
Tony Albrecht – Technical Consultant

Developer Services

Sony Computer Entertainment Europe

Research & Development Division

Pitfalls of Object Oriented Programming

Slide 2

• A quick look at Object Oriented (OO)

programming

• A common example

• Optimisation of that example

• Summary

What I will be covering

Slide 3

• What is OO programming?
– a programming paradigm that uses "objects" – data structures

consisting of datafields and methods together with their interactions – to
design applications and computer programs.
(Wikipedia)

• Includes features such as
– Data abstraction

– Encapsulation

– Polymorphism

– Inheritance

Object Oriented (OO) Programming

Slide 4

• OO programming allows you to think about
problems in terms of objects and their
interactions.

• Each object is (ideally) self contained

– Contains its own code and data.

– Defines an interface to its code and data.

• Each object can be perceived as a „black box‟.

What’s OOP for?

Slide 5

• If objects are self contained then they can be
– Reused.

– Maintained without side effects.

– Used without understanding internal
implementation/representation.

• This is good, yes?

Objects

Slide 6

• Well, yes

• And no.

• First some history.

Are Objects Good?

Slide 7

A Brief History of C++

C++ development started

1979 2009

Slide 8

A Brief History of C++

Named “C++”

1979 20091983

Slide 9

A Brief History of C++

First Commercial release

1979 20091985

Slide 10

A Brief History of C++

Release of v2.0

1979 20091989

Slide 11

A Brief History of C++

Release of v2.0

1979 20091989

Added
• multiple inheritance,
• abstract classes,
• static member functions,
• const member functions
• protected members.

Slide 12

A Brief History of C++

Standardised

1979 20091998

Slide 13

A Brief History of C++

Updated

1979 20092003

Slide 14

A Brief History of C++

C++0x

1979 2009 ?

Slide 15

• Many more features have
been added to C++

• CPUs have become much
faster.

• Transition to multiple cores

• Memory has become faster.

So what has changed since 1979?

http://www.vintagecomputing.com

Slide 16

CPU performance

Computer architecture: a quantitative approach

By John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau

Slide 17

CPU/Memory performance

Computer architecture: a quantitative approach

By John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau

Slide 18

• One of the biggest changes is that memory
access speeds are far slower (relatively)

– 1980: RAM latency ~ 1 cycle

– 2009: RAM latency ~ 400+ cycles

• What can you do in 400 cycles?

What has changed since 1979?

Slide 19

• OO classes encapsulate code and data.

• So, an instantiated object will generally

contain all data associated with it.

What has this to do with OO?

Slide 20

• With modern HW (particularly consoles),

excessive encapsulation is BAD.

• Data flow should be fundamental to your

design (Data Oriented Design)

My Claim

Slide 21

• Base Object class
– Contains general data

• Node
– Container class

• Modifier
– Updates transforms

• Drawable/Cube
– Renders objects

Consider a simple OO Scene Tree

Slide 22

• Each object

– Maintains bounding sphere for culling

– Has transform (local and world)

– Dirty flag (optimisation)

– Pointer to Parent

Object

Slide 23

Objects

Class Definition Memory Layout
Each square is

4 bytes

Slide 24

• Each Node is an object, plus

– Has a container of other objects

– Has a visibility flag.

Nodes

Slide 25

Nodes

Class Definition Memory Layout

Slide 26

Consider the following code…

• Update the world transform and world

space bounding sphere for each object.

Slide 27

Consider the following code…

• Leaf nodes (objects) return transformed

bounding spheres

Slide 28

Consider the following code…

• Leaf nodes (objects) return transformed

bounding spheres
What‟s wrong with this

code?

Slide 29

Consider the following code…

• Leaf nodes (objects) return transformed

bounding spheres
If m_Dirty=false then we get branch

misprediction which costs 23 or 24

cycles.

Slide 30

Consider the following code…

• Leaf nodes (objects) return transformed

bounding spheresCalculation of the world bounding sphere

takes only 12 cycles.

