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PREFACE

Building Software for Simulation is different from many other books on simulation
because its focuses on the design and implementation of simulation software; by
culminating in a complete system for simulation, this book makes itself unique.
The design and construction of simulation software has been a topic persistently
absent from textbooks even though many, if not most, simulation projects require the
development of new software. By addressing this important topic, Building Software
for Simulation will, I hope, complement other excellent textbooks on modeling and
simulation. This book is intended as both an introduction to simulation programming
and a reference for experienced practitioners. I hope you will find it useful in these
respects.

This book approaches simulation from the perspective of Zeigler’s theory of mod-
eling and simulation, introducing the theory’s fundamental concepts and showing
how to apply these to problems in engineering. The original concept of the book
was not so ambitious; its early stages more closely resembled a cookbook for build-
ing simulators, focusing almost exclusively on algorithms, examples of simulation
programs, and guidelines for the object-oriented design of a simulator. The book
retains much of this flavor, demonstrating each concept and algorithm with working
code. Unlike a cookbook, however, concepts and algorithms discussed in the text are
not disembodied; their origins in the theory of modeling and simulation are made
apparent, and this motivates and provides greater insight into their application.

Chapters 3, 4, and 5, are the centerpiece of the text. I begin with discrete-time sys-
tems, their properties and structure, simulation algorithms, and applications. Discrete-
time system will be familiar to most readers and if not, they are easily grasped.
Discrete-time systems are generalized to introduce discrete event systems; this ap-
proach leads naturally to Zeigler’s discrete-event system specification, its properties

ix
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x PREFACE

and structures, and simulation procedures. The central three chapters conclude with
methods for modeling and simulating systems that have interacting continuous and
discrete-event dynamics.

The three main chapters are bracketed by applications to robotics, control and
communications, and electrical power systems. These examples are more complicated
than might be expected in a textbook; three examples occupy two complete chapters.
They are, however, described in sufficient detail for a student to reproduce the printed
results and to go a step further by exploring unanswered questions about the example
systems. The book’s appendixes discuss technical problems that do not fit cleanly
into the narrative of the manuscript: testing and design, parallel computing, and a
brief review of mathematical topics needed for the examples.

Many people contributed advice and guidance as the book evolved. I am partic-
ularly grateful to Vladimir Protopopescu at Oak Ridge National Laboratory for his
review of and critical commentary on my rough drafts; his advice had a profound
impact on the organization of the text and my presentation of much of the material.
I’m also grateful to Angela, who reviewed very early drafts and remarked only rarely
on the state of the yard and unfinished projects around the house. Last, but not least,
thanks to Joe and Jake, who, in the early morning hours while I worked, quietly (for
the most part) entertained themselves.

Jim Nutaro

Oak Ridge, Tennessee
December 2009
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CHAPTER 1

INTRODUCTION

Simulation has made possible systems that would otherwise be impracticable. The
sophisticated controls in modern aircraft and automobiles, the powerful microproces-
sors in desktop computers, and space-faring robots are possible because simulations
reduce substantially the need for expensive prototypes. These complicated systems
are designed with the aid of sophisticated simulators, and the simulation software
itself has therefore become a major part of most engineering efforts. A project’s
success may hinge on the construction of affordable, reliable simulators.

Good software engineering practices and a serviceable software architecture are
essential to building software for any purpose, and simulators are no exception. The
cost of a simulator is determined less by the technical intricacy of its subject than
by factors common to all software: the clarity and completeness of requirements,
the design and development processes that control complexity, effective testing and
maintenance, and the ability to adapt to changing needs. Small software projects that
lack any of these attributes are expensive at best, and the absence of some or all of
these points is endemic to projects that fail.1

It is nonetheless common for the design of a complicated simulator to be driven
almost exclusively by consideration of the objects being simulated. The project
begins with a problem that is carefully circumscribed: for example, to calculate the
time-varying voltages and currents in a circuit, to estimate the in-process storage
requirements of a manufacturing facility, or to determine the rate at which a disease

1Charette’s article on why software fails [22] gives an excellent and readable account of spectacular
software failures, and Brooks’ The Mythical Man Month [14] is as relevant today as its was in the 1970s.

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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will spread through a population. Equipped with an appropriate set of algorithms,
the scientist or engineer crafts a program to answer the question at hand. The end
result has three facets: the model, an algorithm for computing its trajectories, and
some means for getting data into and out of the simulator. The first of these are the
reason why the simulator is being built. The other two, however, often constitute the
majority of the code. Because they are secondary interests, their scope and size are
reduced by specialization; peculiarities of the model are exploited as the simulator is
built, and so its three aspects become inextricably linked.

If the model is so fundamental as to merit its exact application to a large number of
similar systems, then this approach to simulation can be very successful.2 More likely,
however, is that a simulator will be replaced if it does not evolve in step with the system
it mimics. A successful simulator can persist for the lifetime of its subject, changing
to meet new requirements, to accommodate new data and methods of solution, and to
reflect modifications to the system itself. Indeed, the lifetime cost of the simulator is
determined primarily by the cost of its evolution. A simulation program built solely
for its immediate purpose, with no thought to future uses and objectives, is unlikely
to flourish. Its integrated aspects are costly to reengineer and replacement, probably
after great expense, is almost certain when new requirements exceed the limits of an
architecture narrowly conceived. Conversely, a robust software architecture facilitates
good engineering practices and this, in turn, ensures a long period of useful service
for the software, while at the same time reducing its lifetime cost.

1.1 ELEMENTS OF A SOFTWARE ARCHITECTURE

Four elements are common to nearly all simulation frameworks meant for general
use: a concept of a dynamic system, software constructs with which to build models,
a simulation engine to calculate a model’s dynamic trajectories, and a means for
control and observation of the simulation as it progresses. The concept a dynamic
system on which the framework grows has a profound influence on its final form, on
the experience of the end user, and on its suitability for expansion and reuse.

Monolithic modeling concepts, which were employed in the earliest simulation
tools, rapidly gave way to modular ones for two reasons: (1) the workings of a
large system can not be conceived as a whole. Complex operations must be broken
down into manageable pieces, dealt with one at a time, and then combined to obtain
the desired behavior; and (2) to reuse a model or part of a model requires that it
and its components be coherent and self-contained. The near-universal adoption by
commercial and academic simulation tools of modular modeling concepts, and the
simultaneous growth of model libraries for these tools, demonstrates the fundamental
importance of this idea.

2Arrillaga and Watson’s Computer Modelling of Electrical Power Systems [6] provides an excellent
example of how and where this approach can succeed. In that text, the authors build an entire simulation
program, based on the principles of structured design, to solve problems that are relevant to nearly all
electrical power systems.
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The simulation engine produces dynamic behavior from an assemblage of com-
ponents. Conceptually, at least, this is straightforward. A simulator for continuous
systems approximates the solution to a set of differential equations, the choice of
integration method depending on qualitative features of the system’s trajectories and
requirements for accuracy and precision. A discrete-event simulation executes events
scheduled by its components in the order of their event times. Putting aside the de-
tails of the event scheduling algorithm and procedure for numerical integration, these
approaches to simulation are quite intuitive and any two, reasonably constructed sim-
ulators provided with identical models will yield essentially indistinguishable results.

In models with discrete events—the opening and closing of switches, departure
and arrival of a data packet, or failure and repair of a machine—simultaneous oc-
currences are often responsible for simulators that, given otherwise identical models,
produce incompatible results (see, e.g., Ref. 12). This problem has two facets: intent
and computational precision. The first is a modeling problem: what is the intended
consequence of distinct, discrete occurrences that act simultaneously on a model?
By selecting a particular solution to this problem, the simulation tool completes
its definition of a dynamic system. This seemingly obscure problem is therefore of
fundamental importance and, consequently, a topic of substantial research (a good
summary can be found in Wieland [146] and Raczynski [113]). Simultaneous in-
teractions are unavoidable in large, modular models, and the clarity with which a
modeler sees their implications has a profound effect on the cost of developing and
maintaining a simulator.

The issue of how simultaneous events are applied is distinct from the problem
of deciding whether two events occur at the same time. Discrete-event systems
measure time with real numbers, and so the model itself is unambiguous about
simultaneous occurrences; events are concurrent when their scheduled times are
equal. The computer, however, approximates the real numbers with a large, but still
finite, set of values. Add to this the problem of rounding errors in floating-point
arithmetic, and it becomes easy to construct a model that, in fact, does not generate
simultaneous events, but the computer nonetheless insists that it does. The analysis
problems created by this effect and the related issue of what to do with simultaneous
actions (real or otherwise) are widely discussed in the simulation literature (again,
see the article by Wieland [146] and the text by Raczynski [113]; see also Refs. 10,
107, and 130).

The concept of a dynamic system and its presentation as object classes and inter-
faces to the modeler are of fundamental importance. Effort expended to make these
clear, consistent, and precise is rewarded in proportion to the complexity and size of
the models constructed. In very small models the benefit of organization is difficult
to perceive for the same reasons that structure seems unimportant when experience
is confined to 100-line computer programs. For large, complicated models, how-
ever, adherence to a well-conceived structure is requisite to a successful outcome;
organizing principles are important for the model’s construction and its later reuse.

The modeling constructs acted on by the simulation engine are reflected in the
interface it presents to the outside world. Large simulation projects rarely exist in
isolation. More often, the object under study is part of a bigger system, and when the
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simulator satisfies its initial purpose, this success creates a desire to reuse it in the
larger context. Simulators for design can, for example, find their way into training
and testing equipment, component-based simulations of a finished system, and even
into the operational software of the machine that it models.

Looking beyond the very difficult problems of model validation and reuse (see,
e.g., Ref. 32), issues common to the reuse of software in general can prevent an
otherwise appropriate simulator from being adapted to a new context. The means for
control and observation of a simulation run, and in particular the facilities for control
of the simulation clock, for extracting the values of state variables, for receiving
notification of important events, and for injecting externally derived inputs are of
prime importance. The cost of retrofitting a simulator with these capabilities can be
quite high, but they are invariably needed to integrate with a larger application.

1.2 SYSTEMS CONCEPTS AS AN ARCHITECTURAL FOUNDATION

Systems theory, as it is developed by various authors such as Ashby [7], Zeigler et al.
[157], Mesarovic and Takahara [86], Wymore [149, 150], and Klir [68], presents
a precise characterization of a dynamic system, two aspects of which are the con-
ceptual foundation of our simulation framework. First is the state transition model
of a dynamic system, particularly its features that link discrete-time, discrete-event,
and continuous systems. Of specific interest is that discrete-time simulation, often
described as a counterpart to discrete event simulation, becomes a special case of
the state transition model. This fact is readily established by appeal to the underly-
ing theory.

Second is the uniform notion of a network of systems, whereby the components
are state transition models and the rules for their interconnection are otherwise
invariant with their dynamics. This permits models containing discrete and continuous
components to be constructed within a single conceptual framework. The consistent
concept of a dynamic system—unvarying for components and networks, for models
continuous and discrete—is also reflected in the facilities provided by the simulation
engine for its control and observation. The conceptual framework is thereby extended
to reuse of the entire simulator, allowing it to serve as a component in other simulation
tools and software systems.

The small number of fundamental concepts that must be grasped, and the very
broad reach of those same concepts, makes the simulation framework useful for a
tremendous range of applications. It can also be used as an integrating framework
for existing simulation models and as a tool for expanding the capabilities of a
simulation package already in hand. Moreover, a simulation framework grounded in
a broad mathematical theory can reveal fundamental relationships between simulation
models and other representations of dynamic systems; the close relationship between
hybrid automata, which appear frequently in the modern literature on control, and
discrete-event systems is a pertinent example.

The approach taken here is not exclusive, nor is it unrelated to the established
worldviews for discrete event simulation. For instance, Cota and Sargent’s process
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interaction worldview [29, 125] incorporates key elements of Zeigler’s discrete-
event system specification [152], from which the simulation framework in this book
is derived. The activity-scanning worldview is apparent in models containing discrete
events that are contingent on continuous variables reaching specific values. Discrete-
event models constructed with any of the classic views can be components in a large
model, and conversely models described within our framework can be components
in other simulations. This capacity for composing a complex model from pieces in a
variety of forms is, perhaps, the most attractive part of this book’s approach.

1.3 SUMMARY

The modeling and simulation concepts developed in this book are illustrated with
Unified Modeling Language (UML) diagrams and code examples complete enough
to very nearly constitute a finished simulation engine; a finished product in C++
can be obtained by downloading the adevs software at http://freshmeat.net/
projects/adevs. Implementing these simulation concepts in other programming
languages is not unduly difficult.3

If this specific framework is not adopted, its major elements can still be usefully
adapted to other simulation packages. The approach, described in Chapter 5, to con-
tinuous components can be used to build a hybrid simulator from any discrete-event
simulator that embodies a modular concept of a system. Continuous system simula-
tion tools can likewise make use of the separation of discrete-event and continuous
components to integrate complex discrete-event models into an existing framework
for continuous system modeling.

A programmer’s interface to the simulation engine, by which the advance of time
is controlled and the model’s components are accessed and influenced, should be a
feature of all simulation tools. Its value is attested to by a very large body of literature
on simulation interoperability, and by the growing number of commercial simulation
packages that provide such an interface. The interface demonstrated in this text can
be easily adapted for a new simulator design or to an existing simulation tool.

Taken in its entirety, however, the proposed approach offers a coherent worldview
encompassing discrete time, discrete event, and continuous systems. Two specific
benefits of this worldview are its strict inclusion of the class of discrete-time systems
within the class of discrete-event systems and the uniformity of its coupling concept,
which allows networks to be built independent of the inner workings of their com-
ponents. This unified world view, however, offers a more important, but less easily
quantified, advantage to the modeler and software engineer. The small set of very
expressive modeling constructs, the natural and uniform handling of simultaneity,
and the resulting simplicity with which large models are built can greatly reduce the
cost of simulating a complex system.

3Implementations in other programming languages can be found with a search for discrete-event (system)
simulation (DEVS) and simulation on the World Wide Web.
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1.4 ORGANIZATION OF THE BOOK

Chapter 2 motivates major aspects of the software design, the inclusion of specific
numerical and discrete simulation methods, and other technical topics appearing in
the subsequent chapters. The robotic tank developed in Chapter 2 has three important
facets: (1) it is modeled by interacting discrete-event and continuous subsystems, (2)
the parts are experimented with individually and collectively, and (3) its simulator is
used both interactively and for batch runs.

Chapter 3 introduces state transition systems, networks of state transition systems,
and builds from these concepts the core of a simulation engine. This is done in the
simple, almost trivial, context of discrete-time systems, where fundamental concepts
are most easily grasped and applied. The software is demonstrated with a simulator
for cellular automata.

Chapter 4 builds on this foundation, introducing discrete-event systems as a gen-
eralization of discrete-time systems. Using these new concepts, the simulation engine
is expanded and then demonstrated with a simulator for the computer that controls
the robotic tank introduced in Chapter 2. Chapter 4 also revisits the cellular automata
from Chapter 3 to show that they are a special case of asynchronous cellular automata,
which are conveniently described as discrete-event systems.

Chapter 5 completes the simulation framework by introducing continuous systems.
Numerical techniques for locating state events, scheduling time events, and solving
differential equations are used to construct a special class of systems having internal
dynamics that are continuous, but that produce and consume event trajectories and so
are readily incorporated into a discrete-event model. The simulation framework from
Chapter 4 is expanded to include these new models, and the whole is demonstrated
with a complete simulator for the robotic tank. The cellular automata are again
revisited, and it is shown that the asynchronous cellular automata of Chapter 4 are,
in fact, a special case of differential automata, which have attracted considerable
attention in recent years.

Chapter 6 has examples of engineering problems that exemplify different aspects
of the simulation technology. The book concludes with a discussion of open problems
and directions for future research. The appendixes contain supplemental material on
the design and test of simulation models, the use of parallel computers for simulating
discrete-event systems, and a brief introduction to system homomorphisms as they
are used in the running discussion of cellular automata.
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CHAPTER 2

FIRST EXAMPLE: SIMULATING A
ROBOTIC TANK

This example serves two purposes. First, it illustrates how hybrid dynamics can
appear in engineering problems. The model has three main parts: the equations of
motion, a model of the propulsion system, and a model of the computer. The first
two are piecewise continuous with discontinuities caused by step changes in the
motor voltage and the sticking friction of the rubber tracks. The third model is a
prototypical example of a discrete-event system; the tank’s computer is modeled with
an interruptible server and queue. The equations of motion, propulsion system, and
computer are combined to form a complete model of the tank.

Second, this example illustrates the basic elements of a software architecture for
large simulation programs. The simulation engine is responsible solely for calculating
the dynamic behavior of the model; other functions (visualization and interactive
controls, calculation of performance metrics, etc.) are delegated to other parts of the
software. This approach is based on two patterns or principles: model–view–control
and the experimental frame.

Model–view–control is a pattern widely used in the design of user interfaces (see,
e.g., Refs. 47 and 101); the simulation engine and model are treated as a dynamic
document and, with this perspective, the overarching design will probably be familiar
to most software engineers. The experimental frame (as described, e.g., by Daum and
Sargent [31])1 is a logical separation of the model from the components of the
program that provide it with input and observe its behavior. These principles simplify

1Be aware, however, of its broader interpretation [152, 157].

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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8 FIRST EXAMPLE: SIMULATING A ROBOTIC TANK

reuse; programs for two experiments illustrate how they are applied and the benefit
of doing so.

The entirety of this example need not be grasped at once, and its pieces will be
revisited as their foundations are established in later chapters. Its purpose here is
to be a specific example of how the simulation engine is used, and to motivate the
software architecture and algorithms that are discussed in the subsequent chapters of
this book.

2.1 FUNCTIONAL MODELING

Fishwick [42] defines a functional model as a thing that transforms input into output.
This view of a system is advantageous because it leads to a natural decomposition
of the simulation software into objects that implement precisely defined transfor-
mations. Distinct functions within the model are described by distinct functional
blocks which are connected to form a complete model of the system. The software
objects that implement the functional blocks are connected in the same way to build a
simulator.

There are numerous methods for designing models. Many of them are quite
general: bond graphs and state transition diagrams, for instance. Others are specific to
particular problems: the mesh current method for electric circuits and the Lagrangian
formulation of a rigid body. The majority of methods culminate in a state space model
of a system: a set of state variables and a description of their dynamic behavior.
Mathematical formulations of a state space model can take the form of, for example,
differential equations, difference equations, and finite-state machines.

To change a state space model into a functional model is simple in principle. The
state variables define the model’s internal state; state variables or functions of state
variables that can be seen from outside the system are the model’s output; variables
that are not state variables but are needed for the system to evolve become the
model’s input. In practice, this change requires judgment, experience, and a careful
consideration of sometimes subtle technical matters. It may be advantageous to split
a state space model into several interacting functional models, or to combine several
state space models into a single functional model. Some state space models can be
simplified to obtain a model that is easier to work with; simplification might be done
with precise mathematical transformations or by simply throwing out terms. The best
guides during this process are experience building simulation software, familiarity
with the system being studied, and a clear understanding of the model’s intended use.

Functional models and their interconnections are the specification for the simu-
lation software. For this purpose, there are two types of functional model: atomic
and network. An atomic model has state variables, a state transition function that
defines its internal response to input, and an output function that transforms internal
action into observable behavior. A network model is constructed from other func-
tional models, and the behavior of the network is defined by the collective behavior
of its interconnected components. The simulator is built from the bottom up by
implementing atomic models, connecting these to form network models, combining
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System C
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FIGURE 2.1 Bottom–up construction of a model from functional pieces: (a) input, output,
and internal state of an atomic model; (b) a network model constructed from three atomic
models.

these network models to create larger components, and repeating until the software is
finished. This bottom–up approach to model construction is illustrated in Figure 2.1.

The simulation engine operates on software objects that implement atomic and
network models. To build a simulator therefore requires the parts of a dynamic system
to be expressed in this form. Functional models need not be built in a single step.
Atomic and network models are more easily obtained by a set of steps that start with
an appropriate modeling technique, proceed to a state space description of the model’s
fundamental dynamics, combine these to create more sophisticated components, and
end with a—possibly large—functional model that can be acted on by the simulation
engine.

2.2 A ROBOTIC TANK

The robotic tank is simple enough to permit a thorough discussion of its continuous
and discrete dynamics, but sufficiently complicated that it has features present in
larger, more practical systems. The robot’s operator controls it through a wireless
network, and the receipt, storage, and processing of packets is modeled by a discrete
event system. An onboard computer transforms the operator’s commands into control
signals for the motors. The motors and physical motion of the tank are modeled as a
continuous system. These components are combined to create a complete model of
the tank.

Our goal is to allocate the cycles of the tank’s onboard computer to two tasks:
physical control of the tank’s motors and processing commands from the tank’s
operator. The tank has four parts that are relevant to our objective: the radio that
receives commands from the operator, the computer and software that turn these
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commands into control signals for the motors, the electric circuit that delivers power
to the motors, and the gearbox and tracks that propel the tank. The tank has two
tracks, left and right, each driven by its own brushless direct-current (DC) motor. A
gearbox connects each motor to the sprocket wheel of its track. The operator drives
the tank by setting the duty ratio of the voltage signal at the terminals of the motors.
The duty ratio are set using the control sticks on a gamepad and sent via a wireless
network to the computer.

The computer generates two periodic voltage signals, one for each motor. The
motor’s duty ratio is the fraction of time that it is turned on in one period of the signal
(i.e., its on time). Because the battery voltage is fixed, the power delivered to a motor
is proportional to its duty ratio. Driving the tank is straightforward. If the duty ratio
of the left and right motors are equal then the tank moves in a straight line. The tank
spins clockwise if the duty ratio of the left motor is higher than that of the right motor.
The tank spins counterclockwise if the duty ratio of the right motor is higher than
that of the left motor. A high duty ratio causes the tank to move quickly; a low duty
ratio causes the tank to move slowly.

If the voltage signal has a high frequency, then the inertia of the motor will carry
it smoothly through moments when it is disconnected from the batteries; the motors
operate efficiently and the tank handles well. If the frequency is too low, then the
motor operates inefficiently. It speeds up when the batteries are connected, slows
down when they are disconnected, and speeds up again when power is reapplied.
This creates heat and noise, wasting energy and draining the batteries without doing
useful work. Therefore, we want the voltage signal to have a high frequency.

Unfortunately, a high-frequency signal means less time for the computer to process
data from the radio. If the frequency is too high, then there is a noticeable delay as
the tank processes commands from the operator. At some point, the computer will
be completely occupied with the motors, and when this happens, the tank becomes
unresponsive.

Somewhere in between is a frequency that is both acceptable to the driver and
efficient enough to give a satisfactory battery life. There are physical limits on the
range of usable frequencies. It cannot be so high that the computer is consumed
entirely by the task of driving the motors. It cannot be so low that the tank lurches
uncontrollably or overheats its motors and control circuits. Within this range, the
choice of frequency depends on how sensitive the driver is to the nuances of the
tank’s control.

An acceptable frequency could be selected by experimenting with the real tank; let
a few people drive it around using different frequencies and see which they like best.
If we use the real tank to do this, then we can get the opinions of a small number of
people about a small number of frequencies. The tank’s batteries are one constraint
on the number of experiments that can be conducted. They will run dry after a few
trials and need several hours to recharge. That we have only one tank is another
constraint. Experiments must be conducted one at a time. If, however, we build a
simulation of the tank, then we can give the simulator to anyone who cares to render
an opinion, and that person can try as many different frequencies as time and patience
permit.
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TABLE 2.1 Value of Parameters Used in the Tank’s Equations of Motion

Parameter Value Description

mt 0.8 kg Mass of the tank
Jt 5 × 10−4 kg · m2 Angular mass of the tank
B 0.1 m Width of the tank from track to track
Br 1.0 N · s / m Mechanical resistance of the tracks to rolling forward
Bs 14.0 N · s / m Mechanical resistance of the tracks to sliding forward
Bl 0.7 N · m · s / rad Mechanical resistance of the tracks to turning
Sl 0.3 N · m Lateral friction of the tracks

2.2.1 Equations of Motion

The model of the tank’s motion is adapted from Anh Tuan Le’s PhD dissertation [74].
The model’s parameters are listed in Table 2.1, and the coordinate system and forces
acting on the tank are illustrated in Figure 2.2. The model assumes that the tank is
driven on a hard, flat surface and that the tracks do not slip. The position of the tank is
given by its x and y coordinates. The heading θ of the tank is measured with respect
to the x axis of the coordinate system and the tank moves in this direction with a
speed v .

The left track pushes the tank forward with a force Fl ; the right track, with a force
Fr ; and Br is the mechanical resistance of the tracks to rolling. The tank uses skid
steering; to turn, the motors must collectively create enough torque to cause the tracks
to slide sideways. This requires overcoming the sticking force Sl . When sufficient
torque is created, the vehicle begins to turn. As it turns, some of the propulsive force
is expended to drag the tracks laterally; this is modeled by an additional resistance
Bl to its turning motion and Bs to its rolling motion.

The tank’s motion is described by two sets of equations, one for when the tank is
turning and one for when it is not. The switch from turning to not turning (and vice

y

vr

B

θx

Fl Fr

vl

FIGURE 2.2 Coordinate system, variables, and parameters used in the tank’s equations of
motion.
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versa) has two discrete effects: (1) the angular velocity ω changes instantaneously
to and remains at zero when the tracks stick and the turn ends, and (2) the rolling
resistance of the tank changes instantaneously when the tank starts and ends a turn.
The Boolean variable turning is used to change the set of equations. The equations
that model the motion of the tank are

turning =
⎧
⎨

⎩

true if
B

2
|Fl − Fr | ≥ Sl

false otherwise
(2.1)

v̇ =

⎧
⎪⎪⎨

⎪⎪⎩

1

mt

(

Fl + Fr − (Br + Bs)v

)

if turning = true

1

mt

(

Fl + Fr − Br v

)

if turning = false
(2.2)

ω̇ =

⎧
⎪⎨

⎪⎩

1

Jt

(
B

2
(Fl − Fr ) − Blω

)

if turning = true

0 if turning = false
(2.3)

θ̇ = ω (2.4)

ẋ = v sin(θ) (2.5)

ẏ = v cos(θ ) (2.6)

If turning = false then ω = 0 (2.7)

When turning changes from false to true, every state variable evolves from its
value immediately prior to starting the turn, but using the equations designated for
turning = true. When turning changes from true to false, every state variable except
ω evolves from its value immediately prior to ending the turn, but using the equations
designated for turning = false; ω changes instantaneously to zero and remains zero
until the tank begins to turn again.

These differential equations describe how the tank moves in response to the
propulsive force of the tracks. The track forces Fl and Fr are inputs to this model,
and we can take any function of the state variables—v , ω, θ , x , and y—as output. For
reasons that will soon become clear, we will use the speed with respect to the ground
of the left and right treads; Figure 2.2 illustrates the desired quantities. The speed vl

of the left tread and speed vr of the right tread are determined from the tank’s linear
speed v and rotational speed ω by

vl = v + Bω/2 (2.8)

vr = v − Bω/2 (2.9)
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The dependence of the input on the output is denoted by the function

[
vl(t)
vr (t)

]

= M
([

Fl(t) Fr (t)
]T

)
(2.10)

This function accepts the left and right tread forces as input and produces the left and
right tread speeds as output.

How were the values in Table 2.1 obtained? Two of them were measure directly:
the mass of the tank with a postal scale and the width of the tank with a ruler. The
angular mass of the tank is an educated guess. Given the width w and length l of the
tank’s hull, which were measured with a ruler, and the mass, obtained with a postal
scale, the angular mass is computed by assuming the tank is a uniformly dense box.
With these data and assumptions, we have

Jt = mt

12
(w2 + l2)

This is not precise, but it is the best that can be obtained with a ruler and scale.
The resistance parameters are even more speculative. The turning torque Sl was

computed from the weight W of the tank and length lt of the track, which were both
measured directly, a coefficient of static friction µs for rubber from Serway’s Physics
for Scientists and Engineers [133], and the approximation

Sl = Wltµs

3

from Le’s dissertation [74]. The resistances Br and Bs to forward motion and resis-
tance Bl to turning were selected to give the model reasonable linear and rotational
speeds.

This mix of measurements, rough approximations, and educated guesses is not
uncommon. It is easier to build a detailed model than to obtain data for it. The
details, however, are not superfluous. The purpose of this model is to explore how
the tank’s response to the driver changes with the frequency of the power signal sent
to the motors. For this purpose it is necessary to include those properties of the tank
that determine its response to the intermittent voltage signal: specifically, inertia and
friction.

2.2.2 Motors, Gearbox, and Tracks

The motors, gearbox, and tracks are an electromechanical system for which the
method of bond graphs is used to construct a dynamic model (Karnopp et al. [61]
give an excellent and comprehensive introduction to this method). The bond graph
model is coupled to the equations of motion by using Equation 2.10 as a bond graph
element. This element has two ports, one of which has the effort variable Fl and flow
variable vl , and the other, the effort variable Fr and flow variable vr . The causality
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of this element is determined by the functional form of Equation 2.10: it is supplied
with the effort variables and produces the flow variables. This was the reason for
selecting the track speeds as output.

The model of the motors, gearbox, and tracks accounts for the inductance and
internal resistance of the electric motors, the angular mass and friction of the gears,
and the compliance of the rubber tracks. The electric motors are Mabuchi FA-130
Motors, the same type of DC motor that is ubiquitous in small toys. One motor
drives each track. The motors are plugged into a Tamiya twin-motor gearbox. This
gearbox has two sets of identical, independent gears that turn the sprocket wheels.
The sprocket wheels and tracks are from a Tamiya track-and-wheel set; the tracks
stretch when the tank accelerates (in hard turns this causes the tracks to come off the
wheels!), and so their compliance is included in the model.

To drive the motors, the computer switches a set of transistors in an Allegro
A3953 full-bridge pulsewidth-modulated (PWM) motor driver. When the switches
are closed, the tank’s batteries are connected to the motors. When the switches are
open, the batteries are disconnected from the motors. The transistors can switch
on and off at a rate three orders of magnitude greater than the rate at which the
computer can operate them, and power lost in the circuit is negligible in comparison
to inefficiencies elsewhere in the system. The batteries and motor driver are, therefore,
modeled as an ideal, time varying voltage source.

A sketch of the connected motors, gearbox, and tracks and its bond graph are
shown in Figure 2.3. Table 2.2 lists the parameters used in this model. The differential

(a)

(b)

+−−+

vl

er

r

vr

l

el

r

l

0TF1GY1SE

0TF1GY1SE

RmLm

RmLm

ir

Jg Bg

Kt

er Fr

vr

el

il

Fl
r/g

r/g

Jg Bg Kt

vl

M([F l Fr]
T )

FIGURE 2.3 Motors, gears, and tracks of the tank: (a) diagram; (b) bond graph.



P1: OSO
c02 JWBS040-Nutaro August 26, 2010 13:35 Printer Name: Yet to Come

A ROBOTIC TANK 15

TABLE 2.2 Parameters of the Motors, Gearbox, and Tracks

Parameter Value Description

Lm 10−3 H Inductance of the motor
Rm 3.1 � Resistance of the motor
Jg 1.2 × 10−6 kg · m2 Angular mass of the gears
Bg 6.7 × 10−7 N · m · s / rad Mechanical resistance of the gears to rotation
g 204 Gear ratio of the gearbox
α 10−3 N · m / A Current–torque ratio of the electric motor
r 0.015 m Radius of the sprocket wheel
Kt 10−3 m / N Compliance of the track

equations are read directly from the bond graph:

i̇l = 1

Lm
(el − il Rm − αωl ) (2.11)

ω̇l = 1

Jg

(

αil − ωl Bg − r

g
Fl

)

(2.12)

Ḟl = 1

Kt

(
r

g
ωl − vl

)

(2.13)

i̇r = 1

Lm
(er − ir Rm − αωr ) (2.14)

ω̇r = 1

Jg

(

αir − ωr Bg − r

g
Fr

)

(2.15)

Ḟr = 1

Kt

(
r

g
ωr − vr

)

(2.16)

where el and er are the motor voltages and vl and vr are the track speeds given by
Equations 2.8 and 2.9.

Values for the parameters in Table 2.2 were obtained from manufacturers’ data,
from measurements, and by educated guesses. The gear ratio g and current–torque
ratio α are provided by the manufacturers. The gear ratio is accurate and precise (espe-
cially with respect to the values of other parameters in the model). The current–torque
ratio is an average of the two cases supplied by Mabuchi, the motor’s manufacturer.
The first case is the motor operating at peak efficiency, and the second case is the
motor stalling. The difference between these two cases is small, suggesting that α

does not vary substantially as the load on the motor changes. The estimate of α is,
therefore, probably very reasonable.

The radius r of the sprocket wheel and the resistance Rm and inductance Lm of
the motor were measured directly. A ruler was used to measure the radius of the
sprocket wheel. To determine Rm and Lm required more effort. The current i through
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the unloaded motor is related to the voltage e across the motor by the differential
equation

i̇ = 1

Lm
(e − i Rm) (2.17)

The parameters Lm and Rm were estimated by connecting a 1.5-V C battery to the
motor and measuring, with an oscilloscope, the risetime and steady state of the current
through the motor. Let i f be the steady-state current, tr the risetime, and 0.9i f the
current at time tr (i.e., the risetime is the amount of time to go from zero current to
90% of the steady-state current). At steady state i̇ = 0 and the resistance of the motor
is given by

Rm = e

i f

The transient current is needed to find Lm . The transient current is given by the
solution to Equation 2.17:

i(t) = e

Rm

(

1 − exp

(

− Rm

Lm
t

))

(2.18)

Substituting 0.9i f for i(t) and tr for t in Equation 2.18 and solving for Lm gives

1

Lm
= − 1

Rmt f
ln

(

1 − 0.9
Rm

e
i f

)

= − i f

et f
ln(0.1) ≈ 2.3

i f

et f

or, equivalently

Lm ≈ 0.652
t f

i f

A similar experiment was used to obtain Bg. In this experiment, the motor was
connected to the gearbox. As before, an oscilloscope was used to measure the risetime
and steady-state value of the current through the motor. The rotational velocity ω̃ of
the motor is given by

˙̃ω = 1

Jg
(αi − ω̃Bg)

The manufacturer gives the speed of the motor when operating at peak efficiency as
ω̃ = 731.6 radians per second (rad/s). At steady state ˙̃ω = 0. The steady state current
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FIGURE 2.4 Input and output of the model of the tank’s physics.

i f is measured with the oscilloscope. With i f and the motor speed, the mechanical
resistance of the gearbox is given by

Bg ≈ αi f

ω̃
= 1.37 × 10−6 i f

The angular mass Jg of the gearbox was estimated from its mass mgb, radius of
the gears rgb, and the assumption that the mass is uniformly distributed in a cylinder.
With this set of measurements and assumptions, the angular mass is

Jg = mgbr2
gb

The compliance of the tracks is an order-of-magnitude approximation. The tracks
can be stretched by only a few millimeters before they slip off the wheels. The
maximum propulsive force of the track is about a newton. The order of magnitude of
the track compliance is, therefore, estimated to be 10−3 meters/100 newtons, or about
10−3 m/N.

2.2.3 Complete Model of the Tank’s Continuous Dynamics

Equations 2.1–2.9 and 2.11–2.16 collectively describe the physical behavior of the
tank. The equations of motion and the equations for the motors, gearbox, and tracks
were developed separately, but algorithms for solving them work best when coupled
equations are lumped together. Consequently, these are put into a single functional
model called “tank physics,” which is illustrated in Figure 2.4. The inputs to the
tank are the voltages across its left and right motors; these come from the computer.
The output of the tank is its position and heading; these are observed by the tank’s
operator. The complete state space model of the tank’s physical dynamics is

turning =
⎧
⎨

⎩

true if
B

2
|Fl − Fr | ≥ Sl

false otherwise
(2.19)

v̇ =

⎧
⎪⎪⎨

⎪⎪⎩

1

mt

(

Fl + Fr − (Br + Bs)v

)

if turning = true

1

mt

(

Fl + Fr − Br v

)

if turning = false
(2.20)
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ω̇ =

⎧
⎪⎨

⎪⎩

1

Jt

(
B

2
(Fl − Fr ) − Blω

)

if turning = true

0 if turning = false
(2.21)

θ̇ = ω (2.22)

ẋ = v sin(θ ) (2.23)

ẏ = v cos(θ ) (2.24)

If turning = false then ω = 0 (2.25)

i̇l = 1

Lm
(el − il Rm − αωl) (2.26)

ω̇l = 1

Jg

(

αil − ωl Bg − r

g
Fl

)

(2.27)

Ḟl = 1

Kt

(
r

g
ωl −

(

v + Bω

2

))

(2.28)

i̇r = 1

Lm
(er − ir Rm − αωr ) (2.29)

ω̇r = 1

Jg

(

αir − ωr Bg − r

g
Fr

)

(2.30)

Ḟr = 1

Kt

(
r

g
ωr −

(

v − Bω

2

))

(2.31)

This model has 11 state variables—v , ω, θ , x , y, il , ωl , Fl , ir , ωr , and Fr ; two input
variables—el and er ; and three output variables—x , y, and θ .

2.2.4 The Computer

The computer, a TINI microcontroller from Maxim, receives commands from the
operator through a wireless network and transforms them into voltage signals for the
motors. The computer extracts raw bits from the Ethernet that connects the computer
and the radio, puts the bits through the Ethernet and User Datagram Protocol (UDP)
stacks to obtain a packet, obtains the control information from that packet, and stores
that information in a register where the interrupt handler that generates voltage signals
can find it. The interrupt handler runs periodically, and it has a higher priority than
the thread that processes commands from the operator. Therefore, time spent in the
interrupt handler is not available to process commands from the operator.

The frequency of the voltage signal is determined by the frequency of the inter-
rupt handler. Frequent interrupts create a high-frequency voltage signal; infrequent
interrupts, a low-frequency signal. Figure 2.5 illustrates how the interrupt handler
works. It is executed every N machine cycles and at each invocation adds 32 to a
counter stored in an 8-bit register. The counter is compared to an on time that is set,
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FIGURE 2.5 Generating a voltage signal with the interrupt handler.

albeit indirectly, by the operator. If the counter is greater than or equal to the on time,
then the motor is turned off. If the counter is less than the on time, then the motor is
turned on. If, for example, the tank is operating at full power, then the on time for
both motors is 255 and the motors are always on; if the motors are turned off, then
the on time is zero.

In Figure 2.5, the counter is initially zero and the motors are turned off. The on
time is 128. The first call to the interrupt handler adds 32 to the counter, compares
32 < 128, and turns the motor on by connecting it to the tank’s 7.2-V battery pack.
At call 4, the counter is assigned a value of 128, which is equal to the on time, and
the motor is shut off. At call 8, the counter rolls over and the motor is turned on again.

The code in the interrupt handler is short; it has 41 assembly instructions that
require 81 machine cycles to execute. According to the computer’s manufacturer,
there are 18.75 × 106 machine cycles per second, which is one cycle every 0.0533 ×
10−6s (0.0533 µs). The interrupt handler, therefore, requires 0.432 × 10−6 s (0.432
µs) to execute. The frequency of the voltage signal is determined by how quickly
the interrupt handler rolls the counter over. On average, eight calls to the interrupt
handler complete one period of the voltage signal. The length of this period is
8 × (0.432 × 10−6 + 0.0533 × 10−6 × N ). We can choose N and thereby select the
period of the voltage signal; the frequency fe due to this selection is

fe ≈ 106

3.46 + 0.426N
(2.32)

The discrete-event model of the interrupt handler has two types of events: Start
interrupt and End interrupt. The Start interrupt event sets the interrupt indicator to
true and schedules an End interrupt to occur 0.432 × 10−6 s later. The End interrupt
event increments the counter, sets the motor switches, sets the interrupt indicator to
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Left/right
motor on−time

Left/right
motor direction interrupt

Start
interrupt

End
interrupt

interrupt ← true

el/r ← 7.2 if sl/r=1

c ← (c+32) mod 255

el/r ← -7.2 if sl/r=2
el/r ← if0 sl/r=3

sl/r ← if1 c < left/right motor on-time

sl/r ← if2 c < left/right motor on-time

sl/r ← if3 c ≥ left/right motor on-time

interrupt ← false

and left/right motor direction = forward

and left/right motor direction = reverse

0.432 µs

0.0533N µs

FIGURE 2.6 Event graph for the interrupt handler.

false, and schedules a Start interrupt event to occur 0.0533 × 10−6 N s later. There
are two software switches, one for each motor, and each switch has three positions.
If the software switch is in the first position, then the motor is connected to the tank’s
7.2-V battery pack. If the switch is in the second position, then the motor is connected
to the batteries but the positive and negative terminals are reversed and the motor
runs backward. In the third position, the motor is disconnected from the batteries.
At any given time, a new on time and direction for either motor can be given to the
interrupt handler, and it acts on the new settings when the next End interrupt event
occurs.

An event graph for the interrupt handler is shown in Figure 2.6 (event graphs
were introduced by Schruben [131]; Fishwick [42] describes their use in functional
models). The model has nine state variables. Four of these are apparent in the diagram:
the 8-bit counter c, the interrupt indicator, and the switches sl and sr for the left and
right motors. Events that change the on time and direction of a motor are inputs to the
model; these input variables are stored as the left motor ON time, left motor direction,
right motor ON time, and right motor direction, bringing the count of state variables
to eight. Implicit in the edges that connect the events is the time until the next event
occurs, which is the ninth and final state variable for this system. The outputs from
this model are the interrupt indicator and the left and right motor voltages. The output
variables change immediately after the corresponding state variables. In the case that
an event is scheduled at the same time that an input variable is changed, the event is
executed first and then the corresponding variables are modified.

When the computer is not busy with its interrupt handler, it is processing com-
mands from the operator. Every command arrives as a UDP packet with 10 bytes: two
floating-point numbers that specify the direction and duty ratio of the left and right
motors, and 2 bytes of information that are not relevant to our model. The computer
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can receive data at a rate of about 40 kilobytes per second (kB). This estimate, which
comes from the jGuru forum [120], agrees reasonably well with, but is slightly lower
than, the maximum data rate given by the manufacturer. The computer talks to the
802.11b radio through an Ethernet (the radio is controlled by a separate microproces-
sor) that has a minimum packet size of 64 bytes, much larger than the 10-byte payload.
Consequently, we can optimistically estimate that processing a packet takes 0.0016 s
(1.6 ms, or 1600 µs). We will ignore packet losses and assume that the computer (or,
at least, the radio) can store any number of unprocessed packets. This is modeled
with a server that has a fixed service time and an infinite queue. When the interrupt
handler is executing, the server is forced to pause. The server produces on times and
directions for the motors when it finishes processing a packet.

Figure 2.7 is a DEVS graph (described by Zeigler et. al. [159] and, more recently,
by Schulz et. al. [132]; these are sometimes called phase graphs [42]) for this model.
It has three state variables: the packet queue q; the time σ remaining to process
the packet at the front of the queue; and the model’s phase, which is interrupted or
operating. It responds to two types of input: the interrupt indicator from the interrupt
handler and packets from the network. The interrupt indicator moves the system into
its interrupted phase where it remains until a second interrupt indicator is received,
and this moves the system back to its operating phase. When the computer finishes
processing a packet, it sets the on time and direction for the left and right motors and
begins to process the next packet or, if there are no packets left, becomes idle. Each
edge in the phase graph is annotated with the state variables that change when the
phase transition occurs. Each phase contains its duration and the output value that is
generated when the phase is left because its duration has expired.

Packet
Interrupt

Operating
Interrupted

Interrupt (S1)

Interrupt (S0)
Packet arrive (S2)

Packet arrive (S3)

Packet processed (S4)

Left/right
motor on−time
and direction

Left/right
motor on−time
and direction

∞

S0: If <σ ∞ then decrement σ by the elapsed time
S1: If q is not empty and σ = ∞ then σ ← 1.6 ms

else decrement σ by the elapsed time

If isq empty then σ ∞←
else σ ← 1.6 ms

σ

S3: If q is empty then σ ← 1.6 ms

Insert packet at the back of q

S2: Insert packet at the back of q

S4: Remove the first element from q

FIGURE 2.7 Phase graph showing how the computer processes a packet.
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FIGURE 2.8 Block diagram of the tank’s computer.

The models of the interrupt handler and thread that processes packets are connected
to create a model of the computer. The interrupt handler receives the motor on times
from the thread that processes packets; the thread receives interrupt indicators from
the interrupt handler and packets from the network. The output from the computer
sets the voltage at the left and right motors. Figure 2.8 shows a block diagram of the
computer with its inputs, outputs, and internal components.

The event graph and phase diagram are informative but not definitive. They do
not specify when, precisely, output is produced or how to treat simultaneous events.
These issues are deferred to Chapter 4, where state space models of discrete-event
systems are formally introduced.

2.2.5 Complete Model of the Tank

The complete model of the tank comprises the computer and the tank’s physics. The
output of the computer is connected to the input of the tank’s physics. The position
and orientation of the tank are displayed for the driver. The driver closes the loop by
sending packets with control information to the computer. This arrangement is shown
in Figure 2.9. The tank’s operator is not a model; the operator controls the simulated
tank with the same software and hardware that are used to control the real tank.
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FIGURE 2.9 Block diagram of the simulated tank and real operator.
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2.3 DESIGN OF THE TANK SIMULATOR

The simulator has four parts: the simulation engine, the model of the tank, the driver’s
interface, and the network interface. Figure 2.10 shows the classes that implement
these parts and their relationships. The simulation engine and tank, which are our main
concern, are implemented by the Simulator class and SimEventListener interface and
the Tank class, respectively. The user interface is implemented by the Display class
and DisplayEventListener interface, which take input from the user and display the
motion of the tank. The UDPSocket class implements the network interface by which
the simulator receives commands from the driver.

FIGURE 2.10 Class diagram showing the major components of the simulation software.
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The SimControl class implements the main loop of the application in its run
method. This method advances the simulation clock in step with the real clock, up-
dates the Display, and polls the Simulator, Display, and UDPSocket for new events.
The SimControl class implements the SimEventListener interface by which it is noti-
fied when components of the model change state and produce output. These callbacks
are received when the SimControl object calls the Simulator’s computeNextState
method. The SimControl also implements the DisplayEventListener class by which it
is notified when the user does something to the display: for instance, pressing the quit
key “q” or pressing the simulation reset key “r”. These callbacks are received when
the SimControl calls the Display’s pollEvents method. The SimControl object ex-
tracts CommandPackets from the network by polling the UDPSocket’s pendingInput
method at each iteration of the main loop.

The Simulator has six methods. The constructor accepts a model—it can be a
multilevel, multicomponent model or a single atomic model—that the simulator will
operate on. The method nextEventTime returns the time of the simulator’s next event:
the next time at which some component will produce output or change state in the ab-
sence of an intervening input. The method computeNextOutput provides the model’s
outputs at the time of its next event without actually advancing the model’s state. The
method computeNextState advances the simulation clock and injects into the model
any input supplied by the caller. Objects that implement the SimEventListener inter-
face and register themselves by calling the addEventListener method are notified by
the Simulator when a component of the model produces an output or changes its state.
These notifications occur when computeNextState or computeNextOutput is called.

Missing from Figure 2.10 are the details of how the Tank is implemented; its
major components are shown in Figure 2.11. The relationship between the Tank and
Simulator is important. The Simulator is designed to operate on a connected collection

FIGURE 2.11 Class diagram showing the major components of the model.
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of state space models; the Tank is a specific instance of such a model. The parts of
the tank are derived, ultimately, from two fundamental classes: the AtomicModel
class and the NetworkModel class. The Tank and Computer classes are derived from
NetworkModel and they implement the block diagrams shown in Figures 2.8 and 2.9.
The TankPhysics class, derived from AtomicModel, implements Equations 2.19–2.31.
The PacketProcessing and InterruptHandler classes, also derived from AtomicModel,
implement the models shown in Figures 2.6 and 2.7.

This design separates the three aspects of our simulation program. The SimControl
class coordinates the primary activities of the software: rendering the display, receiv-
ing commands from the network, and running the simulation. It uses the Simulator’s
six methods to control the simulation clock, inject input into the model, and obtain
information about the model’s state and output.

The Simulator and its myriad supporting classes (which are not shown in the dia-
grams) implement algorithms for event scheduling and routing, numerical integration,
and other essential tasks. These algorithms operate on the abstract AtomicModel and
NetworkModel classes without requiring detailed knowledge of the underlying dy-
namics.

Models are implemented by deriving concrete classes from AtomicModel and
NetworkModel. Models derived from the AtomicModel class implement state space
representations of the continuous and discrete-event components. Models derived
from the NetworkModel class describe how collections of state space and network
models are connected to form the complete system.

2.4 EXPERIMENTS

Before experimenting with the simulated tank, we must establish the range of frequen-
cies that are physically feasible. An upper limit can be derived without simulation.
Suppose that the computer does nothing except execute the interrupt handler. With
zero instructions between invocations of the interrupt handler, Equation 2.32 gives a
maximum frequency of 289 kHz for the voltage signal. At this frequency, the com-
puter has no time to process commands from the driver and, consequently, the tank
cannot be controlled.

To determine a lower limit we simulate the tank running at half-throttle and
measure the power dissipated in the motors. After examining the power lost at several
frequencies, we can pick the lowest acceptable frequency as the one for which higher
frequencies do not significantly improve efficiency. The software for this simulation
is much simpler than for the interactive simulation, but it uses all of the classes shown
in Figure 2.11 and the SimEventListener and Simulator classes shown in Figure 2.10.
The classes that implement the model of the tank do not change: Figure 2.11 is
precisely applicable. The remainder of the program, all of the new code that must be
implemented to conduct this experiment, has fewer than 100 lines.

The main function creates a Tank; a Simulator for the Tank; and a TankEventLis-
tener, which computes the power lost in the motors. The TankEventListener is derived
from the SimEventListener class. After registering the TankEventListener with the
Simulator, the program injects a SimPacket into the tank at time zero. This packet
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contains the duty ratio for the left and right motors. Now the simulation is run for 3 s,
long enough for the tank to reach is maximum speed of approximately 0.2 m/s and
run at that speed for a little over 2 s. The power P lost in the motors is

P = 1

3

3∫

0

il (t)
2 Rm + ir (t)2 Rm dt

≈ 1

tM

M−1∑

k=0

(tk+1 − tk)(i2
l,k Rm + i2

r,k Rm) (2.33)

where the tk are the times at which the stateChange method of the TankEventListener
is called and il,k and ir,k are the currents at time tk . Note that t0 = 0 and tM may
be slightly less than 3, depending on how the simulator selects timesteps for its
integration algorithm (it could be made to update the state of the tank at t = 3, but
was not in this instance).

The stateChange method of the TankEventListener is called every time the Simu-
lator computes a new state for an atomic component of the Tank. When this occurs,
the TankEventListener calculates one step of the summation in Equation 2.33. The
getPowerLost method computes the lost power by dividing the lost energy by the
elapsed time. The C++ code that implements the TankEventListener is shown below.

TankEventListener
1 #ifndef TankEventListener_h
2 #define TankEventListener_h
3 #include "Tank.h"
4 #include "SimEvents.h"
5 #include "SimEventListener.h"
6 #include <fstream>
7

8 class TankEventListener: public SimEventListener
9 {

10 public:
11 TankEventListener(const Tank* tank):
12 SimEventListener(),
13 tank(tank),fout("current.dat"),
14 E(0.0), // Accumulated energy starts at zero
15 tl(0.0), // First sample is at time zero
16 il(tank->getPhysics()->leftMotorCurrent()), // i_l(0)
17 ir(tank->getPhysics()->rightMotorCurrent()) // i_r(0)
18 {
19 fout << tl << " " << il << " " << ir << std::endl;
20 }
21 // Listener does nothing with output events
22 void outputEvent(ModelInput, double){}
23 // This method is invoked when an atomic component changes state
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24 void stateChange(AtomicModel* model, double t)
25 {
26 // If this is the model of the tank’s physics
27 if (model == tank->getPhysics()) {
28 // Get the current and motor resistance
29 double Rm = tank->getPhysics()->getMotorOhms();
30 // Update the enery dissipated in the motors
31 E += (t-tl)*(il*il*Rm + ir*ir*Rm);
32 // Remember the last sample
33 il = tank->getPhysics()->leftMotorCurrent();
34 ir = tank->getPhysics()->rightMotorCurrent();
35 tl = t;
36 fout << tl << " " << il << " " << ir << std::endl;
37 }
38 }
39 // Get the power dissipated in the left and right motors
40 double getPowerLost() const { return E/tl; }
41 private:
42 const Tank* tank;
43 std::ofstream fout;
44 double E, tl, il, ir;
45 };
46

47 #endif

A shell script calls the main program repeatedly to conduct the simulation exper-
iment. Each invocation of the simulation program computes the power dissipated in
the motors at one frequency and pair of duty ratios. The first argument to the simu-
lation program is the frequency of the voltage signal sent to the motors, the second
argument is the duty ratio for the left motor, and the third argument is the duty ratio
for the right motor. (The zeroth argument is the name of the executable itself.) The
program prepares the experiment, runs it, prints the result to the console, cleans up,
and exits. The C++ code for the main function is listed below.

Main Program for the Power Dissipation Experiment
1 #include "Tank.h"
2 #include "SimEvents.h"
3 #include "TankEventListener.h"
4 using namespace std;
5

6 int main(int argc, char** argv)
7 {
8 // Get the parameters for the experiment from the command line
9 if (argc != 4) {

10 cout << "freq left_throttle right_throttle" << endl;
11 return 0;
12 }
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13 // Get the frequency of the voltage signal from the first argument
14 double freq = atof(argv[1]);
15 // Create a command from the driver that contains the duty ratios from
16 // the second and third arguments.
17 SimPacket sim_command;
18 sim_command.left_power = atof(argv[2]);
19 sim_command.right_power = atof(argv[3]);
20 // Create the tank, simulator, and event listener. The arguments to the
21 // tank are its initial position (x = y = 0), heading (theta = 0), and
22 // the smallest interval of time that will separate any two reports of
23 // the tank’s state (0.02 seconds).
24 Tank* tank = new Tank(freq,0.0,0.0,0.0,0.02);
25 Simulator* sim = new Simulator(tank);
26 TankEventListener* l = new TankEventListener(tank);
27 // Add an event listener to compute the power dissipated in the motors
28 sim->addEventListener(l);
29 // Inject the driver command into the simulation at time zero
30 ModelInputBag input;
31 SimEvent cmd(sim_command);
32 ModelInput event(tank,cmd);
33 input.insert(event);
34 sim->computeNextState(input,0.0);
35 // Run the simulation for 3 seconds
36 while (sim->nextEventTime() <= 3.0) sim->execNextEvent();
37 // Write the result to the console
38 cout << freq << " " << l->getPowerLost() << endl;
39 // Clean up and exit
40 delete sim; delete tank; delete l;
41 return 0;
42 }

Simulations are executed for a set of frequencies with the shell script

for ((i=50;i<=7000;i+=50)); do ./a.out \$i 0.5 0.5; done

where a.out is the name of the simulation program (this is the default name of the
executable produced by the GNU C++ compiler). This script computes the power
dissipated in the motors at frequencies in the range [50, 7000] at 50 Hz increments.
The result is plotted in Figure 2.12. This graph suggests 3000 Hz as a reasonable
lower limit for the frequency. The interactive experiments will start at 3000 Hz and
proceed to higher frequencies until we discover the highest that permits effective
control.2

2What happens to this lost power? It becomes heat and noise. The frequencies shown in Figure 2.12
are in the range of human hearing. Consequently, the motors emit a distinct high-pitched hum. This is
accompanied by a grumbling and grinding from the gears and, if the motors are running near full power,
a faint smell of ozone.
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FIGURE 2.12 Total power dissipated in the motors as a function of the frequency of the
voltage signal at the motor terminals.

The track shown in Figure 2.13 was used for the interactive experiments. The tank
started in the center of the leftmost leg of the track, and was steered around the track
to return to the starting position. If the tank left the track, that run was discarded. After
several practice runs, the experimental runs were conducted at 2 kHz increments. At
each frequency, the tank raced around the track until three circuits were completed.
The author recorded the time to complete each circuit and the number of failed
attempts at each frequency. The results are tabulated in Table 2.3.

The tradeoff between efficiency and control is immediately apparent on compari-
son of the data for lost power, time to complete a round of the track, and the number
of failed runs. At low frequencies, the tank is very responsive and the experimental
course can be safely navigated in about a minute. At higher frequencies, the driver

FIGURE 2.13 The test track and one path followed by the tank in a successful run.
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TABLE 2.3 Data from the Interactive Experiment

Time (s)

Frequency (kHz) T1 T2 T3 Average Failed

3 68.7 68.3 69.1 68.7 0
5 68.9 68.3 70.8 69.3 0
7 69.8 70.0 67.9 69.2 0
9 68.3 68.5 88.4 75.1 2

11 67.6 84.4 113.0 88.3 0
12 104.0 101.7 No data 103.2 2

must be more cautious and at 9 kHz and above the track is very difficult to negotiate.
As the frequency is increased, the motors run more efficiently but the tank is more
difficult to control.

From these data and the data in Figure 2.12, we can conclude that a frequency
between 7 and 8 kHz is the best choice. In this range, the motors run efficiently and
the computer processes commands from the driver in a timely manner. The real tank
operates at about 7.4 kHz: 310 machine cycles separate invocations of the interrupt
handler.

2.5 SUMMARY

This example has demonstrated the three main features of the simulation engine that is
developed in the remainder of this book: modular, bottom–up construction of models,
separation of the model and its simulator, and the inclusion of discrete-event and
continuous components. Modular, bottom-up construction allows large simulators to
be built and tested piecewise. Atomic models encapsulate basic behaviors, and if a
large model is judiciously decomposed, then these smallest pieces can be built, tested,
and maintained in isolation. As pieces are combined to create larger components,
these, too, can be built, tested, and debugged independently of one another. This
principle of encapsulation extends to the entire simulator, ultimately allowing the
whole to be used as a self-contained component within a larger software system.

The separation of the model and its simulator serves a similar purpose. The
algorithms contained within the simulation engine are designed for a specific class
of systems. They can therefore be built, tested, and maintained without reference
to any particular system. Test cases for the simulation engine will consist chiefly of
simple models with behavior that can be deduced by hand calculations or with another
simulator that is known to be correct. This is also an advantage for the modeler; the
definition of the class of systems presumed by the simulator is a guarantee of how
it will function. Improvements in the simulation engine are therefore transparent to
the models, and this greatly simplifies the long-term maintenance of a simulation
program.
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Inclusion of discrete-event and continuous components is indispensable to mod-
eling many engineered systems; the robotic tank is one example. This must be done
accurately and with precision, but it is accuracy that presents the greatest challenge.
To say that a simulation is accurate with respect to an idealized model is to say that
the model’s behavior can, in principle, be deduced without recourse to the simulator:
there must be a correct outcome against which accuracy can be gauged. Conse-
quently, separation of the model and the algorithms that compute its behavior is
essential. These two concepts, therefore, are central to the study of modeling and
simulation.
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CHAPTER 3

DISCRETE-TIME SYSTEMS

The simulation engine is a collection of C++ classes that are used to build a simulator.
Models are constructed by extending classes that encapsulate structure and dynamics.
These are given to objects implementing the simulation algorithms that calculate the
model’s dynamic behavior. The classes that encapsulate the simulation algorithms
have methods for monitoring and controlling the progress of the simulator.

Large models are built with two types of components. Atomic models describe
things that are fundamental. They encapsulate the dynamic behavior of components
that, as the name suggests, are not subjected to further decomposition. The tank’s
interrupt handler, packet-processing model, and the differential equations that de-
scribe the tank’s motion are atomic models. Network models are composed of in-
teracting parts: atomic models and other networks. They encapsulate structure: the
components and linkages in a multicomponent system. The tank’s computer and the
tank itself are network models.

The simulation engine operates on the interfaces provided by these two types
of components. An atomic model has methods for computing its output from its
current state and for computing its next state from its current state and input. A
network model has methods for retrieving its set of components, for transforming
output from its components to inputs for its other components and outputs from
itself, and for transforming its inputs into input for its components. Algorithms for
event scheduling, numerical integration, and other necessary tasks are contained in
the classes that implement the simulation engine.

Visualization, live interaction, interfaces to simulation networks, and other similar
functionality is implemented by the software that uses the simulation engine. This

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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software, called in the parlance of software engineering a client of the simulation
engine, interacts with it in three ways. The client controls the rate at which time in
the simulation advances. Time can be advanced as rapidly as the simulation engine is
able, coordinated with the passage of time in the real world, or in any other way that
is needed. The client is notified when any component, atomic or network, produces
an output and when any atomic component changes its state. These notifications can
be used to drive a display in an interactive simulation, to collect statistics, or to create
a file that logs information for later display or for debugging. The client can also
inject input into a running simulation. This is required for interactive simulations and
can be used to feed the simulator a scripted trajectory.

The simulation engine is simplest for discrete-time systems. Once the essential
concepts and software artifacts are established, extending them to discrete-event
and continuous systems is straightforward. The structure, if not the details, of the
simulation engine persists in the general case; models continue to be derived from
Atomic and Network classes, and the Simulator computes their dynamic behavior.
The discrete-time, discrete-event, and continuous simulations differ mainly in the
algorithms that are used to advance the simulation clock. A simulation engine for
discrete-time systems is, therefore, a useful foundation.

3.1 ATOMIC MODELS

An atomic model is a dynamic system that changes in response to its environment
and affects its environment as it changes. The variables that affect the system are its
input, and these are described with a set X . The variables by which the system affects
its environment are its output, and these are described with a set Y . The variables that
constitute the system are its state, and these are described with a set S.

The dynamic behavior of the system is described by functions from time to the sets
of input, output, and states. The set of times used by the system is called its time base;
for discrete-time systems this is the set N of natural numbers. An input trajectory
is a function from the set N of times to the set X of input; an output trajectory is a
function from N to Y ; and a state trajectory is a function from N to S.

3.1.1 Trajectories

The value of a trajectory z (it can be an input, output, or state trajectory) at a specific
time t is written z(t). A trajectory defined on an interval from t0 to tn is denoted
generically by z < t0, tn >. When specific endpoints are desired, the < and > are
replaced with [ and ] for inclusion or ( and ) for exclusion, specifically

t ∈ [t0, tn] ⇐⇒ t0 ≤ t ≤ tn

t ∈ (t0, tn] ⇐⇒ t0 < t ≤ tn

t ∈ [t0, tn) ⇐⇒ t0 ≤ t < tn

t ∈ (t0, tn) ⇐⇒ t0 < t < tn
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A set of trajectories whose domain is the time base T and range is the set Z
is denoted by < T, Z >. Each member z ∈< T, Z > is a function T → Z . Two
trajectories za < t1, t2 > and zb < t1, t2 > are equal if, for all t ∈< t1, t2 >, za(t) =
zb(t): succinctly

za < t1, t2 >= zb < t1, t2 > ⇐⇒ (∀t ∈< t1, t2 >)(za(t) = zb(t)) (3.1)

and, if the domains are understood, we can simply write za = zb. When describing
the sets of input, output, and state trajectories for a discrete-time system, we use the
notation < N, X >, < N, Y >, and < N, S >, respectively.

Trajectories that begin and end at compatible times can be concatenated to create
a new trajectory. Concatenating za[t0, tn) and zb[tn, tm) creates zab[t0, tm) defined by

zab(t) =
{

za(t) if t ∈ [t0, tn)

zb(t) if t ∈ [tn, tm)

The symbol · denotes concatenation; in this particular example

zab[t0, tm) = za[t0, tn) · zb[tn, tm)

or, more briefly

zab = za · zb

if the domains are understood. Concatenation of trajectories is illustrated in
Figure 3.1. This definition covers the specific case that is relevant to us. More gen-
erally, two trajectories za < t0, tn > and zb < tn, tm > can be concatenated if there
is not a conflict at the time tn where the trajectories are joined. Trajectories can
also be torn apart. For example, z < t0, t3 > can be dissected into za < t0, t2 > and
zb < t2, t3 > such that z = za · zb.

0    1    2   3    4   5 6 7 8

za [0,5) zb [5,9)

za · zb

FIGURE 3.1 Concatenating two trajectories.
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The time-shifting operator τ moves the starting and ending times of the trajectory
by equal distances. For example, applying τ with the argument 1 to a trajectory
za[0, 2] gives τ (1, za[0, 2]) = zb[1, 3]. The new trajectory zb is the same as za but is
defined over a different interval; in this example, za(0) = zb(1), za(1) = zb(2), and
za(2) = zb(3). The definition of τ is a generalization of this example:

τ (h, za < t1, t2 >) = zb < t1 + h, t2 + h > such that za(t) = zb(t + h) (3.2)

For brevity, the • operator combines · and τ to concatenate two trajectories za[t1, t2)
and zb[t3, t4) that do not necessarily begin and end at the same time. This operation
is very common, and the separate notation for shifting and concatenation quickly
becomes tiresome. The • operator is defined by

za[t1, t2) • zb[t3, t4) = za[t1, t2) · τ (t2 − t3, zb[t3, t4)) (3.3)

Shifting zb by t2 − t3 translates its domains from [t3, t4) to [t3 + (t2 − t3), t4 + (t2 −
t3)) = [t2, t4 + t2 − t3), giving the two trajectories a common time at which to join.

3.1.2 The State Transition and Output Function

The total state transition function � moves the system from a state s to a state s ′ in
response to the input trajectory x[t0, tn):

s ′ = �(s, x[t0, tn)) (3.4)

Not all such functions are total state transition functions; � must satisfy

�(s, x1 • x2) = �(�(s, x1), x2) (3.5)

�(s, x[t, t)) = s (3.6)

Equation 3.6 requires that the system not change its state over an empty interval
of time. Equation 3.5 is the semigroup property. It states that feeding the system a
series of input trajectories x1, x2, . . . , xn has the same effect as feeding it the single
trajectory x1 • x2 • · · · • xn . It is very common in practice to also require

�(s, τ (h, x)) = �(s, x) (3.7)

Equation 3.7 states that the response of the system to an input does not depend
on the time at which it is applied. A system that satisfies this property is called
time-invariant.

These three properties are mathematical expressions of everyday experience. Of
central importance is the semigroup property. To illustrate it, imagine an experiment
with a lock and key. If the lock is closed, in a state locked, and the key k is turned, then
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we can expect the lock to be opened, in a state unlocked. Mathematically, unlocked =
�(locked, x[0, 1)) where x(0) = k. If we can turn the key again, we expect the lock
to close: locked = �(unlocked, x[0, 1)). If the lock is closed and we turn the key
twice, we expect it to be closed when we are done: locked = �(locked, x • x). To
summarize, we expect locked = �(locked, x • x) = �(�(locked, x), x).

It is also significant that � is a function and not some weaker construct. Suppose
that we make a copy, call it k2, of the original key k1. These keys are indistin-
guishable, so k1 = k2. If the lock is closed and we turn the second key, we expect
the lock to open: exactly the same outcome that we obtained with the first key.
Letting x2[0, 1), with x2(0) = k2, be the input trajectory that turns the key k2 in
the lock, we can write x1[0, 1) = x2[0, 1) and, consequently, �(locked, x1[0, 1)) =
�(locked, x2[0, 1)). Turning the key again so that x1 • x1 = x2 • x2, we expect
�(locked, x1 • x1) = �(locked, x2 • x2). The same lock; the same experiment; iden-
tical keys; identical outcomes.

Finally, consider Equation 3.7. If the lock is closed and we turn the key, then the
lock will open, regardless of when this is done. Similarly, if the lock is open and we
turn the key, then the lock will close, regardless of when we take this action. What,
you might ask, if the lock has a timer? If it is an internal timer, then its value is
determined by the time that has elapsed since we last reset it. The elapsed time is a
state variable that can be set to zero by an input to the system.

If the lock uses an external timer, perhaps a signal received from a global posi-
tioning system or atomic clock, then the value of the external clock is an input to the
lock. If, to test the lock, it is given a timing signal that is too fast, or too slow, or
runs in the wrong direction, the response of the lock will depend only on the value
of the timing signal and not when it is applied. This test will, if conducted once in
the morning and once in the evening, produce the same result both times. We expect
Equation 3.7 to hold.

The semigroup property is of fundamental importance because iterative algorithms
for simulation are derived from it. The requirement that � be a function is likewise
essential; it plays a critical role in the handling of simultaneous actions. Time invari-
ance is not essential to the simulation algorithms, but to require it is not restrictive and
very convenient. If time invariance is not required, then the simulation engine must be
supplied with an initial time and provide a means for accessing the simulation clock.
In this way, a model can incorporate time directly into its state transition function.
It is just as reasonable, and ultimately much simpler, to incorporate any dependence
on time into the state of the model by making it a state variable. From here on, it is
assumed that our models are time-invariant.

