to deliver.

That’s OK—both to wait until the last possible moment and to fund

some of the project and then decide what to do, as long as you decide

what to do and know how you’ll decide to keep going or stop. That

decision making will differ based on where you are in the organization

and how strategically you need to think or act.

One way to make decisions as late as responsibly possible is to use

short, timeboxed iterations for your projects. If you use two-week time-

boxes, you can see some initial progress on a clear set of work. You

can reevaluate your decision about this project in just two weeks. I’ve

used timeboxes up to four weeks long, and if we’re experimenting, I find

shorter timeboxes work better for my decision making and the team’s

progress. The short timeboxes help the team feel that I really do want

to measure what they can accomplish in a short time. If they can’t

accomplish what they thought they could, I have some easy choices:

give them another timebox or two, or stop the project right now. Two

weeks is long enough to learn something and not so long that we (the

entire organization) has spent time we can’t afford.

1. I first heard this as “Make decisions at the last responsible moment” from

Hal Macomber in 2003 in Designing Breakdown-Tolerant Project Environments at

http://www.reformingprojectmanagement.com/2003/09/19/238/.

Report erratum

this copy is (P1.0 printing, July 2009)

http://www.reformingprojectmanagement.com/2003/09/19/238/
http://books.pragprog.com/titles/jrport/errata/add?pdf_page=117

NOW TRY THIS 118

If you’re really crunched for time, consider one-week timeboxes and

limit the number of timeboxes to three or fewer. If you don’t know

enough in three weeks, you can take a bigger-picture view and assess

the overall risk of this project. The waste matrix in Section 5.6, Who’s

Waiting for Your Projects to Be Completed?, on page 76 may help you see

how to look at the risks of doing or not doing this project.

We Wait Longer to Start Now

by Don, VP Engineering

We are developing a new product in what I call a client-regulated

industry. Our clients demand that we use third-party components that

they have contracted for with other suppliers. These other suppliers

provide us with components we’re just supposed to be able to use. Of

course, it doesn’t work that way. More often than not, these suppliers

don’t meet their schedules. If they do meet the schedules, they don’t have

the features we need when we need them.

We used to staff projects anyway and wait for our suppliers to finish what

they were supposed to do. But then we got the idea of waiting until the

last responsible moment. Now we have two choices. We can wait to start a

project until we receive the first code deliverable from our supplier.

Sometimes that works. More often, we have to start a project and

prototype so our customers and suppliers can see what we do. Or, we

start a project and iteratively deliver the features we can do alone into the

code base. Then we can postpone more work on that project, until it’s

responsible to fully staff it.

I would prefer to just staff the project and finish it, but that’s not going to

happen in this industry. At least this way I don’t have to commit project

money and people for an entire year. And, I start and stop projects when

the team is at a good starting and stopping point.

7.6 Now Try This

• Without considering the life cycles your projects are using, how

often would you like to review the portfolio? Is there any way for

your projects to provide you with information that often? If not,

what would you have to do to get that information?

• If your projects are not using agile or incremental approaches now,

what would you have to do to make that happen?

• What would prevent you from using a rolling-wave approach to

managing the portfolio?

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=118

Chapter 8

Make Portfolio Decisions
By now, you’ve evaluated each project and ranked it. Let’s step back

and reconsider the finer points of what it means to commit to, kill, or

transform a project.

Making those decisions is not easy. You’ll need to gather data about

the projects and decide how to make your decisions. One way is to

conduct a portfolio evaluation meeting. You may have heard of these as

management reviews. Don’t worry—this isn’t the kind of management

review you’re used to. There won’t be a dog-and-pony show with Gantt

charts or traffic-light status reports. This management review is crisp

and is designed to provide you with the information you need.

8.1 Keep a Parking Lot of Projects

It’s probable that you have more projects than you have people to staff

them. You don’t want to lose track of the projects, and you may not

want to keep them on the unstaffed list for your portfolio. And, if you’re

not going to staff them for a while, you want to take them out of consid-

eration during the project portfolio meeting but not forget about them.

That’s what a project portfolio parking lot does for you—it gives you a

place to put the projects without losing them or cluttering your project

portfolio.

This is a good approach for people who love to cross work off their lists.

They ask whether the project should be done at all, as in Section 4.1,

Should We Do This Project at All?, on page 51, or realize they’re wasting

energy considering this project over and over and over again. They take

the project off the unstaffed work list and off the potential portfolio.

They stop thinking about it. They are done thinking about this project

CONDUCT A PORTFOLIO EVALUATION MEETING 120

for now. This is the same thinking as in the popular Getting Things

Done [All02].

Some people may be concerned about removing projects from consider-

ation for a while; they are concerned about closing their project options

too early. Maybe the ideas are just a little ahead of the technology.

Maybe you want this project in a year or so, but not now. Whatever

your reason, you don’t want to forget about the project, but you don’t

want to have to think about it all the time. That’s why you can create

a parking lot for projects you don’t want to actively consider but don’t

want to forget about. The parking lot solves the problem for people who

like to cross things off their lists and for people who don’t want to close

their options.

Project Parking Lot

Calendar

Integration
Feb 1, 2006

Integration is not

possible right now.

Reevaluate when

syncing with other

devices works.

If we can do this,

significant value for

longtime customers

Notes About

Project
Value Discussion

Date Project Put on

Parking Lot
Project Name

Parking lots make all the project portfolio decisions easier because you

don’t have to think about projects not in current consideration.

8.2 Conduct a Portfolio Evaluation Meeting

When you evaluate the portfolio, you’ll hold a special meeting. In the

past, you might have called this a management review or a project sta-

tus review. Because many people have worked in organizations where

management review means the dog-and-pony show for serial life cycles,

I prefer to call these meetings portfolio evaluation meetings, because

that’s what they are.

You have just one goal for a portfolio evaluation meeting: to rank each

project. In order to do that, you’ll decide for each project whether you

should commit to the project, kill the project, or transform the project

in some way. You do not have a goal of solving project problems. Your

job is to facilitate the decision about the project’s future. That’s all.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=120

CONDUCT A PORTFOLIO EVALUATION MEETING 121

How Do You Fund Exploratory Projects?

Many organizations encourage their technical staff to work
part-time on one or more current projects and work part-time
on a future-direction, innovation, or skunkworks project. Work-
ing part-time is a good idea, and you need to manage it. I
prefer to chunk some of the innovation work together in a time-
box. Other people, such as many Googlers, like to take their 20
percent each week.

Whichever mode you prefer, don’t expect people to work part-
time on very different projects and make progress. You also
can’t tell people, “It’s Tuesday at 3 p.m. Start innovating now!”

What you can do is timebox the work for the existing projects—
those projects that extend the current product line. And, time-
box the work for the future possible projects—those projects
that may be some sort of major innovation. If you’re not sure
you want to spend a lot of time on future work, make those
timeboxes shorter than the normal timebox. The key is to have
deliverables at the end of each timebox. In the case of exist-
ing projects, the deliverables are working product chunks. In
the case of future projects, the deliverables might be answers
to questions, rather than a working product. See “How to Use
Inch-Pebbles When You Think You Can’t” [Rot99] to see how
to define those deliverables. But there is no point in having
people work on projects without frequent deliverables. You just
can’t tell how much progress they are making and whether it’s
worth the company’s time and money to continue funding the
project.

One example of timeboxing future work is what Google does
with its 20 percent approach to innovation. Every engineer gets
to use 20 percent of his or her time on something not specifically
in his or her job description. Sometimes, people take their 20
percent time in chunks, not just one day a week, but several
days per week during one week.

If innovation is important to you (and why wouldn’t it be?),
make sure you allow some slack in your projects. See Slack: Get-
ting Past Burnout, Busywork, and the Myth of Total Efficiency
[DeM01]. If everyone is always full up for each timebox, they
will not be able to innovate or see opportunities for innovation.
And, they have no time to think. Make sure people have time
to think as they proceed with their projects.

Make sure you address the issues of exploratory projects as you
collaborate on and evaluate the project portfolio.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=121

CONDUCT A PORTFOLIO EVALUATION MEETING 122

To make the decision, you need the right people at the meeting. The

people who need to make the decisions are people who set the strate-

gic direction of the organization and the people who provide the infor-

mation about the project. For many organizations, that’s an operating

committee of some sort plus the product owner/product manager and

the project manager for the projects under consideration.

Once you have the right people present, you need two pieces of project

data: what the project demo looks like (can you see visible project

progress?) and what the team’s velocity is since the last time you had

an evaluation meeting (an historical velocity chart for the project). You

also need to know about project obstacles and what the organization’s

strategy is. I like to ask four questions at the evaluation meeting:

• Does this project still fit into our strategy? Check to see the project

still fits.

• What have you finished since the last evaluation meeting? The

project team provides the demo here.

• Where are you in the product backlog? The project team provides

velocity and a backlog burndown chart.

• Where are your obstacles? This will tell you whether there is risk

for continuing this project in the same way.

Publicize your project evaluation list so each project can prepare their

information in advance. This information should come directly from

what the project team already creates for their project dashboard.

If you work in an organization that tracks project cost, you’ll need to

also know the run rate (the cost of the project per unit time), the total

project cost, and possibly the monthly/quarterly/yearly project cost

data. For possible measurements, see Section 10.2, What You Need to

Measure About Your Projects, on page 142.

Project Evaluation List
Ask these questions for each project

Where is the project with respect to backlog? !

What are the project's obstacles? !

Does the project still fit with the overall strategy? !

What have you finished since the last evaluation meeting? (Be ready to demo) !

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=122

CONDUCT A PORTFOLIO EVALUATION MEETING 123

I bet the last three questions look familiar to you. Yes, they are quite

similar to a standup meeting’s questions. The difference here is that

you need data about the project so you can decide whether the team is

making sufficient progress to continue the project. The data you need

is about running, tested features. You don’t need any other data.

As you consider these questions, think about which of these projects

have become high-demand projects since the last time you evaluated

the portfolio. A high-demand project can be one that supports the orga-

nization, grows the business, or creates new opportunities. A change in

high-demand projects will change your portfolio.

Sometimes your strategy changes, especially because of outside forces.

It may not matter if the project is chugging along. You still need to know

whether this project is worth continuing for now.

If you’re working in an organization that’s just moving to agile, your

project managers may not be accustomed to velocity charts or other

ways to show progress about running, tested features. In that case,

publicize your questions in advance so the project manager or the team

knows the information to provide. If they can’t provide enough data

about what they’ve done and their velocity, stop the project. You can’t

tell whether they are making enough progress to know whether it’s

worth continuing to fund this project.

Yes, that’s a tough stance. But if your project manager and team can’t

provide you with visible progress and velocity data, how can you really

know whether it’s worth your money and time continuing the project?

Allowing them to continue the project is like a parent whose teenager

uses more cell phone minutes or text messages on the plan and takes

no action. If you don’t make the teenager pay or at least limit the cell

phone use, why would the teenager think their current behavior is

unacceptable? In my experience, when the managers who review the

portfolio stop a project because the project team isn’t gathering data,

the team initiates their first retrospective and learns what they could

do to supply that data.

This is the bare outline of the portfolio evaluation meeting. Chances

are good that your evaluation meetings and initial ranking meetings

are not going to be easy. Read Chapter 6, Collaborate on the Portfolio,

on page 86 for ideas on how to collaborate on the decisions you need to

make.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=123

CONDUCT A PORTFOLIO EVALUATION MEETING 124

Traffic-Light Status Reports Provide No Useful Data

Serial life-cycle projects can’t provide you with the data you
need for making portfolio decisions. That’s because the project
has no visible progress and no velocity until very late in the
project. Even if you have architecture or design documents,
they have little value in the lean sense of value, because the
documents are not working product. For years, project man-
agers have used traffic-light status reports: green means the
project is on track, yellow means the project is at risk, and red
means the project is in serious trouble.

But because a serial life-cycle project is not delivering chunks
of completed work at any time, in reality the project is always
red—because you don’t know its real status. Even iterative life-
cycle projects that don’t finish chunks of work have the same
problem. Incremental life-cycle projects can provide you with
some demo data throughout the project and can provide
velocity data. But only agile life cycles can guarantee you a
demo and a velocity chart at the end of each timebox.

Never accept a traffic-light status report in a portfolio evalua-
tion meeting. The traffic light provides no data for your decision.

It doesn’t matter what life cycle you use: a more traditional
life cycle or an agile life cycle. Every project can use these
approaches assuming you manage the risks. If you use a serial
life cycle, make the project small enough so the project is done
by the time you reevaluate the portfolio. If the project team
uses an iterative life cycle, you can see prototypes at the very
least and still ask the same questions. If the project team uses
an incremental life cycle, you can see features as the team
completes them. You can use each life cycle type as long as
you manage the risk of not being able to rank each project by
keeping the projects small.

As a side effect, using data to drive portfolio decisions will help
your organization become more adaptive and more agile.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=124

CONDUCT A PORTFOLIO EVALUATION MEETING AT LEAST QUARTERLY TO START 125

8.3 Conduct a Portfolio Evaluation Meeting at Least Quarterly to

Start

In Section 7.1, Decide When to Review the Portfolio, on page 107, I sug-

gest some ways you can consider how often to review your project port-

folio. When you’re starting, review the portfolio at least once a quar-

ter. Even if everything is perfect now—your strategy changes less fre-

quently than once a quarter, your projects are finishing on time, your

next projects start on time, you can fully staff your projects, and you

can fully fund your projects—perfection is not going to last forever. You

need to see the feedback the projects can provide you with for their

progress and how well they continue to fit into the strategic plan.

Our Business Changed Almost Overnight

by Wendy, CTO

We handle the communications between delivery vehicles and the main

distribution point. We’re tooling along, adding new features to our

reporting service.

We had a client/server application we’d developed back in the 90s. First

we heard from one client that they wanted web-based reporting. Then

another. And another. Then we learned of a potential competitor who

didn’t have as good a product but had the kind of reporting our

customers wanted. We know we have to do this.

Well, we’d done small web-based apps for use in-house. We’d never done

one where our clients’ private information had to be available 24/7, with

security. And, I realized that if we could do this, we could expand our

business dramatically. But we didn’t foresee this, and we didn’t know how

to do it.

Before we did anything, we gathered as an operations committee, looked

at all our projects, and asked, “Is there a project that’s a higher priority

than this one?” No. We would be out of business—not today, not

tomorrow, but within a few years—if we didn’t do this project.

That’s when we decided the risk of not doing this project was higher than

any return we might realize from our current projects. We finished that

project, and now we have several skunkworks-type projects to explore

other kinds of communications among our clients’ different locations: the

factories, the trucks, the distribution points, the offices.

We realized we are in a different business than we thought we were.

Luckily, we were able to redirect our efforts quickly. If we hadn’t had a

project portfolio, I don’t know whether we would have known about all the

projects people were working on, so we wouldn’t have known how to

reorganize who was working on what and when.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=125

CONDUCT A PORTFOLIO EVALUATION MEETING AT LEAST QUARTERLY TO START 126

Joe Asks. . .

Do We Run the Risk of Never Finishing Anything?

You may be concerned about evaluating the portfolio more
often than once a quarter. If you change your mind about
what to commit to each time you evaluate, can you ever finish
anything?

Yes. And, you do have to watch how often you change your
mind about the ranking.

Ask yourself this: does the value of this project change that
much each time you evaluate the portfolio? In my experience,
the top few projects don’t change rank every time you eval-
uate the portfolio. Until they are done, they are still the top-
ranked projects. And those are the projects that will provide the
most value to you. If you do find that your top-ranked projects
do change every time you evaluate the portfolio, ask yourself,
“What business are we in?” and take another look at your mis-
sion. (See Chapter 11, Define Your Mission, on page 161.)

Normally, it’s the lower-ranked projects that change their value
to the organization.

There are times when you might want to evaluate the portfolio more

frequently than once a quarter. If you are in a volatile market and your

competitors are releasing products at least once a quarter, you want to

be able to change more quickly than once a quarter. If you are new to

agile and you’re not sure how well the project teams are progressing,

conducting a portfolio evaluation more often than once a quarter will

help the teams provide data and learn about the other data they might

need in order to do a great job for the projects.