Slide 31

Consider the following code…

• Leaf nodes (objects) return transformed

bounding spheresSo using a dirty flag here is actually

slower than not using one (in the case

where it is false)

Slide 32

Lets illustrate cache usage

Main Memory L2 Cache
Each cache line is

128 bytes

Slide 33

Cache usage

Main Memory

parentTransform is already

in the cache (somewhere)

L2 Cache

Slide 34

Cache usage

Main Memory
Assume this is a 128byte

boundary (start of cacheline) L2 Cache

Slide 35

Cache usage

Main Memory

Load m_Transform into cache

L2 Cache

Slide 36

Cache usage

Main Memory

m_WorldTransform is stored via

cache (write-back)

L2 Cache

Slide 37

Cache usage

Main Memory

Next it loads m_Objects

L2 Cache

Slide 38

Cache usage

Main Memory

Then a pointer is pulled from

somewhere else (Memory

managed by std::vector)

L2 Cache

Slide 39

Cache usage

Main Memory

vtbl ptr loaded into Cache

L2 Cache

Slide 40

Cache usage

Main Memory

Look up virtual function

L2 Cache

Slide 41

Cache usage

Main Memory

Then branch to that code

(load in instructions)

L2 Cache

Slide 42

Cache usage

Main Memory

New code checks dirty flag then

sets world bounding sphere

L2 Cache

Slide 43

Cache usage

Main Memory

Node‟s World Bounding Sphere

is then Expanded

L2 Cache

Slide 44

Cache usage

Main Memory

Then the next Object is

processed

L2 Cache

Slide 45

Cache usage

Main Memory

First object costs at least 7

cache misses

L2 Cache

Slide 46

Cache usage

Main Memory

Subsequent objects cost at least

2 cache misses each

L2 Cache

Slide 47

• 11,111 nodes/objects in a
tree 5 levels deep

• Every node being
transformed

• Hierarchical culling of tree

• Render method is empty

The Test

Slide 48

Performance

This is the time

taken just to

traverse the tree!

Slide 49

Why is it so slow?
~22ms

Slide 50

Look at GetWorldBoundingSphere()

Slide 51

Samples can be a little

misleading at the source

code level

Slide 52

if(!m_Dirty) comparison

Slide 53

Stalls due to the load 2

instructions earlier

Slide 54

Similarly with the matrix

multiply

Slide 55

Some rough calculations

Branch Mispredictions: 50,421 @ 23 cycles each ~= 0.36ms

Slide 56

Some rough calculations

Branch Mispredictions: 50,421 @ 23 cycles each ~= 0.36ms

L2 Cache misses: 36,345 @ 400 cycles each ~= 4.54ms

Slide 57

• From Tuner, ~ 3 L2 cache misses per
object

– These cache misses are mostly sequential
(more than 1 fetch from main memory can
happen at once)

– Code/cache miss/code/cache miss/code…

Slide 58

• How can we fix it?

• And still keep the same functionality and

interface?

Slow memory is the problem here

Slide 59

• Use homogenous, sequential sets of data

The first step

Slide 60

Homogeneous Sequential Data

Slide 61

• Use custom allocators

– Minimal impact on existing code

• Allocate contiguous

– Nodes

– Matrices

– Bounding spheres

Generating Contiguous Data

Slide 62

Performance

19.6ms -> 12.9ms

35% faster just by

moving things around in

memory!

Slide 63

• Process data in order

• Use implicit structure for hierarchy

– Minimise to and fro from nodes.

• Group logic to optimally use what is already in
cache.

• Remove regularly called virtuals.

What next?

Slide 64

Hierarchy

Node

We start with

a parent Node

Slide 65

Hierarchy

Node

Node NodeWhich has children

nodes

Slide 66

Hierarchy

Node

Node Node

And they have a

parent

Slide 67

Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

And they have

children

Slide 68

Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

And they all have

parents

Slide 69

Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

A lot of this

information can be

inferred

Node Node Node NodeNode Node Node Node

Slide 70

Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

Use a set of arrays,

one per hierarchy

level

Slide 71

Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

Parent has 2

children:2

:4
:4

Children have 4

children

Slide 72

Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

Ensure nodes and their

data are contiguous in

memory
:2

:4
:4

Slide 73

• Make the processing global rather than
local

– Pull the updates out of the objects.
• No more virtuals

– Easier to understand too – all code in one
place.

Slide 74

• OO version

– Update transform top down and expand WBS

bottom up

Need to change some things…

Slide 75

Node

Node Node

Node Node Node NodeNode Node Node Node

Update

transform

Slide 76

Node

Node Node

Node Node Node NodeNode Node Node Node

Update

transform

Slide 77

Node

Node Node

Node Node Node NodeNode Node Node Node

Update transform and

world bounding sphere

Slide 78

Node

Node Node

Node Node Node NodeNode Node Node Node

Add bounding sphere

of child

Slide 79

Node

Node Node

Node Node Node NodeNode Node Node Node

Update transform and

world bounding sphere

Slide 80

Node

Node Node

Node Node Node NodeNode Node Node Node

Add bounding sphere

of child

Slide 81

Node

Node Node

Node Node Node NodeNode Node Node Node

Update transform and

world bounding sphere

Slide 82

Node

Node Node

Node Node Node NodeNode Node Node Node

Add bounding sphere

of child

Slide 83

• Hierarchical bounding spheres pass info up

• Transforms cascade down

• Data use and code is „striped‟.