Suppose that we apply an input trajectory that is defined at a single point. For
example, the trajectory x[t0, t1) = x(t0). The system is begun in state s0 and its state
s1 at time t1 is

s1 = �(s0, x[t0, t1)) = δ(s0, x(t0)) (3.8)

where the function δ is the single-step state transition function or just the state
transition function. The function δ maps a single state and a single input into a new
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state; it has the form

δ : S × X → S

We could write Equation 3.8 without referring to time at all. Given the current state
s and an input x the next state s ′ is

s′ = δ(s, x) (3.9)

This function gives us a convenient way to define the total state transition by
describing how the system responds to any single input. The total state transition
function � is defined by recursive application of δ to the values in an input trajectory
x[t0, tn). The trajectory is decomposed into segments x0, x1, . . . , xn−1 of unit length
such that

x[t0, tn) = x0[t0, t1) · x1[t1, t2) · · · · · xn−1[tn−1, tn)

Using the semi-group property, we write

sn = �(�(s0, x0), x1 · x2 · · · · xn−1)

= �(δ(s0, x0(t0)), x1 · x2 · · · · xn−1)

Repeated application of this formula lets us compute sn entirely by application of δ.
This calculation, carried out in detail, is

�(s0, x) = �(�(s0, x0), x1 · x2 · · · · · xn−1)

= �(δ(s0, x0(t0)), x1 · x2 · · · · · xn−1)

= �(s1, x1 · x2 · · · · · xn−1)

= �(�(s1, x1), x2 · · · · · xn−1)

= �(δ(s1, x1(t1)), x2 · · · · · xn−1)

= �(s2, x2 · · · · · xn−1)

= . . .

= �(�(sn−2, xn−2), xn−1)

= �(δ(sn−2, xn−2(tn−2)), xn−1)

= �(sn−1, xn−1)

= δ(sn−1, xn−1(tn−1))

= sn
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s ← s01

for tk ∈ [t0, tn) do2

print time tk and state s3

s ← δ(s, x(tk))4

end5

Algorithm 3.1 Iterative procedure for computing the total state transition function
of a discrete-time system.

This recursive procedure consumes the input trajectory one segment at a time. The
state s1, resulting from the input x0(t0) applied to the state s0, is computed first. The
state s2 is computed by δ(s1, x1(t1)). The state s3 is computed next by δ(s2, x2(t2)),
and this is repeated until we reach sn . This definition of the total state transition
function is tail-recursive, and so it can be easily rewritten as the iterative procedure
in Algorithm 3.1.

The output function λ describes how the state of the system appears to an observer.
It maps the current state s to an output y and has the form

λ : S → Y

The output trajectory y < t0, tn > produced by a state trajectory s < t0, tn > is defined
by

y(tk) = λ(s(tk)) (3.10)

for every tk ∈< t0, tn >. To accommodate the output function in our simulation, only
a small change to Algorithm 3.1 is needed; this gives us Algorithm 3.2.

Figure 3.2 illustrates the roles of the state transition function and output function in
defining the dynamic behavior of a system. In summary, the state transition function
defines the internal response of the system to input; the output function projects a
view of the internal state for an outside observer.

s ← s01

for tk ∈ [t0, tn) do2

print time tk , state s, and output λ(s)3

s ← δ(s, x(tk))4

end5

Algorithm 3.2 Iterative algorithm for simulating an atomic, discrete-time system.
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yx λ= (s)
s′ = δ(s, x)

FIGURE 3.2 The dynamic parts of an atomic model.

3.1.3 Two Examples of Atomic, Discrete-Time Models

For our first example, consider a system with state s, input x , and output y that are
real numbers, and state transition and output functions

δ(s, x) = s

2
+ x (3.11)

λ(s) = 10s (3.12)

Two simulations of this system are shown in Table 3.1. The first row contains the
initial state and first output. The input trajectories x1[0, 4) and x2[0, 4) are written in
their respective columns. The state and output columns in each row after the first are
filled in two steps: (1) the state s is computed by putting the state and input from the
previous row into Equation 3.11, and (2) the output y is computed by putting the new
state into Equation 3.12. This procedure is repeated until the input trajectory ends.

Note that the second experiment begins in the same state in which the first ex-
periment ends. If we had continued the first experiment by feeding the second input
trajectory into the system (i.e., by feeding it x1 • x2), then the outcome would have
been identical, with the final state and output the same as in the second experiment.

For our second example, consider a vending machine that sells coffee but accepts
only nickels, dimes, and quarters. When $1 has been inserted in the solt, the machine
dispenses a cup of coffee. When the change button is pressed, the machine returns
any unspent coins. To construct a model of this machine, we take time to be the
number of inputs provided to it. Time is incremented when coins are inserted, the
change button is pushed, or both. Several coins can be inserted and the change
button pressed simultaneously. Time is also incremented when the customer waits
for the machine to respond to a previous input.

TABLE 3.1 Two Simulations of the System Described by Equations 3.11 and 3.12

Experiment 1 Experiment 2

t s x1 y t s x2 y

0 1 1 10 0 0.5 0 5
1 1.5 1 15 1 0.25 −0.125 2.5
2 1.75 0 17.5 2 0 1 0
3 0.875 0.0625 8.75 3 1 0 10
4 0.5 — 5 4 0.5 — 5
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The model accepts any combination of inputs from the set

X = {nickel, dime, quarter, cancel, wait}

and produces combinations of output from the set

Y = {nickel, dime, quarter, coffee, nothing}

Inputs to the model are bags of values from X and outputs are bags of values from
Y . A bag (sometimes called a multiset) is an unordered collection. For example, the
bag {nickel, nickel, dime} contains two nickels and a dime, a total value of 25 cents.
The empty bag, like the empty set, is denoted by ∅. The union of two bags is the
same as the union of two sets except that duplicates are permitted. For example,
{nickel, nickel, dime} ∪ {dime} = {nickel, nickel, dime, dime}. The empty bag is an
identity for the union operator: for any bag X , X ∪ ∅ = X .

The order in which items are listed does not matter. For example,
{nickel, dime, nickel} is equal to {nickel, nickel, dime}. Consequently, the machine
must produce an identical result if, when in any particular state s, it is provided with
either of these values. It is necessary, for example, that

δ(s, {nickel, nickel, dime}) = δ(s, {nickel, dime, nickel})

The inventory of coins, the value of the coins inserted by the current customer,
and the status of the cancel button constitute the state of the model. The variables n,
d, and q are the number of nickels, dimes, and quarters in the inventory. The variable
v is the total value of the coins put into the machine by the current customer. The
variable cancel is true if the cancel button is depressed and false otherwise.

The state transition function for this machine is defined by Algorithm 3.3, which
is written in the form of a method for an object whose member variables are the
machine’s state variables. The method’s single argument is a bag xb of inputs in X .
The method getCoins, which is implemented by Algorithm 3.4, returns a bag of coins
selected from the machine’s inventory and with a total value equal to its argument.
The state transition function begins by deducting, if possible, a dollar from the value
of the unspent coins previously inserted by the customer. Any new coins are then
added to the customer’s total value and the inventory of the machine. The status of
the cancel button is established last.

Algorithm 3.5 defines the model’s output function, and it is in the same form. This
method returns a bag yb of elements in the output set Y . If there is at least $1 in the
machine then it produces a cup of coffee. If the cancel button has been pressed, then
the machine returns the customer’s change. If a cup of coffee was also sold, then only
the unspent coins are returned.

Table 3.2 shows two experiments with this model. Once again, we see the semi-
group property in action. That the state transition function is in fact a function can
be verified by checking that a change in the order of the items in the input bags does
not change the outcome of the simulation.
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method δ(xb)1

Sell a cup of coffee2

if v ≥ 100 then v ← v − 1003

If cancel is pressed, clear it and return any change4

if cancel = true then5

cancel ← false6

C ← getCoins(v)7

n ← n − number of nickels in C8

d ← d − number of dimes in C9

q ← q − number of quarters in C10

v ← 011

end12

Add the coins inserted by the customer13

nc ← number of nickels in xb, n ← n + nc14

dc ← number of dimes in xb, d ← d + dc15

qc ← number of quarters in xb, q ← q + qc16

v ← v + 5nc + 10dc + 25qc17

Check the cancel button18

cancel ← cancel is in xb19

end method20

Algorithm 3.3 State transition function for the coffee-vending machine.

method getCoins(cents) returns C1

Initialize the bag of coins2

C ← ∅3

Copy the inventory of the machine4

qc ← q , dc ← d , nc ← n5

Pick quarters first6

while qc > 0 and cents ≥ 25 do7

qc ← qc − 1, cents ← cents − 258

C ← C ∪ {quarter}9

end10

Pick dimes next11

while dc > 0 and cents ≥ 10 do12

dc ← dc − 1, cents ← cents − 1013

C ← C ∪ {dime}14

end15

Pick nickels last16

while nc > 0 and cents ≥ 5 do17

nc ← nc − 1, cents ← cents − 518

C ← C ∪ {nickel}19

end20

return C21

end method22

Algorithm 3.4 Definition of the getCoins method.
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method λ() returns yb1

Initialize the output bag2

yb ← ∅3

How much money has the customer put into the machine?4

cash ← v5

Sell a cup of coffee6

if cash ≥ 100 then7

yb ← {coffee}8

cash ← cash − 1009

end10

Expel any change that remains after the sale11

if cancel = true then yb ← yb ∪ getCoins(cash)12

If the bag is still empty, then the output is nothing13

if yb = ∅ then yb ← {nothing}14

return yb15

end method16

Algorithm 3.5 Output function for the coffee-vending machine.

3.1.4 Systems with Bags for Input and Output

Bags are so useful as the basic type of input and output to a model that we will
include them in the definition of a system. The set of bags with elements in X is
denoted Xb. Similarly, the set of bags with elements in Y is denoted Y b. For example,
if Y = {nickel, dime, quarter}, then {nickel} ∈ Y b, {nickel, nickel} ∈ Y b, and so is
{dime, nickel}. The state transition function computes the next state of the model
from its current state s and a bag xb of inputs in X ; it has the form

δ : S × Xb → S (3.13)

The output function maps the current state s to a bag yb of outputs in Y ; its form is

λ : S → Y b (3.14)

These new forms do not change the definition of the total state transition function
or the simulation algorithm for atomic models. Their significance is chiefly in how
network models are defined and simulated, a topic that is addressed in Section 3.2.

3.1.5 A Simulator for Atomic Models

The simulation engine for atomic models has four classes: Atomic, Simulator,
EventListener, and Bag. The Bag is a generic class for unordered collections of
objects. It is used to supply input to and obtain output from the Atomic model. The
Bag is a partial implementation of a multiple associative container as defined in the
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C++ Standard Template Library (STL) (see, e.g., Ref. 60). It has methods to insert
and remove objects, iterate through the contained objects, and determine the number
of objects in the container.

The EventListener can be registered with the Simulator, which will notify the
listener when the model produces output and changes its state. The EventListener
has two abstract methods: stateChange and outputEvent. The stateChange method is
called by the Simulator when the model changes its state. The outputEvent method
is called when the model produces an output.

The Simulator has four methods: addEventListener, getTime, computeNextState,
and computeOutput. The addEventListener method puts an EventListener into the
list of listeners that are notified of changes to the model. The getTime method returns
the simulation time at which the state was last computed. The computeNextState
method does four things: (1) computes the model’s output function if this has not
already been done, (2) computes the model’s next state, (3) notifies listeners of these
actions, and (4) tells the model to clean up objects created by its output function. The
computeOutput method invokes the model’s output function and informs registered
EventListeners of the consequent output values; it does not change the state of the
model.

Atomic models are derived from the abstract Atomic class, which defines the in-
terface needed by the simulation algorithm. This class has two abstract methods:
delta and output func. The method delta implements the state transition function,
and output func1 implements the output function. The member variables of the
derived class are the state variables of the model, and these are initialized by its
constructor.

The computeOutput method is effective just once at each simulation time. Sub-
sequent calls at the same simulation time have no effect. This design decision has
two practical motivations: (1) it simplifies the management of output objects by
cleaning them up just once at the end of the computeNextState method, and (2) the
model’s output func method is called just once at each simulation time; in practice,
modelers often collect statistics, drive output devices, and perform other tasks in the
output func or in response to output that must be done just once at each simulation
time.

The type of object in the model’s input–output set is specified with a template
parameter. The decision to use a template class for building atomic models is strongly
motivated by use of the C++ programming language. C++ is a strongly typed language
and it lacks a built-in base class. Consequently, the simulation engine must know at
compile time what types of objects will be produced and consumed by the model. A
generic base class for atomic models, with a template for specifying the type of input
and output, solves this problem and gives the programmer explicit control over how

1Why not lambda? The symbol (or word) delta is commonly used to represent change. This usage is
introduced in first- and second-year calculus and physics courses. Use of the symbol (or word) lambda for
output is relatively uncommon. The method name output func seemed, therefore, less likely to confuse
the programmer.
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input and output objects are managed. This, however, forces every class that uses
the Atomic interface to be a generic class, and therefore the entire simulation engine
must be implemented as a set of generic classes.

Other programming languages will prompt other solutions to this problem. Type-
less languages and dynamically typed languages, Tcl and Python, for example, solve
this problem implicitly. For languages with a built-in, universal superclass—Java and
its Object class is an example—it is natural to use the language’s superclass as the
basic type of input to and output from Atomic models. When the language has an
intrinsic garbage collector, this solution is particularly attractive.

Consider, for a moment, how a universal base class might be used in a C++
implementation of the simulation engine. We could force the programmer to use
a base class, provided by the simulation engine, for all input and output, but this
is awkward in practice. Small simulation projects become cluttered with objects
that encapsulate simple data types: doubles, integers, and strings. Large simulation
projects are pushed into a design that invariably forces models to exchange pointers
to objects, rather than the objects themselves (or copies of the objects). The memory
allocated to input and output objects must, therefore, be carefully managed and this
becomes a source of errors. Pointers to objects are sometimes necessary, and the use
of templates permits this, but it can often be avoided and templates provide a way of
doing so.

Nonetheless, some simulators need to use objects that are allocated dynamically
as the basic type of input and output for their models. For this reason, the Atomic class
has an abstract gc output method for managing objects created by the output func
method. This is necessary because the model that created the object cannot know
when the simulator is finished with it. “Finished,” in this case, means that all the
models within the simulator and the event listeners outside the simulator have had
an opportunity to access the object. Only the Simulator knows when this condition
is satisfied, and so only it can safely invoke the gc output method, at which time the
Atomic model may destroy any output objects that is has created.

The classes that constitute the simulation engine are in the adtss namespace
to prevent conflicts with classes, functions, and variables that are not part of the
simulation engine. The name adtss describes what the collection of classes is: a
discrete-time system simulator. Figure 3.3 shows the classes in the simulation engine,
and their methods, attributes, and primary relationships. The Simulator and Bag
classes are the only ones with concrete methods. All of the other classes are (almost)
purely abstract. The only exception is the Atomic class, which has one member
variable. This variable, the Bag y, is used by the Simulator when it invokes the
model’s output func method and, subsequently, the gc output method. Even though
this Bag belongs to the Atomic class, it is private and, consequently, inaccessible by
derived classes. Only the Simulator, which is a friend of the Atomic class, has access
to it.

The Bag class can be implemented with any suitable data structure. It might be a
simple alias for an STL multiset, a dynamically sized array, or something optimized
for use in the simulation engine. Regardless, the name Bag is retained to remind the
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FIGURE 3.3 Class diagram of a simulation engine for discrete-time atomic models.

programmer that it is an unordered collection of objects. The simulation algorithm
does not attach any importance to the order of elements in the Bag, and neither should
the model.

The Simulator class is the most complicated part of the simulation engine. It im-
plements the basic simulation algorithm, implements the interface that makes this
algorithm available to clients of the Simulator, and assists the Atomic model with
cleaning up its garbage. The source code for the Simulator is listed below. This
simulator implementation, an implementation for the Bag class, and the abstract
EventListener and Atomic classes constitute a complete library of classes for simulat-
ing discrete-time, atomic models. These classes are defined in the filedtss atomic.h
that the simulator includes.

Simulator for a Discrete-Time Atomic Model
1 #ifndef _dtss_simulator_h_
2 #define _dtss_simulator_h_
3 #include "dtss_atomic.h"
4

5 namespace adtss
6 {
7

8 template <typename X> class Simulator
9 {

10 public:
11 // Create a simulator for the supplied model
12 Simulator(Atomic<X>* model):
13 model(model),t(0),output_up_to_date(false){}
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14 // Compute the next state of the model and invoke stateChange
15 // and outputEvent callbacks as appropriate
16 void computeNextState(const Bag<X>& input);
17 // Compute the model’s output and make outputEvent callbacks
18 void computeOutput();
19 // Get the simulation time.
20 unsigned int getTime() { return t; }
21 // Add an event listener
22 void addEventListener(EventListener<X>* listener)
23 {
24 listeners.push_back(listener);
25 }
26 private:
27 Atomic<X>* model; // The model to simulate
28 unsigned int t; // Simulation clock
29 bool output_up_to_date; // Is the model output up to date?
30 // List of event listeners
31 typedef std::list<EventListener<X>*> ListenerList;
32 ListenerList listeners;
33 };
34

35 template <typename X>
36 void Simulator<X>::computeNextState(const Bag<X>& input)
37 {
38 computeOutput(); // Compute the output at time t
39 t++; // Advance the simulation clock
40 model->delta(input); // Compute the new state of the model
41 // Notify listeners that the state has changed
42 for (typename ListenerList::iterator iter = listeners.begin();
43 iter != listeners.end(); iter++)
44 (*iter)->stateChange(model,t);
45 // Cleanup
46 model->gc_output(model->output_bag);
47 model->output_bag.clear();
48 output_up_to_date = false;
49 }
50

51 template <typename X>
52 void Simulator<X>::computeOutput()
53 {
54 // Return if the output function has been evaluated
55 if (output_up_to_date) return;
56 // Compute the output
57 output_up_to_date = true;
58 model->output_func(model->output_bag);
59 // Tell listeners about the output
60 for (typename Bag<X>::iterator yiter = model->output_bag.begin();
61 yiter != model->output_bag.end(); yiter++) {
62 for (typename ListenerList::iterator iter = listeners.begin();
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63 iter != listeners.end(); iter++) {
64 (*iter)->outputEvent(model,*yiter,t);
65 }
66 }
67 }
68

69 } // end of namespace
70

71 #endif

An interactive simulation of the vending machine described in Section 3.1.3 will
illustrate how the simulator is used. The model is implemented by the CoffeeMachine
class, which is derived from the Atomic class. The input–output for this model is an
enumeration, and so the garbage collection method isn’t necessary. The state variables
of the vending machine model are member variables of the CoffeeMachine class. The
state transition function is implemented in the delta method and the output function,
in the output func method. The initial state of the model is set by the constructor.
The code for the CoffeeMachine class is listed below. Note that the coffee machine
is started in the initial state from Table 3.2.

Definition of the CoffeeMachine Class
1 #ifndef _CoffeeMachine_h_
2 #define _CoffeeMachine_h_
3 #include "adtss.h"
4

5 // Input and output values
6 typedef enum {
7 NICKEL, DIME, QUARTER,
8 CANCEL, WAIT, COFFEE, NOTHING
9 } IO_Type;

10

11 // Definition of the coffee machine
12 class CoffeeMachine: public adtss::Atomic<IO_Type>
13 {
14 public:
15 // Constructor puts the model into its initial state
16 CoffeeMachine();
17 // State transition function
18 void delta(const adtss::Bag<IO_Type>& xb);
19 // Output function
20 void output_func(adtss::Bag<IO_Type>& yb);
21 // Garbage collection method does not do anything
22 void gc_output(adtss::Bag<IO_Type>&){}
23 // Get the amount of money in the machine
24 int getInventoryValue() const { return 5*n+10*d+25*q; }
25 // Get the amount of money left to the customer
26 int getCustomerValue() const { return v; }
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27 private:
28 int n, d, q; // Numbers of nickels, dimes, and quarters
29 int v; // Value left to the customer
30 bool cancel; // Status of the cancel button
31 // Find coins in the inventory.
32 void getCoins(int cents, int& nout, int& dout, int& qout);
33 };
34

35 #endif

Implementation of the CoffeeMachine Class
1 #include "CoffeeMachine.h"
2 using namespace adtss;
3

4 void CoffeeMachine::getCoins(int cents, int& nout, int& dout, int& qout)
5 {
6 int qc = q, dc = d, nc = n;
7 nout = dout = qout = 0;
8 // Pick quarters
9 while (qc > 0 && cents >= 25) {

10 qout++; qc--; cents -= 25;
11 }
12 // Pick dimes
13 while (dc > 0 && cents >= 10) {
14 dout++; dc--; cents -= 10;
15 }
16 // Pick nickels
17 while (nc > 0 && cents >= 5) {
18 nout++; nc--; cents -= 5;
19 }
20 }
21

22 CoffeeMachine::CoffeeMachine():
23 adtss::Atomic<IO_Type>(),
24 n(10),d(10),q(10), // Start with ten of each type of coin
25 v(0),cancel(false){}
26

27 void CoffeeMachine::delta(const Bag<IO_Type>& xb)
28 {
29 // Sell a cup of coffee
30 if (v >= 100) v -= 100;
31 // Remove change if the cancel button is pressed
32 if (cancel) {
33 // Clear the cancel signal
34 cancel = false;
35 // Return the coins
36 int nc, dc, qc;
37 getCoins(v,nc,dc,qc);
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38 q -= qc; d -= dc; n -= nc;
39 v = 0;
40 }
41 // Add change that was inserted by the customer
42 // and check the state of the cancel button
43 for (Bag<IO_Type>::const_iterator iter = xb.begin();
44 iter != xb.end(); iter++) {
45 if ((*iter) == NICKEL) { n++; v += 5; }
46 else if ((*iter) == DIME) { d++; v += 10; }
47 else if ((*iter) == QUARTER) { q++; v += 25; }
48 else if ((*iter) == CANCEL) cancel = true;
49 }
50 }
51

52 void CoffeeMachine::output_func(Bag<IO_Type>& yb)
53 {
54 // How much cash is in the machine?
55 int cash = v;
56 // If there is enough money for a cup of coffee, then pour a cup
57 if (cash >= 100) {
58 yb.insert(COFFEE);
59 cash -= 100;
60 }
61 // Return any remaining change if the cancel button is pressed
62 if (cancel) {
63 int nreturn, dreturn, qreturn;
64 getCoins(cash,nreturn,dreturn,qreturn);
65 for (int i = 0; i < nreturn; i++) yb.insert(NICKEL);
66 for (int i = 0; i < dreturn; i++) yb.insert(DIME);
67 for (int i = 0; i < qreturn; i++) yb.insert(QUARTER);
68 }
69 // If no output was produced then put NOTHING into the output bag
70 if (yb.empty()) yb.insert(NOTHING);
71 }

The CoffeeMachineListener class, which is derived from the EventListener class,
reports output from the CoffeeMachine and reports the change remaining to the
customer whenever the CoffeeMachine changes its state. The code for the CoffeeMa-
chineListener is shown below.

The CoffeeMachineListener Class
1 #ifndef _CoffeeMachineListener_h_
2 #define _CoffeeMachineListener_h_
3 #include "CoffeeMachine.h"
4 #include <iostream>
5

6 class CoffeeMachineListener: public adtss::EventListener<IO_Type>
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7 {
8 public:
9 // Listen for events from a coffee machine

10 CoffeeMachineListener(CoffeeMachine* m):m(m){}
11 // This is invoked by the simulator when the model produces output
12 void outputEvent(adtss::Atomic<IO_Type>* model,
13 const IO_Type& value, unsigned int t)
14 {
15 std::cout << "output @ t = " << t << ", ";
16 if (value == NICKEL) std::cout << "nickel\n";
17 else if (value == DIME) std::cout << "dime\n";
18 else if (value == QUARTER) std::cout << "quarter\n";
19 else if (value == COFFEE) std::cout << "Coffee!\n";
20 else std::cout << "nothing\n";
21 }
22 // This is invoked by the simulator when the model changes state
23 void stateChange(adtss::Atomic<IO_Type>* model, unsigned int t)
24 {
25 std::cout << "You have " <<
26 m->getCustomerValue() << " cents @ t = "
27 << t << std::endl;
28 }
29 private:
30 CoffeeMachine* m;
31 };
32

33 #endif

The program’s main function has two parts. The first part creates a CoffeeMachine,
a CoffeeMachineListener, and a Simulator. The CoffeeMachine is passed to the
Simulator’s constructor, and the CoffeeMachineListener is registered to receive output
and state change notifications from the Simulator. The second part runs the simulation
until the user types “quit.” Each line of input to the program is parsed into quarter (q),
dime (d), nickel (n), cancel (c), and wait (w) inputs for the model. These are applied
to the CoffeeMachine via the Simulator’s computeNextState method. When the user
types “quit,” the profit made by the machine is printed, the program cleans up, and
then it exits.

Main Function for the Coffee Machine Simulation
1 #include "CoffeeMachine.h"
2 #include "CoffeeMachineListener.h"
3 #include <iostream>
4 using namespace std;
5

6 int main()
7 {
8 // Create the model
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9 CoffeeMachine* m = new CoffeeMachine();
10 // Create the simulator and register a listener to report changes to
11 // the model
12 CoffeeMachineListener* l = new CoffeeMachineListener(m);
13 adtss::Simulator<IO_Type>* sim = new adtss::Simulator<IO_Type>(m);
14 sim->addEventListener(l);
15 // Look for input and apply it to the simulator
16 while (true) {
17 // Get a command from the user
18 string command;
19 adtss::Bag<IO_Type> input;
20 cout << sim->getTime() << " > ";
21 cin >> command;
22 // Is it time to stop?
23 if (command == "quit") break;
24 // Otherwise process the input string
25 for (int i = 0; i < command.length(); i++) {
26 if (command[i] == ’q’) input.insert(QUARTER);
27 else if (command[i] == ’d’) input.insert(DIME);
28 else if (command[i] == ’n’) input.insert(NICKEL);
29 else if (command[i] == ’c’) input.insert(CANCEL);
30 else if (command[i] == ’w’) input.insert(WAIT);
31 }
32 // Apply the input to the model. This invokes the listener’s
33 // callback methods
34 sim->computeNextState(input);
35 }
36 // Report final profit
37 cout << m->getInventoryValue() << " cents in the inventory\n";
38 // Clean up and exit
39 delete sim; delete l; delete m;
40 return 0;
41 }

Now we can repeat the experiments shown in Table 3.2, but using the single
trajectory x1 • x2. The outcome is shown below, and, of course, it matches the earlier
simulation that was done by hand. Note that the output at time t follows the prompt
for input at that time, and the state at time t precedes the prompt.

0 > qqqqnd
output @ t = 0, nothing
You have 115 cents @ t = 1
1 > w
output @ t = 1, Coffee!
You have 15 cents @ t = 2
2 > c
output @ t = 2, nothing
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You have 15 cents @ t = 3
3 > w
output @ t = 3, nickel
output @ t = 3, dime
You have 0 cents @ t = 4
4 > qqqddd
output @ t = 4, nothing
You have 105 cents @ t = 5
5 > c
output @ t = 5, Coffee!
You have 5 cents @ t = 6
6 > w
output @ t = 6, nickel
You have 0 cents @ t = 7
7 > quit
600 cents in the inventory

3.2 NETWORK MODELS

A network model has two parts. First is the set of components that constitute the
network, and these can be atomic or network models. The second part describes how
the network model and its components are connected. The output of the network’s
components can be connected to the input of other components and the output of
the network itself, and the input of the network can be connected to the input of its
components.

Network models, just like atomic models, have a set X of inputs and a set Y of
outputs, and the network acts on an input trajectory to produce an output trajectory.
The transformation of input into output is accomplished by the model’s components.
Their collective state defines the state of the network. A state transition function is,
in a similar fashion, defined for the network model by the state transition functions
of its components; likewise the output function of the network.

The network is aware only of the input and output of its components, and therefore
cannot distinguish between two models that, given the same input trajectory, produce
identical output trajectories. The internal workings of its components are invisible.
Consequently, every network model can be reduced to an atomic model that exactly
mimics its observable behavior. This property of the network is called closure under
coupling.2

In principle, we could perform this reduction and then use the software from
Section 3.1.5 to conduct our simulations. In practice, this is infeasible. Nonethe-
less, closure under coupling has one immediate consequence for our simulation
software; the reduction procedure yields an algorithm for simulating network
models.

2Some people prefer the term closure under composition (see, e.g., Lynch et al. [80].)
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3.2.1 The Parts of a Network Model

To define the resultant of a network, we need a precise description of its parts. The
network itself is denoted by N . It has a set X of input and a set Y of output. The
set D contains the components of the network (but not the network itself). For each
model d ∈ D ∪ {N }, there is a set of components that affect d . Note that the set
D ∪ {N } contains all the components of the network and the network itself. The
set of influencers of a model d is denoted Id . The family of sets of influencers is
called Ī .

For each model d ′ in the set Id of influencers of d there is a coupling function zd ′,d .
The coupling function has one of three forms: (1) if d ′ is the network (i.e., d ′ = N
and d ∈ D), then zN ,d converts input from the network to input for d; (2) if d ′ and d
are components (i.e., d ′, d ∈ D), then zd ′,d converts output from d ′ to input for d; or
(3) if d is the network (i.e., d ′ ∈ D and d = N ), then zd ′,N converts output from d ′ to
output from the network. The set containing all of the network’s coupling functions
is called Z .3

For clarity, the parts of a component d are denoted by the subscript d; that is, Xd

is the set of inputs to d and Yd is the set of outputs from d. Similarly, X N is the set
of inputs to the network and YN is the set of outputs from the network. With this
convention, the parts of the network model are summarized by

X N = input set

YN = output set

DN = set of components

ĪN = {Id | d ∈ D ∪ {N }} the family of sets of influencers

Z N = {zd ′,d | d ′ ∈ Id and d ∈ D ∪ {N }} the set of coupling functions where

zN,d : Xb
N → Xb

d

zd ′,N : Y b
d ′ → Y b

N

zd ′,d : Y b
d ′ → Xb

d

Figure 3.4 illustrates this collection of objects and their roles in the network model.
By allowing networks to contain other networks as components, we can create a
hierarchy (or tree) of models that decompose a complex system into successively
smaller parts. At the leaves of the hierarchy are atomic models. Network models fill
the intermediary positions. Because every network has a resultant, it is possible to
collapse any subhierarchy into an atomic model, and this change will be unnoticed
by models elsewhere in the tree (unless, of course, the model is a part of the hierarchy

3This method for describing a network is very general but also very cumbersome. It is avoided (or, rather,
stated in pictures) by using block diagrams, neighborhood diagrams, computational stencils, and other
visual techniques that show how components are connected. These techniques, however, are unsuited for
giving a precise definition of the network’s dynamic behavior.
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zd1,d2
d1 d2

zd2,N

zd2,d1

zN,d1

N

FIGURE 3.4 A network with two components. The algebraic definition of this net-
work has D = {d1, d2}, Ī = {Id1 , Id2 , IN }, Id1 = {N , d2}, Id2 = {d1}, IN = {d2}, and Z =
{zN ,d1 , zd1,d2 , zd2,d1 , zd2,N }.

that was collapsed). This property requires, however, that components communicate
only with their siblings and their parent. This is enforced by requiring that (1) each
instance of a component be part of at most one instance of a network and (2) if a
model is in the set DN of a network N , then the influencers of that model must also
be in DN or be N itself.

3.2.2 The Resultant of a Network Model

The atomic model that mimics a network is called its resultant. This atomic model
has a set Sr of states, a set Xr of inputs, a set Yr of outputs, a state transition function
δr , and an output function λr . The subscript r distinguishes the parts of the resultant
from the parts of the components in the network and the parts of the network itself.

The set of states of the resultant is constructed recursively with the function STATE.
This function accepts a model d, which can be atomic or network, and returns its set
of states. If the model is atomic then STATE acts in the obvious way, simply returning
Sd . If the model is a network then STATE gives the cross product of the sets of states
of its atomic and network components, specifically

STATE(d) =
{

Sd if d is an atomic model

×d ′∈Dd STATE(d ′) if d is a network model
(3.15)

The set of states of the resultant of a network N is

Sr = STATE(N ) (3.16)

and the resultant and network have the same input–output sets:

Xr = X N (3.17)

Yr = YN (3.18)
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As is the set of states, the output function is defined by a recursive descent into
the network. The output generated by a state sr ∈ Sr is

λr (sr ) = ∪d∈IN zd,N (λd (sd )) (3.19)

The function λd is evaluated directly if d is an atomic model. If d is a network model,
then λd is found by applying Equation 3.19 to it, that is, by finding the output of its
resultant. The result of λr is the collective output, possibly modified by the coupling
functions, of the components that influence the network (i.e., that are in IN ).

The state transition function of the resultant is defined in a similar way. To deter-
mine the next value of an element sd in the resultant state sr , it is necessary to find
the input to the model d and then apply its state transition function. From its siblings,
d receives the input

xb
d = ∪d ′∈Id −{N }zd ′,d (λd ′ (sd ′)) (3.20)

where λd ′ is computed directly if d ′ is an atomic model or by Equation 3.19 if it is a
network model, that is, by using the output function of its resultant. The bag xb

d does
not contain input applied to the network to which d belongs. The next state of the
resultant is

δr (sr , xb) = δr ((sd1 , sd2 , . . . , sdk ), xb) = (s ′
d1

, s ′
d2

, . . . , s′
dk

) (3.21)

where s ′
d j

=
{

δd j (sd j , xb
d j

) if N /∈ Id j

δd j (sd j , xb
d j

∪ zN,d j (x
b)) if N ∈ Id j

The second case in Equation 3.21 handles input to the network that is destined for
the component. If d j is an atomic model, then δd j is calculated directly. Otherwise,
Equation 3.21 is used, namely, the state transition function of the resultant of d j .

This set of definitions and Algorithm 3.2 for simulating an atomic model are a
complete description of a simulation engine. Nonetheless, the simulation software
will be organized somewhat differently. The relatively simple definition given here
tells us what a correct implementation of the simulator must do, not how it must do it.
Every simulator for discrete-time systems is in this sense identical—two simulators
that are given the same model must produce the same result regardless of how they
are constructed.

3.2.3 An Example of a Network Model and Its Resultant

To illustrate this mathematical construction, consider a machine that computes the
logical function

y(n + 1) = y(n) ⊕ ((x1(n) ⊕ x2(n)) (3.22)
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O1 O2

N2

mN1

y

x2x1

M

FIGURE 3.5 A logical function constructed from two types of atomic models.

where ⊕ is exclusive–or (i.e., binary addition). The machine has two inputs: x1 and
x2. It has a single output y and remembers its previous output for use in computing
its next output. The machine is constructed with two types of atomic components—
one computes the exclusive–or function and the other has a memory to store y. The
model’s organization is illustrated in Figure 3.5.

The component that calculates exclusive–or is denoted O for exclusive–or. It has
two inputs and a single output. The input bag always contains 2 bits: b1 and b2. The
output bag contains a single bit. The O machine has two possible states corresponding
to the two possible results of its logical operation. The input, output, and state sets
are

X O = YO = SO = {0, 1}

The output function and state transition functions are

λO (sO ) = {sO}
δO (sO , {b1, b2}) = b1 ⊕ b2

The memory component, denoted M for memory, has a single input, single output,
and 22 possible states. It is defined by

X M = YM = {0, 1}
SM = {0, 1} × {0, 1}

δM ((q1, q2), {x}) = (q2, x)

λM ((q1, q2)) = {q1}

Both models have state transition functions that are only partially defined. Recall
that the state transition function takes a state in S and a bag in the set Xb to a new
state in S. To obtain a fully defined state transition function, a new state must be
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unambiguously defined for every combination of state and bag of inputs. The bag
{1}, however, is in Xb

O , but δO is not defined for it. Similarly, the bag {1, 0} is in Xb
M ,

but δM is ambiguous about how this modifies the state of M . It is common to have
state transition functions that are only partially defined. Make sure, however, that the
simulation does not stray into these undefined areas.

The complete machine is built in two stages. The first stage, denoted N1, contains
the second stage, called N2, and the memory machine M . The second stage contains
the two O machines. It is apparent from the definition of the atomic components
and the construction of the network that this machine requires three timesteps to
finish one calculation of Equation 3.22. After changing the input, two transient
values appear at the output before the third, final value emerges. This mimics the
settling time of digital circuits, which require several clock cycles to complete an
operation.

The definitions of N1 and N2 are clearly and unambiguously illustrated in
Figure 3.5. Nonetheless, algebraic definitions are given below to demonstrate their
use in a simulation. Note that the sets of influencers have double (bilevel) subscripts;
the second part of the subscript indicates whether the set belongs in ĪN1 or ĪN2 .

The network N2 is defined by

X N2 = {x1, x2, m} × {0, 1}
YN2 = {0, 1}
DN2 = {O1, O2}
ĪN2 = {IO1,N2 , IO2,N2 , IN2,N2}

where IO1,N2 = {N2}
IO2,N2 = {N2, O1}
IN2,N2 = {O2}

Z N2 = {zO1,O2 , zN2,O1 , zO2,N2, zN2,O2}
where zO1,O2 ({b}) = {b}

zN2,O1 ({. . . , (x1, b1), (x2, b2), . . .}) = {b1, b2}
zO2,N2 ({b}) = {b}

zN2,O2 ({. . . , (m, b), . . .}) = {b}

Note that the set of input contains labels for the bits; the labels correspond to the
name of the edge in Figure 3.5 on which the bit appears. Also note that the coupling
functions for N2 are only partially defined. For example, it is not clear how N2 handles
two m labeled bits in its input bag. Again, the simulation must avoid these undefined
cases.
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The network N1 is defined by

X N1 = {x1, x2} × {0, 1}
YN1 = {0, 1}
DN1 = {N2, M}
ĪN1 = {IN2,N1 , IM,N1 , IN1,N1}

where IN1,N1 = {N2}
IN2,N1 = {N1, M}
IM,N1 = {N2}

Z N1 = {zN1,N2 , zM,N2 , zN2,N1 , zN2,M}
where zN1,N2 ({(x1, b1), (x2, b2)}) = {(x1, b1), (x2, b2)}

zM,N2 ({b}) = {(m, b)}
zN2,N1 ({b}) = {b}
zN2,M ({b}) = {b}

Input to this network is also a pair of bits. Again, the labels correspond to the edges
in Figure 3.5 on which the bits appear.

Now we can use Algorithm 3.2 and Equations 3.15–3.21 to simulate, by hand,
a single timestep for this system. One timestep will be onerous enough to not bear
repeating; a computer does these calculations more quickly and more reliably. The
initial state of O1 and O2 is zero. The initial state of M is (0, 0). Input to the machine
is held constant at {(x1, 1), (x2, 0)}. The first step of Algorithm 3.2 computes the
output of N1; this is done with Equation 3.19. Expanding the recursive steps depth
first and from left to right gives

λN1 (sN1 ) = ∪d∈IN1 ,N1
zd,N1 (λd (sd ))

= zN2,N1 (λN2 (sN2 ))

= zN2,N1 (∪d∈IN2 ,N2
zd,N2 (λd (sd )))

= zN2,N1 (zO2,N2 (λO2 (sO2 )))

= zN2,N1 (zO2,N2 ({0}))
= zN2,N1 ({0})
= {0}
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Algorithm 3.2 next uses Equation 3.21 to compute a new state for N1. We have
taken a shortcut by reusing part of the calculation above; the output of N2 is needed,
which we already know. The next state of N1 is given by

δN1 (sN1 , {(x1, 1), (x2, 0)}) =
(δM (sM , xb

M ), δN2 (sN2 , xb
N2

∪ zN1,N2 ({(x1, 1), (x2, 0)}))) (3.23)

The first half of the state of the resultant, the state of the memory component M , is

δM (sM , xb
M ) = δM (sM , ∪d∈IM,N1 −{N1}zd,M (λd (sd )))

= δM (sM , zN2,M (λN2 (sN2 )))

= δM (sM , zN2,M ({0}))
= δM (sM , {0})
= (0, 0) (3.24)

The second half of the state of the resultant, the state of the network N2, is

δN2 (sN2, xb
N2

∪ zN1,N2 ({(x1, 1), (x2, 0)}))
= δN2 (sN2 , (∪d∈IN2 ,N1 −{N1}zd,N2 (λd (sd ))) ∪ zN1,N2 ({(x1, 1), (x2, 0)}))
= δN2 (sN2 , zM,N2 (λM (sM )) ∪ zN1,N2 ({(x1, 1), (x2, 0)}))
= δN2 (sN2 , {(m, 0)} ∪ zN1,N2 ({(x1, 1), (x2, 0)}))
= δN2 (sN2 , {(m, 0)} ∪ {(x1, 1), (x2, 0)})
= δN2 (sN2 , {(m, 0), (x1, 1), (x2, 0)})
= (δO1 (sO1 , xb

O1
∪ zN2,O1 ({(m, 0), (x1, 1), (x2, 0)})), (3.25)

δO2 (sO2 , xb
O2

∪ zN2,O2 ({(m, 0), (x1, 1), (x2, 0)})))

The first part of this pair, the next state of O1, is

δO1 (sO1 , xb
O1

∪ zN2,O1 ({(m, 0), (x1, 1), (x2, 0)}))
= δO1 (sO1 , (∪d∈IO1 ,N2 −{N2}zd,O1 (λd (sd ))) ∪ zN2,O1 ({(m, 0), (x1, 1), (x2, 0)}))
= δO1 (sO1 , zN2,O1 ({(m, 0), (x1, 1), (x2, 0)}))
= δO1 (sO1 , {1, 0})
= 1 (3.26)
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The second part, the next state of O2, is

δO2 (sO2 , xb
O2

∪ zN2,O2 ({(m, 0), (x1, 1), (x2, 0)}))
= δO2 (sO2 , (∪d∈IO2 ,N2 −{N2}zd,O2 (λd (sd ))) ∪ zN2,O2 ({(m, 0), (x1, 1), (x2, 0)}))
= δO2 (sO2 , zO1,O2 (λO1 (sO1 )) ∪ zN2,O2 ({(m, 0), (x1, 1), (x2, 0)}))
= δO2 (sO2 , {0} ∪ zN2,O2 ({(m, 0), (x1, 1), (x2, 0)}))
= δO2 (sO2 , {0} ∪ {0})
= δO2 (sO2 , {0, 0})
= 0 (3.27)

Substituting Equations 3.27 and 3.26 into Equation 3.25 gives

δN2 (sN2 , xb
N2

∪ zN1,N2 ({(x1, 1), (x2, 0)})) = (1, 0) (3.28)

Putting Equations 3.28 and 3.24 into Equation 3.23 gives the final solution:

δN1 (sN1 , {(x1, 1), (x2, 0)})
= (δM (sM , xb

M ), δN2 (sN2 , xb
N2

∪ zN1,N2 ({(x1, 1), (x2, 0)})))
= ((0, 0), (1, 0)) (3.29)

This calculation is tedious but simple. Having computed the state and output of
the network N1, we find that the first iteration of Algorithm 3.2 is complete and, with
enough patience, we can calculate the next iteration in the same way.

3.2.4 Simulating the Resultant

Closure under coupling can transform the simulator for a single atomic model into a
simulator for network models. To do this, the simulation engine from Section 3.1.5
needs four new classes: the Network, the Resultant, the Event, and the Set. The revised
class diagram is shown in Figure 3.6. The Set class is exactly what its name indicates.
It could be implemented with a simple alias for the STL set class, or in some other
way conceived specifically for the simulator. The essential features of the Set are that
elements can be added to and removed from it, that it contains at most one copy of
each element, and that we can iterate through its contents.

The Resultant encapsulates a Network object to make it appear as an Atomic
object. The Resultant’s output function does two things; it puts output from its
Network’s components that are in IN into the Bag of output from the Resultant,
and it caches inputs to the other components for use in computing the state transition
function. Recall that the output function is always calculated before the state transition
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FIGURE 3.6 Class diagram of a top–down simulator for network models.

function, and so these cached values will be available when they are needed. The
state transition function calculates new states for the network’s components.

The Network class, which is always contained in a Resultant, has two abstract
methods. The getComponents method fills the Set provided to it with pointers to the
components, Resultant and Atomic, of the network. The route method computes the
bags of input for each component, but unlike the hand calculation in Section 3.2.3,
which obtains the input for a model by looking backward to the source, the route
method begins at the source and moves its output forward to the destinations. This
avoids the slow recalculation, evident in the hand simulation of Section 3.2.3, of
output functions that generate input for several components.

The arguments to the route method are the source of the event; the event itself,
which can be an input or an output; and a Bag into which Event objects are placed
that describe the event’s destination. Each Event object points to a model connected
to the event’s source and contains the event after its transformation by the appropriate
z function. Recipients of the event are from the set Ed of models that are influenced
by the source d; this set is defined by

Ed = {d ′ | d ∈ Id ′ } (3.30)
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Inversely, the set Id of influencers of d can be defined by swapping I and E to obtain

Id = {d ′ | d ∈ Ed ′ }

Each Event in the Bag of receivers contains the contribution of the source d to the
bags of input for the models in Ed and, if the network is in Ed , its bag of output. To
be precise, the route method is given a source d and constructs the bag

Rd = {(d ′, zd,d ′ (λd (sd ))) | d ′ ∈ Ed} (3.31)

where each pair in Rd is an Event object. Input in Rd for the model d ′ is stored
in the input map of the Resultant for later use while calculating the state transition
function.

The Resultant is the only new class with a substantial implementation. To simulate
a Network model, it is passed to the constructor of the Resultant, and then the Resultant
is passed to the Simulator. If a Network A is contained inside of a Network B, then
a Resultant containing A is placed in the bag of components of B. Routing of
input and output is done by referencing Resultants. The code that implements the
Resultant is listed below. The rest of the simulation engine is defined in the included
dtss network.h file.

Implementation of the Resultant Class
1 #ifndef _dtss_resultant_h
2 #define _dtss_resultant_h
3 #include "dtss_network.h"
4

5 namespace adtss
6 {
7

8 template <typename X> class Resultant: public Atomic<X>
9 {

10 public:
11 Resultant(Network<X>* model);
12 void delta(const Bag<X>& xb);
13 void output_func(Bag<X>& yb);
14 void gc_output(Bag<X>&);
15 ~Resultant() { delete model; }
16 private:
17 Network<X>* model;
18 Set<Atomic<X>*> c;
19 std::map<Atomic<X>*,Bag<X> > input, output;
20 void route(const X& value, Atomic<X>* source);
21 };
22

23 template <typename X>
24 Resultant<X>::Resultant(Network<X>* model):
25 Atomic<X>(),model(model)
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26 {
27 model->setResultant(this);
28 model->getComponents(c);
29 }
30

31 template <typename X>
32 void Resultant<X>::delta(const Bag<X>& xb)
33 {
34 // Send the input to the proper components
35 for (typename Bag<X>::const_iterator iter = xb.begin();
36 iter != xb.end(); iter++)
37 route(*iter,this);
38 // Compute the next state of each component
39 for (typename Set<Atomic<X>*>::iterator iter = c.begin();
40 iter != c.end(); iter++)
41 (*iter)->delta(input[*iter]);
42 }
43

44 template <typename X>
45 void Resultant<X>::output_func(Bag<X>& yb)
46 {
47 // Compute the output of each component and
48 // send those outputs to their destinations
49 for (typename Set<Atomic<X>*>::iterator iter = c.begin();
50 iter != c.end(); iter++) {
51 // Compute the model’s output
52 Bag<X>& y = output[*iter];
53 (*iter)->output_func(y);
54 // Route the output to its destinations
55 for (typename Bag<X>::iterator y_iter = y.begin();
56 y_iter != y.end(); y_iter++)
57 route(*y_iter,*iter);
58 }
59 // Copy the network output to yb
60 Bag<X>& y = output[this];
61 for (typename Bag<X>::iterator iter = y.begin();
62 iter != y.end(); iter++)
63 yb.insert(*iter);
64 }
65

66 template <typename X>
67 void Resultant<X>::gc_output(Bag<X>&)
68 {
69 // Let the components clean up their output
70 for (typename Set<Atomic<X>*>::iterator iter = c.begin();
71 iter != c.end(); iter++) {
72 (*iter)->gc_output(output[*iter]);
73 // Clear the output bag for the component
74 output[*iter].clear();
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75 // Clear the input bag for the component
76 input[*iter].clear();
77 }
78 // Clear the input and output bag for the resultant
79 input[this].clear();
80 output[this].clear();
81 }
82

83 template <typename X>
84 void Resultant<X>::route(const X& value, Atomic<X>* source)
85 {
86 Bag<Event<X> > r;
87 model->route(value,source,r);
88 for (typename Bag<Event<X> >::const_iterator iter = r.begin();
89 iter != r.end(); iter++) {
90 // If this is an output from the network
91 if ((*iter).model == this) output[this].insert((*iter).value);
92 // otherwise it goes to an internal component
93 else input[(*iter).model].insert((*iter).value);
94 }
95 }
96

97 } // end of namespace
98

99 #endif

On careful examination, the Network and Resultant are seen to have a small de-
fect. The route methods act on the input to and output from the model one element
at a time. It is therefore very difficult to implement coupling functions that oper-
ate on several elements at simultaneously. For instance, a model with output set
{0, 1} can produce bags that contain arbitrary collections of zeros and ones. A cou-
pling function z1({b1, b2, . . . , bn}) = {b1 ∨ b2 ∨ · · · ∨ bn} is difficult to implement
with the proposed software, but z2({b1, b2, . . . , bn}) = {¬b1, ¬b2, . . . ,¬bn} is easily
accomplished.

The justification for this restriction is a practical one; when the simulation engine
is extended to include discrete-event systems, transient events will make functions
such as z1 very difficult to use. Consequently, functions such as z2 predominate. If
a function such as z1 is needed, a separate atomic model is defined that collects the
required inputs, undergoes an instantaneous state transition to compute the function,
and produces the result as an output. This topic will be revisited in Chapter 4.

The logical function described in Section 3.2.3 will demonstrate how the simulator
is used. Observe that the coupling functions are similar to z2 above. The decision to
use a single template parameter to set the type of object used for input and output
requires selecting an object type that is suitable for every model. In this instance,
we use a port value t structure that contains a bit field, which is needed by every
model; and a port field, which is needed by the networks. The atomic models simply
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ignore the port field. The less-than operator is required because the Bag class is, in
fact, just a multiset from the C++ Standard Template Library.

The implementations of the exclusive–or and memory models follow directly
from their definitions. Note that the delta methods of both classes check that the
input bag contains the proper number of elements. This runtime test is helpful for
debugging and, even when inactive (i.e., when compiling with NDEBUG defined),
is a reminder that the model accepts a restricted range of input. The implementations
of the exclusive–or and memory models are listed below.

Exclusive–Or and Memory Models
1 #ifndef _xor_memory_models_h_
2 #define _xor_memory_models_h_
3 #include "adtss.h"
4 #include <cassert>
5

6 // Structure used for input from and output to the models
7 struct port_value_t
8 {
9 char port; // Port on which the I/O appears

10 bool bit; // Bit appearing at the port
11 bool operator<(const port_value_t& other) const { // For the STL
12 return bit < other.bit;
13 }
14 };
15

16 // Definition of the exclusive-or model
17 class Xor: public adtss::Atomic<port_value_t>
18 {
19 public:
20 Xor():adtss::Atomic<port_value_t>(),s(false){} // State is 0
21 // State transition function
22 void delta(const adtss::Bag<port_value_t>& xb)
23 {
24 // Make sure the input bag is acceptable
25 assert(xb.size() == 2);
26 // Process the two input events
27 adtss::Bag<port_value_t>::iterator iter = xb.begin();
28 bool x1 = (*iter).bit, x2 = (*(++iter)).bit;
29 s = (x1 && !x2) || (x2 && !x1);
30 }
31 // Output function
32 void output_func(adtss::Bag<port_value_t>& yb)
33 {
34 port_value_t y;
35 y.bit = s;
36 yb.insert(y);
37 }
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38 // Garbage collection method does not do anything
39 void gc_output(adtss::Bag<port_value_t>&){}
40 private:
41 bool s;
42 };
43

44 // Definition of the memory machine
45 class Memory: public adtss::Atomic<port_value_t>
46 {
47 public:
48 Memory():adtss::Atomic<port_value_t>()
49 {
50 s[0] = s[1] = false;
51 }
52 // State transition function
53 void delta(const adtss::Bag<port_value_t>& xb)
54 {
55 // Make sure the input bag is acceptable
56 assert(xb.size() == 1);
57 // Process the input
58 s[0] = s[1];
59 s[1] = (*(xb.begin())).bit;
60 }
61 // Output function
62 void output_func(adtss::Bag<port_value_t>& yb)
63 {
64 port_value_t output;
65 output.bit = s[0];
66 yb.insert(output);
67 }
68 // Garbage collection method does not do anything
69 void gc_output(adtss::Bag<port_value_t>&){}
70 private:
71 bool s[2];
72 };
73

74 #endif

The code for N1 and N2 is listed next. N1 contains the Resultant that contains
the network N2, not N2 itself: N1 puts this Resultant into its set of components and
uses it to route events. Classwide (i.e., static) constants that implement the models’
input ports are another feature of the classes that implement the networks. If the
ports are constant, there is no risk that they will be accidentally overwritten and
cause obscure, difficult-to-find errors. By making them classwide variables (i.e.,
static) we can ensure that the memory used by the simulation is reduced. This is
a small advantage, and the model must be large before it yields any real benefits.
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Nonetheless, every instance of the class should have the same set of input and
output variables, and so defining them as class wide constants is a reasonable thing
to do.

N1 Model
1 #ifndef _n1_h_
2 #define _n1_h_
3 #include "adtss.h"
4 #include "n2.h"
5 #include "xor_memory_models.h"
6

7 class N1: public adtss::Network<port_value_t>
8 {
9 public:

10 static const int x1, x2; // Labels for input ports
11 // Create the network; components set their own initial state
12 N1():adtss::Network<port_value_t>(),
13 n2(new N2()),m(){}
14 // Get the set of components in this network
15 void getComponents(adtss::Set<adtss::Atomic<port_value_t>*>& c)
16 {
17 c.insert(&n2);
18 c.insert(&m);
19 }
20 // Route input and output within the network
21 void route(const port_value_t& value,
22 adtss::Atomic<port_value_t>* src,
23 adtss::Bag<adtss::Event<port_value_t> >& r)
24 {
25 adtss::Event<port_value_t> e;
26 e.value = value;
27 // Input to the network
28 if (src == getResultant()) {
29 e.model = &n2;
30 r.insert(e);
31 }
32 // Output from N2
33 else if (src == &n2) {
34 // Output from the network
35 e.model = getResultant();
36 r.insert(e);
37 // Input to M
38 e.model = &m;
39 r.insert(e);
40 }
41 // Output from M
42 else if (src == &m) {
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43 // Input to N2
44 e.model = &n2;
45 e.value.port = N2::m;
46 r.insert(e);
47 }
48 }
49 private:
50 adtss::Resultant<port_value_t> n2;
51 Memory m;
52 };
53

54 #endif

N2 Model
1 #ifndef _n2_h_
2 #define _n2_h_
3 #include "adtss.h"
4 #include "xor_memory_models.h"
5

6 class N2: public adtss::Network<port_value_t>
7 {
8 public:
9

10 static const int m, x1, x2; // Labels for the input ports
11

12 N2():adtss::Network<port_value_t>(),
13 xor1(),xor2(){}
14

15 void getComponents(adtss::Set<adtss::Atomic<port_value_t>*>& c)
16 {
17 c.insert(&xor1);
18 c.insert(&xor2);
19 }
20

21 void route(const port_value_t& value,
22 adtss::Atomic<port_value_t>* src,
23 adtss::Bag<adtss::Event<port_value_t> >& r)
24 {
25 adtss::Event<port_value_t> e;
26 e.value = value;
27 // Input to the network
28 if (src == getResultant()) {
29 // Input to the m port
30 if (value.port == m) e.model = &xor2;
31 // Input to one of the bit ports
32 else e.model = &xor1;
33 r.insert(e);
34 }
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35 // Output from O1
36 else if (src == &xor1) {
37 // Input to O2
38 e.model = &xor2;
39 r.insert(e);
40 }
41 // Output from O2
42 else if (src == &xor2) {
43 // Output from the network
44 e.model = getResultant();
45 r.insert(e);
46 }
47 }
48 private:
49 Xor xor1, xor2;
50 };
51

52 #endif

N1 and N2 Port Definitions
1 #include "n1.h"
2 #include "n2.h"
3 // Ports have unique numbers within the scope of their class
4 const int N2::m = 0;
5 const int N2::x1 = 1;
6 const int N2::x2 = 2;
7 const int N1::x1 = N2::x1;
8 const int N1::x2 = N2::x2;
9

The main function for the simulator, which is listed below, reads a pair of input
bits from standard input, applies these inputs for a complete machine cycle (three
clock cycles), and prints the output of the machine at each clock cycle.

Main Function for the Logical Machine Simulator
1 #include "adtss.h"
2 #include "n1.h"
3 #include <iostream>
4 using namespace std;
5

6 class MachineListener: public adtss::EventListener<port_value_t>
7 {
8 public:
9 void outputEvent(adtss::Atomic<port_value_t>* model,

10 const port_value_t& x, unsigned int t)
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11 {
12 cout << x.bit << " ";
13 }
14 void stateChange(adtss::Atomic<port_value_t>*,unsigned int){}
15 };
16

17 int main()
18 {
19 // Create the model
20 adtss::Resultant<port_value_t>* m =
21 new adtss::Resultant<port_value_t>(new N1());
22 // Setup the simulator and a listener for reporting outputs
23 MachineListener* l = new MachineListener();
24 adtss::Simulator<port_value_t>* sim =
25 new adtss::Simulator<port_value_t>(m);
26 sim->addEventListener(l);
27 // Counters for the clock and machine cycle
28 int clck = 0, machine_cycle = 0;
29 // Run the simulation
30 while (true) {
31 // Get the input from stdin
32 adtss::Bag<port_value_t> input;
33 port_value_t x1, x2;
34 x1.port = N1::x1;
35 x2.port = N1::x2;
36 cin >> x1.bit >> x2.bit;
37 // Quit if the input has ended
38 if (cin.eof()) break;
39 input.insert(x1);
40 input.insert(x2);
41 // Print the time and input
42 cout << "xx M" << machine_cycle << " C" << clck <<
43 "\t" << x1.bit << " " << x2.bit << "\t";
44 // Print the time and output at the next machine cycle
45 cout << "yy M" << ++machine_cycle <<
46 " C" << clck << "-" << clck+2 << "\t";
47 // Advance the simulation by one machine cycle
48 for (int t = 0; t < 3; t++) {
49 clck++;
50 sim->computeNextState(input);
51 }
52 cout << endl;
53 }
54 // Clean up and exit
55 delete sim; delete l; delete m;
56 return 0;
57 }
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Now we have a complete simulator for the logical function defined by Equation
3.22. For reference, it is rewritten here:

y(n + 1) = y(n) ⊕ ((x1(n) ⊕ x2(n))

The time n in this function counts machine cycles. Three timesteps of the model are
needed to complete one machine cycle. Consequently, logical input–logical output is
read at every third clock cycle.

The memory possessed by this model gives it an interesting transient behavior.
If the inputs x1 and x2 are maintained such that x1 ⊕ x2 is 1, then the output will
oscillate between 1 and 0. If the input changes to x1 ⊕ x2 = 0, then the output will
stick to its previous value. The oscillating behavior can be resumed by setting x1 ⊕ x2

back to 1.
We can compute the output trajectory by hand using the definition of y as a function

of x1 and x2. Recall that y(0) = 0. If we apply x1[0, 3) = 111 and x2[0, 3) = 000,
the output is

y(1) = y(0) ⊕ (x1(0) ⊕ x2(0)) = 0 ⊕ (1 ⊕ 0) = 1

y(2) = y(1) ⊕ (x1(1) ⊕ x2(1)) = 1 ⊕ (1 ⊕ 0) = 0

y(3) = y(2) ⊕ (x1(2) ⊕ x2(2)) = 0 ⊕ (1 ⊕ 0) = 1

The simulator, of course, agrees with this calculation. Feeding the input

1 0
1 0
1 0

into the simulator produces the output

xx M0 C0 1 0 yy M1 C0-2 0 0 1
xx M1 C3 1 0 yy M2 C3-5 1 1 0
xx M2 C6 1 0 yy M3 C6-8 0 0 1

where the columns preceded by xx are the inputs at each machine cycle and the
columns preceded by yy are the output produced at and between machine cycles.
Because each machine cycle requires three timesteps, there are two transient outputs
for every machine output: the last column of the simulator’s report is y.

If the machine is subsequently fed x1[3, 5) = 00 and x2[3, 5) = 00, then

y(4) = y(3) ⊕ (x1(3) ⊕ x2(3)) = 1 ⊕ (0 ⊕ 0) = 1

y(5) = y(4) ⊕ (x1(4) ⊕ x2(4)) = 1 ⊕ (0 ⊕ 0) = 1
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and the output will remain 1 while the input is constant. The simulator, of course,
agrees with this calculation as well: feeding it

1 0
1 0
1 0
0 0
0 0

produces the output

xx M0 C0 1 0 yy M1 C0-2 0 0 1
xx M1 C3 1 0 yy M2 C3-5 1 1 0
xx M2 C6 1 0 yy M3 C6-8 0 0 1
xx M3 C9 0 0 yy M4 C9-11 1 1 1
xx M4 C12 0 0 yy M5 C12-14 1 1 1

where the last column of the simulator’s output is y.
If the machine is next fed x1[5, 10) = 11100 and x2[5, 10) = 00000, the output

will swing from 1 to 0 to 1 and back to 0, where it remains. Putting

1 0
1 0
1 0
0 0
0 0
1 0
1 0
1 0
0 0
0 0

into the simulator gives the result

xx M0 C0 1 0 yy M1 C0-2 0 0 1
xx M1 C3 1 0 yy M2 C3-5 1 1 0
xx M2 C6 1 0 yy M3 C6-8 0 0 1
xx M3 C9 0 0 yy M4 C9-11 1 1 1
xx M4 C12 0 0 yy M5 C12-14 1 1 1
xx M5 C15 1 0 yy M6 C15-17 1 1 0
xx M6 C18 1 0 yy M7 C18-20 0 0 1
xx M7 C21 1 0 yy M8 C21-23 1 1 0
xx M8 C24 0 0 yy M9 C24-26 0 0 0
xx M9 C27 0 0 yy M10 C27-29 0 0 0

just as expected.
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Correct operation of this system depends critically on the proper timing of changes
in the input. The input values are permitted to change at every third tick of the clock
and must be held constant otherwise. The simulation code enforces this in its main
loop. The behavior of the model is much more difficult to anticipate if this restriction
is removed. To demonstrate this, the author has changed the main function of the
simulation program to apply a new input value at every tick of the clock, rather than
holding the input constant between machine cycles. The code is listed below.

Main Program to Apply Input Immediately
1 #include "adtss.h"
2 #include "n1.h"
3 #include <iostream>
4 using namespace std;
5

6 class MachineListener: public adtss::EventListener<port_value_t>
7 {
8 public:
9 void outputEvent(adtss::Atomic<port_value_t>* model,

10 const port_value_t& x, unsigned int t)
11 {
12 // Print the time and output at the next machine cycle
13 cout << "yy C " << t << "\t" << x.bit << endl;
14 }
15 void stateChange(adtss::Atomic<port_value_t>*,unsigned int){}
16 };
17

18 int main()
19 {
20 // Create the model
21 adtss::Resultant<port_value_t>* m =
22 new adtss::Resultant<port_value_t>(new N1());
23 // Setup the simulator and output listener
24 MachineListener* l = new MachineListener();
25 adtss::Simulator<port_value_t>* sim =
26 new adtss::Simulator<port_value_t>(m);
27 sim->addEventListener(l);
28 // Run the simulation
29 while (true) {
30 // Get the input from stdin
31 adtss::Bag<port_value_t> input;
32 port_value_t x1, x2;
33 x1.port = N1::x1;
34 x2.port = N1::x2;
35 cin >> x1.bit >> x2.bit;
36 // Quit if the input has ended
37 if (cin.eof()) break;
38 input.insert(x1);
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39 input.insert(x2);
40 // Print the time and input
41 cout << "xx C" << sim->getTime() << "\t" <<
42 x1.bit << " " << x2.bit << "\t";
43 // Advance the simulation
44 sim->computeNextState(input);
45 }
46 // Clean up and exit
47 delete sim; delete l; delete m;
48 return 0;
49 }

Now we must define input trajectories in terms of clock, rather than machine,
cycles. When written in terms of ticks of the clock, the previous input x1[0, 10) =
1110011100 becomes

x ′
1[0, 30) = 111 111 111 000 000 111 111 111 000 000

and the input x2[0, 10) becomes

x ′
2[0, 30) = 000 000 000 000 000 000 000 000 000 000

If we feed these trajectories into the new simulator, the output is

xx C0 1 0 yy C 0 0
xx C1 1 0 yy C 1 0
xx C2 1 0 yy C 2 1
xx C3 1 0 yy C 3 1
xx C4 1 0 yy C 4 1
xx C5 1 0 yy C 5 0
xx C6 1 0 yy C 6 0
xx C7 1 0 yy C 7 0
xx C8 1 0 yy C 8 1
xx C9 0 0 yy C 9 1
xx C10 0 0 yy C 10 1
xx C11 0 0 yy C 11 1
xx C12 0 0 yy C 12 1
xx C13 0 0 yy C 13 1
xx C14 0 0 yy C 14 1
xx C15 1 0 yy C 15 1
xx C16 1 0 yy C 16 1
xx C17 1 0 yy C 17 0
xx C18 1 0 yy C 18 0
xx C19 1 0 yy C 19 0
xx C20 1 0 yy C 20 1
xx C21 1 0 yy C 21 1
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xx C22 1 0 yy C 22 1
xx C23 1 0 yy C 23 0
xx C24 0 0 yy C 24 0
xx C25 0 0 yy C 25 0
xx C26 0 0 yy C 26 0
xx C27 0 0 yy C 27 0
xx C28 0 0 yy C 28 0
xx C29 0 0 yy C 29 0

This y (i.e., the value at every third line) and the y from the previous simulation
are the same. Now, let us modify x ′

2 so that its value changes in the middle of every
machine cycle. This could simulate the improper operation of some component in the
system, noise in the circuit, or some other undesirable condition. Keeping x ′[0, 30)
the same, we change x ′

2[0, 30) into

x ′
2[0, 30) = 010 010 010 010 010 010 010 010 010 010

and feeding this into the simulation produces

xx C0 1 0 yy C 0 0
xx C1 1 1 yy C 1 0
xx C2 1 0 yy C 2 1
xx C3 1 1 yy C 3 0
xx C4 1 0 yy C 4 1
xx C5 1 1 yy C 5 1
xx C6 1 0 yy C 6 1
xx C7 1 1 yy C 7 1
xx C8 1 0 yy C 8 0
xx C9 0 1 yy C 9 1
xx C10 0 0 yy C 10 0
xx C11 0 1 yy C 11 1
xx C12 0 0 yy C 12 1
xx C13 0 1 yy C 13 1
xx C14 0 0 yy C 14 1
xx C15 1 1 yy C 15 0
xx C16 1 0 yy C 16 1
xx C17 1 1 yy C 17 1
xx C18 1 0 yy C 18 1
xx C19 1 1 yy C 19 1
xx C20 1 0 yy C 20 0
xx C21 1 1 yy C 21 1
xx C22 1 0 yy C 22 0
xx C23 1 1 yy C 23 0
xx C24 0 0 yy C 24 0
xx C25 0 1 yy C 25 0
xx C26 0 0 yy C 26 0
xx C27 0 1 yy C 27 1
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xx C28 0 0 yy C 28 0
xx C29 0 1 yy C 29 1

Looking at every third line, the corresponding output of the logical machine is
y[0, 10) = 1101110001, which is clearly not what is expected from Equation 3.22
and the inputs x1 and x2 if they are obtained by looking at every third value in x ′

1 and
x ′

2. Timing matters, a fact amply demonstrated by our simulation.
The simulation engine built in this section simulates network models from the

top, starting with the uppermost network, to the bottom, stopping at the atomic
models. After a series of improvements, this top–down simulator would evolve into an
implementation of Zeigler’s abstract simulators [152, 157]. Top–down architectures,
based on the abstract simulators, are widely used and are discussed and refined in
a large body of literature (see, e.g., Refs. 26, 51, and 144). This architecture is
particularly well suited to component-based simulations (see, e.g., Refs. 23, 24, 64,
127, and 148) and, more recently, Web-based simulations (see, e.g., Refs. 81 and 88).

