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2Programming Language
Syntax

2.3.4 Syntax Errors

The main text illustrated the problem of syntax error recovery with a simpleEXAMPLE 2.43
Syntax error in C (reprise) example in C:

A = B : C + D;

The compiler will detect a syntax error immediately after the B, but it cannot
give up at that point: it needs to keep looking for errors in the remainder of the
program. To permit this, we must modify the input program, the state of the parser,
or both, in a way that allows parsing to continue, hopefully without announcing a
significant number of spurious cascading errors and without missing a significant
number of real errors. The techniques discussed below allow the compiler to search
for further syntax errors. In Chapter 4 we will consider additional techniques that
allow it to search for additional static semantic errors as well. �

Panic Mode

Perhaps the simplest form of syntax error recovery is a technique known as panic
mode. It defines a small set of “safe symbols” that delimit clean points in the input.
When an error occurs, a panic mode recovery algorithm deletes input tokens until
it finds a safe symbol, then backs the parser out to a context in which that symbol
might appear. In the earlier example, a recursive descent parser with panic mode
recovery might delete input tokens until it finds the semicolon, return from all
subroutines called from within stmt, and restart the body of stmt itself.

Unfortunately, panic mode tends to be a bit drastic. By limiting itself to a static
set of“safe”symbols at which to resume parsing, it admits the possibility of deleting
a significant amount of input while looking for such a symbol. Worse, if some of
the deleted tokens are “starter” symbols that begin large-scale constructs in the
language (e.g., begin, procedure, while), we shall almost surely see spurious
cascading errors when we reach the end of the construct.
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Consider the following fragment of code in Modula-2:EXAMPLE 2.44
The problem with panic
mode IF a b THEN x;

ELSE y;
END;

When it discovers the error at b in the first line, a panic-mode recovery algorithm
is likely to skip forward to the semicolon, thereby missing the THEN. When the
parser finds the ELSE on line 2 it will produce a spurious error message. When
it finds the END on line 3 it will think it has reached the end of the enclosing
structure (e.g., the whole subroutine), and will probably generate additional cas-
cading errors on subsequent lines. Panic mode tends to work acceptably only in
relatively “unstructured” languages, such as Basic and (early) Fortran, which don’t
have many “starter” symbols. �

Phrase-Level Recovery

We can improve the quality of recovery by employing different sets of “safe”
symbols in different contexts. Parsers that incorporate this improvement are said
to implement phrase-level recovery. When it discovers an error in an expression,
for example, a phrase-level recovery algorithm can delete input tokens until it
reaches something that is likely to follow an expression. This more local recovery
is better than always backing out to the end of the current statement, because it
gives us the opportunity to examine the parts of the statement that follow the
erroneous expression.

Niklaus Wirth, the inventor of Pascal, published an elegant implementation ofEXAMPLE 2.45
Phrase-level recovery in
recursive descent

phrase-level recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9]. The
simplest version of his algorithm depends on the FIRST and FOLLOW sets defined
at the end of Section 2.3.1. If the parsing routine for nonterminal foo discovers
an error at the beginning of its code, it deletes incoming tokens until it finds a
member of FIRST(foo), in which case it proceeds, or a member of FOLLOW(foo),
in which case it returns:

procedure foo
if (input token �∈ FIRST(foo)) and (not EPS(foo))

report error – – print message for the user
repeat

delete token
until input token ∈ (FIRST(foo) ∪ FOLLOW(foo) ∪ {$$})

case input token of
. . . : . . .
. . . : . . . – – valid starting tokens
. . . : . . .
otherwise return – – error or foo −→ ε

Note that the report error routine does not terminate the parse; it simply prints
a message and returns. To complete the algorithm, the match routine must be
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altered so that it, too, will return after announcing an error, effectively inserting
the expected token when something else appears:

procedure match(expected)
if input token = expected

consume input token
else

report error

Finally, to simplify the code, the common prefix of the various nonterminal sub-
routines can be moved into an error-checking subroutine:

procedure check for error(symbol)
if (input token �∈ FIRST(symbol)) and (not EPS(symbol))

report error
repeat

delete token
until input token ∈ (FIRST(symbol) ∪ FOLLOW(symbol) ∪ {$$}) �

Context-Specific Look-Ahead

Though simple, the recovery algorithm just described has an unfortunate ten-
dency, when foo −→ ε, to predict one or more epsilon productions when it should
really announce an error right away. This weakness is known as the immedi-
ate error detection problem. It stems from the fact that FOLLOW(foo) is context-
independent: it contains all tokens that may follow foo somewhere in some valid
program, but not necessarily in the current context in the current program. (This
is basically the same observation that underlies the distinction between SLR and
LALR parsers, as mentioned in Section 2.3.3 [page 91]).

As an example, consider the following incorrect code in our calculator language:EXAMPLE 2.46
Cascading syntax errors

Y := (A * X X*X) + (B * X*X) + (C * X) + D

To a human being, it is pretty clear that the programmer forgot a * in the x3 term
of a polynomial. The recovery algorithm isn’t so smart. In a recursive descent
parser it will see an identifier (X) coming up on the input when it is inside the
following routines:

program
stmt list
stmt
expr
term
factor
expr
term
factor tail
factor tail

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch02-P374514 [10:55 2009/2/25] SCOTT: Programming Language Pragmatics Page: 4 1–867

4 Chapter 2 Programming Language Syntax

Since an id can follow a factor tail in some programs (e.g., A := B C := D),
the innermost parsing routine will predict factor tail −→ ε, and simply return. At
that point both the outer factor tail and the inner term will be at the end of their
code, and they, too, will return. Next, the inner expr will call term tail, which will
also predict an epsilon production, since an id can follow a term tail in certain
programs. This will leave the inner expr at the end of its code, allowing it to return.
Only then will we discover an error, when factor calls match, expecting to see a
right parenthesis. Afterward there will be a host of cascading errors, as the input
is transformed into

Y := (A * X)
X := X
B := X*X
C := X �

To avoid inappropriate epsilon predictions, Wirth introduced the notion ofEXAMPLE 2.47
Reducing cascading errors
with context-specific
look-ahead

context-specific FOLLOW sets, passed into each nonterminal subroutine as an
explicit parameter. In our example, we would pass id as part of the FOLLOW set
for the initial, outer expr, which is called as part of the production stmt −→
id := expr, but not into the second, inner expr, which is called as part of the
production factor −→ (expr). The nested calls to term and factor tail will end up
being called with a FOLLOW set whose only member is a right parenthesis. When
the inner call to factor tail discovers that id is not in FIRST(factor tail), it will
delete tokens up to the right parenthesis before returning. The net result is a single
error message, and a transformation of the input into

Y := (A * X*X) + (B * X*X) + (C * X) + D

That’s still not the “right” interpretation, but it’s a lot better than it was. �
The final version of Wirth’s phrase-level recovery employs one additional heu-

ristic: to avoid cascading errors it refrains from deleting members of a statically
defined set of “starter” symbols (e.g., begin, procedure, (etc.). These are the
symbols that tend to require matching tokens later in the program. If we see a
starter symbol while deleting input, we give up on the attempt to delete the rest of
the erroneous construct. We simply return, even though we know that the starter
symbol will not be acceptable to the calling routine. With context-specific FOLLOWEXAMPLE 2.48

Recursive descent with full
phrase-level recovery

sets and starter symbols, phrase-level recovery looks like this:

procedure check for error(symbol, follow set)
if (input token �∈ FIRST(symbol)) and (not EPS(symbol))

report error
repeat

delete token
until input token ∈ FIRST(symbol) ∪ follow set ∪ starter set ∪ {$$}
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procedure expr(follow set)
check for error(expr, follow set)
case input token of

. . . : . . .

. . . : . . . valid starting tokens

. . . : . . .
otherwise return �

Exception-Based Recovery in Recursive Descent

An attractive alternative to Wirth’s technique relies on the exception-handling
mechanisms available in many modern languages (we will discuss these mecha-
nisms in detail in Section 8.5). Rather than implement recovery for every nonter-
minal in the language (a somewhat tedious task), the exception-based approach
identifies a small set of contexts to which we back out in the event of an error. In
many languages, we could obtain simple, but probably serviceable error recovery
by backing out to the nearest statement or declaration. In the limit, if we choose a
single place to “back out to,” we have an implementation of panic-mode recovery.

The basic idea is to attach an exception handler (a special syntactic construct)EXAMPLE 2.49
Exceptions in a recursive
descent parser

to the blocks of code in which we want to implement recovery:

procedure statement
try

. . . – – code to parse a statement
except when syntax error

loop
if next token ∈ FIRST(statement)

statement – – try again
return

elsif next token ∈ FOLLOW(statement)
return

else get next token

Code for declaration would be similar. For better-quality repair, we might add han-
dlers around the bodies of expression, aggregate, or other complex constructs.
To guarantee that we can always recover from an error, we must ensure that all
parts of the grammar lie inside at least one handler.

When we detect an error (possibly nested many procedure calls deep), we
raise a syntax error exception (“raise” is a built-in command in languages with
exceptions). The language implementation then unwinds the stack to the most
recent context in which we have an exception handler, which it executes in place
of the remainder of the block to which the handler is attached. For phrase-level
(or panic mode) recovery, the handler can delete input tokens until it sees one
with which it can recommence parsing. �
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As noted in Section 2.3.1, the ANTLR parser generator takes a CFG as input
and builds a human-readable recursive descent parser. Compiler writers have
the option of generating Java, C#, or C++, all of which have exception-handling
mechanisms. When an ANTLR-generated parser encounters a syntax error, it
throws a MismatchedTokenException or NoViableAltException. By default
ANTLR includes a handler for these exceptions in every nonterminal subroutine.
The handler prints an error message, deletes tokens until it finds something in the
FOLLOW set of the nonterminal, and then returns. The compiler writer can define
alternative handlers if desired on a production-by-production basis.

Error Productions

As a general rule, it is desirable for an error recovery technique to be as language-
independent as possible. Even in a recursive descent parser, which is handwritten
for a particular language, it is nice to be able to encapsulate error recovery in
the check for error and match subroutines. Sometimes, however, one can obtain
much better repairs by being highly language specific.

Most languages have a few unintuitive rules that programmers tend to violateEXAMPLE 2.50
Error production for
“; else”

in predictable ways. In Pascal, for example, semicolons are used to separate state-
ments, but many programmers think of them as terminating statements instead.
Most of the time the difference is unimportant, since a statement is allowed to be
empty. In the following, for example,

begin
x := (-b + sqrt(b*b -4*a*c)) / (2*a);
writeln(x);

end;

the compiler parses the begin. . . end block as a sequence of three statements, the
third of which is empty. In the following, however,

if d <> 0 then
a := n/d;

else
a := n;

end;

the compiler must complain, since the then part of an if. . . then . . . else con-
struct must consist of a single statement in Pascal. A Pascal semicolon is never
allowed immediately before an else, but programmers put them there all the
time. Rather than try to tune a general recovery or repair algorithm to deal cor-
rectly with this problem, most Pascal compiler writers modify the grammar: they
include an extra production that allows the semicolon, but causes the semantic
analyzer to print a warning message, telling the user that the semicolon shouldn’t
be there. Similar error productions are used in C compilers to cope with “anachro-
nisms” that have crept into the language as it evolved. Syntax that was valid only in
early versions of C is still accepted by the parser, but evokes a warning message. �

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch02-P374514 [10:55 2009/2/25] SCOTT: Programming Language Pragmatics Page: 7 1–867

2.3.4 Syntax Errors 7

Error Recovery inTable-Driven LL Parsers

Given the similarity to recursive descent parsing, it is straightforward to implement
phrase-level recovery in a table-driven top-down parser. Whenever we encounter
an error entry in the parse table, we simply delete input tokens until we find a
member of a statically defined set of starter symbols (including $$), or a member
of the FIRST or FOLLOW set of the nonterminal at the top of the parse stack.1 If
we find a member of the FIRST set, we continue the main loop of the driver. If we
find a member of the FOLLOW set or the starter set, we pop the nonterminal off
the parse stack first. If we encounter an error in match, rather than in the parse
table, we simply pop the token off the parse stack.

But we can do better than this! Since we have the entire parse stack easily
accessible (it was hidden in the control flow and procedure calling sequence of
recursive descent), we can enumerate all possible combinations of insertions and
deletions that would allow us to continue parsing. Given appropriate metrics, we
can then evaluate the alternatives to pick the one that is in some sense “best.”

Because perfect error recovery (actually error repair) would require that we
read the programmer’s mind, any practical technique to evaluate alternative “cor-
rections” must rely on heuristics. For the sake of simplicity, most compilers limit
themselves to heuristics that (1) require no semantic information, (2) do not
require that we “back up” the parser or the input stream (i.e., to some state
prior to the one in which the error was detected), and (3) do not change the
spelling of tokens or the boundaries between them. A particularly elegant algo-
rithm that conforms to these limits was published by Fischer, Milton, and Quiring
in 1980 [FMQ80, FL88]. As originally described, the algorithm was limited to
languages in which programs could always be corrected by inserting appropriate
tokens into the input stream, without ever requiring deletions. It is relatively easy,
however, to extend the algorithm to encompass deletions and substitutions. We
consider the insert-only algorithm first; the version with deletions employs it as a
subroutine. We do not consider substitutions here.2

The FMQ error-repair algorithm requires the compiler writer to assign an
insertion cost C(t) and a deletion cost D(t) to every token t. (Since we cannot
change where the input ends, we have C($$)=D($$)=∞.) In any given error
situation, the algorithm chooses the least cost combination of insertions and

1 This description uses global FOLLOW sets. If we want to use context-specific look-aheads instead,
we can peek farther down in the stack. A token is an acceptable context-specific look-ahead if it
is in the FIRST set of the second symbol A from the top in the stack or, if it would cause us to
predict A −→ ε, the FIRST set of the third symbol B from the top or, if it would cause us to predict
B −→ ε, the FIRST set of the fourth symbol from the top, and so on.

2 A substitution can always be effected as a deletion/insertion pair, but we might want ideally to
give it special consideration. For example, we probably want to be cautious about deleting a left
square bracket or inserting a left parenthesis, since both of these symbols must be matched by
something later in the input, at which point we are likely to see cascading errors. But substituting
a left parenthesis for a left square bracket is in some sense more plausible, especially given the
differences in array subscript syntax in different programming languages.
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deletions that allows the parser to consume one more token of real input. The
state of the parser is never changed; only the input is modified (rather than pop a
stack symbol, the repair algorithm pushes its yield onto the input stream).

As in phrase-level recovery in a recursive descent parser, the FMQ algorithm
needs to address the immediate error detection problem. There are several ways
we could do this. One would be to use a “full LL” parser, which keeps track of local
FOLLOW sets. Another would be to inspect the stack when predicting an epsilon
production, to see if what lies underneath will allow us to accept the incoming
token. The first option significantly increases the size and complexity of the parser.
The second option leads to a nonlinear-time parsing algorithm. Fortunately, there
is a third option. We can save all changes to the stack (and calls to the semantic
analyzer’s action routines) in a temporary buffer until the match routine accepts
another real token of input. If we discover an error before we accept a real token,
we undo the stack changes and throw away the buffered calls to action routines.
Then we can pretend we recognized the error when a full LL parser would have.

We now consider the task of repairing with only insertions. We begin by extend-
ing the notion of insertion costs to strings in the obvious way: if w = a1a2. . . an ,
we have C(w) =

∑n
i=1 C(a

i
). Using the cost function C , we then build a pair

of tables S and E . The S table is one-dimensional, and is indexed by grammar
symbol. For any symbol X, S(X) is a least-cost string of terminals derivable from
X. That is,

S(X) = w ⇐⇒ X =⇒∗ w and ∀x such that X =⇒∗ x, C(w) ≤ C(x)

Clearly S(a) = a ∀ tokens a.
The E table is two-dimensional, and is indexed by symbol/token pairs. For

any symbol X and token a, E(X, a) is the lowest-cost prefix of a in X; that is,
the lowest cost token string w such that X =⇒∗ wax. If X cannot yield a string
containing a, then E(X, a) is defined to be a special symbol ?? whose insertion
cost is ∞. If X = a, or if X =⇒∗ ax, then E(X, a) = ε, where C(ε) = 0.

To find a least-cost insertion that will repair a given error, we execute the func-EXAMPLE 2.51
Insertion-only repair in
FMQ

tion find insertion, shown in Figure 2.30. The function begins by considering
the least-cost insertion that will allow it to derive the input token from the symbol
at the top of the stack (there may be none). It then considers the possibility of
“deleting” that top-of-stack symbol (by inserting its least-cost yield into the input
stream) and deriving the input token from the second symbol on the stack. It
continues in this fashion, considering ways to derive the input token from ever
deeper symbols on the stack, until the cost of inserting the yields of the symbols
above exceeds the cost of the cheapest repair found so far. If it reaches the bottom
of the stack without finding a finite-cost repair, then the error cannot be repaired
by insertions alone. �

To produce better-quality repairs, and to handle languages that cannot beEXAMPLE 2.52
FMQ with deletions repaired with insertions only, we need to consider deletions. As we did with the

insert cost vector C , we extend the deletion cost vector D to strings of tokens in

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch02-P374514 [10:55 2009/2/25] SCOTT: Programming Language Pragmatics Page: 9 1–867

2.3.4 Syntax Errors 9

function find insertion(a : token) : string
– – assume that the parse stack consists of symbols Xn ,. . . X2, X1,
– – with Xn at top-of-stack
ins := ??
prefix := ε
for i in n . .1

if C (prefix) ≥ C (ins)
– – no better insertion is possible
return ins

if C(prefix . E(Xi , a)) < C (ins)
– – better insertion found
ins := prefix . E(Xi , a)

prefix := prefix . S(Xi)
return ins

Figure 2.30 Outline of a function to find a least-cost insertion that will allow the parser to
accept the input token a. The dot character (.) is used here for string concatenation.

function find repair : string, int
– – assume that the parse stack consists of symbols Xn ,. . . X2, X1,
– – with Xn at top-of-stack,
– – and that the input stream consists of tokens a1, a2, a3, . . .
i := 0 – – number of tokens we’re considering deleting
best ins := ??
best del := 0
loop

cur ins := find insertion(ai+1)
if C (cur ins) + D(a1. . . ai ) < C (best ins) + D(a1. . . abest del)

– – better repair found
best ins := cur ins
best del := i

i +:= 1
if D(a1. . . ai ) > C (best ins) + D(a1. . . abest del)

– – no better repair is possible
return (best ins, best del)

Figure 2.31 Outline of a function to find a least-cost combination of insertions and deletions
that will allow the parser to accept one more token of input.

the obvious way. We then embed calls to find insertion in a second loop, shown
in Figure 2.31. This loop repeatedly considers deleting more and more tokens,
each time calling find insertion on the remaining input, until the cost of deleting
additional tokens exceeds the cost of the cheapest repair found so far. The search
can never fail; it is always possible to find a combination of insertions and dele-
tions that will allow the end-of-file token to be accepted. Since the algorithm may
need to consider (and then reject) the option of deleting an arbitrary number of
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tokens, the scanner must be prepared to peek an arbitrary distance ahead in the
input stream and then back up again. �

The FMQ algorithm has several desirable properties. It is simple and efficient
(given that the grammar is bounded in size, we can prove that the time to choose
a repair is bounded by a constant). It can repair an arbitrary input string. Its
decisions are locally optimal, in the sense that no cheaper repair can allow the
parser to make forward progress. It is table-driven and therefore fully automatic.
Finally, it can be tuned to prefer “likely” repairs by modifying the insertion and
deletion costs of tokens. Some obvious heuristics include:

Deletion should usually be more expensive than insertion.

Common operators (e.g., multiplication) should have lower cost than uncom-
mon operators (e.g., modulo division) in the same place in the grammar.

Starter symbols (e.g., begin, if, () should have higher cost than their corre-
sponding final symbols (end, fi, )).

“Noise” symbols (comma, semicolon, do) should have very low cost.

Error Recovery in Bottom-Up Parsers

Locally least-cost repair is possible in bottom-up parsers, but it isn’t as easy as it
is in top-down parsers. The advantage of a top-down parser is that the content
of the parse stack unambiguously identifies the context of an error, and speci-
fies the constructs expected in the future. The stack of a bottom-up parser, by
contrast, describes a set of possible contexts, and says nothing explicit about the
future.

In practice, most bottom-up parsers tend to rely on panic-mode or phrase-level
recovery. The intuition is that when an error occurs, the top few states on the parse
stack represent the shifted prefix of an erroneous construct. Recovery consists of
popping these states off the stack, deleting the remainder of the construct from
the incoming token stream, and then restarting the parser, possibly after shifting
a fictitious nonterminal to represent the erroneous construct.

Unix’s yacc/bison provides a typical example of bottom-up phrase-level
recovery. In addition to the usual tokens of the language, yacc/bison allows
the compiler writer to include a special token, error, anywhere in the right-hand
sides of grammar productions. When the parser built from the grammar detects
a syntax error, it

1. Calls the function yyerror, which the compiler writer must provide. Nor-
mally, yyerror simply prints a message (e.g.,“parse error”), whichyacc/bison
passes as an argument

2. Pops states off the parse stack until it finds a state in which it can shift the
error token (if there is no such state, the parser terminates)

3. Inserts and then shifts the error token

4. Deletes tokens from the input stream until it finds a valid look-ahead for the
new (post error) context

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch02-P374514 [10:55 2009/2/25] SCOTT: Programming Language Pragmatics Page: 11 1–867

2.3.4 Syntax Errors 11

5. Temporarily disables reporting of further errors

6. Resumes parsing

If there are any semantic action routines associated with the production
containing the error token, these are executed in the normal fashion. They can
do such things as print additional error messages, modify the symbol table, patch
up semantic processing, prompt the user for additional input in an interactive
tool (yacc/bison can be used to build things other than batch-mode compilers),
or disable code generation. The rationale for disabling further syntax errors is to
make sure that we have really found an acceptable context in which to resume
parsing before risking cascading errors. Yacc/bison automatically re-enables the
reporting of errors after successfully shifting three real tokens of input. A seman-
tic action routine can re-enable error messages sooner if desired by calling the
built-in routine yyerrorok.

For our example calculator language, we can imagine building a yacc/bisonEXAMPLE 2.53
Panic mode in yacc/bison parser using the bottom-up grammar of Figure 2.24. For panic-mode recovery,

we might want to back out to the nearest statement:

stmt −→ error
{printf("parsing resumed at end of current statement\n");}

The semantic routine written in curly braces would be executed when the parser
recognizes stmt −→ error .3 Parsing would resume at the next token that can
follow a statement—in our calculator language, at the next id, read, write, or
$$. �

A weakness of the calculator language, from the point of view of error recovery,EXAMPLE 2.54
Panic mode with statement
terminators

is that the current, erroneous statement may well contain additional ids. If we
resume parsing at one of these, we are likely to see another error right away. We
could avoid the error by disabling error messages until several real tokens have
been shifted. In a language in which every statement ends with a semicolon, we
could have more safely written:

stmt −→ error ;
{printf("parsing resumed at end of current statement\n");} �

In both of these examples we have placed the error symbol at the beginningEXAMPLE 2.55
Phrase-level recovery in
yacc/bison

of a right-hand side, but there is no rule that says it must be so. We might decide,
for example, that we will abandon the current statement whenever we see an error,
unless the error happens inside a parenthesized expression, in which case we will
attempt to resume parsing after the closing parenthesis. We could then add the
following production:

factor −→ ( error )
{printf("parsing resumed at end of

parenthesized expression\n");}

3 The syntax shown here is not the same as that accepted by yacc/bison, but is used for the sake of
consistency with earlier material.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch02-P374514 [10:55 2009/2/25] SCOTT: Programming Language Pragmatics Page: 12 1–867

12 Chapter 2 Programming Language Syntax

In the CFSM of Figure 2.25, it would then be possible in State 8 to shift error,
delete some tokens, shift ), recognize factor, and continue parsing the surrounding
expression. Of course, if the erroneous expression contains nested parentheses, the
parser may not skip all of it, and a cascading error may still occur. �

Because yacc/bison creates LALR parsers, it automatically employs context-
specific look-ahead, and does not usually suffer from the immediate error detec-
tion problem. (A full LR parser would do slightly better.) In an SLR parser, a good
error recovery algorithm needs to employ the same trick we used in the top-down
case. Specifically, we buffer all stack changes and calls to semantic action routines
until the shift routine accepts a real token of input. If we discover an error before
we accept a real token, we undo the stack changes and throw away the buffered
calls to semantic routines. Then we can pretend we recognized the error when a
full LR parser would have.

3CHECK YOUR UNDERSTANDING

45. Why is syntax error recovery important?

46. What are cascading errors?

47. What is panic mode? What is its principal weakness?

48. What is the advantage of phrase-level recovery over panic mode?

49. What is the immediate error detection problem, and how can it be addressed?

50. Describe two situations in which context-specific FOLLOW sets may be useful.

51. Outline Wirth’s mechanism for error recovery in recursive descent parsers.
Compare this mechanism to exception-based recovery.

52. What are error productions? Why might a parser that incorporates a high-
quality, general-purpose error recovery algorithm still benefit from using such
productions?

53. Outline the FMQ algorithm. In what sense is the algorithm optimal?

54. Why is error recovery more difficult in bottom-up parsers than it is in top-
down parsers?

55. Describe the error recovery mechanism employed by yacc/bison.
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2.4 Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky language
hierarchy. At each level of the hierarchy, machines can be either deterministic or
nondeterministic. A deterministic automaton always performs the same operation
in a given situation. A nondeterministic automaton can perform any of a set of
operations. A nondeterministic machine is said to accept a string if there exists
a choice of operation in each situation that will eventually lead to the machine
saying “yes.” As it turns out, nondeterministic and deterministic finite automata
are equally powerful: every DFA is, by definition, a degenerate NFA, and the
construction in Example 2.14 (page 56) demonstrates that for any NFA we can
create a DFA that accepts the same language. The same is not true of push-down
automata: there are context-free languages that are accepted by an NPDA but not
by any DPDA. Fortunately, DPDAs suffice in practice to accept the syntax of real
programming languages. Practical scanners and parsers are always deterministic.

2.4.1 Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a
finite set Q of states, (2) a finite alphabet Σ of input symbols, (3) a distinguished
initial state q1 ∈ Q, (4) a set of distinguished final states F ⊆ Q, and (5) a
transition function δ : Q × Σ → Q that chooses a new state for M based on the
current state and the current input symbol. M begins in state q1. One by one it
consumes its input symbols, using δ to move from state to state. When the final
symbol has been consumed, M is interpreted as saying “yes” if it is in a state in
F ; otherwise it is interpreted as saying “no.” We can extend δ in the obvious way
to take strings, rather than symbols, as inputs, allowing us to say that M accepts
string x if δ(q1, x) ∈ F . We can then define L(M), the language accepted by M ,
to be the set {x | δ(q1, x) ∈ F}. In a nondeterministic finite automaton (NFA),

Copyright c© 2009 by Elsevier Inc. All rights reserved. 13
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. .

Start
d

d

d

dq3 q4

q1 q2

Figure 2.32 Minimal DFA for the language consisting of all strings of decimal digits containing
a single decimal point. Adapted from Figure 2.10 in the main text. The symbol d here is short
for “0, 1, 2, 3, 4, 5, 6, 7, 8, 9”.

the transition function, δ, is multivalued: the automaton can move to any of a set
of possible states from a given state on a given input. In addition, it may move
from one state to another “spontaneously”; such transitions are said to take input
symbol ε.

We can illustrate these definitions with an example. Consider the circles-and-EXAMPLE 2.56
Formal DFA for
d * ( .d | d. ) d *

arrows automaton of Figure 2.32 (adapted from Figure 2.10 in the main text).
This is the minimal DFA accepting strings of decimal digits containing a single
decimal point. Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .} is the machine’s input alpha-
bet. Q = {q1, q2, q3, q4} is the set of states; q1 is the initial state; F = {q4} (a
singleton in this case) is the set of final states. The transition function can be rep-
resented by a set of triples δ = {(q1, 0, q2), . . . , (q1, 9, q2), (q1, ., q3), (q2, 0, q2),
. . . , (q2, 9, q2), (q2, ., q4), (q3, 0, q4), . . . , (q3, 9, q4), (q4, 0, q4), . . . , (q4, 9, q4)}.
In each triple (qi , a, qj), δ(qi , a) = qj . �

Given the constructions of Examples 2.12 and 2.14, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate
that there exists a regular expression that generates the language accepted by any
given DFA. We illustrate the required construction below for our decimal strings
example (Figure 2.32). More formal and general treatment of all the regular
language constructions can be found in standard automata theory texts [HMU01,
Sip97].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA,we employ a a dynamic
programming algorithm that builds solutions to successively more complicated
subproblems from a table of solutions to simpler subproblems. We begin with a
set of simple regular expressions that describe the transition function, δ. For all
states i, we define

r0
ii = a

1
| a

2
| . . . | a

m
| ε

Copyright c© 2009 by Elsevier Inc. All rights reserved.
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where {a
1

| a
2

| . . . | a
m
} = {a | δ(qi , a) = qi} is the set of characters labeling

the “self-loop” from state qi back to itself. If there is no such self-loop, r0
ij = ε.

Similarly, for i 	= j, we define

r0
ij = a

1
| a

2
| . . . | a

m

where{a
1

| a
2

| . . . | a
m
} = {a | δ(qi , a) = qj} is the set of characters labeling

the arc from qi to qj . If there is no such arc, r0
ij is the empty regular expression.

(Note the difference here: we can stay in state qi by not accepting any input, so ε
is always one of the alternatives in r0

ii , but not in r0
ij when i 	= j.)

Given these r0 expressions, the dynamic programming algorithm inductively
calculates expressions rk

ij with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from qi to qj . We
assume that states are numbered starting with q1, so when k = 0 we must transi-
tion directly from qi to qj , with no intervening states.

In our small example DFA, r0
11 = r0

33 = ε, and r0
22 = r0

44 = 0 | 1 | 2 | 3 | 4 |EXAMPLE 2.57
Reconstructing a regular
expression for the decimal
string DFA

5 | 6 | 7 | 8 | 9 | ε, which we will abbreviate d | ε. Similarly, r0
13 = r0

24 = ., and
r0

12 = r0
34 = d. Expressions r0

14, r0
21, r0

23, r0
31, r0

32, r0
41, r0

42, and r0
43 are all empty.

For k > 0, the rk
ij expressions will generally generate multicharacter strings. At

each step of the dynamic programming algorithm, we let

rk
ij = rk−1

ij | rk−1
ik rk−1

kk *rk−1
kj

That is, to get from qi to qj without going through any states numbered higher
than k, we can either go from qi to qj without going through any state numbered
higher than k −1 (which we already know how to do), or else we can go from qi to
qk (without going through any state numbered higher than k −1), travel out from
qk and back again an arbitrary number of times (never visiting a state numbered
higher than k − 1 in between), and finally go from qk to qj (again without visiting
a state numbered higher than k − 1). If any of the constituent regular expressions
is empty, we omit its term of the outermost alternation. At the end, our overall
answer is rn

1f1
| rn

1f2
| . . . | rn

1ft
, where n = |Q| is the total number of states and

F = {qf1 , qf2 , . . . , qft } is the set of final states.
Because r0

11 = ε and there are no transitions from States 2, 3, or 4 to State 1,
nothing changes in the first inductive step in our example; that is,∀i [ r1

ii = r0
ii ]. The

second step is a bit more interesting. Since we are now allowed to go through State
2, we have r2

22 = r2
22 r2

22 *r2
22 = ( d | ε ) | ( d | ε ) | ( d | ε )* | ( d | ε ) | = d * .

Because r1
21, r1

23, r1
32, and r1

42 are empty, however, r2
11, r2

33, and r2
44 remain the same

as r1
11, r1

33, and r1
44. In a similar vein, we have

r2
12 = d | d ( d | ε )*( d | ε ) =d+

r2
14 = d ( d | ε )*.=d+ .

r2
24 = . | ( d | ε ) ( d | ε )*.=d *.
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Missing transitions and empty expressions from the previous step leave r2
13

= r1
13 = . and r2

34 = r1
34 = d. Expressions r2

21, r2
23, r2

31, r2
32, r2

41, r2
42, and r2

43 remain
empty.

In the third inductive step, we have

r3
13 =. | . ε*ε = .

r3
14 = d+ . | . ε* d = d+ . | . d

r3
34 = d | εε* d = d

All other expressions remain unchanged from the previous step.
Finally, we have

r4
14 = ( d+ . | . d ) | ( d+ . | . d ) ( d | ε )*( d | ε )

= ( d+ . | . d ) | ( d+ . | . d ) d *

= ( d+ . | . d ) d *

= d+ . d * | . d+

Since F has a single member (q4), this expression is our final answer. �

Space Requirements

In Section 2.2.1 we noted without proof that the conversion from an NFA to a DFA
may lead to exponential blow-up in the number of states. Certainly this did not
happen in our decimal string example: the NFA of Figure 2.8 has 14 states, while
the equivalent DFA of Figure 2.9 has only 7, and the minimal DFA of Figures 2.10
and 2.32 has only 4.

Consider, however, the subset of ( a | b | c )* in which some letter appears atEXAMPLE 2.58
A regular language with a
large minimal DFA

least three times. The minimal DFA for this language has 28 states. As shown in
Figure 2.33, 27 of these are states in which we have seen i, j, and k as, bs, and
cs, respectively. The 28th (and only final) state is reached once we have seen at
least three of some specific character.

By contrast, there exists an NFA for this language with only eight states, as shown
in Figure 2.34. It requires that we “guess,” at the outset, whether we will see three
as, three bs, or three cs. It mirrors the structure of the natural regular expression
( a | b | c )* a ( a | b | c )* a ( a | b | c )* | ( a | b | c )* b ( a | b | c )*
b ( a | b | c )* | ( a | b | c )* c ( a | b | c )* c ( a | b | c )* . �

Of course, the eight-state NFA does not emerge directly from the construction
of Section 2.2.1; that construction produces a 52-state machine with a certain
amount of redundancy, and with many extraneous states and epsilon productions.

But consider the similar subset of ( 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 )* inEXAMPLE 2.59
Exponential DFA blow-up which some digit appears at least ten times. The minimal DFA for this language

has 10,000,000,001 states: a non-final state for each combination of zeros through
nines with less than ten of each, and a single final state reached once any digit has
appeared at least ten times. One possible regular expression for this language is

Copyright c© 2009 by Elsevier Inc. All rights reserved.
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a,b,c

a,b,c

a,c

b,c b,c

a,c

a,b

a,b

a

a

a

a

a

c

c

c c

c

b

b b

b b

Start

000 100 200

010 110 210

020 120 220

001 101 201

011 111 211

021 121 221

002 102 202

012 112 212

022 122 222

Figure 2.33 DFA for the language consisting of all strings in ( a | b | c )* in which some letter appears at least three times.
State name ijk indicates that i as, j bs, and k cs have been seen so far. Within the cubic portion of the figure, most edge labels
are elided: a transitions move to the right, b transitions go back into the page, and c transitions move down.

( ( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0
( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0
( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* 0 ( 0 | 1 | . . . | 9 )* )

| ( ( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1
( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1
( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* 1 ( 0 | 1 | . . . | 9 )* )

| . . .
| ( ( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9

( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9
( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* 9 ( 0 | 1 | . . . | 9 )* )

Copyright c© 2009 by Elsevier Inc. All rights reserved.
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Start

a

bb b

a

a,b,c a,b,c

b,c b,c

a,c a,c

a,b a,b

c

a

c

c

Figure 2.34 NFA corresponding to the DFA of Figure 2.33.

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states! �

2.4.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) Σ, (3)
q1, and (4) F , as in a DFA, plus (6) a finite alphabet Γ of stack symbols, (7)
a distinguished initial stack symbol Z1 ∈ Γ, and (5′) a transition function δ :
Q × Γ × {Σ ∪ {ε}} → Q × Γ∗, where Γ∗ is the set of strings of zero or more
symbols from Γ. N begins in state q1, with symbol Z1 in an otherwise empty
stack. It repeatedly examines the current state q and top-of-stack symbol Z . If
δ(q,ε, Z) is defined, N moves to state r and replaces Z with α in the stack, where
(r , α) = δ(q,ε, Z). In this case N does not consume its input symbol. If δ(q,ε, Z)
is undefined, N examines and consumes the current input symbol a. It then moves
to state s and replaces Z with β, where (s, β) = δ(q, a, Z). N is interpreted as
accepting a string of input symbols if and only if it consumes the symbols and
ends in a state in F .

As with finite automata, a nondeterministic push-down automaton (NPDA) is
distinguished by a multivalued transition function: an NPDA can choose any of
a set of new states and stack symbol replacements when faced with a given state,
input, and top-of-stack symbol. If δ(q,ε, Z) is nonempty, N can also choose a new
state and stack symbol replacement without inspecting or consuming its current
input symbol. While we have seen that nondeterministic and deterministic finite
automata are equally powerful, this correspondence does not carry over to push-
down automata: there are context-free languages that are accepted by an NPDA
but not by any DPDA.

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite automata.
The proof is also of limited practical importance for compiler construction; we do
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not present it here. While it is possible to create an NPDA for any CFL, that NPDA
may in some cases require exponential time to recognize strings in the language.
(The O(n3) algorithms mentioned in Section 2.3 do not take the form of PDAs.)
Practical programming languages can all be expressed with LL or LR grammars,
which can be parsed with a (deterministic) PDA in linear time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis of
the current input token and top-of-stack symbol, its state diagram is trivial. All but
one of the transitions is a self-loop from the initial state to itself. A final transition
moves from the initial state to a second, final state when it sees $$ on the input and
the stack. As we noted in Section 2.3.3 (page 91), the state diagram for an SLR(1)
or LALR(1) parser is substantially more interesting: it’s the characteristic finite-
state machine (CFSM). Full LR(1) parsers have similar machines, but usually with
many more states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the
CFSM, without its stack, is a DFA that recognizes the grammar’s viable prefixes.
These are all the strings of grammar symbols that can begin a sentential form
in the canonical (right-most) derivation of some string in the language, and
that do not extend beyond the end of the handle. The algorithms to construct
LL(1) and SLR(1) PDAs from suitable grammars were given in Sections 2.3.2
and 2.3.3.

2.4.3 Grammar and Language Classes

As we noted in Section 2.1.2,a scanner is incapable of recognizing arbitrarily nestedEXAMPLE 2.60
0n1n is not a regular
language

constructs. The key to the proof is to realize that we cannot count an arbitrary
number of left-bracketing symbols with a finite number of states. Consider, for
example, the problem of accepting the language 0n1n . Suppose there is a DFA M
that accepts this language. Suppose further that M has m states. Now suppose we
feed M a string of m + 1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state qi twice while scanning this string. Without
loss of generality, let us assume it does so after seeing j zeros and again after seeing
k zeros, for j 	= k. Since we know that M accepts the string 0j1j and the string
0k1k , and since it is in precisely the same state after reading 0j and 0k , we can
deduce that M must also accept the strings 0j1k and 0k1j . Since these strings are
not in the language, we have a contradiction: M cannot exist. �

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-
ahead, it is possible in principle to use more than one, thereby expanding the
set of grammars that can be parsed in linear time. In the top-down case we
can redefine FIRST and FOLLOWsets to contain pairs of tokens in a more or less
straightforward fashion. If we do this, however, we encounter a more serious
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version of the immediate error detection problem described in Section 2.3.4.
There we saw that the use of context-independent FOLLOW sets could cause us
to overlook a syntax error until after we had needlessly predicted one or more
epsilon productions. Context-specific FOLLOW sets solved the problem, but did
not change the set of valid programs that could be parsed with one token of
look-ahead. If we define LL(k) to be the set of all grammars that can be parsed
predictively using the top-of-stack symbol and k tokens of look-ahead, then it
turns out that for k > 1 we must adopt a context-specific notion of FOLLOW

sets in order to parse correctly. The algorithm of Section 2.3.2, which is based on
context-independent FOLLOW sets, is actually known as SLL (simple LL), rather
than true LL. For k = 1, the LL(1) and SLL(1) algorithms can parse the same
set of grammars. For k > 1, LL is strictly more powerful. Among the bottom-up
parsers, the relationships among SLR(k), LALR(k), and LR(k) are somewhat more
complicated, but extra look-ahead always helps.

Containment relationships among the classes of grammars accepted by popularEXAMPLE 2.61
Separation of grammar
classes

linear-time algorithms appear in Figure 2.35. The LR class (no suffix) contains
every grammar G for which there exists a k such that G ∈ LR(k); LL, SLL, SLR, and
LALR are similarly defined. Grammars can be found in every region of the figure.
Examples appear in Figure 2.36. Proofs that they lie in the regions claimed are
deferred to Exercise 2.30. �

For any context-free grammar G and parsing algorithm P , we say that G is
a P grammar (e.g., an LL(1) grammar) if it can be parsed using that algo-
rithm. By extension, for any context-free language L, we say that L is a P lan-
guage if there exists a P grammar for L (this may not be the grammar we were
given). Containment relationships among the classes of languages accepted byEXAMPLE 2.62

Separation of language
classes

the popular parsing algorithms appear in Figure 2.37. Again, languages can be
found in every region. Examples appear in Figure 2.38; proofs are deferred to
Exercise 2.31. �

Note that every context-free language that can be parsed deterministically has
an SLR(1) grammar. Moreover, any language that can be parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has an LR(0) grammar. If we restrict our attention to
languages with an explicit $$ marker at end-of-file, then they all have the prefix
property, and therefore LR(0) grammars.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any
of the popular parsing algorithms, though the grammars are not always pretty, and
special-purpose“hacks”may sometimes be required when a language is almost,but
not quite, in a given class. The principal advantage of the more powerful parsing
algorithms (e.g., full LR) is that they can parse a wider variety of grammars for a
given language. In practice this flexibility makes it easier for the compiler writer
to find a grammar that is intuitive and readable, and that facilitates the creation
of semantic action routines.
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LR

LL

LL(2)LR(2)

LR(1)
LL(1)

LALR

LALR(2)

LALR(1)

LR(0)

Figure 2.35 Containment relationships among popular grammar classes. In addition to the
containments shown, SLL(k) is just inside LL(k), for k ≥ 2, but has the same relationship to
everything else, and SLR(k) is just inside LALR(k), for k ≥ 1, but has the same relationship to
everything else.

LL(2) but not SLL:

S −→ a A a | b A b a

A −→ b | ε

SLL(k) but not LL(k − 1):

S −→ ak−1 b | ak

LR(0) but not LL:

S −→ A b

A −→ A a | a

SLL(1) but not LALR:

S −→ A a | B b | c C
C −→ A b | B a

A −→ D
B −→ D
D −→ ε

SLL(k) and SLR(k) but not LR(k − 1):

S −→ A ak−1 b | B ak−1 c

A −→ ε

B −→ ε

LALR(1) but not SLR:

S −→ b A b | A c | a b

A −→ a

LR(1) but not LALR:

S −→ a C a | b C b | a D b |
b D a

C −→ c

D −→ c

Unambiguous but not LR:

S −→ a S a | ε

Figure 2.36 Examples of grammars in various regions of Figure 2.35.
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LL = SLL

Inherently
ambiguous

Nondeterministic
context-free

= deterministic context-free
with prefix property

SLR(1) = LR
= deterministic

context-free

LR(0)

LL(2) = SLL(2)

LL(1) = SLL(1)

Figure 2.37 Containment relationships among popular language classes.

Nondeterministic language:

{an
b

n
c : n ≥ 1} ∪ {an

b
2n
d : n ≥ 1}

Inherently ambiguous language:

{ai
b

j
c

k : i = j or j = k ; i, j, k ≥ 1}
Language with LL(k) grammar but no LL(k−1) grammar:

{an
( b | c | b

k
d ) n : n ≥ 1}

Language with LR(0) grammar but no LL grammar:

{an
b

n : n ≥ 1} ∪ {an
c

n : n ≥ 1}

Figure 2.38 Examples of languages in various regions of Figure 2.37.

3CHECK YOUR UNDERSTANDING

56. What formal machine captures the behavior of a scanner? A parser?

57. State three ways in which a real scanner differs from the formal machine.
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58. What are the formal components of a DFA?

59. Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

60. What is the inherent “big-O” complexity of parsing with an NPDA? Why is
this worse than the O(n3) time mentioned in Section 2.3?

61. How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.

62. What are the viable prefixes of a CFG?

63. Summarize the proof that a DFA cannot recognize arbitrarily nested con-
structs.

64. Explain the difference between LL and SLL parsing.

65. Is every LL(1) grammar also LR(1)? Is it LALR(1)?

66. Does every LR language have an SLR(1) grammar?

67. Why are the containment relationships among grammar classes more complex
than those among language classes?
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2.6 Exercises

2.28 Give an example of an erroneous program fragment in which consideration
of semantic information (e.g., types) might help one make a good choice
between two plausible “corrections” of the input.

2.29 Give an example of an erroneous program fragment in which the “best”
correction would require one to “back up” the parser (i.e., to undo recent
predictions/matches or shifts/reductions).

2.30 Prove that the grammars in Figure 2.36 lie in the regions claimed.

2.31 (Difficult) Prove that the languages in Figure 2.38 lie in the regions
claimed.

2.32 Prove that regular expressions and left-linear grammars are equally powerful.
A left-linear grammar is a context-free grammar in which every right-hand
side contains at most one nonterminal, and then only at the left-most end.
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2Programming Language
Syntax

2.7 Explorations

2.40 Experiment with syntax errors in your favorite compiler. Feed the compiler
deliberate errors and comment on the quality of the recovery or repair. How
often does it do the “right thing”? How often does it generate cascading
errors? Speculate as to what sort of recovery or repair algorithm it might be
using.

2.41 Spelling mistakes (typos in keywords and identifiers) are a common source
of syntax and static semantic errors. Identifying such errors—and guess-
ing what the user meant to type—could result in significantly better error
recovery. Discuss how you might go about incorporating spelling correction
into some existing error recovery system. (Hint: You might want to consult
Morgan’s early paper on this subject [Mor70].)
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3.4 Implementing Scope

For both static and dynamic scoping, a language implementation must keep track
of the name-to-object bindings in effect at each point in the program. The prin-
cipal difference is time: with static scope the compiler uses a symbol table to track
bindings at compile time; with dynamic scoping the interpreter or run-time sys-
tem uses an association list or central reference table to track bindings at run time.

3.4.1 SymbolTables

In a language with static scoping, the compiler uses an insert operation to place
a name-to-object binding into the symbol table for each newly encountered dec-
laration. When it encounters the use of a name that should already have been
declared, the compiler uses a lookup operation to search for an existing binding.
It is tempting to try to accommodate the visibility rules of static scoping by per-
forming a remove operation to delete a name from the symbol table at the end
of its scope. Unfortunately, several factors make this straightforward approach
impractical:

The ability of inner declarations to hide outer ones in most languages with
nested scopes means that the symbol table has to be able to contain an arbitrary
number of mappings for a given name. The lookup operation must return the
innermost mapping, and outer mappings must become visible again at end of
scope.

Records (structures) and classes have some of the properties of scopes, but
do not share their nicely nested structure. When it sees a record declaration,
the semantic analyzer must remember the names of the record’s fields (recur-
sively, if records are nested). At the end of the declaration, the field names
must become invisible. Later, however, whenever a variable of the record type
appears in the program text (as in my_rec.field_name), the record fields
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must suddenly become visible again for the part of the reference after the
dot. In Pascal and other languages with with statements (Section 7.3.3), field
names must become visible in a multi-statement context.

As noted in Section 3.3.3, names are sometimes used before they are declared.
Algol and C, for example, permit forward references to labels. Pascal permits
forward references in pointer declarations. Modula-3 permits forward refer-
ences of all kinds.

As noted in Section 3.3.3, C, C++, and Ada distinguish between the declaration
of an object and its definition. Pascal has a similar mechanism for mutually
recursive subroutines. When it sees a declaration, the compiler must remember
any nonvisible details, so that it can check the eventual definition for consis-
tency. This operation is similar to remembering the field names of records.

While it may be desirable to forget names at the end of their scope, and even
to reclaim the space they occupy in the symbol table, information about them
may need to be saved for use by a symbolic debugger. The debugger is a tool
that allows the user to manipulate a running program: starting it, stopping it,
and reading and writing its data. In order to parse high level commands from
the user (e.g., to print the value of my_firmˆ.revenues[1999]), the debugger
must have access to the compiler’s symbol table. To make it available at run
time, the compiler typically saves the table in a hidden portion of the final
machine-language program.

To accommodate these concerns, most compilers never delete anything fromEXAMPLE 3.44
The LeBlanc-Cook symbol
table

the symbol table. Instead, they manage visibility using enter scope and leave
scope operations. Implementations vary from compiler to compiler; the approach
described here is due to LeBlanc and Cook [CL83].

Each scope, as it is encountered, is assigned a serial number. The outermost
scope (the one that contains the predefined identifiers), is given number 0. The
scope containing programmer-declared global names is given number 1. Addi-
tional scopes are given successive numbers as they are encountered. All serial
numbers are distinct; they do not represent the level of lexical nesting, except in
as much as nested subroutines naturally end up with numbers higher than those
of surrounding scopes.

All names, regardless of scope, are entered into a single large hash table, keyed
by name. Each entry in the table then contains the symbol name, its category
(variable, constant, type, procedure, field name, parameter, etc.), scope number,
type (a pointer to another symbol table entry), and additional, category-specific
fields.

In addition to the hash table, the symbol table has a scope stack that indicates,
in order, the scopes that compose the current referencing environment. As the
semantic analyzer scans the program, it pushes and pops this stack whenever it
enters or leaves a scope, respectively. Entries in the scope stack contain the scope
number, an indication of whether the scope is closed, and in some cases further
information.
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procedure lookup(name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain

if e.name = name – – not something else with same hash value
if e.scope = 0

pervasive := e
else

foreach scope s on scope stack, top first
if s.scope = e.scope

best := e – – closer instance
exit inner loop

elsif best �= null and then s.scope = best.scope
exit inner loop – – won’t find better

if s.closed
exit inner loop – – can’t see farther

if best �= null
while best is an import or export entry

best := best.real entry
return best

elsif pervasive �= null
return pervasive

else
return null – – name not found

Figure 3.18 LeBlanc-Cook symbol table lookup operation.

To look up a name in the table, we scan down the appropriate hash chain
looking for entries that match the name we are trying to find. For each matching
entry, we scan down the scope stack to see if the scope of that entry is visible. We
look no deeper in the stack than the top-most closed scope. Imports and exports
are made visible outside their normal scope by creating additional entries in the
table; these extra entries contain pointers to the real entries. We don’t have to
examine the scope stack at all for entries with scope number 0: they are pervasive.
Pseudocode for the lookup algorithm appears in Figure 3.18. �

The lower right portion of Figure 3.19 contains the skeleton of a Modula-EXAMPLE 3.45
Symbol table for a sample
program

2 program. The remainder of the figure shows the configuration of the symbol
table for the referencing environment of the with statement in procedure P2. The
scope stack contains four entries representing, respectively, the with statement,
procedure P2, module M, and the global scope. The scope for the with statement
indicates the specific record variable to which names (fields) in this scope belong.
The outermost, pervasive scope is not explicitly represented.

All of the entries for a given name appear on the same hash chain, since the
table is keyed on name. In this example, A2, F2, and T have also ended up on a
single chain, due to hash collisions. Variables V and I (M’s I) have extra entries,
to make them visible across the boundary of closed scope M. When we are inside
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type
 T = record
  F1 : integer;
  F2 : real;
 end;
var V : T;
...
module M;
 export I; import V;
 var  I : integer;
 ...
 procedure P1 (A1 : real;
  A2t: integer) : real;
 begin
  ...
 end P1;
 ...
 procedure P2 (A3 : real);
 var  I : integer;
 begin
  ...
  with V do
      ...
  end;
  ...
 end P2;
 ...
end M;

Hash table Scope stack
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parameters

M 1

2 record V

5

3

1

mod

A1 4 (2)param

P1 3 (1)func

I

I

I

5 (1)var

3 (1)var

export1 (1)var

A2 4 (1)param

V 3 importvar

F2 2 (2)field

record scope 2T 1type

V 1var

integer 0 (1)

(2)

type

real 0type

—F1 2 (1)field

A3 5 (2) —param

P2 proc 3 parameters

with V

P2

M

Globals

X

Sc
ope

Figure 3.19 LeBlanc-Cook symbol table for an example program in a language like Modula-2. The scope stack represents
the referencing environment of the with statement in procedure P2. For the sake of clarity, the many pointers from type fields
to the symbol table entries for integer and real are shown as parenthesized (1)s and (2)s, rather than as arrows.
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Referencing environment A-list

(predefined names)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

Referencing environment A-list

(predefined names)

other infoP

other infoJ

other infoI

other infoI

other infoJ

other info

global proc

global var

global var

param

local var

global procQ

other infoP

other infoJ

other infoI

other infoJ

other info

global proc

global var

global var

local var

global procQ

(newest declarations are at this end of the list)

Figure 3.20 Dynamic scoping with an association list. The left side of the figure shows the referencing environment at the
point in the code indicated by the adjacent grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the A-list. The right side of the figure shows the environment at the other
grey arrow: after P returns to Q. When searching for I, one will find the global definition.

P2, a lookup operation on I will find P2’s I; neither of the entries for M’s I will
be visible. The entry for type T indicates the scope number to be pushed onto
the scope stack during with statements. The entry for each subroutine contains
the head pointer of a list that links together the subroutine’s parameters, for use
in analyzing calls (additional links of these chains are not shown). During code
generation, many symbol table entries would contain additional fields, for such
information as size and run-time address. �

3.4.2 Association Lists and Central ReferenceTables

Pictorial representations of the two principal implementations of dynamic scoping
appear in Figures 3.20 and 3.21. Association lists are simple and elegant, but
can be very inefficient. Central reference tables resemble a simplified LeBlanc-
Cook symbol table, without the separate scope stack; they require more work at
scope entry and exit than do association lists, but they make lookup operations fast.

A-lists are widely used for dictionary abstractions in Lisp; they are supportedEXAMPLE 3.46
A-list lookup in Lisp by a rich set of built-in functions in most Lisp dialects. It is therefore natural
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(other names)

Central reference table

P

I

Q

J

(each table entry points to the newest declaration of the given name)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

other info

other infoother info

global proc

global varparam

other infoglobal proc

other infoother info global varlocal var

(other names)

Central reference table

P

I

Q

J

other info

other info

global proc

global var

other infoglobal proc

other infoother info global varlocal var

Figure 3.21 Dynamic scoping with a central reference table.The upper half of the figure shows the referencing environment
at the point in the code indicated by the upper grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the chain in the I slot of the table. The lower half of the figure shows the
environment at the lower grey arrow: after P returns to Q. When searching for I, one will find the global definition.

for Lisp interpreters to use an A-list to keep track of name-value bindings, and
even to make this list explicitly visible to the running program. Since bindings are
created when entering a scope, and destroyed when leaving or returning from a
scope, the A-list functions as a stack. When execution enters a scope at run time,
the interpreter pushes bindings for names declared in that scope onto the top of
the A-list. When execution finally leaves a scope, these bindings are removed. To
look up the meaning of a name in an expression, the interpreter searches from
the top of the list until it finds an appropriate binding (or reaches the end of the
list, in which case an error has occurred). Each entry in the list contains whatever
information is needed to perform semantic checks (e.g., type checking, which we
will consider in Section 7.2) and to find variables and other objects that occupy
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memory locations. In the left half of Figure 3.20, the first (top) entry on the
A-list represents the most recently encountered declaration: the I in procedure
P. The second entry represents the J in procedure Q. Below these are the global
symbols, Q, P, J, and I, and (not shown explicitly) any predefined names provided
by the Lisp interpreter. �

The problem with using an association list to represent a program’s referencing
environment is that it can take a long time to find a particular entry in the list,
particularly if it represents an object declared in a scope encountered early in the
program’s execution, and now buried deep in the list. A central reference table isEXAMPLE 3.47

Central reference table designed for faster access. It has one slot for every distinct name in the program.
The table slot in turn contains a list (stack) of declarations encountered at run
time, with the most recent occurrence at the beginning of the list. Looking up a
name is now easy: the current meaning is found at the beginning of the list in the
appropriate slot in the table. In the upper part of Figure 3.21, the first entry
on the I list is the I in procedure P; the second is the global I. If the program is
compiled and the set of names is known at compile time, then each name can have
a statically assigned slot in the table, which the compiled code can refer to directly.
If the program is not compiled, or the set of names is not statically known, then a
hash function will need to be used at run time to find the appropriate slot. �

When control enters a new scope at run time, entries must be pushed onto the
beginning of every list in the central reference table whose name is (re)declared
in that scope. When control leaves a scope for the final time, these entries
must be popped. The work involved is somewhat more expensive than push-
ing and popping an A-list, but not dramatically more so, and lookup opera-
tions are now much faster. In contrast to the symbol table of a compiler for
a language with static scoping, central reference table entries for a given scope
do not need to be saved when the scope completes execution; the space can be
reclaimed.

Within the Lisp community, implementation of dynamic scoping via an asso-
ciation list is sometimes called deep binding, because the lookup operation may
need to look arbitrarily deep in the list. Implementation via a central reference
table is sometimes called shallow binding, because it finds the current association
at the head of a given reference chain. Unfortunately, the terms “deep and shallow
binding” are also more widely used for a completely different purpose, discussed
in Section 3.6. To avoid potential confusion, some authors use “deep and shallow
access” [Seb08] or “deep and shallow search” [Fin96] for the implementations of
dynamic scoping.

Closures with Dynamic Scoping

(This subsection is best read after Section 3.6.1.)
If an association list is used to represent the referencing environment of aEXAMPLE 3.48

A-list closures program with dynamic scoping, the referencing environment in a closure can
be represented by a top-of-stack (beginning of A-list) pointer (Figure 3.22).
When a subroutine is called through a closure, the main pointer to the referencing
environment A-list is temporarily replaced by the pointer from the closure, making
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procedure P(procedure C)
 declare I, J
 call C

procedure F
 declare I

procedure Q
 declare J
 call F

−− main program
 call P(Q)

Referencing environment A-listCentral Stack

main program

P
I, J
C == Q

Q J

I

M

P

Q

F

I

J

J

I

F

Figure 3.22 Capturing the A-list in a closure. Each frame in the stack has a pointer to the
current beginning of the A-list, which the run-time system uses to look up names.When the main
program passes Q to P with deep binding, it bundles its A-list pointer in Q’s closure (dashed
arrow). When P calls C (which is Q), it restores the bundled pointer. When Q elaborates its
declaration of J (and F elaborates its declaration of I), the A-list is temporarily bifurcated.

any bindings created since the closure was created (P’s I and J in the figure)
temporarily invisible. New bindings created within the subroutine (or in any
subroutine it calls) are pushed using the temporary pointer. Because the A-list is
represented by pointers (rather than an array), the effect is to have two lists—
one representing the caller’s referencing environment and the other temporary
referencing environment resulting from use of the closure—that share their older
entries. When Q returns to P in our example, the original head of the A-list will
be restored, making P’s I and J visible again. �

With a central reference table implementation of dynamic scoping, the creation
of a closure is more complicated. In the general case, it may be necessary to
copy the entire main array of the central table and the first entry on each of its
lists. Space and time overhead may be reduced if the compiler or interpreter is
able to determine that only some of the program’s names will be used by the
subroutine in the closure (or by things that the subroutine may call). In this case,
the environment can be saved by copying the first entries of the lists for only the
names that will be used. When the subroutine is called through the closure, these
entries can then be pushed onto the beginnings of the appropriate lists in the
central reference table. Additional code must be executed to remove them again
after the subroutine returns.
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3CHECK YOUR UNDERSTANDING

44. List the basic operations provided by a symbol table.

45. Outline the implementation of a LeBlanc-Cook style symbol table.

46. Why don’t compilers generally remove names from the symbol table at the
ends of their scopes?

47. Describe the association list (A-list ) and central reference table data structures
used to implement dynamic scoping. Summarize the tradeoffs between them.

48. Explain how to implement deep binding by capturing the referencing envi-
ronment A-list in a closure. Why are closures harder to build with a central
reference table?
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3.8 Separate Compilation

Probably the most straightforward mechanisms for separate compilation can be
found in module-based languages such as Modula-2, Modula-3, and Ada, which
allow a module to be divided into a declaration part (or header) and an imple-
mentation part (or body). As we noted in Section 3.3.4, the header contains all and
only the information needed by users of the module (or needed by the compiler
in order to compile such a user); the body contains the rest.

As a matter of software engineering practice, a design team will typically define
module interfaces early in the lifetime of a project, and codify these interfaces
in the form of module headers. Individual team members or subteams will then
work to implement the module bodies. While doing so, they can compile their code
successfully using the headers for the other modules. Using preliminary copies of
the bodies, they may also be able to undertake a certain amount of testing.

In a simple implementation, only the body of a module needs to be compiled
into runnable code: the compiler can read the header of module M when com-
piling the body of M, and also when compiling the body of any module that uses
M . In a more sophisticated implementation, the compiler can avoid the over-
head of repeatedly scanning, parsing, and analyzing M ’s header by translating it
into a symbol table, which is then accessed directly when compiling the bodies
of M and its users. Most Ada implementations compile their module headers.
Implementations of Modula-2 and 3 vary: some work one way, some the other.

As a practical matter, many languages allow the header of a module to be
subdivided into a “public” part, which specifies the interface to the rest of the
program, and a “private” part, which is not visible outside the module, but is
needed by the compiler, for example to determine the storage requirements of
opaque types. Ideally, one would include in the header of a module only that
information that the programmer needs to know to use the abstraction(s) that
the module provides. Restricted exports, and the public and private portions of
headers, are compromises introduced to allow the compiler to generate code in
the face of separate compilation.
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At some point prior to execution, modules that have been separately compiled
must be“glued together”to form a single program. This job is the task of the linker.
At the very least, the linker must resolve cross-module references (loads, stores,
jumps) and relocate any instructions whose encoding depends on the location of
certain modules in the final program. Typically it also checks to make sure that
users and implementors of a given interface agree on the version of the header file
used to define that interface. In some environments, the linker may perform addi-
tional tasks as well, including certain kinds of interprocedural (whole-program)
code improvement. We will return to the subject of linking in Chapters 14 and 15.

3.8.1 Separate Compilation in C

Theinitialversionof CwasdesignedatBellLaboratoriesaround1970. Ithasevolved
considerably over the years, but not, for the most part, in the area of separate com-
pilation. Here the language remains comparatively primitive. In particular, there
is in general no way for the compiler or the linker to detect inconsistencies among
declarations or uses of a name in different files. The C89 standards committee intro-
duced a new explanation of separate compilation based on the notion of linkage,
but this served mainly to clarify semantics, not to change them. The current rules
can be summarized as follows (certain details and special cases are omitted):

If the declaration of a global object (variable or function) contains the word
static, then the object has internal linkage, and is identified with (linked to)
any other internally linked declaration of the same name in the same file.

If the declaration of a function does not contain the keyword static, then
it has external linkage, and is identified with any other (nonstatic) declaration
of the same function in any file of the program. (A function declaration may
consist of just the header.)

If the declaration of a variable contains the keyword extern, then the variable
has the same linkage as any visible, internally or externally linked declaration
of the same name appearing earlier in the file. If there is no earlier declaration,
then the variable has external linkage, and is identified with any other declara-
tion of the same external variable in any file of the program. In other words,
files in the same program that contain matching external variable declarations
actually share the same variable. A global variable also has external linkage if
its declaration says neither static nor extern.

If an object is declared with both internal and external linkage, the behavior
of the program is undefined.

An object (variable or function) that is externally linked must have a definition
in exactly one file of a program. A variable is defined when it is given an initial
value, or is declared at the global level without the extern keyword. A function
is defined when its body (code) is given.

Many C implementations prior to C89 relaxed the final rule to permit zero or
one definitions of an external variable; some permitted more than one. In these
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implementations, the linker unified multiple definitions, and created an implicit
definition for any variable (or set of linked variables) for which the program
contained only declarations.

The “linkage” rules of C89 provide a way to associate names in one file with
names in another file. The rules are most easily understood in terms of their
implementation. Most language-independent linkers are designed to deal with
symbols: character-string names for locations in a machine-language program.
The linker’s job is to assign every symbol a location in the final program, and
to embed the address of the symbol in every machine-language instruction that
makes a reference to it. To do this job, the linker needs to know which symbols can
be used to resolve unbound references in other files, and which are local to a given
file. C89 rules suffice to provide this information. For the programmer, however,
there is no formal notion of interface, and no mechanism to make a name visible
in some, but not all files. Moreover, nothing ensures that the declarations of an
external object found in different files will be compatible: it is entirely possible,
for example, to declare an external variable as a multifield record in one file and
as a floating-point number in another. The compiler is not required to catch such
errors, and the resulting bugs can be very difficult to find.

Header Files

Fortunately, C programmers have developed conventions on the use of external
declarations that tend to minimize errors in practice. These conventions rely on
the file inclusion facility of a macro preprocessor. The programmer creates files
in pairs that correspond roughly to the interface and the implementation of a
module. The name of an interface file ends with.h; the name of the corresponding
implementation file ends with .c. Every object defined in the .c file is declared
in the .h file. At the beginning of the .c file, the programmer inserts a directive
that is treated as a special form of comment by the compiler, but that causes
the preprocessor to include a verbatim copy of the corresponding .h file. This
inclusion operation has the effect of placing “forward” declarations of all the
module’s objects at the beginning of its implementation file. Any inconsistencies
with definitions later in the file will result in error messages from the compiler. The
programmer also instructs the preprocessor at the top of each.c file to include a
copy of the.h files for all of the modules on which the.c file depends. As long as
the preprocessor includes identical copies of a given.h file in all the.c files that
use its module, no inconsistent declarations will occur. Unfortunately, it is easy to
forget to recompile one or more .c files when a .h file is changed, and this can
lead to very subtle bugs. Tools like Unix’s make utility help minimize such errors
by keeping track of the dependences among modules.

Namespaces

Even with the convention of header files, C89 still suffers from the lack of scoping
beyond the level of an individual file. In particular, all global names must be
distinct, across all files of a program, and all libraries to which it links. Some
coding standards encourage programmers to embed a module’s name in the name
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of each of its external objects (e.g., scanner_nextSym), but this practice can be
awkward, and is far from universal.

To address this limitation, C++ introduced a namespace mechanism that gen-
eralizes the scoping already provided for classes and functions, breaks the tie
between module and compilation unit, and strengthens the interface conventions
of.h files. Any collection of names can be declared inside a namespace:EXAMPLE 3.49

Namespaces in C++
namespace foo {

class foo_type_1; // declaration
...

}

Actual definitions of the objects within foo can then appear in any file:

class foo::foo_type_1 { ... // full definition

Definitions of objects declared in different namespaces can appear in the same file
if desired. �

A C++ programmer can access the objects in a namespace using fully qualifiedEXAMPLE 3.50
Using names from another
namespace

names, or by importing (using) them explicitly:

foo::foo_type_1 my_first_obj;

or

using foo::foo_type_1;
...
foo_type_1 my_first_obj;

or

using namespace foo; // import everything from foo
...
foo_type_1 my_first_obj;

There is no notion of export; all objects with external linkage in a namespace
are visible elsewhere if imported. Note that linkage remains the foundation for
separate compilation:.h files are merely a convention. �

3.8.2 Packages and Automatic Header Inference

The separate compilation facilities of Java and C# eliminate .h files. Specifically,EXAMPLE 3.51
Packages in Java Java introduces a formal notion of module, called a package. Every compilation

unit, which may be a file or (in some implementations) a record in a database,
belongs to exactly one package, but a package may consist of many compilation
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units, each of which begins with an indication of the package to which it
belongs:

package foo;
public class foo_type_1 { ...

Unless explicitly declared as public, a class in Java is visible in all and only those
compilation units that belong to the same package. �

As in C++, a compilation unit that needs to use classes from another packageEXAMPLE 3.52
Using names from another
package

can access them using fully qualified names, or via name-at-a-time or package-at-
a-time import:

foo.foo_type_1 my_first_obj;

or

import foo.foo_type_1;
...
foo_type_1 my_first_obj;

or

import foo.*; // import everything from foo
...
foo_type_1 my_first_obj; �

When asked to import names from package M, the Java compiler will search for
M in a standard (but implementation-dependent) set of places, and will recompile
it if appropriate (i.e., if only source code is found, or if the target code is out of
date). The compiler will then automatically extract the information that would
have been needed in a C++.h file or an Ada or Modula-3 header. If the compilation
of M requires other packages, the compiler will search for them as well, recursively.

C# follows Java’s lead in extracting header information automatically from
complete class definitions. Its module-level syntax, however, is based on the
namespaces of C++, which allow a single file to contain fragments of multiple
namespaces. There is also no notion of standard search path in C#: to build a
complete program, the programmer must provide the compiler with a complete
list of all the files required.

To mimic the software engineering practice of early header file construction, a
Java or C# design team can create skeleton versions of (the public classes of) its
packages or namespaces, which can then be used, concurrently and independently,
by the programmers responsible for the full versions.

3.8.3 Module Hierarchies

In Modula and Ada, the programmer can create a hierarchy of modules within a
single compilation unit by means of lexical nesting (module C, for example, may
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be declared inside of module B, which in turn is declared inside of module A).
In a similar vein, the Ada 95, Java, or C# programmer can create a hierarchy ofEXAMPLE 3.53

Multipart package names separately compiled modules by means of multipart names:

package A.B is ... -- Ada 95

package A.B; ... // Java

namespace A.B { ... // C#

In these examples package A.B is said to be a child of package A. In Ada 95 and
C# the child behaves as though it had been nested inside of the parent, so that all
the names in the parent are automatically visible. In Java, by contrast, multipart
names work by convention only: there is no special relationship between packages
A and A.B. If A.B needs to refer to names in A, then A must make them public,
and A.B must import them. Child packages in Ada 95 are reminiscent of derived
classes in C++, except that they support a module-as-manager style of abstraction,
rather than a module-as-type style. We will consider the Ada 95 facilities further
in Section 9.2.4. �

3CHECK YOUR UNDERSTANDING

49. What purpose(s) does separate compilation serve?

50. What does it mean for an external variable to be linked in C?

51. Summarize the C conventions for use of.h and.c files.

52. Describe the difference between a compilation unit and a C++ or C# name-
space.

53. Explain why Ada and similar languages separate the header of a module from
its body. Explain how Java and C# get by without.

DESIGN & IMPLEMENTATION

Separate compilation
The evolution of separate compilation mechanisms from early C and Fortran,
through C++, Modula-3, Ada, and finally Java and C#, reflects a move from an
implementation-centric viewpoint to a more programmer-centric viewpoint.
Interestingly, the ability to have zero definitions of an externally linked variable
in certain early implementations of C is inherited from Fortran: the assembly
language mnemonic corresponding to a declaration without a definition is
.common (for common block). (And as we noted in Section 3.3.1 [page 123], the
lack of type checking for common blocks was originally considered a feature,
not a bug!)
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3.10 Exercises

3.23 Assuming a LeBlanc-Cook style symbol table, explain how the compiler finds
the symbol table information (e.g., the type) of a complicated reference such
as my_firmˆ.revenues[1999].

3.24 Show the contents of a LeBlanc-Cook style symbol table that captures the
referencing environment of

(a) function F1 in Figure 3.4 (page 126).

(b) procedure pop in Figure 3.7 (page 136).

3.25 Show a trace of the contents of the referencing environment A-list during
execution of the program in

(a) Figure 3.9 (page 140). Assume that a positive value is read at line 8.

(b) Exercise 3.14.

3.26 Repeat the previous exercise for a central reference table.

3.27 Consider the following tiny program in C:

void hello() {
printf("Hello, world\n");

}

int main() {
hello();

}

(a) Split the program into two separately compiled files, tiny.c and
hello.c. Be sure to create a header file hello.h and include it cor-
rectly in tiny.c.
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(b) Reconsider the program as C++ code. Put the hello function in a
separate namespace, and include an appropriate using declaration in
tiny.c.

(c) Rewrite the program in Java, with main and hello in separate packages.

3.28 Consider the following file from some larger C program:

int a;
extern int b;
static int c;

void foo() {
int a;
static int b;
extern int c;
extern int d;

}

static int b;
extern int c;

For each variable declaration, indicate whether the variable has external
linkage, internal (file-level) linkage, or no linkage (i.e., is local).

3.29 Modula-2 provides no way to divide the header of a module into a public
part and a private part: everything in the header is visible to the users of
the module. Is this a major shortcoming? Are there disadvantages to the
public/private division (e.g., as in Ada)? (For hints, see Section 9.2.)
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3.11 Explorations

3.39 Learn about the .stabs directives used by Unix compilers and assemblers
to include symbol table information in object and executable files, where it
will be accessible to symbolic debuggers. Write a brief tutorial that might
help a systems programmer understand the directives found in assembly
language files.

3.40 Learn about the reflection mechanisms of Java, C#, Prolog, Perl, PHP, Tcl,
Python, or Ruby, all of which allow a program to inspect and reason about its
own symbol table at run time. How complete are these mechanisms? (For
example, can a program inspect symbols that aren’t currently in scope?)
What is reflection good for? What uses should be considered good or bad
programming practice? For more ideas, see Section 15.3.1.

3.41 Learn about the typeglob mechanism of Perl, which allows a program to
modify its own symbol table at run time. What are typeglobs good for?
(See the sidebar on page 707 for some initial pointers.)

3.42 Create a C program in which a variable is exported from one file and
imported by another, but the declarations in the files disagree with respect
to type. You should be able to arrange for the program to compile and link
successfully, but behave incorrectly. Try the same thing in Ada or C++. What
happens?

3.43 Investigate the use of module hierarchies in the standard libraries of C++,
Java, and C#. How is each organized? How fine grain is the division into
separate headers or packages? Can you suggest an explanation for any major
differences you find?
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4.5 Space Management for Attributes

A compiler that does not build an explicit parse tree requires some other mech-
anism to allocate, deallocate, and refer to storage space for attributes. In the two
subsections below we consider attribute space management for bottom-up and
top-down parsers, respectively. For bottom-up parsers the principal challenge is
where to put the inherited attributes of symbols that have not yet been seen,
and thus have no record in the parse stack. For top-down parsers this challenge
does not arise, but we must go to a bit more effort to retain space for symbols
that have already been parsed, and we must choose whether to manage this space
automatically or to give some of the burden to the writer of action routines.

4.5.1 Bottom-Up Evaluation

Figure 4.17 shows a trace of the parse and attribute stack for (1 + 3) * 2,EXAMPLE 4.19
Stack trace for bottom-up
parse, with action routines

using the attribute grammar of Figure 4.1. For the sake of clarity, we show a single,
combined stack for the parser and attribute evaluator, and we omit the CFSM state
numbers.

It is easy to evaluate the attributes of symbols in this grammar, because the
grammar is S-attributed. In an automatically generated parser, such as those pro-
duced by yacc/bison, the attribute rules associated with the productions of the
grammar in Figure 4.1 would constitute action routines, to be executed when
their productions are recognized. For yacc/bison, they would be written in C,
with “pseudostructs” to name the attribute records of the symbols in each pro-
duction. Attributes of the left-hand side symbol would be accessed as fields of the
pseudostruct $$. Attributes of right-hand side symbols would be accessed as fields
of the pseudostructs $1, $2, etc. To get from line 9 to line 10, for example, in the
trace of Figure 4.17, we would use an action routine version of the first rule of
the grammar in Figure 4.1: $$.val = $1.val + $3.val. �
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1. (
2. ( 1
3. ( F1

4. ( T1

5. ( E1

6. ( E1 +
7. ( E1 + 3
8. ( E1 + F3

9. ( E1 + T3

10. ( E4

11. ( E4 )
12. F4

13. T4

14. T4 *
15. T4 * 2
16. T4 * F2

17. T8

18. E8

Figure 4.17 Parse/attribute stack trace for (1 + 3) * 2, using the grammar of Figure 4.1.
Subscripts represent val attributes; they are not meant to distinguish among instances of a symbol.

When a bottom-up action routine is executed, the attribute records for symbols
on the right-hand side of the production can be found in the top few entries of
the attribute stack. The attribute record for the symbol on the left-hand side of
the production (i.e., $$) will not yet lie in the stack: it is the task of the action
routine to initialize this record. After the action routine completes, the parser
pops the right-hand side records off the attribute stack and replaces them with
$$. In yacc/bison, if no action routine is specified for a given production, the
default action is to “copy” $1 into $$. Since $$ will occupy the same location,
once pushed, that $1 occupied before being popped, this “copy” can be effected
without doing any work.