– Processing is alternating

Slide 84

• To do this with a „flat‟ hierarchy, break it

into 2 passes

– Update the transforms and bounding

spheres(from top down)

– Expand bounding spheres (bottom up)

Conversion to linear

Slide 85

Transform and BS updates

Node

Node Node

Node Node Node NodeNode Node Node Node

For each node at each level (top down)

{

multiply world transform by parent‟s

transform wbs by world transform

}

:2

:4
:4

Slide 86

Update bounding sphere hierarchies

Node

Node Node

Node Node Node NodeNode Node Node Node

For each node at each level (bottom up)

{

add wbs to parent‟s

}

:2

:4
:4

For each node at each level (bottom up)

{

add wbs to parent‟s

cull wbs against frustum

}

Slide 87

Update Transform and Bounding Sphere

How many children nodes

to process

Slide 88

Update Transform and Bounding Sphere

For each child, update

transform and bounding

sphere

Slide 89

Update Transform and Bounding Sphere

Note the contiguous arrays

Slide 90

So, what’s happening in the cache?
Parent

Children

Parent Data

Childrens‟ Data

Children‟s node

data not needed

Unified L2 Cache

Slide 91

Load parent and its transform
Parent

Parent Data

Childrens‟ Data

Unified L2 Cache

Slide 92

Load child transform and set world transform
Parent

Parent Data

Childrens‟ Data

Unified L2 Cache

Slide 93

Load child BS and set WBS
Parent

Parent Data

Childrens‟ Data

Unified L2 Cache

Slide 94

Load child BS and set WBS
Parent

Parent Data

Childrens‟ Data

Next child is calculated with

no extra cache misses ! Unified L2 Cache

Slide 95

Load child BS and set WBS
Parent

Parent Data

Childrens‟ Data

The next 2 children incur 2

cache misses in total Unified L2 Cache

Slide 96

Prefetching
Parent

Parent Data

Childrens‟ Data

Because all data is linear, we

can predict what memory will

be needed in ~400 cycles

and prefetch

Unified L2 Cache

Slide 97

• Tuner scans show about 1.7 cache misses

per node.

• But, these misses are much more frequent

– Code/cache miss/cache miss/code

– Less stalling

Slide 98

Performance

19.6 -> 12.9 -> 4.8ms

Slide 99

• Data accesses are now predictable

• Can use prefetch (dcbt) to warm the cache

– Data streams can be tricky

– Many reasons for stream termination

– Easier to just use dcbt blindly
• (look ahead x number of iterations)

Prefetching

Slide 100

• Prefetch a predetermined number of

iterations ahead

• Ignore incorrect prefetches

Prefetching example

Slide 101

Performance

19.6 -> 12.9 -> 4.8 -> 3.3ms

Slide 102

• This example makes very heavy use of the
cache

• This can affect other threads‟ use of the
cache

– Multiple threads with heavy cache use may
thrash the cache

A Warning on Prefetching

Slide 103

The old scan
~22ms

Slide 104

The new scan

~16.6ms

Slide 105

Up close

~16.6ms

Slide 106

Looking at the code (samples)

Slide 107

Performance counters
Branch mispredictions: 2,867 (cf. 47,000)

L2 cache misses: 16,064 (cf 36,000)

Slide 108

• Just reorganising data locations was a win

• Data + code reorganisation= dramatic

improvement.

• + prefetching equals even more WIN.

In Summary

Slide 109

• Be careful not to design yourself into a corner

• Consider data in your design

– Can you decouple data from objects?

– …code from objects?

• Be aware of what the compiler and HW are
doing

OO is not necessarily EVIL

Slide 110

• Optimise for data first, then code.

– Memory access is probably going to be your
biggest bottleneck

• Simplify systems

– KISS

– Easier to optimise, easier to parallelise

Its all about the memory

Slide 111

• Keep code and data homogenous

– Avoid introducing variations

– Don‟t test for exceptions – sort by them.

• Not everything needs to be an object

– If you must have a pattern, then consider
using Managers

Homogeneity

Slide 112

• You are writing a GAME

– You have control over the input data

– Don‟t be afraid to preformat it – drastically if
need be.

• Design for specifics, not generics
(generally).

Remember

Slide 113

• Better performance

• Better realisation of code optimisations

• Often simpler code

• More parallelisable code

Data Oriented Design Delivers

Slide 114

The END