3.3 A SIMULATOR FOR DISCRETE-TIME SYSTEMS

A simple and effective simulator can be built by focusing on the atomic models
and relegating the network models to telling the simulator how atomic models are
connected. The simulator devised in this section works from the bottom up. Network
models are intermediate steps through which events pass as they travel between the
atomic components; every operation begins and ends with an atomic model.

The basis for this approach has two parts:

1. The state transition function of the resultant of a network is defined by the state
transition functions of the atomic components at the leaves of the tree rooted
in that network. We can, therefore, skip the construction of resultants for the
intermediate networks and work directly with the atomic models at the leaves.

2. The sets of influencees can be used to compute the set of atomic components,
which may be anywhere in the hierarchy of models, that are influenced by
any particular atomic component. The calculation starts with an atomic model,
ends with a set of atomic models, and is done recursively by employing the
sets of influencees and coupling functions of each network encountered along
the way.

The set AN of atomic models that are beneath a network model N is found by
descending recursively into the network and adding to AN all of the atomic models
that are found. The set AN is defined by

AN = {d ∈ DN | d is atomic} ∪{N ′∈DN | N ′ is a network} AN ′ (3.32)
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If N is the network to be simulated, then AN is the set of atomic models that the
simulator operates on. Assuming that the input xb

d that should be applied to each model
d ∈ AN is known, we can compute the state transition function for the network with
a simple for loop:

for d ∈ AN do
sd ← δd (sd , xb

d )
end

The difficult step is to find xb
d . This problem has three parts: (1) taking the output

of d ∈ AN to the appropriate bags of input for the other models in AN ; (2) taking
input to the network N to the appropriate bags of input for the atomic models in AN ;
and (3) taking the output of d to the appropriate bags of output for the network models
that are part of the tree rooted at N , a step that is required solely for the benefit of an
EventListener that may need it.

Consider part 1 first: how, given an output from an atomic model d , to find the
set of atomic models that d influences and to insert the corresponding values into the
bags of input for those models. We start with the models that have the same parent
as d. The parent is denoted PARENT(d). The atomic components of PARENT(d)
that d influences directly are in Ed (see Equation 3.30), and to the bag of input for
each atomic model d ′ in Ed is added the value zd,d ′(λd (sd )). This takes care of the
atomic siblings of d. The other d ′ ∈ Ed are networks belonging to PARENT(d) or d ′

is PARENT(d) itself.
If d ′ is a network belonging to PARENT(d), then we proceed as follows. First we

find the components of d ′ that d ′ influences; these models are in Dd ′ . Then, to the bag
of input for each such atomic component d ′′, we add the value zd,d ′ (zd ′,d ′′ (λd (sd ))).
For the network components we simply repeat this procedure: finding the components
in d ′′ that d ′′ influences, updating the bags of input for the atomic models, and again
repeating this procedure for the network models.

Otherwise d ′ is PARENT(d) (i.e., the network itself). In this case, the preceding
paragraph is applied to PARENT(d ′) [unless, of course, PARENT(d) is the root of the
tree of models, in which case the output has left the system and we are done]. In other
words, we find the set of components of PARENT(d ′) that d ′ influences and proceed
as follows. To the bag of input for each such atomic component d ′′ we add the value
zd,d ′ (zd ′,d ′′ (λd (sd ))). For the network components we repeat the procedure described
in this paragraph or in the preceding paragraph as appropriate.

Algorithm 3.6 succinctly describes this recursive procedure. It begins with a
model in AN and adds a value to the bag of input of every model in AN that
can be reached from it. The route procedure is called with the atomic model d
that produced the output, the parent of the model d, and the output yb = λd (sd ).
Associated with every atomic model d ′ ∈ AN (including, of course, d) is a bag xb

d ′

of input that is filled as the calculation proceeds. The coupling functions and sets of
influencees used by the procedure belong to the network referred to by the parent
argument.
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procedure route(parent,d,yb)1

foreach d ′ ∈ Ed do2

d ′ is an atomic component of parent3

if d ′ is atomic then4

xb
d ′ ← xb

d ′ ∪ zd,d ′ (yb)5

d ′ is a network component of parent6

else if d ′ �= parent then7

route(d ′,d ′,zd,d ′(yb))8

Else if this is an output from parent9

else if d ′ = parent and PARENT(d ′) exists then10

route(PARENT(d ′),d ′,zd,d ′ (yb))11

end12

end13

Algorithm 3.6 Procedure to route input and output within a network model. The
set Ed of influencees and coupling functions zd,d ′ belong to the network parent.

The other two parts of the routing problem—putting input into a network model
and observing output from a network model—are conveniently solved by Algorithm
3.6. An input xb is injected into a network N by calling route with N for the first and
second arguments (i.e., parent = d = N ) and xb for the third argument. A network
model produces an output whenever the third condition is true (i.e., the “output from
parent” condition), and EventListeners registered with the Simulator are notified
when this occurs.

Algorithm 3.7 describes the complete simulation procedure. It applies an input
trajectory x < t0, tn > to a network N with a set of atomic components AN . For
each component d ∈ AN there is a bag xb

d of input and its state sd . Notifications for
EventListeners have been omitted even though they will appear in the implementation.

for tk ∈< t0, tn > do1

Clear the bags of input2

foreach d ∈ AN do3

xb
d ← ∅4

end5

Route the input to N6

route(N ,N ,x(tk))7

Compute and route output from the components8

foreach d ∈ AN do9

route(PARENT(d),d,λd (sd ))10

end11

Change the state of the components12

foreach d ∈ AN do13

sd ← δd (sd , xb
d )14

end15

end16

Algorithm 3.7 Bottom–up simulation algorithm for a discrete-time model.
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The classes that implement the bottom–up simulator are nearly the same as those
used by the top–down simulator. The Resultant, which isn’t necessary, is eliminated.
One new class, the Dtss class, is added, and the Atomic and Network classes are
modified to inherit from it. The Dtss class holds two pieces of information: the
parent of the model and the type of the model. The parent field of the Dtss class is
used to implement the PARENT function. The type information is used by the route
procedure and to initialize the simulation engine4. The Network and Atomic classes
are otherwise unchanged.

The Event class does not require any modification, but we have an opportunity to
usefully expand the capability of the EventListener class. The simulator, now aware
of every event as it moves through the couplings of the network, can inform the
listener of every output of every atomic and network model. Likewise, the listener
can be informed of changes to the state of every atomic model. This significantly
expands the ability of an EventListener to observe, report, record, and visualize the
operation of a large model. The outputEvent method of the new EventListener accepts
an Event that carries the model, network or atomic, that produced the output and the
output itself.

There is a similar opportunity to expand the capability of the Simulator class by
allowing its clients to inject input directly into any component of a multicomponent
model. This is an essential capability for building interactive simulations and for inte-
grating the simulator into multisimulator federations. The computeNextState method
of the new Simulator accepts a Bag of Event objects. Each Event in the Bag holds a
model and an input for that model. If the model is atomic, then the input is put into
its bag of inputs. If the target is a network, then Algorithm 3.6 is used to deliver the
input to the proper set of atomic models.

The revised class diagram is shown in Figure 3.7, from which the implementations
of the Dtss, Network, Atomic, Event, and EventListener classes are easily inferred.
The Event class has two fields and methods for setting and accessing them. The
EventListener is a pure virtual class and has no implementation, just a definition.
The Dtss class contains its parent, methods for setting and getting the parent, and
the virtual typeIsNetwork and typeIsAtomic methods; these are implemented by the
Network and Atomic classes. The Network class returns itself when typeIsNetwork is
called and NULL when typeIsAtomic is called. The Atomic class does the opposite.

The Simulator class is the only one with a substantial implementation. It imple-
ments Algorithm 3.7 with the small modifications discussed above to permit a client
of the simulator to inject input into any component and to notify listeners when a
component produces output or changes state. Algorithm 3.6 is used to move events
through the model. The source code for the Simulator is listed below.

4This extra type information isn’t really necessary; we could have used the C++ RunTime Type Iden-
tification (RTTI) system instead. The author prefers not to use the RTTI system, in part, for reasons of
performance and, in part, for reasons of aesthetics. The RTTI system imposes a small performance penalty
relative to the use of an explicitly stored field. In addition to this performance penalty, using the RTTI
system tends to produce messy and verbose code for casting objects. The author avoids both of these
problems by building type information into the Dtss base class. The primary benefit of using the RTTI
system is that it prevents the type identification errors that inevitable occur as the number of classes grows.
In this particular case, the list of types is small and fixed, and so maintenance of this solution is not a
concern.
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FIGURE 3.7 Class diagram of the bottom–up simulation engine for discrete-time systems.

General Simulator for a Discrete-Time Model
1 #ifndef _dtss_simulator_h_
2 #define _dtss_simulator_h_
3 #include "dtss_models.h"
4 #include <iostream>
5

6 namespace adtss
7 {
8

9 template <typename X> class Simulator {
10 public:
11 // Create a simulator for the supplied model
12 Simulator(Dtss<X>* model);
13 // Compute the next state of the model and invoke callbacks
14 void computeNextState(const Bag<Event<X> >& input);
15 // Compute the model’s output and make outputEvent callbacks
16 void computeOutput();
17 // Get the simulation time.
18 unsigned int getTime() { return t; }
19 // Add an event listener
20 void addEventListener(EventListener<X>* listener) {
21 listeners.push_back(listener);
22 }
23 private:
24 Set<Atomic<X>*> atomics; // The complete set of atomic models
25 unsigned int t; // Simulation clock



P1: OSO
c03 JWBS040-Nutaro August 30, 2010 14:14 Printer Name: Yet to Come

82 DISCRETE-TIME SYSTEMS

26 bool output_up_to_date; // Is the model output up to date?
27 // List of event listeners
28 typedef std::list<EventListener<X>*> ListenerList;
29 ListenerList listeners;
30 // Get all of the children belonging to a network
31 void getAllChildren(Network<X>* model, Set<Atomic<X>*>& s);
32 // Move an input or output value to its destination
33 void route(Network<X>* parent, Dtss<X>* src, const X& x);
34 // Tell all EventListeners about an output
35 void notify_output_listeners(Dtss<X>* model,
36 const X& value, unsigned int t);
37 };
38

39 template <typename X>
40 Simulator<X>::Simulator(Dtss<X>* model):
41 t(0),output_up_to_date(false)
42 {
43 // If this is an atomic model then it is the only
44 // atomic model to simulate
45 if (model->typeIsAtomic() != NULL)
46 atomics.insert(model->typeIsAtomic());
47 // Otherwise get all of the atomic models by recursion
48 else getAllChildren(model->typeIsNetwork(),atomics);
49 }
50

51 template <typename X>
52 void Simulator<X>::computeNextState(const Bag<Event<X> >& input)
53 {
54 // Compute the output at time t
55 computeOutput();
56 // Deliver the injected input
57 for (typename Bag<Event<X> >::iterator iter = input.begin();
58 iter != input.end(); iter++) {
59 if ((*iter).model->typeIsAtomic()) {
60 (*iter).model->typeIsAtomic()->input_bag.insert((*iter).value);
61 }
62 else {
63 route((*iter).model->typeIsNetwork(),(*iter).model,(*iter).value);
64 }
65 }
66 // Advance the simulation clock
67 t++;
68 // Update the state of every atomic component
69 for (typename Set<Atomic<X>*>:: iterator aiter = atomics.begin();
70 aiter != atomics.end(); aiter++) {
71 // Compute the new state of the model
72 (*aiter)->delta((*aiter)->input_bag);
73 // Notify listeners that the state has changed
74 for (typename ListenerList::iterator liter = listeners.begin();
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75 liter != listeners.end(); liter++) {
76 (*liter)->stateChange(*aiter,t);
77 }
78 }
79 // Cleanup
80 for (typename Set<Atomic<X>*>:: iterator iter = atomics.begin();
81 iter != atomics.end(); iter++) {
82 (*iter)->gc_output((*iter)->output_bag);
83 (*iter)->output_bag.clear();
84 (*iter)->input_bag.clear();
85 }
86 output_up_to_date = false;
87 }
88

89 template <typename X>
90 void Simulator<X>::computeOutput()
91 {
92 // Return if the output function has been evaluated
93 if (output_up_to_date) return;
94 // Compute the output
95 output_up_to_date = true;
96 for (typename Set<Atomic<X>*>::iterator aiter = atomics.begin();
97 aiter != atomics.end(); aiter++) {
98 // Get the output from the model
99 (*aiter)->output_func((*aiter)->output_bag);

100 // Move the output to its destination
101 Bag<X>& y = (*aiter)->output_bag;
102 for (typename Bag<X>::iterator yiter = y.begin();
103 yiter != y.end(); yiter++) {
104 route((*aiter)->getParent(),*aiter,*yiter);
105 }
106 }
107 }
108

109 template <typename X>
110 void Simulator<X>::getAllChildren(Network<X>* model, Set<Atomic<X>*>& s)
111 {
112 // Get the components of the network
113 Set<Dtss<X>*> c;
114 model->getComponents(c);
115 // Add the atomic components of the network to s and
116 // recursively add the atomic components of the sub-networks
117 for (typename Set<Dtss<X>*>::iterator citer = c.begin();
118 citer != c.end(); citer++) {
119 if ((*citer)->typeIsAtomic()) s.insert((*citer)->typeIsAtomic());
120 else getAllChildren((*citer)->typeIsNetwork(),s);
121 }
122 }
123
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124 template <typename X>
125 void Simulator<X>::route(Network<X>* parent, Dtss<X>* src, const X& x)
126 {
127 // Notify event listeners of the output. Recall that parent = src only
128 // if x is an input to a network. In all other cases, it is an output
129 // from a model.
130 if (parent != src) // Make sure it is an output and not an input
131 notify_output_listeners(src,x,t);
132 // If the parent is null (e.g., if we are simulating a
133 // single atomic model) then there is nothing to do
134 if (parent == NULL) return;
135 // Get the set of models that are influenced by x
136 Bag<Event<X> > r;
137 parent->route(x,src,r);
138 // Route the input to each element in r
139 for (typename Bag<Event<X> >::iterator iter = r.begin();
140 iter != r.end(); iter++) {
141 // If the destination is an atomic model
142 if ((*iter).model->typeIsAtomic() != NULL) {
143 (*iter).model->typeIsAtomic()->input_bag.insert((*iter).value);
144 }
145 // If the destination is a network component of the parent
146 else if (parent != (*iter).model) {
147 route((*iter).model->typeIsNetwork(),
148 (*iter).model,(*iter).value);
149 }
150 // If the destination is the parent
151 else { // if (*iter).model == parent
152 route(parent->getParent(),parent,(*iter).value);
153 }
154 }
155 }
156

157 template <typename X>
158 void Simulator<X>::notify_output_listeners(Dtss<X>* model,
159 const X& value, unsigned int t)
160 {
161 Event<X> event(model,value);
162 for (typename ListenerList::iterator iter = listeners.begin();
163 iter != listeners.end(); iter++)
164 (*iter)->outputEvent(event,t);
165 }
166

167 } // end of namespace
168

169 #endif
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The logical function described in Section 3.2.3, which was first implemented in
Section 3.2.4, will demonstrate how this bottom–up simulator is used. The Xor and
Memory classes remain just as they are. The N1 and N2 classes change in two ways:
(1) the constructor is modified to set the parent of the network’s components, and (2)
the pointers to the Resultants are replaced by pointers to the Networks themselves.
The revised N1 and N2 classes are listed below.

Revised N1 Model
1 #ifndef _n1_h_
2 #define _n1_h_
3 #include "adtss.h"
4 #include "n2.h"
5 #include "xor_memory_models.h"
6

7 class N1: public adtss::Network<port_value_t>
8 {
9 public:

10 static const int x1, x2;
11

12 N1():adtss::Network<port_value_t>(),
13 n2(),m()
14 {
15 n2.setParent(this);
16 m.setParent(this);
17 }
18

19 void getComponents(adtss::Set<adtss::Dtss<port_value_t>*>& c)
20 {
21 c.insert(&n2);
22 c.insert(&m);
23 }
24

25 void route(const port_value_t& value, adtss::Dtss<port_value_t>* src,
26 adtss::Bag<adtss::Event<port_value_t> >& r)
27 {
28 adtss::Event<port_value_t> e;
29 e.value = value;
30 // Input to the network
31 if (src == this) {
32 e.model = &n2;
33 r.insert(e);
34 }
35 // Output from N2
36 else if (src == &n2) {
37 // Output from the network
38 e.model = this;
39 r.insert(e);
40 // Input to M
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41 e.model = &m;
42 r.insert(e);
43 }
44 // Output from M
45 else if (src == &m) {
46 // Input to N2
47 e.model = &n2;
48 e.value.port = N2::m;
49 r.insert(e);
50 }
51 }
52 private:
53 N2 n2;
54 Memory m;
55 };
56

57 #endif

Revised N2 Model
1 #ifndef _n2_h_
2 #define _n2_h_
3 #include "adtss.h"
4 #include "xor_memory_models.h"
5

6 class N2: public adtss::Network<port_value_t>
7 {
8 public:
9 static const int m, x1, x2;

10

11 N2():adtss::Network<port_value_t>(),
12 xor1(),xor2()
13 {
14 xor1.setParent(this);
15 xor2.setParent(this);
16 }
17

18 void getComponents(adtss::Set<adtss::Dtss<port_value_t>*>& c)
19 {
20 c.insert(&xor1);
21 c.insert(&xor2);
22 }
23

24 void route(const port_value_t& value, adtss::Dtss<port_value_t>* src,
25 adtss::Bag<adtss::Event<port_value_t> >& r)
26 {
27 adtss::Event<port_value_t> e;
28 e.value = value;
29 // Input to the network
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30 if (src == this) {
31 // Input to the m port
32 if (value.port == m) e.model = &xor2;
33 // Input to one of the bit ports
34 else e.model = &xor1;
35 r.insert(e);
36 }
37 // Output from O1
38 else if (src == &xor1) {
39 // Input to O2
40 e.model = &xor2;
41 r.insert(e);
42 }
43 // Output from O2
44 else if (src == &xor2) {
45 // Output from the network
46 e.model = this;
47 r.insert(e);
48 }
49 }
50 private:
51 Xor xor1, xor2;
52 };
53

54 #endif

The main function is modified to accommodate the new Simulator and EventLis-
tener interfaces. The EventListener, because it now receives notification of output
by every component, must filter the unwanted events. For this simulation, the Ma-
chineEventListener filters incoming events by examining their source and reporting
output only from N1. Input to the simulation must also be put into an Event that
carries both the input value and the model that is its target. This change is made in the
while loop that extracts data from the console and advances the simulation clock.

The modified code is listed below. Given identical inputs, the bottom up simulation
of the logical machine produces the same state and output trajectories as the top–
down simulation. To demonstrate this fact, the simulation described in Section 3.2.4,
preceding the code heading “Main program to Apply Input Immediately,” is repeated
here. Feeding the input

1 0
1 0
1 0
0 0
0 0
1 0
1 0
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1 0
0 0
0 0

into the simulator gives the result

xx M0 C0 1 0 yy M1 C0-2 0 0 1
xx M1 C3 1 0 yy M2 C3-5 1 1 0
xx M2 C6 1 0 yy M3 C6-8 0 0 1
xx M3 C9 0 0 yy M4 C9-11 1 1 1
xx M4 C12 0 0 yy M5 C12-14 1 1 1
xx M5 C15 1 0 yy M6 C15-17 1 1 0
xx M6 C18 1 0 yy M7 C18-20 0 0 1
xx M7 C21 1 0 yy M8 C21-23 1 1 0
xx M8 C24 0 0 yy M9 C24-26 0 0 0
xx M9 C27 0 0 yy M10 C27-29 0 0 0

just as before.

Modified Main Function
1 #include "adtss.h"
2 #include "n1.h"
3 #include <iostream>
4 using namespace std;
5

6 class MachineListener: public adtss::EventListener<port_value_t>
7 {
8 public:
9 MachineListener(adtss::Dtss<port_value_t>* top):top(top){}

10 void outputEvent(adtss::Event<port_value_t> x, unsigned int t)
11 {
12 if (x.model == top) cout << x.value.bit << " ";
13 }
14 void stateChange(adtss::Atomic<port_value_t>*,unsigned int){}
15 private:
16 adtss::Dtss<port_value_t>* top;
17 };
18

19 int main()
20 {
21 // Create the model
22 N1* m = new N1();
23 // Setup the simulator and output listener
24 MachineListener* l = new MachineListener(m);
25 adtss::Simulator<port_value_t>* sim =
26 new adtss::Simulator<port_value_t>(m);
27 sim->addEventListener(l);
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28 // Counters for the clock and machine cycle
29 int clck = 0, machine_cycle = 0;
30 // Run the simulation
31 while (true) {
32 // Get the input from stdin
33 adtss::Bag<adtss::Event<port_value_t> > input;
34 port_value_t x1, x2;
35 x1.port = N1::x1;
36 x2.port = N1::x2;
37 cin >> x1.bit >> x2.bit;
38 // Quit if the input has ended
39 if (cin.eof()) break;
40 input.insert(adtss::Event<port_value_t>(m,x1));
41 input.insert(adtss::Event<port_value_t>(m,x2));
42 // Print the time and input
43 cout << "xx M" << machine_cycle << " C" << clck <<
44 "\t" << x1.bit << " " << x2.bit << "\t";
45 // Print the time and output at the next machine cycle
46 cout << "yy M" << ++machine_cycle <<
47 " C" << clck << "-" << clck+2 << "\t";
48 // Advance the simulation by one machine cycle
49 for (int t = 0; t < 3; t++) {
50 clck++;
51 sim->computeNextState(input);
52 }
53 cout << endl;
54 }
55 // Clean up and exit
56 delete sim; delete l; delete m;
57 return 0;
58 }

3.4 MEALY/MOORE-TYPE SYSTEMS

The output of a Moore-type system is a function of its state; a Moore output function
has the form

λ : S → Y

These systems are already familiar to us. The output of a Mealy-type system is a
function of its state and current input; a Mealy output function has the form

λ : S × X → Y

By discarding the input that is supplied to the output function, we can build a Mealy-
type system to mimic any Moore-type system. In this sense, the Mealy-type system
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M1 M2

FIGURE 3.8 Two Mealy-type systems arranged in a feedback configuration.

is a more general construct. Why, then, did we not build our simulation engine for
Mealy-type systems?

Trouble comes when we build a network of Mealy-type components. Suppose that
we have two Mealy-type machines M1 and M2 arranged in the feedback configuration
shown in Figure 3.8. These particular Mealy machines are a pair of identical finite-
state automata with the state transition and output function shown in Figure 3.9. The
circles show states, and the arcs show the response of the system to an input. The
letter before the slash is the input that causes the state transition and the letter after
the slash is the corresponding output.

We cannot know the output of M1 without knowing the output of M2, which
supplies M1 with input. We cannot know the output of M2 without knowing the
output of M1, but this requires the output of M2. This problem can be resolved only
if there exists a consistent and unique choice of outputs for M1 and M2.

Suppose that M1 begins in state p and M2 begins in state q. The output from M1

can be a or b. If it is a, then the input to M1 is b and, therefore, so is the output from
M2. This, unfortunately, requires the input to M2 to be b, and so the output from M1

must be b, not a. We have arrived at a contradiction: the output from M1 cannot be a.
Suppose instead that the output from M1 is b. Then the input to it must be a.

Therefore, the output from M2 must also be a, but this requires its input to be a and
so the output from M1 must be a, not b. Again a contradiction: the output from M1

cannot be b. Clearly, the machine cannot start in the state (p, q), and (q, p) is likewise
untenable.

The state (p, p) gives us a small reprieve. If the output of M1 is a and the output of
M2 is b, then the machine moves into the state (p, q), but then it gets stuck. The state
(q, q) is a little more attractive. The complete system can move to the state (p, p) if
both machines produce an output of a and then get stuck, or it can move (or, rather,
stay) in the state (q, q) if both machines produce an output of b.

p q

a / b

a / a

b / a

b / b

FIGURE 3.9 State transition and output function for the Mealy systems M1 and M2.
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0 2 41 3

FIGURE 3.10 An arrangement of five cells in a one-dimensional cellular automaton. The
dashed-connection is present when the cells form a ring, and absent when they form a line.

This particular problem is a symptom of more fundamental ills. A network of
discrete models that has cycles without delays is, in general, ill-defined. The arrange-
ment shown in Figure 3.9 is not a system because we cannot define a resultant for
the network. In some special cases this problem might be avoided; our example, for
instance, could be simplified by eliminating the state p and the arcs attached to it.
With this simplification it is well behaved but not very interesting.

This problem will appear again in connection with discrete-event systems that react
instantaneously to input. Prohibiting instantaneous events, and thereby eliminating
cycles without delays, severely hobbles the modeler and is therefore impractical. A
satisfactory solution is, perhaps surprisingly, found in the Moore-type discrete-time
systems that we studied in this chapter.

3.5 CELLULAR AUTOMATA

The well-known “Game of Life,” which was popularized in a Scientific American
article in 1970 [48], is an instance of a class of systems called cellular automata.
A cellular automaton comprises a set of discrete-time systems—the cells in the
automaton—that are arranged in a grid. Each cell interacts with its immediate neigh-
bors. In a one-dimensional cellular automaton, the cells are arrayed in a line and
interact with their neighbors to the left and right; this is illustrated in Figure 3.10.
To visualize the collective state of the cellular automaton, a color is assigned to each
state of its cells, and these are drawn side by side. The trajectory of the automaton is
depicted by arranging its subsequent states in order, one above the other. This creates
a mosaic that can reveal surprising patterns in the collective behavior of the otherwise
simple cells.

Cellular automata are easy to model and simulate as discrete-time networks. For
illustration purposes, we will consider one-dimensional cellular automata with cells
that have two states: white and black, abbreviated w and b. A cell is implemented with
the Cell class, which is derived from the Atomic class of the simulation engine. The
Cell has a state and a location within the cellular automaton. Its delta method accepts
a structure that contains the state and location of the neighboring cells. Input from
the left and right neighbors and the Cell’s current state are passed to a virtual method
called cell rule. This method examines its three arguments and returns the next state
of the cell. To implement any particular cell, all that is needed is to implement the
cell rule method. The output func method of the Cell simply returns its current state.
The source code for the Cell class is listed below.
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The Cell Class
1 #ifndef Cell_h_
2 #define Cell_h_
3 #include "adtss.h"
4

5 typedef enum { BLACK, WHITE } state_t;
6 // Structure used for input to and output from a cell
7 struct IO_Type
8 {
9 state_t state; // The cell’s discrete state

10 int src; // Location of the cell that produced the event
11 bool operator<(const IO_Type& other) const // Needed by the STL
12 {
13 return src < other.src;
14 }
15 };
16

17 class Cell: public adtss::Atomic<IO_Type>
18 {
19 public:
20 // Constructor puts the cell into its initial state
21 Cell(state_t s0, int location):
22 adtss::Atomic<IO_Type>(),
23 s(s0),location(location) {}
24 // State transition function
25 void delta(const adtss::Bag<IO_Type>& xb)
26 {
27 // Edges are WHITE
28 state_t left = WHITE, right = WHITE;
29 for (adtss::Bag<IO_Type>::iterator iter = xb.begin();
30 iter != xb.end(); iter++) {
31 if ((*iter).src == location-1) left = (*iter).state;
32 else right = (*iter).state;
33 }
34 s = cell_rule(left,right,s);
35 }
36 // Output function
37 void output_func(adtss::Bag<IO_Type>& yb)
38 {
39 IO_Type output;
40 output.state = s;
41 output.src = location;
42 yb.insert(output);
43 }
44 // The gc_output method is not needed
45 void gc_output(adtss::Bag<IO_Type>&){}
46 // Get the location of the cell
47 int getLocation() const { return location; }
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48 // Get the discrete state of the cell
49 state_t getState() const { return s; }
50 protected:
51 // This is the rule for computing the cell’s next state
52 virtual state_t cell_rule(state_t left, state_t right, state_t s) = 0;
53 private:
54 state_t s;
55 const int location;
56 };
57

58 #endif

The CellularAutomaton class, which is derived from the Network class of the
simulation engine, contains an array of Cell objects. Output from a cell is sent to its
two neighbors: output from the cell at position i goes to the cells at positions i + 1
(right) and i − 1 (left). Output from the two cells at the ends of the array can be
discarded or sent to the cell at the opposite end. The array is initially empty, and cells
are explicitly assigned to their locations with the placeCell method. The source code
for the CellularAutomaton class is listed below.

The CellularAutomaton Class
1 #ifndef CellularAutomaton_h
2 #define CellularAutomaton_h
3 #include "Cell.h"
4

5 class CellularAutomaton: public adtss::Network<IO_Type>
6 {
7 public:
8 // Create an automaton with space for size cells
9 CellularAutomaton(int size, bool ring):

10 adtss::Network<IO_Type>(),
11 size(size),ring(ring)
12 {
13 cell = new Cell*[size];
14 for (int i = 0; i < size; i++) cell[i] = NULL;
15 }
16 void getComponents(adtss::Set<adtss::Dtss<IO_Type>*>& c)
17 {
18 for (int i = 0; i < size; i++) c.insert(cell[i]);
19 }
20 void route(const IO_Type& value, adtss::Dtss<IO_Type>* model,
21 adtss::Bag<adtss::Event<IO_Type> >& r)
22 {
23 adtss::Event<IO_Type> x;
24 x.value = value;
25 // Get the positions of the cells to the left and right
26 int left = value.src - 1, right = value.src + 1;
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27 // Wrap the left end of the automaton to form a ring
28 if (left < 0 && ring) {
29 x.value.src = size;
30 x.model = cell[size-1];
31 r.insert(x);
32 }
33 // or just send the event to the left
34 else if (left >= 0) {
35 x.value.src = value.src;
36 x.model = cell[left];
37 r.insert(x);
38 }
39 // Wrap the right end of the automaton to form a ring
40 if (right == size && ring) {
41 x.value.src = -1;
42 x.model = cell[0];
43 r.insert(x);
44 }
45 // or just send the event to the right
46 else if (right < size) {
47 x.value.src = value.src;
48 x.model = cell[right];
49 r.insert(x);
50 }
51 }
52 // The destructor destroys the Cells too
53 ~CellularAutomaton()
54 {
55 for (int i = 0; i < size; i++)
56 delete cell[i];
57 delete [] cell;
58 }
59 // The placed cell is adopted by the CellularAutomaton
60 void placeCell(Cell* new_cell)
61 {
62 new_cell->setParent(this);
63 if (cell[new_cell->getLocation()] != NULL)
64 delete cell[new_cell->getLocation()];
65 cell[new_cell->getLocation()] = new_cell;
66 }
67 private:
68 int size;
69 bool ring;
70 Cell** cell;
71 };
72

73 #endif



P1: OSO
c03 JWBS040-Nutaro August 30, 2010 14:14 Printer Name: Yet to Come

CELLULAR AUTOMATA 95

TABLE 3.3 Bits Describing a
Cell’s State Transition Function

Left, State, Right Bit

bbb 7
bbw 6
bwb 5
bww 4
wbb 3
wbw 2
wwb 1
www 0

We could create each cell type, one at a time, by deriving new classes from the
Cell class. Every cell maps three binary values—left input, state, and right input—to
one binary value—the next state. The state transition function is completely defined
by 23 cases: one for each combination of input and state. If each cell type is coded as
a new class, then 28 classes are needed.

A more compact solution is to create one class called BinaryCell with a constructor
that accepts a byte encoding the desired behavior. The encoding of the rules in the 8
bits is shown in Table 3.3. With this encoding, the rule is implemented by shifting
the bits right: 4 bits for a left neighbor that is black, 2 bits for a state that is black,
1 bit for a right neighbor that is black, and 0 bits for a state and neighbors that are
white. After shifting, the next state of the model is given by the least significant bit.
The implementation of this class is shown below.

The BinaryCell Class
1 #ifndef BinaryCell_h_
2 #define BinaryCell_h_
3 #include "Cell.h"
4

5 class BinaryCell: public Cell
6 {
7 public:
8 BinaryCell(state_t s0, int location, unsigned char rule):
9 Cell(s0,location),rule(rule) {}

10 protected:
11 state_t cell_rule(state_t left, state_t right, state_t s)
12 {
13 // Calculate the number of bit shifts
14 unsigned char shift = 0;
15 if (left == BLACK) shift += 4;
16 if (s == BLACK) shift += 2;
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17 if (right == BLACK) shift += 1;
18 // Extract the outcome
19 if ((rule >> shift) & 0x01) return BLACK;
20 else return WHITE;
21 }
22 private:
23 const unsigned char rule;
24 };
25

26 #endif

The simulation program takes four arguments from the command line: the number
of cells to use, the number of generations to simulate, a byte encoding the transition
function, and a flag indicating whether the cells form a ring or a line. If a line
is selected, then the color of the nonspace beyond the line’s edge is white. An
EventListener is used to update the display when a cell changes state and to save the
final image in a file. The cellular automaton is created with a single black cell at its
center and the other cells white. The main simulation program is listed below.

Main Simulation Program
1 #include "CellularAutomaton.h"
2 #include "Display.h"
3 #include "BinaryCell.h"
4 using namespace std;
5 using namespace adtss;
6

7 // The event listener displays the state of the cells when it changes
8 class CellListener: public EventListener<IO_Type>
9 {

10 public:
11 // Create display for the simulation
12 CellListener(int num_cells, int num_generations):
13 display(Display::initializeDisplay(num_cells,num_generations)){}
14 // Draw the state of a cell to the off-screen buffer
15 void showState(const Cell* cell, int gen)
16 {
17 // Draw a white cell (red = green = blue = 255)
18 if (cell->getState() == WHITE)
19 display.setColor(cell->getLocation(),gen,255,255,255);
20 // or draw a black cell (red = green = blue = 0)
21 else display.setColor(cell->getLocation(),gen,0,0,0);
22 }
23 // Update the screen
24 void update() { display.redraw(); }
25 // The listener ingores output events
26 void outputEvent(Event<IO_Type>, unsigned int){}
27 // Update the appearance of the cell when its state changes
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28 void stateChange(Atomic<IO_Type>* model, unsigned int t)
29 {
30 Cell* cell = dynamic_cast<Cell*>(model);
31 showState(cell,t);
32 }
33 // Save the image to a file
34 void saveImage() { display.toBmp("image.bmp"); }
35 private:
36 Display& display; // Reference to the display
37 };
38

39 int main(int argc, char** argv)
40 {
41 // Get the number of generations to run the simulation
42 if (argc != 5) {
43 cout << "Requires # cells, # generations, rule #, and ring | line"
44 << endl;
45 return 0;
46 }
47 // Get the model parameters from the command line
48 int num_cells = atoi(argv[1]);
49 int num_gens = atoi(argv[2]);
50 unsigned char rule = atoi(argv[3]);
51 bool ring = (strcmp(argv[4],"ring") == 0);
52 // Create the display
53 CellListener* listener = new CellListener(num_cells,num_gens);
54 // Create the cellular automaton
55 CellularAutomaton* automaton = new CellularAutomaton(num_cells,ring);
56 // Create the cells with a black one at the center and all others white
57 for (int i = 0; i < num_cells; i++) {
58 // Create and initialize the cell
59 state_t s0 = WHITE;
60 if (i == num_cells/2) s0 = BLACK;
61 Cell* cell = new BinaryCell(s0,i,rule);
62 // Display it
63 listener->showState(cell,0);
64 // Add it to the automata
65 automaton->placeCell(cell);
66 }
67 // Run the simulation
68 Bag<Event<IO_Type> > empty_input; // This is a closed system
69 Simulator<IO_Type>* sim = new Simulator<IO_Type>(automaton);
70 sim->addEventListener(listener);
71 for (int i = 0; i < num_gens; i++) {
72 // Display the output
73 listener->update();
74 // Compute the next state
75 sim->computeNextState(empty_input);
76 }
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77 // Save the final image to a file
78 listener->saveImage();
79 // Clean up and exit
80 delete sim; delete listener; delete automaton;
81 return 0;
82 }

Wolfram [147] has cataloged all of the one-dimensional cellular automata. Our
BinaryCell class uses Wolfram’s encoding of the transition rule, but produces images
with time beginning at the bottom rather than at the top as is done in Wolfram’s
catalog. Figure 3.11 shows Wolfram’s rule 188, which produces diagonal stripes.
Figure 3.12 is one of the more vibrant cellular automata that appears in the catalog.
The two images in Figure 3.12 appear almost identical, but small differences appear
after generation 30, when the cells at the edge first turn black. In both figures, the
image on the left is produced by the cellular automaton when wrapped into a ring
and the image on the right is produced when the ends are left dangling. The cellular
automata in both cases have 60 cells and are simulated for 60 generations.

3.6 SUMMARY

This chapter introduced the fundamental concept of a dynamic system, a modeling
framework derived from that concept, and a software architecture that satisfies the
requirements established in Chapter 1. With very little embellishment, this foundation
will support more complicated, but more useful, models of discrete-event and hybrid
systems. A solid grasp of the basic concepts, as they are manifest in this relatively
tame setting, is therefore crucial to what follows.

(b)(a)

FIGURE 3.11 Rule 188: (a) ring; (b) line.
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(a) (b)

FIGURE 3.12 Rule 210: (a) ring; (b) line.

The discrete-event systems presented in Chapter 4 can both reproduce all of the
examples in this chapter and offer an elegant alternative to the vending machine’s
awkward wait input, which was described in Section 3.1.3. Equipped with a good
understanding of these discrete-time systems, we find that their reproduction as
discrete-event systems is a helpful study aide (a task therefore left to the reader). The
cellular automata, too, are reborn as discrete event systems and their scope expanded
to permit stepping out of synch, which is an important feature of many agent-based
models. Discrete-event systems are also an indispensable stepping stone to simulating
hybrid systems, the topic of Chapter 5.
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CHAPTER 4

DISCRETE-EVENT SYSTEMS

Discrete-event systems are a generalization of discrete-time systems that allow time
to be continuous. The trajectories of a discrete-event system are functions from the
time base R × N to its sets of input, output, and state. These trajectories change value
only a finite number of times in any finite interval. This is the defining characteristic
of a discrete-event system; the events that cause these discrete changes give the class
of systems its name.

The expanded time base raises two issues that are responsible for the relatively
complicated (with respect to discrete-time systems) description of discrete-event
systems and their simulators. The first is that events may occur at any instant. Con-
sequently, the model must include machinery to describe the subset of R × N where
its events occur. The second is that time advances in a plane. Only the real part of this
plane reflects physical time; the discrete part is an artifact of modeling change with
instantaneous events (Maler and Manna offer an insightful discussion [82, 83]). The
structure imposed on time to permit an orderly evolution of the system, although not
complicated, is unlike the additive group typical of discrete time (i.e., with time base
N) and differential (i.e., with time base R) systems.

Apart from these issues and their consequences, the basic approach to defining
a state transition function and the general organization of the simulation software
are unchanged. As with discrete-time systems, an iterative simulation procedure for
simulating atomic models is derived from a state transition function, set of primitive
segments, and the semigroup property. Likewise, a procedure is defined for reducing
networks to their resultants, and this is embodied in a bottom–up simulation engine

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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comprising familiar pieces: the Network and Atomic classes for building models and
the Simulator and EventListener classes for executing simulations.

4.1 ATOMIC MODELS

An atomic model of a discrete-event system has a set X of input, a set Y of output,
a set S of states, and set Q of total states that are a subset of S × R. The total state
(s, e) ∈ Q has two pieces of information: the state s of the system and the real time
e for which it has occupied that state. The occupation time is needed to completely
define the system’s behavior; unlike a discrete-time system, where input arrives at
regular intervals and each state is occupied at exactly one point in time, a discrete-
event system can linger in a state indefinitely and the response to input is influenced
by the time spent dwelling there.

4.1.1 Time and Trajectories

The structure of time used here has been widely adopted, appearing (albeit implicitly
or with different notation) in Matveev and Savkin’s study of hybrid systems [84],
Rönngren and Liljenstam’s proposal for ordering events in parallel discrete-event
simulations [122], in the abstract simulator described by Chow et al. [25] for parallel
DEVS models, and as part of the Ptolemy II simulation environment [75]. Two
elements (t1, c1) and (t2, c2) of the time base are equal if both components are equal;
thus, equality is defined by

(t1, c1) = (t2, c2) ⇐⇒ t1 = t2 ∧ c1 = c2 (4.1)

Time is ordered first by its real part and then by its discrete part; the relation < is
defined by

(t1, c1) < (t2, c2) ⇐⇒ (t1 = t2 ∧ c1 < c2) ∨ t1 < t2 (4.2)

The operator φ gives the real part of a pair (t, c):

φ((t, c)) = t (4.3)

The advance operator � takes the place of addition in the definition of a discrete-
event system. This operator advances its first argument by an amount equal to its
second argument according to the following rule:

(t, c) � (h, k) =
{

(t + h, 0) if h �= 0

(t, c + k) if h = 0
(4.4)
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The � operator, unlike addition for the real and natural numbers, is not commutative
or associative. Observe that

(1, 1) � (0, 1) = (1, 2)

but

(0, 1) � (1, 1) = (1, 0)

and so a � b �= b � a; the first and second arguments cannot be interchanged. Also
observe that

((1, 0) � (1, 1)) � (0, 1) = (2, 1)

but

(1, 0) � ((1, 1) � (0, 1)) = (2, 0)

and so (a � b) � c �= a � (b � c); changing the order in which � is applied changes
the outcome of the calculation.

The trajectories of a discrete-event system are functions from R × N to the set X
(an input trajectory), Y (an output trajectory), and Q (a state trajectory). The operator
� gives the real length of a trajectory, specifically

�(z < (t1, c1), (t2, c2) >) = φ((t2, c2)) − φ((t1, c1)) = t2 − t1 (4.5)

Recall that the trajectories of a discrete-event system change only a finite number
of times in any interval of finite length. The input and output trajectories satisfy one
additional property—they are equal to the nonevent � at all except a finite number of
points in any finite interval. Trajectories that satisfy this second property are called
event trajectories, and legitimate discrete-event systems provided an event trajectory
at their input produce an event trajectory at their output.1

Figure 4.1 illustrates an event trajectory. Real time flows from left to right. At
each real instant of time there can be a finite number of discrete transitions. Discrete
time at each point of real time flows from bottom to top. The value of each event is
written at its location in the time plane.

The rules introduced in Section 3.1.1 for concatenating trajectories are unchanged,
but the convenience of “translate and concatenate,” the • operator, is lost because
without addition trajectories are not easily translated. The · operator is still applicable,
and it will play the same role in defining the state transition function of a discrete-event
system that it played for discrete-time systems.

1A system that, given an event trajectory at its input, does not produce an event trajectory at its output
is called illegitimate or, more recently, Zeno. The term illegitimate is due to Zeigler (see, e.g., Ref. 152);
Zeno is a modern term, inspired by Zeno’s paradox of Achilles and the Tortoise, for the same concept (see,
e.g., Ref. 160).
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FIGURE 4.1 An event trajectory with an events at (t1, 0), (t1, 2), (t2, 1), and (t3, 0).

4.1.2 The State Transition Function

Discrete-event systems can act autonomously, changing state and producing output
without any provocation from their environment. A system may also act on input,
either responding immediately or after a delay. The time advance function is used for
both of these purposes; it schedules output from the model and autonomous changes
in its state.

The time advance function has the form

ta : S → R∞
0

where R∞
0 is the set of nonnegative real numbers with infinity:

R∞
0 = {x | x ∈ R ∧ x ≥ 0} ∪ {∞}

The duration of a state s is the value assigned to it by the time advance function. On
entering s, the system remains in that state until ta(s) elapses or some intervening
input drives the system into a new state. The set Q of total states is defined in terms
of the time advance function by

Q = {(s, e) | s ∈ S ∧ 0 ≤ e ≤ ta(s)} (4.6)

Three things are need to compute the state transition function of a discrete-event
system: a total state, a time advance function, and an input trajectory. With these
factors the state transition function constructs a state trajectory that is piecewise
constant. The state of the discrete-event system changes when events appear in
the input trajectory and when autonomous changes are indicated by the time advance
function.

Recall that to define the state transition function of a discrete-time system, the
input trajectory was decomposed into pieces of unit length and fed, one at a time,
into the system. In a similar manner, an event trajectory is decomposed into primitive
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segments that either (1) have exactly one event, which starts the trajectory, or (2)
contain no events. Specifically, a trajectory x[tα, tβ ) with events at times t1, . . . , tn
is broken into the pieces xα , x1, . . . , xn such that the initial segment xα is defined
over the interval [tα, t1), the intermediate xk , with 1 ≤ k < n, which are defined
over [tk, tk+1), and the terminal segment xn is defined over [tn, tβ). The segments x1,
x2, . . . , xn are equal to � everywhere except at their beginnings. The exception is xα,
which contains only � if tα < t1 or has an empty domain with �(xα) = 0 otherwise.
If x has no events or contains only a single event at its beginning, then it is already
primitive.

The function δ takes an initial total state and a primitive segment x[t0, t f ) and
returns the total state at the end of that segment. This is the discrete-event analog
of the single-step transition function of a discrete-time system, but δ is complicated
by the ability of the discrete-event system to take autonomous action. To traverse x ,
several small steps may be required by the time advance function and, consequently, δ
is defined recursively. The recursion has five cases: input at the start of the trajectory,
input and autonomous action that occur simultaneously, intermediate autonomous
action, nonaction while advancing to intermediate events, and termination at the end
of the trajectory.

Definitive action by the system is required in the first three cases, and for each
a function is defined to describe the system’s response. The effect of autonomous
action is given by the internal transition function; it has the form

δint : S → S

and takes the system from its state at the time of the autonomous event to a subsequent
state. The effect of an input is given by the external transition function. It gives the
next state as a function of the total state (s, e) at the time of the input and the input
itself; it has the form

δext : Q × X → S

where Q is the total set of states defined by Equation 4.6. It is possible for an
autonomous action and an input to occur at the same time, and this case is the
province of the confluent transition function. This is really a special case of the
external transition function where e = ta(s); it has the form

δcon : S × X → S

From an initial state (s, e) ∈ Q, δ gives the response of the system to a primitive
trajectory x[t0, t f ) as

δ((s, e), x[t0, t f )) = (4.7)

1. Input event at the beginning: δ((δext (s, e, x(t0)), 0), x[t0 � (0, 1), t f )) if x(t0) �=
� ∧ e < ta(s)
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2. Input event at the beginning with a simultaneous autonomous action:
δ((δcon(s, x(t0)), 0), x[t0 � (0, 1), t f )) if x(t0) �= � ∧ e = ta(s)

3. Intermediate autonomous action: δ((δint(s), 0), x[t0 � (0, 1), t f ))ifx(t0) = � ∧
e = ta(s)

4. Nonaction: δ((s, ta(s)), x[t0 � (ta(s) − e, 0), t f )) if x(t0) = � ∧ e < ta(s) ∧
ta(s) − e ≤ �(x)

5. Terminal event: (s, e + �(x))if 1–4 do not apply

The first two cases process the event at the start of the trajectory if such an event
exists. Because x is a primitive trajectory, t0 is the only possible location of an input.
The third case executes autonomous events that are scheduled by the time advance
function. The fourth case moves the system through real intervals of inaction that
precede an internal event. In each of these cases, recursive calls to δ preserve the
primitiveness of x ; it comprises only � following the advance of t0. The fifth case
terminates the calculation if the real length of x is too short to accommodate the next
autonomous action or if x is empty, in which case x(t0) is undefined and conditions
1–4 do not hold.

The total state transition function � gives the response of the system to an arbitrary
event trajectory x . If x is a primitive trajectory, then

�((s, e), x) = δ((s, e), x) (4.8)

If x is not a primitive trajectory, then it is decomposed into its primitive segments so
that

x = xα · x1 · · · · · xn

and � is defined recursively by

�((s, e), xα · x1 · · · · · xn) = �(δ((s, e), xα), x1 · · · · · xn) (4.9)

The total state transition function processes the trajectory one primitive segment at a
time, and the calculation finishes when the last such trajectory is processed.

4.1.3 The Output Function

Output from a discrete-event system is due to its autonomous actions. The system can
produce output in the absence of input, and it can produce output in response to input
when the input induces an autonomous event. Just as with discrete-time systems,
there is a delay between the introduction of an input and the production of an output,
and this delay exists for the same reason—the discrete-event system is a Moore-type
system. The delay imposed by the Moore formulation of the discrete-event system
is (0, 1), and this minimal delay occurs when the model has a time advance of zero.
Longer delays occur if the time advance is positive.
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The total output function � of the discrete event system has the form

� : Q → Y ∪ {�}

and it takes the total state of the system to a value in its total set of output. The output
function λ, like the internal, external, and confluent functions, defines the behavior
of the system in terms of the set S of states; it has the form

λ : S → Y

The total output function � is defined in terms of λ by

�((s, e)) =
{

λ(s) if e = ta(s)

� otherwise
(4.10)

The elapsed time e is equal to the time advance when case 2, a confluent event, or
case 3, an internal event, in Equation 4.7 occur, and so these two cases coincide with
the production of an output.

4.1.4 Legitimate Systems

For a system to be legitimate, its time advance function must ensure that in any interval
of real finite length the system takes only a finite number of actions. Conversely, to
traverse an infinite sequence of states must require an infinite amount of real time.
Specifically, every series of states s1, s2, . . . that can be produced by the system must
be such that

lim
n→∞

n∑

k=1

ta(sk) → ∞

Zeigler [157] gives two conditions that are sufficient to ensure that this is true:

1. The set S of states is finite and every cycle that can be produced by the state
transition function includes a state s such that ta(s) > 0.

2. There exists a lower bound b > 0 such that for all s ∈ S, ta(s) > b.

The first condition is necessary and sufficient. Any system with a finite number
of states must, in the absence of an external influence, settle into one particular
state that has an infinite time advance or endlessly tour a set of states that require
some positive time to traverse. The second condition is only sufficient. If the time
advance is strictly positive, then time will always progress. It is possible, however,
to have some subset of states that have a time advance of zero but always lead to a
state with a positive time advance. In this case, the second condition is violated even
though the system is legitimate.
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Ames [4] distinguishes two types of illegitimate behavior. A chattering Zeno
system gets stuck when it enters an endless sequence of states that have a zero time
advance; a system with ta(s) = 0 for all s ∈ S is one example. A genuinely2 Zeno
system has an infinite series of states that, although each has a positive time advance,
violates the legitimacy criteria. For example, a system that traverses a series of states
s1, s2, . . . , where ta(sk) = 1/k, is genuinely Zeno; the elements in this series of time
advances are positive but the series converges to zero and its sum converges to a finite
number. (The sum of the time advances converges to 2 and the system, begun in state
s1 at time t , gets stuck just prior to t + 2.)

Every reasonable model of a real system is legitimate. Illegitimate systems
are usually due to errors made while building the model, and often these errors
are discovered when a simulation program fails to stop. The examples given above are
extreme, but illegitimate models can occur quite easily in practice, and care must be
taken to avoid them.

4.1.5 An Example of an Atomic Model

A simple system that has a single input, single output, and single state variable will
demonstrate the state transition and output functions. The model accepts a real-valued,
nonnegative input that it multiplies by the elapsed time. The product is produced when
a time equal to it has expired. If an input arrives while an output is pending, the new
input replaces the stored value. An input that coincides with an output is treated as
having an elapsed time equal to the time advance. On producing an output, the stored
value is set to ∞. The functions that define this system are

δint(q) = ∞
δext(q, e, x) = xe

δcon(q, x) = xq

ta(q) = λ(q) = q

We will feed this system four primitive trajectories and calculate, using Equations
4.7 and 4.10, the state and output resulting from each. The trajectories are

x1[(0, 0), (1, 0)), with x1(t) =
{

1 if t = (0, 0)

� otherwise

x2[(1, 0), (1, 1)), with x2(t) =
{

0 if t = (1, 0)

� otherwise

x3[(1, 1), (2, 0)), with x3(t) = �

2A chattering Zeno system is no less illegitimate than a genuinely Zeno system, and so this name is an
odd choice.
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and

x4[(2, 0), (2, 2)), with x4(t) =
{

2 if t = (2, 0)

� otherwise

The system starts with q = ∞ and has been in that state for one unit of time. Using
Equation 4.7 to compute its response to x1, we have

δ((∞, 1), x1[(0, 0), (1, 0))) = δ((1, 0), x1[(0, 1), (1, 0))) (Case 1)

= δ((1, 1), x1[(1, 0), (1, 0))) (Case 4)

= (1, 1) (Case 5)

With the system in total state (1, 1), applying x2 gives

δ((1, 1), x2[(1, 0), (1, 1))) = δ((0, 0), x2[(1, 1), (1, 1))) (Case 2)

= (0, 0) (Case 5)

With the system in total state (0, 0), we apply x3 and get

δ((0, 0), x3[(1, 1), (2, 0))) = δ((∞, 0), x3[(1, 2), (2, 0))) (Case 3)

= (∞, 1) (Case 5)

and the system returns to where it began. Finally, injecting x4 gives

δ((∞, 1), x4[(2, 0), (2, 2))) = δ((2, 0), x4[(2, 1), (2, 2)) (Case 1)

= (2, 0) (Case 5)

and the final, total state is (2, 0).
The output trajectory y[(0, 0), (2, 2)) produced by this simulation is

y(t) =

⎧
⎪⎨

⎪⎩

1 if t = (1, 0)

0 if t = (1, 1)

� otherwise
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and the state trajectory q[(0, 0), (2, 2)) is

q(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if t = (0, 0)

1 if t ∈ [(0, 1), (1, 1))

0 if t = (1, 1)

∞ if t ∈ [(1, 2), (2, 0))

2 if t ∈ [(2, 1), (2, 2))

Next we construct the composite trajectory x = x1 · x2 · x3 · x4. Its canonical de-
composition into primitive parts is

x = xα[(0, 0), (0, 0)) · x1 · (x2 · x3) · x4

where xα is an empty trajectory, x1 and x4 are as already defined, and the third
primitive segment is x2 · x3. Beginning again in the total state (∞, 1) and using
Equation 4.9 to apply x gives

�((∞, 1), xα · x1 · (x2 · x3) · x4) =�(δ((∞, 1), xα), x1 · (x2 · x3) · x4)

=�((∞, 1), x1 · (x2 · x3) · x4) (Case 5)

=�(δ((∞, 1), x1), (x2 · x3) · x4)

=�((1, 1), (x2 · x3) · x4) (Previous calculation)

=�(δ((1, 1), (x2 · x3)), x4)

To calculate the response of the system to (x2 · x3), we use the fact that

δ((1, 1), (x2 · x3)) = �((1, 1), x2 · x3) = �(�((1, 1), x2), x3)

and proceeding from the inside to the outside, obtain

�(�((1, 1), x2), x3) = �(δ((1, 1), x2), x3)

= �((0, 0), x3) (Previous calculation)

= δ((0, 0), x3)

= (∞, 1) (Previous calculation)

as expected. Finally, applying x4, we obtain

�((∞, 1), x4) = δ((∞, 1), x4) = (2, 0) (Previous calculation)

just as before.
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TABLE 4.1 Table-Driven Simulation of a Discrete-Event System

t s ta(s) y x Type

(0, 0) ∞ ∞ — 1 init,in,1
(0, 1) 1 1 — ext
(1, 0) — — 1 0 in,out
(1, 1) 0 0 0 con,out
(1, 2) ∞ ∞ — int
(2, 0) — — — 2 in
(2, 1) 2 2 — ext
(2, 2) — — — — final,0

Discrete-event simulation by hand is greatly facilitated with a table similar to the
one used for discrete-time simulation (recall Tables 3.1 and 3.2). The table has six
columns: the time t , state s, time advance ta(s), output y, input x , and the type of
event occurring at t . The start and end of the trajectory and its intermediate events
can be listed in a separate table and marked off as they are used.

The first row is filled in with the initial time, state and related values, and the
appropriate input; its event type is “init,” and the initial elapsed time is recorded
with it. Subsequent rows are filled by first determining the event type, which can
be “in,” “out,” “int,” “ext,” “con,” or some combination of these, and then filling in
the columns according to the event type. An “out” event does not change the state
of the system, but may have a value in the y column; similarly, an “in” event puts
a value in the x column. The new state due to all other events is calculated using
the state, input, and elapsed time from the previous row; the elapsed time in a given
row is the difference between φ(t) in that row and the previous row. Note that output
appears in every row where the elapsed time is equal to the time advance. The type
“final” is assigned to the last row and it records the ending value of e. Table 4.1
shows a simulation of the abovementioned model using this method. The procedure
is quickest if nonevents in the x and y columns and unchanged values in the s and
ta(s) columns are omitted from the table.

4.1.6 The Interrupt Handler in the Robotic Tank

The model of the tank’s interrupt handler is a more complicated example of an
atomic model. The event graph in Figure 2.6 illustrates its operation. The state space
representation of this model must adhere to the two conventions that we established
for it in Section 2.2.4; input changes the state variables immediately and without
altering the time to the next interrupt, and output occurs immediately after the End
interrupt event finishes its work.

The interrupt handler that is actually used in the tank simulator is slightly more
complicated that the one shown in Figure 2.6. For reasons of computational efficiency,
it restricts output events to instances where the voltage at the motors actually changes,
whereas the event graph in Figure 2.6 indicates output after every End interrupt event.
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When the interrupt handler was implemented in this way, the simulation was unable
to keep up with time in the real world and could not be used interactively. The reason
for this is that the interrupt handler provides input to the model of the tank’s physics,
and calculating a state change for that model takes a (relatively) long time. When the
output of the interrupt handler is restricted to just those instances where the voltage
actually changes, the simulation avoids unnecessary, time-consuming updates of the
physics model and is therefore able to to be used interactively.

With this change, the code is simpler (but the event graph messier) if the model
uses the output voltages el and er as state variables in place of the switch positions
sl and sr . To determine when a new output value must be produced, two new state
variables are needed to remember the voltages at the last output. These variables are
termed e′

l and e′
r .

The operation of the interrupt indicator also requires a small modification with
respect to its description in Section 2.2.4. An extra phase is needed to produce output
after the End interrupt event occurs. The interrupt handler now has three distinct
phases, corresponding to the two types of events and the production of an output.
These phases are EXEC, WAIT, and OUTPUT. In the EXEC phase the model has
executed the Start interrupt event and is waiting for the End interrupt event. In the
WAIT phase the model has produced its output (if one was required) and is waiting
for the Start interrupt event. In the discrete instant of time between the EXEC and
WAIT phases is the transitory OUTPUT phase, and it changes the voltage signal.

The period between interrupts is most conveniently expressed in terms of the
desired signal frequency, rather than in terms of the number of machine cycles that
separate interrupts. There are (see beginning of Section 2.2.4) about eight calls to
the interrupt handler in each period of the voltage signal. Therefore, a voltage signal
with frequency fe requires an interrupt period te given by

te = 1

8 fe
(4.11)

With these changes, the complete set of state variables are the voltages el and
er at the motors; the last voltages e′

l and e′
r supplied as output, the counter c, the

left motor on time ol and right motor on time or , the directions rl and rr of the
left and right motors, the phase i (which was the Boolean interrupt indicator), and
the time σ remaining until the next event. The range of the voltage variables is
the set {0,−7.2, 7.2}. The range of the counter and the motor on times is the set
of natural numbers in the interval [0, 255]. The direction indicators rl and rr are
true if the motor runs in reverse and false otherwise. The phase i has the range
{ EXEC, WAIT, OUTPUT}. The time σ remaining to the next event has the range
[0, max{te, 432 × 10−6}]. The state of the model can be written, although somewhat
awkwardly, as the tuple (el, er , e′

l, e′
r , c, ol , or , rl, rr , i, σ ), and the set of states is the

cross product of the ranges of the state variables.
For brevity

q = (el, er , e′
l, e′

r , c, ol , or , rl, rr , i, σ )
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interrupt
End

Left/right
motor direction

Left/right
motor on−time

interrupt
Start

interrupt

Output

el/r ← 7.2 (c < left/right motor on-time)
el/r −← el/r if rl/r = true

c ← (c+32) mod 255

interrupt ← true

el, er if el �= e′l ∨ er �= e′r

432 µste s

interrupt ← false
e′l/r ← el/r

FIGURE 4.2 Corrected event graph for the tank’s interrupt handler.

is used to indicate the state of the system. Input to the model has the form
(o′

l , r ′
l , o′

r , r ′
r ), which carries the desired values for the on times and directional

switches of the motors. Output from the model are bags that contain the interrupt
indicator and, possibly, the pair of voltages (el , er ).

In spite of its large set of states, the behavior of the model is quite simple.
Figure 4.2 shows the modified event graph, which includes the new state variables
and phase.3 The Output and Start interrupt events produce output. As before, input
is applied immediately but has no effect on the time of the next event.

The time advance function is the simplest part of the interrupt handler’s definition.
It returns the time remaining until the next event and is defined by

ta(q) = σ

The output function generates events at the start and end of an interrupt. An interrupt
begins when the time advance expires and the model is in its WAIT phase. At this time,
an interrupt signal is produced for the packet processor. An interrupt ends when the
time advance expires and the model is in its OUTPUT phase. Another interrupt signal
is produced at this time, along with new voltage values for the motors. Specifically,
we obtain

λ(q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{interrupt} if i = WAIT

{interrupt} if i = OUTPUT ∧ (el = e′
l ∧ er = e′

r )

{interrupt, (el, er )} if i = OUTPUT ∧ (el �= e′
l ∨ er �= e′

r )

� otherwise

3False predicates have a numerical value of zero and true predicates a value of one. So, for example, the
voltage el is 7.2 if c < left motor on time and 0 if it is not.
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if i = WAIT then1

i ← EXEC2

σ ← 432 × 10−63

else if i = EXEC then4

c ← c + 32 mod 2555

el ← 7.2(c < ol )6

er ← 7.2(c < or )7

if rl = true then el ← −el8

if rr = true then er ← −er9

i ← OUTPUT10

σ ← 011

else if i = OUTPUT then12

e′
l ← el13

e′
r ← er14

i ← WAIT15

σ ← te16

end17

Algorithm 4.1 The internal transition function of the interrupt handler.

The transition functions are only slightly more complicated. The internal transition
function implements the logic for the Start interrupt, End interrupt, and Output events
that appear in the event graph. The effect of an Output event is to set the values of e′

l
and e′

r to el and er and to schedule a Start interrupt event. To schedule the event, the
model is placed into its WAIT phase and σ is set to the interrupt period. The effect
of a Start interrupt event is to schedule an End interrupt event. It is scheduled by
putting the model into its EXEC phase and setting σ to the time needed to execute
the interrupt. The effect of an End interrupt event is to increment the counter, set
the voltage values, and schedule an immediate Output event. The internal transition
function is calculated using Algorithm 4.1.

The external transition function is simpler. On receiving an input, it decrements σ

and changes the on time and direction of each motor. The response of the system to
an input (o′

l, r ′
l , o′

r , r ′
r ) is

δext(q, e, (o′
l , r ′

l , o′
r , r ′

r )) = (el , er , e′
l , e′

r , c, o′
l, o′

r , r ′
l , r ′

r , i, σ − e)

The confluent transition function applies the internal and then the external transition
functions. In effect, this prioritizes autonomous action over input. The confluent
transition function is defined by

δcon(q, (o′
l, r ′

l , o′
r , r ′

r )) = δext (δint (q), 0, (o′
l , r ′

l , o′
r , r ′

r ))
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In spite of its simple dynamics, the size of the model’s state space makes simula-
tion by hand impractical. Therefore, a demonstration must wait until the necessary
simulation software is built.

4.1.7 Systems with Bags for Input and Output

Just as with discrete-time systems, discrete-event systems in practice are built to
accept bags of objects as input and produce bags of objects as output. This does not
require any substantial changes to the basic definition of a discrete-event system, but
the details differ in small ways. The sets Xb and Y b are bags of elements from X and
Y , and the output function λ and the transition functions δext and δcon have the forms

λ : S → Y b

δext : Q × Xb → S

δcon : S × Xb → S

These are used from this point forward.

4.1.8 A Simulator for Atomic Models

A simulation engine that has great practical utility can be constructed as a special
case of Equation 4.7. This simulation engine will let us do four things with the model:
(1) ask for the time at which its next autonomous action will occur, (2) ask for the
output that it will produce at that time, (3) compute the autonomous action at that
time, and (4) inject input into the model at any time in the interval spanning the last
change of state and the next autonomous event.

The first two tasks are simple. If the the last event—internal, external, or
confluent—put the system into a state s at time tL , then the next autonomous ac-
tion will occur at time tL � (ta(s), 0). This is the amount of time that t is advanced
by case 4 of Equation 4.7 when e = 0, that is, immediately preceding a change of
state by cases 1–3. The output at that time is λ(s).

For the last two tasks, the simulator accepts only two types of trajectories: an empty
trajectory terminating at the next autonomous action or a trajectory that ends in a
single input at some time t ∈ [t L , t L � (ta(s), 0)]. The input trajectory x therefore
spans the interval [t L , t] = [t L , t � (0, 1)). If x has no events, then it is already a
primitive trajectory; otherwise it is decomposed into xα[t L , t) · x1[t, t � (0, 1)). The
model can respond to x in one of three ways:

1. δext(s, φ(t) − φ(tL ), x) if t < tL � (ta(s), 0)

2. δint(s) if x(t) = � and t = tL � (ta(s), 0)

3. δcon(s, x) if x(t) �= � and t = tL � (ta(s), 0)

Cases 2 and 3 produce an output event at time tL � (ta(s), 0).
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In practice, the most important trajectories satisfy the above constraints; other types
of trajectories end in stretches of inaction that are of little interest because s does
not change. By restricting the allowable trajectories, the simulator cannot be started
with an elapsed time other than zero. Nor can it be given a trajectory spanning, for
example, [tL , tL � (ta(s)/2, 0)) that contains only nonevents, but nothing of interest
occurs in this interval or anywhere that the elapsed time is not ta(s) unless, of course,
an input becomes available. So the usefulness of the simulator is not diminished by
these restrictions.

Their chief advantage is an improvement in the computational speed of the simu-
lator, and the importance of this improvement grows with the size of the model. For
a single atomic model, these restrictions are clearly unnecessary and a simple, direct
iterative algorithm derived from Equation 4.7 is more versatile. For large network
models there is a noticeable benefit because we can take advantage of very efficient
algorithms for event scheduling. Even greater benefits are derived when moving those
simulations onto a parallel computer where the above mentioned restrictions are es-
sential for obtaining good performance. For the moment, however, we will focus on
the simple case of a single atomic model.

The simulator for an atomic, discrete-event model is similar to, almost a copy of,
the simulator for an atomic, discrete-time model (see Section 3.1.5). The simulator
for a discrete-event model has four classes: the Bag class, the Atomic class, the
EventListener class, and the Simulator class. To avoid clashes with other libraries
that might be used in a simulation program, these four classes are put into the adevs
(a discrete-event system simulator) namespace. The three main classes—Atomic,
Simulator, and EventListener—and their relationships are shown in Figure 4.3.

The Bag is an alias to the multiset class from the C++ Standard Template Library.
The EventListener class is identical to the one used in the discrete-time simulator.

FIGURE 4.3 Class diagram of the simulation software for atomic, discrete event models.
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It has two virtual methods that the Simulator invokes to notify the listener that an
output was produced or that a state transition has taken place.

The Atomic class has six virtual methods. It retains the gc output method that
the Simulator uses to tell the model to delete objects it produced as output. It also
retains the output func method that implements the model’s output function. The
delta function of the discrete time simulator is replaced by three methods, one for
each primitive transition function of the discrete event model. The delta int method
implements the internal transition function, the delta ext method implements the
external transition function, and the delta conf method implements the confluent
transition function. Finally, the method ta is added to implement the model’s time
advance function.

The Simulator retains the addEventListener and computeOutput methods of the
discrete-time simulator, but where it has three methods for interacting with the simu-
lation, the discrete-event simulator has four. Two of these methods are for obtaining
information. The nextEventTime method returns the time of the next autonomous
action. The computeOutput method invokes the outputEvent method of registered
EventListeners to inform them of the model’s output at the next event time.

The other two are for advancing the simulation clock. The execNextEvent method
computes the output and next state of the model at the next event time, invoking the
outputEvent and stateChange methods of all registered EventListeners as it proceeds.
This method accepts no input; it executes the model’s internal transition function.
Input is applied with the computeNextState method. It accepts a Bag of input and the
time at which to apply it, which must be less than or equal to the nextEventTime. At
that time, an external or confluent event, as appropriate, is executed and the method
notifies any EventListeners of the action by calling their stateChange and, for a
confluent event, outputEvent methods.