Inherited Attributes

Unfortunately, it is not always easy to write an S-attributed grammar. A simpleEXAMPLE 4.20
Finding inherited attributes
in “buried” records

example in which inherited attributes are desirable arises in C or Fortran-style
variable declarations, in which a type name precedes the list of variable names:

dec −→ type id list

id list −→ id

id list −→ id list , id

Let us assume that type has a synthesized attribute tp that contains a pointer to
the symbol table entry for the type in question. Ideally, we should like to pass this
attribute into id list as an inherited attribute, so that we may enter each newly
declared identifier into the symbol table, complete with type indication, as it is
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encountered. When we recognize the production id list −→ id , we know that the
top record on the attribute stack will be the one for id. But we know more than
this: the next record down must be the one for type. To find the type of the new
entry to be placed in the symbol table, we may safely inspect this “buried” record.
Though it does not belong to a symbol of the current production, we can count on
its presence because there is no other way to reach the id list −→ id production.

Now what about the id in id list −→ id list , id? This time the top three
records on the attribute stack will be for the right-hand symbols id, ,, and id list.
Immediately below them, however, we can still count on finding the entry for
type, waiting for the id list to be completed so that dec can be recognized. Using
nonpositive indices for pseudostructs below the current production, we can write
action routines as follows:

dec −→ type id list

id list −→ id { declare id ($1.name, $0.tp) }
id list −→ id list , id { declare id ($3.name, $0.tp) }

Records deeper in the attribute stack could be accessed as $–1, $–2, and so on.
While id list appears in two places in this grammar fragment, both occurrences
are guaranteed to lie above a type record in the attribute stack, the first because it
lies next to type in a right-hand side, and the second by induction, because it is
the beginning of the yield of the first. �

Unfortunately, there are grammars in which a symbol that needs inherited
attributes occurs in productions in which the underlying symbols are not the same.
We can still handle inherited attributes in such cases, but only by modifying the
underlying context-free grammar. An example can be found in languages like Perl,EXAMPLE 4.21

Grammar fragment
requiring context

in which the meaning of an expression (and of the identifiers and operators within
it) depends on the context in which that expression appears. Some Perl contexts
expect arrays. Others expect numbers, strings, or Booleans. To correctly analyze
an expression, we must pass the expectations of the context into the expression
subtree as inherited attributes. Here is a grammar fragment that captures the
problem:

stmt −→ id := expr

−→ . . .

−→ if expr then stmt

expr −→ . . .

Within the production for expr, the parser doesn’t know whether the surround-
ing context is an assignment or the condition of an if statement. If it is a condition,
then the expected type of the expression is Boolean. If it is an assignment, then
the expected type is that of the identifier on the assignment’s left-hand side. This
identifier can be found two records below the current production in the attribute
stack. �
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Semantic Hooks

To allow these cases to be treated uniformly, we can add semantic hook, or“marker”EXAMPLE 4.22
Semantic hooks for
context

symbols to the grammar. Semantic hooks generate ε, and thus do not alter the lan-
guage defined by the grammar; their only purpose is to hold inherited attributes.

stmt −→ id := A expr

−→ . . .

−→ if B expr then stmt

A −→ ε { $$.tp := $–1.tp }
B −→ ε { $$.tp := Boolean }
expr −→ . . . { if $0.tp = Boolean then . . .} �
Since the epsilon production for a semantic hook can provide an action routine,

it is tempting to think of semantic hooks as a general technique to insert action
routines in the middle of bottom-up productions. Unfortunately this is not the
case: semantic hooks can be used only in places where the parser can be sure that
it is in a given production. Placing a semantic hook anywhere else will break the
“LR-ness” of the grammar, causing the parser generator to reject the modified
grammar. Consider the following example:EXAMPLE 4.23

Semantic hooks that break
an LR CFG 1. stmt −→ l val := expr

2. −→ id args

3. l val −→ id quals

4. quals −→ quals . id

5. −→ quals ( expr list )

6. −→ ε

7. args −→ ( expr list )

8. −→ ε

An l-value in this grammar is a “qualified” identifier: an identifier followed by
optional array subscript and record field qualifiers.1 We have assumed that the
language follows the notation of Fortran and Ada, in which parentheses delimit
both procedure call arguments and array subscripts. In the case of procedure calls,
it would be natural to want an action routine to pass the symbol-table index of
the subroutine into the argument list as an inherited attribute, so that it can be
used to check the number and types of arguments:

stmt −→ id A args

A −→ ε { $$.proc index := lookup ($0.name) }

1 In general, an l-value in a programming language is anything to which a value can be assigned
(i.e., anything that can appear on the left-hand side of an assignment). From a low-level point of
view, this is basically an address. An r-value is anything that can appear on the right-hand side of
an assignment. From a low level point of view, this is a value that can be stored at an address. We
will discuss l-values and r-values further in Section 6.1.2.
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If we try this, however, we will run into trouble, because the procedure call

foo(1, 2, 3);

and the array element assignment

foo(1, 2, 3) := 4;

begin with the same sequence of tokens. Until it sees the token after the closing
parenthesis, the parser cannot tell whether it is working on production 1 or pro-
duction 2. The presence of A in production 2 will therefore lead to a shift-reduce
conflict; after seeing an id, the parser will not know whether to recognize A or
shift (. �

Left Corners

In general, the right-hand side of a production in a context-free grammar is said
to consist of the left corner and the trailing part. In the left corner we cannot
be sure which production we are parsing; in the trailing part the production is
uniquely determined. In an LL(1) grammar, the left corner is always empty. In
an LR(1) grammar, it can consist of up to the entire right-hand side. Semantic
hooks can safely be inserted in the trailing part of a production, but not in the left
corner. Yacc/bison recognizes this fact explicitly by allowing action routines toEXAMPLE 4.24

Action routines in the
trailing part

be embedded in right-hand sides. It automatically converts the production

S −→ α { your code here } β

to

S −→ α A β

A −→ ε { your code here }
for some new, distinct symbol A. If the action routine is not in the trailing part,
the resulting grammar will not be LALR(1), and yacc/bisonwill produce an error
message. �

In our procedure call and array subscript example, we cannot place a semanticEXAMPLE 4.25
Left factoring in lieu of
semantic hooks

hook before the args of production 2 because this location is in the left corner.
If we wish to look up a procedure name in the symbol table before we parse
the arguments, we will need to combine the productions for statements that can
begin with an identifier, in a manner reminiscent of the left factoring discussed in
Section 2.3.2:

stmt −→ id A quals assign opt

A −→ ε { $$.id index := lookup ($0.name) }
quals −→ quals . id

−→ quals ( expr list )

−→ ε

assign opt −→ := expr

−→ ε
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This change eliminates the shift-reduce conflict, but at the expense of combining
the entire grammar subtrees for procedure call arguments and array subscripts.
To use the modified grammar we shall have to write action routines for quals that
work for both kinds of constructs, and this can be a major nuisance. Users of
LR-family parser generators often find that there is a tension between the desire
for grammar clarity and parsability on the one hand, and the need for semantic
hooks to set inherited attributes on the other. �

4.5.2 Top-Down Evaluation

Top-down parsers, as discussed in Chapter 2, come in two principal varieties:
recursive descent and table driven. Attribute management in recursive descent
parsers is almost trivial: inherited attributes of symbol foo take the form of param-
eters passed into the parsing routine named foo; synthesized attributes are the
return parameters. These synthesized attributes can then be passed as inherited
attributes to symbols later in the current production, or returned as synthesized
attributes of the current left-hand side.

Attribute space management for automatically generated top-down parsers is
somewhat more complex. Because they allow action routines at arbitrary locations
in a right-hand side, top-down parsers avoid the need to modify the grammar in
order to insert semantic hooks. (Of course, because they must have empty left
corners, top-down grammars can be harder to write in the first place.) Because
the parse stack describes the future, instead of the past, we cannot employ an
attribute stack that simply mirrors the parse stack. Our two principal options
are to equip the parser with a (more complicated) algorithm for automatic space
management, or to require action routines to manage space explicitly.

Automatic Management

Automatic management of attribute space for top-down parsing is more compli-
cated than it is for bottom-up parsing. It is also more space intensive. We can still
use an attribute stack, but it has to contain all of the symbols in all of the pro-
ductions between the root of the (hypothetical) parse tree and the current point
in the parse. All of the right-hand side symbols of a given production are adjacent
in the stack; the left-hand side is buried in the right-hand side of a deeper (closer
to the root) production.

Figure 4.18 contains an LL(1) grammar for constant expressions, with actionEXAMPLE 4.26
Operation of an LL
attribute stack

routines. Figure 4.19 uses this grammar to trace the operation of a top-down
attribute stack on the sample input (1 + 3) * 2. The left-hand column shows
the parse stack. The right-hand column shows the attribute stack. Three global
pointers index into the attribute stack. One (shown as an “arrow-boxed” L in the
trace) identifies the record in the attribute stack that holds the attributes of the
left-hand side symbol of current production. The second (shown as an arrow-
boxed R in the trace) identifies the first symbol on the right-hand side of the
production. L and R allow the action routines to find the attributes of the symbols
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E −→ T { TT.st := T.val }1 TT { E.val := TT.val }2

TT1 −→ + T { TT2.st := TT1.st + T.val }3 TT2 { TT1.val := TT2.val }4

TT1 −→ - T { TT2.st := TT1.st − T.val }5 TT2 { TT1.val := TT2.val }6

TT −→ ε { TT.val := TT.st }7

T −→ F { FT.st := F.val }8 FT { T.val := FT.val }9

FT1 −→ * F { FT2.st := FT1.st × F.val }10 FT2 { FT1.val := FT2.val }11

FT1 −→ / F { FT2.st := FT1.st ÷ F.val }12 FT2 { FT1.val := FT2.val }13

FT −→ ε { FT.val := FT.st }14

F1 −→ - F2 { F1.val := − F2.val }15

F −→ ( E ) { F.val := E.val }16

F −→ const { F.val := C.val }17

Figure 4.18 LL(1) grammar for constant expressions,with action routines.The boldface super-
scripts are for reference in Figure 4.19.

of the current production. The third pointer (shown as an arrow-boxed N in the
trace) identifies the first symbol within the right-hand side that has not yet been
completely parsed. It allows the parser to update L correctly when a production is
predicted.

At any given time, the attribute stack contains all symbols of all productions on
the path between the root of the parse tree and the symbol currently at the top of
the parse stack. Figure 4.20 identifies these symbols graphically at the point in
Figure 4.19 immediately above the eight elided lines. Symbols to the left in the
parse tree have already been reclaimed; those to the right have yet to be allocated.

At start-up, the attribute stack contains a record for the goal symbol, pointed
at by N. When we push the right-hand side of a predicted production onto the
parse stack, we add an “end-of-production” marker, represented by a colon in the
trace. At the same time, we push records for the right-hand-side symbols onto
the attribute stack. (These are added to the attribute stack; they do not replace
the left-hand side.) Prior to pushing these entries, we save the current L and R
pointers in another stack (not shown). We then set L to the old N, and make R
and N point to the newly pushed right-hand side.

When we see an action symbol at the top of the parse stack (shown in the trace
as a small bold number), we pop it and execute the corresponding action routine.
When we match a terminal at the top of the parse stack, we pop it and move
N forward one record in the attribute stack. When we see an end-of-production
marker at the top of the parse stack, we pop it, set N to the attribute record
following the one currently pointed at by L, pop everything from R forward off
of the attribute stack, and restore the most recently saved values of L and R. �

It should be emphasized that while the trace is long and tedious, its complexity is
completely hidden from the writer of action routines. Once the space management
routines are integrated with the driver for a top-down parser generator, all the
compiler writer sees is the grammar of Figure 4.18. In comparing Figures 4.17
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E $ E?
T 1TT 2 : $ E? T? TT?,?
F 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,?
(E ) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? )
E ) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? )
T 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,?
F 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F? FT?,?
C 17 : 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F? FT?,? C1
17 : 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F? FT?,? C1
: 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F1 FT?,? C1
8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F1 FT?,?
FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F1 FT1,?
14 : 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F1 FT1,?
: 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F1 FT1,1
9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T? TT?,? F1 FT1,1
: 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT?,? F1 FT1,1
1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT?,?
TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,?
+T 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T? TT?,?
T 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T? TT?,?
F 8 FT 9 : 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T? TT?,? F? FT?,?
C 17 : 8 FT 9 : 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T? TT?,? F? FT?,? C3

〈 eight lines omitted 〉
3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T3 TT?,?
TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T3 TT4,?
7 : 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T3 TT4,?
: 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T3 TT4,4
4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,? + T3 TT4,4
: 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,4 + T3 TT4,4
2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E? ) T1 TT1,4
:) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E4 ) T1 TT1,4

) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E4 )
16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? ( E4 )
: 8 FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT?,? ( E4 )
8 FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT?,?
FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,?
* F 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,?
F 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,?
C 17 : 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,? C2
17 : 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,? C2
: 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT?,? C2
10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT?,?
FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT8,?

〈 six lines omitted 〉
1TT 2 : $ E? T8 TT?,?
TT 2 : $ E? T8 TT8,?
7 : 2 : $ E? T8 TT8,?
: 2 : $ E? T8 TT8,8
2 : $ E? T8 TT8,8
: $ E8 T8 TT8,8

$ E8

Figure 4.19 Trace of the parse stack (left) and attribute stack (right) for (1 + 3) * 2, using the grammar (and action routine
numbers) of Figure 4.18. Subscripts in the attribute stack indicate the values of attributes. For symbols with two attributes,
st comes first.
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Figure 4.20 Productions with symbols currently in the attribute stack during a parse of (1 +
3) * 2 (using the grammar of Figure 4.18), at the point where we are about to parse the 3.
In Figure 4.19, this point corresponds to the line immediately above the eight elided lines.

and 4.19, one should also note that reduction and execution of a production’s
action routine are shown as a single step in the LR trace; they are shown separately
in the LL trace, making that trace appear more complex than it really is.

Ad Hoc Management

One drawback of automatic space management for top-down grammars is the
frequency with which the compiler writer must specify copy routines. Of the 17
action routines in Figure 4.9 or 4.18, 12 simply move information from one
place to another. The time required to execute these routines can be minimized by
copying pointers, rather than large records, but compiler writers may still consider
the copies a nuisance.

An alternative is to manage space explicitly within the action routines, pushingEXAMPLE 4.27
Ad hoc management of a
semantic stack

and popping an ad hoc semantic stack only when information is generated or con-
sumed. Using this technique, we can replace the action routines of Figure 4.9 with
the simpler version shown in Figure 4.21. Variable cur tok is assumed to contain
the synthesized attributes of the most recently matched token. The semantic stack
contains pointers to syntax tree nodes. The push leaf routine creates a node for a
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E −→ T TT

TT −→ + T { bin op (“+”) } TT

TT −→ - T { bin op (“−”) } TT

TT −→ ε

T −→ F FT

FT −→ * F { bin op (“×”) } FT

FT −→ / F { bin op (“÷”) } FT

FT −→ ε

F −→ - F { un op (“+/−”) }
F −→ ( E )

F −→ const { push leaf (cur tok.val) }

Figure 4.21 Ad hoc management of attribute space in an LL(1) grammar to build a syntax
tree.

specified constant and pushes a pointer to it onto the semantic stack. The un op
routine pops the top pointer off the stack, makes it the child of a newly created
node for the specified unary operator, and pushes a pointer to that node back on
the stack. The bin op routine pops the top two pointers off the semantic stack and
pushes a pointer to a newly created node for the specified binary operator. When
the parse of E is completed, a pointer to a syntax tree describing its yield will be
found in the top-most record on the semantic stack. �

The advantage of ad hoc space management is clearly the smaller number
of rules and the elimination of the inherited attributes used to represent left
context. The disadvantage is that the compiler writer must be aware of what is
in the semantic stack at all times, and must remember to push and pop it when
appropriate.

One further advantage of an ad hoc semantic stack is that it allows action
routines to push or pop an arbitrary number of records. With automatic space
management, the number of records that can be seen by any one routine is limited
by the number of symbols in the current production. The difference is particularly
important in the case of productions that generate lists. In Section 4.5.1 we saw
an SLR(1) grammar for declarations in the style of C and Fortran, in which the
type name precedes the list of identifiers. Here is an LL(1) grammar fragment forEXAMPLE 4.28

Processing lists with an
attribute stack

a language in the style of Pascal and Ada, in which the variables precede the type:

dec −→ id list : type

id list −→ id id list tail

id list tail −→ , id list

−→ ε

Without resorting to non-L-attributed flow (see Exercise 4.26), we cannot
pass the declared type into id list as an inherited attribute. Instead, we must save
up the list of identifiers and enter them into the symbol table en masse when the
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type is finally encountered. With automatic management of space for attributes,
the action routines would look something like this:

dec −→ id list : type { declare vars(id list.chain, type.tp) }
id list −→ id id list tail { id list.chain := append(id.name, id list tail.chain) }
id list tail −→ , id list { id list tail.chain := id list.chain }

−→ ε { id list tail.chain := null } �

With ad hoc management of space, we can get by without the linked list:EXAMPLE 4.29
Processing lists with a
semantic stack dec −→ { push(marker) }

id list : type
{ pop(tp)

pop(name)
while name �= marker

declare var(name, tp)
pop(name) }

id list −→ id { push(cur tok.name) } id list tail

id list tail −→ , id list

−→ ε �

Neither automatic nor ad hoc management of attribute space in top-down
parsers is clearly superior to the other. The ad hoc approach eliminates the need
for many copy rules and inherited attributes, and is consequently somewhat more
time and space efficient. It also allows lists to be embedded in the semantic stack.
On the other hand, it requires that the programmer who writes the action routines
be continually aware of what is in the stack and why, in order to push and pop it
appropriately. In the final analysis, the choice is mainly a matter of taste.

3CHECK YOUR UNDERSTANDING

17. Explain how to manage space for synthesized attributes in a bottom-up parser.

18. Explain how to manage space for inherited attributes in a bottom-up parser.

19. Define left corner and trailing part.

20. Under what circumstances can an action routine be embedded in the right-
hand side of a production in a bottom-up parser? Equivalently, under what
circumstances can a marker symbol be embedded in a right-hand side without
rendering the grammar non-LR?

21. Summarize the tradeoffs between automatic and ad hoc management of space
for attributes in a top-down parser.

22. At any given point in a top-down parse, which symbols will have attribute
records in an automatically managed attribute stack?
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4.8 Exercises

4.25 Repeat Exercise 4.7 using ad hoc attribute space management. Instead of
accumulating the translation into a data structure, however, write it to a file
on the fly.

4.26 Rewrite the grammar for declarations of Example 4.28 without the
requirement that your attribute flow be L-attributed. Try to make the gram-
mar as simple and elegant as possible (you shouldn’t need to accumulate
lists of identifiers).

4.27 Fill in the missing lines in Figure 4.19.

4.28 Consider the following grammar with action routines.

params −→ mode ID par tail
{ params.list := insert(〈mode.val, ID.name〉, par tail.list) }

par tail −→ , params { par tail.list := params.list }
−→ { par tail.list := null }

mode −→ IN { mode.val := IN }
−→ OUT { mode.val := OUT }
−→ IN OUT { mode.val := IN OUT }

Suppose we are parsing the input IN a, OUT b, and that our compiler
uses an automatically maintained attribute stack to hold the active slice of
the parse tree. Show the contents of this attribute stack immediately before
the parser predicts the production par tail −→ ε. Be sure to indicate where
lhs and rhs point in the attribute stack. Also show the stack of saved lhs and
rhs values, showing where each points in the attribute stack. You may ignore
the ssf (seen so far) pointer.

4.29 One problem with automatic space management for attributes in a top-
down parser occurs in lists and sequences. Consider for example the follow-
ing grammar:
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block −→ begin stmt list end

stmt list −→ stmt stmt list tail

stmt list tail −→ ; stmt list | ε

stmt −→ . . .

After predicting the final statement of an n-statement block, the attribute
stack will contain the following (line breaks and indentation are for clarity
only):

block begin stmt list end
stmt stmt list tail ; stmt list
stmt stmt list tail ; stmt list
stmt stmt list tail ; stmt list
{ n times }

If the attribute stack is of finite size, it is guaranteed to overflow for some
long but valid block of straight-line code. The problem is especially unfor-
tunate since, with the exception of the accumulated output code, none of the
repeated symbols in the attribute stack contains any useful attributes once
its substructure has been parsed.

Suggest a technique to “squeeze out” useless symbols in the attribute
stack, dynamically. Ideally, your technique should be amenable to automatic
implementation, so it does not constitute a burden on the compiler writer.

Also, suppose you are using a compiler with a top-down parser that
employs an automatically managed attribute stack, but does not squeeze out
useless symbols. What can you do if your program causes the compiler to
run out of stack space? How can you modify your program to “get around”
the problem?
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4.9 Explorations

4.34 As described in Section 4.5.1, yacc/bison will refuse to accept action
routines in the left corner of a production. Is there any way around this
problem? Can you imagine implementing an extended version of the tool
that would permit action routines in arbitrary locations? What would be the
challenges? The cost?

4.35 Learn how attribute space is managed in the ANTLR parser generator. How
does it compare to the techniques described in Section 4.5.2?
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Processor implementations change over time, as people invent better ways
of doing things, and as technological advances (e.g., increases in the number of
transistors that will fit on one chip) make things feasible that were not feasible
before. Processor architectures also change, for at least two reasons. Some techno-
logical advances can be exploited only by changing the hardware/software inter-
face, for example by increasing the number of bits that can be added or multiplied
in a single instruction. In addition, experience with compilers and applications
often suggests that certain new instructions would make programs simpler or
faster. Occasionally, technological and intellectual trends converge to produce a
revolutionary change in both architecture and implementation. We will discuss
four such changes in Section 5.4: the development of microprogramming in the
early 1960s, the development of the microprocessor in the early to mid-1970s, the
development of RISC machines in the early 1980s, and the move to multithreaded
and multicore processors in the first decade of the 21st century.

Most of the discussion in this chapter, and indeed in the rest of the book, will
assume that we are compiling for a single-threaded RISC (reduced instruction set
computer) architecture. Roughly speaking, a RISC machine is one that sacrifices
richness in the instruction set in order to increase the number of instructions that
can be executed per second. Where appropriate, we will devote a limited amount
of attention to earlier, CISC (complex instruction set computer) architectures. The
most popular desktop processor in the world—the x86—is a legacy CISC design,
but RISC dominates among newer designs, and modern implementations of the
x86 generally run fastest if compilers restrict themselves to a relatively simple
subset of the instruction set. Within a modern x86 processor, a hardware “front
end” translates these instructions, on the fly, into a RISC-like internal format.

In the first three sections below we consider the hierarchical organization of
memory, the types (formats) of data found in memory, and the instructions
used to manipulate those data. The coverage is necessarily somewhat cursory and
high-level; much more detail can be found in books on computer architecture
or organization (e.g., Chapters 2 to 5 of Patterson and Hennessy’s outstanding
text [PH08]).
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Typical access time Typical capacity

Registers 0.2–0.5 ns 256–1024 bytes
Primary (L1) cache 0.4–1 ns 32 K–256 K bytes
Secondary (L2) cache 4–10 ns 1–8 M bytes
Tertiary (off-chip, L3) cache 10–50 ns 4–64 M bytes
Main memory 50–500 ns 256 M–16 G bytes
Disk 5–15 ms 80 G bytes and up
Tape 1–50 s effectively unlimited

Figure 5.1 The memory hierarchy of a workstation-class computer. Access times and capacities
are approximate, based on 2008 technology. Registers must be accessed within a single clock
cycle. Primary cache typically responds in 1 to 2 cycles; off-chip cache in more like 20 cycles. Main
memory on a supercomputer can be as fast as off-chip cache; on a workstation it is typically much
slower. Disk and tape times are constrained by the movement of physical parts.

We consider the interplay between architecture and implementation in
Section 5.4. As illustrative examples, we consider the widely used x86 and
MIPS instruction sets. Finally, in Section 5.5, we consider some of the issues
that make compiling for modern processors a challenging task.

5.1 The Memory Hierarchy

Memory on most machines consists of a numbered sequence of 8-bit bytes. It is not
uncommon for modern workstations to contain several gigabytes of memory—
much too much to fit on the same chip as the processor. Because memory is
off-chip (typically on the other side of a bus), getting at it is much slower that
getting at things on-chip. Most computers therefore employ a memory hierarchy,
in which things that are used more often are kept close at hand. A typical memoryEXAMPLE 5.1

Memory hierarchy stats hierarchy, with access times and capacities, is shown in Figure 5.1. �
Only three of the levels of the memory hierarchy—registers, memory, and

devices—are a visible part of the hardware/software interface. Compilers manage
registers explicitly, loading them from memory when needed and storing them
back to memory when done, or when the registers are needed for something else.
Caches are managed by the hardware. Devices are generally accessed only by the
operating system.

Registers hold small amounts of data that can be accessed very quickly. A typi-
cal RISC machine has two sets of registers, to hold integer and floating-point
operands. It also has several special purpose registers, including the program
counter (PC) and the processor status register. The program counter holds the
address of the next instruction to be executed. It is incremented automatically
when fetching most instructions; branches work by changing it explicitly. The
processor status register contains a variety of bits of importance to the operating
system (privilege level, interrupt priority level, trap enable bits) and, on some
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machines, a few bits of importance to the compiler writer. Principal among these
are condition codes, which indicate whether the most recent arithmetic or logical
operation resulted in a zero, a negative value, and/or arithmetic overflow. (We will
consider condition codes in more detail in Section 5.3.2.)

Because registers can be accessed every cycle, while memory, generally, cannot,
good compilers expend a great deal of effort trying to make sure that the data
they need most often are in registers, and trying to minimize the amount of time
spent moving data back and forth between registers and memory. We will consider
algorithms for register management in Section 5.5.2.

Caches are generally smaller but faster than main memory. They are designed
to exploit locality : the tendency of most computer programs to access the same or
nearby locations in memory repeatedly. By automatically moving the contents of
these locations into cache, a hierarchical memory system can dramatically improve
performance. The idea makes intuitive sense: loops tend to access the same local
variables in every iteration, and to walk sequentially through arrays. Instructions,
likewise, tend to be loaded from consecutive locations, and code that accesses one
element of a structure (or member of a class) is likely to access another.

Cache architecture varies quite a bit across machines. Primary caches, also
known as level-1 (L1) caches, are typically located on the same chip as the processor,
and usually come in pairs: one for instructions (the L1 I-cache) and another for
data (the L1 D-cache), both of which can be accessed every cycle. Secondary caches
are larger and slower, but still faster than main memory. In a modern desktop or
laptop system they are typically also on the same chip as the processor. High-end
desktop or server-class machines may have an off-chip tertiary (L3) cache as well.
Multicore processors, which have more than one processing core on a single chip,
may share the L2 among cores, or even introduce an on-chip L3. Small embedded
processors may have ony a single level of on-chip cache, with or without any
off-chip cache. Caches are managed entirely in hardware on most machines, but
compilers can increase their effectiveness by generating code with a high degree
of locality.

A memory access that finds its data in the cache is said to be a cache hit. An
access that does not find its data in the cache is said to be a cache miss. On a miss,
the hardware automatically loads a line of the cache with a contiguous block of
data containing the requested location, obtained from the next lower level of cache

DESIGN & IMPLEMENTATION

The processor/memory gap
Historically processor speed has increased much faster than memory speed,
so the number of processor cycles required to access memory has continued
to grow. As a result of this trend, caches have become increasingly critical to
performance. To improve the effectiveness of caching, programmers need to
choose algorithms whose data access patterns have a high degree of local-
ity. High-quality compilers, likewise, need to consider locality of access when
choosing among the many possible translations of a given program.
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or main memory. Cache lines vary from as few as 8 to as many as 512 bytes in
length. Assuming that the cache was already full, the load will displace some other
line, which is written back to memory if it has been modified.

A final characteristic of memory that is important to the compiler is known as
data alignment. Most machines are able to manipulate operands of several sizes,
typically one, two, four, and eight bytes. Most modern instruction sets refer to
these as byte, half-word, word, and double-word operands, respectively; on the
x86 they are byte, word, double-word, and quad-word operands. Most recent
architectures require n-byte operands to appear in memory at addresses that
are evenly divisible by n (at least for n ≤ 4). A 4-byte integer, for example,
must typically appear at a location whose address is evenly divisible by four. This
restriction occurs for two reasons. First, buses are designed in such a way that data
are delivered to the processor over bit-parallel, aligned communication paths.
Loading an integer from an odd address would require that the bits be shifted,
adding logic (and time) to the load path. The x86, which for reasons of backward
compatibility allows operands to appear at arbitrary addresses, runs faster if those
operands are properly aligned. Second, on RISC machines, there are generally not
enough bits in an instruction to specify both an operation (e.g., load) and a full
address. As we shall see in Section 5.3.1, it is typical to specify an address in
terms of an offset from some base location specified by a register. Requiring that
integers be word-aligned allows the offset to be specified in words, rather than in
bytes, quadrupling the amount of memory that can be accessed using offsets from
a given base register.

5.2 Data Representation

Data in the memory of most computers are untyped: bits are simply bits. Opera-
tions are typed, in the sense that different operations interpret the bits in memory
in different ways. Typical data formats include instructions, addresses, binary
integers of various lengths, floating-point (real) numbers of various lengths, and
characters.

Integers typically come in half-word, word, and double-word lengths. Floating-
point numbers typically come in word and double-word lengths, commonly
referred to as single- and double-precision. Some machines store the least-EXAMPLE 5.2

Big- and little-endian significant byte of a multiword datum at the address of the datum itself, with
bytes of increasing numeric significance at higher-numbered addresses. Other
machines store the bytes in the opposite order. The first option is called little-
endian; the second is called big-endian. In either case, an n-byte datum stored at
address t occupies bytes t through t + n − 1. The advantage of a little-endian
organization is that it is tolerant of variations in operand size. If the value 37
is stored as a word and then a byte is read from the same location, the value
37 will be returned. On a big-endian machine, the value 0 will be returned (the
upper eight bits of the number 37, when stored in 32 bits). The problem with the
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Big-endian

Little-endian Increasing addresses

432

(a)

(b)

436

432 436

00 00 00 37 12 34 56 78

37 00 00 00 78 56 34 12

Big-endian Little-endian

Increasing addresses Increasing addresses

432

436

432

436

435

439

435

439

3700 00 00

7812 34 56

3700 00 00

7812 34 56

Figure 5.2 Big-endian and little-endian byte orderings. (a)Two 4-byte quantities, the numbers
3716 and 12 34 56 7816 , stored at addresses 432 and 436, respectively. (b)The same situation, with
memory visualized as a byte-addressable array of words.

little-endian approach is that it seems to scramble the bytes of integers, when read
from left to right (see Figure 5.2a). Little-endian-ness makes a bit more sense
if one thinks of memory as a (byte-addressable) array of words (Figure 5.2b).
Among CISC machines, the x86 is little-endian, as was the Digital VAX. The
IBM 360/370 and the Motorola 680x0 are big-endian. Most first-generation RISC
machines were also big-endian; most current RISC machines can run in either
mode. �

Support for characters varies widely. Most CISC machines will perform arbi-
trary arithmetic and logical operations on 1-byte quantities. Many CISC machines
also provide instructions that perform operations on strings of characters, such as
copying, comparing, or searching. Most RISC machines will load and store bytes
from or to memory, but operate only on longer quantities in registers.

5.2.1 Integer Arithmetic

Binary integers are almost universally represented in two related formats: straight-
forward binary place-value for unsigned numbers, and two’s complement for
signed numbers. An n-bit unsigned integer has a value in the range 0 . . . 2n−1,
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inclusive. An n-bit two’s complement integer has a value in the range −2n−1 . . .
2n−1 − 1, inclusive. Most instruction sets provide two forms of most of the arith-
metic operators: one for unsigned numbers and one for signed numbers. Even for
languages in which integers are always signed, unsigned arithmetic is important
for the manipulation of addresses (e.g., pointers).

An n-bit unsigned integer with binary representation bn−1 bn−2 . . . b2 b1 b0 has
the value

∑
0≤i<n bi2i . Because the bit pattern corresponding to a given decimal

value is non-obvious, and because bit patterns written as strings of 0’s and 1’s are
cumbersome, computer scientists commonly represent integer values in hexadeci-
mal, or base-16 notation. Hexadecimal uses the letters a to f as six additional digits,EXAMPLE 5.3

Hexadecimal numbers representing the values 10 to 15 in decimal (see Figure 5.3). Because 24 = 16,
every digit in a hexadecimal number corresponds to exactly four bits of binary,
making conversions between hexadecimal and binary trivial. In textual contexts,
hexadecimal values are often written with a leading 0x. Referring to Figure 5.3,
the hexadecimal value 0xabcd corresponds to the binary value 1010 1011 1100

1101. Similarly, 0x400 = 210 = 1024, commonly written 1K, and 0x100000 =
220 = 1048576, commonly written 1M. �

Perhaps the most obvious representation for signed integers would reserve one
bit to indicate the sign (+ or −) and use the remaining n − 1 bits to represent
the magnitude, as in unsigned numbers. Unfortunately, this approach requires
different algorithms (and hence separate circuits) for addition and subtraction.
The almost universally adopted alternative is called two’s complement arithmetic.
It capitalizes on the observation that arithmetic on unsigned n-digit numbers,
when we ignore carries out of the left-most place, is actually arithmetic on what
mathematicians call the ring of integers modulo 2n. The sum A + B, for example,
is really (A + B) mod 2n . There is no particular reason, however, why we need to
interpret the bit patterns on which we are doing our arithmetic as the numbers
0 . . 2n − 1. We can actually pick any contiguous range of 2n integers, anywhere on
the number line, and say that we’re doing modulo arithmetic on them instead. In
particular, we can pick the range −2n−1 . . . 2n−1 − 1.

The smallest n-digit two’s complement value, −2n−1, is represented by a one
followed by n−1 zeros. Successive values are obtained by repeatedly adding one,

DESIGN & IMPLEMENTATION

How much is a megabyte?
The fact that 210 ≈ 103 facilitates “back-of-the-envelope” approximations, but
can sometimes lead to confusion when precision is required. Which meaning
is intended when we see 1 K and 1 M? The answer, sadly, depends on context.
Main memory sizes and addresses are typically measured with powers of two,
while other quantities are measured with powers of ten. Thus a 1-GHz, 1-GB
personal computer may start a new instruction 1,000,000,000 times per second,
but have 1,073,741,824 bytes of memory. Its 100-GB hard disk will hold 1011

bytes.
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0 0 0 0 0 1 0 0 0 8
0 0 0 1 1 1 0 0 1 9
0 0 1 0 2 1 0 1 0 a
0 0 1 1 3 1 0 1 1 b
0 1 0 0 4 1 1 0 0 c
0 1 0 1 5 1 1 0 1 d
0 1 1 0 6 1 1 1 0 e
0 1 1 1 7 1 1 1 1 f

Figure 5.3 The hexadecimal digits.

0 1 1 1 7 1 1 1 1 −1
0 1 1 0 6 1 1 1 0 −2
0 1 0 1 5 1 1 0 1 −3
0 1 0 0 4 1 1 0 0 −4
0 0 1 1 3 1 0 1 1 −5
0 0 1 0 2 1 0 1 0 −6
0 0 0 1 1 1 0 0 1 −7
0 0 0 0 0 1 0 0 0 −8

Figure 5.4 Four-bit two’s complement numbers. Note that there is a negative number (−8)
that doesn’t have a positive equivalent. There is only one zero, however.

using ordinary place-value addition. This choice of representation has several
desirable properties:

1. Non-negative numbers have the same bit patterns as they do in unsigned
format.

2. The most significant bit of every negative number is one; the most significant
bit of every non-negative number is zero.

3. A single addition algorithm works for all combinations of negative and non-
negative numbers.

A list of 4-bit two’s complement numbers appears in Figure 5.4.EXAMPLE 5.4
Two’s complement

�
The addition algorithm for both unsigned and two’s complement binary num-

bers is the obvious binary analogue of the familiar right-to-left addition of decimal
numbers. The only difference is the mechanism used to detect whether overflow
has occurred. By definition we should see overflow whenever the sum of two inte-
gers (not the bit patterns, but the actual integers they represent) is outside the
range of values that can be represented in 2n bits. For unsigned integers, this is
easy: overflow occurs when we have carry out of the most significant (left-most)
place. For two’s complement numbers, detection is somewhat trickier. First, note
that the sum of a negative and a positive number can never overflow: the result is
guaranteed to be closer to zero than the larger-magnitude addend. But if the sum
is positive (it has a zero left-most bit), then there must have been a carry out of
the left-most place, because one of the addends had a 1 in that place.
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If we ignore carries out of the left-most place (i.e., we stay within the ring
of integers mod 2n), then we can decree that two’s complement overflow has
occurred when we add two non-negative numbers and get an apparently negative
result (because we wrapped past the largest positive number), or when we add two
negative numbers and get an apparently non-negative result (because we wrapped
past the smallest [largest magnitude] negative number). For example, with 4-bitEXAMPLE 5.5

Overflow in two’s
complement addition

two’s complement numbers,1100 + 0110 (−4 + 6) does not overflow,even though
there is a carry out of the left-most place (which we ignore). On the other hand,
0101 + 0100 (5 + 4) yields 1001,an apparently negative result for positive addends,
and 1011 + 1100 (−5 + −4) yields 0111 in the low four bits, an apparently positive
result for negative addends. Both of these cases indicate overflow.1 �

Different machines handle overflow in different ways. Some generate a trap (an
interrupt) on overflow. Some set a bit that can be tested in software. Some provide
two add instructions, one for each option. Some provide a single add that can be
made to do either, depending on the value of a bit in a special register.

It turns out that one can obtain the additive inverse of a two’s complement
number by flipping all the bits, adding one, and discarding any carry out of
the left-most place (we defer a proof to Exercise 5.7). Subtraction can thus be
implemented almost trivially using an adder, by flipping the bits of the subtrahend,
providing a one as the“carry”into the least-significant place, and“adding”as usual.
Multiplication and division of signed numbers are a bit trickier than addition and
subtraction, but still more or less straightforward.

Note that if we take any two’s complement number and its additive inverse and
add them together as if they were unsigned values, keeping the final carry bit, the
sum is 2n . This observation is the source of the name “two’s complement.” Of
course if we discard the carry bit we get zero, which is what one would expect of
k + (−k).

5.2.2 Floating-Point Arithmetic

Floating-point numbers are the computer equivalent of scientific notation: they
consist of a mantissa or significand, sig, an exponent, exp, and (usually) a sign bit, s.
The value of a floating-point number is then −1s × sig × 2exp. Prior to the mid-
1980s, floating-point formats and semantics tended to vary greatly across brands
and even models of computers. Different manufacturers made different choices
regarding the number of bits in each field, their order, and their internal repre-
sentation. They also made different choices regarding the behavior of arithmetic
operators with respect to rounding, underflow, overflow, invalid operations, and
the representation of extremely small quantities. With the completion in 1985 of
IEEE standard number 754, however, the situation changed dramatically. Most
processors developed in subsequent years conform to the formats and semantics
of this standard.

1 Exercise 5.6 considers an alternative but equivalent definition, which is particularly easy to test
in hardware.
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The IEEE 754 standard defines two sizes of floating-point numbers. Single-
precision numbers have a sign bit, eight bits of exponent, and 23 bits of significand.
They are capable of representing numbers whose magnitudes vary from roughly
10−38 to 1038. Double-precision numbers have 11 bits of exponent and 52 bits of
significand. They represent numbers whose magnitudes vary from roughly 10−308

to 10308. The exponent is biased by subtracting the most negative possible value
from it, so that it may be represented by an unsigned number. In single-precision,EXAMPLE 5.6

Biased exponents for example, the exponent 12 is represented by the value 12 − (−127) = 139 =
0x8b. The exponent −12 is represented by the value −12 − (−127) = 115 =
0x73. �

Most values in the IEEE standard are normalized by shifting the significant until
it is greater than or equal to 1, and less than 2. (The exponent is adjusted accord-
ingly, so that the value represented doesn’t change.) As a result of normalization,
the number of bits in the significand is really one more than the number explic-
itly represented: in the value 1. something × 2exp, the one is superfluous, and is
omitted in the representation. Exceptions to this rule occur near zero: very small
numbers can be represented (with reduced precision) as 0.something × 2min+1,
where min is the smallest (most negative) exponent available in the format. Many
older floating-point standards disallow such denormal numbers, leading to a gap
between zero and the smallest representable positive number that is larger than the
gap between the two smallest representable positive numbers. Because it includes
denormals, the IEEE standard is said to provide for gradual underflow. Denormal
numbers are represented with a zero in the exponent field (denoting a maximally
negative exponent) together with a nonzero fraction.

The conventions of the IEEE 754 standard are summarized in Figure 5.5.EXAMPLE 5.7
IEEE floating-point In addition to single- and double-precision formats, the standard also provides

for vendor-defined “extended” single- and double-precision numbers (not shown
here). These extended formats are required to have at least 32 and 64 significant
bits (31 and 63 explicit) in the significand, respectively. �

Floating-point arithmetic is sufficiently complicated that entire books have
been written about it. Some of the characteristics of the IEEE standard of particular
interest to compiler writers include:

The bit patterns used to represent nonnegative floating-point numbers are
ordered in the same way as integers. As a result, an ordinary integer comparison
operation can be used to determine which of two numbers is larger.

Zero is represented by a bit pattern consisting entirely of zeros. There is also
(confusingly) a “negative zero,” consisting of a sign bit of one and zeros in all
other positions.

Two bit patterns are reserved to represent positive and negative infinity. These
values behave in predictable ways. For example, any positive number divided
by zero yields positive infinity. Similarly, the arctangent of positive infinity
is π/2.

Certain other bit patterns are reserved for special “not-a-number” (NaN) val-
ues. These values are generated by nonsensical operations, such as square root
of a negative number, addition of positive and negative infinity, or division of
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Single precision

Exponent bias b  = 127

s e
8

f
23 bits

Double precision

Zero
Infinity
Normalized
Denormalized
NaN

0
2b + 1

1 ≤ e ≤ 2b
0

2b + 1

0
0

<any>
=/ 0
=/ 0

± 0
± ∞

± 1.f × 2e–b

± 0.f × 21–b

NaN

Exponent bias b = 1023

s e

e f Value

f

1

11 52 bits1

Figure 5.5 The IEEE 754 floating-point standard. For normalized numbers, the exponent is
e − 127 or e − 1023, depending on precision.The significand is (1 + f )× 2−23 or (1 + f )× 2−52 ,
again depending on precision. Field f is called the fractional part, or fraction. Bit patterns in which
e is all ones (255 for single-precision, 2047 for double-precision) are reserved for infinities and
NaNs. Bit patterns in which e is zero but f is not are used for denormal (gradual underflow)
numbers.

zero by zero. Almost any operation on an NaN produces another NaN. As a
result, many algorithms can dispense with internal error checks: they can fol-
low the steps that make sense in the absence of errors, and then check the final
result to make sure it’s not an NaN. Some NaNs, not normally generated by
arithmetic operations, can be set by the compiler explicitly to represent unini-
tialized variables or other special situations; these signaling NaNs produce an
interrupt if used.

An excellent introduction to both integer and floating-point arithmetic,
together with suggestions for further reading, can be found in David Goldberg’s
appendix to Hennessy and Patterson’s architecture text [HP07, App. I].

3CHECK YOUR UNDERSTANDING

1. Explain how to compute the additive inverse (negative) of a two’s complement
number.

2. Explain how to detect overflow in two’s complement addition.

3. Do two’s complement numbers use a bit to indicate their sign? Explain.

4. Summarize the key features of IEEE 754 floating-point arithmetic.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch05-P374514 [11:26 2009/2/25] SCOTT: Programming Language Pragmatics Page: 75 3–867

5.3.1 Addressing Modes 75

5. What is the approximate range of single- and double-precision floating-point
values? What is the precision (in bits) of double-precision values?

6. What is a floating-point NaN?

5.3 Instruction Set Architecture

On a RISC machine, computational instructions operate on values held in regi-
sters: a load instruction must be used to bring a value from memory into a
register before it can be used as an operand. CISC machines usually allow all or
most computational instructions to access operands directly in memory. RISC
machines are therefore said to provide a load-store or register-register architecture;
CISC machines are said to provide a register-memory architecture.

For binary operations, instructions on RISC machines generally specify three
registers: two sources and a destination. Some CISC machines (e.g., the VAX) also
provide three-address instructions. Others (e.g., the x86 and the 680x0) provide
only two-address instructions; one of the operands is always overwritten by the
result. Two-address instructions are more compact, but three-address instructions
allow both operands to be reused in subsequent operations. This reuse is crucial on
RISC machines: it minimizes the number of artificial restrictions on the ordering
of instructions, affording the compiler considerably more freedom in choosing an
order that performs well.

5.3.1 Addressing Modes

One can imagine many different ways in which a computational instruction might
specify the location of its operands. A given operand might be in a register, in
memory, or, in the case of read-only constants, in the instruction itself. If the
operand is in memory, its address might be found in a register, in memory, or in
the instruction, or it might be derived from some combination of values in various
locations. Instruction sets differ greatly in the addressing modes they provide to
capture these various options.

As noted above, most RISC machines require that the operands of computa-
tional instructions reside in registers or the instruction. For load and store instruc-
tions, which are allowed to access memory, they typically support the displacement
addressing mode, in which the operand’s address is found by adding some small
constant (the displacement ) to the value found in a specified register (the base).
The displacement is contained in the instruction. Displacement addressing with
respect to the frame pointer provides an easy way to access local variables. Dis-
placement addressing with a displacement of zero is sometimes called register
indirect addressing.

Some RISC machines, including the PowerPC and SPARC, also allow load and
store instructions to use an indexed addressing mode, in which the operand’s
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address is found by adding the values in two registers. Indexed addressing is useful
for arrays: one register (the base) contains the address of the array; the second
(the index) contains the offset of the desired element.

CISC machines typically provide a richer set of addressing modes, and allow
them to be used in computational instructions, as well as in loads and stores. On
the x86, for example, the address of an operand can be calculated by multiplying
the value in one register by a small constant, adding the value found in a second
register, and then adding another small constant, all in one instruction.

5.3.2 Conditions and Branches

All instruction sets provide a branching mechanism to update the program counter
under program control. Branches allow compilers to implement conditional state-
ments, subroutines, and loops. Conditional branches are generally controlled in
one of two ways. On most CISC machines they use condition codes. As mentioned
in Section 5.1, condition codes are usually implemented as a set of bits in a
special processor status register. All or most of the arithmetic, logical, and data-
movement instructions update the condition codes as a side effect. The exact
number of bits varies from machine to machine, but three and four are common:
one bit each to indicate whether the instruction produced a zero value, a negative
value, and/or an overflow or carry. To implement the following test, for example,EXAMPLE 5.8

An if statement in x86
assembler A := B + C

if A = 0 then
body

a compiler for the x862 might generate

movl C, %eax ; move long-word C into register eax
addl B, %eax ; add
movl %eax, A ; and store
jne L1 ; branch (jump) if result not equal to zero
body

L1: �

For cases in which the outcome of a branch depends on a value that has not justEXAMPLE 5.9
Compare and test
instructions

been computed or moved, most machines provide compare and test instruc-
tions. Again on the x86:

2 Readers familiar with the x86 should be warned that this example uses the assembler syntax of
the GNU compiler collection (gcc) and its assembler, gas. This syntax differs in several ways
from Microsoft and Intel assembler. Most notably, it specifies operands in the opposite order. The
instruction addl B, %eax, for example, adds the value in B to the value in register %eax and
leaves the result in %eax: in Gnu assembler the destination operand is listed second. In Intel and
Microsoft assembler it’s the other way around: addl B, %eax would add the value in register
%ebx to the value in B and leave the result in B.
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if A ≤ B then
body

if A > 0 then
body

movl A, %eax ; move long-word A into register eax
cmpl B, %eax ; compare to B
jg L1 ; branch (jump) if greater
body

L1:

testl %eax, %eax ; compare %eax (A) to 0
jle L2 ; branch if less than or equal
body

L2:

The x86 cmpl instruction subtracts its source operand from its destination
operand and sets the condition codes according to the result, but it does not
overwrite the destination operand. The testl instruction ands its two operands
together and compares the result to zero. Most often, as shown here, the two
operands are the same. When they are different, one is typically a mask value that
allows the programmer or compiler to test individual bits or bits fields in the other
operand. �

Unfortunately, traditional condition codes make it difficult to implement some
important performance enhancements. In particular, the fact that they are set by
almost every instruction tends to preclude implementations in which logically
unrelated instructions might be executed in between (or in parallel with) the
instruction that tests a condition and the branch that relies on the outcome of
the test. There are several possible ways to address this problem; the handling
of conditional branches is one of the areas in which extant RISC machines vary
most from one another. The ARM and SPARC architectures make setting of the
condition codes optional on an instruction-by-instruction basis. The PowerPC
provides eight separate sets of condition codes; compare and branch instructions
can specify the set to use. The MIPS has no condition codes (at least not for integer
operations); it uses Boolean values in registers instead.

More precisely, where the x86 has 16 different branch instructions based onEXAMPLE 5.10
Conditional branches on
the MIPS

arithmetic comparisons, the MIPS has only six. Four of these branch if the value
in a register is <, ≤, >, or ≥ zero. The other two branch if the values in two
registers are = or �=. In a convention shared by most RISC machines, register
zero is defined to always contain the value zero, so the latter two instructions
cover both the remaining comparisons to zero and direct comparisons of registers
for equality. More general register-register comparisons (signed and unsigned)
require a separate instruction to place a Boolean value in a register that is then
named by the branch instruction. Repeating the examples above on the MIPS,
we get

if A ≤ B then
body

lw $3, A ; load word: register 3 := A
lw $2, B ; register 2 := B
slt $2, $2, $3 ; register 2 := (B < A)
bne $2, $0, L1 ; branch if Boolean true (�= 0)
body

L1:
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if A > 0 then
body

blez $3, L2 ; branch if A ≤ 0
body

L2:

By convention, destination registers are listed first in MIPS assembler (as they
are in assignment statements). The slt instruction stands for “set less than”; bne
and blez stand for “branch if not equal” and “branch if less than or equal to zero,”
respectively. Note that the compiler has used bne to compare register 2 to the
constant register 0. �

3CHECK YOUR UNDERSTANDING

7. What is the world’s most popular instruction set architecture (for desktop
machines)?

8. What is the difference between big-endian and little-endian addressing?

9. What is the purpose of a cache?

10. Why do many machines have more than one level of cache?

11. How many processor cycles does it typically take to access primary (on-chip)
cache? How many cycles does it typically take to access main memory?

12. What is data alignment ? Why do many processors insist upon it?

13. List four common formats (interpretations) for bits in memory.

14. What is IEEE standard number 754? Why is it important?

15. What are the tradeoffs between two-address and three-address instruction
formats?

16. Describe at least five different addressing modes. Which of these are commonly
supported on RISC machines?

17. What are condition codes? Why do some architectures not provide them?
What do they provide instead?

5.4 Architecture and Implementation

The typical processor implementation consists of a collection of functional units,
one (or more) for each logically separable facet of processor activity: instruction
fetch, instruction decode, operand fetch from registers, arithmetic computation,
memory access, write-back of results to registers, and so on. One could ima-
gine an implementation in which all of the work for a particular instruction is
completed before work on the next instruction begins, and in fact this is how
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the earliest computers were constructed. The problem with this organization is
that most of the functional units are idle most of the time. Using ideas origi-
nally developed for supercomputers of the 1960s, mainstream processors of the
1980s and 1990s increasingly moved toward a pipelined organization, in which
the functional units work like the stations on an assembly line, with different
instructions passing through different pipeline stages concurrently. Pipelining
is used in even the most inexpensive personal computers today, and in all but
the simplest processors for the embedded market. A simple processor may have
five or six pipeline stages. The IBM PowerPC G5 has 21; the Intel Pentium 4E
has 31.

By allowing (parts of) multiple instructions to execute in parallel, pipelining
can dramatically increase the number of instructions that can be completed per
second, but it is not a panacea. In particular, a pipeline will stall if the same
functional unit is needed in two different instructions simultaneously, or if an
earlier instruction has not yet produced a result by the time it is needed in a later
instruction, or if the outcome of a conditional branch is not known (or guessed)
by the time the next instruction needs to be fetched.

We shall see in Section 5.5 that many stalls can be avoided by adding a little
extra hardware and then choosing carefully among the various ways of translating
a given construct into target code. An important example occurs in the case of
floating-point arithmetic, which is typically much slower than integer arithmetic.
Rather than stall the entire pipeline while executing a floating-point instruction,
we can build a separate functional unit for floating-point math, and arrange for it
to operate on a separate set of floating-point registers. In effect, this strategy leads
to a pair of pipelines—one for integers and one for floating-point—that share
their first few stages. The integer branch of the pipeline can continue to execute
while the floating-point unit is busy, so long as subsequent instructions do not
require the floating-point result. The need to reorder, or schedule, instructions so
that those that conflict with or depend on one another are separated in time is
one of the principal reasons why compiling for modern processors is hard.

5.4.1 Microprogramming

As technology advances, there are occasionally times when it becomes feasible to
design machines in a very different way. During the 1950s and the early 1960s, the
instruction set of a typical computer was implemented by soldering together large
numbers of discrete components (transistors, capacitors, etc.) that performed
the required operations. To build a faster computer, one generally designed new,
more powerful instructions, which required extra hardware. This strategy had
the unfortunate effect of requiring assembly language programmers (or compiler
writers, though there weren’t many of them back then) to learn a new language
every time a new and better computer came along.

A fundamental breakthrough occurred in the early 1960s, when IBM hit upon
the idea of microprogramming. Microprogramming allowed a company to provide
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the same instruction set across a whole line of computers, from inexpensive slow
machines to expensive fast machines. The basic idea was to build a “microengine”
in hardware that executed an interpreter program in “firmware.” The interpreter
in turn implemented the “machine language” of the computer—in this case, the
IBM 360 instruction set. More expensive machines had fancier microengines, with
more direct support for the instructions seen by the assembly-level programmer.
The top-of-the-line machines had everything in hardware. In effect, the architec-
ture of the machine became an abstract interface behind which hardware designers
could hide implementation details, much as the interfaces of modules in mod-
ern programming languages allow software designers to limit the information
available to users of an abstraction.

In addition to allowing the introduction of computer families, microprogram-
ming made it comparatively easy for architects to extend the instruction set.
Numerous studies were published in which researchers identified some sequence
of instructions that commonly occurred together (e.g., the instructions that jump
to a subroutine and update bookkeeping information in the stack), and then intro-
duced a new instruction to perform the same function as the sequence. The new
instruction was usually faster than the sequence it replaced, and almost always
shorter (and code size was more important then than now).

5.4.2 Microprocessors

A second architectural breakthrough occurred in the mid-1970s, when very large
scale integration (VLSI) chip technology reached the point at which a simple
microprogrammed processor could be implemented entirely on one inexpensive
chip. The chip boundary is important because it takes much more time and power
to drive signals across macroscopic output pins than it does across intrachip con-
nections, and because the number of pins on a chip is limited by packaging issues.
With an entire processor on one chip, it became feasible to build a commer-
cially viable personal computer. Processor architectures of this era include the
MOS Technology 6502, used in the Apple II and the Commodore 64, and the
Intel 8080 and Zilog Z80, used in the Radio Shack TRS-80 and various CP/M
machines. Continued improvements in VLSI technology led, by the mid-1980s,
to 32-bit microprogrammed microprocessors such as the Motorola 68000, used
in the original Apple Macintosh, and the Intel 80386, used in the first 32-bit
IBM PCs.

From an architectural standpoint, the principal impact of the microprocessor
revolution was to constrain, temporarily, the number of registers and the size of
operands. Where the IBM 360 (not a single-chip processor) operated on 32-bit
data, with 16 general-purpose 32-bit registers, the Intel 8080 operated on 8-bit
data, with only seven 8-bit registers and a 16-bit stack pointer. Over time, as VLSI
density increased, registers and instruction sets expanded as well. Intel’s 32-bit
80386 was introduced in 1985.
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5.4.3 RISC

By the early 1980s, several factors converged to make possible a third architectural
breakthrough. First, VLSI technology reached the point at which a pipelined
32-bit processor with a sufficiently simple instruction set could be implemented
on a single chip, without microprogramming. Second, improvements in proces-
sor speed were beginning to outstrip improvements in memory speed, increasing
the relative penalty for accessing memory, and thereby increasing the pressure to
keep things in registers. Third, compiler technology had advanced to the point at
which compilers could often match (and sometimes exceed) the quality of code
produced by the best assembly language programmers. Taken together, these fac-
tors suggested a reduced instruction set computer (RISC) architecture with a fast,
all-hardware implementation, a comparatively low-level instruction set, a large
number of registers, and an optimizing compiler.

The advent of RISC machines ran counter to the ever-more-powerful-instruc-
tions trend in processor design, but was to a large extent consistent with established
trends for supercomputers. Supercomputer instruction sets had always been rela-
tively simple and low level, in order to facilitate pipelining. Among other things,
effective pipelining depends on having most instructions take the same, constant
number of cycles to execute, and on minimizing dependences that would prevent
a later instruction from starting execution before its predecessors have finished.
A major problem with the trend toward more complex instruction sets was that
it made it difficult to design high-performance implementations. On the VAX,
for example (the most popular minicomputer of the early 1980s), instructions
could vary in length from one to more than 50 bytes, and in execution time from
one to thousands of cycles. Both of these factors tend to lead to pipeline stalls.
Variable length instructions make it difficult to even find the next instruction
until the current one has been studied extensively. Variable execution time makes
it difficult to keep all the pipeline stages busy. The original VAX (the 11/780) was
shipped in 1978, but it wasn’t until 1985 that Digital was able to ship a successfully
pipelined version, the 8600.3

The most basic rule of processor performance holds that total execution time
on any machine equals the number of instructions executed times the average
number of cycles per instruction times the length in time of a cycle. What we
might call the“CISC design philosophy”is to minimize execution time by reducing
the number of instructions, letting each instruction do more work. The “RISC
philosophy,” by contrast, is to minimize execution time by reducing the length of
the cycle and the number of (nonoverlapped) cycles per instruction (CPI).

Recent RISC machines (and RISC-like implementations of the x86) attempt
to minimize CPI by executing as many instructions as possible in parallel. The
PowerPC G5, for example, can have over 200 instructions simultaneously “in

3 An alternative approach, to maintain microprogramming but pipeline the microengine, was
adopted by the 8800 and, later, by Intel’s Pentium Pro and its successors.
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flight.” Some processors have very deep pipelines, allowing the work of an instruc-
tion to be divided into very short cycles. Many are superscalar : they have multiple
parallel pipelines, and start more than one instruction each cycle. (This requires,
of course, that the compiler and/or hardware identify instructions that do not
depend on one another, so that parallel execution is semantically indistinguish-
able from sequential execution.) To minimize artificial dependences between
instructions (as, for instance, when one instruction must finish using a reg-
ister as an operand before another instruction overwrites that register with a
new value), many machines perform register renaming, dynamically assigning
logically independent uses of the same architectural register to different loca-
tions in a larger set of physical (implementation) registers. High performance
processor implementations may actually execute mutually independent instruc-
tions out of order when they can increase instruction-level parallelism by doing
so. These techniques dramatically increase implementation complexity but not
architectural complexity; in fact, it is architectural simplicity that makes them
possible.

5.4.4 Multithreading and Multicore

For 40 years, improvements in silicon fabrication technology have fueled a seem-
ingly inexorable increase in the density of integrated circuits. This trend, first
observed by Gordon Moore in 1965, has seen the number of transistors on a chip
double roughly every two years since the mid 1960s—a million-fold increase over
that period of time. Processor designers have used this amazing windfall in several
major ways:

Faster clocks. Since smaller transistors can charge and discharge more quickly,
higher-density chips can run at a higher clock rate. The Intel 8080 ran at
2 MHz in 1974. Rates of 2 GHz (1000× faster) are common today.

Instruction-level parallelism (ILP). As noted in the previous subsection, modern
processors employ pipelined, superscalar, and out-of-order execution to keep a
very large number of instructions “in flight,” and to execute those instructions
as soon as their operands become available.

Speculation. To keep the pipeline full, a modern processor guesses which way
control will go at every branch, and speculatively executes instructions along
the predicted control path. Some processors employ additional forms of spec-
ulation as well: they may, for example, guess the value that will be returned
by a read that misses in the cache. So long as guesses are right, the processor
avoids “unnecessary” waiting. It must always check after the fact, however, and
be prepared to undo any erroneous operations in the event that a guess was
wrong.

Larger caches. As noted in the sidebar on page 67, caches play a critical role in
coping with the processor-memory gap induced by higher clock rates. Higher
VLSI density makes room for larger caches.
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Unfortunately, by roughly 2004, the first three of these standard techniques
had pretty much hit a dead end. Both faster clocks and speculation lead to very
high energy consumption. To first approximation, a chip’s energy requirements are
proportional to its physical area and clock frequency. While caches take less energy
than average (they’re comparatively passive), the bookkeeping circuits required
for speculation are very power-hungry. Where the 8080 consumed about 1.3 W,
a desktop processor today may consume 130 W—more heat per unit area than
the burner of a hot plate, and essentially at the limit of what we can cool without
refrigeration. Simultaneously, ILP exploitation and speculative execution have
approached the inherent limits of traditional sequential code. Bluntly put, we’re
executing as many instructions in parallel as our programs will allow.

Robbed of the ability to run a single program faster, processor designers have
taken to building multithreaded and multicore chips that can run more than one
program at once. Historically, multithreading was introduced first. It allows seve-
ral programs (threads), represented by several sets of registers and instruction
fetching logic, to share the back end (execution units) of a single processor. In
effect, the extra threads serve to fill bubbles in the processor’s pipeline. A multicore
processor, by contrast has two or more complete processors (cores) on a single
chip. Compared to a high-end uniprocessor, these may run at a somewhat slower
clock rate, and expend less energy on speculation and ILP discovery, in order to
maximize performance per watt.

As of the summer of 2008, Intel sells processors with two dual-core chips in a
single package, and is rumored to be working on a six-core design for release in
the next few months. AMD and IBM are both selling quad-core processors today.
Sun, which specializes in servers that have naturally parallel workloads, is currently
leading the pack, with 8-core, 64-thread chips available today, and 16-core chips
expected by the end of the year.

In moving to multicore processors, the computer industry has effectively given
up on running conventional programs faster, and is banking instead on running
better programs. This makes the current revolution in processor design very dif-
ferent from its predecessors. Where previous revolutions were mostly invisible to
programmers (code might perhaps have to be recompiled to make the best use
of a new machine), the current revolution will eventually require that programs
be rewritten in some concurrent programming language. And while successes
in high-end scientific and commercial computing have demonstrated that this
task is possible for expert programmers in certain problem domains, it is not yet
clear whether it will be possible for “ordinary” programmers in multiple problem
domains.

Most computers do several things at once: they update the display, check for
mail, play music, and execute user commands by switching the processor from
one task to another many times a second. With several cores available, each task
can run on a different core, reducing the need for switching. But what will happen
when we have 100 cores? Where will we find 100 runnable threads? This is perhaps
the most vexing problem currently facing the field of computer systems.
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3CHECK YOUR UNDERSTANDING

18. What is microprogramming? What breakthroughs did its invention make
possible?

19. What technological threshold was crossed in the mid-1970s, enabling the
introduction of microprocessors? What subsequent threshold, crossed in the
early 1980s, made RISC machines possible?

20. What is pipelining?

21. Summarize the difference between the CISC and RISC philosophies in instruc-
tion set design.

22. Why do RISC machines allow only load and store instructions to access
memory?

23. Name three CISC architectures. Name three RISC architectures. (If you’re
stumped, see the Summary and Concluding Remarks [Section 5.6].)

24. What three research groups share the credit for inventing RISC? (For this you’ll
probably need to peek at the Bibliographic Notes [Section 5.9].)

25. How can the designer of a pipelined machine cope with instructions (e.g.,
floating-point arithmetic) that take much longer than others to compute?

26. Why are microprocessor clock rates no longer increasing?

27. Explain the difference between multithreaded and multicore processors.

28. Explain why the multicore revolution poses an unprecedented challenge for
computer systems.

5.4.5 Two Example Architectures:The x86 and MIPS

We can illustrate the differences between CISC and RISC machines by examining a
representative pair of architectures. The x86 is the most widely used CISC design—EXAMPLE 5.11

The x86 ISA in fact, the most widely used processor architecture of any kind (outside the
embedded market). The original model, the 8086, was announced in 1978. Major
changes were introduced by the 8087, 80286, 80386, Pentium Pro, Pentium/MMX,
Pentium III, and Pentium 4. While technically backward compatible, these changes
were often out of keeping with the philosophy of the earlier generations. The
result is a machine with an enormous number of stylistic inconsistencies and
special cases. The 64-bit extension to the x86 was likewise saddled with the need
for backward compatibility, and is even more complex. It was originally developed
by AMD and subsequently licensed by Intel. (AMD calls it AMD64. Intel calls it
Intel 64. Generically, it is often referred to as x86-64, or simply x64).
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Early generations of the x86 were extensively microprogrammed. More recent
generations still use microprogramming for the more complex portions of the
instruction set, but simpler instructions are translated directly (in hardware) into
between one and four microinstructions that are in turn fed to a heavily pipelined,
RISC-like computational core. �

The MIPS architecture, begun as a commercial spin-off of research at StanfordEXAMPLE 5.12
The MIPS ISA University, is arguably the simplest of the commercial RISC machines. It too has

evolved, through six principal generations (the last in 1999). With one exception,
however—the introduction of 64-bit integer operands and addresses in 1991—the
changes have been relatively minor. Current processors are sold in 32- and 64-bit
versions. MIPS processors were used by several workstation vendors—notably Sil-
icon Graphics—throughout the 1990s. They are now used primarily in embedded
applications. MIPS-based tools are also widely used in academia. All models of the
MIPS are implemented entirely in hardware; they are not microprogrammed. �

Among the most significant differences between the x86 and MIPS are their
memory access mechanisms, their register sets, and the variety of instructions they
provide. Like all RISC machines, the MIPS allows only load and store instructions
to access memory; all computation is done with values in registers. Like most
CISC machines, the x86 allows computational instructions to operate on values
in either registers or memory. It also provides a richer set of addressing modes.
Like most RISC machines, the MIPS has 32 integer registers and 32 floating-point
registers. The 32-bit x86, by contrast, has only 8 of each, and most of the floating-
point instructions treat the floating-point registers as a tiny stack, rather than
naming them directly. The MIPS provides many fewer distinct instructions than
does the x86, and its instruction set is much more internally consistent; the x86
has a huge number of special cases. All MIPS instructions are exactly 4 bytes long.
Instructions on the x86 vary from 1 to 17 bytes.

Memory Access and Addressing Modes

Like all RISC machines, the MIPS has a load/store architecture. Its memory access
instructions support only displacement addressing. With a displacement of zero
this subsumes register indirect addressing. With a base of zero (hardwired into
register zero), it also subsumes so-called absolute addressing in the first 64K of
memory. On the x86, by contrast, most instructions can obtain one (but not both)
of their operands from memory. Nine different addressing modes are available for
these references. The most general case is called scaled indexed addressing. It
employs a base register Rb , an index register Ri , a displacement d , and a scaling
factor s. The value of s must be 1, 2, 4, or 8; it can therefore be encoded in two bits.
The effective address of the operand is (Rb) + d + (Ri) × s, where (R) represents
the content of register R. All of the other x86 addressing modes are simplifications
of this general case.

MIPS instructions are three-address. X86 instructions are two-address: the
result of a computation overwrites one of the operands, which may be in either a
register or memory.
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Registers

The register sets of the two machines are illustrated pictorially in Figure 5.6. TheEXAMPLE 5.13
x86 and MIPS register sets most striking difference between the two is the sheer number of registers on the

RISC machine—roughly four times as many as on the CISC machine. The integer
registers are also wider on the MIPS, but both machines have“widened” over time.
The 8086 was introduced in 1978 with 16-bit integer registers. (It was source-code
compatible, though not binary compatible, with the earlier 8-bit 8080.) Intel
expanded the registers to 32 bits in 1985 with the 80386. The MIPS, by contrast,
was introduced with 32-bit integer registers in 1984. These were expanded to 64
bits in 1991. The x86-64 architecture, introduced by AMD in 2003, extends the
x86 to 64-bit registers. We do not consider those extensions here; even on 64-bit
machines, most programs continue to run in 32-bit mode. �

The x86 has eight 32-bit integer registers, plus the program counter and the
processor status word, which includes the condition codes. For historical reasons,
the integer registers are named eax, ebx, ecx, edx, esi, edi, esp, and ebp.
They can be used interchangeably in most instructions, but certain instructions
use them in special ways. Registers eax and edx, for example, are implicitly the
destination registers for integer multiplication and division operations. Register
ecx is read and updated implicitly by certain loop-control instructions. Registers
esi and edi are used implicitly by instructions that copy, search, or compare
strings of characters in memory. Register esp is used as a stack pointer; it is
read and written implicitly by push, pop, and subroutine call/return instructions.
Register ebp is typically used as a frame pointer; it is manipulated by instructions
designed to allocate and deallocate stack frames.

For backward compatibility with 16-bit code, there are separate names for the
lower halves of all eight integer registers: ax, bx, cx, dx, si, di, sp, and bp. Four
of these (ax, bx, ax, and ax) have separate names for their upper and lower halves:
ah, al, bh, bl, ch, cl, dh, and dl.

Floating-point instructions manipulate a separate set of 80-bit floating-point
registers. There are also registers for IEEE floating-point status and control,
floating-point condition codes, and “tag” bits that indicate whether the values
in the various floating-point registers are normal, denormal, NaN, or garbage.
All computation is carried out in extended precision; values are converted to and
from IEEE single- and double-precision floating-point when written to or read
from memory.

Recent members of the x86 processor family support instruction set extensions
(MMX and SSE) that allow arithmetic operations to be performed on vectors
of small integer or floating-point operands. While we will not consider these
extensions further, it is worth mentioning that the eight MMX vector registers
overlap the low-order 64 bits of the x86 floating-point registers. The eight SSE
vector registers are new; each is 128 bits long.

The MIPS has a total of 64 registers, 32 integer and 32 floating-point, plus the
program counter; a pair of special registers, called LO and HI, used by multiply and
divide instructions; a floating-point control and status register analogous to the
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Integer
registers

Floating-point control/
status, condition code,
and tag registers

Floating-point control/status
and condition code registers

Return address
HI

LO
Program counter

Program counter

Integer general registers Floating-point registers

Floating-point registers

zero

Condition codes

Figure 5.6 Register sets of the x86 (top) and MIPS IV (bottom). In both cases, only those reg-
isters of interest to the user-level programmer are shown; implementations of both architectures
include special-purpose registers of use to the operating system. Not shown are eight 128-bit
“streaming registers” introduced with the SSE extensions to the x86 and a 192-bit accumulator
introduced with the MDMX extensions to the MIPS. Also omitted are eight segment registers
in the x86 that support the obsolete 80286 addressing system; these are not used by modern
compilers.
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one on the x86; and an eight-bit floating-point condition code register. Branches
based on the outcome of integer operations employ combination instructions that
test or compare values in registers and branch based on the outcome; there are no
integer condition codes. In early generations of the MIPS, integer registers were
32 bits wide; in more recent generations they are 64. Double-precision (64-bit)
floating-point arithmetic has always been available, but in early generations it
required that the floating-point registers be used together in pairs.

Integer register r0 on the MIPS always contains a zero. This design trick allows
several simplifications in instruction encoding. To move a value from one register
to another, for example, we can perform an add (or a sub or an or) with r0;
we don’t need a separate instruction. To negate a value we can subtract it from
r0. To branch unconditionally, we can “test” whether r0 = r0. The only other
nonuniformity in the treatment of MIPS registers appears in the subroutine call
instruction, jal (jump and link): it places its return address in register r31.

Integer multiply instructions on the MIPS write their results to registers LO
and HI (with n-bit operands, the result of a multiply may require 2n bits). Divides
always generate both a quotient and a remainder, in LO and HI respectively. Special
move instructions copy from LO and/or HI to/from integer registers. As noted
above, the x86 overloads registers eax and edx for these purposes.

In a manner analogous to the MMX and SSE extensions to the x86, recent MIPS
processors also support small integer and floating-point vector operations. Data
for these operations are kept in the floating-point registers, and in a new 192-bit
vector accumulator that allows the results of a series of integer vector multiplies
to be totaled without overflow.

Register Conventions Beyond the special treatment given some registers in
hardware, the designers of both the x86 and the MIPS recommend additional
conventions to be enforced by software. On the x86, register ebp is generally
used for a frame pointer, whether or not the compiler makes use of special frame
management instructions. Function values are returned in register eax (or in the
pair eax:edx in the case of 64-bit return values). Any subroutine that modifies
registers ebx, esi, or edi must save their old values in memory, and restore them
before returning. Any caller that needs the values in eax, ecx, or edx must save
them before making a call. (Calling sequences will be discussed in more detail in
Section 5.5.2.)

Conventions are even more elaborate on the MIPS. Register r1 is reserved
for the assembler, which uses it when expanding certain pseudoinstructions into
sequences of real instructions. Registers r2 and r3 are used for expression evalu-
ation and function returns. Registers r4..r7 are used for subroutine parameters.
Registers r16..r23 are “callee saves” registers comparable to ebx, esi, and edi
on the x86. Registers r8..r15, r24, and r25 are “caller saves” registers. Registers
r26 and r27 are reserved for use by the operating system kernel; from the point
of view of a user program their values can change spontaneously. Register r28 is
used as a base for displacement addressing of global variables. Registers r29 and
r30 are used for the stack pointer and frame pointer, respectively.
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Instructions

While it can be difficult to count the instructions in a given instruction set (the
x86 can branch on any of 16 different combinations of the condition codes; does
this mean it has 16 conditional branch instructions, or one with 16 variants?), it
is still clear that the x86 has more, and more complex, instructions than does the
MIPS. Some of the features of the x86 not found in the MIPS include:

Binary-coded decimal arithmetic (see the sidebar on page 296).

Character-string search, compare, and copy operations.

Bit test and set operations.

Bit string search and copy operations.

Miscellaneous “combination” instructions. These perform the same task as
some multi-instruction sequence, but require less code space and presumably
run faster. Examples include byte and register swaps, subroutine calls and
returns, stack operations, and loop control.

Instructions to support the obsolete 80286 segmented memory system.

On the other hand, the MIPS provides:

“Building-block” instructions that allow a 32-bit quantity to be loaded into a
register with a two-instruction sequence.

Separate 32- and 64-bit versions of most of the arithmetic, logical, and
memory-access (load/store) instructions.

Nullifying branches (discussed in Section 5.5.1).

Conditional traps. These provide a fast way to drop into the operating system
on a dynamic semantic error.

More important than any difference in the number or types of instructions,
however, is the difference in how those instructions are encoded. Like most CISC
machines, the x86 places a heavy premium on minimizing code size (and thus the
need for memory at run time), at the expense of comparatively difficult instruction
decoding. Instructions range from 1 to 17 bytes in length, with a myriad of internal
formats. Similar fields do not necessarily have the same length, or appear at the
same offset, in different instructions. Operand specifiers vary in length depending
on the choice of addressing mode. One-byte prefix codes can be prepended to
certain instructions to modify their behavior, causing them to repeat multiple
times, access operands in a different segment of the 80286 address space, or lock
the bus for atomic access to main memory.

Floating-point operations are perhaps the most baroque component of the
x86 instruction set. The designers of the original floating-point co-processor,
the Intel 8087,chose to conserve space in floating-point instructions by treating the
floating-point registers as a stack. A floating-point load instruction, for example,
does not specify a destination register; instead it pushes its operand into the
top location on the register stack, designated st(0). The previous contents of
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registers st(0) through st(6) move down so that what used to be in st(4), for
example, is now in st(5). The content of st(7) is lost. Arithmetic instructions,
likewise, manipulate the stack. The simplest add instruction, for example, does
not specify operand or destination registers; instead it reads its operands implicitly
from st(0) and st(1), and replaces the content of st(0) with the result. A
variant of the add instruction pops its operands: the contents of registers st(2)
through st(7) move up one position, and st(0) gets the result of adding the
old st(0) and st(1). Additional instruction variants take one operand from an
explicitly named register farther down the stack, or from a location in memory.
Noncommutative operations, such as subtraction and division, have variants that
use their operands in either order.

