

What Readers Are Saying About Driving Technical Change

At its core, Driving Technical Change is a fantastic book about design

patterns. In it, Terrence Ryan clearly outlines common, problematic

personalities—“skeptics”—and provides proven solutions for bringing

about progressive change. It is certainly an unfortunate fact of human

behavior that people are oftentimes resistant to implementing best

practices; however, using Terry’s book as a guide, you will now be able

to identify why people push back against change and what you can do

to remain successful in the face of adversity.

Ben Nadel

Chief software engineer, Epicenter Consulting

Politics is one of the most challenging and underestimated subjects

in the field of technology. Terrence Ryan has tackled this problem

courageously and with a methodical approach. His book can help you

understand many types of resistance (both rational and irrational)

and make a strategy for getting people on board with your technology

vision.

Bill Karwin

Author of SQL Antipatterns: Avoiding the Pitfalls of Database

Programming

Ryan combines the eye of an engineer, the insight of a psychother-

apist, and the experience of a soldier in the trenches to provide a

flowchart approach to your most immediate problem, as well as a fas-

cinating overview of how to be more productive and less frustrated

with your technical work. Driving Technical Change speaks in the lan-

guage of the people who have the most to learn from Ryan’s success

with organizational management.

Jeff Porten

Internet consultant and author, Twentysomething Guide to

Creative Self-Employment

This book covers a very important topic I have never seen covered in

book form and answers questions every one of us in application or

web development has asked. Terrence Ryan manages to create a fun

and easy-to-read narrative with examples so accurate and familiar

they that will often leave you wondering whether he was sitting next

to you in a recent office meeting.

Brian Rinaldi

Web community manager, Adobe Systems Inc.

Driving Technical Change
Why People on Your Team Don’t Act on Good

Ideas, and How to Convince Them They Should

Terrence Ryan

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

The team that produced this book includes:

Editor: Jacquelyn Carter

Indexing: Potomac Indexing, LLC

Copy edit: Kim Wimpsett

Layout: Steve Peter

Production: Janet Furlow

Customer support: Ellie Callahan

International: Juliet Benda

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-60-3

ISBN-13: 978-1-934356-60-9

Printed on acid-free paper.

P1.0 printing, November 2010

Version: 2010-11-8

http://www.pragprog.com

Contents
Acknowledgments 12

I Introduction 14

1 Why This Book? 15

1.1 How Is This Book Organized 16

1.2 Why You Should Read This Book 17

1.3 Who I Think You Are . 17

2 Defining the Problem 18

2.1 What Do We Mean by Professional Development? . . . 18

2.2 Who Are These Skeptics? 19

2.3 Why Do We Need to Sell It? 20

3 Solve the Right Problem 21

3.1 Why Do It? . 22

3.2 Seeing Solutions . 23

3.3 Challenges . 24

3.4 Things to Try . 25

II Skeptic Patterns 26

4 Who Are the People in Your Neighborhood? 27

5 The Uninformed 29

5.1 Why Don’t They Use the Technology? 29

5.2 Underlying Causes . 30

5.3 Effective Countering Techniques 30

5.4 Prognosis . 30

CONTENTS 8

6 The Herd 31

6.1 Underlying Causes . 31

6.2 Effective Countering Techniques 32

6.3 Prognosis . 33

7 The Cynic 34

7.1 Underlying Causes . 35

7.2 Effective Countering Techniques 37

7.3 Prognosis . 37

8 The Burned 38

8.1 Underlying Causes . 39

8.2 Effective Countering Techniques 39

8.3 Prognosis . 40

9 The Time Crunched 41

9.1 Underlying Causes . 41

9.2 Effective Countering Techniques 42

9.3 Prognosis . 43

10 The Boss 44

10.1 Underlying Causes . 44

10.2 Effective Countering Techniques 45

10.3 Prognosis . 46

11 The Irrational 47

11.1 Underlying Causes . 48

11.2 Effective Countering Techniques 48

11.3 Prognosis . 49

III Techniques 50

12 Filling Your Toolbox 51

13 Gain Expertise 53

13.1 Why Does It Work? . 55

13.2 How Do You Become an Expert? 55

13.3 Skeptics That It Counters 57

13.4 Pitfalls . 59

13.5 Wrapping Up . 60

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=8

CONTENTS 9

14 Deliver Your Message 62

14.1 Why Does It Work? . 63

14.2 Mastering Delivery . 63

14.3 Skeptics That It Counters 66

14.4 Pitfalls . 66

14.5 Wrapping Up . 67

15 Demonstrate Your Technique 68

15.1 Why Does It Work? . 69

15.2 Demonstration Opportunities 69

15.3 Skeptics That It Counters 71

15.4 Pitfalls . 72

15.5 Wrapping Up . 72

16 Propose Compromise 74

16.1 Why Does It Work? . 75

16.2 Discovering Compromise 76

16.3 Skeptics That It Counters 77

16.4 Pitfalls . 78

16.5 Wrapping Up . 78

17 Create Trust 79

17.1 Why Does It Work? . 80

17.2 Developing Trust . 81

17.3 Skeptics That It Counters 83

17.4 Pitfalls . 83

17.5 Wrapping Up . 84

18 Get Publicity 85

18.1 Why Does It Work? . 86

18.2 Seeking the Limelight . 86

18.3 Skeptics That It Counters 89

18.4 Pitfalls . 89

18.5 Wrapping Up . 90

19 Focus on Synergy 91

19.1 Why Does It Work? . 92

19.2 Developing Synergy . 92

19.3 Skeptics That It Counters 92

19.4 Pitfalls . 93

19.5 Wrapping Up . 93

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=9

CONTENTS 10

20 Build a Bridge 95

20.1 Why Does It Work? . 96

20.2 Developing a Bridge . 97

20.3 Skeptics That It Counters 98

20.4 Pitfalls . 99

20.5 Wrapping Up . 99

21 Create Something Compelling 101

21.1 Why Does It Work? . 102

21.2 Creating That Something 102

21.3 Skeptics That It Counters 103

21.4 Pitfalls . 104

21.5 Wrapping Up . 105

IV Strategy 106

22 Simple, Not Easy 107

23 Ignore the Irrational 109

23.1 What Exactly Does This Mean? 110

23.2 Why Is This Challenging? 110

24 Target the Willing 111

24.1 Order of Difficulty . 111

24.2 Easy . 112

24.3 Hard . 112

24.4 Hardest . 114

25 Harness the Converted 115

25.1 Request Help . 115

25.2 Create Evangelists . 116

25.3 Cross-Promote . 117

25.4 Consume Attention . 118

26 Sway Management 119

26.1 What Do You Want from Management? 119

26.2 How Do You Get It? . 120

26.3 Now What? . 121

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=10

CONTENTS 11

27 Final Thoughts 122

27.1 Cautionary Tales . 122

27.2 Success Is Siloed . 124

27.3 Problems Always Expand 125

27.4 A Journey, Not a Destination 125

A Bibliography 127

Index 128

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=11

Acknowledgments
For many reasons, this book would not exist if not for Dave Thomas

and Andy Hunt. If I hadn’t read The Pragmatic Programmer [HT00], I

wouldn’t have the list of techniques and tools to push for. To go from

reading their words to writing for their publishing company was a jour-

ney I can’t believe I made.

Jackie Carter earned her pay editing this book. She always kept on top

of me, chasing me down when I had writer’s block and offering ideas

and suggestions that made this book much more readable and under-

standable. Also deserving of much thanks are my technical reviewers,

who really helped polish a lot of rough edges: Rachel Davies, Ben Nadel,

Karl W. Pfalzer, Craig Riecke, Johanna Rothman, and Brian Rinaldi.

I have to thank all of my colleagues at the Wharton School. Both skep-

tics and the converted taught me a great deal about how one should and

should not go about doing this. I especially want to thank Dave Siedell,

Bob Zarazowski, Gerry McCartney, and Deirdre Woods for always being

open to and supportive of my efforts even if they were not always

convinced.

I also have to acknowledge my current colleagues at Adobe. I work for a

group dedicated to evangelism. My first staff meeting was an education

measured in volumes. I especially want to thank my boss, Kevin Hoyt,

for being a well of good advice. Ryan Stewart is a constant source of

inspiration, good morale, and encouragement. Adam Lehman has been

a great help and verbal sparring partner. Ben Forta is the original exam-

ple for me that you must put yourself out there and convince people to

try something bigger and better.

Avish Parashar has been my informal mentor in many things around

speaking and standing up and being heard. He taught me to leap before

I look. Pitching this book is an example of that type of thinking and

would never have happened without him.

ACKNOWLEDGMENTS 13

Mom, Dad, and Casey, thanks for building a home where making your-

self better through learning was a noble choice. Jack and Ellie, keeping

you in diapers, food, and smiles is worth all the work.

Finally, I need to give tremendous amounts of thanks to my wonderful

wife, Janice. You never seem to doubt I can do anything. That confi-

dence is contagious. Thanks for believing I could do it. If it weren’t for

you, I simply couldn’t.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=13

Part I

Introduction

Chapter 1

Why This Book?
I was in the middle of a very typical meeting, with a very typical group,

in my very typical company. I was in charge of our web application

servers. My responsibilities included maintaining software, maintaining

hardware, enforcing best practices, and getting people to upgrade. I was

always trying to get people to upgrade.

In fact, we were talking about upgrades.

“I need you guys to set up some sort of schedule for moving your appli-

cations from ColdFusion 6 to ColdFusion 8,” I said, for the fifth time in

as many meetings.

The expected response was delivered with a sigh, “We can’t move to the

new servers. Every time we move our applications to a new server we

have problems and incompatibilities. We just can’t have that with our

users.”

I fired back, “That’s a common problem in general. Have you considered

using unit tests to be able to have more confidence when you move from

version to version? That’s not just a problem with an application server

but also web servers, database servers, and your code base. You have

to move from version to version. Unit tests help with this.”

The excuses then flew, “It would take too much time. Why should we

have to do this? We don’t know how to do unit tests.”

I could tell you that I argued with them. I could detail the rest of the

argument. I don’t really have to do that. You know how it went. I didn’t

get them on board. I couldn’t convince them.

HOW IS THIS BOOK ORGANIZED 16

Over my time in that position, I had to try to sell several different

advancements and techniques. I had the argument I just described and

others like it many, many times. I lost a lot, I won a few, and some just

ended up being wars of attrition. I did start to notice certain patterns:

• The same people tend to make the same arguments.

• Some people always went along with new things.

• Other people jumped on to an advancement once others had al-

ready converted.

• Some people can never be convinced.

• Certain arguments I made worked on some people but not on other

people.

• Sometimes getting management involved was the only way of get-

ting people on board.

I took those patterns, wrote down what I observed about them, and

figured out that certain tactics worked better on some than others.

I started reusing the same tactics on the same skeptics for different

issues. My batting average went up. It became easier to sell

advancements.

That’s what this book is about—those advancements, those patterns,

those arguments. My hope is that what I have to say can allow you to

skip all of the go-nowhere arguments, avoid the frustration, and actu-

ally drive your organization forward technologically.

1.1 How Is This Book Organized

This book is a patterns book. That means the subject matter is based

on a set of repeating forms, or patterns. Two main parts of the book are

broken into collections of patterns. One part is about skeptic patterns

focused on the reason some people resist your efforts. The other is

about techniques that can be used to counter skeptics. Ultimately, this

means the chapters in these sections are going to be highly structured.

While the two patterns parts are about who your co-workers are and

how you should approach them, the final part of this book breaks away

from the patterns and talks about strategy. It will help you sort out who

to approach first, who to avoid, and how to turn your efforts into real

change.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=16

WHY YOU SHOULD READ THIS BOOK 17

1.2 Why You Should Read This Book

The goal of this book is to enable you to convince co-workers to adopt

new tools and techniques. You should be able to do this without having

to become some sort of cutthroat office politician. This doesn’t mean

that you won’t need to use politics, just that you don’t have to use

them evilly.

I will outline a cast of characters; some of them will remind you of

people you work with. Once you identify those people, you should be

able to match them up with countering techniques. You apply those

techniques on your skeptics in a strategy I will lay out. Then change

magically happens.

Well, not magically. It does take some work and effort. But it is that

straightforward. You should be able to reap some benefits immediately

after reading this book. The rest will come as you gain experience doing

what this book outlines.

1.3 Who I Think You Are

I think you are a technical person. Perhaps you’re a developer or pro-

grammer. You could be a server administrator, network engineer, or

hardware engineer. Maybe you’re a database administrator or even a

designer who works with technical people.

It doesn’t really matter what type of technical person you are, as long

as you do some sort of technical work with other people.

My anecdotes and scenarios are going to be about developer topics.

Sorry, that’s who I am. However, it doesn’t matter what language or

tool set you are using. This is going to apply evenly, whether you are

a .NET or a Java programmer, an open source fan, or someone in love

with some company. This is for anyone who has tried to get co-workers

to change the way they work, regardless of how you wanted them to

work.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=17

Chapter 2

Defining the Problem
In this book we’re going to be talking about selling professional devel-

opment to skeptics. To get started with that, I think we need to lay out

just what we are talking about:

• What do we mean by professional development?

• Who are these skeptics?

• Why do we need to sell it?

2.1 What Do We Mean by Professional Development?

Professional development includes any tool or technique that makes

you more productive as a developer, your work less vulnerable to fail-

ure, or your code more understandable to your teammates. That covers

a lot, so let’s get more concrete.

Productivity would at first glance point to things such as automation

and code generation that allow you to produce more code in a shorter

amount of time. But it can also extend to languages. If you are able

to create more functionality in fewer lines of code by using another

language, that counts. I’ll even go one controversial step further: you

can make the argument that you can be more productive through your

choice in operating systems.

As for vulnerability, the big thing that comes to mind here is source

control. You can’t feel safe today unless you are running some sort

of source control. But it goes beyond that. Unit tests make you less

vulnerable to bugs, as does UI testing. Code reviews can also make you

WHO ARE THESE SKEPTICS? 19

safer. Basically, anything that helps you sleep better at night or allows

you to avoid the getting hit by a bus problem makes you less vulnerable.

We often overlook the value of communicating better with your team-

mates. However, all of the arguments over commenting, tabbing, and

variable naming all come down to the core need of good communica-

tion. It’s important to make it easy for other developers to read your

code. That could mean adopting company standards or a code frame-

work. In any case, it’s part of the professional developer toolkit, and so

it goes here.

Just because I didn’t mention a specific technique doesn’t mean that

it doesn’t qualify. When in doubt, ask, does it make me more produc-

tive, less vulnerable, or more understandable? If the answer is yes,

then you’re dealing with some sort of professional development tool or

technique.

2.2 Who Are These Skeptics?

The skeptics are by and large your co-workers who are not using the

tool or technique that you want them to adopt. Some don’t know about

it. Some don’t care to know about it. Some know about it and just

refuse. By and large, skeptics tend to fall into patterns. I’ll go into detail

later on the actual resistance patterns.

But what’s important to get now about the skeptics is that you need

to figure out why they aren’t using the technique already or why they

rebuff your attempts to introduce it. There are lots of reasons. Some

may be technical, some may be political, and some are even personal

if you can believe that. The important thing to do is to put yourself in

their shoes and try to figure out where they are coming from.

Now, I’m careful to use the term skeptic and not something stronger

like intransigent, shortsighted, hostile, or even some stronger words

you might think of. It’s easy in the height of frustration to think of

them as adversaries, the opposition, or even enemies. It might feel good

to vent about them in that way every once in a while, but don’t get

stuck there. They are your co-workers and friends, and perhaps you

have played this role to someone else. Don’t lose sight of that.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=19

WHY DO WE NEED TO SELL IT? 20

2.3 Why Do We Need to Sell It?

Selling usually refers to getting people to hand you money for a prod-

uct. When it comes to selling professional development, though, we’re

usually but not always looking for another kind of investment. We’re

usually looking for time or effort. It takes time and effort to learn new

things. Sometimes people have trouble seeing the worth of that time

and effort, especially if their current tools are inefficiently keeping them

working at a frenzied pace. This frenzied pace doesn’t give them the

ability to step back and see the bigger picture: that they are wasting

time using slow methods and tools.

That cost can be a little more subtle sometimes. Programmers tend to

define themselves by their language: “I’m a Java developer.” or “I’m a

.NET developer.” Getting a Java developer to try Ruby is more than

getting them to spend the time; it’s about getting them to rethink their

identity, even for a bit. Don’t even get me started on trying to get people

to try other OS platforms.

It can get even more ephemeral than that. There comes a point when

some people think they have gained mastery over their field. Maybe

it’s when they don’t have to look at reference docs anymore, maybe

it’s after ten years in the field, or maybe it’s after an advanced degree.

Regardless of the particular milestone, some people think they have all

of the answers. You’re saying “Something may be an improvement on

their methods.” They hear “I think you are wrong.” If they are wrong

now, perhaps they have been wrong for the past few years. Even the

most evolved and enlightened people can’t always take that, because

you are messing with not just their identities but their pride.

In all these cases, you’re trying to get more than mere money out of

people. You’re looking for time, effort, identity shifts, and pride. All of

these are more valuable than money. If you think you have to sell to get

money, then you’ll have to sell even harder to get these.

By now you should have a good introduction of the issues around your

tool and technique. You know what it is, you know the people who are

in your way, and you know why you need to sell it. However, you need

to consider one more important matter: should you be selling your tool

or technique in the first place? The next chapter will help us with this

issue.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=20

Chapter 3

Solve the Right Problem
Before we make any moves to convince others of our solution, we have

to ask ourselves a very important question: are we solving a problem

or pushing a solution? Solving a problem is good; it’s about fixing what

ails our groups. But pushing a solution is neutral at best and usually

detrimental. But often it is what happens. Why?

In our excitement over the solution we found, we lose sight of the fact

that we are trying to address a problem. We forget that most problems

have more than one solution. Instead, we focus on pushing our solu-

tion, which may not be right for the particulars of the problem. So,

despite that our tool can be a fix for our problem, there may be better

fixes for the problem that work better with the technical environment,

team skill set, or organizational politics.

We have to be open-minded, exactly the way we wish the people we

are trying to convince were. You have to gauge whether your solution

actually fits. You have to gauge whether another solution fits better.

Then you have to be strong enough to let go of your preferred solution

in favor of what is best for your team.

Rails Trail

Chris was a Java developer who had been cheating on his chosen

language with the upstart Ruby. Specifically, he’d been lured in by a

“Build a blog in ten minutes” Ruby on Rails1 demo. He loved it. Rails

made him so productive. He had to get his fellow Java-using co-workers

to give it a try.

1. A rapid web application framework for the Ruby language. For more information, see

Agile Web Development with Rails, 3rd Edition [RTH08].

WHY DO IT? 22

His co-workers really need Rails. They were slogging it out building

application after application with a homegrown framework that required

them to do a lot of busy work. Consequently, they were spending lots of

time on writing rote code and less time working on a great UI or a

sustainable model.

His initial attempts were met with lots of resistance. No one wanted to

learn a new language or a new framework. They had also been exposed to

some FUD2 about Ruby. They thought scaffolding was cool, but frankly,

the cost of switching languages to get it was just too high.

Chris asked around and found that a lot of people in his group had at

least looked at Groovy at one time or another. Chris knew about the

Grails project. He spent some time getting used to it. Between his Java

experience and his Rails experience, it didn’t take too long.

He tried again, this time with Grails.3 The opposition based on Ruby FUD

was gone; the language problem was gone. The only problem was learning

a new framework, which the group felt was worth it considering the

productivity boost of scaffolding.

Their next project was released using Grails, and now the group is

hooked.

As the story illustrates, Chris was trying to sell Ruby on Rails. The

group needed a way of writing code more productively to reduce busy

work and focus on where they really added value. Ruby on Rails was

only one of the many possible solutions to this. There were other op-

tions that included rewriting the homegrown framework to include code

generation, finding IDE tools that make data modeling easier, and ulti-

mately using Grails. The trick here is to take that next step—see the

other options, and weigh them objectively.

3.1 Why Do It?

There are a few reasons why you must think hard about the problem

you are trying to solve before you try to sell a solution:

• It requires you to question whether there is really a problem.

• It forces you to think about the problem from your audience’s

perspective.

2. Fear, Uncertainty, and Doubt; see the sidebar on page 80.
3. A rapid web application framework much like Rails but for the Groovy language. For

more information, see Getting Started with Grails [Rud07].

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=22

SEEING SOLUTIONS 23

• It makes you come up with an answer that is more of a custom fit

to your audience.

You have to question if there even is a problem. In the previous story,

there happened to be one, but it’s possible that the group was already

using Grails. If that was the case, then you have to ask yourself, what

would Ruby on Rails offer that team? Honestly, not a tremendous

amount when you consider the cost of switching technology platforms.

It’s at this juncture that you figure out whether you are a concerned

co-worker trying to improve the work lives of your team or a enthusias-

tic fanboi trying to convince others to love your new toy. After you are

sure there is a problem, you then can define it and make sure that it’s

an issue worth solving.