Virtual methods, to be implemented by the programmer, constitute most of the
simulation engine. The only class with a substantial implementation is the Simulator,
and its implementation is shown below. Not in this implementation is the time pair
(t, c). The real time t appears explicitly, but c is incremented implicitly each time
computeNextState is called with the same argument for time. Nothing is gained by
making the c explicit, except possibly to allow users of the Simulator to record the
complete timestamp for each event. If this information is needed, it can be recovered
with a counter that is set to zero each time the real part of the simulation clock
advances and is incremented after calls to computeNextState that do not advance
the clock.4

Implementation of the Simulator Class
1 #ifndef _adevs_simulator_h_
2 #define _adevs_simulator_h_
3 #include "adevs_atomic.h"
4 #include <cfloat>

4The pair (t, c) appears again in Appendix B, where it is needed to build a simulator for multicore and
multiprocessor computers.
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5 #include <cassert>
6

7 namespace adevs
8 {
9

10 template <typename X> class Simulator {
11 public:
12 Simulator(Atomic<X>* model):
13 model(model),tN(model->ta()),tL(0.0),
14 output_up_to_date(false){}
15 void addEventListener(EventListener<X>* l)
16 {
17 listeners.push_back(l);
18 }
19 double nextEventTime() { return tN; }
20 void computeNextState(const Bag<X>& input, double t);
21 // Execute the autonomous event at time nextEventTime()
22 void execNextEvent()
23 {
24 Bag<X> empty;
25 computeNextState(empty,nextEventTime());
26 }
27 void computeNextOutput();
28 private:
29 Atomic<X>* model; // The model to simulate
30 double tN, tL; // Time of the next and previous event
31 bool output_up_to_date; // Is the output up to date?
32 // List of event listeners
33 typedef std::list<EventListener<X>*> ListenerList;
34 ListenerList listeners;
35 };
36

37 template <typename X>
38 void Simulator<X>::computeNextState(const Bag<X>& input, double t)
39 {
40 // If this is an external event
41 if (t < tN && !input.empty()) model->delta_ext(t-tL,input);
42 // If this coincides with an autonomous action
43 else if (t == tN) {
44 computeNextOutput();
45 if (!input.empty()) model->delta_conf(input);
46 else model->delta_int();
47 }
48 // Find the next event time
49 double ta = model->ta();
50 if (ta < DBL_MAX) tN = t + ta;
51 else tN = DBL_MAX;
52 // Set the simulation clock and notify listeners of the change in state
53 tL = t;
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54 for (typename ListenerList::iterator iter = listeners.begin();
55 iter != listeners.end(); iter++) {
56 (*iter)->stateChange(model,t);
57 }
58 // Cleanup
59 model->gc_output(model->output_bag);
60 model->output_bag.clear();
61 output_up_to_date = false;
62 }
63

64 template <typename X>
65 void Simulator<X>::computeNextOutput()
66 {
67 // Return if the output function has been evaluated
68 if (output_up_to_date) return;
69 // Compute the output
70 output_up_to_date = true;
71 model->output_func(model->output_bag);
72 // Notify registered listeners of the output events
73 for (typename Bag<X>::iterator yiter = model->output_bag.begin();
74 yiter != model->output_bag.end(); yiter++) {
75 for (typename ListenerList::iterator iter = listeners.begin();
76 iter != listeners.end(); iter++) {
77 (*iter)->outputEvent(model,*yiter,tN);
78 }
79 }
80 }
81

82 } // end of namespace
83

84 #endif

4.1.9 Simulating the Interrupt Handler

An implementation of the interrupt handler developed in Section 4.1.6 demonstrates
how the simulation software is used. The class InterruptHandler is derived from
Atomic; its virtual methods are implemented to realize the model’s transition func-
tions, time advance function, and output function. Input and output to this model (and
throughout the implementation of the tank; see Appendix A, Section A.2.2) are in-
stances of the class SimEvent, which has two attributes: a union containing one of five
types of specific events and a flag showing which of these types is actually present.

The interrupt handler reacts to events with the type SimMotorOnTime and produces
events with the type SimInterrupt and SimMotorVoltage. The SimMotorOnTime event
carries information about the on times for the motors and the direction in which they
should turn. The SimInterrupt event has no information other than its type, and the
SimMotorVoltage event has the voltages at the left and right motors. Output produced
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by the model is not allocated dynamically, and so it does not need to be freed by
the garbage collection method. The implementation of the InterruptHandler is listed
below.

Header File for the InterruptHandler
1 #ifndef INTERRUPT_HANDLER_H_
2 #define INTERRUPT_HANDLER_H_
3 #include "adevs.h"
4 #include "SimEvents.h"
5

6 // This is the model of the computer’s interrupt handler.
7 class InterruptHandler: public adevs::Atomic<SimEvent>
8 {
9 public:

10 // Phases of the interrupt handler
11 typedef enum { OUTPUT, EXEC, WAIT } Phase;
12 // Create an interrupt handler that executes with the
13 // specified frequency.
14 InterruptHandler(double freq);
15 // State transition functions
16 void delta_int();
17 void delta_ext(double e, const adevs::Bag<SimEvent>& xb);
18 void delta_conf(const adevs::Bag<SimEvent>& xb);
19 // Output function
20 void output_func(adevs::Bag<SimEvent>& yb);
21 // Time advance function
22 double ta();
23 void gc_output(adevs::Bag<SimEvent>&){}
24 // Methods for getting the values of the state variables
25 unsigned int getCounter() const { return counter; }
26 unsigned int getLeftOnTime() const { return left_on_time; }
27 unsigned int getRightOnTime() const { return right_on_time; }
28 bool getLeftReverse() const { return reverse_left; }
29 bool getRightReverse() const { return reverse_right; }
30 double getLastLeftOutput() const { return last_left_v; }
31 double getLastRightOutput() const { return last_right_v; }
32 double getLeftOutput() const { return left_v; }
33 double getRightOutput() const { return right_v; }
34 Phase getPhase() const { return phase; }
35 double getInterruptPeriod() const { return interrupt_period; }
36 private:
37 const double interrupt_period; // Clock period
38 // Magnitude of the voltage at the motor when turned on
39 const double motor_voltage;
40 const double exec_time; // Execution time of the interrupt
41 double ttg; // Time to the next internal event
42 unsigned char counter, left_on_time,
43 right_on_time; // On/off counters
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44 bool reverse_left, reverse_right; // Motor direction
45 double last_left_v, last_right_v; // Previous output voltages
46 double left_v, right_v; // Next output voltages
47 Phase phase; // The current phase of the model
48 };
49

50 #endif

Implementation of the InterruptHandler
1 #include "InterruptHandler.h"
2 #include <iostream>
3 using namespace std;
4 using namespace adevs;
5

6 InterruptHandler::InterruptHandler(double freq):
7 Atomic<SimEvent>(),
8 interrupt_period(1.0/(8.0*freq)), // Initialize the model
9 motor_voltage(7.2),

10 exec_time(0.432E-6),
11 ttg(interrupt_period),
12 counter(0),
13 left_on_time(0),
14 right_on_time(0),
15 reverse_left(false),
16 reverse_right(false),
17 last_left_v(0.0),
18 last_right_v(0.0),
19 left_v(0.0),
20 right_v(0.0),
21 phase(WAIT)
22 {
23 }
24

25 void InterruptHandler::delta_int()
26 {
27 // Start an interrupt
28 if (phase == WAIT)
29 {
30 phase = EXEC;
31 ttg = exec_time;
32 }
33 // End an interrupt and send the output
34 else if (phase == EXEC)
35 {
36 // Increment the counter
37 counter += 32;
38 // Compute the next output voltage
39 left_v = motor_voltage*(counter < left_on_time);
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40 if (reverse_left) left_v = -left_v;
41 right_v = motor_voltage*(counter < right_on_time);
42 if (reverse_right) right_v = -right_v;
43 // Send the voltage and interrupt signal
44 phase = OUTPUT;
45 ttg = 0.0;
46 }
47 // Wait for the next interrupt
48 else if (phase == OUTPUT)
49 {
50 // Remember the last output voltages
51 last_left_v = left_v;
52 last_right_v = right_v;
53 // Wait for the next interrupt
54 phase = WAIT;
55 ttg = interrupt_period;
56 }
57 }
58

59 void InterruptHandler::delta_ext(double e, const Bag<SimEvent>& xb)
60 {
61 // Decrement the time to go
62 ttg -= e;
63 // Look for input
64 for (Bag<SimEvent>::iterator iter = xb.begin();
65 iter != xb.end(); iter++)
66 {
67 assert((*iter).getType() == SIM_MOTOR_ON_TIME);
68 left_on_time = (*iter).simMotorOnTime().left;
69 right_on_time = (*iter).simMotorOnTime().right;
70 reverse_left = (*iter).simMotorOnTime().reverse_left;
71 reverse_right = (*iter).simMotorOnTime().reverse_right;
72 }
73 }
74

75 void InterruptHandler::delta_conf(const Bag<SimEvent>& xb)
76 {
77 delta_int();
78 delta_ext(0.0,xb);
79 }
80

81 void InterruptHandler::output_func(Bag<SimEvent>& yb)
82 {
83 // If this is the end of an interrupt
84 if (phase == OUTPUT)
85 {
86 // If the voltage changed, then send the new values
87 if (last_left_v != left_v || last_right_v != right_v)
88 {
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89 SimMotorVoltage volts;
90 volts.el = left_v;
91 volts.er = right_v;
92 yb.insert(SimEvent(volts));
93 }
94 // Send the interrupt indicator
95 yb.insert(SimEvent(SIM_INTERRUPT));
96 }
97 // If this is the start of an interrupt
98 else if (phase == WAIT) yb.insert(SimEvent(SIM_INTERRUPT));
99 }

100

101 double InterruptHandler::ta() { return ttg; }

An input trajectory is provided to the simulation program via standard input, and
it computes the resulting state and output trajectory. The simulation ends with the
last input. The frequency of the voltage signal that the interrupt handler produces is
set on the command line. The implementation of this simulator is listed below. It is
another example of a model being reused in a new context: the InterruptHandler,
originally constructed as part of the interactive tank simulator, has been extracted
from that simulator and is being reused in this new simulation program.

Simulation of the InterruptHandler
1 #include "adevs.h"
2 #include "InterruptHandler.h"
3 #include <iostream>
4 using namespace std;
5 using namespace adevs;
6

7 // Listener for recording the state and output of the interrupt handler
8 class InterruptListener: public EventListener<SimEvent>
9 {

10 public:
11 InterruptListener(){}
12 void outputEvent(Atomic<SimEvent>* model,
13 const SimEvent& value, double t)
14 {
15 cout << "Output, t = " << t << ", ";
16 if (value.getType() == SIM_INTERRUPT)
17 cout << "interrupt" << endl;
18 else if (value.getType() == SIM_MOTOR_VOLTAGE)
19 cout << "el = " << value.simMotorVoltage().el <<
20 ", er = " << value.simMotorVoltage().er << endl;
21 }
22 void stateChange(Atomic<SimEvent>* model, double t)
23 {
24 InterruptHandler* ih = dynamic_cast<InterruptHandler*>(model);
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25 cout << "State, t = " << t;
26 cout << ", el = " << ih->getLeftOutput();
27 cout << ", er = " << ih->getRightOutput();
28 cout << ", e’l = " << ih->getLastLeftOutput();
29 cout << ", e’r = " << ih->getLastRightOutput();
30 cout << ",\n\tc = " << ih->getCounter();
31 cout << ",ol = " << ih->getLeftOnTime();
32 cout << ",or = " << ih->getRightOnTime();
33 cout << ",rl = " << ih->getLeftReverse();
34 cout << ",rr = " << ih->getRightReverse();
35 cout << ",i = ";
36 if (ih->getPhase() == InterruptHandler::WAIT)
37 cout << "WAIT" << endl;
38 else if (ih->getPhase() == InterruptHandler::EXEC)
39 cout << "EXEC" << endl;
40 else if (ih->getPhase() == InterruptHandler::OUTPUT)
41 cout << "OUTPUT" << endl;
42 }
43 };
44

45 int main(int argc, char** argv)
46 {
47 // Make sure that a frequency was given
48 if (argc != 2) {
49 cout << "Must provide a signal frequency" << endl;
50 return 0;
51 }
52 // Set the output precision to make the small time advances apparent
53 cout.precision(12);
54 // Create the model, event listener, and simulator
55 InterruptHandler* ih = new InterruptHandler(atof(argv[1]));
56 InterruptListener* l = new InterruptListener();
57 Simulator<SimEvent>* sim = new Simulator<SimEvent>(ih);
58 sim->addEventListener(l);
59 // Print the initial state of the model
60 l->stateChange(ih,0.0);
61 // Run the simulation
62 while (true) {
63 // Bag for injecting the input
64 Bag<SimEvent> input;
65 // The value to inject
66 SimMotorOnTime motor_setting;
67 // Time to inject the input
68 double t; int c;
69 // Read the time and input values
70 unsigned int o_l, o_r;
71 cin >> t >> c >> o_l >> motor_setting.reverse_left
72 >> o_r >> motor_setting.reverse_right;
73 motor_setting.left = (unsigned char)o_l;
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74 motor_setting.right = (unsigned char)o_r;
75 // If this is the end of the input, then quit
76 if (cin.eof()) break;
77 // Simulate until time t and then inject the input
78 while (sim->nextEventTime() < t) {
79 cout << endl;
80 sim->execNextEvent();
81 }
82 // Simulate the transient events
83 for (int i = 0; i < c && sim->nextEventTime() == t; i++) {
84 cout << endl;
85 sim->execNextEvent();
86 }
87 // Inject the input
88 input.insert(SimEvent(motor_setting));
89 cout << endl;
90 sim->computeNextState(input,t);
91 }
92 // Clean up
93 delete sim; delete l; delete ih;
94 return 0;
95 }

For this example, the interrupt handler operates at 2000 Hz, and so its period te is
precisely 6.25 × 10−5 s (Equation 4.11). The input trajectory x[(0, 0), (te, 0)] has an
event x((te/2, 0)) = (255, 0, 255, 1), which sets the left motor to full ahead and right
to full reverse, and an event x((te, 0)) = (0, 0, 0, 0), which changes the motor settings
to full stop before the computer has a chance to act on the previous command. The
input file exp1 that describes this trajectory contains two lines:

3.125E-5 0 255 0 255 1
6.25E-5 0 0 0 0 0

Running the simulation produces

$ ./a.out 2000 < exp1
State, t = 0, el = 0, er = 0, e’l = 0, e’r = 0,

c = 0,ol = 0,or = 0,rl = 0,rr = 0,i = WAIT

State, t = 3.125e-05, el = 0, er = 0, e’l = 0, e’r = 0,
c = 0,ol = 255,or = 255,rl = 0,rr = 1,i = WAIT

Output, t = 6.25e-05, interrupt
State, t = 6.25e-05, el = 0, er = 0, e’l = 0, e’r = 0,

c = 0,ol = 0,or = 0,rl = 0,rr = 0,i = EXEC
$
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The simulator prints the initial state at time (0, 0). The input trajectory sets the
counters for the left and right motors at time (te/2, 0). At time (te, 0) the interrupt
handler is activated and produces its {interrupt} output; simultaneously, the second
input is applied, forestalling the activation of the motors.

The importance of minimizing the number of voltage events created by the inter-
rupt handler is convincingly demonstrated by running the motors at half-power. The
input file

0 0 127 0 127 1
1 0 0 0 0 0

spins the tank in a place for one second. The interrupt handler generates 35,753
outputs; 3972 of these are SimMotorVoltage events. The problem with producing
a voltage event at every simulated interrupt is immediately apparent, the naive
scheme produces 10 times more input events for the TankPhysics model, whose
state transitions are time-consuming to compute. This extra work slows the sim-
ulator to a pace that is unacceptable for interactive use. Restricting SimMotor-
Voltage events to just those that represent a real change in voltage is an essential
optimization.

4.2 NETWORK MODELS

Networks of discrete-time models and networks of discrete event models are con-
structed in the same way. The network has a set of component models, connections
between those models, and connections between the input and output of the network
and the input and output of its components. Discrete-event networks are closed under
coupling, and the procedure for reducing a network to its atomic equivalent defines the
simulation procedure for multicomponent systems. These aspects will all be familiar
from the study of discrete-time systems undertaken in Chapter 3.

Because the atomic components of a discrete-event model each operate at their
own pace, the resultant of a discrete-event network is more complicated than its
discrete-time counterpart. The new complications are due almost entirely to the time
advance function. Discounting these particulars, the material in this section will be
familiar from Chapter 3. Input and output events are routed recursively through
the model. Also familiar are the basic steps of the algorithm: calculating outputs,
transforming outputs into inputs, and then computing new states. The interface to the
simulator also remains essentially unchanged.

4.2.1 The Parts of a Network Model

The structure and composition of a discrete-event network are defined in exactly the
same way as with a discrete-time network. Summarizing Section 3.2.1, a network
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model is defined by

X N = set of input to network

YN = set of output from network

D = set of components

Ī = {Id | d ∈ D ∪ {N }}family of sets of influencers

Z = {zd ′,d | d ′ ∈ Id and d ∈ D ∪ {N }}set of coupling functions where

zN ,d : Xb
N → Xb

d

zd ′,N : Y b
d ′ → Y b

N

zd ′,d : Y b
d ′ → Xb

d

Also recall that the sets Id of influencers define sets Ed of influencees (see Section
3.2.4), by

Ed = {d ′ | d ∈ Id ′ }

and that this set is used in the construction of the simulator.

4.2.2 The Resultant of a Network Model

The resultant of a network of discrete event models is an atomic model whose set of
states, transition functions, and output function are defined by its interconnected com-
ponents. To simplify notation that would otherwise be very messy, the construction
undertaken here assumes that all of the network’s components are atomic models (this
is the same approach taken by Zeigler [157]). Section 3.2.2 describes the recursive
descent into the network that completes the reduction procedure.

The sets of input and output of the resultant are the sets X N and YN of the network.
The set Sr of states of the resultant is the cross product of the sets of total states of its
components so that

Sr = ×d∈D Qd (4.12)

and the time advance function tar of the resultant is

tar (sr ) = min
d∈D

tad (sd ) − ed (4.13)

which gives the least time remaining until the next autonomous action in the network.
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The imminent components are those that will next undergo an autonomous event;
they constitute the set

IMM = {d | tad (sd ) − ed = tar (sr )} (4.14)

The subset IMM ∩ IN , which are attached to output of the network, contribute their
output events to the network’s output; its output function is

λr (sr ) = ∪d∈IMM∩IN zd,N (λd (sd )) (4.15)

The transition functions of the resultant are more complicated. Before a new state
is computed for a component, the inputs to it must be known. These are found in
almost exactly the same way as in a discrete time network, but only the imminent
models produce output. The set of components IMM ∩ (Id − {N }) provide input to d
at an internal or confluent transition of the resultant, and the input provided by these
is

xb
d = ∪d ′∈IMM∩(Id −{N }) zd ′,d (λd ′(sd ′)) (4.16)

This bag of values does not include contributions from input to the network, but it
does include all of the input to a component that originates with its siblings.

At an internal transition of the resultant, there is no input to the network. Therefore,
Equation 4.16 is sufficient for calculating inputs to the components, and the internal
transition function is defined by

δint,r (sr ) = ((s ′
1, e′

1), (s ′
2, e′

2), . . . , (s′
n, e′

n)) (4.17)

where

(s ′
j , e′

j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(s j , e j + ta(sr )) if xb
j = ∅ ∧ j /∈ IMM

(δint, j (s j ), 0) if xb
j = ∅ ∧ j ∈ IMM

(δext, j (s j , e j + ta(sr ), xb
j ), 0) if xb

j �= ∅ ∧ j /∈ IMM

(δcon, j (s j , xb
j ), 0) if xb

j �= ∅ ∧ j ∈ IMM

The internal transition function alters the state of the resultant by altering the states of
its components, and for each component there are four possible outcomes. In the first
case, no event occurs at the component and only its elapsed time is advanced. The
other three cases change the state of the component according to its disposition: an
internal event if it is imminent, an external event if it receives input, and a confluent
event if both of these conditions apply.

At an external transition of the resultant there are no imminent models and only
the input xb

r to the resultant can induce a change of state in its components. The
external transition function of the resultant moves its input to the appropriate sets
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of components and changes their states with their external transition functions. All
of the other components sit idly, merely having their elapsed time advanced. The
external transition function is defined by

δext,r (sr , e, xb
r ) = ((s ′

1, e′
1), (s ′

2, e′
2), . . . , (s′

n, e′
n)) (4.18)

where

(s ′
j , e′

j ) =
{

(s j , e j + e) if N /∈ I j ∨ zN, j (xb
r ) = ∅

(δext, j (s j , e j + e, zN , j (xb
r )), 0) otherwise

The first case applies to a component that receives no input from the network, and
the second case applies to all other components.

The confluent transition function is nearly identical to the internal transition func-
tion, but includes a special provision for components that are influenced by the
network. For this purpose, the set of functions ζ j (xb) are defined, one for each com-
ponent, to give its collective input received from its siblings and the network. For
each j ∈ D, ζ j accepts a bag of input xb to the network and gives the bag of input to
j as

ζ j (x
b) =

{
xb

j if N /∈ I j

xb
j ∪ zN , j (xb) if N ∈ I j

(4.19)

The xb
j in this equation is defined by Equation 4.16. The definition of the confluent

transition function is

δcon,r (sr , xb
r ) = ((s′

1, e′
1), (s ′

2, e′
2), . . . , (s′

n, e′
n)) (4.20)

where

(s′
j , e′

j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(s j , e j + ta(sr )) if ζ j (xb
r ) = ∅ ∧ j /∈ IMM

(δint, j (s j ), 0) if ζ j (xb
r ) = ∅ ∧ j ∈ IMM

(δext, j (s j , e j + ta(sr ), ζ j (xb
r )), 0) if ζ j (xb

r ) �= ∅ ∧ j /∈ IMM

(δcon, j (s j , ζ j (xb
r )), 0) if ζ j (xb

r ) �= ∅ ∧ j ∈ IMM

This is identical to Equation 4.17 except that the bag of input to each component
contains contributions from the network.

4.2.3 An Example of a Network Model and Its Resultant

This example consists of two machines for working metal. A press flattens small,
metal balls into disks. It has a bin to hold balls that are waiting to be pressed. A drill
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Press Drill

AssemblyLine

FIGURE 4.4 A press and drill.

puts a hole in the center of each disk, and it also has a bin to hold disks waiting to
be drilled. The press flattens a ball in one second, but the drill needs two seconds
to do its job. These machines are connected as shown in Figure 4.4. The algebraic
description of this network is easily deduced from the diagram (see Section 3.2.1).

Input to and output from the network and its components are natural numbers
that describe a quantity of parts: balls and disks with and without holes. Using the
subscript m to denote a machine model and tm the machining time, we can express
the set of states of a machine as

Sm = N × R∞
0

where (p, σ ) ∈ Sm describes the number p of parts for the machine to process and
the time σ remaining to process the first of those parts. The time advance is

tam((p, σ )) =
{

σ if p > 0

∞ otherwise

and when this time expires, the internal transition function

δint,m((p, σ )) = (p − 1, tm)

removes the part from the machine and the output function

λm((p, σ )) = 1

makes the part available to the next machine in the assembly line.
On receiving a number q of parts, the external transition function

δext,m((p, σ ), e, q) =
{

(p + q, σ − e) if p > 0

(p + q, tm) if p = 0

places the parts into the bin and begins operating on one of them if the bin was
empty. When new parts arrive and a part is completed simultaneously, the confluent
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transition function

δcon,m((p, σ ), q) = (p + q − 1, tm)

ejects the completed part, stores the incoming parts, and begins operating on a new
part.

The model of the assembly line has two copies of the machine model; the model
of the press is denoted by the subscript p and the drill, by d . The subscript r is used
for the resultant of the network, and its state is

sr = (((pp, σp), ep), ((pd , σd ), ed ))

The drill and press begin without parts in their bins. Their initial states are (0, 2) and
(0, 1), respectively. The initial state of the resultant is (((0, 1), 0), ((0, 2), 0)), and its
elapsed time er is zero. For this experiment, the input to the assembly line is

x[(0, 0), (3, 0)) =

⎧
⎪⎨

⎪⎩

1 if t = (0, 0)

2 if t = (1, 1)

� otherwise

The primitive decomposition of this trajectory has three parts: the empty trajectory
xα[(0, 0), (0, 0)), the first input trajectory x1[(0, 0), (1, 1)) with x1((0, 0)) = 1, and
the second input trajectory and x2[(1, 1), (3, 0)) with x2((1, 1)) = 2.

Case 5 of Equation 4.7 processes xα without altering the state or elapsed time, and
x1 is processed next. Case 1 of Equation 4.7 changes the state of the system to

δext,r ((((0, 1), 0), ((0, 2), 0)), 0, 1) = ((δext,m((0, 1), 0, 1), 0), ((0, 2), 0))

= (((1, 1), 0), ((0, 2), 0))

and time advances to (0, 1). The time advance of the assembly line is now

tar (((1, 1), 0), ((0, 2), 0)) = min{1,∞} = 1

Case 4 of Equation 4.7 sets the elapsed time e of the resultant to 1 and advances the
trajectory to time (1, 0). The elapsed time is equal to the time advance, but the output
of the assembly line is

λr (((1, 1), 0), ((0, 2), 0)) = �
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because the drill does not produce an output. Case 3 of Equation 4.7 now moves the
system into the state

δint,r (((1, 1), 0), ((0, 2), 0)) = ((δint,m((1, 1)), 0), (δext,m((0, 2), 1, 1), 0))

= (((0, 1), 0), ((1, 2), 0))

at time (1, 1) and sets er = 0. Case 5 finishes x1.
The trajectory x2 is applied next. The time advance of the assembly line is now

tar (((0, 1), 0), ((1, 2), 0)) = min{∞, 2} = 2

and so the input at time (1, 1) triggers an external transition, putting the system into
the state

δext,r ((((0, 1), 0), ((1, 2), 0)), 0, 2) = ((δext,m((0, 1), 0, 2), 0), ((1, 2), 0))

= (((2, 1), 0), ((1, 2), 0))

at time (1, 2) and setting er = 0. The time advance is now

tar (((2, 1), 0), ((1, 2), 0)) = min{1, 2} = 1

Case 4 advances the time to (2, 0) and sets e = 1. The output of the resultant at this
time is

λr (((2, 1), 0), ((1, 2), 0)) = �

because the drill needs another unit of time before it produces an output. Case 3 is
applied at (2, 0), and the next state is

δint,r (((2, 1), 0), ((1, 2), 0)) = ((δint,m((2, 1)), 0), δext,m((1, 2), 1, 1), 0))

= (((1, 1), 0), ((2, 1), 0))

at time (2, 1) and er = 0. The time advance is now

tar (((1, 1), 0), ((2, 1), 0)) = min{1, 1} = 1

and case 4 advances the time to (3, 0) and sets er = 1. Now the drill produces its first
part, and the output of the resultant is

λr (((1, 1), 0), ((2, 1), 0)) = 1

Case 5 ends the simulation.
This recursion amply demonstrates the definition of a network, but a table-driven

procedure is more practical when hand calculations are necessary. The table contains
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TABLE 4.2 Table-Driven Simulation of a Network of Discrete-Event Systems

Press Drill

t s ta(s) y x type s ta(s) y x type

(0, 0) (0, 1) ∞ — 1 in,init,0 (0, 2) ∞ — — init,0
(0, 1) (1, 1) 1 — — ext — — — — —
(1, 0) — — 1 — out — — — 1 in
(1, 1) (0, 1) ∞ — 2 int,in (1, 2) 2 — — ext
(1, 2) (2, 1) 1 — — ext — — — — —
(2, 0) — — 1 — out — — — 1 in
(2, 1) (1, 1) 1 — — int (2, 1) 1 — — ext
(3, 0) — — 1 — out,final,1 — — 1 1 in,out,final,1

a column for time and five columns for each component. As before, proceed row
by row calculating input, output, and state transition events as required. In this case,
however, the x column of each component will contain contributions from the y
columns of its influencers. For this purpose, it is helpful to keep the coupling diagram
near at hand. A repetition of the preceding simulation using a table-driven approach
is shown in Table 4.2.

4.2.4 Simulating the Resultant

Just as was done in Section 3.2.4 for discrete-time systems, closure under coupling
can be used to transform the simulator described in Section 4.1.8 for a single atomic
model into a simulator for network models. For this purpose, four new classes are
added to Figure 4.3: the Network, the Resultant, the Event, and the Set. The revised
class diagram is shown in Figure 4.5.

The Set, Event, and Network classes are the same ones used in the discrete time
simulator; they are described in Section 3.2.4. The Event class holds input to or
output from a model, and it carries these events through the Network. The Set has
four essential features; elements can be added to and removed from it, it contains at
most one copy of each element, and we can iterate through its elements. The Network
class has two abstract methods, one for routing input and output events through the
network and another for getting its set of components. The Network also has a pointer
to its Resultant.

The Resultant is an atomic model that encapsulates the Network and computes
the state transition, output, and time advance functions defined for it in Section 4.2.2.
As with the discrete-time simulator, the calculation of input for the components
proceeds forward using the set Ed of influencees, rather than backward using the set
Id of influencers. The Resultant is otherwise an unadorned implementation of the
time advance function (Equation 4.13), output function (Equation 4.15), and external
(Equation 4.18), internal (Equation 4.17), and confluent (Equation 4.20) transition
functions of the network.
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FIGURE 4.5 Class diagram of the top–down simulator for network models.

The implementation of the Resultant is listed below. The similarity of this Resultant
with the discrete-time resultant extends even to the reuse of code; the route method
is the same one listed in Section 3.2.4.

Implementation of the Resultant
1 #ifndef _adevs_resultant_h
2 #define _adevs_resultant_h
3 #include "adevs_network.h"
4 #include <vector>
5

6 namespace adevs
7 {
8

9 template <typename X> class Resultant: public Atomic<X>
10 {
11 public:
12 Resultant(Network<X>* model);
13 void delta_int();
14 void delta_ext(double e, const Bag<X>& xb);
15 void delta_conf(const Bag<X>& xb);
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16 void output_func(Bag<X>& yb);
17 double ta();
18 void gc_output(Bag<X>& gb);
19 ~Resultant() { delete model; }
20 private:
21 Network<X>* model;
22 // Structure for the state and elapsed time of the components
23 struct total_state_t
24 {
25 double e; Atomic<X>* m;
26 // The STL set needs the less than operator
27 bool operator<(const total_state_t& b) const { return m < b.m; }
28 };
29 std::vector<total_state_t> c;
30 std::map<Atomic<X>*,Bag<X> > input, output;
31 void route(const X& value, Atomic<X>* source);
32 };
33

34 template <typename X>
35 Resultant<X>::Resultant(Network<X>* model):
36 Atomic<X>(),model(model)
37 {
38 model->setResultant(this);
39 // Get the atomic components
40 Set<Atomic<X>*> ctmp; model->getComponents(ctmp);
41 // Set the elapsed time to zero and save the total state
42 typename Set<Atomic<X>*>::iterator iter = ctmp.begin();
43 for (; iter != ctmp.end(); iter++) {
44 total_state_t s;
45 s.e = 0.0; s.m = *iter;
46 c.push_back(s);
47 }
48 }
49

50 template <typename X>
51 void Resultant<X>::delta_int()
52 {
53 // Save the time advance because it will change as the state is updated
54 double time_adv = ta();
55 // Input for each component was computed in the output_func method and
56 // so only the new states are computed here.
57 for (typename std::vector<total_state_t>::iterator iter = c.begin();
58 iter != c.end(); iter++) {
59 // Get the bag of input for the model
60 Bag<X>& xb = input[(*iter).m];
61 // Is this model in IMM?
62 if ((*iter).m->ta()-(*iter).e <= time_adv) {
63 // Internal event if no input
64 if (xb.empty()) (*iter).m->delta_int();
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65 // Confluent event otherwise
66 else (*iter).m->delta_conf(xb);
67 // Reset the elapsed time
68 (*iter).e = 0.0;
69 }
70 // otherwise, does it have input?
71 else if (!xb.empty()) {
72 (*iter).m->delta_ext((*iter).e + time_adv,xb);
73 (*iter).e = 0.0;
74 }
75 // just update the elapsed time otherwise
76 else (*iter).e += time_adv;
77 }
78 }
79

80 template <typename X>
81 void Resultant<X>::delta_ext(double e, const Bag<X>& xb)
82 {
83 // Send the input to the proper components
84 for (typename Bag<X>::const_iterator iter = xb.begin();
85 iter != xb.end(); iter++)
86 route(*iter,this);
87 // Compute next state of each component
88 for (typename std::vector<total_state_t>::iterator iter = c.begin();
89 iter != c.end(); iter++) {
90 // Get the bag of input for the model
91 Bag<X>& xb = input[(*iter).m];
92 // Update the elapsed time
93 (*iter).e += e;
94 // If it has input, apply the external transition function
95 if (!xb.empty()) {
96 (*iter).m->delta_ext((*iter).e,xb);
97 (*iter).e = 0.0;
98 }
99 }

100 }
101

102 template <typename X>
103 void Resultant<X>::delta_conf(const Bag<X>& xb)
104 {
105 // Send the input to the proper components
106 for (typename Bag<X>::const_iterator iter = xb.begin();
107 iter != xb.end(); iter++)
108 route(*iter,this);
109 // The confluent transition is the same as the internal transition
110 // when the network inputs have been routed to their destinations
111 delta_int();
112 }
113
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114 template <typename X>
115 void Resultant<X>::output_func(Bag<X>& yb)
116 {
117 // Compute the output of each component and
118 // send those outputs to their destinations
119 for (typename std::vector<total_state_t>::iterator iter = c.begin();
120 iter != c.end(); iter++) {
121 // If this model is in the set IMM
122 if ((*iter).m->ta()-(*iter).e <= ta()) {
123 Bag<X>& y = output[(*iter).m];
124 (*iter).m->output_func(y);
125 for (typename Bag<X>::iterator y_iter = y.begin();
126 y_iter != y.end(); y_iter++)
127 route(*y_iter,(*iter).m);
128 }
129 }
130 // Copy the network output to yb
131 Bag<X>& y = output[this];
132 for (typename Bag<X>::iterator iter = y.begin();
133 iter != y.end(); iter++)
134 yb.insert(*iter);
135 }
136

137 template <typename X>
138 double Resultant<X>::ta()
139 {
140 double min_to_go = DBL_MAX;
141 for (typename std::vector<total_state_t>::iterator iter = c.begin();
142 iter != c.end(); iter++)
143 min_to_go = std::min((*iter).m->ta()-(*iter).e,min_to_go);
144 return min_to_go;
145 }
146

147 template <typename X>
148 void Resultant<X>::gc_output(Bag<X>& gb)
149 {
150 // Let the components clean up their output
151 for (typename std::vector<total_state_t>::iterator iter = c.begin();
152 iter != c.end(); iter++) {
153 (*iter).m->gc_output(output[(*iter).m]);
154 // Clear the output bag for the component
155 output[(*iter).m].clear();
156 // Clear the input bag for the component
157 input[(*iter).m].clear();
158 }
159 // Clear the input and output bag for the resultant
160 input[this].clear();
161 output[this].clear();
162 }
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163

164 template <typename X>
165 void Resultant<X>::route(const X& value, Atomic<X>* source)
166 {
167 Bag<Event<X> > r;
168 model->route(value,source,r);
169 for (typename Bag<Event<X> >::const_iterator iter = r.begin();
170 iter != r.end(); iter++) {
171 // If this is an output from the network
172 if ((*iter).model == this) output[this].insert((*iter).value);
173 // otherwise it goes to an internal component
174 else input[(*iter).model].insert((*iter).value);
175 }
176 }
177

178 } // end of namespace
179

180 #endif

The press and drill will demonstrate how the simulation engine is used. The im-
plementation of the machine model is listed below. This code mirrors the definitions
given in Section 4.2.3. The constructor accepts the processing time tm that distin-
guishes the drill and press, and it sets the initial state to p = 0 and σ = tm . Also
observe that the delta conf method takes advantage of the fact that

δcon,m(s, q) = δext,m(δint,m(s), 0, q)

The implementation of the assembly line, which is a reflection of Figure 4.4, is also
listed below.

Implementation of the Machine Model
1 #ifndef _Machine_h_
2 #define _Machine_h_
3 #include "adevs.h"
4

5 class Machine: public adevs::Atomic<int>
6 {
7 public:
8 Machine(double tm):
9 adevs::Atomic<int>(),

10 tm(tm),p(0),sigma(tm){}
11 void delta_int() { p--; sigma = tm; }
12 void delta_ext(double e, const adevs::Bag<int>& xb)
13 {
14 if (p > 0) sigma -= e;
15 else sigma = tm;
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16 for (adevs::Bag<int>::iterator iter = xb.begin();
17 iter != xb.end(); iter++)
18 p += (*iter);
19 }
20 void delta_conf(const adevs::Bag<int>& xb)
21 {
22 delta_int();
23 delta_ext(0.0,xb);
24 }
25 void output_func(adevs::Bag<int>& yb) { yb.insert(1); }
26 double ta()
27 {
28 if (p > 0) return sigma;
29 else return DBL_MAX;
30 }
31 void gc_output(adevs::Bag<int>&){}
32 double getSigma() const { return sigma; }
33 int getParts() const { return p; }
34 private:
35 const double tm; // Machining time
36 int p; // Number of parts in the bin
37 double sigma; // Time to the next output
38 };
39

40 #endif

Implementation of the Assembly-Line Model
1 #ifndef _AssemblyLine_h_
2 #define _AssemblyLine_h_
3 #include "Machine.h"
4

5 class AssemblyLine: public adevs::Network<int>
6 {
7 public:
8 AssemblyLine():
9 adevs::Network<int>(),

10 // Create the components
11 press(1.0),drill(2.0){}
12

13 void getComponents(adevs::Set<adevs::Atomic<int>*>& c)
14 {
15 c.insert(&press);
16 c.insert(&drill);
17 }
18 void route(const int& value, adevs::Atomic<int>* model,
19 adevs::Bag<adevs::Event<int> >& r)
20 {
21 adevs::Event<int> x;
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22 x.value = value;
23 // External input to the network goes to the press
24 if (model == getResultant()) x.model = &press;
25 // Output from the drill leaves the assembly line
26 else if (model == &drill) x.model = getResultant();
27 // Output from the press goes to the drill
28 else if (model == &press) x.model = &drill;
29 r.insert(x);
30 }
31 Machine* getPress() { return &press; }
32 Machine* getDrill() { return &drill; }
33 private:
34 Machine press, drill;
35 };
36

37 #endif

The main function reads an input trajectory from standard input and injects it
into the simulator. When the input ends, the program finishes executing the model’s
autonomous events, terminating when the time of next event is at infinity. An EventLis-
tener records the output and state of the assembly line as the simulation progresses.
The main simulation loop and the listener are listed below.

Main Simulation Loop for the Assembly-Line Model
1 #include "AssemblyLine.h"
2 #include <iostream>
3 using namespace std;
4 using namespace adevs;
5

6 // Listener for recording the state and output of the assembly line.
7 class AssemblyLineListener: public EventListener<int>
8 {
9 public:

10 AssemblyLineListener(AssemblyLine* assembly_line):
11 assembly_line(assembly_line){}
12 void outputEvent(Atomic<int>* model, const int& value, double t)
13 {
14 // Output from the AssembyLine
15 cout << "Output, t = " << t << ", y = " << value << endl;
16 }
17 void stateChange(Atomic<int>* model, double t)
18 {
19 // Print the state of the assembly line’s components
20 cout << "State, t = " << t;
21 cout << ", press = (" << assembly_line->getPress()->getParts()
22 << "," << assembly_line->getPress()->getSigma() << "), ";
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23 cout << "drill = (" << assembly_line->getDrill()->getParts()
24 << "," << assembly_line->getDrill()->getSigma() << ")"
25 << endl;
26 }
27 private:
28 AssemblyLine* assembly_line;
29 };
30

31 int main()
32 {
33 // Create the model, event listener, and simulator
34 AssemblyLine* assembly_line = new AssemblyLine();
35 Resultant<int>* r = new Resultant<int>(assembly_line);
36 AssemblyLineListener* l = new AssemblyLineListener(assembly_line);
37 Simulator<int>* sim = new Simulator<int>(r);
38 sim->addEventListener(l);
39 // Print the initial state of the model
40 l->stateChange(r,0.0);
41 // Run the simulation
42 while (true) {
43 // Bag for injecting the input
44 Bag<int> input;
45 // The value to inject
46 int blanks;
47 // Time to inject the input
48 double t; int c;
49 // Read the time and input values
50 cin >> t >> c >> blanks;
51 // If this is the end of the input, then quit
52 if (cin.eof()) break;
53 // Simulate until time t and then inject the input
54 while (sim->nextEventTime() < t) {
55 cout << endl;
56 sim->execNextEvent();
57 }
58 // Simulate the transient events
59 for (int i = 0; i < c && sim->nextEventTime() == t; i++) {
60 cout << endl;
61 sim->execNextEvent();
62 }
63 // Inject the input
64 input.insert(blanks);
65 cout << endl;
66 sim->computeNextState(input,t);
67 }
68 // Run until the simulation completes
69 while (sim->nextEventTime() < DBL_MAX) {
70 cout << endl;
71 sim->execNextEvent();
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72 }
73 // Clean up
74 delete sim; delete l; delete r;
75 return 0;
76 }

Giving the input file

0 0 1
2 1 2

to the simulator repeats the calculations done by hand in Section 4.2.3. The manual
simulation produced the response of the assembly line up to time (3, 0). The computer
simulation agrees with the manual simulation to that point, and goes beyond it
to produce the final part at time (7, 0) and terminate at (7, 1). The output of this
simulation is shown below. When reading the output, recall that the integer part of
the clock advances implicitly when an output is produced or the state is changed:
the first line shows time (0, 0), the second (0, 1), the third (1, 1), the fourth (2, 2)
following the input at (2, 1), and so on.

$ ./a.out < input
State, t = 0, press = (0,1), drill = (0,2)

State, t = 0, press = (1,1), drill = (0,2)

State, t = 1, press = (0,1), drill = (1,2)

State, t = 2, press = (2,1), drill = (1,2)

Output, t = 3, y = 1
State, t = 3, press = (1,1), drill = (1,2)

State, t = 4, press = (0,1), drill = (2,1)

Output, t = 5, y = 1
State, t = 5, press = (0,1), drill = (1,2)

Output, t = 7, y = 1
State, t = 7, press = (0,1), drill = (0,2)
$

A comparison of the outcomes produced by the file input a with contents

0 0 1
3 0 1
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and file input b with contents

0 0 1
3 1 1

shows the importance of distinguishing between distinct events that occur at the same
real time t . Putting input a into the simulator produces

$ ./a.out < input_a
State, t = 0, press = (0,1), drill = (0,2)

State, t = 0, press = (1,1), drill = (0,2)

State, t = 1, press = (0,1), drill = (1,2)

Output, t = 3, y = 1
State, t = 3, press = (1,1), drill = (0,2)

State, t = 4, press = (0,1), drill = (1,2)

Output, t = 6, y = 1
State, t = 6, press = (0,1), drill = (0,2)
$

in which the state of the press at time (3, 1) is (1, 1) and the state of the drill is (0, 2).
Putting input b into the simulator produces

$ ./a.out < input_b
State, t = 0, press = (0,1), drill = (0,2)

State, t = 0, press = (1,1), drill = (0,2)

State, t = 1, press = (0,1), drill = (1,2)

Output, t = 3, y = 1
State, t = 3, press = (0,1), drill = (0,2)

State, t = 3, press = (1,1), drill = (0,2)

State, t = 4, press = (0,1), drill = (1,2)

Output, t = 6, y = 1
State, t = 6, press = (0,1), drill = (0,2)
$

in which the state of the press at time (3, 1) is (0, 1) and the state of the drill is (0, 2).
Not until time (3, 2) does the input drive the press into state (1, 1). The trajectories
in files input a and input b produce quantitatively different results.
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4.3 A SIMULATOR FOR DISCRETE-EVENT SYSTEMS

A bottom–up simulator for discrete-event systems could be built just as the simulator
for discrete-time systems was in Section 3.3. The algorithm would be nearly identical,
with changes only to accommodate the definitions of the state transition function and
output function of the discrete-event system. These changes would closely resemble
the differences between the Resultant classes of the discrete-time and discrete-event
simulators.

At any particular moment in time, most of the components in a large discrete-
event system do not produce output or change state. If we are interested in just those
moments when an event actually occurs, then a simple implementation, built in the
mold of the discrete-time simulator, is wasteful of computational resources. There
are three specific burdens that can be shed with a little effort.

The first burden is in the calculation of the network’s state transition and output
functions. The internal, external, and confluent transition functions of the Resultant
iterate through every atomic model in the network and either compute a new state
for it or update its elapsed time. It is likely that only a handful of those components
will actually change state, and if we can deal with just those models, then the cost
of incrementing the elapsed times of the others can be avoided. When a model has
many components, this savings is substantial.

The second burden is in the calculation of the network’s time advance function.
This requires finding the minimum value in a set, and the naive implementation
used in the Resultant iterates over every member of the set to find that minimum.
If, however, the models are kept sorted in the order of their next event times, then
the imminent models can be identified quickly when the output and state transition
functions need to be evaluated.

The third burden is the memory required for the input and output bags used by
the routing algorithm. These bags are required only if a model is producing output or
receiving input, and these actions are relatively infrequent. In principle, only a small
number of bags need be allocated for the small number of models that are active in
each iteration. Doing this can save a substantial amount of memory when a very large
number of components are being simulated. Moreover, the bags will generally hold
only a small number of objects, and those do not need to be kept in any particular
order. Two optimizations will take advantage of these facts to reduce the effort, in
time and space, expended by the simulation engine to manage input and output events.

By accounting for these issues, an efficient simulation engine is substantially more
complicated than the top–down simulator demonstrated in Section 4.2.4. Bear in
mind, however, that the efficient simulator is nothing more nor less than a simulator
for the class of systems described above. Construction will begin with the major
data structures: the event schedule and the bag. Having these, the remainder is
straightforward, and much of it is borrowed from the simulator for discrete time
systems. Algorithm 3.6 is used to transform events from input to output and vice
versa, and the interface to the simulator will closely resemble that for discrete-time
systems except where, as illustrated in Section 4.2.4, modifications are required to
suit the irregular advance of time.
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4.3.1 The Event Schedule

The purpose of the event schedule is to keep the set of atomic models sorted in order
of the times of their next autonomous actions. A large number of data structures are
available for this purpose (see, e.g., Refs. 15, 41, 42, 54, and 121, but note that there
is a vast literature on this subject), but the binary heap (hereafter, simply “the heap”)
is particularly appropriate for two reasons:

1. The number of entries in the heap is at most the number of atomic models in
the simulator, and in practice the size of the heap is often much smaller. An
explicit heap, which is implemented inside an array, takes advantage of this
property to fit itself into a small, contiguous region of memory.

2. The most common operation required by the simulator is rescheduling an
atomic model. It is relatively inexpensive to move an object to a new position
inside a heap, and this efficient rescheduling function can be implemented
easily.

An explicit heap stores its N items in the first N + 1 elements of an array. The
array can, therefore, be small to start and grow as needed; moreover, the contents of
the array do not need to be reorganized when this is done. Adding more space incurs
the cost of expanding the current block of memory allocated for the heap or, if this
block is too small, of finding a new block and copying the heap’s elements to it. If
the size of the heap is doubled at each instance, resizing will occur infrequently over
the course of a long simulation run. The heap is guaranteed to stop growing when its
size is greater than or equal to the number of atomic models in the simulation, and it
may cease to grow long before that point is reached.

The heap organizes its atomic models into a binary tree. The position assigned to
a model is chosen such that the time of its next event is less than or equal to the time
of next event of its children (or child). This is illustrated in Figure 4.6.

The first node, the smallest element in the heap, has the first position in the array.
Its two children occupy positions 2 and 3. The children of position 2 have positions
4 and 5; the children of position 3 have positions 6 and 7. The rule is that the model

104

34

68

9

2

FIGURE 4.6 A collection of elements sorted and stored in a binary tree.
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−1 2 4 3 8 6 4 10 9

FIGURE 4.7 The binary tree of Figure 4.6 stored in an array.

at position k in the heap has its left child at position 2k and right child, at position
2k + 1. The zeroth position in the array is a sentinel value, and its purpose will become
clear in a moment. The models occupy positions from one on. This is illustrated in
Figure 4.7.

The heap supports four operations: finding the item or items with the smallest
priority, inserting a new item into the heap, removing an item from the heap, and
moving an item within the heap. The last two operations require that a model can be
found quickly inside of the array. For this purpose, the variable q index is added to
the Atomic class. The value of q index is zero if the model is not in the heap and has
the model’s array index otherwise.

The Schedule class is a heap designed specifically for the simulator. Its implemen-
tation is listed below. The Schedule has a single template parameter that must match
the type of object used for input and output by the atomic models that it contains. A
detailed description of the Schedule’s operation follows its listing.

Implementation of the Schedule Class
1 #ifndef __adevs_schedule_h_
2 #define __adevs_schedule_h_
3 #include "adevs_models.h"
4 #include <cfloat>
5 #include <cstdlib>
6

7 namespace adevs
8 {
9

10 template <class X> class Schedule
11 {
12 public:
13 // Creates a scheduler with the default or specified initial capacity.
14 Schedule(unsigned int capacity = 100):
15 capacity(capacity),size(0),heap(new heap_element[capacity])
16 {
17 heap[0].priority = -1.0; // This is a sentinel value
18 }
19 // Get the model at the front of the queue.
20 Atomic<X>* getMinimum() const { return heap[1].item; }
21 // Get the time of the next event.
22 double minPriority() const { return heap[1].priority; }
23 // Get the imminent models and set their active flags to true.
24 void getImminent(Bag<Atomic<X>*>& imm) const { getImminent(imm,1); }
25 // Remove the model at the front of the queue.
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26 void removeMinimum();
27 // Remove the imminent models from the queue.
28 void removeImminent();
29 // Add, remove, or move a model as required by its priority.
30 void schedule(Atomic<X>* model, double priority);
31 // Returns true if the queue is empty, and false otherwise.
32 bool empty() const { return size == 0; }
33 // Get the number of elements in the heap.
34 unsigned int getSize() const { return size; }
35 // Destructor.
36 ~Schedule() { delete [] heap; }
37 private:
38 // Definition of an element in the heap.
39 struct heap_element
40 {
41 Atomic<X>* item;
42 double priority;
43 // Constructor initializes the item and priority
44 heap_element():item(NULL),priority(DBL_MAX){}
45 };
46 unsigned int capacity, size;
47 heap_element* heap;
48 // Double the schedule capacity
49 void enlarge();
50 // Move the item at index down and return its new position
51 unsigned int percolate_down(unsigned int index, double priority);
52 // Move the item at index up and return its new position
53 unsigned int percolate_up(unsigned int index, double priority);
54 // Construct the imminent set recursively
55 void getImminent(Bag<Atomic<X>*>& imm, unsigned int root) const;
56 };
57

58 template <class X>
59 void Schedule<X>::getImminent(Bag<Atomic<X>*>& imm, unsigned int root) const
60 {
61 // Stop at the bottom or where the next priority is not the minimum
62 if (root > size || heap[1].priority < heap[root].priority) return;
63 heap[root].item->active = true; // Put the model into the imminent set
64 imm.insert(heap[root].item);
65 getImminent(imm,root*2); // Look for imminents in the left subtree
66 getImminent(imm,root*2+1); // Look in the right subtree
67 }
68

69 template <class X>
70 void Schedule<X>::removeMinimum()
71 {
72 if (size == 0) return; // Don’t do anything if the heap is empty
73 size--; // Otherwise reduce the size of the schedule
74 // Set index to 0 to show that this model is not in the schedule



P1: OSO
c04 JWBS040-Nutaro August 30, 2010 14:17 Printer Name: Yet to Come

A SIMULATOR FOR DISCRETE-EVENT SYSTEMS 147

75 heap[1].item->q_index = 0;
76 // If the schedule is empty, give the last element the priority DBL_MAX
77 if (size == 0)
78 {
79 heap[1].priority = DBL_MAX;
80 heap[1].item = NULL;
81 }
82 // Otherwise fill the hole left by the deleted model
83 else
84 {
85 unsigned int i = percolate_down(1,heap[size+1].priority);
86 heap[i] = heap[size+1];
87 heap[i].item->q_index = i;
88 heap[size+1].item = NULL;
89 }
90 }
91

92 template <class X>
93 void Schedule<X>::removeImminent()
94 {
95 if (size == 0) return;
96 double tN = minPriority();
97 while (minPriority() <= tN) removeMinimum();
98 }
99

100 template <class X>
101 void Schedule<X>::schedule(Atomic<X>* model, double priority)
102 {
103 if (model->q_index != 0) // If the model is in the schedule
104 {
105 // Remove the model if the next event time is infinite
106 if (priority >= DBL_MAX)
107 {
108 // Move the item to the top of the heap
109 double min_priority = minPriority();
110 model->q_index = percolate_up(model->q_index,min_priority);
111 heap[model->q_index].priority = min_priority;
112 heap[model->q_index].item = model;
113 // Remove it and return
114 removeMinimum();
115 return;
116 }
117 // Decrease the time to next event
118 else if (priority < heap[model->q_index].priority)
119 model->q_index = percolate_up(model->q_index,priority);
120 // Increase the time to next event
121 else if (heap[model->q_index].priority < priority)
122 model->q_index = percolate_down(model->q_index,priority);
123 // Don’t do anything if the priority is unchanged
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124 else return;
125 heap[model->q_index].priority = priority;
126 heap[model->q_index].item = model;
127 }
128 // If it is not in the schedule and the next event time is
129 // not at infinity, then add it to the schedule
130 else if (priority < DBL_MAX)
131 {
132 // Enlarge the heap to hold the new model
133 size++;
134 if (size == capacity) enlarge();
135 // Find a slot and put the item into it
136 model->q_index = percolate_up(size,priority);
137 heap[model->q_index].priority = priority;
138 heap[model->q_index].item = model;
139 }
140 // Otherwise, the model is not enqueued and has no next event
141 }
142

143 template <class X>
144 unsigned int Schedule<X>::percolate_down(unsigned int index, double priority)
145 {
146 unsigned int child;
147 for (; index*2 <= size; index = child)
148 {
149 child = index*2;
150 if (child != size && heap[child+1].priority < heap[child].priority)
151 child++;
152 if (heap[child].priority < priority)
153 {
154 heap[index] = heap[child];
155 heap[index].item->q_index = index;
156 }
157 else break;
158 }
159 return index;
160 }
161

162 template <class X>
163 unsigned int Schedule<X>::percolate_up(unsigned int index, double priority)
164 {
165 // Position 0 has priority -1 and this method is always called
166 // with priority >= 0 and index > 0.
167 while (priority <= heap[index/2].priority)
168 {
169 heap[index] = heap[index/2];
170 heap[index].item->q_index = index;
171 index /= 2;
172 }
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173 return index;
174 }
175

176 template <class X>
177 void Schedule<X>::enlarge()
178 {
179 heap_element* rheap = new heap_element[capacity*2];
180 for (unsigned int i = 0; i < capacity; i++)
181 rheap[i] = heap[i];
182 capacity *= 2;
183 delete [] heap;
184 heap = rheap;
185 }
186

187 } // end of namespace
188

189 #endif

There are three methods for getting the elements that have the next event times.
The first two, getMinimum and minPriority return the item or priority, respectively,
stored at the first position in the array. To support the third method, getImminent, the
variable active is added to the Atomic class. This variable is used by the simulator
to quickly determine whether a model is in the set of imminents. The getImminent
method recursively descends into the heap to find the models whose time of next
event is equal to the minPriority, sets the active flag for those models, and puts them
into the Bag of imminent models. The descent along any branch of the tree stops
when a model is found that has a time of next event larger than the minimum.

Using a Bag and active flag, rather than a Set, to store the imminent models is
an optimization that saves the cost of otherwise expensive membership tests. The
Schedule avoids these tests because each imminent model appears exactly once in
the heap. The active flag is used by the simulator to rapidly test for membership in
the imminent set. This is important because membership in the imminent set is a
central part of the simulation algorithm and an expensive membership test seriously
degrades the simulator’s performance.

There are three public methods for inserting, removing, and moving items: sched-
ule, removeImminent, and removeMinimum. To do their job, these methods rely on a
pair of private methods that are the workhorses of the data structure: percolate up and
percolate down. These methods accept a position to adjust and its new priority and
rearrange the heap to create an opening where the new priority belongs. The location
of the hole is returned and then the model can be inserted into it.

The percolate up method reduces a model’s time of next event by moving it toward
the top of the heap. This method compares the next event time of the model to be
adjusted with the next event time of its parent and, if the model to be adjusted has
a next event time that is less than or equal to the parent’s, parent and child change
places. This is repeated until the comparison fails, and thus we have found the proper



P1: OSO
c04 JWBS040-Nutaro August 30, 2010 14:17 Printer Name: Yet to Come

150 DISCRETE-EVENT SYSTEMS

104

32

64

9

2

104

34

68

2

2

104

34

62

8

2

104

32

64

9

2

FIGURE 4.8 Moving a model up with percolate up; the boldfaced 2 is being adjusted.

position of the model. A next event time of −1 is given to the sentinel at position
zero to avoid a special test for the top of the heap. The operation of the percolate up
method is illustrated in Figure 4.8.

The percolate down method increases a model’s time of next event by moving
it toward the bottom of the heap. This method compares the next event time of the
position to be adjusted with the next event time of its children and, if the least of
these event times is smaller than the parent’s, then the parent and that child change
places. This is repeated until the comparison fails or the bottom of the heap is reached,
and thus we have the model’s proper position. The operation of the percolate down
method is illustrated in Figure 4.9.

The removeMinimum method removes the first element in the heap by replacing it
with the last element in the heap and then percolating that element down to its proper
position. The last (now first) element sinks into the heap and settles at the location
where its time of next event is smaller than that of its children and greater than or
equal to that of its parent. The old minimum, the element that was removed, has its
q index set to zero to indicate that it is no longer in the schedule. The new minimum
is the smaller of the children of the removed minimum or it is NULL (with an infinite
priority) if the heap is empty.

To remove all of the imminent models, the removeImminent method repeatedly
removes the minimum element until either the heap is empty or the next event time
of the smallest element is larger than the next event time of the imminent models.

The schedule method can insert a model into the heap, remove a model from the
heap, and adjust the position of a model in the heap. It takes one of four actions when
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FIGURE 4.9 Moving a model down with percolate down; the boldfaced 11 is being
adjusted.

given a model and the time of its next event. If the model is already in the heap, then
(1) it is removed if the time of next event is at infinity or (2) its position is adjusted
to match its next event time; if the model is not in the heap, then (3) it is inserted if
its next event time is not at infinity–otherwise, (4) the model is not in the heap and
has its next event at infinity, and so the schedule does nothing with it.

Inserting a model into and moving it within the schedule are done with the enlarge,
percolate up, and percolate down methods. A model is inserted in two steps: (1), the
size of the heap is increased by 1 and additional memory is allocated if required,
and (2) the model is placed in the last position of the heap and percolated up until
it occupies its proper place. To adjust the position of a model that is already in the
schedule, it is percolated up if the time of next event is reduced; percolated down,
if the time of next event is increased; or left in place if the time of next event is
unchanged.

Removing a model from the heap requires two steps: (1) it is percolated up to
the first position (i.e., the minimum position) and (2) then it is removed with a call
to removeMinimum. Careful attention must be paid to how the percolate up method
is implemented. It is tempting, but incorrect, to stop moving a model up when its
time of next event is less than its parent’s. If there are several models with the same
priority, then this saves a few swaps and compares. However, this could leave the
model that we want to delete at a position below the root of the tree. Therefore the
test for upward motion must be less than or equal to when comparing child to parent.
The percolate up algorithm presented in many (perhaps all) data structure books
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FIGURE 4.10 Maximum number of compare and swaps required by percolate up and
percolate down as a function of the number of models in the heap. The x axis has a logarithmic
scale; the heap’s ability to manage a large number of models is readily apparent.

use < and so it is important to keep in mind this peculiar requirement of our event
schedule (see, e.g., Weiss’ Data Structures and Algorithm Analysis in C [145]).5

The time required to place a model in or remove a model from the heap is
determined chiefly by the percolate up and percolate down methods. The number
of iterations of the for loops of these methods is, at most, equal to the height of
the heap. If it holds N atomic models, then the height is at most �log2 N�. This is
deduced by first observing that the number of nodes in a heap of height h is between
2h and 2h+1 − 1 (a heap with a single element has a height of zero), that is, that
N ∈ [2h, 2h+1 − 1]. For a given N , the smallest integer value of h that satisfies this
expression is �log2 N�, and hence the bound on the execution time.

To insert or move a model within the heap requires one call to percolate up
or percolate down, and so the cost of an insertion or adjustment is bounded by
�log2 N�. To remove a model requires one call to percolate up and a second call
to percolate down, and so it is twice as expensive as an insertion or adjustment.
Nonetheless, the heap’s operations in general have an execution time proportional to
�log2 N�, which is plotted Figure 4.10.

The only exception to this rule is the enlarge method. Its time is spent chiefly
in allocating a new array, copying the old array to the new, and then deallocating
the old. The memory allocation is itself quite slow, and compounding this are the
memory assignments required to transfer the array contents. Fortunately, the heap is
very rarely enlarged. In a long-running simulation, enlarge is called early to grow
the heap to some size that is generally smaller than N , and calls later in the run are

5Another solution is to use −1, or some other time of next event that is invalid, to remove a model from
the heap. This requires that the sentinel value be less than −1, or whatever other value is used for removal.
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exceedingly rare. Therefore, the enlarge method is not a significant contributor to the
running time of most simulations.

4.3.2 The Bag

Small, unordered collections of objects are used throughout the simulation engine,
which does three things with them: iterate through the elements, insert an element,
and remove an element. A lightweight class, built specifically for this role, improves
the performance of the simulation engine by reducing the execution time of these
common operations. This lightweight class is the Bag, which stores its elements in
an array. The array grows to hold the largest number of elements put into the bag, but
does not shrink as elements are removed. As the bag is reused over its lifetime, its
size, much like the size of the heap, stabilizes and so the aggregate cost of resizing is
small for a long-running simulation.

Elements are inserted into the bag by placing them at the back of the array. If the
array is too small, then its size doubles before the element is inserted. An element
is removed by moving the last item in the bag to the position of the removed item.
To remove every element from the array, it suffices to set its size to 0. In this way,
elements are always stored contiguously and can be easily traversed.

The complete listing of the bag class is shown below. It implements a part of
the STL multiple associative container interface, but it does not satisfy the time
constraints for some of those methods. The most commonly used methods—insert,
remove, and clear—require a simple assignment and, possibly, increment operation.
The iterator is likewise simple, a thin veneer over the underlying array. Only two
methods do not execute in constant time: (1) if the insert method needs to enlarge
the array, then it must iterate through the entire collection to assign the elements of
the old array to the new array; and (2) if the erase method needs to locate a specific
element in the array, then it must search element by element to find it.

Implementation of the Bag Class
1 #ifndef _adevs_bag_h
2 #define _adevs_bag_h
3 #include <cstdlib>
4

5 namespace adevs
6 {
7

8 // The Bag is (almost) a model of a STL Multiple Associative Container.
9 // The STL methods that are implemented conform to the standard except

10 // in regards to their computational complexity.
11 template <class T> class Bag
12 {
13 public:
14 // A bidirectional iterator for the Bag
15 class iterator
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16 {
17 public:
18 iterator(unsigned int start = 0, T* b = NULL):
19 i(start),b(b){}
20 iterator(const iterator& src):
21 i(src.i),b(src.b){}
22 const iterator& operator=(const iterator& src)
23 {
24 i = src.i;
25 b = src.b;
26 return *this;
27 }
28 bool operator==(const iterator& src) const {
29 return i==src.i;
30 }
31 bool operator!=(const iterator& src) const {
32 return i!=src.i;
33 }
34 T& operator*() { return b[i]; }
35 const T& operator*() const { return b[i]; }
36 iterator& operator++() { i++; return *this; }
37 iterator& operator--() { i--; return *this; }
38 iterator& operator++(int) { ++i; return *this; }
39 iterator& operator--(int) { --i; return *this; }
40 private:
41 friend class Bag<T>;
42 unsigned int i;
43 T* b;
44 };
45 typedef iterator const_iterator;
46 // Create an empty bag with an initial capacity
47 Bag(unsigned int cap = 8):
48 cap_(cap),size_(0),b(new T[cap]){}
49 // Copy constructor uses the = operator of T
50 Bag(const Bag<T>& src):cap_(src.cap_),size_(src.size_)
51 {
52 b = new T[src.cap_];
53 for (unsigned int i = 0; i < size_; i++)
54 b[i] = src.b[i];
55 }
56 // Assignment opeator uses the = operator of T
57 const Bag<T>& operator=(const Bag<T>& src)
58 {
59 cap_ = src.cap_;
60 size_ = src.size_;
61 delete [] b;
62 b = new T[src.cap_];
63 for (unsigned int i = 0; i < size_; i++)
64 b[i] = src.b[i];
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65 return *this;
66 }
67 // Count the instances of a stored in the bag
68 unsigned count(const T& a) const
69 {
70 unsigned result = 0;
71 for (unsigned i = 0; i < size_; i++)
72 if (b[i] == a) result++;
73 return result;
74 }
75 // Get the number of elements in the bag
76 unsigned size() const { return size_; }
77 // Same as size()==0
78 bool empty() const { return size_ == 0; }
79 // Get an iterator pointing to the first element in the bag
80 iterator begin() const { return iterator(0,b); }
81 // Get an interator starting just after the last element
82 iterator end() const { return iterator(size_,b); }
83 // Erase the first instance of k
84 void erase(const T& k)
85 {
86 iterator p = find(k);
87 if (p != end()) erase(p);
88 }
89 // Erase the element pointed to by p
90 void erase(iterator p)
91 {
92 size_--;
93 b[p.i] = b[size_];
94 }
95 // Remove all of the elements from the bag
96 void clear() { size_ = 0; }
97 // Find the first instance of k, or end() if no instance is found.
98 // Uses == for comparing T.
99 iterator find(const T& k) const

100 {
101 for (unsigned i = 0; i < size_; i++)
102 if (b[i] == k) return iterator(i,b);
103 return end();
104 }
105 // Put t into the bag
106 void insert(const T& t)
107 {
108 if (cap_ == size_) enlarge(2*cap_);
109 b[size_] = t;
110 size_++;
111 }
112 ~Bag() { delete [] b; }
113 private:
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114 unsigned cap_, size_;
115 T* b;
116 // Adds the specified capacity to the bag.
117 void enlarge(unsigned adjustment)
118 {
119 cap_ = cap_ + adjustment;
120 T* rb = new T[cap_];
121 for (unsigned i = 0; i < size_; i++)
122 rb[i] = b[i];
123 delete [] b;
124 b = rb;
125 }
126 };
127

128 } // end of namespace
129

130 #endif

Only a handful of bags are actually needed at any moment, and it is wasteful to
create separate bags for each atomic model and to create and destroy bags while
routing an event. The simulator can reduce its use of memory by having a cache of
bags that are reused as needed.

This cache is implemented by the ObjectPool class, which stores a collection
of reusable objects. It has two methods plus a constructor and a destructor. The
constructor creates an initial pool of objects. The make obj method gets an object
from the pool and returns it or, if the pool is empty, creates a new object. The
destroy obj method puts the supplied object into the pool. It is the responsibility of
the caller to ensure that the object is restored to its initial state before being returned
for reuse. The destructor deletes the pool. The code for the ObjectPool is listed below.

Implementation of the ObjectPool Class
1 #ifndef __adevs_object_pool_h_
2 #define __adevs_object_pool_h_
3 #include "adevs_bag.h"
4

5 namespace adevs
6 {
7

8 template <class T> class object_pool
9 {

10 public:
11 // Construct a pool with a specific initial population
12 object_pool(unsigned int pop = 0):pool()
13 {
14 for (unsigned int i = 0; i < pop; i++)
15 pool.insert(new T());
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16 }
17 // Create an object
18 T* make_obj()
19 {
20 T* obj;
21 if (pool.empty()) obj = new T;
22 else
23 {
24 obj = *((pool.end())--);
25 pool.erase(pool.end()--);
26 }
27 return obj;
28 }
29 // Return an object to the pool
30 void destroy_obj(T* obj) { pool.insert(obj); }
31 // Delete all objects in the pool
32 ~object_pool()
33 {
34 typename Bag<T*>::iterator iter = pool.begin();
35 for (; iter != pool.end(); iter++) delete *iter;
36 }
37 private:
38 Bag<T*> pool;
39 };
40

41 } // end of namespace
42

43 #endif

4.3.3 The Simulation Engine

What the previous simulation engine did with an atomic model, this simulation engine
does with a network model: (1) obtain the time of its next autonomous action, (2)
get the output of the network and its components at that time, (3) compute its next
internal event, and (4) inject an input in the interval spanning the last change of state
and the next autonomous action. The simulator accepts the same types of trajectories
as before, applying them to the resultant of the network to compute its next state.