I have not worked at an organization that could successfully evaluate

the portfolio every six months or even less frequently without missing

too many opportunities to manage which projects to commit to, to kill,

or to transform. When these organizations didn’t make explicit portfo-

lio decisions, each manager (and some technical staff) made their own

decisions. The organization did not have a unified approach to the port-

folio. If your organization does not need the frequent evaluation, then

decide how often to review the portfolio. But make an honest decision.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=126

REVIEW YOUR DECISIONS 127

8.4 Review Your Decisions

As you conduct the portfolio evaluation, make sure you have a decision

about each project: commit, kill, or transform. If you haven’t made a

decision about each and every project, you are not done.

Managing the project portfolio isn’t difficult at all when you’re using an

agile life cycle. It’s close to impossible with a waterfall, and it varies

with the length of the project if you’re using an iterative or incremental

life cycle. If you can’t use an agile life cycle, keep your projects to no

more than six months in duration so you can iterate on the portfolio at

least twice a year.

It might help to take a look at the decision flow.

List of collected

work in rank order

....

Commit/Kill/

Transform

Decision

Kill

Project comes off the list of collected work.

If you must keep it, put it into the parking lot.

Decide how to transform

the project and commit to it once

itʼs been transformed

Transform

Commit

Fund the project and get

out of the teamʼs way

Pipeline of projects: emergencies,

status quo projects, projects that

could lead to growth, projects that

could lead to transformation

Once you’re done with the evaluation part of the meeting, you can

rerank the projects. You might need some of the approaches in Chap-

ter 6, Collaborate on the Portfolio, on page 86.

8.5 Now Try This

• Review your collected work. Do you have everything on your list

yet? If not, add it.

• Do you have any pet projects on this list? If so, do you know how

to kill them?

• Do you have any doomed projects on this list? If so, can you kill

them now?
Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=127

Chapter 9

Evolve Your Portfolio
When you shift the focus from “project” to “running, tested features,”

you’ll change what your project staff works on. Instead of planning for

the future, they plan for the now—to get to “done,” whatever that means

for their project.

You’ll find that the management focus changes as well. The way you

use and manage your portfolio will be different. You’ll begin to apply a

lean approach. Lean approaches work well when you’re having trouble

deciding which project is number one. With lean, you don’t have to

know about projects; you need only to rank features.

Instead of having to manage the relative ranking of projects, you can

manage the portfolio as a backlog of related features. All you need to

know is the relative value of each feature and approximately how long it

takes your team to finish a feature. Of course, you do have to do a little

strategic planning all the time to make sure your vision and strategy

match what you’re asking the team to do. You’ll find that it’s easier to

plan a little, do a little, check that it’s all coherent, and replan than it

is to have to cancel an eighteen-month project that no longer has any

value. Right?

9.1 Lean Helps You Evolve Your Portfolio Approach

If you don’t have to think about projects anymore, you can use lean and

agile approaches to making the portfolio decisions. With the lean prin-

ciples in mind, you can see that organizing work as agile projects, using

pull approaches to organize the work, provides you with the maximum

flexibility in managing the project portfolio.

CHOOSE WHAT TO STABILIZE 129

Review your portfolio. Do you see projects that are contributing to

waste, rather than removing wastes? Sometimes that waste arises from

how the projects are organized. For example, if your projects are based

on everyone multitasking all the time, you have tremendous waste. If

you try to define all the requirements up front and implement across

the architecture instead of by feature, you will have waste. If the project

team does not think in terms of value and finishes the most valuable

features first, you will have waste.

If you’re not sure how to apply lean principles to your projects, try sta-

bilizing something about your project work, such as the timebox, queue

length, item size, or cost per feature. But you can’t use a waterfall life

cycle at all; a serial life cycle won’t work. You may be able—with a lot of

work—to modify an iterative or incremental life cycle if you keep what-

ever you’re fixing to a very small size. But if you’re going to do that,

why not use an iterative/incremental or agile life cycle? Agile life cycles

match lean principles. The other life cycles don’t.

When you choose to stabilize something, such as the timebox, queue

length, item size, or cost, you rarely need to make a big decision (Sec-

tion 6.8, Never Make a Big Commitment, on page 96). And, you can

avoid having projects. That might seem like a strange thing to say in a

book about project portfolio management, but hang in here with me a

minute. If you can deliver value every week or two or three or four and

have a releasable product as you deliver value, the idea of a project may

not make as much sense anymore. Instead of thinking about projects,

you can think about releases: internal and external. If your external

releases are always the same as your internal releases, you don’t need

to be tied to projects. Instead, you can work based on a fixed time, a

fixed size of work, a fixed queue of work, or a fixed cost of work.

Deciding what to stabilize can be tricky.

9.2 Choose What to Stabilize

To decide what to stabilize, look at your work now. Are you already

working in timeboxes? If not, start there. Projects using any life cycle

can use timeboxes. Moving your projects to working in timeboxes is the

easiest start at working to deliver small increments of value that will

allow you to reassess each project fairly as you manage the portfolio.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=129

STABILIZE THE TIMEBOX 130

Joe Asks. . .

How Does This Work for Hardware Projects?

Just as I explained in the sidebar on page 97, it’s a little more
difficult to make these ideas work for a product that has hard-
ware as a piece of the released product. It’s not impossible.
Fixing the timebox is easy. Fixing the cost per feature is easy.
You may want to conduct another portfolio review meeting
just before you commit capital equipment or Non-Recurring
Expense (NRE) money. But for the bulk of development, this
works for hardware projects as easily as it does for software.

Once you’re working in timeboxes, are your teams able to meet their

commitment to what they intend to accomplish in a timebox? My expe-

rience is that until teams are allowed to work together for several iter-

ations without changes to the timebox’s content or team makeup, it’s

impossible for a team to accurately estimate what they can accomplish

in a timebox. If your teams are having trouble meeting their timebox

commitments, consider stabilizing the item size.

Once you can reduce item sizes so they are relatively small, you can

move to a fixed-size queue of work. Then it won’t matter what project

your team is working on.

Stabilizing a feature cost requires small item sizes, because it’s impos-

sible for a team to accurately estimate large chunks of work. Short

timeboxes help you fix a particular cost and help project teams predict

what they can finish in a timebox.

9.3 Stabilize the Timebox

When you use an agile life cycle, you define the timebox duration at

the beginning of a project. Use the same starting day and duration

timebox for each team so you can decide the following at the end of

each timebox (or at the end of every x timeboxes): how much value is

left in continuing this project (or work or collection of features)?

You can use timeboxes in any life cycle. Timeboxes are ideally a week or

two but can be as long as four weeks—any longer, and people lose the

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=130

STABILIZE THE TIMEBOX 131

focus the timebox provides. You’ll find that shorter timeboxes require

little planning, certainly less than a couple of hours. You will use a

sequence of timeboxes to help people build a rhythm. For more infor-

mation on using timeboxes in any life cycle, see Manage It!: Your Guide

to Modern Pragmatic Project Management [Rot07].

If you move an entire organization to working in timeboxes to decide

when to release, make sure the teams meet these conditions:

• Know what “done” means for each feature. Teams cannot predict

and measure velocity if they don’t define “done” for each feature.

• Every team must have running, tested features at the end of every

timebox. If a team can’t complete some specific independent fea-

ture in a timebox, that might be OK. It’s not OK if they break

the product. At the end of every timebox, the product must be

releasable. That allows the project team to have a stopping point,

which mentally frees them to work on the most valuable project

next, whether it is this one or not.

• Management and the product owners must agree on a minimal set

of releasable features. If management and product owners don’t

agree, you will never release a product to your customers. Well,

you will when some senior manager yells, “Ship the damned thing

already,” but that’s not a planned release.

• Timeboxes must be short enough so a team doesn’t fall out of its

rhythm (see Manage It! [Rot07]). That’s a timebox of no more than

four weeks. If a team loses its rhythm, it ceases to be productive.

Just because you have a timebox does not mean the team will

maintain its velocity.

9.3.1 When You Can’t Stabilize the Timebox

If you have to integrate software or hardware from someone else and

they are not accustomed to working in timeboxes, you may not be sure

how to maintain your timeboxes. In that circumstance, you might be

able to maintain a timebox for your work, but not work for the entire

product. For example, at the beginning of a timebox, you might assign

some tasks that say “Work with drop from vendor” without a specific

size attached to it. In addition, you may have to change your definition

of what “done” means for the end of a timebox.

I can’t think of another reason to not be able to maintain a timebox.

If the technical staff overcommit to work and can’t finish all of it in a

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=131

STABILIZE THE NUMBER OF WORK ITEMS IN PROGRESS 132

timebox, reduce the duration of the timebox so that they can learn to

estimate how much work they can do in a shorter period of time.

9.4 Stabilize the Number of Work Items in Progress

Fixing the work size means fixing the amount of work in progress.

That can work on two levels: the number of tasks in process for a given

project, what I’ll call kanban-in-the-small, and the number of projects

in process, what I’ll call kanban-in-the-large.

Kanban is a system of seeing the work in progress and knowing when

it’s time to put more work items in the queue to be worked on. Kanban

literally means a signboard, as in Toyota Production System [Ohn88].

The team can see the work in progress—one feature and the work yet

to do, all on one board.

For example, in all serial life-cycle projects, you have a list of features.

Most iterative and incremental life-cycle projects have a similar long list

of features. That feature list changes and tends to grow the longer the

project is. In agile projects, there is a product backlog that is reranked

for each timebox, and the team takes the next chunk of what they think

they can complete off the backlog.

One of the best ways to make kanban systems work is to think of each

entry in a product backlog as its own minimum marketable feature

(MMF); see Software by Numbers: Low-Risk, High-Return Development

[DCH03]. A project team works on just one thing—a minimum mar-

ketable feature—until that MMF is complete. When that MMF is com-

plete, the team can release the product.

Why is an MMF so important? It’s because that’s the basis of project

portfolio management. Projects don’t matter; the set of MMFs you are

ready to release is what your customers buy, as we discussed earlier. A

completed MMF provides value to the organization.

When a team uses a kanban system, the team limits the number of

tasks in progress at any time. At Agile 2007, Arlo Belshee described

what he called naked planning,1 a way to limit what the team sees to

no more than seven MMFs. The team works on one MMF at a time.

There is no minimum or maximum feature size, but the customer who

1. See http://joearnold.com/2008/03/naked-planning-kanban-simplified/ for a video brief

description of some of Arlo’s informal talks at Agile 2007.

Report erratum

this copy is (P1.0 printing, July 2009)

http://joearnold.com/2008/03/naked-planning-kanban-simplified/
http://books.pragprog.com/titles/jrport/errata/add?pdf_page=132

STABILIZE THE NUMBER OF WORK ITEMS IN PROGRESS 133

requests the feature tends to ask for smaller features to limit the time

the team is unavailable to work on new features.

You don’t need to have a queue of just seven items as Arlo describes.

Your queue can be any size. The key with kanban is that enough people

work on one MMF and complete it before taking another feature of the

queue.

With kanban systems, your project team can even work on multiple

MMFs as long as the team can release the product once one MMF is

complete. This means the team has to have great source control so the

team can work on multiple MMFs and still be able to release as soon as

one MMF is complete.

To use kanban effectively, the team must keep a sustainable pace, and

someone (or some defined set of people) decides what the ranking of

each waiting item is. But, the team doesn’t care what they work on.

They just take the next item off the list. That’s why you can use kanban

for projects as a whole to manage the whole portfolio and for a given

project to manage when you complete each feature.

9.4.1 Fix the Number of Tasks In-Process, Kanban-in-the-Small

One way to avoid projects but still manage the portfolio is to stabilize

the number of feature sets in process. Here you can see that one feature

set, a minimally marketable feature set, is in progress. That feature set

has seven tasks. Of those seven, four have not yet been started, two are

in progress, and one is done. Once all the tasks are complete, the team

can release the MMF.

To Do:
Minimum Marketable

Feature Sets
In Progress DoneTasks

These tasks arise from the

first MMF on the left

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=133

STABILIZE THE NUMBER OF WORK ITEMS IN PROGRESS 134

When you stabilize the number of in-process tasks, especially if you are

able to define a minimum marketable feature set as a relatively small

number of tasks, you see a number of benefits. With so few in-process

tasks, people actively work together to complete tasks.

• Projects complete faster because there’s no (or at least much less)

wasted work.

• Because you’re implementing by feature, the team and you can

see the project’s progress easily.

9.4.2 Fix the Number of Projects In-Process, Kanban-in-the-Large

Some management teams, even when they’ve ranked the portfolio, have

a difficult time assigning teams to just one project until that project is

complete. But aside from the benefits to the team of avoiding multi-

tasking, you receive a ton of benefits by fixing the number of projects

underway:

• You know you are never going to starve a project of its necessary

people. That’s because you never assign more projects than you

have teams.

• The teams all learn all the projects. You don’t have to worry about

cross-training, because the idea of specializing in types of projects

goes away.

• Developers (or testers or writers or whomever) never have to worry

about projects that are like albatrosses. That’s because the team

has responsibility for the project, not management. And, the team

may not be assigned to this project each time a particular product

needs more work.

• Projects complete faster because there’s no competition from other

projects.

• It’s easy to organize your project portfolio, because you and the

organization’s leaders define what the organization needs to work

on now and what can be postponed until the next evaluation.

Any project with any life cycle can use a kanban queue. It might look

different depending on your life cycle. In the picture on the following

page, you can see how an organization that wants three projects in

process for one team has queue limits on what’s ready to start (seven

items), what can be in the development and review queue (four items),

what can be in test (three), and what can be in final review (one).

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=134

STABILIZE THE NUMBER OF WORK ITEMS IN PROGRESS 135

Kanban for software, whether you apply it to a portfolio or to a single

project, has this requirement: all of the items in the queue, the MMFs,

must be roughly the same size.

The MMFs must be something the team can complete in a relatively

short period of time, because there is no timebox to maintain the team’s

rhythm. Instead, the team’s rhythm arises from completing work.

This approach to the project portfolio requires significant discipline

from every manager in the organization. As soon as one person tries

to push his or her project ahead of another or ask a technical person

to multitask, kanban-in-the-large falls apart.

9.4.3 When You Can’t Fix the Work Size

Some projects have an ebb and flow. Some teams have to account for

maintenance work or other product support work in their projects. You

can still use kanban. As the team completes one MMF, they take their

next chunk of work from the queue labeled “Urgent”, for example.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=135

FIX THE QUEUE LENGTH FOR A TEAM 136

To Do:
Minimum Marketable

Feature Sets In Progress DoneTasks
Urgent Queue

Kanban is great for managing a large queue of defects, especially if it’s

easy to release the product after each fix. But kanban is not easy to

implement for many teams.

In order to stabilize the amount of work in progress, you have to become

accomplished at defining MMFs of roughly the same size. But, many

product owners, product managers, and product development teams

are not good at estimating the relative size of feature sets. If you’re

working on a new, never-been-done-before product, you have never

worked in timeboxes, and the team has never tried to estimate sepa-

rating size from duration, then you may have trouble with kanban. In

addition, if your team has few generalists and many specialists, it will

be difficult to work on just one MMF at one time.

To fix the queue size for a project, the team needs to create small MMFs

of similar size. To fix the queue size for a portfolio, the team needs to be

able to work on any product, and the people ranking the requirements

need to define MMFs of relatively small size. If your organization can’t

do that, you won’t be able to stabilize the work queue.

9.5 Fix the Queue Length for a Team

A related option to fixing the number of in-process tasks for a project

is to fix the number of in-process tasks for a team. Each task takes

as long as it takes—although this works well when you have relatively

smaller tasks and works less well as the task size increases.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=136

FIX THE QUEUE LENGTH FOR A TEAM 137

At Agile 2007, Arlo Belshee discussed the idea of what he called a Dis-

neyland queue. With a fixed-length queue (he uses a queue of seven

items) and historical velocity, the team estimates a “your time from

here” estimate for the last item in the queue:

#7 Story

#6 Story

#4 Story

#3 Story

#2 Story

#1 Story
The team works on this story first

“Your time from here is an historical average of 37 days”

Note that the team doesn’t estimate each item in the queue. The prod-

uct owner, customer, product manager—whoever is in charge of rank-

ing requirements—is the one who has some idea of how big each item

is and, more important, how valuable each item is. The team doesn’t

estimate the item until they start it.