Once you’re sure there is a problem, you then have to consider whether

it is worth fixing and what would make it worth fixing to your team.

Perhaps there is a lot of busy work in the group, but perhaps they push

it off to junior developers and use it to train them, while the advanced

people focus on the model and UI. In that case, it’s possible that the

group’s current solution of the problem creates more value than you

think. You then have to modify your reasons for selling a solution. You

also have to figure out what you’re going to do with the junior develop-

ers now that their training exercises are gone.

Also, figure out whether you are pushing a custom solution when there

is a off-the-rack solution. Whether in tailoring or IT, custom solutions

are always a premium product. The reason in both worlds is the same.

Custom solutions have success built into them, because they mold to

the contours of the landscape. By ensuring that your solutions fits your

group, you remove pain points, or uncomfortable bunching.

3.2 Seeing Solutions

The most difficult part of solving the right problem is seeing past your

desired solutions to alternatives. It requires opening your mind and

letting go of preconceptions. There are a few things you can do to make

this easier.

Research the Problem

Look at how other organizations are solving the same problem that you

are seeking to solve. When you search, make sure you search for the

problem and not a specific implementation.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=23

CHALLENGES 24

Look up the following:

• Source control, not SVN

• Rapid application development, not Ruby on Rails

• Rich Internet applications, not Flex

• Object relational mapping, not Hibernate

Sometimes, however, you can’t do it. You can’t find materials for your

broad problems. Then search for your solution in another technology:

• Visual Studio equivalent in OSX

• Open source version of Exchange

• Safari for Linux

Take Inventory

The next thing to do is take inventory of the skills and ideas of your

team. As Chris did in the story, walk around and talk to people. Find

out what they know. Ask what they think about the problem. You might

have your suspicions confirmed. Or, you may find out a completely dif-

ferent route to take. In any case, even if the inventory yields no inspi-

ration, at least you will know people’s comfort level with any possible

solution you throw at them.

List Options

Force yourself to list alternatives, even if they aren’t actually better.

Have a list that you can reference of other solutions that you have re-

searched. People don’t believe you when you say, “There are no alterna-

tives.” You can say your solution is the best, but you can seldom claim

it is the only one. Invariably there are alternatives, and you have to at

least consider them, even if you end up rejecting them.

This also has the side effect of making your arguments more com-

pelling. You researched, you prepared, and you’re not just picking the

first thing you thought of. This will make an impression on your

audience.

3.3 Challenges

The main challenge here is that you could fail to really consider alter-

natives objectively. The more you consider alternatives fairly and the

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=24

THINGS TO TRY 25

more you combat zeal as outlined in Chapter 14, Deliver Your Message,

on page 62, the more open your mind becomes and the less likely you

will fall into the trap.

Another difficulty is that this burns up time. If your organization needs

to come up with a solution fast, then you might not have the time to

do this properly. The risk of this is low, though, because most organi-

zations will maintain the status quo before jumping to a new solution

if you can point out that it hasn’t been analyzed yet.

3.4 Things to Try

If you are having trouble considering the alternatives, here are a couple

of things that you can try to see more:

• Do research on the beginnings of your solution to see what the

creators were trying to solve with their efforts.

• Start to learn an alternative to your solution. You don’t necessar-

ily have to become an expert, but be able to fool around with a

competing solution.

• Play devil’s advocate. Imagine that you hate this solution and want

to do everything you can do to stop your company from imple-

menting it. What arguments would you use? Then ask yourself

whether there are any of these legitimate showstoppers.

It seems a little obvious that you should make sure that what you are

pushing actually helps and fits your organization, but many people fail

to do this and suffer the consequences. Enough people in our industry

have suffered through projects because a decision maker has fallen

prey to not solving the right problem. Don’t be that guy or gal—push

only what would be good for your organization. Not only will it be easier,

but it will also be the right thing.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=25

Part II

Skeptic Patterns

Chapter 4

Who Are the People
in Your Neighborhood?

The next set of chapters will take you through the patterns that skeptics

of technical change tend to fall under. The idea here is that you will look

at the patterns and start to identify who from your life matches these

patterns.

Once you know who you are dealing with, you can figure out how to deal

with them. Later, we will match these skeptic patterns to countering

techniques. But first, you must know who they are.

These are the skeptic patterns are:

• The Uninformed

• The Herd

• The Cynic

• The Burned

• The Time Crunched

• The Boss

• The Irrational

At first, you might have trouble identifying who is what. As you read the

descriptions, you may find yourself saying “George is sort of a Cynic,

but he’s not that bad.” That means George is a Cynic, severity notwith-

standing. The patterns, as portrayed in the book, are exaggerations.

CHAPTER 4. WHO ARE THE PEOPLE IN YOUR NEIGHBORHOOD? 28

These are supposed to be illustrative. What’s key here is the type of

behavior, not the magnitude. Most people are professional enough to

not be like the over-the-top examples listed here.

Also, don’t get caught up in the details of whether someone is being

a Cynic or Burned. People can be more than one type of skeptic at

the same time. They usually are. For instance, the Boss and the Time

Crunched often coexist. Cynics about one technology are often Burned

on other technologies. This is a good thing; most of the skeptic patterns

have overlapping techniques for overcoming them. You can then focus

on those overlapping techniques to affect multiple skeptic types for the

same amount of effort.

If you are having trouble identifying people, remember some tips:

• The Uninformed cannot also be Burned.

• Most people are a little Time Crunched.

• The Herd are hard to see as skeptics.

• The Irrational will often masquerade as other skeptics.

Now, let’s meet our everyday, ordinary, neighborhood skeptics.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=28

Chapter 5

The Uninformed
It’s 6 p.m. on a Friday evening, and you’re working with a co-worker

whose hard drive crashed yesterday. He’s rebuilt his machine and re-

stored from backup, but he’s lost everything he did Wednesday and

Thursday including some important bug fixes. You point out that he

can still pull down his changes from the source control server. He then

asks this question:

“What’s source control?”

Of course, he doesn’t use source control; in fact, he’s never heard about

it. He’s seen your emails about the new Subversion server,1 but seeing

the emails and reading them are not the same thing. He didn’t think it

was something he had to worry about.

Whoever said “ignorance is bliss” has never tried to kludge together the

contents of a restored backup and a folder named main -- copy20070811

at 7 p.m. on a Friday night. Those of us who have know that ignorance

is not bliss; it’s getting home at 9 p.m. after listening to gripes from a

co-worker who expected the office expert to know how to protect them

from themselves.

5.1 Why Don’t They Use the Technology?

Usually, it’s because they don’t know about it. Some haven’t run across

it yet; some may have encountered it but didn’t understand the problem

1. A centralized version control system. For more information, see Pragmatic Version

Control using Subversion, 2nd Edition [Mas06].

UNDERLYING CAUSES 30

it was solving. More importantly, they didn’t realize that they had the

problem that the technique solves.

Whatever the reason, they need but know not that they need.

5.2 Underlying Causes

There are many reasons why people don’t know about the technique.

Not everyone reads blogs and keeps up with industry best practices.

Sometimes this ignorance is willful; some people are just nine-to-fivers

and don’t care about their craft. However, usually it’s just that it’s a big

industry, there is a tremendous amount of information out there, and

unless you’re looking for it, you don’t necessary run across everything.

5.3 Effective Countering Techniques

The Uninformed generally don’t go to the mountain, so you’ll have to

bring the mountain to them. The techniques that are most effective on

the Uninformed are those that provide information to them, described

in these chapters:

• Chapter 13, Gain Expertise, on page 53

• Chapter 14, Deliver Your Message, on page 62

• Chapter 3, Solve the Right Problem, on page 21

• Chapter 15, Demonstrate Your Technique, on page 68

• Chapter 18, Get Publicity, on page 85

5.4 Prognosis

First the good news: it is extremely easy to change the Uninformed to

another one of the resistance patterns. All you have to do is tell them

about it—BOOM, they’re no longer uninformed. The bad news: they are

more likely to become one of the other skeptic patterns than they are

to become converted.

This is why I wouldn’t just rely on sitting them down and giving them

“the talk” about version control or unit testing. You need to use coun-

tering techniques, especially Demonstrate the Technique, to show these

individuals not just the what of the technique but the why.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=30

Chapter 6

The Herd
Today is the day of the big code review. You’ve wasted your time sifting

through 200 printed pages of code. Most of it is routine CRUD1 code

that could have been swapped out for some generic objects or an ORM2

solution. You’re ready for the big fight that comes when you have any

major criticisms at a code review.

It’s Hector’s first major app with the group. He’s been out of school for

about two minutes, and this is his first major effort with your company.

He’s already a bit twitchy at the onset, and you’re dreading the reaction

he’s going to have when you tell him, “Some generics would eliminate

about 75 percent of his work.”

The time comes, and you confront him. Instead of anger, arguments,

or tables flipped over in anger, he just looks you straight in the eyes

and says, “I’m allowed to do that? I wanted to, but I didn’t think you

all would let me.” That feeling of shock and disbelief you feel—because

someone who actually knew how to do it right wasted their time doing

work they knew they didn’t have to do—that’s pretty common around

the herd.

6.1 Underlying Causes

The Herd are who they are because they are followers and not leaders.

Balance between leaders and followers is good for an organization. Too

1. It’s stands for Create, Read, Update, and Delete. It’s basically what every application

that touches a database has to do.
2. Object relational mapping, a technique that maps records from a database objects in

an object-oriented system.

EFFECTIVE COUNTERING TECHNIQUES 32

many leaders will lead to an organization not being able to move for-

ward because the leaders are trying to get the group moving in their

individual directions. But more often groups end up with too many fol-

lowers and not enough leaders. When this occurs, the situation slides

into status quo. Ironically, the Herd, who are usually followers, lead the

group there, by doing nothing.

Within the Herd there are two main groups:

• Those who don’t know they can lead

• Those who have other priorities

People who don’t know they can lead are commonly younger. They are

new to the workforce and haven’t come from a background that encour-

aged self-motivation. Often they have ideas and want to do new things,

but they haven’t learned the secret to leadership: you can be promoted

to management, but no one appoints you a leader.

The people with other priorities can often be disparaged by more pas-

sionate developers. They are the nine-to-fivers. They work to earn a

living, leave work at work, and go home and devote themselves to other

pursuits: family, hobbies, community, and so on. They don’t see value

in keeping up with the latest technologies themselves.

6.2 Effective Countering Techniques

The Herd aren’t going to seek you out to be led. You have to go to

them and lead. Techniques that encourage them to advance are mildly

effective, but ones that force them are even better. Additionally, forcing

them to advance isn’t viewed as negatively by the Herd as they would be

by other groups. They want the leadership. Therefore, many techniques

are effective on them. Read the following chapters for techniques that

work with the Herd:

• Chapter 13, Gain Expertise, on page 53

• Chapter 15, Demonstrate Your Technique, on page 68

• Chapter 21, Create Something Compelling, on page 101

• Chapter 20, Build a Bridge, on page 95

• Chapter 18, Get Publicity, on page 85

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=32

PROGNOSIS 33

6.3 Prognosis

The Herd are the second easiest group to move. Basically, you lead

them, and they follow. It’s simple but still requires work. It will take the

effort of leadership from you. This might seem like an small cost to pay,

and up front it is, but leadership wears on you. Think of it like mainte-

nance costs in an application. Building applications is cheap compared

to maintaining them. An ongoing leadership or mentoring relationship

has higher costs than the initial conversion. I’m not discouraging that

relationship, just pointing out that it doesn’t come free. Also, if you can

pick up some younger team members who can become leaders and add

them to your cause, the investment is well worth it.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=33

Chapter 7

The Cynic
You’ve just spent twenty minutes doing a presentation for your team-

mates on adopting source control. Yeah, they don’t do source control at

all. Yep, not at all—it’s as if the last twenty years of computer science

never happened. But better late than never, and frankly any source

control is better than none, because disaster is one errant delete away.

You did your homework, and you’ve tested for yourself. You tried and

retried a number of solutions, but the combination of this particular

group, solution maturity, availability of tools, and industry acceptance

have led you to choose Subversion. Anyway, you’ve rocked the presen-

tation, and now you’re taking questions.

“I’ve heard that Subversion is yesterday’s news. With Git on the rise as

the next big thing in source control, do we want to do Subversion just

to change in two years?” asks Cindy.

You were ready for that, “Great question, Cindy. I reviewed a bunch of

solutions including Git. The long and short of it is that in our group we

need tools that integrate into Eclipse. It’s my opinion that the Git tools

for Eclipse are just not there yet. They might be there in a year or two,

but we need a solution yesterday. So, Subversion is more correct for us

today. If we do need a feature set that Git provides, there are tools for

migrating from Subversion to Git, so I’m not worried.”

You assume that such a tome of an answer will be enough, but still

Cindy fires the questions at you.

“I’ve heard that Subversion adds all of this extra metadata to a project,

and the bigger the project, the more extra metadata gets created. I hear

the metadata is easily corruptible.”

UNDERLYING CAUSES 35

“It’s an issue, but I think most of our projects are small enough that it

shouldn’t be a huge problem. There are best practices for dealing with

our larger projects,” you fire back.

It goes back and forth like this for awhile. Sometimes you nail the

answer, sometimes you don’t. Sometimes you wonder if Cindy didn’t

just call up the Wikipedia article for Subversion and just scrolled down

to the “Current limitations and problems” section. How else does some-

one who has never touched Subversion know about the downsides of it?

At the end Cindy announces with assumed authority, “With all of these

issues and considering we’ve been doing well without it, I don’t see why

we need to add extra complexity to our environment.”

Other people in the meeting may not completely agree, but they’ve been

sitting watching your verbal tennis match for a while. Much coffee was

consumed. So, now you’re in a fight with Cindy, with people’s attention

spans, and with their bladders. What should have been a slam dunk is

now a political battle.

It’s a common story when you’re dealing with a Cynic.

7.1 Underlying Causes

There are a lot of causes to this behavior. Some people simply like to

argue. Others like to prove that they are smarter than someone else.

Others have worked in industry for a while and have been repeatedly

disappointed and therefore never see the upside of anything.

But there is one really important reason that you will encounter this:

in our industry, this behavior is rewarded.

Most of our currency in this industry is based on what we can produce

with our minds. Smarts are important, but more important than being

smart is looking smart.

Being smart can happen anywhere, doesn’t require an audience, and

therefore often goes unnoticed. In fact, the distractions of being in front

of people often sabotage smarts. That’s why you usually prepare well

before you talk to a group about an issue. You can make reasonably

sure you’ll deliver your full brain power to an issue in the privacy of

your own cubicle, but in front of a crowd, you’ll have unknown vari-

ables, nervousness, and often bad luck keeping you from your full

potential.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=35

UNDERLYING CAUSES 36

Criticism Is Good. Cynicism Is Bad

Semantics are a tough thing. One person’s cynicism is another’s
due diligence. I don’t want you to think you need to handle any
criticism as an attack of a Cynic. You should justify your tool or
technique. People shouldn’t blindly accept that you’re steering
them the right way.

However, the criticism I describe here as cynicism isn’t trying
to defend people from poor choices. It’s designed to block
progress for blocking progress’s sake or to score cheap points.
Some of what I say here should help you differentiate. But at
the end of the day, it’s like Potter Stewart said about obscenity:
“I know it when I see it.”∗ It’s hard to define but easy to feel;
sometimes people are criticizing to achieve the best outcome
for all, and sometimes people are being cynical to keep them-
selves from having to grow or to make themselves look good at
someone else’s expense.

∗. Potter Stewart was a Supreme Court Justice who when deciding a case
about obscenity famously said, “I shall not today attempt further to define the
kinds of material I understand to be embraced within that shorthand descrip-
tion [“hard-core pornography”]; and perhaps I could never succeed in intelli-
gibly doing so. But I know it when I see it.”

Looking smart, on the other hand, requires an audience but delivers

the impression that you can be smart without necessarily having to

have the mental horsepower to actually pull it off.

What does all of this have to do with our healthy cynic? There are two

ways to look smart:

• Be very smart in front of an audience (which we’ve established is

tough).

• Be smarter than someone else in front of an audience.

The second one is pretty easy to do, and this is where our Cynic comes

in. In challenging you every step of the way, they are keeping up with

you, which makes them looks smart. All it will take is one weak spot in

your prep for them to look smarter than you.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=36

EFFECTIVE COUNTERING TECHNIQUES 37

7.2 Effective Countering Techniques

Countering the Cynic is about two things:

• Refusing them entry points to arguments

• Preparing enough so that you cannot be refuted

Refusing them entry points is about not allowing them to ask the ques-

tions in the first place. You can deliver your message smoothly. You

can anticipate likely questions and answer them as part of your pitch.

If you’ve done this correctly and they do ask a question, you can put

them off until you answer it as part of your prepared material. This

allows you to control the conversation, not them.

On the other hand, you can’t prepare for everything. You can’t antici-

pate every question. First answer their questions authoritatively; even

if you don’t know the answer, say “I don’t know” with confidence. Going

further, gain and use knowledge of the subject to prevent them from

having opportunities to look smart at your expense.

To those ends, the following methods are especially helpful with these

skeptics:

• Chapter 13, Gain Expertise, on page 53

• Chapter 14, Deliver Your Message, on page 62

• Chapter 3, Solve the Right Problem, on page 21

• Chapter 15, Demonstrate Your Technique, on page 68

• Chapter 21, Create Something Compelling, on page 101

• Chapter 18, Get Publicity, on page 85

• Chapter 20, Build a Bridge, on page 95

7.3 Prognosis

Assuming that you can prepare and refute as outlined here, you can

usually do well by this group. With your delivery and expertise, you

can make your solution the smart solution. By positioning your solu-

tion as the smart one, it follows that questioning it makes them less

than smart. Their self-imposed pressure to look smart will keep them

from sniping at you. Who knows, if you make your solution look smart

enough, they might even become your biggest boosters.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=37

Chapter 8

The Burned
A small group of developers has gotten together to plan the next project.

Now is the time you can really shape what tools and technologies will

get used. You’ve been itching to get Hibernate used on a company

project, and this is the perfect case. The application is going to be one

giant administrative front end for a straightforward database. It’s com-

plex enough to warrant ORM but not so complex that the team will have

crazy problems with it.

You make the suggestion to use Hibernate.1

“I used Hibernate before...,” chimes in Bernard.

You’re overjoyed; it doesn’t take a lot to create a consensus with this

group. If Bernard is with you, it will be a snap.

Bernard continues, “It was horrible. The system ground to a halt. It’s

terribly inefficient. To do a single update, you’d have to pull an entire

row out of a database and all of the related rows in other tables. All

that to accomplish what you can do with a single update statement. No

thanks!”

Like Lucy to your Charlie Brown, Bernard has given you hope and

snatched it away. His criticism pretty much stops the group from mov-

ing forward—not because he is necessarily right but because he is expe-

rienced. He’s been burned by the technology before, and now he’s never

going back.

1. A popular ORM for Java.

UNDERLYING CAUSES 39

Change Weary

Early in the process of writing this book, I considered an addi-
tional skeptic type named the Change Weary. The more I
thought about it, the more I realized the Change Weary were
really just Burned.

Good change can be a lot of work but is seldom demoralizing.
You want a break afterward but not permanently. Bad change
can cause the Change Weary. But often bad changes only cre-
ate easy-to-detect Burned people.

The basic problem is that Change Weary people are a result of
neither good nor bad change but change that doesn’t really
result in anything other than a change. Their burn, then, isn’t
dramatic. It’s not that they’ve seen this before, and it was terri-
ble; they’ve seen it before, and it was lame.

Change with no positive results is bad change, even if the
results were yawn-inducing instead of catastrophic. So, the
Change Weary are Burned, even if they were just slow Burned.

8.1 Underlying Causes

This one is pretty straightforward. The cause of this behavior is that

they have used the tool you are pushing before, and it didn’t work for

them. The problems they encountered can run the gamut. They could

have used the technology and seen no significant advantage. It’s also

possible they tried it and had a spectacular failure. They might have

installed it but had no idea how to get it to do anything. In any case,

regardless of the quality of their attempt, they have credibility with oth-

ers, because their knowledge is firsthand. This makes their skepticism

both believable and more challenging to counter.

8.2 Effective Countering Techniques

The first key to countering the Burned is to understand what happened

to them. If you have experience with Hibernate, you know what hap-

pened to Bernard. Somehow in the previous use of Hibernate, someone

made some mistakes with their fetching strategy and failed to lazy load

properly. It might have been Bernard, it might have been someone else,

but the effect was the same. Their implementation of Hibernate was

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=39

PROGNOSIS 40

severely flawed. It’s not possible to tell from this example, but it is also

possible that Hibernate was not the correct tool to use on that previ-

ous project. If that is the case, even if implemented properly, Hibernate

would have still failed.

Next you have to figure out whether your proposed solution is the cor-

rect one. Is it worth changing the Burned’s mind? Would it be better

to choose another technology that can perform a similar function but

might get more readily adopted by the Burned?

