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• A quick look at Object Oriented (OO) 

programming

• A common example

• Optimisation of that example

• Summary

What I will be covering
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• What is OO programming?
– a programming paradigm that uses "objects" – data structures 

consisting of datafields and methods together with their interactions – to 
design applications and computer programs.
(Wikipedia) 

• Includes features such as
– Data abstraction

– Encapsulation

– Polymorphism

– Inheritance

Object Oriented (OO) Programming
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• OO programming allows you to think about 
problems in terms of objects and their 
interactions.

• Each object is (ideally) self contained

– Contains its own code and data.

– Defines an interface to its code and data.

• Each object can be perceived as a „black box‟.

What’s OOP for?
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• If objects are self contained then they can be
– Reused.

– Maintained without side effects.

– Used without understanding internal 
implementation/representation.

• This is good, yes?

Objects
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• Well, yes

• And no.

• First some history.

Are Objects Good?
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A Brief History of C++

C++ development started

1979 2009
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A Brief History of C++

Named “C++”

1979 20091983
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A Brief History of C++

First Commercial release

1979 20091985
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A Brief History of C++

Release of v2.0

1979 20091989
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A Brief History of C++

Release of v2.0

1979 20091989

Added 
• multiple inheritance,
• abstract classes,
• static member functions, 
• const member functions 
• protected members.
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A Brief History of C++

Standardised

1979 20091998
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A Brief History of C++

Updated

1979 20092003
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A Brief History of C++

C++0x

1979 2009 ?
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• Many more features have 
been added to C++

• CPUs have become much 
faster.

• Transition to multiple cores

• Memory has become faster.

So what has changed since 1979?

http://www.vintagecomputing.com
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CPU performance

Computer architecture: a quantitative approach

By John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau
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CPU/Memory performance

Computer architecture: a quantitative approach

By John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau
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• One of the biggest changes is that memory 
access speeds are far slower (relatively)

– 1980: RAM latency ~ 1 cycle

– 2009: RAM latency ~ 400+ cycles

• What can you do in 400 cycles?

What has changed since 1979?
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• OO classes encapsulate code and data.

• So, an instantiated object will generally 

contain all data associated with it.

What has this to do with OO?
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• With modern HW (particularly consoles), 

excessive encapsulation is BAD.

• Data flow should be fundamental to your 

design (Data Oriented Design)

My Claim
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• Base Object class
– Contains general data

• Node 
– Container class

• Modifier
– Updates transforms

• Drawable/Cube
– Renders objects

Consider a simple OO Scene Tree
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• Each object

– Maintains bounding sphere for culling

– Has transform (local and world)

– Dirty flag (optimisation)

– Pointer to Parent

Object
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Objects

Class Definition Memory Layout
Each square is 

4 bytes
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• Each Node is an object, plus

– Has a container of other objects

– Has a visibility flag.

Nodes
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Nodes

Class Definition Memory Layout
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Consider the following code…

• Update the world transform and world 

space bounding sphere for each object.
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Consider the following code…

• Leaf nodes (objects) return transformed 

bounding spheres
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Consider the following code…

• Leaf nodes (objects) return transformed 

bounding spheres
What‟s wrong with this 

code?
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Consider the following code…

• Leaf nodes (objects) return transformed 

bounding spheres
If m_Dirty=false then we get branch 

misprediction which costs 23 or 24 

cycles.
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Consider the following code…

• Leaf nodes (objects) return transformed 

bounding spheresCalculation of the world bounding sphere 

takes only 12 cycles.
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Consider the following code…

• Leaf nodes (objects) return transformed 

bounding spheresSo using a dirty flag here is actually 

slower than not using one (in the case 

where it is false)
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Lets illustrate cache usage

Main Memory L2 Cache
Each cache line is 

128 bytes
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Cache usage

Main Memory

parentTransform is already 

in the cache (somewhere)

L2 Cache
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Cache usage

Main Memory
Assume this is a 128byte 

boundary (start of cacheline) L2 Cache
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Cache usage

Main Memory

Load m_Transform into cache

L2 Cache
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Cache usage

Main Memory

m_WorldTransform is stored via 

cache (write-back)