Of course, if they realize this item is much bigger than other items,

they let the product owner know. The product owner can then work

with the team to break down the large task into smaller user stories.

The product owner reranks all the user stories. Then, the entire team

works on the first item in the queue until it’s done, as in releasable.

Then, the team takes the next item off the queue to work on together.

Not all items need the entire team. In that case, the first item takes all

precedence, and as team members are available, they work on the next

item. This is a similar team assignment as in Section 5.2, Rank Order

the Projects in the Portfolio Using Points, on page 66, except that here,

the team is assigned to one task in the queue, not a whole project.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=137

WHEN YOU NEED TO FIX COST 138

9.5.1 When You Can’t Fix the Queue Length

Fixing the queue length is great for organizations and teams that are

accustomed to working in a rhythm and in small chunks. If your team

or your management is not accustomed to implementing by feature or

a rhythm to the projects, you are not going to be able to fix the queue

length. Not only will your management have to make a binary decision

about which feature is done next, the feature size has to stay small.

Stabilizing the queue length requires substantial discipline from every-

one: the product owner, the management, and the technical staff.

9.6 When You Need to Fix Cost

Well-meaning people have used waterfall life cycles as a way to control

costs. They thought that if they monitored the documents throughout

the life cycle, the documents would have some relationship to the prod-

uct. We know that to be untrue. But serial life cycles persisted, and

many managers derive (undeserved) comfort from them.

One of the big problems in a waterfall project is that you can’t make the

decision to kill or change the project until very late in the project’s life

cycle. So, when you need to fix cost, you want a life cycle that allows

you as much flexibility making cost decisions as possible. That means

agile.

If you need to work on a fixed-price contract, have the customer rank

the requirements, explain how velocity works, and show the same kinds

of data as you would in a portfolio evaluation review (see Section 8.2,

Conduct a Portfolio Evaluation Meeting, on page 120). Now, you as the

development group, work in a rhythm to finish as much of the work as

possible. Your best bet is to fix a timebox of no more than two weeks,

as in Section 9.3, Stabilize the Timebox, on page 130.

9.7 Management Changes When You Stabilize Something

About Your Projects

Fixing something about your projects has a sobering effect on manage-

ment. Once you’ve made the decision to fix a timebox, you can’t change

it. You can’t reduce or increase the timebox duration without creating

obstacles for the team, because you’ve destroyed their velocity as well

as removed their ability to measure it. You can’t ask people to put in

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=138

NOW TRY THIS 139

overtime for the same reason. Once you’ve prevented a team from mea-

suring their velocity, they have no idea where they are, and neither do

you. You can’t ask for multitasking either. You can’t keep arbitrarily

large projects in the pipeline without breaking them down into their

component parts of feature set chunks. (Not architectural components,

smaller sets of features.)

What you get is management “discipline.” It’s the discipline to manage

for results (as in Managing for Results [Dru64]), not for activities. It’s

the discipline to make a decision and keep it, as long as it still fits the

strategy. It is wonderful. But you have to be a disciplined manager to

do this.

Not only do you get management discipline, you also get team discipline

to focus on one thing at a time until it’s done.

9.8 Now Try This

• Review your portfolio. Do you see projects that are contributing to

waste, rather than removing wastes?

• What can you stabilize about your projects? Is it possible to fix the

size of the queue of tasks? Or the size of the items in the queue?

• Have you or other managers resisted stabilizing something about

your projects? Write down why that works for you.

• If you’ve tried this, what kinds of management costs have you

seen?

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=139

Chapter 10

Measure the Essentials
You could try any number of measures to evaluate your projects: cost,

duration, earned value, and consumer ROI, to name a few. But these

measurements alone don’t provide you with a useful measure of how

much value the project is contributing or could contribute to the orga-

nization. You want to measure enough about projects to know whether

they are running smoothly so you can make the commit/kill/transform

decision. And, you need to know whether the project is still returning

value to the organization to know whether you should commit to the

next set of features for the project.

Your measurements help you know whether the project is returning

value to the organization. They tell you how smoothly the project is

running. And, they can provide a baseline for seeing change. In this

chapter, we will consider possible measures that will help you know

whether a project is making progress and the value it provides to the

organization.

10.1 Measure Value

As a leader in the organization, you care about the number of projects

successfully completed per unit time.1 Projects that don’t successfully

complete lead to emergency projects, which reduces your management

effectiveness and your ability to provide value to the organization, as

in Figure 2.2, on page 31. When teams take a long time to complete

1. Yes, this is a measure that can be gamed. All you need to do is make the projects

smaller, and you have more projects completed per unit time.

MEASURE VALUE 141

projects, you don’t enough flexibility to change what’s going on in the

organization—to actually manage the project portfolio.

Be careful when measuring project completion time. It is just a surro-

gate measurement for what you really want to measure—a continuous

value stream. A project is what you decide it is. Remember, customers

don’t buy or use projects—they buy sets of running, tested features. If

you really want to measure projects, go ahead. I won’t stop you. It might

help you see how short you can make your projects and be successful.

But you can’t normalize projects against each other to compare their

value to the organization. I find measuring projects makes managing

the portfolio more complex than it has to be. Instead, I recommend you

measure the time it takes a team to complete a set running, tested fea-

tures (Section 10.2, What You Need to Measure About Your Projects, on

the next page) so you can manage the project portfolio effectively.

If you’re stuck in a serial life cycle such as phase-gate or waterfall

and can’t measure running, tested features, consider changing your

approach to product development. If you manage the portfolio, review-

ing the progress made on running, tested features by your teams, you

don’t need a serial life cycle, because you don’t need the early mile-

stones to attempt to gauge progress. Using an agile life cycle provides

the most information early, but even choosing an iterative life cycle to

try some prototypes at the beginning of a project, followed by building

the product incrementally, will still provide you with more information

than a serial life cycle. For more information about life cycles and how

to combine them, see Manage It! [Rot07] and “What Lifecycle? Selecting

the Right Model for Your Project” [Rot08b].

If you really can’t move to agile or incremental approaches for your

projects, you will have to rely on the old, traditional measures, such

as ROI. Read Developing Products in Half the Time: New Rules, New

Tools [SR98] or the financial measures section of Agile Estimating and

Planning [Coh06]. You will spend a huge amount of management time

defining and gathering these measures. And, because you’re not using

incremental or agile approaches, you won’t be able to adapt to what’s

going on in the world. In reality, your measurements will not provide

you with the information you need to manage the project portfolio. You

will be guessing.

By now, I hope you’ve used any of the approaches in Chapter 5, Rank

the Portfolio, on page 65 to rank your portfolio. If you’re ready to take

advantage of all the ways you can use the portfolio—to trade off between

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=141

WHAT YOU NEED TO MEASURE ABOUT YOUR PROJECTS 142

projects, to stop projects when they are done enough, and to sched-

ule the next projects—you might need additional measurements to see

whether the projects are returning some value. You’ll need some project

and some portfolio measurements.

10.2 What You Need to Measure About Your Projects

For projects, you need to measure the completion of running, tested fea-

tures over time (as in Extreme Programming Installed [JAH02]), in other

words, the team’s velocity over time. That’s all you need to measure—

assuming your measures are correct. If your team doesn’t actually fin-

ish features, as in done-done-done, you will need other measurements,

such as defects and schedule dates.

When I say done-done-done, I mean that the product is working and

documented enough that a customer could use it. The code is checked

in, the developers and testers have planned and run “enough” tests, the

documentation exists and is correct, any hardware is working, and the

code has passed enough testing that the project team has confidence

in it and the product is releasable for a customer to use.

You don’t need to measure the number of defects, although knowing

those will help you determine whether this project is sufficiently valu-

able as is. You don’t need to measure start and end dates, although you

may want this data for organizing the portfolio. You need to know how

much this team can churn out in a given time period. I wish I could tell

you that you could compare two teams’ velocities and know which one

was more productive. Sorry, comparing teams, especially those work-

ing on different projects, is like comparing oranges to frogs. The projects

the team work on, how the team estimates, the environment in which

the teams work, and how frequently the team has to work toward norm-

ing (as in “Stages of small group development revisited” [WJ77]) are all

factors that prevent you from comparing teams.

Although it’s tempting to measure projects completed per unit time,

measuring that is a surrogate for the true measurement of what your

users and customers want from you—completed features that work.

For a lean or agile approach to managing the portfolio, consider these

measures:

• The team’s velocity of running, tested features and the historical

velocity chart (team capacity over time).

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=142

WHAT YOU NEED TO MEASURE ABOUT YOUR PROJECTS 143

Joe Asks. . .

Can the Team Game These Measures?

Sure they can. Any gaming (manipulating the measures to
report what they think you want as opposed to real progress)
is based on management’s approach to measures.

If you ask teams to measure and you ask out of helpfulness and
curiosity, the teams will respond with answers.

As soon as you use measures to attempt to evaluate the team,
try to compare two teams, punish the team, or consider layoffs
based on team velocity, the team will game the measures. They
will obfuscate their progress in ways that may astonish you.

You have the most control over the team and their reaction
to measures. Use that power to build transparency around the
project portfolio and to help the team recognize and remove
obstacles. Otherwise, the team will retaliate, and you will have
no basis to evaluate the portfolio. You’ll be back to your gut.
Guts are unreliable.

• The amount of work in progress. The more work in progress, the

less lean you can be.

• Obstacles preventing the team from moving faster, such as de-

fects, insufficient automation, and incomplete stories. Obstacles

are risks to the project and tend to be examples of technical debt.

• Product backlog burndown chart so you can see where in the

product backlog the project is.

• If you measure cost, cost of the project since the last portfolio

evaluation and the total project cost to date.

Because these are all project measures, you need to be careful about

what and how you ask the team to measure themselves. Make sure

you ask from a position of helpfulness and curiosity. If you use these

measures to beat the team or punish them, they will game the measures

in any way they can. That will prevent you from making good portfolio

decisions.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=143

MEASURE PROJECT VELOCITY: CURRENT AND HISTORICAL 144

Whatever measures the project teams choose, they should use a Big

Visible Chart. At the very least, request velocity or some measure of

work in progress on that chart.

10.3 Measure Project Velocity: Current and Historical

Since you need to know what progress the team has made since the

previous portfolio evaluation, you need to see current velocity and his-

torical velocity. If your project team has been working in the rhythm of

a timebox for a number of iterations, understands how to break down

requirements into small user stories, and knows what “done” means,

their velocity might look like this:

Story Points Done/Iteration

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Iteration

S
to
r
y
 P
o
in
ts
 D
o
n
e

Velocity of user stories or points per iteration is an important measure,

but it doesn’t paint the whole picture. You also need to see how many

stories are being added to the backlog. If the product owner is contin-

ually adding many items to the backlog for this project, you need to

reassess the size or the strategic importance of the project.2

Here, the backlog growth is small over the project. The team continues

to make progress. There is no issue with this project, as long it remains

strategically important.

2. Frequent additions to the backlog could also indicate that the product owner doesn’t

understand the purpose of a backlog for a release.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=144

MEASURE PROJECT VELOCITY: CURRENT AND HISTORICAL 145

How Close to Completion Project Is

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25

Iteration

S
to
r
y
 P
o
in
ts

Points Left to Do

Total Points

Running Sum Points Completed

Teams who are newer to agile will need a few iterations until their veloc-

ity becomes regular. The first three iterations tend to be random and not

predictable of future velocity. And, given that people are just learning

how to break features into relatively smaller stories and how to define

“done” for their projects, it may take even longer than three iterations—

I’ve seen teams take nine or ten iterations—until you have a velocity

that helps you predict the future. However, even unpredictable velocity

helps you see what the team has accomplished, so it can be a valuable

measurement. Just be careful of using it as a perfect predictor of future

progress. There is no perfect predictor.

Story Points Done/Iteration

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Iteration

S
to
r
y
 P
o
in
ts
 D
o
n
e

When the team has an unpredictable velocity, you will see the effect in

the backlog completion chart. You can see in this next figure that this

team required a few extra iterations to finish the project, because they

had an erratic velocity. But even with an unpredictable velocity, you

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=145

MEASURE PROJECT VELOCITY: CURRENT AND HISTORICAL 146

would still have data to evaluate the project’s progress, especially if you

also saw a product demo.

How Close to Completion Project Is

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Iteration

S
to
r
y
 P
o
in
ts

Story Points Left to Do

Total Story Points

Running Sum Story Points

If your team is having trouble using velocity as a predictor, make sure

no one is adding new stories to an iteration underway, and encourage

the team to report other obstacles so you can see whether technical

debt is preventing them from making a more predictable progress. Ask

the team to report how much work in progress they have, as in Sec-

tion 10.4, Measure Cumulative Flow for the Project, on the next page.

And, make sure the team is not using a serial life cycle. You can see

the results for this team that started using a serial life cycle for a few

iterations:

How Close to Completion Project Is

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25

Iteration

U
s
e
r
 S
t
o
r
ie
s # User Stories Left to Do

Total User Stories

Running Sum User Stories
Completed

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=146

MEASURE CUMULATIVE FLOW FOR THE PROJECT 147

The team decided they needed several architectural iterations at the

beginning of the project. The manager explained that without visible

progress, the project would be canceled. (PowerPoint architecture, as

defined in Practices of an Agile Developer: Working in the Real World

[SH06], was not visible progress.) The team decided it was time to finish

a few features, starting in the fourth iteration.

You might hear team members say, “We have to get the architecture/

infrastructure right before we start.” Teams who are new to agile do

believe this—you might, too. But, my experience with agile teams, and

other people’s experience with agile teams who use collective code own-

ership, has found that you can grow the architecture or infrastructure

as you proceed building features. See Manage It! and Extreme Program-

ming Explained [Bec00] for suggestions on how to start a project with-

out a lot of architecture work up front, and see Refactoring: Improv-

ing the Design of Existing Code [FBB+99] and Refactoring to Patterns

[Ker04] for how to evolve the architecture as you proceed. You might

need some time to evaluate the architecture. But you don’t need an

entire iteration devoted to architecture. Your project will turn into a

serial life-cycle project, which makes it difficult to evaluate in a regular

short time period as part of a portfolio.

But what happens when a project doesn’t show any velocity at all for

several iterations? That’s when you must ask questions in your portfolio

evaluation meeting about the project, about its strategic importance,

and about whether the project is possible to finish. And, it’s time to

measure work in progress. Instead of finishing features, your team may

have substantial work in progress. That doesn’t provide value to the

organization and may be invisible to the team.

10.4 Measure Cumulative Flow for the Project

Cumulative flow is a measure of the work in progress over time com-

pared to the total project scope. Many agile teams measure cumulative

flow to see whether they are starting more work than they can finish in

an iteration.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=147

MEASURE CUMULATIVE FLOW FOR THE PROJECT 148

Agile Project - Cumulative Flow

0

100

200

300

400

500

600

Apr May Jun Jul Aug Sep Oct Nov

Date

T
o
ta
l
F
e
a
tu
re
s

Total

In Progress

Completed

The value to the team of measuring cumulative flow is the team can see

whether they need to start fewer features and “swarm” around them

to complete them earlier. For you, the one evaluating the project port-

folio, the value is in seeing how much work in progress there is. The

more work in progress, the less this project has provided value to the

organization.

When you start managing the project portfolio, consider asking all your

project teams to measure cumulative flow and report it during the port-

folio evaluation meeting. If you have teams who are not using agile

approaches, you and they need to know whether they have a lot of

work in progress and whether you can make any predictions about

when that work could be done.