While floating-point arithmetic instructions (and compare and test instruc-
tions) update the floating-point condition codes, there are no special branch
instructions to alter control flow based on these codes. Instead, an fnstsw instruc-
tion must be used to copy the floating-point status word to one of the 16-bit integer
registers, where a subsequent bit test instruction can access the desired condition
codes. This instruction in turn sets the integer condition codes, which can be used
to direct a branch.

Like most RISC machines, the MIPS employs fixed-length, 32-bit instructions
with relatively simple encodings. The first six bits specify the opcode. The remain-
ing bits contain (1) a 26-bit jump displacement, (2) a pair of register specifiers
and a 16-bit constant, or (3) three register specifiers and 11 additional bits, some
of which are used by special-purpose instructions. Many of the register-register
operations contain unused bits, and operations that might be specified with, say,
40 bits on the x86 require two full instructions (64 bits) on the MIPS. Like the x86,
the MIPS implements the IEEE 754 floating-point standard, but its floating-point
instruction set is much more simple and straightforward—very similar to the inte-
ger set. Floating-point branch instructions have direct access to the floating-point
condition codes.

3CHECK YOUR UNDERSTANDING

29. Describe the most general (complex) addressing modes of the x86 and MIPS
architectures.

30. How many integer and floating-point registers are provided by each machine?
How wide are these registers?

31. Explain the utility of register zero on the MIPS.

32. Summarize the register usage conventions of the x86 and MIPS.

33. List at least three “complex” instructions provided by the x86 instruction set
but not provided by the MIPS instruction set.

34. Name a “simple” instruction provided by the MIPS but not by the x86.
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35. Describe the floating-point stack of the x86.

36. Summarize the differences in instruction encoding between the x86 and MIPS.

5.5 Compiling for Modern Processors

Programming a RISC machine by hand, in assembly language, is a tedious under-
taking. Only loads and stores can access memory, and then only with limited
addressing modes. Moreover the limited space available in fixed-size instructions
means that a nonintuitive two-instruction sequence is required to load a 32-bit
constant or to jump to an absolute address. In some sense, complexity that used to
be hidden in the microcode of CISC machines has been exported to the compiler.
Fortunately, compilers don’t get bored or make careless mistakes, and can easily
deal with comparatively primitive instructions. In fact, when compiling for recent
implementations of the x86, compilers generally limit themselves to a small, RISC-
like subset of the instruction set, which the processor can pipeline effectively. Old
programs that make use of more complex instructions still run, but not as fast;
they don’t take full advantage of the hardware.

The real difficulty in compiling for modern processors lies not in the need to
use primitive instructions, but in the need to keep the pipeline full and to make
effective use of registers. A user who traded in a Pentium III PC for one with aEXAMPLE 5.14

Performance �= clock rate Pentium 4 would typically find that while old programs ran faster on the new
machine, the speed improvement was nowhere near as dramatic as the difference
in clock rates would have led one to expect. Improvements would generally be
better if one could obtain new program versions that were compiled with the
newer processor in mind. �

5.5.1 Keeping the Pipeline Full

Four main problems may cause a pipelined processor to stall:

1. Cache misses. A load instruction or an instruction fetch may miss in the cache.

2. Resource hazards. Two concurrently executing instructions may need to use the
same functional unit at the same time.

3. Data hazards. An instruction may need an operand that has not yet been
produced by an earlier but still executing instruction.

4. Control hazards. Until the outcome (and target) of a branch instruction are
determined, the processor does not know the location from which to fetch
subsequent instructions.

All of these problems are amenable, at least in part, to both hardware and
software solutions. On the hardware side, misses can generally be reduced by
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building larger or more highly associative caches.4 Resource hazards, likewise, can
be addressed by building multiple copies of the various functional units (though
most processors don’t provide enough to avoid all possible conflicts). Misses,
resource hazards, and data hazards can all be addressed by out-of-order execution,
which allows a processor (at the cost of significant design complexity, chip area,
and power consumption) to consider a lengthy “window” of instructions, and
make progress on any of them for which operands and hardware resources are
available.

Of course, even out-of-order execution works only if the processor is able to
fetch instructions, and thus it is control hazards that have the largest potential
negative impact on performance. Branches constitute something like 10% of all
instructions in typical programs,5 so even a one-cycle stall on every branch could
be expected to slow down execution by 9% on average. On a deeply pipelined
machine one might naively expect to stall for more like five or even ten cycles while
waiting for a new program counter to be computed. To avoid such intolerable
delays, most workstation-class processors incorporate hardware to predict the
outcome of each branch, based on past behavior, and to execute speculatively down
the predicted path. Assuming that it takes care to avoid any irreversible operations,
the processor will suffer stalls only in the case of an incorrect prediction.

On the software side, the compiler has a major role to play in keeping the
pipeline full. For any given source program, there is an unbounded number of
possible translations into machine code. In general we should prefer shorter trans-
lations over longer ones, but we must also consider the extent to which various
translations will utilize the pipeline. On an in-order processor (one that always
executes instructions in the order they appear in the machine language program),
a stall will inevitably occur whenever a load is followed immediately by an instruc-
tion that needs the loaded value, because even first-level cache requires at least
one extra cycle to respond. A stall may also occur when the result of a slow-
to-complete floating-point operation is needed too soon by another instruction,
when two concurrently executing instructions need the same functional unit in
the same cycle, or, on a superscalar processor, when an instruction that uses a
value is executed concurrently with the instruction that produces it. In all these
cases performance may improve significantly if the compiler chooses a translation
in which instructions appear in a different order.

The general technique of reordering instructions at compile time so as to
maximize processor performance is known as instruction scheduling. On an in-
order processor the goal is to identify a valid order that will minimize pipeline

4 The degree of associativity of a cache is the number of distinct lines in the cache in which the
contents of a given memory location might be found. In a one-way associative (direct-mapped)
cache, each memory location maps to only one possible line in the cache. If the program uses two
locations that map to the same line, the contents of these two locations will keep evicting each
other, and many misses will result. More highly associative caches are slower, but suffer fewer such
conflicts.

5 This is a very rough number. For the SPEC2000 benchmarks, Hennessy and Patterson report
percentages varying from 1 to 25 [HP07, 3rd ed., pp. 138–139].
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stalls at run time. To achieve this goal the compiler requires a detailed model
of the pipeline. On an out-of-order processor the goal is simply to maximize
instruction-level parallelism (ILP): the degree to which unrelated instructions lie
near one another in the instruction stream (and thus are likely to fall within the
processor’s instruction window). A compiler for such an out-of-order machine
may be able to make do with a less detailed processor model. At the same time, it
may need to ensure a higher degree of ILP, since out-of-order execution tends to
be found on machines with several pipelines.

Instruction scheduling can have a major impact on resource and data haz-
ards. On machines with so-called delayed branches it can also help with control
hazards. We will consider the topic of instruction scheduling in some detail in
Section 16.6. In the remainder of the current subsection we focus on the two
cases—loads and branches—where issues of instruction scheduling may actually
be embedded in the processor’s instruction set. Software techniques to reduce
the incidence of cache misses typically require large-scale restructuring of con-
trol flow or data layout. Though the better commercial compilers may reorganize
loops for better cache locality in scientific programs (a topic we will consider in
Section 16.7.2), most simply assume that every memory access will hit in the
primary cache. The assumption is generally a good one: most programs on most
machines achieve a cache hit rate of well over 90% (often over 99%). The impor-
tant goal is to make sure that the pipeline can continue to operate during the time
that it takes the cache to respond.

Loads

Consider a load instruction that hits in the primary cache. The number of cycles
that must elapse before a subsequent instruction can use the result is known as the
load delay. Most current machines have a one-cycle load delay. If the instruction
immediately after a load attempts to use the loaded value, a one-cycle load penalty
(a pipeline stall) will occur. Longer pipelines can have load delays of two or even
three cycles.

To avoid load penalties (in the absence of out-of-order execution), the compiler
may schedule one or more unrelated instructions into the delay slot (s) between a
load and a subsequent use. In the following code, for example, a simple in-orderEXAMPLE 5.15

Filling a load delay slot pipeline will incur a one-cycle penalty between the second and third instructions:

r2 := r1 + r2
r3 := A – – load
r3 := r3 + r2

If we swap the first two instructions, the penalty goes away:

r3 := A – – load
r2 := r1 + r2
r3 := r3 + r2

The second instruction gives the first instruction time enough to retrieve A before
it is needed in the third instruction. �
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To maintain program correctness, an instruction-scheduling algorithm must
respect all dependences among instructions. These dependences come in three
varieties:

Flow dependence (also called true or read-after-write dependence): a later
instruction uses a value produced by an earlier instruction.

Anti-dependence (also called write-after-read dependence): a later instruction
overwrites a value read by an earlier instruction.

Output dependence (also called write-after-write dependence): a later instruction
overwrites a value written by a previous instruction.

A compiler can often eliminate anti- and output dependences by renaming
registers. In the following, for example, anti-dependences prevent us from movingEXAMPLE 5.16

Renaming registers for
scheduling

either the instruction before the load or the one after the add into the delay slot
of the load:

r3 := r1 + 3 – – immovable×↓
r1 := A – – load
r2 := r1 + r2

r1 := 3 – – immovable×↑
If we use a different register as the target of the load, however, then either instruc-
tion can be moved:

r3 := r1 + 3 – – movable↓
r5 := A – – load
r2 := r5 + r2

r1 := 3 – – movable↑
becomes

r5 := A – – load
r3 := r1 + 3
r1 := 3
r2 := r5 + r2 �

The need to rename registers in order to move instructions can increase the
number of registers needed by a given stretch of code. To maximize opportuni-
ties for concurrent execution, out-of-order processor implementations may per-
form register renaming dynamically in hardware, as noted in Section 5.4.3.
These implementations possess more physical registers than are visible in the
instruction set. As instructions are considered for execution, any that use the
same architectural register for independent purposes are given separate physical
copies on which to do their work. If a processor does not perform hardware reg-
ister renaming, then the compiler must balance the desire to eliminate pipeline
stalls against the desire to minimize the demand for registers (so that they can
be used to hold loop indices, local variables, and other comparatively long-lived
values).

Branches

Successful pipelining depends on knowing the address of the next instruction
before the current instruction has completed, or has even been fully decoded.
With fixed-size instructions a processor can infer this address for straight-line
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code, but not for the code that follows a branch.6 In an attempt to minimize the
impact of branch delays, several early RISC machines provided delayed branch
instructions: with these, the instruction immediately after the branch is executed
regardless of the outcome of the branch. If the branch is not taken, all occurs as one
would normally expect. If the branch is taken, however, the order of instructions
is the branch itself, the instruction after the branch, and then the instruction at
the target of the branch.

Because control may go either of two directions at a branch, finding an instruc-
tion to fill a delayed branch slot is slightly trickier than finding one to fill a delayed
load slot. The few instructions immediately before the branch are the most obvi-EXAMPLE 5.17

Filling a branch delay slot ous candidates to move, provided that they do not contribute to the calculation
that controls the branch, and that we don’t have to move them past the target of
some other branch:

B := r2 – – movable↓
r1 := r2 * r3 – – immovable×↓
if r1 > 0 goto L1
nop

becomes
r1 := r2 * r3
if r1 > 0 goto L1
B := r2

(This code sequence assumes that branches are delayed. Unless otherwise noted,
we will assume throughout the remainder of the book that they are not.) �

To address the problem of unfillable branch delay slots, some RISC machines
provide nullifying conditional branch instructions. A nullifying branch includes
a bit that indicates the direction that the compiler “expects” the branch to go.
The hardware executes the instruction in the delay slot only if the branch goes

DESIGN & IMPLEMENTATION

Delayed load instructions
In order to enforce the flow dependence between a load of a register and its
subsequent use, a processor must include so-called interlock hardware. To mini-
mize chip area, several of the very early RISC processors provided this hardware
only in the case of cache misses. The result was an architecturally visible delayed
load instruction similar to the delayed branches discussed elsewhere in this sec-
tion. The value of the register targeted by a delayed load was undefined in the
immediately subsequent instruction slot. Filling the delay slot of a delayed load
with an unrelated instruction was thus a matter of correctness, not just of per-
formance. If a compiler was unable to find a suitable “real” instruction, it had
to fill the delay slot with a no-op (nop)—an instruction that has no effect. More
recent RISC machines have abandoned delayed loads; their implementations
are fully interlocked. Within processor families old binaries continue to work
correctly; the (nop) instructions are simply redundant.

6 In this context, branches include not only the control flow for conditionals and loops, but also
subroutine calls and returns.
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the expected direction. While the branch instruction is making its way down
the pipeline, the hardware begins to execute the next instruction. Ideally, by the
time it must begin the instruction after that, it will know the outcome of the
branch. If the outcome matches the prediction, then the pipeline will proceed
without stalling. If the outcome does not match the prediction, then the (not
yet completed) instruction in the delay slot will be abandoned, along with any
instructions fetched from the target of the branch.

Unfortunately, as architects have moved to more aggressive, deeply pipelined
processor implementations, multicycle branch delays have become the norm, and
architecturally visible delay slots no longer suffice to hide them. A few processors
have been designed with an architecturally visible branch delay of more than
one cycle, but this is not generally considered a viable strategy: it is simply too
difficult for the compiler to find enough instructions to schedule into the slots.
Several processors retain one-slot delayed branches (sometimes with optional
nullification) for the sake of backward compatibility, and as a means of redu-
cing, but not eliminating, the number of pipeline stalls (the penalty) associated
with a branch. With or without delayed branches, many processors also employ
elaborate hardware mechanisms to predict the outcome and targets of branches
early, so that the pipeline can continue anyway. When a prediction turns out to
be incorrect, of course, the hardware must ensure that none of the incorrectly
fetched instructions have visible effects. Even when hardware is able to predict the
outcome of branches, it can be useful for the compiler to do so also, in order to
schedule instructions to minimize load delays in the most likely cross-branch code
paths.

5.5.2 Register Allocation

The load-store architecture of RISC machines explicitly acknowledges that mov-
ing data between registers and memory is expensive. A store instruction costs a
minimum of one cycle—more if several stores are executed in succession and the
memory system can’t keep up. A load instruction costs a minimum of one or two
cycles (depending on whether the delay slot can be filled), and can cost scores
or even hundreds of cycles in the event of a cache miss. These same costs are
present on CISC machines as well, even if they don’t stand out as prominently
in a casual perusal of assembly code. In order to minimize the use of loads and
stores, a good compiler must keep things in registers whenever possible. We saw an
example in Chapter 1: the most striking difference between the “optimized” code
of Example 1.2 (page 5) and the naive code of Figure 1.6 (page 34 ) is the absence
in the former of most of the loads and stores. As improvements in processor speed
continue to outstrip improvements in memory speed, the cost in cycles of a cache
miss continues to increase, making good register usage increasingly important.

Register allocation is typically a two-stage process. In the first stage the com-
piler identifies the portions of the abstract syntax tree that represent basic blocks:
straight-line sequences of code with no branches in or out. Within each basic
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block it assigns a “virtual register” to each loaded or computed value. In effect,
this assignment amounts to generating code under the assumption that the target
machine has an unbounded number of registers. In the second stage, the compiler
maps the virtual registers of an entire subroutine onto the architectural (hardware)
registers of the machine, using the same architectural register when possible to
hold different virtual registers at different times, and spilling virtual registers to
memory when there aren’t enough architectural registers to go around.

We will examine this two-stage process in more detail in Section 16.8. For
now, we illustrate the ideas with a simple example. Suppose we are compiling aEXAMPLE 5.18

Register allocation for a
simple loop

function that computes the variance σ2 of the contents of an n-element vector.
Mathematically,

σ2 =
1
n

∑

i

(xi − x)2 =

(
1
n

∑

i

x2
i

)

− x2

where x0 . . . xn−1 are the elements of the vector, and x = 1/n
∑

i xi is their
average. In pseudocode,

double sum := 0
double squares := 0
for int i in 0 . . n−1

sum +:= A[i]
squares +:= A[i] × A[i]

double average := sum / n
return (squares / n) − (average × average)

After some simple code improvements and the assignment of virtual registers, the
assembly language for this function on a RISC machine is likely to look something
like Figure 5.7. This code uses two integer virtual registers (v1 and v2) and eight
floating-point virtual registers (w1–w8). For each of these we can compute the
range over which the value in the register is useful, or live. This range extends
from the point at which the value is defined to the last point at which the value
is used. For register w4, for example, the range is only one instruction long, from
the assignment at line 8 to the use at line 9. For register v1, the range is the union
of two subranges, one that extends from the assignment at line 1 to the use (and
redefinition) at line 10, and another that extends from this redefinition around
the loop to the same spot again.

Once we have calculated live ranges for all virtual registers we can create a
mapping onto the architectural registers of the machine. We can use a single
architectural register for two virtual registers only if their live ranges do not over-
lap. If the number of architectural registers required is larger than the number
available on the machine (after reserving a few for such special values as the stack
pointer), then at various points in the code we shall have to write (spill) some of
the virtual registers to memory in order to make room for the others.

In our example program, the live ranges for the two integer registers overlap,
so they will have to be assigned to separate architectural registers. Among the
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1. v1 := &A – – pointer to A[1]
2. v2 := n – – count of elements yet to go
3. w1 := 0.0 – – sum
4. w2 := 0.0 – – squares
5. goto L2
6. L1: w3 := *v1 – – A[i] (floating point)
7. w1 := w1 + w3 – – accumulate sum
8. w4 := w3 × w3
9. w2 := w2 + w4 – – accumulate squares

10. v1 := v1 + 8 – – 8 bytes per double-word
11. v2 := v2 – 1 – – decrement count
12. L2: if v2 > 0 goto L1
13. w5 := w1 / n – – average
14. w6 := w2 / n – – average of squares
15. w7 := w5 × w5 – – square of average
16. w8 := w6 – w7
17. . . . – – return value in w8

Figure 5.7 RISC assembly code for a vector variance computation.

1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1 – – no delay
7. f1 := f1 + f3 – – 1-cycle wait for f3
8. f3 := f3 × f3 – – no delay
9. f2 := f2 + f3 – – 4-cycle wait for f3

10. r1 := r1 + 8 – – no delay
11. r2 := r2 – 1 – – no delay
12. L2: if r2 > 0 goto L1 – – no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 – f1
17. . . . – – return value in f1

Figure 5.8 The vector variance example with architectural registers assigned. Also shown in
the body of the loop are the number of stalled cycles that can be expected on a simple in-order
pipelined machine, assuming a one cycle penalty for loads, two cycle penalty for floating-point
adds, and four cycle penalty for floating-point multiplies.

floating-point registers, w1 overlaps with w2–w4, w2 overlaps with w3–w5, w5
overlaps with w6, and w6 overlaps with w7. There are several possible map-
pings onto three architectural floating-point registers, one of which is shown in
Figure 5.8. �
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1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1
7. r1 := r1 + 8 – – no delay
8. f4 := f3 × f3 – – no delay
9. f1 := f1 + f3 – – no delay

10. r2 := r2 – 1 – – no delay
11. f2 := f2 + f4 – – 1-cycle wait for f4
12. L2: if r2 > 0 goto L1 – – no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 – f1
17. . . . – – return value in f1

Figure 5.9 The vector variance example after instruction scheduling. All but one cycle of
delay has been eliminated. Because we have hoisted the multiply above the first floating-point
add, however, we need an extra architectural floating-point register.

Interaction with Instruction Scheduling

From the point of view of execution speed, the code in Figure 5.8 has at least
two problems. First, of the seven instructions in the loop, nearly half are devoted
to bookkeeping: updating the pointer, decrementing the loop count, and testing
the terminating condition. Second, when run on a pipelined machine, the code is
likely to experience a very high number of stalls. Exercise 5.23 explores a first
step toward addressing the bookkeeping overhead. We consider the stalls below,
and return to both problems in more detail in Chapter 16.

We noted in Section 5.5.1 that floating-point instructions commonly employEXAMPLE 5.19
Register allocation and
instruction scheduling

a separate, longer pipeline. Because they take more cycles to complete, there can
be a significant delay before their results are available for use in other instructions.
Suppose that floating-point add and multiply instructions must be followed by
two and four cycles, respectively, of unrelated computation (these are modest
figures; real machines often have longer delays). Also suppose that the result of
a load is not available for the usual one-cycle delay. In the context of our vector
variance example, these delays imply a total of five stalled cycles in every iteration
of the loop, even if the hardware successfully predicts the outcome and target of
the branch at the bottom. Added to the seven instructions themselves, this implies
a total of 12 cycles per loop iteration (i.e., per vector element).

By rescheduling the instructions in the loop (Figure 5.9) we can eliminate
all but one cycle of stall. This brings the total number of cycles per iteration down
to only eight, a reduction of 33%. The savings comes at a cost, however: we now
execute the multiply instruction before the first floating-point add, and must use
an extra architectural register to hold on to the add’s second argument. This effect
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is not unusual: instruction scheduling has a tendency to overlap the live ranges of
virtual registers whose ranges were previously disjoint, leading to an increase in
the number of architectural registers required. �

The Impact of Subroutine Calls

The register allocation scheme outlined above depends implicitly on the compiler
being able to see all of the code that will be executed over a given span of time
(e.g., an invocation of a subroutine). But what if that code includes calls to other
subroutines? If a subroutine were called from only one place in the program,
we could allocate registers (and schedule instructions) across both the caller and
the callee, effectively treating them as a single unit. Most of the time, however,
a subroutine is called from many different places in a program, and the code
improvements that we should like to make in the context of one caller will be
different from the ones that we should like to make in the context of a different
caller. For small, simple subroutines, the compiler may actually choose to expand
a copy of the code at each call site, despite the resulting increase in code size.
This inlining of subroutines can be an important form of code improvement,
particularly for object-oriented languages, which tend to have very large numbers
of very small subroutines.

When inlining is not an option, most compilers treat each subroutine as an
independent unit. When a body of code for which we are attempting to per-
form register allocation makes a call to a subroutine, there are several issues to
consider:

Parameters must generally be passed. Ideally, we should like to pass them in
registers.

Any registers that the callee will use internally, but which contain useful values
in the caller, must be spilled to memory and then reread when the callee returns.

Any variables that the callee might load from memory, but which have been
kept in a register in the caller, must be written back to memory before the call,
so that the callee will see the current value.

Any variables to which the callee might store a value in memory, but which
have been kept in a register in the caller, must be reread from memory when
the callee returns, so that the caller will see the current value.

DESIGN & IMPLEMENTATION

In-line subroutines
Subroutine inlining presents, to a large extent, a classic time-space tradeoff.
Inlining one instance of a subroutine replaces a relatively short calling sequence
with a subroutine body that is typically significantly longer. In return, it avoids
the execution overhead of the calling sequence, enables the compiler to perform
code improvement across the call without performing interprocedural analysis,
and typically improves locality, especially in the L1 instruction cache.
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If the caller does not know exactly what the callee might do (this is often the
case—the callee might not have been compiled yet), then the compiler must make
conservative assumptions. In particular, it must assume that the callee reads and
writes every variable visible in its scope. The caller must write any such variable
back to memory prior to the call, if its current value is (only) in a register. If it
needs the value of such a variable after the call, it must reread it from memory.

With perfect knowledge of both the caller and the callee, the compiler could
arrange across subroutine calls to save and restore precisely those registers that
are both in use in the caller and needed (for internal purposes) in the callee.
Without this knowledge, we can choose either for the caller to save and restore
the registers it is using, before and after the call, or for the callee to save and
restore the registers it needs internally, at the top and bottom of the subroutine.
In practice it is conventional to choose the latter alternative for at least some static
subset of the register set, for two reasons. First, while a subroutine may be called
from many locations, there is only one copy of the subroutine itself. Saving and
restoring registers in the callee, rather than the caller, can save substantially on
code size. Second, because many subroutines (particularly those that are called
most frequently) are very small and simple, the set of registers used in the callee
tends, on average, to be smaller than the set in use in the caller. We will look at
subroutine calling sequences in more detail in Chapter 8.

3CHECK YOUR UNDERSTANDING

37. What is a delayed load instruction?

38. What is a nullifying branch instruction?

39. List the four principal causes of pipeline stalls.

40. What is a pipeline interlock?

41. What is instruction scheduling ? Why is it important on modern machines?

42. What is branch prediction? Why is it important?

43. Describe the interaction between instruction scheduling and register alloca-
tion.

44. What is the live range of a register?

45. What is subroutine inlining ? What benefits does it provide? When is it possible?
What is its cost?

46. Summarize the impact of subroutine calls on register allocation.

5.6 Summary and Concluding Remarks

Computer architecture has a major impact on the sort of code that a compiler
must generate, and the sorts of code improvements it must effect in order to
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obtain acceptable performance. Since the early 1980s, the trend in processor design
has been to equip the compiler with more and more knowledge of the low-
level details of processor implementation, so that the generated code can use
the implementation to its fullest. This trend has blurred the traditional dividing
line between processor architecture and implementation: while a compiler can
generate correct code based on an understanding of the architecture alone, it
cannot generate fast code unless it understands the implementation as well. In
effect, timing issues that were once hidden in the microcode of microprogrammed
processors (and which made microprogramming an extremely difficult and arcane
craft) have been exported into the compiler.

In the first several sections of this chapter we surveyed the organization of
memory and the representation of data (including integer and floating-point
arithmetic), the variety of typical assembly language instructions, and the evo-
lution of modern RISC machines. As examples we compared the x86 and the
MIPS. We also introduced a simple notation to be used for assembly language
examples in later chapters. In the final section we discussed why compiling for
modern machines is hard. The principal tasks include instruction scheduling, for
load and branch delays and for multiple functional units, and register allocation,
to minimize memory traffic. We noted that there is often a tension between these
tasks, and that both are made more difficult by frequent subroutine calls.

As of 2009 there are four principal commercial RISC architectures: ARM (Mar-
vell, Texas Instruments, Motorola, and dozens of others), MIPS (NEC, Toshiba,
Freescale, and many others), Power/PowerPC (IBM, Freescale), and SPARC (Sun,
Texas Instruments, Fujitsu, and several others). ARM is the property of ARM
Holdings, PLC, an intellectual property firm that relies on licensees for actual fab-
rication. Though ARM processors are not generally employed in desktop or laptop
computers, they power roughly three-quarters of the world’s embedded systems,
in everything from cell phones and PDAs to remote controls and the dozens of
devices in a modern automobile. MIPS processors, likewise, are now principally
employed in the embedded market, though they were once common in desktop
and high-end machines.

Despite the handicap of a CISC instruction set and the need for backward
compatibility, the x86 overwhelmingly dominates the desktop and laptop market,
largely due to the marketing prowess of IBM, Intel, and Microsoft, and to the suc-
cess of Intel and AMD in decoupling the architecture from the implementation.
Modern implementations of the x86 incorporate a hardware front end that trans-
lates x86 code, on the fly, into a RISC-like internal format amenable to heavily
pipelined execution. Recent processors from Intel and AMD are competitive with
the fastest RISC alternatives.

With growing demand for a 64-bit address space, a major battle developed
in the x86 world around the turn of the century. Intel undertook to design an
entirely new (and very different) instruction set for their IA-64/Itanium line of
processors. They provided an x86 compatibility mode, but it was implemented in a
separate portion of the processor—essentially a Pentium subprocessor embedded
in the corner of the chip. Application writers who wanted speed and address space
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enhancements were expected to migrate to the new instruction set. AMD took a
more conservative approach, at least from a marketing perspective, and developed
a backward-compatible 64-bit extension to the x86 instruction set; its AMD64
processors provided a much smoother upward migration path. In response to
market demand, Intel subsequently licensed the AMD64 architecture (which it
now calls Intel 64) for use in its 64-bit Pentium processors.

As processor and compiler technology continue to evolve, it is likely that proces-
sor implementations will continue to become more complex, and that compilers
will take on additional tasks in order to harness that complexity. Traditional CISC
machines remain popular almost entirely due to the need for backward com-
patibility, but both the CISC and RISC “design philosophies” are still very much
alive [SW94]. The “CISC-ish” philosophy says that newly available resources (e.g.,
increases in chip area) should be used to implement functions that must currently
be performed in software, such as vector or graphics operations, decimal arith-
metic, new addressing modes, or perhaps transactional memory (to be described
in Section 12.4.4). The “RISC-ish” philosophy says that resources should be used
to improve the speed of existing functions, for example by increasing cache size,
employing faster but larger functional units, increasing the number of cores, or
deepening the pipeline and decreasing the cycle time.

Where the first-generation RISC machines from different vendors differed from
one another only in minor details, later generations diverged, with the ARM
and MIPS taking the more RISC-ish approach, the Power/PowerPC family tak-
ing the more CISC-ish approach, and the SPARC somewhere in the middle. It
is not yet clear which approach will ultimately prove most effective, nor is it
even clear that this is the interesting question anymore. Heat dissipation and lim-
ited ILP are increasingly the main constraints on uniprocessor performance. In
response to these constrains, most vendors are now pursuing multicore versions
of their respective architectures. It is entirely possible that future processors will
be highly heterogeneous, with multiple implementation strategies—or even mul-
tiple instruction set architectures—deployed in different cores, each optimized for
a different sort of program. Such processors will certainly require new compiler
techniques. At perhaps no time in the past 25 years has the future of microarchi-
tecture been in so much flux. However it all turns out, it is clear that processor
and compiler technology will continue to evolve together.

5.7 Exercises

5.1 Consider sending a message containing a string of integers over the Inter-
net. What problems may occur if the sending and receiving machines have
different “endian-ness”? How might you solve these problems?

5.2 What is the largest positive number in 32-bit two’s complement arithmetic?
What is the smallest (largest magnitude) negative number? Why are these
numbers not the additive inverse of each other?
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5.3 (a) Express the decimal number 1234 in hexadecimal.

(b) Express the unsigned hexadecimal number 0x2ae in decimal.

(c) Interpret the hexadecimal bit pattern 0xffd9 as a 16-bit 2’s complement
number. What is its decimal value?

(d) Suppose that n is a negative integer represented as a k-bit 2’s com-
plement bit pattern. If we reinterpret this bit pattern as an unsigned
number, what is its numeric value as a function of n and k?

5.4 What will the following C code print on a little-endian machine such as a
Pentium? What will it print on a big-endian machine such as a Sun?

unsigned short n = 0x1234;
unsigned char *p = (unsigned char *) &n;
printf ("%d\n", *p);

5.5 (a) Suppose we have a machine with hardware support for 8-bit integers.
What is the decimal value of 110110012, interpreted as an unsigned
quantity? As a signed, two’s complement quantify? What is its two’s
complement additive inverse?

(b) What is the 8-bit binary sum of 110110012 and 100100012? Does this
sum result in overflow if we interpret the addends as unsigned numbers?
As signed two’s complement numbers?

5.6 In Section 5.2.1 we observed that overflow occurs in two’s complement
addition when we add two nonnegative numbers and obtain an apparently
negative result, or add two negative numbers and obtain an apparently non-
negative result. Prove that it is equivalent to say that a two’s complement
addition operation overflows if and only if the carry into most significant
place differs from the carry out of most significant place. (This trivial check
is the one typically performed in hardware.)

5.7 In Section 5.2.1 we claimed that a two’s complement integer could be
correctly negated by flipping the bits, adding 1, and discarding any carry out
of the left-most place. Prove that this claim is correct.

5.8 What is the single-precision IEEE floating-point number whose value is
closest to 6.022 × 1023?

5.9 Occasionally one sees a C program in which a double-precision floating-
point number is used as an integer counter. Why might a programmer
choose to do this?

5.10 Modern compilers often find they don’t have enough registers to hold all the
things they’d like to hold. At the same time, VLSI technology has reached
the point at which there is room on a chip to hold many more registers than
are found in the typical ISA. Why are we still using instruction sets with only
32 integer registers? Why don’t we make, say, 64 or 128 of them visible to the
programmer?
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5.11 Some early RISC machines (e.g., the SPARC) provided a “multiply step”
instruction that performed one iteration of the standard shift-and-add algo-
rithm for binary integer multiplication. Speculate as to the rationale for this
instruction.

5.12 Why do you think RISC machines standardized on 32-bit instructions? Why
not some smaller or larger length? Why not variable lengths?

5.13 Consider a machine with three condition codes, N, Z, and O. N indicates
whether the most recent arithmetic operation produced a negative result. Z
indicates whether it produced a zero result. O indicates whether it produced
a result that cannot be represented in the available precision for the numbers
being manipulated (i.e., outside the range 0 . . 2n for unsigned arithmetic,
−2n−1 . . 2n−1−1 for signed arithmetic). Suppose we wish to branch on
condition A op B, where A and B are unsigned binary numbers, for op ∈
{<,≤, =, �=, >,≥}. Suppose we subtract B from A, using two’s complement
arithmetic. For each of the six conditions, indicate the logical combination
of condition-code bits that should be used to trigger the branch. Repeat
the exercise on the assumption that A and B are signed, two’s complement
numbers.

5.14 We implied in Section 5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruc-
tion is (to first approximation) independent of the time required to execute
all other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-
duced?

5.15 Suppose that loads constitute 25% of the typical instruction mix on a cer-
tain machine. Suppose further that 15% of these loads miss in the on-chip
(primary) cache, with a penalty of 40 cycles to reach main memory. What is
the contribution of cache misses to the average number of cycles per instruc-
tion? You may assume that instruction fetches always hit in the cache. Now
suppose that we add an off-chip (secondary) cache that can satisfy 90% of
the misses from the primary cache, at a penalty of only 10 cycles. What is
the effect on cycles per instruction?

5.16 Many recent processors provide a conditional move instruction that copies
one register into another if and only if the value in a third register is (or is
not) equal to zero. Give an example in which the use of conditional moves
leads to a shorter program.

5.17 The x86-64 architecture is backward compatible with the x86 instruction
set, just as the x86 is backward compatible with the 16-bit 8086 instruction
set. Less transparently, the IA-64 Itanium is capable of running legacy x86
applications in “compatibility mode.” But recent members of the ARM and
MIPS processor families support new 16-bit instructions as an extension to
the architecture. Why might designers have chosen to introduce these new,
less powerful modes of execution?
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5.18 Consider the following code fragment in pseudo-assembler notation:

1. r1 := K
2. r4 := &A
3. r6 := &B
4. r2 := r1 × 4
5. r3 := r4 + r2
6. r3 := *r3 – – load (register indirect)
7. r5 := *(r3 + 12) – – load (displacement)
8. r3 := r6 + r2
9. r3 := *r3 – – load (register indirect)

10. r7 := *(r3 + 12) – – load (displacement)
11. r3 := r5 + r7
12. S := r3 – – store

(a) Give a plausible explanation for this code (what might the correspond-
ing source code be doing?).

(b) Identify all flow, anti-, and output dependences.

(c) Schedule the code to minimize load delays on a single-pipeline, in-order
processor.

(d) Can you do better if you rename registers?

5.19 With the development of deeper, more complex pipelines, delayed loads
and branches have become significantly less appealing as features of a RISC
instruction set. Why is it that designers have been able to eliminate delayed
loads in more recent machines, but have had to retain delayed branches?

5.20 Some processors, including the PowerPC and recent members of the x86
family, require one or more cycles to elapse between a condition-determining
instruction and a branch instruction that uses that condition. What options
does a scheduler have for filling such delays?

5.21 Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which
way the branch will usually go, encodes this guess in the instruction, and
schedules instructions for the expected path. In the dynamic approach, the
hardware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

5.22 Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Suppose
that in a typical program 20% of the instructions are conditional branches,
which the compiler or hardware manages to predict correctly 75% of the
time. What is the impact of incorrect predictions on the average number
of cycles per instruction? Suppose the accuracy of branch prediction can be
increased to 90%. What is the impact on cycles per instruction?
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Suppose that the number of cycles per instruction would be 1.5 with
perfect branch prediction. What is the percentage slowdown caused by mis-
predicted branches? Now suppose that we have a superscalar processor on
which the number of cycles per instruction would be 0.6 with perfect branch
prediction. Now what is the percentage slowdown caused by mispredicted
branches? What do your answers tell you about the importance of branch
prediction on superscalar machines?

5.23 Consider the code in Figure 5.9. In an attempt to eliminate the remaining
delay, and reduce the overhead of the bookkeeping (loop control) instruc-
tions, one might consider unrolling the loop: creating a new loop in which
each iteration performs the work of k iterations of the original loop. Show
the code for k = 2. You may assume that n is even, and that your target
machine supports displacement addressing. Schedule instructions as tightly
as you can. How many cycles does your loop consume per vector element?

5.8 Explorations

5.24 Skip ahead to the sidebar on decimal types on page 296 of the main text.
Write algorithms to convert BCD numbers to binary, and vice versa. Try
writing the routines in assembly language for your favorite machine (if your
machine has special instructions for this purpose, pretend you’re not allowed
to use them). How many cycles are required for the conversion?

5.25 Is microprogramming an idea that has outlived its usefulness, or are there
application domains for which it still makes sense to build a micropro-
grammed machine? Defend your answer.

5.26 If you have access to both CISC and RISC machines, compile a few pro-
grams for both machines and compare the size of the target code. Can you
generalize about the “space penalty” of RISC code?

5.27 The Intel IA-64 (Itanium) architecture is neither CISC nor RISC. It belongs
to an architectural family known as long instruction word (LIW) machines
(Intel calls it explicitly parallel instruction set computing [EPIC]). Find an
Itanium manual or tutorial and learn about the instruction set. Compare
and contrast it with the x86 and MIPS instruction sets. Discuss, from a
compiler writer’s point of view, the challenges and opportunities presented
by the IA-64.

5.28 Research the history of the x86. Learn how it has been extended over the
years. Write a brief paper describing the extensions. Identify the portions
of the instruction set that are still useful today (i.e., are targeted by mod-
ern compilers), and the portions that are maintained solely for the sake of
backward compatibility.

5.29 The x86-64 architecture is a backward-compatible 64-bit extension of the
x86. Find a manual or tutorial and learn about the instruction set. Describe
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the extensions it provides. Explain how it can execute 32-bit x86 instructions
without an explicit “compatibility mode.”

5.30 Several computers have provided more general versions of the conditional
move instructions described in Exercise 5.16. Examples include the c. 1965
IBM ACS, the Cray 1, the HP PA-RISC, the ARM, and the Intel IA-64
(Itanium). General-purpose conditional execution is sometimes known as
predication.

Learn how predication works in ARM or IA-64. Explain how it can some-
times improve performance even when it causes the processor to execute
more instructions.

5.31 If you have access to computers of more than one type, compile a few
programs on each machine and time their execution. (If possible, use the
same compiler [e.g., gcc] and options on each machine.) Discuss the factors
that may contribute to different run times. How closely do the ratios of run
times mirror the ratios of clock rates? Why don’t they mirror them exactly?

5.32 Branch prediction can be characterized as control speculation: it makes a
guess about the future control flow of the program that saves enough time
when it’s right to outweigh the cost of cleanup when it’s wrong. Some
researchers have proposed the complementary notion of value speculation,
in which the processor would predict the value to be returned by a cache
miss, and proceed on the basis of that guess. What do you think of this idea?
How might you evaluate its potential?

5.33 Can speculation be useful in software? How might you (or a compiler or
other tool) be able to improve performance by making guesses that are
subject to future verification, with (software) rollback when wrong? (Hint:
Think about operations that require communication over slow Internet
links.)

5.34 Translate the high-level pseudocode for vector variance (Example 5.18)
into your favorite programming language, and run it through your favorite
compiler. Examine the resulting assembly language. Experiment with dif-
ferent levels of optimization (code improvement). Discuss the quality of the
code produced.

5.35 Try to write a code fragment in your favorite programming language that
requires so many registers that your favorite compiler is forced to spill some
registers to memory (compile with a high level of optimization). How com-
plex does your code have to be?

5.36 If you have access to a compiler that generates code for a machine with archi-
tecturally visible load delays, run some programs through it and evaluate the
degree of success it has in filling delay slots (an unfilled slot will contain a
nop instruction). What percentage of slots is filled? Suppose the machine
had interlocked loads. How much space could be saved in typical executable
programs if the nops were eliminated?

5.37 Experiment with small subroutines in C++ to see how much time can be
saved by expanding them inline.
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5.9 Bibliographic Notes

The standard reference in computer architecture is the graduate-level text by
Patterson and Hennessy [HP07]. More introductory material can be found in the
undergraduate computer organization text by the same authors [PH08]. Students
without previous assembly language experience may be particularly interested in
the text of Bryant and O’Hallaron [BO03], which surveys computer organization
from the point of view of the systems programmer, focusing in particular on the
correspondence between source-level programs in C and their equivalents in x86
assembler.

The “RISC revolution” of the early 1980s was spearheaded by three separate
research groups. The first to start (though last to publish [Rad82]) was the 801
group at IBM’s T. J. Watson Research Center, led by John Cocke. IBM’s Power
and PowerPC architectures, though not direct descendants of the 801, take sig-
nificant inspiration from it. The second group (and the one that coined the term
“RISC”) was led by David Patterson [PD80, Pat85] at UC Berkeley. The commer-
cial SPARC architecture is a direct descendant of the Berkeley RISC II design. The
third group was led by John Hennessy at Stanford [HJBG81]. The commercial
MIPS architecture is a direct descendant of the Stanford design.

Much of the history of pre-1980 processor design can be found in the text by
Siewiorek, Bell, and Newell [SBN82]. This classic work contains verbatim reprints
of many important original papers. In the context of RISC processor design, Smith
and Weiss [SW94] contrast the more “RISCy” and “CISCy” design philosophies
in their comparison of implementations of the PowerPC and Alpha architectures.
Hennessy and Patterson’s architecture text includes an appendix that summa-
rizes the similarities and differences among the major commercial instruction
sets [HP07, App. J]. Current manuals for all the popular commercial processors
are available from their manufacturers.

An excellent treatment of computer arithmetic can be found in Goldberg’s
appendix to the Hennessy and Patterson architecture text [Gol07]. The IEEE 754
floating-point standard was printed in ACM SIGPLAN Notices in 1985 [IEE87].
The texts of Muchnick [Muc97] and of Cooper and Torczon [CT04] are excellent
sources of information on instruction scheduling, register allocation, subroutine
optimization, and other aspects of compiling for modern machines.
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6.5.4 Generators in Icon

Like the iterators of Clu, Python, Ruby, and C#, Icon generators can be used
for enumeration-controlled iteration. Our canonical for loop example would beEXAMPLE 6.85

Simple generator in Icon written as follows in Icon:

every i := first to last by step do {
...

}

Here . . . to. . . by. . . is a built-in “mixfix” generator. �
Because Icon is intended largely for string manipulation, most of its built-in

generators operate on strings. Find(substr, str), for example, generates the
positions (indices) within string str at which an occurrence of the substring
substr can be found. Upto(chars, str) generates the positions within string
str at which any character in chars appears. (The initial argument to find is a
string, delimited by double quote marks; the initial argument to upto is a cset
[character set], delimited by single quote marks.) The prefix operator ! generates
all elements of its operand, which can be a string, list, record, file, or table.

In comparison to conventional iterators, however, the generators of Icon are
more deeply embedded in the semantics of the language. A generator can be used
in any context that expects an expression. The larger context is then capable of
generating multiple results. The following code will print all positions in s thatEXAMPLE 6.86

A generator inside an
expression

follow a blank:

every i := 1 + upto(’ ’, s) do {
write(i)

}

This can even be written as

every write(1 + upto(’ ’, s)) �
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Generators in Icon are used not only for iteration, but also for goal-directed
search, implemented via backtracking. (Backtracking is also fundamental to Prolog,
which we will study in Chapter 11.) Where most languages use Boolean expressionsEXAMPLE 6.87

Generating in search of
success

to control selection and logically controlled loops, Icon uses a more general notion
of success and failure. A conditional statement such as

if 2 < 3 then {
...

}

is said to execute not because the condition 2 < 3 is true, but because the compari-
son 2 < 3 succeeds. The distinction is important for generators, which are capable
of producing results repeatedly until one of them causes the surrounding context
to succeed (or until no more results can be produced). For example, in

if (i := find("abc", s)) > 6 then {
...

}

the body of the if statement will be executed only if the string "abc" appears
beyond the sixth position in s. Because find generates its results in order, i will
represent the first such position (if any). The execution model is as follows: find
is capable of generating all positions at which "abc" occurs in s. Suppose the first
such occurrence is at position 2. Then i is assigned the value 2, but the comparison
2 > 6 fails. Because there is a generator inside the failed expression, Icon will
resume that generator and reevaluate the expression for the next generated value.
It will continue this reevaluation process until the comparison succeeds, or until
the generator runs out of values, in which case it (the generator) fails, the overall
expression fails definitively, and the body of the if is skipped. �

If a failed expression contains more than one generator, all possible values will
be explored systematically. The body of the following if, for example, will beEXAMPLE 6.88

Backtracking with multiple
generators

executed if and only if an x appears at the same position in both s and t, with i
denoting the first such matching position:

if (i := find("x", s)) = find("x", t) then {
...

}

If there is no matching position, then i will be set to the position of the final x
in s, but the body of the loop will be skipped. If the programmer wishes to avoid
changing i in the case where the overall test fails, then the reversible assignment
operator, <- can be used instead of :=. When Icon backtracks past a reversible
assignment, it restores the original value. �

Any user-defined subroutine in Icon can be a generator if it uses the suspend
expr statement instead of return expr. Suspend is Icon’s equivalent of yield. If
the expression following suspend contains an invocation of a generator, then the
subroutine will suspend repeatedly, once for each generated value.
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3CHECK YOUR UNDERSTANDING

44. Explain how Icon generators differ from the iterators of Clu, Python, Ruby,
and C#, and from the iterator objects of Euclid, C++, and Java.

45. Describe the notions of success and failure in Icon.

46. What is backtracking ? Why is it useful?

47. Name a language other than Icon in which backtracking plays a fundamental
role.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch06-P374514 [11:31 2009/2/25] SCOTT: Programming Language Pragmatics Page: 114 1–867



CD_Ch06-P374514 [11:31 2009/2/25] SCOTT: Programming Language Pragmatics Page: 115 1–867

6Control Flow

6.7 Nondeterminacy

In Algol 68, the lack of ordering among expression operands is explicitly defined
as an example of nondeterminacy, which the language designers call collateral
execution. Several other built-in constructs are nondeterministic in Algol 68, and
an explicit collateral statement allows the programmer to specify nondeterminacy
in the evaluation of arbitrary expressions when desired.

Dijkstra [Dij75] has advocated the use of nondeterminacy for selection and
logically controlled loops. His guarded command notation has been adopted by
several languages. One of these is SR, which we will study in more detail in
Chapter 12. Imagine for a moment that we are writing a function to return theEXAMPLE 6.89

Avoiding asymmetry with
nondeterminism

maximum of two integers. In C, we would probably employ a code fragment
something like this:

if (a > b) max = a;
else max = b;

Of course, we could also write

if (a >= b) max = a;
else max = b; �

These fragments differ in their behavior when a = b: the first sets max = b; the
second sets max = a. As a practical matter the difference is irrelevant, since a and
b are equal, but it is in some sense aesthetically unpleasant to have to make an
arbitrary choice between the two. More important, the arbitrariness of the choice
makes it more difficultto reason about the code formally, or to prove it is correct.EXAMPLE 6.90

Selection with guarded
commands

In a language with guarded commands (the example here is in SR), one could
write:
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if a >= b -> max := a
[] b >= a -> max := b
fi

The general form of this construct is

if condition -> stmt list
[] condition -> stmt list
[] condition -> stmt list
...
fi �

Each of the conditions in this construct is known as a guard. The guard and
its following statement, together, are called a guarded command. When control
reaches an if statement in a language with guarded commands, a nondeter-
ministic choice is made among the guards that evaluate to true, and the state-
ment list following the chosen guard is executed. In SR, the final condition may
optionally be else. If none of the conditions evaluates to true, the statement
list following the else, if any, is executed. If there is no else, the if state-
ment as a whole has no effect. (In Dijkstra’s original proposal, there was no else
guard option, and it was a dynamic semantic error for none of the guards to
be true.) Interestingly, SR provides no separate case construct: the SR compiler
detects when the conditions of an if statement test the same expression against a
nonoverlapping set of compile-time constants, and generates table-lookup code as
appropriate.

SR uses guarded commands for several purposes in addition to selection. ItsEXAMPLE 6.91
Looping with guarded
commands

logically controlled looping construct (again patterned on Dijkstra’s proposal)
looks very much like the if statement:

do condition -> stmt list
[] condition -> stmt list
[] condition -> stmt list
...
od

For each iteration of the loop, a nondeterministic choice is made among the guards
that evaluate to true, and the statement list following the chosen one is executed.
The loop terminates when none of the guards is true (there is no else guard
option for loops). Using this notation, we can write Euclid’s greatest common
divisor algorithm as follows:

do a > b -> a := a - b
[] b > a -> b := b - a
od
gcd := a �
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process client:
loop

toss coin
if heads, send read request to server

wait for response
if tails, send write request to server

wait for response

process server:
loop

receive read request
reply with data

OR
receive write request
update data and reply

Figure 6.7 Example of a concurrent program that requires nondeterminacy. The server must
be able to accept either a read or a write request, whichever is available at the moment. If it
insists on receiving them in any particular order, deadlock may result.

Nondeterministic Concurrency

While nondeterministic constructs have a certain appeal from an aesthetic and
formal semantics point of view, their most compelling advantages arise in con-
current programs, for which they can affect correctness. Imagine, for example, thatEXAMPLE 6.92

Nondeterministic message
receipt

we are writing a simple dictionary program to support computer-aided design on
a network of personal computers. The dictionary keeps a mapping from part
names to their specifications. A dictionary server process handles requests from
clients on other workstations on the network. Each request may be either a read
(return me the current specification for part X) or a write (define part Y as fol-
lows).1 Clients send requests at unpredictable times. As a result, the server cannot
tell at any given time whether it should try to receive a read or a write request. If
it makes the wrong choice the entire system may deadlock (see Figure 6.7). �

Most message-based concurrent languages provide at least one nondetermin-
istic construct that can be used to specify communication with any of several
possible communication partners. In SR, one could write our dictionary server asEXAMPLE 6.93

Nondeterministic server
in SR

follows:

# declarations of request types:
op read_data(n : name) returns d : description
op write_data(n : name; d : description)

1 This is of course an oversimplified example. Among other things, any real system of this sort
would need a mechanism to lock parts in the dictionary, so that no two clients would ever end up
designing new specifications for the same part concurrently.
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# local subroutines:
proc lookup ... # find info in dictionary
proc update ... # change info in dictionary
# code for server:
process server

do true -> # loop forever
in read_data(n) returns d -> d := lookup(n)
[] write_data(n, d) -> update(n, d)
ni

od
end

Here in is a nondeterministic construct whose guards can contain communication
statements. The guard write_data(n, d) will evaluate to true if and only if some
client is attempting to send a request containing a new specification for a part.
We shall see in Section 12.5.3 that more elaborate guards can allow a server to
constrain the types of requests that it is willing to receive at a given point in time,
or even to “peek” inside a message to see if it is acceptable. If none of the guards
of an in statement is true, the server waits until one is. �

Choosing among Guards

What happens if two or more guards evaluate to true? How does the language
implementation choose among them? We have glossed over this issue so far. TheEXAMPLE 6.94

Naive (unfair)
implementation of
nondeterminism

most naive implementation would treat a guarded command construct like a
conventional if. . . then . . . else:

server:
loop

if read_data request available
. . .

elsif write_data request available
. . .

else wait until some request is available

The problem with this implementation is that it always favors one type of request
over another; if read_data requests are always available, write_data requests
will never be received. �

A slightly more sophisticated implementation would maintain a circular list ofEXAMPLE 6.95
“Gotcha” in round-robin
implementation of
nondeterminism

the guards in each set of guarded commands. Each time it encounters the construct
in which these commands appear, it would check guards beginning with the one
after the one that succeeded last time. This technique works well in many cases,
but can fail consistently in others. In the following, for example (again in SR), the
guard of the first in statement combines a communication test with a Boolean
condition:
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process silly
var count : int := 0

do true ->
in A() st count % 2 = 1 -> ...
[] B() -> ...
[] C() -> ...
ni
count++

od

This example is somewhat contrived, but illustrates the problem. The st (“such
that”) clause in the first guard indicates that it can be chosen only on odd iterations
of the loop. Now imagine that A, B, and C requests are always available. If we always
check guards starting with the one after the one that succeeded last time (beginning
at first with the initial guard), then B will be chosen in the first iteration (because
count mod 2 �= 1), C will be chosen in the second iteration (when count = 2),
B will be chosen again in the third iteration (because again count mod 2 �= 1),
and so forth. A will never be chosen. The lesson to be learned from this example is
that no deterministic algorithm will provide a truly satisfactory implementation
of a nondeterministic construct (see sidebar on page 119 ). �

One final issue has to do with side effects. Guarded command constructs make
a nondeterministic choice among the guards that evaluate to true. They do not,
however, guarantee that all guards will be evaluated before the choice is made;
the implementation is free to ignore the rest of the guards once it has chosen one

DESIGN & IMPLEMENTATION

Nondeterminacy and fairness
Ideally, what we should like in a nondeterministic construct is a guarantee of
fairness. This turns out to be trickier than one might expect: there are several
plausible ways that “fair” might be defined. Certainly we should like to guar-
antee that no guard that is always true is always skipped. Probably, we should
like to guarantee that no guard that is true infinitely often (in a hypothetical
infinite sequence of iterations) is always skipped. Better, we might ask that any
guard retain that is true infinitely often be chosen infinitely often. This stronger
notion of fairness will obtain if the choice among true guards is genuinely ran-
dom. Unfortunately, good pseudorandom number generators are expensive
enough that we probably don’t want to use them to choose among guards. As
a result, most implementations of guarded commands are not provably fair.
Many simply employ the circular list technique. Others use somewhat “more
random” heuristics. Many machines, for example, provide a fast-running clock
register that can be read efficiently in user-level code. A reasonable “random”
choice of the guard to evaluate first can be made by interpreting this clock as
an integer, and computing its remainder modulo the number of guards.
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that is true. A program may therefore produce unexpected or even unpredictable
results if any of the guards have side effects. This problem is the programmer’s
responsibility in SR. An alternative would have been to prohibit side effects and
have the compiler verify their absence.

3CHECK YOUR UNDERSTANDING

48. What is a guarded command?

49. Explain why nondeterminacy is particularly important for concurrent
programs.

50. Give three alternative definitions of fairness in the context of nondeterminacy.

51. Describe three possible ways of implementing the choice among guards that
evaluate to true. What are the tradeoffs among these?
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6.9 Exercises

6.34 (David Hanson [Han93].) Write a program in Icon that will print the k most
common words in its input, one per line, with each preceded by a count of the
number of times it appears. If parameter k is not specified on the command
line, use 10 by default. You will want to consult the Icon manual (available
on-line [GG96]). In addition to suspend, upto, and write, discussed here,
you may find it helpful to learn about integer, many, pull, read, sort,
table, and tab. When fed the Gettysburg Address, your program should
print:

13 that
9 the
8 we
8 to
8 here
7 a
6 and
5 of
5 nation
5 have

6.35 Write a findRE generator in Icon that mimics the behavior of find, but
takes as its first parameter a regular expression. Use a string to represent your
regular expression, with syntax as in Section 2.1.1. Use empty parentheses to
represent ε. Give highest precedence to Kleene closure, then concatenation,
then alternation. You may assume that we never search for vertical bar,
asterisk, or parenthesis characters.
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6.36 Explain why the following guarded commands in SR are not equivalent:

if a < b -> c := a if a < b -> c := a
[] b < c -> c := b [] b < c -> c := b
[] else -> c := d [] true -> c := d
fi fi

6.37 Write, in SR or pseudocode, a function that returns

(a) an arbitrary nonzero element of a given array

(b) an arbitrary permutation of a given array

In each case, write your code in such a way that if the implementation of
nondeterminism were truly random, all correct answers would be equally
likely.
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6.10 Explorations

6.43 Learn about Snobol, an earlier language by Ralph Griswold, who also
designed Icon. How do the two languages compare?

6.44 Chapter 18 of Griswold’s text on Icon [GG96] discusses scanning and pars-
ing. After reading this chapter, explain how backtracking search can be used
to generalize recursive descent. What classes of grammars can you parse with
this generalized technique? What is the worst-case time complexity?

6.45 Learn about the select routine in the Unix (POSIX) library. How does it
deal with the need for nondeterministic receipt from multiple communica-
tion partners? How would you use this routine to achieve the effect of the
SR code in Example 6.93?

6.46 Explain how to use threads in Java to achieve the effect of Example 6.93.
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7.2.4 The MLType System

The following is an ML version of the tail-recursive Fibonacci function introducedEXAMPLE 7.96
Fibonacci function in ML in Section 6.6.1:

1. fun fib (n) =
2. let fun fib_helper (f1, f2, i) =
3. if i = n then f2
4. else fib_helper (f2, f1+f2, i+1)
5. in
6. fib_helper (0, 1, 0)
7. end;

The let construct introduces a nested scope: function fib_helper is nested
inside fib. The body of fib is the expression fib_helper (0, 1, 0). The body
of fib_helper is an if. . . then . . . else expression; it evaluates to either f2 or
to fib_helper (f2, f1+f2, i+1), depending on whether the third argument
to fib_helper is n or not.

Given this function definition, an ML compiler will reason roughly as follows:
Parameter i of fib_helper must have type int, because it is added to 1 at line
4. Similarly, parameter n of fib must have type int, because it is compared to
i at line 3. In the specific call to fib_helper at line 6, the types of all three
arguments are int, so in this context at least, the types of f1 and f2 are int.
Moreover the type of i is consistent with the earlier inference, namely int, and
the types of the arguments to the recursive call at line 4 are similarly consistent.
Since fib_helper returns f2 at line 3, the result of the call at line 6 will be an
int. Since fib immediately returns this result as its own result, the return type
of fib is int. �

Because ML is a functional language, every construct in ML is an expression.EXAMPLE 7.97
Expression types The ML type system infers a type for every object and every expression. Because

functions are first-class values, they too have types. The type of fib above is int
-> int; that is, a function from integers to integers. The type of fib_helper is
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int * int * int -> int; that is, a function from integer triples to integers. In
denotational terms, int * int * int is a three-way Cartesian product. �

Type correctness in ML amounts to what we might call type consistency : a
program is type correct if the type checking algorithm can reason out a unique
type for every expression, with no contradictions and no ambiguous occurrences
of overloaded names. (For built-in arithmetic and comparison operators, ML
assumes that arguments are integers if it cannot determine otherwise. Haskell
is a bit more general: it allows the arguments to be of any type that supports
the required operations.) If the programmer uses an object inconsistently, theEXAMPLE 7.98

Type inconsistency compiler will complain. In a program containing the following expressions,

fun circum (r) = r * 2.0 * 3.14159;
...
circum (7)

the compiler will infer that circum’s parameter is of type real, and will then
complain when we attempt to pass an integer argument. �

Though usually compiled instead of interpreted, ML is intended for interactive
use. The programmer interacts with the ML system “on-line,” giving it input a
line at a time. The system compiles this input incrementally, binding machine
language fragments to function names, and producing any appropriate compile-
time error messages. This style of interaction blurs the traditional distinction
between interpretation and compilation, but has more of the flavor of the latter.
The language implementation remains active during program execution, but it
does not actively manage the execution of program fragments: it transfers control
to them and waits for them to return.

In comparison to languages in which programmers must declare all types
explicitly, ML’s type inference system has the advantage of brevity and convenience
for interactive use. More important, it provides a powerful form of implicit para-
metric polymorphism more or less for free. While all uses of objects in an MLEXAMPLE 7.99

Polymorphic functions program must be consistent, they do not have to be completely specified:

fun compare (x, p, q) =
if x = p then

if x = q then "both"
else "first"

else
if x = q then "second"
else "neither";

Here the equality test (=) is a built-in polymorphic function of type ’a * ’a
-> bool; that is, a function that takes a pair of arguments of the same type
and produces a Boolean result. The token ’a is called a type variable; it stands
for any type, and takes, implicitly, the role of an explicit type parameter in a
generic construct (Sections 8.4 and 9.4.4). Every instance of ’a in a given call
to = must represent the same type, but instances of ’a in different calls can be
different. Starting with the type of =, an ML compiler can reason that the type of
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compare is ’a * ’a * ’a -> string. Thus compare is polymorphic; it does not
depend on the types of x, p, and q, so long as they are all the same. The key point
to observe is that the programmer did not have to do anything special to make
compare polymorphic: polymorphism is a natural consequence of ML-style type
inference. �

Type Checking

An ML compiler verifies type consistency with respect to a well-defined set of
constraints. Specifically,

All occurrences of the same identifier (subject to scope rules) must have the
same type.

In an if. . . then . . . else expression, the condition must be of type bool, and
the then and else clauses must have the same type.

A programmer-defined function has type ’a -> ’b, where ’a is the type of
the function’s parameter, and ’b is the type of its result. As we shall see shortly,
all functions have a single parameter. One obtains the appearance of multiple
parameters by passing a tuple as argument.

When a function is applied (called), the type of the argument that is passed
must be the same as the type of the parameter in the function’s definition.
The type of the application (call) is the same as the type of the result in the
function’s definition.

In any case where two types A and B must be “the same,” the ML compiler must
unify what it knows about A and B to produce a (potentially more detailed)
description of their common type. For example, if the compiler has determined
that E1 is an expression of type ’a * int (that is, a two-element tuple whose
second element is known to be an integer), and that E2 is an expression of type
string * ’b, then in the expression if x then E1 else E2, it can infer that
’a is string and ’b is int. Thus x is of type bool, and E1 and E2 are of type
string * int.

Lists

As in most functional languages, ML programmers tend to make heavy use of
lists. In languages like Lisp and Scheme, which are dynamically typed (and also

DESIGN & IMPLEMENTATION

Unification
Unification is a powerful technique. In addition to its role in type inference
(which also arises in the templates [generics] of C++), unification plays a
central role in the computational model of Prolog and other logic languages.
We will consider this latter role in Section 11.1. In the general case the cost
of unifying the types of two expressions can be exponential [Mai90], but the
pathological cases tend not to arise in practice.
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implicitly polymorphic), lists may contain objects of arbitrary types. In ML, allEXAMPLE 7.100
Polymorphic list operators elements of a given list must have the same type, but—and this is important—

functions that manipulate lists without performing operations on their members
can take any kind of list as argument:

fun append (l1, l2) =
if l1 = nil then l2
else hd (l1) :: append (tl (l1), l2);

fun member (x, l) =
if l = nil then false
else if x = hd (l) then true
else member (x, tl (l));

Here append is of type ’a list * ’a list -> ’a list; member is of type
’a * ’a list -> bool. The reserved word nil represents the empty list. The
built-in :: constructor is analogous to cons in Lisp. It takes an element and a list
and tacks the former onto the beginning of the latter; its type is ’a * ’a list ->
’a list. The hd and tl functions are analogous to car and cdr in Lisp. They
return the head and the remainder, respectively, of a list created by ::. �

Lists are most often written in ML using “square bracket” notation. The tokenEXAMPLE 7.101
List notation [ ] is the same as nil. [A, B, C] is the same as A :: B :: C :: nil. Only

“proper” lists—those that end with nil—can be represented with square brackets.
The append function defined above is actually provided in ML as a built-in infix
constructor, @. The expression [a, b, c] @ [d, e, f, g ] evaluates to [a, b,
c, d, e, f, g ]. �

Since ML lists are homogeneous (all elements have the same type), one might
wonder about the type of nil. To allow it to take on the type of any list, nil is
defined not as an object, but as a built-in polymorphic function of type unit ->
’a list. The built-in type unit is simply a placeholder, analogous to void in C.
A function that takes no arguments is said to have a parameter of type unit.
A function that is executed only for its side effects (ML is not purely functional)
is said to return a result of type unit.

Overloading

We have already seen that the equality test (=) is a built-in polymorphic operator.
The same is not true of ordering tests (<, <=, >=, >) or arithmetic operators (+, -,
*). The equality test can be defined as a polymorphic function because it accepts
arguments of any type. The relations and arithmetic operators work only on
certain types. To avoid limiting them to a single type of argument (e.g., integers),
ML defines them as overloaded names for a collection of built-in functions, each
of which operates on objects of a different type (integers, floating-point numbers,
strings, etc.). The programmer can define additional such functions for new types.

Unfortunately, overloading sometimes interferes with type inference—thereEXAMPLE 7.102
Resolving ambiguity with
explicit types

may not be enough information in an otherwise valid program to resolve which
function is named by an overloaded operator:
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fun square (x) = x * x;

Here the ML compiler cannot tell whether * is meant to refer to integer or floating-
point multiplication; it assumes the former by default. If this is not what the
programmer wants, the alternative must be specified explicitly:

fun square (x : real) = x * x; �

In addition to allowing the resolution of overloaded symbols, explicit type dec-
larations serve as “verified documentation” in ML programs. ML programmers
often declare types for variables even when they aren’t required, because the dec-
larations make a program easier to read and understand. Readability could also
be enhanced by comments, of course, but programmer-specified types have a very
important advantage: the compiler understands their meaning, and ensures that
all uses of an object are consistent with its declared type.

Haskell adopts a more general approach to overloading known as type classes.EXAMPLE 7.103
Type classes in Haskell The equality functions, for example, are declared (but not defined) in a predefined

class Eq:

class Eq a where
(==), (/=) :: a -> a -> Bool -- type signature
x /= y = not (x == y) -- default implementation of /=

Here a (written without a tick mark) is a type parameter: both == and /= take
two parameters of the same type and return a Boolean result. Any value that is
passed to one of these functions will be inferred to be of some type in class Eq. Any
value that is passed to one of the ordering functions (<, <=, >=, >) will similarly
be inferred to be of some type in class Ord:

class (Eq a) => Ord a where
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

The“(Eq a) =>”in the header of this declaration indicates that Ord is an extension
of Eq; every type in class Ord must support the operations of class Eq as well.
There is a strong analogy between type classes and the interfaces of languages with
mix-in inheritance (Section 9.5.4). �
Pattern Matching

In our discussion so far, we have been “glossing over” another key feature of ML
and its types: namely, pattern matching. One of the simplest forms of pattern
matching occurs in functions of more than one parameter. Strictly speaking, such
functions do not exist. Every function in ML takes a single argument, but this
argument may be a tuple. A tuple resembles the records (structures) of manyEXAMPLE 7.104

Pattern matching of
argument tuples

other languages, except that its members are identified by position, rather than by
name. As an example, the function compare defined above takes a three-element
tuple as argument. All of the following are valid:
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compare (1, 2, 3);
let val t = ("larry", "moe", "curly") in compare (t) end;
let val d = (2, 3) in

let val (a, b) = d in
compare (1, a, b)

end
end;

Here pattern matching occurs not only between the parameters and arguments
of the call to compare, but also between the left- and right-hand sides of the val
construct. (The reserved word val serves to declare a name. The construct fun
inc (n) = n+1; is syntactic sugar for val inc = (fn n => n+1);.) �

As a somewhat more plausible example, we can define a highly useful functionEXAMPLE 7.105
Swap in ML that reverses a two-element tuple:

fun swap (a, b) = (b, a);

Since ML is (mostly) functional, swap is not intended to exchange the value
of objects; rather, it takes a two-element tuple as argument, and produces the
symmetrical two-element tuple as a result. �

Pattern matching in ML works not only for tuples, but for any built-in or user-
defined constructor of composite values. Constructors include the parentheses
used for tuples, the square brackets used for lists, several of the built-in operators
(::, @, etc.), and user-defined constructors of datatypes (see below). Literal
constants are even considered to be constructors, so the tuple t can be matched
against the pattern (1, x): the match will succeed only if t’s first element is 1.

In a call like compare (t) or swap (2, 3), an ML implementation can tell
at compile time that the pattern match will succeed: it knows all necessary infor-
mation about the structure of the value being matched against the pattern. In
other cases, the implementation can tell that a match is doomed to fail, generally
because the types of the pattern and the value cannot be unified. The more inter-
esting cases are those in which the pattern and the value have the same type (i.e.,
could be unified), but the success of the match cannot be determined until run
time. If l is of type int list, for example, then an attempt to “deconstruct” lEXAMPLE 7.106

Run-time pattern matching into its head and tail may or may not succeed, depending on l’s value:

let val head :: rest = l in ...

If l is nil, the attempted match will produce an exception at run time (we will
consider exceptions further in Section 8.5). �

We have seen how pattern matching works in function calls and val constructs.
It is also supported by a case expression. Using case, the append function aboveEXAMPLE 7.107

ML case expression could have been written as follows:

fun append (l1, l2) =
case l1 of

nil => l2
| h :: t => h :: append (t, l2);
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Here the code generated for the case expression will pattern-match l1 first against
nil and then against h :: t. The case expression evaluates to the subexpression
following the => in the first arm whose pattern matches. The compiler will issue
a warning message at compile time if the patterns of the arms are not exhaustive,
or if the pattern in a later arm is completely covered by one in an earlier arm
(implying that the latter will never be chosen). �

A useless arm is probably an error, but harmless, in the sense that it will never
result in a dynamic semantic error message. Nonexhaustive cases may be inten-
tional, if the programmer can predict that the pattern will always work at run
time. Our append function would have generated such a warning if written asEXAMPLE 7.108

Coverage of case labels follows:

fun append (l1, l2) =
if l1 = nil then l2
else let val h::t = l1 in h :: append (t, l2) end;

Here the compiler is unlikely to realize that the let construct in the else clause
will be elaborated only if l1 is nonempty. (This example looks easy enough to
figure out, but the general case is uncomputable, and most compilers won’t contain
special code to recognize easy cases.) �

When the body of a function consists entirely of a case expression, it can alsoEXAMPLE 7.109
Function as a series of
alternatives

be written as a simple series of alternatives:

fun append (nil, l2) = l2
| append (h::t, l2) = h :: append (t, l2); �

Pattern matching features prominently in other languages as well, particularly
those (such as Snobol, Icon, and Perl) that place a heavy emphasis on strings.
ML-style pattern matching differs from that of string-oriented languages in its
integration with static typing and type inference. Snobol, Icon, and Perl are all
dynamically typed.

By casting “multiargument” functions in terms of tuples, ML eliminates the
asymmetry between the arguments and return values of functions in many other
languages. As shown by swap above, a function can return a tuple just as easily as
it can take a tuple argument. Pattern matching allows the elements of the tuple toEXAMPLE 7.110

Pattern matching of return
tuple

be extracted by the caller:

let val (a, b) = swap (c, d) in ...

Here a will have the value given by d; b will have the value given by c. �

Datatype Constructors

In addition to lists and tuples, ML provides built-in constructors for records,
together with a datatype mechanism that allows the programmer to introduce
other kinds of composite types. A record is a composite object in which the
elements have names, but no particular order (the language implementation must
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choose an order for its internal representation, but this order is not visible to
the programmer). Records are specified using a “curly brace” constructor: {nameEXAMPLE 7.111

ML records = "Abraham Lincoln", elected = 1860}. (The same value can be denoted
{elected = 1860, name = "Abraham Lincoln"}.) �

ML’s datatype mechanism introduces a type name and a collection of con-EXAMPLE 7.112
ML datatypes structors for that type. In the simplest case, the constructors are all functions of

zero arguments, and the type is essentially an enumeration:

datatype weekday = sun | mon | tue | wed | thu | fri | sat;

In more complicated examples, the constructors have arguments, and the type is
essentially a union (variant record):

datatype yearday = mmdd of int * int | ddd of int;

This code defines mmdd as a constructor that takes a pair of integers as argument,
and ddd as a constructor that takes a single integer as argument. The intent is to
allow days of the year to be specified either as (month, day) pairs or as integers
in the range 1 . . 366. In a non–leap year, the Fourth of July could be represented
either as mmdd (7, 4) or as ddd (188), though the equality test mmdd (7, 4) = ddd
(188) would fail unless we made yearday an abstract type (similar to the Euclid
module types of Section 3.3.4), with its own, special, equality operation. �

ML’s datatypes can even be used to define recursive types, without the need
for pointers. The canonical ML example is a binary tree:EXAMPLE 7.113

Recursive datatypes
datatype int_tree = empty | node of int * int_tree * int_tree;

By introducing an explicit type variable in the definition, we can even create a
generic tree whose elements are of any homogeneous type:

datatype ’a tree = empty | node of ’a * ’a tree * ’a tree;

Given this definition, the tree

R

Y

WZ

X

can be written node (#"R", node (#"X", empty, empty), node (#"Y", node
(#"Z", empty, empty), node (#"W", empty, empty))). Recursive types also
appear in Lisp, Clu, Java, C#, and other languages with a reference model of
variables; we will discuss them further in Section 7.7. �

Because of its use of type inference, ML generally provides the effect of struc-
tural type equivalence. Definitions of datatypes can be used to obtain the effectEXAMPLE 7.114

Type equivalence in ML of name equivalence when desired:
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datatype celsius_temp = ct of int;
datatype fahrenheit_temp = ft of int;

A value of type celsius_temp can then be obtained by using the ct constructor:

val freezing = ct (0);

Unfortunately, celsius_temp does not automatically inherit the arithmetic oper-
ators and relations of int: unless the programmer defines these operators explic-
itly, the expression ct (0) < ct (20) will generate an error message along the
lines of “operator not defined for type.” �

3CHECK YOUR UNDERSTANDING

54. Under what circumstances does an ML compiler announce a type clash?

55. Explain how the type inference of ML leads naturally to polymorphism.

56. What is a type variable? Give an example in which an ML programmer might
use such a variable explicitly.

57. How do lists in ML differ from those of Lisp and Scheme?

58. Why do ML programmers often declare the types of variables, even when they
don’t have to?

59. What is unification? What is its role in ML?

60. List three contexts in which ML performs pattern matching.

61. Explain the difference between tuples and records in ML. How does an ML
record differ from a record (structure) in languages like C or Pascal?

62. What are ML datatypes? What features do they subsume from imperative
languages such as C and Pascal?
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7.3.3 With Statements

The Pascal with statement introduces a nested scope in which the fields of the
named record become visible as if they were ordinary variables. The record is said
to be opened. As shown in Figure 3.19 (page 32), a with statement can be
implemented within the compiler by pushing an entry that represents the record
type onto the symbol table scope stack.

With statements are a formalization of the elliptical references of Cobol andEXAMPLE 7.115
Elliptical references in
Cobol and PL/I

PL/I, a language feature that permits portions of a fully qualified name to be
omitted if no ambiguity results. In the Cobol equivalent of Example 7.46, name of
elements(1) of chemical_composition of ruby could probably be abbrevi-
ated name of elements(1) of ruby, since ruby is unlikely to have a field named
elements within anything other than its chemical_composition field. The rest
of the reference is required, however, if there is another record of the same type
as ruby in the current scope, and if the elements array within that type contains
more than a single element. �

Elliptical references can be difficult to read, since they rely implicitly on the
uniqueness of field names. A with statement specifies the elided informationEXAMPLE 7.116

Pascal with statement
(reprise)

more explicitly, making misunderstandings less likely. Repeating example 7.46:

with ruby.chemical_composition.elements[1] do begin
name := ’Al’;
atomic_number := 13;
atomic_weight := 26.98154;
metallic := true

end; �

The with statements of Pascal still suffer from problems, however:

1. There is no easy way to manipulate fields of two records of the same type
simultaneously (e.g., to copy some of the fields of one into corresponding
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fields of the other). A with statement can be used to open one of the records,
but not the other.

2. Naming conflicts arise if any of the fields of an opened record have the same
name as local objects. Since the with statement is a nested scope, the local
objects become temporarily inaccessible.

3. In a long with statement, or in nested with statements that open records of
different types, the correspondence between field names and the records to
which they belong can become unclear.