L2 Cache
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Cache usage

Main Memory

Next it loads m_Objects

L2 Cache
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Cache usage

Main Memory

Then a pointer is pulled from 

somewhere else (Memory 

managed by std::vector)

L2 Cache
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Cache usage

Main Memory

vtbl ptr loaded into Cache

L2 Cache
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Cache usage

Main Memory

Look up virtual function

L2 Cache
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Cache usage

Main Memory

Then branch to that code 

(load in instructions)

L2 Cache
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Cache usage

Main Memory

New code checks dirty flag then 

sets world bounding sphere

L2 Cache
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Cache usage

Main Memory

Node‟s World Bounding Sphere 

is then Expanded

L2 Cache
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Cache usage

Main Memory

Then the next Object is 

processed

L2 Cache
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Cache usage

Main Memory

First object costs at least 7 

cache misses

L2 Cache
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Cache usage

Main Memory

Subsequent objects cost at least 

2 cache misses each

L2 Cache



Slide 47

• 11,111 nodes/objects in a 
tree 5 levels deep

• Every node being 
transformed

• Hierarchical culling of tree

• Render method is empty 

The Test
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Performance

This is the time 

taken just to 

traverse the tree!
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Why is it so slow?
~22ms
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Look at GetWorldBoundingSphere()
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Samples can be a little 

misleading at the source 

code level
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if(!m_Dirty) comparison
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Stalls due to the load 2 

instructions earlier
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Similarly with the matrix 

multiply
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Some rough calculations

Branch Mispredictions: 50,421 @ 23 cycles each   ~= 0.36ms
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Some rough calculations

Branch Mispredictions: 50,421 @ 23 cycles each   ~= 0.36ms

L2 Cache misses: 36,345 @ 400 cycles each         ~= 4.54ms



Slide 57

• From Tuner, ~ 3 L2 cache misses per 
object

– These cache misses are mostly sequential 
(more than 1 fetch from main memory can 
happen at once)

– Code/cache miss/code/cache miss/code…



Slide 58

• How can we fix it?

• And still keep the same functionality and 

interface?

Slow memory is the problem here



Slide 59

• Use homogenous, sequential sets of data

The first step
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Homogeneous Sequential Data
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• Use custom allocators

– Minimal impact on existing code

• Allocate contiguous

– Nodes

– Matrices

– Bounding spheres

Generating Contiguous Data
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Performance

19.6ms -> 12.9ms

35% faster just by 

moving things around in 

memory!
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• Process data in order

• Use implicit structure for hierarchy

– Minimise to and fro from nodes.

• Group logic to optimally use what is already in 
cache.

• Remove regularly called virtuals.

What next?
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Hierarchy

Node

We start with 

a parent Node



Slide 65

Hierarchy

Node

Node NodeWhich has children 

nodes
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Hierarchy

Node

Node Node

And they have a 

parent
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Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

And they have 

children
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Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

And they all have 

parents
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Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

A lot of this 

information can be 

inferred

Node Node Node NodeNode Node Node Node
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Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

Use a set of arrays, 

one per hierarchy 

level
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Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

Parent has 2 

children:2

:4
:4

Children have 4 

children
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Hierarchy

Node

Node Node

Node Node Node NodeNode Node Node Node

Ensure nodes and their 

data are contiguous in 

memory
:2

:4
:4



Slide 73

• Make the processing global rather than 
local

– Pull the updates out of the objects.
• No more virtuals

– Easier to understand too – all code in one 
place.
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• OO version

– Update transform top down and expand WBS 

bottom up

Need to change some things…
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Node

Node Node

Node Node Node NodeNode Node Node Node

Update 

transform



Slide 76

Node

Node Node

Node Node Node NodeNode Node Node Node

Update 

transform
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Node

Node Node

Node Node Node NodeNode Node Node Node

Update transform and 

world bounding sphere
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Node

Node Node

Node Node Node NodeNode Node Node Node

Add bounding sphere 

of child
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Node

Node Node

Node Node Node NodeNode Node Node Node

Update transform and 

world bounding sphere
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Node

Node Node

Node Node Node NodeNode Node Node Node

Add bounding sphere 

of child
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Node

Node Node

Node Node Node NodeNode Node Node Node

Update transform and 

world bounding sphere
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Node

Node Node

Node Node Node NodeNode Node Node Node

Add bounding sphere 

of child
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• Hierarchical bounding spheres pass info up

• Transforms cascade down

• Data use and code is „striped‟.