Finally, you have to pass on your information to the Burned. You have

to make sure that in perhaps suggesting that their previous implemen-

tation was flawed, you are not telling them that they screwed up. They

have to believe you. You have to walk a fine line in communicating with

them.

For those reasons, the following techniques work well on these skeptics:

• Chapter 3, Solve the Right Problem, on page 21

• Chapter 13, Gain Expertise, on page 53

• Chapter 14, Deliver Your Message, on page 62

• Chapter 15, Demonstrate Your Technique, on page 68

• Chapter 21, Create Something Compelling, on page 101

• Chapter 18, Get Publicity, on page 85

• Chapter 17, Create Trust, on page 79

• Chapter 20, Build a Bridge, on page 95

8.3 Prognosis

This can be a tough group to completely convert. People tend not to

like spending time learning new things. To try something new and then

have it fail can simply be too much of a hassle to give it another try. It

is often easier to go around these previous experiences by selecting an

alternative technology. But with lots of effort, support from others, and

the right Burned co-worker, you can turn them around.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=40

Chapter 9

The Time Crunched
Let’s go back to that meeting I had in the introduction, Chapter 1, Why

This Book?, on page 15. I was discussing with other managers the need

to move to a new version of the application server.

Their main objection was that they had code that they were confi-

dent in, and moving to another server would require them to test and

potentially miss bugs that could embarrass them in front of their con-

stituents. I suggested unit testing as a solution to this, and their first

objection was “It would take too much time.”

In fact, almost every argument I ever had with this group boiled down

to that they didn’t have enough time. It didn’t matter that many other

problems within their group would have been mitigated by unit tests. It

didn’t matter that the reason they didn’t have more time was that they

were dealing with issues that would largely have been solved by having

unit tests. They suffered from that philosophy of “There’s never time to

do it right, but there’s time to do it twice.”

9.1 Underlying Causes

A lot of this type of thinking comes from people being shortsighted,

penny-wise and pound-foolish, or otherwise unable to see the real cost

of things. To be fair, it can be hard to see past the weeds when you’re

stuck in the middle of them. But most of the time people are unwilling to

alter schedules to accommodate something new, especially when they

are already dubious of the result. Think of it this way—their current

method may waste time, but they know exactly how much time they’ll

waste. A new method will definitely cost time to learn, and it might not

EFFECTIVE COUNTERING TECHNIQUES 42

make up the time it costs. That would leave them behind and more time

strapped than before.

Going deeper, some people are Time Crunched because the amount

of work they have to do exceeds their resources. Understaffing, over-

promising, or other forms of poor planning contribute to this type of

environment. These people are Time Crunched all the time. Finding

some breathing room for these guys is tough.

Others, though, are not Time Crunched all the time. There are many

industries that are cyclical in their demand. It goes up and goes down

over time. Take higher education in the United States. The main part

of the school year starts in September and goes to December. It has

a short break and then starts back up in January and runs to May.

There’s a short break, and a lighter summer session starts. People who

develop new applications at schools are crazy-busy in the lead-up to

September. They are busy over the winter break with upgrades. They

then start new projects over the summer. The rest of year they are

maintaining and patching their applications. New ideas need to hap-

pen during their lulls and not their spikes. Therefore, pitching to these

developers in August will always yield a Time Crunched response. In

the end, the cause is the cyclical nature of their work, not any flaw in

their thinking.

Finally, there really are some types of work that are Time Crunched,

and doing it on time beats doing it right. I did programming work for the

local office of a national political campaign once. They needed a basic

database CRUD application. I started 24 days before Election Day. The

day after Election Day, the application was worthless. Any work that

went into maintainability or extensibility was worthless. Trying to sell

those types of features would have been a waste of time.

The trick here is to figure out whether the Time Crunched thinking

is coming from flawed thinking, bad timing, or the particular type of

project. Most of it comes from the first. However, making sure you are

not selling it at a bad time or to an audience that will never listen will

help save you time.

9.2 Effective Countering Techniques

Success with the Time Crunched all comes down to making them see

your technology or tool as relief for them. They need to see it work.

They might need to be bribed with some other time savings. In any

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=42

PROGNOSIS 43

case, they need to be assured that if they choose your method, they will

get back more time than they put in. Because of that, the methods in

these chapters work with them:

• Chapter 3, Solve the Right Problem, on page 21

• Chapter 15, Demonstrate Your Technique, on page 68

• Chapter 16, Propose Compromise, on page 74

• Chapter 21, Create Something Compelling, on page 101

• Chapter 20, Build a Bridge, on page 95

• Chapter 19, Focus on Synergy, on page 91

9.3 Prognosis

No one likes being crunched for time. It’s an awful feeling that usually

makes you feel constantly a little nauseous. They want out; they just

might not know how to get there.

In any case, with these guys, it comes down to quid pro quo. Save

them time, and they’ll play ball with you. The tough part is convincing

them they will actually save time. If you can do that, however, their

desperation to get out of the time crunch can work to your advantage.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=43

Chapter 10

The Boss
You’ve been called to your boss’s office for a somewhat regular status

meeting. It goes normally. She talks, you listen. You talk, she checks

her BlackBerry. You talk about the projects you have been working on

and the projects you have finished. Once you’re done with that, you

have the opportunity to tell her about your special baby.

You’ve been working on an automation engine that can introspect a

database, build a CRUD application, and style it with a company-

branded look and feel. After it is built, you can spend a little time

tweaking the model and tweaking the UI to perfect your application.

It’s simple scaffolding, but it’s awesome.

You tell your boss about it. She doesn’t seem to get it. She just asks how

much time you’ve been spending on it. You tell her, and she goes from

not interested to downright pissed. She tells you to stop working on it.

Then she dismisses you so she can meet with her next subordinate.

You’ve gone from feeling like a huge winner to being told to kill your

baby and get out of her office. That’s what can happen when you try to

sell professional development to management.

10.1 Underlying Causes

The single biggest reason that management resists professional devel-

opment techniques is because management doesn’t understand them.

That might sound harsh, but it isn’t. It’s not their bailiwick. Even if

they were promoted from the ranks of developer, if they aren’t doing

development anymore, they may wonder why you need this thing that

they never needed to do their job. If they still develop while managing,

EFFECTIVE COUNTERING TECHNIQUES 45

Isn’t This Insincere?

The difficult part here is meeting management where they live,
talking to them in a way they will listen. Some people will refuse
to do this because they think it is somehow fake or insincere. But
most of the time we do these sorts of things anyway.

Cashiers say “Please” and “Thank you” despite that they are
the ones providing service. We go to job interviews in suits,
despite that most programmers detest working in them. We try
to learn a little of a foreign country’s language before we visit.

In short, meeting people where they are and talking to them in
their language isn’t insincere; it’s practical. You have to meet
people where they are, not where you want them to be when
you are the one requesting things. In the case of management,
it is just one more acquiescence we have to make to people
with more power than us. Considering how valuable it can be,
it’s foolish not to do it.

then they are almost definitely Time Crunched (see Chapter 9, The Time

Crunched, on page 41) and will probably be closed to your technique

on that basis.

Now in fairness to them, you are part of the problem. You see, develop-

ers have developer problems. You are used to talking about your tool as

a solution to a developer problem. Management has management prob-

lems. You have to talk about your tools as solutions to management

problems.

“Making code more maintainable” can be sold to management as “re-

ducing ongoing project costs.” “Automate rote code” can become

“Complete projects faster.” Yes, it can lead to talking in buzzwords and

marketingese, but it can get you what you want too.

10.2 Effective Countering Techniques

Changing management’s mind comes down to changing the way you

talk about your tools and techniques. Don’t talk about lines of code

and n-tier databases. Talk about less developer time and less downtime

time. Or go even further and convert it straight to cost savings.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=45

PROGNOSIS 46

Additionally, you can tie your solution to an overriding concern that

has management in a lather. If a new government regulation requires

compliance and your tool can help with that, then you can always sell

it to management in that way. Finally, for some reason, management

tends to value the opinions of outsiders more than internal ones. Get-

ting outsiders to speak well of your solutions can go a long way. For

all of these reasons, the following techniques are the ones you want to

focus on with the Boss:

• Chapter 14, Deliver Your Message, on page 62

• Chapter 15, Demonstrate Your Technique, on page 68

• Chapter 19, Focus on Synergy, on page 91

• Chapter 18, Get Publicity, on page 85

10.3 Prognosis

Success with the Boss is going to rely on how well you make your tools

the solutions to their problems. Usually if you can do that, they are

more than happy to come on board. This is really fortunate, because

they are the ones who can mandate things. They can force others into

coming around to your solution. This is part of the larger strategy of

converting your organization.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=46

Chapter 11

The Irrational
The Irrational can be the most difficult skeptic to deal with. Every other

skeptic type, at the heart of their opposition, has a logical and rational

argument. For the Burned, their premise is “This failed before; there-

fore, it will fail again.” For the Time Crunched, it is “I have so much

work currently that I cannot afford the time it would require to use

this new technique.” That doesn’t mean they are right, just that they

are grounded on a premise. That premise can be examined, challenged,

and ultimately defeated. You can convince the Burned that past fail-

ures don’t mean every use of your technique will be a failure. You can

convince the Time Crunched that they can afford that time, and so on.

This is not so with the Irrational. They don’t want to use your technique

or tool. The reasons can be wide and varied, and we’ll see in a moment

they don’t matter, but there is no rational premise. There is no argu-

ment that can overcome that. Any argument is designed to get you to

stop trying to convince them. Therefore, they will say anything it takes

to get you to stop.

C’mon Irene!

You’re arguing with Irene again. The last argument you had with her was

over database indexes. She claimed that they are not necessary. She

further claimed that “the performance hit you take is worth the freedom

you gain by not having to manage indexes.” You didn’t buy it then, and

you don’t now. But that’s not today’s argument.

Today’s argument is over a new ORM system you are pushing. The rest of

the group is on board, but Irene is their manager. Irene pushes back.

UNDERLYING CAUSES 48

“My crew doesn’t have the time to learn a new system; they’re already

time crunched as it is.”

One of her employees pipes up, “Actually, I used it on my part of our last

project, and it saved me a lot of time. Doing this group-wide could really

help us with our time crunch problem.

Irene’s eyes narrow; her argument has been brushed aside. She thinks for

a moment, and then says, “ORM causes a performance hit. We really can’t

justify across-the-board performance hits on our applications going

forward.”

Now you might be thinking, reading that story, that her reasons and

opposition are full of holes. You’d be right. You’ll also notice that once

she was defeated with one argument, she pulled out a new one. Going

further, that argument contradicted previous arguments that you had

with her. It seems to indicate that the underlying points she uses at any

time in these arguments are not things she believes. They are things

that you’ll buy enough to leave her alone and let her continue without

taking up what you are pushing.

11.1 Underlying Causes

There are many potential causes for this behavior. There could be an

interpersonal beef between you and the Irrational. They could be a

zealot or fanboi for another technology or solution. The Irrational per-

son could have one foot out the door of your organization. They could be

a manager/developer struggling with the demands of both and unwill-

ing to add one new thing to their plate.

By and large the reason doesn’t matter, because the behavior is always

the same. The Irrational jump in to an argument, they pretend to be

another skeptic type, and if their arguments are defeated, they change

arguments and even the skeptic type they seem to be. They have an

underlying reason, but it will rarely if ever bubble up. If it does, expect

an even tougher argument because it was important enough to them

for them to hide it, dissemble to protect it, and argue to defend it.

11.2 Effective Countering Techniques

The techniques you throw at the Irrational aren’t about changing their

minds. You use tools and techniques to diffuse their opposition and

deflect their arguments. But make no mistake, you are not trying to

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=48

PROGNOSIS 49

Don’t Feed the Crazies

There exists a group that I like to call the Crazies. The Crazies
are a type of Irrational, in that you cannot oppose them with
reason, but to be fair to the Irrational, the Irrational aren’t that
bad. By and large the Irrational have an actual issue, even if it
isn’t rational. The Irrational don’t want to try a new language
because they personally hate the syntax of the language you
are proposing. The Crazies don’t want to try a new language
because they are convinced desktop publishing is the future
of your industry and therefore are just treading water until that
paper-based solution comes back into vogue.

The difference is academic I suppose. You don’t deal with the
Crazies any differently. But be aware that the Crazies are out
there—and out there!

convince them; you are just trying to contain them. You can read about

techniques that work with the Irrational in these chapters:

• Chapter 14, Deliver Your Message, on page 62

• Chapter 17, Create Trust, on page 79

11.3 Prognosis

If it isn’t entirely clear from everything else I’ve said, you cannot sell to

the Irrational. This is not to say that you cannot get them to participate,

just that you won’t do it by convincing them. You can bribe, punish,

or compel them. In fact, the overall strategy I recommend is to ignore

them and get management to mandate your technique.

Bottom line, you just can’t convince them. So, don’t spend a lot of time

on them. It just leads to wasted effort.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=49

Part III

Techniques

Chapter 12

Filling Your Toolbox
The next set of chapters contains countering techniques you can use

on the skeptics to bring them around to your line of thinking. Most of

the countering techniques work on more than one skeptic. Also, you

will usually need to employ several of these together at the same time

to effect change.

Some of the techniques are universal. They work in most cases, they’re

good to focus on for their own sake, they are completely within your

power to do, and they don’t depend on favorable circumstances. They

are as follows:

• Gain Expertise

• Deliver Your Message

• Demonstrate Your Technique

• Create Trust

The rest of the techniques aren’t completely dependent on you. In addi-

tion to your willingness to do them, they require favorable circum-

stances. For example, getting publicity can be really effective, but if you

are working on code that includes your company’s intellectual property,

you may not be allowed to share any details about it. The trade-off is

that when you have an opportunity to use them, and do so, they can

be extremely effective, much more so than the ones listed earlier. These

techniques are as follows:

• Propose Compromise

• Get Publicity

• Focus on Synergy

• Build a Bridge

• Create Something Compelling

CHAPTER 12. FILLING YOUR TOOLBOX 52

To put these into practice, you create a list of those techniques that

will work on your office of skeptics. Start with techniques you find on

the first list, because you don’t require anything but your own will with

that list. Then look out for opportunities to use techniques from the

second list.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=52

Chapter 13

Gain Expertise
Don’t try to push a tool or technique with which you are not famil-

iar. If you conduct an afternoon of research and based on a few FAQs

conclude that one particular tool is the one your organization needs,

then you haven’t done enough. The Uninformed are not going to inform

themselves, the Cynic types aren’t going to go easy on you, and the

Burned are not going to magically forget the time your technique cost

them a week of work. You’re going to have to counter their opposition

with knowledge of how your tool of choice works and what can go wrong

with it.

Expertise in any particular tool or technique can take months, if not

years, to acquire. I’m not suggesting that you must wait until you are

an expert before you try to push a technique or tool. What I am saying

is that you need to start down the path to becoming an expert. You need

to know more than the marketing bullet points; you need to know when

and where the tool shows its limitations. If you’re a beginner, then you

have to start becoming familiar with it; if you are familiar, go for fluent;

if fluent, go for advanced. The point here is to travel toward expertise,

not wait until you get there.

Push to Production

Ed suffers from déjà vu. The topic of conversation in the lunch meeting

once again falls to deployment. Currently deployment is a nightmare of

procedures, checklists, and manual tests that takes about half an hour, if

it’s done correctly. About one out of every three times it fails and causes

the project’s public Internet face to show a 500 error for half an hour

until fixed. That’s usually followed by a less than happy visit from

management. It’s unacceptable, but change comes slowly around here.

CHAPTER 13. GAIN EXPERTISE 54

Ed has been advocating Ant to replace it. He’s tried it on a few of his solo

projects and figured out what it can and cannot do. In fact, he has a proof

of concept of an Ant build, test, and deploy script for the group’s project

that works. It takes forty-five seconds, every time. He repeats his case to

the group.

A co-worker, Bernard, interjects:

“I installed Ant, I ran it, but when I ran your script, it couldn’t run the

FTP tasks. Without them, why bother deploying?”

Ed knows that problem; he’s had that problem. He’s even documented

how to fix that problem in the install directions.

“That’s a common problem. You have to make sure the Jakarta ORO jar

and commons-net jar are in your classpath. I have directions on how to

do that. I can resend them to you.”

Cynthia pipes up at this point:

“I’ve read a lot of blog posts that say that Ant is passé and Maven is

better, especially since it doesn’t use XML.”

Ed has the answer to this as well:

“First, Maven uses XML too, so I don’t know whether you’re thinking of

the correct tool. Second, Maven pushes a lot of conventions on the build

process that don’t line up with what we do. Sure, Maven might have more

geek cred, but we could assimilate Ant into our particular processes a lot

faster.”

Herbert pipes up at this:

“I used it at my last job, but I just figured that you guys had a problem

with it. Yeah, I’d switch to it.”

Umberto is sold:

“I’ve never heard of Ant or Maven before. But Ed seems to have done his

research, and frankly if I can just press a button to deploy in forty-five

seconds, then I’m not going to quibble. Ed, can you maybe take some time

and sit down with me to get started?”

Ed agrees. It’s now three of them against the other two. One more public

outage, and management might have to listen to Ed, Herbert, and

Umberto, who for some reason never seem to be the cause of the outage.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=54

WHY DOES IT WORK? 55

13.1 Why Does It Work?

Picking up new technologies or tools is work. Even if it’s going to save

us time and effort down the road, sometimes that future promise is

not enough to overcome the present pain. To do so, one needs either

motivation or shortcuts. Presumably you had the motivation. Others

aren’t going to be as motivated as you. It’s not their fault; they just

don’t have your drive. In absence of that drive, you need to be their

shortcut.

Think back to your journey across the learning curve for the tool you

are pushing. Remember when you knew it wasn’t working because you

didn’t know the right syntax or forgot an option, but when you tried to

Google how to fix it, you couldn’t properly formulate the right query?

At that point, you had two options: keep trying or give up. You kept

trying, because you were motivated to do so. Make sure that when your

co-workers reach that point, they have a third option: ask you.

A major part of the reason that Umberto was willing to give it a shot in

the previous story was that Ed was willing to take the time to assist him.

That ability and willingness to help is key in converting the Uninformed.

Additionally, by defusing Bernard’s issue and refuting Cynthia’s claims

quickly, knowledgeably, and respectfully, Ed was able to project the

confidence to lead Herbert and educate Umberto.

13.2 How Do You Become an Expert?

Each tool or technique you push will have its own path to mastery. But

that doesn’t mean that there aren’t a few common roads to travel down.

Here are a few of the ways you can go about gaining expertise.

Research the Technique or Tool

Know the history of this tool or technique and its original purpose.

Find out when, where, why, how, and by whom it was created. Know

what competing technologies are available. Determine whether this tool

is actually a proper fit for your organization. Know why it is and why

another technology is not the right choice. In the previous story, it was

obvious that Ed was ready for questions about Maven. By knowing

where Ant fits in with its competitors, he was able to shut down the

Cynthia’s cynical voice; he even had the bonus of correcting a mistake

she made.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=55

HOW DO YOU BECOME AN EXPERT? 56

A Journey, Not a Destination

Some people I’ve talked to about this get daunted and intim-
idated at this step. They don’t feel that they could ever be
the expert on something and therefore see this as out of their
range. Nothing could be further from the truth.

Expertise, even for the very experienced, is a fluid thing. With
the exception of abandoned technology, every tool, tech-
nique, or product that you are trying to push is changing every
day. The producers are adding more features. The community
is posting more commentary. Users discover bugs, and product
teams fix them. Nothing is static. Therefore, even the most ex-
pert of experts is only as good as the last thing they read. There
is no standing still as an expert. And yesterday’s expert is tomor-
row’s dinosaur after as little as two years of not keeping up.

Since knowledge becomes obsolete so quickly, the difference
between true experts and dinosaurs is constant learning and
updating. Since that’s what you have to do to become an
expert anyway, there is not that big a difference between a
true expert and one who is striving to be an expert. They’re just
a little further along the journey.

So, keep that in mind for both encouragement and humility.
An expert that isn’t growing isn’t an expert, because growing is
what makes you an expert.

Use It

Every tool or technique has its limit. Everyone has a task or a category

of tasks it does not handle well. The designers, developers, or marketing

people usually don’t tell you about them on the landing page of their

websites. You might be able to figure out the pain points via the FAQ or

support forums, but you’re never really going to know its pain points

with your environment unless you bite the bullet and give it a try.

Ed was able to respond so quickly to Bernard’s issue because he had

gone through the steps and installed Ant himself. He knew that the

JAR files needed for the FTP tasks aren’t included in the standard dis-

tribution of the product. He knew it would trip up his co-workers, so

he even documented it specifically. That sort of preparation is possible

only when you’ve already walked the path.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=56

SKEPTICS THAT IT COUNTERS 57

Be careful when you choose a project on which to learn. If you are using

a very pervasive technique or tool, don’t choose a project that you share

with other people who may be resistant. Otherwise, you might expose

them before you are ready to defend it and tarnish the tool in their eyes.