Modula-3 and Fortran 2003 address these problems by redefining the withEXAMPLE 7.117
Modula-3 with statement statement in a more general form. Rather than opening a record, a Modula-3

WITH statement or Fortran associate construct introduces one or more aliases
for complicated expressions. Recasting our example in the style of Modula-3, we
can write:

WITH e = ruby.chemical_composition.elements[1] DO
e.name := "Al";
e.atomic_number := 13;
e.atomic_weight := 26.98154;
e.metallic := true;

END;

Here e is an alias for ruby.chemical_composition.elements[1]. The fields
of the record are not directly visible, but they can be accessed easily, simply by
prepending ‘e.’ to their names. �

To access more than one record at a time, one can writeEXAMPLE 7.118
Multiple-object with
statements WITH e = whatever, f = whatever DO

e.field1 := f.field1;
e.field3 := f.field3;
e.field7 := f.field7;

END; �

Modula-3 WITH statements and Fortran associate constructs can even be used toEXAMPLE 7.119
Non-record with
statements

create aliases for objects other than records, e.g., to test and then use a complicated
expression without writing it out twice:

DESIGN & IMPLEMENTATION

With statements
A compiler generally implements with or associate statements by creating
a hidden pointer to the opened or aliased record. All uses of the record inside
the with statement access fields efficiently via offsets from the hidden pointer.
Equivalent efficiency can usually be achieved without the with statement, but
only if the complier implements global common subexpression analysis, a non-
trivial form of code improvement that we defer to Section 16.4.
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WITH d = complicated expression DO
IF d # 0.0 THEN val := n/d ELSE val := 0.0 END;

END; �

A similar effect, of course, can be achieved in many languages without a special
construct. Most functional languages, for example, include a let statement thatEXAMPLE 7.120

Emulating with in Scheme introduces a nested scope. In Scheme:

(let ((d complicated expression))
(if (not (= d 0)) (/ n d) 0))

This code has roughly the same effect as the code in Example 7.119. Exam-
ple 7.118, which copies fields of f into e, would require the use of non-
functional language features. �

In C one might writeEXAMPLE 7.121
Emulating with in C

{
my_struct *e = &whatever;
my_struct *f = &whatever;
e->field1 = f->field1;
e->field3 = f->field3;
e->field7 = f->field7;

}

{
double d = complicated expression;
val = (d ? n/d : 0);

}

This code depends on the ability of the C programmer to declare variables in
nested blocks and to create pointers to nonheap objects. Pascal does not permit
nested declarations; neither Pascal nor Modula-3 permits the nonheap pointers.
Reference types in C++, which we will introduce in Section 8.3.1, can be used in
place of pointers in the C example to produce an even closer approximation of
the Modula-3 or Fortran syntax. �

3CHECK YOUR UNDERSTANDING

63. What is a with statement? What purpose does it serve?

64. What are elliptical references?

65. What are the limitations of with statements as realized in Pascal? How are
these limitations overcome in Modula-3 and Fortran 2003? How are they
avoided in languages like Scheme?

66. Explain how to emulate the behavior of with statements in languages like C.

67. Is a with statement purely a notational convenience, or does it have pragmatic
implications as well?

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 138 3–867



CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 139 3–867

7DataTypes

7.3.4 Variant Records (Unions)

A variant record provides two or more alternative fields or collections of fields,
only one of which is valid at any given time. Building on the element type ofEXAMPLE 7.122

Variant record in Pascal Example 7.36, we might write the following in Pascal.

type long_string = packed array [1..200] of char;
type string_ptr = ˆlong_string;
type element = record

name : two_chars;
atomic_number : integer;
atomic_weight : real;
metallic : Boolean;
case naturally_occurring : Boolean of
true : (
source : string_ptr;

(* textual description of principal commercial source *)
prevalence : real;

(* fraction, by weight, of Earth’s crust *)
);
false : (
lifetime : real;

(* half-life in seconds of most stable known isotope *)
)

end;

Here the naturally_occurring field of the record is known as its tag, or dis-
criminant. It’s a field that indicates which variant is valid. In this example, a true
tag indicates that the element has at least one naturally occurring stable isotope; in
this case the record contains two additional fields—source and prevalence—
that describe how the element may be obtained and how commonly it occurs.
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name

metallic

atomic_number

atomic_weight

source

prevalence

<true> metallic <false>

name

atomic_number

atomic_weight

lifetime

4 bytes/32 bits 4 bytes/32 bits

Figure 7.15 Likely memory layouts for element variants. The value of the naturally_
occurring field (shown here with a double border) determines which of the interpretations
of the remaining space is valid. Type string_ptr is assumed to be represented by a (4-byte)
pointer to dynamically allocated storage.

A false tag indicates that the element results only from atomic collisions or
the decay of heavier elements; in this case, the record contains an additional
field—lifetime—that indicates how long atoms so created tend to survive before
undergoing radioactive decay. Each of the parenthesized field lists (one containing
source and prevalence, the other containing lifetime) is known as a variant.
Either the first or the second variant may be useful, but never both at once. From an
implementation point of view, these nonoverlapping uses mean that the variants
may share space (see Figure 7.15). �

Variant records have their roots in the equivalence statement of Fortran I
and in the union types of Algol 68. The Fortran syntax looks like this:EXAMPLE 7.123

Fortran equivalence
statement

integer i
real r
logical b
equivalence (i, r, b)

The equivalence statement informs the compiler that i, r, and b will never be
used at the same time, and should share the same space in memory. �

Pascal’s principal contribution to union types (retained by Modula and Ada)
was to integrate them with records. This was an important contribution, because
the need for alternative types seldom arises anywhere else. In our running exam-EXAMPLE 7.124

Mixing structs and unions
in C

ple, we use the same field-name syntax to access both the atomic_weight and
lifetime fields of an element, despite the fact that the former is present in every
element, while the latter is present only in those that are not naturally occurring.
Without the integration of records and unions, the notation is less convenient.
Here’s what it looks like in C:
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struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {

struct {
char *source;
double prevalence;

} natural_info;
double lifetime;

} extra_fields;
} copper;

Because the union is not a part of the struct, we have to introduce two extra levels
of naming. The third field is still copper.atomic_weight, but the source field
must be accessed as copper.extra_fields.natural_info.source. A similar
situation occurs in ML, in which datatypes can be used for unions, but the
notation is not integrated with records (Exercise 7.27). �

Safety

One of the principal problems with equivalence statements is that they pro-EXAMPLE 7.125
Breaking type safety with
equivalence

vide no built-in means of determining which of the equivalence-ed objects is
currently valid: the program must keep track. Mistakes in which the programmer
writes to one object and then reads from the other are relatively common:

r = 3.0
...
print ’(I10)’, i

Here the print statement, which attempts to output i as a 10-digit integer, will
(in most implementations) take its bits from the floating-point representation of
3.0: almost certainly a mistake, but one that the language implementation will not
catch. �

Fortran equivalence statements introduce an extreme case of aliases: not only
are there two names for the “same thing” (in this case the same block of storage),
but the types associated with those names are different. To address this potentialEXAMPLE 7.126

Union conformity in
Algol 68

source of bugs, the Algol 68 designers required that the language implementation
track union-ed types at run time:

union (int, real, bool) uirb
# uirb can be an integer, a floating-point number, or a Boolean #

...
uirb := 1 # uirb is now an integer #
...
uirb := 3.14 # uirb is now a floating-point number #
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To use the value stored inside a union, the programmer must employ a special
form of case statement (called a conformity clause in Algol 68) that determines
which type is currently valid:

case uirb in
(int i) : print(i),
(real r) : print(r),
(bool b) : print(b)

esac

The labels on the arms of the case statement provide names for the “deunified”
values. A similar tagcase construct can be found in Clu. �

To enforce correct usage of union types in Algol 68, the language implementa-
tion must maintain a hidden field for every union object that indicates which type
is currently valid. When an object of a union type is assigned a value, the hidden
field is also set, to indicate the type of the value just assigned. When execution
encounters a conformity clause, the hidden field is inspected to determine which
arm to execute.

In effect, the tag field of a Pascal variant record is an explicit representation of
the hidden field required in an Algol 68 union. Our integer/floating-point/BooleanEXAMPLE 7.127

Tagged variant record in
Pascal

example could be written as follows in Pascal.

type tag = (is_int, is_real, is_bool);
var uirb : record

case which : tag of
is_int : (i : integer);
is_real : (r : real);
is_bool : (b : Boolean)

end; �

Unfortunately, while the hidden tag of an Algol 68 union can only be changedEXAMPLE 7.128
Breaking type safety with
variant records

implicitly, by assigning a value of a different type to the union as a whole, the tag
of a Pascal variant record can be changed by an ordinary assignment statement.
The compiler can generate code to verify that a field in variant v is never accessed
unless the value of the tag indicates that v is currently valid, but this is not enough
to guarantee type safety. It can catch errors of the form

uirb.which := is_real;
uirb.r := 3.0;
...
writeln(uirb.i); (* dynamic semantic error *)

but it cannot catch the following:

uirb.which := is_real;
uirb.r := 3.0;
uirb.which := is_int;
... (* no intervening assignment to i *)
writeln(uirb.i); (* ouch! *)
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Any Pascal implementation will accept this code, but the output is likely to be
erroneous, just as it was in Fortran. �

Semantically speaking, changing the tag of a Pascal variant record should make
the remaining fields of the variant uninitialized. It is possible, by adding hid-
den fields, to flag them as such and generate a semantic error message on any
subsequent access, but the code to do so is expensive [FL80], and outlaws pro-
grams which, while arguably erroneous, are permitted by the language definition
(Exercise 7.33).

The situation in Pascal is actually worse than our example so far might imply.EXAMPLE 7.129
Untagged variants in Pascal Additional insecurity stems from the fact that Pascal’s tag fields are optional. We

could drop the which field of our uirb record:

var uirb : record
case tag of

is_int : (i : integer);
is_real : (r : real);
is_bool : (b : Boolean)

end;
...
uirb.r := 3.0;
... (* no intervening assignment to i *)
writeln(uirb.i); (* ouch! *)

Now the language implementation is not required to devote any space to either
an explicit or hidden tag, but even the limited form of checking (make sure the
tag has an appropriate value when a field of a variant is accessed) is no longer
possible (but see Exercise 7.34). Variant records with tags (explicit or hidden)
are known as discriminated unions. Variant records without tags are known as
nondiscriminated unions. �

The degree of type safety provided is arguably the most important dimension
of variation among the variant records and union types of modern languages.
Though designed after Algol 68 (and borrowing its union terminology), the union
types of C are semantically closer to Fortran’s equivalence statements. Their
fields share space, but nothing prevents the programmer from using them in
inappropriate ways. By contrast, the variant records of Ada are syntactically similar
to those of Pascal, but are as type-safe as the unions of Algol 68. Concerned at
the lack of type safety in Pascal and Modula-2, and reluctant to introduce the
complexity of Ada’s rules, the designers of Modula-3 chose to eliminate variant
records from the language entirely.

Variants in Ada

Ada variant records must always have a tag (called the discriminant ). LanguageEXAMPLE 7.130
Ada variants and tags
(discriminants)

rules ensure that this tag can never be changed without simultaneously assigning
values to all of the fields of the corresponding variant. The assignment can occur
either via whole-record assignment (e.g., A := B, where A and B are variant
records), or via assignment of an aggregate (e.g., A := { which => is_real,
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r => pi}; ). In addition to appearing as a field within the record, the discriminant
of a variant record in Ada must also appear in the header of the record’s declaration:

type element (naturally_occurring : Boolean := true) is record
name : string (1..2);
atomic_number : integer;
atomic_weight : real;
metallic : Boolean;
case naturally_occurring is

when true =>
source : string_ptr;
prevalence : real;

when false =>
lifetime : real;

end case;
end record;

Here we have not only declared the discriminant of the record in its header, we
have also specified a default value for it. A declaration of a variable of type element
has the option of accepting this default value:

copper : element;

or overriding it:

plutonium : element (false);
neptunium : element (naturally_occurring => false);

-- alternative syntax

If the type declaration for element did not specify a default value for naturally_
occurring, then all variables of type element would have to provide a value.
These rules guarantee that the tag field of a variant record is never uninitialized. �

An Ada record variable whose declaration specifies a value for the discrimi-
nant is said to be constrained. Its tag field can never be changed by a subsequent
assignment. This immutability means that the compiler can allocate just enough
space to hold the specified variant; this space may in some cases be significantly
smaller than would be required for other variants. A variable whose declaration
does not provide an initial value for the discriminant is said to be unconstrained.
Its tag will be initialized to the value in the type declaration, but may be changed
by later (whole-record) assignments, so the space that the record occupies must
be large enough to hold any possible variant.

An Ada subtype definition can also constrain the discriminant(s) of its parentEXAMPLE 7.131
A discriminated subtype in
Ada

type:

subtype natural_element is element (true);

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch07-P374514 [11:38 2009/2/25] SCOTT: Programming Language Pragmatics Page: 145 3–867

7.3.4 Variant Records (Unions) 145

Variables of type natural_element will all be constrained; their naturally_
occurring field cannot be changed. Because natural_element is a subtype,
rather than a derived type, values of type element and natural_element are
compatible with each other, though a run-time semantic check will usually be
required to assign the former into the latter. �

Ada uses record discriminants not only for variant tags, but in general for any
value that affects the size of a record. Here is an example that uses a discriminantEXAMPLE 7.132

Discriminated array in Ada to specify the length of an array:

type element_array is array (integer range <>) of element;
type alloy (num_components : integer) is record

name : string (1..30);
components : element_array (1..num_components);
tensile_strength : real;

end record;

The <> notation in the initial definition of element_array indicates that the
bounds are not statically known. We will have more to say about dynamic arrays
in Section 7.4.2. As with discriminants used for variant tags, the programmer must
either specify a default value for the discriminant in the type declaration (we did
not do so above), or else every declaration of a variable of the type must specify
a value for the discriminant (in which case the variable is constrained, and the
discriminant cannot be changed). �

DESIGN & IMPLEMENTATION

The placement of variant fields
To facilitate space saving in constrained variant records, Ada requires that all
variant parts of a record appear at the end. This rule ensures that every field
has a constant offset from the beginning of the record, with no holes (in any
variant) other than those required for alignment. When a constrained variant
record is elaborated, the Ada run-time system need only allocate sufficient
space to hold the specified variant, which is never allowed to change. Pascal has
a similar rule, designed for a similar purpose. When a variant record is allocated
from the heap in Pascal (via the built-in new operator), the programmer has
the option of specifying case labels for the variant portions of the record.
A record so allocated is never allowed to change to a different variant, so the
implementation can allocate precisely the right amount of space.

Modula-2, which does not provide new as a built-in operation, eliminates
the ordering restriction on variants. All variables of a variant record type must
be large enough to hold any variant. The usual implementation assigns a fixed
offset to every field, with holes following small internal variants as necessary
(see Figure 7.16 and Exercise 7.35).
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TYPE element = RECORD
name : ARRAY [1..2] OF CHAR;
metallic : BOOLEAN;
CASE naturally_occurring : BOOLEAN OF

TRUE :
source : string_ptr;
prevalence : REAL;

| FALSE :
lifetime : REAL;

END;
atomic_number : INTEGER;
atomic_weight : REAL;

END;

name metallic

atomic_number

atomic_weight

source

prevalence

name metallic

atomic_number

atomic_weight

lifetime

4 bytes/32 bits 4 bytes/32 bits

<true> <false>

Figure 7.16 Likely memory layout for a variant record in Modula-2. Here the variant portion
of the record is not required to lie at the end. Every field has a fixed offset from the beginning of
the record, with internal holes as necessary following small-size variants.

The Object-Oriented Alternative

In dropping variant records from their parent language, the designers of Modula-3
noted [Har92, p. 110] that much of the same effect could be obtained with classes
and inheritance. Oberon, similarly, replaces variants with a more general mecha-
nism for type extension (Section 9.2.4), and the designers of Java and C# dropped
the unions of C and C++. In place of the C code of Example 7.124, a JavaEXAMPLE 7.133

Derived types as an
alternative to unions

programmer might write

class Element {
public String name;
public int atomic_number;
public double atomic_weight;
public boolean metallic;

}
class NaturalElement extends Element {

public String source;
public double prevalence;

}
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class SyntheticElement extends Element {
public double lifetime;

}

Like the unification of records and variants of Pascal, this approach avoids the
artificial extra_fields and natural_info names of Example 7.124. Like
the discriminated subtypes of Ada, however, it constrains each variable to a single
variant at elaboration time; this cannot be changed by subsequent assignment. �

3CHECK YOUR UNDERSTANDING

68. Why is it useful to integrate variants (unions) with records (structs)? Why not
leave them as separate mechanisms, as they are in Algol 68 and C?

69. Discuss the type safety problems that arise with variant records. How can these
problems be addressed?

70. What is a tag (discriminant )? How does it differ from an ordinary field?

71. Summarize the rules that prevent access to inappropriate fields of a variant
record in Ada.

72. Why might one wish to constrain a variable, so that it can hold only one variant
of a type?

73. Explain how classes and inheritance can be used to obtain the effect of con-
strained variant records.
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7.7.2 Dangling References

Memory access errors—dangling references, memory leaks, out-of-bounds access
to arrays—are among the most serious program bugs, and among the most
difficult to find. Testing and debugging techniques for memory errors vary in
when they are performed, how much they cost, and how conservative they are.
Several commercial and open-source tools employ binary instrumentation (Sec-
tion 15.2.3) to track the allocation status of every block in memory and to check
every load or store to make sure it refers to an allocated block. These tools have
proven to be highly effective, but they can slow a program several-fold, and may
generate false positives—indications of error in programs that, while arguably
poorly written, are technically correct. Many compilers can also be instructed
to generate dynamic semantic checks for certain kinds of memory errors. Such
checks must generally be fast (much less than 2× slowdown), and must never gen-
erate false positives. In this section we consider two candidate implementations
of checks for dangling references.

Tombstones

Tombstones [Lom75, Lom85] allow a language implementation can catch all dan-
gling references, to objects in both the stack and the heap. The idea is simple:EXAMPLE 7.134

Dangling reference
detection with tombstones

rather than have a pointer refer to an object directly, we introduce an extra level
of indirection (Figure 7.17). When an object is allocated in the heap (or when a
pointer is created to an object in the stack), the language run-time system allocates
a tombstone. The pointer contains the address of the tombstone; the tombstone
contains the address of the object. When the object is reclaimed, the tombstone
is modified to contain a value (typically zero) that cannot be a valid address. To
avoid special cases in the generated code, tombstones are also created for pointers
to static objects. �

For heap objects, it is easy to invalidate a tombstone when the program calls
the deallocation operation. For stack objects, the language implementation must
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new(my_ptr);

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

ptr2

my_ptr

ptr2

RIP
(Potentially

reused)

Figure 7.17 Tombstones. A valid pointer refers to a tombstone that in turn refers to an object.
A dangling reference refers to an “expired” tombstone.

be able to find all tombstones associated with objects in the current stack frame
when returning from a subroutine. One possible solution is to link all stack-
object tombstones together in a list, sorted by the address of the stack frame in
which the object lies. When a pointer is created to a local object, the tombstone
can simply be added to the beginning of the list. When a pointer is created to a
parameter, the run-time system must scan down the list and insert in the middle,
to keep it sorted. When a subroutine returns, the epilogue portion of the calling
sequence invalidates the tombstones at the head of the list, and removes them from
the list.

Tombstones may be allocated from the heap itself or, more commonly, from
a separate pool. The latter option avoids fragmentation problems, and makes
allocation relatively fast, since the first tombstone on the free list is always the
right size.

Tombstones can be expensive, both in time and in space. The time overhead
includes (1) creation of tombstones when allocating heap objects or using a
“pointer to” operator, (2) checking for validity on every access, and (3) double-
indirection. Fortunately, checking for validity can be made essentially free on
most machines by arranging for the address in an “invalid” tombstone to lie out-
side the program’s address space. Any attempt to use such an address will result in
a hardware interrupt, which the operating system can reflect up into the language
run-time system. We can also use our invalid address, in the pointer itself, to rep-
resent the constant nil. If the compiler arranges to set every pointer to nil at
elaboration time, then the hardware will catch any use of an uninitialized pointer.
(This technique works without tombstones, as well.)
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The space overhead for tombstones can be significant. The simplest approach
is never to reclaim them. Since a tombstone is usually significantly smaller than
the object to which it refers, a program will waste less space by leaving a tombstone
around forever than it would waste by never reclaiming the associated object. Even
so, any long-running program that continually creates and reclaims objects will
eventually run out of space for tombstones. A potential solution, which we will
consider in Section 7.7.3, is to augment every tombstone with a reference count,
and reclaim tombstones themselves when the reference count goes to zero.

Tombstones have a valuable side effect. Because of double-indirection, it is
easy to change the location of an object in the heap. The run-time system need
not locate every pointer that refers to the object; all that is required is to change
the address in the tombstone. The principal reason to change heap locations is
for storage compaction, in which all dynamically allocated blocks are “scooted
together” at one end of the heap in order to eliminate external fragmentation.
Tombstones are not widely used in language implementations, but the Macintosh
operating system (versions 9 and below) used them internally, for references to
system objects such as file and window descriptors.

Locks and Keys

Locks and keys [FL80] are an alternative to tombstones. Their disadvantages are
that they work only for objects in the heap, and they provide only probabilistic
protection from dangling pointers. Their advantage is that they avoid the need to
keep tombstones around forever (or to figure out when to reclaim them). AgainEXAMPLE 7.135

Dangling reference
detection with locks and
keys

the idea is simple: Every pointer is a tuple consisting of an address and a key. Every
object in the heap begins with a lock. A pointer to an object in the heap is valid
only if the key in the pointer matches the lock in the object (Figure 7.18). When
the run-time system allocates a new heap object, it generates a new key value.
These can be as simple as serial numbers, but should avoid “common” values such
as zero and one. When an object is reclaimed, its lock is changed to some arbitrary
value (e.g., zero) so that the keys in any remaining pointers will not match. If the
block is subsequently reused for another purpose, we expect it to be very unlikely
that the location that used to contain the lock will be restored to its former value
by coincidence. �

Like tombstones, locks and keys incur significant overhead. They add an extra
word of storage to every pointer and to every block in the heap. They increase the
cost of copying one pointer into another. Most significantly, they incur the cost
of comparing locks and keys on every access (or every provably nonredundant
access). It is unclear whether the lock and key check is cheaper or more expensive
than the tombstone check. A tombstone check may result in two cache misses (one
for the tombstone and one for the object); a lock and key check is unlikely to cause
more than one. On the other hand, the lock and key check requires a significantly
longer instruction sequence on most machines.

To minimize time and space overhead, most compilers do not by default gen-
erate code to check for dangling references. Most Pascal compilers allow the pro-
grammer to request dynamic checks, which are usually implemented with locks
and keys. In most implementations of C, even optional checks are unavailable.
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new(my_ptr);

135942 135942

135942

0

135942

135942

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

135942

135942

ptr2

my_ptr

ptr2

(Potentially
reused)

Figure 7.18 Locks and keys. A valid pointer contains a key that matches the lock on an object
in the heap. A dangling reference is unlikely to match.

3CHECK YOUR UNDERSTANDING

74. What are tombstones? What changes do they require in the code to allocate
and deallocate memory, and to assign and dereference pointers?

75. Explain how tombstones can be used to support compaction.

76. What are locks and keys? What changes do they require in the code to allocate
and deallocate memory, and to assign and dereference pointers?

77. Explain why the protection afforded by locks and keys is only probabilistic.

78. Discuss the comparative advantages of tombstones and locks and keys as a
means of catching dangling references.
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7.9 Files and Input/Output

The first two subsections below are devoted to interactive and file-based I/O,
respectively. Section 7.9.3 then considers the common special case of text files.

7.9.1 Interactive I/O

On a modern machine, interactive I/O usually occurs through a graphical user
interface (GUI: “gooey”) system, with a mouse, a keyboard, and a bit-mapped
screen that in turn support windows, menus, scrollbars, buttons, sliders, and so
on. GUI characteristics vary significantly among, say, Microsoft Windows, the
Macintosh, and Unix’s X11; the differences are one of the principal reasons it is
difficult to port applications across platforms.

Within a single platform, the facilities of a GUI system usually take the form of
library routines (to create or resize a window, print text, draw a polygon, and so
on). Input events (mouse move, button push, keystroke) may be placed in a queue
that is accessible to the program, or tied to event handler subroutines that are called
by the run-time system when the event occurs. Because the handler is triggered
from outside, its activities must generally be synchronized with those of the main
program, to make sure that both parties see a consistent view of any data shared
between them. We will discuss events further in Section 8.7, and synchronization
in Section 12.3.

A few programming languages—notably Smalltalk and Java—attempt to incor-
porate a standard set of GUI mechanisms into the language. The Smalltalk design
team was part of the original group at Xerox’s Palo Alto Research Center (PARC)
that invented mouse-and-window based interfaces in the early 1970s. Unfortu-
nately, while the Smalltalk GUI is successful within the confines of the language,
it tends not to integrate well with the “look and feel” of the host system on
which it runs. In a similar vein, Java’s original GUI facilities (the Abstract Window
Toolkit—AWT) had something of a “least common denominator” look to them.
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Smalltalk’s GUI is a fundamental part of the language; Java’s takes the form of a
standard set of library routines. The Java routines and their interface have evolved
significantly over time; the current “Swing” libraries have a “pluggable” look and
feel, allowing them to integrate more easily with (and port more easily among) a
variety of window systems.

The “parallel execution” of the program and the human user that characterizes
interactive systems is difficult to capture in a functional programming model.
A functional program that operates in a “batch” mode (taking its input from a
file and writing its output to a file) can be modeled as a function from input to
output. A program that interacts with the user, however, requires a very concrete
notion of program ordering, because later input may depend on earlier output.
If both input and output take the form of an ordered sequence of tokens, then
interactive I/O can be modeled using lazy data structures, a subject we considered
in Section 6.6.2. More general solutions can be based on the notion of monads,
which use a functional notion of sequencing to model side effects. We will consider
these issues again in Sections 10.4 and 10.7.

7.9.2 File-Based I/O

Persistent files are the principal mechanism by which programs that run at
different times communicate with each other. A few language proposals (e.g.,
Argus [LS83] and χ [SH92]) allow ordinary variables to persist from one invo-
cation of a program to the next, and a few experimental operating systems (e.g.,
Opal [CLFL94] and Hemlock [GSB+93]) provide persistence for variables out-
side the language proper. In addition, some language-specific programming envi-
ronments, such as those for Smalltalk and Common Lisp, provide a notion of
workspace that includes persistent named variables. These examples, however, are
more the exception than the rule. For the most part, data that need to outlive a
particular program invocation need to reside in files.

Like interactive I/O, files can be incorporated directly into the language, or
provided via library routines. In the latter case, it is still a good idea for the lan-
guage designers to suggest a standard library interface, to promote portability
of programs across platforms. The lack of such a standard in Algol 60 is widely
credited with impeding the language’s widespread use. One of the principal rea-
sons to incorporate I/O into the language proper is to make use of special syntax.
In particular, several languages, notably Fortran and Pascal, provide built-in I/O
facilities in order to obtain type-safe “subroutines” that take a variable number of
parameters, some of which may be optional.

Depending on the needs of the programmer and the capabilities of the host
operating system, data in files may be represented in binary form, much as it is
in memory, or as text. In a binary file, the number 106610 would represented by
the 32-bit value 100001010102. In a text file, it would probably be represented
by the character string "1066". Temporary files are usually kept in binary form
for the sake of speed and convenience. Persistent files are commonly kept in both
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forms. Text files are more easily ported across systems: issues of word size, byte
order, alignment, floating-point format, and so on do not arise. Text files also
have the advantage of human readability: they can be manipulated by text editors
and related tools. Unfortunately, text files tend to be large, particularly when used
to hold numeric data. A double-precision floating-point number occupies only
eight bytes in binary form, but can require as many as 24 characters in decimal
notation (not counting any surrounding white space). Text files also incur the cost
of binary to text conversion on output, and text to binary conversion on input.
The size problem can be addressed, at least for archival storage, by using data
compression. Mechanisms to control text/binary conversion tend to be the most
complicated part of I/O; we discuss them in the following subsection.

When I/O is built into a language, files are usually declared using a built-in typeEXAMPLE 7.136
Files as a built-in type constructor, as they are in Pascal:

var my_file : file of foo; �

If I/O is provided by library routines, the library usually provides an opaque type
to represent a file. In either case, each file variable is generally bound to an external,EXAMPLE 7.137

The open operation operating system–supported file by means of an open operation. In C, for example,
one says:

my_file = fopen(path_name, mode);

The first argument to fopen is a character string that names the file, using the
naming conventions of the host operating system. The second argument is a string
that indicates whether the file should be readable, writable, or both, whether it
should be created if it does not yet exist, and whether it should be overwritten or
appended to if it does exist. �

When a program is done with a file, it can break the association between theEXAMPLE 7.138
The close operation file variable and the external object by using a close operation:

fclose(my_file);

In response to a call to close, the operating system may perform certain “final-
izing” operations, such as unlocking an exclusive file (so that it may be used by
other programs), rewinding a tape drive, or forcing the contents of buffers out to
disk. �

Most files, both binary and text, are stored as a linear sequence of characters,
words, or records. Every open file then has a notion of current position: an implicit
reference to some element of the sequence. Each read or write operation implic-
itly advances this reference by one position, so that successive operations access
successive elements, automatically. In a sequential file, this automatic advance is
the only way to change the current position. Sequential files usually correspond to
media like printers and tapes, in which the current position has a physical repre-
sentation (how many pages we’ve printed; how much tape is on each spool) that
is difficult to change.
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In other, random-access files, the programmer can change the current position
to an arbitrary value by issuing a seek operation. In a few programming languages
(e.g., Cobol and PL/I), random-access files (also called direct files) have no notion
of current position. Rather, they are indexed on some key, and every read or
write operation must specify a key. A file that can be accessed both sequentially
and by key is said to be indexed sequential.

Random-access files usually correspond to media like magnetic or optical disks,
in which the current position can be changed with relative ease. (Depending on
technology,modern disks take anywhere from 5 to 200 ms to seek to a new location.
Tape drives, by contrast, can take more than a minute. Note that 5 ms is still a very
long time—ten million cycles on a 2 GHz processor—so seeking should never
be taken casually, even on a disk.) A few languages—notably Pascal—provide no
random-access files, though individual implementations may support random
access as a nonstandard language extension.

7.9.3 Text I/O

It is conventional to think of text files as consisting of a sequence of lines, each of
which in turn consists of characters. In older systems, particularly those designed
around the metaphor of punch cards, lines are reflected in the organization of
the file itself. A seek operation, for example, may take a line number as argu-
ment. More commonly, a text file is simply a sequence of characters. Within this
sequence, control (nonprinting) characters indicate the boundaries between lines.
Unfortunately, end-of-line conventions are not standardized. In Unix, each line
of a text file ends with a newline (“control-J”) character, ASCII value 10. On the
Macintosh, each line ends with a carriage return (“control-M”) character, ASCII
value 13. In MS-DOS and Windows, each line ends with a carriage return/line
feed pair. Text files are usually sequential.

Despite the muddied conventions for line breaks, text files are much more
portable and readable than binary files.1 Because they do not mirror the structure
of internal data, text files require extensive conversions on input and output.
Issues to be considered include the base for integer values (and the representation
of nondecimal bases); the representation of floating-point values (number of
digits, placement of decimal point, notation for exponent); the representation of
enumerations and other nonnumeric, nonstring types; and positioning, if any,
within columns (right and left justification, zero or white-space fill, “floating”
dollar signs in Cobol). Some of these issues (e.g., the number of digits in a floating-
point number) are influenced by the hardware, but most are dictated by the needs
of the application and the preferences of the programmer.

1 We are speaking here, of course, of plain text ASCII or Unicode files. So-called “rich text” files,
consisting of formatted text in particular fonts, sizes, and colors, perhaps with embedded graphics,
are another matter entirely. Word processors typically represent rich text with a combination of
binary and ASCII data, though ASCII-only standards such as Postscript, textual PDF, and RTF
can be used to enhance portability.
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In most languages the programmer can take complete control of input and
output formatting by writing it all explicitly, using language or library mech-
anisms to read and write individual characters only. I/O at such a low level is
tedious, however, and most languages also provide more high-level operations.
These operations vary significantly in syntax and in the degree to which they allow
the programmer to specify I/O formats. We illustrate the breadth of possibilities
with examples from four imperative languages: Fortran, Ada, C, and C++.

Text I/O in Fortran

In Fortran, we could write a character string, an integer, and an array of tenEXAMPLE 7.139
Formatted output in
Fortran

floating-point numbers as follows:

character s*20
integer n
real r (10)
...
write (4, ’(A20, I10, 10F8.2)’), s, n, r

In the write statement, the 4 indicates a unit number, which identifies a particular
output file. The quoted, parenthesized expression is called a format ; it specifies
how the printed variables are to be represented. In this case, we have requested a
20-column ASCII string, a 10-column integer, and 10 eight-column floating-point
numbers (with two columns of each reserved for the fractional part of the value).
Fortran provides an extremely rich set of these edit descriptors for use inside of
formats. Cobol, PL/I, and Perl provide comparable facilities, though with a very
different syntax. �

Fortran allows a format to be specified indirectly, so it may be used in moreEXAMPLE 7.140
Labeled formats than one input or output statement:

write (4, 100), s, n, r
...
100 format (A20, I10, 10F8.2)

It also allows formats to be created at run time, and stored in strings:

character(len=20) :: fmt
...
fmt = "(A20, I10, 10F8.2)"
...
write (4, fmt), s, n, r

If the programmer does not know, or does not care about, the precise allocation
of columns to fields, the format can be omitted:

write (4, *), s, n, r
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In this case, the run-time system will use default format conventions. �
To write to the standard output stream (i.e., the terminal or its surrogate), theEXAMPLE 7.141

Printing to standard output programmer can use the print statement, which resembles a write without a
unit number:

print*, s, n, r ! * means default format

For input, read is used both for standard input and for specific files; in the former
case, the unit number is omitted, together with the extra set of parentheses:

read 100, s, n, r
...
read*, s, n, r ! * means default format

The star may be omitted in Fortran 90. �
In the full form of read, write, and print, additional arguments may be

provided in the parenthesized list with the unit number and format. These can
be used to specify a variety of additional information, including a label to which
to jump on end-of-file, a label to which to jump on other errors, a variable into
which to place status codes returned by the operating system, a set of labels
(a “namelist”) to attach to the output values, and a control code to override
the usual automatic advance to the next line of the file. Because there are so
many of these optional arguments, most of which are usually omitted, they are
usually specified using named (keyword) parameter notation, a notion we defer to
Section 8.3.3.

The variety of shorthand versions of read, write, and print, together with
the fact that they operate on a variable number of program variables, makes it
very difficult to cast them as “ordinary” subroutines. Fortran 90 provides default
and keyword parameters (Section 8.3.3), but Fortran 77 does not, and even in
Fortran 90 there is no way to define a subroutine with an arbitrary number of
parameters.

In Pascal, as in Fortran 77, the parameters of every subroutine are fixed in
number and in type. Pascal’s read, readln, write, and writeln “routines” are
therefore built into the language; they are not part of a library. Each takes a variable
number of arguments, the first of which may optionally specify a particular file.
Unfortunately, Pascal’s formatting mechanisms are much less flexible than those
of Fortran; programmers are often forced to implement formatting by hand, using
read and write for input and output of individual characters only. In the design
of Modula-2, Niklaus Wirth chose to move I/O out of the language proper, and to
embed it in a standard library. The designers of Ada took a similar approach. The
Modula-2 I/O libraries are relatively primitive: only a modest improvement over
character-by-character I/O in Pascal. The Ada libraries are much more extensive,
and make heavy use of overloading and default parameters.
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Text I/O in Ada

Ada provides a suite of five standard library packages for I/O. The sequential_
IO and direct_IO packages are for binary files. They provide generic file types
that can be instantiated for any desired element type. The IO_exceptions and
low_level_IO packages handle error conditions and device control, respectively.
The text_IO package provides formatted input and output on sequential files of
characters.

Using text_IO, our original three-variable Fortran output statement wouldEXAMPLE 7.142
Formatted output in Ada look something like this in Ada:

s : array (1..20) of character;
n : integer;
r : array (1..10) of real;
...
set_output(my_file);
put(n, 10);
put(s);
for i in 1..10 loop put(r(i), 5, 2); end loop;
new_line;

In the put of an element of r (within the loop), the second parameter specifies
the number of digits before the decimal point, rather than the width of the entire
number (including the decimal point), as it did in Fortran. The put of s will use
the string’s natural length. If a different length is desired, the programmer will
have to write blanks or put a substring explicitly. If precise output positioning is
not desired for the integers and real numbers, the extra parameters in their put
calls can be omitted; in this case the run-time system will use standard defaults.
The programmer can use additional library routines to change these defaults if
desired. A call to set_output invokes a similar mechanism: it changes the default
notion of output file. �

There are two overloaded forms of put for every built-in type. One takes a fileEXAMPLE 7.143
Overloaded put routines name as its first argument; the other does not. The last five lines above could have

been written:

put(my_file, n, 10);
put(my_file, s);
for i in 1..10 loop put(my_file, r(i), 5, 2); end loop;
new_line(my_file);

The programmer can of course define additional forms of get and put for arbi-
trary user-defined types. All of these facilities rely on standard Ada mechanisms;
in contrast to Fortran, no support for I/O is built into the language itself. �

Text I/O in C

C provides I/O through a library package called stdio; as in Ada, no support
for I/O is built into the language itself. Many C implementations, however, build
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knowledge of I/O functions into the compiler, so it can issue warnings when
arguments appear to be used incorrectly.

Our example output statement would look something like this in C:EXAMPLE 7.144
Formatted output in C

char s[20];
int n;
double r[10];
...
fprintf(my_file, "%20s%10d", s, n);
for (i = 0; i < 10; i++) fprintf(my_file, "%8.2f", r[i]);
fprintf(my_file, "\n");

The arguments to fprintf are a file, a format string, and a sequence of expres-
sions. The format string has capabilities similar to the formats of Fortran, though
the syntax is very different. In general, a format string consists of a sequence of
characters with embedded “placeholders,” each of which begins with a percent
sign. The placeholder %20s indicates a 20-character string; %d indicates an integer
in decimal notation; %8.2f indicates an 8-character floating-point number, with
two digits to the right of the decimal point. �

As in Fortran, formats can be computed and stored in strings, and a single
fprintf statement can print an arbitrary number of expressions. As in Ada, an
explicit for loop is needed to print an array. Commonly the format string alsoEXAMPLE 7.145

Text in format strings contains labeling text and white space:

strcpy(s, "four"); /* copy "four" into s */
n = 20;
char *fmt = "%s score and %d years ago\n";
fprintf(my_file, fmt, s, n);

A percent sign can be printed by doubling it:

fprintf(my_file, "%d%%\n", 25); /* prints "25%" */ �

Input in C takes a similar form. The fscanf routine takes as argument a file,EXAMPLE 7.146
Formatted input in C a format string, and a sequence of pointers to variables. In the common case,

every argument after the format is a variable name preceded by a “pointer to”
operator:

fscanf(my_file, "%s %d %lf", &s, &n, &r[0]);

In this call, the %s placeholder will match a string of maximal length that does not
include white space. If this string is longer than 20 characters (the length of s),
then fscanf will write beyond the end of the storage for the string. (This weakness
in scanf is one of the sources of the so-called “buffer overflow” bugs discussed
in the sidebar on page 353.) The three-character %lf placeholder informs the
library routine that the corresponding argument is a double; the two-character
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sequence %f would read into a float.2 Accidentally using a placeholder for the
wrong size variable is a common error in older implementations of C; forgetting
the ampersand on a trailing argument is another. While such mistakes will often
be caught by a modern C compiler with special-case knowledge of fscanf, they
would always be caught in a language with type-safe I/O. Note that we have read
a single element of r; as with fprintf, a for loop would be needed to read the
whole array. �

We have noted above that the I/O routines of Fortran and Pascal are built into
the language largely to permit them to take a variable number of arguments. We
have also noted that moving I/O into a library in Ada forces us to make a separate
call to put for every output expression. So how do fprintf and fscanf work? It
turns out that C permits functions with a variable number of parameters (we will
discuss such functions in more detail in Section 8.3.3). Unfortunately, the types
of trailing parameters are unspecified, which makes compile-time type checking
of variable-length argument lists impossible in the general case. Moreover, the
lack of run-time type descriptors in C precludes run-time checking as well. At
the same time, because the C library (including fprintf and fscanf) is part
of the language standard, special knowledge of these routines can be built into
the compiler—and often is: while the I/O routines of C are formally defined as
“ordinary” functions, they are typically implemented in the same way as their
analogues in Fortran and Pascal. As a result, C compilers will often provide good
error diagnostics when the arguments to fprintf or fscanf do not match the
format string.

To simplify I/O to and from the standard input and output streams, stdio
provides routines called printf and scanf that omit the initial arguments of
fprintf and fscanf. To facilitate the formatting of strings within a program,
stdio also provides routines called sprintf and sscanf, which replace the initial
arguments of fprintf and fscanf with a pointer to an array of characters.
The sscanf function “reads” from this array; sprintf “writes” to it. Fortran 90
provides similar support for intraprogram formatting through so-called internal
files.

Text I/O in C++

As a descendant of C, C++ supports the stdio library described in the previous
subsection. It also supports a new I/O library called iostream that exploits the
object-oriented features of the language. The iostream library is more flexible
than stdio, provides arguably more elegant syntax (though this is a matter of
taste), and is completely type safe.

2 C’s doubles are double-precision IEEE floating-point numbers in most implementations; floats
are usually single precision. The lack of safety for %s arguments is only one of several problems
with fscanf. Others include the inability to “skip over” erroneous input, and undefined behavior
when there is insufficient input. Instead of fscanf, seasoned C programmers tend to use fgets,
which reads (length-limited) input into a string, followed by manual parsing using strtol (string-
to-long), strtod (string-to-double), and so on.
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C++ streams use operator overloading to co-opt the << and >> symbols nor-
mally used for bit-wise shifts. The iostream library provides an overloaded ver-
sion of << and >> for each built-in type, and programmers can define versions for
new types. To print a character string in C++, one writesEXAMPLE 7.147

Formatted output in C++
my_stream << s;

To output a string and an integer one can write

my_stream << s << n;

This code requires that my_stream be an instance of the ostream (output stream)
class defined in the iostream library. The << operator is syntactic sugar for
the “operator function” ostream::operator<<, as described in Section 3.5.2.
Because << associates left-to-right, the statement above is equivalent to

(my_stream.operator<<(s)).operator<<(n);

The code works because ostream::operator<< returns a reference to its first
argument as its result (as we shall see in Section 8.3.1, C++ supports both a value
model and a reference model for variables). �

As shown so far, output to an ostream uses default formatting conventions. ToEXAMPLE 7.148
Stream manipulators change conventions, one may embed so-called stream manipulators in a sequence

of << operations. To print n in octal notation (rather than the default decimal),
we could write

my_stream << oct << n;

To control the number of columns occupied by s and n, we could write

my_stream << setw(20) << s << setw(10) << n;

The oct manipulator causes the stream to print all subsequent numeric output in
octal. The setw manipulator causes it to print its next string or numeric output
in a field of a specified minimum width (behavior reverts to the default after a
single output). �

The oct manipulator is declared as a function that takes an ostream as a
parameter and produces a reference to an ostream as its result. Because it is not
followed by empty parentheses, the occurrence of oct in the output sequence
above is not a call to oct; rather, a reference to oct is passed to an overloaded
version of << that expects a manipulator function as its right-hand argument. This
version of << then calls the function, passing the stream (the left-hand argument
of <<) as argument.

The setw manipulator is even trickier. It is declared as a function that returns
a reference to what we might call an “object closure”—an object containing a
reference to a function and a set of arguments. In this particular case, setw(20)
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is a call to a constructor function that returns a closure containing the number
20 and a pointer to the setw manipulator. (We will discuss constructors in detail
in Section 9.3, and object closures in Section 3.6.3.) The iostream library pro-
vides an overloaded version of << that expects an object closure as its right-hand
argument. This version of << calls the function inside the closure, passing it as
arguments the stream (the left-hand argument of <<) and the integer inside the
closure.

The iostream library provides a wealth of manipulators to change the format-
ting behavior of an ostream. Because C++ inherits C’s handling of pointers andEXAMPLE 7.149

Array output in C++ arrays, however, there is no way for an ostream to know the length of an array.
As a result, our full output example still requires a for loop to print the r array:

char s[20];
int n;
double r[10];
...
my_stream << setw(20) << s << setw(10) << n;
for (i = 0; i < 10; i++)

my_stream << setiosflags(ios::fixed)
<< setw(8) << setprecision(2) << r[i];

my_stream << "\n";

Here the manipulators in the output sequence in the for loop specify fixed format
(rather than scientific) for floating-point numbers, with a field width of eight,
and two digits past the decimal point. The setiosflags and setprecision
manipulators change the default format of the stream; the changes apply to all
subsequent output. �

To avoid calling stream manipulators repeatedly, we could modify our exampleEXAMPLE 7.150
Changing default format as follows:

my_stream.flags(my_stream.flags() | ios::fixed);
my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[i];

The setw manipulator affects the output width of only a single item. To facili-
tate the restoration of defaults, the flags and precision functions return the
previous value:

ios::fmtflags old_flags =
my_stream.flags(my_stream.flags() | ios::fixed);

int old_precision = my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[i];
my_stream.flags(old_flags);
my_stream.precision(old_precision); �

Formatted input in C++ is analogous to formatted output. It uses istreams
instead of ostreams, and the >> operator instead of <<. It also supports a suite of
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manipulators comparable to those for output. I/O on the standard input and out-
put streams does not require different functions; the programmer simply begins
an input or output sequence with the standard stream name cin or cout. (In
keeping with C tradition, there is also a standard stream cerr for error mes-
sages.) To support intraprogram formatting of character strings, the strstream
library provides istrstream and ostrstream object classes that are derived from
istream and ostream, and that allow a stream variable to be bound to a string
instead of to a file.

3CHECK YOUR UNDERSTANDING

79. Explain the differences between interactive and file-based I/O, between tem-
porary and persistent files, and between binary and text files. (Some of this
information is in the main text.)

80. What are the comparative advantages of text and binary files?

81. Describe the end-of-line conventions of Unix, Windows, and Macintosh files.

82. What are the advantages and disadvantages of building I/O into a program-
ming language, as opposed to providing it through library routines?

83. Summarize the different approaches to text I/O adopted by Fortran, Ada, C,
and C++.

84. Describe some of the weaknesses of C’s scanf mechanism.

85. What are stream manipulators? How are they used in C++?
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7.12 Exercises

7.27 How would you implement the final version of our element type in ML?
How would you extract the fields of the variant part? Specifically, suppose
you have declared a record to represent copper. How would you specify the
equivalent of copper.source?

7.28 In Example 6.67 we described a programming idiom in which an iterator
takes a “loop body” function as argument, and applies it to every element
of a given container or set. Show how to use this idiom in ML to apply a
function to every element of the tree in Example 7.113. Write versions of
your iterator for preorder, inorder, and postorder traversals.

7.29 Rewrite the left half of Example 7.121 in C++ using references (see Sec-
tion 8.3.1).

7.30 Show how variant records in Pascal or unions in C can be used to interpret
the bits of a value of one type as if they represented a value of some other type.
Explain why the same technique does not work in Ada. After consulting an
Ada manual, describe how an unchecked pragma can be used to get around
the Ada rules.

7.31 Are variant records a form of polymorphism? Why or why not?

7.32 Pascal does not permit the tag field of a variant record to be passed to a
subroutine by reference (i.e., as a var parameter). Why not?

7.33 Explain how to implement dynamic semantic checks to catch references to
uninitialized fields of a tagged variant record in Pascal. Changing the value
of the tag field should cause all fields of the variant part of the record to
become uninitialized. Suppose you want to avoid adding flag fields within
the record itself (e.g., to avoid changing the offsets of fields in a systems
program). How much harder is your task?

7.34 Explain how to implement dynamic semantic checks to catch references to
uninitialized fields of an untagged variant record in Pascal. Any assignment
to a field of a variant should cause all fields of other variants to become
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uninitialized. Any assignment that changes the record from one variant to
another should also cause all other fields of the new variant to be uninitial-
ized. Again, suppose you want to avoid adding flag fields within the untagged
record itself. How much harder is your task?

7.35 We noted in Section 7.3.4 that Pascal and Ada require the variant portions
of a record to occur at the end, to save space when a particular record is
constrained to have a comparatively small variant part. Could a compiler
rearrange fields to achieve the same effect, without the restriction on the
declaration order of fields? Why or why not?

7.36 In Example 7.88 we noted that reference counts can be used to reclaim tomb-
stones, failing only when the programmer neglects to manually delete the
object to which a tombstone refers. Explain how to leverage this observation
to catch memory leaks at run time. Does your solution work in all cases?
Explain.

7.37 Learn about the smart pointer design pattern in C++. Create a smart pointer
package that uses tombstones to catch dangling references, and reference
counts to reclaim garbage tombstones. Augment your package, as suggested
in the preceding exercise, to catch (most) memory leaks.

7.38 Rewrite Example 7.146 using fgets, strtol, strtod, etc. (read the man
pages), so that it is guaranteed not to result in buffer overflow.

7.39 The readln and writeln procedures of Pascal give special treatment to
ends of lines. By contrast, C’s printf and scanf do not; they treat newlines
and carriage returns like any other character. What are the comparative
advantages of these approaches? Which do you prefer? Why?
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7.13 Explorations

7.50 ML’s “grandchild,” Haskell, is the focus of much of the current research on
functional programming. Learn about its type system. How does it differ
from that of ML? What has been added? What has been deleted? What is the
rationale for these changes?

7.51 Repeat the previous exercise for Microsoft’s F#.

7.52 Find a Cobol manual and learn about the language’s facilities for text I/O.
Prepare a written comparison of those facilities to those of the languages
described in Section 7.9.3.

7.53 If you were designing the text I/O facilities for a new programming language,
what approach would you take? In particular, do you believe that I/O should
be a built-in part of the language, or should it be handled by library routines?
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8.2.1 Displays

As noted in the main text, a display is an embedding of the static chain into anEXAMPLE 8.63
Nonlocal access using a
display

array. The jth element of the display contains a reference to the frame of the most
recently active subroutine at lexical nesting level j. The first element of the display
is thus a reference to the frame of some subroutine S nested directly inside the
main program; the second element is a reference to the frame of a routine that
is nested inside of S, and so forth, until we reach the currently active routine.
Figure 8.9 contains an example. �

If the display is stored in memory, then a nonlocal object can be loaded into a
register with two memory accesses: one to load the display element into a register,
the second to load the object. On a machine with a large number of registers, one
might be tempted to reduce the overhead to only one memory access by keeping
the entire display in registers, but that would probably be a bad idea: display
elements tend to be accessed much less frequently than other things (e.g., local
variables) that might be kept in the registers instead.

Maintaining the Display

Maintenance of a display is slightly more complicated than maintenance of a static
chain, but not by much. Perhaps the most obvious approach would be to maintain
the static chain as usual, and simply fill the display at procedure entry and exit,
by walking down the chain. In most cases, however, the following (much faster)
scheme suffices: when calling a subroutine at lexical nesting level j, the callee saves
the current value of the jth display element into the stack, and then replaces that
element with a copy of its own (newly created) frame pointer. Before returning,
it restores the old element. Why does this mechanism work? As with static chains,
there are two cases to consider:

1. The callee is nested (directly) inside the caller. In this case the caller and the
callee share all display elements up to the current level. Putting the callee’s
frame pointer into the display simply extends the current level by one. It is
conceivable that the old value needn’t be saved, but in general there is no way
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Figure 8.9 Nonlocal access using a display.The stack configurations, from left to right, illustrate
the contents of the display (at bottom) for a sequence of subroutine calls, assuming the lexical
nesting of Figure 8.1. Display elements beyond that of the currently executing subroutine are not
used.

to tell. The caller itself might have been called by code that is very deeply nested,
and that is counting on the integrity of a very deep display, in which case the
old display element will be needed. A smart compiler may be able to avoid the
save in certain circumstances.

2. The callee is at lexical nesting level j, k ≥ 0 levels out from the caller. In this
case the caller and callee share all display elements up through j −1. The caller’s
entry at level j is different from the callee’s, so the callee must save it before

DESIGN & IMPLEMENTATION

Lexical nesting and displays
Because the display is a fixed-size array, compilers that use a display to imple-
ment access to nonlocal objects generally impose a limit (the size of the display)
on the maximum depth to which subroutines may be nested. If this limit is
larger than, say, five or six, it is unlikely that any programmer will ever wish for
more. Note that the display does not eliminate the need for a frame pointer.
Because local variables are accessed so often, it is important to have the address
of the current frame in a register, where it can be used for displacement-mode
addressing. Similarly, on a RISC processor, where a 32-bit address will not fit
in one instruction, it is important to maintain a base register for the most
commonly accessed global variables as well.
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storing its own frame pointer. If the callee in turn calls a routine at level j + 1,
that routine will change another element of the display, but all old elements
will be restored before they are needed again.

If the callee is a leaf routine then the display can be left intact; no one will use the
element corresponding to the callee’s nesting level before control returns to the
caller.

Closures

A subroutine that is passed as a parameter, stored in a variable, or returned from
a function must be called through some sort of closure (Section 3.6) that captures
the referencing environment. In a language implementation based on static chains,
a closure can be represented as a 〈code address, static link〉 pair. Displays are not as
simple. A standard technique is to create two “entry points”—starting addresses—
for every subroutine. One of these is for “normal” calls, the other for calls through
closures. When a closure is created, it contains the address of the alternative entry
point. The code at that entry point saves elements 1 through j of the display into
the stack (it will have to create a larger-than-normal stack frame in order to do
this), and then replaces those elements with values taken from (or calculated from)
the closure. The alternative entry then makes a nested call to the main body of the
subroutine (it skips the code immediately following the normal entry—the code
that creates the normal stack frame and updates the display). When the subroutine
returns, it comes back to the code of the alternative entry, which restores the old
value of the display before returning to the actual caller.

More space-conserving implementations of display-based closures are possible
(see Exercise 8.35), but with higher run-time overhead.

Comparison to Static Chains

In general, maintaining a display is slightly more expensive than maintaining a
static chain, though the comparison is not absolute. In the usual case, passing a
static link to a called routine requires k ≥ 0 load instructions in the caller, followed
by one store instruction in the callee (to place the static link at the appropriate
offset in the stack frame). The store may be skipped in leaf routines, assuming
that a register is available to hold the link as long as it is needed. No overhead
is required to maintain the static chain when returning from a subroutine. With
a display, a nonleaf callee requires two loads and three stores (1 + 2 in the pro-
logue and 1 + 1 epilogue) to save and restore display elements. Because the callee
does all the work, displays may save a little bit on code size, compared to static
chains. As noted above, displays significantly complicate the creation and use
of closures.

The original advantage of displays—reduced cost for access to objects in outer
scopes—seems less clear today than once it did. In fact, while displays were popu-
lar in the CISC compilers of the 1970s and 1980s, they are less common in recent
compilers. Most programs don’t nest subroutines more than two or three levels
deep, so static chains are seldom very long, and variables in surrounding scopes
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tend not to be accessed very often. If they are accessed often, common subex-
pression optimizations (to be discussed in Chapter 16) are likely to ensure that a
pointer to the appropriate frame remains in a register.

Some language designers have argued that the development of object-oriented
programming (the subject of Chapter 9) has eliminated the need for nested sub-
routines [Han81]. Others might even say that the success of C has shown such rou-
tines to be unneeded. Without nested subroutines, of course, the choice between
static chains and displays is moot.

3CHECK YOUR UNDERSTANDING

50. Describe how we access an object at lexical nesting level k in a language
implementation based on displays.

51. Why isn’t the display typically kept in registers?

52. Explain how to maintain the display during subroutine calls.

53. What special concerns arise when creating closures in a language implemen-
tation that uses displays?

54. Summarize the tradeoffs between displays and static chains. Describe a pro-
gram for which displays will result in faster code. Describe another for which
static chains will be faster.
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8.2.2 Case Studies: C on the MIPS; Pascal on the x86

To make stack management a bit more concrete, we present a pair of case studies,
one for a simple language (C) on a simple RISC machine (the MIPS), the other
for a language with nested subroutines (Pascal) on a CISC machine (the x86).

SGI C on the MIPS

An overview of the MIPS architecture can be found in Section 5.4.5. As noted
in that section, register r31 (also known as ra) is special-cased by the hardware to
receive the return address in subroutine call (jal—jump-and-link) instructions.
In addition, register r29 (also known as sp) is reserved by convention for use as
the stack pointer, and register r30 (also known as fp) is reserved by convention
for the frame pointer, if any. The details presented here correspond to version
7.3.1.3m of the SGI MIPSpro C compiler, generating 64-bit code at optimization
level -O2. The conventions for 32-bit code are different, and future versions of the
compiler may be different as well.

A typical MIPSpro stack frame appears in Figure 8.10. The sp points toEXAMPLE 8.64
SGI MIPSpro C calling
sequence

the last used location in the stack (note that many other compilers, including
some for the MIPS, point the sp at the first unused location). Since the size of
every object in the stack is known at compile time in C, a separate frame pointer
is not strictly needed, and the MIPSpro compiler usually does without: it uses
displacement-mode offsets from the sp for everything in the current stack frame.
The principal exception occurs in subroutines whose arguments or local variables
are so large that they exceed the reach of displacement addressing; for these the
compiler makes use of the fp.

Argument Passing Conventions Arguments in the process of being passed to
the next routine are assembled at the top of the frame, and are always accessed
via offsets from the sp. The first eight arguments are passed in integer regis-
ters r4–r11 or floating-point registers f12–f19, depending on type. Additional

Copyright c© 2009 by Elsevier Inc. All rights reserved. 173



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 174 379–215

174 Chapter 8 Subroutines and Control Abstraction

sp

1

Space to build
argument lists

Local variables
and

temporaries

Saved registers

Arguments

fp (if used)

Direction
of stack growth

(lower addresses)

Current frame

Previous (calling)
frame

n

8 bytes/64 bits

Figure 8.10 Layout of the subroutine call stack for the SGI MIPSpro C compiler, running in
64-bit mode. As in Figure 8.2, lower addresses are toward the top of the page.

arguments are passed on the stack. Record arguments (structs) are implicitly
divided into 64-bit “chunks,” each of which is passed as if it were an integer.
A large struct may be passed partly in registers and partly on the stack.

As noted in the main text, space is reserved in the stack for all arguments,
whether passed in registers or not. In effect, each subroutine begins with some
of its arguments already loaded into registers, and with “stale” values in memory.
This is a normal state of affairs; optimizing compilers keep values in registers
whenever possible. They “spill” values to memory when they run out of registers,
or when there is a chance that the value in memory may be accessed directly (e.g.,
through a pointer, a reference parameter, or the actions of a nested subroutine).
The fp, if present, points at the first (top-most) argument.

The argument build area at the top of the frame is designed to be large enough
to hold the largest argument list that may be passed to any called routine. This
convention may waste a bit of space in certain cases, but it means that arguments
need not be “pushed” in the usual sense of the word: the sp does not change when
they are placed into the stack.

For languages with nested subroutines (C of course is not among them), MIPS
compilers generally use register r2 to pass the static link. In all languages, registers
r2 and f0 (depending on type) are used to return scalar values from functions.
Values of type long double are returned in the register pair 〈f0, f2〉. Record
values (structs) that will fit in 128 bits are returned in 〈r2, r3〉. For larger
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structs, the compiler passes a hidden first argument (in r4) whose value is the
address into which the return value should be placed. If the return value is to
be assigned immediately into a variable (e.g., x = foo()), the caller can simply
pass the address of the variable. If the value is to be passed in turn to another
subroutine, the caller can pass the appropriate address within its own argument
build area. (Writing the return value into this space will probably destroy the
returning function’s own arguments, but that’s fine: at this point they are no longer
needed.) Finally, though one doesn’t see this idiom often (and most languages
don’t support it), C allows the caller to extract a field directly from the return
value of a function (e.g., x = foo().a + y;); in this case the caller must pass the
address of a temporary location within the “local variables and temporaries” part
of its stack frame.

Calling Sequence Details The calling sequence to maintain the MIPSpro stack
is as follows. The caller

1. saves (into the “local variables and temporaries” part of its frame) any caller-
saves registers whose values are still needed

2. puts up to eight scalar arguments (or “chunks” of structs) into registers

3. puts the remaining arguments into the argument build area at the top of the
current frame

4. performs a jal instruction, which puts the return address in register ra and
jumps to the target address1

The caller-saves registers consist of r2–r15, r24, r25, and f0–f23. In a language
with nested subroutines, the caller would place the static link into register r2
immediately before performing the jal.

In its prologue, the callee

1. subtracts the frame size (the distance between the first argument and the sp
in Figure 8.10) from the sp

2. if the frame pointer is to be used, copies its value into an available temporary
register (typically r2), then adds the frame size to the sp, placing the result in
the fp (this effectively moves the old sp into the fp; note that an add is as fast
as a simple move, so there was no harm in updating the sp first)

3. saves any necessary registers into the middle of the newly allocated frame, using
the sp or, if available, the fp as the base for displacement-mode addressing

Saved registers include (a) any callee-saves temporaries (r16–r23 and f24–f31)
whose values may be changed before returning; (b) the ra, if the current routine

1 Like all branch instructions on the MIPS, jal has an architecturally visible branch delay slot. The
load delay slot was eliminated in the MIPS II version of the ISA; all recent MIPS processors are
fully interlocked.
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is not a leaf or if it uses the ra as an additional temporary; and (c) the temporary
register containing the old fp from Step 2, if the current routine needs a frame
pointer, or the fp itself if the current routine does not need a frame pointer, but
uses the fp as an additional temporary.

In its epilogue, immediately before returning, the callee

1. places the function return value (if any) into r2, r3, f0, f2, or memory as
appropriate

2. restores saved registers (if any), using the sp or, if available, the fp as the
base for displacement-mode addressing; if the current routine needed a frame
pointer, the saved fp is “restored” into a temporary register

3. deallocates the frame by moving the fp into the sp or adding the frame size
to the sp

4. moves the value in the temporary register of step 2 (if any), into the fp

5. performs a jr ra instruction (jump to address in register ra)

Finally, if appropriate, the caller moves the return value to wherever it is needed.
Caller-saves registers are restored lazily over time, as their values are needed.

To support the use of symbolic debuggers such as gdb and dbx, the compiler
generates a variety of assembler pseudo-ops that place information into the object
file symbol table. For each subroutine, this information includes the starting and
ending addresses of the routine, the size of the stack frame, an indication as to
which register (usually sp or fp) is the base for local objects, an indication as to
which register (usually ra, if any) holds the return address, and a list of which
registers were saved. �

GNU Pascal on the x86

To illustrate the differences between CISC and RISC machines, our second case
study considers the x86, still the world’s most popular instruction set architecture.
(An overview of the processor appears in Section 5.4.5). To illustrate the han-
dling of nested subroutines and closures, we consider a Pascal compiler, namely
version 3.2.2 of the GNU Pascal compiler, gpc. (Ada compilers [e.g., GNU’s gnat]
handle these features in similar ways, but Ada’s many extra features would make
the case study much more complex.)

On modern implementations of the x86, ordinary store instructions may
make better use of the pipeline than is possible with push. Most modern compilers
for the x86, including gcc (on which gpc is based), therefore employ an argument
build area similar to that of the previous case study. By default gpc and gcc still use
a separate frame pointer, partly for the sake of uniformity with other architectures
and languages (gcc is highly portable), and partly to simplify the implementation
of library mechanisms that allocate space dynamically in the current stack frame
(see Exercise 8.37).

The special instructions for subroutine calls vary significantly from one CISC
machine to another. The ones most often used on the x86 today are relatively
simple. The call instruction pushes the return address onto the stack, updating
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Figure 8.11 Layout of the subroutine call stack for the GNU Pascal compiler, gpc.The return
address and saved fp are present in all frames. All other parts of the frame are optional; they
are present only if required by the current subroutine. In x86 terminology, the sp is named esp;
the fp is ebp (extended base pointer). SL marks the location that will be referenced by the static
link of any subroutine nested immediately inside this one.

the sp, and branches to the called routine. The ret instruction pops the return
address off the stack, again updating the sp, and branches back to the caller. Sev-
eral additional instructions, retained for backward compatibility, are typically not
generated by modern compilers, because they were designed for calling sequences
with an explicit display and without an argument build area, or because they don’t
pipeline as well as equivalent sequences of simpler instructions.

Argument Passing Conventions Figure 8.11 shows a stack frame for the x86.EXAMPLE 8.65
Gnu Pascal x86 calling
sequence

As in the previous case study, the sp points to the last used location on the stack.
Arguments in the process of being passed to another routine are accessed via offsets
from the sp; everything else is accessed via offsets from the fp. All arguments are
passed in the stack. Register ecx is used to pass the static link. That link will point
at the last saved register (the saved fp if there are no others) in the frame of the lex-
ically surrounding routine, immediately below that routine’s own static link, if any.

Functions return integer or pointer values in register eax. Floating-point values
are returned in the first of the floating-point registers, st(0). For functions that
return values of constructed types (records, arrays, or sets), the compiler passes
a hidden first argument (on the stack) whose value is the address into which the
return value should be placed.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 178 379–215

178 Chapter 8 Subroutines and Control Abstraction

Calling Sequence Details The calling sequence to maintain the gpc stack is as
follows. The caller

1. saves (into the “local variables and temporaries” part of its frame) any caller-
saves registers whose values are still needed

2. puts arguments into the build area at the top of the current frame

3. places the static link in register ecx

4. executes a call instruction

The caller-saves registers consist of eax, edx, and ecx. Step 1 is skipped if none of
these contain a value that will be needed later. Step 2 is skipped if the subroutine
has no parameters. Step 3 is skipped if the subroutine is declared at the outermost
level of lexical nesting. The call instruction pushes the return address and jumps
to the subroutine.

In its prologue, the callee

1. pushes the fp onto the stack, implicitly decrementing the sp by 4 (one word)

2. copies the sp into the fp, establishing the frame pointer for the current routine

3. pushes any callee-saves registers whose values may be overwritten by the cur-
rent routine

4. pushes the static link (ecx) if this is not a leaf

5. subtracts the remainder of the frame size from the sp

The callee-saves registers are ebx, esi, and edi. Registers esp and ebp (the sp
and fp, respectively) are saved by Steps 1 and 2. The instructions for some of
these steps may be replaced with equivalent sequences by the compiler’s code
improver, and mixed into the rest of the subroutine by the instruction scheduler.
In particular, if the value subtracted from the sp in Step 5 is made large enough
to accommodate the callee-saves registers, then the pushes in Steps 3 and 4 may
be moved after Step 5 and replaced with fp-relative stores.

In its epilogue, the callee

1. sets the return value

2. restores any callee-saved registers

3. copies the fp into the sp, deallocating the frame

4. pops the fp off the stack

5. returns

Finally, as in the previous case study, the caller moves the return value, if it is in
a register, to wherever it is needed. It restores any caller-saves registers lazily over
time. �

Because Pascal allows subroutines to nest, a subroutine S that is passed asEXAMPLE 8.66
Subroutine closure
trampoline

a parameter from P to Q must be represented by a closure, as described in
Section 3.6.1. In many compilers the closure is a data structure containing the
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address of S and the static link that should be used when S is called. In gpc, how-
ever, the closure contains an x86 code sequence known as a trampoline: typically a
pair of instructions to load ecx with the appropriate static link and then jump to
the beginning of S. The trampoline resides in the“local variables and temporaries”
section of P ’s activation record. Its address is passed to Q. Rather than “interpret”
the closure at run time, Q actually calls it. One advantage of this mechanism is its
interoperability with gcc, in which C functions passed as parameters are simply
code addresses. In fact, if S is declared at the outermost level of lexical nesting,
then gpc too can pass an ordinary code address; no trampoline is required. �

3CHECK YOUR UNDERSTANDING

55. For one or both of our case studies, explain which aspects of the calling
sequence and stack layout are dictated by the hardware, and which are a matter
of software convention.

56. On the MIPS some compilers make the sp point at the last used word on
the stack, while others make it point at the first unused word. On the x86 all
compilers make it point at the last used word. Why the difference?

57. Why don’t the MIPSpro compiler and gpc restore caller-saves registers imme-
diately after a call?

58. What is a subroutine closure trampoline? How does it differ from the usual
implementation of a closure described in Section 3.6.1? What are the compar-
ative advantages of the two alternatives?

DESIGN & IMPLEMENTATION

Executing code in the stack
A disadvantage of trampoline-based closures is the need to execute code in the
stack. Many machines and operating systems disallow such execution, for at
least two important reasons. First, as noted in Section 5.1, modern micro-
processors typically have separate instruction and data caches, for fast concur-
rent access. Allowing a process to write and execute the same region of memory
means that these caches must be kept mutually consistent (coherent), a task that
introduces significant hardware complexity. Second, many computer security
breaches involve so-called buffer overflow attacks, in which an intruder exploits
the lack of array bounds checking to write code into the stack, where it will be
executed when the current subroutine returns. Such attacks are only possible
on machines in which writable data are also executable.
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8.2.3 Register Windows

As an alternative to saving and restoring registers on subroutine calls and returns,
the original Berkeley RISC machines [PD80, Pat85] incorporated a hardware
mechanism known as register windows. The basic idea is to provide a very large setEXAMPLE 8.67

Register windows on the
SPARC

of physical registers, most of which are organized as a collection of overlapping
windows (Figure 8.12). A few register names (r0–r7 in the figure) always refer
to the same locations, but the rest (r8–r31 in the figure) are interpreted relative
to the currently active window. On a subroutine call, the hardware moves to a dif-
ferent window. To facilitate the passing of parameters, the old and new windows
overlap: the top few registers in the caller’s window (r24–r31 in the figure) are
the same as the bottom few registers in the callee’s window (r8–r15 in the figure).
On a machine with register windows, the compiler places values of use only within
the current subroutine in the middle part of the window. It copies values to the
upper part of the window to pass them to a called routine, within which they are
read from the lower part of the window. �

Since the number of physical windows is fixed, a long chain of subroutine
calls can cause the hardware to run off the end of the register set, resulting in a
“window overflow” interrupt that drops the processor into the operating system.
The interrupt handler then treats the set of available windows as a circular buffer.
It copies the contents of one or more windows to memory and then resumes
execution. Later,a“window underflow”interrupt will occur when control attempts
to return into a window whose contents have been written to memory. Again the
operating system recovers, by restoring the saved registers and resuming execution.
In practice, eight windows appear to suffice to make overflow and underflow
relatively rare on typical programs.

Register windows have been used in several RISC processors, but only one
of these, the SPARC, is commercially significant today. The more recent Intel
IA-64 (Itanium) also uses register windows, though it is not a RISC machine.
The advantage of windows, of course, is that they reduce the number of loads
and stores required for the typical subroutine call. At the same time, register
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Figure 8.12 Register windows. When the main program calls subroutine A, and again when
A calls B, register names r0–r7 continue to refer to the same locations, but register names
r8–r31 are changed to refer to a new, overlapping window. High-numbered registers in the
caller share locations with low-numbered registers in the callee.

windows significantly increase the amount of state associated with the currently
running program. When the operating system decides to give the processor to
a different application for a while (something that most systems do many times
per second), it must save all this state to memory, or arrange for the processor to
trap back into the OS if the new process attempts to access an unsaved window.
Worse, while register windows nicely capture the referencing environment of a
single thread of control, they do not work well for languages that need more
than one referencing environment (execution context). Several language features,
including continuations (Section 6.2.2), iterators (Section 6.5.3), and coroutines
(Section 8.6), are difficult to implement on a machine with register windows,
because they require that we save and restore not only the visible registers, but
those in other windows as well, when switching between contexts. It is unclear
whether the reduction in subroutine call overhead outweighs the extra cost of
context switches for typical application workloads, particularly given that loads
and stores for parameters are almost always cache hits.
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3CHECK YOUR UNDERSTANDING

59. What are register windows? What purpose do they serve?

60. Which commercial instruction sets include register windows?

61. Explain the concepts of register window overflow and underflow.

62. Why are register windows a potential problem for multithreaded programs?
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8.3.2 Call by Name

Call by name implements the normal-order argument evaluation described in
Section 6.6.2. A call-by-name parameter is re-evaluated in the caller’s referencing
environment every time it is used. The effect is as if the called routine had been
textually expanded at the point of call, with the actual parameter (which may be a
complicated expression) replacing every occurrence of the formal parameter. To
avoid the usual problems with macro parameters, the “expansion” is defined to
include parentheses around the replaced parameter wherever syntactically valid,
and to make “suitable systematic changes” to the names of any formal parame-
ters or local identifiers that share the same name, so that their meanings never
conflict [NBB+63, p. 12]. Call by name is the default in Algol 60; call by value is
available as an alternative. In Simula call by value is the default; call by name is the
alternative.

To implement call by name,Algol 60 implementations pass a hidden subroutine
that evaluates the actual parameter in the caller’s referencing environment. The
hidden routine is usually called a thunk.2 In most cases thunks are trivial. If an
actual parameter is a variable name, for example, the thunk simply reads the
variable from memory. In some cases, however, a thunk can be elaborate. PerhapsEXAMPLE 8.68

Jensen’s device the most famous occurs in what is known as Jensen’s device, named after Jørn
Jensen [Rut67]. The idea is to pass to a subroutine both a built-up expression and
one or more of the variables used in the expression. Then by changing the values
of the individual variable(s), the called routine can deliberately and systematically
change the value of the built-up expression. This device can be used, for example,
to write a summation routine:

2 In general, a thunk is a procedure of zero arguments used to delay evaluation of an expression.
Other examples of thunks can be seen in the delay mechanism of Example 6.84 (page 276) and
the promise constructor of Exercise 10.11.
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real procedure sum(expr, i, low, high);
value low, high;

comment low and high are passed by value;
comment expr and i are passed by name;

real expr;
integer i, low, high;

begin
real rtn;
rtn := 0;
for i := low step 1 until high do

rtn := rtn + expr;
comment the value of expr depends on the value of i;

sum := rtn
end sum

Now to evaluate the sum

y =
∑

1≤x≤10

3x2 − 5x + 2

we can simply say

y := sum(3*x*x - 5*x + 2, x, 1, 10); �

Label Parameters

Both Algol 60 and Algol 68 allow a label to be passed as a parameter. If a called rou-
tine performs a goto to such a label, control will usually need to escape the local
context, unwinding the subroutine call stack. The unwinding operation depends
on the location of the label. For each intervening scope, the goto must restore
saved registers, deallocate the stack frame, and perform any other operations

DESIGN & IMPLEMENTATION

Call by name
In practice, most uses of call by name in Algol 60 and Simula programs serve
simply to allow a subroutine to change the value of an actual parameter; neither
language offers call by reference. Unfortunately, call by name is significantly
more expensive than call by reference: it requires the invocation of a thunk
(as opposed to a simple indirection) on every use of a formal parameter. Call
by name is also prone to subtle program bugs when a change to a variable in
a surrounding scope unintentionally alters the value of a formal parameter.
(Call by reference suffers from a milder form of this problem, as discussed
in Section 3.23 [page 145].) Such deliberate subtleties as Jensen’s device are
comparatively rare, and can be imitated in other languages through the use of
formal subroutines. Call by name was dropped in Algol 68, in favor of call by
reference.
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normally handled by epilogue code. To implement label parameters, Algol imple-
mentations typically pass a thunk that performs the appropriate operations for
the given label. Note that the target of the label must generally lie in some
surrounding scope, where it was visible to the caller under static scoping rules.

Label parameters are usually used to handle exceptional conditions—conditions
that prevent a subroutine from performing its usual operation, and that cannot
be handled in the local context. Instead of returning, a routine that encounters
a problem (e.g., invalid input) can perform a goto to a label parameter, on the
assumption that the label refers to code that performs some remedial operation,
or prints an appropriate error message. In more recent languages, label parameters
have been replaced by more structured exception handling mechanisms, discussed
in Section 8.5.