– Processing is alternating
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• To do this with a „flat‟ hierarchy, break it 

into 2 passes

– Update the transforms and bounding 

spheres(from top down)

– Expand bounding spheres (bottom up)

Conversion to linear
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Transform and BS updates

Node

Node Node

Node Node Node NodeNode Node Node Node

For each node at each level (top down)

{

multiply world transform by parent‟s

transform wbs by world transform

}

:2

:4
:4
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Update bounding sphere hierarchies

Node

Node Node

Node Node Node NodeNode Node Node Node

For each node at each level (bottom up)

{

add wbs to parent‟s

}

:2

:4
:4

For each node at each level (bottom up)

{

add wbs to parent‟s

cull wbs against frustum

}
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Update Transform and Bounding Sphere

How many children nodes 

to process
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Update Transform and Bounding Sphere

For each child, update 

transform and bounding 

sphere
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Update Transform and Bounding Sphere

Note the contiguous arrays
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So, what’s happening in the cache?
Parent

Children

Parent Data

Childrens‟ Data

Children‟s node 

data not needed

Unified L2 Cache
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Load parent and its transform
Parent

Parent Data

Childrens‟ Data

Unified L2 Cache
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Load child transform and set world transform
Parent

Parent Data

Childrens‟ Data

Unified L2 Cache
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Load child BS and set WBS
Parent

Parent Data

Childrens‟ Data

Unified L2 Cache
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Load child BS and set WBS
Parent

Parent Data

Childrens‟ Data

Next child is calculated with 

no extra cache misses ! Unified L2 Cache
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Load child BS and set WBS
Parent

Parent Data

Childrens‟ Data

The next 2 children incur 2 

cache misses in total Unified L2 Cache
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Prefetching
Parent

Parent Data

Childrens‟ Data

Because all data is linear, we 

can predict what memory will 

be needed in ~400 cycles 

and prefetch

Unified L2 Cache
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• Tuner scans show about 1.7 cache misses 

per node.

• But, these misses are much more frequent

– Code/cache miss/cache miss/code

– Less stalling
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Performance

19.6 -> 12.9 -> 4.8ms
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• Data accesses are now predictable

• Can use prefetch (dcbt) to warm the cache

– Data streams can be tricky

– Many reasons for stream termination

– Easier to just use dcbt blindly 
• (look ahead x number of iterations)

Prefetching
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• Prefetch a predetermined number of 

iterations ahead

• Ignore incorrect prefetches

Prefetching example
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Performance

19.6 -> 12.9 -> 4.8 -> 3.3ms
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• This example makes very heavy use of the 
cache

• This can affect other threads‟ use of the 
cache

– Multiple threads with heavy cache use may 
thrash the cache 

A Warning on Prefetching
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The old scan
~22ms
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The new scan

~16.6ms
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Up close

~16.6ms
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Looking at the code (samples)
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Performance counters
Branch mispredictions: 2,867  (cf. 47,000)

L2 cache misses: 16,064         (cf 36,000)
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• Just reorganising data locations was a win

• Data + code reorganisation= dramatic 

improvement.

• + prefetching equals even more WIN.

In Summary
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• Be careful not to design yourself into a corner

• Consider data in your design

– Can you decouple data from objects? 

– …code from objects?

• Be aware of what the compiler and HW are 
doing

OO is not necessarily EVIL
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• Optimise for data first, then code.

– Memory access is probably going to be your 
biggest bottleneck

• Simplify systems

– KISS

– Easier to optimise, easier to parallelise

Its all about the memory
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• Keep code and data homogenous

– Avoid introducing variations

– Don‟t test for exceptions – sort by them.

• Not everything needs to be an object

– If you must have a pattern, then consider 
using Managers

Homogeneity 
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• You are writing a GAME

– You have control over the input data

– Don‟t be afraid to preformat it – drastically if 
need be.

• Design for specifics, not generics 
(generally).

Remember
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• Better performance

• Better realisation of code optimisations

• Often simpler code

• More parallelisable code

Data Oriented Design Delivers
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The END