In the example story, Ant was safe when it was used to automate a man-

ual task. It isn’t a big risk because it was only replicating an existing

procedure and only Ed had to use it. Even using source control on your

local version of the code might not be a big problem. However, rewriting

your entire application to follow particular design patterns that aren’t

understood by the rest of your team probably won’t go over big.

Seek Out Existing Experts

Seek out and form relationships with people who have expertise with

your tool or technique already. If your town has a local users group for

it, participate in the users group. If not, seek out other experts online

in forums and blogs.

See whether you can learn the common newbie mistakes from existing

experts. Find out the horror stories they have for the wrong use of the

tool or technique. Learn anything you can to make it easier to handle

your new users.

Teach It

This is one of the later stages of gaining expertise. Nothing will make

you quite as knowledgeable about a subject as teaching it. Often with

tools or techniques, we only put enough thought into it to make it

work for ourselves. This is especially true of things we’ve abstracted—

we don’t go that extra mile and really understand what it does. When

you teach it, you don’t have the luxury of just describing encapsulated

steps; you have to explain what happens in those steps.

The tough part will be finding someone willing to learn. Your best bet

here is to find someone completely outside the group you are targeting

to adopt the technique. If you can’t find someone external, then try an

uninformed member of your team who doesn’t usually become cynical,

burned, or irrational.

13.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=57

SKEPTICS THAT IT COUNTERS 58

The Uninformed

The Uninformed (Chapter 5, The Uninformed, on page 29) are defined

by their lack of knowledge about a tool or topic. By being expert, you

give yourself large amounts of that knowledge they lack. The more you

know, the more you can pass on.

The second point is very important. I assume you will share your knowl-

edge. If you don’t, you can’t really be successful with the Uninformed.

You have to make yourself available to nudge, tutor, and encourage

your charges. But that effort will be rewarded—the Uninformed are the

easiest to move, so every minute you spend on them is equivalent to

two or three times that with another group.

If that benefit wasn’t enough, it’s worth it to point out again that teach-

ing is one of the best ways to learn. Having to explain how something

works requires more thought and understanding than just using it.

Therefore, teaching makes you more of an expert, which makes you

better able to teach, which means you can teach more, which means

you can become more of an expert.... In computing that’s an infinite

loop, but in psychology that’s a positive feedback loop.

The Herd

The Herd (Chapter 6, The Herd, on page 31) requires leadership. It’s

hard to lead when you’re not sure where you are going. Knowing what

your tool can do, and more importantly what it will mean for your orga-

nization, is critical to leading the herd.

Your ability to lead is not the only consideration. The Herd’s willingness

to follow you is another. The confidence that comes from being comfort-

able with your knowledge will go a long way to inspiring them to follow

you.

The Cynic

The Cynic (Chapter 7, The Cynic, on page 34) is contrary out of reflex.

They’ve been promised great things in the past by other pieces of tech-

nology and have always been disappointed. They’re that kid in college

who always asked your professors annoying questions to show how

smart they were. Consequently, they love to come up with nitpicky

“gotcha” scenarios so that they shoot down progress before it can disap-

point them. Answering with a confident, knowledgeable response goes

a long way to shutting them down.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=58

PITFALLS 59

The other important fact about the Cynic is that they tend to be broad

but not deep. This isn’t an unfair generalization. When you don’t think

anything new can be of use, you don’t give anything a try. Therefore,

they know superficial details about a lot of things but just enough to

shoot them down. This allows them to throw competing technologies

and potential horror stories at you. Being able to go deeper than the

Cynics will allow you shut them down.

The Burned

The key issue with the Burned (Chapter 8, The Burned, on page 38)

is that they used the technique and it failed for them. Being an expert

and having a good amount of experience with a technique will put you

in a better place to understand what exactly happened to the Burned. If

you really understand what happened, you can better respond to their

issues and perhaps more tactfully tell them where they went wrong.

This tactful part of this equation is an important one. People will dig

their heals in if they feel they are being attacked or unfairly criticized.

You don’t get to define unfair criticism; they’ll do that for themselves.

So, remember, be an expert, not a know-it-all.

13.4 Pitfalls

There are two major pitfalls when using this technique:

• While you’re learning, you force others to use it.

• In selling, you patronize or bully others.

Forcing Others

When most people begin with a technology, they go for easy demos or

test code. Most tools work perfectly fine in these cases because they’re

not too complicated. We know this, so we start to want to work on a

real use case with the tool or technique. At this point, you’ll be tempted

to use it in your working code. But before you do so, consider whether

by doing so you force others to have to switch to it. Depending on the

technique, you may be forcing it on people when you aren’t prepared to

show it to them.

In the story, Ed just took an existing procedure and ported it to Ant.

Nothing was changed for everyone else. On the opposite extreme is

switching to a framework with an MVC architecture when you weren’t

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=59

WRAPPING UP 60

using it before. It’s hard to localize that change to just your part of a

project.

Those are the obvious cases; the real challenges exist in between. Con-

sider unit testing. At first glance it would seem to not affect other peo-

ple, because you write unit tests to work with your own code. However,

when you start writing unit tests, you start to change the way you write

the code you test. Granted, it generally forces you to write better code,

but it might be incompatible with older code, or it’s possible that peo-

ple will be uncomfortable with the new style because they won’t see the

point.

For this reason, I recommend you do your learning on your side pro-

jects. You never know what effects your learning will have on others.

You’re trying to convert them, not turn them into the Burned.

Patronizing or Bullying

The difference between kindly expert and patronizing know-it-all can

be thin. It comes down to whether you listen to others. A know-it-all

listens only to themselves—as soon as they have an answer, they spout

it out regardless of whether it applies. On the other hand, an expert

listens to everyone, and from that listening develops answers.

In some cases, expertise can also be used to bully people. You can start

to take the attitude that I am an expert, and therefore I am always

right. It’s the wrong attitude for several reasons: it’s elitist, annoying,

and ineffective. On top of all that, it’s flawed in analyzing causation:

you get the label of expert because you are often right, not the other

way around.

13.5 Wrapping Up

Gain Expertise by itself is very effective in converting a few of the most

easily converted types—low-hanging fruit. Converting them is an impor-

tant step in the overall strategy of converting skeptics. But, it usually

needs to be combined with other techniques to be effective in a broader

group.

There are also some practical benefits to be gained here, independent

of your efforts to promote your tool or technique. Gain Expertise can

be done either on your own time or as part of your day job. It doesn’t

require the input of others. It can add bullet points to your resume.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=60

WRAPPING UP 61

In short, Gain Expertise is a technique that has a lot of upside and

relatively little risk. It should be the first technique you try. I would

posit that in most cases you should seek to be an expert in any tool

you are promoting and that no array of influence techniques is complete

without it.

Putting It Into Practice

Here are a few suggestions to try to increase your expertise going for-

ward:

• Read the entire manual for the product you are pushing.

• Jump onto the public forums for the tool your are trying push. See

whether you can answer questions on it.

• Start blogging about your tool or technology.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=61

Chapter 14

Deliver Your Message
So, you’ve picked a technology that’s better than what the rest of your

co-workers are using. It’s better, so that should be enough, right? Un-

fortunately, being better is seldom good enough. If a program never

crashes in the woods, does it make a sound? No, weird metaphor aside,

if you don’t tell people about the tool, they’ll never adopt it.

You’ll have to talk about the tools you are pushing. While you’re talking

about them, you have to do two things:

• Not turn off your audience

• Actually turn them on

Yes, not turning them off comes first. It doesn’t matter how well you

do at turning them on; if you turn them off, they’re gone. You won’t be

able to sell these tools to them without a lot more attention.

Version Control Conundrum

John had discovered Git,1 and he was in love. He loved every single

feature of it. He even loved obscure little features that he never used. He

simply loved it, perhaps even a little bit too much.

Patrick was a longtime CVS2 user who was thinking about switching to a

new version control system, because he was tired of the limitations of

CVS. He had been researching, and SVN was the system that was coming

out on top. Not too different, but much better. The SVN motto of CVS done

right hit home for him. He was ready to switch until he ran into John.

1. A distributed version control system. For more information, see Pragmatic Version

Control Using Git [Swi08].
2. A centralized version control system. For more information, see Pragmatic Version

Control Using CVS [TH03].

WHY DOES IT WORK? 63

“How can it be any good when CVS is your starting point?” John

exclaimed.

Patrick became defensive, “Well, it works with the tools that I use.”

“That’s crap! We both use Eclipse. Git works just as well in it. And it

performs better, and it’s distributed, which means...,” droned John.

By this point, Patrick had stopped really listening and instead just

nodded until John left him alone. Patrick gave up on upgrading source

control altogether.

A few months later someone else introduced him to Git again. This time,

they extolled the virtues of Git without beating up on SVN. Patrick gave it

a try. He found he liked it. If only John hadn’t been such zealot about it....

In the previous story, John took someone who was excited about mak-

ing a change and drained the excitement out of him. What was worse,

John didn’t just lose a chance to make Patrick a Git fan, he stopped

Patrick from advancing at all. The moral here is: don’t be John. Don’t

drive people away; bring them in. Easy enough said, let’s talk about

how you can do it.

14.1 Why Does It Work?

People, even technical people, are just that: people. As much as we

like to pride ourselves on being able to judge information based on

facts, sometimes we go for the flashy shiny things instead of the “right”

thing. The technological world is full of superior technologies that never

caught on because of this very reason: Betamax, Smalltalk, FireWire.

That’s because people don’t just make decisions intellectually. We use

our emotions. In fact, we usually use them more than our brains.

So, packaging matters; message matters. Don’t worry, we don’t have to

tell the marketing department that we know it’s true. It will just be our

secret.

14.2 Mastering Delivery

Many people think that talking, connecting with, and influencing people

are all something you can either do or not do. Either you’re a people

person or you’re not. That’s just not true. Yes, some people are better

at this naturally; they have a talent for it. But at the end of the day,

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=63

MASTERING DELIVERY 64

connecting with people is a skill—a skill that can be learned and even

mastered.

Be a Person, Not a Computer

Developers spend a lot of time gazing into monitors. “And when you gaze

into the abyss, the abyss gazes into you.” Like Nietzsche is suggesting,

you’ve picked up some traits from your time living with the machines.

As developers, we start to see the world in binary terms: if what I am

recommending is right, then I’m right, and that is the only thing other

people should judge my solution on. Sadly, that is seldom the case.

People are emotional creatures, even other developers. Being told their

choices are no good doesn’t sit well, even if you are right.

So, don’t tell people their current choices are “wrong.” Don’t talk to

them like they are misguided. In fact, don’t address their current state

at all if you don’t have to do so. Talk about how your tool is effective or

productive.

Be Passionate, Don’t Be Zealous

The difference between passion and zeal is subtle, but I think it comes

down to this:

• Passion is when you love your subject and want everyone else to

use it because it will make their work better, easier, faster, or more

enjoyable. You can admit that some situations will call for other

solutions but know that your tool could work in those situations.

• Zeal is when you love your subject and think everyone must use it

simply because it is absolutely better. You can’t conceive of a sit-

uation where you shouldn’t use it, and if confronted with the idea

of such a situation, you’d decry the situation itself as somehow

wrong.

It’s a blurry line to define. But the long and short of it is if what you are

saying is worded to make sure your co-workers’ work is improved, then

you’re probably being passionate. If what you are saying is worded to

gain acceptance for the right way of developing, you’re probably being

zealous.

The takeaway here is don’t talk about your tools in terms of good or bad,

right or wrong, righteous or evil. Don’t speak in absolutes or suggest

that your tool should be used in every case, especially when alternatives

might fit better.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=64

MASTERING DELIVERY 65

Suggest, Don’t Declare

Many times our reaction to hearing that people are not using the tech-

nology we are advancing is to browbeat them:

• Why aren’t you using Git?

• SVN? That’s just plain wrong.

• You should just move to Git!

Now, when we do this, we don’t mean to drive people away. We’re just

letting our enthusiasm get away from us. But it doesn’t matter. This

type of speech will put your audience on the defensive. The better way

to encourage people is by suggestion, not declaration:

• Have you considered Git?

• SVN? I’ve had nothing but trouble with SVN.

• I’ve had a lot of success with Git.

Listen More Than You Speak

Telling people to do things is seldom effective. People get defensive.

Even the Herd, who want leadership, don’t want orders. The better

thing to do is ask them questions:

• Why did you choose that?

• What problems are you trying to solve with that?

• How does fit into your workflow?

Then here’s the hard part—after you ask those questions, listen to what

they say. Understand where they are coming from. Know their issues.

They’ll respond better to what you have to say, just by virtue of the fact

that they will feel listened to. Additionally, any arguments you have to

give will be in the context of their problems and will be much more

effective.

How can you be sure that you’re listening? Paraphrase their answer,

and repeat it back to your audience. Ask, “Did I understand what you

were saying?” You might feel a little ham-handed or awkward when you

do it, but get over it. Your audience will appreciate it, and the more you

do it, the more comfortable it will become.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=65

SKEPTICS THAT IT COUNTERS 66

Remain Positive

Like a political campaign, going negative is a sign of weakness. Saying

the competition is no good is a bad argument. Saying your tool is bet-

ter than the competition is an improvement. Saying your solution will

make your fellow developer’s day more productive without qualifying it

is the best way to sell it.

Now, this doesn’t mean you can’t ever make comparisons or honestly

express your feelings about competition, but like Patrick Swayze in

Roadhouse, be nice until it’s time to not be nice.

14.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Uninformed

The Uninformed (Chapter 5, The Uninformed, on page 29) is the easy

group to alter. However, they are just as likely to become a skeptic as

they are to be converted. You need every advantage you can with them.

The last thing you need is to put them off by coming on too strong.

The Cynic

The Cynic (Chapter 7, The Cynic, on page 34) isn’t just willing to fight

with you; they want to fight with you. You cannot completely prevent

them from disagreeing, but you can give them fewer footholds into an

argument. Delivery is the way to take away those footholds and perhaps

get them to listen to you.

The Irrational

You can’t really affect the Irrational (Chapter 11, The Irrational, on

page 47)—that’s their thing. So, practicing delivery isn’t going to help

sway them. However, it does ensure that your message is as reason-

able and rational as it can be. That way, when the Irrational respond,

they are more likely to identify themselves by acting unreasonable or

irrational in the face of your message.

14.4 Pitfalls

You would think that there would be no downside to having good deliv-

ery. Mostly there isn’t. However, while you’re getting started with the

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=66

WRAPPING UP 67

technique, you might come off a little fake or, even worse, like a mar-

keting person. Just watch it, stay genuine, and just make sure you

don’t use any words like paradigm.

14.5 Wrapping Up

The important lesson to take away from this is, What you say is less

important than how you say it. The other important takeaway is, What

you say matters less than what they hear. Going forward, think about

the way you’ve been talking to people about this, and try to improve

your message.

Putting It into Practice

Here are a few suggestions to try to improve your delivery:

• Practice your pitch, either with a willing partner or even alone—

the important thing is to do it out loud.

• Record those practices, and listen to them. If you weren’t listening

to yourself, would you be convinced?

• If you’re writing something to pitch your ideas, pause for an hour

before sending it out, and reread before you hit Send.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=67

Chapter 15

Demonstrate Your Technique
One of the strongest memories I have from grade school is a class story-

telling. I remember the Sister who taught the class yelling at us, “Show,

don’t tell.” Years later in my early twenties, I did professional improv

comedy. The director repeatedly yelled at me, “Show, don’t tell.” Today,

I’m yelling at you, “Show, don’t tell.”

What does that mean? Let’s take two potential first sentences to a story:

• John walked down the street. John was sad.

• John shuffled aimlessly down the street, his eyes clouded in tears,

thinking of Lisa, his lost love.

Both convey the same meaning, but one tells you what is going on, and

one shows you. Which one is more likely to grab you? Which conveys

more story?

Although not exactly the same in the realm of selling professional devel-

opment, the idea is similar. Telling someone about a tool—its abilities,

its benefits, its uses—is never as effective as demonstrating it.

TV Marathon Coding

Ed had written a code-generating machine. Strike that—he built a

code-generating dynamo. Give it a database, and it used database

introspection, ORM, and company-branded UI components to build a

killer application in milliseconds. It was flexible, and it allowed for flexible

tweaking after the code had been generated so that the model could be

manipulated without destroying changes to generated code. In short, it

was the master system Ed had been dreaming about.

His boss, Bob, was less idealistic about it. Bob understood it did stuff,

and Ed said it did good stuff, but his analysis didn’t go deeper than that.

WHY DOES IT WORK? 69

Ed had a tough time convincing Bob to let him work on it during office

hours.

One Friday, Bob and Ed were talking about a task-tracking application

for the office. Ed thinks over the problem and says his code generator can

knock it out of the ballpark. Bob drops the idea because he can’t justify

the hours it will take to build.

Ed goes home, and luckily enough, there is a marathon of his favorite

police and district attorney drama on this weekend. He plops down on the

couch with a remote and laptop and gets to work. He uses his generator

to create the application and spends a few hours perfecting the UI and

business model.

Monday rolls around, and Ed shows Bob the application.

Bob is floored, and asks, “How did you build this application in just a

weekend?”

“With that code generator you are always making fun of,” Ed answers.

Bob pauses for a second and then requests, “Take me through that again,

starting at the beginning.”

The previous story illustrates that no matter how many times Ed told

Bob what his tool could do, Bob couldn’t understand it. It was only by

seeing the tool in practice and seeing the scope of the problem and the

speed of the solution that Bob could wrap his mind around it. And now

that he’s seen it, Bob can’t forget the impact of seeing his idea become

an application in record time.

15.1 Why Does It Work?

People believe what they are shown more than what they are told. It’s

that simple. The phrase doubting Thomas is a reflection of that fact.

Maybe people lack trust. Perhaps they tune out when they hear lists of

features, as opposed to seeing dramatic demos. It’s even possible that

self-interest leads people to be more impressed when they see problems

they themselves have as opposed to vague hypothetical solutions.

15.2 Demonstration Opportunities

Demonstration requires opportunities to demonstrate. You can either

prepare yourself as much as possible to demonstrate if the opportunity

arises or force an opportunity to arise. Both have their advantages.

Organic opportunities are those that come up randomly. Someone asks

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=69

DEMONSTRATION OPPORTUNITIES 70

about something you have expertise in, or you’re hacking at something

and they look over your shoulder. You’re not asking them to listen; they

are asking to be told. When opportunities like this crop up, people are

more receptive, but you have little control over the particulars. Forced

opportunities are one that you create. Maybe you volunteer to do a

brown-bag session at lunchtime or have specifically scheduled time to

talk about your tool. When you create an opportunity in this manner,

you control the situation completely, but people are more likely to be

skeptical. In the end, you can do either or both. It will depend on you,

your preparation, your ability to perceive organic opportunities, and

your patience to wait for them.

Waiting for Opportunities

In the previous story, Ed waited for an opportunity to arise. He was

prepared, and when it presented itself, he seized the opportunity. Some

tools and techniques are more likely to be sold in an organic

opportunity.

Source control is a good example of this. It’s hard to create opportuni-

ties for showing source control’s ability to recover from failure. Well, it’s

not hard to create them, but if you do, you may find yourself looking for

a new job. So, you have to wait for that perfect moment where someone

has screwed something up and you have the ability to restore with just

a command line call or two. It’s a long wait, but when you do that, you

have a captive audience.

Creating Opportunities

On the other hand, even the techniques that benefit the most from

organic opportunities can be shown off as a forced demonstration.

Source control isn’t just about catastrophes; it’s also about keeping

track of several active releases. Showing people that in action, although

not as dramatic as recovering from a failure, can still grab them.

Creating those opportunities is pretty straightforward: call people to-

gether, and show them stuff. The mechanics are up to you. Maybe it’s

a brown-bag session at work. Perhaps you organize and schedule a

quarterly show-and-tell. Most organizations have ways of doing this.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=70

SKEPTICS THAT IT COUNTERS 71

Encouraging Opportunities

There is a hybrid method of both waiting for and creating opportunities.

I call this encouraging opportunities. You set out bait, get someone to

nibble, and then go into a prepared demonstration.

I am by trade a software evangelist. I have lots of code demonstrations

at the ready for the tools I evangelize. However, in most cases, just

launching into a demonstration will fall on deaf audiences. But if I can

get someone to ask me to demonstrate my tools, they’ll be receptive.

How do I do this? There are a number of ways, but one that jumps to

mind occurred while I was writing this book. I have logo stickers for the

software products I promote on my laptop. Someone in a coffee shop I

was in saw one and asked me about it. I copped to being an evangelist,

I told them about my tools, and they wanted to know more. An organic

opportunity arose. Because it wasn’t forced, the person was receptive,

but I was prepared, so I was at my most persuasive.

Code Reviews

Finally, another great way of creating opportunity to demonstrate lan-

guages, frameworks, and coding techniques is the code review. You can

demonstrate how easily you were able to accomplish what you did with

your tool. Code reviews have other benefits as well. We will talk about

them in other chapters. For now, they can be a source of demonstration

for other techniques. That’s assuming they are not one of the tools you

have to sell as a professional development technique.