3CHECK YOUR UNDERSTANDING

63. What is call by name? What language first provided it? Why isn’t it used by the
language’s descendants?

64. What is call by need? How does it differ from call by name?

65. How does a subroutine with call-by-name parameters differ from a macro?

66. What is a thunk? What is it used for?

67. What is Jensen’s device?

DESIGN & IMPLEMENTATION

Call by need
Functional languages like Miranda and Haskell typically pass parameters using
a memoizing implementation of normal-order evaluation, as described in
Section 6.6.2. This lazy implementation is sometimes called call by need.
Memoization calculates and records the value of a parameter the first time it
is needed, and uses the recorded value thereafter. In the absence of side effects,
call by need is indistinguishable from call by name. It avoids the expense of
repeated evaluation, but precludes the use of techniques like Jensen’s device in
languages that do have side effects. Among imperative languages, call by need
appears in the scripting language R, where it serves to avoid the expense of
evaluating (even once) any complex arguments that are not actually needed.
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8.4.4 Generics in C++, Java, and C#

Though templates were not officially added to C++ until 1990, when the language
was almost ten years old, they were envisioned early in its evolution. C# generics,
likewise, were planned from the beginning, though they actually didn’t appear
until the 2.0 release in 2004. By contrast, generics were deliberately omitted from
the original version of Java. They were added to Java 5 (also in 2004) in response
to strong demand from the user community.

C++Templates

Figure 8.13 defines a simple generic class in C++ that we have named anEXAMPLE 8.69
Generic arbiter class in
C++

arbiter. The purpose of an arbiter object is to remember the “best instance”
it has seen of some generic parameter class T. We have also defined a generic
chooser class that provides an operator() method, allowing it to be called like
a function. The intent is that the second generic parameter to arbiter should
be a subclass of chooser, though this is not enforced. Given these definitions we
might write

class case_sensitive : chooser<string> {
public:

bool operator()(const string& a, const string& b){return a < b;}
};
...
arbiter<string, case_sensitive> cs_names; // declare new arbiter
cs_names.consider(new string("Apple"));
cs_names.consider(new string("aardvark"));
cout << *cs_names.best() << "\n"; // prints "Apple"

Alternatively, we might define a case_insensitive descendant of chooser,
whereupon we could write
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template<class T>
class chooser {
public:

virtual bool operator()(const T& a, const T& b) = 0;
};

template<class T, class C>
class arbiter {

T* best_so_far;
C comp;

public:
arbiter() { best_so_far = 0; }
void consider(T* t) {

if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;
}
T* best() {

return best_so_far;
}

};

Figure 8.13 Generic arbiter in C++.

arbiter<string, case_insensitive> ci_names; // declare new arbiter
ci_names.consider(new string("Apple"));
ci_names.consider(new string("aardvark"));
cout << *ci_names.best() << "\n"; // prints "aardvark"

Either way, the C++ compiler will create a new instance of the arbiter tem-
plate every time we declare an object (e.g., cs_names) with a different set of
generic arguments. Only when we attempt to use such an object (e.g., by calling
consider) will it check to see whether the arguments support all the required
operations.

Because type checking is delayed until the point of use, there is nothing magic
about the chooser class. If we neglected to define it, and then left it out of the
header of case_sensitive (and similarly case_insensitive), the code would
still compile and run just fine. �

C++ templates are an extremely powerful facility. Template parameters can
include not only types, but also values of ordinary (nongeneric) types, and nested
template declarations. Programmers can also define specialized templates that pro-
vide alternative implementations for certain combinations of arguments. These
facilities suffice to implement recursion, giving programmers the ability, at least
in principle, to compute arbitrary functions at compile time (in other words, tem-
plates are Turing complete). An entire branch of software engineering has grown
up around so-called template metaprogramming, in which templates are used to
persuade the C++ compiler to generate custom algorithms for special circum-
stances [AG90]. As a comparatively simple example, one can write a template that
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accepts a generic parameter int n and produces a sorting routine for n-element
arrays in which all of the loops have been completely unrolled.

As described in Section 8.4.3, C++ allows generic parameters to be inferred for
generic functions, rather than specified explicitly. To identify the right version of
a generic function (from among an arbitrary number of specializations), and to
deduce the corresponding generic arguments, the compiler must perform a com-
plicated, potentially recursive pattern-matching operation. This pattern matching
is, in fact, quite similar to the type inference of ML-family languages, described in
Section 7.2.4. It can, as noted in the sidebar on page 169, be cast as unification.

Unfortunately, per-use instantiation of templates has two significant draw-
backs. First, it tends to result in inscrutable error messages. If we defineEXAMPLE 8.70

Instantiation-time errors in
C++ templates class foo {

public:
bool operator()(const string& a, const unsigned int b)

// wrong type for second parameter, from arbiter’s point of view
{ return a.length() < b; }

};

and then say

arbiter<string, foo> oops;
...
oops.consider(new string("Apple")); // line 65 of source

one might hope to receive an error message along the lines of “line 65: foo’s
operator( ) method needs to take two arguments of type string&.” Instead the
Gnu C++ compiler responds

simple_best.cc: In member function ‘void arbiter<T, C>::consider(T*)
[with T = std::string, C = foo]’:

simple_best.cc:65: instantiated from here
simple_best.cc:21: error: no match for call to ‘(foo)

(std::basic_string<char, std::char_traits<char>,
std::allocator<char> >&, std::basic_string<char,
std::char_traits<char>, std::allocator<char> >&)’

(Line 21 is the body of method consider in Figure 8.13.)

Sun’s C++ compiler is equally unhelpful:

"simple_best.cc", line 21: Error: Cannot cast from std::basic_string<char,
std::char_traits<char>, std::allocator<char>> to const int.

"simple_best.cc", line 65: Where: While instantiating
"arbiter<std::basic_string<char, std::char_traits<char>,
std::allocator<char>>, foo>::consider(std::basic_string<char,
std::char_traits<char>, std::allocator<char>>*)".

"simple_best.cc", line 65: Where: Instantiated from non-template code.
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The problem here is fundamental; it’s not poor compiler design. Because
the language requires that templates be “expanded out” before they are type
checked, it is extraordinarily difficult to generate messages without reflecting that
expansion. �

A second drawback of per-use instantiation is a tendency toward“code bloat”: it
can be difficult, in the presence of separate compilation, to recognize that the same
template has been instantiated with the same arguments in separate compilation
units. A program compiled in 20 pieces may have 20 copies of a popular template
instance.

Java Generics

Generics were deliberately omitted from the original version of Java. Rather than
instantiate containers with different generic parameter types, Java programmers
followed a convention in which all objects in a container were assumed to be of
the standard base class Object, from which all other classes are descended. Users
of a container could place any type of object inside. When removing an object,
however, a cast would be needed to reassert the original type. No danger was
involved, because objects in Java are self-descriptive, and casts employ run-time
checks.

Though dramatically simpler than the use of templates in C++, this pro-
gramming convention has three significant drawbacks: (1) users of containers
must litter their code with casts, which many people find distracting or aes-
thetically distasteful; (2) errors in the use of a container manifest themselves
as ClassCastExceptions at run time, rather than as compile-time error mes-
sages; (3) the casts incur overhead at run time. Given Java’s emphasis on clarity
of expression, rather than pure performance, problems (1) and (2) were con-
sidered the most serious, and became the subject of a Java Community Process
proposal for a language extension in Java 5. The solution adopted is based on the
GJ (Generic Java) work of Bracha et al. [BOSW98].

Figure 8.14 contains a Java 5 version of our arbiter class. It differs fromEXAMPLE 8.71
Generic arbiter class in
Java

Figure 8.13 in several important ways. First, Java insists that all instances of
a generic be able to share the same code. Among other things, this means that
the Chooser to be used by a given instance must be specified as a constructor
parameter; it cannot be a generic parameter. (We could have used a construc-
tor parameter in C++; in Java it is mandatory.) Second, Java requires that the
code for the arbiter class be manifestly type-safe, independent of any particular
instantiation. We must therefore declare comp to be a Chooser, so we know that
it provides a better method. This raises the question: what sort of Chooser do
we need? That is, what should be the generic parameter in the declaration of comp
(and of the parameter c in the Arbiter constructor)?

The most obvious choice (not the one adopted in Figure 8.14) would be
Chooser<T>. This would allow us to write
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interface Chooser<T> {
public boolean better(T a, T b);

}

class Arbiter<T> {
T bestSoFar;
Chooser<? super T> comp;

public Arbiter(Chooser<? super T> c) {
comp = c;

}
public void consider(T t) {

if(bestSoFar == null || comp.better(t, bestSoFar))bestSoFar = t;
}
public T best() {

return bestSoFar;
}

}

Figure 8.14 Generic arbiter in Java.

class CaseSensitive implements Chooser<String> {
public boolean better(String a, String b) {

return a.compareTo(b) < 1;
}

}
...
Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
csNames.consider(new String("Apple"));
csNames.consider(new String("aardvark"));
System.out.println(csNames.best()); // prints "Apple" �

Suppose, however, we were to defineEXAMPLE 8.72
Wildcards and bounds on
Java generic parameters class CaseInsensitive implements Chooser<Object> { // note type!

public boolean better(Object a, Object b) {
return a.toString().compareToIgnoreCase(b.toString()) < 1;

}
}

Class Object defines a toString method (usually used for debugging purposes),
so this declaration is valid. Moreover since every String is an Object, we ought
to be able to pass any pair of strings to CaseInsensitive.better and get a
valid response. Unfortunately, Chooser<Object> is not acceptable as a match for
Chooser<String>. If we typed

Arbiter<String> ciNames = new Arbiter<String>(new CaseInsensitive());
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interface Chooser {
public boolean better(Object a, Object b);

}

class Arbiter {
Object bestSoFar;
Chooser comp;

public Arbiter(Chooser c) {
comp = c;

}
public void consider(Object t) {

if(bestSoFar == null || comp.better(t, bestSoFar))bestSoFar = t;
}
public Object best() {

return bestSoFar;
}

}

Figure 8.15 Arbiter in Java after type erasure. No casts are required in this portion of the code
(but see the main text for uses).

the compiler would complain. The fix (as shown in Figure 8.14) is to declare
both comp and c to be of type <? super T> instead. This informs the Java compiler
that an arbitrary type argument (“?”) is acceptable as the generic parameter of
our Chooser, so long as that type is an ancestor of T.

The super keyword specifies a lower bound on a type parameter. It is the
symmetric opposite of the extends keyword, which we used in Example 8.37 to
specify an upper bound. Together, upper and lower bounds allow us to broaden
the set of types that can be used to instantiate generics. As a general rule, we use
extends T whenever we need to invoke T methods; we use super T whenever
we expect to pass a T object as a parameter, but don’t mind if the receiver is
willing to accept something more general. Given the bounded declarations used
in Figure 8.14, our use of CaseInsensitive will compile and run just fine:

Arbiter<String> ciNames = new Arbiter<String>(new CaseInsensitive());
ciNames.consider(new String("Apple"));
ciNames.consider(new String("aardvark"));
System.out.println(ciNames.best()); // prints "aardvark" �

Type Erasure

Generics in Java are defined in terms of type erasure: the compiler effectively
deletes every generic parameter and argument list, replaces every occurrence of
a type parameter with Object, and inserts casts back to concrete types wherever
objects are returned from generic methods. The erased equivalent of Figure 8.14EXAMPLE 8.73

Type erasure and implicit
casts

appears in Figure 8.15. No casts are required in this portion of the code. On any
use of best, however, the compiler would insert an implicit cast. The statement
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String winner = csNames.best();

will, in effect, be implicitly replaced with

String winner = (String) csNames.best();

Also, in order to match the Chooser<String> interface, our definition of
CaseSensitive (Example 8.71) will in effect be replaced with

class CaseSensitive implements Chooser {
public boolean better(Object a, Object b) {

return ((String) a).compareTo((String) b) < 1;
}

} �

The advantage of type erasure over the nongeneric version of the code is
that the programmer doesn’t have to write the casts. In addition, the com-
piler is able to verify in most cases that the erased code will never generate a
ClassCastException at run time. The exceptions occur primarily when, forEXAMPLE 8.74

Unchecked warnings in
Java 5

the sake of interoperability with preexisting code, the programmer assigns a
generic collection into a nongeneric collection:

Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
Arbiter alias = csNames; // nongeneric
alias.consider(new Integer(3)); // unsafe

DESIGN & IMPLEMENTATION

Why erasure?
Erasure in Java has several surprising consequences. For one, we can’t invoke
new T(), where T is a type parameter: the compiler wouldn’t know what kind of
object to create. Similarly, Java’s reflection mechanism, which allows a program
to examine and reason about the concrete type of an object at run time, knows
nothing about generics: csNames.getClass().toString() returns "class
Arbiter", not "class Arbiter<String>". Why would the Java designers
introduce a mechanism with such significant limitations? The answer is back-
ward compatibility or, more precisely, migration compatibility, which requires
complete interoperability of old and new code.

More so than most previous languages, Java encourages the assembly of
working programs, often on the fly, from components written independently
by many different people in many different organizations. The Java designers
felt it was critical not only that old (nongeneric) programs be able to run with
new (generic) libraries, but also that new (generic) programs be able to run
with old (nongeneric) libraries. In addition, they took the position that the Java
virtual machine, which interprets Java byte code in the typical implementation,
could not be modified. While one can take issue with these goals, once they are
accepted erasure becomes a natural solution.
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The compiler will issue an“unchecked”warning on the second line of this example,
because we have invoked method consider on a “raw” (nongeneric) Arbiter
without explicitly casting the arguments. In this case the warning is clearly war-
ranted: alias shouldn’t be passed an Integer. Other examples can be quite a bit
more subtle. It should be emphasized that the warning simply indicates the lack
of static checking; any type errors that actually occur will still be caught at run
time. �

Note, by the way, that the use of erasure, and the insistence that every instanceEXAMPLE 8.75
Java 5 generics and built-in
types

of a given generic be able to share the same code, means that type arguments in
Java must all be descended from Object. While Arbiter<Integer> is a perfectly
acceptable type, Arbiter<int> is not. �

C# Generics

Though generics were omitted from C# version 1, the language designers always
intended to add them, and the .NET Common Language Infrastructure (CLI)
was designed from the outset to provide appropriate support. As a result, C# 2.0
was able to employ an implementation based on reification rather than erasure.
Reification creates a different concrete type every time a generic is instanti-
ated with different arguments. Reified types are visible to the reflection library
(csNames.GetType().ToString() returns "Arbiter‘1[System.Double]"),
and it is perfectly acceptable to call new T() if T is a type parameter with a zero-
argument constructor (a constraint to this effect is required). Moreover where
the Java compiler must generate implicit type casts to satisfy the requirements of
the virtual machine (which knows nothing of generics) and to ensure type-safe
interaction with legacy code (which might pass a parameter or return a result of
an inappropriate type), the C# compiler can be sure that such checks will never
be needed, and can therefore leave them out. The result is faster code.

Of course the C# compiler is free to merge the implementations of any genericEXAMPLE 8.76
Sharing generic
implementations in C#

instantiations whose code would be the same. Such sharing is significantly easier
in C# than it is in C++, because implementations typically employ just-in-time
compilation, which delays the generation of machine code until immediately
prior to execution, when it’s clear whether an identical instantiation already exists
somewhere else in the program. In particular, MyType<Foo> and MyType<Bar>
will share code whenever Foo and Bar are both classes, because C# employs a
reference model for variables of class type. �

Like C++, C# allows generic arguments to be value types (built-ins or structs),EXAMPLE 8.77
C# generics and built-in
types

not just classes. We are free to create an object of class MyType<int>; we do not
have to “wrap” it as MyType<Integer>, the way we would in Java. MyType<int>
and MyType<double> would generally not share code, but both would run signifi-
cantly faster than MyType<Integer> or MyType<Double>, because they wouldn’t
incur the dynamic memory allocation required to create a wrapper object, the
garbage collection required to reclaim it, or the indirection overhead required to
access the data inside. �

Like Java, C# allows only types as generic parameters, and insists that generics
be manifestly type-safe, independent of any particular instantiation. It generates
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public delegate bool Chooser<T>(T a, T b);

class Arbiter<T> {
T bestSoFar;
Chooser<T>comp;
bool initialized;

public Arbiter(Chooser<T> c) {
comp = c;
bestSoFar = default(T);
initialized = false;

}
public void Consider(T t) {

if (!initialized || comp(t, bestSoFar)) bestSoFar = t;
initialized = true;

}
public T Best() {

return bestSoFar;
}

}

Figure 8.16 Generic arbiter in C#.

reasonable error messages if we try to instantiate a generic with an argument that
doesn’t meet the constraints of the corresponding generic parameter, or if we try,
inside the generic, to invoke a method that the constraints don’t guarantee will be
available.

A C# version of our Arbiter class appears in Figure 8.16. One small dif-EXAMPLE 8.78
Generic arbiter class in
C#

ference with respect to Figure 8.14 appears in the Arbiter constructor, which
must explicitly initialize field bestSoFar to default(T). We can leave this out
in Java because variables of class type are implicitly initialized to null, and type
parameters in Java are all classes. In C# T might be a built-in or a struct, both of
which require explicit initialization.

More interesting differences from Figure 8.14 are the definition of Chooser
as a delegate, rather than an interface, and the lack of lower bounds (uses of the
super keyword) in parameter and field declarations. These issues are connected.
C# allows us to specify an upper bound as a type constraint; we did so in the sort
routine of Example 8.38. There is no direct equivalent, however, for Java’s lower
bounds. We can work around the problem in the Arbiter example by exploiting
the fact that Chooser has only one method (named better in Figure 8.14).

As described in Section 3.6.3, a C# delegate is a first-class subroutine. The
delegate declaration in Figure 8.16 is roughly analogous to the C declaration

typedef _Bool (*Chooser)(T a, T b);

(pointer to function of two T arguments, returning a Boolean), except that a C#
Chooser object is a closure, not a pointer: it can refer to a static function, a method
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of a particular object (in which case it has access to the object’s fields), or an
anonymous nested function (in which case it has access, with unlimited extent, to
variables in the surrounding scope). In our particular case, defining Chooser to be
a delegate allows us to pass any appropriate function to the Arbiter constructor,
without regard to the class inheritance hierarchy. We can declare

public static bool CaseSensitive(String a, String b) {
return String.CompareOrdinal(a, b) < 1;
// use Unicode order, in which upper-case letters come first

}
public static bool CaseInsensitive(Object a, Object b) {

return String.Compare(a.ToString(), b.ToString(), false) < 1;
}

and then say

Arbiter<String> csNames =
new Arbiter<String>(new Chooser<String>(CaseSensitive));

csNames.Consider("Apple");
csNames.Consider("aardvark");
Console.WriteLine(csNames.Best()); // prints "Apple"

Arbiter<String> ciNames =
new Arbiter<String>(new Chooser<String>(CaseInsensitive));

ciNames.Consider("Apple");
ciNames.Consider("aardvark");
Console.WriteLine(ciNames.Best()); // prints "aardvark"

The compiler is perfectly happy to instantiate CaseInsensitive as a Chooser
<String>, because Strings can be passed as Objects. �

3CHECK YOUR UNDERSTANDING

68. Why is it difficult to produce high-quality error messages for misuses of C++
templates?

69. What is template metaprogramming ?

70. Explain the difference between upper bounds and lower bounds in Java type
constraints. Which of these does C# support?

71. What is type erasure? Why is it used in Java?

72. Under what circumstances will a Java compiler issue an “unchecked” generic
warning?

73. For what two main reasons are C# generics less susceptible to “code bloat”
than C++ templates are?
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74. Why must fields of generic parameter type be explicitly initialized in C#?

75. For what two main reasons are C# generics often more efficient than compa-
rable code in Java?

76. How does a C# delegate differ from an interface with a single method (e.g., the
C++ chooser of Figure 8.13? How does it differ from a function pointer
in C?
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8.6.3 Implementation of Iterators

Consider the following for loop from Example 6.63 (page 263):EXAMPLE 8.79
Coroutine-based iterator
invocation for i in range(first, last, step):

...

A compiler might translate this as

iter := new from to by(first, last, step, i, done, current coroutine)
while not done do

. . .
transfer(iter)

destroy(iter)

After the loop completes, the implementation can reclaim the space consumed by
iter. �

The definition of from to by itself is quite straightforward:EXAMPLE 8.80
Coroutine-based iterator
implementation coroutine from to by(from val, to val, by amt : int;

ref i : int; ref done : bool; caller : coroutine)
i := from val
if by amt > 0 then

done := from val ≤ to val
detach
loop

i +:= by amt
done := i ≤ to val
transfer(caller) – – yield i
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else
done := from val ≥ to val
detach
loop

i +:= by amt
done := i ≥ to val
transfer(caller) – – yield i

Parameters i and done are passed by reference so that the iterator can modify
them in the caller’s context. The caller’s identity is passed as a final argument so
that the iterator can tell which coroutine to resume when it has computed the next
loop index. Because the caller is named explicitly, it is easy for iterators to nest, as
in Figure 6.5 (page 264). �

Single-Stack Implementation

While coroutines suffice for the implementation of iterators, they are not necessary.
A simpler, single-stack implementation is also possible. Because a given iterator
(e.g., an instance of from_to_by) is always resumed at the same place in the code
(at the top of a given for loop), we can be sure that the subroutine call stack
will always contain the same frames whenever the iterator runs. Moreover, since
yield statements can appear only in the main body of the iterator (never in
nested routines), we can be sure that the stack will always contain the same frames
whenever the iterator transfers back to its caller. These two facts imply that we can
place the frame of the iterator directly on top of the frame of its caller in a single
central stack.

When an iterator is created, its frame is pushed on the stack. When it yields a
value, control returns to the for loop, but the iterator’s frame is left on the stack.
If the body of the loop makes any subroutine calls, the frames for those calls will
be allocated beyond the frame of the iterator. Since control must return to the
loop before the iterator resumes, we know that such frames will be gone again
before the iterator has a chance to see them: if it needs to call subroutines itself,
the stack above it will be clear. Likewise, if the iterator calls any subroutines, they
will return (popping their frames from the stack) before the for loop runs again.
Nested iterators present no special problems (see Exercise 8.45).

Data Structure Implementation

Compilers for C# 2.0 employ yet another implementation of iterators. Like Java,
C# 1.1 provided iterator objects. Each such object implements the IEnumerator
interface, which provides MoveNext and Current methods. Typically an iteratorEXAMPLE 8.81

Iterator usage in C# is obtained by calling the GetEnumerator method of an object (a container) that
implements the IEnumerable interface:

for (IEnumerator i = myTree.GetEnumerator(); i.MoveNext();) {
object o = i.Current;
Console.WriteLine(o.ToString());

} �
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C# 2.0 provides true iterators as an extension of iterator objects. The progra-
mmer simply declares a method that contains one or more yield return
statements, and whose return type is IEnumerator or IEnumerable. Here isEXAMPLE 8.82

Implementation of C#
iterators

an example of the latter:

static IEnumerable FromToBy (int fromVal, int toVal, int byAmt)
{

if (byAmt >= 0) {
for (int i = fromVal; i <= toVal; i += byAmt) {

yield return i;
}

} else {
for (int i = fromVal; i >= toVal; i += byAmt) {

yield return i;
}

}
}

The compiler automatically transforms this code into a hidden class with a
GetEnumerator method, along the lines of Figure 8.17. Within this code,
an explicit state variable keeps track of the “program counter” of the last yield
statement. In addition, local variable i of the true iterator becomes a data member
of the FromToByImpl class, leaving the iterator with no need for a stack frame
across iterations of the loop. In a quite literal sense, the compiler transforms each
true iterator into an iterator object. �

Recursive iterators present no particular difficulties: a nested iterator is allo-
cated on demand when the outer iterator enters a foreach loop, and is referred
to by a reference in that outer iterator. The details are deferred to Exercise 8.46.
Because iterator objects are allocated from the heap, the C# implementation of
true iterators may be somewhat slower than the stack-based implementation of
the previous subsection.

3CHECK YOUR UNDERSTANDING

77. Describe the “obvious” implementation of iterators using coroutines.

78. Explain how the state of multiple active iterators can be maintained in a single
stack.

79. Describe the transformation used by C# compilers to turn a true iterator into
an iterator object.
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static IEnumerable FromToBy(int fromVal, int toVal, int byAmt) {
return new FromToByImpl(fromVal, toVal, byAmt);

}
class FromToByImpl : IEnumerator, IEnumerable {

enum State {starting, goingUp, goingDown, done}
int i, tv, ba;
State s;

public FromToByImpl(int fromVal, int toVal, int byAmt) {
i = fromVal; tv = toVal; ba = byAmt; s = State.starting;

}
public IEnumerator GetEnumerator() {

return this;
}
public object Current {

get { return i; }
}
public bool MoveNext() {

switch (s) {
case State.starting :

if (ba >= 0) {
if (i <= tv) { s = State.goingUp; return true; }
else { s = State.done; return false; }

} else {
if (i >= tv) { s = State.goingDown; return true; }
else { s = State.done; return false; }

}
case State.goingUp :

i += ba;
if (i <= tv) return true;
else { s = State.done; return false; }

case State.goingDown :
i += ba;
if (i >= tv) return true;
else { s = State.done; return false; }

default: // for completeness
case State.done : return false;

}
}
public void Reset() {

s = State.starting;
}

}

Figure 8.17 Iterator object equivalent of a true iterator in C#. This handwritten code
corresponds to Example 8.82. It represents, at the source level, what the compiler creates
at the level of intermediate code: a state machine that tracks the program counter of the original
iterator, with a starting state, an ending state, and one state for each yield return statement.
The arms of the switch statement capture the code paths in the original iterator that move from
one state to the next.
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8.6.4 Discrete Event Simulation

Suppose that we wish to experiment with the flow of traffic in a city. A compute-
rized traffic model, if it captures the real world with sufficient accuracy, will allow
us to predict the effects of construction projects, accidents, increased traffic due
to new development, or changes to the layout of streets. It is difficult (thoughEXAMPLE 8.83

Sequential simulation of a
complex physical system

certainly not impossible) to write such a simulation in a conventional sequen-
tial language. We would probably represent each interesting object (automobile,
intersection, street segment, etc.) with a data structure. Our main program would
then look something like this:

while current time < end of simulation
calculate next time t at which an interesting interaction will occur
current time := t
update state of objects to reflect the interaction
record desired statistics

print collected statistics �

The problem with this approach lies in determining which objects will interact
next, and in remembering their state from one interaction to the next. It is in
some sense unnatural to represent active objects such as cars with passive data
structures, and to make time the active entity in the program. An arguably more
attractive approach is to represent each active object with a coroutine, and to let
each object keep track of its own state.

If each active object can tell when it will next do something interesting, then we
can determine which objects will interact next by keeping the currently inactive
coroutines in a priority queue, ordered by the time of their next event. We mightEXAMPLE 8.84

Initialization of a
coroutine-based traffic
simulation

begin a one-day traffic simulation by creating a coroutine for each trip to be taken
by a car that day, and inserting each coroutine into the priority queue with a
“wakeup” time indicating when the trip is to begin:
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coroutine trip(. . . )
. . .
for each trip t

p := new trip(. . . )
schedule(p, t.start time) �

Let us assume that we think of street segments as passive, and represent them
with data structures. At any given moment, we can model a segment by the numberEXAMPLE 8.85

Traversing a street segment
in the traffic simulation

of cars that it is carrying in each direction. This number in turn will affect the
speed at which the cars can safely travel. Whenever it awakens, the coroutine
representing a trip examines the next street segment over which it needs to travel.
Based on the current load on that segment, it calculates how much time it will
take to traverse it, and schedules itself to awaken again at an appropriate point in
the future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route

calculate time i to reach the end of the segment
schedule(current coroutine, current time + i) �

The schedule operation is easily built on top of transfer:EXAMPLE 8.86
Scheduling a coroutine for
future execution schedule(p : coroutine; t : time)

– – p may be self or other
insert (p, t) in priority queue
if p = current coroutine – – self

extract earliest pair (q, s) from priority queue
current time := s
transfer(q) �

In some cases, it may be difficult to determine when to reschedule a given
object. Suppose, for example, that we wish to more accurately model the effects of
traffic signals at intersections. We might represent each traffic signal with a dataEXAMPLE 8.87

Queueing cars at a traffic
light

structure that records the waiting cars in each direction, and a coroutine that lets
cars through as the signal changes color:

record controlled intersection =
EW cars, NS cars : queue of trip
const per car lag time : time

– – how long it takes a car to start after its predecessor does
coroutine signal(EW duration, NS duration : time)

detach
loop

change time := current time + EW duration
while current time < change time

if EW cars not empty
schedule(dequeue(EW cars), current time)

schedule(current coroutine, current time + per car lag time)
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change time := current time + NS duration
while current time < change time

if NS cars not empty
schedule(NS cars.dequeue(), current time)

schedule(current coroutine, current time + per car lag time) �

When it reaches the end of a street segment that is controlled by a traffic signal,EXAMPLE 8.88
Waiting at a light a trip need not calculate how long it will take to get through the intersection.

Rather, it enters itself into the appropriate queue of waiting cars and “goes to
sleep,” knowing that the signal coroutine will awaken it at some point in the
future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route

calculate time i to reach the end of the segment
schedule(current coroutine, current time + i)
if end of segment has a traffic light

identify appropriate queue Q
Q.enqueue(current coroutine)
sleep() �

Like schedule, sleep is easily built on top of transfer:EXAMPLE 8.89
Sleeping in anticipation of
future execution sleep()

extract earliest pair (q, s) from priority queue
current time := s
transfer(q)

The schedule operation, in fact, is simply:

schedule(p : coroutine; t : time)
insert (p, t) in priority queue
if p = current coroutine

sleep() �

Obviously this traffic simulation is too simplistic to capture the behavior of cars
in a real city, but it illustrates the basic concepts of discrete event simulation. More
sophisticated simulations are used in a wide range of application domains, includ-
ing all branches of engineering, computational biology, physics and cosmology,
and even computer design. Multiprocessor simulations (see reference [VF94], for
example) are typically divided into a “front end” that simulates the processors and
a “back end” that simulates the memory subsystem. Each coroutine in the front
end consists of a machine-language interpreter that captures the behavior of one
of the system’s microprocessors. Each coroutine in the back end represents a load
or a store instruction. Every time a processor performs a load or store, the front
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end creates a new coroutine in the back end. Data structures in the back end repre-
sent various hardware resources, including caches, buses, network links, message
routers, and memory modules. The coroutine for a given load or store checks to
see if its location is in the local cache. If not, it must traverse the interconnection
network between the processor and memory, competing with other coroutines
for access to hardware resources, much as cars in our simple example compete for
access to street segments and intersections. The behavior of the back-end system
in turn affects the front end, since a processor must wait for a load to complete
before it can use the data, and since the rate at which stores can be injected into
the back end is limited by the rate at which they propagate to memory.

3CHECK YOUR UNDERSTANDING

80. Summarize the computational model of discrete event simulation. Explain the
significance of the time-based priority queue.

81. When building a discrete event simulation, how does one decide which things
to model with coroutines, and which to model with data structures?

82. Are all inactive coroutines guaranteed to be in the priority queue? Explain.
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8.9 Exercises

8.35 Suppose you wish to minimize the size of closures in a language implemen-
tation that uses a display to access nonlocal objects. Assuming a language
like Pascal or Ada, in which subroutines have limited extent, explain how
an appropriate display for a formal subroutine can be calculated when that
routine is finally called, starting with only (1) the value of the frame pointer,
saved in the closure at the time that the closure was created, (2) the subrou-
tine return addresses found in the stack at the time the formal subroutine
is finally called, and (3) static tables created by the compiler. How costly is
your scheme?

8.36 Elaborate on the reasons why parameters on the MIPS may need to have
locations in the stack. Consider all the cases in which it may not suffice to
keep a parameter in a register throughout its lifetime.

8.37 Most versions of the C library include a function, alloca, that dynamically
allocates space within the current stack frame.3 It has two advantages over
the usual malloc, which allocates space in the stack: it’s usually very fast, and
the space it allocates is reclaimed automatically when the current subroutine
returns. Assuming the programmer wants deallocation to happen then, it’s
convenient to be able to skip the explicit free operations. How might you
implement alloca in conjunction with the MIPSpro calling conventions
described in Section 8.2.2?

8.38 Explain how to extend the conventions of Figure 8.11 and Section 8.2.2
to accommodate arrays whose bounds are not known until elaboration
time (as discussed in Section 7.4.2). What ramifications does this have for
the use of separate stack and frame pointers?

3 Unfortunately, alloca is not POSIX compliant, and implementations vary greatly in their seman-
tics and even in details of the interface. Portable programs are wise to avoid this routine.

Copyright c© 2009 by Elsevier Inc. All rights reserved. 209



CD_Ch08-P374514 [11:51 2009/2/25] SCOTT: Programming Language Pragmatics Page: 210 379–215

210 Chapter 8 Subroutines and Control Abstraction

8.39 In both the MIPSpro and gpc case studies, arguments were placed into the
argument build area in “reverse” order, with the first argument at the top.
Explain why this is important. (Hint: Consider subroutines with variable
numbers of arguments, as discussed in Section 8.3.3.)

8.40 How would you implement nested subroutines as parameters on a machine
that doesn’t let you execute code in the stack? Can you pass a simple code
address, or do you require that closures be interpreted at run time?

8.41 Explain how you might implement setjmp and longjmp on a SPARC.

8.42 Continuing Example 8.71, the call

csNames.consider(null);

will generate a run-time exception, because String.compareTo is not
designed to take null arguments.

(a) Modify Figure 8.14 to guard against this possibility by including a
predicate public Boolean valid(T a); in the Chooser<T> interface,
and by modifying consider to make an appropriate call to this predi-
cate. Modify class CaseSensitive accordingly.

(b) Suggest how to make similar modifications to the C# Arbiter of Fig-
ure 8.16 and Example 8.78. How should you handle lower bounds
when you need both Better and Valid?

8.43 (a) Modify your solution to Exercise 8.22 so that the comparison routine
is an explicit generic parameter, reminiscent of the chooser of Figure

8.13.

(b) Give an alternative solution in which the comparison routine is an extra
parameter to sort.

8.44 Consider the C++ program shown in Figure 8.18. Explain why the final
call to first_n generates a compile-time error, but the call to last_n does
not. (Note that first_n is generic but last_n is not.) Show how to modify
the final call to first_n so that the compiler will accept it.

8.45 Following the code in Figure 6.5, and assuming a single-stack implementa-
tion of iterators, trace the contents of the stack during the execution of a
for loop that iterates over all nodes of a complete, three-level (six-node)
binary tree.

8.46 Build a preorder iterator for binary trees in Java, C#, or Python. Do not use a
true iterator or an explicit stack of tree nodes. Rather, create nested iterator
objects on demand, linking them together as a C# compiler might if it were
building the iterator object equivalent of a true preorder iterator.

8.47 One source of inaccuracy in the traffic simulation of Section 8.6.4 has to
do with the timing at traffic signals. If a signal is currently green in the EW
direction, but the queue of waiting cars is empty, the signal coroutine will
go to sleep until current_time + EW_duration. If a car arrives before the
coroutine wakes up again, it will needlessly wait. Discuss how you might
remedy this problem.
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#include <iostream>
#include <list>
using std::cout;
using std::list;

template<class T> void first_n(list<T> p, int n) {
for (typename list<T>::iterator li = p.begin(); li != p.end(); li++) {

if (n-- <= 0) break;
cout << *li << " ";

}
cout << "\n";

}

void last_n(list<int> p, int n) {
for (list<int>::reverse_iterator li = p.rbegin(); li != p.rend(); li++) {

if (n-- <= 0) break;
cout << *li << " ";

}
cout << "\n";

}

class int_list_box {
list<int> content;

public:
int_list_box(list<int> l) { content = l; }
operator list<int>() { return content; }

// user-supplied operator for coercion/conversion
};

int main() {
int i = 5;
list<int> l;

for (int i = 0; i < 10; i++) l.push_back(i);
int_list_box b(l);

first_n(l, i); // works
last_n(b, i); // works (coerces b)
first_n(b, i); // static semantic error

}

Figure 8.18 Coercion and generics in C++.The compiler refuses to accept the final call to first_n.
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8.10 Explorations

8.58 Research the calling sequence used by SGI compilers when running on the
MIPS in 32-bit mode. Compare and contrast to the conventions of Sec-
tion 8.2.2. Pay particular attention to the lists of caller- and callee-saves
registers, and to the registers used to pass arguments. Speculate as to reasons
for the differences.

8.59 Research the full range of hardware support for subroutines on the x86,
including all variants of call. Note that the leave instruction is some-
times generated by modern compilers, but others, including enter, pushad,
popad, pushfd, and popfd, usually are not. In addition, the optional argu-
ment of ret is almost never used, and push and pop are used sparingly.
Discuss the technological trends that have made this machinery obsolete.

8.60 As another example of hard-core CISC design, research the subroutine call-
ing conventions of the Digital VAX. Be sure to describe the behavior of the
calls instruction in detail.

8.61 Investigate the concepts of covariance and contravariance in object-oriented
languages. Explain what they have to do with upper and lower bounds
(? extends T and ? super T) on Java type parameters.
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9.5 Multiple Inheritance

Recall our simple example in C++:EXAMPLE 9.50
Deriving from two base
classes (reprise) class student : public person, public gp_list_node { ...

To implement multiple inheritance, we must be able to generate both a “person
view” and a “gp_list_node view” of a student object on demand, for example
when assigning a reference to a student object into a person or gp_list_node
variable. For one of the base classes (person, say) we can do the same thing
we did with single inheritance: let the data members of that base class lie at the
beginning of the representation of the derived class, and let the virtual methods of
that base class lie at the beginning of the vtable. Then when we assign a reference
to a student object into a person variable, code that manipulates the person
variable will just use a prefix of the data members and the vtable. �

For the other base class (gp_list_node) things get more complicated: we can’tEXAMPLE 9.51
(Nonrepeated) multiple
inheritance

put both base classes at the beginning of the derived class. One possible solution is
shown in Figure 9.7. It is based loosely on the implementation described by Ellis
and Stroustrup [ES90, Chap. 10]. Because the gp_list_node fields of a student
follow the person fields, the assignment of a reference to a student object into a
variable of type gp_list_node* requires that we adjust our “view” by adding the
compile-time constant offset d .

The vtable for a student is broken into two parts. The first part lists the vir-
tual methods of the derived class and the first base class (person). The second
part lists the virtual methods of the second base class. (We have already intro-
duced a method, print_mailing_label, defined in class person. We may sim-
ilarly imagine that gp_list_node defines a virtual method debug_print that
is supposed to dump a printable representation of the contents of the node to
standard output.) Generalization to three or more base classes is straightforward;
see Exercise 9.22.
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student object
student vtable

(student/person part)

person
methods (this 

corrections)student (only)
methodsperson

student

student view,
person view

person
fields

gp_list_node

student
(only) fields

gp_list_node
fields

student vtable
(gp_list_node part)

gp_list_node
methods

d

gp_list_node view

Figure 9.7 Implementation of (nonrepeated) multiple inheritance. The size d of the person portion of the object is a
compile-time constant. We access the gp_list_node portion of the vtable by adding d to the address of a student object
before indirecting. Likewise, we create a gp_list_node view of a student object by adding d to the object’s address. Each
vtable entry consists of both a method address and a “this correction” value equal to the signed distance between the view
through which the vtable was accessed and the view of the class in which the method was defined.

Every data member of a student object has a compile-time-constant offset
from the beginning of the object. Likewise, every virtual method has a compile-
time-constant offset from the beginning of one of the parts of the vtable. The
address of the person/student portion of the vtable is stored in the beginning
of the object. The address of the gp_list_node portion of the vtable is stored
at offset d . Note that both parts of the vtable are specific to class student. In
particular, the gp_list_node part of the vtable is not shared by objects of class
gp_list_node, because the contents of the tables will be different if student has
overridden any of gp_list_node’s virtual methods. �

To call the virtual method print_mailing_label, originally defined in per-EXAMPLE 9.52
Method invocation with
multiple inheritance

son, we can use a code sequence similar to the one shown in Section 9.4.3 for single
inheritance. To call a virtual method originally defined in gp_list_node, we must
first add the offset d to our object’s address, in order to find the address of the
gp_list_node portion of the vtable. Then we can index into this gp_list_node
vtable to find the address of the appropriate method to call. But we are left with
one final problem: what is the appropriate value of this to pass to the method?

As a concrete example, suppose that student does not override debug_print
(even though it probably ought to). If our object is of class student, we should
pass a gp_list_node view of it to debug_print: the address of the object,
plus d . If, however, our object is of some class (transfer_student, perhaps)
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that does override debug_print, then we should pass a transfer_student view
to debug_print. If we are accessing our object through a variable (a reference or
a pointer) whose methods are dynamically bound, then we can’t tell at compile
time which one of these cases applies. Worse yet, we may not even know how to
generate a transfer_student view if we have to: class transfer_student may
not have been invented when this part of our code was compiled, so we certainly
don’t know how far into it the gp_list_node fields appear! �

A common solution is for vtable entries to consist of a pair of fields. One is theEXAMPLE 9.53
This correction address of the method’s code; the other is a “this correction” value, to be added

to the view through which we found the vtable. Returning to Figure 9.7, the
“this correction” field of the vtable entry for debug_print would contain −d if
debug_print was overridden by student, and zero otherwise. In the gp_list_
node part of the vtable for the (yet to be written) class transfer_student, the
“this correction” field might contain some other value −e. In general, the “this
correction” is the distance between the view of the class in which the method was
declared (and through which we accessed the vtable) and the view of the class
in which the method was defined (and which will therefore be expected by the
subroutine’s implementation).

If variable my_student contains a reference to (a student view of) some object
at run time, and if debug_print is the third virtual method of gp_list_node,
then the code to call my_student.debug_print would look something like this:

r1 := my student – – student view of object
r1 := r1 + d – – gp_list_node view of object
r2 := ∗r1 – – address of appropriate vtable
r3 := ∗(r2 + (3–1) × 8) – – method address
r2 := ∗(r2 + (3–1) × 8 + 4) – – this correction
r1 := r1 + r2 – – this
call ∗r3

Here we have assumed that both method addresses and this corrections are four
bytes long. On a typical machine this code is three instructions (including one
memory access) longer than the code required with single inheritance, and five
instructions (including three memory accesses) longer than a call to a statically
identified method. �

9.5.1 Semantic Ambiguities

In addition to implementation complexities (only some of which we have dis-
cussed so far), multiple inheritance introduces potential semantic problems.
Suppose that both gp_list_node and person define a debug_print method.EXAMPLE 9.54

Methods found in more
than one base class

If we have a variable s of type student* and we call s->debug_print, which
version of the method should we get? In CLOS and Python, we get the version
from the base class that appeared first in the derived class’s header. In Eiffel, we get
a static semantic error if we try to define a derived class with such an ambiguity.
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In C++, we can define the derived class, but we get a static semantic error if we
attempt to use a member whose name is ambiguous. In Eiffel we can use the fea-
ture renaming mechanism to get rid of naming conflicts when defining a derived
class. In C++ we must redefine the ambiguous member explicitly:

void student::debug_print() {
person::debug_print();
gp_list_node::debug_print();

}

Here we have chosen to call the debug_print routines of both base classes, using
the :: scope resolution operator to name them. We could of course have chosen
to call just one, or to write our own code from scratch. We could even arrange for
access to both routines by giving them new names:

void student::debug_print_person() {
person::debug_print();

}
void student::debug_print_list_node() {

gp_list_node::debug_print();
} �

Things are a little messier if either or both of the identically named base classEXAMPLE 9.55
Overriding an ambiguous
method

methods are virtual, and we want to override them in the derived class. Follow-
ing Stroustrup [Str97, Sec. 25.6], we can solve the problem by interposing an
“interface” class between each base class and the derived class:

class person_interface : public person {
public:

virtual void debug_print_person() = 0;
void debug_print() { debug_print_person(); }

// overrides person::debug_print
};

DESIGN & IMPLEMENTATION

The cost of multiple inheritance
The implementation we have described for multiple inheritance, using this
corrections in vtables, has the unfortunate property of increasing the overhead
of all virtual method invocations, even in programs that do not make use of
multiple inheritance. This sort of mandatory overhead is something that lan-
guage designers (and the designers of systems languages in particular) generally
try to avoid; as a matter of principle, complex special cases should not reduce
the efficiency of the simpler common case. Fortunately, there are other imple-
mentations of multiple inheritance (see Exercise 9.28) in which the cost of
modifying this is paid only when the correction is nonzero.
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class list_node_interface : public gp_list_node {
public:

virtual void debug_print_list_node() = 0;
void debug_print() { debug_print_list_node(); }

// overrides gp_list_node::debug_print
};
class student : public person_interface, public list_node_interface {
public:

void debug_print_person() { ...
void debug_print_list_node() { ...
...

};

We leave it as an exercise ( 9.23) to show what happens if we assign a student
object into a variable p of type person* and then call p->debug_print(). �

A more serious ambiguity arises when a class D inherits from two base classes,
B and C , both of which inherit from some common base class A. In this sit-
uation, should an object of class D contain one instance of the data mem-
bers of class A or two? The answer would seem to be program dependent.
For example, suppose in our administrative computing system that we wouldEXAMPLE 9.56

Repeated multiple
inheritance

like to keep all professors in the same department on a linked list. Like class
student, we might want class professor to inherit from both person and
gp_list_node:

class professor : public person, public gp_list_node { ...

Furthermore, suppose that professors occasionally take courses as nonmatricu-
lated students. In this case we might want a new class that supports both sets of
operations:

class student_prof : public student, public professor { ...

Class student_prof inherits from person and gp_list_node twice, through
both student and professor. If we think about it, we probably want a
student_prof to have one instance of the data members of class person—one
name, one university ID number, one mailing address—and two instances of the
data members of class gp_list_node—two predecessors and two successors, one
set for linking into the list of nonmatriculated students and another for linking
into the faculty list for some department:

person gp_list_nodegp_list_node

professorstudent

student_prof
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The gp_list_node case—separate copies from each branch of the inheritance
tree—is known as replicated inheritance. The person case—a single copy from
both branches of the tree—is known as shared inheritance. Both are forms of
repeated inheritance. �

Replicated inheritance is the default in C++. Shared inheritance is the default
in Eiffel. Shared inheritance can be obtained in C++ by specifying that a base classEXAMPLE 9.57

Shared inheritance in C++ is virtual:

class student : public virtual person, public gp_list_node { ...
class professor : public virtual person, public gp_list_node { ...

In this case the members of class person are shared when inherited over multiple
paths, while the members of class gp_list_node are replicated. �

Replicated inheritance of individual features can be obtained in Eiffel throughEXAMPLE 9.58
Replicated inheritance in
Eiffel

the renaming mechanism described in Section 9.2.2:

class student inherit person; gp_list_node ...
class professor inherit person; gp_list_node ...

class student_prof
inherit

student
rename

prev as prev_student,
next as next_student

end;
professor

rename
prev as prev_prof,
next as next_prof

end
feature

...
end -- class student_prof

Features inherited with different final names are replicated; features inherited with
the same final name are shared. Multiple inheritance in CLOS is always shared,
unless the user interposes interface classes as shown above explicitly; there is no
other renaming mechanism. �

9.5.2 Replicated Inheritance

Replicated inheritance introduces no serious implementation problems beyond
those of nonrepeated multiple inheritance. As shown in Figure 9.8, an objectEXAMPLE 9.59

Using replicated
inheritance

(in this case of class D) that inherits a base class (A) over two different paths in the
inheritance tree has two copies of A’s data members in its representation, and a set
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D view, B view, B::A view

C view, C::A view

D

B C
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D object D vtable (D/B part)

D vtable (C part)
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methods

C::A
methodsC::A fields

B (only)
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B (only)
methods

D (only)
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methodsC (only)
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Figure 9.8 Implementation of replicated multiple inheritance. Each base class contains a com-
plete copy of class A. As in Figure 9.7, the vtable for class D is split into two parts, one for each
base class, and each vtable entry consists of a 〈method address, this correction〉 pair.

of entries for the virtual methods of A in each of the parts of its vtable. Creation
of a B view of a D object (e.g., when assigning a pointer to a D object into a B*
variable) would not require the execution of any code. Creation of a C view (e.g.,
when assigning into a C* variable) would require the addition of offset d .

Because of ambiguity, we cannot access A members of a D object by name. We
can access them, however, if we assign a pointer to a D object into a B* or C*
variable. Similarly, a pointer to a D object cannot be assigned into an A pointer
directly: there would be no basis on which to choose the A for which to create a
view. We can, however, perform the assignment through a B* or C* intermediary:

class A { ...
class B : public A { ...
class C : public A { ...
class D : public B, public C { ...
...
A* a; B* b; C* c; D* d;
a = d; // error; ambiguous
b = d; // ok
c = d; // ok
a = b; // ok; a := d’s B’s A
a = c; // ok; a := d’s C’s A

As described in Example 9.53, vtable entries will need to consist of 〈method
address, this correction〉 pairs. �
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9.5.3 Shared Inheritance

Shared inheritance introduces a new opportunity for ambiguity and additional
implementation complexity. As in the previous subsection, assume that D inheritsEXAMPLE 9.60

Overriding methods with
shared inheritance

from B and C, both of which inherit from A. This time, however, assume that A is
shared:

class A {
public:

virtual void f();
...

};
class B : public virtual A { ...
class C : public virtual A { ...
class D : public B, public C { ...

The new ambiguity arises if B or C overrides method f, declared in A: which
version (if any) does D inherit? C++ defines a reference to f to be unambiguous
(and therefore valid) if one of the possible definitions dominates the others, in the
sense that its class is a descendant of the classes of all the other definitions. In our
specific example, D can inherit an overridden version of f from either B or C. If
both of them override it, however, any attempt to use f from within D’s code will
be a static semantic error. Eiffel provides comparatively elaborate mechanisms
for controlling ambiguity. A class that inherits an overridden method over more
than one path can specify the one it wants. Alternatively, through renaming, it can
retain access to all versions. �

To implement shared inheritance we must recognize that because a singleEXAMPLE 9.61
Implementation of shared
inheritance

instance of A is a part of both B and C, we cannot make the representations
of both B and C contiguous in memory. In Figure 9.9, in fact, we have chosen
to make neither B nor C contiguous. We insist, however, that the representation
of every B, C, or D object (and every B, C, or D view of an object of a derived class)
contain the address of the A part of the object at a compile-time constant offset
from the beginning of the view. To access a data member of A, we first indirect
through this address, and then apply the offset of the member within A. To call
the nth virtual method declared in A, we execute the following code:

r1 := my D view – – original view of object
r1 := ∗(r1 + 4) – – A view
r2 := ∗r1 – – address of A part of vtable
r3 := ∗(r2 + (n–1) × 8) – – method address
r2 := ∗(r2 + (n–1) × 8 + 4) – – this correction
r1 := r1 + r2 – – this
call ∗r3

This code sequence is the same number of instructions in length as our sequence
for nonvirtual base classes (Example 9.53), but involves one more memory
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D view, B view

D object

B methods

D methods

C methods

A methods

B (only)
fields

C (only)
fields

D (only)
fields

A fields

D vtable (D/B part)

D vtable (C part)

D vtable (A part)

C view

A view

D

C

A

B

Figure 9.9 Implementation of shared multiple inheritance. Objects of class B, C, and D contain
the address of their A components at a compile-time constant offset (in this case, immediately
after the vtable address). As in Figures 9.7 and 9.8, this corrections for virtual methods in
vtable entries are relative to the view of the class in which the method was declared (i.e., through
which the vtable was accessed).

access (to indirect through the A address). The code will work with any D view of
any object, including an object of a class derived from D, in which the D and A views
might be more widely separated. The constant 4 in the second line assumes 4-byte
addresses, with the address of D’s A part located immediately after D’s initial vtable
address. In an object with more than one virtual base class, the address of the part
of the object corresponding to each such base would be found at a different offset
from the beginning of the object. �

The implementation strategy of Figure 9.9 works in C++ because we always
know when a base class is virtual (shared). For data members and virtual meth-
ods of nonvirtual base classes, we continue to use the (cheaper) lookup algorithms
of Figures 9.7 and 9.8. In Eiffel, on the other hand, a feature that is inherited
via replication at one level of the class hierarchy may be inherited via sharing later
on. As a result, Eiffel requires a somewhat more elaborate implementation strategy
(see Exercise 9.29).

We can avoid the extra level of indirection when accessing virtual methods of
virtual base classes in C++ if we are willing to replicate portions of a class’s vtable.
We explore this option in Exercise 9.30.

9.5.4 Mix-In Inheritance

Before leaving the topic of multiple inheritance, we return briefly to the notion
of a base class composed entirely of abstract methods, as mentioned in passing in
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Section 9.4.2. Such a class is usually called an interface. It has neither data mem-
bers nor implementations of its methods. It is therefore immune to most of the
semantic ambiguities and implementation complexities of multiple inheritance.
Interfaces appear in Java, C#, and Ada 2005.

Inheritance from one “real” base class and an arbitrary number of interfaces
is known as mix-in inheritance—the virtual methods of the interface are “mixed
into” the methods of the derived class. It may be stretching things a bit to speak of
“inheriting” an interface, since the derived class must provide a definition for each
of the interface’s methods. Interfaces do, however, facilitate code reuse through
polymorphism. If a formal parameter of a subroutine is declared to have an
interface type, then any class that implements (inherits from) that interface can
be passed as the corresponding actual parameter. The classes of objects that can
legitimately be passed need not have a common class ancestor.

As an example, suppose that we have been given general-purpose Java code thatEXAMPLE 9.62
Mixing interfaces into a
derived class

will sort objects according to some textual field, display a graphic representation
of an object within a web browser window (hiding and refreshing as appropriate),
and store references to objects by name in a dictionary data structure. Each of these
capabilities would be represented by an interface. If we have already developed
some complicated class of objects widget, we can make use of the general-purpose
code by mixing the appropriate interfaces into classes derived from widget, as
shown in Figure 9.10. �

As noted in Section 9.4.3, Java implementations usually look methods up by
name at run time. In this case, the methods of an interface can simply be added to
the method dictionary of any class that implements the interface. To implementEXAMPLE 9.63

Compile-time
implementation of mix-in
inheritance

mix-in inheritance without run-time method lookup, one simple approach is to
augment the representation of objects of the class with the addresses of vtables
for the implemented interfaces, as shown in Figure 9.11. Additional vtable
pointers, like additional data members, are added to the end of the representation
of objects of the base class to create the representation of the derived class. If
interfaces and data members are added at several levels of the class hierarchy, then
vtable pointers and data members may be interspersed at arbitrary offsets within
objects. �

3CHECK YOUR UNDERSTANDING

44. Give a few examples of the semantic ambiguities that arise when a class has
more than one base class.

45. Explain the distinction between replicated and shared multiple inheritance.
When is each desirable?

46. Explain how even nonrepeated multiple inheritance introduces the need for
multiple views of (the implementation of) an object, and for“this correction”
fields in vtables.

47. Explain how shared multiple inheritance introduces the need for an additional
level of indirection when accessing fields of certain parent classes.
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public class widget { ... }
interface sortable_object {

String get_sort_name();
bool less_than(sortable_object o);
// All methods of an interface are automatically public.

}
interface graphable_object {

void display_at(Graphics g, int x, int y);
// Graphics is a standard library class that provides a context
// in which to render graphical objects.

}
interface storable_object {

String get_stored_name();
}
class named_widget extends widget implements sortable_object {

public String name;
public String get_sort_name() {return name;}
public bool less_than(sortable_object o) {

return (name.compareTo(o.get_sort_name()) < 0);
// compareTo is a method of the standard library class String.

}
}
class augmented_widget extends named_widget

implements graphable_object, storable_object {
... // more data members
public void display_at(Graphics g, int x, int y) {

... // series of calls to methods of g
}
public String get_stored_name() {return name;}

}
...
class sorted_list {

public void insert(sortable_object o) { ...
public sortable_object first() { ...
...

}
class browser_window extends Frame {

// Frame is the standard library class for windows.
public void add_to_window(graphable_object o) { ...
...

}
class dictionary {

public void insert(storable_object o) { ...
public storable_object lookup(String name) { ...
...

}

Figure 9.10 Interface classes in Java. By implementing the sortable_object interface in
named_widget and the graphable_object and storable_object interfaces in augmented_
widget,we obtain the ability to pass objects of those classes to and from such routines as sorted_
list.insert, browser_window.add_to_window , and dictionary.insert .
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a

b

c

augmented_widget
object

augmented_
widget part

sortable_
object part

graphable_
object part

storable_
object part

widget view

widget fields

name

vtable

a

b

c

sortable_object view

graphable_object view

storable_object view

Figure 9.11 Implementation of mix-in inheritance. Objects of class augmented_widget contain
four vtable addresses, one for the class itself (as in Figure 9.3), and three for the implemented
interfaces.The view of the object that is passed to interface routines points directly at the relevant
vtable pointer.The vtable then begins with a single this correction, used by all of its methods to
regenerate a pointer to the object itself.

48. What is an interface, as defined by Java, C#, or Ada 2005? How is it related to
mix-in style inheritance?

49. Why is mix-in inheritance simpler to implement than other styles of multiple
inheritance?
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9.6.1 The Object Model of Smalltalk

Smalltalk is heavily integrated into its programming environment. In fact, unlike
all of the other languages mentioned in this book, a Smalltalk program does
not consist of a simple sequence of characters. Rather, Smalltalk programs are
meant to be viewed within the browser of a Smalltalk implementation, where
font changes and screen position can be used to differentiate among various
parts of a given program unit. Together with the contemporaneous Interlisp and
Pilot/Mesa projects at PARC, the Smalltalk group shares credit for developing the
now ubiquitous concepts of bit-mapped screens, windows, menus, and mice.

Smalltalk uses an untyped reference model for all variables. Every variable refers
to an object, but the class of the object need not be statically known. As described
in Section 9.3.1, every Smalltalk object is an instance of a class descended from a
single base class named Object. All data are contained in objects. The most trivial
of these are simple immutable objects such as true (of class Boolean) and 3 (of
class Integer).

Operations are all conceptualized as messages sent to objects. The expressionEXAMPLE 9.64
Operations as messages in
Smalltalk

3 + 4, for example, indicates sending a + message to the (immutable) object 3,
with a reference to the object 4 as argument. In response to this message, the
object 3 creates and returns a reference to the (immutable) object 7. Similarly, the
expression a + b, where a and b are variables, indicates sending a + message to
the object referred to by a, with the reference in b as argument. If a happens to
refer to 3 and b refers to 4, the effect will be the same as it was in the case of the
constants. �

As described in Section 6.1, multiargument messages have multiword (“mix-EXAMPLE 9.65
Mixfix messages fix”) names. Each word ends with a colon; each argument follows a word. The

expression

myBox displayOn: myScreen at: location
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sends a displayOn: at: message to the object referred to by variable myBox, with
the objects referred to by myScreen and location as arguments. �

Even control flow in Smalltalk is conceptualized as messages. Consider theEXAMPLE 9.66
Selection as an ifTrue:
ifFalse: message

selection construct:

n < 0
ifTrue: [abs <- n negated]
ifFalse: [abs <- n]

This code begins by sending a < 0 message (a < message with 0 as argument) to
the object referred to by n. In response to this message, the object referred to by
n will return a reference to one of two immutable objects: true or false. This
reference becomes the value of the n < 0 expression.

Smalltalk evaluates expressions left-to-right without precedence or associativ-
ity. The value of n < 0 therefore becomes the recipient of an ifTrue: ifFalse:
message. This message has two arguments, each of which is a block. A block in
Smalltalk is a fragment of code enclosed in brackets. It is an immutable object,
with semantics roughly comparable to those of a lambda expression in Lisp. To
execute a block we send it a value message.

When sent an ifTrue: ifFalse: message, the immutable object true sends a
value message to its first argument (which had better be a block) and then returns
the result. The object false, on the other hand, in response to the same message,
sends a value message to its second argument (the block that followed ifFalse:).
The left arrow (<-) in each block is the assignment operator. Assignment is not a
message; it is a side effect of evaluation of the right-hand side. As in expression-
based languages such Algol 68, the value of an assignment expression is the value of
the right-hand side. The overall value of our selection expression will be the value
of one of the blocks, namely a reference to n or to its additive inverse, whichever
is non-negative. For the sake of convenience, Boolean objects in Smalltalk also
implement ifTrue:, ifFalse:, and ifFalse: ifTrue: methods. �

Iteration is modeled in a similar fashion. For enumeration-controlled loops,EXAMPLE 9.67
Iterating with messages class Integer implements timesRepeat: and to: by: do: methods:

pow <- 1.
10 timesRepeat:

[pow <- pow * n]

sum <- 0.
1 to: 100 by: 2 do:

[:i | sum <- sum + (a at: i)]

The first of these code fragments calculates n10. In response to a timesRepeat:
message, the integer k sends a value message to the argument (a block) k times.
The second code fragment sums the odd-indexed elements of the array referred
to by a. In response to a to: by: do: message, the integer k behaves as one might
expect: it sends a value: message to its third argument (a block) �(t − k + b)/b�
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times, where t is the first argument and b is the second argument. Note the colon at
the end of value:. The plain value message is unary; the value: message has an
argument; it is understood by blocks that have a (single) formal parameter. In our
loop example, the integer 1 sends the messages value: 1, value: 3, value: 5,
and so on to the block [:i | sum <- sum + (a at: i)]. The :i | at the beginning
of the block is its formal parameter. The at: message is understood by arrays. For
iteration with a step size of one, integers also provide a to: do: method. �

Because it is an object, a block can be referred to by a variable:EXAMPLE 9.68
Blocks as closures

b <- [n <- n + 1]. "b is now a closure"
c <- [:i | n <- n + i]. "so is c"
...
b value. "increment n by 1"
c value: 3. "increment n by 3"

A block with two parameters expects a value: value: message. A block with j
parameters expects a message whose name consists of the word value: repeated j
times. Comments in Smalltalk are double-quoted (strings are single-quoted). �

For logically controlled loops, Smalltalk relies on the whileTrue: message,EXAMPLE 9.69
Logical looping with
messages

understood by blocks:

tail <- myList.
[tail next ˜˜ nil]

whileTrue: [tail <- tail next]

This code sets tail to the final element of myList. The double-tilde (˜˜) oper-
ator means “does not refer to the same object as.” The method next is assumed
to return a reference to the element following its recipient. In response to a
whileTrue: message, a block sends itself a value message. If the result of that
message is a reference to true, the block sends a value message to the argu-
ment of the original message and repeats. Blocks also implement a whileFalse:
method. �

The blocks of Smalltalk allow the programmer to construct almost arbitrary
control-flow constructs. Because of their simple syntax, Smalltalk blocks are even
easier to manipulate than the lambda expressions of Lisp. In effect, a to: by: do:
message turns iteration“inside out,”making the body of the loop a simple message
argument that can be executed (by sending it a value message) from within the
body of the to: by: do: method. Smalltalk programmers can define similar meth-EXAMPLE 9.70

Defining control
abstractions

ods for other container classes, obtaining all the power of iterators (Section 6.5.3)
and much of the power of call_with_current_continuation (Section 8.5.3):

myTree inorderDo: [:node | whatever ] �

It is worth noting that the uniform object model of computation in Smalltalk
does not necessarily imply a uniform implementation. Just as Clu implemen-
tations implement built-in immutable objects as values, despite their reference
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semantics (Section 6.1.2), a Smalltalk implementation is likely to use the usual
machine instructions for computer arithmetic, rather than actually sending mes-
sages to integers. In a similar vein, the most common control-flow constructs
(ifTrue: ifFalse:, to: by: do:, whileTrue:, etc.) are likely to be recognized
by a Smalltalk interpreter, and implemented with special, faster code.

We end this subsection by observing that recursion works at least as well in
Smalltalk as it does in other imperative languages.

The following is a recursive implementation of Euclid’s algorithm:EXAMPLE 9.71
Recursion in Smalltalk

gcd: other "other is a formal parameter"
(self = other)

ifTrue: [↑ self]. "end condition"
(self < other)

ifTrue: [↑ self gcd: (other - self)] "recurse"
ifFalse: [↑ other gcd: (self - other)] "recurse"

The up-arrow (↑) symbol is comparable to the return of C or Algol 68. The
keyword self is comparable to this in C++. We have shown the code in mixed
fonts, much as it would appear in a Smalltalk browser. The header of the method
is identified by boldface type. �

3CHECK YOUR UNDERSTANDING

50. Name the three projects at Xerox PARC in the 1970s that pioneered modern
GUI-based personal computers.

51. Explain the concept of a message in Smalltalk.

52. How does Smalltalk indicate multiple message arguments?

53. What is a block in Smalltalk? What mechanism does it resemble in Lisp?

54. Give three examples of how Smalltalk models control flow as message evalu-
ation.

55. Explain how type checking works in Smalltalk.
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9.8 Exercises

9.22 Suppose that class D inherits from classes A, B, and C, none of which share
any common ancestor. Show how the data members and vtable(s) of D might
be laid out in memory. Also show how to convert a reference to a D object
into a reference to an A, B, or C object.

9.23 Consider the person_interface and list_node_interface classes
described in Example 9.55. If student is derived from person_
interface and list_node_interface, explain what happens in the fol-
lowing method call:

student s;
person *p = &s;
...
p.debug_print();

You may wish to use a diagram of the representation of a student object to
illustrate the method lookups that occur and the views that are computed.
You may assume an implementation akin to that of Figure 9.8, without
shared inheritance.

9.24 Given the inheritance tree of Example 9.56, show a representation for
objects of class student_prof. You may want to consult Figures 9.7,

9.8, and 9.9.

9.25 Given the memory layout of Figure 9.7 and the following declarations:

student& sr;
gp_list_node& nr;

show the code that must be generated for the assignment
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nr = sr;

(Pitfall: Be sure to consider null pointers.)

9.26 Consider the following code, written in a language like Java, with mix-in
inheritance:

class A {
private int a;
...

}
class B extends A implements Runnable {

private int b;
...

}
...
Runnable r = new B();

(a) Draw a diagram of the implementation of a B object, showing fields
(data members) and vtable(s).

(b) Show (in pseudo-assembly language) the calling sequence for r.run()
(caller side only). You may assume that r has been loaded into register
r1, and that run is a method defined by the Runnable interface. You
may use as many registers as you need. You need not preserve r1. You
may assume that the this parameter is to be passed in register r3.

9.27 Standard C++ provides a “pointer-to-member” mechanism for classes:

class C {
public:

int a;
int b;

} c;
int C::*pm = &C::a;

// pm points to member a of an (arbitrary) C object
...
C* p = &c;
p->*pm = 3; // assign 3 into c.a

Pointers to members are also permitted for subroutine members (methods),
including virtual methods. How would you implement pointers to virtual
methods in the presence of C++-style multiple inheritance?

9.28 As an alternative to using 〈method address, this correction〉 pairs in the
vtable entries of a language with multiple inheritance, we could leave the
entries as simple pointers, but make them point to code that updates this
in-line, and then jumps to the beginning of the appropriate method. Show
the sequence of instructions executed under this scheme. What factors will
influence whether it runs faster or slower than the sequence shown in
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Example 9.53? Which scheme will use less space? (Remember to count
both code and data structure size, and consider which instructions must be
replicated at every call site.)

Pursuing the replacement of data structures with executable code even
further, consider an implementation in which the vtable itself consists of
executable code. Show what this code would look like and, again, discuss the
implications for time and space overhead.

9.29 In Eiffel, shared inheritance is the default rather than the exception. Only
renamed features are replicated. As a result, it is not possible to tell when
looking at a class whether its members will be inherited replicated or shared
by derived classes. Describe a uniform mechanism for looking up members
inherited from base classes that will work whether they are replicated or
shared. (Hint: Consider the use of dope vectors for records containing arrays
of dynamic shape, as described in Section 7.4.2. For further details, consult
the compiler text of Wilhelm and Maurer [WM95, Sec. 5.3].)

9.30 In Figure 9.9, consider calls to virtual methods declared in A, but called
through a B, C, or D object view. We could avoid one level of indirection by
appending a copy of the A part of the vtable to the D/B and C parts of the
vtable (with suitably adjusted this corrections). Give calling sequences for
this alternative implementation. In the worst case, how much larger may the
vtable be for a class with n ancestors?

9.31 In Ruby, an interface (mix-in) can provide not only method signatures
(names and parameter lists), but also method code. (It can’t provide data
members; that would be multiple inheritance.) Would this feature make
sense in Java? Explain.

9.32 Consider the Smalltalk implementation of Euclid’s algorithm, presented
at the end of Section 9.6.1. Trace the messages involved in evaluating
4 gcd: 6.
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9.9 Explorations

9.38 Figure out how multiple inheritance is implemented in your local C++
compiler. How closely does it follow the strategy of Sections 9.5.2 and

9.5.3? What rationale do you see for any differences?

9.39 Explore the implementation of mix-in inheritance in a just-in-time (native
code) Java compiler. Does it follow the strategy of Section 9.5.4? How
efficient is it?

9.40 Learn how multiple inheritance is implemented in Perl and Python (you
might begin by reading Section 13.4.4). Describe the differences with respect
to Sections 9.5.2 and 9.5.3. Discuss the advantages and drawbacks of
dynamic typing in object-oriented languages.
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10.6 Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every elementEXAMPLE 10.44
Functions as mappings in one set (the domain) with (at most) one element in another set (the range). In

conventional notation, we indicate the domain and range by writing

sqrt : R −→ R
We can of course, have functions of more than one variable—that is, functions
whose domains are Cartesian products:

plus : [R × R] −→ R �

If a function provides a mapping for every element of the domain, the function
is said to be total. Otherwise, it is said to be partial. Our sqrt function is partial: it
does not provide a mapping for negative numbers. We could change our definition
to make the domain of the function the non-negative numbers, but such changes
are often inconvenient, or even impossible: inconvenient because we should like
all mathematical functions to operate on R; impossible because we may not
know which elements of the domain have mappings and which do not. Consider
for example the function f that maps every natural number a to the smallest
natural number b such that the digits of the decimal representation of a appear
b digits to the right of the decimal point in the decimal expansion of π. Clearly
f (59) = 4, because π = 3.14159 . . . . But what about f (428945028), or in general
f (n) for arbitrary n? Absent results from number theory, it is not at all clear how
to characterize the values at which f is defined. In such a case a partial function is
essential.

It is often useful to characterize functions as sets or, more precisely, as subsetsEXAMPLE 10.45
Functions as sets of the Cartesian product of the domain and the range:

sqrt ⊂ [R × R]

plus ⊂ [R × R × R]
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We can specify which subset using traditional set notation:

sqrt ≡ {
(x, y) ∈ R × R | y > 0 ∧ x = y2}

plus ≡ {(x, y, z) ∈ R × R × R | z = x + y}

Note that this sort of definition tells us what the value of a function like sqrt is,
but it does not tell us how to compute it; more on this distinction below. �

One of the nice things about the set-based characterization is that it makes it
clear that a function is an ordinary mathematical object. We know that a functionEXAMPLE 10.46

Functions as powerset
elements

from A to B is a subset of A × B. This means that it is an element of the powerset
of A × B—the set of all subsets of A × B, denoted 2A×B :

sqrt ∈ 2R×R

Similarly
plus ∈ 2R×R×R

Note the overloading of notation here. The powerset 2A should not be confused
with exponentiation, though it is true that for a finite set A the number of elements
in the powerset of A is 2n , where n = |A|, the cardinality of A. �

Because functions are single-valued, we know that they constitute only some of
the elements of 2A×B . Specifically, they constitute all and only those sets of pairs
in which the first component of each pair is unique. We call the set of such setsEXAMPLE 10.47

Function spaces the function space of A into B, denoted A → B. Note that (A → B) ⊂ 2A×B . In
our examples:

sqrt ∈ [R → R]

plus ∈ [(R × R) → R]

Now that functions are elements of sets, we can easily build higher-orderEXAMPLE 10.48
Higher-order functions as
sets

functions:

compose ≡ {(f , g , h) | ∀x ∈ R, h(x) = f (g (x))}

What are the domain and range of compose? We know that f , g , and h are elements
of R → R. Thus

compose ∈ [(R → R) × (R → R)] → (R → R)

Note the similarity to the notation employed by the ML type inference system
(Section 7.2.4). �

Using the notion of “currying” from Section 10.5, we note that there is an
alternative characterization for functions like plus. Rather than a function fromEXAMPLE 10.49

Curried functions as sets pairs of reals to reals, we can capture it as a function from reals to functions from
reals to reals:

curried plus ∈ R → (R → R) �
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We shall have more to say about currying in Section 10.6.3.

10.6.1 Lambda Calculus

As we suggested in the main text, one of the limitations of the function-as-
set notation is that it is nonconstructive: it doesn’t tell us how to compute the
value of a function at a given point (i.e., on a given input). Church designed
the lambda calculus to address this limitation. In its pure form, lambda cal-
culus represents everything as a function. The natural numbers, for exam-
ple, can be represented by a distinguished zero function (commonly the iden-
tity function) and a successor function. (One common formulation uses a
select second function that takes two arguments and returns the second of
them. The successor function is then defined in such a way that the number n
ends up being represented by a function that, when applied to select second
n times, returns the identity function [Mic89, Sec. 3.5; Sta95, Sec. 7.6]; see
Exercise 10.21.) While of theoretical importance, this formulation of arith-
metic is highly cumbersome. We will therefore take ordinary arithmetic as a given
in the remainder of this subsection. (And of course all practical functional pro-
gramming languages provide built-in support for both integer and floating-point
arithmetic.)

A lambda expression can be defined recursively as (1) a name; (2) a lambda
abstraction consisting of the letter λ, a name, a dot, and a lambda expression;
(3) a function application consisting of two adjacent lambda expressions; or (4) a
parenthesized lambda expression. To accommodate arithmetic, we will extend this
definition to allow numeric literals.

When two expressions appear adjacent to one another, the first is interpretedEXAMPLE 10.50
Juxtaposition as function
application

as a function to be applied to the second:

sqrt n

Most authors assume that application associates left-to-right (so f A B is inter-
preted as (f A) B, rather than f (A B)), and that application has higher precedence
than abstraction (so λx.A B is interpreted as λx.(A B), rather than (λx.A) B). ML
adopts these rules. �

Parentheses are used as necessary to override default groupings. Specifically, ifEXAMPLE 10.51
Lambda calculus syntax we distinguish between lambda expressions that are used as functions and those

that are used as arguments, then the following unambiguous CFG can be used to
generate lambda expressions with a minimal number of parentheses:

expr −→ name | number | λ name . expr | func arg

func −→ name | ( λ name . expr ) | func arg

arg −→ name | number | ( λ name . expr ) | ( func arg )

In words: we use parentheses to surround an abstraction that is used as either
a function or an argument, and around an application that is used as an
argument. �

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch10-P374514 [12:03 2009/2/25] SCOTT: Programming Language Pragmatics Page: 240 1–867

240 Chapter 10 Functional Languages

The letter λ introduces the lambda calculus equivalent of a formal parameter.EXAMPLE 10.52
Binding parameters with λ The following lambda expression denotes a function that returns the square of its

argument:

λx.times x x

The name (variable) introduced by a λ is said to be bound within the expression
following the dot. In programming language terms, this expression is the variable’s
scope. A variable that is not bound is said to be free. �

As in a lexically scoped programming language, a free variable needs to
be defined in some surrounding scope. Consider, for example, the expressionEXAMPLE 10.53

Free variables λx.λy.times x y . In the inner expression (λy.times x y), y is bound but x is free.
There are no restrictions on the use of a bound variable: it can play the role of a
function, an argument, or both. Higher-order functions are therefore completely
natural. �

If we wish to refer to them later, we can give expressions names:EXAMPLE 10.54
Naming functions for
future reference square ≡ λx.times x x

identity ≡ λx.x

const7 ≡ λx.7

hypot ≡ λx.λy.sqrt (plus (square x) (square y))

Here ≡ is a metasymbol meaning, roughly, “is an abbreviation for.” �
To compute with the lambda calculus, we need rules to evaluate expressions. ItEXAMPLE 10.55

Evaluation rules turns out that three rules suffice:

beta reduction: For any lambda abstraction λx.E and any expression M , we say

(λx.E) M →β E[M \x]

where E[M\x] denotes the expression E with all free occurrences of x replaced
by M . Beta reduction is not permitted if any free variables in M would become
bound in E[M \x].

alpha conversion: For any lambda abstraction λx.E and any variable y that has
no free occurrences in E , we say

λx.E →α λy.E[y\x]

eta reduction: A rule to eliminate “surplus” lambda abstractions. For any lambda
abstraction λx.E , where E is of the form F x , and x has no free occurrences in
F , we say

λx.F x →η F �
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(λf .λg .λh.fg (h h))(λx.λy.x)h(λx.x x)

→β (λg .λh.(λx.λy.x)g (h h))h(λx.x x) (1)

→α (λg .λk.(λx.λy.x)g (k k))h(λx.x x) (2)

→β (λk.(λx.λy.x)h(k k))(λx.x x) (3)

→β (λx.λy.x)h((λx.x x) (λx.x x)) (4)

→β (λy.h)((λx.x x) (λx.x x)) (5)

→β h (6)

Figure 10.3 Reduction of a lambda expression. The top line consists of a function applied to
three arguments. The first argument (underlined) is the “select first” function, which takes two
arguments and returns the first. The second argument is the symbol h, which must be either a
constant or a variable bound in some enclosing scope (not shown). The third argument is an
“apply to self ” function that takes one argument and applies it to itself. The particular series of
reductions shown occurs in normal order. It terminates with a simplest (normal) form of simply h.