The classes that constitute the simulation engine are shown in Figure 4.11. These
are very similar to the classes that constitute the discrete-time simulator in Section
3.3. Time, of course, is changed from an integer in the discrete-time simulator to
a double in the discrete-event simulator; the integer part of the simulation clock is
implicit. The Dtss class is changed to the Devs class, which stands for discrete-event
system, and the namespace is likewise changed to adevs, which stands for a discrete-
event simulator. The Atomic class requires a new interface that is by now familiar.
The most significant changes are in the Simulator class, for which the interface must
change in small ways and the implementation change greatly.
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FIGURE 4.11 Class diagram for the bottom–up simulation engine.

The Simulator uses a Schedule to keep its components sorted in the order of their
next autonomous events. The imminent set is stored in the Bag called imm, and the
set of models that have been activated by input are in the Bag called activated. The
active flag of the Atomic model is used to test for membership in these bags. Each
Atomic object is assigned as needed a Bag from the object pools to store its input and
output, and every Atomic model maintains its own time of last event that is initially
zero.

The constructor for the Simulator descends depth first into the network, finding
atomic models that have a finite-time advance and inserting them into the schedule.
The private schedule method is used to do this. It sets the time of the model’s last
event and computes its next event time as the last event time plus the time advance.
The check for an infinite time advance helps to avoid a problem that might arise from
adding the largest representable double with some other number. If, for example, the
result is not a number (nan) or infinity (inf), then the Schedule is likely to break. The
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GNU C++ compiler (or, at least, version 4.2.3) gives DBL MAX when a positive
double is added to it, but there is no guarantee that another compiler will give the
same result. The extra test is therefore a necessary precaution. Once the next event
time is known, the model is assigned to its proper position in the event schedule.

The time of the Network’s next autonomous action is equal to the next event time
of its imminent components, and these are the Atomic models at the top of the event
schedule. Therefore, the nextEventTime method simply returns the smallest event
time in the Schedule.

The computeNextOutput method assumes that there will be no input between that
last event and the next autonomous event, and proceeds to calculate the imminent
set and the inputs for models that are influenced by the imminent components. The
method first tests whether the imminent set is empty; if it is not, then the necessary
calculations have already been done and the method returns. Otherwise, the imminent
models are obtained directly from the Schedule, which puts them into the imm bag
and sets their active flags to true. The output of the imminent models is computed
and routed, using Algorithm 3.6, to the models that should receive it. The recipients
that are not already in the imm or activated bags are inserted into the activated bag
and their active flag is set to true. The route method invokes the outputEvent method
of EventListeners that are registered with the Simulator.

The computeNextState method applies to the network the two types of allowed
trajectories. If the bag of input is empty and t is equal to the time of the next
event, then this is an empty trajectory ending at the next autonomous action. In this
case, the computeNextOutput method is called to ensure that the imminent and acti-
vated bags are up-to-date and new states for those models are computed. Otherwise,
it is necessary to undo the speculative calculation of the imminent and activated
bags and then route the injected input to the appropriate components. Once this is
done, new states are computed for the activated models. Finally, the imminent (if
any) and activated models are rescheduled, the output from the imminent models
is deleted, and the bags used for input and output calculations are returned to the
pool.

The Simulator takes advantage of the ObjectPool class to minimize the number
of Bags that are created for handling input and output and for routing events. The
route method uses a Bag from the object pool instead of creating a new one and
then destroying it. The inject input and clean up methods complement one another
to assign a bag for input to an atomic model when it is needed and to retract that bag
when the model has finished using it. The clean up method likewise complements
the computeNextOutput method by giving the Atomic models a chance to delete their
output objects and then retracting the bag that was assigned to that model for storing
its output.

The code for the Simulator is listed below. Its implementation requires only 275
lines of code (as counted with the UNIX command wc -l). The supporting classes
(Schedule, Bag, ObjectPool, Atomic, Network, etc.) bring the total lines of code for
the discrete event simulation engine to 942. About a third of that, 362 lines, is for the
Bag, ObjectPool, and Schedule, which are optimizations. The core of the simulation
engine is quite simple.
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Implementation of the Simulator Class
1 #ifndef __adevs_simple_simulator_h_
2 #define __adevs_simple_simulator_h_
3 #include "adevs_models.h"
4 #include "adevs_event_listener.h"
5 #include "adevs_sched.h"
6 #include "adevs_bag.h"
7 #include "adevs_set.h"
8 #include "object_pool.h"
9 #include <cassert>

10 #include <cstdlib>
11 #include <iostream>
12 #include <vector>
13

14 namespace adevs
15 {
16

17 // This class implements the bottom up simulation procedure
18 template <class X> class Simulator
19 {
20 public:
21 // Create a simulator for the model
22 Simulator(Devs<X>* model);
23 // Add an event listener
24 void addEventListener(EventListener<X>* l) { listeners.insert(l); }
25 // Get the time of the next event
26 double nextEventTime() { return sched.minPriority(); }
27 // Execute the simulation cycle at nextEventTime()
28 void execNextEvent()
29 {
30 computeNextOutput();
31 computeNextState(bogus_input,sched.minPriority());
32 }
33 // Compute the output values of the imminent models. This will
34 // notify the EventListener of output events.
35 void computeNextOutput();
36 // Apply the input at time t and then compute the next state. This
37 // will produce output too if t == nextEventTime().
38 void computeNextState(Bag<Event<X> >& input, double t);
39 // Deletes the simulator, but leaves the model intact.
40 ~Simulator();
41 private:
42

43 Bag<Event<X> > bogus_input; // Empty bag for execNextEvent()
44 Bag<EventListener<X>*> listeners; // Registered event listeners
45 Schedule<X> sched; // The event schedule
46 // Set of imminent models and models activated by input
47 Bag<Atomic<X>*> imm, activated;
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48 // Pools of preallocated, commonly used objects
49 object_pool<Bag<X> > io_pool;
50 object_pool<Bag<Event<X> > > recv_pool;
51 // Schedule an atomic model for t + ta()
52 void schedule(Atomic<X>* model, double t);
53 // Route an event from a source having the specified parent
54 void route(Network<X>* parent, Devs<X>* src, X& x);
55 // Add an event to the input bag for an atomic model. If the model’s
56 // active flag is false, then this method adds the model to the
57 // activated bag and sets its active flag to true.
58 void inject_event(Atomic<X>* model, X& value);
59 // Set the model’s active flag to false, delete the contents of
60 // its output bag, and return the input and output bags to the pool
61 void clean_up(Atomic<X>* model);
62 // Notify listeners of an output event.
63 void notify_output_listeners(Devs<X>* model,
64 const X& value, double t);
65 // Notify listeners of a change in state
66 void notify_state_listeners(Atomic<X>* model, double t);
67 // Put the atomic leaves of the network into the set s
68 void getAllChildren(Network<X>* model, Set<Atomic<X>*>& s);
69 };
70

71 template <class X>
72 Simulator<X>::Simulator(Devs<X>* model)
73 {
74 // Put an atomic model into the schedule
75 if (model->typeIsAtomic() != NULL)
76 schedule(model->typeIsAtomic(),0.0);
77 // Otherwise find the set of atomic components and put those into
78 // the schedule
79 else {
80 Set<Atomic<X>*> A;
81 getAllChildren(model->typeIsNetwork(),A);
82 for (typename Set<Atomic<X>*>::iterator iter = A.begin();
83 iter != A.end(); iter++)
84 schedule(*iter,0.0);
85 }
86 }
87

88 template <class X>
89 void Simulator<X>::schedule(Atomic<X>* model, double t)
90 {
91 model->tL = t; // Set the time of the last event
92 double dt = model->ta(); // Compute the time advance
93 // Schedule the model for activity at its time of next event
94 if (dt == DBL_MAX) sched.schedule(model,DBL_MAX);
95 else sched.schedule(model,t+dt);
96 }
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97

98 template <class X>
99 void Simulator<X>::getAllChildren(Network<X>* model, Set<Atomic<X>*>& s)

100 {
101 Set<Devs<X>*> tmp;
102 model->getComponents(tmp); // Get the set of components
103 // Put the atomic components into s and call getAllChildren for
104 // the network components
105 typename Set<Devs<X>*>::iterator iter;
106 for (iter = tmp.begin(); iter != tmp.end(); iter++) {
107 if ((*iter)->typeIsNetwork() != NULL)
108 getAllChildren((*iter)->typeIsNetwork(),s);
109 else
110 s.insert((*iter)->typeIsAtomic());
111 }
112 }
113

114 template <class X>
115 void Simulator<X>::computeNextOutput()
116 {
117 // If the imminent set is up to date, then just return
118 if (imm.empty() == false) return;
119 // Get the imminent models from the schedule. This sets the active flags.
120 sched.getImminent(imm);
121 // Compute output functions and route the events. The bags of output
122 // are held for garbage collection at a later time.
123 for (typename Bag<Atomic<X>*>::iterator imm_iter = imm.begin();
124 imm_iter != imm.end(); imm_iter++) {
125 Atomic<X>* model = *imm_iter;
126 // Don’t recalculate the model’s output if we already have it
127 if (model->y == NULL) {
128 model->y = io_pool.make_obj();
129 model->output_func(*(model->y));
130 // Route each event in y
131 for (typename Bag<X>::iterator y_iter = model->y->begin();
132 y_iter != model->y->end(); y_iter++)
133 route(model->getParent(),model,*y_iter);
134 }
135 }
136 }
137

138 template <class X>
139 void Simulator<X>::computeNextState(Bag<Event<X> >& input, double t)
140 {
141 // If t is less than the next event time, make sure that
142 // computeNextOutput() has not been called
143 if (t < sched.minPriority() && !imm.empty())
144 throw exception("input can not precede output");
145 // If the output function needs to be computed, then do it
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146 else if (t == sched.minPriority() && imm.empty())
147 computeNextOutput();
148 // Route the injected inputs
149 for (typename Bag<Event<X> >::iterator iter = input.begin();
150 iter != input.end(); iter++) {
151 Atomic<X>* amodel = (*iter).model->typeIsAtomic();
152 if (amodel != NULL) inject_event(amodel,(*iter).value);
153 else route((*iter).model->typeIsNetwork(),(*iter).model,
154 (*iter).value);
155 }
156 // Compute the states of atomic models.
157 for (typename Bag<Atomic<X>*>::iterator iter = imm.begin();
158 iter != imm.end(); iter++) {
159 // Compute the new state
160 if ((*iter)->x == NULL) (*iter)->delta_int();
161 else (*iter)->delta_conf(*((*iter)->x));
162 // Notify listeners of the change in state
163 notify_state_listeners(*iter,t);
164 // Adjust the position of the model in the schedule
165 schedule(*iter,t);
166 }
167 for (typename Bag<Atomic<X>*>::iterator iter = activated.begin();
168 iter != activated.end(); iter++) {
169 // Compute the new state
170 (*iter)->delta_ext(t-(*iter)->tL,*((*iter)->x));
171 // Notify listeners of the change in state
172 notify_state_listeners(*iter,t);
173 // Adjust the position of the model in the schedule
174 schedule(*iter,t);
175 }
176 // Cleanup after the models that changed state in this iteration
177 for (typename Bag<Atomic<X>*>::iterator iter = imm.begin();
178 iter != imm.end(); iter++)
179 clean_up(*iter);
180 for (typename Bag<Atomic<X>*>::iterator iter = activated.begin();
181 iter != activated.end(); iter++)
182 clean_up(*iter);
183 // Empty the bags
184 imm.clear();
185 activated.clear();
186 }
187

188 template <class X>
189 void Simulator<X>::clean_up(Atomic<X>* model)
190 {
191 model->active = false;
192 if (model->x != NULL) {
193 model->x->clear();
194 io_pool.destroy_obj(model->x);
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195 }
196 if (model->y != NULL) {
197 model->gc_output(*(model->y));
198 model->y->clear();
199 io_pool.destroy_obj(model->y);
200 }
201 model->x = model->y = NULL;
202 }
203

204 template <class X>
205 void Simulator<X>::inject_event(Atomic<X>* model, X& value)
206 {
207 if (model->active == false) activated.insert(model);
208 if (model->x == NULL) model->x = io_pool.make_obj();
209 model->active = true;
210 model->x->insert(value);
211 }
212

213 template <class X>
214 void Simulator<X>::route(Network<X>* parent, Devs<X>* src, X& x)
215 {
216 // Notify event listeners if this is an output event
217 if (parent != src) notify_output_listeners(src,x,sched.minPriority());
218 // No one to do the routing, so return
219 if (parent == NULL) return;
220 // Compute the set of receivers for this value
221 Bag<Event<X> >* recvs = recv_pool.make_obj();
222 parent->route(x,src,*recvs);
223 // Deliver the event to each of its targets
224 Atomic<X>* amodel = NULL;
225 typename Bag<Event<X> >::iterator recv_iter = recvs->begin();
226 for (; recv_iter != recvs->end(); recv_iter++) {
227 // if the destination is an atomic model, then add the event to the
228 // I/O bag for that model and put the model in the list of
229 // activated models
230 amodel = (*recv_iter).model->typeIsAtomic();
231 if (amodel != NULL) inject_event(amodel,(*recv_iter).value);
232 // if this is an external output from the parent model
233 else if ((*recv_iter).model == parent)
234 route(parent->getParent(),parent,(*recv_iter).value);
235 // otherwise it is an input to a coupled model
236 else route((*recv_iter).model->typeIsNetwork(),(*recv_iter).model,
237 (*recv_iter).value);
238 }
239 recvs->clear();
240 recv_pool.destroy_obj(recvs);
241 }
242

243 template <class X>



P1: OSO
c04 JWBS040-Nutaro August 30, 2010 14:17 Printer Name: Yet to Come

A SIMULATOR FOR DISCRETE-EVENT SYSTEMS 165

244 void Simulator<X>::notify_output_listeners(Devs<X>* model,
245 const X& value, double t)
246 {
247 Event<X> event(model,value);
248 typename Bag<EventListener<X>*>::iterator iter;
249 for (iter = listeners.begin(); iter != listeners.end(); iter++)
250 (*iter)->outputEvent(event,t);
251 }
252

253 template <class X>
254 void Simulator<X>::notify_state_listeners(Atomic<X>* model, double t)
255 {
256 typename Bag<EventListener<X>*>::iterator iter;
257 for (iter = listeners.begin(); iter != listeners.end(); iter++)
258 (*iter)->stateChange(model,t);
259 }
260

261 template <class X>
262 Simulator<X>::~Simulator()
263 {
264 // Clean up the models with stale IO
265 typename Bag<Atomic<X>*>::iterator imm_iter;
266 for (imm_iter = imm.begin(); imm_iter != imm.end(); imm_iter++)
267 clean_up(*imm_iter);
268 for (imm_iter = activated.begin(); imm_iter != activated.end();
269 imm_iter++)
270 clean_up(*imm_iter);
271 }
272

273 } // End of namespace
274

275 #endif

To illustrate the use of this simulation engine, consider again the assembly line
modeled in Section 4.2.4. The Machine class does not require any change to be used
with the new simulation engine. The AssemblyLine, because it will no longer be
contained in a Resultant, can in its route method send and receive events directly to
and from itself. It must also change the signature of its getComponents and route
methods to accept a Devs object rather than an Atomic object and, finally, the drill
and press must have their parent field set to the AssemblyLine so that the routing
algorithm will work. The new implementation is listed below.

Implementation of the AssemblyLine for the
New Simulation Engine

1 #ifndef _AssemblyLine_h_
2 #define _AssemblyLine_h_
3 #include "Machine.h"
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4

5 class AssemblyLine: public adevs::Network<int>
6 {
7 public:
8 AssemblyLine():
9 adevs::Network<int>(),

10 press(1.0),drill(2.0) // Create the component models
11 {
12 // Remember to set their parent, otherwise the Simulator will
13 // not be able to route their output events
14 press.setParent(this);
15 drill.setParent(this);
16 }
17 void getComponents(adevs::Set<adevs::Devs<int>*>& c)
18 {
19 c.insert(&press);
20 c.insert(&drill);
21 }
22 void route(const int& value, adevs::Devs<int>* model,
23 adevs::Bag<adevs::Event<int> >& r)
24 {
25 adevs::Event<int> x;
26 x.value = value;
27 // External input to the network goes to the press
28 if (model == this) x.model = &press;
29 // Output from the drill leaves the assembly line
30 else if (model == &drill) x.model = this;
31 // Output from the press goes to the drill
32 else if (model == &press) x.model = &drill;
33 r.insert(x);
34 }
35 Machine* getPress() { return &press; }
36 Machine* getDrill() { return &drill; }
37 private:
38 Machine press, drill;
39 };
40

41 #endif

The main simulation program must also change to accommodate the new inter-
faces. The AssemblyLineListener filters events to extract just output from the network
and to print the state of the drill and press separately; the AssemblyLine no longer
appears in the stateChange callback. This will change the program’s output slightly
because the state of a Machine is printed only when it is altered, rather than at every
simulation event. The final change is where input is injected into the simulation;
this must now be put into an Event that is directed to the AssemblyLine. The new
implementation is listed below.
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The Main Function for the New Assembly-Line Simulation
1 #include "AssemblyLine_bottom_up.h"
2 #include <iostream>
3 using namespace std;
4 using namespace adevs;
5

6 // Listener for recording the state and output of the assembly line.
7 class AssemblyLineListener: public EventListener<int>
8 {
9 public:

10 AssemblyLineListener(AssemblyLine* assembly_line):
11 assembly_line(assembly_line){}
12 void outputEvent(Event<int> y, double t)
13 {
14 // Output from the AssembyLine
15 if (y.model == assembly_line)
16 cout << "Output, t = " << t << ", y = " << y.value << endl;
17 }
18 void stateChange(Atomic<int>* model, double t)
19 {
20 // Get the model of the machine
21 Machine* m = dynamic_cast<Machine*>(model);
22 // Print the state of the machine
23 cout << "State, t = " << t;
24 if (model == assembly_line->getPress()) cout << ", press = (";
25 else cout << ", drill = (";
26 cout << m->getParts() << "," << m->getSigma() << ")" << endl;
27 }
28 private:
29 AssemblyLine* assembly_line;
30 };
31

32 int main()
33 {
34 // Create the model, event listener, and simulator
35 AssemblyLine* assembly_line = new AssemblyLine();
36 AssemblyLineListener* l = new AssemblyLineListener(assembly_line);
37 Simulator<int>* sim = new Simulator<int>(assembly_line);
38 sim->addEventListener(l);
39 // Print the initial state of the model
40 l->stateChange(assembly_line->getDrill(),0.0);
41 l->stateChange(assembly_line->getPress(),0.0);
42 // Run the simulation
43 while (true) {
44 // Bag for injecting the input
45 Bag<Event<int> > input;
46 // The value to inject
47 int blanks;



P1: OSO
c04 JWBS040-Nutaro August 30, 2010 14:17 Printer Name: Yet to Come

168 DISCRETE-EVENT SYSTEMS

48 // Time to inject the input
49 double t; int c;
50 // Read the time and input values
51 cin >> t >> c >> blanks;
52 // If this is the end of the input, then quit
53 if (cin.eof()) break;
54 // Simulate until time t and then inject the input
55 while (sim->nextEventTime() < t) {
56 cout << endl;
57 sim->execNextEvent();
58 }
59 // Simulate the transient events
60 for (int i = 0; i < c && sim->nextEventTime() == t; i++) {
61 cout << endl;
62 sim->execNextEvent();
63 }
64 // Inject the input
65 Event<int> input_event(assembly_line,blanks);
66 input.insert(input_event);
67 cout << endl;
68 sim->computeNextState(input,t);
69 }
70 // Run until the simulation completes
71 while (sim->nextEventTime() < DBL_MAX) {
72 cout << endl;
73 sim->execNextEvent();
74 }
75 // Clean up
76 delete sim; delete l; delete assembly_line;
77 return 0;
78 }

To repeat the previous calculations, this simulator is fed the input lines

0 0 1
2 1 2

and its output, which is shown below, agrees with, but is more verbose than, its top–
down counterpart. When reading the output, recall that the integer part of the clock
advances implicitly when the state is changed. Blocks of printed output associated
with each discrete moment are separated by a blank line: the first block occurs at
time (0, 0), the second block at (0, 1), the third block at (1, 1), the fourth at (2, 2)
following the input at (2, 1), and so on.

$ ./a.out < input
State, t = 0, drill = (0,2)
State, t = 0, press = (0,1)
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State, t = 0, press = (1,1)

State, t = 1, press = (0,1)
State, t = 1, drill = (1,2)

State, t = 2, press = (2,1)

Output, t = 3, y = 1
State, t = 3, press = (1,1)
State, t = 3, drill = (1,2)

State, t = 4, press = (0,1)
State, t = 4, drill = (2,1)

Output, t = 5, y = 1
State, t = 5, drill = (1,2)

Output, t = 7, y = 1
State, t = 7, drill = (0,2)
$

Similarly, feeding this simulation with the file input a containing

0 0 1
3 0 1

produces

$ ./a.out < input_a
State, t = 0, drill = (0,2)
State, t = 0, press = (0,1)

State, t = 0, press = (1,1)

State, t = 1, press = (0,1)
State, t = 1, drill = (1,2)

Output, t = 3, y = 1
State, t = 3, drill = (0,2)
State, t = 3, press = (1,1)

State, t = 4, press = (0,1)
State, t = 4, drill = (1,2)

Output, t = 6, y = 1
State, t = 6, drill = (0,2)
$
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and file input b with contents

0 0 1
3 1 1

gives the output

l$ ./a.out < input_b
State, t = 0, drill = (0,2)
State, t = 0, press = (0,1)

State, t = 0, press = (1,1)

State, t = 1, press = (0,1)
State, t = 1, drill = (1,2)

Output, t = 3, y = 1
State, t = 3, drill = (0,2)

State, t = 3, press = (1,1)

State, t = 4, press = (0,1)
State, t = 4, drill = (1,2)

Output, t = 6, y = 1
State, t = 6, drill = (0,2)
$

both agreeing with the top–down simulation in Section 4.2.4.

4.4 THE COMPUTER IN THE TANK

Equipped with a complete simulation engine for discrete-event systems, we can
complete the work started in Section 4.1.8 by building the rest of the model of
the tank’s computer. The PacketProcessing model, whose phase graph is shown in
Figure 2.7, has three state variables: the time σ remaining until the next internal event,
the phase, and the queue of packets that are waiting to be processed. The packets
are stored in a first-in/first-out queue, which is implemented with a list. There are
two phases, interrupted and operating, and a single Boolean value keeps track of
which phase the model is in. The time to the next internal event is a positive number
implemented by a double.

The PacketProcessing model has two types of input: interrupts from the interrupt
handler and packets from the radio. These arrive as two types of SimEvent objects.
SimInterrupt events come from the interrupt handler. SimPacket events, which contain
the duty cycles and directions for the left and right motors, come from the radio.
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The model produces SimMotorOnTime events that contain the left and right motor
on times and directions. The header file for the PacketProcessing model is listed
below.

Header File for the PacketProcessing Model
1 #ifndef PACKET_PROCESSING_H_
2 #define PACKET_PROCESSING_H_
3 #include "adevs.h"
4 #include "SimEvents.h"
5 #include <list>
6 // This is the model of the computer’s packet processing code.
7 // Input events must have the type SIM_PACKET or SIM_INTERRUPT.
8 // Output events have the type SIM_MOTOR_ON_TIME.
9 class PacketProcessing: public adevs::Atomic<SimEvent>

10 {
11 public:
12 PacketProcessing();
13 // State transition functions
14 void delta_int();
15 void delta_ext(double e, const adevs::Bag<SimEvent>& xb);
16 void delta_conf(const adevs::Bag<SimEvent>& xb);
17 // Output function
18 void output_func(adevs::Bag<SimEvent>& yb);
19 // Time advance function
20 double ta();
21 void gc_output(adevs::Bag<SimEvent>&){}
22 private:
23 // Computer time needed to process one packet
24 const double processing_time;
25 // Time to process the next packet
26 double sigma;
27 // Are we interrupted?
28 bool interrupt;
29 // FIFO queue holding packets that need processing
30 std::list<SimPacket> q;
31 };
32

33 #endif

The definitions of the internal, external, and confluent transition functions; output
function; and time advance function can be inferred from the phase graph in Figure
2.7. The dotted arc S4 defines the internal transition function. The arcs S0 through
S3 define the external transition function, which is briefly summarized by a three-
step process: (1) if the model is not interrupted, then decrement the time remaining
to process the current packet; (2) put new packets into the back of the queue and
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switch the mode if an interrupt indicator is received; and (3) if the model was idle
and a packet is now available, then begin to process it. The operation of the external
transition function can be inferred without ambiguity because the events S0 through
S3 produce the same result regardless of the order in which they are applied.

The confluent transition function must resolve the situation where S4, S0, S3,
or all of these are eligible to be active at the same time. The phase graph does not
supply a rule for this situation, and so we must create one to complete the state space
description of the model. Any ordering of the external events S3 and S0 will produce
the same result, and so the question is where S4 should sit in the sequence. The
intention of the phase graph is that S4 occur while the model is in the OPERATE
phase. Because an interrupt can move the model out of this phase, it seems reasonable
to apply S4 prior to engaging any of the external events. This implies that the confluent
transition function is calculated by first applying the internal transition function and
then the external transition function.

The output function and time advance function are less complicated. The model
will produce output only when it is in the OPERATE phase, and the output is a
SimMotorOnTime event that carries the on times and directions contained in the
packet at the front of the queue. If the model is operating, then the time until the
next internal event is σ . If the model is interrupted, then the next internal event is at
infinity. The implementation of the PacketProcessing model is listed below.

Implementation of the PacketProcessing Model
1 #include "PacketProcessing.h"
2 #include <cmath>
3 using namespace std;
4 using namespace adevs;
5

6 PacketProcessing::PacketProcessing():
7 Atomic<SimEvent>(),
8 processing_time(0.0016),
9 sigma(DBL_MAX),

10 interrupt(false)
11 {
12 }
13

14 void PacketProcessing::delta_int()
15 {
16 q.pop_front();
17 if (q.empty()) sigma = DBL_MAX;
18 else sigma = processing_time;
19 }
20

21 void PacketProcessing::delta_ext(double e, const Bag<SimEvent>& xb)
22 {
23 // If we are not interrupted and are processing a packet, then
24 // reduce the time remaining to finish with that packet
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25 if (!interrupt && !q.empty()) sigma -= e;
26 // Process input events
27 for (Bag<SimEvent>::const_iterator iter = xb.begin();
28 iter != xb.end(); iter++)
29 {
30 if ((*iter).getType() == SIM_PACKET)
31 q.push_back((*iter).simPacket());
32 else if ((*iter).getType() == SIM_INTERRUPT)
33 interrupt = !interrupt;
34 }
35 // If we are idle and there are more packets, then start
36 // processing the next one
37 if (sigma == DBL_MAX && !q.empty()) sigma = processing_time;
38 }
39

40 void PacketProcessing::delta_conf(const Bag<SimEvent>& xb)
41 {
42 delta_int();
43 delta_ext(0.0,xb);
44 }
45

46 void PacketProcessing::output_func(Bag<SimEvent>& yb)
47 {
48 // Set the motor on times from the data in the completed packet
49 assert(!q.empty());
50 assert(!interrupt);
51 SimMotorOnTime on_time;
52 on_time.left = fabs(q.front().left_power)*255.0;
53 on_time.right = fabs(q.front().right_power)*255.0;
54 on_time.reverse_left = q.front().left_power < 0.0;
55 on_time.reverse_right = q.front().right_power < 0.0;
56 yb.insert(SimEvent(on_time));
57 }
58

59 double PacketProcessing::ta()
60 {
61 if (interrupt) return DBL_MAX; // No work while interrupted
62 else return sigma; // Otherwise continue processing the packet
63 }

To build the model of the computer, the PacketProcessing and InterruptHandler
models are connected as shown in Figure 2.8. Packets delivered to the computer
are routed to the PacketProcessing model; motor settings from the PacketProcessing
model are sent to the InterruptHandler; voltage signals from the InterruptHandler
become output from the computer, and interrupts go to the PacketProcessing model.
The Computer class that implements this model is listed below.
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Header File for the Computer Model
1 #ifndef Computer_h_
2 #define Computer_h_
3 #include "PacketProcessing.h"
4 #include "InterruptHandler.h"
5

6 // This is a model of the computer. It contains an InterruptHandler
7 // and a PacketProcessing model.
8 class Computer:
9 public adevs::Network<SimEvent>

10 {
11 public:
12 // Create a computer whose interrupt handler has the
13 // specified frequency.
14 Computer(double freq);
15 // Get the components of the computer
16 void getComponents(adevs::Set<adevs::Devs<SimEvent>* > &c);
17 // Route events within the computer
18 void route(const SimEvent& value, adevs::Devs<SimEvent>* model,
19 adevs::Bag<adevs::Event<SimEvent> > &r);
20 private:
21 PacketProcessing p;
22 InterruptHandler i;
23 };
24

25 #endif

Source File for the Computer Model
1 #include "Computer.h"
2 #include <cassert>
3 using namespace adevs;
4

5 Computer::Computer(double freq):
6 Network<SimEvent>(),
7 p(),
8 i(freq)
9 {

10 p.setParent(this);
11 i.setParent(this);
12 }
13

14 void Computer::getComponents(Set<Devs<SimEvent>* > &c)
15 {
16 c.insert(&i);
17 c.insert(&p);
18 }
19

20 void Computer::route(const SimEvent& value, Devs<SimEvent>* model,
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21 Bag<Event<SimEvent> > &r)
22 {
23 // Packets and interrupts go to the packet processing model
24 if (value.getType() == SIM_PACKET || value.getType() == SIM_INTERRUPT)
25 r.insert(Event<SimEvent>(&p,value));
26 // Motor on times go to the interrupt handler
27 else if (value.getType() == SIM_MOTOR_ON_TIME)
28 r.insert(Event<SimEvent>(&i,value));
29 // Motor voltages are external outputs
30 else if (value.getType() == SIM_MOTOR_VOLTAGE)
31 r.insert(Event<SimEvent>(this,value));
32 // Any other type is an error
33 else assert(false);
34 }

To exercise the model, we can write a simulation program that sets the duty ratio
and direction for the motors by sending a packet to the computer and then recording
the voltage signals that it produces. The familiar form of the simulator’s main function
is listed below. It injects a single packet at the start of the simulation and runs for a
handful of periods of the voltage signal; Figure 4.12 plots the voltages at the left and
right motors. Both signals have a positive amplitude, but the left motor is on more
often than the right, and the response of the tank is an arcing, clockwise turn.

Source File for the Computer Simulator
1 #include "Computer.h"
2 #include "SimEvents.h"
3 #include <fstream>
4 using namespace std;
5 using namespace adevs;
6

7 class ComputerListener: public EventListener<SimEvent>
8 {
9 public:

10 ComputerListener(const Computer* computer):
11 EventListener<SimEvent>(),computer(computer),
12 vout("voltage.dat")
13 {
14 vout << 0 << " " << 0 << " " << 0 << endl; // Print volts @ t=0
15 }
16 void outputEvent(Event<SimEvent> y, double t)
17 {
18 if (y.model == computer) {
19 SimMotorVoltage event = y.value.simMotorVoltage();
20 vout << t << " " << event.el << " " << event.er << endl;
21 }
22 }
23 void stateChange(Atomic<SimEvent>*,double){}
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24 private:
25 const Computer* computer;
26 ofstream vout;
27 };
28

29 int main(int argc, char** argv)
30 {
31 // Get the parameters for the experiment from the command line
32 if (argc != 4) {
33 cout << "freq left_throttle right_throttle" << endl;
34 return 0;
35 }
36 // Get the frequency of the voltage signal from the first argument
37 double freq = atof(argv[1]);
38 // Create a command from the driver that contains the duty ratios and
39 // directions.
40 SimPacket sim_command;
41 sim_command.left_power = atof(argv[2]);
42 sim_command.right_power = atof(argv[3]);
43 // Create computer, simulator, and event listener.
44 Computer* computer = new Computer(freq);
45 Simulator<SimEvent>* sim = new Simulator<SimEvent>(computer);
46 ComputerListener* l = new ComputerListener(computer);
47 // Add an event listener to plot the voltage signals
48 sim->addEventListener(l);
49 // Inject the driver command into the simulation at time 0
50 Bag<Event<SimEvent> > input;
51 SimEvent cmd(sim_command);
52 Event<SimEvent> event(computer,cmd);
53 input.insert(event);
54 sim->computeNextState(input,0.0);
55 // Run the simulation
56 while (sim->nextEventTime() <= 0.004)
57 sim->execNextEvent();
58 // Clean up and exit
59 delete sim; delete computer; delete l;
60 return 0;
61 }

4.5 CELLULAR AUTOMATA REVISITED

This chapter began with a statement that discrete-event simulations are a general-
ization of discrete-time systems. The cellular automata constructed in Section 3.5
will demonstrate this fact. Let T (l, c, r ) be the cell’s transition rule, which maps its
present state c and states of its left l and right r neighbors into a new state. Consider
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FIGURE 4.12 Output of the computer in response to a packet that sets a 50% duty ratio for
the right motor and 75% for the left motor. The frequency of the computer’s clock is 7.4 kHz.

the discrete-event system

S = {0, 1}
X = Y = S × N

δint(s) = s

δext(s, e, {(bl, k − 1), (br , k + 1)}) = T (bl, s, br )

δcon(s, xb) = δext(s, 0, xb)

λ(s) = (s, k)

ta(s) = 1

which models a cell at location k. For the moment, assume that each cell begins with
its elapsed time equal to 1. If N of these cells are connected to identical neighbors,
differing only in k, to form a ring, then the output trajectories have nonevents except at
t = (m, 0), where m ∈ N. Likewise, the input trajectories are � except at t = (m, 0),
where their values are {(br , k + 1), (bl , k − 1)} for k ∈ [1, N − 1]; for the cell at
k = 1, the input values arrive from N and 2; similarly for the cell at k = N . The state
trajectories change value in the discrete instant following an input, that is, from state
s at t = (m, 0) to state T (bl, s, br ) at (m, 1).

The discrete-time cell is quite similar in form. It has identical sets of states, inputs,
and outputs; an identical output function; and the state transition function is

δ(s, {(bl, k − 1), (br , k + 1)}) = T (bl, s, br ) (4.21)
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This is precisely what was rendered in code in Section 3.5.
It is intuitively obvious that the discrete-event cell mimics its discrete-time coun-

terpart; we now proceed to establish this in a formal way. The function ḡ maps
a discrete-time trajectory xd [m, m + 1) to an event trajectory xe[(m, 0), (m + 1, 0))
by assigning xd (m) to xe((m, 0)) and xe(t) = � for all t ∈ [(m, 1), (m + 1, 0)). The
function h̄ takes the total state (s, 1) of the discrete-event system to the state s of the
discrete-time system. Letting δd and δe be the single step-state transition functions
for the discrete-time and discrete-event models (i.e., as in Equations 3.8, and 4.7),
respectively, and λ (from above) and � (Equation 4.10) be the output functions of the
discrete time and discrete event systems, respectively, two facts are readily verified:

1. h̄(δe((s, 1), ḡ(xd ))) = δd (h̄((s, 1)), xd )

2. �((s, 1)) = λ(h̄((s, 1)))

This establishes a homomorphic mapping of the discrete-event system to the
discrete-time system (this is an I/O system homomorphism [157]). Informally, the
discrete-event system begun in total state (s, 1) has all the capabilities of the discrete-
time system started in state s. Moreover, because the structure of the discrete-time
and discrete-event networks are identical, the discrete-event cellular automaton is a
componentwise reproduction of the discrete-time automaton. A discrete-event au-
tomaton, however, can do much more than its discrete-time counterpart. The elapsed
time need not be uniform across the space of cells, and if some variety is allowed,
this produces asynchronous cellular automata, which are a subject of considerable
interest in biology and the social sciences (see, e.g., Refs. 13, 28, 55, 129, and 134).

To illustrate, consider trajectories produced by a ring composed of the asyn-
chronous cell listed below. The cells are left-looking (oriented toward the left); the
transition rule is T (bl, s, br ) = bl . Moreover, each cell is allowed a separate time
advance and so they must record the previous output of the left neighbor to have it
available when a state transition occurs. Each cell begins, as required by our simu-
lation software, with an elapsed time of zero. The initial state of the cells alternates
between 0, colored black, and 1, colored white. Note that in the figures the cells are
arranged from top to bottom and time moves from left to right; this is not the visual
arrangement used in Section 3.5.

Left-Looking Event Cell
1 #ifndef LookLeft_h_
2 #define LookLeft_h_
3 #include "adevs.h"
4

5 #define BLACK 0
6 #define WHITE 1
7

8 // A left looking event automaton. The CellEvent structure
9 // contains an integer that is the cell’s position and

10 // another integer that has its state.
11 class LookLeft: public adevs::Atomic<adevs::CellEvent<int> >
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12 {
13 public:
14 // Constructor puts the cell into its initial state of
15 // black if the location is even and white otherwise
16 LookLeft(int width, int location, double P):
17 adevs::Atomic<adevs::CellEvent<int> >(),
18 location(location),width(width),P(P)
19 {
20 s = l = WHITE;
21 // We have a state 0
22 if (location % 2 == 0) s = BLACK;
23 else l = BLACK; // or our neighbor does
24 c = 0.0;
25 }
26 void delta_int() { c = 0.0; s = l; }
27 void delta_ext(double e, const adevs::Bag<adevs::CellEvent<int> >& xb)
28 {
29 c += e;
30 l = (*(xb.begin())).value;
31 }
32 void delta_conf(const adevs::Bag<adevs::CellEvent<int> >& xb)
33 {
34 delta_int();
35 delta_ext(0.0,xb);
36 }
37 double ta() { return P-c; }
38 // Output function
39 void output_func(adevs::Bag<adevs::CellEvent<int> >& yb)
40 {
41 adevs::CellEvent<int> y;
42 y.x = (location+1)%width;
43 y.value = l;
44 yb.insert(y);
45 }
46 // The gc method is not needed
47 void gc_output(adevs::Bag<adevs::CellEvent<int> >&){}
48 // Get the location of the cell
49 int getLocation() const { return location; }
50 // Get the state of the cell
51 int getState() const { return s; }
52 private:
53 int s, l; // Own and left neighbor’s discrete state
54 double c; // Time spent in own, current discrete state
55 const int location, width; // Our postion in the space and its size
56 const double P; // Time interval between changes of s
57 };
58

59 #endif
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FIGURE 4.13 Trajectory of the left looking automaton with the time advance of each cell
selected at random from 1

2 , 1
3 , and 1: (a) discrete variable; (b) elapsed time.

Figure 4.13 shows 125 units of time for this model with the time advance of
each cell selected at random from 1

2 , 1
3 , and 1. The trajectory initially appears to be

irregular, but at the sixth set of bands settles into a recognizable pattern. The elapsed
time for each component is periodic as well. Indeed, the individual components return
simultaneously to zero every unit of real time. Moreover, the number of discrete states
is finite and must also repeat. It follows that the total state trajectory of the resultant
of this network is periodic: the observed repetitions in the discrete state persist
indefinitely.

If, however, the time advance is fixed at 1 then a discrete time system emerges once
again. The initial chaos (but ultimate order) produce by an irregular time advance
vanishes, replaced by a simple arrangement that translates colors to the left at each
step. Figure 4.14 shows 125 steps of this arrangement. The periodicity of this cellular
automaton is immediately apparent, and the close connection between discrete-event
and discrete-time systems is vividly revealed.

4.6 SUMMARY

Just as discrete-time systems are derived by application of the semigroup property to
sequences, this chapter has derived discrete-event systems by its application to event
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FIGURE 4.14 Trajectory of the synchronous, left-looking automaton.

trajectories. Indeed, the latter systems subsume the former in the strictest sense. This
imparts the practical advantage of a simulation framework that deals simultaneously
with both. The common heritage of these classes of systems is also reflected in the
common aspects of their simulation software. In particular, the intuitive approach to
simultaneity inherent in a discrete-time worldview finds a natural home here.

The use of state space models as fundamental building blocks also lends itself
to the incorporation of continuous systems in our discrete-event models (or vice
versa). Indeed, numerical methods for solving differential equations are discrete-
event systems. There is no conceptual divide to be crossed; the simulation problem
is entirely one of implementation. This problem has been tackled successfully in
several contexts (the literature here is vast, but see, e.g., Refs. 11, 30, 34, 66, 67, 77,
and 110), and from our present vantage point, the common element of these methods
are readily seized on and exploited. Significantly, the approach taken in Chapter 5
does require any modification of our concept of a discrete-event system. Continuous
simulation is handled in its entirety, and with surprising ease, in the context of a
discrete-event worldview.
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CHAPTER 5

HYBRID SYSTEMS

Hybrid systems comprise continuous and discrete-event subsystems that interact. The
continuous parts, unlike the discrete-event parts, cannot be simulated in their origi-
nal form. Instead, continuous models are approximated with discrete-event models
amenable to computer simulation. Any number of approximating systems can be
used, each answering in a different way three fundamental questions:

1. In any finite interval of time, the continuous system traverses an infinity of
states, but estimates can be computed for only a finite number of them (i.e., the
discrete system must be legitimate); which points are picked?

2. To calculate these points requires knowledge of the trajectory between them;
what is assumed?

3. The system interacts with its environment; how are inputs and outputs, contin-
uous and discrete, handled?

For the moment, consider only questions 1 and 2 in relation to a single, ordinary
differential equation

ẋ = f (x)

This continuous model can be approximated by (1) discretizing time into points
separated by intervals of duration h and (2) assuming that x follows a line in those

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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intervals. This yields the discrete-time system

x(t0 + (n + 1)h) = x(t0 + nh) + h f (x(t0 + nh))

which estimates x at times t0 + kh for k = 0, 1, 2, . . . . Indeed, this is Euler’s method
for the numerical solution of an ordinary differential equation.

Another approach is to discretize x into points separated by intervals of length q ,
thus yielding a set of discrete states x0 + kq for k = . . . ,−2,−1, 0, 1, 2, . . . . The
goal now is to determine when x takes on these discrete values. By again assuming
that x is a line between calculated points, the discrete-event system

ta(k) =
{

q/| f (x0 + kq)| if f (x0 + kq) �= 0

∞ otherwise

δint(k) = k + f (x0 + kq)/| f (x0 + kq)|
λ(k) = x0 + δint(k)q

generates an output trajectory which approximates the continuous x . This is a first-
order quantized state system (see, e.g., Refs. 70, 100, and 158).

To be concrete, consider a rock dropped from a bridge. Its downward velocity v
is described by the ordinary differential equation

v̇ = g − D

m
v (5.1)

where m is the rock’s mass, g is acceleration due to gravity, and D is the coefficient
of aerodynamic drag. It is not necessary to simulate this system; the rock’s speed can
be written down once and for all if the rock’s initial velocity v0 is known. With this
information, we have

v(t) = g

D/m

(

1 − exp

(

− D

m
t

))

+ v0 exp

(

− D

m
t

)

(5.2)

and that this is the solution to Equation 5.1 can be verified by taking its derivative
with respect to time.

Applying Euler’s method, we select an interval of duration h and approximate this
continuous model with the discrete system

vk+1 = vk + h

(

g − D

m
vk

)
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FIGURE 5.1 The Euler method and quantized state method applied to the model of a falling
rock with g = 9.8 m/s2, m = 1 kg, D = 5, and v0 = 0 m/s. The discrete models use h = 0.1
and q = 0.2 respectively.

where vk is the speed of the rock at time kh. A quantized state approximation using
q yields the discrete-event model

ta(k) =
{

q/|g − (D/m)(v0 + kq)| if g − (D/m)(v0 + kq) �= 0

∞ otherwise

δint(k) = k + (g − (D/m)(v0 + kq))/|g − (D/m)(v0 + kq)|
λ(k) = v0 + δint(k)q

Figure 5.1 compares the exact trajectory and the event trajectories produced by these
approximations.

Euler’s method and its kin, which discretize time, are the mainstays of numerical
analysis and will be the focus of this chapter. Quantized state methods are nonetheless
attractive for many applications (see, e.g., Refs. 70, 93, 94, 103, and 138) and can
be incorporated with ease into the framework developed here; this intriguing topic is
discussed in several textbooks (see, e.g., those by Zeigler et al. [157] and Cellier and
Kofman [20]).1

1Notation in this chapter differs from the previous parts of the book and may be confusing. The set Q
stands for a set of discrete states rather than set of total states; q is a member of Q or, in the code, a
continuous state variable. So, too, x is a continuous state variable or, in the code, a discrete input. Usage
of any symbol is consistent within a section, but beware of changes between sections. This unfortunate
situation is a compromise between conflicting uses of x , q , and Q in the literature on discrete-event and
hybrid systems.



P1: OSO
c05 JWBS040-Nutaro August 29, 2010 14:7 Printer Name: Yet to Come

AN ELEMENTARY HYBRID SYSTEM 185

5.1 AN ELEMENTARY HYBRID SYSTEM

Consider a system with a state that evolves continuously but an input that is discrete;
the lopsided square wave that drives the tank’s motors is one example. The input
signal u takes values u0, u1, . . . , un at times t0, t1, . . . , tn . The equation that describes
this system is

ẋ = f (x, u) (5.3)

Begun in state x0 = x(t0) and fed the input trajectory u[t0, t), with t > tn, the state
trajectory of the system is the solution to Equation 5.3:

x(t) = x0 +
n−1∑

j=0

t j+1∫

t j

f (x(τ ), u j ) dτ +
t∫

tn

f (x(τ ), un) dτ (5.4)

Euler’s method is adapted to approximate this system in the following way. A fixed
stepsize h is used to compute x(t) through intervals in which u is constant. Changes
in u are inputs to the discrete-event system. The external transition function responds
to them by using the elapsed time for the integration step and then storing the new
value of u. This ensures that the endpoints of the integrals are handled precisely. This
method is realized by the (output-free) discrete-event model

X = R

S = R × R

δint((x, u)) = (x + h f (x, u), u)

δext((x, u), e, u′) = (x + e f (x, u), u′)

δcon((x, u), u′) = (x + h f (x, u), u′)

ta((x, u)) = h

which has a state trajectory that approximates the continuous x .
A simplified model of an unloaded electric motor will illustrate the method. The

current i through the motor is related to the voltage v at its terminals by

i̇ = (v − i R)/L (5.5)

where R is the resistance of the motor windings and L is their inductance. To have a
simple calculation, take L = R = 1 so that Euler’s method, applied to Equation 5.5,
gives

i(t + h) = i (t) + h(v(t) − i(t)) = (1 − h)i(t) + hv(t) (5.6)

where i and v are known at time t . Observe that h < 2 is necessary for the calculated
i to remain bounded, and h << 2 is needed to compute something similar to the
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TABLE 5.1 Simulation of Equation 5.5 Using Euler’s Methoda

t i, u v Event

(0, 0) 0, 0 — init,0
(0.5, 1) 0, 0 — int
(0.75, 0) — 1 in
(0.75, 1) 0, 1 — ext
(1.25, 1) 0.5, 1 — int
(1.5, 0) — 0 in
(1.5, 1) 0.625, 0 — ext
(2, 1) 0.3125, 0 — int
(2.25, 0) — 1 in
(2.25, 1) 0.234375, 1 ext,final,0

aWhere h = 0.5, v is a square wave with period 0.75 and amplitude 1, v((0, 0)) =
0, and i = u = 0 initially. Output events have been omitted.

correct continuous trajectory. Arbitrarily choosing h = 0.5 and v to be a square
wave with period 0.75 and amplitude of 1, the discrete-event model calculates i at
times 0.5, 0.75, 1.25, 1.5, 2, 2.25, . . . . These discrete instants capture precisely the
moments when v changes and approximate i in the intervening spans. Table 5.1
shows the state and input trajectory for this simulation.

5.2 NETWORKS OF CONTINUOUS SYSTEMS

The network structure used for discrete systems is also applicable to continuous
systems (see, e.g., Refs. 149 and 157), but it is most valuable as a modeling aide and
rarely used in simulations. Because continuous systems are concerned with the real
or, more generally, complex numbers, algebraic operations can reduce every network
to a set of ordinary differential equations, or if not, then this indicates a special
difficulty with the model. If a hard case is not ill-defined, then it is a differential
algebraic model; Cellier and Kofman [20] give a good introduction to simulation
algorithms for these systems. The formulation in Section 5.1 can be applied to any
network that is reducible to a set of ordinary differential equations.

A continuous input uc is incorporated into the state space of the model as follows.
If uc is a function of x alone, replace f (x, uc(x)) with z(x) = f (x, uc(x)) and solve
the differential equation ẋ = z(x). If uc is a function of t as well, then add a new
state variable τ that satisfies τ̇ = 1, define a new function z(x, τ ) = f (x, uc(x, τ )),
and solve the pair of differential equations

ẋ = z(x, τ )

τ̇ = 1

which is an input free system. Armed with this trick, continuous inputs do not require
special handling by the simulation program.
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5.3 HYBRID MODELS AS DISCRETE-EVENT SYSTEMS

A model of a sampled data system must provide output at fixed intervals, regardless of
how the continuous equations are solved; similarly, a model of a threshold sensor must
provide output at the moment of a threshold crossing, regardless of the timestep used
for integration. Simulation methods for a hybrid system must therefore coordinate
discrete-events and the timestep of the numerical integration scheme.

A continuous model in its state space form can be approximated by an atomic,
discrete-event model that encapsulates methods for event detection and numerical
integration. If the continuous model is connected to discrete components, then inter-
actions with those occur by discrete-events: discrete sensor readings, square waves,
and so forth. This arrangement of a hybrid model, which splits continuous and
discrete-event elements, is illustrated in Figure 5.2.

The hybrid model has a vector x ∈ R
m of continuous state variables and a set

Q of discrete states that describe switch settings, operating modes, and so forth.
The differential equation that governs the model’s continuous evolution depends, in
general, on the discrete state q and so has the form

ẋ = f (x, q) (5.7)

The occurrence of autonomous events in this system is conditional on both q and x .
Just as in a pure discrete-event system, the real time that will elapse prior to the next
internal event is a function of the present state. The hybrid analog of the time advance
function has the form

G : (Rm × Q) → R∞
0

and events happen when G((x, q)) = 0.
Referring again to Figure 5.2, the continuous variables are exposed only through

the event trajectory that is produced as output. If the last event was at time tk and the
value of x at that time is xk , then the value of x at the next event, some time h later, is

xk+1 = xk +
tk+h∫

tk

f (x(t), q) dt (5.8)

FIGURE 5.2 Separation of a model into discrete-event and continuous components which
interact by discrete-events.
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If the next event is autonomous, then h = G((xk, q)) in the formulation given above.
Otherwise, the system was interrupted by an external event and h ≤ G((xk, q)).
Regardless, the value of x at the event can be obtained with any suitable numerical
method and Equation 5.8 therefore poses no special difficulty.

The effect of the event is a separate matter: x and q can change discontinuously in
response to discrete input, the occurrence of an internal event, or both. Just as with a
discrete-event system, three transition functions account for the three possible cases:

δ̂int : (Rm × Q) → (Rm × Q)

δ̂ext : (Rm × Q) × R∞
0 × Xb → (Rm × Q)

δ̂con : (Rm × Q) × Xb → (Rm × Q)

define the response of the system to internal, external, and confluent events respec-
tively. Similarly, the output function

λ̂ : (Rm × Q) → Y b

generates discrete output when an autonomous event occurs. These “hatted” functions
are an abbreviated description of the discrete-event system

δint((xk , q)) = δ̂int((xk+1, q))

δext((xk, q), e, xb) = δ̂ext((xk+1, q), e, xb)

δcon((xk, q), xb) = δ̂con((xk+1, q), xb) (5.9)

ta((xk, q)) = G((xk, q))

λ((xk, q)) = λ̂((xk+1, q))

where xk+1 is calculated by Equation 5.8 with h = ta((xk, q)) for internal and con-
fluent events and in the output function, and with h = e for external events.

A simple model will illustrate the essential concepts. Consider the system shown
in Figure 5.3, which has a single continuous variable constrained by surfaces at 0
and 1. It follows a line from 1 to 0, bounces off that surface, returns to 1, bounces
again, and this repeats forever. This system has a single discrete variable d , with the
range {1,−1}, that gives the continuous variable x its direction. The system can be
interrupted at any time by an input u ∈ {1, −1}, which immediately changes the value
of d. The model produces an output each time it encounters a constraining surface.

Beginning with x ∈ [0, 1], the continuous trajectory between events is described
by

ẋ = d (5.10)
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1

0

d=−1 d=1 d= −1

t

x

(0,0) (1,0) (1,1) (2,0) (2,1)

FIGURE 5.3 State trajectory of the bouncing hybrid system.

the time remaining to the next internal event is

G((x, d)) =
{

x if d = −1

1 − x if d = 1
(5.11)

and the system’s response to discrete-events is

δ̂int((x, d)) = (x, −d)

δ̂ext((x, d), e, u) = (x, u)

δ̂con((x, d), u) = (x, u)

λ̂((x, d)) = x

It is trivial to solve Equation 5.8 for this system; doing so and then substituting the
preceding equations into Equation 5.9 gives the discrete-event model2

δint((x, d)) = δ̂int((xk+1, d)) = ((d + 1)/(2d),−d)

δext((x, d), e, u) = δ̂ext((xk+1, d), e, u) = (x + ed, u)

δcon((x, d), u) = δ̂con((xk+1, d), u) = ((d + 1)/(2d), u)

ta((x, d)) = G((x, d)) =
{

x if d = −1

1 − x if d = 1

λ((x, d)) = λ̂((xk+1, d)) = (d + 1)/(2d)

2The equation (d + 1)/(2d) is zero when d = −1 and x is descending. It is one when d = 1 and x is
climbing.
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The output of this model when begun in state (0, 1) and fed, for instance, the input
trajectory u[(0, 0), (∞, 0)) with

u(t) =
{

1 if t = (1.5, 0)

� otherwise

is y[(0, 0), (∞, 0)) with

y(t) =

⎧
⎪⎨

⎪⎩

1 if t = (1, 0) or t = (2m, 0), m ∈ N

0 if t = (2m + 1, 0), m ∈ N − {0}
� otherwise

which can be confirmed by a table-driven simulation or logical argument (both are
excellent exercises).

The continuous trajectory, of course, is calculated only at discrete points. If a
more detailed sampling of x is required, then G must be reformulated to invoke
calculations at smaller intervals. This is accomplished by (1) introducing an upper
limit for G equal to the largest sampling period hmax and (2) adding checks to λ̂ and
δ̂int for satisfaction of the conditions x = 1 and x = 0. The reformulated equations
are

G((x, d)) =
{

min{hmax, x} if d = −1

min{hmax, 1 − x} if d = 1

δ̂int((x, d)) =
{

(x, −d) if x = 1 ∨ x = 0

(x, d) otherwise

δ̂ext((x, d), e, u) = (x, u)

δ̂con((x, d), u) = δ̂ext(δ̂int((x, d)), 0, u)

λ̂((x, d)) =
{

x if x = 1 ∨ x = 0

� otherwise

That the output is unchanged is easily verified. The state trajectory, however, is
sampled more often: in the absence of input, with a frequency 1/hmax.

5.4 NUMERICAL SIMULATION OF HYBRID SYSTEMS

The formulation above assumes that G can be calculated without future knowledge of
x . Lacking a direct expression for the location of events in time, they must be defined
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instead by locations in the model’s state space. This is reminiscent of the activity-
scanning approach to discrete-event simulation (see, e.g., Ref. 157), but the event
condition depends simultaneously on continuous and discrete variables. Specifically,
autonomous events are described by a set of threshold functions

g1(x(tk + h), q) = 0

g2(x(tk + h), q) = 0

...

gp(x(tk + h), q) = 0

and G(x(tk), q) is defined implicitly as the smallest, nonnegative h that satisfies at
least one of these equalities or ∞ if no such h exists.

To illustrate this construction, consider the time advance of the bouncing sys-
tem described in the previous section. Equation 5.11 is defined implicitly by the
surface

g((x(tk + h), d)) = x(tk + h) − (d + 1)/2 = 0

and, because we know that x(tk + h) = xk + hd, this equation can be solved directly
to obtain G.

Two methods are required for simulation of the hybrid system: a numerical in-
tegration method for advancing the continuous solution and a root-finding method
to locate events between integration steps. These topics are covered by most in-
troductory textbooks on numerical analysis (see, e.g., Refs. 71, 114, and 151) and
in the specific context of hybrid simulation by a growing body of literature (see,
e.g., Refs. 20 and 36). Almost any method is suitable, but those that readily ac-
commodate changes in the step size and discrete adjustments of the state vari-
ables are most desirable because discrete-events will frequently occasion the need
for both.

To demonstrate how a simulator is constructed, two particular methods are con-
sidered here. Corrected Euler with error control is used for numerical integration.
This method is part of the Runge–Kutta family. Given a step size h and present
value xk at time tk , the next value at time tk + h is computed with the two-stage
rule

k1 = h f (xk )

k2 = h f (xk + k1/2)

xk+1 = xk + k2
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The magnitude of the error ε incurred by a step is approximately

ε ≈ |k2 − k1|

If after a step the error is too large, the step size is reduced and the integration retried.
Conversely, if the error is very small, then the step size is increased to speed up the
simulation. Having obtained the estimate ε using the step size h, the adjusted step
size htol that satisfies an error tolerance εtol is estimated by

htol ≈ hεtol

ε

For our purposes, the step size will begin at some maximum value hmax after each
event and then be reduced if necessary; in this case the new trial step is 0.8 min{htol, h}.

Having selected a step size h that satisfies the error criteria and then tentatively
advancing the trajectory, we now look to see if an event threshold lies between the old
state xk and the new, tentative state xk+1. A simple, but often effective, method is to
interpolate each g j in the interval [tk, tk + h] and look for a root of the interpolating
function. The two endpoints for the interpolation are

g j,k = g j (xk, q)

g j,k+1 = g j (xk+1, q)

There are three possibilities for this pair of points:

1. If g j,k ≈ 0 or g j,k+1 ≈ 0, then an event has been found and an internal transition
occurs at time tk or tk + h, respectively.

2. If both have the same sign, so that g j,k g j,k+1 > 0, then g j does not cross zero
and there is no event in the interval.

3. If the points have opposite signs, so that g j,k g j,k+1 < 0, then there is an event
in the interval.

In possibilities 1 and 2, the time of the next autonomous event is known: it occurs
now or at the next integration step.

In possibility 3, the existence of an intermediate event is known, but its time of
occurrence must still be found. A procedure for doing so is illustrated in Figure 5.4.
To start, we take tk = 0, which is possible because the system is time-invariant, and
approximate the function g j (t) in the interval [0, h] with the line

g j (t) ≈ g j,k(h − t) + g j,k+1t

h
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g(x ),q)k(t

g(x(tk+1),q)

g(x(t),q)

0

h’ h

t

FIGURE 5.4 Using linear interpolation to locate an event in time.

Setting this equal to zero and solving for t gives the location of the event in time at

t ≈ hg j,k

g j,k − g j,k+1

Now the integration step is reduced to this estimate of the event time and a new xk+1

is calculated. If this state satisfies condition 1 or 2 in the preceding paragraph, then
the search ends; the event is found or the interval has shrunk so as not to include it.
Otherwise, these steps are repeated.

To implement this procedure, the discrete-event model has, in addition to its the
discrete state q, two copies of the continuous state: the present value x and tentative
next value x ′. For each gk , there is a Boolean variable ek that is true if gk(x, q) ≈ 0 or
gk(x ′, q) ≈ 0 and false otherwise. The variable h keeps the time separating x and x ′.
The model first looks ahead by a single integration step to calculate x ′. Next, it looks
for events at the ends of the interval [0, h] and for events within it that might have
been missed. There are four cases. The simplest is where the gk neither are zero at
the ends of the interval nor change sign. In this case, there are no events and, barring
external input, the state h units of time later is x ′.

The other three cases involve discrete-events. If at the left end of the interval any
of the gk are within εtol of zero, then the ek are set accordingly and an internal event
occurs immediately. Conversely, if this is true at the right end of the interval and none
of the gk have otherwise changed sign, then an event occurs at h, with state x ′, and the
ek are again set accordingly. Otherwise, an event occurs inside the interval and must
be located with greater precision—a new h is estimated, a new x ′ calculated, and the
process repeated. Algorithm 5.1 shows this procedure in detail, using the corrected
Euler and linear interpolation methods described above.

With Algorithm 5.1, the discrete-event model that simulates a hybrid system can
be written compactly as follows. Let s = ((x, q), x ′, ē, h) be the state of the model
where ē is the vector of event flags e1, . . . , ep. The error tolerance εtol and maximum
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Input: x ,q,hmax ,εtol

Output: x ′,h,e1, . . . , ep

Tentatively advance x to satisfy the error criteria1

h ← hmax2

repeat3

k1 ← h f (x, q), k2 ← h f (x + 1
2 k1, q)4

x ′ ← x + k2, ε ← |k2 − k1|5

if εtol ≤ ε then h ← 0.8 min{h, hεtol/ε}6

until ε ≤ εtol7

Look for events in [0, h]8

foreach k ∈ [1, p] do gk ← gk(x, q), ek ← |gk | ≤ εtol9

Found an event at the start of the interval10

if (∃ek)(ek = true) then h ← 0, x ′ ← x , return11

repeat12

foreach k ∈ [1, p] do13

g′
k ← gk(x ′, q), ek ← |g′

k | ≤ εtol14

if g′
k gk < 0 then h ← min{h, hgk/(gk − g′

k)}15

end16

k1 ← h f (x, q), k2 ← h f (x + 1
2 k1, q)17

x ′ ← x + k218

until (∀k)(0 < gk g′
k ∨ ek)19

Algorithm 5.1 Locate the internal event and tentatively advance x to it.

integration step hmax are fixed parameters. Let F be a function that applies Algorithm
5.1 to the state; F(s) is equal to s except for x ′, ē, and h which the algorithm computes.
Define also the function I ((x, q), τ ) = (x ′, q), where x ′ is x advanced by the step
size τ . The discrete-event model is

δint(((x, q), x ′, ē, h)) =
{

F((δ̂int((x ′, q)), x ′, ē, h)) if (∃ek)(ek = true)

F(((x ′, q), x ′, ē, h)) otherwise

δext(((x, q), x ′, ē, h), e, ub) = F((δ̂ext(I ((x, q), e), e, ub), x ′, ē, h))

δcon(((x, q), x ′, ē, h), ub) = F((δ̂con((x ′, q), ub), x ′, ē, h)) (5.12)

ta(s) = h

λ(s) =
{

λ̂((x ′, q)) if (∃ek)(ek = true)

� otherwise

To summarize, at each event the continuous variable x is advanced to the present time.
If there is an input or if an event threshold is reached, then the discrete transition
function of the hybrid system is applied and, in the latter case, an output is also
produced. The time advance at each event is the smaller of the integration step size
and the time to the next internal event of the hybrid system.
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vc

Rs

Rl

vs C+
−

FIGURE 5.5 A model of a circuit with two discrete elements.

The electric circuit shown in Figure 5.5 will illustrate the simulation procedure, and
the outcome of the simulation is listed in Table 5.2. This circuit has a load that operates
when the voltage vc is greater than the diode’s threshold voltage. A capacitor stores
energy to drive the load for short periods of time when the main power is disconnected.
This capacitor charges rapidly when the load is disconnected, and it trickle-charges
while the load is operating. The model has two discrete variables; s ∈ {0, 1} for the
switch with s = 0 open (not conducting) and s = 1 closed (conducting) and likewise
for the diode; its state is indicated by d . The switch is an input to the system, and the
diode state is determined by the capacitor voltage.

The voltage vc is the model’s only continuous state variable. It evolves in each
mode as follows:

v̇c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s = 0, d = 0

− vc

C Rl
if s = 0, d = 1

vs − vc

C Rs
if s = 1, d = 0

1

C

(
vs − vc

Rs
− vc

Rl

)

if s = 1, d = 1

(5.13)

The diode conducts when vc exceeds the threshold voltage vop and stops conducting
when the voltage drops below vcl, where vop > vcl. A single function defines both
cases:

g(vc, d) =
{

vc − vop if d = 0

vc − vcl if d = 1

Significantly, the diode does not open and close at the same voltage level. If this were
the case, then the model would be illegitimate, switching endlessly between its two
states when vc reached a threshold value. The model’s output is the state of the diode.
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The discrete transition functions for this circuit are

δ̂int((vc, s, d)) = (vc, s, ¬d)

δ̂ext((vc, s, d), e, u) = (vc, u, d)

δ̂con((vc, s, d), u) = δ̂ext(δ̂int((vc, s, d)), 0, u)

λ̂((vc, s, d)) = ¬d

To keep the numbers simple, use Rl = Rs = 1, C = 1, vs = 1, vcl = 1
4 , and vop =

1
2 and begin with d = 0, s = 1, and vc = 0. The discrete-event model uses hmax = 0.2
and ε = 0.05. The capacitor begins to charge, and until the diode closes, the discrete
equations (i.e., corrected Euler equations) that simulate vc are

vc,k+1 = vc,k (1 − h + h2/2) + h − h2/2

the error at each step is

ε = |(1 − vc,k)h2/2|

and the interpolating function for g, solved for time, is

t = (vc,k − 0.5)h

vc,k − vc,k+1

causing the discrete-event model to undergoe the first three internal events listed in
Table 5.2.

The diode closes at the fourth event when the real time is approximately 0.7.
Because this internal event coincides with an event surface, λ̂ and δ̂int determine the
output and next state of the model. In its new mode, vc is simulated with the difference
equation

vc,k+1 = vc,k + h(h − 1)(2vc,k − 1)

the error at each step is

ε = |(1 − 2vc,k)h2|

the interpolated g solved for time is

t = (vc,k − 0.25)h

vc,k − vc,k+1

and the discrete-event model evolves in this way until the switch is opened. If the
simulation closed the diode at exactly vc = 0.5, then both the actual system and its
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approximation would remain at that value. Instead, the simulated voltage overshoots
the mark and descends slowly back to the correct solution.

At t = (1, 0) the switch is opened. This external event advances v by the elapsed
time and invokes the δ̂ext function of the hybrid system to change its state. In this new
configuration, the discrete-event system simulates vc by

vc,k+1 = (1 − h + h2/2)vc,k

the error at each step is

ε′ = |h2vc,k/2|

and the interpolation function for g, solved for time, is as before. The capacitor is
drained to the cutoff point after another three events, and the diode opens at the real
time of t ≈ 1.7.

Now the switch and diode are open and the equations governing the simulation
are

vc,k+1 = vc

ε = 0

t = ∞

and so time advances with h = hmax = 0.2 but nothing actually changes until the
switch is closed again.

Working through this example, it quickly becomes apparent that an explicit formula
for G saves a great deal of time and effort. When G can be calculated directly from
the system’s state, and so the location of the next event in time is known explicitly,
the resulting change is commonly called a time event and G a time event function.
If the next event time must be inferred from event surfaces in the state space, then
the resulting change is called a state event and the gk are state event functions. State
events require much more computational effort on the part of the simulator, and so
result in slower-running simulations. Time events are therefore preferable when they
can be constructed.

5.5 A SIMULATOR FOR HYBRID SYSTEMS

The Hybrid class extends the Atomic class of the discrete-event simulator from Chap-
ter 4 to implement the approximating system constructed above. Algorithms for
finding event surfaces in time and for solving the differential equation are encapsu-
lated in two classes: the event locator and the ode solver. The differential function,
state and time event functions, and discrete transition functions of the hybrid system
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linear_event_locator

linear_event_locator

linear_event_locator

FIGURE 5.6 UML diagram of the classes that constitute the hybrid simulator.

are contained in a third class: the ode system. The Hybrid class uses these three
supporting classes to simulate a hybrid model. Figure 5.6 shows their relationships
to each other and the simulation engine.

The event locator uses the single method find events, which looks for state events
in a prescribed interval. Its arguments are the continuous state q of the hybrid model,
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the width h of the interval to search, the state qend at the end of the interval, and an
integration method for calculating states within the interval. The method returns true
if an event is found and false otherwise. In the positive case, the time of the event is
written to the supplied h, the elements of the array events are set to indicate which
threshold function caused the event, and the state of the model at the event time is
written to qend. In the negative case, the elements of the events array are set to false
but h and qend retain the values supplied by the caller.

The ode solver has two methods for advancing the continuous state variables. The
integrate method takes the system from the state q at time t to the state q ′ at time
t + h where h ≤ hmax. Integration methods with error control may use a value smaller
than hmax to satisfy their tolerance for error. The method returns the step size that
is actually used, and the final state q ′ is copied to q before returning. The advance
method is identical to the integrate method except that it is guaranteed to advance the
continuous trajectory to the end of the requested interval.