15.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Uninformed

The Uninformed (see Chapter 5, The Uninformed, on page 29) are de-

fined by their lack of knowledge. By demonstrating the technique, you

bypass feature sets and go directly to what this tool can accomplish for

them. This quick dose of information usually knocks them out of the

Uninformed with one shot.

The Cynic

The Cynic (see Chapter 7, The Cynic, on page 34) wants to argue. You

can argue with claims, features, and promises, but it’s much harder to

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=71

PITFALLS 72

argue with demonstrated results without sounding petty. By blocking

those arguments, you get a leg up on the Cynic.

The Time Crunched

This method helps with the Time Crunched (see Chapter 9, The Time

Crunched, on page 41) because by and large this technique packs a lot

of bang for your buck. You can quickly show the full benefits of your

technique. Quickly is the key word here. By doing it faster, you keep

their attention long enough for them to see the potential benefits.

The Irrational

The Irrational (see Chapter 11, The Irrational, on page 47) are look-

ing for any opportunity to block your efforts. However, when someone

successfully demonstrates something, opposing it for no reason looks,

well, irrational. It’s this danger of exposure that can keep them at bay.

Although it won’t convert them, it will block their efforts to hinder you.

15.4 Pitfalls

There’s one glaring risk when relying on demonstration: Murphy’s law.

When you are doing a live demonstration of technology, that technol-

ogy will fail. Do enough demos, and you will wipe out in front of an

audience and completely fail. There are ways of mitigating this. You

can have prebaked versions of code that you will be writing in front of

an audience. You can do a screen capture of the entire process work-

ing correctly. Eventually, though, you’ll suffer through a failure. It’s

bad when it happens because as persuasive as a demo can be when

it works, it’s just as persuasive when it doesn’t—it’s just that you’re

persuading people that it doesn’t work.

The best thing you can do when a demonstration fails and your con-

tingencies don’t work is stop. Go back to explaining, and don’t let your

audience see you get rattled. You might not make any gains by doing

that, but you stop the hemorrhaging, and when not losing more is the

best you can do, you take it.

15.5 Wrapping Up

This is one of the more broadly effective techniques in our arsenal. It

works on many skeptics and does so in a relatively short period of time.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=72

WRAPPING UP 73

If you can be prepared to demonstrate at either an organic or inorganic

opportunity, you’ll be highly effective in bringing people to your side.

Putting It into Practice

Use these ideas to get in shape with demonstration:

• Write a demonstration of your technique, and deliver it to a co-

worker live.

• Record a demonstration of your tool, and share it on your blog.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=73

Chapter 16

Propose Compromise
As organizations age, they grow rules. Rules often come up in response

to incidents—the policies prevent those incidents from occurring again.

The downside of those policies is that they can end up constraining

more than they protect. The other major downside of policies is that

they tend to be enacted and then followed without review. Very few orga-

nizations ever ask whether they need their rules anymore, but in many

cases the technologies have outgrown the need for particular rules. So,

groups are left mindlessly following outdated rules that are no longer

needed to prevent threats that have already been closed. It’s a huge

morale killer, but it’s a big opportunity to sell change.

Tortured Procedures

Jeff’s SQL administrators have a rule. All database activity has to be done

in stored procedures. Much to Jeff’s chagrin, there are absolutely no

exceptions.

A few years back the company’s public web presence was hacked using a

technique called SQL injection. If you’re not familiar with it, it basically

means appending SQL commands to a form post in the hopes that a

developer didn’t properly process input from users. It’s the equivalent of

writing “and a million dollars” to the end of a bank check. (To prevent

that, we all write that silly line on our checks.)

There are a couple of ways to prevent this. Training developers to keep

security in mind is one way. The way Jeff’s company went about solving it

was forcing all code to go through stored procedures, ensuring that the

DBAs looked over all of it. It also forced the use of parameterized

communication with the database, which effectively prevents SQL

injection.

WHY DOES IT WORK? 75

Most of the other developers on Jeff’s team hated having to write stored

procedures. Most of them hated have to spend time writing any rote SQL.

They especially hated having to go through the DBAs to change a simple

select statement, but every time Jeff recommended a switch to some sort

of ORM solution, his teammates shot him down. Some of the sentiment

against the change was typical resistance. However, a big piece of the

resistance was that the DBAs wouldn’t allow a solution that generated

SQL within the application.

On the other hand, the DBAs were constantly complaining about how

busy they were. You’d be pretty busy too if you had to look at every single

SQL call being made against a corporate database.

Jeff’s team worked mostly with Java, so Hibernate was the ORM solution

Jeff knew he would want to use. Jeff did some shallow digging into

Hibernate’s internals and figured out that Hibernate uses parameterized

queries for most operations.

Jeff took this information to his team and to the DBAs. The team hopped

on board because it freed them from having to do stored procedures. The

DBA team agreed to give it a try but required a trial run with a SQL

Profiler running.

A few months later, all new projects were using Hibernate. The DBAs had

a lot less CRUD SQL to look at. The developers were happy to no longer be

forced to use stored procedures. Everyone was happier.

In the previous story, Jeff proposed a compromise between the DBAs

and the developers. He created a win-win solution that got rid of a

outdated and restricted rule, and they adopted his tool set to boot. Not

bad for day’s work.

16.1 Why Does It Work?

You’re trading a major source of pain for a new tool or technique. It’s

a good bet that if you ask someone to choose between something that

they already hate and something they don’t know much about, they’ll

at least give a listen to the thing they don’t know much about. You’re

using people’s hatred of a rule to be the driver of a change. Granted,

we’d rather positive sentiment drive adoption, but you have to play the

hand you get dealt.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=75

DISCOVERING COMPROMISE 76

16.2 Discovering Compromise

Using compromise to sell your tool or technique requires you to find

a rule that is ripe for compromise. Basically this will be a rule that

everyone hates, gripes about, or silently seethes about. Once you figure

out the rule to go after, you have to build your case for swapping your

tool with the rule.

Finding Ripe Rules

Ripe rules are often pretty obvious. Do all the developers make fun of

a certain policy? Do they complain every time they run into the rule?

Odds are you have a rule that can be compromised.

Other rules aren’t as obvious. Perhaps the incident that precipitated the

rule was so horrific that your band of developers are cowed into sub-

mission. Perhaps the rule doesn’t appear that painful because people

don’t know any better.

Here are some rules that are ripe for compromise:

• Absolute rules: Rules without exceptions tend to cause pain.

• Security rules: People often overreact to security incidents with

blanket rules that don’t make people any safer, just more con-

strained.

• Industry best practices: Sometimes people apply best practices

without considering whether they apply or are needed in their

organization.

• External imposed development rules: If someone other than the

developer team is dictating how applications are built, or commu-

nicate, odds are those rules can go.

• Rules without a because: Rules should have a clear reasons behind

them. Developers should be able to say, “We must do X because

Y.” If no one remembers the Y, that rule needs to be questioned.

Matching Technology to Rules

Once we have the rule we want to go after, we have to line it up to the

technology we want to use. In the previous case, it’s pretty straightfor-

ward. The stored procedure rule was designed to prevent SQL injection,

it caused the developers and DBAs a lot of work, and Hibernate reduced

the threat from SQL injection and reduced the amount of work. This

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=76

SKEPTICS THAT IT COUNTERS 77

one is pretty easy because the technologies are within the same area of

concern: database interaction.

Let’s take a slightly less obvious example. Suppose the boss has a rule

that she has to test all web application changes before they can be

pushed out. That’s going to cause problems. It’s not like the boss has

a tremendous amount of unscheduled time. It reduces the web appli-

cation team’s speed to update, and let’s not even consider what to do

when the boss is out of the office. In short, this rule is ripe for change.

So, the developers suggest Selenium, an HTML UI testing framework.

They can write and automate tests. They can let the boss write tests if

she wants, but they get to iterate faster, not to mention that the tests

are better than the boss just poking around. It’s not obvious because

user acceptance testing and automated testing are usually two different

things, but in this case one substitutes very well for the other.

16.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Time Crunched

Rules constrain. Time constrains. The Time Crunched (Chapter 9, The

Time Crunched, on page 41) are stressed from too many constraints.

Lifting rule-based constraints tends to free up time. That time comes

from both the time to implement the rules and the time it takes to verify

they are in compliance. Giving these folks back some time will score you

some points with this group.

The Boss

Let’s face it, when developers impose rules, they’re called “best prac-

tices,” and when the Boss (Chapter 10, The Boss, on page 44) does it,

they are called “policies.” That difference in language is very telling.

Bosses are the drivers of rules. They oversee a lot of people, and one-

size-fits-all rules are easier to keep track of. Trading them something

for rescinding a rule is the only way to get some of them to give them

up, because in these cases, rules are a solution to their problems. Only

by offering more solutions to their problems can you get them to part

with their rules.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=77

PITFALLS 78

16.4 Pitfalls

The big challenge here is that not every organization has rules that can

be perfectly replaced with a technology change. Although my previous

story was based on an actual occurrence, I haven’t seen too many of

them. These are rare but worth it when they come up.

The other challenge is creating a group of like-minded people with

enough power to overturn the rules. Typically the further away the pol-

icy enforcers are from your team, the harder the change is to make. If

rules are self-imposed by the development group, then it’s a snap. If

rules are dictated by human resources, good luck. In between there is

a continuum of difficulty levels that you’ll have to judge and counter to

be effective.

16.5 Wrapping Up

This technique isn’t as broadly applicable as others, but when it’s ap-

propriate, it can be very effective. Basically, don’t count on being able

to do it, but if the opportunity arises, go for it.

Putting It into Practice

• Poll your development team on the worst or most painful rules or

coding standards they have to deal with.

• Periodically ask “Do we still need this rule?” for every rule your

team has, even if the answer is obviously “yes.”

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=78

Chapter 17

Create Trust
Having the correct facts is a huge part of convincing people to come

over to your way of thinking. However, a large, often overlooked part

of the story is trustworthiness. If people don’t trust you, you have an

uphill battle justifying even the most obvious of tools and techniques.

Trust is a little harder than the other techniques in that there is no

formula or checklist for it. You can take a class to Gain Expertise, but

no class will get you to be trusted. In fact, gaining trust is often more

about what negative things you don’t do than what you do. But have

no fear, although there are no shortcuts, that doesn’t mean there aren’t

ways to get people to trust you.

FUD Factor

Shailaja’s company was in the market to invest in a new database

installation. Because of the high cost, she was looking at alternatives to

their current technology choices. After careful consideration, she decided

to change the entire company system over to MySQL. In her case, MySQL

was cheaper, was more supportable, and had more public information

available.

Shailaja came up against a lot of opposition. Some of it was irrational,

people clinging on to old technology, but some of it was reasonable:

change has cost; in this case, they may have been too high. Also, MySQL

had just had just passed to a new owner, and their future wasn’t written

in stone, even if all signs were good at the moment.

The discussion got heated, and at one point someone blurted out, “I’ve

heard that the company that owns our old system is going to discontinue

it next year.”

WHY DOES IT WORK? 80

FUD

FUD stands for Fear, Uncertainty, and Doubt. Though the phrase
was coined in the mid-1970s, the concept has been around
since the first caveman traded a rock to another one “in case
the mastodons come back.” More recently, it’s been marketers,
public relations flacks, and sales guys who use this on you. Basi-
cally, the idea is to tell you something that will make you afraid
of a rival’s tool, enough so that you invest with the FUDer.

At a smaller level, this happens in the workplace a lot. Develop-
ers with experience with proprietary tools spread rumors about
crazy license implications of open source tools. Open source
adherents spread horror stories of hidden code in proprietary
toolkits.

It’s ultimately self-defeating. At best it can win people some sort
of short-term gains, but in the long term, it is a road to nowhere.
Eventually people wise up to be bullied repeatedly, and some
people speak out. This spread of information inoculates the rest,
and the technique becomes ineffective.

People were really swayed by this. There was one problem with it. Shailaja

knew it wasn’t true. Flamebaiters had made that up as FUD in a forum

somewhere, and the company had been fighting it ever since.

She was in a quandary. She liked the effect that the FUD had on her

co-workers, but it was factually wrong. She knew that if people found out

the real story behind it, they would be pissed at trying to be bullied. But

the odds of them finding out were slim—her co-workers weren’t forum

people.

In the end, Shailaja corrected the FUD. MySQL was adopted anyway. Her

co-workers went with her recommendation partially because she had

always been aboveboard with them.

17.1 Why Does It Work?

Create Trust works because people do not like to be manipulated.

Tougher than that is that people don’t want to even feel like they’re

being manipulated. This is why the used-car salesman has such a

bad common stereotype in our culture. They’re seen as deceptive and

manipulative (even when they often aren’t).

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=80

DEVELOPING TRUST 81

Oftentimes when changing tools and technologies, you reach a point in

the decision process where all of the empirical stuff has been revealed,

choices have been weighed, and you still don’t have a complete victory

for one tool or another. When an organization reaches that point, often

they need a tiebreaker to make that decision. That tiebreaker is going

to come from something not quite so rational, not quite so empirical. It

is going to come from something personal like trust. Making sure that

you are trusted clearly has a lot of value when you get to that stage of

the decision-making process.

17.2 Developing Trust

As I said earlier, there are no magic bullets for creating trust. There

are things you can do to develop trust over the long term. I’d make the

argument that you should be doing these things anyway, but to each

their own.

Don’t Lie by Commission

Lies by commission are pretty obvious because they’re what we think

of normally when we think about lies. Saying something like “MYSQL

isn’t a relational database because it doesn’t handle foreign keys” is

a lie of commission. This is pretty straightforward. It’s possible that if

caught, you can claim it was a mistake. But go to that play too often,

and people will catch on to you.

I know our kindergarten teachers told us not to lie when we were young,

but I’m telling you not to do this now because we can still find excuses

to do it, especially when there is a kernel of truth to it like in the MYSQL

statement I just made. By default MySQL tables don’t do foreign keys,

but if you set the table type to InnoDB, it can. That’s where people get

into trouble. Subtle issues like this make it easy to justify lying. Just

don’t do it.

Don’t Lie by Omission

Lies of omission are a little bit trickier. These are cases where it’s not

necessarily that you didn’t say something that was untrue. It’s where

you failed to say something that was true and necessary to the conver-

sation. So, saying something like “MYSQL table names are case sen-

sitive” is a lie of omission because it’s leaving out the rejoinder “on

certain operating systems.” If you were talking about issues such as

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=81

DEVELOPING TRUST 82

converting old databases to MYSQL, this becomes very significant to

the discussion.

This isn’t as destructive as a lie of commission because people give the

benefit of the doubt and assume it is possible that this was a mistake

or oversight. This is what makes it so attractive. There’s high benefit

and little risk. But the more you do it, the more likely people will come

to one of two conclusions about you:

•You’re leaving out things intentionally and therefore untrustworthy.

•You’re mistaken a lot and therefore untrustworthy.

Neither outcome is good for your credibility.

Never, Ever, Ever Resort to FUD

FUD is by its very nature destructive in that you’re motivating people

through fear. Sooner or later people will get this. When they do, there

are personal repercussions. Getting caught spreading FUD, especially if

it is untrue, will ruin your reputation for months or years. Some people

will simply never trust you again.

Even if they don’t necessarily get that you are manipulating them, they

might think that you are “the boy who cries wolf.” If you predict doom

and gloom and massive catastrophe enough and it doesn’t happen, peo-

ple start to realize that they shouldn’t listen to things you say. That is

the opposite of being trustworthy.

This does beg a question, though. “How can I speak about competing

technologies if I can’t spread FUD? At some point, don’t I have to say

that the other tool or technique is worse?”

I would say, always speak from your own tool first. The other tool isn’t

worse; yours is better. When asked to address a competing tool’s short-

comings, you do have to say something, though. So, make sure that

you speak plainly, unemotionally, and unexaggerated. Also, if you can,

have industry sources for that criticism at the ready—that would help.

Admit Mistakes

Unlikely as it may seem, you will make mistakes from time to time. You

may even be completely wrong. You may be tempted to ignore it and

take attention away from it. This temptation will be even greater when

you are in the middle of trying to get something adopted.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=82

SKEPTICS THAT IT COUNTERS 83

Believe it or not, being wrong might be the best thing to happen to you.

It gives you the opportunity to inform people that you are wrong. Yep,

you read that right. See, most people aren’t used to people owning up to

their errors. Even if they are, most people have to be confronted to own

their mistakes. But the fact that you willingly admit mistakes allows

people to trust you. Because you tell it like it is, even when it is bad

for you.

All that being said, if your mistake is about the tool or technique, you

need to reevaluate. Admitting you’re wrong about something but con-

tinuing to insist that people do it is pure foolishness.

17.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Burned

The Burned (Chapter 8, The Burned, on page 38) by nature have both

experience with what you are talking about and trouble believing what

you are saying by virtue of the fact that it disagrees with their expe-

rience. Any perception of dishonestly will immediately cause them to

clam up. Don’t give them any excuses.

The Cynic

The Cynic (Chapter 7, The Cynic, on page 34) doubts everything people

say anyway. Giving them a reason to doubt you will only redouble their

efforts to expose you for the fraud or fool they already think you to be.

Don’t compound this problem by actually being a fraud.

The Irrational

The Irrational (Chapter 11, The Irrational, on page 47) are looking for

any excuse to shut down the change you are selling. You being a liar is

a pretty good one. They will ride any mistakes in honesty you make for

the rest of your working relationship. That’s not grief you want.

17.4 Pitfalls

Telling the truth has few pitfalls. But there is one big one: in your effort

to be seen as trustworthy, you point out and emphasize the flaws in

your solution. You want to acknowledge that your tools have flaws,

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=83

WRAPPING UP 84

downsides, or compromises, but advertising them is another matter

altogether.

Sadly, there is little to be done about this. Because nothing is perfect,

you will occasionally be put into the position of saying something bad

about the tool or technique you are advocating. Own up to it, acknowl-

edge the weakness, and spell out why you don’t think that the weakness

outweighs all your solution’s strengths.

17.5 Wrapping Up

It seems pretty silly to have to encourage honesty. However, the temp-

tations to lie are pretty big, especially in the short term. In the long

term, though, the costs are too high. Tell the truth, ride out short-term

issues, and play the long game.

Putting It Into Practice

Here are a few suggestions to try to improve your trustworthiness:

• Create in your mind a scenario where a competing technology

makes more sense than yours.

• Investigate the weaknesses of your own solution. Make sure you

know where it falls down.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=84

Chapter 18

Get Publicity
We all know that if a tree falls in the woods and nobody is there, it

doesn’t matter if it makes a sound, because nobody hears it. Sure, get-

ting publicity is about making sure that people see your tool or tech-

nique, but it’s also more than just getting noticed; it’s about validation.

It’s about getting outsiders—maybe experts, maybe peers—to choose

your tool and technology. Sometimes that can have more influence on

your co-workers than anything you have to say.

Global Bug Tracker

Jim was tired of the old way he tracked bugs for his company’s project. It

was just too clunky. Users got some sort of error. They wrote to tech

support, but they didn’t always include the error messages. When they

did, it usually wasn’t enough to track down the problem.

Jim added some global error handling to his applications and used this

feature to email the errors along with application state and stack traces.

He wrote this into a new bug-tracking system that captured the

information massaged for the company’s environment. In short, he wrote

a decent custom bug tracker.

Predictably (you’ve been reading this book for a while now), his

teammates didn’t want to use it. Despite that this system was easier to

use, faster, more searchable, and so on, they would not use it.

Not wanting his tree to fall unheard in the proverbial forest, Jim released

his code as an open source project. Other people working with similar

systems liked it. They started using it. Some even contributed to it. In a

few months, Jim had a small but global community of users.

By that time, word had gotten back to Jim’s boss that he had a global

community of developers using his tool. He started to ask how it

happened and why it wasn’t being used internally. When management

finally wrapped their minds around it, they started to mandate its use.

WHY DOES IT WORK? 86

18.1 Why Does It Work?

There’s a meme that come from the Bible, “You can never be a prophet

in your hometown.” Basically, the gist of it is that when you have an

important but perhaps controversial truth, the people who remember

you were that kid who dipped Missy Funderman’s pigtail in an inkwell

won’t listen. So, to be believed, respected, and followed, you have to

preach outside of where you grew up.

The same concept holds true at work. You co-workers probably still

talk about that time, two weeks in on the job, when you pushed a bug

through to production and brought the whole system down. Every time

you suggest something and someone wants to block it, they can bring

that up and take you down a few pegs.

In any case, familiarity breeds contempt, and people often refuse to

accept that things that come from their own organization or its people

might be great. Getting publicity overcomes this by getting external val-

idation of your tool or technology. You’re biased, you wrote or packaged

the tool, and you can’t be trusted. But these strangers over here...they

wouldn’t lie to us.

I hope you picked up from my tone there that I think it is silly that we

have to resort to this from time to time. We get hired because we are

competent, and we have knowledge in our bailiwick. We shouldn’t have

to do this. However, that doesn’t change that you do have to resort to

this from time to time.