Cumulative flow shows you the work in progress and how long that

work in progress takes. You can see that a serial life-cycle project has

significantly more work in progress than the agile team does. In fact,

the completed work looks like a hockey stick: a flat line at the beginning

and a rapid increase in finishing at the end. Iterative or incremental life

cycles have less work in progress.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=148

MEASURE OBSTACLES PREVENTING THE TEAM’S PROGRESS 149

Serial Project - Cumulative Flow

0

100

200

300

400

500

600

Ja
n
Fe
b
M
ar A

pr
M
ay Ju

n
Ju
l
A
ug
S
ep O

ct
N
ov
D
ec Ja

n

Date

T
o
ta
l
F
e
a
tu
re
s

Total

In Progress

Completed

It’s useful to consider cumulative flow when you have to consider which

projects will provide the most value fastest. Measuring cumulative flow

provides this value to you:

• The project teams can see their progress. Instead of keeping work

in progress invisible, now the team can see it.

• The project team may start to use lean and agile approaches them-

selves to make more progress.

• You can take a leaner approach to the project portfolio, as in Sec-

tion 2.4, Lean Approaches to the Project Portfolio, on page 34, which

will allow you to complete projects faster.

10.5 Measure Obstacles Preventing the Team’s Progress

Sometimes, a team has a zero or low velocity because of obstacles that

prevent them from delivering running, tested features. In that case,

ask the team to measure those obstacles.

Measuring obstacles might seem like a strange thing to measure. “JR,

I don’t have space for a standup meeting. How that heck do I measure

that?” But you can measure obstacles. If you’ve asked for space for a

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=149

MEASURE OBSTACLES PREVENTING THE TEAM’S PROGRESS 150

standup and you can’t get it, you list the obstacle and how long it has

been since you asked for space.

�
Jan 7

Standup meeting

area with

whiteboard

38

442 Jan 1
Need tester full

time

Feb 1Chair for Jim1 15

Days Since

Request Date
Request DateObstacleRank

Obstacle Report

Any time a project team doesn’t get the resources it needs, it won’t be

able to deliver the value your managers thought it would when you

ranked it in the project portfolio. If you track a top-ten risk list, you

could use that as your obstacle report.

Project managers: don’t put more than ten obstacles on your report.

You will overwhelm your leadership team, and they will either ignore

you or try to solve those problems in the portfolio evaluation meeting.

You want your sponsor or someone from the leadership team to work

with you to remove obstacles. Ask for help outside of the project port-

folio evaluation meeting. Leadership team: if you see an obstacle report

with more than ten obstacles, you have a team in trouble. Pay attention

to them. They need help. Get them what they need.

But the more interesting obstacles are the ones measuring technical

debt. Those can be defects, a lack of automated tests, or product-based

technical debt. For defect charts, see the charts in Manage It! [Rot07].

This technical debt chart might be a way to show other technical debt

in the product. You might see evidence of technical debt in the speed

and frequency in which the project team finishes stories.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=150

MEASURE OBSTACLES PREVENTING THE TEAM’S PROGRESS 151

Effect of Technical Debt on Iteration Output

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Iteration

S
to
r
y
 P
o
in
ts

Expected Story Points Per
Iteration

Story Points Complete

Once people can see that the project team is working more slowly

because of technical debt, you can put a dollar amount on it, which

you can use to decide whether paying off technical debt is worth more

than some new features.

Here, the project team is not keeping up with the expected number of

automated tests, leaving a debt for this iteration of thirty-four auto-

mated tests. Is that a big number? I can’t tell. Maybe it’s a business

decision. Maybe they estimated wrong. Maybe they need those tests,

and they are going to have trouble in a future iteration. Right now,

you can’t tell anything from the data, except that it’s time to ask more

questions.

Effect of Automated Test Technical Debt on Iteration Output

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Iteration

S
to
r
y
 P
o
in
ts

Expected Automated Tests

Actual Automated Tests

Automated Test Debt

Accumulated Test Debt

In this case, the technical debt is caused by a lack of some automated

tests and a lack of redesign of older code. The technical team wants to

add some automated tests, but the product owner wants more features.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=151

MEASURE OBSTACLES PREVENTING THE TEAM’S PROGRESS 152

(Yes, some agile teams leave all product backlog decisions to the prod-

uct owner.) Once the product owner sees that the team is capable of

supplying only about two-thirds of the story points for the same time,

the product owner is more likely to change the items in the product

backlog to include more technical debt items. But if the product owner

doesn’t, management can.

As a different example, in the following figure the team has an ini-

tial zero velocity in the iteration—they finish zero stories until the last

week of an iteration. Not all teams finish stories at the same frequency

throughout an iteration. But not finishing any stories until the last

week of the iteration is an indication of a problem and could be techni-

cal debt. There are other reasons, such as too much work in progress or

that the team is using a too-serial approach inside the iteration. Using

a chart like this one is a way of making the problem transparent so the

team can do something about it.

Stories Remaining to Complete at Day of Iteration

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Day

S
to
r
ie
s
 R
e
m
a
in
in
g
 t
o
 C
o
m
p
le
te

Story Points Left to Do

If you’re working on a legacy product where you know you have techni-

cal debt, the earlier you can measure it, the easier it will be to address

the debt in the backlog or in the project portfolio ranking and, by infer-

ence, how many people are assigned to the project. If you’re working on

a project team that’s new to agile, you might want to measure technical

debt so you aren’t surprised by what “done” means. And, if you’re on

an experienced agile team, you can prevent waste in the organization

by being proactive about looking for and paying off technical debt.

If you need some other ideas about how to measure technical debt,

consider the following: the percentage of automated test code coverage

for each feature set, a McCabe’s metric for each of the highly complex

modules and the time it takes to make any change in those modules,

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=152

MEASURE THE PRODUCT BACKLOG BURNDOWN CHART 153

and how quickly the team completes stories inside an iteration. A num-

ber of static analysis tools can help you discover what’s going on in the

code. You might find there are other measures you want to take; these

are just examples.

However the project team decides to show their obstacles, make sure

you ask about them. Their obstacles will prevent them from making

progress and may require more people or more time for the project,

which might change its rank in the portfolio.

10.6 Measure the Product Backlog Burndown Chart

Sometimes the management team needs to see just how far along this

project is; they might need to know not just knowing the numbers of

running, tested features but also which running, tested features are

complete. That’s where you can generate a product backlog burndown

chart.

Product Backlog Burndown Chart

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

S
to
r
y
 P
o
in
ts
 R
e
m
a
in
in
g

You can see that the team is not quite on their projected velocity, so it’s

helpful to see what has been done and what’s left to do.

10.7 Measure Run Rate and Other Cost Data, If Necessary

If you’re working on a fixed-price contract or working on some enhance-

ments until the funding runs out, measure the project cost however

your organization does that.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=153

DON’T EVEN TRY TO MEASURE INDIVIDUAL PRODUCTIVITY 154

You may need to measure the “run rate” for your project, which is the

iteration’s or other period’s fixed-price costs. If you have ten project

staff members and they have an average salary of $10,000 per month,

your project’s monthly run rate is $100,000.

If you fund projects incrementally, as in Section 6.7, Fund Projects

Incrementally, on page 95, you need to know your run rate so you can

ask for more money when you need it.

10.8 Don’t Even Try to Measure Individual Productivity

Since I’ve been working in the field, my managers and clients have been

trying to measure productivity. What a waste. Individual productivity

means nothing.

What does mean something is a team’s throughput. That’s right—a

team. A team produces a set of running, tested features—or not. When

a team produces a document, that team might be getting ready to

be productive, but they haven’t produced anything you can count—

unless that document is required as part of the deliverable. Only when

a team produces a working demo or prototype—or, even better, a work-

ing product—can you see what their productivity is.

If you try to measure individual productivity, you will get some data.

And, the people whom you are measuring will game the data, have no

fear. If you measure code, they’ll write a ton. If you measure tests, they’ll

write a bazillion. If you measure files, they will have many more than

the project needs. No matter what you measure, if it’s not running,

tested features, then they will game the system. Don’t do it.

But, you say, I have several single-person projects. Surely I can mea-

sure that person’s productivity. Um, no, you can’t. First, I doubt that

those people resist talking to each other. Second, how will you compare

productivity? If Davey gets the easy projects and Sally gets the hard

ones, who is more productive? I can’t tell, and neither can you. Stop

trying.

Single-Person Projects Aren’t

by Drew, Senior Developer

I worked on a project several years ago that my boss thought was a

one-man project—and I was that man. It wasn’t hard, but it had a few

complexities I thought I would have trouble with, so I asked a colleague,

Jack, to review my code.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=154

WHAT YOU NEED TO MEASURE ABOUT THE PORTFOLIO 155

He did review it and gave me a bunch of suggestions. I ended up taking

most of them. But when he went to fill out his time card, he was told he

hadn’t worked on my project. I went to see our manager.

“Look, I couldn’t have done this without Jack. His review really helped me

make progress.”

“But this was a one-man project. Why didn’t you just do it?”

“Because working with someone else for a couple of hours saved me

several days. Didn’t you want me to make progress quickly?”

My manager never again thought we had one-person projects.

Knowledge workers do not work in a vacuum. Some people facilitate

meetings. Some people develop. Some test. Some help others see what

the product manager meant in that requirement. Measuring individ-

ual productivity will encourage people to work alone and to game the

system. Don’t do it.

Measure a team’s capacity in terms of running, tested features. Don’t

bother with attempting to measure productivity or efficiency. You’ll

make everyone frustrated (including you), and you won’t get the results

you want.

10.9 What You Need to Measure About the Portfolio

When you start gathering data to help your portfolio decisions, as in

Section 4.2, Decide to Commit, Kill, or Transform the Project, on page 52,

you might be able to more easily make a decision quickly. When the

project teams know they will have to produce this data, they may be

able to help you make the decisions too. I recommend you start with

just the project portfolio burndown chart.

Remember, just as you can’t calculate ROI for a project as in Sec-

tion 5.9, Don’t Use ROI to Rank, on page 81, you can’t calculate ROI

for the portfolio. But if you use a lean approach for the portfolio and

an agile or lean approach for your projects, you don’t have to try. You’ll

see value, or lack thereof, every time you evaluate the portfolio and can

make the small adjustments you need for the organization.

In addition to the project portfolio burndown, you might need to track

other data for your organization.

• Number of iterations completed, cost per iteration, total cost for

the project to date

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=155

WHAT YOU NEED TO MEASURE ABOUT THE PORTFOLIO 156

• Capital expenses for the project

• When you can capitalize software

• Number of simultaneous projects you are asking teams to work on

10.9.1 Expensing vs. Capitalizing Software

I’m not a lawyer, nor am I an accountant. You should talk to your legal

and financial people to hear what they have to say, especially if your

government mucks around with the issues of expensing or capitalizing

software.

If you’re not familiar with these terms, here’s what they mean. Expens-

ing software means you pay for the cost of the product as you develop

it. The expense comes out of the organization’s cash flow and off the

income statement. Expensing has an immediate effect on the organi-

zation’s profit and loss statement. When you pay for software as an

expense, it means that the software has no inherent value as an asset

to the organization.

Capitalization is different. As the software is developed, some part of

it is considered an “asset” to the organization, not just an expense.

Because it’s an asset, it’s expected to provide a greater value when it

is sold than the value it currently has. If you were making a table, the

cost of the wood is an expense. But at some point, as you make the legs

and the top and put it together, the table has more value than the cost

of the wood or the workers’ pay to make that table. The table is an asset

and can be sold at a higher value than the expenses. It’s the same idea

with software.

If you always generate running, tested features, you are creating an

asset. I don’t know when your software is an asset that you can cap-

italize. You, your lawyers, and your accountants are the only people

who can decide that. But if you are tight on cash flow, make sure you

know when you have to start counting your software development as

an asset, because that may change when you need to finish a project.

10.9.2 How Many Simultaneous Projects Are You Asking a Team to Work

On?

If the answer to this question is greater than one, you’d better have

a good reason. Once teams attempt to work on more than one project

at a time, they make less progress on all projects. That puts you in a

position of not being able to manage the portfolio, being in a position

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=156

WHAT YOU NEED TO MEASURE ABOUT THE PORTFOLIO 157

Project Progress

0

2

4

6

8

10

12

1 2 3 4 5 6

Month

F
e
a
tu
r
e
s

0

10

20

30

40

50

60

70

80

90

D
e
fe
c
ts
 (
T
r
e
n
d
 L
in
e
)

Features expected to be done

Features actually done

simultaneous projects

#Defects remaining open

Figure 10.1: Project progress, reducing and eliminating multitasking

like Figure 2.2, on page 31 instead of being in a position where you are

managing the portfolio, as in Figure 2.1, on page 30.

But what if you’re transitioning to agile and lean approaches and you

don’t see another way out of the current mess you’re in? What if you’ve

decided that instead of one- or two-week iterations on just one project,

you are willing to staff the team to two projects for four weeks? If you

track the number of simultaneous projects the team is working on and

track their velocity and technical debt, you might be surprised.

Early in my management career, I thought that asking a team to work

on “just” two projects was a good idea. After all, I’d stopped having

everyone work on four projects. I must be doing a good job, right? The

people were working in cross-functional feature-based teams, so they

had everyone they needed to finish the work. They were using contin-

uous integration. I did see a little improvement in the first month (see

Figure 10.1). But notice how much more improvement there was, not

just in the number of features but in the reduction of defects, when I

finally told the teams to work on just one project.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=157

MEASURE CAPACITY BY TEAM, NOT BY INDIVIDUAL 158

How to Create a Chart Displaying Multiple Types of Data

If you’ve never tried to create this kind of a chart in Excel, here’s
how. Make the bar chart line. Now, select the data you want to
add as a trend line. Select the chart and “paste special.” Bring
up the contextual menu with a Ctrl-click or right-click depend-
ing on your machine, and you can select the trend line format.

In Numbers, you can select a “mixed chart” type and follow
the instructions.

10.10 Measure Capacity by Team, Not by Individual

We’ve all seen the differences in individual people’s capabilities. If you

look in the literature, you can see that Peopleware [DL99], Rapid Devel-

opment [McC96], and Psychology of Computer Programming [Wei98] all

cite differences in capabilities ranging from as little as 10:1 to as much

as 100:1—that means that one developer could be as much as 100

times more productive than another.

The problem is that development is actually a small piece of what hap-

pens in a well-running team. The team has ways to discuss and resolve

problems, test as individuals and as a group, help the technical sup-

port staff, interact with the rest of the organization, and perform any

other team roles they need. Development, especially as an individual, is

certainly necessary to completing features and projects, but it’s not the

only activity a healthy team undertakes. If you have only great develop-

ers, but they can’t talk to the users, they can’t test what they’re develop-

ing, or they have no patience for the tech support folks, then you don’t

have a sustainable organization. You certainly don’t have a productive

one or one that can produce releasable running, tested features.

The only capacity measurement that makes sense is that of completed

projects over time. Measuring completed projects can be useful but still

has outside dependencies, such as when your customers are willing to

take the release. If you want to measure capacity, measure how long

it takes a team to create a running, tested feature. That way, you’ve

accounted for the DBA time, for the testing time, for the analysis and

architectural time, and for actual coding time.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=158

PEOPLE FINISH MORE WITH LEAN AND AGILE 159

10.11 People Finish More with Lean and Agile

As you’re measuring project value and making progress on your project

portfolio, you might notice the following phenomenon: your staff fin-

ishes more features, your projects finish earlier, and you have fewer

emergencies as you integrate agile approaches and lean thinking into

your projects.

Because people focus on one project at a time, complete the most valu-

able features first, and complete features for every timebox, project

teams build their capacity. And, as managers use lean and agile ap-

proaches for the project portfolio, they need fewer teams on large pro-

grams, and they finish projects and programs faster.

I’ve seen two big reasons for building capacity:

• Teams have either dramatically reduced or eliminated multitasking.

• Teams require many fewer specialists to finish their work.