The hybrid model itself is implemented by extending the ode system class. It has
methods for computing the state event functions, the time event function, and the
differential function. These are used by the event locator and ode solver classes.
There are also four methods for implementing the discrete dynamics: external event,
internal event, confluent event, and output func. These correspond to the hatted tran-
sition and output functions of the hybrid system. All of these methods accept an array
q that holds the model’s continuous state. This is maintained by the Hybrid class,
which supplies it to the ode system as needed. A model’s discrete state, however,
is captured by the member variables of its implementing class. Also observe that
the discrete transition functions and output functions are supplied with an array of
Boolean values; this array holds the ek flags plus one extra in the last array position
to indicate a time event. The gc output method is used to reclaim objects created by
the output func.

Equation 5.12 is implemented by the Hybrid class. Its private tentative step
method implements the F function, which represents Algorithm 5.1 in the def-
inition of the discrete-event model. The integration function I is realized with
the ode solver, which is also used by the event locator to find state events (i.e.,
roots of the gk) in the course of taking a tentative step. Time events are scheduled
with the ode system’s time event func method, which returns the time remaining
to the nearest, explicitly known autonomous event. The time advance selected by
the tentative step method is the smallest timestep used by the ode solver, the near-
est state event found by the event locator, and the next time event reported by the
ode system. The member variables of the Hybrid class are exactly the state variables
of the discrete-event model, except for the extra Boolean variable event exists,
which saves a search through the eks by being true if any of them is true and false
otherwise.

The Hybrid Class
1 #ifndef _adevs_hybrid_h_
2 #define _adevs_hybrid_h_
3 #include <algorithm>
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4 #include "adevs_models.h"
5

6 namespace adevs
7 {
8

9 template <typename X> class ode_system
10 {
11 public:
12 // Make a system with N state variables and M state event functions
13 ode_system(int N_vars, int M_event_funcs):
14 N(N_vars),M(M_event_funcs){}
15 // Get the number of state variables
16 int numVars() const { return N; }
17 // Get the number of state events
18 int numEvents() const { return M; }
19 // Copy the initial state of the model to q
20 virtual void init(double* q) = 0;
21 // Compute the derivative for state q and put it in dq
22 virtual void der_func(const double* q, double* dq) = 0;
23 // Compute the state event functions for state q and put them in z
24 virtual void state_event_func(const double* q, double* z) = 0;
25 // Compute the time event function using state q
26 virtual double time_event_func(const double* q) = 0;
27 // The internal transition function
28 virtual void internal_event(double* q,
29 const bool* state_event) = 0;
30 // The external transition function
31 virtual void external_event(double* q, double e,
32 const Bag<X>& xb) = 0;
33 // The confluent transition function
34 virtual void confluent_event(double *q, const bool* state_event,
35 const Bag<X>& xb) = 0;
36 // The output function
37 virtual void output_func(const double *q, const bool* state_event,
38 Bag<X>& yb) = 0;
39 // Garbage collection function
40 virtual void gc_output(Bag<X>& gb) = 0;
41 virtual ~ode_system(){}
42 private:
43 const int N, M;
44 };
45

46 template <typename X> class ode_solver
47 {
48 public:
49 ode_solver(ode_system<X>* sys):sys(sys){}
50 // Take an integration step from state q of at most size h and
51 // return the step size that was actually used. Copy the result of
52 // the integration step to q.
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53 virtual double integrate(double* q, double h_lim) = 0;
54 // Advance the system through exactly h units of time
55 virtual void advance(double* q, double h) = 0;
56 virtual ~ode_solver(){}
57 protected:
58 ode_system<X>* sys;
59 };
60

61 template <typename X> class event_locator
62 {
63 public:
64 event_locator(ode_system<X>* sys):sys(sys){}
65 // Find the first state event in the interval [0,h] starting from
66 // state qstart. The method returns true if an event is found,
67 // setting the events flags to true if the corresponding z entry in
68 // the state_event_func above triggered the event. The value of
69 // h is overwritten with the event time, and the state of the model
70 // at that time is copied to qend.
71 virtual bool find_events(bool* events, const double *qstart,
72 double* qend, ode_solver<X>* solver, double& h) = 0;
73 virtual ~event_locator(){}
74 protected:
75 ode_system<X>* sys;
76 };
77

78 template <typename X> class Hybrid: public Atomic<X>
79 {
80 public:
81 // Create and initialize a simulator for the system. All objects
82 // are adopted by the Hybrid object and are deleted when it is.
83 Hybrid(ode_system<X>* sys, ode_solver<X>* solver,
84 event_locator<X>* event_finder):
85 sys(sys),solver(solver),event_finder(event_finder)
86 {
87 q = new double[sys->numVars()];
88 q_trial = new double[sys->numVars()];
89 event = new bool[sys->numEvents()+1];
90 event_exists = false;
91 sys->init(q_trial); // Get the initial state of the model
92 for (int i = 0; i < sys->numVars(); i++) q[i] = q_trial[i];
93 tentative_step(); // Take the first tentative step
94 }
95 // Get the value of the kth state variable
96 double getState(int k) const { return q[k]; }
97 // Get the array of state variables
98 const double* getState() const { return q; }
99 // Get the system that this solver is operating on

100 ode_system<X>* getSystem() { return sys; }
101 void delta_int()
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102 {
103 if (event_exists) // Execute the internal event
104 sys->internal_event(q_trial,event);
105 // Copy the new state vector to q
106 for (int i = 0; i < sys->numVars(); i++) q[i] = q_trial[i];
107 tentative_step(); // Take a tentative step
108 }
109 void delta_ext(double e, const Bag<X>& xb)
110 {
111 solver->advance(q,e); // Advance the state q by e
112 sys->external_event(q,e,xb); // Compute the external event
113 // Copy the new state to the trial solution
114 for (int i = 0; i < sys->numVars(); i++) q_trial[i] = q[i];
115 tentative_step(); // Take a tentative step
116 }
117 void delta_conf(const Bag<X>& xb)
118 {
119 if (event_exists) // Execute the confluent or external event
120 sys->confluent_event(q_trial,event,xb);
121 else sys->external_event(q_trial,ta(),xb);
122 // Copy the new state vector to q
123 for (int i = 0; i < sys->numVars(); i++) q[i] = q_trial[i];
124 tentative_step(); // Take a tentative step
125 }
126 double ta() { return sigma; }
127 void output_func(Bag<X>& yb)
128 {
129 if (event_exists) sys->output_func(q_trial,event,yb);
130 }
131 void gc_output(Bag<X>& gb) { sys->gc_output(gb); }
132 virtual ~Hybrid()
133 {
134 delete [] q; delete [] q_trial; delete [] event;
135 delete event_finder; delete solver; delete sys;
136 }
137 private:
138 ode_system<X>* sys; // The ODE system
139 ode_solver<X>* solver; // Integrator for the ode set
140 event_locator<X>* event_finder; // Event locator
141 double sigma; // Time to the next internal event
142 double *q, *q_trial; // Current and tentative states
143 bool* event; // Flags indicating the encountered event surfaces
144 bool event_exists; // True if there is at least one event
145 // Execute a tentative step and calculate the time advance function
146 void tentative_step()
147 {
148 // Check for a time event
149 double time_event = sys->time_event_func(q);
150 // Integrate up to that time at most
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151 double step_size = solver->integrate(q_trial,time_event);
152 // Look for state events inside of the interval [0,step_size]
153 bool state_event_exists =
154 event_finder->find_events(event,q,q_trial,solver,step_size);
155 // Find the time advance and set the time event flag
156 sigma = std::min(step_size,time_event);
157 event[sys->numEvents()] = time_event <= sigma;
158 event_exists = event[sys->numEvents()] || state_event_exists;
159 }
160 };
161

162 } // end of namespace
163

164 #endif

The corrected Euler and linear interpolation methods from the previous section
are easily adapted to the ode solver and event locator interfaces; the code is listed
below. The corrected euler class solves systems of equations. Its constructor accepts
an error tolerance, which is applied individually to each differential equation, and a
maximum step size, which should be selected to ensure stability. This integrator is
modified slightly with respect to the earlier description; the object remembers the
previous step size if it was chosen to control the integration error, thereby reducing
the number of trial steps attempted when integrate is called. This can speed up the
simulation substantially.

Likewise, the event locator is built for systems of equations. Its implementation is
essentially as listed in Algorithm 5.1, but with two minor variations that improve its
computational efficiency. First, the continuous variables are not needlessly integrated
when h = 0; in this case, qstart is merely copied to qend before the method returns.
The second adjustment, which is tricky, is to use an event in interval flag in place of
the ∀k that appears in the algorithm’s last loop. On exiting the method’s innermost
for loop, this flag is true if, and only if, the nearest state event was found in (0, h);
if the event is at 0, then the method returns without looking further; if the event is at
h, or not found at all, then found event and the events flags are properly set but qend
is not needlessly recomputed.

The Corrected Euler Integration Method
1 #ifndef _adevs_corrected_euler_h_
2 #define _adevs_corrected_euler_h_
3 #include <cmath>
4 #include "adevs_hybrid.h"
5

6 namespace adevs
7 {
8

9 template <typename X> class corrected_euler: public ode_solver<X>
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10 {
11 public:
12 corrected_euler(ode_system<X>* sys, double err_tol, double h_max);
13 ~corrected_euler();
14 double integrate(double* q, double h_lim);
15 void advance(double* q, double h);
16 private:
17 double *dq, // derivative
18 *qq, // trial solution
19 *t, // temporary variable for computing k2
20 *k[2]; // k1 and k2
21 const double err_tol; // Error tolerance
22 const double h_max; // Maximum time step
23 double h_cur; // Previous timestep that satisfied error constraint
24 // Compute a step of size h, put it in qq, and return the error
25 double trial_step(double h);
26 };
27

28 template <typename X>
29 corrected_euler<X>::corrected_euler(ode_system<X>* sys, double err_tol,
30 double h_max):
31 ode_solver<X>(sys),err_tol(err_tol),h_max(h_max),h_cur(h_max)
32 {
33 for (int i = 0; i < 2; i++) k[i] = new double[sys->numVars()];
34 dq = new double[sys->numVars()];
35 qq = new double[sys->numVars()];
36 t = new double[sys->numVars()];
37 }
38

39 template <typename X>
40 corrected_euler<X>::~corrected_euler()
41 {
42 delete [] t; delete [] qq; delete [] dq;
43 for (int i = 0; i < 2; i++) delete [] k[i];
44 }
45

46 template <typename X>
47 void corrected_euler<X>::advance(double* q, double h)
48 {
49 double dt;
50 while ((dt = integrate(q,h)) < h) h -= dt;
51 }
52

53 template <typename X>
54 double corrected_euler<X>::integrate(double* q, double h_lim)
55 {
56 // Initial error estimate and step size
57 double err = DBL_MAX, h = std::min(h_cur*1.1,std::min(h_max,h_lim));
58 for (;;) {
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59 // Copy q to the trial vector
60 for (int i = 0; i < this->sys->numVars(); i++) qq[i] = q[i];
61 // Make the trial step which will be stored in qq
62 err = trial_step(h);
63 // If the error is ok, then we have found the proper step size
64 if (err <= err_tol) { // Keep h if shrunk to control the error
65 if (h_lim >= h_cur) h_cur = h;
66 break;
67 }
68 // Otherwise shrink the step size and try again
69 else {
70 double h_guess = 0.8*err_tol*h/fabs(err);
71 if (h < h_guess) h *= 0.8;
72 else h = h_guess;
73 }
74 }
75 // Put the trial solution in q and return the selected step size
76 for (int i = 0; i < this->sys->numVars(); i++) q[i] = qq[i];
77 return h;
78 }
79

80 template <typename X>
81 double corrected_euler<X>::trial_step(double step)
82 {
83 int j;
84 // Compute k1
85 this->sys->der_func(qq,dq);
86 for (j = 0; j < this->sys->numVars(); j++) k[0][j] = step*dq[j];
87 // Compute k2
88 for (j = 0; j < this->sys->numVars(); j++) t[j] = qq[j] + 0.5*k[0][j];
89 this->sys->der_func(t,dq);
90 for (j = 0; j < this->sys->numVars(); j++) k[1][j] = step*dq[j];
91 // Compute next state and approximate error
92 double err = 0.0;
93 for (j = 0; j < this->sys->numVars(); j++) {
94 qq[j] += k[1][j]; // Next state
95 err = std::max(err,fabs(k[0][j]-k[1][j])); // Maximum error
96 }
97 return err; // Return the error
98 }
99

100 } // end of namespace
101 #endif

The Linear Interpolation Method for Locating State Events
1 #ifndef _adevs_linear_event_locator_h_
2 #define _adevs_linear_event_locator_h_
3 #include "adevs_hybrid.h"
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4 #include <cmath>
5

6 namespace adevs
7 {
8

9 template <typename X> class linear_event_locator: public event_locator<X>
10 {
11 public:
12 linear_event_locator(ode_system<X>* sys, double err_tol);
13 ~linear_event_locator();
14 bool find_events(bool* events, const double* qstart, double* qend,
15 ode_solver<X>* solver, double& h);
16 private:
17 double *z[2]; // State events at the start and end of [0,h]
18 const double err_tol; // Error tolerance
19 };
20

21 template <typename X>
22 linear_event_locator<X>::linear_event_locator(ode_system<X>* sys,
23 double err_tol):
24 event_locator<X>(sys),err_tol(err_tol)
25 {
26 z[0] = new double[sys->numEvents()];
27 z[1] = new double[sys->numEvents()];
28 }
29

30 template <typename X>
31 linear_event_locator<X>::~linear_event_locator()
32 {
33 delete [] z[0]; delete [] z[1];
34 }
35

36 template <typename X>
37 bool linear_event_locator<X>::find_events(bool* events,
38 const double* qstart, double* qend, ode_solver<X>* solver, double& h)
39 {
40 // Look for events at the start of the interval
41 this->sys->state_event_func(qstart,z[0]);
42 for (int i = 0; i < this->sys->numEvents(); i++) {
43 events[i] = fabs(z[0][i]) <= err_tol;
44 // If an event was found, the event time is zero
45 if (events[i]) h = 0.0;
46 }
47 // If an event was found at zero, put qstart in qend and return
48 if (h == 0.0) {
49 for (int i = 0; i < this->sys->numVars(); i++) qend[i] = qstart[i];
50 return true;
51 }
52 // Look for events inside of the interval [0,h]
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53 for (;;) {
54 double tguess = h;
55 bool event_in_interval = false, found_event = false;
56 this->sys->state_event_func(qend,z[1]);
57 for (int i = 0; i < this->sys->numEvents(); i++) {
58 if ((events[i] = fabs(z[1][i]) <= err_tol)) found_event = true;
59 else if (z[0][i]*z[1][i] < 0.0) {
60 double tcandidate = z[0][i]*h/(z[0][i]-z[1][i]);
61 if (tcandidate < tguess) tguess = tcandidate;
62 event_in_interval = true;
63 }
64 }
65 // Calculate a new solution at tguess if an event was found
66 if (event_in_interval) {
67 h = tguess;
68 for (int i = 0; i < this->sys->numVars(); i++)
69 qend[i] = qstart[i];
70 solver->advance(qend,h);
71 }
72 // Stop when an event is located or is not detected in the interval
73 else return found_event;
74 }
75 // Will never reach this line
76 return false;
77 }
78

79 } // end of namespace
80

81 #endif
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FIGURE 5.7 Simulation of the electric circuit.
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A simulation of the electric circuit from Section 5.4 demonstrates how the Hybrid
class is used. The complete simulation program is listed below. It prints the voltage
and states of the switch and diode versus time, which are shown in Figure 5.7. This
plot agrees very nicely with the data in Table 5.2.

Simulator for the Electric Circuit from Section 5.4
1 #include "adevs.h"
2 #include <iostream>
3 using namespace std;
4 using namespace adevs;
5

6 class Circuit: public ode_system<bool>
7 {
8 public:
9 Circuit():

10 ode_system<bool>(1,1), // one state variable and event function
11 s(1),d(0), // diode and switch states
12 vs(1.0),C(1.0),Rs(1.0),Rl(1.0), // device parameters
13 vop(0.5),vcl(0.25){}
14 void init(double* q) { q[0] = 0.0; } // vc = 0
15 void der_func(const double* q, double *dq)
16 {
17 // ODE form of the differential equations
18 if (!s && !d) dq[0] = 0.0;
19 else if (!s && d) dq[0] = -q[0]/(C*Rl);
20 else if (s && !d) dq[0] = (vs-q[0])/(C*Rs);
21 else dq[0] = ((vs-q[0])/Rs-q[0]/Rl)/C;
22 }
23 void state_event_func(const double *q, double* z)
24 {
25 // This model uses the implicit form of the diode event
26 if (d==0) z[0] = q[0]-vop;
27 else z[0] = q[0]-vcl;
28 }
29 // As written here, this model does not have any time events
30 double time_event_func(const double* q) { return DBL_MAX; }
31 void internal_event(double* q, const bool* events)
32 {
33 assert(events[0]); // only one event type; make sure it fired
34 d = !d;
35 }
36 void external_event(double*,double,const Bag<bool>& xb)
37 {
38 s = *(xb.begin());
39 }
40 void confluent_event(double* q,const bool* events,
41 const Bag<bool>& xb)
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42 {
43 internal_event(q,events);
44 external_event(q,0.0,xb);
45 }
46 void output_func(const double* q, const bool* events,
47 Bag<bool>& yb)
48 {
49 assert(events[0]);
50 yb.insert(!d);
51 }
52 void gc_output(Bag<bool>&){}
53 bool getDiode() const { return d; }
54 bool getSwitch() const { return s; }
55 private:
56 bool s, d;
57 const double vs, C, Rs, Rl, vop, vcl;
58 };
59

60 class StateListener: public EventListener<bool>
61 {
62 public:
63 StateListener(Hybrid<bool>* c1, Circuit* c2):c1(c1),c2(c2){}
64 void stateChange(Atomic<bool>*,double t)
65 {
66 cout << t << " " << c1->getState(0) << " " <<
67 c2->getSwitch() << " " << c2->getDiode() << endl;
68 }
69 void outputEvent(Event<bool>,double){}
70 private:
71 Hybrid<bool>* c1; Circuit* c2;
72 };
73

74 int main()
75 {
76 // Create the model
77 Circuit* circuit = new Circuit();
78 Hybrid<bool>* hybrid_model = new Hybrid<bool>(
79 circuit,new corrected_euler<bool>(circuit,1E-5,0.01),
80 new linear_event_locator<bool>(circuit,1E-5));
81 // Create the simulator
82 Simulator<bool>* sim = new Simulator<bool>(hybrid_model);
83 sim->addEventListener(new StateListener(hybrid_model,circuit));
84 // Simulate until the switch opens
85 while (sim->nextEventTime() <= 1.0) sim->execNextEvent();
86 // Open the switch
87 Bag<Event<bool> > xb; xb.insert(Event<bool>(hybrid_model,0));
88 sim->computeNextState(xb,1.0);
89 // Simulate for another three seconds
90 while (sim->nextEventTime() <= 4.0) sim->execNextEvent();
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91 delete sim; delete hybrid_model;
92 return 0;
93 }

5.6 INTERACTIVE SIMULATION OF THE ROBOTIC TANK

In Chapter 4 the robot’s computer was modeled, and now the gears, tracks, motors,
and equations of motion can be connected to it. Section 2.2.3 gives the complete set
of equations.

5.6.1 Correcting the Dynamics of a Turn

An ineffectual description of the event condition that initiates and ends a turn is
obtained by rearranging Equation 2.19 to obtain the zero-crossing function

g = B

2
|Fl − Fr | − Sl (5.14)

When g is equal to zero, the discrete variable turning switches its binary value. Brief
consideration reveals that this model is unable to begin or end a turn. After turning
changes value, g is still zero, and so the model switches forever from turning to not
turning and back, producing an illegitimate event trajectory.

This illegitimate behavior can be corrected with a hysteresis value ε to separate
the torques that begin and end a turn. If ε is small, then the behavior of the model
should very nearly approximate what was intended by Equation 5.14. This adjustment
creates an event surface that moves when turning changes:

g =

⎧
⎪⎪⎨

⎪⎪⎩

B

2
|Fl − Fr | − (Sl − ε) if turning = true

B

2
|Fl − Fr | − Sl if turning = false

(5.15)

This solves the illegitimacy problem, but a smooth g is also desirable so that linear
interpolation gives a reasonable approximation. The absolute values are removed by
creating two event surfaces, one for Fl − Fr > 0 and another for Fl − Fr < 0. The
functions

gr =

⎧
⎪⎪⎨

⎪⎪⎩

B

2
(Fl − Fr ) − (Sl − ε) if turning = true

B

2
(Fl − Fr ) − Sl if turning = false

(5.16)
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FIGURE 5.8 Tank shuddering through a turn with the duty ratio of the left motor at 75%
and right motor at 50%.

initiate and end a clockwise (right-hand) turn and

gl =

⎧
⎪⎪⎨

⎪⎪⎩

B

2
(Fr − Fl ) − (Sl − ε) if turning = true

B

2
(Fr − Fl ) − Sl if turning = false

(5.17)

a counterclockwise (left-hand) turn. These are both continuous functions between
discrete-events, and can be efficiently handled by the event detection algorithm de-
scribed in Section 5.4.

Continuing the example in Section 4.4, we can now simulate the response of the
entire tank to a sequence of commands from the driver. The first command sets the
duty ratio for the right motor at 50% and for the left motor at 75% (Figure 5.12 shows
the voltage signal produced by the computer). The tank responds by surging forward
and making a shuddering turn to the right. Figure 5.8 shows the torque increasing
until it breaks the tracks free and the tank begins the turn. Resistance from the laterally
sliding tracks then draws power from the turn, reducing the torque and causing the
tracks to stick again. This pattern rapidly repeats, keeping the torque near 0.3 as the
tank staggers through its maneuver. One second later, a command from the driver
sets the duty ratios to zero, and momentum carries the tank through the rest of a
3.5◦ turn.

Switching ω to zero instantaneously when the tracks stick has a curious effect
on the model. It is apparent in Figure 5.8 when the torque peaks at 0.3, and is
much more obvious in Figure 5.9, which shows a turn in place as the left and
right motors work at 100% in opposite directions. At t = 1, when the motors are
turned off, friction and electrical resistance slow the gears and deenergize the motor
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FIGURE 5.9 Tank spinning in place with the duty ratios at 100% for each motor, but
working in opposite directions.

windings, thereby reducing the torque acting on the tank. In the instant before the
tracks stick, viscous friction opposes the motors with a counterforce of about 0.02
N. After the tracks stick, this friction vanishes, and so does the counterforce. The
motors and gears, their energy undiminished by the sudden transition, now apply
torque sufficient to again overcome the sticking friction of the tracks, causing the
tank to turn. High-speed switching between turning and not turning continues for 0.75
s until resistance in the motors, gearbox, and tracks removes enough energy to end
the cycle.

Is this rapid switching an accurate portrayal of a real turn? Probably not. A more
comprehensive analysis will likely to reveal a better model in this respect (see, e.g.,
Mosterman’s and Biswas’s discussion of this issue [90, 91]). The validity of the
model, however, is undiminished by this curious phenomenon. The real tank and
its model handle so sluggishly that the slight prolongation of a turn is unnotice-
able to the driver; and the efficiency calculations that relate the frequency of the
voltage and the consumption of power are calculated for straight-line motion. The
issue must be revisited, however, if the model’s scope of use is expanded at some
later time.

5.6.2 A Simplified Model of the Motor

The corrected Euler integrator is adequate to construct the power–frequency plot
shown in Figure 2.12 and for simulating single maneuvers like the ones above.
However, the step size required for even a modest error tolerance of 10−2 ranges
over five orders of magnitude, from 10−9 when the tank is accelerating to 10−4 as it
trundles along at constant speed. The small step required for maneuvering makes this
simulator impractical for interactive use.



P1: OSO
c05 JWBS040-Nutaro August 29, 2010 14:7 Printer Name: Yet to Come

214 HYBRID SYSTEMS

This problem can be solved by using a more sophisticated numerical integra-
tion scheme or by devising a simpler model. The former is an advisable solution,
and to implement it requires only that a new ode solver be built and supplied to
the Hybrid class. Suitable methods can be found in any textbook on numerical
analysis.

Nonetheless, it is not uncommon for a model to have dynamics that cannot be
simulated in detail, either for lack of information or for want of computing capabil-
ities. The consequent simplifications often produce hybrid dynamics, a fact already
observed in the tank where the fast, but continuous, switch of the transistors in the
motor controller and the sudden slipping of the tracks are replaced by discrete tran-
sitions. The simplification pursued here will not have so dramatic an outcome, but it
is still instructive to see how fast rates can be removed from a model to reduce its
execution time while maintaining its validity.

To isolate the computational problem, we will focus solely on the circumstance
where the duty ratios of both motors are at 100%; this requires no discrete-events
because the motor switches are always closed and the tank moves in a straight line.
The left and right treads are identical, and so four equations are sufficient to model
the tank’s motion:

v̇ = 1

mt

(

2F − Br v

)

(5.18)

i̇ = 1

Lm
(e − i Rm − αω) (5.19)

ω̇ = 1

Jg

(

αi − ωBg − r

g
F

)

(5.20)

Ḟ = 1

Kt

(
r

g
ω − v

)

(5.21)

The pair of identical forces Fr and Fl in Equations 2.19–2.31 have been replaced
by a single force F , the equations that describe a turn have been eliminated, and
the position of the tank is ignored. Retained are the speed of the tank and the
dynamic behavior of the motors and gearbox (observe that ω in the equations above
is not the rotational velocity of the tank, but the angular velocity of the gears);
only three, rather than six, equations are needed for these because the pair acts
indistinguishably.

Figure 5.10 shows the trajectories of the four state variables v , i , ω, and F . The
voltage e is a constant 7.2 V. Figure 5.11 uses a logarithmic scale for time to show
the initial inrush of current when the battery is connected to the motors. Using a per
step error tolerance of 10−2, the step size selection ranges from 10−9 at the start of
the simulation to 10−4 after the initial transients have died off.
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FIGURE 5.10 The tank accelerating under full throttle to its maximum speed.

The rapid, transient dynamic of the current is responsible for the small timesteps
at the start of the simulation. This becomes apparent after looking at the ratios that
determine the relative size of the derivatives v̇ , ω̇, i̇ , and Ḟ . For the acceleration v̇ the
important ratios are

2

mt
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mt
= 1.25
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FIGURE 5.11 Initial inrush of current into the motors when the battery is connected at
t = 0.
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which indicate that the tank, chiefly because of its large mass, acts slowly relative to
the rest of the system. The rate of change i̇ of the motor current is governed by the
ratios

Rm

Lm
= 3100

α

Lm
= 1

where the larger ratio indicates that transients in the motor occur three orders of
magnitude faster than the tank’s acceleration. The ratios governing the acceleration
ω̇ of the gears are

α

Jg
= 833.3

Bg

Jg
= 0.5583

(r/g)

Jg
= 61.27

and their contribution to the computational effort is about 3 times smaller than that
of the motors, but on roughly the same order of magnitude. The ratios governing the
propulsive force F of the tracks are

(r/g)

Kt
= 0.07353

1

Kt
= 1000

which is nearly the same as those for the gears. This analysis suggests that the
computational costs are driven first by the model of the motor, then by the gears and
tracks, and last by the acceleration of the tank’s hull.

The system’s eigenvalues reveal a more precise picture of how the different com-
ponents constrain the step size (for details, see almost any textbook on linear algebra;
e.g., Strang’s Linear Algebra and Its Applications [136]). For each state variable there
is one eigenvalue, and the largest determines the step size requirement; fast dynamics
have large eigenvalues and require correspondingly small steps by the integrator. The
smallest eigenvalue gives a sense of how constraining this really is. If the largest and
smallest eigenvalues are close together, then the parts of the system operate at more
or less the same rate and simplifications are unlikely to improve the execution time.
Conversely, if the eigenvalues are far apart, then eliminating the most dynamic com-
ponents can reduce the running time. The range of eigenvalues in the tank’s model is
broad, just as the ratio analysis above suggested; the smallest has a magnitude of 0.8
and the largest, 4000.
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Now consider a simpler model that ignores the transient current. By assuming
that i is an instantaneous function of ω, we can set i̇ = 0 and obtain the algebraic
relationship

i = e − αω

Rm
(5.22)

Substituting this into Equations 5.18–5.21 gives the three-variable model

v̇ = 1

mt

(

2F − Br v

)

(5.23)

ω̇ = 1

Jg

(
αe − α2ω

Rm
− ωBg − r

g
F

)

(5.24)

Ḟ = 1

Kt

(
r

g
ω − v

)

(5.25)

This eliminates the large ratio for i̇ and changes the ratios governing the acceleration
ω̇ of the gears to

α2/Rm + Bg

Jg
= 0.827

(r/g)

Jg
= 61.27

The magnitudes of the largest and smallest eigenvalues of this reduced model are 50
and 0.8, respectively. This is a considerable reduction in the maximum rate of the
system and gives a correspondingly larger step size.

Figure 5.12 shows the trajectory of this simplified model. It is very similar to the
plot that includes the motor because the inrush of current occurs so quickly that its
long-term effects are negligible. The step sizes chosen by the integrator confirm the
expected advantage; with an error tolerance of 10−2, the timesteps during the initial
transients are on the order of 10−5 and are 10−2 once the tank has gotten up to speed.

This reformulation of the model works well if the motors are at full power, but it is
inadequate for operating at a smaller duty ratio. Figure 5.13 shows why; at a 50% duty
ratio, the electric current in the more accurate model remains positive. This is because
the motor controller switches fast enough for inductance to maintain the current when
the batteries are disconnected. The reformulated model has no inductance, and the
current actually reverses if the switches are opened while the tank is moving. This
problem is corrected by using in Equation 5.22 the average voltage over an interrupt
period rather than the instantaneous voltage. The correction requires a small change
to the internal transition function of the InterruptHandler, which now computes el as

el = 7.2(left motorontime/255) (5.26)
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FIGURE 5.12 Simplified model of the tank accelerating under full throttle to its maximum
speed.

and er in the same way. Figure 5.13 shows the effect of this alteration; the current
in the simple model now agrees with the time-averaged current in the more detailed
model.

5.6.3 Updating the Display

The driver’s visual display of the tank needs to be updated at about 40 frames per
second (FPS); each frame shows the tank’s position and orientation and a trail of its
previous positions. To do this, the state variables must be sampled and drawn every
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25 ms. In Section 5.6.2 we saw that the simulator uses timesteps ranging from 10−5

to 10−2 s, calculating new states much more rapidly than required; indeed, faster than
they can be rendered on the display.

Of the several possible solutions to this problem, ours is to have the model produce
a SIM TANK POSITION event at regular intervals of 25 ms. The simulator, advanced
in real time by the main loop of the simulation program, will therefore produce just
the required outputs for the display. The display, in turn, is updated only when it
receives an event that requires a new image.

This is accomplished by adding a time event to the model of the tank. A clock
variable τc that satisfies τ̇c = −1 is initialized with τc = 0.025. The event surface
at τc = 0 is easily expressed as a time event that occurs after an interval τc. When
the tank undergoes an internal event, it generates its position and orientation for the
display and reinitializes τc to 25 ms.

5.6.4 Implementing the Tank Physics

The TankPhysics class is derived from the Hybrid class. It contains a corrected euler
object for simulating the model’s continuous trajectory, a linear event locator object
for detecting the start and end of a turn, and a TankPhysicsEqns object that implements
the differential and discrete equations that govern the tank’s motion. The code for
the TankPhysicsEqns is listed below; it contains both the complete model, which
was used for the efficiency experiments, and the simplified model, which is used for
the interactive experiments. The selection is made with a Boolean flag passed to the
constructor.

Coupling the TankPhysics to the Computer from section 4.4 completes the model
of the tank. The code for the Tank class, whose components and couplings are
illustrated in Figure 2.10, is also listed below. This model is accessed by the other
major parts of the software, the SimControl and Display, via the Simulator’s interface
for advancing time, injecting input, and listening for state and output events.

Header File for the TankPhysicsEqns
1 #ifndef _TankPhysicsEqns_h_
2 #define _TankPhysicsEqns_h_
3 #include "adevs.h"
4 #include "adevs_hybrid.h"
5 #include "SimEvents.h"
6 #include <fstream>
7

8 class TankPhysicsEqns: public adevs::ode_system<SimEvent>
9 {

10 public:
11 // Create a tank at an intial position
12 TankPhysicsEqns(double x0, double y0, double theta0,
13 double cint, bool simple = false);
14 // Initialize the continuous state variables
15 void init(double* q);
16 // Differential functions
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17 void der_func (const double *q, double *dq);
18 // State event function that detects turning movements
19 void state_event_func (const double *q, double *z);
20 // Sample x, y, and theta periodically
21 double time_event_func (const double *q);
22 // Expiration of the timer and collision events are internal
23 void internal_event(double* q, const bool* events);
24 // Change in the motor voltage is an external event
25 void external_event(double *q, double e,
26 const adevs::Bag<SimEvent> &xb);
27 // Confluent events
28 void confluent_event(double* q, const bool* events,
29 const adevs::Bag<SimEvent> &xb);
30 // Output position events for the display when the timer expires
31 void output_func(const double *q, const bool* events,
32 adevs::Bag<SimEvent> &yb);
33 // Garbage collection
34 void gc_output(adevs::Bag<SimEvent>&){}
35 // Get the resistance of the motor (left and right are the same)
36 double getMotorOhms() const { return Rm; }
37 // Is the tank turning?
38 bool isTurning() const { return turning; }
39 // Get the current in the motor
40 double getLeftCurrent(const double* q) const;
41 double getRightCurrent(const double* q) const;
42 // Index of the turning state events and timer time event
43 static const int TURNL, TURNR, TIMER_EXPIRE;
44 // Indices of the state variables
45 static const int WL, WR, FL, FR, IL, IR, X, Y, THETA, W, V, TIMER;
46 // Model parameters
47 const double mt, Jt, B, Br, Bs, Bl, Sl, Lm,
48 Rm, Jg, Bg, g, alpha, r, Kt;
49 private:
50 // Initial conditions
51 const double x0, y0, theta0;
52 // Hysteresis value for stopping turns
53 const double Hs;
54 // Communication interval for the numerical integration algorithm
55 const double cint;
56 // Motor voltages
57 double el, er;
58 // Is the tank turning?
59 bool turning;
60 // Use simplified dynamics?
61 const bool simple;
62 };
63

64 #endif
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Source File for the TankPhysicsEqns
1 #include "TankPhysics.h"
2 using namespace std;
3 using namespace adevs;
4

5 // Indices for the state event array
6 const int TankPhysicsEqns::TURNL=0, TankPhysicsEqns::TURNR=1,
7 TankPhysicsEqns::TIMER_EXPIRE=2;
8 // Indices for the state variable array
9 const int TankPhysicsEqns::WL=0, TankPhysicsEqns::FL=1,

10 TankPhysicsEqns::IL=11, TankPhysicsEqns::WR=3, TankPhysicsEqns::FR=4,
11 TankPhysicsEqns::IR=10, TankPhysicsEqns::X=6, TankPhysicsEqns::Y=7,
12 TankPhysicsEqns::THETA=8, TankPhysicsEqns::W=9, TankPhysicsEqns::V=5,
13 TankPhysicsEqns::TIMER=2;
14

15 TankPhysicsEqns::TankPhysicsEqns(double x0, double y0, double theta0,
16 double cint, bool simple):
17 // The simple model has two fewer state variables
18 ode_system<SimEvent>(12-simple*2,2),
19 // Set the model parameters and initial conditions
20 mt(0.8),Jt(5E-4),B(0.1),Br(1.0),Bs(14.0),Bl(0.7),Sl(0.3),
21 Lm(1E-3),Rm(3.1),Jg(1.2E-6),Bg(6.7E-7),g(204.0),alpha(1E-3),
22 r(0.015),Kt(0.001),x0(x0),y0(y0),theta0(theta0),
23 Hs(1E-3),cint(cint),el(0.0),er(0.0),turning(false),
24 simple(simple){}
25

26 void TankPhysicsEqns::init(double* q)
27 {
28 q[W] = q[V] = q[FR] = q[FL] = q[WR] = q[WL] = 0.0;
29 if (!simple) q[IL] = q[IR] = 0.0;
30 q[X] = x0;
31 q[Y] = y0;
32 q[THETA] = theta0;
33 q[TIMER] = cint;
34 }
35

36 void TankPhysicsEqns::der_func(const double *q, double *dq)
37 {
38 double il = getLeftCurrent(q), ir = getRightCurrent(q);
39 // Timer just counts down
40 dq[TIMER] = -1.0;
41 if (!simple) {
42 dq[IL] = (el-il*Rm-alpha*q[WL])/Lm;
43 dq[IR] = (er-ir*Rm-alpha*q[WR])/Lm;
44 }
45 dq[WL] = (alpha*il-q[WL]*Bg-(r/g)*q[FL])/Jg;
46 dq[WR] = (alpha*ir-q[WR]*Bg-(r/g)*q[FR])/Jg;
47
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48 dq[FL] = ((r/g)*q[WL]-(q[V]+B*q[W]/2.0))/Kt;
49 dq[FR] = ((r/g)*q[WR]-(q[V]-B*q[W]/2.0))/Kt;
50 dq[X] = q[V]*sin(q[THETA]);
51 dq[Y] = q[V]*cos(q[THETA]);
52 assert(turning || q[W] == 0.0);
53 dq[THETA] = q[W];
54 // These equations change when the tank turns or does not turn
55 dq[V] = (q[FL]+q[FR]-(Br+Bs*(double)turning)*q[V])/mt;
56 dq[W] = (double)turning*(B*(q[FL]-q[FR])/2.0-Bl*q[W])/Jt;
57 }
58

59 void TankPhysicsEqns::state_event_func(const double *q, double *z)
60 {
61 double torque_l = B*(q[FL]-q[FR])/2.0;
62 double torque_r = -torque_l;
63 z[TURNL] = torque_l-(Sl-(double)turning*Hs);
64 z[TURNR] = torque_r-(Sl-(double)turning*Hs);
65 }
66

67 double TankPhysicsEqns::time_event_func(const double *q)
68 {
69 return std::max(0.0,q[TIMER]);
70 }
71

72 void TankPhysicsEqns::internal_event(double* q, const bool* events)
73 {
74 // Start or end a turn; this produces an output so reset the timer
75 if (events[TURNL] || events[TURNR]) {
76 q[TIMER] = cint;
77 q[W] = 0.0;
78 turning = !turning;
79 }
80 // Otherwise is was a timer event, so just reset the timer
81 else q[TIMER] = cint;
82 }
83

84 void TankPhysicsEqns::external_event(double *q, double e,
85 const Bag<SimEvent> &xb)
86 {
87 // Set the motor voltage
88 Bag<SimEvent>::iterator iter = xb.begin();
89 for (; iter != xb.end(); iter++) {
90 assert((*iter).getType() == SIM_MOTOR_VOLTAGE);
91 el = (*iter).simMotorVoltage().el;
92 er = (*iter).simMotorVoltage().er;
93 }
94 }
95

96 void TankPhysicsEqns::confluent_event(double *q, const bool* events,
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97 const Bag<SimEvent> &xb)
98 {
99 internal_event(q,events);

100 external_event(q,0.0,xb);
101 }
102

103 void TankPhysicsEqns::output_func(const double *q, const bool* events,
104 Bag<SimEvent> &yb)
105 {
106 // Produce a position event
107 SimTankPosition pos;
108 pos.x = q[X]; pos.y = q[Y]; pos.theta = q[THETA];
109 yb.insert(SimEvent(pos));
110 }
111

112 double TankPhysicsEqns::getLeftCurrent(const double* q) const
113 {
114 if (simple) return (el-alpha*q[WL])/Rm;
115 else return q[IL];
116 }
117

118 double TankPhysicsEqns::getRightCurrent(const double* q) const
119 {
120 if (simple) return (er-alpha*q[WR])/Rm;
121 else return q[IR];
122 }

Header File for the Tank Class
1 #ifndef Tank_h_
2 #define Tank_h_
3 #include "Computer.h"
4 #include "TankPhysics.h"
5

6 // This is the complete model of the tank with the TankPhysics and Computer
7 class Tank:
8 public adevs::Network<SimEvent>
9 {

10 public:
11 // Tank has an interrupt handler with the specified frequency,
12 // starts at the specified position, and generates events for
13 // the display at the given interval
14 Tank(double freq, double x0, double y0, double theta0, double cint);
15 // Get the components of the tank
16 void getComponents(adevs::Set<adevs::Devs<SimEvent>* > &c);
17 // Route events within the tank
18 void route(const SimEvent& value, adevs::Devs<SimEvent>* model,
19 adevs::Bag<adevs::Event<SimEvent> > &r);
20 // Get the physics model
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21 const TankPhysics* getPhysics() const { return &physics; }
22 // Get the computer
23 const Computer* getComputer() const { return &computer; }
24 private:
25 Computer computer;
26 TankPhysics physics;
27 };
28

29 #endif

Source File for the Tank Class
1 #include "Tank.h"
2 #include <cassert>
3 #include <iostream>
4 using namespace std;
5 using namespace adevs;
6

7 Tank::Tank(double freq, double x0, double y0, double theta0, double cint):
8 Network<SimEvent>(),
9 computer(freq),

10 physics(new TankPhysicsEqns(x0,y0,theta0,cint,false))
11 {
12 computer.setParent(this);
13 physics.setParent(this);
14 }
15

16 void Tank::getComponents(Set<Devs<SimEvent>* > &c)
17 {
18 c.insert(&computer);
19 c.insert(&physics);
20 }
21

22 void Tank::route(const SimEvent& value, Devs<SimEvent>* model,
23 Bag<Event<SimEvent> > &r)
24 {
25 // Packets go to the computer
26 if (value.getType() == SIM_PACKET)
27 r.insert(Event<SimEvent>(&computer,value));
28 // Voltage events go to the tank physics model
29 else if (value.getType() == SIM_MOTOR_VOLTAGE)
30 r.insert(Event<SimEvent>(&physics,value));
31 // Position events are external output
32 else if (value.getType() == SIM_TANK_POSITION)
33 r.insert(Event<SimEvent>(this,value));
34 // Anything else is an error
35 else assert(false);
36 }
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5.7 APPROXIMATING CONTINUOUS INTERACTION BETWEEN
HYBRID MODELS

Most numerical integration methods are designed for models in state space form, and it
is therefore desirable to put continuously interacting components into a single atomic
unit. Other considerations in the design of the simulation software may nonetheless
militate against this, and a method for approximating continuous interaction with
discrete-events is therefore indispensable.

A widely used technique, described in its most general form by Giambiasi et al.
[50], is to encode in an event a polynomial that approximates a continuous output.
The recipient of the event uses the polynomial to approximate the original, contin-
uous trajectory. The widespread use of this method testifies to its great utility: it
is embedded in the dead-reckoning algorithms of the IEEE Distributed Interactive
Simulation (DIS) standard [1] and has been widely used in event-based methods for
numerical integration [70, 99, 142, 158].

Continuous trajectories are encoded in an event as follows. Given k samples
x1, . . . , xk of the continuous function, and possibly some of its derivatives, at times
t1, . . . , tk , fit a polynomial to the data and send its coefficients in a discrete-event. The
recipient keeps these coefficients and uses them to calculate approximate values of
the continuous trajectory. In general, the more frequent the events and the greater the
information embedded in the polynomial, the more accurate is the approximation.

Dead reckoning in the IEEE DIS standard probably represents the most familiar
and most prominent use of polynomial events. Its purpose is to reduce the frequency
of position updates for simulated objects in a distributed, interactive simulation. Each
simulated object (aircraft, tank, ship, etc.) calculates, by any appropriate means, its
time-varying position x and velocity v . It also maintains the last position xo and
velocity vo that it broadcast on the simulation network and the time to when that
information was sent. The recipients of this data approximate the object’s position at
time t with the line

x̃ = xo + (t − to)vo (5.27)

The originator of the data calculates its estimated position whenever it recalculates
its actual position, and new values for xo, vo, and to are sent if x and x̃ deviate by
some predetermined quantity. Figure 5.14 illustrates this method.

Dead reckoning uses a truncated Taylor series to approximate the object’s position,
but any polynomial can be used in general; the specific choice will depend on the
data that are available. For instance, Equation 5.27 could be expanded by using two
velocity points vo and v ′

o at times to and some earlier time t ′
o to more accurately

approximate the actual velocity by

ṽ = t − t ′
o

to − t ′
o

vo + t − to
t ′
o − to

v ′
o
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FIGURE 5.14 Illustration of dead reckoning in the IEEE Standard for Distribute Inter-
active Simulation. The solid line shows the aircraft’s actual trajectory; the dashed lines,
the approximate, piecewise polynomial trajectories communicated by the dead reckoning
procedure.

and using xo, vo, and ṽ to estimate the position by

x̃ = xo + (t − to)ṽ

which, by encoding more information, tends to give a better result.
Although this technique is very useful, it must be employed with some cau-

tion. When difficulties do occur, they are invariably due to the originator of the
polynomial and its recipient not acting on the same signal. The originator, having
accurate data for itself, will prefer these for its local calculations. Clearly, the recip-
ient does not have this original data and must make do with the approximation. In a
distributed simulation this effect is exacerbated by transmission delays in the commu-
nication network. The consequences for event detection are obvious, but nonetheless
startling.

For instance, Figure 5.15 illustrates two aircraft flying a collision course and
expected to crash into each other. Aircraft A is flying a straight line at constant speed.
Aircraft B is turning, but its position is dead-reckoned by aircraft A using information
received at the start of the turn. Aircraft B, with the more accurate view of its own
path, will detect the midair collision. Aircraft A, unaware that B is turning, will not.
The simulated outcome for A is in error and, much worse, A and B have inconsistent
views of the world following the collision.

This use of polynomials can have an even more insidious effect on numerical
integration methods by altering their stability properties.This problem occurs when
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A

A

B

B, dead reckoned position

B, actual position

FIGURE 5.15 A collision that creates an inconsistent worldview because of error in a
dead-reckoned position.

there is more than one state variable, which complicates the analysis somewhat;
we will therefore consider a single illuminating case. Consider the stable, linear
system

ẋ = −x + y

ẏ = x − 2y

and its simulation by the implicit Euler method, which uses the approximate
system

xn+1 = xn + h(−xn+1 + yn+1)

yn+1 = yn + h(xn+1 − 2yn+1)

For a stable simulation, the matrix

[
1 + h −h
−h 1 + 2h

]−1
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must have only eigenvalues with a magnitude of −1. This condition is equivalent to
the roots of the polynomial

p(λ) = λ2 −
(

2 + 3h

1 + 3h + h2

)

λ + 1

1 + 3h + h2

being strictly −1. The roots are

2 + 3h ± √
h(5h − 6)

2 + 6h + 2h2

and when h = 0, they equal 1. As h → ∞ the h2 in the denominator dominates,
causing the roots to vanish. In fact, the magnitudes of the eigenvalues are less than 1
for all h > 0. This outcome is not entirely unexpected: the implicit Euler method is
stable for any stable, linear system.

Now split this model into two discrete-time systems, as shown in Figure 5.16.
The systems x and y are both simulated using the implicit Euler method with step
size h, and they exchange state and derivative information at each step. The system
x approximates y with the line ỹ(t) and y approximates x with the line x̃(t). The
simulation can be written as the pair of difference equations

xn+1 = xn + h(−xn+1 + ỹ(h))

yn+1 = yn + h(x̃(h) − 2yn+1)

x̃(t) = xn + t(−xn + yn)

ỹ(t) = yn + t(xn − 2yn)

This simulation is stable only if the matrix

[
(1 + h2)/(1 + h) h(1 − 2h)/(1 + h)

h(1 − h)/(1 + 2h) (1 + h2)/(1 + 2h)

]

has only eigenvalues with magnitude ≤1. A sure sign of trouble are the diagonal
entries that explode as h becomes large. Substituting h = 2, a stable selection when

xn+1 = xn + hf(xn+1, ỹ) yn+1 = yn + hg(x̃, yn+1)
x̃

ỹ

FIGURE 5.16 Separating the atomic model with state variables x and y into a network
model with two parts.
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implicit Euler is applied to the system as a whole, makes this simulation unstable,
leaving it with the pair of eigenvalues 0.38 and 2.3. When the continuously interacting
x and y are separated into two discrete modules, the unconditional stability of the
implicit Euler scheme is lost.

In many instances, these problems can be mitigated by carefully considering them
early in the design of a simulator. Inconsistency in distributed interactive simulations,
and in virtual environments in general, have been studied extensively, and numerous
techniques are available for alleviating problems caused by extrapolation and com-
munication delays (see, e.g., Refs. 16, 44, 118, and 162). In the specific context of
hybrid simulation, a judicious choice of integration scheme and careful control of
the local step size will avert numerical problems (see, e.g., Refs. 69 and 155). In any
case, an awareness of the potential difficulties posed by extrapolating polynomials is
essential for avoiding unpleasant surprises when they are put to real use.

5.8 A FINAL COMMENT ON CELLULAR AUTOMATA

In Section 4.5, it was shown that asynchronous cellular automata subsume the fa-
miliar synchronous cellular automata. The asynchronous (cellular) automata are now
shown to be a special case of a still more general class of systems: the differential
automata, which are used as models of flexible manufacturing systems (see, e.g.,
Ref. 84). The transformation of asynchronous automata into differential automata
is an example of how, by recognizing equivalences between seemingly disparate
systems, the useful scope of the simulator is expanded. More generally, the type of
transformation demonstrated here is a powerful enabler of multiformalism modeling.
Automated transformation of verification-oriented models, grounded, for example, in
hybrid input/output automata, one of the many flavors of Petri nets, labeled transition
systems, or finite-state automata, into code for multidisciplinary simulation projects
(see, e.g., Ref. 92) is an active area of research. AToM3 [33, 141], CD++ [143], the
composability framework described by Sarjoughian and Mayer [85, 126], and the
models of computation concept being explored by the Ptolemy and Kepler projects
[53], among others, demonstrate the promising potential of this technique.

5.8.1 Differential Automata with Constant Derivatives

Differential automata are finite-state automata that have a set of differential equa-
tions associated with each discrete state. Discrete-events, which change the system’s
discrete state, occur when the automaton’s continuous trajectory encounters an event
surface. By changing the discrete state, the system selects a new set of differential
equations to govern its motion away from the interrupting event surface.

In this particular example, the automaton’s continuous variables follow a line
between events. Its velocity depends on the discrete state q , of which there are only
a finite number. The continuous state vector x satisfies

ẋ(t) = v(q) (5.28)
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at each instance of real time t for which q is constant. When q changes at time (t, c),
its subsequent value depends on q((t, c)) and x((t, c)); the new state at time (t, c + 1)
is3

q((t, c + 1)) = �(x((t, c)), q((t, c))) (5.29)

The discrete change in the differential function takes effect at time (t, c + 1), and x
evolves from its value at the transition. Because x does not change discontinuously,
the trajectory x(t), which satisfies Equation 5.28 and is a function from R → R

m ,
is equal to x((t, c)), a function from R × N → R

m , for all c ∈ N, and so the two
technically distinct trajectories are interchangeable.

These systems can, of course, be modeled with a trivial hybrid system expressed in
terms of differential functions, event surfaces, and discrete transitions. Specifically,
it is the input/output-free system with ẋ as written above, δ̂int((x, q)) = (x,�(x, q)),
and G is the time remaining until � changes value.

5.8.2 Modeling Asynchronous Cellular Automata with
Differential Automata

The discrete states of a cellular automaton can be numbered by treating its leftmost
cell as the most significant bit in a binary number and its rightmost as the least
significant. An automaton with n cells has 2n discrete states. In addition to its binary
state, each cell k has a clock τk that induces events in two ways: beginning from zero,
τk grows until it reaches the cell’s duration Pk ; and beginning at Pk , τk shrinks until
it reaches zero. The direction of the clock is the cell’s third and final state variable.

The pair (bk, dk) is the discrete state of cell k, where bk ∈ {0, 1} is the binary
state and dk ∈ {1,−1} is the direction of the clock; the set of discrete states is
Q = {0, 1} × {1, −1}. The clock τk begins, and remains, in the interval [0, Pk]. The
differential automaton that models the cell is

τ̇k = dk (5.30)

�k(τk, (bk, dk )) =

⎧
⎪⎨

⎪⎩

(T (bk,l, bk, bk,r ),−dk) if (τk = 0 ∧ dk = −1)

∨(τk = Pk ∧ dk = 1)

(bk, dk ) otherwise

(5.31)

where T is as defined by Equation 4.21.
A cellular automaton with n cells is a differential automaton with the set of discrete

states Qn and the continuous state vector τ = [τ1 τ2 · · · τn]. The dynamic equations

3The symbol � commonly denotes the discrete transition function of a differential automata, but this
conflicts with our use of it for the nonevent, hence �.
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for this model are

τ̇ = [d1 d2 · · · dn] (5.32)

�(τ, ((b1, d1), . . . , (bn, dn))) = ((b′
1, d ′

1), . . . , (b′
n, d ′

n)) (5.33)

where (b′
k , d ′

k) = �k(τk, (bk , dk)).
There are exactly two cellular automata with a single cell, and these give the

simplest demonstration of the construction described above. The cell has a duration
P . It is its own left and right neighbors, and so T is entirely defined by its action
on the triples (1, 1, 1) and (0, 0, 0); for brevity T is written as a function of a single
value. Two transition rules can be defined:

Tα(b) = b (5.34)

Tβ (b) =
{

1 if b = 0

0 if b = 1
(5.35)

Both automata, the first with rule Tα and the second with rule Tβ , have a pair of
periodic trajectories. These are shown in Figure 5.17. The event surfaces are lines at
τ = 0 and τ = P . Beginning with a direction d = 1, the clock moves up to P where
a discrete-event occurs and causes the direction to change; it then moves to 0, where
the direction changes again; and the cell bounces back and forth between these two
constraining surfaces. Both automata need two bounces to return to their initial states
and so have a period of length 2P .

τ

(b,−1) (b′,1) (b,−1)

0

P

t

(b′,1)

2P

FIGURE 5.17 Event surfaces and periodic trajectories of two asynchronous automata, each
with a single cell; in this drawing, b′ = Tα(b) and b = Tα(b′) for the first automaton, and
similarly with respect to Tβ for the second automaton.
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5.8.3 A Homomorphism from Differential Automata to
Asynchronous Cellular Automata

Every asynchronous cellular automaton is a homomorphic image of a differential
automaton. We will consider here only the left-looking cellular automaton from
Section 4.5 and assume that the set of states of the asynchronous automaton are those
reachable from the initial conditions in the simulation code. It is a straightforward
exercise to extend the argument to encompass all asynchronous cellular automata.

A state of the differential automaton is mapped to a state of the resultant of
the asynchronous automaton in the following way. The discrete state b of a cell in
the differential automaton is mapped to the state s of the corresponding cell in the
asynchronous automaton. The b value of the left neighbor of the cell in the differential
automaton is mapped to l of the cell in the asynchronous automaton. The parameter
P is the same in both models.

Figure 5.18 depicts the relationships between the dk and τk variables of the differ-
ential automaton and the e, ek , and ck of the asynchronous automaton. The elapsed
time e of the asynchronous automaton’s resultant is the time elapsed since the last
transition of the differential automaton:

e = min
k∈[1,n]

(1 − dk)Pk

2
+ dkτk (5.36)

The elapsed time ek of the kth component is the time passed since its last internal,
external, or confluent event. Letting Ik be the set of indices of the neighboring cells
(i.e., the set of influencers of k), ek is

ek = −e + min
j∈Ik∪{k}

(1 − d j )Pj

2
+ d jτ j (5.37)

c3

,e3 e4

τ2

τ3

τ4

τ5

2 3 4

e

0
5

FIGURE 5.18 Relationships between the continuous components of cells 2 through 5 in
the differential automaton and asynchronous automaton.
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where e is the elapsed time from Equation 5.36. The consumed time ck at cell k is
the difference between the time passed by the same component in the differential
automaton and the elapsed time in the asynchronous automaton

ck = (1 − dk)Pk

2
+ dkτk − ek − e (5.38)

where e and ek are from Equations 5.36 and 5.37, respectively. This completes the
rule for converting a state of the differential automaton to a state of an asynchronous
automaton. Next, it is shown that this mapping is, in fact, a homomorphism.

First, we establish that the time to the next discrete transition of each model is
equivalent. The differential automaton undergoes its next discrete change of state
after a real interval

min
j∈[1,n]

(1 + d j )Pj

2
− d jτ j (5.39)

which is the smallest time at which a τ j reaches its (upper or lower) limit. Recalling
Equation 4.13, the time remaining for the resultant of the asynchronous automaton
to change its discrete state is

min
j∈[1,n]

Pj − c j − e j − e (5.40)

Substituting for c j Equation 5.38 gives

Pj − c j − e j − e = Pj −
(

(1 − d j )Pj

2
+ d jτ j − e j − e

)

− e j − e

= Pj − (1 − d j )Pj

2
− d jτ j

= (1 + d j )Pj

2
− d jτ j (5.41)

and substituting Equation 5.41 back into 5.40 yields Equation 5.39. Hence, the time
advance of the differential automaton and its corresponding asynchronous automaton
are equal.

Both systems are input-free and produce no output, so it is sufficient to consider just
three cases for the state transition function: simulation through an interval shorter
than the time advance of the resultant (i.e., case 5 of Equation 4.7), a simulation
ending immediately prior to a discrete transition (i.e., case 4 of Equation 4.7), and a
simulation ending at a discrete transition (i.e., case 3 of Equation 4.7). We examine
each case in turn.

Case 4 follows directly from the preceding argument for equal time advances. Case
5 is similar. Over an interval of real length ε the τk of the differential automaton change
by equal amounts, albeit possibly in opposite directions. Applying the mapping from
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differential to asynchronous automaton at the beginning of the interval and advancing
e by ε gives a final value

e = ε + min
k∈[1,n]

(1 − dk)Pk

2
+ dkτk

Conversely, advancing the τk first and then applying the mapping gives

e = min
k∈[1,n]

(1 − dk )Pk

2
+ dk(τk + dkε) = min

k∈[1,n]

(1 − dk)Pk

2
+ dkτk + d2

k ε

and because d2
k = 1, this is exactly as desired. Observe also that neither the ek nor ck

are altered; the advance of the minimal term in ek is offset by the equal advance of e
and also for ck .

Case 3 likewise follows from the fact of equal time advances, from the definition
of � for the differential automaton, and from the four conditions of the transi-
tion function of the asynchronous automaton: internal, external, and confluent and
the instance of no event. It is immediately apparent that the discrete variables in
each case behave as expected, and so now we consider the continuous variables
in each scenario. It is helpful to recall Equation 4.17 and the fact that the elapsed
time e is zero following each transition of the asynchronous automaton. Also ob-
serve that Equation 5.36 is zero at each transition of the differential automaton.
The four conditions of the transition function of the asynchronous automaton are as
follows:

Internal Event. Following the event, cell k of the asynchronous automaton has
ek = ck = 0. Similarly, the τk of the cell in the differential automaton is Pk if
dk transitioned from 1 to −1; 0 if the opposite. In both of these cases, Equation
5.37 is zero, and so is Equation 5.38. Hence, the result is the same regardless of
whether the mapping from differential automaton to asynchronous automaton
is applied before or after the transition.

No Event. A nonevent at cell k advances ek by the elapsed time e of the resultant;
cell k changes in no other way. Now observe that, in the differential automaton,
the cell and its neighbors’ τks are unchanged by the event, but the elapsed
time e of the asynchronous automaton becomes zero. Therefore, Equation 5.37
ensures that ek is advanced by e as required. For the same reason, Equation
5.38 ensures that ck is unchanged. Hence, the result is the same regardless of
whether the mapping from differential automaton to asynchronous automaton
is applied before or after the transition.

External Event. Following an external event at cell k, its consumed time ck is
advanced by the value of ek − e immediately prior to the transition; ek and
e then become zero. Because a neighboring cell has undergone an internal
event, Equation 5.36 is zero and, therefore, so is Equation 5.37. Equation 5.38
causes ck to increase by ek − e when that quantity becomes zero following the
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FIGURE 5.19 The clock variables of a differential automaton with component periods of
1, 1

2 , and 1
3 ; its “smaller” asynchronous automaton is shown in Figure 4.13.

transition. Again, the result is the same regardless of whether the mapping from
differential automaton to asynchronous automaton is applied before or after the
transition.

Confluent Event. This is a composition of the cell’s internal and external events.
Therefore, this scenario is covered by the three cases listed above.

To conclude, the mapping described above is a homomorphism from the differential
automaton described in Section 5.8.2 to the asynchronous automaton of Section 4.5.
Observe also that the direction of the differential automaton cannot be recovered
from the elapsed time of the asynchronous automaton, and so the mapping is not
an isomorphism; the asynchronous automata really are “smaller.” This is reflected in
the longer period of the differential automaton, which is apparent in a comparison of
Figures 5.19 and 4.13; the former shows the continuous phase space of the differential
automaton corresponding to the left-looking asynchronous automaton illustrated in
the latter. Indeed, the larger system has a period twice that of the smaller, a fact that
might have been anticipated from the simple example shown in Figure 5.17.

One more comment can be made about the above construction. For a discrete-
event simulation to calculate the differential automaton’s trajectory, its direction
must be added to the state variables of the left-looking asynchronous automaton. It
is a simple matter to show that, with this change, the two systems are equivalent;
the homomorphism shown above still applies (with, of course, an identity map for
the dks in both systems), and a second morphism can be constructed in the other
direction. The two systems are therefore isomorphic, each capable of simulating the
other.
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5.9 SUMMARY

This chapter completes the simulation framework by incorporating continuous dy-
namics. The approach taken here fits neatly into the discrete-event worldview, and
at the same time permits the use of well-established algorithms for simulating hy-
brid systems. In principle, the atomic models described here could be generated
automatically by a compiler for Modelica, ACSL, or any other language for contin-
uous system simulation, and the resulting component incorporated into any kind of
complex, discrete-event model. This idea is attractive for several reasons—very com-
plicated continuous models could be built with relative ease, their simulators could
be integrated directly with any modular framework for discrete-event simulation, and
this could all be done with minimal coding.

In Section 5.8, it was shown that the asynchronous automata are homomorphic
images of differential automata with constant derivatives. By adding state variables
to the asynchronous automata, the relationship can be made to hold in the other
direction; these particular differential automata are, in fact, discrete-event systems.
Indeed, models expressed in a variety of forms (see, e.g., Refs. 80, 102, and 155) can
be mapped to the constructs described here for simulation, and back again for other
types of analysis. The greatest practical restriction on this application is the need for
the continuous model to expose only a discrete-event interface.

Analytical frameworks for hybrid systems seldom impose this requirement; com-
pare, for instance, the Hybrid I/O Automata [80], DEVS&DESS [157], and Ames’
Categorical Hybrid Systems [5]. Closed under coupling, however, is a property intrin-
sic to most of these representational schemes, and the idea that any system expressed
in their terms can be rearranged into a simulatable form is therefore intuitively
appealing. Nonetheless, this has not been shown conclusively, nor are there estab-
lished procedures for such a transformation where it is known to be achievable. The
possibility, however, is intriguing; if computer languages for hybrid analysis (see,
e.g., Refs. 17 and 161) could be compiled into the forms described above, these
would become very practical, powerful tools for the engineering of computer- and
communication-intensive systems.
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CHAPTER 6

APPLICATIONS

The applications in this chapter highlight the main features of the simulation frame-
work. The first application, which examines closed-loop control through a packet-
switching network, shows how the software design promotes reuse of models across
simulation frameworks. The second application is also concerned with control, it
looks at using load to regulate frequency in an electrical power system. This ex-
ample contains complicated state events and computationally demanding continuous
dynamics and leaves open at least two interesting questions that a student might
pursue.

6.1 CONTROL THROUGH A PACKET-SWITCHED NETWORK

Recent work in the design of networked control systems has focused extensively on
communication networks that lose information. The simplest models use a Bernoulli
process for packet losses and impose a fixed delay on packets that are successfully
delivered. Control processes can be surprisingly robust to this type of error, and given
the relative ease with which its consequences can be analyzed, it is tempting to select
a control network whose behavior closely approximates this model (Hespanha et al.
[57] give an overview of recent work in this area; see also the article by Feng-Li et al.
[38]).

Conversely, interest in control over packet-switched networks is spurred by rela-
tively inexpensive communication technology that exists for data-processing appli-
cations. This networking technology is designed to favor delay and variation in delay

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.

237



P1: OSO
c06 JWBS040-Nutaro August 29, 2010 14:8 Printer Name: Yet to Come

238 APPLICATIONS

over the loss of information. In an adequately provisioned network, lost packets are
very rare. Even in a strained network, substantial delays and variations in delay will
occur before lost packets become a problem.

Ethernet is one of the most common technologies for building local-area networks,
and an Ethernet bus is capable of very high utilization rates with very little loss of
information. This is accomplished by its media access control (MAC) mechanism,
which works as follows (see, e.g., Ref. 137). Prior to and during a transmission, the
network access device listens for a simultaneous transmission by other devices on the
network. If a conflicting transmission occurs, then the signals are garbled, the data
are lost, and each will try its transmission again. To avoid a second conflict, each
network device waits for a time it selects at random before attempting to resend its
message. If, after some number of attempts, the device has been unable to send its
information, then the data are discarded and the upper layers of the network protocol
are notified of the loss; otherwise it reports success.

If a UDP-like protocol is used at the upper layers of the protocol stack, then the lost
message is simply discarded; no further effort is made to transmit it. Therefore, if the
controller and plant set their number of retry attempts to zero, and if the background
utilization of the network is constant, then the Ethernet network should be reasonably
approximated by the Bernoulli packet loss model. Moreover, if the amount of control
data on the network is negligible relative to other types of data, then the probability
of losing a control packet is approximately the arrival rate of the other data divided
by the maximum frame rate of the Ethernet.

By changing the retry count, a tradeoff can be made between the loss of control
data and variation in its delay. A large retry count will prevent the loss of data, but
could impose long delays relative to the plant and controller time constants; a small
retry count has the opposite effect. It seems reasonable to assume that, for a particular
plant, controller, and background utilization of the network, there is an optimal setting
for the retry count; that is, there is an optimal tradeoff between the loss of data and
its delay.

We will explore this question for a proportional–integral–derivative (PID) con-
troller whose purpose is to keep a pendulum upright; the important features of this
problem are illustrated in Figure 6.1 (see, e.g., Ref. 128 for a detailed discussion
of the pendulum and its controller). The pendulum consists of an arm attached by
a swivel joint to a wheeled cart. The cart is mounted on a track. A sensor provides
the controller with angle measurements from the arm. A motor in the cart allows the
controller to push it left and right on the track. By careful control of the force applied
by the motor, the PID controller attempts to keep the arm upright (the position of the
cart is not considered here).

6.1.1 Model of the Pendulum and Its PID Controller

The equation describing the motion of the inverted pendulum is

[
mc + ma −Lm cos(θ )/2

−Lm cos(θ )/2 L2ma/4

] [
ẍ
θ̈

]

=
[

F − ma L θ̇2 sin(θ )/2 − Dcẋ
ma Lg sin(θ )/2 − Da θ̇

]
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FIGURE 6.1 The inverted pendulum.

where the ma = 1 kg is the mass of the arm; mc = 1 kg is the mass of the cart;
Da = Dc = 10−4 are the coefficients of friction for the arm’s socket and cart’s wheels,
respectively; g = 9.8 m/s is acceleration due to gravity; and L = 0.5 m is the arm’s
length. The angle of the arm is sensed with a 10-bit analog-to-digital converter. This
device provides 1024 measurement points, which are evenly distributed through its
360◦ of motion. The kth sensor threshold θk in radians is at

θk = 2kπ/1024 (6.1)

If the last sensor reading was θk , then subsequent sensor readings are at θk+1 and
θk−1. The surfaces that describe these sensing events are

θ − θk+1 = 0

θ − θk−1 = 0

and the discrete variable k is included in the state space of the pendulum.
The sensor transmits a reading only when it detects a change in θ . This has the

effect of coupling the sensor’s data rate to the time derivatives of the pendulum. The
data rate of the sensor is, therefore, quite small when the system is near equilibrium.
Lost sensor readings, however, cannot be recovered by the controller (as, e.g., might
be done by periodic sampling of the arm angle).
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In response to a sensor reading, the manually tuned PID controller computes the
motor force as

εn = −θn

hn = tn − tn−1

Fn = 50εn + 5(εn − εn−1)hn + (εn − εn−1)/hn

where θn is the nth sample received through the network, tn is the time when the
sample was received, and Fn is the control data that are sent immediately in response
to a message from the arm angle sensor. Quantization and saturation effects for F are
ignored, and control data are transmitted only in response to a new sensor reading.
The code that implements both of these models is listed below. The model begins at
equilibrium with θ = 0, x = 0, and all derivatives equal to zero. The force F acting
on the cart consists of the control force Fn and an initial nudge F0 described by

F0 = 10 exp(−20t) (6.2)

so that F = Fn + F0.
When the controller is connected directly to the cart and pendulum, the arm

experiences an initial angular displacement of 7.5◦ and then settles into a swaying
motion that covers a 3◦ arc. These lasting oscillations are due to the quantization
of the arm angle; the controller lacks the information needed to completely damp
the pendulum’s motion. Figure 6.2 shows this response and the corresponding data
provided to the controller by the arm angle sensor.