18.2 Seeking the Limelight

It’s not like you can hire a publicist to get your message out there. You

have to get recognition within technical communities. There are a few

tried-and-true ways to do this.

Open Source Your Work

Open sourcing your work is a great way to get some recognition. It

allows you to get noticed by people who are trying to solve similar prob-

lems you are trying to solve. Large open source repositories like Source-

Forge or GitHub make this easy and help you get noticed by allowing

you to categorize and document your project. A side benefit is that you

might even get people to contribute and make your solution better.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=86

SEEKING THE LIMELIGHT 87

You Might Want to Check...

In this chapter, I recommend open sourcing software you’re
having trouble getting internal acceptance for. Depending on
your industry and employer, though, you might need to secure
their permission before doing so. Many employers have rules
about the intellectual property that employees create during
business hours.

However, don’t let this discourage you from asking. I’ve worked
at both a major research institute and a large software com-
pany. Both are stereotypically big protectors of intellectual
property. Both let me open source things. However, your
mileage may vary, so check your employee policy manual first
before you do this.

However, before you rush out and do this, there are some things to

consider. Managing an open source project is a lot of work even if no one

uses it. Documentation, code readability, portable builds—these are all

things you must have in place before you go open source. If people start

participating, then you have to manage contributions, forums, and bug

reports.

Also, there is a danger that you are imitating an existing open source

project and will not get any traction with yours. You can mitigate this

slightly by doing a little research ahead of time to see what else is out

there. You can also ask the technical communities you participate in if

anyone has any need for it.

I don’t say all of these things to directly discourage you from open

sourcing your project, but you shouldn’t just knee-jerk do it. If your

project is a good case for an open source project, you can get public-

ity by releasing it. If it’s not, you’ll just waste your time creating yet

another abandoned open source project.

Participate in Contests

Contests are usually held by vendors, communities, or publications

that participate in a technological niche. They tend to be designed to be

a win-win for themselves and participants. They get demos, samples,

white paper fodder, and use cases, while participants get prizes and

publicity.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=87

SEEKING THE LIMELIGHT 88

You usually have to jump through some hoops, use particular features,

or demonstrate certain problems, but as long as your tool or technique

can do that, you should feel free to use it to work on your contest entry.

Then whenever you discuss your entry, include mention of your tool or

technique.

Obviously, the risk here is that you will do work but not get recognition.

That’s going to depend on the size of the contest pool and other factors.

Most contests try to spread out the recognition, but if you have 1,000

competitors, you’re in for a fight. But the greater the competition, the

greater the glory, so choose accordingly.

Put Your Work Up for Awards

Awards are given by the same groups to run contests. The difference

here is that they accept preexisting work. So, there is little risk in doing

a whole bunch of work for nothing—the work has already been done.

However, most awards have agendas. The sponsoring group has some-

thing that they want to promote, and they want examples of it. They

may make that criteria public, or they might not. So, your control over

success is not as great as when you enter a contest. However, there’s

little harm in trying, so I say take a swing.

Get Your Project Reviewed

You’re not limited to just going outside of your organization to get pub-

licity. Get some internal notice by using formal or informal code or

project reviews. Reviews usually require some summary information

that allows you to tell the story of how your tool of choice benefitted

you. Then you show it as part of your code base or project plan. This

gets your advancement out but under your terms.

The key here, though, is to make it a synchronous meeting. Face to

face, remote meetings, or some sort of conference calls are the way to

go. If you make it asynchronous, like via email or a wiki, you remove

your ability to guide the story as well as you can with a meeting, where

everyone is forced to focus on the same thing at the same time. And let’s

face it, if everyone paid attention to every email or wiki, you wouldn’t

have to be figuring out how to get attention, because everyone would

already know about what you’ve been doing.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=88

SKEPTICS THAT IT COUNTERS 89

18.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Uninformed

Getting any sort of attention is obviously a way to turn the Uninformed

into the informed. You might just have to make sure that they actually

pay attention to where you are getting your publicity, but an email

announcing a contest run or award victory seems to be a reasonable

way to get on their radar.

The Cynic

Outside validation can definitely take the wind out of the Cynic’s sails.

Someone else values and respects your work. However, the Cynic may

respond by simply devaluing the accomplishment: “Everyone knows

that contest is crap.” There’s not much you can do to prevent it, but

you might need to be prepared to combat that.

The Burned

This tactic will result either in other people valuing your tool or tech-

nique or in other people having success with your tool or technology.

Either way, it can act as a powerful counterbalance to the experience

the Burned have.

The Boss

As I have said, these tools or technologies often are outside the area of

concern of a Boss figure. They cannot always wrap their minds around

the technological advantages to your contributions. An “award-winning

solution,” on the other hand, is easy to understand.

18.4 Pitfalls

There are a few practical considerations here. Obviously, if the tool or

technique you’re trying to sell is an external one, you can’t use this.

If you are pushing Subversion, you can’t enter that in any contests

or release it as open source. So, only your own developed tools and

techniques are eligible.

Your company may not like publicity for whatever reason and therefore

will not allow you share company-developed systems with outsiders.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=89

WRAPPING UP 90

Additionally, there is luck involved: just because you release as open

source or put your app into consideration doesn’t mean you’ll actually

get the publicity. However, when you do get it, publicity is really effec-

tive. So, it comes down to a gamble—is the time you put in worth the

possible reward? You have to answer that for yourself.

18.5 Wrapping Up

Getting publicity can be very effective at influencing people, especially

the Boss. It overcomes a bias against internally discovered solutions.

It’s not appropriate in every case, though, because you have to own the

solution to promote it.

Putting It into Practice

Here are a few suggestions to try to research publicity options:

• Figure out whether your tool has any competing open source

solutions.

• Determine your employer’s policy on open sourcing your work.

• Create a Google Alert for “contest” and your technology area.

• Do the same for “award” and your technology area.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=90

Chapter 19

Focus on Synergy
Although we may live and breathe technology all day, unless you are

employed by a technical firm, technology doesn’t set the direction for

your company. Your company works within an industry. That indus-

try has regulations or specific concerns. On top of the industry-specific

concerns, there are universal concerns such as security, waste, or envi-

ronmentalism that all companies are grappling with. Those regulations

and concerns sometimes require technology to implement them. Often

they have the force of law or industry sanction behind them. If you

can tie your tool or technique into implementing one of these concerns,

then you get a powerful driving force behind you.

Spring Forward

Word came down from on high that because of the latest terrorist plots,

sales of all components in every product in Argon Electronic’s industry

now had to be meticulously logged to a separate location in a specific

format. The inventory system, written in Java, was not equipped to deal

with it.

Markos had been trying to push Spring. It would solve many problems

around the office. He was primarily looking at it to manage dependency

injection. To date, he had met with little success.

However, Spring AOP allows for aspect-oriented programming, which lets

you to wrap objects and intercept method calls to run code before and after

without changing the underlying object. It’s useful for managing cross-

cutting concerns, or collections of code that need to be reused throughout

all areas of an application. This wasn’t just a good fit—logging was

the textbook example of a crosscutting concern for use with Spring AOP.

Management was expecting a large and long rewrite. Markos’s

proposal showed that by using Spring AOP and some new logging classes,

WHY DOES IT WORK? 92

it could be done in a fraction of the time. Markos got the go-ahead

to use Spring in the project and got Spring in the door at the company.

19.1 Why Does It Work?

Despite what we in technology may like to believe, technology doesn’t

drive business; business drives business. Business needs will always

trump technology concerns. By aligning your tool or technology to these

business needs, you create a stronger argument for it. Additionally, you

typically gain the notice/concern/protection of management by doing

this. This gives you added ability and incentive to get your co-workers

to adopt your methods.

19.2 Developing Synergy

There isn’t a lot you can do to manufacture this. Either opportunities

exist or they don’t. You can be prepared for them, though.

First, most of these sorts of regulation take a long time to come to

fruition. They rarely happen overnight. Keeping an eye out for upcom-

ing opportunities is as easy as subscribing to a few industry-specific

sites.

Second, try to fit the tool or technology you are trying to promote

against larger concerns. Does it have security implications? Are they

serious enough to use security as your lever?

Finally, listen to management. What are they saying their concerns are

for the next year? Are you going through a financial crunch? Could your

technique free up some waste spending? Are you looking to expand

rapidly? Can your technique make scaling easier?

19.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Time Crunched

Problems that you can solve with synergy are usually unavoidable,

which means that the whole point of these issues is that they have to

be handled. You can’t ignore policy changes set by management or reg-

ulation, which means that time will be allocated regardless of people’s

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=92

PITFALLS 93

objections. This is where you can gain ground with the Time Crunched.

They’ve already been forced to spend time; that fight is already done.

Now you are giving them a solution that might save them some of that

time in the long run. You won’t find a better time to try to get them on

your side.

The Boss

It goes without saying that this tactic is designed with the Boss in mind.

This is a prime example of making your tool a solution to their prob-

lems. The challenge here is to make sure that you frame things properly

to ensure that they can see your tool or technique as the solution to

their problem. Remember to focus on the business justifications such

as cost, time, compliance, and work, as opposed to technical ones such

as performance, encapsulation, and so on.

19.4 Pitfalls

This is one of those situational tactics. You have no control over

whether this option becomes available to you. You can’t orchestrate

a change in regulation policy to force this to be an option. You need to

have the right circumstances to have this happen.

Even if you get the opportunity, people may see this play as cynical or

opportunistic and resist out of spite. Some of that is just human nature.

However, you can mitigate this. There is the cliche “If all you have is

a hammer, everything starts to look like a nail.” Don’t fall into that

trap. Make sure that you really have a good match between business

concern and technique. Make sure that you’re not trying to shoehorn

your solution somewhere you have to stretch to get it to fit. Reviewing

Chapter 3, Solve the Right Problem, on page 21 can help you out here.

19.5 Wrapping Up

This can be a powerful technique, but only if the opportunity presents

itself. The key here to keep in mind that your company exists for a

reason. That reason is usually not technology. If you can align your

tools around that reason, then not only are you going to get help from

management to implement them, but you’ll be serving the best interests

of the company in a direct way.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=93

WRAPPING UP 94

Putting It into Practice

• Compile a list of major regulations in your industry. See whether

any can be served with your technique.

• Determine whether your technique has implications for any of the

standard hot-button topics:

– Security

– Financial waste

– Environment

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=94

Chapter 20

Build a Bridge
Sometimes a particular tool or technology is just too different from what

people are used to using. The barriers to fully adopting it are just too

big. People have a limit to how much change they are willing to put up

with in one shot. Perhaps your tool or technique is a new language in a

different software platform. That’s two jumps, not just one. You cannot

get there in one step from where your organization currently is. In these

cases, I suggest using a bridge.

Bridges are tools or techniques that aren’t the ultimate solution you are

looking for, but they also are not the status quo; they are an intermedi-

ate step between the two. The idea here is to use it for a while and then,

when people are comfortable, move them on to the ultimate solution.

In some cases, you can find some sort of intermediate solution already

available. This will be the “x for y” solution as in “Rails for .NET” or

“code-behind for Java.” They exist, and if you can take advantage of

them, do so; they will save you a great deal of time. However, many

times you have to be prepared to roll your own and build your own

solution.

It’s Not a Framework

I had just discovered a framework for ColdFusion named Model-Glue 2. It

is a pretty typical MVC framework that integrated with a couple other

buzzword frameworks (dependency injection and ORM). Through all of

this it provided scaffolding so that from a database you could generate an

application. It was pretty standard stuff across all languages and

programming shops.

WHY DOES IT WORK? 96

However, my co-workers were not too keen to jump to it. There were a few

stumbling blocks:

• Our organization had a policy that all SQL had to be wrapped into

stored procedures; this made adopting an ORM solution unlikely.

• The framework was an active generator, which resulted in a

performance hit. This was merely perception, because there was a

production flag in the configuration that improved performance.

However, the default install took two seconds to display a “Hello

World,” which was a tough perception to overcome.

• There was a general bias against frameworks in general because of a

bad experience with another one.

• MVC wasn’t a generally liked pattern within the organization.

So, I focused on the part of Model-Glue I liked best: scaffolding. I started

writing a code generator to do this for me. It grew over a few months, but

here’s the general idea of how it worked:

• It analyzed the database and generated CRUD stored procedures for

each table.

• It then inspected the stored procedures to generate model

components (analogous to classes in Java).

• It then generated UIs based on the stored procedures.

• It wired all the various CRUD views through a single controller per

table. It wasn’t true MVC, but it was closer than it was before.

• It did it all passively, so the actual application didn’t have any

creation overhead.

This had a few advantages. It didn’t violate the constraint to only work in

stored procedures. Since the code was passively generated, there was no

perception of a performance problem. Also, I never called it a

“framework.” Instead, I used the term “code generator,” which caused

some skeptics to give it a fair shot.

Months later, every coding group in the organization had used my code

generator on at least one new project. Even more impressive, some groups

were even fooling around with Model-Glue, because the ground had been

softened up a bit for it.

20.1 Why Does It Work?

It works because change is hard, and big change is harder than little

change. Multiple little changes are often easier to achieve than one big

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=96

DEVELOPING A BRIDGE 97

massive change. However, many little changes don’t necessarily take

longer than one big change. Big changes usually require pulling in more

people. Big changes require getting clearance from higher and higher

up the org chart. More people and more management add extra time,

usually more than would be required of the same amount of change

spread out over many, smaller changes.

It also works because you know your group. You know the gripes that

people in your organization make, and you know what problems are the

most painful—those problems are the ones you make sure you address

in your bridge. In the case of the previous story, having to wire up

all the database connection code to do CRUD was the pain point. Our

bridge solved that problem and didn’t require too much other effort by

forcing other changes. In other words, we provided maximum benefit

and added minimal cost.

20.2 Developing a Bridge

Developing a bridge is pretty straightforward. You have to look at your

solution and your organization and figure out the pain points. Then

either create or use a bridge that addresses them.

Survey the Situation

You have to take a look at your environment and your solution and

figure out what the main points of contention between the two are. You

then have to figure out what pieces of your solution are most going to

resonate with your organization.

Suppose you are trying to introduce test-driven development (TTD) to

a group that has never even done unit testing before. Unless highly

motivated, your group is never going to jump to TTD—it’s just too far.

However, if your organization has problems with bugs fixes frequently

conflicting with each other, you have a good case for unit testing on bug

fixes. Looking at this, you can conclude that instituting unit tests on

bug fixes, but not forcing TTD, is the way to go, because unit testing

will fix a pain point in your environment without forcing the overhead

of TTD. Further down the road, you can try TTD again, and the group

will be closer to accepting it before they started unit testing.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=97

SKEPTICS THAT IT COUNTERS 98

Find a Bridge

When a solution becomes popular in one platform, it frequently gets

ported to others. Look up Hibernate in .NET or Rails for Java or Spring

for Python. Many bridges are out there and have already been written.

In these cases, you can get away with just pulling one of those existing

solutions in. It won’t be custom molded to your organization, but you

might not need it to be.

Build the Bridge

In the story example in this chapter, I didn’t find any solution that

could be a bridge between my desired solution and the status quo, so

I built it myself. The idea here is that you can perfectly mold it to your

environment. If you have conventions or best practices, you can make

sure that your solution follows them. If all of your applications have

boilerplate code, then include that. Basically provide as much advan-

tage as you can squeeze into your solution, since you are designing and

developing it yourself. The only downside is that it can be a great deal

of work.

20.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Herd

The Herd need to be led. Building a bridge makes it easier to get to

where you are leading. So, it’s not a stretch to assume that this method

is really effective on the Herd.

The Cynic

The Cynic (Chapter 7, The Cynic, on page 34) will disagree with you on

points. That’s a given. But if you are custom creating a bridge solution,

instead of fighting with them, you can just give in. They don’t like this

aspect of it, change it. They have a problem with being forced to do

something else; make it optional. Granted, you won’t be able to change

everything they criticize, but you’ll be able to give them a good deal of it.

The Burned

The Burned (Chapter 8, The Burned, on page 38), like the Cynic, will

benefit from the fact that you can customize. Whatever their past expe-

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=98

PITFALLS 99

rience, you can customize around it. If a particular convention or pat-

tern caused them trouble in the past, don’t use it. Building in this extra

custom padding around their pain points can make it much easier to

get them on board.

The Time Crunched

The Time Crunched’s main pushback is that they would love to try

something better but can’t afford the time. So, you meet them part or

most of the way there. You formulate a bridged solution that doesn’t

require that they spend a lot of time learning something new, but they

get a large benefit out of it.

20.4 Pitfalls

Even when you find and repurpose someone else’s solution, building a

bridge is a great deal of work. If you have to build your own solution,

it’s an order of magnitude more work. It can be daunting when you con-

sider that it doesn’t lead you to your desired destination but merely an

intermediate stop along the way. But that intermediate step is almost

always better than the status quo.

However, this does lead to the possibility that the bridge gets accepted,

and you never move past it. This isn’t always a bad thing. You just

have to be flexible enough to accept that. However, it means that the

temporary solution you developed now has to be maintained as its own

entity going forward. If you aren’t prepared for it, it’s annoying when it

happens, but I have to refer to the previous paragraph—it’s better than

what you have now.

20.5 Wrapping Up

I won’t lie to you, bridge building can be a lot of work. But because you

can custom tailor a bridged solution, it has a high probability of being

effective as an intermediate step. You’ll get people to move.

In some ways, it’s stating the obvious, like telling you, “If you work

hard, diet, and exercise, you too can lose weight.” But it happens to

be true. If you’re not getting results with other methods, this is one to

consider.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=99

WRAPPING UP 100

Putting It into Practice

Practicing bridge building is a bit daunting, but you can do some re-

search to find something that exists already to act as a bridge, or you

can build small bridges on your own.

• Look at your targeted solution, and see whether there are any

clones that exist in the platform your team uses.

• Spend some time formulating a plan for writing a bridge solution:

– Figure out what rules are sacrosanct in your group and need

to be worked around.

– Determine what parts of your solution will be the biggest win-

ners.

– Estimate how much work it would be.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=100

Chapter 21

Create Something Compelling
Let’s face it. If you could force people to use your tool or technique,

you probably would, and you wouldn’t need this book. But there is an

indirect way of forcing people into using what you want them to use.

You can build an internal solution requiring your tool or technique. If

that internal solution is compelling enough, people will be forced to use

the required bits.

Creating something compelling shares a lot with some of the other tools

and techniques and in a way is composed of several of them. By cre-

ating something very useful, you Demonstrate the Technique. You’ll

probably have to Gain Expertise to accomplish it. You also Focus on

Synergy, using your tool or technique to solve a company problem. All

that is true, but this one does sit apart from the others because it goes

beyond them in significant ways. It doesn’t just show expertise and

demonstration; it creates a real direct incentive for using the tool. It

also is different from synergy because that requires business concerns

to drive and management force to implement. This is much softer and

gentler. People aren’t forced externally; they’re compelled internally.

Eclipse of the Art

Rupesh wanted to get his web developing co-workers onto Eclipse. He had

a few reasons for this:

• He hated the proprietary tools they were using.

• He genuinely believed that Eclipse was a better tool set.

• He wanted to make is easier to push source control, build scripts,

and continuous integration further down the line.

WHY DOES IT WORK? 102

Every web project in the organization had one pain point: using company

web templates for projects. It wasn’t terribly hard, but it was very

time-consuming. It required developers to add project branding to dozens

of artwork images before any work could be done. The really annoying

part was the work was rote and frequently had to be redone by hand if

either the project’s branding or the company’s branding changed

mid-project.

Rupesh had a little experience using Java and Java Image Management

Interface (JIMI). After some trial and error, he made a program that could

programmatically combine the branding in the images. Instead of just

releasing it, he integrated it into an Eclipse plug-in. What used to take

hours at the beginning of a project now took a few seconds.

Rupesh showed it off to other developers on the team. People were wowed.

Even a few heretofore Eclipse haters made the jump, just to not have to

manually work with all those images.

Now Rupesh could focus on the rest of the changes he wanted to push.

Even better, he hadn’t burned a lot of political capital on getting Eclipse

accepted. Now he could spend that capital on getting other things

mandated because he didn’t have to get management to force this one.

21.1 Why Does It Work?

It works because you use people’s own desires against them. Instead

of being forced, nagged, or otherwise sold, a person takes up your

tool or technique because it is the cost of getting something else that

they really want. People are much more accepting of something they’ve

resisted when they are the ones to choose to stop resisting, rather than

having someone else force them into using it.

21.2 Creating That Something

The first step to creating something compelling is to look at your group’s

pain points. Every team has them. In the movie Office Space, one of

the small repeating joke is the TPS report. It’s never explained. All you

know is that the character forgot to use the new cover sheet. But every

single person in the company comments that he messed it up. No one

seems to care about the content, simply that he didn’t “Do it right.”

More importantly, that’s a horrible process if it’s that easy to screw up.

Think about your TPS report. Maybe it’s documentation, maybe it’s

expense reports, and it could even be moves to production. It’s some-

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=102

SKEPTICS THAT IT COUNTERS 103

thing that takes up your time, is somehow necessary, but isn’t part of

your core work. Whatever it is, that is what you need to target with your

solution.