To accommodate arithmetic we will also allow an expression of the form op xEXAMPLE 10.56
Delta reduction for
arithmetic

y , where x and y are numeric literals and op is one of a small set of standard
functions, to be replaced by its arithmetic value. This replacement is called delta
reduction. In our examples we will need only the functions plus, minus, and
times:

plus 2 3 →δ 5

minus 5 2 →δ 3

times 2 3 →δ 6 �

Beta reduction resembles the use of call by name parameters (Section 8.3.1).
Unlike Algol 60, however, the lambda calculus provides no way for an argument to
carry its referencing environment with it; hence the requirement that an argument
not move a variable into a scope in which its name has a different meaning. Alpha
conversion serves to change names to make beta reduction possible. Eta reduction
is comparatively less important. If square is defined as above, eta reduction allowsEXAMPLE 10.57

Eta reduction us to say that

λx.square x →η square

In English, square is a function that squares its argument; λx.square x is a func-
tion of x that squares x . The latter reminds us explicitly that it’s a function (i.e.,
that it takes an argument), but the former is a little less messy looking. �

Through repeated application of beta reduction and alpha conversion (and
possibly eta reduction), we can attempt to reduce a lambda expression to its sim-
plest possible form—a form in which no further beta reductions are possible. AnEXAMPLE 10.58

Reduction to simplest form example can be found in Figure 10.3. In line (2) of this derivation we have to
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employ an alpha conversion because the argument that we need to substitute for
g contains a free variable (h) that is bound within g ’s scope. If we were to make
the substitution of line (3) without first having renamed the bound h (as k), then
the free h would have been captured, erroneously changing the meaning of the
expression.

In line (5) of the derivation, we had a choice as to which subexpression to
reduce. At that point the expression as a whole consisted of a function application
in which the argument was itself a function application. We chose to substi-
tute the main argument ((λx.x x) (λx.x x)), unevaluated, into the body of the
main lambda abstraction. This choice is known as normal-order reduction, and
corresponds to normal-order evaluation of arguments in programming languages,
as discussed in Sections 6.6.2 and 10.4. In general, whenever more than one beta
reduction could be made, normal order chooses the one whose λ is left-most in
the overall expression. This strategy substitutes arguments into functions before
reducing them. The principal alternative, applicative-order reduction, reduces
both the function part and the argument part of every function application to
the simplest possible form before substituting the latter into the former. �

Church and Rosser showed in 1936 that simplest forms are unique: any series
of reductions that terminates in a nonreducible expression will produce the same
result. Not all reductions terminate, however. In particular, there are expres-
sions for which no series of reductions will terminate, and there are others in
which normal-order reduction will terminate but applicative-order reduction will
not. The example expression of Figure 10.3 leads to an infinite “computation”EXAMPLE 10.59

Nonterminating
applicative-order reduction

under applicative-order reduction. To see this, consider the expression at line
(5). This line consists of the constant function (λy.h) applied to the argument
(λx.x x) (λx.x x). If we attempt to evaluate the argument before substituting it
into the function, we run through the following steps:

(λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

→β (λx.x x) (λx.x x)

. . . �

In addition to showing the uniqueness of simplest (normal) forms, Church and
Rosser showed that if any evaluation order will terminate, normal order will. This
pair of results is known as the Church-Rosser theorem.

10.6.2 Control Flow

We noted at the beginning of the previous subsection that arithmetic can be
modeled in the lambda calculus using a distinguished zero function (commonly
the identity) and a successor function. What about control-flow constructs—
selection and recursion in particular?
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The select first function, λx.λy.x , is commonly used to represent the BooleanEXAMPLE 10.60
Booleans and conditionals value true. The select second function, λx.λy.y , is commonly used to represent

the Boolean value false. Let us denote these by T and F . The nice thing about
these definitions is that they allow us to define an if function very easily:

if ≡ λc .λt .λe.c t e

Consider:

if T 3 4 ≡ (λc .λt .λe.c t e) (λx.λy.x) 3 4

→∗
β (λx.λy.x) 3 4

→∗
β 3

if F 3 4 ≡ (λc .λt .λe.c t e) (λx.λy.y) 3 4

→∗
β (λx.λy.y) 3 4

→∗
β 4 �

Functions like equal and greater than can be defined to take numeric values as
arguments, returning T or F .

Recursion is a little tricky. An equation likeEXAMPLE 10.61
Beta abstraction for
recursion gcd ≡ λa.λb.(if (equal a b) a

(if (greater than a b) (gcd (minus a b) b) (gcd (Minus b a) a)))

is not really a definition at all, because gcd appears on both sides. Our previ-
ous definitions (T , F , if) were simply shorthand: we could substitute them out
to obtain a pure lambda expression. If we try that with gcd, the “definition”
just gets bigger, with new occurrences of the gcd name. To obtain a real defini-
tion, we first rewrite our equation using beta abstraction (the opposite of beta
reduction):

gcd ≡ (λg .λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a)))) gcd

Now our equation has the form

gcd ≡ f gcd

where f is the perfectly well-defined (nonrecursive) lambda expression

λg .λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a)))

Clearly gcd is a fixed point of f . �
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As it turns out, for any function f given by a lambda expression, we can findEXAMPLE 10.62
The fixed-point
combinatorY

the least fixed point of f , if there is one, by applying the fixed-point combinator

λh.(λx.h(xx)) (λx.h(xx))

commonly denoted Y. Y has the property that for any lambda expression f , if the
normal-order evaluation of Yf terminates, then f (Yf ) and Yf will reduce to
the same simplest form (see Exercise 10.9). In the case of our gcd function, we
have

gcd ≡ (λh.(λx.h(x x)) (λx.h(x x)))

(λg .λa.λb.(if (equal a b) a

(if (greater than a b) (g (minus a b) b) (g (minus b a) a))))

Figure 10.4 traces the evaluation of gcd 4 2. Given the existence of the
Y combinator, most authors permit recursive “definitions” of functions, for
convenience. �

10.6.3 Structures

Just as we can use functions to build numbers and truth values, we can also use
them to encapsulate values in structures. Using Scheme terminology for the sakeEXAMPLE 10.63

Lambda calculus list
operators

of clarity, we can define simple list-processing functions as follows:

cons ≡ λa.λd.λx.x a d

car ≡ λl.l select first

cdr ≡ λl.l select second

nil ≡ λx.T

null? ≡ λl.l(λx.λy.F)

where select first and select second are the functions λx.λy.x and λx.λy.y ,
respectively—functions we also use to represent true and false. �

Using these definitions we can see thatEXAMPLE 10.64
List operator identities

car(cons A B) ≡ (λl.l select first) (cons A B)

→β (cons A B) select first

≡ ((λa.λd.λx.x a d) A B) select first

→∗
β (λx.x A B) select first

→β select first A B

≡ (λx.λy.x) A B

→∗
β A
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gcd 2 4 ≡ Yf 2 4

≡ ((λh.(λx.h(x x)) (λx.h(x x)))f ) 2 4

→β ((λx.f (x x)) (λx.f (x x))) 2 4

≡ (k k) 2 4, where k ≡ λx.f (x x)

→β (f (k k)) 2 4

≡ ((λg .λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a)))) (k k)) 2 4

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) 2 4

→∗
β if (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λc .λt .λe.c t e) (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→δ F 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λx.λy.y) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2)

→ . . .

→ (k k) (− 4 2) 2

≡ ((λx.f (x x))k) (− 4 2) 2

→β (f (k k)) (− 4 2) 2

≡ ((λg .λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a)))) (k k)) (− 4 2) 2

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) (− 4 2) 2

→∗
β if (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λc .λt .λe.c t e)

(= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ (= 2 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ T (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λx.λy.x) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (− 4 2)

→δ 2

Figure 10.4 Evaluation of a recursive lambda expression. As explained in the body of the text, gcd is defined to be the fixed-
point combinator Y applied to a beta abstraction f of the standard recursive definition for greatest common divisor. Specifically,
Y is λh.(λx.h(x x)) (λx.h(x x)) and f is λg .λa.λb.(if (= a b) a (if (> a b) (g (− a b) b) (g (− b a) a))). For brevity we have
used =, >, and − in place of equal, greater than, and minus. We have performed the evaluation in normal order.
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cdr(cons A B) ≡ (λl.l select second) (cons A B)

→β (cons A B) select second

≡ ((λa.λd.λx.x a d) A B) select second

→∗
β (λx.x A B) select second

→β select second A B

≡ (λx.λy.y) A B

→∗
β B

null? nil ≡ (λl.l (λx.λy.select second)) nil

→β nil (λx.λy.select second)

≡ (λx.select first) (λx.λy.select second)

→β select first

≡ T

null? (cons A B) ≡ (λl.l (λx.λy.select second)) (cons A B)

→β (cons A B) (λx.λy.select second)

≡ ((λa.λd.λx.x a d) A B) (λx.λy.select second)

→∗
β (λx.x A B) (λx.λy.select second)

→β (λx.λy.select second) A B

→∗
β select second

≡ F �

Because every lambda abstraction has a single argument, lambda expressions
are naturally curried. We generally obtain the effect of a multiargument functionEXAMPLE 10.65

Nesting of lambda
expressions

by nesting lambda abstractions:

compose ≡ λf .λg .λx.f (g x)

which groups as

λf .(λg .(λx.(f (g x))))

We commonly think of compose as a function that takes two functions as argu-
ments and returns a third function as its result. We could just as easily, however,
think of compose as a function of three arguments: the f , g , and x above. The
official story, or course, is that compose is a function of one argument that eval-
uates to a function of one argument that in turn evaluates to a function of one
argument. �

If desired, we can use our structure-building functions to define a noncurriedEXAMPLE 10.66
Paired arguments and
currying

version of compose whose (single) argument is a pair:

paired compose ≡ λp.λx.(car p) ((cdr p) x)
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If we consider the pairing of arguments as a general technique, we can write a curry
function that reproduces the single-argument version, just as we did in Scheme in
Section 10.5:

curry ≡ λf .λa.λb.f (cons a b) �

3CHECK YOUR UNDERSTANDING

22. What is the difference between partial and total functions? Why is the differ-
ence important?

23. What is meant by the function space A → B ?

24. Define beta reduction, alpha conversion, eta reduction, and delta reduction.

25. How does beta reduction in lambda calculus differ from lazy evaluation of
arguments in a nonstrict programming language like Haskell?

26. Explain how lambda expressions can be used to represent Boolean values and
control flow.

27. What is beta abstraction?

28. What is the Y combinator? What useful property does it possess?

29. Explain how lambda expressions can be used to represent structured values
such as lists.

30. State the Church-Rosser theorem.
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10.9 Exercises

10.18 In Figure 10.4 we evaluated our expression in normal order. Did we
really have any choice? What would happen if we tried to use applicative
order?

10.19 Prove that for any lambda expression f , if the normal-order evaluation
of Yf terminates, where Y is the fixed-point combinator λh.(λx.h(x x))
(λx.h(x x)), then f (Yf ) and Yf will reduce to the same simplest form.

10.20 Given the definition of structures (lists) on page 244, what happens if
we apply car or cdr to nil? How might you introduce the notion of “type
error” into lambda calculus?

10.21 Let
zero ≡ λx.x

succ ≡ λn.(λs.(s select second) n)

where select second ≡ λx.λy.y . Now let

one ≡ succ zero

two ≡ succ one

Show that

one select second = zero

two select second select second = zero

In general, show that

succ
n

zero select second
n = zero

Use this result to define a predecessor function pred. You may ignore the
issue of the predecessor of zero.
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Note that our definitions of T and F allow us to check whether a number
is equal to zero:

iszero ≡ λn.(n select first)

Using succ, pred, iszero, and if, show how to define plus and times recur-
sively. These definitions could of course be made nonrecursive by means
of beta abstraction and Y.
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10.10 Explorations

10.28 Learn about the typed lambda calculus. What properties does it have that
standard lambda calculus does not? What restrictions does it place on per-
missible expressions? Possible places to start include Cardelli and Wegner’s
classic survey [CW85] or the newer text by Pierce [Pie02].

10.29 Learn more about fixed points. We mentioned these when presenting the Y
combinator in Section 10.6.2. They also arise in the denotational defini-
tion of loop constructs, in metacircular interpreters (Example 10.20), and
in the data flow analysis used by optimizing compilers (Section 16.4.2).
What do these subjects have in common? Are there important differences
as well?

10.30 Explore the connection between lexical scoping in Scheme and the notion
of free and bound variables in lambda calculus. How closely are these
related? Why does lambda calculus require alpha conversion but Scheme
does not? Is there any analogy in lambda calculus to the dynamic scoping
of early dialects of Lisp?
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11.3 Theoretical Foundations

In mathematical logic, a predicate is a function that maps constants (atoms) or
variables to the values true and false. Predicate calculus provides a notation and
inference rules for constructing and reasoning about propositions (statements)
composed of predicate applications, operators, and the quantifiers ∀ and ∃.1 Oper-
ators include and (∧), or (∨), not (¬), implication (→), and equivalence (↔).
Quantifiers are used to introduce bound variables in an appended proposition,
much as λ introduces variables in the lambda calculus. The universal quantifier,∀,
indicates that the proposition is true for all values of the variable. The existential
quantifier, ∃, indicates that the proposition is true for at least one value of the
variable. Here are a few examples:EXAMPLE 11.39

Propositions

∀C [rainy(C) ∧ cold(C)→ snowy(C)]

(For all cities C, if C is rainy and C is cold, then C is snowy.)

∀A, ∀B[(∃C [takes(A, C) ∧ takes(B, C)])→ classmates(A, B)]

(For all students A and B, if there exists a class C such that A takes C and B takes
C, then A and B are classmates.)

∀N [(N > 2)→ ¬(∃A, ∃B, ∃C [AN + BN = CN ])]

(This is Fermat’s last theorem.) �

1 Strictly speaking, what we are describing here is the first-order predicate calculus. There exist
higher-order calculi in which predicates can be applied to predicates, not just to atoms and vari-
ables. Prolog allows the user to construct higher-order predicates using call; the formalization
of such predicates is beyond the scope of this book.

Copyright c© 2009 by Elsevier Inc. All rights reserved. 253



CD_Ch11-P374514 [12:06 2009/2/25] SCOTT: Programming Language Pragmatics Page: 254 1–867

254 Chapter 11 Logic Languages

One of the interesting characteristics of predicate calculus is that there are manyEXAMPLE 11.40
Different ways to say things ways to say the same thing. For example,

(P1 → P2) ≡ (¬P1 ∨ P2)

(¬∃X [P(X)]) ≡ (∀X [¬P(X)])

¬(P1 ∧ P2) ≡ (¬P1 ∨ ¬P2)

This flexibility of expression tends to be handy for human beings, but it
can be a nuisance for automatic theorem proving. Propositions are much eas-
ier to manipulate algorithmically if they are placed in some sort of normal
form. One popular candidate is known as clausal form. We consider this form
below. �

11.3.1 Clausal Form

As it turns out, clausal form is very closely related to the structure of Prolog
programs: once we have a proposition in clausal form, it will be relatively easy to
translate it into Prolog. We should note at the outset, however, that the translation
is not perfect: there are aspects of predicate calculus that Prolog cannot capture,
and there are aspects of Prolog (e.g., its imperative and database-manipulating
features) that have no analogues in predicate calculus.

Clocksin and Mellish [CM03, Chap. 10] describe a five-step procedure (based
heavily on an article by Martin Davis [Dav63]) to translate an arbitrary first-order
predicate proposition into clausal form. We trace that procedure here.

In the first step, we eliminate implication and equivalence operators. As aEXAMPLE 11.41
Conversion to clausal form concrete example, the proposition

∀A[¬student(A)→ (¬dorm resident(A) ∧ ¬∃B[takes(A, B) ∧ class(B)])]

would become

∀A[student(A) ∨ (¬dorm resident(A) ∧ ¬∃B[takes(A, B) ∧ class(B)])]

In the second step, we move negation inward, so that the only negated items
are individual terms (predicates applied to arguments):

∀A[student(A) ∨ (¬dorm resident(A) ∧ ∀B[¬(takes(A, B) ∧ class(B))])]

≡ ∀A[student(A) ∨ (¬dorm resident(A) ∧ ∀B[¬takes(A, B) ∨ ¬class(B)])]

In the third step, we use a technique known as Skolemization (due to logician
Thoralf Skolem) to eliminate existential quantifiers. We will consider this tech-
nique further in Section 11.3.3. Our example has no existential quantifiers at
this stage, so we proceed.

In the fourth step, we move all universal quantifiers to the outside of the propo-
sition (in the absence of naming conflicts, this does not change the proposition’s
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meaning). We then adopt the convention that all variables are universally quanti-
fied, and drop the explicit quantifiers:

student(A) ∨ (¬dorm resident(A) ∧ (¬takes(A, B) ∨ ¬class(B)))

Finally, in the fifth step, we use the distributive, associative, and commutative
rules of Boolean algebra to convert the proposition to conjunctive normal form, in
which the operators ∧ and ∨ are nested no more than two levels deep, with ∧ on
the outside and ∨ on the inside:

(student(A) ∨ ¬dorm resident(A)) ∧ (student(A) ∨ ¬takes(A, B) ∨ ¬class(B))

Our proposition is now in clausal form. Specifically, it is in conjunctive normal
form, with negation only of individual terms, with no existential quantifiers, and
with implied universal quantifiers for all variables (i.e., for all names that are
neither constants nor predicates). The clauses are the items at the outer level: the
things that are and-ed together. �

To translate the proposition to Prolog, we convert each logical clause to a PrologEXAMPLE 11.42
Conversion to Prolog fact or rule. Within each clause, we use commutativity to move the negated terms

to the right and the non-negated terms to the left (our example is already in this
form). We then note that we can recast the disjunctions as implications:

(student(A)← ¬(¬dorm resident(A)))

∧ (student(A)← ¬(¬takes(A, B) ∨ ¬class(B)))

≡ (student(A)← dorm resident(A))

∧ (student(A)← (takes(A, B) ∧ class(B)))

These are Horn clauses. The translation to Prolog is trivial:

student(A) :- dorm_resident(A).
student(A) :- takes(A, B), class(B). �

11.3.2 Limitations

We claimed at the beginning of Section 11.1 that Horn clauses could be used
to capture most, though not all, of first-order predicate calculus. So what is it
missing? What can go wrong in the translation? The answer has to do with the
number of non-negated terms in each clause. If a clause has more than one, then if
we attempt to cast it as an implication there will be a disjunction on the left-hand
side of the← symbol, something that isn’t allowed in a Horn clause. Similarly, if
we end up with no non-negated terms, then the result is a headless Horn clause,
something that Prolog allows only as a query, not as an element of the database.

As an example of a disjunctive head, consider the statement “every living thingEXAMPLE 11.43
Disjunctive left-hand side is an animal or a plant.” In clausal form, we can capture this as

animal(X) ∨ plant(X) ∨ ¬living(X)
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or equivalently

animal(X) ∨ plant(X)← living(X)

Because we are restricted to a single term on the left-hand side of a rule, the closest
we can come to this in Prolog is

animal(X) :- living(X), \+(plant(X)).
plant(X) :- living(X), \+(animal(X)).

But this is not the same, because Prolog’s \+ indicates inability to prove, not
falsehood. �

As an example of an empty head, consider Fermat’s last theorem (Exam-EXAMPLE 11.44
Empty left-hand side ple 11.39). Abstracting out the math, we might write

∀N [big(N )→ ¬(∃A, ∃B, ∃C [works(A, B, C , N )])]

which becomes the following in clausal form:

¬big(N ) ∨ ¬works(A, B, C , N )

We can couch this as a Prolog query:

?- big(N), works(A, B, C, N).

(a query that will never terminate), but we cannot express it as a fact or a rule. �
The careful reader may have noticed that facts are entered on the left-hand sideEXAMPLE 11.45

Theorem proving as a
search for contradiction

of an (implied) Prolog :- sign:

rainy(rochester).

while queries are entered on the right:

?- rainy(rochester).

The former means
rainy(rochester)← true

The latter means
false ← rainy(rochester)

If we apply resolution to these two propositions, we end up with the contradiction

false ← true

This observation suggests a mechanism for automated theorem proving: if we are
given a collection of axioms and we want to prove a theorem, we temporarily add
the negation of the theorem to the database and then attempt, through a series of
resolution operations, to obtain a contradiction. �
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11.3.3 Skolemization

In Example 11.41 we were able to translate a proposition from predicate calculus
into clausal form without worrying about existential quantifiers. But what aboutEXAMPLE 11.46

Skolem constants a statement like this one:

∃X [takes(X , cs254) ∧ class year(X , 2)]

(There is at least one sophomore in cs254.) To get rid of the existential quantifier,
we can introduce a Skolem constant x:

takes(x, cs254), class year(x, 2)

The mathematical justification for this change is based on something called the
axiom of choice; intuitively, we say that if there exists an X that makes the statement
true, then we can simply pick one, name it x, and proceed. (If there does not exist
an X that makes the statement true, then we can choose some arbitrary x, and
the statement will still be false.) It is worth noting that Skolem constants are not
necessarily distinct; it is quite possible, for example, for x to name the same student
as some other constant y that represents a sophomore in his201. �

Sometimes we can replace an existentially quantified variable with an arbitrary
constant x. Often, however, we are constrained by some surrounding universal
quantifier. Consider the following example:EXAMPLE 11.47

Skolem functions

∀X [¬dorm resident(X) ∨ ∃A[campus address of(X , A)]]

(Every dorm resident has a campus address.) To get rid of the existential quantifier,
we must choose an address for X . Since we don’t know who X is (this is a general
statement about all dorm residents), we must choose an address that depends
on X :

∀X [¬dorm resident(X) ∨ campus address of(X , f(X))]

Here f is a Skolem function. If we used a simple Skolem constant instead, we’d be
saying that there exists some single address shared by all dorm residents. �

Whether Skolemization results in a clausal form that we can translate into
Prolog depends on whether we need to know what the constant is. If we are usingEXAMPLE 11.48

Limitations of
Skolemization

predicates takes and class_year, and we wish to assert as a fact that there is a
sophomore in cs254, we can write:

takes(the_distinguished_sophomore_in_254, cs254).
class_year(the_distinguished_sophomore_in_254, 2).

Similarly, we can assert that every dorm resident has a campus address by writing:

campus_address_of(X, the_dorm_address_of(X)) :- dorm_resident(X).
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Now we can search for classes with sophomores in them:

sophomore_class(C) :- takes(X, C), class_year(X, 2).
?- sophomore_class(C).
C = cs254

and we can search for people with campus addresses:

has_campus_address(X) :- campus_address_of(X, Y).
dorm_resident(li_ying).
?- has_campus_address(X).
X = li_ying

Unfortunately, we won’t be able to identify a sophomore in cs254 by name, nor
will we be able to identify the address of li_ying. �

3CHECK YOUR UNDERSTANDING

15. Define the notion of clausal form in predicate calculus.

16. Outline the procedure to convert an arbitrary predicate calculus statement
into clausal form.

17. Characterize the statements in clausal form that cannot be captured in Prolog.

18. What is Skolemization? Explain the difference between Skolem constants and
Skolem functions.

19. Under what circumstances may Skolemization fail to produce a clausal form
that can be captured usefully in Prolog?
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11.6 Exercises

11.18 Restate the following Prolog rule in predicate calculus, using appropriate
quantifiers:

sibling(X, Y) :- mother(M, X), mother(M, Y),
father(F, X), father(F, Y).

11.19 Consider the following statement in predicate calculus:

empty class(C)← ¬∃X [takes(X , C)]

(a) Translate this statement to clausal form.

(b) Can you translate the statement into Prolog? Does it make a difference
whether you’re allowed to use \+?

(c) How about the following:

takes everything(X)← ∀C [takes(X , C)]

Can this be expressed in Prolog?

11.20 Consider the seemingly contradictory statement

¬foo(X) → foo(X)

Convert this statement to clausal form, and then translate into Prolog.
Explain what will happen if you ask

?- foo(bar).
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Now consider the straightforward translation, without the intermediate
conversion to clausal form:

foo(X) :- \+(foo(X)).

Now explain what will happen if you ask

?- foo(bar).

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch11-P374514 [12:06 2009/2/25] SCOTT: Programming Language Pragmatics Page: 261 1–867

11Logic Languages

11.7 Explorations

11.26 In Section 11.3.1 we translated propositions into conjunctive normal
form: the AND of a collection of ORs. One can also translate proposi-
tions into disjunctive normal form: the OR of a collection of ANDs. Does
disjunctive normal form have any useful properties? What other normal
forms exist in mathematical logic? What are their uses?

11.27 With all the different ways to express the same proposition in predicate
calculus, is there any useful notion of a “simplest” form? Is it possible,
for example, to find, among all equivalent propositions, the one with the
smallest number of symbols? How difficult is this task?

11.28 Satisfiability is the canonical NP-complete problem. Given a formula in
propositional logic (no predicates or quantifiers), it asks whether there
exists an assignment of truth values to variables that makes the overall
proposition true. Can we use Prolog to solve the satisfiability problem? If
not, why not? If so, given that it has to take exponential time, how can we
hope to solve problems full of predicates and quantifiers quickly?

11.29 Suppose we had a form of “constructive negation” in Prolog that allowed us
to capture information of the form ∀X [¬P(X)]. What might such a feature
look like? What would be its implications for the Prolog search strategy?
What portions of predicate calculus (if any) would still be inexpressible?
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12.5 Message Passing

While shared-memory concurrent programming is common on small-scale mul-
tiprocessors, most concurrent programming on large multicomputers and net-
works is currently based on messages. In Sections 12.5.1 through 12.5.3 we
consider three principal issues in message-based computing: naming, sending,
and receiving. In Section 12.5.4 we look more closely at one particular com-
bination of send and receive semantics, namely remote procedure call. Most of
our examples will be drawn from the Ada, Erlang, Occam, and SR programming
languages, the Java network library, and the MPI library package.

12.5.1 Naming Communication Partners

To send or receive a message, one must generally specify where to send it to, orEXAMPLE 12.50
Naming processes, ports,
and entries

where to receive it from: communication partners need names for (or references
to) one another. Names may refer directly to a thread or process. Alternatively,
they may refer to an entry or port of a module, or to some sort of socket or channel
abstraction. We illustrate these options in Figure 12.20. �

The first naming option—addressing messages to processes—appears in
Hoare’s original CSP (Communicating Sequential Processes) [Hoa78], an influen-
tial proposal for simple communication mechanisms. It also appears in Erlang and
in MPI. Each MPI process has a unique id (an integer), and each send or receive
operation specifies the id of the communication partner. MPI implementations
are required to be reentrant; a process can safely be divided into multiple threads,
each of which can send or receive messages on the process’s behalf.

The second naming option—addressing messages to ports—appears in Ada.
An Ada entry call of the form t.foo(args) sends a message to the entry namedEXAMPLE 12.51

Entry calls in Ada foo in task (thread) t (t may be either a task name or the name of a variable whose
value is a pointer to a task). As we saw in Section 12.2.3, an Ada task resembles
a module; its entries resemble subroutine headers nested directly inside the task.
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(a)

(b) (c)

Figure 12.20 Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver.The port may be called
an entry or an operation. The receiver is typically a module with one or more threads inside. In
(c), senders and receivers both name an independent channel abstraction, which may be called a
connection or a mailbox.

A task receives a message that has been sent to one of its entries by executing
an accept statement (to be discussed in Section 12.5.3). Every entry belongs
to exactly one task; all messages sent to the same entry must be received by that
one task. �

The third naming option—addressing messages to channels—appears inEXAMPLE 12.52
Channels in Occam Occam. (Though based on CSP, Occam differs from it in several concrete ways,

including the use of channels.) Channel declarations are supported with the built-
in CHAN and CALL types:

CHAN OF BYTE stream :
CALL lookup(RESULT [36]BYTE name, VAL INT ssn) :

These declarations specify a one-directional channel named stream that carries
messages of type BYTE and a two-directional channel named lookup that carries
requests containing an integer named ssn and replies containing a 36-byte string
named name. CALL channels are syntactic sugar for a pair of CHAN channels, one
in each direction. To send a message on a CHAN channel, an Occam thread uses a
special “exclamation point” operator:

stream ! ’x’

To send a message (and receive a reply) on a CALL channel, a thread uses syntax
that resembles a subroutine call:

lookup(name, 123456789) �

We noted in our coverage of parallel loops (page 591) that language rules in
Occam prohibit concurrent threads from making conflicting accesses to the same
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variable. For channels, the basic rule is that exactly one thread may send to a
channel, and exactly one may receive from it. (For CALL channels, exactly one
thread may send requests, and exactly one may accept them and send replies.)
These rules are relaxed in Occam 3 to permit SHARED channels, which provide a
mutual exclusion mechanism. Only one thread may accept requests over a SHARED
CALL channel, but multiple threads may send them. In a similar vein, multiple
threads may CLAIM a set of CHAN channels for exclusive use in a critical section,
but only one thread may GRANT those channels; it serves as the other party for
every message sent or received.

In SR and the Internet libraries of Java we see combinations of our naming
options. An SR program executes on a collection of one or more virtual machines,1

each of which has a separate address space, and may be implemented on a separate
node of a network. Within a virtual machine, messages are sent to (and received
from) a channel-like abstraction called an op. Unlike an Occam channel, an SR
op has no restrictions on the number or identity of sending and receiving threads:
any thread that can see an op under the usual lexical scoping rules can send
to it or receive from it. A receive operation must name its op explicitly; a
send operation may do so also, or it may use a capability variable. A capability
in SR is like a pointer to an op, except that pointers work only within a given
virtual machine, while capabilities work across the boundaries between them.
Aside from start-up parameters and possibly I/O, capabilities provide the only
means of communicating among separate virtual machines. At the outer-most
level, then, an SR program can be seen as having a port-like naming scheme:
messages are sent (via capabilities) to ops of virtual machines, within which they
may potentially be received by any local thread.

Internet Messaging

Java’s standard java.net library provides two styles of message passing, corre-
sponding to the UDP and TCP Internet protocols. UDP is the simpler of the
two. It is a datagram protocol, meaning that each message is sent to its destina-
tion independently and unreliably. The network software will attempt to deliver
it, but makes no guarantees. Moreover two messages sent to the same destina-
tion (assuming they both arrive) may arrive in either order. UDP messages use
port-based naming (Figure 12.20b): each message is sent to a specific Internet
address and port number.2 The TCP protocol also uses port-based naming, but
only for the purpose of establishing connections (Figure 12.20c), which it then

1 These are unrelated to the notion of virtual machine discussed in Section 15.1.

2 Every publicly visible machine on the Internet has its own unique address. Though a transition
to 128-bit addresses has been underway for some time, as of 2008 most addresses are still 32-bit
integers, usually printed as four period-separated fields (e.g., 192.5.54.209). Internet name servers
translate symbolic names (e.g., gate.cs.rochester.edu) into numeric addresses. Port numbers
are also integers, but are local to a given Internet address. Ports 1024 through 4999 are generally
available for application programs; larger and smaller numbers are reserved for servers.
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uses for all subsequent communication. Connections deliver messages reliably and
in order.

To send or receive UDP messages, a Java thread must create a datagram socket :EXAMPLE 12.53
Datagram messages in Java

DatagramSocket my_socket = new DatagramSocket(port_id);

The parameter of the DatagramSocket constructor is optional; if it is not speci-
fied, the operating system will choose an available port. Typically servers specify a
port and clients allow the OS to choose. To send a UDP message, a thread says

DatagramPacket my_msg = new DatagramPacket(buf, len, addr, port);
... // initialize message
my_socket.send(my_msg);

The parameters to the DatagramPacket constructor specify an array of bytes
buf, its length len, and the Internet address and port of the receiver. Receiving is
symmetric:

my_socket.receive(my_msg);
... // parse content of my_msg �

For TCP communication, a server typically “listens” on a port to which clientsEXAMPLE 12.54
Connection-based
messages in Java

send requests to establish a connection:

ServerSocket my_server_socket = new ServerSocket(port_id);
Socket client_connection = my_server_socket.accept();

The accept operation blocks until the server receives a connection request from
a client. Typically a server will immediately fork a new thread to communicate
with the client; the parent thread loops back to wait for another connection with
accept.

A client sends a connection request by passing the server’s symbolic name and
port number to the Socket constructor:

Socket server_connection = new Socket(host_name, port_id);

Once a connection has been created, a client and server in Java typically call
methods of the Socket class to create input and output streams, which support
all of the standard Java mechanisms for text I/O (Section 7.9.3):

BufferedReader in = new BufferedReader(
new InputStreamReader(client_connection.getInputStream()));

PrintStream out =
new PrintStream(client_connection.getOutputStream());

// This is in the server; the client would make streams out
// of server_connection.
...
String s = in.readLine();
out.println("Hi, Mom\n");

�
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Among all the message-passing mechanisms we have considered, datagrams
are the only one that does not provide some sort of ordering constraint. In gen-
eral, most message-passing systems guarantee that messages sent over the same
“communication path” arrive in order. When naming processes explicitly, a path
links a single sender to a single receiver. All messages from that sender to that
receiver arrive in the order sent. When naming ports, a path links an arbitrary
number of senders to a single receiver (though as we saw in SR, if a receiver is a
complex entity like a virtual machine, it may have many threads inside). Messages
that arrive at a port in a given order will be seen by receivers in that order. Note,
however, that while messages from the same sender will arrive at a port in order,
messages from different senders may arrive in different orders.3 When naming
channels, a path links all the senders that can use the channel to all the receivers
that can use it. A Java TCP connection has a single OS process at each end, but
there may be many threads inside, each of which can use its process’s end of the
connection. An SR op can be used by any thread to which it is visible. In both
cases, the channel functions as a queue: send (enqueue) and receive (dequeue)
operations are ordered, so that everything is received in the order it was sent.

12.5.2 Sending

One of the most important issues to be addressed when designing a send oper-
ation is the extent to which it may block the caller: once a thread has initiated a
send operation, when is it allowed to continue execution? Blocking can serve at
least three purposes:

Resource management: A sending thread should not modify outgoing data until
the underlying system has copied the old values to a safe location. Most systems
block the sender until a point at which it can safely modify its data, without
danger of corrupting the outgoing message.

Failure semantics: Particularly when communicating over a long-distance net-
work, message passing is more error-prone than most other aspects of com-
puting. Many systems block a sender until they are able to guarantee that the
message will be delivered without error.

Return parameters: In many cases a message constitutes a request, for which a
reply is expected. Many systems block a sender until a reply has been received.

3 Suppose, for example, that process A sends a message to port p of process B, and then sends a
message to process C , while process C first receives the message from A and then sends its own
message to port p of B. If messages are sent over a network with internal delays, and if A is allowed
to send its message to C before its first message has reached port p, then it is possible for B to
hear from C before it hears from A. This apparent reversal of ordering could easily happen on
the Internet, for example, if the message from A to B traverses a satellite link, while the messages
from A to C and from C to B use ocean-floor cables.
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When deciding how long to block, we must consider synchronization semantics,
buffering requirements, and the reporting of run-time errors.

Synchronization Semantics

On its way from a sender to a receiver, a message may pass through many interme-
diate steps, particularly if traversing the Internet. It first descends through several
layers of software on the sender’s machine, then through a potentially large num-
ber of intermediate machines, and finally up through several layers of software on
the receiver’s machine. We could imagine unblocking the sender after any of these
steps, but most of the options would be indistinguishable in terms of user-level
program behavior. If we assume for the moment that a message-passing systemEXAMPLE 12.55

Three main options for
send semantics

can always find buffer space to hold an outgoing message, then our three rationales
for delay suggest three principal semantic options:

No-wait send: The sender does not block for more than a small, bounded period
of time. The message-passing implementation copies the message to a safe
location and takes responsibility for its delivery.

Synchronization send: The sender waits until its message has been received.

Remote-invocation send: The sender waits until it receives a reply.

These three alternatives are illustrated in Figure 12.21. �
No-wait send appears in Erlang, SR, and the Java Internet library. Synchro-

nization send appears in Occam. Remote-invocation send appears in Ada, in
Occam, and in SR. MPI provides an implementation-oriented hybrid of no-wait
send and synchronization send: a send operation blocks until the data in the
outgoing message can safely be modified. In implementations that do their own
internal buffering, this rule amounts to no-wait send. In other implementations,
it amounts to synchronization send. The programmer has the option, if desired,
to insist on no-wait send or synchronization send; performance may suffer on
some systems if the request is different from the default.

Buffering

In practice, unfortunately, no message-passing system can provide a version of
send that never waits (unless of course it simply throws some messages away).
If we imagine a thread that sits in a loop sending messages to a thread that
never receives them, we quickly see that unlimited amounts of buffer space would
be required. At some point, any implementation must be prepared to block an
overactive sender, to keep it from overwhelming the system. Such blocking is
a form of backpressure. Milder backpressure can also be applied by reducing a
thread’s scheduling priority or by changing parameters of the underlying message
delivery mechanism.

For any fixed amount of buffer space, it is possible to design a program that
requires a larger amount of space to run correctly. Imagine, for example, that theEXAMPLE 12.56

Buffering-dependent
deadlock

message-passing system is able to buffer n messages on a given communication
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(a)

send

receive

(b)

request

(c)

reply

send

receive receive

Figure 12.21 Synchronization semantics for the send operation: no-wait send (a), synchro-
nization send (b), and remote-invocation send (c). In each diagram we have assumed that the
original message arrives before the receiver executes its receive operation; this need not in
general be the case.

path. Now imagine a program in which A sends n + 1 messages to B, followed by
one message to C . C then sends one message to B, on a different communication
path. Finally, B insists on receiving the message from C before receiving the mes-
sages from A. If A blocks after message n, implementation-dependent deadlock

DESIGN & IMPLEMENTATION

The semantic impact of implementation issues
The inability to buffer unlimited amounts of data, or to report errors syn-
chronously to a sender that has continued execution, are only the most recent
of the many examples we have seen in which pragmatic implementation issues
may restrict the language semantics available to the programmer. Other exam-
ples include limitations on the length of source lines or variable names (Sec-
tion 2.1.1); limits on the memory available for data (whether global, stack, or
heap allocated) and for recursive function evaluation (Section 3.2); the lack
of ranges in case statement labels (Section 6.4.2); in reverse, downto, and
constant step sizes for for loops (Section 6.5.1); limits on set universe size (to
accommodate bit vectors—Section 7.6); limited procedure nesting (to accom-
modate displays—Section 8.1); the fixed size requirement for opaque exports in
Modula-2 (Section 9.2.1); and the lack of nested threads or of unrestricted arms
on a cobegin statement (to avoid the need for cactus stacks—Section 8.6.1).
Some of these limitations are reflected in the formal semantics of the language.
Others (generally those that vary most from one implementation to another)
restrict the set of semantically valid programs that the system will run correctly.
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Client Server Sender Receiver
request

ack

message

ack

reply

ack

. . .

Figure 12.22 Acknowledgment messages for error detection. In the absence of piggy-backing,
remote-invocation send (left) may require four underlying messages; synchronization send (right)
may require two.

will result. The best that an implementation can do is to provide a sufficiently
large amount of space that realistic applications are unlikely to find the limit to be
a problem. �

For synchronization send and remote-invocation send, buffer space is not
generally a problem: the total amount of space required for messages is bounded
by the number of threads, and there are already likely to be limits on how many
threads a program can create. A thread that sends a reply message can always
be permitted to proceed: we know that we shall be able to reuse the buffer
space quickly, because the thread that sent the request is already waiting for the
reply.

Error Reporting

If the underlying message-passing system is unreliable, a language or library willEXAMPLE 12.57
Acknowledgments typically employ acknowledgment messages to verify successful transmission (Fig-

ure 12.22). If an acknowledgment is not received within a reasonable amount
of time, the implementation will typically resend. If several attempts fail to elicit
an acknowledgment, an error will be reported. �

As long as the sender of a message is blocked, errors that occur in attempting
to deliver a message can be reflected back as exceptions, or as status information
in result parameters or global variables. Once a sender has continued, there is no
obvious way in which to report any problems that arise. Like limits on message
buffering, this dilemma poses semantic problems for no-wait send. For UDP,
the solution is to state that messages are unreliable: if something goes wrong,
the message is simply lost, silently. For TCP, the “solution” is to state that only
“catastrophic” errors will cause a message to be lost, in which case the connection
will become unusable and future calls will fail immediately. An even more dras-
tic approach was taken in the original version of MPI: certain implementation-
specific errors could be detected and handled at run time, but in general if a
message could not be delivered then the program as a whole was considered to
have failed. MPI-2 provides a richer set of error-reporting facilities that can be
used, with some effort, to build fault-tolerant programs.
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Emulation of Alternatives

All three varieties of send can be emulated by the others. To obtain the effect of
remote-invocation send, a thread can follow a no-wait send of a request with
a receive of the reply. Similar code will allow us to emulate remote-invocation
send using synchronization send. To obtain the effect of synchronization send, a
thread can follow a no-wait send with a receive of a high-level acknowledgment,
which the receiver will send immediately upon receipt of the original message. To
obtain the effect of synchronization send using remote-invocation send, a thread
that receives a request can simply reply immediately, with no return parameters.

To obtain the effect of no-wait send using synchronization send or remote-
invocation send, we must interpose a buffer process (the message-passing
analogue of our shared-memory bounded buffer) that replies immediately to
“senders” or “receivers” whenever possible. The space available in the buffer pro-
cess makes explicit the resource limitations that are always present below the
surface in implementations of no-wait send.

Syntax and Language Integration

In the emulation examples above, our hypothetical syntax assumed a library-
based implementation of message passing. Because send, receive, accept, and
so on are ordinary subroutines in such an implementation, they take a fixed, static
number of parameters, two of which typically specify the location and size of

DESIGN & IMPLEMENTATION

Emulation and efficiency
Unfortunately, user-level emulations of alternative send semantics are seldom
as efficient as optimized implementations using the underlying primitives.
Suppose for example that we wish to use remote-invocation send to emulate
synchronization send. Suppose further that our implementation of remote-
invocation send is built on top of network software that needs acknowledg-
ments to verify message delivery. After sending a reply, the server’s run-time
system will wait for an acknowledgment from the client. If a server thread can
work for an arbitrary amount of time before sending a reply, then the run-time
system will need to send separate acknowledgments for the request and the
reply. If a programmer uses this implementation of remote-invocation send to
emulate synchronization send, then the underlying network may end up trans-
mitting a total of four messages (more if there are any transmission errors).
By contrast, a “native” implementation of synchronization send would require
only two underlying messages. In some cases the run-time system for remote-
invocation send may be able to delay transmission of the first acknowledgment
long enough to “piggy-back” it on the subsequent reply if there is one; in this
case an emulation of synchronization send may transmit three underlying
messages instead of only two. We consider the efficiency of emulations further
in Exercise 12.35 and Exploration 12.49.
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the message to be sent. To send a message containing values held in more than
one program variable, the programmer must explicitly gather, or marshal, those
values into the fields of a record. On the receiving end, the programmer must
scatter (unmarshal) the values back into program variables. By contrast, a con-
current programming language can provide message-passing operations whose
“argument” lists can include an arbitrary number of values to be sent. Moreover,
the compiler can arrange to perform type checking on those values, using tech-
niques similar to those employed for subroutine linkage across compilation units
(to be described in Section 14.6.2). Finally, as we shall see in Section 12.5.3, an
explicitly concurrent language can employ non-procedure-call syntax, for exam-
ple to couple a remote-invocation accept and reply in such a way that the reply
doesn’t have to explicitly identify the accept to which it corresponds.

12.5.3 Receiving

Probably the most important dimension on which to categorize mechanisms for
receiving messages is the distinction between explicit receive operations and the
implicit receipt described in Section 12.2.3 (page 597). Among the languages and
systems we have been using as examples, only SR provides implicit receipt (some
RPC systems also provide it, as we shall see in Section 12.5.4).

With implicit receipt, every message that arrives at a given port (or over a given
channel) will create a new thread of control, subject to resource limitations (any
implementation will have to stall incoming requests when the number of threads
grows too large). With explicit receipt, a message must be queued until some
already-existing thread indicates a willingness to receive it. At any given point in
time there may be a potentially large number of messages waiting to be received.
Most languages and libraries with explicit receipt allow a thread to exercise some
sort of selectivity with respect to which messages it wants to consider.

In MPI, every message includes the id of the process that sent it, together with
an integer tag specified by the sender. A receive operation specifies a desired
sender id and message tag. Only matching messages will be received. In many
cases receivers specify “wild cards” for the sender id and/or message tag, allowing
any of a variety of messages to be received. Special versions of receive also
allow a process to test (without blocking) to see if a message of a particular type
is currently available (this operation is known as polling ), or to “time out” and
continue if a matching message cannot be received within a specified interval of
time.

Because they are languages instead of library packages,Ada, Erlang, Occam, and
SR are able to use special, non-procedure-call syntax for selective message receipt.
Moreover because messages are built into the naming and typing system, these
languages are able to receive selectively on the basis of port/channel names and
parameters, rather than the more primitive notion of tags. In all four languages,
the selective receive construct is a special form of guarded command, as described
in Section 6.7.
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task buffer is
entry insert(d : in bdata);
entry remove(d : out bdata);

end buffer;

task body buffer is
SIZE : constant integer := 10;
subtype index is integer range 1..SIZE;
buf : array (index) of bdata;
next_empty, next_full : index := 1;
full_slots : integer range 0..SIZE := 0;

begin
loop

select
when full_slots < SIZE =>
accept insert(d : in bdata) do

buf(next_empty) := d;
end;
next_empty := next_empty mod SIZE + 1;
full_slots := full_slots + 1;

or
when full_slots > 0 =>
accept remove(d : out bdata) do

d := buf(next_full);
end;
next_full := next_full mod SIZE + 1;
full_slots := full_slots - 1;

end select;
end loop;

end buffer;

Figure 12.23 Bounded buffer in Ada, with an explicit manager task.

Figure 12.23 contains code for a bounded buffer in Ada 83. Here an activeEXAMPLE 12.58
Bounded buffer in Ada 83 “manager” thread executes a select statement inside a loop. (Recall that it is

also possible to write a bounded buffer in Ada using protected objects, without
a manager thread, as described in Section 12.3.4.) The Ada accept statement
receives the in and in out parameters (Section 8.3.1) of a remote invocation
request. At the matching end, accept returns the in out and out parameters as
a reply message. A client task would communicate with the bounded buffer using
an entry call :

-- producer: -- consumer:
buffer.insert(3); buffer.remove(x);

The select statement in our buffer example has two arms. The first arm may
be selected when the buffer is not full and there is an available insert request;
the second arm may be selected when the buffer is not empty and there is an
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available remove request. Selection among arms is a two-step process: first the
guards (when expressions) are evaluated, then for any that are true the subsequent
accept statements are considered to see if a message is available. (The guard in
front of an accept is optional; if missing it behaves as when true =>.) If both
of the guards in our example are true (the buffer is partly full) and both kinds
of messages are available, then either arm of the statement may be executed, at
the discretion of the implementation. (For a discussion of issues of fairness in the
choice among true guards, see the sidebar on page 160.) �

Every select statement must have at least one arm beginning with acceptEXAMPLE 12.59
Timeout and distributed
termination

(and optionally when). In addition, it may have three other types of arms:

when condition => delay how long
other statements

...
or when condition => terminate
...
else ...

A delay arm may be selected if no other arm becomes selectable within how long
seconds. (Ada implementations are required to support delays as long as one
day or as short as 20 ms.) A terminate arm may be selected only if all poten-
tial communication partners have already terminated or are likewise stuck in
select statements with terminate arms. Selection of the arm causes the task
that was executing the select statement to terminate. An else arm, if present,
will be selected when none of the guards are true or when no accept state-
ment can be executed immediately. A select statement with an else arm is
not permitted to have any delay arms. In practice, one would probably want to
include a terminate arm in the select statement of a manager-style bounded
buffer. �

Occam’s equivalent of select is known as ALT. As in Ada, the choice among
arms can be based both on Boolean conditions and on the availability of messages.
(One minor difference: Occam semantics specify a one-step evaluation process;
message availability is considered part of the guard.) The body of our boundedEXAMPLE 12.60

Bounded buffer in Occam buffer example is shown in Figure 12.24. Recall that Occam uses indentation to
delimit control-flow constructs. Also note that Occam has no mod operator.

The question-mark operator (?) is Occam’s receive; the exclamation-mark
operator (!) is its send. As in Ada, an active manager thread must embed the ALT
statement in a loop. As written here, the ALT statement has two guards. The first
guard is true when full_slots < SIZE and a message is available on the channel
named producer; the second guard is true when full_slots > 0 and a message
is available on the channel named request. �

Because we are using synchronization send in this example, there is an asym-EXAMPLE 12.61
Asymmetry of
synchronization send

metry between the treatment of producers and consumers: the former need only
send the manager data; the latter must send it a dummy argument and then wait
for the manager to send the data back:
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-- channel declarations:
CHAN OF BDATA producer, consumer :
CHAN OF BOOL request :

-- buffer manager:
... -- (data declarations omitted)
WHILE TRUE
ALT
full_slots < SIZE & producer ? d
SEQ
buf[next_empty] := d
IF
next_empty = SIZE
next_empty := 1

next_empty < SIZE
next_empty := next_empty + 1

full_slots := full_slots + 1
full_slots > 0 & request ? t
SEQ
consumer ! buf[next_full]
IF
next_full = SIZE
next_full := 1

next_full < SIZE
next_full := next_full + 1

full_slots := full_slots - 1

Figure 12.24 Bounded buffer in Occam.

-- producer: -- consumer:
producer ! x request ! TRUE

consumer ? x

The asymmetry could be removed by using remote invocation on CALL channels:

-- channel declarations:
CALL insert(VAL BDATA d) :
CALL remove(RESULT BDATA d) :

-- buffer manager:
WHILE TRUE
ALT
full_slots < SIZE & ACCEPT insert(VAL BDATA d)
buf[next_empty] := d
IF -- increment next_empty, etc.
...

full_slots > 0 & ACCEPT remove(RESULT BDATA d)
d := buf[next_full]
IF -- increment next_full, etc.
...
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Client code now looks like this:

-- producer: -- consumer:
insert(x) remove(x)

In the code of the buffer manager, the body of the ACCEPT is the single subsequent
statement (the one that accesses buf). Updates to next_empty, next_full, and
full_slots occur after replying to the client. �

The effect of an Ada delay can be achieved in Occam by an ALT arm thatEXAMPLE 12.62
Timeout in Occam receipt “receives” from a timer pseudoprocess:

clock ? AFTER quit_time

An arm can also be selected on the basis of a Boolean condition alone, without
attempting to receive:

a > b & SKIP -- do nothing

Occam’s ALT has no equivalent of the Ada terminate, nor is there an else (a
similar effect can be achieved with a very short delay). �

In Erlang, which uses no-wait send, one might at first expect asymmetry similarEXAMPLE 12.63
Bounded buffer in Erlang to that of Occam: a consumer would have to receive a reply from a bounded buffer,

but a producer could simply send data. Such asymmetry would have a hidden flaw,
however: because a process does not wait after sending, the producer could easily
send more items than the buffer can hold, with the excess being buffered in the
message system. If we want the buffer to truly be bounded, we must require
the producer to wait for an acknowledgment. Code for the buffer appears in
Figure 12.25. Because Erlang is a functional language, we use tail recursion
instead of iteration. Code for the producer and consumer looks like this:

-- producer: -- consumer:
Buffer ! {insert, X, self()}, Buffer ! {remove, self()},
receive ok -> [] end. receive X -> [] end. �

In SR, selective receipt is again based on guarded commands; code appears inEXAMPLE 12.64
Bounded buffer in SR Figure 12.26. The st stands for “such that”; it introduces the Boolean half of a

guard. Client code looks like this:

# producer: # consumer:
call insert(x) x := remove()

If desired, an explicit reply to the client could be inserted between the access to
buf and the updates of next_empty, next_full, and full_slots in each arm
of the in. �

In a significant departure from Ada and Occam, both SR and Erlang placeEXAMPLE 12.65
Peeking at messages in SR
and Erlang

the parameters of a potential message within the scope of the guard condition,
allowing a receiver to “peek inside” a message before deciding whether to receive
it. In SR, we can say
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buffer(Max, Free, Q) ->
receive

{insert, D, Client} when Free > 0 ->
Client ! ok, % send ack
buffer(Max, Free-1, queue:in(D, Q)); % enqueue

{remove, Client} when Free < Max ->
{{value, D}, NewQ} = queue:out(Q), % dequeue
Client ! D, % send element
buffer(Max, Free+1, NewQ)

end.

Figure 12.25 Bounded buffer in Erlang.Variables (names that can be instantiated with a value)
begin with a capital letter ; constants begin with a lower-case letter. Queue operations (in, out)
are provided by the standard Erlang library. Typing is dynamic. The send operator (!) is as in
Occam. Each clause of the receive ends with a tail recursive call.

in insert(d) st d % 2 = 1 -> # only accept odd numbers

In Erlang,

receive
{insert, D} when D rem 2 == 1 -> % likewise

In SR, a receiver can also accept messages on a given port (i.e., of a given op) out
of order, by specifying a scheduling expression:

in insert(d) st d % 2 = 1 by -d ->
# only accept odd numbers, and pick the largest one first �

Like an Ada select, an SR in statement can end with an else guard; this guard
will be selected if no message is immediately available. There is no equivalent of
delay or terminate.

DESIGN & IMPLEMENTATION

Peeking inside messages
The ability of guards and scheduling expressions to “peek inside” a message
in SR and Erlang requires that all pending messages be visible to the language
run-time system. An SR implementation must therefore be prepared to accept
(and buffer) an arbitrary number of messages; it cannot rely on the operating
system or other underlying software to provide the buffering for it. Moreover
the fact that buffer space can never be truly unlimited means that guards and
scheduling expressions will be unable to see messages whose delivery has been
delayed by backpressure.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch12-P374514 [12:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 278 1–867

278 Chapter 12 Concurrency

resource buffer
op insert(d : bdata)
op remove() returns d : bdata

body buffer()
const SIZE := 10;
var buf[0:SIZE-1] : bdata
var full_slots := 0, next_empty := 0, next_full := 0
process manager
do true ->
in insert(d) st full_slots < SIZE ->

buf[next_empty] := d
next_empty := (next_empty + 1) % SIZE
full_slots++

[] remove() returns d st full_slots > 0 ->
d := buf[next_full]
next_full := (next_full + 1) % SIZE
full_slots--

ni
od

end # manager
end # buffer

Figure 12.26 Bounded buffer as an active SR process.

12.5.4 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-
invocation) can be paired with either of the principal forms of receive (explicit
or implicit). The combination of remote-invocation send with explicit receipt
(e.g., as in Ada) is sometimes known as rendezvous. The combination of remote-
invocation send with implicit receipt is usually known as remote procedure call.
RPC is available in several concurrent languages, and is also supported on many
systems by augmenting a sequential language with a stub compiler. The stub com-
piler is independent of the language’s regular compiler. It accepts as input a formal
description of the subroutines that are to be called remotely. The description is
roughly equivalent to the subroutine headers and declarations of the types of all
parameters. Based on this input the stub compiler generates source code for client
and server stubs. A client stub for a given subroutine marshals request parame-
ters and an indication of the desired operation into a message buffer, sends the
message to the server, waits for a reply message, and unmarshals that message
into result parameters. A server stub takes a message buffer as parameter, unmar-
shals request parameters, calls the appropriate local subroutine, marshals return
parameters into a reply message, and sends that message back to the appropriate
client. Invocation of a client stub is relatively straightforward. Invocation of server
stubs is discussed under “Implementation” below.
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Semantics

A principal goal of most RPC systems is to make the remote nature of calls as
transparent as possible; that is, to make remote calls look as much like local calls
as possible [BN84]. In a stub compiler system, a client stub should have the same
interface as the remote procedure for which it acts as proxy; the programmer
should usually be able to call the routine without knowing or caring whether it is
local or remote.

Several issues make it difficult to achieve transparency in practice:

Parameter modes: It is difficult to implement call-by-reference parameters across
a network, since actual parameters will not be in the address space of the called
routine. (Access to global variables is similarly difficult.)

Performance: There is no escaping the fact that remote procedures may take
a long time to return. In the face of network delays, one cannot use them
casually.

Failure semantics: Remote procedures are much more likely to fail than are local
procedures. It is generally acceptable in the local case to assume that a called
procedure will either run exactly once or else the entire program will fail. Such
an assumption is overly restrictive in the remote case.

We can use value/result parameters in place of reference parameters so long as
program correctness does not rely on the aliasing created by reference parameters.
As noted in Section 8.3.1, Ada declares that a program is erroneous if it can tell the
difference between pass-by-reference and pass-by-value/result implementations
of in out parameters. If absolutely necessary, reference parameters and global
variables can be implemented with message-passing thunks in a manner reminis-
cent of call-by-name parameters (Section 8.3.2), but only at very high cost. As
noted in Section 7.10, a few languages and systems perform deep copies of linked
data structures passed to remote routines.

Performance differences between local and remote calls can only be hidden by
artificially slowing down the local case. Such an option is clearly unacceptable.

Exactly-once failure semantics can be provided by aborting the caller in the
event of failure or, in highly reliable systems, by delaying the caller until the oper-
ating system or language run-time system is able to rebuild the failed computation
using information previously dumped to disk. (Failure recovery techniques are
beyond the scope of this text.) An attractive alternative is to accept “at-most-once”
semantics with notification of failure. The implementation retransmits requests
for remote invocations as necessary in an attempt to recover from lost messages.
It guarantees that retransmissions will never cause an invocation to happen more
than once, but it admits that in the presence of communication failures the invo-
cation may not happen at all. If the programming language provides exceptions
then the implementation can use them to make communication failures look like
any other kind of run-time error.
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Implementation

At the level of the kernel interface, receive is usually an explicit operation. To
make receive appear implicit to the application programmer, the code produced
by an RPC stub compiler (or the run-time system of a language like SR) must
bridge this explicit-to-implicit gap. The typical implementation resembles the
thread-based event handling of Section 8.7.2. We describe it here in terms of stub
compilers; in a concurrent language with implicit receipt the regular compiler
does essentially the same work.

Figure 12.27 illustrates the layers of a typical RPC system. Code above theEXAMPLE 12.66
An RPC server system upper horizontal line is written by the application programmer. Code in the

middle is a combination of library routines and code produced by the RPC stub
generator. To initialize the RPC system, the application makes a pair of calls
into the run-time system. The first provides the system with pointers to the stub
routines produced by the stub compiler; the second starts a message dispatcher.
What happens after this second call depends on whether the server is concurrent
and, if so, whether its threads are implemented on top of one OS process or several.

In the simplest case—a single-threaded server on a single OS process—the
dispatcher runs a loop that calls into the kernel to receive a message. When a
message arrives, the dispatcher calls the appropriate RPC stub, which unmarshals
request parameters and calls the appropriate application-level procedure. When
that procedure returns, the stub marshals return parameters into a reply message,
calls into the kernel to send the message back to the caller, and then returns to the
dispatcher. �

DESIGN & IMPLEMENTATION

Parameters to remote procedures
Ada’s comparatively high-level semantics for parameter modes allows the same
set of modes to be used for both subroutines and entries (rendezvous). An
Ada compiler will generally pass a large argument to a subroutine by reference
whenever possible, to avoid the expense of copying. If tasks are on separate
processors of a multicomputer or cluster, however, the compiler will generally
pass the same argument to an entry by value-result.

A few concurrent languages provide parameter modes specifically designed
with remote invocation in mind. In Emerald [BHJL07], for example, every
parameter is a reference to an object. References to remote objects are imple-
mented transparently via message passing. To minimize the frequency of such
references, objects passed to remote procedures often migrate with the call: they
are packaged with the request message, sent to the remote site (where they can
be accessed locally), and returned to the caller in the reply. Emerald calls this
call by move. In Hermes [SBG+91], parameter passing is destructive: arguments
become uninitialized from the caller’s point of view, and can therefore migrate
to a remote callee without danger of inducing remote references.
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Remote procedures

Stubs

1 2

4 5

7

3

8

6

Application
program

Library/run-
time system

OS kernel

...

...

main:
 install stubs
 start dispatcher

dispatcher
 loop
  OS_receive( )

  call appropriate stub
OS_send(reply)

Figure 12.27 Implementation of a remote procedure call server. Application code initializes
the RPC system by installing stubs generated by the stub compiler (not shown). It then calls into
the run-time system to enable incoming calls. Depending on details of the particular system in
use, the dispatcher may use the main program’s single process (in which case the call to start the
dispatcher never returns), or it may create a pool of processes that handle incoming requests.

This simple organization works well so long as each remote request can be
handled quickly,without ever needing to block. If remote requests must sometimes
wait for user-level synchronization, then the server’s process must manage a ready
list of threads, as described in Section 12.2.4, but with the dispatcher integrated
into the usual thread scheduler. When the current thread blocks (in application
code), the scheduler/dispatcher will grab a new thread from the ready list. If the
ready list is empty, the scheduler/dispatcher will call into the kernel to receive a
message, fork a new user-level thread to handle it, and then continue to execute
runnable threads until the list is empty again (each thread will terminate when it
finishes handling its request).

In a multiprocess server, the call to start the dispatcher will generally ask the
kernel to fork a “pool” of processes to service remote requests. Each of these
processes will then perform the operations described in the previous paragraphs.
In a language or library with a one–one correspondence between threads and
processes, each process will repeatedly receive a message from the kernel, call the
appropriate stub, and loop back for another request. With a more general thread
package, each process will run threads from the ready list until the list is empty,
at which point it (the process) will call into the kernel for another message. So
long as the number of runnable threads is greater than or equal to the number
of processes, no new messages will be received. When the number of runnable
threads drops below the number of processes, then the extra processes will call
into the kernel, where they will block until requests arrive.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch12-P374514 [12:09 2009/2/25] SCOTT: Programming Language Pragmatics Page: 282 1–867

282 Chapter 12 Concurrency

3CHECK YOUR UNDERSTANDING

50. Describe three ways in which processes commonly name their communication
partners.

51. What is a datagram?

52. Why, in general, might a send operation need to block?

53. What are the three principal synchronization options for the sender of a mes-
sage? What are the tradeoffs among them?

54. What are gather and scatter operations in a message-passing program? What
are marshalling and unmarshalling ?

55. Describe the tradeoffs between explicit and implicit message receipt.

56. What is a remote procedure call (RPC)? What is a stub compiler?

57. What are the obstacles to transparency in an RPC system?

58. What is a rendezvous? How does it differ from a remote procedure call?

59. Explain the purpose of a select statement in Ada (or, equivalently, of ALT in
Occam).

60. What semantic and pragmatic challenges are introduced by the ability to
“peek” inside messages before they are received?
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12.7 Exercises

12.33 In Section 12.4.1 we cast monitors as a mechanism for synchronizing access
to shared memory, and we described their implementation in terms of
semaphores. It is also possible to think of a monitor as a module inhab-
ited by a single process, which accepts request messages from other pro-
cesses, performs appropriate operations, and replies. Give the details of a
monitor implementation consistent with this conceptual model. Be sure
to include condition variables. (Hint: See the discussion of early reply in
Section 12.2.3, page 597.)

12.34 Show how shared memory can be used to implement message passing.
Specifically, choose a set of message-passing operations (e.g., no-wait send
and explicit message receipt) and show how to implement them in your
favorite shared-memory notation.

12.35 When implementing reliable messages on top of unreliable messages, a
sender can wait for an acknowledgment message, and retransmit if it
doesn’t receive it within a bounded period of time. But how does the
receiver know that its acknowledgment has been received? Why doesn’t
the sender have to acknowledge the acknowledgment (and the receiver
acknowledge the acknowledgment of the acknowledgment . . . )? (For more
information on the design of fast, reliable protocols, you might want to
consult a text on computer networks [Tan02, PD07].)

12.36 An arm of an Occam ALT statement may include an input guard—a receive
(?) operation—in which case the arm can be chosen only if a potential
partner is trying to send a matching message. One could imagine allowing
output guards as well: send (!) operations that would allow their arm to
be chosen only if a potential partner were trying to receive a matching
message. Neither Occam nor CSP (as originally defined) permits out-
put guards. Can you guess why? Suppose you wished to provide them.
How would the implementation work? (Hint: For ideas, see the articles of
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Bernstein [Ber80], Buckley and Silbershatz [BS83b], Bagrodia [Bag86], or
Ramesh [Ram87].)

12.37 In Section 12.5.3 we described the semantics of a terminate arm on
an Ada select statement: this arm may be selected if and only if all
potential communication partners have terminated, or are likewise stuck
in select statements with terminate arms. Erlang, Occam, and SR have
no similar facility, though the original CSP proposal does. How would you
implement terminate arms in Ada? Why do you suppose they were left
out of Erlang, Occam, and SR? (Hint: For ideas, see the work of Apt and
Francez [Fra80, AF84].)
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12.8 Explorations

12.49 Find out how message passing is implemented in some locally avail-
able concurrent language or library. Does this system provide no-wait
send, synchronization send, remote-invocation send, or some related
hybrid? If you wanted to emulate the other options using the one avail-
able, how expensive would emulation be, in terms of low-level operations
performed by the underlying system? How would this overhead compare
to what could be achieved on the same underlying system by a language or
library that provided an optimized implementation of the other varieties of
send?

12.50 MPI provides extensive facilities for collective communication, in which
there are more than two communicating parties. Examples include mul-
ticast, in which a message is sent simultaneously to a group of recipients;
scatter, in which elements of an array-structured message are sent, one
each, to a group of recipients; gather, in which an array-structured mes-
sage is created, at the sole recipient, from elements provided by a group of
senders; all-to-all, in which participants provide one element each of an
array-structured message that is received by all; and reduction, in which
messages from a group of senders are combined, using a commutative
operator, into a result that is received by one or all. Learn more about
both the semantics and the implementation of collective communication.
What opportunities does it provide for optimizations that are difficult to
implement at the application level?

12.51 Language designers and concurrency experts have argued for more than 30
years over whether shared memory or message passing is a more appeal-
ing programming model. The argument is to a large extent subjective—
and hence not subject to definitive settlement—but it includes substantive
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issues of fault containment, implementation efficiency, hardware require-
ments, and algorithmic expressiveness as well. Do a literature search on
“shared memory versus message passing.” How many papers do you find?
Read a sampling of these and summarize their arguments. Do you find any
of the positions particularly convincing?
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13.3.5 XSLT

HTML was inspired by an older standard known as SGML (standard generalized
markup language), widely used in the business world to represent structured data.
Because it evolved in such an ad hoc way, HTML has been very difficult to stan-
dardize. Incompatibilities among browsers continue to frustrate web designers,
and several features of the language that have been deprecated in the most recent
standards are nonetheless still widely used. Other features, while not deprecated,
are widely regarded in hindsight to have been mistakes.

Probably the biggest problem with HTML is that it does not adequately distin-
guish between the content and the presentation (appearance) of a document. As aEXAMPLE 13.83

Content versus
presentation in HTML

trivial example, web designers frequently use <I> . . .</I> tags to request that text
be set in an italic font, when <EM> . . .</EM> (emphasis) would be more appro-
priate. A browser for the visually impaired might choose to emphasize text with
something other than italics, and might render book titles (also often specified
with <I> . . .</I>) in some entirely different fashion. More significantly,many web
designers use tables (<TABLE> . . .</TABLE>) to control the relative positioning of
elements on a page, when the content isn’t tabular at all. As more and more ven-
dors work to bring web content to cell phones, televisions, handheld computers,
and audio-only devices, the need to distinguish between content and presentation
is becoming increasingly critical. SGML has always made this distinction, but it is
widely seen as overkill: far too complex for use on the web. �

This is where XML steps in. XML (extensible markup language) is a deliber-
ately streamlined descendant of SGML with at least three important advantages
over HTML: (1) its syntax and semantics are more regular and consistent, and
more consistently implemented across platforms; (2) it is extensible, meaning that
users can define new tags; (3) it specifies content only, leaving presentation to a
companion standard known as XSL (extensible stylesheet language). As noted in
the main text, XSLT is a portion of XSL devoted to transforming XML: select-
ing, reorganizing, and modifying tags and the elements they delimit—in effect,
scripting the processing of data represented in XML.
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Internet Alphabet Soup

Learning about web standards can be a daunting task: there is an enormous num-
ber of buzzwords, standards, and multiletter abbreviations. It helps to remember
the three families of markup languages—SGML, HTML, and XML—and to know
that each has a corresponding stylesheet language: DSSSL, CSS, and XSL, respec-
tively. A stylesheet language is used to control the presentation of a document,
separate from its content. Stylesheet languages are essential for SGML and XML;
without them there is no way to know whether a <RECORD> represents a database
entry, an antique phonograph album, or an Olympic achievement, much less how
to display it. HTML is less dependent on stylesheets, but web sites increasingly
use CSS to create a uniform “look and feel” across a collection of pages without
embedding redundant information in every page.

SGML and DSSSL remain important in the business world, but are little used on
the web. HTML is likely to persist for a very long time, but its lack of extensibility
and its mix of content and presentation are increasingly perceived as fundamen-
tal limitations. XML is widely viewed as the notation of the future. Even for
documents that remain in HTML, designers are likely to migrate toward XHTML
(extensible hypertext markup language), an almost (but not quite) backward com-
patible variant of HTML that conforms to the XML standard.

XML and XHTML

An XML document must be well formed : tags must either constitute properly
nested, matched pairs, or be explicit singletons, which end with a “/>” delim-
iter. The following fragment, for example, is well-formed (though incomplete)EXAMPLE 13.84

Well-formed XHTML XHTML:

<em><q><a id="favorite-quote" />I defy the tyranny of precedent</q>
(Clara Barton).</em>

Here the quotation element (<q> . . . </q>) is nested inside the emphasis element
(<em> . . . </em>). Moreover the anchor element (<a . . . />), which can serve as
the target of a link, is explicitly a singleton; it has a slash before its closing “>”
delimiter. (To avoid confusing certain legacy browsers, one sometimes needs a
space in front of the slash.) The example fragment would be malformed if the
slash were missing, or if the opening <em><q> tags were reversed (<q><em>). �

Well-formedness is a simple syntactic rule, like the requirement that paren-
theses be balanced in Lisp. It makes XML (and thus XHTML) much easier than
plain HTML to parse and to process automatically. The careful reader may also
have noticed that we used lower-case letters for tags in XHTML, where previous
HTML examples were all in upper case. HTML is case-insensitive; either style is
accepted, though upper case has been the convention in standards documents.
XML is case-sensitive, so <em> and <EM> are different. The XHTML designers
had to pick one. Going against the existing convention (but not the existing rules)
preserves backward compatibility while helping the reader identify documents
that are likely to conform to the newer standard.
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The set of tags to be used in an XML document is specified by either a document
type definition (DTD) or an XML Schema. DTDs are inherited from SGML. They
indicate which tags are allowed, whether they are pairs or singletons, whether they
permit attributes (name-value pairs like the id="favorite-quote" in Example

13.84), and whether any attributes are mandatory. The rules of the DTD take
the form of XML declarations, which look like elements beginning with a “<!”
delimiter. These can be included directly in the XML document. More often they
are kept in an external document with its own URI, and the XML document begins
with a <!DOCTYPE . . . > declaration that specifies that URI. (Comments also look
like declarations: <!-- ignored -->.) If an XML document has no explicit DTD
(neither in-line nor external), it is said to define a DTD implicitly by virtue of
which tags are actually used.

XML Schemas are a newer mechanism, meant to replace DTDs. They are writ-
ten in XSD, the XML Schema Definition language, which is itself an example of
well-formed XML, defined by a DTD. Because they are written in XSD, XML
Schemas can be created using XML-aware editors, parsed with XML parsers, and
transformed with XSLT. In comparison to DTDs, XSD provides a significantly
richer vocabulary for specifying syntactic rules. Among other things, it allows the
designer to specify the data types of elements and attributes in considerable detail,
providing a level of automatic checking not possible with DTDs. XSD also sup-
ports inheritance, so one XML Schema can be defined as an extension of another.
As of this writing, DTDs remain more common than XML Schemas. In particular,
the XML Schema for XHTML did not became official until 2008. We will rely on
DTDs in the remainder of this section.

Because tags must nest in XML, a document has a natural tree-based structure.
Figure 13.24 shows the source for a small but complete XHTML documentEXAMPLE 13.85

XHTML to display a
favorite quote

together with the tree it represents. There are three kinds of nodes in the tree:
elements (delimited by tags in the source), text, and attributes. The internal (non-
leaf) nodes are all elements. Everything nested between the beginning and ending
tags of an element is an attribute or child of that element in the tree.

Our document begins with an <?xml . . . ?> declaration, which indicates the
version of XML and the character encoding used in the rest of the document. The
declaration is included for the benefit of tools that process the document; it isn’t
part of the XML source itself. (Note the syntactic resemblance to the processing
instructions used in Section 13.3.2 to provide input to the PHP interpreter.)

The second line of our document is a <!DOCTYPE . . . > declaration that names
an XHTML DTD at the World Wide Web Consortium. The remainder of the
document is data. The root, named “/”, has one child: the html element. This
in turn has two children: the head and the body. The head has a title child
and an xmlns attribute. The latter declares xhtml to be the default namespace for
the document. Namespaces in XML are similar to the namespaces of C++ or the
packages of Java (Section 3.8); they allow us to give tag names a disambiguating
prefix: xhtml:table versus furniture:table. With the value we have specified
for the xmlns attribute, any tag in the document that doesn’t have a prefix will
automatically be interpreted as being in the xhtml namespace. �
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Favorite Quote</title>
</head>
<body>
<p>
<em><q><a id="favorite-quote" />
I defy the tyranny of precedent</q>
(Clara Barton).</em>
</p>
</body>
</html>

html

bodyhead

title p

text

xmlns

id

em

textq

texta

/

Figure 13.24 A complete XHTML document and its corresponding tree. Child relationships are shown with solid lines,
attributes with dashed lines.

XSLT, XPath, and XSL-FO

XSL (extensible stylesheet language) can be thought of as a language for specifying
what to do with an XML document. It has three sublanguages, called XSLT, XPath,
and XSL-FO. XSLT is a scripting language that takes XML as input and produces
textual output—often transformed XML or HTML, but potentially other formats
as well.