-6

-4

-2

 0

 2

 4

 6

 8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

an
gl

e 
(d

eg
re

es
)

t (s)

Pendulum angle
Angle sensor

FIGURE 6.2 Response of the cart and pendulum to the PID controller using a quantized
sensor.
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Header File for the CartModel Class
1 #ifndef CART_MODEL_H
2 #define CART_MODEL_H
3 #include "adevs.h"
4

5 #define PI 3.1415926535897931
6 #define RAD_TO_DEG (180.0/PI)
7 // This is the dynamic model of the pendulum. The only input
8 // is the force applied by the cart’s motor and the only output
9 // is the arm angle measurement.

10 class CartModel: public adevs::ode_system<double>
11 {
12 public:
13 CartModel();
14 // Arm angle in degrees; zero degrees is straight down
15 // and rotation is clockwise.
16 double angle(const double* q) const { return RAD_TO_DEG*q[theta]; }
17 void init(double* q);
18 void der_func(const double *q, double *dq);
19 void state_event_func(const double *q, double *z);
20 void internal_event(double* q, const bool* state_event);
21 void external_event(double* q, double e,
22 const adevs::Bag<double>& xb);
23 void confluent_event(double *q, const bool* state_event,
24 const adevs::Bag<double>& xb);
25 void output_func(const double *q, const bool* state_event,
26 adevs::Bag<double>& yb);
27 double time_event_func(const double*){ return DBL_MAX; }
28 void gc_output(adevs::Bag<double>&){}
29 private:
30 // State variable indices
31 const int x, theta, dx, dtheta, t;
32 // Model parameters
33 const double armMass, armFric, cartMass, cartFric,
34 armLen, g, mAngle;
35 int k; // Last output level for the quantized sensor
36 // Constraint matrix and vector for A [ddx ddtheta]^T = B
37 double A[4][4], B[2];
38 double F; // Motor force
39 };
40

41 #endif

Source File for the CartModel Class
1 #include "CartModel.h"
2 using namespace std;
3 using namespace adevs;
4
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5 CartModel::CartModel():
6 ode_system<double>(5,2), // five cont. states, two event surfaces
7 x(0), // position index
8 theta(1), // arm angle index
9 dx(2), // cart velocity index

10 dtheta(3), // arm angular velocity index
11 t(4), // time
12 armMass(1.0), // mass of the arm in kilograms
13 armFric(1E-4), // resistance to rotation
14 cartMass(1.0), // mass of the cart in kilograms
15 cartFric(1E-4), // resistance to lateral motion
16 armLen(0.5), // length of the arm in meters
17 g(9.8), // acc. due to gravity in meters/second^2
18 mAngle(2.0*PI/1024.0), // sensor thresholds
19 k(0)
20 {
21 k = 0; // Arm angle is initially zero
22 F = 0.0; // No initial control force
23 // Compute the entries of the constraint matrix that are fixed
24 A[0][0] = cartMass+armMass;
25 A[1][1] = armLen*armLen*armMass/4.0;
26 }
27

28 void CartModel::init(double* q)
29 {
30 q[x] = 0.0; // Start at the middle of the track
31 q[theta] = k*mAngle;
32 q[dx] = q[dtheta] = 0.0; // No motion
33 q[t] = 0.0;
34 }
35

36 void CartModel::der_func(const double* q, double* dq)
37 {
38 dq[t] = 1.0; // Time
39 dq[x] = q[dx]; // Velocities
40 dq[theta] = q[dtheta];
41 // Compute the constraint matrices
42 double Fnudge = 10.0*exp(-20.0*q[t]);
43 A[1][0] = A[0][1] = -armLen*armMass*cos(q[theta])/2.0;
44 B[0] = (F+Fnudge)
45 - armMass*armLen*q[dtheta]*q[dtheta]*sin(q[theta])/2.0
46 - cartFric*q[dx];
47 B[1] = armMass*armLen*g*sin(q[theta])/2.0 - armFric*q[dtheta];
48 // Compute determinant of the constraint matrix
49 double det = A[0][0]*A[1][1]-A[0][1]*A[1][0];
50 // Solve for the accelerations
51 dq[dx] = (A[1][1]*B[0]-A[0][1]*B[1])/det;
52 dq[dtheta] = (A[0][0]*B[1]-A[1][0]*B[0])/det;
53 }
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54

55 void CartModel::state_event_func(const double* q, double* z)
56 {
57 z[0] = q[theta] - mAngle*(k-1);
58 z[1] = q[theta] - mAngle*(k+1);
59 }
60

61 void CartModel::internal_event(double *q, const bool *event_flags)
62 {
63 if (event_flags[0]) k--;
64 else k++;
65 }
66

67 void CartModel::external_event(double* q, double e, const Bag<double>& xb)
68 {
69 F = *(xb.begin());
70 }
71

72 void CartModel::confluent_event(double* q, const bool * event_flags,
73 const Bag<double>& xb)
74 {
75 internal_event(q,event_flags);
76 external_event(q,0.0,xb);
77 }
78

79 void CartModel::output_func(const double *q, const bool *event_flags,
80 Bag<double> &yb)
81 {
82 if (event_flags[0]) yb.insert((k-1)*mAngle);
83 else yb.insert((k+1)*mAngle);
84 }

The PIDControl Class
1 #ifndef PIDCONTROL_H
2 #define PIDCONTROL_H
3 #include "adevs.h"
4

5 // This is a PID controller for the cart.
6 class PIDControl: public adevs::Atomic<double>
7 {
8 public:
9 PIDControl():adevs::Atomic<double>(),

10 err(0.0),err_int(0.0),
11 csignal(0.0),send_control(false){}
12 void delta_int() { send_control = false; }
13 void delta_ext(double e, const adevs::Bag<double>& xb)
14 {
15 // Error is the difference of the arm angle from zero
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16 double new_err = -(*(xb.begin())); // New error value
17 err_int += new_err*e; // Integral of the error
18 double derr = (new_err-err)/e; // Derivative of the error
19 err = new_err; // Value of the error
20 csignal = 50.0*err+5.0*err_int+1.0*derr; // Control signal
21 send_control = true; // Send a new control value
22 }
23 void delta_conf(const adevs::Bag<double>& xb)
24 {
25 delta_int(); delta_ext(0.0,xb);
26 }
27 double ta() { if (send_control) return 0.0; return DBL_MAX; }
28 void output_func(adevs::Bag<double>& yb) { yb.insert(csignal); }
29 void gc_output(adevs::Bag<double>&){}
30 private:
31 double err, err_int, csignal;
32 bool send_control;
33 };
34

35 #endif

6.1.2 Integration with an Ethernet Simulator

Now the cart and its controller are separated by a 10-Mbps (megabits per second) Eth-
ernet that is shared with several other computers. What these others do is unimportant,
but they consume some fraction of the network’s throughput. From the perspective
of the cart and controller, additional network traffic degrades the performance of
the communication channel by introducing delay, variation in delay, and, in some
instances, lost data. When other users place very little data onto the network, their
impact on the performance of the controller is negligible. As much as 40% of the
network capacity can be consumed by other users before there is a noticeable change
in the trajectory of the cart and pendulum, but greater use of the network degrades
the controller’s performance.

The simulator for this system has three parts: the controller and cart, the Ethernet,
and the sources of background traffic. The first part is built with our simulation
framework. A model of the network and traffic generators is available as part of
the OMNeT++ (objective modular network testbed) simulation tool and its INeT
extension (the software is available for download at http://www.omnetpp.org/).
To build an integrated model, the simulator for the controller and cart are embedded
in an OMNeT++ component, which in turn is connected to OMNeT++’s model
of an Ethernet frame encapsulator and MAC device. The rest of the network is built
using the graphical tools and NED language that are native to OMNeT++.

Figure 6.3 shows the classes that are directly involved in the integration of the cart
and controller model with the OMNET++ simulator. The CartPID class encapsu-
lates the Simulator, PIDControl, and CartModel classes within a single OMNET++
module. This module does three things: (1) it intercepts messages coming from the
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FIGURE 6.3 Classes involved directly in the integration of the cart and controller into an
OMNeT++ model of an Ethernet network.

OMNET++ network and injects them into the cart–controller model via the Sim-
ulator’s computeNextState method, (2) it schedules self-events for the OMNET++
simulator in accordance with the time of next event obtained from the Simulator’s
nextEventTime method, and (3) it intercepts output from the cart and controller and
converts them into Ethernet frames that carry the sensor and control data. The code
for the CartPID class is listed below. Most of its features are familiar from previous
examples: use of the EventListener to intercept output events and changes of state
and of the Simulator to control time and inject input.

Its only unusual aspect is the cancellation of self-events on the receipt of a message.
This step is required because OMNeT++ places all of its events into a single future
event list, from which they are removed only when the event time expires or the
event is explicitly deleted. A change in the next event time of the cart and controller
invalidates its scheduled next event, and so it must be removed from the future event
list and the new, valid time inserted.

Header File for the CartPID Class
1 #ifndef __CARTPID_H__
2 #define __CARTPID_H__
3 #include <omnetpp.h>
4 #include "CartModel.h"
5 #include "PIDControl.h"
6 #include "TrajRecorder.h"
7

8 class CartPID: public cSimpleModule, // From OMNET++
9 public adevs::EventListener<double>
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10 {
11 public:
12 void outputEvent(adevs::Event<double> y, double t);
13 void stateChange(adevs::Atomic<double>*,double){}
14 ~CartPID();
15 protected:
16 // OMNET++ method for model initialization
17 void initialize();
18 // Method for processing OMNET++ events
19 void handleMessage(cMessage *msg);
20 void registerDSAP(const char* gate);
21 private:
22 PIDControl *pid; // The PID controller
23 adevs::Hybrid<double> *hysim; // Model of the cart and arm
24 TrajRecorder *traj; // Listener for recording the cart trajectory
25 adevs::SimpleDigraph<double>* top_model; // Holds the PID and cart
26 adevs::Simulator<double> *sim; // Simulator for our model
27 cMessage self_event; // OMNET++ event for our internal events
28 adevs::Bag<adevs::Event<double> > xbag; // Bag for OMNET++ inputs
29 std::ofstream sensor_rx_strm; // Records receipt of sensor msgs
30 };
31

32 #endif

Source File for the CartPID Class
1 #include "CartPID.h"
2 #include "ByteArrayMessage.h"
3 #include "MACAddress.h"
4 #include "Ieee802Ctrl_m.h"
5 #include <string>
6

7 // Network addresses for the OMNET++ network model
8 static const MACAddress SENSOR_ADDR("999999999999"),
9 CONTROL_ADDR("888888888888");

10 static const int SAP = 9999; // OMNET++ application ID for the cart/PID
11 Define_Module(CartPID); // Make CartPID into an OMNET++ module
12

13 // OMNET++ calls this method at the start of the simulation
14 void CartPID::initialize()
15 {
16 // Create the cart and controller
17 pid = new PIDControl();
18 CartModel *cart = new CartModel();
19 hysim = new adevs::Hybrid<double>(
20 cart,
21 new adevs::corrected_euler<double>(cart,1E-8,0.001),
22 new adevs::linear_event_locator<double>(cart,1E-10)
23 );
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24 traj = new TrajRecorder(cart,hysim);
25 top_model = new adevs::SimpleDigraph<double>();
26 // Models are not coupled because communication is through the
27 // OMNET++ model of the Ethernet.
28 top_model->add(hysim); top_model->add(pid);
29 sim = new adevs::Simulator<double>(top_model);
30 sim->addEventListener(traj);
31 sim->addEventListener(this);
32 // Schedule first internal event
33 if (sim->nextEventTime() < DBL_MAX)
34 scheduleAt(SimTime(sim->nextEventTime()),&self_event);
35 // Register with the OMNET LLC
36 registerDSAP("sensorOut");
37 registerDSAP("controlOut");
38 }
39

40 void CartPID::registerDSAP(const char* gate_name)
41 {
42 Ieee802Ctrl *etherctrl = new Ieee802Ctrl();
43 etherctrl->setDsap(SAP);
44 cMessage *msg =
45 new cMessage("register_DSAP", IEEE802CTRL_REGISTER_DSAP);
46 msg->setControlInfo(etherctrl);
47 send(msg,gate_name);
48 }
49

50 // OMNET++ calls this method when an event occurs at the CartPID model.
51 // These can be self-scheduled events or the arrival of a message
52 // from the network.
53 void CartPID::handleMessage(cMessage *msg)
54 {
55 SimTime timestamp = msg->getArrivalTime();
56 // Internal event
57 if (msg == &self_event) sim->execNextEvent();
58 // External event
59 else {
60 // Cancel any pending self events
61 if (self_event.isScheduled()) cancelEvent(&self_event);
62 // Convert to the expected message type
63 ByteArrayMessage *data = dynamic_cast<ByteArrayMessage*>(msg);
64 assert(data != NULL);
65 // Get the data from the message
66 adevs::Event<double> x;
67 data->copyDataToBuffer(&(x.value),sizeof(double));
68 // Inject a sensor reading into the controller
69 if (std::string(data->getArrivalGate()->getBaseName()) == "sensorIn")
70 x.model = pid;
71 // Control data goes to the cart
72 else x.model = hysim;
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73 // Clean up the message
74 delete data;
75 // Inject the event into the simulator
76 xbag.insert(x);
77 sim->computeNextState(xbag,timestamp.dbl());
78 xbag.clear();
79 }
80 // Process instantaneous responses to the input
81 while (SimTime(sim->nextEventTime()) <= timestamp)
82 sim->execNextEvent();
83 // Schedule the next internal event
84 if (sim->nextEventTime() < DBL_MAX)
85 scheduleAt(SimTime(sim->nextEventTime()),&self_event);
86 }
87

88 // This method is called by our simulator whenever the cart or
89 // controller produces an output event.
90 void CartPID::outputEvent(adevs::Event<double> y, double t)
91 {
92 Ieee802Ctrl *etherctrl = new Ieee802Ctrl();
93 etherctrl->setSsap(SAP);
94 etherctrl->setDsap(SAP);
95 // Sensor output; send it to the controller
96 if (y.model == hysim) {
97 etherctrl->setDest(CONTROL_ADDR);
98 ByteArrayMessage *msg =
99 new ByteArrayMessage("Sensor_data",IEEE802CTRL_DATA);

100 msg->setControlInfo(etherctrl);
101 msg->setDataFromBuffer(&(y.value),sizeof(double));
102 send(msg,"sensorOut");
103 }
104 // Control output; send it to the sensor
105 else {
106 etherctrl->setDest(SENSOR_ADDR);
107 ByteArrayMessage *msg =
108 new ByteArrayMessage("Control_data",IEEE802CTRL_DATA);
109 msg->setControlInfo(etherctrl);
110 msg->setDataFromBuffer(&(y.value),sizeof(double));
111 send(msg,"controlOut");
112 }
113 }
114

115 CartPID::~CartPID()
116 {
117 delete sim; delete top_model; delete traj;
118 }
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The rest of the integration is done with the OMNeT++ GUI (graphical user inter-
face). Figure 6.4 shows the final configuration of the network. The controlAndPlant
component contains the CartPID model, connecting its output and input to two Eth-
ernet protocol stacks: one stack for the sensor and the other for the controller. The
rest of the network is built from existing components.

The network has two parameters that are of interest for our experiment. First is
the number of attempts that the MACs in the CartPID’s protocol stacks will make
to transmit a data packet. By default, this number is 16; this default value is used by
the MACs of the models that produce background traffic. By reducing the number
of attempts for the controller and cart, however, we hope to improve the robustness
of the controller to congestion on the network. The second parameter of interest is
the frequency with which the other users attempt to send data. The size of a data
packet for these users is fixed at 1000 bytes (8000 bits), and each user produces
packets at exponentially distributed intervals (i.e., packet production is modeled by a
Poisson arrival process). The mean of the exponential distribution fixes the data rate
and, therefore, determines how much of the network’s capacity is consumed by these
users.

6.1.3 Experiments

When 40% of the network’s 10 Mbps is consumed by background traffic, the con-
troller still works admirably with the default number of retransmit attempts. At 50%,
however, there is noticeable deterioration, shown in Figure 6.5, and at 75% the con-
troller fails and the pendulum falls over. These two scenarios, therefore, are a good
test of the hypothesis that reducing the retry count improves performance.

The most extreme case is a reduction of the maximum number of retransmit at-
tempts from 16 to 0, and doing this helps the controller substantially. Figure 6.6 shows
the affect of this adjustment on the trajectories of the pendulum for the same 50%
utilization scenario shown in Figure 6.5. Compare these trajectories with Figure 6.2,
and the dramatic effect is immediately apparent. The large swings of the pendulum
late in the trajectory have been damped, with the oscillations staying nearly inside
the 3◦ band seen in the ideal case.

The reason for this tremendous improvement is that old data from the controller
and arm angle sensors do not stall the transmission of more recent, more accurate data.
Imagine, for instance, that the sensor produces a measurement of 1◦ at t = 1. This
is inserted into a packet and sent to the MAC device for transmission. If a collision
occurs, the MAC device holds onto the data for a short time and then attempts to resend
them. While the MAC device waits, the sensor produces a second measurement of,
say, 1.35◦ at t = 1.1. This newer, more useful data must wait, however, until the old,
now useless, data are transmitted. In the 50% utilization scenario, using the default
limit on the number of attempts to retransmit, the cart and controller exchange, on
average, a total of 248.45 messages, and these are collectively subject to an average
of 116 backoffs. So the situation just described occurs in half of the attempted
transmissions. By not attempting to retransmit old data, this situation is avoided, and
the controller does a better job by always using the most up-to-date information.
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FIGURE 6.4 Diagram of the CartPID protocol stack (below) and the Ethernet network
(above).
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FIGURE 6.5 Plot showing 11 trajectories of the pendulum, each using a separate random-
number stream, for a network carrying 50% of its capacity. The maximum number of transmit
attempts for the cart and controller is 16.

The results of the same experiment, but conducted with the network carrying
75% of its capacity, are shown in Figure 6.7. When the number of attempts to retry
a message are restricted the system is stabilized, but it performs poorly, with the
quantization-induced oscillations swinging as far as 10◦. Congestion in the network
causes a significant loss of data; of an average of 427.45 packets sent, nearly half of
those, 212.68 on average, are lost to collisions. Lost data are, in fact, the sole cause
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FIGURE 6.6 Plot showing 11 trajectories of the pendulum for a network carrying 50% of
its capacity, but with the cart and controller attempting to transmit each packet at most once.
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FIGURE 6.7 Plot showing 11 trajectories of the pendulum for a network carrying 75% of
its capacity, but with the cart and controller attempting to transmit each packet at most once.

of this poor performance. There are no backoffs, and hence no delays incurred by the
MAC protocol.

However, if the number of retransmission attempts is increased to one, there is
again a remarkable performance improvement; Figure 6.8 shows the results. Now the
initial deflection is dampened substantially and the system oscillates through about 4◦.
In this case, on average 75.45 packets of the 278.14 sent are lost, so the packet loss rate
is 27%, much lower than before. The number of backoffs is correspondingly greater,
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FIGURE 6.8 Plot showing 11 trajectories of the pendulum for a network carrying 75% of
its capacity, but with the cart and controller attempting to transmit each packet at most twice.
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however, at an average of 134.77, so that nearly half of the messages experience a
delay due to collision and queuing.

These experiments support the notion of an optimal setting for the maximum
number of attempts to transmit a packet that is conditional on the network utilization;
that is, an optimal tradeoff between delay due to backoffs and data lost to collisions.
We might even anticipate how the controller will perform as the retry limit is varied
around a best choice, and consequently expect, not many, but a single optimal selec-
tion. Note first that the number of lost packets increases as the retry limit is shrunk,
and decreases as it grows. Let us assume that the change in the packet loss rate is
proportional to the change in the retry limit away from its optimum so that

�packet loss rate ∝ �retry limit

Similarly, the delay experienced by each packet that is successfully transmitted
decreases as the retry limit shrinks, and increases as it grows. Again, let us assume
that the change in the delay is proportional to the change in the retry limit so that

�packet delay ∝ �retry limit

If the change in the performance metric J , which is to be minized, is the product of
these two effects, that is

�J ∝ �packet delay × �packet loss rate ∝ �retry limit2

then about an optimal retry limit our measure of performance will be quadratic and
therefore that optimum is unique. Indeed, experiments will bear this out.

To find the optimum, 11 simulations are performed for each selection of the retry
limit and network utilization. At each level of network utilization, the performance
of the controller as a function of the retry limit is quantified by the total angular
deflection over the 5-s observation window. Thus the performance is

J (retry limit) =
5∫

0

[ω(t)]2 dt (6.3)

and our goal is to determine the retry limit that minimizes J for a particular utilization.
Figure 6.9 shows the average J and statistical certainty (99% confidence interval)

for the cases where the network is loaded to 50% and 75% of its capacity. In each
case, there is a statistically significant decline of J as the retry limit climbs from
zero to some best selection and then J gradually increases. For the 75% scenario, the
controller becomes unstable when the retry limit is 8 or greater, and the performance
numbers for these cases are not shown. For the 50% case, the performance gradually
becomes invariant to the retry setting. In all cases, trends in J are reflected in the
trend of the statistical uncertainty; greater uncertainty indicates a greater degree of
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FIGURE 6.9 System performance as a function of the maximum number of transmit at-
tempts: (a) 75%; (b) 50%. Bar show the 99% confidence interval for the mean value of J over
11 trials.

variation in the performance of the system and an intrinsic lack of robustness. The
best choices have both a small J and small statistical uncertainty.

We have just seen that the performance of a networked control system can be
improved by adapting the network to the controller. In this particular case, there is
an optimal selection of the MAC’s retry limit. In a more complicated network there
will be several parameters at each layer of a network protocol stack that can be tuned
for performance. For example, the sizes of the send and receive buffers allocated by
the operating system can affect queuing delays and packet losses. When using the
Transmission Control Protocol (TCP), jitter and delay can be affected by adjusting
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the time that a packet’s recipient waits to acknowledge its receipt and the time that the
sender will wait for an acknowledgment before retransmitting the packet. In many
TCP implementations, Nagle’s algorithm can be disabled to prevent the bundling of
data, which generally increases delays but reduces network utilization, and there are
others (see, e.g., Ref. 137). Optimization of the system’s performance need not be
limited to adjusting parameters of the network protocol; the controller can also be
tuned to accommodate the limits of the network (again, see, e.g; Ref. 57). This kind
of detailed optimization is a natural application for the simulation technology.

6.2 FREQUENCY REGULATION IN AN ELECTRICAL POWER SYSTEM

Advances in communication and computing technology have reinvigorated interest
in the use of electrical load for balancing supply and demand. Simulation has a central
place in the evaluation of proposals to use electrical load for frequency regulation
and to accommodate unexpected shortfalls in the supply of power (see, e.g., Refs. 3,
39, 56, 59, 65, 98, 108, and 135). Before describing the solution, however, consider
the problem. A mismatch in supply and demand causes the rotating machinery in
the generators to change, accelerating if there is too much supply and decelerating if
there is too much demand. The generator will be damaged if its rotational frequency
is not maintained near nominal: 60 Hz in the United States and 50 Hz in much of the
rest of the world.

The generators themselves are primarily responsible for frequency control. If the
frequency begins to drop, then automatic controls apply more mechanical power to
the turbine: steam, water, or whatever is used. This causes the turbine to accelerate,
bringing its frequency back to normal, at which time power is reduced slightly to stop
the acceleration and maintain the desired frequency. The same actions are taken, but
in the opposite direction, if the frequency increases.

A generator is a massive machine with a great deal of inertia, and this limits the
rate at which its turbine’s speed can be altered. Large, sudden changes in load can
cause the frequency to change too rapidly for the automatic controllers to compensate.
When this happens, the frequency moves dangerously far from normal, and automatic
protection devices disconnect the generator from the electrical network. Loss of the
generator exacerbates the mismatch of supply and demand, causing the remaining
generators to accelerate still more quickly, overwhelming their automatic controls and
forcing them off of the network. If left unchecked, this dynamic causes a widespread
blackout.

When supply cannot change quickly enough, demand can be adjusted instead.
The idea is simple—if there is excess electrical load, then disconnect it. When
the frequency recovers, the load is quickly, but carefully, reconnected. If this is done
automatically, then the brief loss of power will be almost unnoticed by customers. This
tactic has been employed for decades with the cooperation of industrial consumers of
power, with aluminum smelters, skyscrapers, and other facilities agreeing to reduce
electricity usage on request in exchange for a reduction in the price of electricity.

Modern communication technology has expanded the possible scope of this idea.
With millions of “smart" electrical meters installed in homes and small businesses,
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large conglomerates of relatively small loads can, in principle, be used to regulate
frequency. One mechanism, which is considered in this section, works as follows.
Homes and businesses have two electric circuits; one provides uninterrupted power
and the other can be disconnected at will by the power company or, possibly, by a
load aggregation company that provides regulation services to the power company.
Power is supplied through the interruptible circuit at a reduced rate. If, for instance,
a water heater is connected to it, then you pay less for hot water in exchange for
making the heater available to the power company as a regulation resource.

The power company (or an aggregator) has a communication link to each meter
and can send it a request to energize or deenergize the interruptible circuit. The
communication system that makes this possible might be owned wholly by the
power company. Many companies already own extensive fiberoptic networks, and
the last mile to the home can be affordably bridged with wireless technology. This
service might also be leased from a communication company (e.g., a phone, cable, or
Internet service provider). Regardless, the complete system provides, potentially, for
direct control of the electrical load at thousands, perhaps millions, of households and
businesses. Significantly, this electrical load can react to a disturbance more quickly
than can generators. Thousands of water heaters, for instance, can be turned off in
an instant to provide rapid relief from excess load. The major source of delay is
the communication network; it must be able to deliver control data in fractions of a
second to loads being used for frequency regulation.

Figure 6.10 illustrates the elements of the system that are relevant to this study,
which is based loosely on a similar study by Trudnowski et al. [139]. Each generator

LoadTransmission

Control center
Generator

Frequency
sensor

FIGURE 6.10 Elements of the power grid and its subsystem for load control.
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transmits to the control center a measurement of its frequency: measurements are
sent at points � f away from the nominal frequency fnom; that is, it transmits a new
measurement whenever f − fnom equals k � f , k = . . . ,−2,−1, 0, 1, 2, . . . . The
control center maintains the instantaneous average favg of measurements from all
of the generators, and directs the electrical loads to effect a percentage change in
demand equal to K favg, where K is a parameter of the control design.

The most difficult part to model is the communication network, and a very abstract
approach is taken here. The movement of data from the generators to the control center
to load aggregators is modeled with a first-in first-out server and infinite queue. This
simple model lumps the data-processing capabilities of the control center and the
aggregator into a component residing at each aggregator. The aggregators are further
assumed to be identical, and so one more parameter is added to the model: the data
rate R of the communication and control system.

This brings the total number of free parameters to three: K , � f , and R. The
purpose of the model is to determine, for a given electrical network, how these
parameters affect the magnitude of the load reduction and frequency at the generators
in response to a significant loss of supply. The electrical components of the system are
modeled in a generally standard fashion; the details of the generators and transmission
lines are described next. These descriptions are brief, highlighting only the necessary
mathematical elements. Excellent overviews of the models and underlying theory can
be found in textbooks by Nilsson [97] (for sinusoidal steady-state analysis), Glover
et al. [52], and Arrillaga and Watson [6].

6.2.1 Generation

The generators are modeled as synchronous machines having six state variables: the
deviation of the frequency from nominal, the phase angle, the excitation voltage, the
mechanical power that drives the machine, the mechanical power control signal, and
the status of the frequency protection breaker.1 The model has one input variable and
one output variable, and these govern its interaction with the transmission system.
The input variable is the voltage where the machine connects to the transmission
network. The output variable is the current it injects into the network at the same
point. Figure 6.11 illustrates the state variables with respect to the physical machine
that they model. The model has 10 parameters; these are listed in Table 6.1.

The angular speed of the turbine, ω, is in radians per second; its frequency (in
hertz) is

f = (2π )−1ω (6.4)

The synchronous reactance Xd is a complex impedance, and the terminal voltage
V and excitation voltage E are phasors.2 The state trajectory of the generator is

1This model is based on Mullen’s thesis [152].
2Section C.2 in Appendix C gives a brief review of phasors, complex impedances, and their uses in circuit
analysis.
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breaker
status

V, Iinj
terminal voltage,
injected current

Ef
field voltage

c 
mechanical power control

Pm, ω, θ 
applied mechanical power,
angular velocity deviation,

phase angle

FIGURE 6.11 State variables in the synchronous machine model.

described by the equations

E = E f ∠θ (internal machine voltage) (6.5)

I = E − V

Xd
(current flow out of the machine) (6.6)

Pe = �{V I ∗} (real electrical demand) (6.7)

ω̇ = Pm − Pe

M
(angular acceleration) (6.8)

θ̇ = ω (changing phase angle) (6.9)

ċ = −T1(c + Rω + Agθ ) (speed and phase angle control) (6.10)

Ṗm = T2(c − Pm + Ps) (mechanical power adjustment) (6.11)

TABLE 6.1 Synchronous Machine Parameters

Parameter Definition

T1, T2 Time constants of the speed controller
Te Time constant of the excitation controller
Elim Maximum excitation voltage
M Angular momentum
R Gain for the droop control
Ag Gain of the area generation controller
ft Frequency deviation tolerance (in hertz)
Xd Synchronous reactance
Ps Output power setpoint
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Ė f =
⎧
⎨

⎩

0 if E f ≥ Elim ∧ |V | < 1
1 − |V |

Te
otherwise

(excitation control) (6.12)

Breaker status ←
{

closed if breaker status = closed ∧ | f | < ft

open otherwise
(breaker logic)

(6.13)

The generator output variable is

Iinj = E

Xd
(6.14)

6.2.2 Transmission Network and Electrical Loads

The transmission network connects generators and loads. It is modeled with an
admittance matrix Y , which is obtained by sinusoidal steady-state analysis. Every
load attached to the network is represented by a Norton equivalent circuit: it has an
injected current in parallel with an admittance. Passive loads inject no current, and
active loads may have a negative or positive injected current. Generators are modeled
in the same way, with an injected current calculated by Equation 6.14 and admittance
y that is the inverse of the machine’s synchronous reactance (i.e., y = 1/Xd ; see
Table 6.1).

Figure 6.12 illustrates the main parts of a model that has generation, load, and
transmission. The one line diagram of the two load, two line, single generator system

y1 y2

y1g

1 Generator

Line 1g Line 2g

Load 2Load 1

y2g

V1

Xd

V2

I V

I1 I2

Iinj

FIGURE 6.12 Circuit diagram and one line drawing of a small power system.
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is shown next to its equivalent circuit model. The node voltages and branch currents
labeled in the figure are related directly to the input and output variables of the
generators, which are described in Section 6.2.1. Specifically, the node voltage V
appears in Equations 6.6, 6.7, and 6.12; the generator output current I is derived from
its Thevenin equivalent circuit, and the electrical power demand is the product of the
output current I and terminal voltage V .

Given the network admittance matrix Y , the load and machine admittances y1,. . . ,
yn , and the injected current vector Īinj, we calculate the voltages V1, . . . , Vn appearing
at the terminals of loads and generators by

(
Y + diag(y1 y2 · · · yn)

)−1
Īinj = [V1 V2 · · · Vn]T

This formula is illustrated below using the vectors and matrices for the power system
shown in Figure 6.12:

⎛

⎝

⎡

⎣
y2g + y1g −y1g −y2g

−y1g y1g 0
−y2g 0 y2g

⎤

⎦ +
⎡

⎣
1/Xd 0 0

0 y1 0
0 0 y2

⎤

⎦

⎞

⎠

−1 ⎡

⎣
Iinj

I1

I2

⎤

⎦ =
⎡

⎣
V
V1

V2

⎤

⎦

If a breaker at a generator opens, then the admittance for that generator is zero (i.e.,
Xd = ∞) and Iinj is zero. This disconnects the generator from the transmission net-
work. Changes in load are modeled as discrete events that change the load admittance,
load current, or both.

6.2.3 Frequency Monitoring and Load Actuation

A generator reports its frequency to the control center at threshold values k � f ,
k ∈ Z; these thresholds are described by event surfaces at f − k� f = 0. Reports
from the generator are processed at the control center, which keeps the most recent
report from each generator. On processing a report, the control center calculates
a percentage adjustment for the load and, if the new adjustment differs from the
previous one, it tells the loads to change their demands accordingly. The percentage
adjustment α is limited to ±30%, but within this range is calculated by multiplying
the average of the reported frequencies by the control parameter K ; in other words,
if N generators are connected to the network, the requested adjustment is

α = K

N

N∑

j=1

f j (6.15)

where the f j is the frequency most recently reported by the j th generator. The
new α is then placed into a queue for processing at each load. The loads make
adjustments relative to their base demand L to achieve an actual demand (1 + α)L .
The transmission network closes the control loop; the diagonal elements in Y change
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discretely as the loads process requests from the control center, thereby changing the
electrical demand at the terminals of the generators.

6.2.4 Software Implementation

The transmission network and generators are lumped together in a single model
called ElectricalModel, which is derived from the ode system class and simulated
with a Hybrid object. The model comprises a set of differential algebraic equations
in the form

ẋ = f (x, V) (6.16)

V = Y −1I (6.17)

where x is a vector with six state variables for each generator, I is the current injected
by each node into the network, and V are the node voltages. The entries in the matrix
Y change each time a load adjusts its demand or a generator disconnects, and so its
inverse must be recalculated at each such event. This can be done with any suitable
numerical package; LAPACK was used in this instance.

In addition to its continuous state variables, the ElectricalModel has for each
generator four state events that are contingent on frequency: one for the overfrequency
breaker at f − ft = 0, one for the underfrequency breaker at f + ft = 0, and two
for the frequency sensor at f − (k + 1)� f = 0 and f − (k − 1)� f = 0, where k is
the discrete level of f at the last sensor reading. There is one event contingent on
E f , but this is more difficult to handle. Ideally, E f climbs to Elim and then stops until
1 − |V | becomes negative, causing E f to fall below its limit. If, however, saturation
is modeled by E f − Elim = 0, then the model is illegitimate; on reaching Elim the
event condition is always satisfied. The same issue plagues the 1 − |V | condition that
permits E f to fall when it is saturated.

Both problems can be solved with a small hysteresis value ε. The saturation
condition is put a little above Elim at Elim + ε. On reaching this value, E f stops
climbing, and will begin to fall when |V | reaches 1 + ε. While E f remains above
Elim and below Elim + ε it may only fall; for |V | ≥ 1, the derivative of E f is zero.
As soon as E f < Elim, however, it is allowed to climb again. By labeling these three
distinct modes, we can build a state transition diagram for the exciter; this is shown
in Figure 6.13. In the state UNSAT the excitation voltage may go up or down. From
UNSAT, the state changes to SAT when E f = Elim + ε. The SAT state changes to
FALLING when |V | = 1 + ε. From FALLING, it goes back to SAT if |V | = 1 or to
UNSAT if E f = Elim.

The other components of this model are less complicated. The GenrFail model
starts a scenario by producing an input for the ElectricalModel that causes it to dis-
connect a generator. Outputs from the ElectricalModel are sensor readings, and these
are fed into the LoadControl model, which implements the control logic described in
Section 6.2.3. Output from the control center is broadcast to the Aggregator models.
There is one for each load in the power system. This class models the load aggregator
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UNSAT

FALLING

SATĖf =

| V | = 1 +

Ef = Elim +

Ef = Elim

| V | = 1

Ėf =

Ėf = 0
1−| V |
Te

1−| V |
Te

FIGURE 6.13 State transition diagram for the saturating exciter. The initial state is UNSAT
with E f < Elim.

as a server having service time 1/R and an infinite queue to hold pending commands.
Outputs from the aggregators are new diagonal values for Y , and so become input to
the ElectricalModel, thereby closing the control loop. The model with all of its parts
is illustrated in Figure 6.14, which shows the important classes, and Figure 6.15,
which shows how the components are coupled to form the complete system.

6.2.5 Experiments

These experiments are based on the IEEE 118 bus test system,3 which is illustrated in
Figure 6.16. The system has 34 generators, which are assumed to be identical. Their
parameters are listed in Table 6.2. The base electrical loads are modeled simply as
complex admittances; their values are obtained from the power flow data by assuming
a bus voltage V = 1∠0 so that the bus admittance y is equal to the inverse of its
complex power S: y = 1/S.4 Synchronous condensers and capacitor banks at buses
are likewise modeled by complex admittances. The model begins in equilibrium, so
that ω = 0 at every generator and the other initial conditions are listed by bus number
in Table 6.3.

The scenario begins with the generator at bus 79 failing at t = 1 s. This removes
the largest source of power from the network. Now demand exceeds supply and
frequency begins to drop. Without controls beyond those supplied by the generators,
all of them are lost, tripping offline within 0.5 s of the initial failure.

3IEEE test cases are available at http://www.ee.washington.edu/research/pstca/; the data for
this study were retrieved in September 2009. For this study, buses with entries in the generation column
have generators and buses with entries in the load column are loads; load admittances are calculated from
the latter numbers.
4This is not a rigorous model of the electrical load (see, e.g., Ref. 111), but it is adequate for our purposes.
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FIGURE 6.14 Class diagram of the model’s power and control elements.

Action by the loads can substantially improve this situation. Table 6.4 shows the
effects of eight choices for the control parameters. These include large and small
values for the network data rates, large and small values for the sensitivity of the
frequency sensors, and large and small values for the gain. Each simulation covers
10 s: the 1 s prior to and the 9 s following the loss.

Performance is measured in four ways: First, does the scenario end with the loss of
one or more additional generators? Second, what is the largest backlog of messages
at the aggregators? Third is the cost Jl of the shed load, which is calculated as the

GenrFail ElectricalModel

LoadControl

Aggregator
Aggregator

Aggregator
Aggregator

Aggregator
Aggregator

sensor readings

control commands

electrical demand

FIGURE 6.15 Coupling of the model’s power and control elements.



P1: OSO
c06 JWBS040-Nutaro August 29, 2010 14:8 Printer Name: Yet to Come

28 29

27

31
32

11
4

17

11
3

18

22 21 20 19

16
15

14

12

11
7

2
1

6
5

4

8

10

13

33

34

38

43
44

4647

49

36
35

37
40

42
51

52

50
57

54 56

55

59

6162

63

66

67

69

11
6

73
74

70

75

77

7611
8

78

80

81

82
83

84

85

87

91 92

93
949597

96

10
0

10
1

10
4

10
3

10
9

10
8

10
5

10
7

3

7

79

71
72

11
9

23
24

25

26 30

39

41

45

48

53

58
64

60

65

68

86

88
89 90

98

99

10
2

10
6

11
0

11
1

11
2

11
5

F
IG

U
R

E
6.

16
D

ia
gr

am
of

th
e

po
w

er
sy

st
em

.T
he

bl
ac

k
bo

xe
s

re
pr

es
en

tb
us

es
w

ith
a

ge
ne

ra
to

r.

264



P1: OSO
c06 JWBS040-Nutaro August 29, 2010 14:8 Printer Name: Yet to Come

FREQUENCY REGULATION IN AN ELECTRICAL POWER SYSTEM 265

TABLE 6.2 Synchronous Machine
Parameters for the 118-Bus Test Case

Parameter Value

T1 20
T2 20
Te 0.01
Elim 5
M 3
R 50
Ag 200
ft 0.0025
Xd 0.001 + j0.01
Ps 10

time integral of the adjustments requested by the controller; specifically,

Jl =
∑

k=1

|αk−1|(tk − tk−1)

where tk is the time αk issued by the controller. Fourth is the effectiveness of the
controller for damping the generators’ movements away from the nominal frequency;
this is quantified by the integral sum

J f = 1

33

33∑

k=1

10∫

0

(60ωk )2 dt

where ωk is the rotational velocity of generator number k (multiplication by 60
converts the per unit rotational velocity to a frequency variation that would be seen
in a system where 60 Hz is nominal). This metric is calculated only if no additional
generating units are lost.

Table 6.4 highlights the salient features of the system. First, the aggregators must
be capable of some minimal data rate to be effective. This minimum is determined
by both the sensitivity of the sensors and the magnitude and rate of the frequency
excursion. In cases 3 and 4, the slow response of the controller allowed for a large
frequency excursion and, due to the fine sensitivity of the sensors, a large backlog in
the queues. The backlog in these cases is large enough to prevent the control system
from acting in a timely manner, and the result is a blackout, all except one generator
is lost and that generator does not supply an acceptable voltage at the loads.

If the data rate is sufficiently high, the controller consistently prevents the loss
of a second generator at the cost of a brief interruption for a fraction of the power
consumers. The worst case for consumers is cases 8, where a strong response is
coupled with fine-grained sensors; the controller is on a hair trigger, but with K = 12
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TABLE 6.3 Initial Conditions for the Generators

Bus ID E f θ Pm c

3 1.00497 0.0432421 1.35158 −8.64842
7 1.00498 0.0460267 0.794661 −9.20534
9 1.00004 0.0492664 0.146725 −9.85327
11 1.01723 0.0366565 2.66869 −7.33131
23 1.00262 0.0477939 0.441222 −9.55878
24 1.00104 0.0484802 0.303956 −9.69604
25 1.00201 0.0483618 0.327631 −9.67237
26 1.00585 0.0437431 1.25137 −8.74863
30 1.00659 0.0440512 1.18976 −8.81024
39 1.00897 0.0431353 1.37295 −8.62705
41 1.00288 0.046637 0.672594 −9.32741
45 1.00404 0.0452297 0.954062 −9.04594
48 1.00879 0.0414223 1.71553 −8.28447
53 1.01405 0.0353373 2.93255 −7.06745
58 1.0158 0.0365551 2.68898 −7.31102
60 1.00331 0.0424173 1.51654 −8.48346
64 1.00344 0.0458577 0.828469 −9.17153
65 1.00278 0.0453248 0.935031 −9.06497
68 1.00917 0.0423695 1.5261 −8.4739
71 1.00069 0.0489407 0.211861 −9.78814
72 1.00337 0.0467811 0.643779 −9.35622
79 1.02359 0.0349618 3.00764 −6.99236
86 1.00163 0.0485503 0.28993 −9.71007
88 1.00904 0.0428412 1.43176 −8.56824
89 1.00514 0.0457476 0.850475 −9.14953
90 1.00054 0.0481395 0.372105 −9.6279
98 0.999622 0.0482093 0.358144 −9.64186
99 1.01192 0.0425017 1.49967 −8.50033
102 1.00541 0.0456922 0.861567 −9.13843
106 1.00428 0.046433 0.713403 −9.2866
110 1.0017 0.0487104 0.257912 −9.74209
111 1.00348 0.0473962 0.52075 −9.47925
112 1.00691 0.0436271 1.27459 −8.72541
115 1.00054 0.0465561 0.688782 −9.31122

lacks the dexterity for making precise adjustments and so tends to overreact. In case
7, however, finely tuned, rapid adjustments give a good response for both the power
consumers and power producers. Although consumers might prefer the outcome in
case 1, which minimizes the loss of electrical service, the more rapid damping of the
frequency excursion in case 7 is indicative of a more robust system and, consequently,
yields the greatest benefit for all parties.

The control signal for case 7 is shown in Figure 6.17; it disconnects about 8%
of the load for <1.5 s, with load quickly reconnected as the disturbance subsides.
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TABLE 6.4 Performance Metrics for Eight-Parameter Sets

Maximum
Message

Case R K � f (×10−3) Backlog Jl (×10−2) J f (×10−2)

1 100 2 1.25 6 2.9 3.0
2 100 12 1.25 4 16 4.7
3a 100 2 0.125 180 —
4a 100 12 0.125 83 — —
5 1000 2 1.25 2 3.9 3.1
6 1000 12 1.25 2 13 4.0
7 1000 2 0.125 24 4.8 2.4
8 1000 12 0.125 35 23 2.7

aThese two cases end in the additional loss of generation and do not report Jl of J f .

The frequency and mechanical power trajectories for the generators are shown in
Figures 6.18 and 6.19. The correspondence between the control signal and frequency
excursion is readily apparent. The contingency ends with the generators able to supply
sufficient voltage to the majority of the loads, but voltages near the disconnected
generator have noticeably sagged: Figure 6.20 shows bus voltages initially and at
the end of the scenario. If this model were extended to include voltage regulating
transformers at the loads (see, e.g., Ref. 58), these would initiate a second round
of corrective actions by creating a greater demand for power (reactive power, in
this case) from the generators. This, in turn, could cause nearby generators to reach
their E f limits, instigating a voltage collapse and additional loss of generation. This
scenario would make an interesting study.
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FIGURE 6.17 Control signal in case 7.
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FIGURE 6.18 Mechanical power in case 7.

A final comment should be made about the data Table 6.4. First, observe that the
frequency trajectories for case 7 show one generator that barely avoids the disconnect
threshold. It is impossible to know whether this is a numerical artifact or a real facet
of the model. Regardless, a small perturbation of the model’s parameters could push
that generator over the edge. So, too, could changes in the floating-point hardware and
the numerical algorithms used by the simulator.5 A thorough analysis of this model
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FIGURE 6.19 Frequency in case 7.

5The results in this section were calculated using x87 FPU (floating processing unit) instructions for
floating-point arithmetic. Using SSE2 instructions, which are common to 64-bit computers, could produce
different results in some instances.
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must include a sensitivity study that considers both: this would be an interesting and
informative exercise.

6.3 SUMMARY

The examples in this chapter illustrate how the methods developed in Chapter 5
combine the best aspects of two popular and successful techniques for simulating
hybrid systems. First, the method of chapter 5 retains the performance benefits of
the modular DEVS&DESS [109] and generalized DEVS [50] approaches, and, more
specifically, the capability of event-based integrators to avoid unnecessary updates of
continuous state variables (see, e.g., Refs. 30, 69, 70, 93, 103, 142, 143, 155, and 158).
The tank’s interrupt handler, described in Sections 4.1.9 and 4.1.6 (also see Appendix
A), concretely illustrates the importance of distinguishing events that directly affect
continuous variables from those that do not. Indeed, the relative ease with which the
pendulum’s stochastic trajectory is sampled is due to the computational simplicity of
the events in the Ethernet model; add to each the cost of an integration step, and a
sufficient set of samples is impractical to obtain.

Computational efficiency, however, is not the only advantage of the generalized
DEVS and the DEVS&DESS approaches. These methods are both derivatives of
Zeigler’s discrete-event system specification, the topic of Chapter 4, and are therefore
well suited for modeling systems with complex, discrete-event dynamics. Because
of this, generalized DEVS and DEVS&DESS are applied to many hybrid modeling
problems despite the numerical difficulties introduced by the event-based integrators
that characterize their implementations.

It is not difficult to overcome these numerical problems, however, once it is
recognized that most methods for simulating continuous models can be cast as
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discrete-event systems. The modeler may easily incorporate into a complex model
nearly any method that is suitable for its continuous subsystems. The example of the
electrical power system demonstrates the importance of doing this: it is impractical
to separate the generators’ continuous variables, which are coupled through an ad-
mittance matrix that is difficult to invert and that changes with time, into the distinct
components required by event-based integrators. More important still, improving
the models of the electrical loads will result in a very complex differential alge-
braic model, and to simulate it will require algorithms that are common to tools for
simulating continuous systems but absent from tools for discrete-event simulation.

Lundvall et. al. [78] describe, for example, how the DASRT algorithm is used by
the OpenModelica compiler and runtime system to simulate models comprising dif-
ferential algebraic equations and discrete events. Notably, OpenModelica avoids the
numerical difficulties described in Section 5.7, but it suffers from the long execution
times inherent to a nonmodular approach.6 The method of Chapter 5 offers a remedy
for the long execution times while retaining both the numerical advantages of the
DASRT algorithm and a modeling framework suitable for complex, discrete event
systems. Chapter 7 addresses this important possibility.

6Assuming, of course, that the model contains discrete event components at least as complex as an Ethernet
simulator.
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CHAPTER 7

THE FUTURE

As computer technology advances, the size and scope of simulations expand. So, too,
do the costs of simulation studies, and the idea of simulation as a distinct discipline
has appeared, at least in part, as a result of economic forces. Just as the complexity
of software reached a crisis in the 1960s (or, more likely, well before this), giving
birth to the now well-recognized field of software engineering, the problems posed
by large simulation projects are spurring interest in those elements of modeling and
simulation that transcend the particular. Software architectures for simulation are
one such topic. In this concluding chapter, three other topics are briefly considered;
although not conclusive, this short survey includes technologies that are relevant to
the construction of simulation software, are being actively pursued at the present, and
are likely to have a substantial impact on the future of modeling and simulation.

7.1 SIMULATION PROGRAMMING LANGUAGES

For 40 years, beginning in the 1950s and tapering in the 1990s, simulation pro-
gramming languages were a major focus of academic and industrial research. Some
languages for discrete-event simulation are still widely used, but these appear largely
as part of commercial products: SIMAN, MODL, and SLAM, for instance, are the
backbones of Arena (Rockwell Automation), Extend (Imagine That!), and Awesim,
respectively (see, e.g., Refs. 27, 62, 105, and 112); Raczynsky’s PASION (and its
more recent variants PSM++ and Bluesss [113]), and the venerable SIMSCRIPT

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
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(from CACI, now on version III [116]) persist as well. Nonetheless, many, possibly
the majority, of discrete-event models are built with object libraries, like the one de-
veloped in this book, and general-purpose, object-oriented programming languages.

This trend began in the 1990s with the widespread adoption of object-oriented
programming. The shift is not surprising. Many of the features deemed desirable
in a simulation programming language are manifest in modern, objected-oriented
languages. Tracing Nance’s history of simulation programming languages [95, 96],
we find some of the first instances of objects and intrinsic support for sets, lists,
and random numbers; these are now commonplace in the standard object libraries
for C++, Java, and most other popular languages. Pre- and postprocessing of data,
at one time accomplished with the simulation tools themselves, are now done with
spreadsheets or numerical software such as R, MATLAB, Scilab, and others.

A significant exception to this rule are languages for modeling and simulation
of continuous systems. The diversity of languages has, perhaps, been diminished
by the establishment of Modelica as a standard, but extensions to this language are
actively developed. The continuing relevance of Modelica, while interest in discrete-
event languages fades, can be understood by comparing the problems that these two
technologies solve.

Discrete-event simulations tend to be heavy on programming. Abstract data types
such as lists, sets, and associative containers are essential in most applications;
object-oriented concepts are of paramount importance; and languages for discrete-
event systems focused in large part on satisfying these requirements. When these
features became intrinsic to mainstream programming languages, the impetus for
specialized languages vanished.

Continuous simulations, however, are straightforward in this respect. They deal
almost exclusively with relationships between real (or complex) variables. When the
equations are in proper form and a suitable numerical algorithm is available, the
programming job is simple. Putting a large set of equations into proper form is
the major task, and when hundreds or thousands of equations are involved, this task
must be automated. That is the purpose of languages for continuous simulation;
given a set of differential equations, algebraic constraints, and state event functions,
the language compiler performs the algebraic manipulations needed to put these into
a simulatable form and generates the necessary simulation code.

The growing importance of hybrid systems is prompting a repetition of history. A
small, but substantial, number of researchers are looking for extensions to the Mod-
elica language that will enable it to describe discrete-event systems (see, e.g., Refs.
11, 40, 44, 89, 110, 115, and 124). This is an attempt to re-create the languages that
first appeared in the 1970s for combined discrete-event and continuous simulation.
The new aspect of the more recent work is modern software technology, which has
changed substantially since the 1970s. Reexamining this topic may yield important
insights, and certainly it is an intellectual and engineering challenge, but history
suggests that new features for modeling discrete event systems must culminate in
something like a full-fledged programming language in order to have wide practical
value. This development, if followed to its conclusion, will clutter the otherwise
simple and very usable Modelica language (or any other language for continuous
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simulation) with a host of features secondary to its main purpose. Moreover, these
features will duplicate capabilities already well developed in other programming lan-
guages, and necessarily lag behind the more rapid development of widely used, less
specialized tools.

In Chapter 5 it was shown, albeit in a simple form, that a simulator for a con-
tinuous model can be embedded in a discrete-event system. This points to a way
forward for continuous simulation languages. A Modelica compiler, for instance,
could generate automatically the code built by hand for the tank, inverted pendulum,
and electrical power system that were used as examples in this book. Taking this
approach, extensions to the language itself would aim at making the state variables,
state events, and exogenous, discrete trajectories of the continuous model accessible
from a discrete-event simulator, with the latter built with a mainstream programming
language.

An example of this approach can be found in the M/CD++ compiler, which
implements a subset of the Modelica language [30, 143]. M/CD++ uses quantized
state integrators and separate components for the distinct elements of the continuous
model (see Section 5.7). The compiler transforms its input file to a bond graph, assigns
it causality marks, and then creates a network from the causally marked bond graph,
with atomic components for each primitive element. The final result is a networked,
discrete-event model that is simulated by the CD++ simulation engine.

The advantage of this approach is its reuse of existing software technology. In the
particular case of CD++, the implementation language for discrete-event models is
C++ and the simulation engine is an object library built with that language. Tools based
on this library provide specific, narrowly defined functionality. The CD++ language,
for instance, automatically generates couplings for cellular automata; can be used to
program simple cells for those models; and the M/CD++ compiler, as we have seen,
generates a discrete-event model to approximate a continuous one. The prominence
of general-purpose programming languages in discrete-event simulators, and their
historical displacement of more specialized languages, suggests that compilers like
M/CD++ are a good model for future developments. Continuous system languages
with compilers that can create modules for a variety of discrete simulators will have
tremendous practical value.

7.2 PARALLEL COMPUTING AND DISCRETE-EVENT SIMULATION

Bigger, more computationally intensive models became possible with every new
generation of computers. For 20 years at least, this boost in computing power was
essentially free for the software developer; at most, a new compiler was required and
possibly a few modifications of the source code to suit some of its quirks. So, with
only a modest effort, the new, more powerful computers ran existing models faster
or larger models in a reasonable amount of time. This ended when the microscopic
parts of the computer could not be made any smaller. Now each new generation of
computer contains processors with essentially the same computing capabilities as
those of the previous generation; the new computers just have more of them. Parallel
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computing, once a curiosity for the majority of software developers, is now the only
means for better performance.

Algorithms for using parallel computers to simulate discrete-event models have
been a topic of intense research since the late 1970s. Like parallel computing in
general, this was a topic on the periphery of simulation research when bigger models
were a natural consequence of each new generation of computer; and also like
parallel computing in general, all except the most trivial (embarrassingly parallel,
in the terms of the field) applications of parallel computers to simulation required
prodigious, even heroic, effort. Indeed, the performance obtained from a parallel
simulator is proportional to its degree of specialization for a particular application.
This specialization extends far beyond the code necessary to implement the dynamics
of a particular model, and it makes the software more difficult to build and more
expensive to maintain.

Simultaneous events are the most easily exploited, but least effective, source of
parallelism in a model. This requires no more information than is already available to
the simulator, and the parallelized simulation engine is therefore easy to use. Indeed,
the necessary modifications to the simulation engine are themselves quite simple; the
for loops for computing and routing output and for computing state transitions are
parallelized. If there are a very large number of models undergoing changes of state
at the same time, if the state transitions are very time-consuming to compute, or both
then calculating these in parallel will yield a reduction in the simulator’s running
time. Unfortunately, this situation is uncommon. In most discrete-event models,
simultaneous events are rare and, therefore, very little parallelism can be exploited
in this way. So, although this method is simple to apply, it yields benefits for only a
small class of models (but these can be significant; see, e.g., Ref. 63).

In some cases, particular events might be both difficult to calculate and amenable
to parallel execution. For example, if a continuous model has a very large number of
state variables, then its differential functions might be usefully calculated in parallel.
The model’s state event functions might also be computed in parallel if they are
sufficiently complex or numerous. It is better still to parallelize some aspects of
the numerical integration and event detection algorithms; this strategy is attractive
because, again, it is easy to exploit. The parallelization could even be automated
if a continuous simulation language with a suitable compiler were available. The
majority of discrete events in a model tend, however, to be fine-grained, requiring
very little computation and therefore not susceptible to parallelization. Once again,
where the method works, it is likely also to be easy to apply, but these circumstances
are exceptional.

The academic research on parallel discrete-event simulation has produced two
classes of algorithm, conservative and optimistic, that can use Herculean computers
to simulate enormous, complicated models. Different problems are posed by the two
classes of algorithm.

Conservative algorithms require a method by which, given the state of a model
at time t , its output can be computed to some time t + ε and that this can be done
without advancing the model’s state. The ε is called lookahead, and large lookahead
is essential to good performance. In many cases, lookahead exists in principle, but
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exploiting it requires carefully crafted, highly specialized code that is difficult to
maintain. In Fujimoto’s words [44], the software becomes brittle and is prone to
breakage when even minor changes to the model’s logic are required.

Optimistic algorithms overcome this problem by using speculation to find looka-
head automatically. In principle, these algorithms are ideal in two respects: (1) they
do not require explicit synchronization points and so are highly scalable; and (2) they
automatically exploit any parallelism inherent in the decomposition of the model’s
state space, that is, in the organization of its atomic components (logical processes,
in the terms of the field). Unfortunately, realizing these ideal aspects can be difficult
and time-consuming in the extreme.

Among the most challenging problems in practice is to efficiently save and re-
store the states of atomic components. If the state of the model is a very simple data
structure, occupying just a few words of computer memory, then this is a straight-
forward problem to solve. In instances where the state transition function applies
small, incremental changes to a large set of state variables, techniques for incre-
mental state saving can sometimes be of use (see, e.g., Refs. 37 and 123). This,
however, is more difficult and requires intimate knowledge of how the component
works. In some circumstances, the state transition function is actually reversible and
a near-perfect solution is possible, at least in terms of computational complexity
(see, e.g., Refs. 18 and 106). A working implementation, however, can be difficult
to construct and maintain. For models with both a complicated state space and ir-
reversible dynamics, optimistic algorithms remain an impractical route to parallel
execution.

Because of these issues, the most advanced algorithms for parallel discrete-event
simulation remain impractical tools for general use, a state of affairs lamented by
Fujimoto [43] in 1993, and that persists today. Where they have been successfully
applied, it has been through a sustained effort to parallelize the simulation of a
particular system; simulations of communication systems and digital circuits are
prominent examples (see, e.g., Refs. 49 and 79 and numerous others on VHDL
simulations; see also Refs. 45, 76, and 117 as examples of the vast literature on
parallel simulations of computer networks). High-performance computing, however,
is not the goal of simulations used in engineering, only a means to an end. Model
simplification, the other route to reduced execution times, is more attractive when
budgets are constrained and deadlines loom.

The existing technology for parallel simulation, therefore, brings the field of
modeling and simulation to a kind of crisis. Sequential computers are not getting
faster, but in the past this has driven the growth of model-based engineering. Each
generation of computers solved larger, more sophisticated problems; however, the
programming of these computers did not change radically, at least so far as the end
user was concerned. Better performance was, in this sense, only one purchase away.

New computers, however, are not necessarily more powerful than their recent pre-
decessors, we have only packed more processors into a single machine. The size and
scope of future models will therefore be determined by the degree to which parallel
simulation can be made cost-effective. Widespread adoption of parallel simulation
algorithms will depend much less on their ability to scale to massive machines, a
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traditional measure of success, and much more on the cost of use and their general
applicability. The latter, therefore, are important topics for future research.

7.3 THE MANY FORMS OF DISCRETE SYSTEMS AND
THEIR SIMULATORS

Lackner [72], to whom the classical worldviews of event scheduling, process orien-
tation, and activity scanning are frequently attributed [35, 95], was among the first
to consider a discrete-event system as something distinct from its incarnation in a
computer program. It was not until the 1970s, however, that analysis methods other
than simulation received sustained attention, and from these ruminations emerged a
variety of mathematical structures for modeling and reasoning about discrete-event
dynamics: Zeigler’s discrete-event system specification (DEVS), the numerous fla-
vors of Petri nets, and asynchronous cellular automata are examples.

Many, if not most, of these mathematical structures were developed independently
of one another and, just as often, proceeded with their developers generally unaware of
mutually reinforcing concepts. Duplication is therefore rife, fundamental discoveries
are often repeated, and simulation technology is reinvented whenever the scope of
a burgeoning field exceeds the bounds of pencil-and-paper analysis. This variety of
thought and form is essential to healthy growth, but its benefits can be realized only
when mutual awareness leads to cross-fertilization.

Unfortunately, fractured development has produced a misconception in some in-
stances that the vast host of analysis and programming tools represent fundamentally
different approaches to the study of discrete-event systems. In most instances, this
simply isn’t true. Two particular cases were illustrated in this book: the general
subsumption of discrete-time systems by discrete-event systems, and the alternative
representations of asynchronous cellular automata as hybrid automata and as DEVS
models. An appreciation of these similarities is essential for building models of com-
plex systems, in which practical necessity requires the different parts to be expressed
in different forms. If, indeed, these separate expressions were incompatible, then
combined models would be impossible to build.

The study of relationships between model representations is a relatively unde-
veloped, but critically important, area of research. Its most practical outcome is the
construction of modeling methods and simulation tools in which models having dif-
ferent forms can be meaningfully and more easily combined. It remains a matter
of opinion as to whether this is best accomplished by combining simulation algo-
rithms (e.g., the approach taken by the Ptolemy project [34]), by the mathematical
transformation of models into a common structure (e.g., the approach taken by the
AToM3 tool [33, 92, 141]), or by some intermediate means (e.g., see Refs. 85, 126,
and 148).

Regardless, repeatable methods for combined modeling and a broader under-
standing of commonalities in the multitudinous forms of discrete-event systems are
essential. Diversity in particular must be tempered by an improved understanding of
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shared elements; without this, fundamental concepts are lost in a morass of technical
detail. This problem, therefore, is of both academic and practical interest, and its
unraveling will have a consequential and transformational effect on the theory and
practice of modeling and simulation.

7.4 OTHER FACETS OF MODELING AND SIMULATION

Modeling and simulation has many dimensions; software design and programming
are two of these and are certainly important for building simulators. Two other
facets are discussed above: (1) simulation tools, which include special programming
languages and (2) the many theories of discrete-event systems, which link simulation
models with other methods of analysis. The list of important topics does not end here,
however. Truncer Ören [104], Rogers [119], and Mielke et al. [87], in their expositions
of education in modeling and simulation and the emerging body of knowledge for
modeling and simulation (referred to by the acronym MSBOK), identify a host of
topics that are important to the field and its applications; these include

1. The design of experiments

2. Methods for the analysis of input and output data

3. Methods for validation and verification of models

4. Numerical analysis and mathematical topics relevant to understanding and
simulating dynamic systems

5. Management of engineering projects

6. Computer graphics, artificial intelligence, computer networking, and other top-
ics related to the construction of virtual environments

7. Modeling methods

This list might also include systems theory, a variety of model representations and
their simulation techniques (e.g., algorithms and data structures for programming the
classical worldviews of discrete-event simulation), and systems with dynamic struc-
tures (see, e.g., Refs. 89, 140, 154, and 156). Textbooks on modeling and simulation
cover many of these aspects (see, e.g., Refs. 19, 41, 42, 73, and 143), but a broader
education is required to accumulate all of the fundamental skills.

Recognition of this fact has recently (at the time of this writing) spawned several
PhD and master’s degree programs in modeling and simulation. These are offered
by several institutions, including the University of Central Florida, the MOVES In-
stitutes at the Naval Postgraduate School, and the Virginia Modeling, Analysis and
Simulation Center (VMASC) at Old Dominion University (where an undergraduate
degree might also be offered in the near future). Prompting this interest in modeling
and simulation education is, at least in part, the huge investment in modeling and
simulation technology by the US Department of Defense, the consequent recogni-
tion that large modeling and simulation projects are major engineering endeavors,
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and a hard-won realization that success requires teams of engineers with a diverse,
but particular, mix of skills. It remains to be seen whether “simulation engineer”
will emerge with recognition equaling that of electrical, mechanical, and the other
established engineering disciplines. Regardless, affordable simulations and robust
software architectures will remain inseparable for the foreseeable future.
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APPENDIX A

DESIGN AND TEST OF SIMULATIONS

Simulation software can persist for as long as the system it models, supporting
design at first, and later test, operations, maintenance, and the design of the system’s
replacement. Some models are built to satisfy specific, short-term needs, and these are
designed, constructed, and tested with little or no concern for long-term maintenance.
Large models, however, or families of models that will provide service for years,
must be treated like any large software project. An appropriate lifecycle model, with
careful attention to documentation, testing, and version control, are fundamental to
success.

The composition of the development team is also important, and there are two
roles that every simulation project must fill in some measure. Domain experts who
understand the system that is being modeled are an obvious necessity. Software en-
gineers conversant with simulation techniques—numerical analysis, discrete-event
simulation, and the other topics addressed in this book—are also needed. Models
for engineering often require analysts, who (perhaps surprisingly) are not necessarily
domain experts, to prepare input for and process output from the model; this is partic-
ularly important when the model has substantial random elements and, consequently,
statistical rigor is needed to use it effectively.

The concern of the software engineer is chiefly with the design, construction, and
maintenance of the simulation program. The modular modeling framework that we
have developed, and its supporting simulation architecture, encourages a piecewise
approach to the design and construction of a model. After the interface to a module is
established, its internal workings can be designed, refined, tested, and maintained in
isolation. Modules are combined from the bottom up, thereby limiting the scope of
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integration at each stage to a few thoroughly tested components. Likewise, the scope
of change is controlled as requirements evolve.

A.1 DECOMPOSING A MODEL

As a general rule, an atomic component should be small enough that its dynamic
behavior is easily understood. A simple model can be verified by inspection, its
response to input easily anticipated, and manual simulation used to construct test
cases. Often, a design begins from the top and works its way down. The model is
initially conceived in terms of its largest parts and their interconnections. The modeler
then looks for an atomic representation of these parts.

Sometimes one can be constructed easily. More often, the state space of a subsys-
tem is too large or the dynamics too intricate, and an atomic representation is futile.
The modeler then looks for a way to break the complicated subsystem into parts
that, when interacting, will produce the desired behavior. This proceeds as before,
with the decomposition being conceived in its largest parts. Atomic models are found
for these or, that being intractable, the subsystems are further decomposed. Eventu-
ally, a fine enough decomposition is found and atomic models are built. Going back
up the hierarchy of decomposed systems, successively more complicated pieces are
combined to realize the original goal.

A.1.1 Bottom–Up Testing

One advantage of building a complicated model from simpler atomic pieces is that
testing can be done as the components are integrated. Code inspections, inspection
of design documents (state transition diagrams, phase diagrams, event graphs, etc.),
and small simulations that can be verified by hand calculations are all very effective
ways of uncovering errors. The small simulations deserve particular attention; keep
these small programs and build a script to run them and check their output.

As the model develops, you should acquire a collection of test cases that are
run often to help uncover a host of problems, including unintended interactions be-
tween components, problems introduced during code optimization, and to guarantee
that adding new behavior to an atomic model does not alter its old behavior in an
unintended way. As the model evolves, the suite of test cases must evolve with it.

The set of test cases can also be used to pinpoint problems in ways that a debug-
ger cannot. When a coupled model exhibits an unusual, unexpected, and undesired
behavior, it is usually a consequence of one of two factors: (1) the component inter-
connections have been improperly coded or (2) some subcomponent is not behaving
as expected. Factor 1 can be checked by inspecting the network’s routing method.
In many cases, if the coupling expressed in the code is translated into a drawing on
paper, then the source of the problem becomes apparent. Complicated routing func-
tions may require the simulation to print a trace of source–destination pairs that is
(tediously) examined for unintended interactions. Try these methods first, and resort
to more drastic measures, such as stepping through the code with a debugger, only if
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simpler techniques fail to identify a coupling problem and you are quite sure of the
behavior of the subcomponents.

Confidence in the subcomponents is gained chiefly by extensive testing. In de-
composing a large model, the designer necessarily imagines the interactions that
will occur between its components. Test cases are constructed from these anticipated
interactions by building small simulations that supply a component with likely in-
put trajectories. Initially, the set of test cases is small: simple trajectories and the
few tricky cases that the designer believes are likely to occur. New trajectories are
added to address new behavior or to understand and fix problems discovered by
actual use.