Your next step is fixing that problem. Getting the solution right isn’t

guaranteed. Oftentimes, the reason the pain points remain is that there

is no good way of automating or otherwise getting around them. How-

ever, a good deal of the time, the main obstacle is that no one has looked

at the problem in a while. Many times, even as little as a year can yield

new tools and technologies that can allow you to overcome the problem.

Once you have your tool written and ready to go, you have to show it

off to your co-workers. Now, here comes a tough question, when do you

tell them about the requirement? You have to be honest, but you don’t

have to lead with it. There’s a big difference between “I have this great

thing...just so you know, you have to use x to take advantage of it.” and

“Before I get started, you should know you have to....” Putting your best

foot forward doesn’t make you dishonest, and creating a disclaimer,

when you don’t need one, doesn’t make you somehow more honest.

21.3 Skeptics That It Counters

This technique tends to be very effective against these skeptics.

The Uninformed

This can be a fast track for getting to the Uniformed. They don’t know

about the target tool or technique before your project. They learn about

it over the course of using your project. Assuming you do things right,

they’ll have a favorable impression of both.

The Herd

Again, like the Uninformed, this can be a quick technique for getting

the Herd on board. They are already forced to deal with the painful

process that your demonstration project addresses. This gives them a

choice: deal with the painful status quo, or use your easier painless

options. You don’t even have to lead them; it ends up being the path of

least resistance.

The Time Crunched

Because this technique attacks a pain point, it is particularly effective

on the Time Crunched. Not all pain points are time constraints, but

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=103

PITFALLS 104

most are. The others tend to be financial constraints, and if you remove

them, you can use that money to buy more time.

The Cynic

The Cynic types are where they are because they bet against success.

Using your tool or technique in a tool that demonstrably fixes a pain

point takes the wind out of their sails. That doesn’t stop them from

disagreeing that you adequately fixed the pain point, but it decreases

their ability to convince other people of their position.

The Burned

Like the Cynic, you are proving the Burned wrong. The tool or technique

can be used successfully. As always, you have to make sure you aren’t

attacking the Burned, but you have proof that they can get back up on

the horse.

21.4 Pitfalls

First, this technique is predicated on a bunch of ifs. If you can find

a pain point, if you can use your solution, if you can make it com-

pelling, and if you can convince people to use it, this can be successful.

So, some of this, like other techniques, depends on having the cor-

rect opportunities. But you need to be looking for them. Opportunities

rarely gift wrap themselves.

Just because you tie your solution to something doesn’t mean a co-

worker can’t untie that knot. In the previous Eclipse story, it’s just a

bunch of Java code thrown into an Eclipse plug-in. You don’t have to

be a genius to ask whether it could be pulled out. If that happens, you

have cool solution that doesn’t help you with your goal.

Also just because you get people to use your tool or technique, this

doesn’t promise general usage. Again, looking at the story, there’s noth-

ing preventing Rupesh’s co-workers from firing up Eclipse just to do the

pain point step and going back to some other IDE to do the rest of their

work. In other words, this method might get your foot in the door, but

it’s not going to get the whole job done by itself.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=104

WRAPPING UP 105

21.5 Wrapping Up

So, this solution isn’t going to get the whole job done for you, but it has

a few major pluses. People don’t resent the tool or technique, because

adopting a compelling tool feels better than being mandated, directed,

or commanded. In the process, you fix a pain point for your group,

which isn’t a bad thing. And if you can get the opportunities to further

demonstrate that this is a viable technique, it can be really effective.

Putting It into Practice

Doing a full-blown solution for a group-wide pain point from nothing

may be a little daunting. There are a few things you can do to make it

a little less intimidating:

• Figure out your group’s pain points. (You should do that anyway.)

• See whether any of them could be solved with your tool or

technique.

• Spec out a solution, and see whether it is worth the work.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=105

Part IV

Strategy

Chapter 22

Simple, Not Easy
Over the past chapters, you have amassed a collection of skeptic pat-

terns to identify and techniques for combating them. Which technique

to use with which skeptic is summed up in Figure 22.1, on the following

page.

Together the skeptic and technique pairings form a great set of tactics

for you to use. But that’s not enough; you have to apply them effec-

tively. For that, we need a strategy.

My strategy for winning this fight is extremely simple. But simple does

not mean easy. Getting a boulder to the top of a mountain is pretty

simple: just roll the boulder uphill until you reach the top. But that is

by no means an easy task.

Keeping the “simple but not easy” mantra in mind, here’s the grand

strategy:

• Ignore the Hostile

• Target the Willing

• Harness the Converted

• Convince Management

That’s it? That’s it. You basically do your best to ignore those who are

downright antagonistic, not wasting any effort on them. Then you apply

your tactics to the most willing people you have access to. Then you

motivate your converts to participate in a tactic or two. They become

advocates, and you continue to the next most easy group and repeat.

You do this until you convert everyone you can.

CHAPTER 22. SIMPLE, NOT EASY 108

U
n
in

fo
rm

ed
H
er

d

C
yn

ic

T
im

e
C
ru

n
ch

ed

B
os

s

Ir
ra

ti
on

al

Gain Expertise

Deliver Your Message

Demonstrate Your Technique

Create Trust

Propose Compromise

Get Publicity

Focus on Synergy

Build a Bridge

Create Something Compelling

B
u
rn

ed

Figure 22.1: The skeptic/technique matrix

If you convert everyone, congratulations—you’re done for now. If not,

you have a decision to make. Do you have enough people on board

to make the tool or technique worth it? If so, you’re done as well. If

not, you finish up by getting management on board. If all goes well,

management then makes your tool or technique the mandated solution.

Simple, right? But have I told you yet that it won’t be easy?

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=108

Chapter 23

Ignore the Irrational
This strategy might seem a little childish at first. Not including people,

even the Irrational, in your efforts might seem a bit passive aggressive.

You have to eventually deal with these people, right?

No.

Oh, I’m sorry, you wanted a deeper answer?

OK, the whole point of the Irrational skeptic is that they aren’t resist-

ing for valid rational reasons. Their motives are mysterious and often

unknowable. Because of this, they require an inordinate amount of

effort to first discern their true motive and then to overcome it. Typ-

ically, this is going to be some sort of personalized solution. Just show-

ing them, for example, that you’re an expert in the tool will not be

enough. You’ll have to demonstrate that whatever irrational, maybe

even impossible problem they have is not relevant to the professional

development tool you are trying to introduce.

It’s also possible that once you figure it out, you won’t be able to over-

come their motive. Maybe they have a personal beef with you or your

boss or your department. In any case, they’re not going to budge. Get-

ting them to relent on these types of issues may take months or even

years.

So, all of this adds up to a high cost, low return for our effort. Why

bother? There are other skeptics in the sea. We don’t have to waste our

effort on these guys.

WHAT EXACTLY DOES THIS MEAN? 110

23.1 What Exactly Does This Mean?

So, do you need to perform some sort of ritualistic shunning process

for these people? No. What I specifically mean is don’t try to sell them.

Don’t actively pursue them. Don’t seek them out.

However, that doesn’t mean don’t talk to them. If you’re in the midst of

some sort of tactic-driven event, such as a team meeting where you are

discussing a development tool and they engage, go ahead—engage right

back. Give them information while still using your tactics like expertise

and delivery.

While doing all this, make sure they don’t manipulate you by stealing

all of your attention. Answer them, and move on. If they are trying to

monopolize, gently point out that there are others present, and you

would gladly meet with them later to discuss.

23.2 Why Is This Challenging?

Conflict, disagreements, and other arguments can be incredibly pro-

ductive. However, they can raise hostility or anger. The longer a con-

flict goes on without any weakening of resolve on either party’s part,

the more likely anger and hostility will grow. With the Irrational, this

means that anger and hostility are almost certain.

Prolonged hostility will cause us to view our opponent as an enemy.

Enemies are to be overcome; that is our instinct. We overcome enemies

by engaging them. Engaging the Irrational is the opposite of what we

want to be doing.

The key here is to try to think of the Irrational as an obstacle and not

an enemy. Enemies are defeated; obstacles are overcome. Overcoming

an obstacle can be as easy as walking around it.

So, engaging the Irrational is a waste of time and energy. But they

can argue with you enough to make you want to defeat them as an

enemy, which requires engagement. Therefore, the key is to avoid them

as one would a pit of spikes, instead of seeking to beat them in a bare-

knuckled fight to the death. That sounds a lot like “Ignoring the Irra-

tional,” which is what I said in the first place, but you wanted a deeper

answer.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=110

Chapter 24

Target the Willing
You’ve put a pin in the Irrational for now, and you want to start con-

verting people. Who do you start with? Well, start with the easiest to

convert, that’s who.

You might think it was the other way—convert the hardest, and then

the rest will fall in line. But in practice that doesn’t work. It’s too easy to

claim that no one else is doing it, so why should I, in these situations.

However, as we will see in Chapter 25, Harness the Converted, on

page 115, the converted can be powerful allies in this effort. The more

converted you have, the better off you are. So, this is about quantity

and not quality. It doesn’t matter that Bob is a better programmer than

Ed and Steve combined; you’re better off focusing on Ed and Steve if

they are easier to convert and then enlisting their aid in bringing Bob

into the fold.

24.1 Order of Difficulty

In my experience, you can break the groups of skeptics into three

groups of difficulty: easy, hard, and harder. Why no medium? Well,

in my experience, there is a big delta between the first group and the

second group. When you are finished with the first group, be prepared

for a much harder time when you move to the second. It’s important

that you understand this, because taking on the second group can be

a real morale killer for you if you are unprepared for the difference in

difficulty.

EASY 112

24.2 Easy

Far be it for me to call anyone easy. This group of developers isn’t easy

in the sense that they are pushovers. They’re easy in the sense that you

know what you have to do. You inform or lead depending on the group.

You’re taking a stationary rock and starting it rolling.

Uninformed

The Uninformed are your first stop. You completely control their first

exposure to a technology. Everything they think about it will be com-

pared and contrasted to what you told them about it. That’s a huge

advantage for you.

Think about every email forward you’ve gotten from a relative warn-

ing you about an urban legend. Have you ever tried to refute them?

It’s almost impossible. Even with great skeptical sites like snopes.com,

people don’t listen. Why? It’s because you’re showing up after the item

has been absorbed and therefore are refuting what they now believe.

It’s much easier to shape an opinion than it is to change one.

Now, I’m not suggesting everyone is as willing to believe something as

your email-forwarding relatives. But the first impression effect is very

real and very powerful. So, use it to your advantage—be the first to

define your tool or technique.

Herd

The Herd are for the most part looking for leadership. The cost of getting

them on board is providing that leadership. Now, don’t think that it’s

as easy as “Use this.”

True leadership in this case will mean providing ongoing support and

guidance to those you seek to lead. You’ll have to help them out when

they hit a pain point. You need to provide them with arguments for why

they are using your tools from time to time.

24.3 Hard

If converting the first group is like starting a stationary object rolling,

then this group is like reversing the direction of an already rolling

object. It much harder. You have to overcome the inertia of these guys,

who are not neutral on what you’re pitching; they’re opposed.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=112

HARD 113

Add to it that there isn’t one thing that will convert them. One demon-

stration, shared project, or group success will not convince them. It

takes combining multiple successes to do so. And that combination is

unique per person. So, the difficulty factor is higher. But they can be

convinced.

Burned

Of this group, the Burned are, by a slight margin, the easiest. At one

point, they thought your tool or technique was a good idea, even if

they don’t now. This is a good thing; they have the capacity to accept

your tool or technique. You just have to reignite it. However, it might

not feel like they are the easiest, because the Burned can be the most

passionate of skeptics. They can be violently disagreeing with you until

a moment before they decide to give your tool a try.

Time Crunched

The only thing in your favor with the Time Crunched is that their oppo-

sition to your tool or technique is not specific. They don’t oppose your

tool; they oppose a change to their current way of doing so—they cannot

tolerate the time cost of a change.

The Time Crunched won’t give you a shot unless you can prove that

your tool will ultimately save them time. So, the point of hitting them

up later has to do with providing proof. By having the Herd, the Unin-

formed, and the Burned on board already, you have opportunities to

provide third-party proof that you can save them time. It’s not definitely

going to bring them in, but it does make it more likely.

Cynic

The Cynic often feels like a lost cause. They have a horror story or

statistic for every argument or point you have. It doesn’t look like they

can be brought over. However, they may have a huge weakness: they

are motivated by a need to appear smart (see Section 7.1, Underlying

Causes, on page 35). So if other smart people are jumping onto a tech-

nology, they can be brought on board too by appealing to that desire.

But to do that, you have to have smart people on board, which is why

they are one of last groups to try to get.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=113

HARDEST 114

24.4 Hardest

The hardest cannot be approached until you at least have some other

group on board. You can skip the easy if they don’t exist at your work-

place. But you cannot approach the hard group, until you at least have

some converts on your side.

Boss

Bosses are the hardest to convince. They take a lot of effort. You have

to approach them on special terms, specifically their terms as noted

in Chapter 10, The Boss, on page 44. Additionally, you’re not trying

to influence them in a vacuum. Everyone wants a piece of their time

and attention, not just for issues related to your matter but all sorts

of administrative minutiae. It’s not just about making the argument to

them; it’s about making them care.

Adding to the difficulty factor, in most cases you pretty much cannot

do this alone. You need other converts to prove to the Boss that your

idea has merit. If you cannot convince co-workers who are ostensibly

your peers to come over, why should the Boss? And they’re not wrong to

have that attitude. What’s more likely? You didn’t mention your tool to

the rest of your team and instead talked to your Boss first, or you tried

to get them on board, no one bought it, and you’re trying to get them

to mandate it. It’s pretty clear that if you’re talking to the boss without

support, it’s because you failed to get it, not that you were keeping your

discoveries a secret.

Now these are general guidelines. They tend to work. But don’t be rigid

with these. If you believe you have a good chance to convert a harder

skeptic out of order, don’t hesitate. The idea here is to go after the

easiest first. If circumstances align to make a Cynic or Boss temporarily

easier, you should definitely go for it.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=114

Chapter 25

Harness the Converted
At this point, you should be avoiding the Irrational like the plague.

You should have some people converted to your technique. But you

still have skeptics. You think that you can bring them over, but they

haven’t succumbed to your wiles yet.

There are lots of reasons that people might not be swayed by you. Some

might remember that first day on the job when you wiped out 1,000

accounts with a typo. Some may only listen to advice from specific peo-

ple, having always been happy with what they say.

At this point, you need some help. You need to call upon all the people

you have converted thus far to join the fight. You need them to try to

convince skeptics. You need them to give your solution visibility.

For them to do so, you need to equip them to be able to add to the

discussion. You need them to go after people they have influence with.

Finally, you need them to help drown out the naysayers.

25.1 Request Help

If you intend to enlist the aid of your converts, you have to ask them for

their help. If you want them to actively participate in the effort or even

if you are merely repeating any opinions they have expressed, you have

to absolutely have to ask. Having one of your converts find out that you

are speaking about them or their using words without their permission

will probably lose you a convert and damage your credibility.

In the process of asking, you need to let them know exactly what you

are doing, as in, “I am trying to get the company to standardize on [x].

CREATE EVANGELISTS 116

You converted to [x]. I would like your help—are you in?” This example

might be a bit stiff, but you get the idea—full disclosure.

Sometimes people are hesitant at this part. It’s one thing to ask people

to join in working on a technical issue. It’s another to ask them to join in

on a workplace political issue. But remember you’re trying to make the

workplace better. You’re not engaged in politics for politics sake; you’re

working to a result. If you can grasp that, so can your co-workers.

Without being completely honest with your converts, you run the risk

of manipulating them instead of working with them. If you manipulate

them, you’re using them. If you honestly ask them, you’re working with

them.

In addition to the problem of actually using people, there’s the problem

of looking like you are using them. This is even tougher to fix than

using them. You have control over whether you are using people, but

you only have influence when other people think you are using them.

Honesty and disclosure up front will usually prevent this.

So, in all cases, just open up, explain what you are doing, and ask for

help. Some will say yes, and some will say no. Work with the yes people,

and respect the choice of the no people. Then get busy converting the

rest of your co-workers.

25.2 Create Evangelists

They’ve agreed to help, and now you have to help them help you. You

need to arm them with tools that they can use when they are faced with

skeptics. Again, disclosure is key.

First let them know exactly why your tool or technique is important

to the wider group. “We spend too much time on maintenance of old

spaghetti code. If we standardized on framework [x], we could reduce

maintenance time and have more time to focus on....” Be that explicit

and simple; make sure people know what they are fighting for.

Next, come clean about the skeptics they’re up against. Let them know

why one or the other is skeptical. Let them know who is the Burned

and who is Time Crunched.

Then, let them in on the whole plan. Let them know who you are target-

ing, in what order, and why. Let them know your idea of success and

when you would consider this campaign done.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=116

CROSS-PROMOTE 117

This Book Isn’t Secret

You don’t have to hide the information, tactics, and strategies
in this book from your converted. This system is a way of structur-
ing your efforts, but it doesn’t actually do anything by itself. It’s
your content, arguments, and examples that do so. This system
doesn’t rely on the ignorance of others to achieve your goals.
So when disclosing, don’t hide it.

Finally, send them out. Have them engage your skeptics, and have a go

at changing some minds.

25.3 Cross-Promote

Once your converts are out working for you, you need to work for them.

You have to promote their efforts. Talk to co-workers or management

about their successful projects they’ve produced using your tool or

technique. However, when describing their successes, don’t make that

they are using your preferred tool or technique the leading story. Just

promote your converts. Make your efforts here about them, not about

your solution. If and when the interested party asks for more informa-

tion, then include your solution in the description.

Again, clue your converts into this. Have them talk your technique up

with the same caveat. Ask them to mention your solution first and then

mention their own success as part of a deeper dive.

Why the emphasis on the other person’s story first? Because people are

less willing to hear you blow your own horn than trumpeting another

person’s success. We’ve gotten numb to the shameless self-promoter.

We ignore them. So, don’t self-promote. Promote others, and let the

audience’s curiosity lead them to you. It won’t always. That’s fine. It’s

powerful enough when it happens that it’s worth the effort.

Cross-promotion is a tool of opportunity. You do have to wait for it to

be appropriate to talk your converted up. Then you have to be asked for

more information. But you can make your own opportunities: “Did you

hear about the Beta group?” And for the most part, when you discuss

a success, most people want to know how it was done.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=117

CONSUME ATTENTION 118

25.4 Consume Attention

Attention within a company or organization is a zero-sum game. Peo-

ple’s attention is finite, and for one group to gain attention, others have

to lose it. This means that by seizing attention, not only do you and your

converts give yourself a leg up, but you are diminishing the attention

your skeptics have, making it easier to drown them out.

Grabbing this attention will vary with your organization. Do you have

an internal blog or message board? Then you and your converts should

be discussing your tool or technique there. Do all of your co-workers

use either public or private social networking tools? You should be

shouting it there. Do you never have anything to say when you are

in an elevator with a higher-up? Cross-promote then and there.

Basically, if there is an appropriate place to either toot your own horn

or cross-promote, do it. If there are organic opportunities to do so, do

it. Create an environment where, for every skeptic’s message, there are

multiple messages from your side, drowning it out.

Harnessing converts is a powerful part of your strategy. One person can

be easily dismissed, but with each person that repeats your message,

it becomes harder to ignore it. However, this part is also full of ethical

peril. Yes, you should cross-promote and stand out from the skeptics,

but be careful not to lose sight of the lessons of trust from Chapter 8,

The Burned, on page 38.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=118

Chapter 26

Sway Management
Some tools and techniques require 100 percent compliance. You can’t

always convince everyone, and you sure can’t convince the Irrational.

So, your goal in this final step is to convince management to man-

date, or force through policy, the use of your tool or technique. Often a

mandate from management is the only path to get those stragglers on

board.

26.1 What Do You Want from Management?

Simply stated, you want management to set a policy that your tool and

technique must be used in its appropriate setting. Quite simply, for all

of your skeptics, doing what you want them to do is now part of their

job.

The mechanics of how this is enforced will vary. Usually people are

told they must do things. They must justify noncompliance. Depending

on the tool or technique and your organization, employees might have

compliance become part of their annual review.

Gatekeepers are also a possible enforcement avenue. Gatekeepers con-

trol resources that your skeptics need to do their job or get into produc-

tion. For example, if you need a server admin to put your code onto pro-

duction servers, then they can check for compliance with policy before

they publish.

HOW DO YOU GET IT? 120

26.2 How Do You Get It?

Convincing management will vary in difficulty depending on the formal-

ity of the mandate and the flexibility of your workplace. Regardless of

these factors, you will not be able to sway them at all unless you are

capable of showing them that they need to, that you’re not a crazy lone

wolf, and that you have a reason for involving them.

Solve Their Problems

As stated earlier in Chapter 10, The Boss, on page 44, you need to

solve your boss’s problems, not your own. You need to show that the

technical problem that you have translates into a business problem

they have.