XPath is a language used to name things in XML files. XPath names frequently
appear in the attributes of XSLT elements. Returning to Figure 13.24, the quota-EXAMPLE 13.86

XPath names for XHTML
elements

tion element of our document could be named in XPath as /html/body/p/em/q.
The quotation element and its text-node sibling, together, could be be named as
/html/body/p/em/*. XPath includes a rich set of naming mechanisms, including
absolute (from the root) and relative (from the current node) navigation, wild-
cards, predicates, substring and regular expression manipulation, and counting
and arithmetic functions. We will see some of these in the extended example
below. �

XSL-FO (XSL formatting objects) is a set of tags to specify the layout (presenta-
tion) of a document, in terms of pages, regions (e.g., header, body, footer), blocks
(paragraph, table, list), lines, and in-line elements (character, image). An XSLT
script might be used to add XSL-FO tags to an XML document, or to transform a
document that already has XSL-FO tags in it—perhaps to split a long single-page
document intended for the web into a multipage document intended for printing
on paper. For the sake of simplicity, we will not use XSL-FO in any of our exam-
ples. Rather we will format XML documents by using XSLT to turn them into
HTML.
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<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="bib.xsl"?>
<bibliography>
<book>
<author>Guido van Rossum</author>
<editor>Fred L. Drake, Jr.</editor>
<title>The Python Language Reference Manual</title>
<publisher>Network Theory, Ltd.</publisher>
<address>Bristol, UK</address>
<year>2003</year>
<note>Available at <uri>http://www.network-theory.co.uk/docs/pylang/</uri></note>

</book>
<article>
<author>John K. Ousterhout</author>
<title>Scripting: Higher-Level Programming for the 21st Century</title>
<journal>Computer</journal>
<volume>31</volume>
<number>3</number>
<month>March</month>
<year>1998</year>
<pages>23&#8211;30</pages>

</article>
<inproceedings>
<author>Theodor Holm Nelson</author>
<title>Complex Information Processing: A File Structure for the

Complex, the Changing, and the Indeterminate</title>
<booktitle>Proceedings of the Twentieth ACM National Conference</booktitle>
<month>August</month>
<year>1965</year>
<address>Cleveland, OH</address>
<pages>84&#8211;100</pages>

</inproceedings>
<inproceedings>
<author>Stephan Kepser</author>
<title>A Simple Proof for the Turing-Completeness of XSLT and

XQuery</title>
<booktitle>Proceedings, Extreme Markup Languages 2004</booktitle>
<address>Montr&#233;al, Canada</address>
<year>2004</year>
<month>August</month>
<note>Available at <uri>http://www.mulberrytech.com/Extreme/Proceedings/html

/2004/Kepser01/EML2004Kepser01.html</uri></note>
</inproceedings>

Figure 13.25 A bibliography in XML. References (two books, a journal article, and three conference papers) appear in arbitrary
order. The Kepser URI has been wrapped to fit on the printed page. (continued)
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<inproceedings>
<author>David G. Korn</author>
<title><code>ksh</code>: An Extensible High Level Language</title>
<booktitle>Proceedings of the USENIX Very High Level Languages

Symposium</booktitle>
<address>Santa Fe, NM</address>
<year>1994</year>
<month>October</month>
<pages>129&#8211;146</pages>

</inproceedings>
<book>
<author>Larry Wall</author>
<author>Tom Christiansen</author>
<author>Jon Orwant</author>
<title>Programming Perl</title>
<edition>third</edition>
<publisher>O&#8217;Reilly and Associates</publisher>
<address>Cambridge, MA</address>
<year>2000</year>

</book>
</bibliography>

Figure 13.25 (continued)

An XML document can explicitly specify an XSLT script that should be used to
transform or format it. This is a standard but somewhat restrictive way to go about
things: by tying a single stylesheet to the XML file we compromise the separation
between content and presentation that was a principal motivation for creating
XML in the first place. An alternative is to use client-side JavaScript or server-side
PHP to invoke the XSLT processor, passing the XML document and the XSLT
script as arguments. Unfortunately, as of this writing the details vary across both
server and client platforms.

Extended Example: Bibliographic Formatting

As an example of a task for which we might realistically use XSLT, consider theEXAMPLE 13.87
Creating a reference list
with XSLT

creation of a bibliographic reference list. Figure 13.25 contains XML source for
such a list. (Field names have been borrowed from BIBTEX [Lam94, App. B].) The
document begins with a declaration to specify the XML version and character
encoding, and a processing instruction to specify the XSL stylesheet to be used to
format the file.

At the top level, the bibliography element consists of a series of book,
article, and inproceedings elements, each of which may contain elements
for author and editor names, title, publisher, date and address, and so on. Some
elements may contain nested uri elements, which specify on-line links. Charac-
ters that cannot be represented in ASCII are shown as Unicode character entities,
as described in the sidebar on page 295.
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<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html><head><title>Bibliography</title></head><body><h1>Bibliography</h1><ol>
<xsl:for-each select="bibliography/*"><xsl:sort select="title"/>
<li><xsl:apply-templates select="."/></li>

</xsl:for-each>
</ol></body></html>

</xsl:template>

<xsl:template match="bibliography/article">
<q><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.&#160;
<em><xsl:apply-templates select="journal/node()"/>
<xsl:text> </xsl:text><xsl:apply-templates select="volume/node()"/>
</em>:<xsl:apply-templates select="number/node()"/>
(<xsl:apply-templates select="month/node()"/><xsl:text> </xsl:text>
<xsl:apply-templates select="year/node()"/>),

pages <xsl:apply-templates select="pages/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/book">
<em><xsl:apply-templates select="title/node()"/>,</em>
by <xsl:call-template name="author-list"/>.&#160;
<xsl:apply-templates select="publisher/node()"/>,
<xsl:apply-templates select="address/node()"/>,
<xsl:if test="edition">
<xsl:apply-templates select="edition/node()"/> edition, </xsl:if>

<xsl:apply-templates select="year/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/inproceedings">
<q><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.&#160;
In <em><xsl:apply-templates select="booktitle/node()"/></em>
<xsl:if test="pages">, pages <xsl:apply-templates select="pages/node()"/></xsl:if>
<xsl:if test="address">, <xsl:apply-templates select="address/node()"/></xsl:if>
<xsl:if test="month">, <xsl:apply-templates select="month/node()"/></xsl:if>
<xsl:if test="year">, <xsl:apply-templates select="year/node()"/></xsl:if>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

Figure 13.26 Bibliography stylesheet in XSL. This script will generate HTML when applied to a bibliography like that of
Figure 13.25. (continued)
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<xsl:template name="author-list"> <!-- format author list -->
<xsl:for-each select="author|editor">
<xsl:if test="last() > 1 and position() = last()"> and </xsl:if>
<xsl:apply-templates select="./node()"/>
<xsl:if test="self::editor"> (editor)</xsl:if>
<xsl:if test="last() > 2 and last() > position()">, </xsl:if>

</xsl:for-each>
</xsl:template>

<xsl:template match="uri"> <!-- format link -->
<a><xsl:attribute name="href"><xsl:value-of select="."/></xsl:attribute>
<xsl:value-of select="substring-after(., ’http://’)"/></a>

</xsl:template>

<xsl:template match="@*|node()"> <!-- default: copy content -->
<xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 13.26 (continued)

Figure 13.26 contains an XSLT stylesheet (script) to format the bibliography
as HTML, which may then be rendered in a browser. This script was named at
the beginning of the XML document (Figure 13.25). In a manner analogous
to that of the XML document, the script begins with a declaration to specify the
XML version and character encoding, and an xsl:stylesheet element to specify
the XSL version and namespace. The remainder of the script contains a mix of
XSL and HTML elements. The XSL tags all specify the xsl: namespace explicitly.
They are recognized by the XSLT processor. Elements from other namespaces are
treated as ordinary text, to be copied through to the output when encountered.

The fundamental construct in XSLT is the template, which specifies a set of
instructions to be applied to nodes in an XML source tree. Templates are typically
invoked by executing an apply-templates or call-template instruction in
some other template. Each invocation has a concept of current node. The execution
as a whole begins by invoking an initial template with the root of the source tree
(/) as current node. In our bibliographic example, the initial template is the one
at the top of the script, because its match attribute is the XPath expression "/".
The body of the initial template begins with a string of HTML elements and text.
This string is copied directly to the output. The for-each element, however, is an
XSLT instruction, so it is executed.

The select attribute of the for-each uses an XPath expression
("bibliography/*") to build a node set consisting of all top-level entries in
our bibliography. Other expressions could have been used if we wanted to be
selective: "bibliography/*[year>=2000]" would match only recent entries;
"bibliography/*[note]" would match only entries with note elements;
"bibliography/article|bibliography/book" would match only articles and
books.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch13-P374514 [12:14 2009/2/25] SCOTT: Programming Language Pragmatics Page: 295 3–867

13.3.5 XSLT 295

The nested sort instruction forces the selected node set to be ordered alpha-
betically by title. The body of the for-each is then executed with each entry
in turn selected as current node. The body contains a recursive invocation of
apply-templates, bracketed by HTML list tags (<li> . . . </li>). These tags are
copied to the output, with the result of the recursive call nested in between.

So how does the recursive call work? Its select attribute, like that of for-each,
uses XPath to build a node set. In this case it is the trivial node set containing only
".", the current node of the current iteration of for-each. The XSLT processor
searches for a template that matches this node. We have created three appropriate
candidates, one for each kind of bibliographic entry. When it finds the matching
template, the processor invokes it, with an updated notion of current node.

Each of our three main templates contains a set of instructions to format
its kind of entry (article, book, conference paper). Most of the instructions use
additional invocations of apply-templates to format individual portions of an
entry (author, title, publisher, etc.). Interspersed in these instructions are snippets
of text and HTML elements. In several cases we use an if instruction to generate
output only when a given XML element is present in the source. In most of these
the recursive call uses the XPath node() function to select all children of the
element in question.

White space is ignored when it comes between the end of one instruction and
the beginning of the next. To force white space into the output in this case, we must
delimit it with <text> . . . </text> tags. Extra white space (e.g., after the ends of
sentences) is specified with the “nonbreaking space” character entity, &#160;.

Three extra templates end our script. The most interesting of these serves
to format author lists. It has a name attribute rather than a match attribute,
and is invoked with call-template rather than apply-templates. A called
template always takes the current node of the caller, in this case the node that
represents a bibliographic entry. Internally, the author list template executes a
for-each instruction that selects all child nodes representing authors or editors.
The for-each, in turn, uses the XPath last() and position() functions to
determine how many names there are, and where each name falls in the list. It
inserts the word “and” between the final two names, and puts commas after all
names but the last in lists of three or more.

The template with match="uri" serves to format URIs that appear anywhere
in the XML source. It creates an HTML link in the output, but uses the XPath
substring-after function to strip the leading http:// off the visible text. XPath
provides a variety of similar functions for string and regular expression manipu-
lation. The value-of instruction copies the contents of the selected node to the
output, as a character string.

Our final template serves as a default case. The XPath expression "@*|node()"
will match any attribute or other node in the XML source. Inside, the copy
instruction copies the node’s tags, if any, to the output, with the result of a recursive
call to apply-templates in between. The "@*|node()" on the recursive call
selects a node set consisting of all the current node’s attributes and children. The
end result is that any XML elements in the source that are delimited by tags for
which we do not have special templates will be regenerated in the output just as
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<html><head><title>Bibliography</title></head>
<body><h1>Bibliography</h1><ol>
<li>
<q>A Simple Proof for the Turing-Completeness of XSLT and XQuery,</q>
by Stephan Kepser.&nbsp; In <em>Proceedings, Extreme Markup Languages
2004</em>, Montr&eacute;al, Canada, August, 2004. Available at
<a href="http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Kepser01

/EML2004Kepser01.html">www.mulberrytech.com/Extreme/Proceedings/html/2004
/Kepser01/EML2004Kepser01.html</a>.</li>
<li>
<q>Complex Information Processing: A File Structure for the Complex,
the Changing, and the Indeterminate,</q> by Theodor Holm Nelson.&nbsp;
In <em>Proceedings of the Twentieth ACM National Conference</em>,
pages 84&ndash;100, Cleveland, OH, August, 1965.</li>

<li>
<q><code>ksh</code>: An Extensible High Level Language,</q> by David
G. Korn.&nbsp; In <em>Proceedings of the USENIX Very High Level Languages
Symposium</em>, pages 129&ndash;146, Santa Fe, NM, October, 1994.</li>

<li>
<em>Programming Perl,</em> by Larry Wall, Tom Christiansen, and Jon
Orwant.&nbsp; O&rsquo;Reilly and Associates, Cambridge, MA, third edition,
2000.</li>

<li>
<q>Scripting: Higher-Level Programming for the 21st Century,</q> by
John K. Ousterhout.&nbsp; <em>Computer 31</em>:3 (March 1998), pages
23&ndash;30.</li>

<li>
<em>The Python Language Reference Manual,</em> by Guido van Rossum and
Fred L. Drake, Jr. (editor).&nbsp; Network Theory, Ltd., Bristol, UK, 2003.
Available at <a href="http://www.network-theory.co.uk/docs/pylang/">www.network-

theory.co.uk/docs/pylang/</a>.</li>
</ol>
</body></html>

Figure 13.27 Result of applying the stylesheet of Figure 13.26 to the bibliography of Figure 13.25.

they appear in the source. The recursion stops at text nodes and attributes, which
are the leaves of the XML tree.

HTML output from our script appears in Figure 13.27. The rendered web
page appears in Figure 13.28.

While lengthy by the standards of this text, our example illustrates only a frac-
tion of the capabilities of XSLT. In the standard categorization of programming
languages, the notation is strongly declarative: values may have names, but there
are no mutable variables, and no side effects. There is a limited looping mechanism
(for-each), but the real power comes from recursion, and from recursive traversal
of XML trees in particular. �
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Figure 13.28 Rendered version of the HTML in Figure 13.27.

3CHECK YOUR UNDERSTANDING

58. Explain the relationships among SGML, HTML, and XML. What are their
corresponding stylesheet languages?

59. Why does XML work so hard to distinguish between content and presentation?

60. What are the three main components of XSL? What are their respective pur-
poses?

61. What is XHTML? How does it differ from HTML?

62. Explain the correspondence between XML documents and trees.

63. What does it mean for an XML document to be well formed?

64. What is a document type definition (DTD)? An XML Schema? Briefly, how do
they compare?

65. Explain the distinctions (syntactic and semantic) among elements, declara-
tions, and processing instructions in XML. Also explain the distinctions among
elements, tags, and attributes.

66. Summarize the execution model of XSLT. In a nutshell, how does it work?

67. Explain the difference between applying templates and calling them in XSLT.
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13.6 Exercises

13.19 Modify the XSLT of Figure 13.26 to do one or more of the following:

(a) Alter the titles of conference papers so that only first words, words
that follow a dash or colon (and thus begin a subtitle), and proper
nouns are capitalized. You will need to adopt a convention by which
the creator of the document can identify proper nouns.

(b) Sort entries by the last name of the first author or editor. You will
need to adopt a convention by which the creator of the document can
identify compound last names (“von Neumann,” for example, should
be alphabetized under ‘v’).

(c) Allow bibliographic entries to contain an abstract element, which
when formatted appears as an indented block of text in a smaller font.

(d) In addition to the book, article, and inproceedings elements, add
support for other kinds of entries, such as manuals, technical reports,
theses, newspaper articles, web sites, and so on. You may want to draw
inspiration from the categories supported by BIBTEX [Lam94, App. B].

(e) Format entries according to some standard style convention (e.g., that
of the Chicago Manual of Style [Uni03] or the ACM Transactions
[www.acm.org/pubs/submissions/latex style/index.htm]).

13.20 Suppose bibliographic entries in Figure 13.25 contain a mandatory key
element, and that other documents can contain matching cite elements.
Create an XSLT script that imitates the work of BibTEX. Your script should

(a) read an XML document, find all the cite elements, collect the keys
they contain, and replace them with bibref elements that contain
small integers instead.

(b) read a separate XML bibliography document, extract the entries with
matching keys, and write them, in sorted order, to a new (and probably
smaller) bibliography.
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The small numbers in the bibref elements of the new document from (a)
should match the corresponding numbered entries in the new bibliography
from (b).

13.21 Write a program that will read an XHTML file and print an outline of its
contents, by extracting all <title>, <h1>, <h2>, and <h3> elements, and
printing them at varying levels of indentation. Write

(a) in C or Java

(b) in sed or awk

(c) in Perl, Python, Tcl, or Ruby

(d) in XSLT

Compare and contrast your solutions.
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13.7 Explorations

13.31 Learn more about DTDs and XML Schemas. Compare the DTD and XML
Schema definitions of XHTML. What appear to the prospects for migrating
to the newer specification language?

13.32 Academics often keep lists of publications in multiple places and formats:
an on-line web page, a printable resume, a BIBTEX database for paper
writing [Lam94, App. B]. Using XSLT, build a set of tools that will construct
these lists automatically from a single XML source file.

13.33 Learn about XSL-FO. Use it to reimplement Example 13.87. Your new
version should be a two-stage process: one XSLT script should add for-
matting tags to the XML bibliography; a second should convert the tagged
bibliography to XHTML. Try to make these stages as general as possible:
you should be able to modify the appearance of the output list by changing
the first script only. You should also be able to write alternative versions of
the second script that generate output in formats other than XHTML (e.g.,
LaTeX).
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14.2 Intermediate Forms

In this section we consider three widely used intermediate forms: Diana, GIMPLE,
and RTL. Two additional examples, Java byte code and the Common Intermediate
Language (CIL) can be found in Chapter 15.

Diana (Descriptive Intermediate Attributed Notation for Ada) is an Ada-
specific, high-level tree-based IF developed cooperatively by researchers at the
University of Karlsruhe in Germany, Carnegie Mellon University, Intermetrics,
Softech, and Tartan Laboratories. It incorporates features from two earlier efforts,
named TCOL and AIDA.

GIMPLE and RTL are the intermediate languages of the GNU compiler col-
lection (gcc). RTL (Register Transfer Language) is the older of the two. It is a
medium-level pseudo-assembly language, and was the basis of almost all language-
independent code improvement in gcc prior to the introduction of GIMPLE in
2005. GIMPLE, like Diana, is a tree-based form, but not quite as abstract. As of
gcc v.4, there are approximately 100 code improvement phases based on GIMPLE,
and about 70 based on RTL.

14.2.1 Diana

Diana is very complex (the documentation is 200 pages long), but highly regular,
and we can at least give the flavor of it here. It is formally described using a
preexisting notation called IDL [SS89], which stands for Interface Description
Language.1 IDL is widely used to describe abstract data types in a machine- and
implementation-independent way. Using IDL-based tools, one can automatically
construct routines to translate concrete instances of an abstract data type to and

1 Unfortunately, the term “IDL” is used both for the general category of interface description
languages (of which there are many) and the specific Interface Description Language used by
Diana.
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from a standard linear textual representation. IDL is perfectly suited for Diana.
Other uses include multi-database systems, message passing across distributed
networks, and compilation for heterogeneous parallel machines. In addition to
providing the interface between the front end and back end of an Ada compiler,
Diana frequently serves as the standard representation of fragments of Ada code
in a wider program development environment.

Diana structures are defined abstractly as trees, but they are not necessarily
represented that way. To guarantee portability across platforms and among the
products produced by different vendors, all programs that use Diana must be
able to read and write the linear textual format. Vendors are allowed (and in
fact encouraged) to extend Diana by adding new attributes to the tree nodes,
but a tool that produces Diana conforming to the standard must generate all the
standard attributes and must never use the standard attributes for nonstandard
purposes. Similarly, a tool that consumes Diana conforming to the standard may
exploit information in extra attributes if it is provided, but must be capable of
functioning correctly when given only the standard attributes.

Ada compilers construct and decorate the nodes of a Diana tree in separate
passes. The Diana manual recommends that the construction pass be driven by an
attribute grammar. This pass establishes the lexical and syntactic attributes of tree
nodes. Lexical attributes include the spelling of identifier names and the location
(file name, line and column number) of constructs. Syntactic attributes are the
parent–child links of the tree itself.2 Subsequent traversal(s) of the tree establish
the semantic and code-based attributes of tree nodes. Code-based attributes rep-
resent low-level properties such as numeric precision that have been specified in
the Ada source.

Symbol table information is represented in Diana as semantic attributes of
declarations, rather than as a separate structure. If desired, an implementation of
Diana can break this information out into a separate structure for convenience,
so long as it retains the tree-based abstract interface. Occurrences of names are
then linked to their declarations by “cross links” in the tree. A fully attributed
Diana structure is therefore in fact a DAG, rather than a tree. The cross links are
all among the semantic attributes, so the initial structure (formed of lexical and
syntactic attributes) is indeed a tree.

IDL (and thus the Diana definition) employs a tree grammar notation similar
to that of Section 4.6. Unlike BNF this notation defines a complete syntax tree,
rather than just its fringe (i.e., the yield). To avoid the many “useless” nodes of a
typical parse tree, IDL distinguishes between two kinds of symbols, which it calls
classes and nodes. The nodes are the “interesting” symbols—the ones that are in
the Diana tree. The classes are the “uninteresting” symbols; they exist to facilitate
construction of the grammar. In effect, the distinction between classes and nodes

2 Terminology here is potentially confusing. We have been using the term “attribute” to refer to
annotations appended to the nodes of a parse or syntax tree. Diana uses the term for all the
information stored in the nodes of a syntax tree. This information includes the references to other
nodes that define the structure of the tree.
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Structure ExpressionTree Root EXP is
-- ExpressionTree is the name of the abstract data type.
-- EXP is the start symbol (goal) symbol of the grammar.

Type Source_Position ;
-- This is a private (implementation-dependent) type.

EXP ::= leaf | tree ;
-- EXP is a class. By convention, class names are written
-- in all upper-case letters. They are defined with "::="
-- productions. Their right-hand-sides must be an alternation
-- of singletons, each of which is either a class or a node.

tree => as_op: OPERATOR, as_left: EXP, as_right: EXP ;
tree => lx_src: Source_Position ;
leaf => lx_name: String ; lx_src: Source_Position ;

-- tree and leaf are nodes. They are the symbols actually
-- contained in an ExpressionTree. Their attributes (including
-- substructure) are defined by "=>" productions. Multiple
-- productions for the same node are NOT alternatives; they
-- define additional attributes. Thus, every tree node has four
-- attributes: as_op, as_left, as_right, and lx_src. Every leaf
-- has two attributes: lx_name and lx_src. By convention,
-- Diana uses ’lx_’ to preface lexical attributes,
-- ’as_’ to preface abstract syntax attributes,
-- ’sm_’ to preface semantic attributes, and
-- ’cd_’ to preface code attributes.

-- In a more realistic example, leaf would have a sm_dec
-- attribute that identified its declaration node, where
-- additional attributes would describe its type, scope, etc.

OPERATOR ::= plus | minus | times | divide ;
plus => ; minus => ; times => ; divide => ;

-- OPERATOR is a class consisting of the standard four binary
-- operators. The null productions reflect the fact that an
-- operator’s name tells us all we need to know about it.
-- We could have made the operator of a tree node a private
-- type, eliminating the need for the null productions and empty
-- subtree, but this would have pushed operators out of the
-- machine-independent part of the notation, which is unacceptable.

End

Figure 14.11 Example of the IDL notation used to define Diana.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 306 3–867

306 Chapter 14 Building a Runnable Program

tree

tree times leaf
"2"

plus leaf
"3"

leaf
"1"

Figure 14.12 Abstract syntax tree for (1 + 3) * 2, using the IDL definition of Figure 14.11.
Every node also has an attribute src of type Source_Position ; these are not shown here.

serves the same purpose as the A : B notation introduced for the left-hand sides
of productions in Section 4.6 (Figure 14.6).

Figure 14.11 contains an IDL example adapted from the Diana manualEXAMPLE 14.19
ExpressionTree
abstraction in Diana

[GWEB83, p. 26]. The ExpressionTree abstraction defined here is much sim-
pler than the corresponding portion of Diana, but it serves to illustrate the IDL
notation. An ExpressionTree for (1 + 3) * 2 appears in Figure 14.12. Note
that the classes (EXP and OPERATOR) do not appear in the tree. Only the nodes
(tree and leaf) appear. �

14.2.2 The gcc IFs

Many readers will be familiar with the gcc compilers. Distributed as open source
by the Free Software Foundation, gcc is used very widely in academia, and
increasingly in industry as well. The standard distribution includes front ends
for C, C++, Objective-C and C++, Ada 95, Fortran, and Java. Front ends for
additional languages, including Pascal Modula-2, PL/I, Mercury, and Cobol are
separately available. The C compiler is the original, and the one most widely used
(gcc originally stood for “GNU C compiler”). There are back ends for dozens of
processor architectures, including all commercially significant options. There are
also GNU implementations, not based on gcc, for some two dozen additional
languages.

Gcc has three main IFs. Most of the (language-specific) front ends employ,
internally, some variant of a high-level syntax tree form known as GENERIC.
Early phases of machine-independent code improvement use a somewhat lower-
level tree form known as GIMPLE (still a high-level IF). Later phases use a linear,
medium-level IF known as RTL (register transfer language).

GIMPLE is a recent innovation. Traditionally, all machine-independent code
improvement in gcc was based on RTL. Over time it became clear that the IF had
become an obstacle to further improvements in the compiler, and that a higher-
level form was needed. GIMPLE was introduced to meet that need. As of gcc v.4,
GENERIC is used for semantic analysis and, in a few cases, for certain language-
specific code improvement. As its final task, each front end converts the program
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from GENERIC into GIMPLE. The “middle end” then performs as many as 100
phases of code improvement on the GIMPLE representation, converts to RTL, and
performs as many as 70 additional phases before handing the result to the back
end for target code generation.

Both GIMPLE and RTL are meant to be kept in memory across compiler
phases, rather than being written to a file. Both IFs have a human-readable external
format, which the compiler can write and (partially) read, but this format is not
needed by the compiler: the internal version is much better suited for automatic
manipulation.

GIMPLE

The GIMPLE code generated by a gcc front end is essentially a distillation of
GENERIC, with many of the most complex (and often language-specific) features
“lowered” into a smaller, common set of tree node types. As a simple example,EXAMPLE 14.20

GCD program in GIMPLE consider the gcd program of Example 1.20:

int main () {
int i, j;
int i = getint(), j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

Figure 14.13 illustrates the “high GIMPLE” produced by the C front end of
gcc 4.0 when given this program as input. If we compare this GIMPLE code to
Figure 14.2, which loosely3 resembles GENERIC, we see at least two significant
differences. First, temporary variables have been introduced to hold the values
obtained from getint (GIMPLE declines to write the result of a function call
directly to an in-memory variable). Second, the while loop has been recast with
explicit gotos. �

Over the course of its many phases, the gcc middle end will make many
additional changes to this code, not only to improve its quality, but also to fur-
ther lower its level of abstraction. The if statement inside the loop, for example,
will see its then and else parts converted into simple gotos, which will jump to
separate statements. This “flattening” of the tree makes it easier to translate into
RTL.

Perhaps the most significant transformation of GIMPLE is the conversion
to static single assignment (SSA) form. We will study SSA in more detail in

3 Unlike the informal notation of Figure 14.2, GENERIC and GIMPLE make no distinction between
syntax tree nodes and symbol table nodes. In effect, the symbol table is merged into the syntax
tree.
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stmt_list(void) (i, j, t1, t2)

bind_expr

:=

(j) (t2)

stmt_list> stmt_list

(t2) call

:=

(i) (t1)

:=

(t1) call

goto

label

if
label

label
if

call

(getint)

(getint)

(i)

(i) (j) (j) (i)

(putint) (i)
(j)

:= :=

− −

(i) (j) stmt_list=/ stmt_list

goto goto
(i) (j)

:=

Figure 14.13 Simplified GIMPLE for the gcd program. Only structural nodes are shown: references to nodes that constitute
symbol table information are indicated by parenthesized names. The node for function main would contain a pointer to the
bind expr (block) node at the root of the tree shown here.

Section 16.4.1. Briefly, the SSA conversion introduces extra variable names into
the program in such a way that nothing is ever written in more than one place.
If there are 10 assignments to variable foo in the source code, there will be (at
least) ten separate variables foo1, . . . , foo10 in SSA. When control paths merge
(e.g., after an if. . . then. . . else), versions of a variable arriving on different
paths are combined, using a hypothetical “phi function” to create yet another
version (foo11 := φ (foo1, foo2)). As in functional programming languages, the
single-assignment character of SSA means that expressions are referentially trans-
parent —independent of evaluation order. Referential transparency significantly
simplifies many forms of code improvement.
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RTL

RTL is loosely based on the S-expressions of Lisp. Each RTL expression consists of
an operator or expression type and a sequence of operands. In its external form,
these are represented by a parenthesized list in which the element immediately
inside the left parenthesis is the operator. Each such list is then embedded in a
wrapper that points to predecessor and successor expressions in linear order. Inter-
nally, RTL expressions are represented by C structs and pointers. This pointer-rich
structure constitutes the interface among the compiler’s many back-end phases.
There are several dozen expression types, including constants, references to values
in memory or registers, arithmetic and logical operations, comparisons, bit-field
manipulations, type conversions, and stores to memory or registers.

The body of a subroutine consists of a sequence of RTL expressions. Each
expression in the sequence is called an insn (instruction). Each insn begins with
one of six special codes:

insn: an “ordinary” RTL expression.

jump insn: an expression that may transfer control to a label.

call insn: an expression that may make a subroutine call.

code label: a possible target of a jump.

barrier: an indication that the previous insn always jumps away. Control will
never “fall through” to here.

note: a pure annotation. There are nine different kinds of these, to identify the
tops and bottoms of loops, scopes, subroutines, and so on.

The sequence is not always completely linear; insns are sometimes collected
into pairs or triples that correspond to target machine instructions with delay
slots. Over a dozen different kinds of (non-note) annotations can be attached to
an individual insn, to identify side effects, specify target machine instructions or
registers, keep track of the points at which values are defined and used, automat-
ically increment or decrement registers that are used to iterate over an array, and
so on. Insns may also refer to various dynamically allocated structures, including
the symbol table.

A simplified insn sequence for the code fragment d := (a + b) * c appearsEXAMPLE 14.21
An RTL insn sequence in Figure 14.14. The three leading numbers in each insn represent the insn’s

unique id and those of its predecessor and successor, respectively. The :SI mode
specifier on a memory or register reference indicates access to a single (4-byte)
integer. Fields for the various insn annotations are not shown. �

In order to generate target code, the back end matches insns against patterns
stored in a semiformal description of the target machine. Both this description
and the routines that manipulate the machine-dependent parts of an insn are
segregated into a relatively small number of separately compiled files. As a result,
much of the compiler back end is machine independent, and need not actually be
modified when porting to a new machine.
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(insn 8 6 10 (set (reg:SI 2)
(mem:SI (symbol_ref:SI ("a")))))

(insn 10 8 12 (set (reg:SI 3)
(mem:SI (symbol_ref:SI ("b")))))

(insn 12 10 14 (set (reg:SI 2)
(plus:SI (reg:SI 2)

(reg:SI 3))))

(insn 14 12 15 (set (reg:SI 3)
(mem:SI (symbol_ref:SI ("c")))))

(insn 15 14 17 (set (reg:SI 2)
(mult:SI (reg:SI 2)

(reg:SI 3))))

(insn 17 15 19 (set (mem:SI (symbol_ref:SI ("d")))
(reg:SI 2)))

Figure 14.14 Simplified textual version of the RTL for d := (a + b) * c.

3CHECK YOUR UNDERSTANDING

24. Characterize Diana, GIMPLE, RTL, Java byte code, and Common Intermediate
Language as high-, medium-, or low-level intermediate forms.

25. What is an interface description language?

26. Give a brief description of Diana.

27. Explain the distinction between attributes and nodes in Diana.

28. Name three languages (other than C) for which there exist gcc front ends.

29. What is the internal IF of gcc’s front ends?

30. Give brief descriptions of GIMPLE and RTL. How do they differ? Why was
GIMPLE introduced?
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14.7 Dynamic Linking

To be amenable to dynamic linking, a library must either (1) be located at the
same address in every program that uses it, or (2) have no relocatable words
in its code segment, so that the content of the segment does not depend on its
address. The first approach is straightforward but restrictive: it generally requires
that we assign a unique address to every sharable library; otherwise we run the
risk that some newly created program will want to use two libraries that have
been given overlapping address ranges. In Unix System V R3, which took the
unique-address approach, shared libraries could only be installed by the system
administrator. This requirement tended to limit the use of dynamic linking to
a relatively small number of popular libraries. The second approach, in which a
shared library can be linked at any address, requires the generation of position-
independent code. It allows users to employ dynamic linking whenever they want,
without administrator intervention.

The cost of user-managed dynamic linking is that executable programs are no
longer self-contained. They depend for correct execution on the availability of
appropriate dynamic libraries at execution time. If different programs are built
with different expectations of (which versions of) which libraries will be available,
conflicts can arise. On Microsoft platforms, where dynamic libraries have names
ending in .dll, compatibility problems are sometimes referred to as “DLL hell.”
The frequency and severity of the problem can be minimized with good software
engineering practice. In particular, a package management system may maintain a
database of dependences between programs and libraries, and among the libraries
themselves. If installer programs use the database correctly, problems will be
detected at install time, when they can reasonably be addressed, rather than at the
arbitrarily delayed point at which a program first attempts to use an incompatible
or missing library.
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14.7.1 Position-Independent Code

A code segment that contains no relocatable words is said to constitute position-
independent code (PIC). To generate PIC, the compiler must observe the following
rules.

1. Use PC-relative addressing, rather than jumps to absolute addresses, for all
internal branches.

2. Similarly, avoid absolute references to statically allocated data, by using dis-
placement addressing with respect to some standard base register. If the code
and data segments are guaranteed to lie at a known offset from one another,
then an entry point to a shared library can compute an appropriate base reg-
ister value using the PC. Otherwise the caller must set the base register as part
of the calling sequence.

3. Use an extra level of indirection for every control transfer out of the PIC seg-
ment, and for every load or store of static memory outside the corresponding
data segment. The indirection allows the (non-PIC) target address to be kept
in the data segment, which is private to each program instance.

Exact details vary among processors, vendors, and operating systems. ConventionsEXAMPLE 14.22
PIC under MIPS/IRIX for SGI’s compilers for the MIPS architecture, under the IRIX 6.2 version of Unix,

are illustrated in Figure 14.15. Each shared code segment is accompanied, at a
static offset, by a nonshared linkage table and, at an arbitrary offset, by a nonshared
data segment. The linkage table lists the addresses of all external symbols refer-
enced in the code segment. Under MIPS/IRIX conventions, register gp (the“global
pointer”) is used to hold a reference to the linkage table.

As described in Section 8.2.2, any nonleaf subroutine must allocate space in
its stack frame to hold the value of the ra (return address) register, and must save
and restore this register in its prologue and epilogue. Similarly, any subroutine
that may call into a dynamically linked shared library must save the gp register
in the prologue, and restore it after every call into a different dynamically linked
shared library. At code-generation time, the compiler must know which external
symbols lie in such libraries. For a call to one of them, the usual jal (jump-and-
link) instruction is replaced by a sequence of three instructions. The first of these
loads register t9 from the linkage table, using gp-relative addressing. The second
is a jalr (jump-and-link-register) instruction, which takes its target address from
t9. The third (to be executed after the return) restores the gp. In a similar vein,
any load or store of a datum located in a dynamically linked shared library must
employ a two-instruction sequence. The first instruction loads the address of the
datum from the linkage table using gp-relative addressing. The second loads or
stores the datum itself.

The prologue of any subroutine foo that serves as an entry to a dynamically
linked shared library must establish a new gp. To do so it takes the value in t9
(i.e., the address of foo) and adds the (statically known) signed distance between
the code and the linkage table. �
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Dynamically linked
shared library

Shared code
(PIC)

Linkage table
(one copy
per process)

Private data
(one copy
per process)

main:
 *(sp+N) := gp
 .  .  .

-- call foo:
 t9 := *(gp+A)
 jalr t9
 gp := *(sp+N)
 .  .  .

--load X:
 t0 := *(gp+C)
 t0 := *t0
 .  .  .

--load Y:
 t0 := *(gp+B)
 t0 := *t0

foo:
 gp :=  t9+(E-D)
 .  .  .

--load X:
 t0 := *(gp+F)
 t0 := *t0
 .  .  .

--load Y:
 t0 := *(gp+G)
 t0 := *t0

gp (main)

gp (foo)

X:

Y:

AB
C

F

D

G

E

Figure 14.15 A dynamically linked shared library. Because main calls foo, which lies in the library, its prologue and epilogue
must save and restore both ra (not shown) and gp. Calls to foo are made indirectly, using an address stored in main’s linkage
table. Similarly, references to variables X and Y, both of which are globally visible, must employ a level of indirection. In the
prologue of foo, gp is set to point to foo’s linkage table, using the value in t9. The calling sequence in main restores the old
gp when foo returns.

14.7.2 Fully Dynamic (Lazy) Linking

If all or most of the symbols exported by a shared library are referenced by the
parent program, then it makes sense to link the library in its entirety at load time.
In any given execution of a program, however, there may be references to libraries
that are not actually used, because the input data never cause execution to follow
the code path(s) on which the references appear. If these “potentially unnecessary”
references are numerous, we may avoid a significant amount of work by linking
the library lazily on demand. Moreover even in a program that uses all its symbols,
incremental lazy linking may improve the system’s interactive responsiveness by
allowing programs to begin execution faster. Finally, a language system that allows

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch14-P374514 [12:17 2009/2/25] SCOTT: Programming Language Pragmatics Page: 314 3–867

314 Chapter 14 Building a Runnable Program

the dynamic creation of program components (e.g., as in Common Lisp or Java)
must use lazy linking to delay the resolution of external references in compiled
components.

The run-time data structures for lazy linking are almost the same as those inEXAMPLE 14.23
Dynamic linking under
MIPS/IRIX

Figure 14.15, but they are incrementally created. At load time, the program
begins with the main code segment and linkage table, and with all data segments
for which addresses need to appear in that linkage table. In our specific example,
we would load the data segments of both main and foo, because the addresses of
both X (which belongs to main) and Y (which belongs to foo) need to appear in
the main linkage table. We would not, however, load the code segment or linkage
table of foo, despite the fact that the address of foo needs to appear in the linkage
table. Instead, we would initialize that linkage table entry to refer to a stub routine,
created by the compiler and included in the main code segment. The code of the
stub looks like this:

t9 := *(gp+k) -- lazy linker entry point
t7 := ra
t8 := n -- index of stub
call *t9 -- overwrites ra

The lazy linker itself resides in a (nonlazy) shared library, linked to the program
at load time. (Here we have assumed that its address lies at offset k in the linkage
table.)

After branching to the lazy linker, control never returns to the stub. Instead,
the linker uses the constant n to index into the import table of the program’s
object file, where it finds the information it needs to identify both the name and
the library of the unresolved reference. The linker then loads the library’s code
segment into memory if it is not already there. At this point it can change (“patch”)
the linkage table entry through which the stub was called, so that it now points
to the library routine. If it needed to load the library’s code segment, the linker
also creates a copy of the library’s linkage table. It initializes all data entries in that
table, loading (copies of) the segments to which those entries refer if they (the
segments) have not already been loaded as part of an earlier linking operation.
For each subroutine entry in the library’s linkage table, the linker checks to see
whether the relevant code segment has already been loaded. If so, it initializes the
entry with the subroutine’s address. If not, it initializes it with the address of its
stub. Finally, the linker copies t7 into ra and jumps to the newly linked library
routine. At this point, everything appears as though the call had happened in the
normal fashion. �

As execution proceeds, further references to not-yet-loaded symbols extend the
“frontier” of the program. Because invocations of the linker occur on subroutine
calls and not on data references, the current frontier always includes a set of code
segments and the data segments to which those code segments refer. Each linking
operation brings in one new code segment, together with all of the additional data
segments to which that code refers. If we were willing to intercept page faults,
we could arrange to enter the linker on references to not-yet-loaded data. This
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approach would avoid loading data segments that are never really used, but the
overhead of the faults might greatly increase execution time.

3CHECK YOUR UNDERSTANDING

31. Explain the addressing challenge faced by dynamic linking systems.

32. What is position-independent code? What is it good for? What special precau-
tions must a compiler follow in order to produce it?

33. Under MIPS/IRIX conventions, explain the significance of the gp (global
pointer) register in a program with dynamic linking.

34. What is the purpose of a linkage table?

35. What is lazy dynamic linking? What is its purpose? How does it work?
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14.9 Exercises

14.12 Compare and contrast Diana and GIMPLE with each other and with
the notation we have been using for syntax tree attribute grammars
(Section 4.6).

14.13 (a) PC-relative branches on the MIPS are limited to an offset of ±217

bytes with respect to the current instruction. Explain how to generate
position-independent code that needs to branch farther than this.

(b) Displacement on the MIPS is limited to an offset of ±215 bytes with
respect to the specified base pointer. Explain how a dynamic library in
the style of Figure 14.15 can access more than 2048 symbols.

14.14 In Example 8.66 we described how the Gnu Pascal compiler for the
x86 uses dynamically generated code to represent a subroutine closure.
Explain how a similar technique could be used to simplify the mechanism
of Figure 14.15, if the MIPS allowed instructions to be fetched from
writable memory.
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14.10 Explorations

14.20 Assuming you have access to gcc, run it with various of the compile-time
flags that cause it to dump its RTL intermediate code. Recent versions of the
compiler support about thirty such flags. Most have both a long descriptive
name (e.g., -fdump-rtl-cse for a dump after common subexpression
elimination) and a shorter abbreviation of the form -dX, where X is a single
letter. Ask a local Unix guru to help you find and access the gcc.info files,
which document RTL, the compile-time flags, and the various compiler
phases.

14.21 Find out how linking works under your favorite operating system. Can code
be dynamically linked? Can (nonprivileged) users create shared libraries?
How does the loader find the libraries that need to be linked to a program?
If your compiler can be instructed to generate position-independent code,
how does this code compare (in size and run-time efficiency) with the non-
position-independent equivalent?

14.22 Learn about pointer swizzling [Wil92a], originally developed to run pro-
grams on machines with insufficient virtual address space. Explain its con-
nection to dynamic linking.
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16Code Improvement

In Chapter 14 we discussed the generation,assembly, and linking of target
code in the back end of a compiler. The techniques we presented led to correct but
highly suboptimal code: there were many redundant computations, and inefficient
use of the registers, multiple functional units, and cache of a modern micropro-
cessor. This chapter takes a look at code improvement : the phases of compilation
devoted to generating good code. For the most part we will interpret “good” to
mean fast. In a few cases we will also consider program transformations that
decrease memory requirements. On occasion a real compiler may try to mini-
mize power consumption, dollar cost of execution under a particular account-
ing system, or demand for some other resource; we will not consider these issues
here.

There are several possible levels of “aggressiveness” in code improvement. In
a very simple compiler, or in a “nonoptimizing” run of a more sophisticated
compiler, we can use a peephole optimizer to peruse already-generated target code
for obviously suboptimal sequences of adjacent instructions. At a slightly higher
level, typical of the baseline behavior of production-quality compilers, we can
generate near-optimal code for basic blocks. As described in Chapter 14, a basic
block is a maximal-length sequence of instructions that will always execute in its
entirety (assuming it executes at all). In the absence of delayed branches, each
basic block in assembly language or machine code begins with the target of a
branch or with the instruction after a conditional branch, and ends with a branch
or with the instruction before the target of a branch. As a result, in the absence of
hardware exceptions, control never enters a basic block except at the beginning,
and never exits except at the end. Code improvement at the level of basic blocks
is known as local optimization. It focuses on the elimination of redundant opera-
tions (e.g., unnecessary loads or common subexpression calculations), and on
effective instruction scheduling and register allocation.

At higher levels of aggressiveness, production-quality compilers employ
techniques that analyze entire subroutines for further speed improvements.
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These techniques are known as global optimization.1 They include multi-basic-
block versions of redundancy elimination, instruction scheduling, and register
allocation, plus code modifications designed to improve the performance of loops.
Both global redundancy elimination and loop improvement typically employ a
control flow graph representation of the program, as described in Section 14.1.1.
Both employ a family of algorithms known as data flow analysis to trace the flow
of information across the boundaries between basic blocks.

At the highest level of aggressiveness, many recent compilers perform vari-
ous forms of interprocedural code improvement. Interprocedural improvement
is difficult for two main reasons. First, because a subroutine may be called from
many different places in a program, it is difficult to identify (or fabricate) con-
ditions (available registers, common subexpressions, etc.) that are guaranteed to
hold at all call sites. Second, because many subroutines are separately compiled,
an interprocedural code improver must generally subsume some of the work of
the linker.

In the sections below we consider peephole, local, and global code improve-
ment. We will not cover interprocedural improvement; interested readers are
referred to other texts (see the Bibliographic Notes at the end of the chapter).
Moreover, even for the subjects we cover, our intent will be more to “demystify”
code improvement than to describe the process in detail. Much of the discussion
(beginning in Section 16.3) will revolve around the successive refinement of
code for a single subroutine. This extended example will allow us to illustrate the
effect of several key forms of code improvement without dwelling on the details of
how they are achieved. Entire books continue to be written on code improvement;
it remains a very active research topic.

As in most texts, we will sometimes refer to code improvement as “optimiza-
tion,”though this term is really a misnomer: we will seldom have any guarantee that
our techniques will lead to optimal code. As it turns out, even some of the relatively
simple aspects of code improvement (e.g., minimization of register usage within
a basic block) can be shown to be NP-hard. True optimization is a realistic option
only for small, special-purpose program fragments [Mas87]. Our discussion will
focus on the improvement of code for imperative programs. Optimizations spe-
cific to functional or logic languages are beyond the scope of this book.

We begin in Section 16.1 with a more detailed consideration of the phases
of code improvement. We then turn to peephole optimization in Section 16.2.
It can be performed in the absence of other optimizations if desired, and the
discussion introduces some useful terminology. In Sections 16.3 and 16.4
we consider local and global redundancy elimination. Sections 16.5 and 16.7
cover code improvement for loops. Section 16.6 covers instruction scheduling.
Section 16.8 covers register allocation.

1 The adjective “global” is standard but somewhat misleading in this context, since the improve-
ments do not consider the program as a whole; “intraprocedural” might be more accurate.
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16.1 Phases of Code Improvement

As we noted in Chapter 14, the structure of the back end varies considerably from
compiler to compiler. For simplicity of presentation we will continue to focus on
the structure introduced in Section 14.1. In that section (as in Section 1.6) we
characterized machine-independent and machine-specific code improvement as
individual phases of compilation, separated by target code generation. We mustEXAMPLE 16.1

Code improvement phases now acknowledge that this was an oversimplification. In reality, code improvement
is a substantially more complicated process, often comprising a very large number
of phases.

In some cases optimizations depend on one another, and must be performed
in a particular order. In other cases they are independent, and can be performed
in any order. In still other cases it can be important to repeat an optimization, in
order to recognize new opportunities for improvement that were not visible until
some other optimization was applied.

We will concentrate in our discussion on the forms of code improvement that
tend to achieve the largest increases in execution speed, and are most widely used.
Compiler phases to implement these improvements are shown in Figure 16.1.
Within this structure, the machine-independent part of the back end begins with
intermediate code generation. This phase identifies fragments of the syntax tree
that correspond to basic blocks. It then creates a control flow graph in which each
node contains a linear sequence of three-address instructions for an idealized
machine, typically one with an unlimited supply of virtual registers. The machine-
specific part of the back end begins with target code generation. This phase strings
the basic blocks together into a linear program, translating each block into the
instruction set of the target machine and generating branch instructions that
correspond to the arcs of the control flow graph.

Machine-independent code improvement in Figure 16.1 is shown as three
separate phases. The first of these identifies and eliminates redundant loads, stores,
and computations within each basic block. The second deals with similar redun-
dancies across the boundaries between basic blocks (but within the bounds of a
single subroutine). The third effects several improvements specific to loops; these
are particularly important, since most programs spend most of their time in loops.
In Sections 16.4, 16.5, and 16.7, we shall see that global redundancy elimi-
nation and loop improvement may actually be subdivided into several separate
phases.

We have shown machine-specific code improvement as four separate phases.
The first and third of these are essentially identical. As we noted in Section 5.5.2,
register allocation and instruction scheduling tend to interfere with one another:
the instruction schedules that do the best job of minimizing pipeline stalls tend to
increase the demand for architectural registers (this demand is commonly known
as register pressure). A common strategy, assumed in our discussion, is to schedule
instructions first, then allocate architectural registers, then schedule instructions
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Scanner (lexical analysis)

Character stream

Token stream

Parse tree

Abstract syntax tree with
annotations (high-level IF)

Front end

Back end

Control flow graph with
pseudoinstructions in basic

blocks (medium-level IF)

Machine-
independent

Machine-
specific

Modified control flow graph

Modified control flow graph

Modified control flow graph

Modified assembly language

Modified assembly language

Modified assembly language

Final assembly language

(Almost) assembly language
(low-level IF)

Parser (syntax analysis)

Semantic analysis

Local redundancy
elimination

Global redundancy
elimination

Loop improvement

Target code generation

Preliminary
instruction scheduling

Register allocation

Final instruction scheduling

Peephole optimization

Intermediate
code generation

Figure 16.1 A more detailed view of the compiler structure originally presented in Figure
14.1 (page 731). Both machine-independent and machine-specific code improvement have been
divided into multiple phases. As before, the dashed line shows a common“break point” for a two-
pass compiler. Machine-independent code improvement may sometimes be located in a separate
“middle end” pass.

again. If it turns out that there aren’t enough architectural registers to go around,
the register allocator will generate additional load and store instructions to spill
registers temporarily to memory. The second round of instruction scheduling
attempts to fill any delays induced by the extra loads. �
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16.2 Peephole Optimization

In a simple compiler with no machine-independent code improvement, a code
generator can simply walk the abstract syntax tree, producing naive code, either as
output to a file or global list, or as annotations in the tree. As we saw in Chapters 1
and 14, however, the result is generally of very poor quality (contrast the code of
Example 1.2 (page 5) with that of Figure 1.6). Among other things, every use of a
variable as an r-value results in a load, and every assignment results in a store.

A relatively simple way to significantly improve the quality of naive code is
to run a peephole optimizer over the target code. A peephole optimizer works by
sliding a several-instruction window (a peephole) over the target code, looking
for suboptimal patterns of instructions. The set of patterns to look for is heuristic;
generally one creates patterns to match common suboptimal idioms produced by
a particular code generator, or to exploit special instructions available on a given
machine. Here are a few examples:

Elimination of redundant loads and stores: The peephole optimizer can often rec-EXAMPLE 16.2
ognize that the value produced by a load instruction is already available in a
register. For example:

r2 := r1 + 5
i := r2
r3 := i
r3 := r3 × 3

becomes
r2 := r1 + 5
i := r2
r3 := r2 × 3

In a similar but less common vein, if there are two stores to the same location
within the optimizer’s peephole (with no possible intervening load from that
location), then we can generally eliminate the first. �

Constant folding: A naive code generator may produce code that performs cal-EXAMPLE 16.3
culations at run time that could actually be performed at compile time.
A peephole optimizer can often recognize such code. For example:

r2 := 3 × 2 becomes r2 := 6 �
Constant propagation: Sometimes we can tell that a variable will have a constantEXAMPLE 16.4

value at a particular point in a program. We can then replace occurrences of
the variable with occurrences of the constant:
r2 := 4
r3 := r1 + r2
r2 := . . .

becomes
r2 := 4
r3 := r1 + 4
r2 := . . .

and then
r3 := r1 + 4
r2 := . . .

The final assignment to r2 tells us that the previous value (the 4) in r2 was
dead—it was never going to be needed. (By analogy, a value that may be
needed in some future computation is said to be live.) Loads of dead values can
be eliminated. Similarly,

r2 := 4
r3 := r1 + r2
r3 := ∗r3

becomes
r3 := r1 + 4
r3 := ∗r3

and then r3 := ∗(r1 +4)
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(This assumes again that r2 is dead.)
Often constant folding will reveal an opportunity for constant propagation.

Sometimes the reverse occurs:
r1 := 3
r2 := r1 × 2

becomes
r1 := 3
r2 := 3 × 2

and then
r1 := 3
r2 := 6

If the 3 in r1 is dead, then the initial load can also be eliminated. �
Common subexpression elimination: When the same calculation occurs twiceEXAMPLE 16.5

within the peephole of the optimizer, we can often eliminate the second calcu-
lation:
r2 := r1 × 5
r2 := r2 + r3
r3 := r1 × 5

becomes
r4 := r1 × 5
r2 := r4 + r3
r3 := r4

Often, as shown here, an extra register will be needed to hold the common
value. �

Copy propagation: Even when we cannot tell that the contents of register b willEXAMPLE 16.6
be constant, we may sometimes be able to tell that register b will contain the
same value as register a. We can then replace uses of b with uses of a, so long
as neither a nor b is modified:
r2 := r1
r3 := r1 + r2
r2 := 5

becomes
r2 := r1
r3 := r1 + r1
r2 := 5

and then
r3 := r1 + r1
r2 := 5

Performed early in code improvement, copy propagation can serve to decrease
register pressure. In a peephole optimizer it may allow us (as in this case, in
which the copy of r1 in r2 is dead) to eliminate one or more instructions. �

Strength reduction: Numeric identities can sometimes be used to replace a com-EXAMPLE 16.7
paratively expensive instruction with a cheaper one. In particular, multiplica-
tion or division by powers of two can be replaced with adds or shifts:

r1 := r2 × 2 becomes r1 := r2 + r2 or r1 := r2 << 1

r1 := r2 / 2 becomes r1 := r2 >> 1

(This last replacement may not be correct when r2 is negative; see Exer-
cise 16.1.) In a similar vein, algebraic identities allow us to perform sim-
plifications like the following:

r1 := r2 × 0 becomes r1 := 0 �
Elimination of useless instructions: Instructions like the following can be droppedEXAMPLE 16.8

entirely:

r1 := r1 + 0
r1 := r1 × 1 �

Filling of load and branch delays: Several examples of delay-filling transforma-
tions were presented in Section 5.5.1.
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Exploitation of the instruction set: Particularly on CISC machines, sequences ofEXAMPLE 16.9
simple instructions can often be replaced by a smaller number of more com-
plex instructions. For example,

r1 := r1 & 0x0000FF00
r1 := r1 >> 8

can be replaced by an “extract byte” instruction. The sequence

r1 := r2 + 8
r3 := ∗r1

where r1 is dead at the end can be replaced by a single load of r3 using a base
plus displacement addressing mode. Similarly,

r1 := ∗r2
r2 := r2 + 4

where ∗r2 is a 4-byte quantity can be replaced by a single load with an auto-
increment addressing mode. On many machines, a series of loads from con-
secutive locations can be replaced by a single, multiple-register load. �

Because they use a small, fixed-size window, peephole optimizers tend to be
very fast: they impose a small, constant amount of overhead per instruction. They
are also relatively easy to write and, when used on naive code, can yield dramatic
performance improvements.

It should be emphasized, however, that most of the forms of code improve-
ment in the list above are not specific to peephole optimization. In fact, all
but the last (exploitation of the instruction set) will appear in our discussion
of more general forms of code improvement. The more general forms will
do a better job, because they won’t be limited to looking at a narrow win-
dow of instructions. In a compiler with good machine-specific and machine-
independent code improvers, there may be no need for the peephole optimizer to
eliminate redundancies or useless instructions, fold constants, perform strength
reduction, or fill load and branch delays. In such a compiler the peephole opti-
mizer serves mainly to exploit idiosyncrasies of the target machine, and perhaps
to clean up certain suboptimal code idioms that leak through the rest of the
back end.

DESIGN & IMPLEMENTATION

Peephole optimization
In many cases, it is easier to count on the code improver to catch and fix
suboptimal idioms than it is to generate better code in the first place. Even a
peephole optimizer will catch such common examples as multiplication by one
or addition of zero; there is no point adding complexity to the code generator
to treat these cases specially.
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16.3 Redundancy Elimination in Basic Blocks

To implement local optimizations, the compiler must first identify the fragments
of the syntax tree that correspond to basic blocks, as described in Section 14.1.1.
Roughly speaking, these fragments consist of tree nodes that are adjacent accord-
ing to in-order traversal, and contain no selection or iteration constructs. In
Figure 14.6 (page 740) we presented an attribute grammar to generate linear
(goto-containing) code for simple syntax trees. A similar grammar can be used to
create a control flow graph (Exercise 14.6).

A call to a user subroutine within a control flow graph could be treated as
a pair of branches, defining a boundary between basic blocks, but as long as
we know that the call will return we can simply treat it as an instruction with
potentially wide-ranging side effects (i.e., as an instruction that may overwrite
many registers and memory locations). As we noted in Section 8.2.4, the compiler
may also choose to expand small subroutines in-line. In this case the behavior of
the “call” is completely visible. If the called routine consists of a single basic block,
it becomes a part of the calling block. If it consists of multiple blocks, its prologue
and epilogue become part of the blocks before and after the call.

16.3.1 A Running Example

Throughout much of the remainder of this chapter we will trace the improvementEXAMPLE 16.10
The combinations
subroutine

of code for a single subroutine: specifically, one that calculates into an array the
binomial coefficients

(n
m

)
for all 0 ≤ m ≤ n. These are the elements of the nth row

of Pascal’s triangle. The mth element of the row indicates the number of distinct
combinations of m items that may be chosen from among a collection of n items.
In C, the code looks like this:

combinations(int n, int *A) {
int i, t;
A[0] = 1;
A[n] = 1;
t = 1;
for (i = 1; i <= n/2; i++) {

t = (t * (n+1-i)) / i;
A[i] = t;
A[n-i] = t;

}
}

This code capitalizes on the fact that
(n

m

)
=

( n
n−m

)
for all 0 ≤ m ≤ n. One

can prove (Exercise 16.2) that the use of integer arithmetic will not lead to
round-off errors. �

A syntax tree for our subroutine appears in Figure 16.2, with basic blocksEXAMPLE 16.11
Syntax tree and naive
control flow graph

identified. The corresponding control flow graph appears in Figure 16.3.
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Figure 16.2 Syntax tree for the combinations subroutine. Portions of the tree corresponding
to basic blocks have been circled.

To avoid artificial interference between instructions at this early stage of code
improvement, we employ a medium-level intermediate form (IF) in which every
calculated value is placed in a separate register. To emphasize that these are virtual
registers (of which there is an unlimited supply), we name them v1, v2, . . . . We
will use r1, r2, . . . to represent architectural registers in Section 16.8.

The fact that no virtual register is assigned a value by more than one instruction
in the original control flow graph is crucial to the success of our code improvement
techniques. Informally, it says that every value that could eventually end up in a
separate architectural register will, at least at first, be placed in a separate virtual
register. Of course if an assignment to a virtual register appears within a loop,
then the register may take on a different value in every iteration. In addition, as
we move through the various phases of code improvement we will relax our rules

DESIGN & IMPLEMENTATION

Basic blocks
Many of a program’s basic blocks are obvious in the source. Some, however,
are created by the compiler during the translation process. Loops may be cre-
ated, for example, to copy or initialize large records or subroutine parameters.
Run-time semantic checks, likewise, induce large numbers of implicit selection
statements. Moreover, as we shall see in Sections 16.4.2, 16.5, and 16.7,
many optimizations move code from one basic block to another, create or
destroy basic blocks, or completely restructure loop nests. As a result of these
optimizations, the final control flow graph may be very different from what the
programmer might naively expect.
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Block 1:
 sp := sp – 8
 v1 := r4 ––  n
 n := v1
 v2 := r5 ––  A
 A := v2

 v3 := A
 v4 := 1
 *v3 := v4
 v5 := A
 v6 := n
 v7 := 4
 v8 := v6 × v7
 v9 := v5 + v8
 v10 := 1
 *v9 := v10
 v11 := 1
 t := v11
 v12 := 1
  i := v12
 goto Block 3

Block 4:
 sp := sp + 8
 goto *ra

Block 3:
 v39 := i
 v40 := n
 v41 := 2
 v42 := v40 div v41
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t
 v14 := n
 v15 := 1
 v16 := v14 + v15
 v17 := i
 v18 := v16 − v17
 v19 := v13 × v18
 v20 := i
 v21 := v19 div v20
 t := v21
 v22 := A
 v23 := i
 v24 := 4
 v25 := v23 × v24
 v26 := v22 + v25
 v27 := t
 *v26 := v27
 v28 := A
 v29 := n
 v30 := i
 v31 := v29 − v30
 v32 := 4
 v33 := v31 × v32
 v34 := v28 + v33
 v35 := t
 *v34 := v35
 v36 := i
 v37 := 1
 v38 := v36 + v37
 i := v38
 goto Block 3

Figure 16.3 Naive control flow graph for the combinations subroutine. Note that reference
parameter A contains the address of the array into which to write results; hence we write v3 :=
A instead of v3 := &A.
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to allow a virtual register to be assigned a value in more than one place. The key
point is that by employing a new virtual register whenever possible at the outset we
maximize the degrees of freedom available to later phases of code improvement.

In the initial (entry) and final (exit) blocks, we have included code for the
subroutine prologue and epilogue. We have assumed the MIPS calling conven-
tions, described in Section 8.2.2. We have also assumed that the compiler has
recognized that our subroutine is a leaf, and that it therefore has no need to save
the return address (ra) or frame pointer (fp) registers. In all cases, references to
n, A, i, and t in memory should be interpreted as performing the appropriate
displacement addressing with respect to the stack pointer (sp) register. Though
we assume that parameter values were passed in registers (architectural registers
r4 and r5 on the MIPS), our original (naive) code immediately saves these values
to memory, so that references can be handled in the same way as they are for local
variables. We make the saves by way of virtual registers so that they will be visible
to the global value numbering algorithm described in Section 16.4.1. Eventu-
ally, after several stages of improvement, we will find that both the parameters and
the local variables can be kept permanently in registers, eliminating the need for
the various loads, stores, and copy operations. �

16.3.2 Value Numbering

To improve the code within basic blocks, we need to minimize loads and stores, and
to identify redundant calculations. One common way to accomplish these tasks is
to translate the syntax tree for a basic block into an expression DAG (directed acyclic
graph) in which redundant loads and computations are merged into individual
nodes with multiple parents [ALSU07, Secs. 6.1.1 and 8.5.1; FL88, Sec. 15.7].
Similar functionality can also be obtained without an explicitly graphical program
representation, through a technique known as local value numbering [Muc97,
Sec. 12.4]. We describe this technique below.

Value numbering assigns the same name (a “number”—historically, a table
index) to any two or more symbolically equivalent computations (“values”), so
that redundant instances will be recognizable by their common name. In the for-
mulation here, our names are virtual registers, which we merge whenever they
are guaranteed to hold a common value. While performing local value number-
ing, we will also implement local constant folding, constant propagation, copy
propagation, common subexpression elimination, strength reduction, and use-
less instruction elimination. (The distinctions among these optimizations will be
clearer in the global case.)

We scan the instructions of a basic block in order, maintaining a dictionary
to keep track of values that have already been loaded or computed. For a load
instruction, vi := x, we consult the dictionary to see whether x is already in some
register vj . If so, we simply add an entry to the dictionary indicating that uses of
vi should be replaced by uses of vj . If x is not in the dictionary, we generate a load
in the new version of the basic block, and add an entry to the dictionary indicating
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that x is available in vi . For a load of a constant, vi := c, we check to see whether
c is small enough to fit in the immediate operand of a compute instruction. If so,
we add an entry to the dictionary indicating that uses of vi should be replaced by
uses of the constant, but we generate no code: we’ll embed the constant directly
in the appropriate instructions when we come to them. If the constant is large, we
consult the dictionary to see whether it has already been loaded (or computed)
into some other register vj ; if so, we note that uses of vi should be replaced by
uses of vj . If the constant is large and not already available, then we generate
instructions to load it into vi and then note its availability with an appropriate
dictionary entry. In all cases, we create a dictionary entry for the target register of
a load, indicating whether that register (1) should be used under its own name in
subsequent instructions, (2) should be replaced by uses of some other register, or
(3) should be replaced by some small immediate constant.

For a compute instruction, vi := vj op vk , we first consult the dictionary to see
whether uses of vj or vk should be replaced by uses of some other registers or small
constants vl and vm . If both operands are constants, then we can perform the
operation at compile time, effecting constant folding. We then treat the constant
as we did for loads above: keeping a note of its value if small, or of the register in
which it resides if large. We also note opportunities to perform strength reduction
or to eliminate useless instructions. If at least one of the operands is nonconstant
(and the instruction is not useless), we consult the dictionary again to see whether
the result of the (potentially modified) computation is already available in some
register vn . This final lookup operation is keyed by a combination of the operator
op and the operand registers or constants vj (or vl ) and vk (or vm). If the lookup
is successful, we add an entry to the dictionary indicating that uses of vi should be
replaced by uses of vn . If the lookup is unsuccessful, we generate an appropriate
instruction (e.g., vi := vj op vk or vi := vl op vm) in the new version of the basic
block, and add a corresponding entry to the dictionary.

As we work our way through the basic block, the dictionary provides us with
four kinds of information:

1. For each already-computed virtual register: whether it should be used under
its own name, replaced by some other register, or replaced by an immediate
constant

2. For certain variables: what register holds the (current) value

3. For certain large constants: what register holds the value

4. For some (op, arg1, arg2) triples, where argi can be a register name or a
constant: what register already holds the result

For a store instruction, x := vi , we remove any existing entry for x in the
dictionary, and add an entry indicating that x is available in vi . We also note
(in that entry) that the value of x in memory is stale. If x may be an alias for
some other variable y, we must also remove any existing entry for y from the
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dictionary. (If we are certain that y is an alias for x, then we can add an entry
indicating that the value of y is available in vi .) A similar precaution, ignored in
the discussion above, applies to loads: if x may be an alias for y, and if there is
an entry for y in the dictionary indicating that the value in memory is stale, then
a load instruction vi := x must be preceded by a store to y. When we reach the
end of the block, we traverse the dictionary, generating store instructions for all
variables whose values in memory are stale. If any variables may be aliases for each
other, we must take care to generate the stores in the order in which the values were
produced. After generating the stores, we generate the branch (if any) that ends the
block.

Local Code Improvement

In the process of local value numbering we automatically perform several impor-
tant operations. We identify common subexpressions (none of which occur in our
example), allowing us to compute them only once. We also implement constant
folding and certain strength reductions. Finally, we perform local constant and
copy propagation, and eliminate redundant loads and stores: our use of the dic-
tionary to delay store instructions ensures that (in the absence of potential aliases)
we never write a variable twice, or write and then read it again within the same
basic block.

DESIGN & IMPLEMENTATION

Common subexpressions
It is natural to think of common subexpressions as something that could be
eliminated at the source code level, and programmers are sometimes tempted
to do so. The following, for example,

x = a + b + c;
y = a + b + d;

could be replaced with

t = a + b;
x = t + c;
y = t + d;

Such changes do not always make the code easier to read, however, and if the
compiler is doing its job they don’t make it any faster either. Moreover numer-
ous examples of common subexpressions are entirely invisible in the source
code. Examples include array subscript calculations (Section 7.4.3), references
to variables in lexically enclosing scopes (Section 8.2), and references to nearby
fields in complex records (Section 7.3.2). Like the pointer arithmetic discussed
in the sidebar on page 354, hand elimination of common subexpressions, unless
it makes the code easier to read, is usually not a good idea.
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To increase the number of common subexpressions we can find, we may want
to traverse the syntax tree prior to linearizing it, rearranging expressions into
some sort of normal form. For commutative operations, for example, we can swap
subtrees if necessary to put operands in lexicographic order. We can then recognize
that a + b and b + a are common subexpressions. In some cases (e.g., in the context
of array address calculations, or with explicit permission from the programmer),
we may use associative or distributive rules to normalize expressions as well,
though as we noted in Section 6.1.4 such changes can in general lead to arithmetic
overflow or numerical instability. Unfortunately, straightforward normalization
techniques will fail to recognize the redundancy in a + b + c and a +c̃; lexicographic
ordering is simply a heuristic.

A naive approach to aliases is to assume that assignment to element i of an array
may alter element j, for any j; that assignment through a pointer to an object of
type t (in a type-safe language) may alter any variable of that type; and that a call to
a subroutine may alter any variable visible in the subroutine’s scope (including at a
minimum all globals). These assumptions are overly conservative, and can greatly
limit the ability of a compiler to generate good code. More aggressive compilers
perform extensive symbolic analysis of array subscripts in order to narrow the
set of potential aliases for an array assignment. Similar analysis may be able to
determine that particular array or record elements can be treated as unaliased
scalars, making them candidates for allocation to registers. Recent years have also
seen the development of very good alias analysis techniques for pointers (see the
sidebar on page 334).

Figure 16.4 shows the control flow graph for our combinations subrou-EXAMPLE 16.12
Result of local redundancy
elimination

tine after local redundancy elimination. We have eliminated 21 of the instruc-
tions in Figure 16.3, all of them loads of variables or constants. Thir-
teen of the eliminated instructions are in the body of the loop (Blocks 2
and 3) where improvements are particularly important. We have also performed
strength reduction on the two instructions that multiply a register by the con-
stant 4 and the one that divides a register by 2, replacing them by equivalent
shifts. �

DESIGN & IMPLEMENTATION

Pointer analysis
The tendency of pointers to introduce aliases is one of the reasons why Fortran
compilers have traditionally produced faster code than C compilers. Until
recently Fortran had no pointers, and many Fortran programs are still written
without them. C programs, by contrast, tend to be pointer-rich. Alias analysis
for pointers is an active research topic, and has reached the point at which
good C compilers can often rival their Fortran counterparts. For a survey of
the state of the art (as of the turn of the century), see the paper by Michael
Hind [Hin01].
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Block 1:
 sp := sp − 8
 v1 := r4 –– n
 n := v1
 v2 := r5 –– A
 A := v2
 *v2 := 1

 v8 := v1 << 2

 v9 := v2 + v8

 *v9 := 1

 t := 1

  i := 1

 goto Block 3

Block 4:
 sp := sp + 8
 goto *ra

Block 3:
 v39 := i
 v40 := n
 v42 := v40 >> 1

 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t
 v14 := n
 v16 := v14 + 1

 v17 :=  i
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17

 v22 := A
 v25 := v17 << 2

 v26 := v22 + v25
 *v26 := v21

 v31 := v14 − v17

 v33 := v31 << 2

 v34 := v22 + v33

 *v34 := v21

 v38 := v17 + 1

 t := v21
  i := v38
 goto Block 3

Figure 16.4 Control flow graph for the combinations subroutine after local redundancy
elimination and strength reduction. Changes from Figure 16.3 are shown in boldface type.

3CHECK YOUR UNDERSTANDING

1. Describe several increasing levels of “aggressiveness” in code improvement.

2. Give three examples of code improvements that must be performed in a par-
ticular order. Give two examples of code improvements that should probably
be performed more than once (with other improvements in between).

3. What is peephole optimization? Describe at least four different ways in which
a peephole optimizer might transform a program.

4. What is constant folding ? Constant propagation? Copy propagation? Strength
reduction?
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5. What does it mean for a value in a register to be live?

6. What is a control flow graph? Why is it central to so many forms of global code
improvement? How does it accommodate subroutine calls?

7. What is value numbering ? What purpose does it serve?

8. Explain the connection between common subexpressions and expression rear-
rangement.

9. Why is it not practical in general for the programmer to eliminate common
subexpressions at the source level?

16.4 Global Redundancy and Data Flow Analysis

In this section we will concentrate on the elimination of redundant loads and
computations across the boundaries between basic blocks. We will translate the
code of our basic blocks into static single assignment (SSA) form, which will allow
us to perform global value numbering. Once value numbers have been assigned,
we shall be able to perform global common subexpression elimination, constant
propagation, and copy propagation. In a compiler both the translation to SSA
form and the various global optimizations would be driven by data flow analysis.
We will go into some of the details for global optimization (specifically, for the
problems of identifying common subexpressions and useless store instructions)
after a much more informal presentation of the translation to SSA form. We will
also give data flow equations in Section 16.5 for the calculation of reaching
definitions, used (among other things) to move invariant computations out of
loops.

Global redundancy elimination can be structured in such a way that it catches
local redundancies as well, eliminating the need for a separate local pass. The global
algorithms are easier to implement and to explain, however, if we assume that a
local pass has already occurred. In particular, local redundancy elimination allows
us to assume (in the absence of aliases, which we will ignore in our discussion)
that no variable is read or written more than once in a basic block.

16.4.1 SSA Form and Global Value Numbering

Value numbering, as introduced in Section 16.3, assigns a distinct virtual register
name to every symbolically distinct value that is loaded or computed in a given
body of code, allowing us to recognize when certain loads or computations are
redundant. The first step in global value numbering is to distinguish among the
values that may be written to a variable in different basic blocks. We accomplish
this step using static single assignment (SSA) form.
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Our initial translation to medium-level IF ensured that each virtual register
was assigned a value by a unique instruction. This uniqueness was preserved by
local value numbering. Variables, however, may be assigned in more than one
basic block. Our translation to SSA form therefore begins by adding subscripts to
variable names: a different one for each distinct store instruction. This convention
makes it easier to identify global redundancies. It also explains the terminology:
each subscripted variable in an SSA program has a single static (compile time)
assignment—a single store instruction.

Following the flow of the program, we assign subscripts to variables in load
instructions, to match the corresponding stores. If the instruction v2 := x is guar-
anteed to read the value of x written by the instruction x3 := v1, then we replace
v2 := x with v2 := x3 . If we cannot tell which version of x will be read, we use a
hypothetical merge function (also known as a selection function, and traditionally
represented by the Greek letter φ), to choose among the possible alternatives. For-
tunately, we won’t actually have to compute merge functions at run time. Their
only purpose is to help us identify possible code improvements; we will drop them
(and the subscripts) prior to target code generation.

In general, the translation to SSA form (and the identification of merge func-
tions in particular) requires the use of data flow analysis. We will describe the con-
cept of data flow in the context of global common subexpression elimination in
Section 16.4.2. In the current subsection we will generate SSA code informally;
data flow formulations can be found in more advanced compiler texts [CT04,
Sec. 9.3; AK02, Sec. 4.4.4; App97, Sec. 19.1; Muc97, Sec. 8.11].

In the combinations subroutine (Figure 16.4) we assign the subscript 1 toEXAMPLE 16.13
Conversion to SSA form the stores of t and i at the end of Block 1. We assign the subscript 2 to the stores

of t and i at the end of Block 2. Thus at the end of Block 1 t1 and i1 are live;
at the end of Block 2 t2 and i2 are live. What about Block 3? If control enters
Block 3 from Block 1, then t1 and i1 will be live, but if control enters Block 3 from
Block 2, then t2 and i2 will be live. We invent a merge function φ that returns its
first argument if control enters Block 3 from Block 1, and its second argument if
control enters Block 3 from Block 2. We then use this function to write values to
new names t3 and i3 . Since Block 3 does not modify either t or i, we know that t3

and i3 will be live at the end of the block. Moreover, since control always enters
Block 2 from Block 3, t3 and i3 will be live at the beginning of Block 2. The load of
v13 in Block 2 is guaranteed to return t3 ; the loads of v17 in Block 2 and of v39
in Block 3 are guaranteed to return i3 .

SSA form annotates the right-hand sides of loads with subscripts and merge
functions in such a way that at any given point in the program, if vi and vj
were given values by load instructions with symbolically identical right-hand
sides, then the loaded values are guaranteed to have been produced by (the same
execution of) the same prior store instruction. Because ours is a simple subroutine,
only one merge function is needed: it indicates whether control entered Block 3
from Block 1 or from Block 2. In a more complicated subroutine there could be
additional merge functions, for other blocks with more than one predecessor. SSA
form for the combinations subroutine appears in Figure 16.5. �
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Block 1:
 sp := sp − 8
 v1 := r4 –– n
 n := v1
 v2 := r5 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t1 := 1

  i1 := 1

 goto Block 3

Block 4:
 sp := sp + 8
 goto *ra

Block 2:
 v13 := t3
 v14 := n
 v16 := v14 + 1
 v17 :=  i3
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v22 := A
 v25 := v17 << 2
 v26 := v22 + v25
 *v26 := v21
 v31 := v14 − v17
 v33 := v31 << 2
 v34 := v22 + v33
 *v34 := v21
 v38 := v17 + 1
 t2 := v21

  i2 := v38

 goto Block 3

Block 3:
 t3 := o| (t1, t2)

  i3 := o| ( i1,  i2)

 v39 := i3
 v40 := n
 v42 := v40 >> 1
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Figure 16.5 Control flow graph for the combinations subroutine, in static single assignment
(SSA) form. Changes from Figure 16.4 are shown in boldface type.

With flow-dependent values determined by merge functions, we are now inEXAMPLE 16.14
Global value numbering a position to perform global value numbering. As in local value numbering, the

goal is to merge any virtual registers that are guaranteed to hold symbolically
equivalent expressions.

In the local case we were able to perform a linear pass over the code, keeping a
dictionary that mapped loaded and computed expressions to the names of virtual
registers that contained them. This approach does not suffice in the global case,
because the code may have cycles. The general solution can be formulated using
data flow, or obtained with a simpler algorithm [Muc97, Sec. 12.4.2] that begins
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by unifying all expressions with the same top-level operator, and then repeatedly
separates expressions whose operands are distinct, in a manner reminiscent of the
DFA minimization algorithm of Section 2.2.1. Again, we perform the analysis for
our running example informally.

We can begin by adopting the virtual register names in Block 1; since local
redundancies have been removed, these names have already been merged as much
as possible. In Block 2, the second instruction loads n into v14. Since we already
used v1 for n in Block 1, we can substitute the same name here. This substitution
violates, for the first time, our assumption that every virtual register is given a value
by a single static instruction. The “violation” is safe, however: both occurrences of
n have the same subscript (none at all, in this case), so we know that at any given
point in the code, if v1 and v14 have both been given values, then those values
are the same. We can’t (yet) eliminate the load in Block 2, because we don’t (yet)
know that Block 1 will have executed first. For consistency we replace v14 with
v1 in the third instruction of Block 2. Then, by similar reasoning, we replace v22
with v2 in the 8th, 10th, and 14th instructions.