When a team moves to working on one project at a time, finishing valu-

able work in a timebox, that creates a reinforcing loop in the organiza-

tion. Because that team is finishing work, the pressure to start another

project drops. The team can finish more work. Once the team estab-

lishes and maintains its velocity—proving they can finish work—the

organization stops piling work on simultaneously. It’s much easier for

the team to push back to all of the people who want work done and ask

them which project or feature (as in Section 9.4, Stabilize the Number

of Work Items in Progress, on page 132) is most important.

If you have a team that works together to accomplish completed pieces

of work, you won’t have quite as many problems as “Dan is the only

database admin, so we have to wait for him to make us a database.”

Other people will work with Dan, and he will teach them the basics of

what he knows. Dan might be the only person who knows how to test

in a certain way or upgrade a schema or work with that part of the

code base. But if you have a team of people as defined in Behind Closed

Doors [RD05]—in other words—people who have interdependent deliv-

erables, they will find ways to help each other accomplish the team’s

work. If you measure team velocity, as in Section 10.2, What You Need

to Measure About Your Projects, on page 142, you encourage people to

become generalists rather than specialists.

You won’t see these benefits if you change the makeup of the team

from iteration to iteration. That’s because you’re not letting the team

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=159

NOW TRY THIS 160

form. And, there is a limit to the capacity that people can increase. But

limiting work in progress at the portfolio and at the team level helps

build capacity.

10.12 Now Try This

• As you decide what to measure, consider what you need from the

project and what you need to measure about the portfolio.

• What will it take for your projects to report these measures?

• What will you need to do to collect the portfolio measures?

• What do you need to measure about your projects and your port-

folio?

• How will you present the data or ask the team to present their

data?

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=160

Chapter 11

Define Your Mission
My publisher, the Pragmatic Bookshelf, has a mission: “Make devel-

opers’ lives better.” They use their mission to decide whether a book

proposal fits and to decide how to market and sell their intellectual

property: books, workshops, podcasts, and the other products. Histor-

ically, Google’s mission was “Don’t be evil,” but that has now evolved

to “Organize the world’s information and make it universally accessible

and useful.”1

Portfolio management is all about taking a step back from the individ-

ual projects to see everything that’s on your team’s plate and deciding

what to do with it all. But you need some guiding principles about what

work you do need to do.

Those guiding principles—how you define your strategy—start with an

actionable mission.

11.1 Define the Business You Are In

Your users—not necessarily your customers—define the business you

are in. Your users have problems that your products or systems or

deliverables solve for them. You might sell the systems to people who

are not your users: think of companies who provide voicemail systems,

where the buyers are telephone system administrators but the users

are the people who buy telephone system access from the telephone

system providers.

1. http://www.google.com/corporate/

http://www.google.com/corporate/

WHAT GOOD IS A MISSION, ANYWAY? 162

In order to define your organization’s, group’s, or team’s mission, you

have to know what business you’re in. The problems your projects solve

define the business you are in.

Don’t be surprised if the business you are in is not the software busi-

ness. If you provide voicemail systems, you’re in the telephony busi-

ness. If you provide medical records, you’re in health care. If you pro-

vide embedded systems for process control, you could be in the man-

ufacturing or automobile business, depending on what the embedded

systems control.

11.2 What Good Is a Mission, Anyway?

A mission explains what your team, group, or organization does and

what work is outside those boundaries. The more tactical (actionable)

your mission is, the more the mission helps you draw the boundaries

of work that belongs in your group and work that doesn’t belong. You

know what to do with work that doesn’t belong—you put it on the

unstaffed work list and work with your manager or your peers to get it

off your plate. The more strategic your mission is, the more inspiring it

might be, but people might not know how to use the mission to guide

their day-to-day work.

Consider these other larger missions. As of September 16, 2008, the

Walt Disney Company’s mission is to “produce unparalleled entertain-

ment experiences based on the rich legacy of quality creative content

and exceptional storytelling.”2

The bigger the group or organization, the less specific the corporate

mission is. I found this statement in JetBlue’s customer bill of rights:

“Above all else, JetBlue Airways is dedicated to bringing humanity back

to air travel.”3 Tesco, a large supermarket chain based in the United

Kingdom, says this: “Our core purpose is to create value for customers

to earn their lifetime loyalty.”4 ExxonMobil says, “ExxonMobil’s primary

role—and most important benefit to society—is to safely provide reliable

and affordable supplies of energy to people around the world.”5

2. http://corporate.disney.go.com/corporate/overview.html

3. http://www.jetblue.com/about/ourcompany/promise/index.html

4. http://www.tescoplc.com/plc/about_us/values/

5. http://www.exxonmobil.com/Corporate/community_ccr_overview.aspx

Report erratum

this copy is (P1.0 printing, July 2009)

http://corporate.disney.go.com/corporate/overview.html
http://www.jetblue.com/about/ourcompany/promise/index.html
http://www.tescoplc.com/plc/about_us/values/
http://www.exxonmobil.com/Corporate/community_ccr_overview.aspx
http://books.pragprog.com/titles/jrport/errata/add?pdf_page=162

DEFINE AN ACTIONABLE MISSION FOR THE ORGANIZATION 163

Separate Your Personal Mission from the Business

Each of us chose our work for a particular reason—our personal
mission. Don’t confuse your personal mission with the mission of
your team, group, or organization.

Yes, your personal mission must be congruent with the business’
mission. I was once called an SQA director, but my manage-
ment wanted no metrics and no process. I insisted we call the
group the Test group and me the Test Director, because we
did not do software quality assurance; we did testing. I wasn’t
happy with that mission, but that’s what the company paid me
to do.

Your personal mission is what drives you to do great work. You
need it. Just make sure you keep your personal mission, um,
personal. Don’t impose your mission on your group. Make sure
you’re doing what your organization requires.

Regardless of what you think about these organizations, their value

statements or missions set some boundaries and guidance for their

staff. Given those guiding values, the technical staff on a project or

managers responsible for several groups can use those values to guide

their work and define their missions.

11.3 Define an Actionable Mission for the Organization

A good mission is actionable: it provides guidance and boundaries for

people to use as they work and as they select which work to do.

Your group’s mission might be something like “Develop and create high-

performance computing systems.” But, if you have a sales department

out of control, your development manager’s mission might be “Be the

conscience of the sales department.” That manager explained, “We have

to do enough prework to know whether we can deliver, in a reasonable

amount of time, what sales wants to promise. We want to make it easy

for them, so we work in short iterations and predict velocity from what

we know.”

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=163

DEFINE AN ACTIONABLE MISSION FOR THE ORGANIZATION 164

A test manager told me her group’s mission was “Assess the state of the

software at any time and report on it.” As she said, “That mission gave

me ammunition to determine which areas we needed for test automa-

tion and the machines we needed.”

A program manager with several Scrum teams all working to create a

product said his mission was “Ship this product before our competi-

tor ships theirs.” Using Scrum, along with many of the XP practices,

allowed him to know that the product was always in a done state, so he

could keep interrogating the marketing folks about product intelligence

to know when they had to ship.

A CIO for a health-care organization said his group’s mission was “Cre-

ate an environment in which people can deliver state-of-the-art health-

care solutions.” I asked him what “state-of-the-art” meant to him. “Docs

get computers that freaking work. The medical records are updated in

real time. The people who call in for referrals get them. Same day. None

of this “We can’t do that referral today” or “We can’t renew a prescrip-

tion until tomorrow. Today is what we need.” After working with him

and his staff, they changed their mission to this: “Deliver working prod-

ucts to medical office staff so they can deliver health care today, not

tomorrow.”

Another test manager told me her mission was “Find the Big Bad Bugs

before the customers do.” That allowed her group to focus on the risky

areas of the products the developers were creating.

A customer service manager told me his mission was “Insulate the

CEO from random customer input.” His mission allowed him to cre-

ate a respected group of support staff in an organization known for its

developers, not its support staff.

Several development managers have told me their missions are “Provide

for the care and feeding of the developers.” One development manager

said something a little different: “Create an environment in which devel-

opers can do good work and grow.” For these development managers,

it wasn’t enough to complete a product; they integrated career develop-

ment into their missions.

No matter where you are in the organization, make sure your mission

is clear, is actionable, and expresses a benefit to someone. If you follow

your mission, you will benefit the organization.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=164

DRAFT A MISSION FROM SCRATCH 165

Managers: Do Management Work

If you’re a senior manager and your mission is to create oppor-
tunities, does that mean you start projects to create opportu-
nities? Sure. Does it mean you manage those projects? Almost
never.

If you’re a senior manager, your job is to create a whole-
organization environment in which people can work well. You
can’t do that if you’re trying to manage a project—any project.
Even if you think it’s just a one-person project to investigate
some possibilities, assign someone from your group to do that
work and report to you.

If you’re a mid-level manager, your job is to create that envi-
ronment (of enabling great work) for your groups or teams and
to see other projects or work to build on the higher strategy. If
you’re a first-level manager, your job is to create an environ-
ment in which your group or team can work, to remove obsta-
cles, and to consider strategic work that might make your tac-
tics easier to manage.

As a manager, your most important job is to talk to the con-
sumers of your projects and see where they are headed. If you
keep a narrow view of your business, eventually your business
will go under.

As for nitty-gritty work, you will have plenty to do if you keep up
with incremental funding, evaluating the portfolio, hiring peo-
ple, and mentoring and coaching your managers. But it’s all
management work. It’s not technical contributor work.

11.4 Draft a Mission from Scratch

An actionable mission contains a verb related to the results of the orga-

nization. If you’re an airline, a mission might be “Fly people and their

luggage together.” If you look back at the missions in Section 11.3,

Define an Actionable Mission for the Organization, on page 163, you can

see that each mission grabs the reader with a strong verb.

To draft a mission with your group without looking at your current

work, try these steps:

1. Brainstorm the mission pieces. Define what you do for whom and

the value people received from that work.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=165

BRAINSTORM THE ESSENTIALS OF A MISSION 166

2. Specify strong verbs.

3. Eliminate adverbs.

4. Iterate until you feel comfortable with the mission.

Don’t worry if you can’t define your mission in a quick thirty-minute

meeting. A team of individual contributors focused on the same goal

might be able to define their mission in an hour or two. Once you have

several teams, especially if they have varying goals, the mission will

be harder to define. The more managers, the harder the mission will

be, because they all need to have a mission that supports their work

but is greater than any one of them. If you have more than one group,

work bottom-up if you have no overall mission. That is, make sure each

group develops their mission first and then works to create the greater

mission that supports everyone.

11.5 Brainstorm the Essentials of a Mission

If you’ve never written a mission statement before, try brainstorming

the elements of your mission:

1. Invite the members of your group to participate.

2. Give everyone thick markers, blank paper, and plenty of sticky

notes.

3. Divide people into smaller working teams of two to three people.

4. Ask people to think about the work they do and then to think of

what drives their work. The driver might be the verb.

5. Ask people to think about the boundaries of their work—what’s in

and what’s out.

6. Ask everyone write down these words: the driver, the boundaries.

One word to a sticky.

7. Post the stickies on a well so everyone can see all the stickies.

8. Now, ask people to work together in small groups to draft a mis-

sion statement.

Once the mission statements are written on stickies, post the state-

ments on the wall, making sure to keep one statement on a line. If

you’re curious, the picture of “My Mission” on the next page is how I

started to write my mission.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=166

BRAINSTORM THE ESSENTIALS OF A MISSION 167

Now everyone can review every other group’s statements. Encourage the

group discussion as people review the stickies. Once people have dis-

cussed enough, somewhere between five minutes for teams who really

know what they’re doing to twenty-five minutes for teams who can’t

agree, you have a decision. If people really can’t agree on the work they

need to do, adjourn the meeting for now, and agree to meet in a few

days or a week to see whether you can decide then. Between now and

then, make sure you aren’t asking people who perform different work

to try to agree on a mission.

Four Groups, One Manager, Four Group Missions, One Department

Mission

by Cheryl, Group Manager

I had a group called Development Services. That meant I had all the

testers, writers, release engineers, and continuing engineering as part of

one group. I had leads for each of the groups and thought I could write a

mission with all of them together for our group. Wrong-o! You never saw

such fighting about what we did and didn’t do.

First, I had to work with each group to write their mission with them.

Once each group had a clear mission (which took just one one-hour

meeting), I gathered the leads again and asked that now that they each

knew what their mission was, could we work on the department’s

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=167

REFINE THE MISSION 168

mission? Piece of cake. But we had to separate the group missions from

the department’s mission.

This would have been easier if we’d had real managers instead of

leads—that would have triggered us all to think a little differently. But we

didn’t. We finally figured it out.

As people agree on the pieces of the mission, order the stickies so you

create a mission statement from the stickies.

11.6 Refine the Mission

Once you have the elements of your mission from the brainstorming,

make sure you have strong verbs and have eliminated adverbs and

jargon.

11.6.1 Strengthen Your Verbs

Action verbs need to be more than “do.” Yes, it is a verb. But it doesn’t

give you or your group guidance about what to do. “Do” is a weak

verb. Instead, think about what “do” means. Does it mean “perform” or

“obtain” or “create”? It might mean something different, so specify what

it means.

Sometimes people use adverbs for emphasis, such as “Really provide

real-time answers.” Adverbs weaken writing. If you used adverbs to

strengthen your sentence or for emphasis, eliminate the adverbs and

strengthen the verbs. To see other ways to strengthen your writing,

read On Writing [Kin00] and Weinberg on Writing [Wei05].

For example, if you wrote “Really help,” you might mean assist, guide,

or facilitate.

11.6.2 Avoid Jargon

Too many missions have words such as “empower” or “make a differ-

ence” or “provide superior” products or services. Eliminate those jargon

words. If you have a word you can generate through buzzword bingo

or from any of the online mission statement generators, return to your

brainstorming and define what you mean. Jargon allows you to take

shortcuts with your ideas and reduce specificity. But your shortcuts

won’t help you decide which projects to commit to. Be specific.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=168

DERIVE YOUR MISSION FROM YOUR WORK 169

11.7 Derive Your Mission from Your Work

You may find brainstorming difficult. In that case, try using your work

to help you define your mission.

Ideally, your organization would have an actionable mission that you

could use to help define your project’s or group’s or team’s mission.

But even if the organization has a great mission, the levels of managers

between you and the top may not have created actionable missions for

themselves and their groups. In that case, you’ll have to derive your

mission from your work.

Sometimes, you need to use your work to define your mission, as in

“Make Your Mission Possible” [Rot08a]. A colleague explained how he

and his group decided their mission when he was tired of his senior

management’s apparent lack of direction.

My Management Can’t Decide What’s Important

by Randy, Technical Lead

I was minding my own business, working on a pretty strange problem in

the database. My manager, Cindy, walked over and plunked herself down.

“Can you add a report to this release? Remember the report we postponed

from this release?” I nodded. “It’s back in again.”

“Look, we took that out for a damn good reason. A few good reasons. One,

it doesn’t belong in this release. Two, it’s not where we want this product

to go. It’s supposed to go into the next product. Three—”

“I know. But my boss rolled over my objections. I really hate coming to

you like this.”

“Don’t then.”

Cindy rolled her eyes. “I have an idea. Let’s organize our work in a way

that makes sense to us, and then maybe I’ll have more ammunition.”

We bucketed all the work we had to do and organized a project portfolio

around the buckets. It has been more than a year, and Cindy’s boss has

been listening to her objections and making reasonable decisions.

Here’s how to define your mission from your work. First, look back at

all the work you collected in Section 3.1, Know What Work to Collect,

on page 40. Now categorize your work into three buckets:

• Work that seems to make sense for our group

• Work that needs to get done, but maybe not by us

• Work that we are doing but we don’t understand why

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=169

HOW TO DEFINE A MISSION WHEN NO ONE ELSE WILL 170

If you’re a development manager, developing systems makes sense for

your group. Helping sales or service people with installations is work

that needs to be done, but maybe not by you. If someone in the devel-

opment’s group has a role answering the phone as a first-line service

tech, that’s work you’re doing but you don’t understand why.

As you collect the work that needs to be done but not by you, think of

a group inside the organization that should do this work. If that group

exists, create a sticky with the name of that group, and organize the

work under that group’s name. If there is no group that looks like they

should do that work, create another sticky with “We don’t understand

why we’re doing this work.”