Translation is not terribly hard to do, once you train yourself to do it.

Wasted developer time is wasted money. Performance drains are wasted

hardware resources. Insecure environments are potentially wasted

money or legal liability depending on your industry.

You do need to go one step further. It’s not enough to say that a change

will save developer time. You have to calculate just how much time you

are saving. You then need to convert that to money using salaries or

estimates. Then you show the potential savings to management. That’s

solving their problem, in their language, on their terms.

Show Your Numbers

You’re not alone. (You did the previous steps and have some converts,

right?) You must not appear to be alone. You need to make sure man-

agement knows that you now represent a group and aren’t some lone

troublemaker with an axe to grind.

Even if you are right and they believe you are right, they won’t be

swayed by someone alone. There’s just too much risk in issuing man-

dates to do it on just one person’s word. When you’re one against many,

it looks like there might be good reason to say no. When you are many,

it looks like your idea has merit.

Explain Why You Need a Mandate

For the most part, management is not going to be thrilled to see you

bringing a technical issue like this to them. Let’s face it—you’re com-

plaining about a problem. You then transform that problem, making it

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=120

NOW WHAT? 121

their problem, and you ask them to solve it. They’re going to want to

know why they have to get involved.

As in previous situations, the answer is disclosure. Tell them about

your campaign. Tell them you have tried to convince co-workers and

enlisted converts. Let them know that you exhausted your own re-

sources before calling on them.

26.3 Now What?

With any luck, management agreed and has issued a mandate. Problem

solved. Right?

Not quite yet. Just because compliance is mandatory doesn’t mean that

compliance is compelled. You have to monitor, track, and ultimately

report compliance. Why you? It’s because this whole thing has been

your baby from the start. Without that vigilance, the mandate is use-

less. Now, I’m not suggesting you have to go all Secret Police on your

co-workers, but you do need to encourage people to comply.

To be completely clear here, this step is optional and not always called

for. You may very well be successful in converting people through the

previous three methods. Additionally, your solution might not require

100 percent compliance, and you’re cool leaving the stragglers behind.

Be aware that getting a management mandate is the atomic bomb of

this type of conflict. Sure, it has tremendous impact and might achieve

your aims, but people might not care much for you after you use it,

and it does not guarantee success. Convincing people is better than

compelling them, but that route is not always open to you.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=121

Chapter 27

Final Thoughts
You’ve made it. You ignored the Irrational. You lined up your skeptics

with tactics and made converts. You and your converts either swayed

everyone to use your tool or technique or swayed management to man-

date it. Your solution is in use, and you are done. Is that it? Of

course not.

27.1 Cautionary Tales

Even when you are successful, there are pitfalls. It’s human nature to

assume that the end of a process results in happiness, peace, and light.

Sadly, that isn’t the case. Here are some ways success can be a downer.

Too Successful

Stored Procedures Again

A few years back, I worked at a web development shop that had a

problem. The web application servers kept intermittently crashing. It was

traced back to the connection between the application servers and the

database.

Upon review, it became clear that the cause was the occasional poorly

written database operation. Our team of web developers were talented

with client-side code and business logic but were not DBAs. The solution

was the dreaded stored procedure rule: all SQL had to be in stored

procedures, and those stored procedures were all reviewed by DBAs

before being put into production.

It was one of my first clear successes with some of these techniques. The

DBAs convinced many developers to participate. The rest were forced by a

mandate from management.

CAUTIONARY TALES 123

That solved the problem. Database-related crashes went away. The

application servers became much more stable.

Flash-forward five years, and I’m having drinks with a recent hire at the

web development shop.

“I’m so frustrated. I want to bring in ORM frameworks, but all of them

require inline SQL. The DBAs won’t allow it. Despite that, the frameworks

that I want to use write better SQL than I can. I want to murder whoever

set up that policy in the first place.”

I shifted uncomfortably and made sure I picked up the drink tab.

It turns out that the DBAs were now enforcing the stored procedure rule,

without knowing the reasons behind them. The technique and mandate

had outlived the reason for them.

Yes, it is possible that once you sell something, it cannot be undone.

This becomes increasingly difficult to deal with when technology shifts

render it obsolete.

In the previous example, I made a mistake. I drummed the policy and

technique into people’s heads without drumming the reasons. Would

the DBAs have been willing to lighten up if the reasoning was made

clearer to everyone? Probably, but we’ll never know.

Make sure you explain the why and not just the what.

You Don’t Always Reap the Rewards

Finally

I left an old employer of mine feeling like a failure. I had pushed

frameworks, code generation, and unit testing to no mostly no avail. I had

heard pretty much the same old tired Time Crunched skepticism for

them. After years of trying, I figured they were unmovable.

Again, flash-forward a few years, and I’m talking to a former co-worker. I

had pushed to get him hired because he was an awesome developer. Part

of the reason I thought he was a great developer was his enthusiasm for

the very things I was advocating.

He started complaining about the group:

“So, they didn’t like this framework because it’s a little complex, and they

didn’t like this other one because development has slowed down on it. So

about five months ago, we went with plan C because it allows for... ”

Let me get this straight. The people who refused to even consider

frameworks were using one, after arguing about which one to use at

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=123

SUCCESS IS SILOED 124

length? Oh, and by the way, they’re also using a unit testing framework,

automatically generating starter unit test, and adding their own.

So, despite my best efforts, the group wasn’t sold, at least not while I

was there. More than two years had passed since I had been working

with the group, and finally there were some changes.

It’s possible that I had softened the ground. It’s possible that I had

alienated some people, who were able to say yes to the new guy when

they couldn’t say it to me. It’s possible that slow change is the only pos-

sible change with this group. Whatever the case, change did happen,

just slowly.

You Can Be Wrong

Right Answer, Wrong Answerer

It was another success story. I took a group with no source control and

sold them on Subversion. They migrated, and we were enjoying sleeping

at night without a panic that we would lose the whole site because of an

errant rm *.

There was one problem. I didn’t know squat about setting up an SVN

server. The architecture I built up for our repository structure was a

nightmare. It worked for a small number of projects, but once we got in

the double digits, performance lagged, checkouts were confusing, and

people started to not participate.

I delayed progress. I screwed up. I ended up creating Burned skeptics.

No one is perfect. No one can see unforeseen consequences. That’s

why they’re unforeseen. Experience helps, but you’re going to screw

up. Accept it.

More importantly, own your failures. Admit them. Advertise them when

they happen. Most importantly, explain them.

In the previous case, Subversion wasn’t the problem—I was. I admitted,

advertised, and explained. Because of that, I was afforded the time to

migrate to a different Subversion solution. It worked, and I stopped peo-

ple from getting Burned—but only because I owned the failure before I

tried to fix it.

27.2 Success Is Siloed

Once you achieve some success, you can sometimes lose sight of the

fact that your co-workers are still skeptics. Sure, they’re with you on

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=124

PROBLEMS ALWAYS EXPAND 125

what you’ve sold, but that doesn’t make them any easier the next time

you want to sell something.

In fact, with the amount of change present in our industry, there are so

many thousands of tools and techniques that we could be considered

Uninformed skeptics merely because we don’t know about them.

The takeaway here is that yes, you do have to start over each time.

Multiple successes may raise your credibility, but they don’t carry over

much more than that. It’s frustrating, but it is the way it is.

There are a few things that you can take from attempt to attempt.

• People who you’ve identified as the Herd, the Cynic, and the Time

Crunched are likely to be the same for other attempts.

• The Uninformed is slightly more likely to be Uninformed in other

attempts.

• The Boss is usually the Boss time after time.

• The Burned is a crap shoot and has no impact on other attempts.

• The Irrational can also be a crap shoot, but if you’ve been tar-

geted by them personally, as opposed to technically, then they’ll

probably give you a repeat performance.

27.3 Problems Always Expand

We often have a delusion that once we get people to use our tool or tech-

nique, we’ll eliminate a set of our problems. In this mode of thought,

problems are finite, and we will reduce our problems. Sadly, problems

are infinite. Problems are a gas, not a liquid. They always expand to

take up as much room as they can.

Maybe saving a whole bunch of time will result in fewer billable hours

and people losing jobs. Maybe fixing one broken area will reveal a weak-

ness in another. Whatever the case, the world won’t be perfect when you

are done.

27.4 A Journey, Not a Destination

The previous sections have been a bit of a downer. You could come to

the conclusion that even if you manage to get people onto your solu-

tion, it doesn’t matter. Things will go wrong, or bad tools will become

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=125

A JOURNEY, NOT A DESTINATION 126

entrenched. Even if you do manage get people over, you’ll just have to

start over from scratch, and more problems will take their place.

That conclusion is only correct if you can’t change your mode of think-

ing about your workplace environment. Better isn’t a place; it’s a direc-

tion. Acceptance of your technical solution isn’t a destination; it’s a

journey. Between where you are and where you want to go, there are

many much better places. Focus on leaving where you are, instead of

where you want to go.

So that’s it. Get out there and start trying to make your workplace

better. It can be done. It has been done. You just need to add yourself

to the list of people who try.

Report erratum

this copy is (P1.0 printing, November 2010)

http://books.pragprog.com//titles/trevan/errata/add?pdf_page=126

Appendix A

Bibliography

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Mas06] Mike Mason. Pragmatic Version Control Using Subversion.

The Pragmatic Programmers, LLC, Raleigh, NC, and Dallas,

TX, second edition, 2006.

[RTH08] Sam Ruby, David Thomas, and David Heinemeier Hansson.

Agile Web Development with Rails. The Pragmatic Program-

mers, LLC, Raleigh, NC, and Dallas, TX, third edition, 2008.

[Rud07] Jason Rudolph. Getting Started with Grails. InfoQ, 2007.

[Swi08] Travis Swicegood. Pragmatic Version Control using Git. The

Pragmatic Programmers, LLC, Raleigh, NC, and Dallas, TX,

2008.

[TH03] David Thomas and Andrew Hunt. Pragmatic Version Control

Using CVS. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2003.

Index
A
absolute rules, 76

absolutes, not speaking in, 64

admitting mistakes, 82

alternatives, listing, 24

anger, with the Irrational, 110

Ant, 54

aspect-oriented programming, 91

attention, seizing, 118

awards, putting work up for, 88

B
best practices, 77

binary terms, seeing world in, 64

blocking progress, 36

Boss, 44–46

converting, 114

focusing on synergy for, 93

next attempt behavior, 125

proposing compromise to, 77

publicity and, 89

bridges, 95–100

building, 98

developing, 97

finding, 98

bug tracker, custom, 85

bullying, 60

Burned, 38–40

building bridge for, 98

converting, 113

creating something compelling for,

104

creating trust with, 83

expertise countering, 59

next attempt behavior, 125

premise of, 47–49

publicity and, 89

business needs, aligning with, 92

business problem, translating to, 120

C
Change Weary, 39

code reviews, 18, 71

ColdFusion, 95

communication, 19

compelling, creating something,

101–105

compliance

monitoring, tracking, and reporting,

121

with policy, 119

compromise

discovering, 76

proposing, 74–78

connecting with people, 63–66

contests, participation in, 87

converted, as powerful allies, 111

Converted, harnessing, 115–118

converts, promoting, 117

cost savings, connecting to, 45

countering techniques, 51–52

Crazies, 49

create something compelling, 101–105

creating trust, 79–84

cross promotion, 117

cross-promotion, 118

crosscutting concerns, 91

CRUD code, 31

custom solutions, 23

CVS (centralized version control

system), 62

Cynic, 34–37

building bridge for, 98

converting, 113

countering with message delivery, 66

creating something compelling for,

104

creating trust with, 83

demonstrating to, 71

CYNICISM LEADERSHIP

expertise countering, 58

next attempt behavior, 125

outside validation and, 89

underlying causes, 35–36

cynicism, 36

D
decision making, 63

declaring, compared to suggesting, 65

deliver your message, 62–67

Demonstrate the Technique, 68–73

to the Uninformed, 30

demonstration opportunities, 69

deployment procedures, 53

difficulty, groups of, 111–114

disclosure to management, 121

doubting Thomas, 69

E
easy group, converting, 112

Eclipse tool set, 101

emotions, in decision making, 63

encouraging opportunities, 71

enemy, Irrational as, 110

engaging the Irrational, 110

entry points, refusing, 37

evangelists, creating, 116

expanding problems, 125

expertise

acquiring, 53–61

as fluid, 56

gaining, 55–57

increasing, 61

experts

seeking out, 57

external imposed development rules, 76

external validation, 86

F
failures, admitting, 124

familiarity, breeding contempt, 86

flaws in your solution, 83

focus on synergy, 91–94

followers, compared to leaders, 31–32

forcing others, 59–60

FUD, 22, 80

not resorting to, 82

FUD factor, 79

G
gain expertise, 53–61

gatekeepers, 119

get publicity, 85–90

Git (distributed version control system),

62

gotcha scenarios, 58

group, representing, 120

H
hard group, converting, 112

hardest group, 114

harnessing the Converted, 115–118

help, requesting from Converted,

115–116

Herd, 31–33

building bridge for, 98

converting, 112

creating something compelling for,

103

expertise countering, 58

groups of, 32

next attempt behavior, 125

Hibernate, 38, 39, 75

honesty, encouraging, 84

hostility, with Irrational, 110

I
ignorance, 29

ignore the Irrational, 109–110

implementation of technology, 39–40

industry best practices, 76

information for Uninformed, 30

insincerity, 45

intermediate solutions, 95

inventorying team skills and ideas, 24

Irrational

containing, 48

countering with message delivery, 66

creating trust with, 83

demonstrating to, 72

ignoring, 109–110

next attempt behavior, 125

K
knowledge

obsolescence of, 56

sharing, 58

L
leaders, compared to followers, 31–32

leadership

129

LEADERSHIP OF HERD SIDE PROJECTS

of Herd, 58

leadership of Herd, 32–33

lies

by commission, 81

of omission, 81

limelight, seeking, 86–88

listening

compared to speaking, 65

to others, 60

live demonstration of technology, 72

looking smart, 35–37

low-hanging fruit, converting, 60

M
management

resisting professional development,

44–45

swaying, 119–121

mandate, explaining need for, 120

message, delivering, 62–67

method, cost of learning new, 41–42

mistakes, admitting, 82

Model-Glue 2 framework, 95

motivation, need for, 55

Murphy’s law, 72

MySQL, 79, 81

N
nine-to-fivers, 32

O
obstacles, 110

open sourcing, 87

opportunities

creating, 70

for demonstration, 69

encouraging, 71

order of difficulty, 111–114

ORM solution, 31

P
pain points

figuring out, 56

looking at, 102

as time constraints, 103

web templates as, 102

passion, compared to zeal, 64

patronizing, 60

patterns, 16, 27–28

people, connecting with, 63–66

pitfalls, 24

gain expertise, 59

message delivery, 66

policies, 74, 77, 119

positive, remaining, 66

problems

expanding, 125

identifying, 22–23

researching, 23–24

solving, 21–22

solving management’s, 120

productivity, 18

professional development, 18–19

selling, 20, 44

progress, blocking, 36

project reviews, 88

projects, selecting for learning, 57

promoting converts, 117

propose compromise, 74–78

publicity

appropriateness of, 90

getting, 85–90

Q
questions

answering authoritatively, 37

asking, 65

R
rational premise, 47

reaping rewards, 123–124

reasons, explaining, 123

resistance patterns, strategy for

overcoming, 107–108

reviews of projects, 88

rewards, not reaping, 123–124

ripe rules, finding, 76

Ruby on Rails, selling, 21–22

rules, 74

finding ripe, 76

matching technology to, 76

S
scaffolding, focusing on, 96

security rules, 76

Selenium, 77

selling, 20, 44

Ruby on Rails, 21–22

semantics, 36

side projects, learning, 60

130

SILOED SUCCESS ZEAL

siloed success, 124

situational tactics, 93

skeptic patterns, 27

skeptics, 19

smart solution, 37

software evangelist, 71

solution

pushing, 21–22, 22

solutions

custom, 23

seeing, 23–24

solving problems, 21–22

source control, 18, 29, 70

speaking, compared to listening, 65

Spring AOP, 91

SQL injection, preventing, 74

stored procedure rule, 122

stored procedures, database activity in,

74

strategy for overcoming resistance

patterns, 107–108

Subversion, 34, 124

Subversion server, 29

success

as downer, 122–124

siloed, 124

too much, 122–123

suggesting, compared to declaring, 65

swaying management, 119–121

synchronous meeting, 88

synergy

developing, 92

focusing on, 91–94

T
Target the Willing, 111–114

teaching to gain expertise, 57, 58

techniques

countering, 51–52

demonstrating, 30, 68–73

ignorance of, 30

researching, 55

using, 56–57

technology

matching rules to, 76

not using, 29–30

test-driven development (TTD), 97

testing framework, 77

tiebreaker, trust as, 81

Time Crunched, 41–43

building bridge for, 99

converting, 113

creating something compelling for,

103

demonstrating to, 72

focusing on synergy with, 92

next attempt behavior, 125

premise of, 47

proposing compromise to, 77

toolbox, filling, 51–52

tools

researching, 55

as solutions to management

problems, 45

using, 56–57

TPS report, 102

trust, 79–84

trustworthiness, 79

U
unforeseen consequences, 124

Uninformed, 29–30

bringing information to, 30

converting, 112

countering with message delivery, 66

creating something compelling for,

103

demonstrating to, 71

expertise countering, 58

getting publicity to, 89

next attempt behavior, 125

unit tests, 18, 60, 97

universal techniques, 51

V
validation, 85

vulnerability, 18

W
web templates, as pain point, 102

willing, targeting, 111–114

willingness to help, 55

workplace, making better, 126

Z
zeal, compared to passion, 64

131

More Good Ideas

Pomodoro Technique Illustrated
Do you ever look at the clock and wonder where the

day went? You spent all this time at work and

didn’t come close to getting everything done.

Tomorrow, try something new. In Pomodoro

Technique Illustrated, Staffan Nöteberg shows you

how to organize your work to accomplish more in

less time. There’s no need for expensive software or

fancy planners. You can get started with nothing

more than a piece of paper, a pencil, and a kitchen

timer.

Pomodoro Technique Illustrated: The Easy Way

to Do More in Less Time

Staffan Nöteberg

(144 pages) ISBN: 9781934356500. $24.95

http://pragprog.com/titles/snfocus

The Agile Samurai
Faced with a software project of epic proportions?

Tired of over-committing and under-delivering?

Enter the dojo of the agile samurai, where agile

expert Jonathan Rasmusson shows you how to

kick-start, execute, and deliver your agile projects.

You’ll see how agile software delivery really works

and how to help your team get agile fast, while

having fun along the way.

The Agile Samurai: How Agile Masters Deliver

Great Software

Jonathan Rasmusson

(275 pages) ISBN: 9781934356586. $34.95

http://pragprog.com/titles/jtrap

http://pragprog.com/titles/snfocus
http://pragprog.com/titles/jtrap

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Driving Technical Change

http://pragprog.com//titles/trevan

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com//titles/trevan.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com//titles/trevan
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com//titles/trevan
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Introduction
	Why This Book?
	How Is This Book Organized
	Why You Should Read This Book
	Who I Think You Are

	Defining the Problem
	What Do We Mean by Professional Development?
	Who Are These Skeptics?
	Why Do We Need to Sell It?

	Solve the Right Problem
	Why Do It?
	Seeing Solutions
	Challenges
	Things to Try

	Skeptic Patterns
	Who Are the People in Your Neighborhood?
	The Uninformed
	Why Don't They Use the Technology?
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	The Herd
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	The Cynic
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	The Burned
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	The Time Crunched
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	The Boss
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	The Irrational
	Underlying Causes
	Effective Countering Techniques
	Prognosis

	Techniques
	Filling Your Toolbox
	Gain Expertise
	Why Does It Work?
	How Do You Become an Expert?
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Deliver Your Message
	Why Does It Work?
	Mastering Delivery
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Demonstrate Your Technique
	Why Does It Work?
	Demonstration Opportunities
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Propose Compromise
	Why Does It Work?
	Discovering Compromise
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Create Trust
	Why Does It Work?
	Developing Trust
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Get Publicity
	Why Does It Work?
	Seeking the Limelight
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Focus on Synergy
	Why Does It Work?
	Developing Synergy
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Build a Bridge
	Why Does It Work?
	Developing a Bridge
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Create Something Compelling
	Why Does It Work?
	Creating That Something
	Skeptics That It Counters
	Pitfalls
	Wrapping Up

	Strategy
	Simple, Not Easy
	Ignore the Irrational
	What Exactly Does This Mean?
	Why Is This Challenging?

	Target the Willing
	Order of Difficulty
	Easy
	Hard
	Hardest

	Harness the Converted
	Request Help
	Create Evangelists
	Cross-Promote
	Consume Attention

	Sway Management
	What Do You Want from Management?
	How Do You Get It?
	Now What?

	Final Thoughts
	Cautionary Tales
	Success Is Siloed
	Problems Always Expand
	A Journey, Not a Destination

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