In Block 3 we have more replacements. In the first real instruction (v39 :=
i3), we recall that the same right-hand side is loaded into v17 in Block 2. We
therefore replace v39 with v17, in both the first and fourth instructions. Similarly,
we replace v40 with v1, in both the second and third instructions. There are no
changes in Block 4.

The result of global value numbering on our combinations subroutine
appears in Figure 16.6. In this case the only common values identified were
variables loaded from memory. In a more complicated subroutine, we would
also identify known-to-be-identical computations performed in more than one
block (though we would not yet know which, if any, were redundant). As we did
with loads, we would rename left-hand sides so that all symbolically equivalent
computations place their results in the same virtual register.

Static single assignment form is useful for a variety of code improvements. In
our discussion here we use it only for global value numbering. We will drop it in
later figures. �

16.4.2 Global Common Subexpression Elimination

We have seen an informal example of data flow analysis in the construction of
static single assignment form. We will now employ a more formal example for
global common subexpression elimination. As a result of global value number-
ing, we know that any common subexpression will have been placed into the
same virtual register wherever it is computed. We will therefore use virtual regis-
ter names to represent expressions in the discussion below.2 The goal of global

2 As presented here, there is a one–one correspondence among SSA names, global value numbers,
and (after global value numbering has been completed) virtual register names. Other texts and
papers sometimes distinguish among these concepts more carefully, and use them for different
purposes.
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Block 1:
 sp := sp − 8
 v1 := r4 –– n
 n := v1
 v2 := r5 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9  := 1
 t1 := 1
  i1 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *ra

Block 3:
 t3 := φ(t1, t2)
  i3 := φ( i1,  i2)
 v17 := i3
 v1 := n

 v42 := v1 >> 1

 v43 := v17 <– v42

 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t3
 v1 := n

 v16 := v1 + 1

 v17 :=  i3
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v2 := A

 v25 := v17 << 2
 v26 := v2 + v25

 *v26 := v21
 v31 := v1 − v17

 v33 := v31 << 2
 v34 := v2 + v33

 *v34 := v21
 v38 := v17 + 1
 t2 := v21
  i2 := v38
 goto Block 3

Figure 16.6 Control flow graph for the combinations subroutine after global value number-
ing. Changes from Figure 16.5 are shown in boldface type.

common subexpression elimination is to identify places in which an instruction
that computes a value for a given virtual register can be eliminated, because the
computation is certain to already have occurred on every control path leading to
the instruction.

Many instances of data flow analysis can be cast in the following framework:
(1) four sets for each basic block B, called InB , Out B , GenB , and KillB ; (2) values
for the Gen and Kill sets; (3) an equation relating the sets for any given block B;
(4) an equation relating the Out set of a given block to the In sets of its successors,
or relating the In set of the block to the Out sets of its predecessors; and (often)
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(5) certain initial conditions. The goal of the analysis is to find a fixed point of the
equations: a consistent set of In and Out sets that satisfy both the equations and
the initial conditions. Some problems have a single fixed point. Others may have
more than one, in which case we usually want either the least or the greatest fixed
point (smallest or largest sets).

In the case of global common subexpression elimination, InB is the set of expres-EXAMPLE 16.15
Data flow equations for
available expressions

sions (virtual registers) guaranteed to be available at the beginning of block B.
These available expressions will all have been set by predecessor blocks. Out B is
the set of expressions guaranteed to be available at the end of B. KillB is the set
of expressions killed in B: invalidated by assignment to one of the variables used
to calculate the expression, and not subsequently recalculated in B. GenB is the
set of expressions calculated in B and not subsequently killed in B. The data flow
equations for available expression analysis are3

Out B = GenB ∪ (InB � KillB)

InB =
⋂

predecessors A of B

Out A

Our initial condition is In1 = ∅: no expressions are available at the beginning of
execution.

Available expression analysis is known as a forward data flow problem, because
information flows forward across branches: the In set of a block depends on the
Out sets of its predecessors. We shall see an example of a backward data flow
problem later in this section. �

We calculate the desired fixed point of our equations in an inductive (iterative)EXAMPLE 16.16
Fixed point for available
expressions

fashion, much as we computed FIRST and FOLLOW sets in Section 2.3.2. Our
equation for InB uses intersection to insist that an expression be available on
all paths into B. In our iterative algorithm, this means that InB can only shrink
with subsequent iterations. Because we want to find as many available expressions
as possible, we therefore conservatively assume that all expressions are initially
available as inputs to all blocks other than the first; that is, InB,B �=1 = {n, A, t, i, v1,
v2, v8, v9, v13, v16, v17, v18, v19, v21, v25, v26, v31, v33, v34, v38, v42, v43}.

Our Gen and Kill sets can be found in a single backward pass over each of the
basic blocks. In Block 3, for example, the last assignment defines a value for v43.
We therefore know that v43 is in Gen3. Working backward, so are v42, v1, and
v17. As we notice each of these, we also consider their impact on Kill3. Virtual
register v43 does not appear on the right-hand side of any assignment in the
program (it is not part of the expression named by any virtual register), so giving
it a value kills nothing. Virtual register v42 is part of the expression named by v43,
but since v43 is given a value later in the block (is already in Gen3), the assignment

3 Set notation here is standard:
⋃

i Si indicates the union of all sets Si ;
⋂

i Si indicates the intersection
of all sets Si ; A � B, pronounced “A minus B” indicates the set of all elements found in A but not
in B.
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to v42 does not force v43 into Kill3. Virtual register v1 is a different story. It is
part of the expressions named by v8, v16, v31, and v42. Since v42 is already in
Gen3, we do not add it to Kill3. We do, however, put v8, v16, and v31 in Kill3.
In a similar manner, the assignment to v17 forces v18, v21, v25, and v38 into
Kill3. Note that we do not have to worry about virtual registers that depend in
turn on v8, v16, v18, v21, v25, v31, or v38: our iterative data flow algorithm
will take care of that; all we need now is one level of dependence. Stores to
program variables (e.g., at the ends of Blocks 1 and 2) kill the corresponding virtual
registers.

After completing a backward scan of all four blocks, we have the following Gen
and Kill sets:

Gen1 = {v1, v2, v8, v9} Kill1 = {v13, v16, v17, v26, v31, v34, v42}
Gen2 = {v1, v2, v13, v16, v17, v18, v19, Kill2 = {v8, v9, v13, v17, v42, v43}

v21, v25, v26, v31, v33, v34, v38}
Gen3 = {v1, v17, v42, v43} Kill3 = {v8, v16, v18, v21, v25, v31, v38}
Gen4 = ∅ Kill4 = ∅

Applying the first of our data flow equations (Out B = GenB ∪ (InB � KillB))
to all blocks, we obtain

Out 1 ={v1, v2, v8, v9}
Out 2 = {v1, v2, v13, v16, v17, v18, v19, v21, v25, v26, v31, v33, v34, v38}
Out 3 = {v1, v2, v9, v13, v17, v19, v26, v33, v34, v42, v43}
Out 4 ={v1, v2, v8, v9, v13, v16, v17, v18, v19, v21, v25, v26, v31, v33, v34, v38, v42, v43}

If we now apply our second equation (InB =
⋂

A Out A) to all blocks, followed
by a second iteration of the first equation, we obtain

In1 = ∅ Out 1 = {v1, v2, v8, v9}
In2 = {v1, v2, v9, v13, v17, v19, Out 2 = {v1, v2, v13, v16, v17, v18, v19,

v26, v33, v34, v42, v43} v21, v25, v26, v31, v33, v34, v38}
In3 = {v1, v2} Out 3 = {v1, v2, v17, v42, v43}
In4 = {v1, v2, v9, v13, v17, v19, Out 4 = {v1, v2, v9, v13, v17, v19,

v26, v33, v34, v42, v43} v26, v33, v34, v42, v43}

One more iteration of each equation yields the fixed point:

In1 = ∅ Out 1 = {v1, v2, v8, v9}
In2 = {v1, v2, v17, v42, v43} Out 2 = {v1, v2, v13, v16, v17, v18, v19,

v21, v25, v26, v31, v33, v34, v38}
In3 = {v1, v2} Out 3 = {v1, v2, v17, v42, v43}
In4 = {v1, v2, v17, v42, v43} Out 4 = {v1, v2, v17, v42, v43} �

We can now exploit what we have learned. Whenever a virtual register is in theEXAMPLE 16.17
Result of global common
subexpression elimination

In set of a block, we can drop any assignment of that register in the block. In our
example subroutine, we can drop the loads of v1, v2, and v17 in Block 2, and
the load of v1 in Block 3. In addition, whenever a virtual register corresponding
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Block 1:
 sp := sp − 8
 v1 := r4 –– n
 n := v1
 v2 := r5 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t := 1
  i := 1
 v13 := 1

 v17 := 1

 goto Block 3

Block 4:
 sp := sp + 8
 goto *ra

Block 3:
 v42 := v1 >> 1
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v16 := v1 + 1
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 t := v21
  i := v38
 v13 := v21

 v17 := v38

 goto Block 3

Figure 16.7 Control flow graph for the combinations subroutine after performing global
common subexpression elimination. Note the absence of the many load instructions of Figure

16.6. Compensating register–register moves are shown in boldface type. Live variable analysis
will allow us to drop the two pairs of instructions immediately before these moves, together
with the stores of n and A (v1 and v2) in Block 1. It will also allow us to drop changes to the
stack pointer in the subroutine prologue and epilogue: we won’t need space for local variables
anymore.

to a variable is in the In set of a block, we can replace a load of that variable
with a register–register move on each of the potential paths into the block. In our
example, we can replace the load of t in Block 2 and the load of i in Block 3 (the
load of i in Block 2 has already been eliminated). To compensate, we must load
v13 and v17 with the constant 1 at the end of Block 1, and move v21 into v13 and
v38 into v17 at the end of Block 2. The final result appears in Figure 16.7.

(The careful reader may note that v21 and v38 are not strictly necessary: if
we computed new values directly into v13 and v17, we could eliminate the two
register–register moves. This observation, while correct, need not be made at this
time; it can wait until we perform induction variable optimizations and register
allocation, to be described in Sections 16.5.2 and 16.8, respectively.) �
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v1 := v2 + v3
a := v1

v7 := a 
v7 := v4 

v4 := v5 × v6
a := v4

v1 := v2 + v3

v1 := v2 + v3

v1 := v2 + v3
a := v1
v7 := v1

v4 := v5 × v6
a := v4

v1 := v2 + v3

v1 := v2 + v3

A

A
A

A

B

B

B

B

Figure 16.8 Splitting an edge of a control flow graph to eliminate a redundant load (top) or a partially redundant computation
(bottom).

Splitting Control Flow Edges

If the block (call it A) in which a variable is written has more than one successor,EXAMPLE 16.18
Edge splitting
transformations

only one of which (call it B) contains a redundant load, and if B has more than one
predecessor, then we need to create a new block on the arc between A and B to hold
the register–register move. This way the move will not be executed on code paths
that don’t need it. In a similar vein, if an expression is available from A but not from
B’s other predecessor, then we can move the load or computation of the expression
back into the predecessor that lacks it or, if that predecessor has more than one
successor, into a new block on the connecting arc. This move will eliminate a
redundancy on the path through A. These “edge splitting” transformations are
illustrated in Figure 16.8. In general, a load or computation is said to be partially
redundant if it is a repetition of an earlier load or store on some paths through the
flow graph, but not on others. No edge splits are required in the combinations
example. �

Common subexpression elimination can have a complicated effect on register
pressure. If we realize that the expression v10 + v20 has been calculated into, say,
register v30 earlier in the program, and we exploit this knowledge to replace a later
recalculation of the expression with a direct use of v30, then we may expand v30’s
live range—the span of instructions over which its value is needed. At the same
time, if v10 and v20 are not used for other purposes in the intervening region of
the program, we may shrink the range over which they are live. In a subroutine
with a high level of register pressure, a good compiler may sometimes perform the
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inverse of common subexpression elimination (known as forward substitution) in
order to shrink live ranges.

Live Variable Analysis

Constant propagation and copy propagation, like common subexpression elimi-
nation, can be formulated as instances of data flow analysis. We skip these analyses
here; none of them yields improvements in our example. Instead, we turn our
attention to live variable analysis, which is very important in our example, and
in general in any subroutine in which global common subexpression analysis has
eliminated load instructions.

Live variable analysis is the backward flow problem mentioned above. It deter-
mines which instructions produce values that will be needed in the future, allow-
ing us to eliminate dead (useless) instructions. In our example we will concern
ourselves only with values written to memory and with the elimination of dead
stores. When applied to values in virtual registers as well, live variable analysis
can help to identify other dead instructions. (None of these arise this early in the
combinations example.)

For this instance of data flow analysis, InB is the set of variables that are live atEXAMPLE 16.19
Data flow equations for
live variables

the beginning of block B. Out B is the set of variables that are live at the end of the
block. GenB is the set of variables read in B without first being written in B. KillB

is the set of variables written in B without having been read first. The data flow
equations are:

InB = GenB ∪ (Out B � KillB)

Out B =
⋃

successors C of B

InC

Our initial condition is Out 4 = ∅: no variables are live at the end of execution. (If
our subroutine wrote any nonlocal [e.g., global] variables, these would be initial
members of Out 4.)

In comparison to the equations for available expression analysis, the roles of In
and Out have been reversed (that’s why it’s a backward problem), and the inter-
section operator in the second equation has been replaced by a union. Intersection
(“all paths”) problems require that information flow over all paths between blocks;
union (“any path”) problems require that it flow along some path. Further data
flow examples appear in Exercises 16.7 and 16.9. �

In our example program, we have:EXAMPLE 16.20
Fixed point for live
variables Gen1 = ∅ Kill1 = {n, A, t, i}

Gen2 = ∅ Kill2 = {t, i}
Gen3 = ∅ Kill3 = ∅

Gen4 = ∅ Kill4 = ∅

Our use of union means that Out sets can only grow with each iteration, so we
begin with Out B = ∅ for all blocks B (not just B4). One iteration of our data
flow equations gives us InB = GenB and Out B = ∅ for all blocks B. But since
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GenB = ∅ for all B, this is our fixed point! Common subexpression elimination
has left us with a situation in which none of our parameters or local variables are
live; all of the stores of A, n, t, and i can be eliminated (see Figure 16.7). In
addition, the fact that t and i can be kept entirely in registers means that we won’t
need to update the stack pointer in the subroutine prologue and epilogue: there
won’t be any stack frame. �

Aliases must be treated in a conservative fashion in both common subexpres-
sion elimination and live variable analysis. If a store instruction might modify
variable x , then for purposes of common subexpression elimination we must
consider the store as killing any expression that depends on x . If a load instruction
might access x , and x is not written earlier in the block containing the load, then
x must be considered live at the beginning of the block. In our example we have
assumed that the compiler is able to verify that, as a reference parameter, array A
cannot alias either value parameter n or local variables t and i.

3CHECK YOUR UNDERSTANDING

10. What is static single assignment (SSA) form? Why is SSA form needed for global
value numbering, but not for local value numbering?

11. What are merge functions in the context of SSA form?

12. Give three distinct examples of data flow analysis. Explain the difference
between forward and backward flow. Explain the difference between all-paths
and any-path flow.

13. Explain the role of the In, Out, Gen, and Kill sets common to many examples
of data flow analysis.

14. What is a partially redundant computation? Why might an algorithm to elimi-
nate partial redundancies need to split an edge in a control flow graph?

15. What is an available expression?

16. What is forward substitution?

17. What is live variable analysis? What purpose does it serve?

18. Describe at least three instances in which code improvement algorithms must
consider the possibility of aliases.

16.5 Loop Improvement I

Because programs tend to spend most of their time in loops, code improvements
that improve the speed of loops are particularly important. In this section we
consider two classes of loop improvements: those that move invariant compu-
tations out of the body of a loop and into its header, and those that reduce the
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amount of time spent maintaining induction variables. In Section 16.7 we will
consider transformations that improve instruction scheduling by restructuring a
loop body to include portions of more than one iteration of the original loop, and
that manipulate multiply nested loops to improve cache performance or increase
opportunities for parallelization.

16.5.1 Loop Invariants

A loop invariant is an instruction (i.e., a load or calculation) in a loop whose result
is guaranteed to be the same in every iteration.4 If a loop is executed n times and
we are able to move an invariant instruction out of the body and into the header
(saving its result in a register for use within the body), then we will eliminate n −1
calculations from the program, a potentially significant savings.

In order to tell whether an instruction is invariant, we need to identify the
bodies of loops, and we need to track the locations at which operand values are
defined. The first task—identifying loops—is easy in a language that relies exclu-
sively on structured control flow (e.g., Ada or Java): we simply save appropriate
markers when linearizing the syntax tree. In a language with goto statements
we may need to construct (recover) the loops from a less structured control flow
graph.

Tracking the locations at which an operand may have been defined amounts to
the problem of reaching definitions. Formally, we say an instruction that assigns
a value v into a location (variable or register) l reaches a point p in the code
if v may still be in l at p. Like the conversion to static single assignment form,EXAMPLE 16.21

Data flow equations for
reaching definitions

considered informally in Section 16.4.1, the problem of reaching definitions
can be structured as a set of forward, any-path data flow equations. We let GenB

be the set of final assignments in block B (those that are not overwritten later
in B). For each assignment in B we also place in KillB all other assignments (in
any block) to the same location. Then we have

Out B = GenB ∪ (InB � KillB)

InB =
⋃

predecessors C of B

Out C

DESIGN & IMPLEMENTATION

Loop invariants
Many loop invariants arise from address calculations, especially for arrays. Like
the common subexpressions discussed in the sidebar on page 333, they are
often not explicit in the program source, and thus cannot be hoisted out of
loops by handwritten optimization.

4 Note that this use of the term is unrelated to the notion of loop invariants in axiomatic semantics
(page 178).
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Our initial condition is that In1 = ∅: no definitions in the function reach its entry
point. Given InB (the set of reaching definitions at the beginning of the block),
we can determine the reaching definitions of all values used within B by a simple
linear perusal of the code. Because our union operator will iteratively grow the
sets of reaching definitions, we begin our computation with InB = ∅ for all blocks
B (not just B1). �

Given reaching definitions, we define an instruction to be a loop invariant
if each of its operands (1) is a constant, (2) has reaching definitions that all lie
outside the loop, or (3) has a single reaching definition, even if that definition is an
instruction d located inside the loop, so long as d is itself a loop invariant. (If there
is more than one reaching definition for a particular variable, then we cannot be
sure of invariance unless we know that all definitions will assign the same value,
something that most compilers do not attempt to infer.) As in previous analyses,
we begin with the obvious cases and proceed inductively until we reach a fixed
point.

In our combinations example, visual inspection of the code reveals two loopEXAMPLE 16.22
Result of hoisting loop
invariants

invariants: the assignment to v16 in Block 2 and the assignment to v42 in Block 3.
Moving these invariants out of the loop (and dropping the dead stores and stack
pointer updates of Figure 16.7) yields the code of Figure 16.9. �

In the new version of the code v16 and v42 will be calculated even if the loop
is executed zero times. In general this precalculation may not be a good idea. If an
invariant calculation is expensive and the loop is not in fact executed, then we may
have made the program slower. Worse, if an invariant calculation may produce a
run-time error (e.g., divide by zero), we may have made the program incorrect.
A safe and efficient general solution is to insert an initial test for zero iterations
before any invariant calculations; we consider this option in Exercise 16.4. In
the specific case of the combinations subroutine, our more naive transformation
is both safe and (in the common case) efficient.

16.5.2 InductionVariables

An induction variable (or register) is one that takes on a simple progression of
values in successive iterations of a loop. We will confine our attention here to

DESIGN & IMPLEMENTATION

Control flow analysis
Most of the loops in a modern language, with structured control flow, corre-
spond directly to explicit constructs in the syntax tree. A few may be implicit;
examples include the loops required to initialize or copy large records or
subroutine parameters, or to capture tail recursion. For older languages, the
recovery of structure depends on a technique known as control flow analysis.
A detailed treatment can be found in standard compiler texts [AK02, Sec. 4.5;
App97, Sec. 18.1; Muc97, Chap. 7]; we do not discuss it further here.
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Block 1:
 v1 := r4 –– n
 v2 := r5 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9  := 1
 v13 := 1 –– t
 v17 := 1 ––  i
 v16 := v1 + 1

 v42 := v1 >> 1

 goto Block 3

Block 4:
 goto *ra

Block 3:
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 v13 := v21
 v17 := v38
 goto Block 3

Figure 16.9 Control flow graph for the combinations subroutine after moving the invariant
calculations of v16 and v42 (shown in boldface type) out of the loop. We have also dropped
the dead stores of Figure 16.7, and have eliminated the stack space for t and i, which now
reside entirely in registers.

arithmetic progressions; more elaborate examples appear in Exercises 16.11
and 16.12. Induction variables commonly appear as loop indices, subscript
computations, or variables incremented or decremented explicitly within the body
of the loop. Induction variables are important for two main reasons:

They commonly provide opportunities for strength reduction, most notably
by replacing multiplication with addition. For example, if i is a loop indexEXAMPLE 16.23

Induction variable strength
reduction

variable, then expressions of the form t := k × i + c for i > a can be replaced
by t i := t i–1 + k, where ta = k × a + c. �
They are commonly redundant: instead of keeping several induction variables
in registers across all iterations of the loop, we can often keep a smaller number
and calculate the remainder from those when needed (assuming the calcula-
tions are sufficiently inexpensive). The result is often a reduction in register
pressure with no increase—and sometimes a decrease—in computation cost.
In particular, after strength-reducing other induction variables, we can oftenEXAMPLE 16.24

Induction variable
elimination

eliminate the loop index variable itself, with an appropriate change to the end
test (see Figure 16.10 for an example). �
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A : array [1..n] of record
key : integer
// other stuff

for i in 1..n
A[i].key := 0

(a)

v1 := 1
v2 := n
v3 := sizeof(record)
v5 := &A

L: ∗v5 := 0
v5 := v5 + v3
v1 := v1 + 1
v7 := v1 ≤ v2
if v7 goto L

(c)

v1 := 1
v2 := n
v3 := sizeof(record)
v4 := &A – v3

L: v5 := v1 × v3
v6 := v4 + v5
∗v6 := 0
v1 := v1 + 1
v7 := v1 ≤ v2
if v7 goto L

(b)

v2 := &A + (n–1) × sizeof(record)
– – may take >1 instructions

v3 := sizeof(record)
v5 := &A

L: ∗v5 := 0
v5 := v5 + v3
v7 := v5 ≤ v2
if v7 goto L

(d)

Figure 16.10 Code improvement of induction variables. High-level pseudocode source is shown
in (a). Target code prior to induction variable optimizations is shown in (b). In (c) we have
performed strength reduction on v5, the array index, and eliminated v4, at which point v5 no
longer depends on v1 (i). In (d) we have modified the end test to use v5 instead of v1, and have
eliminated v1.

The algorithms required to identify, strength-reduce, and possibly eliminate
induction variables are more or less straightforward, but fairly tedious [AK02,
Sec. 4.5; App97, Sec. 18.3; Muc97, Chap. 14]; we do not present the details here.
Similar algorithms can be used to eliminate array and subrange bounds checks in
many applications.

For our combinations example, the code resulting from induction variableEXAMPLE 16.25
Result of induction variable
optimization

optimizations appears in Figure 16.11. Two induction variables—the array
pointers v26 and v34—have undergone strength reduction, eliminating the need
for v25, v31, and v33. Similarly, v18 has been made independent of v17, elimi-
nating the need for v16. A fifth induction variable—v38—has been eliminated
by replacing its single use (the right-hand side of a register–register move) with
the addition that computed it. We assume that a repeat of local redundancy elimi-
nation in Block 1 has allowed the initialization of v34 to capitalize on the value
known to reside in v9.

For presentation purposes, we have also calculated the division operation
directly into v13, allowing us to eliminate v21 and its later assignment into v13.

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch16-P374514 [14:36 2009/2/25] SCOTT: Programming Language Pragmatics Page: 351 1–867

16.6 Instruction Scheduling 351

Block 1:
 v1 := r4 –– n
 v2 := r5 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1 –– t
 v17 := 1 ––  i
 v42 := v1 >> 1
 v26 := v2 + 4

 v34 := v9 − 4

 v18 := v1

 goto Block 3

Block 4:
 goto *ra

Block 3:
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v19 := v13 × v18
 v13 := v19 div v17
 *v26 := v13
 *v34 := v13
 v17 := v17 + 1
 v26 := v26 + 4

 v34 := v34 − 4

 v18 := v18 − 1

 goto Block 3

Figure 16.11 Control flow graph for the combinations subroutine after optimizing induction
variables. Registers v26 and v34 have undergone strength reduction, allowing v25, v31, and v33
to be eliminated. Registers v38 and v21 have been merged into v17 and v13.The update to v18
has also been simplified, allowing v16 to be eliminated.

A real compiler would probably not make this change until the register allocation
phase of compilation, when it would verify that the previous value in v13 is dead at
the time of the division (v21 is not an induction variable; its progression of values
is not sufficiently simple). Making the change now eliminates the last redundant
instruction in the block, and allows us to discuss instruction scheduling in com-
parative isolation from other issues. �

16.6 Instruction Scheduling

In the example compiler structure of Figure 16.1, the next phase after loop opti-
mization is target code generation. As noted in Chapter 14, this phase linearizes the
control flow graph and replaces the instructions of the medium-level intermediate
form with target machine instructions. The replacements are often driven by an
automatically generated pattern-matching algorithm. We will continue to employ
our pseudo-assembler “instruction set,” so linearization will be the only change we
see. Specifically, we will assume that the blocks of the program are concatenated
in the order suggested by their names. Control will “fall through” from Block 2 to
Block 3, and from Block 3 to Block 4 in the last iteration of the loop.

We will perform two rounds of instruction scheduling separated by regis-
ter allocation. Given our use of pseudo-assembler, we won’t consider peephole
optimization in any further detail. In Section 16.7, however, we will consider
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additional forms of code improvement for loops that could be applied prior to
target code generation. We delay discussion of these because the need for them
will be clearer after considering instruction scheduling.

On a pipelined machine, performance depends critically on the extent to which
the compiler is able to keep the pipeline full. As explained in Section 5.5.1, delays
may result when an instruction (1) needs a functional unit still in use by an earlier
instruction, (2) needs data still being computed by an earlier instruction, or (3)
cannot even be selected for execution until the outcome or target of a branch
has been determined. In this section we consider cases (1) and (2), which can
be addressed by reordering instructions within a basic block. A good solution to
(3) requires branch prediction, generally with hardware assist. A compiler can
solve the subproblem of filling branch delays in a more or less straightforward
fashion [Muc97, Sec. 17.1.1].

If we examine the body of the loop in our combinations example, we find thatEXAMPLE 16.26
Remaining pipeline delays the optimizations described thus far have transformed Block 2 from the 30 instruc-

tion sequence of Figure 16.3 into the eight-instruction sequence of Figure
16.11 (not counting the final gotos). Unfortunately, on a pipelined machine

without instruction reordering, this code is still distinctly suboptimal. In particu-
lar, the results of the second and third instructions are used immediately, but the
results of multiplies and divides are commonly not available for several cycles. If
we assume four-cycle delays, then our block will take 16 cycles to execute. �

Dependence Analysis

To schedule instructions to make better use of the pipeline, we first arrange them
into a directed acyclic graph (DAG), in which each node represents an instruction,
and each arc represents a dependence,5 as described in Section 5.5.1. Most arcs

will represent flow dependences, in which one instruction uses a value produced
by a previous instruction. A few will represent anti-dependences, in which a later
instruction overwrites a value read by a previous instruction. In our example,
these will correspond to updates of induction variables. If we were performing
instruction scheduling after architectural register allocation, then uses of the same
register for independent values could increase the number of anti-dependences,
and could also induce so-called output dependences, in which a later instruction
overwrites a value written by a previous instruction. Anti- and output depen-
dences can be hidden on an increasing number of machines by hardware register
renaming.

Because common subexpression analysis has eliminated all of the loads andEXAMPLE 16.27
Value dependence DAG stores of i, n, and t in the combinations subroutine, and because there are no

loads of elements of A (only stores), dependence analysis in our example will

5 What we are discussing here is a dependence DAG. It is related to, but distinct from, the expression
DAG mentioned in Section 16.3. In particular, the dependence DAG is constructed after the
assignment of virtual registers to expressions, and its nodes represent instructions, rather than
variables and operators.
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Block 2:  Scheduled:

Block 3:

1.   v19 := v13 × v18
   —
   —
   —
   —
2.   v13 := v19 div v17
   —
   —
   —
   —
3.   *v26 := v13
4.   *v34 := v13
5.   v17 := v17 + 1
6.   v26 := v26 + 4
7.   v34 := v34 − 4
8.   v18 := v18 − 1
   −− fall through to Block 3

v19 := v13 × v18
v18 := v18 − 1
—
—
—
v13 := v19 div v17
v17 := v17 + 1
—
—
—

*v26 := v13

*v34 := v13
v26 := v26 + 4
v34 := v34 − 4

     (same)
    v43 := v17 <_ v42
    if v43 goto Block 2
    −− else fall through to Block 4

1
1

3
2

2
8

4
5

65
43

8
7

7
6

Figure 16.12 Dependence DAG for Block 2 of Figure 16.11, together with pseudocode for
the entire loop, both before (left) and after (right) instruction scheduling. Circled numbers in
the DAG correspond to instructions in the original version of the loop. Smaller adjacent numbers
give the schedule order in the new loop. Solid arcs indicate flow dependences; dashed arcs
indicate anti-dependences. Double arcs indicate pairs of instructions that must be separated by
four additional instructions in order to avoid pipeline delays on our hypothetical machine. Delays
are shown explicitly in Block 2. Unless we modify the array indexing code (Exercise 16.20),
only two instructions can be moved.

be dealing solely with values in registers. In general we should need to deal with
values in memory as well, and to rely on alias analysis to determine when two
instructions might access the same location, and therefore share a dependence. If
our target machine had condition codes (described in Section 5.3), we should
need to model these explicitly, tracking flow, anti-, and output dependences.

The dependence DAG for Block 2 of our combinations example appears in
Figure 16.12. In this case the DAG turns out to be a tree. It was generated
by examining the code from top to bottom, linking each instruction i to each
subsequent instruction j such that j reads a register written by i (solid arcs) or
writes a register read by i (dashed arcs). �

Any topological sort of a dependence DAG (i.e., any enumeration of the nodes
in which each node appears before its children) will represent a correct schedule.
Ideally we should like to choose a sort that minimizes overall delay. As with many
aspects of code improvement, this task is NP-hard, so practical techniques rely
upon heuristics.
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To capture timing information, we define a function latency (i, j) that returns
the number of cycles that must elapse between the scheduling of instructions i
and j if j is to run after i in the same pipeline without stalling. (To maintain
machine independence, this portion of the code improver must be driven by
tables of machine characteristics; those characteristics must not be“hard-coded.”)
Nontrivial latencies can result from data dependences or from conflicts for use of
some physical resource, such as an incompletely pipelined functional unit. We will
assume in our example that all units are fully pipelined, so all latencies are due to
data dependences.

We now traverse the DAG from the roots down to the leaves. At each step we
first determine the set of candidate nodes: those for which all parents have been
scheduled. For each candidate i we then use the latency function with respect to
already-scheduled nodes to determine the earliest time at which i could execute
without stalling. We also precalculate the maximum over all paths from i to a leaf
of the sums of the latencies on arcs; this gives us a lower bound on the time that will
be required to finish the basic block after i has been scheduled. In our examples
we will use the following three heuristics to choose among candidate nodes:

1. Favor nodes that can be started without stalling.

2. If there is a tie, favor nodes with the maximum delay to the end of the block.

3. If there is still a tie, favor the node that came first in the original source code
(this strategy leads to more intuitive assembly language, which can be helpful
in debugging).

Other possible scheduling heuristics include:

Favor nodes that have a large number of children in the DAG (this increases
flexibility for future iterations of the scheduling algorithm).

Favor nodes that are the final use of a register (this reduces register pressure).

If there are multiple pipelines, favor nodes that can use a pipeline that has not
received an instruction recently.

If our target machine has multiple pipelines, then we must keep track for each
instruction of the pipeline we think it will use, so we can distinguish between
candidates that can start in the current cycle and those that cannot start until the
next. (Imprecise machine models, cache misses, or other unpredictable delays may
cause our guess to be wrong some of the time.)

Unfortunately, our example DAG leaves very little room for choice. The onlyEXAMPLE 16.28
Result of instruction
scheduling

possible improvements are to move Instruction 8 into one of the multiply or
divide delay slots and Instruction 5 into one of the divide delay slots, reducing
the total cycle count of Block 2 from 16 to 14. If we assume (1) that our target
machine correctly predicts a backward branch at the bottom of the loop, and (2)
that we can replicate the first instruction of Block 2 into a nullifying delay slot
of the branch, then we incur no additional delays in Block 3 (except in the last
iteration). The overall duration of the loop is therefore 18 cycles per iteration
before scheduling, 16 cycles per iteration after scheduling—an improvement of
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11%. In Section 16.7 we will consider other versions of the block, in which
rescheduling yields significantly faster code. �

As noted near the end of Section 16.1, we shall probably want to repeat
instruction scheduling after global code improvement and register allocation. If
there are times when the number of virtual registers with useful values exceeds
the number of architectural registers on the target machine, then we shall need to
generate code to spill some values to memory and load them back in again later.
Rescheduling will be needed to handle any delays induced by the loads.

3CHECK YOUR UNDERSTANDING

19. What is a loop invariant ? A reaching definition?

20. Why might it sometimes be unsafe to hoist an invariant out of a loop?

21. What are induction variables? What is strength reduction?

22. What is control flow analysis? Why is it less important than it used to be?

23. What is register pressure? Register spilling ?

24. Is instruction scheduling a machine-independent code improvement tech-
nique? Explain.

25. Describe the creation and use of a dependence DAG. Explain the distinctions
among flow, anti-, and output dependences.

26. Explain the tension between instruction scheduling and register allocation.

27. List several heuristics that might be used to prioritize instructions to be
scheduled.

16.7 Loop Improvement II

As noted in Section 16.5, code improvements that improve the speed of loops
are particularly important, because loops are where most programs spend most
of their time. In this section we consider transformations that improve instruc-
tion scheduling by restructuring a loop body to include portions of more than
one iteration of the original loop, and that manipulate multiply nested loops to
improve cache performance or increase opportunities for parallelization. Exten-
sive coverage of loop transformations and dependence theory can be found in
Allen and Kennedy’s text [AK02].

16.7.1 Loop Unrolling and Software Pipelining

Loop unrolling is a transformation that embeds two or more iterations of a source-
level loop in a single iteration of a new, longer loop, and allowing the scheduler to
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intermingle the instructions of the original iterations. If we unroll two iterations ofEXAMPLE 16.29
Result of loop unrolling our combinations example we obtain the code of Figure 16.13. We have used

separate names (here starting with the letter ‘t’) for registers written in the initial
half of the loop. This convention minimizes anti- and output dependences, giving
us more latitude in scheduling. In an attempt to minimize loop overhead, we have
also recognized that the array pointer induction variables (v26 and v34) need only
be updated once in each iteration of the loop, provided that we use displacement
addressing in the second set of store instructions. The new instructions added to
the end of Block 1 cover the case in which n div 2, the number of iterations of the
original loop, is not an even number.

Again assuming that the branch in Block 3 can be scheduled without delays, the
total time for our unrolled loop (prior to scheduling) is 32 cycles, or 16 cycles per
iteration of the original loop. After scheduling, this number is reduced to 12 cycles
per iteration of the original loop. Unfortunately, eight cycles (four per original
iteration) are still being lost to stalls. �

If we unroll the loop three times instead of two (see Exercise 16.21), we canEXAMPLE 16.30
Result of software
pipelining

bring the cost (with rescheduling) down to 11.3 cycles per original iteration, but
this is not much of an improvement. The basic problem is illustrated in the top half
of Figure 16.14. In the original version of the loop, the two store instructions
cannot begin until after the divide delay. If we unroll the loop, then instructions
of the internal iterations can be intermingled, but six cycles of “shut-down” cost
(four delay slots and two stores) are still needed after the final divide.

A software-pipelined version of our combinations subroutine appears sche-
matically in the bottom half of Figure 16.14, and as a control flow graph in
Figure 16.15. The idea is to build a loop whose body comprises portions of
several consecutive iterations of the original loop, with no internal start-up or
shut-down cost. In our example, each iteration of the software-pipelined loop
contributes to three separate iterations of the original loop. Within each new
iteration (shown between vertical bars) nothing needs to wait for the divide to
complete. To avoid delays, we have altered the code in several ways. First, because
each iteration of the new loop contributes to several iterations of the original loop,
we must ensure that there are enough iterations to run the new loop at least once
(this is the purpose of the test in the new Block 1). Second, we have preceded and
followed the loop with code to “prime” and “flush” the “pipeline”: to execute the
early portions of the first iteration and the final portions of the last few. As we did
when unrolling the loop, we use a separate name (t13 in this case) for any register
written in the new “pipeline flushing” code. Third, to minimize the amount of
priming required we have initialized v26 and v34 one slot before their original
positions, so that the first iteration of the pipelined loop can “update” them as
part of a “zero-th” original iteration. Finally, we have dropped the initialization
of v13 in Block 1: our priming code has left that register dead at the end of the
block. (Live variable analysis on virtual registers could have been used to discover
this fact.)

Both the original and pipelined versions of the loop carry five nonconstant
values across the boundary between iterations, but one of these has changed
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32
5

1
81

79
9

8
43

46
1413

1211
10

10
7

1413
1211

6

5
2

…      –– code from Block 1, figure 15.11
v44 := v42 & 01
if !v44 goto Block 3
–– else fall through to Block 1a

*v26 := 1

*v34 := 1
v17 := 2
v26 := v26 + 4
v22 := v22 − 4
v18 := v18 − 1
goto Block 3

t19 := v13 × v18
—
—
—
—
t13 := v19 div v17
—
—
—
—
*v26 := t13

*v34 := t13
t17 := v17 + 1
v26 := v26 + 8
v34 := v34 − 8
t18 := v18 − 1
v19 := t13 × t18
—
—
—
—
v13 := t19 div t17
—
—
—
—
*(v26 − 4) := v13

*(v34 + 4) := v13
v17 := t17 + 1
v18 := t18 − 1
–– fall through to Block 3

v43 := v17 <_ v42
if v43 goto Block 4
–– else fall through to Block 4

1.

2.

3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.

 

Block 1:

Block 1a:

Block 2:

Block 3:

Scheduled:
t19 := v13 × v18
t18 := v18 − 1
t17 := v17 − 1
v18 := t18 − 1
—
t13 := t19 div v17
v17 := t17 + 1
—
—
—
v19 := t13 × t18

*v26 := t13

*v34 := t13
v26 := v26 + 8
v34 := v34 − 8
v13 := v19 div t17
—
—
—
—
*(v36+4) := v13

*(v34+4) := v13

     (same)

Figure 16.13 Dependence DAG for Block 2 of the combinations subroutine after unrolling
two iterations of the body of the loop. Also shown is linearized pseudocode for the entire loop,
both before (left) and after (right) instruction scheduling. New instructions added to the end of
Block 1 cover the case in which the number of iterations of the original loop is not a multiple
of two.
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v13

v17

v18

v26

v34

v13

v17

v18

v26
v34

mul div

sub

mul v19 mul divdiv

sto

sto

sto

sto

sto

sto

add

add

add

add

sub

sub

add

sub

sub

mul div

sto

sto

add

add

sub

sub

mul div

sub

sto

sto
add

add

sub

Figure 16.14 Software pipelining.The top diagram illustrates the execution of the original (nonpipelined) loop. In the bottom
diagram, each iteration of the original loop has been spread across three iterations of the pipelined loop. Iterations of the original
loop are enclosed in a dashed-line box; iterations of the pipelined loop are separated by solid vertical lines. In the bottom
diagram we have also shown the code to prime the pipeline prior to the first iteration, and to flush it after the last.

identity: whereas the original loop carried the result of the divide around to
the next multiply in register v13, the pipelined loop carries the result of the
multiply forward to the divide in register v19. In more complicated loops it may
be necessary to carry two or even three versions of a single register (corresponding
to two or more iterations of the original loop) across the boundary between
iterations of the pipelined loop. We must invent new virtual registers (similar to
the new t13 and to the t registers in the unrolled version of the combinations
example) to hold the extra values. In such a case software pipelining has the side
effect of increasing register pressure. �

Each of the instructions in the loop of the pipelined version of the combina-
tions subroutine can proceed without delay. The total number of cycles per
iteration has been reduced to ten. We can do even better if we combine loop
unrolling and software pipelining. For example, by embedding two multiply–
divide pairs in each iteration (drawn, with their accompanying instructions, from
four iterations of the original loop, rather than just three), we can update the array
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Block 1:
 v1 := r4 –– n
 v2 := r5 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v17 := 1 –– i1
 v42 := v1 >> 1
 v26 := v2
 v34 := v9
 v18 := v1 –– (n+1−i1)
 v19 := v1
     –– t1 = t0 × (n+1−i1)
 v44 := v42 = 0
 if v44 goto Block 4
 else goto Block 3

Block 4:
 goto *ra

Block 4a:
 t13 := v19 div v17
 *(v26+4) := t13
 *(v34−4) := t13
 goto Block 4

Block 2 (no delays!):
 v13 := v19 div v17
 v17 := v17 + 1
 v18 := v18 − 1
 v26 := v26 + 4
 v34 := v34 − 4
 v19 := v13 × v18
 *v26 := v13
 *v34 := v13
 goto Block 3

Block 3:
 v43 := v17 < v42
 if v43 goto Block 2
 else goto Block 4a

Figure 16.15 Control flow graph for the combinations subroutine after software pipelining.
The additional code and test at the end of Block 1, the change to the test in Block 3 (< instead
of ≤), and the new block (4a) make sure that there are enough iterations to accommodate the
pipeline, prime it with the beginnings of the initial iteration, and flush the end of the final iteration.
Suffixes on variable names in the comments in Block 1 refer to loop iterations: t1 is the value of
t in the first iteration of the loop; t0 is a “zero-th” value used to prime the pipeline.

pointers and check the termination condition half as often, for a net of only eight
cycles per iteration of the original loop (see Exercise 16.22).

To summarize, loop unrolling serves to reduce loop overhead, and can also
increase opportunities for instruction scheduling. Software pipelining does a
better job of facilitating scheduling, but does not address loop overhead. A reason-
able code improvement strategy is to unroll loops until the per-iteration overhead
falls below some acceptable threshold of the total work, then employ software
pipelining if necessary to eliminate scheduling delays.

16.7.2 Loop Reordering

The code improvement techniques that we have considered thus far have served
two principal purposes: to eliminate redundant or unnecessary instructions,
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and to minimize stalls on a pipelined machine. Two other goals have become
increasingly important in recent years. First, as improvements in processor speed
have continued to outstrip improvements in memory latency, it has become
increasingly important to minimize cache misses. Second, for parallel machines, it
has become important to identify sections of code that can execute concurrently.
As with other optimizations, the largest benefits come from changing the behavior
of loops. We touch on some of the issues here; suggestions for further reading can
be found at the end of the chapter.

Cache Optimizations

Probably the simplest example of cache optimization can be seen in code thatEXAMPLE 16.31
Loop interchange traverses a multidimensional matrix (array):

for i := 1 to n
for j := 1 to n

A[i, j] := 0

If A is laid out in row-major order, and if each cache line contains m elements of
A, then this code will suffer n2/m cache misses. On the other hand, if A is laid
out in column-major order, and if the cache is too small to hold n lines of A, then
the code will suffer n2 misses, fetching the entire array from memory m times.
The difference can have an enormous impact on performance. A loop-reordering
compiler can improve this code by interchanging the nested loops:

for j := 1 to n
for i := 1 to n

A[i, j] := 0 �
In more complicated examples, interchanging loops may improve locality of

reference in one array, but worsen it in others. Consider this code to transpose aEXAMPLE 16.32
Loop tiling (blocking) two-dimensional matrix:

for j := 1 to n
for i := 1 to n

A[i, j] := B[j, i]

If A and B are laid out the same way in memory, one of them will be accessed
along cache lines, but the other will be accessed across them. In this case we may
improve locality of reference by tiling or blocking the loops:

for it := 1 to n by b
for jt := 1 to n by b

for i := it to min(it + b – 1, n)
for j := jt to min(jt + b – 1, n)

A[i, j] := B[j, i]

Here the min calculations cover the possibility that b does not divide n evenly.
They can be dropped if n is known to be a multiple of b. Alternatively, if we
are willing to replicate the code inside the innermost loop, then we can generate
different code for the final iteration of each loop (Exercise 16.25).
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Figure 16.16 Tiling (blocking) of a matrix operation. As long as one tile of A and one tile of B
can fit in the cache simultaneously, only one access in m will cause a cache miss (where m is the
number of elements per cache line).

The new code iterates over b × b blocks of A and B, one in row-major order,
the other in column-major order, as shown in Figure 16.16. If we choose b
to be a multiple of m such that the cache can hold two b × b blocks of data
simultaneously, then both A and B will suffer only one cache miss per m array
elements, fetching everything from memory exactly once.6 Tiling is useful in a
wide variety of algorithms on multidimensional arrays. Exercise 16.23 considers
matrix multiplication. �

Two other transformations that may sometimes improve cache locality are
loop distribution (also called fission or splitting ), and its inverse, loop fusion (also
known as jamming ). Distribution splits a single loop into multiple loops, each of
which contains some fraction of the statements of the original loop. Fusion takes
separate loops and combines them.

Consider, for example, the following code to reorganize a pair of arrays:EXAMPLE 16.33
Loop distribution for i := 0 to n–1

A[i] := B[M[i]];
C[i] := D[M[i]];

Here M defines a mapping from locations in B or D to locations in A or C. If
either B or D, but not both, can fit into the cache at once, then we may get faster
code through distribution:

for i := 1 to n
A[i] := B[M[i]];

for i := 1 to n
C[i] := D[M[i]]; �

6 Although B is being written, not read, the hardware will fetch each line of B from memory on
the first write to the line, so that the single modified element can be updated within the cache.
The hardware has no way to know that the entire line will be modified before it is written back to
memory.
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On the other hand, in the following code, separate loops may lead to poorerEXAMPLE 16.34
Loop fusion locality:

for i := 1 to n
A[i] := A[i] + c

for i := 1 to n
if A[i] < 0 then A[i] := 0

If A is too large to fit in the cache in its entirety, then these loops will fetch the
entire array from memory twice. If we fuse them, however, we need only fetch A
once:

for i := 1 to n
A[i] := A[i] + c
if A[i] < 0 then A[i] := 0 �

If two loops do not have identical bounds, it may still be possible to fuse them if
we transform induction variables or peel some constant number of iterations off
of one of the loops.

Loop distribution may serve to facilitate other transformations (e.g., loop inter-EXAMPLE 16.35
Obtaining a perfect loop
nest

change) by transforming an “imperfect” loop nest into a “perfect” one:

for i := 1 to n
A[i] := A[i] + c
for j := 1 to n

B[i, j] := B[i, j] × A[i]

This nest is called imperfect because the outer loop contains more than just the
inner loop. Distribution yields two outermost loops:

for i := 1 to n
A[i] := A[i] + c

for i := 1 to n
for j := 1 to n

B[i, j] := B[i, j] × A[i]

The nested loops are now perfect, and can be interchanged if desired. �
In keeping with our earlier discussions of loop optimizations, we note that

loop distribution can reduce register pressure, while loop fusion can reduce loop
overhead.

Loop Dependences

When reordering loops, we must be extremely careful to respect all data depen-
dences. Of particular concern are so-called loop-carried dependences, which
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constrain the orders in which iterations can occur. Consider, for example, theEXAMPLE 16.36
Loop-carried dependences following:

for i := 2 to n
for j := 1 to n–1

A[i, j] := A[i, j] – A[i–1, j+1]

Here the calculation of A[i, j] in iteration (i, j) depends on the value of A[i–1, j+1],
which was calculated in iteration (i−1, j+1). This dependence is often represented
by a diagram of the iteration space:

1 2 3

j

2

3i

4

. .
 .

. . .

The i and j dimensions in this diagram represent loop indices, not array subscripts.
The arcs represent the loop-carried flow dependence.

If we wish to interchange the i and j loops of this code (e.g., to improve cache
locality), we find that we cannot do it, because of the dependence: we would end
up trying to write A[i, j] before we had written A[i–1, j+1]. �

To analyze loop-carried dependences, high-performance optimizing compilers
use symbolic mathematics to characterize the sets of index values that may cause
the subscript expressions in different array references to evaluate to the same value.
Compilers differ somewhat in the sophistication of this analysis. Most can handle
linear combinations of loop indices. None, of course, can handle all expressions,
since equivalence of general formulae is uncomputable. When unable to fully
characterize subscripts, a compiler must conservatively assume the worst, and
rule out transformations whose safety cannot be proven.

In many cases a loop with a fully characterized dependence that precludes a
desired transformation can be modified in a way that eliminates the dependence.
In Example 16.36 above, we can reverse the order of the j loop without violatingEXAMPLE 16.37

Loop reversal and
interchange

the dependence:

for i := 2 to n
for j := n–1 to 1 by–1

A[i, j] := A[i, j] – A[i–1, j+1]
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This change transforms the iteration space:

n – 1 n – 2

j

n – 3

2

3i

4

. .
 .

. . .

And now the loops can safely be interchanged:

for j := n–1 to 1 by–1
for i := 2 to n

A[i, j] := A[i, j] – A[i–1, j+1] �

Another transformation that sometimes serves to eliminate a dependence isEXAMPLE 16.38
Loop skewing known as loop skewing. In essence, it reshapes a rectangular iteration space into

a parallelogram, by adding the outer loop index to the inner one, and then sub-
tracting from the appropriate subscripts:

for i := 2 to n
for j := i+1 to i+n–1

A[i, j–i] := A[i, j–i] – A[i–1, j+1–i]

A moment’s consideration will reveal that this code accesses the exact same ele-
ments as before, in the exact same order. Its iteration space, however, looks like this:

3 4

j

5 6 7

2

3i

4

. .
 .

. . .

Now the loops can safely be interchanged. The transformation is complicated by
the need to accommodate the sloping sides of the iteration space. To avoid using
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min and max functions, we can divide the space into two triangular sections, each
of which has its own loop nest:

for j := 3 to n+1
for i := 2 to j–1

A[i, j– i] := A[i, j– i] – A[i–1, j+1– i]
for j := n+2 to 2×n–1

for i := j–n+1 to n
A[i, j– i] := A[i, j– i] – A[i–1, j+1– i]

Skewing has led to more complicated code than did reversal of the j loop, but it
could be used in the presence of other dependences that would eliminate reversal
as an option. �

Several other loop transformations, including distribution, can also be used in
certain cases to eliminate loop-carried dependences, allowing us to apply tech-
niques that improve cache locality or (as discussed immediately below) enable us
to execute code in parallel on a vector machine or a multiprocessor. Of course, no
set of transformations can eliminate all dependences; some code simply can’t be
improved.

Parallelization

Loop iterations (at least in nonrecursive programs) constitute the principal source
of operations that can execute in parallel. Ideally, one needs to find independent
loop iterations: ones with no loop-carried dependences. (In some cases, itera-
tions can also profitably be executed in parallel even if they have dependences,
so long as they synchronize their operations appropriately.) In Example 12.10
and Section 12.4.5 we considered loop constructs that allow the programmer to
specify parallel execution. Even in languages without such special constructs, a
compiler can often parallelize code by identifying—or creating—loops with as
few loop-carried dependences as possible. The transformations described above
are valuable tools in this endeavor.

Given a parallelizable loop, the compiler must consider several other issues in
order to ensure good performance. One of the most important of these is the
granularity of parallelism. For a very simple example, consider the problem ofEXAMPLE 16.39

Coarse-grain parallelization “zero-ing out” a two-dimensional array, here indexed from 0 to n−1 and laid out
in row-major order:

for i := 0 to n–1
for j := 0 to n–1

A[i, j] := 0

On a machine containing several general-purpose processors, we would probably
parallelize the outer loop:

– – on processor pid:
for i := (n/p × pid) to (n/p × (pid + 1) – 1)

for j := 1 to n
A[i, j] := 0
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Here we have given each processor a band of rows to initialize. We have assumed
that processors are numbered from 0 to p−1, and that p divides n evenly. �

The strategy on a vector machine is very different. Such a machine includes
a collection of v-element vector registers, and instructions to load, store, and
compute on vector data. The vector instructions are deeply pipelined, allowing the
machine to exploit a high degree of fine-grain parallelism. To satisfy the hardware,EXAMPLE 16.40

Strip mining the compiler needs to parallelize inner loops:

for i := 0 to n–1
for j := 0 to n/v

A[i, j:j+v–1] := 0 – – vector operation

Here the notation A[i, j:j+v–1] represents a v-element slice of A. The constant v
should be set to the length of a vector register (which we again assume divides
n evenly). The code transformation that extracts v-element operations from
longer loops is known as strip mining. It is essentially a one-dimensional form of
tiling. �

Other issues of importance in parallelizing compilers include communication
and load balance. Just as locality of reference reduces communication between
the cache and main memory on a uniprocessor, locality in parallel programs
reduces communication among processors and between the processors and mem-
ory. Optimizations similar to those employed to reduce the number of cache
misses on a uniprocessor can be used to reduce communication traffic on a
multiprocessor.

Load balance refers to the division of labor among processors on a parallel
machine. If we divide the work of a program among 16 processors, we shall obtain
a speedup of close to 16 only if each processor takes the same amount of time to
do its work. If we accidentally assign 5% of the work to each of 15 processors and
25% of the work to the 16th, we are likely to see a speedup of no more than 4×.
For simple loops it is often possible to predict performance accurately enough to
divide the work among processors at compile time. For more complex loops, in
which different iterations perform different amounts of work or have different
cache behavior, it is often better to generate self-scheduled code, which divides
the work up at run time. In its simplest form, self scheduling creates a “bag of
tasks,” as described in Section 12.2. Each task consists of a set of loop iterations.
The number of such tasks is chosen to be significantly larger than the number of
processors. When finished with a given task, a processor goes back to the bag to
get another.

16.8 Register Allocation

In a simple compiler with no global optimizations, register allocation can be
performed independently in every basic block. To avoid the obvious inefficiency

Copyright c© 2009 by Elsevier Inc. All rights reserved.



CD_Ch16-P374514 [14:36 2009/2/25] SCOTT: Programming Language Pragmatics Page: 367 1–867

16.8 Register Allocation 367

of storing frequently accessed variables to memory at the end of many blocks,
and reading them back in again in others, simple compilers usually apply a set of
heuristics to identify such variables and allocate them to registers over the life of a
subroutine. Obvious candidates for a dedicated register include loop indices, the
implicit pointers of with statements in Pascal-family languages (Section 7.3.3),
and scalar local variables and parameters.

It has been known since the early 1970s that register allocation is equivalent
to the NP-hard problem of graph coloring. Following the work of Chaitin et al.
[CAC+81] in the early 1980s, heuristic (nonoptimal) implementations of graph
coloring have become a common approach to register allocation in aggressive
optimizing compilers. We describe the basic idea here; for more detail see Cooper
and Torczon’s text [CT04, Chap. 13].

The first step is to identify virtual registers that cannot share an architectural
register, because they contain values that are live concurrently. To accomplish
this step we use reaching definitions data flow analysis (Section 16.5.1). ForEXAMPLE 16.41

Live ranges of virtual
registers

the software-pipelined version of our combinations subroutine (Figure 16.15,
page 359), we can chart the live ranges of the virtual registers as shown in Figure

16.17. Note that the live range of v19 spans the backward branch at the end of
Block 2; though typographically disconnected it is contiguous in time. �

Given these live ranges, we construct a register interference graph. The nodes of
this graph represent virtual registers. Registers vi and vj are connected by an arc
if they are simultaneously live. The interference graph corresponding to FigureEXAMPLE 16.42

Register coloring 16.17 appears in Figure 16.18. The problem of mapping virtual registers onto
the smallest possible number of architectural registers now amounts to finding a
minimal coloring of this graph: an assignment of “colors” to nodes such that no
arc connects two nodes of the same color.

In our example, we can find one of several optimal solutions by inspection. The
six registers in the center of the figure constitute a clique (a completely connected
subgraph); each must be mapped to a separate architectural register. Moreover
there are three cases—registers v1 and v19, v2 and v26, and v9 and v34—in
which one register is copied into the other somewhere in the code, but the two
are never simultaneously live. If we use a common architectural register in each
of these cases then we can eliminate the copy instructions; this optimization is
known as live range coalescing. Registers v13, v43, and v44 are connected to every
member of the clique, but not to each other; they can share a seventh architectural
register. Register v8 is connected to v1, v2, and v9, but not to anything else; we
have arbitrarily chosen to have both it and t13 share with the three registers on
the right. �

Final code for the combinations subroutine appears in Figure 16.19. WeEXAMPLE 16.43
Optimized combinations
subroutine

have left v1/v19 and v2/v26 in r4 and r5, the registers in which their initial values
were passed. Because our subroutine is a leaf, these registers are never needed for
other arguments. Following MIPS conventions (Section 5.4.5), we have used
registers r8 through r12 as additional temporary registers. �

We have glossed over two important issues. First, on almost any real machine,
architectural registers are not uniform. Integer registers cannot be used for
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Block 1:
 v1 := r4
 v2 := r5
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v17 := 1
 v42 := v1 >> 1
 v26 := v2
 v34 := v9
 v18 := v1
 v19 := v1
 v44 := v42 = 0
 if v44 goto Block 4
 goto Block 3
Block 2:
 v13 := v19 div v17
 v17 := v17 + 1
 v18 := v18 − 1
 v26 := v26 + 4
 v34 := v34 − 4
 v19 := v13 × v18
 *v26 := v13
 *v34 := v13
Block 3:
 v43 := v17 < v42
 if v43 goto Block 2
Block 4a:
 t13 := v19 div v17
 *(v26+4) := t13
 *(v34−4) := t13
Block 4:
 goto *ra

v1 v2 v8 v9 v13 t13 v17 v18 v19 v26 v34 v42 v43 v44

Figure 16.17 Live ranges for virtual registers in the software-pipelined version of the combin-
ations subroutine (Figure 16.15).

floating-point operations. Caller-saves registers should not be used for variables
whose values are needed across subroutine calls. Registers that are overwritten by
special instructions (e.g., byte search on a CISC machine) should not be used to
hold values that are needed across such instructions. To handle constraints of this
type, the register interference graph is usually extended to contain nodes for both
virtual and architectural registers. Arcs are then drawn from each virtual register
to the architectural registers to which it should not be mapped. Each architec-
tural register is also connected to every other, to force them all to have separate
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v1
r4

v8
r12

v9
r10

v2
r5

t13
r12

v17
r8

v18

v13
r12

v43
r12

v44
r12

r9

v19
r4

v26
r5

v34
r10

v42
r11

Figure 16.18 Register interference graph for the software pipelined version of the
combinations subroutine. Using architectural register names, we have indicated one of sev-
eral possible seven-colorings.

Block 1:
∗r5 := 1
r12 := r4 << 2
r10 := r5 + r12
∗r10 := 1
r8 := 1
r11 := r4 >> 1
r9 := r4
r12 := r11 = 0
if r12 goto Block 4
goto Block 3

Block 2:
r12 := r4 div r8
r8 := r8 + 1
r9 := r9 – 1

r5 := r5 + 4
r10 := r10 – 4
r4 := r12 × r9
∗r5 := r12
∗r10 := r12

Block 3:
r12 := r8 < r11
if r12 goto Block 2

Block 4a:
r12 := r4 div r8
∗(r5+4) := r12
∗(r10–4) := r12

Block 4:
goto ∗ra

Figure 16.19 Final code for the combinations subroutine, after assigning architectural
registers and eliminating useless copy instructions.

colors. After coloring the resulting graph, we assign each virtual register to the
architectural register of the same color.

The second issue we’ve ignored is what happens when there aren’t enough
architectural registers to go around. In this case it will not be possible to color the
interference graph. Using a variety of heuristics (which we do not cover here), the
compiler chooses virtual registers whose live ranges can be split into two or more
subranges. A value that is live at the end of a subrange may be spilled (stored) to
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memory, and reloaded at the beginning of the subsequent subrange. Alternatively,
it may be rematerialized by repeating the calculation that produced it (assuming
the necessary operands are still available). Which is cheaper will depend on the
cost of loads and stores and the complexity of the generating calculation.

It is easy to prove that with a sufficient number of range splits it is possible
to color any graph, given at least three colors. The trick is to find a set of splits
that keeps the cost of spills and rematerialization low. Once register allocation
is complete, as noted in Sections 16.1 and 16.6, we shall want to repeat
instruction scheduling, in order to fill any newly created load delays.

3CHECK YOUR UNDERSTANDING

28. What is the difference between loop unrolling and software pipelining ? Explain
why the latter may increase register pressure.

29. What is the purpose of loop interchange? Loop tiling (blocking )?

30. What are the potential benefits of loop distribution? Loop fusion? What is loop
peeling ?

31. What does it mean for loops to be perfectly nested? Why are perfect loop nests
important?

32. What is a loop-carried dependence? Describe three loop transformations that
may serve in some cases to eliminate such a dependence.

33. Describe the fundamental difference between the parallelization strategy for
multiprocessors and the parallelization strategy for vector machines.

34. What is self scheduling ? When is it desirable?

35. What is the live range of a register? Why might it not be a contiguous range of
instructions?

36. What is a register interference graph? What is its significance? Why do produc-
tion compilers depend on heuristics (rather than precise solutions) for register
allocation?

37. List three reasons why it might not be possible to treat the architectural regis-
ters of a microprocessor uniformly for purposes of register allocation.

16.9 Summary and Concluding Remarks

This chapter has addressed the subject of code improvement (“optimization”).
We considered many of the most important optimization techniques, including
peephole optimization; local and global (intrasubroutine) redundancy elimina-
tion (constant folding, constant propagation, copy propagation, common subex-
pression elimination); loop improvement (invariant hoisting, strength reduction
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or elimination of induction variables, unrolling and software pipelining, reorder-
ing for cache improvement or parallelization); instruction scheduling; and register
allocation. Many others techniques, too numerous to mention, can be found in
the literature or in production use.

To facilitate code improvement, we introduced several new data structures and
program representations, including dependence DAGs (for instruction schedul-
ing), static single-assignment (SSA) form (for many purposes, including global
common subexpression elimination via value numbering), and the register inter-
ference graph (for architectural register allocation). For many global optimiza-
tions we made use of data flow analysis. Specifically, we employed it to identify
available expressions (for global common subexpression elimination), to identify
live variables (to eliminate useless stores), and to calculate reaching definitions (to
identify loop invariants; also useful for finding live ranges of virtual registers). We
also noted that it can be used for global constant propagation, copy propagation,
conversion to SSA form, and a host of other purposes.

An obvious question for both the writers and users of compilers is: among the
many possible code improvement techniques, which produce the most “bang for
the buck”? For modern machines, instruction scheduling and register allocation
are definitely on the list: basic-block level scheduling and elimination of redun-
dant loads and stores are crucial in any production-quality compiler. Significant
additional benefits accrue from some sort of global register allocation, if only to
avoid repeated loads and stores of loop indices and other heavily used local vari-
ables and parameters. Beyond these basic techniques, which mainly amount to
making good use of the hardware, the most significant benefits in von Neumann
programs come from optimizing references to arrays, particularly within loops.
Most production-quality compilers (1) perform at least enough common subex-
pression analysis to identify redundant address calculations for arrays, (2) hoist
invariant calculations out of loops, and (3) perform strength reduction on induc-
tion variables, eliminating them if possible.

As we noted in the introduction to the chapter, code improvement remains
an extremely active area of research. Much of this research addresses language
features and computational models for which traditional optimization techniques
have not been particularly effective. Examples include alias analysis for pointers
in C, static resolution of virtual method calls in object-oriented languages (to
permit inlining and interprocedural optimization), streamlined communication
in message-passing languages, and a variety of issues for functional and logic
languages. In some cases, new programming paradigms can change the goals of
code improvement. For just-in-time compilation of Java or C# programs, for
example, the speed of the code improver may be as important as the speed of the
code it produces. In other cases, new sources of information (e.g., feedback from
run-time profiling) create new opportunities for improvement. Finally, advances
in processor architecture (multiple pipelines, very wide instruction words, out-of-
order execution, architecturally visible caches, speculative instructions) continue
to create new challenges; processor design and compiler design are increasingly
interrelated.
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16.10 Exercises

16.1 In Section 16.2 we suggested replacing the instruction r1 := r2 / 2 with
the instruction r1 := r2 >> 1, and noted that the replacement may not be
correct for negative numbers. Explain the problem. You will want to learn
the difference between logical and arithmetic shift operations (see almost
any assembly language manual). You will also want to consider the issue of
rounding.

16.2 Prove that the division operation in the loop of the combinations sub-
routine (Example 16.10) always produces a remainder of zero. Explain
the need for the parentheses around the numerator.

16.3 Certain code improvements can sometimes be performed by the program-
mer, in the source-language program. Examples include introducing addi-
tional variables to hold common subexpressions (so that they need not be
recomputed), moving invariant computations out of loops, and applying
strength reduction to induction variables or to multiplications by powers of
two. Describe several optimizations that cannot reasonably be performed
by the programmer, and explain why some that could be performed by the
programmer might best be left to the compiler.

16.4 In Section 6.5.1 (page 257) we suggested that the loop

// before
for (i = low; i <= high; i++) {

// during
}
// after

be translated as

– – before
i := low
goto test

top:
– – during
i +:= 1

test:
if i ≤ high goto top
– – after

And indeed this is the translation we have used for the combinations
subroutine. The following is an alternative translation:

– – before
i := low
if i > high goto bottom
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top:
– – during
i +:= 1
if i ≤ high goto top

bottom:
– – after

Explain why this translation might be preferable to the one we used. (Hints:
Consider the number of branches, the migration of loop invariants, and
opportunities to fill delay slots.)

16.5 Beginning with the translation of the previous exercise, reapply the code
improvements discussed in this chapter to the combinations subroutine.

16.6 Give an example in which the numbered heuristics listed on page 354
do not lead to an optimal code schedule.

16.7 Show that forward data flow analysis can be used to verify that a vari-
able is assigned a value on every possible control path leading to a use
of that variable (this is the notion of definite assignment, described in
Section 6.1.3).

16.8 In the sidebar on page 774, we noted two additional properties (other than
definite assignment) that a Java Virtual Machine must verify in order to
protect itself from potentially erroneous byte code. On every possible path
to a given statement S, (a) every variable read in S must have the same type
(which must of course be consistent with operations in S), and (b) the
operand stack must have the same current depth, and must not overflow
or underflow in S. Describe how data flow analysis can be used to verify
these properties.

16.9 Show that very busy expressions (those that are guaranteed to be calcu-
lated on every future code path) can be detected via backward, all-paths
data flow analysis. Suggest a space-saving code improvement for such
expressions.

16.10 Explain how to gather information during local value numbering that will
allow us to identify the sets of variables and registers that contributed to
the value of each virtual register. (If the value of register vi depends on
the value of register vj or of variable x, then during available expression
analysis we say that vi ∈ KillB if B contains an assignment to vj or x and
does not contain a subsequent assignment to vi .)

16.11 Show how to strength-reduce the expression i 2 within a loop, where i is
the loop index variable. You may assume that the loop step size is one.

16.12 Division is often much more expensive than addition and subtraction.
Show how to replace expressions of the form i div c on the inside of
a for loop with additions and/or subtractions, where i is the loop index
variable and c is an integer constant. You may assume that the loop step size
is one.
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16.13 Consider the following high-level pseudocode.

read(n)
for i in 1 . . 100

B[i] := n × i
if n > 0

A[i] := B[i]

The condition n > 0 is loop invariant. Can we move it out of the loop? If
so, explain how. If not, explain why.

16.14 Should live variable analysis be performed before or after loop invariant
elimination (or should it be done twice, before and after)? Justify your
answer.

16.15 Starting with the naive gcd code of Figure 1.6 (page 34), show the result
of local redundancy elimination (via value numbering) and instruction
scheduling.

16.16 Continuing the previous exercise, draw the program’s control flow graph
and show the result of global value numbering. Next, use data flow anal-
ysis to drive any appropriate global optimizations. Then draw and color
the register conflict graph in order to perform global register allocation.
Finally, perform a final pass of instruction scheduling. How does your code
compare to the version in Example 1.2?

16.17 In Section 16.6 (page 352) we noted that hardware register rena-
ming can often hide anti- and output dependences. Will it help in Figure

16.12? Explain.

16.18 Consider the following code:

v2 := ∗v1
v1 := v1 + 20
v3 := ∗v1
—
v4 := v2 + v3

Show how to shorten the time required for this code by moving the update
of v1 forward into the delay slot of the second load. (Assume that v1 is
still live at the end.) Describe the conditions that must hold for this type
of transformation to be applied, and the alterations that must be made to
individual instructions to maintain correctness.

16.19 Consider the following code:

v5 := v2 × v36
—
—
—
—
v6 := v5 + v1
v1 := v1 + 20
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Show how to shorten the time required for this code by moving the update
of v1 backward into a delay slot of the multiply. Describe the conditions
that must hold for this type of transformation to be applied, and the
alterations that must be made to individual instructions to maintain cor-
rectness.

16.20 In the spirit of the previous two exercises, show how to shorten the main
loop of the combinations subroutine (prior to unrolling or pipelining)
by moving the updates of v26 and v34 backward into delay slots. What
percentage impact does this change make in the performance of the loop?

16.21 Using the code in Figures 16.11 and 16.13 as a guide, unroll the loop of
the combinations subroutine three times. Construct a dependence DAG
for the new Block 2. Finally, schedule the block. How many cycles does your
code consume per iteration of the original (unrolled) loop? How does it
compare to the software pipelined version of the loop (Figure 16.15)?

16.22 Write a version of the combinations subroutine whose loop is both
unrolled and software pipelined. In other words, build the loop body
from the instructions between the left-most and right-most vertical bars of
Figure 16.14, rather than from the instructions between adjacent bars.
You should update the array pointers only once per iteration. How many
cycles does your code consume per iteration of the original loop? How
messy is the code to “prime” and “flush” the pipeline, and to check for
sufficient numbers of iterations?

16.23 Consider the following code for matrix multiplication:

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

C[i][j] = 0;
}

}
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Describe the access patterns for matrices A, B, and C. If the matrices are
large, how many times will each cache line be fetched from memory? Tile
the inner two loops. Describe the effect on the number of cache misses.

16.24 Consider the following simple instance of Gaussian elimination:
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for (i = 0; i < n-1; i++) {
for (j = i+1; j < n; j++) {

for (k = n-1; k >= i; k--) {
A[j][k] -= A[i][k] * A[j][i] / A[i][i];

}
}

}

(Gaussian elimination serves to triangularize a matrix. It is a key step in the
solution of systems of linear equations.) What are the loop invariants in
this code? What are the loop-carried dependences? Discuss how to optimize
the code. Be sure to consider locality-improving loop transformations.

16.25 Modify the tiled matrix transpose of Example 16.32 to eliminate the min
calculations in the bounds of the inner loops. Perform the same modifica-
tion on your answer to Exercise 16.23.

16.11 Explorations

16.26 Investigate the back-end structure of your favorite compiler. What levels
of optimization are available? What techniques are employed at each level?
What is the default level? Does the compiler generate assembly language
or object code?

Experiment with optimization in several program fragments. Instruct
the compiler to generate assembly language,or use a disassembler or debug-
ger to examine the generated object code. Evaluate the quality of this code
at various levels of optimization.

If your compiler employs a separate assembler, compare the assembler
input to its disassembled output. What optimizations, if any, are performed
by the assembler?

16.27 As a general rule, a compiler can apply a program transformation only if
it preserves the correctness of the code. In some circumstances, however,
the correctness of a transformation may depend on information that will
not be known until run time. In this case, a compiler may generate two
(or more) versions of some body of code, together with a run-time check
that chooses which version to use, or customizes a general, parameterized
version.

Learn about the “inspector-executor” compilation paradigm pioneered
by Saltz et al. [SMC91]. How general is this technique? Under what cir-
cumstances can the performance benefits be expected to outweigh the cost
of the run-time check and the potential increase in code size?

16.28 A recent trend is the use of static compiler analysis to check for pat-
terns of information flow that are likely (though not certain) to constitute
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programming errors. Investigate the work of Guyer et al. [GL05], which
performs analysis reminiscent of taint mode (Exploration 15.17) at compile
time. In a similar vein, investigate the work of Yang et al. [YTEM04] and
Chen et al. [CDW04], which use static model checking to catch high-level
errors. What do you think of such efforts? How do they compare to taint
mode or to proof-carrying code (Exploration 15.18)? Can static analysis be
useful if it has both false negatives (errors it misses) and false positives
(correct code it flags as erroneous)?

16.29 In a somewhat gloomy parody of Moore’s Law, Todd Proebsting of
Microsoft Research (himself an eminent compiler researcher) offers Proeb-
sting’s Law : “Compiler advances double computing power every 18 years.”
(See research.microsoft.com/ toddpro/ for pointers.)

Survey the history of compiler technology. What have been the major
innovations? Have there been important advances in areas other than
speed? Is Proebsting’s Law a fair assessment of the field?

16.12 Bibliographic Notes

Recent compiler textbooks (e.g., those of Cooper and Torczon [CT04], Grune et
al. [GBJL01], or Appel [App97]) are an accessible source of information on back-
end compiler technology. Much of the presentation here was inspired by Much-
nick’s Advanced Compiler Design and Implementation, which contains a wealth of
detailed information and citations to related work [Muc97]. Much of the leading-
edge compiler research appears in the annual ACM Conference on Programming
Language Design and Implementation (PLDI). A compendium of “best papers”
from the first 20 years of this conference was published in 2004 [McK04].

Throughout our study of code improvement, we concentrated our attention
on the von Neumann family of languages. Analogous techniques for functional
[App91; KKR+86; Pey87; Pey92; WM95, Chap. 3; App97, Chap. 15; GBJL01,
Chap. 7]; object-oriented [AH95; GDDC97; WM95, Chap. 5; App97, Chap. 14;
GBJL01, Chap. 6]; and logic languages [DRSS96; FSS83; Zho96; WM95, Chap. 4;
GBJL01, Chap. 8] are an active topic of research, but are beyond the scope of this
book. A key challenge in functional languages is to identify repetitive patterns of
calls (e.g., tail recursion), for which loop-like optimizations can be performed.
A key challenge in object-oriented languages is to predict the targets of virtual
subroutine calls statically, to permit in-lining and interprocedural code improve-
ment. The dominant challenge in logic languages is to better direct the underlying
process of goal-directed search.

Local value numbering is originally due to Cocke and Schwartz [CS69]; the
global algorithm described here is based on that of Alpern, Wegman, and Zadeck
[AWZ88]. Chaitin et al. [CAC+81] popularized the use of graph coloring for
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register allocation. Cytron et al. [CFR+91] describe the generation and use of static
single-assignment form. Allen and Kennedy [AK02, Sec. 12.2] discuss the general
problem of alias analysis in C. Pointers are the most difficult part of this analysis,
but significant progress has been made in recent years; Hind [Hin01] presents
a comprehensive and accessible survey. Instruction scheduling from basic-block
dependence DAGs is described by Gibbons and Muchnick [GM86]. The general
technique is known as list scheduling ; modern treatments appear in the texts
of Muchnick [Muc97, Sec. 17.1.2] and Cooper and Torczon [CT04, Sec. 12.3].
Massalin provides a delightful discussion of circumstances under which it may be
desirable (and possible) to generate a truly optimal program [Mas87].

Sources of information on loop transformations and parallelization include
the recent text of Allen and Kennedy [AK02], the older text of Wolfe [Wol96], and
the excellent survey of Bacon, Graham, and Sharp [BGS94]. Banerjee provides a
detailed discussion of loop dependence analysis [Ban97]. Rau and Fisher discuss
fine-grain instruction-level parallelism, of the sort exploitable by vector, wide-
instruction-word, or superscalar processors [RF93].
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