If you define your mission from your work, make sure you check in with

your boss and see whether he or she agrees. You might need to modify

your mission—and the work—in order to come to agreement with your

boss.

11.8 How to Define a Mission When No One Else Will

I’ve worked with senior managers and technical leads who worked in

organizations that did not have a mission or a strategy. Sometimes

those organizations grew quickly and had not paid attention to strate-

gic planning. Sometimes, they suffered from a leadership vacuum at the

top, such as no CEO. In any case, your organization doesn’t have a mis-

sion. But without a mission, you or your managers can’t decide what

is most important. To protect your team and accomplish anything, you

will need to decide. You can use the portfolio and generate a mission

based on the work you think is most valuable to the organization.

Make sure you bucket the information as in Section 11.7, Derive Your

Mission from Your Work, on the previous page. Now, look at the team you

have. Look at the work. Use the work you can accomplish to drive your

mission building. Is this perfect? Not by a long shot. On the other hand,

if you say, “Here is the work we are doing to move the organization for-

ward. If you don’t like this, let’s change our mission and then reevaluate

and rerank the portfolio,” then you can at least get some work done that

makes sense to your staff and to the rest of the organization.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=170

BEWARE OF THE MISSION STATEMENT TRAPS 171

11.9 Beware of the Mission Statement Traps

As I’ve worked with managers, I’ve noticed a number of mission state-

ment traps. The most common is the service-level agreement trap.

11.9.1 The Service-Level Agreement Trap

If you have a lot of emergency projects and you’re now trying to manage

the portfolio by defining your mission, you’re going to start saying no

to some work. When you say no, some people are going to tell you that

you need to respond more quickly than you are. Or, maybe you feel

badly about saying no to some people in the organization. You might

even be tempted to set a response time: “We’ll finish that in the next

twenty-four to forty-eight hours.”

Promising a service level for a product development group (develop-

ment, testing, business analysis, documentation, whatever) is nuts. It

guarantees technical debt unless you really can interrupt what you are

doing, finish that work, and then restart what you were doing. Your

chances of success are minimal.

On the other hand, if you are a group that does some sort of support

work (support operations, tier-three customer support), you may want

to have some sort of service level for that work. Service levels for projects

make no sense.

The problem is you are working on projects. Service-level response

times interfere with project work and cause multitasking. Maybe some-

one has to do that work, but maybe not you. Or, if you do have to do

it, someone else can rank order the work, and you can work in short

timeboxes so you have a chance of completing the necessary-to-the-

organization work without multitasking.

It does make sense to provide a date in some relatively short period of

time. But remember, software product development is not a service. It

is product development (or system development, if you prefer). Support

work is problem solving or checklist work. The risk in support work is

in the time required to solve the problem. For product development, the

risk is in whether you can solve the problem at all, not just in a short

time frame.

When leads or managers promise short turnarounds—or as one test

manager said, “Test all products as they evolve, 24/7/365”—they cre-

ate an environment where the people can’t succeed. The testers can’t

learn enough details about the product to be effective, and if there’s

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=171

BEWARE OF THE MISSION STATEMENT TRAPS 172

only eight people “supporting” a technical staff of a few hundred devel-

opers, then they are understaffed for all the work.

11.9.2 Some Group Owns Total Responsible for Quality

After the service-level agreement trap, a common trap for software orga-

nizations is that one group is “responsible” for quality. That group

is usually the testers. They have a mission like this one: “Ensure we

release high-quality products.”

Testers, no matter what you call them, cannot ensure quality. Testers

report on the quality, among other things, of the product. Developers

might be able to “ensure quality,” if senior managers don’t hamstring

them. But the real people who ensure quality in an organization are the

managers. Those people create an environment in which quality can

flourish—or not.

11.9.3 The Mission Statement Is Too Loooong

If you try to be all things to all people—and be tactical when you need to

be strategic—your mission statement is too long. Here’s a test to know

whether your statement is too long. After you develop the mission, ask

someone to face away from the stickies or the paper on the wall, and

ask that person to tell you the mission statement. This is impossible

if you have jargon and adverbs in your mission statement. Iterate and

refine the mission.

11.9.4 Mission Statement Has Stretch Goals

Yes, you want to make your mission statement inspiring. But a mission

statement is not a place for stretch goals. Make the mission statement

believable and achievable. Otherwise, how will you select projects that

meet the mission?

One development IT manager had the mission “To be the best in soft-

ware development” when everyone in the group had just two years or

fewer in development. The developers knew they were not the best. And,

they knew that the projects they needed to complete were not going to

make them be the best in development. That mission was not inspiring

for the people to continue to work there. Instead, over the course of a

couple of years, each person left to pursue that “best” for himself or

herself.

Make the mission statement interesting (inspiring if you can), to the

point, and congruent with the organization.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=172

TEST YOUR MISSION 173

11.10 Test Your Mission

When you’ve written your mission, test it. Or, if you prefer a test-driven

approach, use these questions to drive your mission development:

• Is this mission something the people in this group can do?

• Is this mission something the people in this group have the inter-

est, capabilities, and talent to do?

• Does this mission create opportunities for the group and the orga-

nization as a whole?

• Is this mission unique, or does it describe some unique value?

• Is it clear what is inside the scope of this mission, and what is

outside the scope?

• Does the mission drive action?

Make sure your mission has an action verb. Make sure it draws bound-

aries around the work so you can see what work you should be doing

and see the work you should not be doing.

If you’ve worked on the mission alone, make sure you check with the

team to test it. You can’t know whether you have it all right until you

test the mission. Review your mission for traps, and eliminate them.

11.11 Make the Mission Real for Everyone

Middle managers define a more tactical mission based on the organiza-

tion’s mission, especially if your senior management has not defined an

actionable mission. You’ll need to define a mission with tactical parts.

That way, the first-level managers can use your mission to refine theirs.

Inspiring and Tactical Missions Are Tough to Write

by Johanna, SQA and Second-Line Support Manager

I was trying to run two independent groups. To the SQA group that was a

test group, I provided all the process work. In addition, I was managing a

second-line support group, which took the problems the regular support

group couldn’t handle. I had two independent groups, not one team. I

managed those groups not because it made sense to put them together

but because they weren’t development. I wanted to describe these two

groups in some way that made sense to everyone in the groups as well as

the rest of the organization.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=173

NOW TRY THIS 174

I started with each separate team and worked with them to define their

missions. The test group used “Assess the state of the product at any time

and report on that state.” The second-line support group developed this

mission: “Become the go-to experts in several areas of the system and

respond to problems within four working days.”

On the face of it, there’s no commonality between the two groups. But

both groups provided valuable in-depth expertise for much of the system.

In four half-hour chunks over four weeks, we developed a mission for the

my group as a whole: “Provide system-level expertise to the development

groups.”

It was worth taking the time. Our mission was inspiring enough for my

two teams and helped explain a little about what we did. It was tactical

enough and helped us determine when work was outside of our scope.

If you’re in middle management, resist the temptation to use jargon

or buzzwords. Take the time to write a real mission for your group,

whether they are a variety of teams as mine were or whether they have

more commonality.

11.12 Now Try This

• Look at your mission now, whether you are a technical lead, a

manager, a middle manager, or a senior manager. Is it actionable?

Does it say what’s in your purview and what’s not?

• If you have a mission at your level, make a date with your peers

and develop your joint mission so you know how to work across a

department or a whole organization.

• Test your mission to make sure you haven’t fallen into any traps.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=174

Chapter 12

Start Somewhere . . . But Start
As I was writing this book, one of my reviewers asked, “Can people

really do this? What if their senior management has no clue? What if

their middle management has no clue?”

Yes. You can do this. You can do this if your senior management has no

strategic plan and doesn’t know about project portfolio management.

You can do this even if your middle management has no clue. Look at

what you are able to manage, and use the portfolio to provide direction

to your team, finish projects, increase your capacity, and provide better

answers to your managers.

You can manage the project portfolio at your level of influence. You

can work in timeboxes, finishing complete chunks of work. Or, you can

limit the work in progress so you can complete chunks of work. You

can decide what to do now, what to do later, and what to put off so you

effectively never do it. You can work with your peers and make these

decisions so that you as a team can complete projects and release them.

Managing the entire project portfolio is easy when senior management

has a strategic plan and manages to that plan. It’s not too difficult, if the

middle managers understand how to think strategically and tactically

even if your senior management isn’t so good at strategic planning.

Managing the project portfolio is difficult if you’re the only one doing it,

no matter what level you are. If you’re a first-line manager or a technical

lead, you may feel as if you’re pushing a boulder uphill.

Remember, you can change yourself. You can change your reactions to

the work around you. You can offer an alternative to your colleagues

and managers. You can’t change anyone else.

CHAPTER 12. START SOMEWHERE . . . BUT START 176

As long as you finish work in chunks so other people can see it and use

it, you will be successful.

Start with your work, and then work with others. This requires courage,

but if you’ve made it this far, you have plenty.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=176

Chapter 13

Glossary
Agile An iterative and incremental way of working that provides valu-

able working product at regular intervals. A key aspect of agile,

as opposed to an iterative/incremental life cycle, is the expecta-

tion that the project team will inspect and adapt as it proceeds in

order to improve. For more information, see the Agile Manifesto

(http://www.agilemanifesto.org).

Big Visible Chart A chart to keep progress visible. A way to display

important information. It does not have to be formal; it has to be

easy to see.

Burndown chart A chart that tracks how much work remains on your

project and whether you’ll hit your deadline.

Burnup chart A chart that tracks how much work remains on your

project, how much total work there is on your project, and whether

you’ll hit your deadline.

Cumulative flow A measure of the work in progress over time com-

pared to total scope.

Incremental life cycle A life cycle where the project team develops fea-

tures, feature chunks, or MMFs as they choose. That development

does not have to be completed in a timebox.

Iteration A time period in which people produce completed work. In

agile life cycles, the iteration is a fixed duration, a timebox.

Iterative life cycle A life cycle in which the project team completes

pieces of functionality. Some iterative life cycles use timeboxes;

http://www.agilemanifesto.org

CHAPTER 13. GLOSSARY 178

others do not. The idea is that the project team plans to go back

and complete the functionality later.

Kanban Literally a visual card. Used in software development as a way

to represent a unit of work.

Lean A philosophy of working that shortens the time between the

customer request and the delivery of that feature by eliminating

sources of waste.

Minimum marketable feature (MMF) Smallest piece of functionality

that has value to the customer

Pants on Fire schedule game A schedule game where management

cannot decide which project is most important and changes its

mind frequently.

Product backlog A list of things that need to be completed for the

product.

Project A unique undertaking that involves risk and single deadline.

Project dashboard A form of Big Visible Chart that shows project

status.

Project portfolio A ranked list of which projects have which priority

for how long.

Program A collection of projects that when released all together deliver

significant value.

Road map A list, often by quarter, of which features the organization

desires in a product.

ROI Return on investment. If you measure the amount of money ob-

tained from this product divided by the amount of money invested

in the development of it, you get ROI.

Running, tested features Features that have passed their acceptance

tests.

Queue A sequence of waiting tasks.

Queue length The number of items in the kanban queue.

Serial life cycle A life cycle where the project team first obtains all the

requirements and then performs analysis, then design, then code,

then integration, and then test.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=178

CHAPTER 13. GLOSSARY 179

Split Focus schedule game The schedule game where a person is

supposed to multitask.

Sunk cost The money already invested in the project or product.

Timebox A fixed duration of time in which a team commits to complet-

ing some work.

User story A form of stating requirements. A user story could be of

the form “A <user> can complete some task.” Or it could be “As a

<user>, I want <to do some task> for <some benefit>.”

Velocity A chart that shows how quickly the team is completing

features.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=179

Bibliography

[All02] David Allen. Getting Things Done: The Art of Stress-Free Pro-

ductivity. Penguin, New York, 2002.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley, Reading, MA, 2000.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man Month: Essays

on Software Engineering. Addison-Wesley, Reading, MA,

anniversary edition, 1995.

[Coh06] Mike Cohn. Agile Estimating and Planning. Prentice Hall,

Englewood Cliffs, NJ, 2006.

[DCH03] Mark Denne and Jane Cleland-Huang. Software by Num-

bers: Low-Risk, High-Return Development. Prentice Hall,

Englewood Cliffs, NJ, 2003.

[DeM01] Tom DeMarco. Slack: Getting Past Burnout, Busywork, and

the Myth of Total Efficiency. Broadway Books, New York,

2001.

[DL99] Tom Demarco and Timothy Lister. Peopleware: Productive

Projects and Teams. Dorset House, New York, second edi-

tion, 1999.

[Dru64] Peter Drucker. Managing for Results. Pan Books, London,

1964.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing

Code. Addison Wesley Longman, Reading, MA, 1999.

[FUP91] Roger Fisher, William Ury, and Bruce Patton. Getting to Yes.

Penguin Books, New York, second edition, 1991.

BIBLIOGRAPHY 181

[Gol04] Eliyahu Goldratt. The Goal. North River Press, Great Bar-

rington, MA, third edition, 2004.

[Hig99] James A. Highsmith III. Adaptive Software Development:

A Collaborative Approach to Managing Complex Systems.

Dorset House, New York, 1999.

[JAH02] Ron Jeffries, Ann Anderson, and Chet Hendrickson.

Extreme Programming Installed. Addison-Wesley, Reading,

MA, 2002.

[Ker04] Joshua Kerievsky. Refactoring To Patterns. Addison-Wesley,

Reading, MA, 2004.

[Kin00] Stephen King. On Writing. Scribner, New York, 2000.

[KLT+96] Sam Kaner, Lenny Lind, Catherine Toldi, Sarah Fisk, and

Duane Berger. The Facilitator’s Guide to Participatory

Decision-Making. New Society Publishers, Gabriola Island,

BC, 1996.

[KS99] Jon R. Katzenbach and Douglas K. Smith. The Wisdom of

Team: Creating the High-Performance Organization. Harper-

Collins Publishers, New York, 1999.

[Lik04] Jeffrey Liker. The Toyota Way. McGraw Hill, New York,

2004.

[McC96] Steve McConnell. Rapid Development: Taming Wild Software

Schedules. Microsoft Press, Redmond, WA, 1996.

[Moo91] Geoffrey A. Moore. Crossing the Chasm. Harper Business,

New York, 1991.

[Ohn88] Taiichi Ohno. Toyota Production System: Beyond Large Scale

Production. Productivity Press, New York, 1988.

[RD05] Johanna Rothman and Esther Derby. Behind Closed Doors:

Secrets of Great Management. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2005.

[Rot99] Johanna Rothman. How to use inch-pebbles when you

think you can’t. American Programmer, 12(5):24–29, 1999.

http://www.jrothman.com/Papers/Howinch-pebbles.html.

[Rot04a] Johanna Rothman. Hiring the Best Knowledge Workers,

Techies, and Nerds: The Secrets and Science of Hiring Tech-

nical People. Dorset House, New York, 2004.

Report erratum

this copy is (P1.0 printing, July 2009)

http://www.jrothman.com/Papers/Howinch-pebbles.html
http://books.pragprog.com/titles/jrport/errata/add?pdf_page=181

BIBLIOGRAPHY 182

[Rot04b] Johanna Rothman. Multiprojecting: The illu-

sion of progress. stickyminds.com, 2004.

http://www.stickyminds.com/s.asp?F=S7198_COL_2.

[Rot07] Johanna Rothman. Manage It!: Your Guide to Modern Prag-

matic Project Management. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2007.

[Rot08a] Johanna Rothman. Make your mission possible. Better Soft-

ware, pages 20–21, March 2008.

[Rot08b] Johanna Rothman. What lifecycle? selecting the right model

for your project. Cutter IT Journal, pages 22–27, May 2008.

[Saw07] Keith Sawyer. Group Genius: The Creative Power of Collabo-

ration. Basic Books, Philadelphia, PA, 2007.

[Sch04] Ken Schwaber. Agile Project Management with Scrum.

Microsoft Press, Redmond, WA, 2004.

[SF01] Robert C. Solomon and Fernando Flores. Building Trust in

Business, Politics, Relationships, and Life. Oxford University

Press, New York, 2001.

[SH06] Venkat Subramaniam and Andy Hunt. Practices of an Agile

Developer: Working in the Real World. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2006.

[SR98] Preston G. Smith and Donald G. Reinertson. Developing

Products in Half the Time: New Rules, New Tools. John Wiley

& Sons, New York, second edition, 1998.

[Sta00] R. Brian Stanfield, ed. The Art of Focused Conversation, 100

Ways to access Group Wisdom in the Workplace. New Society

Publishers, Gabriola Island, BC, 2000.

[Sur05] James Surowiecki. The Wisdom of Crowds. Anchor, New

York, 2005.

[Toc05] Steve Tockey. Return on Software: Maximizing the Return

on Your Software Investment. Addison-Wesley, Reading, MA,

2005.

[War07] Allen C. Ward. Lean Product and Process Development. The

Lean Enterprise Institute, Inc., Cambridge, MA, 2007.

[Wei92] Gerald M. Weinberg. Quality Software Management: Volume

1, Systems Thinking. Dorset House, New York, 1992.

Report erratum

this copy is (P1.0 printing, July 2009)

http://www.stickyminds.com/s.asp?F=S7198_COL_2
http://books.pragprog.com/titles/jrport/errata/add?pdf_page=182

BIBLIOGRAPHY 183

[Wei94] Gerald M. Weinberg. Quality Software Management, Volume

3: Congruent Action. Dorset House, New York, 1994.

[Wei98] Gerald M. Weinberg. Psychology of Computer Programming:

Silver Anniversary Edition. Dorset House, New York, 1998.

[Wei05] Gerald M. Weinberg. Weinberg On Writing: The Fieldstone

Method. Dorset House, New York, 2005.

[WJ77] Bruce W.Tuckman and Mary Ann C. Jensen. Stages of

small group development revisited. Group and Organiza-

tional Studies, 2:419–427, 1977.

[WJ96] James P. Womack and Daniel T. Jones. Lean Thinking.

Simon and Schuster, New York, 1996.

Report erratum

this copy is (P1.0 printing, July 2009)

http://books.pragprog.com/titles/jrport/errata/add?pdf_page=183

Index

A
actionable missions, defined, 163–164

active verbs, in mission statement, 168

ad hoc work, 41

adaptive management, 97, 98

adaptive software development, 33

adhesive notes, as tool, 49

for brainstorming mission, 166

adverbs, in mission statement, 168

agile life cycle, 24, 177

advantages to, 34–35

budgeting and, 113

cumulative flow, measuring, 147

dislike of, managing, 63

greater capacity with, 159

killing projects, 57

measuring project value, 141

phased projects, planning of, 47

portfolio review cycles and, 110–112

progress on running, tested features,

123

project ranking and, 82

recommitting to projects, ease of, 53

reviewing portfolio decisions, 127

of running, tested features, 128–129

stabilizing project work, 129

views of portfolio, 26

asset generation, 156

assigning teams to projects, 70

attacks on portfolios, defending

against, 115

authority to make project decisions,

103

B
backlog, see project backlog

burndown charts, 153, 177

circumventing, 115

hiding information about, 100

Belshee, Arlo, 137

benefits of project portfolios, 35–37

as wishful artifact, 38

big commitments, avoiding, 96–98

big visible charts, defined, 177

boundaries for iterations

length of, 27n

for reviewing portfolios, 108

brainstorming essentials of mission,

166–168

budget

for exploratory projects, 121

funding projects incrementally,

95–96

portfolio management and, 113–116

see also costs

build system, as project, 75

burndown charts

defined, 177

measuring, 153

burnup charts, defined, 177

business value, prioritizing by, see

ranking projects in portfolio

business, defining, 161–162

buzzwords, in mission statements, 168

C
canceling projects

deciding on, 52–53

declining more work, 93–95

doomed projects, 60–61

eliminating entirely, 51–52

facilitating meetings on, 92

killing completely, 56–57

and keeping it dead, 58–59

pet projects of managers, 59–60

then reinstating them later, 58

CANCELING PROJECTS TEMPORARILY 185 CUSTOMERS

canceling projects temporarily, see

parking lots

capacity

with lean approach, 159

measuring, 158

capacity debt, incurring

by not fully committing, 53

by not having project portfolio, 30

capitalizing software, 156

caring about project portfolios, 35–37

change, organizational resistance to, 39

changing projects, see evaluating

projects; transforming projects

charting in Microsoft Excel, 158

collaborating, 86–105

avoiding big commitments, 96–98

barriers to, 98–105

lack of trust, 87

building trust, 87–89

clarifying foundation for, 90–91

not having common goal, 101

commitment through organization,

86

declining more work, 93–95

defending portfolio from attacks, 115

people involved in, 105

portfolio evaluation meetings, 91–93,

120–123, 125–126

preparing for, 89–90

on project ranking, 65–66

considering geographic

separation, 104

facilitating meetings on, 92

by position, not principle, 103

by publishing ranking, 83–85

stating principle behind, 89, 95

reviewing decisions, 127

value and importance of, 89

collecting work, 40–43

commitment to timeboxes, 131

committing to projects, 53–56

avoiding big commitments, 96–98

because of sunk cost, 57

deciding on, 52–53, 92

deferring, 117–118

incremental funding, 95–96

insufficient authority, 103

never saying “maybe”, 95

organizing toward, 86

recommitting, 53

requirements for, understanding, 54

comparing projects, see ranking

projects in portfolio

comparing teams, 142

competition

creating zero-sum game, 101

for ranking projects, 79

for resources, 29

completed projects, measuring, 158

completion time, measuring, 141

conducting portfolio evaluation

meetings, 91–93, 120–123

deciding how often, 125–126

reviewing decisions from, 127

congruence, 88

context, ranking projects by, 74–76, 90

corporate incentives toward zero-sum

games, 101

corporate mission, defining, 90–91,

161–174

as actionable, 163–164

brainstorming essentials, 166–168

by yourself, 170

defining your business, 161–162

deriving from work, 169–170

drafting from scratch, 165–166

importance of, 162–163

making real (tactical), 173–174

no having common goal, 101

refining draft, 168

testing the mission, 173

traps to watch out for, 171–172

costs

effects on project ranking, 71

of maintaining killed projects, 58

measuring, 153–154

of part-time staffing, 55, 56

portfolio evaluation and, 122

ranking projects by ROI, 82–83

stabilizing, 129–130, 138

effects on management, 138–139

sunk, as excuse for commitment, 57

of unfilled reqs, 55

creating value, 34

cross-functional teams, assigning, 70

cumulative flow

defined, 177

measuring, 147–149

customer value, ranking projects by,

76–77

customers, insufficient knowledge

about, 61

DEBT 186 FIXED BUDGETING

D
debt

from not fully committing, 53

from not having project portfolio, 30

as obstacle to progress, 150–153

decision making, 119–127

deferred, 117–118

insufficient authority for, 103

lack of, 31

parking lots for, 52, 57, 119–120

gauging organizational health, 83

reinstating projects from, 58

portfolio evaluation meetings, 91–93,

120–123

deciding how often, 125–126

reviewing decisions, 127

defects, number of, 142

defending portfolios from attack, 115

deferred decision making, 117–118

demos, creating, 62

deriving mission from work, 169–170

discipline, 139

doomed projects, killing, 60–61, 94

double-elimination tournaments, for

ranking projects, 79

down economy, project management

during, 36

drafting missions from scratch,

165–166

driving principles, defining, 90–91,

161–174

as actionable, 163–164

brainstorming essentials, 166–168

by yourself, 170

defining your business, 161–162

deriving from work, 169–170

drafting from scratch, 165–166

importance of, 162–163

making real (tactical), 173–174

no having common goal, 101

refining draft, 168

testing the mission, 173

traps to watch out for, 171–172

E
early adopters (marketing life cycle), 78

early majority (marketing life cycle), 78

elimination tournaments, for ranking

projects, 79

emergency projects, identifying, 33

emergency work, 41

evaluating portfolios

measures for, 155–157

when to evaluate, 107–109

evaluating projects, 51–64

avoiding big commitments, 96–98

changing too often to finish

anything, 126

deciding how to proceed, 52–53, 92

deciding to commit, 53–56

recommitting, 53

deciding to kill completely, 56–57

doomed projects, 60–61

and keeping it dead, 58–59

pet projects of managers, 59–60

deciding to reinstate, 58

deciding to transform, 62–64

declining more work, 93–95

eliminating projects entirely, 51–52

measures for, 140–160

backlog burndown chart, 153

cumulative flow, 147–149

individual productivity, 154–155

obstacles to progress, 149–153

run rate and costs, 153–154

value measurements, 140–142

velocity, 144–147

what to measure, 142–144

as zero-sum game, 98–99

incentives that push toward, 101

evaluating team capacity, 158–160

evaluation meetings, see portfolio

evaluation meetings

Excel, making charts in, 158

expensing software, 156

exploratory projects, funding, 121

F
facilitating portfolio evaluation

meetings, 91–93, 120–123

deciding how often, 125–126

reviewing decisions from, 127

first-level managers

caring about project portfolio, 35

collaborating on portfolio, 105

deciding to cancel projects entirely,

51

influence level of, 38

keeping killed projects alive, 59

projects with multiple products, 48

ranking projects, 82

fixed budgeting, 113

FIXED-LENGTH QUEUES 187 KILLING PROJECTS

fixed-length queues, 136–138

fixed-price projects, 71, 138

measuring, 153–154

FTE (full-time equivalency), in practice,

55, 56

full commitment, understanding, 54

full-time equivalency, in practice, 55,

56

funding, see budget

G
Gantt charts, avoiding, 50

geographic separation, managing, 104

getting started with portfolio

management, 175

goal, not having common, 101

H
hardware products, adaptivity with, 97

health (organizational), portfolio as

indicator of, 83

hiding information, as barrier, 100

high-demand projects

number of, 69–72, 83

portfolio evaluation and, 123

high-level perspective of portfolio,

25–28

highly risk projects, 74

hiring for unstaffed projects, 55

see also staffing

historical velocity, measuring, 144–147

huge commitments, avoiding, 96–98

I
importance of projects, see ranking

projects in portfolio

in-process work, 41

incentivizing zero-sum games, 101

incremental life cycle

cumulative flow measurements, 148

data for portfolio decisions, 124

defined, 177

killing projects, 57

low-level portfolio view, 27

portfolio review cycles and, 110

reviewing portfolio decisions, 127

stabilizing number of work items,

132

stabilizing project work, 129

incremental project funding, 95–96

index cards, as tool, 50

individual capacity

with lean approach, 159

measuring, 158

individual productivity, measuring,

154–155

influence level, identifying, 37

information hiding, as barrier, 100

innovation, funding, 121

intellectual property, from killed

projects, 56

intent, work defined by, 41

interdependencies among projects, 45

iterating on project portfolios, 107–118

defending from attack, 115

deferred decision making, 117–118

length of review cycle, 109–115

when starting portfolio management,

115–116

when to review portfolio, 107–109

iteration boundaries

length of, 27n

for reviewing portfolios, 108

iterations, defined, 177

iterative life cycle

cumulative flow measurements, 148

data for portfolio decisions, 124

defined, 177

killing projects, 57

portfolio review cycles and, 110

reviewing portfolio decisions, 127

stabilizing number of work items,

132

stabilizing project work, 129

J
jargon, in mission statements, 168

K
kanban

defined, 178

effects of managing, 138–139

stabilizing, 132–136

killing projects, 56–57

deciding on, 52–53

declining more work, 93–95

doomed projects, 60–61

eliminating entirely, 51–52

facilitating meetings on, 92

and keeping it dead, 58–59

pet projects of managers, 59–60

KNOWLEDGE 188 MISSION

then reinstating them later, 58

knowledge, insufficient

about customers, 61

for project staffing, 61, 63

L
large projects not yet due, 44

large projects that evolve, 43

last responsible moment, 117–118

late decision making, 117–118

lean portfolio management, 34–35

deferred decision making, 117–118

defined, 178

greater capacity with, 159

project ranking and, 82

of running, tested features

lean, agile approaches, 128–129

stabilization effects on

management, 138–139

stabilizing cost, 138

stabilizing number of work items,

132–136

stabilizing queue length, 136–138

stabilizing with timeboxes,

130–132

what to stabilize, 129–130

leftover points, when ranking, 69–72

life cycle, see agile life cycle;

incremental life cycle; iterative life

cycle; marketing life cycle; serial

life cycle; waterfall life cycle

loooong mission statements, 172

low-level perspective of portfolio, 27–28

M
maintaining killed projects, 58

Management by Objective (MBO), 102

management debt, incurring

by not fully committing, 53

by not having project portfolio, 30

management work, 41

managers, see first-level managers;

middle-level managers; senior

managers; technical leads

managing with project portfolios, 29–33

compared to managing without,

30–33

identifying influence level, 37–39

organizational resistance to change,

39

portfolio as wishful artifact, 38

value in the portfolio, 35–37

when not to manage, 36

market knowledge, insufficient, 61

market position, ranking projects by,

77–78

marketing life cycle, 77

portfolio review cycles and, 110

“maybe,” never saying, 95

MBO (Management by Objective), 102

measuring capacity, 158–160

measuring portfolios, 155–157

measuring projects, 140–160

backlog burndown chart, 153

cumulative flow measurements,

147–149

individual productivity, 154–155

obstacles to progress, 149–153

run rate and other cost data,

153–154

value measurements, 140–142

velocity measurements, 144–147

what to measure, 142–144

meetings for portfolio evaluation,

91–93, 120–123

deciding how often, 125–126

reviewing decisions from, 127

Microsoft Excel, making charts in, 158

middle-level managers

caring about project portfolio, 35

collaborating on portfolio, 105

collecting work, 42

deciding to cancel projects entirely,

52

influence level of, 38

keeping killed projects alive, 59

mission to be managerial, 165

ranking projects, 82

minimum marketable features (MMFs),

132–136, 178

mission, defining, 90–91, 161–174

as actionable, 163–164

brainstorming essentials, 166–168

by yourself, 170

defining your business, 161–162

deriving from work, 169–170

drafting from scratch, 165–166

importance of, 162–163

making real (tactical), 173–174

no having common goal, 101

refining draft, 168

testing the mission, 173

MISSION 189 PRINCIPLES BEHIND PROJECT RANKING

traps to watch out for, 171–172

mission, personal, 163

MMFs (minimum marketable features),

132–136, 178

month boundaries, using, 27n

Moore’s marketing model, 78

motivations, clarifying, 90–91, 161–174

as actionable, 163–164

brainstorming essentials, 166–168

by yourself, 170

defining your business, 161–162

deriving from work, 169–170

drafting from scratch, 165–166

importance of, 162–163

making real (tactical), 173–174

no having common goal, 101

refining draft, 168

testing the mission, 173

traps to watch out for, 171–172

multiple-product projects, 47

multitasking, 17, 156

full-time equivalency and, 55, 56

N
negotiation, 60

building trust, 87–89

preparing for, 89–90

never finishing (too much reevaluation),

126

90% Done schedule game, 52

number of work items, stabilizing,

132–136

effects on management, 138–139

O
obstacles to progress, measuring,

149–153

ongoing work, 41

turning into periodic work, 43

open staffing reqs, 55

operating committees, 105

ordering projects, see ranking projects

in portfolio

organizational change, resistance to, 39

organizational context

ranking projects by, 90

organizational context, ranking projects

by, 74–76

organizational health, portfolio as

indicator of, 83

organizing project portfolios, 48–49

organizing projects into programs,

44–48

organizing toward commitment, 86

overproduction, avoiding, 34

ownership of quality responsibility, 172

P
pairwise comparison, for projects, 78

Pants on Fire schedule game, 31, 37,

53, 178

parking lots, 52, 57, 119–120

organizational health and, 83

reinstating projects from, 58

part-time staffing, in practice, 55, 56

on exploratory projects, 121

partial commitment, 53, 95

paused projects, see parking lots

people, see staffing

periodic work, 41

turning ongoing work into, 43

personal missions, 163

perspectives (views) of portfolio, 25–28

pet projects of managers, killing, 59–60

phase-gate life cycle, see serial life cycle

phased programs, 46–47

PMO (project management office), 72,

105

point-ranking projects, 66–72

leftover points, meaning of, 69–72

portfolio evaluation meetings, 91–93,

120–123

deciding how often, 125–126

reviewing decisions from, 127

portfolio management, getting started

with, 175

portfolio management tools, 50

portfolios, see entries at project

portfolio

position in market, ranking projects by,

77–78

position-based arguments, as problem,

103

postponing projects, 57

predicting project cost, 71

preparing for collaboration, 89–90

principles behind project ranking

articulating, 89

confusing with geographic

separation, 104

requesting, 95

vs. arguing based on position, 103

PRIORITIES 190 PROJECTS

priorities, failing to define, 31, 32

prioritizing projects, see ranking

projects in portfolio

process flow, 34

product backlog

defined, 178

organizational health and, 68

productivity of individuals, measuring,

154–155

products, multiple with one project, 47

program management, unrecognized

need for, 45

programs

defined, 44, 178

organizing projects into, 44–48

phased programs, 46–47

types of projects, 43–44

progress, measuring obstacles to,

149–153

project commitment, see committing to

projects

project cost, see costs

project dashboards, defined, 178

project evaluation meetings, see

portfolio evaluation meetings

project life cycles, see agile life cycle;

incremental life cycle; iterative life

cycle; marketing life cycle; serial

life cycle; waterfall life cycle

project management office (PMO), 72,

105

project measurements, 140–160

backlog burndown chart, 153

cumulative flow measurements,

147–149

individual productivity, 154–155

obstacles to progress, 149–153

run rate and other cost data,

153–154

value measurements, 140–142

velocity measurements, 144–147

what to measure, 142–144

project portfolio parking lot, see

parking lots

project portfolios

building, 40–50

organizing portfolio, 48–49

types of projects, 43–44

using programs, 44–48

what to collect, 40–43

declining more work, 93–95

defined, 23–25, 178

evaluation meetings, conducting,

91–93, 120–123

deciding how often, 125–126

reviewing decisions from, 127

getting started with, 175

as indicators of organizational

health, 83

iterating on, 107–118

in the beginning, 115–116

defending from attack, 115

deferring decisions, 117–118

length of review cycle, 109–115

when to review portfolio, 107–109

lean approaches to, 34–35

project ranking and, 82

managing with, 29–33

identifying influence level, 37–39

resistance to change, 39

using as wishful artifact, 38

value in the portfolio, 35–37

when not to manage, 36

measuring, 155–157

perspectives (views) of, 25–28

publishing ranking of, 83–85

of running, tested features, 128–139

lean, agile approaches, 128–129

stabilization effects on

management, 138–139

stabilizing cost, 138

stabilizing number of work items,

132–136

stabilizing queue length, 136–138

stabilizing with timeboxes,

130–132

what to stabilize, 129–130

tools for managing, 50

project ranking, see ranking projects in

portfolio

project requirements, understanding,

54

project road maps, see road maps

project staffing, see staffing

project work, 41

projects

avoiding big commitments, 96–98

declining more work, 93–95

defined, 178

evaluating, 51–64

deciding how to proceed, 52–53

deciding to commit, 53–56

PROTOTYPES 191 RISK

deciding to kill completely, 56–61

deciding to transform, 62–64

too often, 126

high-demand, number of, 69–72, 83

incremental funding of, 95–96

interdependencies among, 45

with multiple products, 47

organizing into programs, 44–48

parking lots for, 52, 57, 119–120

organizational health and, 83

reinstating projects, 58

scope of, changing, 64

starting new, 70

types of, 43–44

prototypes, 60, 97

publishing ranking of projects, 83–85

pull systems, 34

Q
qualitative questions, to determine

waste, 77

quality, responsibility for, 172

quality problems, identifying, 34

quantitative questions, to determine

waste, 77

quarterly portfolio management, 116,

125–126

queue length

defined, 178

stabilizing, 129–130, 136–138

effects on management, 138–139

queues, defined, 178

R
ranking projects in portfolio, 65–85

articulating principle behind, 89, 95

changing too often to finish

anything, 126

considering geographic separation,

104

customer value, 76–77

using elimination tournaments, 79

failing to, 31, 32

as indication of organizational

health, 83

market position, 77–78

need for collaboration with, 65–66,

85

facilitating meetings on, 92

by organizational context, 74–76, 90

using pairwise comparison, 78

by position, not principle, 103

publishing the ranking, 83–85

by risk, 73–74, 94

highly risk projects, 74

using ROI (bad idea), 82–83

using points, 66–72

leftover points, meaning of, 69–72

as zero-sum game, 98–99

incentives that push toward, 101

rebudgeting, 113

recommitting to projects, 53

refining mission, 168

reinstating projects, 58

release date, not enough time until, 60

reminders for ongoing work, 43

removing projects

declining more work, 93–95

doomed projects, 60–61

eliminating entirely, 51–52

facilitating meetings on, 92

killing completely, 56–57

and keeping it dead, 58–59

pet projects of managers, 59–60

then reinstating them later, 58

removing projects temporarily, see

parking lots

replanning period, defining, 116

requirements for projects,

understanding, 54

resistance to change, 39

resource obstacles, measuring,

149–153

resources, competition for, 29

responsibility for quality, 172

restriction, fear of, 37

return on investment (ROI), 141, 155

defined, 178

predicting, 73

for ranking projects, 82–83

reviewing decisions, 127

reviewing portfolios, 107–109

defending portfolio from attacks, 115

with deferred decision making,

117–118

length of review cycle, 109–115

when starting portfolio management,

115–116

see also evaluating portfolios;

evaluating projects

risk

avoiding big commitments, 96–98

ROAD MAPS 192 STAFFING

incremental funding and, 96

missed opportunities, 126

ranking projects by, 73–74

highly risky projects, 74

as reason to decline work, 94

road maps

defined, 178

portfolio management and, 111–112,

115–116

ROI (return on investment), 141, 155

defined, 178

predicting, 73

for ranking projects, 82–83

rolling-wave budgeting, 113, 114

run rate, measuring, 153–154

running, tested features, 128–139

as assets, 156

compared to individual productivity,

154–155

deciding what to stabilize, 129–130

defined, 178

managing with lean and agile

approaches, 128–129

progress reports on, 123

stabilizing

effects on managing by, 138–139

by cost, 138

by fixing queue length, 136–138

number of work items, 132–136

with timeboxes, 130–132

who is waiting for, 75

S
schedule games, 52

avoiding, 37

scheduling

insufficient time for good projects, 60

postponing projects, 57

work defined by, 41

scope of projects, changing, 64

senior managers

asking to explain ranking decisions,

95

caring about project portfolio, 35

collaborating on portfolio, 105

collecting work, 42

deciding to cancel projects entirely,

52

influence level of, 38

mission to be managerial, 165

pet projects of, killing, 59–60

ranking projects, 66

risk, interest in, 73

stopping budgeting madness, 114

serial life cycle, 24

cumulative flow measurements, 148

defined, 178

evaluating projects before

proceeding, 52

inability to stabilize work, 129

insufficient data for portfolio

decisions, 124

killing projects, 57

measuring project value, 141

portfolio review cycles and, 110

stabilizing number of work items,

132

service-level agreement trap, 171

simultaneous projects per person, see

multitasking

single-elimination tournaments, for

ranking projects, 79

single-person projects, 154

size of teams, 68

small project pieces, 44

small unique projects, 43

Split Focus schedule game, 31, 37, 53

defined, 179

stabilizing project work, 129–130

effects on management by, 138–139

fixing cost, 138

fixing queue length, 136–138

number of work items, 132–136

with timeboxes, 130–132

staffing

assigning teams to projects, 70

avoiding big commitments, 96–98

bottlenecks, avoiding, 159

capacity debt, incurring

by not fully committing, 53

by not having project portfolio, 30

capacity measurement, 158–160

competition for resources, 29

costs of not filling reqs, 55

deciding to increase, 93

declining more work, 93–95

having the wrong team, 62

identifying unstaffed work, 26, 43

individual productivity, measuring,

154–155

multiple ranked projects, 68

obstacles to, measuring, 149–153

STARTING NEW PROJECTS 193 WATERFALL LIFE CYCLE

organizing work by person, 42

part-time people, 55, 56

personal missions, 163

single-person projects, 154

two critical projects, 67

without sufficient knowledge, 61, 63

starting new projects, 70

starting portfolio management,

115–116

stickies, as tool, 49

for brainstorming mission, 166

stories, defined, 179

strategic importance, asking about, 59

strategic planning, need for, 83

stretch goals, in mission, 172

sunk cost

defined, 179

as excuse for commitment, 57

T
tactical mission statements, 173–174

task queues, defined, 178

team capacity

with lean approach, 159

measuring, 158

team size, 68

team-level problems, 63

teams, comparing, 142

technical debt, incurring

by not fully committing, 53

by not having project portfolio, 30

technical debt, measuring, 150–153

technical knowledge, insufficient, 61,

63

technical leads

caring about project portfolio, 35

collaborating on portfolio, 105

influence level of, 38

testing mission statements, 173

throughput, 154

time, work defined by, 41

timeboxes

committing to, 131

defined, 179

for exploratory projects, 121

short, to defer decision making, 117

stabilizing, 129–132

effects on management, 138–139

using one to measure velocity, 95

tools for managing portfolios, 50

total responsibility for quality, 172

tournaments, for prioritizing projects,

79

traffic-light status, insufficiency of, 124

transforming projects, 62–64

deciding on, 52–53

facilitating meetings on, 92

transparency, need for, 100

trust, building, 87–89

U
ultimatums, 60

unjellers, 63

unpredictable velocity, 145

unstaffed projects, 26

hiring for, 55

identifying, 43

see also staffing

user stories, defined, 179

V
value, creating, 34

value of project portfolios, 35–37

what to measure, 155–157

as wishful artifact, 38

value of projects, see ranking projects

in portfolio

value to customers, ranking projects

by, 76–77

values of projects, measuring, 140–142

velocity

defined, 179

hiding information about, 100

measuring, 144–147

measuring with one timebox, 95

need for more, 62, 63

portfolio evaluation and, 122, 123

serial life cycles and, 124

verbs, in mission statement, 168

views of portfolio, 25–28

visibility of project information, 34, 37

W
waste matrix, 76

waterfall life cycle, 73

controlling costs with, 138

inability to stabilize work, 129

measuring project value, 141

portfolio review cycles and, 110

reviewing portfolio decisions, 127

see also serial life cycle

WEEK BOUNDARIES 194 ZERO-SUM GAMES

week boundaries, using, 27n

win/lose approach to ranking projects,

98–99

incentives that push toward, 101

wishful artifact, portfolio as, 38

work items, stabilizing number of,

132–136

effects on management, 138–139

work queues, defined, 178

work, collecting, 40–43

working with others, see collaborating

workload, leveling out, 34

Z
zero-sum games, 98–99

incentives that push toward, 101

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of July 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Continued on next page

pragprog.com

Title Year ISBN Pages

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Continued on next page

Title Year ISBN Pages

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Also by Johanna Rothman

Manage It!
Manage It! is an award-winning, risk-based guide

to making good decisions about how to plan and

guide your projects. Author Johanna Rothman

shows you how to beg, borrow, and steal from the

best methodologies to fit your particular project.

You’ll find what works best for you.

• Learn all about different project lifecycles • See

how to organize a project • Compare sample

project dashboards • See how to staff a project

• Know when you’re done—and what that means.

Manage It! Your Guide to Modern, Pragmatic

Project Management

Johanna Rothman

(360 pages) ISBN: 0-9787392-4-8. $34.95

http://pragprog.com/titles/jrpm

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors: Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragprog.com/titles/rdbcd

http://pragprog.com/titles/jrpm
http://pragprog.com/titles/rdbcd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Manage Your Project Portfolio

http://pragprog.com/titles/jrport

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jrport.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/jrport
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jrport
www.pragprog.com/catalog

	Contents
	Foreword by Ron Jeffries
	Foreword by Tim Lister
	Preface
	Meet Your Project Portfolio
	What a Project Portfolio Is
	See the High- and Low-Level Views
	Now Try This

	See Your Future
	Managing with a Project Portfolio
	Managing Without a Project Portfolio
	What Are Your Emergency Projects?
	Lean Approaches to the Project Portfolio
	Why You Should Care About the Project Portfolio
	Your Portfolio Reflects Your Influence Level
	Now Try This

	Create the First Draft of Your Portfolio
	Know What Work to Collect
	Is the Work a Project or a Program?
	Organize Your Projects into Programs As Necessary
	Organize the Portfolio
	Using Tools to Manage a Portfolio
	Now Try This

	Evaluate Your Projects
	Should We Do This Project at All?
	Decide to Commit, Kill, or Transform the Project
	Commit to a Project
	Kill a Project
	How to Kill a Project and Keep It Dead
	Killing a Senior Manager's Pet Project
	Kill Doomed Projects
	Transform a Project
	Now Try This

	Rank the Portfolio
	Never Rank Alone
	Rank Order the Projects in the Portfolio Using Points
	Leftover Points Provide Metadata
	Rank the Projects by Risk
	Use Your Organization's Context to Rank Projects
	Who's Waiting for Your Projects to Be Completed?
	Rank the Work by Your Products' Position in the Marketplace
	Use Other Comparison Methods to Rank Your Projects
	Don't Use ROI to Rank
	Your Project Portfolio Is an Indicator of Your Organization's Overall Health
	Publish the Portfolio Ranking
	Now Try This

	Collaborate on the Portfolio
	Organize to Commit
	Build Trust
	Prepare for Collaboration
	Set the Stage for Collaboration
	Facilitate the Portfolio Evaluation Meeting
	How to Say No to More Work
	Fund Projects Incrementally
	Never Make a Big Commitment
	Discover Barriers to Collaboration
	Who Needs to Collaborate on the Portfolio?
	Now Try This

	Iterate on the Portfolio
	Decide When to Review the Portfolio
	Select an Iteration Length for Your Review Cycles
	Defend the Portfolio from Attack
	How to Decide If You Can't Change Life Cycles, Road Maps, or Budgets
	Make Decisions as Late as Possible
	Now Try This

	Make Portfolio Decisions
	Keep a Parking Lot of Projects
	Conduct a Portfolio Evaluation Meeting
	Conduct a Portfolio Evaluation Meeting at Least Quarterly to Start
	Review Your Decisions
	Now Try This

	Evolve Your Portfolio
	Lean Helps You Evolve Your Portfolio Approach
	Choose What to Stabilize
	Stabilize the Timebox
	Stabilize the Number of Work Items in Progress
	Fix the Queue Length for a Team
	When You Need to Fix Cost
	Management Changes When You Stabilize Something About Your Projects
	Now Try This

	Measure the Essentials
	Measure Value
	What You Need to Measure About Your Projects
	Measure Project Velocity: Current and Historical
	Measure Cumulative Flow for the Project
	Measure Obstacles Preventing the Team's Progress
	Measure the Product Backlog Burndown Chart
	Measure Run Rate and Other Cost Data, If Necessary
	Don't Even Try to Measure Individual Productivity
	What You Need to Measure About the Portfolio
	Measure Capacity by Team, Not by Individual
	People Finish More with Lean and Agile
	Now Try This

	Define Your Mission
	Define the Business You Are In
	What Good Is a Mission, Anyway?
	Define an Actionable Mission for the Organization
	Draft a Mission from Scratch
	Brainstorm the Essentials of a Mission
	Refine the Mission
	Derive Your Mission from Your Work
	How to Define a Mission When No One Else Will
	Beware of the Mission Statement Traps
	Test Your Mission
	Make the Mission Real for Everyone
	Now Try This

	Start Somewhere …But Start
	Glossary
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