The semigroup property can be exploited to construct test cases for the latter
purpose. Knowing the time of the failure, the state of the model at some point
immediately prior to it and the subsequent input trajectory are recorded during a
regular simulation run. A test case is then built that puts the model into the recorded
state and feeds it the recorded input trajectory. Now the component can be debugged.
When the problem is solved, this new test case is added to the test suite and the
regression tests are run to make sure that no new problems were introduced.

A.1.2 Invariants and Assertions

Bouncing balls cannot pass through the floor, the total energy in a closed system is
nonincreasing, and the quantity of material in a container must be nonnegative and
less than its capacity; these are examples of invariant rules that a correct simulation
does not violate. When a system changes state or produces output, these invariants
can be checked to ensure that they are satisfied. If they are not, then something is
broken.

The robotic tank has several examples of simple invariants. The PacketProcessing
model (Section 4.4) produces an output only if it has a packet in its queue; this
constraint is checked by an assertion in the output function. Likewise, the model
does not produce output when it is interrupted; this, too, is checked with an assertion.
Another example is in the TankPhysicsEqns, where the rotational velocity must be
zero if the tank is not turning; this is checked when the differential functions are
calculated.

Constraints on input and output trajectories can also be checked with assertions.
For example, the Xor model in Section 3.2.3 expects two values in its input bag. An
assertion in its state transition function checks whether this constraint is satisfied.
The TankPhysicsEqns and InterruptHandler contain similar checks on the types of
the input objects that they receive.

A.2 INPUT AND OUTPUT OBJECTS

Early in the design of a simulator it is necessary to decide how input and output events
will be implemented. The solution will depend a great deal on the programming
language that is used, and C++ offers a greater variety of solutions than do many
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other languages. Three strategies are common in practice: using simple structures
and primitive types, constructing a hierarchy of event classes, and using the union
type to create a simple structure that carries several kinds of events. Inevitably, these
strategies will become mixed up in a large model, making it is necessary to glue them
together. There is a useful strategy for this problem as well.

A.2.1 Simple Structures

Primitive types—doubles, ints, and chars—are an obvious choice for models that do
not require much variety in their input and output. The Machine model from Section
4.2.4 uses integers to communicate the number of parts given to and produced by
a machine. Using primitive types is advantageous because they are quickly and
automatically created and destroyed in the method’s stack space. This gives good
performance and avoids problems managing memory: the gc output method does
nothing for the Machine class.

Simple data structures are a step beyond primitive types, permitting models to
exchange more data while avoiding explicit memory management. This works well if
the data structures are not too complicated. They are copied and destroyed repeatedly
by the simulator, however, and a severe performance penalty can be accrued if
too many data are crammed into these objects. The IO Type structure used by the
CellularAutomaton model in Section 3.5 is an example of a simple object being used
for input and output.

A.2.2 Unions

Unions can cram several different types of events into a simple structure. This ap-
proach is used by the simulator for the robotic tank. Each input and output is a
SimEvent structure that contains two fields: a type and the event data. The data can
be contained in one of five structures, each part of a union and, therefore, overlaid in
memory. The implementation of the SimEvent is listed below.

This solution retains the advantages of using a simple data structure and adds
flexibility; besides, it also introduces a new opportunity for error. To use the data
correctly, the data recipient must check the type code and then access the data in
the proper way. If, for example, the type is SIM MOTOR VOLTAGE, then the data
must be accessed using the simMotorVoltage method to interpret them properly
as a SimMotorVoltage structure. Any other interpretation will produce junk. The
TankPhysicsEqns and InterruptHandler models can accept only a single type of
event, and so they contain assertions to ensure the type is correct before using the
data. The PacketProcessing model can accept both SIM PACKET and SIM INTERRUPT
events, and it always checks the event type before interpreting and processing the data.
In a large model, incompatible components may unwittingly be coupled together, and
if proper checks and assertions are omitted, then the error may go undetected and
lead to mysterious failures.
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Definition of the Simulation Events Used in the Tank Simulator
1 #ifndef Events_h_
2 #define Events_h_
3

4 // Enumeration of simulation event types.
5 typedef enum {
6 SIM_MOTOR_VOLTAGE, // Tank motor voltage
7 SIM_TANK_POSITION, // Tank position
8 SIM_INTERRUPT, // Interrupt handler start/end
9 SIM_PACKET, // Packet from the network

10 SIM_MOTOR_ON_TIME, // Motor on time
11 SIM_NO_EVENT // No assigned type
12 } SimEventType;
13 // Motor voltage data
14 struct SimMotorVoltage { double el, er; };
15 // Tank position data
16 struct SimTankPosition { double x, y, theta; };
17 // On-time settings for the interrupt handler.
18 struct SimMotorOnTime
19 {
20 unsigned char left, right;
21 bool reverse_left, reverse_right;
22 };
23 // A network packet
24 struct SimPacket { float left_power, right_power; };
25 // The I/O type for all models in the tank simulator
26 class SimEvent
27 {
28 public:
29 SimEvent():type(SIM_NO_EVENT){}
30 // Create a specific type of event
31 SimEvent(SimEventType type):type(type){}
32 // Create a SIM_MOTOR_VOLTAGE event
33 SimEvent(SimMotorVoltage event):
34 type(SIM_MOTOR_VOLTAGE) { data.volts = event; }
35 // Create a SIM_TANK_POSITION event
36 SimEvent(SimTankPosition event):
37 type(SIM_TANK_POSITION) { data.pos = event; }
38 // Create an event to set the motor on-time counters
39 SimEvent(SimMotorOnTime event):
40 type(SIM_MOTOR_ON_TIME) { data.ontime = event; }
41 // Create a SIM_PACKET event
42 SimEvent(SimPacket event):type(SIM_PACKET) { data.packet = event; }
43 // Get the event type
44 SimEventType getType() const { return type; }
45 // Get the motor voltage data
46 const SimMotorVoltage& simMotorVoltage() const { return data.volts; }
47 // Get the tank position data
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48 const SimTankPosition& simTankPosition() const { return data.pos; }
49 // Get the motor settings
50 const SimMotorOnTime& simMotorOnTime() const { return data.ontime; }
51 // Get the network packet
52 const SimPacket& simPacket() const { return data.packet; }
53 // The STL needs this operator
54 bool operator<(const SimEvent& b) const { return type < b.type; }
55 private:
56 SimEventType type;
57 union
58 {
59 SimMotorVoltage volts;
60 SimTankPosition pos;
61 SimMotorOnTime ontime;
62 SimPacket packet;
63 } data;
64 };
65

66 #endif

A.2.3 Pointers and Hierarchies of Events

When simple data structures and unions are insufficient, the designer almost invariably
resorts to pointers. Now the output of a model can be an arbitrarily complex object to
which the recipients of the event receive a pointer. In many ways, using pointers for
input and output is a necessary evil; all variations on this theme have considerable
drawbacks. The need for explicit memory management is most immediately apparent;
this issue, along with the gc output method for addressing it, were discussed in Section
3.1.5.

There are other, more subtle and far-reaching, impacts that pointers have on the
design of the simulator. In fact, it is not a problem with using pointers, but a more
general difficulty arising from the use of indirection to move events from source to
destination. Suppose that we construct a hierarchy of classes, such as the one shown
in Figure A.1, for the types of events in the simulation. The base class contains
information common to all events: a virtual method for printing the event data to a
log, a pointer to the source of the event, and maybe a type code to help with debugging.
Each derived class contains information that is pertinent to a specific type(s) of event.

The input–output type of the Atomic, Network, and Simulator classes is a pointer
to the base class X. The route method carries this pointer from the output func of the
originating model to the delta ext and delta conf methods of the receiving models.
The models, however, need the classes EventA and EventB that are derived from X.
The simulator cannot provide these because the type information is lost when the
event is routed.

Runtime type identification is used at the event’s destination to recover the lost
type information and downcast the object accordingly. The downcast is done with the
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FIGURE A.1 A notational class hierarchy for input and output events, its relationship to
the Simulator and Network, and to models derived from the Atomic class.

dynamic cast operator.1 Given a pointer to an event of type A that we want to cast
as the derived type B, the dynamic cast returns a pointer to B if the cast was successful
and NULL otherwise. This operation usually appears in the loop that processes items
in the bag of input; an example is shown below.

Using dynamic cast in a Model with Many Event Types
1 void SomeModel::delta_ext(double e, const Bag<A*>& xb)
2 {
3 Bag<A*>::const_iterator iter;
4 for (iter = xb.begin(); iter != xb.end(); iter++) {
5 B* x = dynamic_cast<B*>(*iter);
6 if (x != NULL) {
7 ...
8 }
9 ...

10 }
11 }

This solution is similar to the use of unions described above, but is more robust
when a simulation has many types of events. Nonetheless, there is, like with a
union, an implicit dependence between communicating components; specifically, the

1The dynamic cast operator can be used only with polymorphic types that is, with classes that have a
virtual method. A virtual destructor is sufficient.
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component that generates an event must produce a type that is compatible with the
expectations of the receiver. Violations of this implicit agreement will cause an error.

A more insidious problem with exchanging pointers is that the output object is
shared by its producer and all of its recipients. If any of these modify the object
while calculating their state transition, that modification will be visible to all the
models that share the object and appear later in the Simulator’s iteration through
imminent and active objects. In effect, the shared object becomes a hidden channel
for communication, and its effects can be unpredictable, are generally undesirable,
and the root cause can be difficult to pin down. This problem is avoided by treating
input objects as read-only, and permitting modification of the object only in the scope
of the output func of the model that created it.

A.2.4 Mixing Strategies with Model Wrappers

It is sometimes desirable to connect two models that, although otherwise compatible,
differ in the type of object that they use for input and output. The problem is illustrated
in Figure A.2, where model MA that operates on events of type A is connected to
MB that operates on events of type B. The Simulator, which is designed for use
as a component within a larger model, offers a simple solution. It is illustrated in
Figure A.3.

One of the models, MB in this instance, and its simulator are contained in a Mod-
elWrapper, which is derived from the Atomic class and implements the EventListener
interface. The input and output types of the ModelWrapper are compatible with MA,
and the class has a virtual method translateInput for converting a Bag of events of
type A into a Bag of events of type B. This method is called by the external and con-
fluent transition functions, which subsequently inject the converted inputs into MB

by using the computeNextState method of the encapsulated Simulator. The gc input
method disposes of the input events in a way that is compatible with the memory
management strategy used by model MA.

The conversion of outputs from MB to a type acceptable by MA is more com-
plicated; the essential steps are illustrated in Figure A.4. Output from MB is calcu-
lated with the Simulator’s computeNextOutput, which is called by the output func
of the ModelWrapper. The output events are intercepted by the ModelWrapper’s

MA MB

ModelWrapper

BA AB

FIGURE A.2 Using a model wrapper to couple two models with different types for input
and output.
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FIGURE A.3 Class diagram showing the ModelWrapper and its relationship to the Simu-
lator and Atomic classes.

FIGURE A.4 Sequence diagram showing how the ModelWrapper converts output objects.



P1: OSO
appA JWBS040-Nutaro August 26, 2010 7:7 Printer Name: Yet to Come

288 DESIGN AND TEST OF SIMULATIONS

outputEvent method and stored in a bag for use when computeNextOutput returns.
The translateOutput method converts this collection of output objects of type B into
a collection of objects of type A, and these are subsequently copied into the output
bag that was provided to the ModelWrapper’s output func method.

The time advance of the ModelWrapper is the difference between its next event
time, determined by the nextEventTime method of the Simulator, and its last event
time, which is maintained as a state variable. Finally, the internal transition function
is implemented with the Simulator’s computeNextState method.

The code that implements the ModelWrapper is listed below. It has two template
parameters: the first is for the type of object used by MA, and the second is for the
type used by MB . The virtual methods gc input, translateOutput, translateInput, and
gc output are implemented by derived classes.

Implementation of the ModelWrapper
1 #ifndef __adevs_wrapper_h_
2 #define __adevs_wrapper_h_
3 #include "adevs_models.h"
4

5 namespace adevs
6 {
7 template <typename ExternalType, typename InternalType>
8 class ModelWrapper:
9 public Atomic<ExternalType>, public EventListener<InternalType>

10 {
11 public:
12 // Create a wrapper for the supplied model. The ModelWrapper
13 // takes ownership of the model and deletes it when the
14 // ModelWrapper itself is deleted.
15 ModelWrapper(Devs<InternalType>* model);
16 // This method is used to translate incoming input objects into
17 // input objects for the wrapped model. Put these new input
18 // objects into the internal_in bag. The external_in
19 // bag contains the input values supplied to the wrapper’s
20 // transition function.
21 virtual void translateInput(const Bag<ExternalType>& external_in,
22 Bag<Event<InternalType> >& internal_in) = 0;
23 // This method is used to translate output from the model
24 // into objects that the ModelWrapper can produce. The
25 // internal_out bag contains all the output events
26 // produced by the wrapped model. The external_out bag
27 // should be filled with objects of type ExternalType, and
28 // these will become output from the ModelWrapper.
29 virtual void translateOutput(
30 const Bag<Event<InternalType> >& internal_out,
31 Bag<ExternalType>& external_out) = 0;
32 // This method is for garbage collection of input events created
33 // by the wrapper for its model. It is called when the wrapper
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34 // is finished using the events created by the translateInput
35 // method. The bag ’g’ contains the objects to be cleaned up.
36 virtual void gc_input(Bag<Event<InternalType> >& g) = 0;
37 // Get the wrapped model
38 Devs<InternalType>* getWrappedModel() { return model; }
39 // These methods are inhereted from the Atomic class
40 void delta_int();
41 void delta_ext(double e, const Bag<ExternalType>& xb);
42 void delta_conf(const Bag<ExternalType>& xb);
43 void output_func(Bag<ExternalType>& yb);
44 double ta();
45 void outputEvent(Event<InternalType> y, double t);
46 // The destructor destroys the wrapped model too.
47 ~ModelWrapper();
48 private:
49 // Bag of events created by the input translation method
50 Bag<Event<InternalType> > input;
51 // Output from the wrapped model
52 Bag<Event<InternalType> > output;
53 // The wrapped model
54 Devs<InternalType>* model;
55 // Simulator for driving the wrapped model
56 Simulator<InternalType>* sim;
57 // The time of the last event
58 double tL;
59 };
60

61 template <typename ExternalType, typename InternalType>
62 ModelWrapper<ExternalType,InternalType>::
63 ModelWrapper(Devs<InternalType>* model):
64 Atomic<ExternalType>(),EventListener<InternalType>(),
65 model(model),tL(0.0)
66 {
67 sim = new Simulator<InternalType>(model);
68 sim->addEventListener(this);
69 }
70

71 template <typename ExternalType, typename InternalType>
72 void ModelWrapper<ExternalType,InternalType>::delta_int()
73 {
74 // Update the internal clock
75 tL = sim->nextEventTime();
76 // Execute the next autonomous event for the wrapped model
77 sim->execNextEvent();
78 }
79

80 template <typename ExternalType, typename InternalType>
81 void ModelWrapper<ExternalType,InternalType>::
82 delta_ext(double e, const Bag<ExternalType>& xb)
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83 {
84 // Update the internal clock
85 tL += e;
86 // Convert the external inputs to internal inputs
87 translateInput(xb,input);
88 // Apply the input
89 sim->computeNextState(input,tL);
90 // Clean up
91 gc_input(input);
92 input.clear();
93 }
94

95 template <typename ExternalType, typename InternalType>
96 void ModelWrapper<ExternalType,InternalType>::
97 delta_conf(const Bag<ExternalType>& xb)
98 {
99 // Update the internal clock

100 tL = sim->nextEventTime();
101 // Convert the external inputs to internal inputs
102 translateInput(xb,input);
103 // Apply the input
104 sim->computeNextState(input,tL);
105 // Clean up
106 gc_input(input);
107 input.clear();
108 }
109

110 template <typename ExternalType, typename InternalType>
111 double ModelWrapper<ExternalType,InternalType>::ta()
112 {
113 if (sim->nextEventTime() < DBL_MAX) return sim->nextEventTime()-tL;
114 else return DBL_MAX;
115 }
116

117 template <typename ExternalType, typename InternalType>
118 void ModelWrapper<ExternalType,InternalType>::
119 output_func(Bag<ExternalType>& yb)
120 {
121 // Compute the output events;
122 // this causes the outputEvent method to be called
123 sim->computeNextOutput();
124 // Translate the internal outputs to external outputs
125 translateOutput(output,yb);
126 // Clean up; note that the contents of the output bag
127 // are deleted by the wrapped model’s gc_output method
128 output.clear();
129 }
130

131 template <typename ExternalType, typename InternalType>
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132 void ModelWrapper<ExternalType,InternalType>::
133 outputEvent(Event<InternalType> y, double t)
134 {
135 // Save the events for processing by the output_func
136 output.insert(y);
137 }
138

139 template <typename ExternalType, typename InternalType>
140 ModelWrapper<ExternalType,InternalType>::~ModelWrapper()
141 {
142 delete sim; delete model;
143 }
144

145 } // end of namespace
146

147 #endif

A.3 REDUCING EXECUTION TIME

Code optimization takes time away from essential activities: model validation, model
refinement, and experimentation. Moreover, carefully tuned code can still fail to
give adequate performance, but code optimization has, at least, a clear goal. Model
simplification, which is the only option when code optimization fails, trades away in-
formation for execution time, and is therefore difficult in both its technical challenges
and its compromise of purpose.

Before time and effort are expended on a faster simulator, ask first whether the
simulator is fast enough already. If it produces all of the needed data at a rate that is
adequate for their intended use, then don’t bother with performance improvements;
time can be better spent elsewhere. For interactive simulations, the data rate is
measured in frames per second; for batch simulations it is usually runs per hour or
some similar figure. Whatever the metric, the decision to undertake an optimization
should be made in its light, and an acceptable level of performance must be defined
so that code improvement can end when the target is reached.2

Two things are needed for success: a set of test cases and a code profiler. The
test cases should be part of a test suite that is run whenever the code is changed.
Performance improvement is largely a matter of trial and error, and as adjustments
are made and unmade, the code will break. Unless tests are run often, it will be
impossible to know when a fault is introduced and, just as important, which change
created the problem.

A profiler measures the execution time of the different sections of code. Auto-
matic profilers, like the gprof tool that is part of the GNU compiler collection, provide

2Michael Abrash’s collection Graphics Programming Black Book [2], though it discusses dated technology,
still contains excellent, practical, and relevant advise on how to approach the problem of optimizing code
to improve execution time.
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measurements for the individual functions and methods in a program. This informa-
tion shows which parts of the code consume the majority of the execution time and,
consequently, can benefit most from careful attention to performance. Sometimes this
coarse-grained information is enough for making significant improvements. If more
precision is needed, timers can be placed manually around specific sections of code
that are thought to be problematic.

To demonstrate the benefits of using a profiler, consider again the performance
problem caused by the tank’s interrupt handler. The problem was described in Section
4.1.6; when the interrupt handler produced a new voltage value at every interrupt, it
caused the continuous motion of the tank to be updated at an unmanageable rate and
prevented the model from being used interactively. The performance problem was
immediately obvious, but a profiler was needed to find its cause. The culprit in this
instance was the output function of the interrupt handler. That section of code before
the change is listed below.

Problematic Output Method for the InterruptHandler
1 void InterruptHandler::output_func(Bag<SimEvent>& yb)
2 {
3 // If this is the start of an interrupt, send the motor voltage
4 // and an interrupt indicator
5 if (phase == OUTPUT) {
6 // Send the voltage
7 SimMotorVoltage volts;
8 volts.el = left_v;
9 volts.er = right_v;

10 yb.insert(SimEvent(volts));
11 // Send the interrupt indicator
12 yb.insert(SimEvent(SIM_INTERRUPT));
13 }
14 // If this is the start of an interrupt, then send an interrupt indicator
15 else if (phase == WAIT) {
16 yb.insert(SimEvent(SIM_INTERRUPT));
17 }
18 }

Note that the output function sends the voltage values at each interrupt, which
is quite often when the interrupt frequency is high. The gross effect can be seen in
the execution time of the experiment, described in Section 2.4, to determine power
lost in the motors as a function of the interrupt frequency. Using the output function
above, 3 min 40 s are needed to produce the data shown in Figure 2.12. The same
experiment conducted with the optimized output function requires two minutes and
forty six seconds: a substantial improvement.

The GNU C++ compiler instruments code automatically when the ’-pg’ option
is passed to it and the linker. When the instrumented code is run, it produces a profile
showing, among other things, time spent executing each function and method in the
simulation. The profile data in Tables A.1 and A.2 were created from the loss of
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power experiment run at half throttle with a signal frequency of 7000 Hz. The Hybrid
class now shows up clearly as a performance problem, consuming almost half of the
execution time in its trial step method.

The trial step method is called only when an event occurs in the Hybrid class.
Looking a little further into the profile, the delta ext method of the Hybrid class
appears at the ninth spot in the list. This suggests that a large number of trial steps
are being executed in response to input events received by the TankPhysics, which
is the only Hybrid object in our simulation. The call graph for the delta ext method
seems to confirm this. The relevant portions of the profile are shown in the tables.

The cumulative time spent in the delta ext method and its children amounts to
85.7% of the total execution time. Of the methods that it calls, the most time consum-
ing is the integrate method, using up 82% of the total execution time, which in turn
calls the culprit at the top of Table A.1: trial step. Each input to the Hybrid model
causes the integration step to be performed, and this is degrading the performance of
the simulation.

From here, it is easy to deduce that frequent voltage events arriving from the
InterruptHandler are the root of the problem. Fortunately, most of these events
do not actually change the voltage value, and so there is a simple remedy for the
performance problem. The modified output function is shown below. It produces an
event only when the voltage actually changes. This cuts the execution time by roughly
1
3 , and now the model works admirably as part of the interactive tank simulation. Such
a substantial performance improvement with so simple a change is unusual, but the
ease with which the problematic section of code was identified shows the tremendous
benefits of using a profiler.

Optimized Output Method for the InterruptHandler
1 void InterruptHandler::output_func(Bag<SimEvent>& yb)
2 {
3 // If this is the start of an interrupt, send the motor voltage
4 // and an interrupt indicator
5 if (phase == OUTPUT) {
6 // If the voltage changed, then send the new values
7 if (last_left_v != left_v || last_right_v != right_v) {
8 SimMotorVoltage volts;
9 volts.el = left_v;

10 volts.er = right_v;
11 yb.insert(SimEvent(volts));
12 }
13 // Send the interrupt indicator
14 yb.insert(SimEvent(SIM_INTERRUPT));
15 }
16 // If this is the start of an interrupt, then send an indicator for it
17 else if (phase == WAIT) {
18 yb.insert(SimEvent(SIM_INTERRUPT));
19 }
20 }
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APPENDIX B

PARALLEL DISCRETE-EVENT
SIMULATION

A parallel computer is used most effectively and with least difficulty to produce large
numbers of statistically independent samples of a stochastic process. This application
of parallel computing is vitally important for drawing meaningful conclusions from
models that include random numbers, and is therefore very common in practice.

Amdahl’s law explains why this use of parallel computers is so attractive, and
conversely why other uses pose such devilish difficulties. Suppose that we must add
a large column of numbers. This is a simple but tedious task for a single person. If
there are two people, each sums half the numbers and then one of them combines the
two sums to get the final result: this last step cannot be done in parallel. If the column
is large, there is probably enough work for two people to stay very busy, and the time
needed to combine the result is relatively insignificant. If we add a third person, then
each has less to do and relatively more time is spent combining their results. Adding
more people further reduces the individual workload while increasing the effort to
coordinate their labor.

Every job requires some work that cannot be split up, and the number of computers,
human or otherwise, that can be usefully employed is therefore limited. Let Ts be
the time needed finish a job with a single computer, Tp be the time to solve it with
N computers, and α be the fraction of a job that can be done in parallel. These are
related by the equation

Tp = Ts(1 − α + α/N ) (B.1)

Building Software for Simulation: Theory and Algorithms, with Applications in C++, By James J. Nutaro
Copyright C© 2011 John Wiley & Sons, Inc.
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FIGURE B.1 Amdahl’s law for several values of α.

The speedup S obtained by perfect employment of the N computers is

S = Ts

Tp
= N

(1 − α)N + α
(B.2)

Equation B.2 is Amdahl’s law.
If we want to use a simulation to generate a number of independent datasets

much larger than N , then α ≈ 1 because these independent calculations need not be
coordinated in any way. The speedup is perfect: using N computers gives a result N
times faster. As α shrinks, the potential for speedup vanishes: Figure B.1 shows the
diminishing returns. At the same time, the code becomes more difficult to parallelize.
This is a very gloomy picture of parallel computing, but it tempers our expectations.

Amdahl’s law shows a limit to the amount of computing power that can be brought
to bear on a problem. As the size of the problem grows, however, so does the number
of the computers that can be usefully employed; this is Gustafson’s law. It is based
on the observation that α tends not to be fixed, but grows along with the size of the
problem. Suppose that a particular problem consists of a serial part that takes Tseq

units of time to finish and a parallel part that N computers complete in Tpar units
of time, so that the total execution time is Tseq + Tpar. The same job executed by a
single computer requires Tseq + N Tpar. As before, Tseq accounts for a fraction 1 − α

of the total time; but Tpar, not N Tpar, is the remaining α. In this model, α grows at
Tpar grows; that is, the larger the job, the greater the potential for parallelism. Hence,
the speedup obtained by the N computers is

S = Tseq + N Tpar

Tseq + Tpar
= 1 − α + Nα

(1 − α) + α
= 1 − α(1 − N ) (B.3)

Gustafson’s law is illustrated in Figure B.2.
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FIGURE B.2 Gustafson’s law for a fixed number of computers and decreasing α.

These two laws show that big computers are used for solving big problems; do
not expect to solve small problems a little bit faster. This lesson is particularly im-
portant for discrete-event simulations, which are notoriously difficult to parallelize.1

Nonetheless, given a model of sufficient size and complexity, parallel computers
can be used very effectively to reduce the running time of a simulation. Fujimoto
[44] gives an excellent overview of the very broad field of parallel discrete-event
simulation. This chapter focuses on a particular algorithm that is relatively simple to
implement and use while still performing well for many models when simulating on
multicore and multiprocessor workstations.

B.1 A CONSERVATIVE ALGORITHM

There are three types of algorithms for using parallel computers to simulate discrete-
event models. The simplest, but often least effective, calculate simultaneous events in
parallel. The output function and event-routing calculations for the set of imminent
models can be done in parallel, and so can the calculation of the next states for
imminent and activated models. Amdahl’s law, however, dooms this approach. In
general, there are few simultaneous events in an iteration, and these are processed
very quickly. This keeps α small; the overhead for coordinating access to input bags,
starting and joining teams of threads, and other tasks overshadow the small benefit of
computing a few output and state transition functions in parallel. Worse, Gustafson’s
law does not hold because α tends to remain fixed; only a handful of models are
active in each iteration regardless of how many components the model actually has.

1Fujimoto’s remarks on this subject are insightful and still relevant [43].
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Generator

Server

Server

Transducer

(5,2)

(5,0)

(6,0)

(5.5,0)

FIGURE B.3 A discrete-event model with parallelism that can be exploited by conservative
and optimistic simulation algorithms. The servers and transducer can process their inputs in
parallel if the servers have a lookahead of at least 1.

Optimistic and conservative algorithms are the two other options. Both work on
essentially the same principle, which is illustrated in Figure B.3. In this illustration
there are four atomic models. The first model is an input-free generator, the next two
are servers with a queue and fixed service time, and the last measures throughput,
turnaround time, and other performance statistics for the system. The generator
produces jobs for the servers at regular intervals of one unit of time. These are
assigned roundrobin to the servers, which need between one and two units of time
to complete the work. The transducer is output-free, merely collecting jobs and
recording statistics.

Each model is assigned to one processor of the parallel computer. The processor
with the generator can compute its output trajectory without concern for the activity
of any other component in the system. As it produces output, these are timestamped
and sent to the processors that have the servers. The simulators for the servers keep
inputs from the generator in the order of their timestamps, processing the events as
quickly as possible and sending the results on to the transducer. The two servers can
be simulated in parallel. The transducer, just like the servers, keeps its input events
in sorted order and processes them as quickly as possible.

Here is the difficult part—before the transducer advances its state to time t , it must
know the output trajectories of both servers to time t . Having received an input at
time (5.5, 0) from the upper server and input at time (6, 0) from the lower server, the
transducer can advance only to time (5.5, 1). Otherwise it risks omitting future inputs
from the upper server that might influence its evolution.

The solution to this problem is what differentiates conservative and optimistic
algorithms. An optimistic algorithm saves the state of the transducer and then con-
tinues to advance its state under the assumption that the known inputs are complete
and correct. If, having advanced to time t , the simulator receives an input at t ′ < t ,
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then the saved state is restored and the simulation restarted from t ′. When this works,
it works very well; but optimistic simulations are mind-bogglingly difficult to imple-
ment. Every atomic model must provide special code to save and restore its state,
each simulation process needs a tremendous amount of machinery to cancel incorrect
outputs and restore saved states, and all of this must work quickly and efficient.

The need for efficient state saving and restoration is the greatest obstacle in
practice. While the simulation engine can be reused from application to application,
the code for managing state is special for every model, and when the state of a model
has lists, maps, priority queues, and other complicated data structures, it is almost
impossible to save and restore quickly. Consequently, optimistic algorithms remain
primarily a subject for research, and have not yet had a significant impact on modeling
and simulation in practice.

Conservative algorithms use knowledge of each model’s particular, dynamic be-
havior to avoid calculations that may be incorrect and require undoing. Referring
again to Figure B.3, if we know that the upper server will not produce another output
until time (5.5 + ε1, 0), and the lower server until time (6 + ε2, 0), then the state of
the transducer can be advanced to time (min{5.5 + ε1, 6 + ε2}, 1) while the servers
progress to their next output. If the servers and transducers have much to do in the
intervening time, then a great deal of useful parallel computing can take place.

B.1.1 Lookahead

The defining characteristic of a causal system is that its output is a function of its
present state and past and present input. The response function ρ of a system gives
its output trajectory when begun in an initial state q and stimulated with an input
trajectory x . The state transition and output function define ρ by

ρ(q, x[ti , t f )) = y[ti , t f ) ⇐⇒ (∀τ ∈ [ti , t f ))(y(τ ) = �(�(q, x[ti , τ ]))) (B.4)

Consider two input trajectories x1[ti , t f ) and x2[ti , t f ) that are equal to time t ′; that
is, (∀t ∈ [ti , t ′))(x1(t) = x2(t)). The output trajectories of a causal system that result
from these two inputs will be equal up to time t ′. Specifically, if y1 = ρ(q, x1) and
y2 = ρ(q, x2), then (∀t ∈ [ti , t ′))(y1(t) = y2(t)). Of course, for t ≥ t ′ the trajectories
need not agree. All of the systems studied in this text, and all systems of practical
interest, are causal.

A system is strongly causal if there is some time t ′′ > t ′ such that the output to t ′′ is
the same even if the input is not. Specifically, (∀t ∈ [ti , t ′′))(y1(t) = y2(t)), where, y1

and y2 are as before. In this case, there is a short time ε separating t ′ and t ′′ in which
the output of the system appears insensitive to its input.2 This ε is called lookahead.

Every discrete-event system has a lookahead of (0, 1), just as every discrete-time
system has a lookahead of 1. These lookaheads, however, are not particularly useful
for parallel computing. Rather, a discrete-event system with real lookahead ε has a

2This definition is good enough for our purposes, but in fact ε may be infinitesimal. See the textbook by
Mesarovic and Takahara [86] for a more general treatment.
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2=2ε
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(b)

FIGURE B.4 Lookahead of components connected in series (a) and in parallel (b).

response function that satisfies y1(t ′ � (ε, 0)) = y2(t ′ � (ε, 0)), where t ′ is the same
described above. So, if the input trajectory is known to time t , then the output is fixed
to, but not at, time t � (ε, 0).3

Lookahead in an atomic model is found by a careful study of its dynamics. An
atomic model whose autonomous actions are always separated by some positive, real
interval of time has a lookahead equal to that interval. The machine model from
Section 4.2.3 has this property; it has a lookahead equal to its processing time. The
tank’s PacketProcessing model has this property as well; its lookahead is equal to the
packet processing time.

The lookahead of a network model can be found from the lookaheads of its
components. The combined lookahead of models connected in series is equal to
the sum of their individual lookaheads, a fact derived easily from the definition.
Referring to Figure B.4, the response of the first component to x[t, t ′) is known to
time t ′ � (ε1, 0). Consequently, the input to the second component is known to this

3A more restrictive definition of lookahead is found in most of the literature on conservative parallel
simulation; standard definitions can be found, for example, in the textbook by Fujimoto [44]. Our definition
allows a model to produce output in the interval spanned by its lookahead; other definitions permit this
only in special cases.
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time, and so its output is known to time (t ′ � (ε1, 0)) � (ε2, 0). Let t ′ = (τ, c), and
we have

((τ, c) � (ε1, 0)) � (ε2, 0) = (τ + ε1, 0) � (ε2, 0) = (τ + ε1 + ε2, 0)

and so the lookahead of the series is ε1 + ε2.
The combined lookahead of models in parallel is just as easily deduced from the

parallel configuration shown in Figure B.4; the lookahead of the resultant is equal
to the smaller of the lookahead of its components. This is a consequence of the
resultant’s output at any time t being the bag union of the output of each component
at t .

Feedback connections within a network do not contribute to its lookahead because
the feedforward connections are the quickest means for input to affect output. This
observation and the two rules above imply that the lookahead of a network is the
shortest path by which an input to the network can influence its output. For small
networks, like the one shown in Figure B.5, the lookahead can be found by inspection.

1

1

2

3

4

1

1 3

13

4

FIGURE B.5 Finding the lookahead of a network by inspection.
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FIGURE B.6 Partitioning a model for parallel simulation with two processors. Atomic
models (shown as solid white blocks) in the striped area are assigned to processor number 1;
the remainder to processor number 2. Partitions can cut across the boundaries of the network
models.

To create the lookahead graph, each node is labeled with its lookahead. Serially
connected nodes are reduced to a single node with lookahead equal to the sum of
its constituents. Nodes connected in parallel are replaced with a single node having
the smallest of the component lookaheads. This process ends when a single node
remains; its lookahead is the network’s lookahead.

B.1.2 The Algorithm

The atomic component’s of the model are assigned to the processors of the parallel
computer. The components assigned to each processor are constituted into a single
network model, and this network is reduced to its atomic equivalent. This reorga-
nization and reduction will in fact be accomplished automatically by careful use of
the Simulator developed in Chapter 4. The operation of the algorithm can therefore
be considered for the relatively simple case of a network of atomic components, as
shown in Figure B.6.

Each processor has five things: the model itself, an earliest input time denoted
eit, an earliest output time denoted eot, a time-sorted list of events that is the known
input trajectory for the model, and a queue of received messages that have not been
examined. The eits and eots are initially (0, 0). A surprisingly simple procedure is
executed by each processor:

1. Advance the state of the model until its next event time is greater than or equal
to eit, sending timestamped output events to the model’s influencees as we
go. These output events are inserted at the back of the recipients the message
queue.
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2. If the next event time is equal to eit, then send the output for that time.

3. Find the smaller of eit � (ε, 0) and, if output was sent at eit, eit � (0, 1) or,
if not, the time of the next autonomous event. If this calculated value is larger
than the present value of eot, then set eot to the calculated value and send that
in a message to the model’s influencees.

4. Process the contents of the message queue from front to back. Messages car-
rying input events are placed into the time-sorted list. The largest message
timestamp received from each processor is retained as a local estimate of its
earliest output time.

5. Calculate eit as the smaller of the stored earliest output times.

6. Repeat these steps until the simulation is finished.

This algorithm extracts parallelism from the model by allowing some groups of
components to advance their states independently of other groups. An input-free
model, for example, has eit = ∞ and so moves ahead in time independently of all
other components, even those for which it provides input. These models advance at
whatever rate the supplier sustains.

Feedback arrangements, however, can be quite restrictive. Although the output of
a model is insensitive to input received in the interval spanned by its lookahead, the
state is not, and to produce the model’s output requires advancing its state. Therefore,
parallelism is restricted to the simultaneous production of output by the model with
the smaller eot and its consumption by the model with the larger eot.

B.2 IMPLEMENTING THE ALGORITHM WITH OpenMP

OpenMP consists of compiler pragmas and a small library of functions that are
used to write programs for shared memory, parallel computers (see, e.g., Chapman
et al.’s Using OpenMP [21]). It is standardized, portable across operating systems,
and supported by most modern C and C++ compilers. Just two of OpenMP’s features
and C’s obscure, but standard, volatile type are necessary to build a conservative
parallel simulation engine.

B.2.1 Pragmas, Volatiles, and Locks

OpenMP uses compiler pragmas to guide its automatic parallelization of a program.
The most important of these is the parallel pragma that spawns N threads to execute
in parallel N copies of a code block. This pragma has the form

#pragma omp parallel
{

// execute this code in parallel
}
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At the start of the block following the pragma, OpenMP spawns a group of threads.
The exact number is determined by the OpenMP system, but can usually be specified
by setting the OMP NUM THREADS environment variable. Each thread executes the
body of code inside the block and then waits for the other threads to finish. When
every thread has completed its work, all except the main thread of execution terminate
and the program continues.

Variables that are declared outside the parallel block are shared by all of the threads.
Variables declared within the block are local to each thread. When two threads modify
the same shared variable, there is no way of knowing the order in which those thread
will make their adjustments. This wreaks havoc with data structures such as lists,
queues, and maps when two threads try, for instance, to remove the first element in a
linked list. OpenMP provides locks for solving this problem.

A lock is a shared variable of type omp lock t. The lock is created with
omp init lock, acquired and released with omp set lock and omp unset lock, respec-
tively, and destroyed with omp destroy lock. Only one thread can own the lock at
any time. If a thread tries to acquire a lock that is already owned, then that thread
will stall on omp set lock until the owning thread calls omp unset lock. When the
lock has been released, the stalled thread acquires the lock and resumes execution.
OpenMP guarantees that a lock will never be owned by more than a single thread at
any given time. Therefore, the code inside a lock/unlock pair will never be executed
by more than a single thread at any time.

The program listed below shows how the parallel pragma and lock are used to
implement a “Hello world!” program. In this example, a lock controls access to
the shared variable thread num and the C++ cout stream, which does not usually
support simultaneous access by multiple threads. The program starts some number of
threads that take turns incrementing the thread num variable and writing a message
to cout.

Using the Pragma Parallel and a Lock in an OpenMP Program
1 #include <omp.h> // Include the OpenMP functions
2 #include <iostream>
3 using namespace std;
4

5 int main()
6 {
7 int thread_num = 0; // A shared variable
8 // Create a lock for controlling access to cout and thread_num
9 omp_lock_t lock;

10 omp_init_lock(&lock);
11 // Start a group of threads. Each will execute the block of code
12 #pragma omp parallel
13 {
14 omp_set_lock(&lock); // Acquire the lock
15 // Print our message and increment the shared variable
16 cout << "Hello from thread " << thread_num++ << endl;
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17 cout.flush();
18 omp_unset_lock(&lock); // Release the lock
19 } // Wait for all of the threads to finish executing
20 return 0;
21 }

Running this program with OMP NUM THREADS set to 3 gives the result shown below.

$ export OMP_NUM_THREADS=3; ./a.out
Hello from thread 0
Hello from thread 1
Hello from thread 2
$

In this example, all of the code in the parallel block is protected by a lock, and so
the threads don’t do anything concurrently. The next example eliminates the shared
thread num variable and thereby exhibits real parallelism. Here, each thread obtains
its thread ID from OpenMP and stores it in a local (i.e., not shared) variable. A global
variable that is read-only holds the total count of threads. Each thread takes turns
with cout to print its thread ID. The code is listed below.

Using a Thread-Local Variable in an OpenMP Program
1 #include <omp.h> // Include the OpenMP functions
2 #include <iostream>
3 using namespace std;
4

5 int main()
6 {
7 // Store the number of threads used by OpenMP in a shared variable
8 int max_threads = omp_get_max_threads();
9 // Create a lock for controlling access to cout

10 omp_lock_t lock;
11 omp_init_lock(&lock);
12 // Start a group of threads. Each will execute the block of code
13 #pragma omp parallel
14 {
15 // Store the thread ID in a local variable. Every thread has its
16 // own thread_num variable which is not shared
17 int thread_num = omp_get_thread_num();
18 omp_set_lock(&lock); // Acquire the lock
19 // Print our message
20 cout << "Hello from thread " << thread_num <<
21 " of " << max_threads << endl;
22 cout.flush();
23 omp_unset_lock(&lock); // Release the lock
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24 } // Wait for all of the threads to finish executing
25 return 0;
26 }

This program run with three threads gives the result shown below.

$ ./a.out
Hello from thread 1 of 3
Hello from thread 2 of 3
Hello from thread 0 of 3
$

In the first program, the thread num variable is incremented sequentially by each
thread in turn, and the output from the program is predictable. In the second program,
the threads print their identifiers in whatever order they happen to acquire access to
standard output.

When a thread modifies a shared variable, its new value is not, in general, im-
mediately available for the other threads in the program. The modifying thread may
keep the variable in a register or its local memory cache, and it could be quite some
time before that new value migrates to the main memory and the memory caches
of the other threads. For this reason, variables modified inside a locked section of
code receive special treatment by OpenMP. When omp set lock is called, the calling
thread synchronizes its local memory and the global shared memory, thereby ensuring
a consistent view of any shared variables. This is done again when omp unset lock
is called so that changes made by the thread to shared variables become globally
visible.

Because of these and other necessary actions, acquiring and releasing a lock can
take a long time. In some rare cases, however, shared variables can be used without
explicit synchronization. The volatile type is an important tool in these instances.
By declaring a variable to be volatile,4 the compiler is advised that it may change in
ways that are not under the control of the program. Therefore, access to this variable
should not be optimized by, for example, storing it in a register or keeping it in a fast
memory cache. Changes made to a volatile type will be visible almost immediately to
other threads in the program, and extra instructions to flush the thread’s local memory
are thereby avoided.

The code listed below uses a volatile integer to implement a shared token. The
value of the token is set to the identifier of the thread that owns it. When a thread
acquires the token, it prints a message to the screen. Only one thread can have the
token at any time, and threads without the token spin until they acquire it. Observe
that the token variable is set only by the owning thread. All other threads treat it as
read-only. This ensures that writes occur in an immutable sequence.

4This use of volatile is specific to C and C++. Other languages may provide a volatile type, but there is no
guarantee that it can be used in the same way.



P1: OSO
appB JWBS040-Nutaro August 30, 2010 14:18 Printer Name: Yet to Come

308 PARALLEL DISCRETE-EVENT SIMULATION

Using a Volatile Variable in an OpenMP Program
1 #include <omp.h> // Include the OpenMP functions
2 #include <iostream>
3 using namespace std;
4

5 int main()
6 {
7 // These are shared variables
8 int num_threads = omp_get_max_threads();
9 volatile int token_owner = 0;

10 // Start a group of threads
11 #pragma omp parallel
12 {
13 // Get the ID of the thread
14 int thread_num = omp_get_thread_num();
15 // Pass the token around twice
16 for (int i = 0; i < 2; i++)
17 {
18 while (token_owner != thread_num); // Wait for the token
19 // Print our message
20 cout << "Thread " << thread_num << " has the token" << endl;
21 cout.flush();
22 token_owner = (thread_num+1)%num_threads; // Pass the token
23 }
24 } // Wait for all of the threads to finish executing
25 return 0;
26 }

Executing this code shows clearly how the threads take turns with the token. If,
however, the volatile specifier for the shared variables were removed, this code could
deadlock when the token changes hands.

$ ./a.out
Thread 0 has the token
Thread 1 has the token
Thread 2 has the token
Thread 0 has the token
Thread 1 has the token
Thread 2 has the token
$

B.2.2 Overview of the Simulator

Using the simulator from Chapter 4, a collection of atomic models can be manipulated
as though it were a single system. The computeNextState method computes the
collective state transition function; the computeOutput method, the output function;
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and the nextEventTime method, the time advance. To accommodate the arbitrary
partitioning of a model across processors, the simulation engine is modified in four
ways:

1. An attribute is added to the Atomic class to indicate the thread it is assigned to.

2. To the Simulator is added a pointer to a LogicalProcess object that handles
interthread events. The LogicalProcess has the ID of its thread and a method
for sending events to other LogicalProcesses. This method is used by the
Simulator’s route method when it encounters an Atomic model that is not
assigned to it.

3. A method is added to the Simulator for assigning it a model. This method
places the atomic components of the model into the Simulator’s schedule.

4. The Simulator is derived from the new AbstractSimulator class, which defines
a common interface for the parallel and sequential simulators and encompasses
the EventListener callbacks that are common to both.

The new methods, attributes, and classes for the simulation engines are shown
in Figure B.7. Four new classes constitute the parallel simulator: the MessageQ, the
LogicalProcess, the ParSimulator, and the AbstractSimulator. The AbstractSimulator
serves two purposes: (1) it provides a common interface for both the Simulator and
ParSimulator, which is a convenience for users of the simulation engine; and (2)
it contains and exposes the management of EventListeners so that the outputEvent
and stateChange callbacks produced by the Simulator can be intercepted by the
LogicalProcess and passed on to the ParSimulator, which ultimately informs its
registered listeners.

B.2.3 The LogicalProcess

The LogicalProcess class coordinates events that traverse thread boundaries with
events that are internal to the Simulator.5 A parallel simulation has one LogicalProcess
for each thread, and one thread for each physical processor on the computer. Each
LogicalProcess executes the algorithm described in Section B.1.2.

The LogicalProcesses communicate by putting messages into one anothers’ Mes-
sageQ, which serve as first in, first out communication channels. Two types of mes-
sages are exchanged: EIT (earliest input time) messages and OUTPUT messages. On
receiving any type of message, the LogicalProcess stores the message timestamp in
a table. This table records the earliest time at which an input might be received from

5The literature on parallel discrete-event simulation is focused largely on transforming a sequential, event-
oriented simulation program into a parallel, event-oriented simulation program. The sequential program
is, in essence, treated as an atomic model that encompasses the entirety of the system being modeled. To
simulate this model in parallel, it is necessary to partition the system’s state variables into modular units;
these units are called logical processes. The LogicalProcess class fills this same role of managing the state
variables local to a process, which in this case are contained in the Atomic models assigned to the local
Simulator.
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FIGURE B.7 Class diagram of the simulation engine with support for parallel execution.

the adjacent LogicalProcesses. The minimum of these times is the earliest input time
for the model. EIT messages are discarded after their timestamp is recorded, and
OUTPUT messages are put in the time-sorted list of input events.

Unlike the sequential simulator, the parallel simulator does not coordinate iter-
ations of the simulation loop in each thread. It is therefore necessary to code time
as an explicit pair, with c at each LogicalProcess being incremented following each
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iteration of the simulation loop that does not advance the real time t . Messages
between threads carry the complete timestamp (t, c).

The LogicalProcess can execute events, internal and external, that occur at times
shorter than the earliest input time. The Simulator’s computeNextState method is
used to advance the state of the model, injecting inputs and computing internal events
for as long as their occurrence times are smaller than eit. At each internal event, the
Simulator calls the notifyInput method of its LogicalProcess whenever an Atomic
residing in another thread receives input. These events become OUTPUT messages
for the corresponding LogicalProcess.

There is one special case that occurs when the time of the next internal event is
equal to the earliest input time. Recall that the output at time (t, c) is completely
determined by the input up to, but not including (t, c). Therefore, although a state
transition at the earliest input time must be deferred, the output can be sent safely.

Having advanced the state of the model to the earliest input time, and sent its output
trajectory up to and including this time, the LogicalProcess updates its earliest output
time and sends this to its influencees. Now the simulation procedure repeats. The
LogicalProcess extracts all of its messages from the input queue, updating its earliest
input time and putting input events into the time-sorted list. Then it again advances
its state and output trajectory. Eventually, the state trajectory will be advanced to the
specified stopping time, and the simulation procedure returns.

Three problems emerge in the course of implementing the procedure described
above:

1. Determining the lookahead of the LogicalProcess when it does not know how
the models assigned to it are connected. The conservative, but safe, solution
is to assume that the components are connected in parallel. The addModel
method does just this, calculating the lookahead as the minimum of the assigned
components. Observe also that if a Network is added to the LogicalProcess,
then all of its components are also adopted; this is necessary to ensure that
the lookahead obtained from the Network gives a valid lower bound on the
timestamps of messages that will exit the LogicalProcess.

2. The related problem of determining how the logical processes are connected.
This information is provided to the LogicalProcess in an LpGraph object
which encodes a directed graph. If the edge (A,B) is in the graph, then the
logical process A sends output to logical process B; if (B,A) is also in the graph,
then A and B are connected in a feedback arrangement. The getI method of the
LpGraph returns the logical processes that influence its argument. Similarly,
the getE method returns the logical processes that its argument influences.

3. A problem that is specific to C++ (and languages in general that do not provide
garbage collection): determining how to free output objects that traverse a
thread boundary. The Simulator will call the gc output method of the object’s
originator as soon as the computeNextState method returns. However, when this
occurs, the object is likely to be residing in the input queue of another thread,
still waiting to be processed. Deleting the object would therefore be disastrous.
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A solution to this problem is to have the model builder provide methods for copying
and deleting output objects. When a separate copy of an object is made for each thread
that receives it, the garbage collection problem remains local to each thread and can,
therefore, be dealt with just as in the single-threaded case. The MessageManager
class serves this purpose. It has two virtual methods: clone, which creates a copy of
its argument, and destroy, which frees the memory occupied by the copy. Objects
are cloned in the notifyInput method of the LogicalProcess just before being sent to
another thread. Cloned objects are deleted after they have been used to compute a
state transition.

The code that implements the LogicalProcess is listed below. Its relative brevity is
due to reuse of the Simulator. This is yet another example of reuse; the Simulator, by
supplying an interface that exposes the state transition function and output function
of a model’s resultant, allows the LogicalProcess to be implemented as though it were
operating on an atomic model. The required modifications to the Simulator, described
in Section B.2.2, are trivial and do not fundamentally change the abstraction; they
merely provide a means of assigning different parts of the resultant’s state space (i.e.,
its atomic models) to distinct physical processors.

Implementation of the LogicalProcess
1 #include "adevs_time.h"
2 #include "adevs_message_q.h"
3 #include "adevs_msg_manager.h"
4 #include "adevs_abstract_simulator.h"
5 #include "object_pool.h"
6 #include "adevs_simulator.h"
7 #include <omp.h>
8 #include <iostream>
9 #include <vector>

10 #include <list>
11 #include <map>
12 #include <queue>
13 #include <limits.h>
14 #include <cassert>
15

16 namespace adevs
17 {
18

19 template <class X> class LogicalProcess: public EventListener<X>
20 {
21 public:
22 // The constructor assigns 1) an ID, 2) the set I of influencers,
23 // 3) the set E of influencees, 4) an array of pointers to the other
24 // logical processes in the simulator; the array is indexed by ID,
25 // 5) a pointer to an AbstractSimulator that is used to notify
26 // registered EventListeners, and 6) a MessageManager to manage
27 // memory associated with events that leave the LogicalProcess.
28 LogicalProcess(int ID, const std::vector<int>& I,



P1: OSO
appB JWBS040-Nutaro August 30, 2010 14:18 Printer Name: Yet to Come

IMPLEMENTING THE ALGORITHM WITH OpenMP 313

29 const std::vector<int>& E, LogicalProcess<X>** all_lps,
30 AbstractSimulator<X>* sim, MessageManager<X>* msg_manager);
31 // Assign a model to this logical process.
32 void addModel(Devs<X>* model);
33 // Send a message to the logical process
34 void sendMessage(Message<X>& msg) { input_q.insert(msg); }
35 // Get the time of the next internal event for the logical process
36 Time getNextEventTime() { return sim.nextEventTime(); }
37 // Get the ID given to the logical process
38 int getID() const { return ID; }
39 // The destructor leaves the models intact.
40 ~LogicalProcess();
41 // Run the main simulation loop until time t_stop
42 void run(double t_stop);
43 // Notify EventListeners of output and changes in state
44 void outputEvent(Event<X> x, double t)
45 {
46 psim->notify_output_listeners(x.model,x.value,t);
47 }
48 void stateChange(Atomic<X>* model, double t)
49 {
50 psim->notify_state_listeners(model,t);
51 }
52 // The sequential simulator calls this method when an event
53 // needs to be received by an atomic model attached to
54 // a remote logical process (i.e. not this one)
55 void notifyInput(Atomic<X>* model, X& value);
56 private:
57 const int ID; // ID of this logical process
58 const std::vector<int> E, I; // List of influencees and influencers
59 LogicalProcess<X>** all_lps; // All of the logical processes
60 double lookahead; // Lookahead of this logical process
61 std::map<int,Time> eit_map; // Earliest possible input times
62 MessageQ<X> input_q; // Incoming messages
63 std::priority_queue<Message<X> > xq; // Input sorted by timestamp
64 Bag<Event<X> > xb; // Bag for injecting input into the Simulator
65 // Earliest input and output times, and the time of the next
66 // internal event
67 Time eit, eot, tSelf;
68 // Abstract simulator for notifying EventListeners
69 AbstractSimulator<X>* psim;
70 MessageManager<X>* msg_manager; // To manage inter-thread events
71 // Simulator for computing local state transitions and outputs
72 Simulator<X> sim;
73 // Compute and send the logical processes earliest output time
74 void sendEOT(Time tStop);
75 // Update eit and move input events from input_q to xq
76 void processInputMessages();
77 // Attach a model to the sequential simulator
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78 void addToSimulator(Devs<X>* model);
79 // Cleanup output messages that left the logical process
80 void cleanup_xb();
81 };
82

83 template <typename X>
84 LogicalProcess<X>::LogicalProcess(int ID, const std::vector<int>& I,
85 const std::vector<int>& E, LogicalProcess<X>** all_lps,
86 AbstractSimulator<X>* psim, MessageManager<X>* msg_manager):
87 ID(ID),E(E),I(I),all_lps(all_lps),psim(psim),
88 msg_manager(msg_manager),sim(this)
89 {
90 tSelf = eot = eit = Time(0.0,0); // Safe guesses are 0
91 all_lps[ID] = this; // Add ourself to the set of logical processes
92 lookahead = DBL_MAX; // No models, so infinite lookahead to start
93 for (typename std::vector<int>::const_iterator iter = I.begin();
94 iter != I.end(); iter++)
95 if (*iter != ID) eit_map[*iter] = Time(0.0,0); // Safe guess
96 // Register to receive output produced by the sequential simulator
97 sim.addEventListener(this);
98 }
99

100 template <typename X>
101 void LogicalProcess<X>::addModel(Devs<X>* model)
102 {
103 // Assume models are connected in parallel
104 lookahead = std::min(model->lookahead(),lookahead);
105 assert(lookahead > 0.0); // Better be positive, or something is wrong
106 // Attach it to the sequential simulator and set the thread assignment
107 addToSimulator(model);
108 }
109

110 template <typename X>
111 void LogicalProcess<X>::addToSimulator(Devs<X>* model)
112 {
113 model->setProc(ID); // Assign the model to this process
114 // Atomic models are attached directly to the sequential simulator
115 // by inserting them into the event schedule
116 Atomic<X>* a = model->typeIsAtomic();
117 if (a != NULL)
118 {
119 sim.addModel(a); // Schedule the model
120 // Get the time of the next internal event
121 tSelf.t = sim.nextEventTime();
122 }
123 // Decompose a network model and assign its components to ourself
124 else
125 {
126 // Get the set of components
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127 Set<Devs<X>*> components;
128 model->typeIsNetwork()->getComponents(components);
129 // Add them to ourself
130 typename Set<Devs<X>*>::iterator iter = components.begin();
131 for (; iter != components.end(); iter++) addToSimulator(*iter);
132 }
133 }
134

135 template <typename X>
136 void LogicalProcess<X>::notifyInput(Atomic<X>* model, X& value)
137 {
138 assert(model->getProc() != ID); // This had better not be ours
139 // Create a message carrying a copy of the event object
140 Message<X> msg(msg_manager->clone(value));
141 msg.t = tSelf; // Set the timestamp
142 msg.src = this; // Note the process that produced the message
143 msg.target = model; // The target is the atomic model getting the input
144 msg.type = Message<X>::OUTPUT; // It is an OUTPUT from an atomic model
145 all_lps[model->getProc()]->sendMessage(msg); // Send the message
146 }
147

148 template <typename X>
149 void LogicalProcess<X>::sendEOT(Time tStop)
150 {
151 Message<X> msg; // Create a message to carry the EOT update
152 msg.target = NULL; // This is not an input for an atomic model
153 msg.type = Message<X>::EIT;
154 msg.src = this; // Note the process that produced the message
155 // Calculate our EOT estimate. Note that tStop contains the smaller
156 // of the earliest input time and the simulation end time
157 msg.t = tStop;
158 msg.t.t += lookahead; msg.t.c = 0; // Add the lookahead
159 // msg now carries the time to which our output is fixed. If this time
160 // is larger than our next event time, then our next output will
161 // actually occur sooner than this.
162 if (tSelf <= msg.t)
163 {
164 msg.t = tSelf; // In this case, tSelf is our EOT
165 // Recall that every discrete event model has a lookahead of (0,1)
166 // and so if tSelf is actually at eit then we have already sent
167 // the corresponding outputs. Hence, our next output can occur
168 // at the earliest in the next discrete instant.
169 if (tSelf == eit) msg.t.c += 1;
170 }
171 assert(msg.t.c >= 0); // c must not be negative
172 // Our next event time can shrink, but EOT is strictly increasing. So
173 // don’t do anything if the calculated EOT is smaller than the last
174 // eot that we transmitted.
175 if (msg.t <= eot) return;
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176 else eot = msg.t; // Otherwise, save the new EOT
177 // Send it to all of our influencees
178 for (std::vector<int>::const_iterator iter = E.begin();
179 iter != E.end(); iter++)
180 if (*iter != ID) all_lps[(*iter)]->sendMessage(msg);
181 }
182

183 template <typename X>
184 void LogicalProcess<X>::processInputMessages()
185 {
186 while (!input_q.empty()) // Process all pending messages
187 {
188 Message<X> msg(input_q.remove()); // Extract the message
189 eit_map[msg.src->getID()] = msg.t; // Update eit for the source
190 if (msg.type == Message<X>::OUTPUT) // Save input to the atomic models
191 xq.push(msg);
192 }
193 // Update our earliest input time
194 eit = Time::Inf();
195 for (std::map<int,Time>::iterator iter = eit_map.begin();
196 iter != eit_map.end(); iter++)
197 eit = std::min((*iter).second,eit);
198 }
199

200 template <typename X>
201 void LogicalProcess<X>::run(double t_stop)
202 {
203 while (true)
204 {
205 bool tstop_reached = false;
206 // Make sure we stop at t_stop
207 Time tStop(eit);
208 if (Time::Inf() <= tStop || tStop.t > t_stop)
209 {
210 tStop = Time(t_stop,UINT_MAX);
211 tstop_reached = true;
212 }
213 // The main simulation loop runs until all pending events are
214 // scheduled for after the simulation end time
215 while (tSelf <= tStop || (!xq.empty() && xq.top().t <= tStop))
216 {
217 // Find the time of the next event
218 Time tN(tSelf); // Time of the internal event
219 // Is the next input event earlier that this?
220 if (!xq.empty() && xq.top().t < tN) tN = xq.top().t;
221 // If the next internal event is before or at the next event time,
222 // then calculate and send the model’s output
223 if (tSelf == tN) sim.computeNextOutput();
224 // If the next event is at EIT, then we don’t have all of the
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225 // input for time tN and must wait to compute the next state
226 // of the model
227 if (tN == eit) { assert(!tstop_reached); break; }
228 // Otherwise inject the input for time tN
229 while (!xq.empty() && xq.top().t <= tN)
230 {
231 Message<X> msg(xq.top()); // Get the message
232 xq.pop(); // Remove it from the pending queue
233 assert(msg.target->getProc() == ID); // Better be for us
234 // Add the input to the bag of events that will be injected
235 // into the sequential simulator
236 Event<X> input_event(msg.target,msg.value);
237 xb.insert(input_event);
238 }
239 assert(tN.t < DBL_MAX); // The simulator should not be passive
240 sim.computeNextState(xb,tN.t); // Compute the state at tN
241 // Use the message manager to delete input received from foreign
242 // logical processes
243 cleanup_xb();
244 // Calculate the time of our next internal event
245 tSelf = tN; // Set next event to the time of the last event
246 if (tSelf.t < sim.nextEventTime()) // If it is in the real future
247 {
248 tSelf.t = sim.nextEventTime(); // Set the real part
249 tSelf.c = 0; // The discrete part becomes zero
250 }
251 else tSelf.c++; // Otherwise just increment the discrete part
252 }
253 // Calculate and send our earliest output time
254 sendEOT(tStop);
255 if (tstop_reached) return; // Exit if we are done
256 processInputMessages(); // Otherwise process any waiting messages
257 }
258 }
259

260 template <class X>
261 void LogicalProcess<X>::cleanup_xb()
262 {
263 // Use the MessageManager to delete the copied objects
264 // that were received from foreign logical processes
265 typename Bag<Event<X> >::iterator iter = xb.begin();
266 for (; iter != xb.end(); iter++)
267 msg_manager->destroy((*iter).value);
268 xb.clear();
269 }
270

271 template <class X>
272 LogicalProcess<X>::~LogicalProcess()
273 {
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274 // Delete objects received from the other logical processes.
275 // Note that the Simulator does not delete its models
276 // and neither does this destructor, so they are still available
277 // after the simulation ends
278 while (!xq.empty())
279 {
280 Message<X> msg(xq.top());
281 xq.pop();
282 Event<X> input_event(msg.target,msg.value);
283 xb.insert(input_event);
284 }
285 cleanup_xb();
286 }
287

288 } // end of namespace

B.2.4 The MessageQ

The MessageQ is used for communication between threads. It functions as a
first-in/first-out queue that can be accessed simultaneously by multiple senders and a
single receiver, the queue’s owner. A message is inserted into the back of the queue
by calling the insert method, and the message at the front of the queue is removed
by calling the remove method. The state of the queue, empty or full, is discovered by
calling the empty method. In a parallel simulation where each thread stays busy pro-
cessing events, a LogicalProcess will find a message in the queue every time it looks.
Consequently, there is no provision for halting until a message becomes available.
Instead, a LogicalProcess spins on the empty method if it cannot progress without a
message and no message has yet become available.

Two lists are used to implement the MessageQ. One of these is the safe list, and
it is accessed only by the LogicalProcess that owns the MessageQ. The other is the
shared list, into which messages are inserted. The status of the shared list is kept in
a volatile Boolean variable that is true if the shared list is empty and false otherwise.
Because the several threads may attempt to access the shared list at the same time, it
is protected by a lock.

To insert a message into the MessageQ, the caller acquires the lock, pushes the
message onto the back of the shared list, sets the Boolean variable that indicates the
list’s status to false (i.e., not empty), and releases the lock.

Only the owning LogicalProcess can extract a message from the MessageQ. To
do this, it first checks the status of the safe list. If this list is not empty, then the first
message is extracted from it. Otherwise, the lock for the shared list is acquired, the
shared list and safe list are swapped, the status of the shared list is set to true (i.e.,
empty), and the lock is released. Now the safe list, which was formerly the shared
list, contains at least one message and the first one is extracted.

Of course, a message can be extracted from the list only if it is not empty. Before
calling remove, the owning thread checks to see whether (1) the safe list is not empty
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or (2) the shared list is not empty. If either of these conditions is true, then a message
can be obtained from the MessageQ. The implementation of the MessageQ is listed
below.

Implementation of the MessageQ
1 #ifndef __adevs_message_q_h_
2 #define __adevs_message_q_h_
3 #include "adevs_models.h"
4 #include "adevs_time.h"
5 #include <omp.h>
6 #include <list>
7 #include <cassert>
8

9 namespace adevs
10 {
11

12 // Early declaration for use as the Message source.
13 // The LogicalProcess is defined elsewhere.
14 template <typename X> class LogicalProcess;
15 // These are the messages exchanged by LogicalProcesses
16 template <typename X> struct Message
17 {
18 typedef enum { OUTPUT, EIT } msg_type_t;
19 Time t; // Message timestamp
20 LogicalProcess<X> *src; // Logical process that produced the message
21 Devs<X>* target; // Model that is the target for the message’s value
22 X value; // Value of the input to the target
23 msg_type_t type; // The type of the message (OUTPUT or EIT)
24 Message():value(){} // Default constructor
25 // Create a message with a particular value
26 Message(const X& value):value(value){}
27 // Copy constructor
28 Message(const Message& other):
29 t(other.t),src(other.src),target(other.target),
30 value(other.value),type(other.type) {}
31 // Assignment operator
32 const Message<X>& operator=(const Message<X>& other)
33 {
34 t = other.t;
35 src = other.src;
36 target = other.target;
37 value = other.value;
38 type = other.type;
39 return *this;
40 }
41 // Sort by timestamp, smallest timestamp first in the STL priority_queue
42 bool operator<(const Message<X>& other) const { return other.t < t; }
43 };
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44 // This is the buffer used by LogicalProcesses for their incoming Messages
45 template <class X> class MessageQ
46 {
47 public:
48 // Create an empty message queue
49 MessageQ()
50 {
51 omp_init_lock(&lock); // Create the lock that protects qshare
52 qshare_empty = true; // qshare is initially empty
53 qsafe = &q1; // Point to the shared and safe message lists
54 qshare = &q2;
55 }
56 // Put a message at the back of the list
57 void insert(const Message<X>& msg)
58 {
59 omp_set_lock(&lock); // Acquire the lock
60 qshare->push_back(msg); // Message to the back of the shared list
61 qshare_empty = false; // The shared list is not empty now
62 omp_unset_lock(&lock); // Release the lock and return
63 }
64 // Is the message buffer empty? This works without a lock because
65 // qsafe is accessed only by the owning LogicalProcess and
66 // qshare_empty is volatile
67 bool empty() const { return qsafe->empty() && qshare_empty; }
68 // Get the message at the front of the list
69 Message<X> remove()
70 {
71 // If the safe list is empty, then we must get the message
72 // from the shared list
73 if (qsafe->empty())
74 {
75 // Swap the shared and safe lists
76 std::list<Message<X> > *tmp = qshare;
77 omp_set_lock(&lock); // Get the lock
78 qshare = qsafe; // Make the safe list into the shared list
79 qshare_empty = true; // The shared list is now empty
80 omp_unset_lock(&lock); // Release the lock
81 qsafe = tmp; // Finish the swap
82 }
83 // There is a message in the safe list; extract the first one
84 Message<X> msg(qsafe->front());
85 qsafe->pop_front();
86 return msg; // Return it
87 }
88 ~MessageQ()
89 {
90 // Just destroy the lock; the content of the messages are owned
91 // by the LogicalProcess
92 omp_destroy_lock(&lock);
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93 }
94 private:
95 omp_lock_t lock; // Lock to protect qshare and qshare_empty
96 std::list<Message<X> > q1, q2; // The lists themselves
97 std::list<Message<X> > *qsafe, *qshare; // Roles for q1 and q2
98 volatile bool qshare_empty; // Is qshare empty?
99 };

100

101 } // end of namespace
102

103 #endif

B.2.5 The ParSimulator

The ParSimulator class hides the parallel simulation algorithm behind an interface
that closely resembles the Simulator interface. The user can register an EventListener
to be notified when output is produced by and state changes occur in the component
models; the constructor accepts a Devs model whose components are assigned to
specific logical processes in accordance with the user preferences, and the execUntil
method runs the parallel algorithm until a specified end time. The implementation of
this class is listed below.

The assignment of components to LogicalProcesses is one of the main functions
of the ParSimulator. Each Devs, atomic and network, has a setProc method that is
used by the modeler to assigned it to a specific thread. Valid assignments are in the
range of 0 to omp get max threads-1. By default, a model is unassigned and this is
indicated by a thread number of −1. Models are attached to processors depth first. A
Network with a valid assignment is given to the appropriate LogicalProcess, which
adopts its and all of its components. If the Network does not have a valid assignment,
then the ParSimulator looks at the assignments of its children. Again, Networks with
a valid assignment are given to the appropriate LogicalProcess; those without a valid
assignment are expanded. An Atomic model, however, is always assigned to some
LogicalProcess; if the atomic model has an invalid assignment, then a LogicalProcess
is selected at random. This assignment process is illustrated in Figure B.8.

Implementation of the ParSimulator
1 #ifndef __adevs_par_simulator_h_
2 #define __adevs_par_simulator_h_
3 #include "adevs_abstract_simulator.h"
4 #include "adevs_msg_manager.h"
5 #include "adevs_lp.h"
6 #include "adevs_lp_graph.h"
7 #include <cassert>
8 #include <cstdlib>
9 #include <iostream>

10 #include <vector>
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FIGURE B.8 An assignment of a network model to a set of logical processes. Each block
in the tree is a model; the leaves are atomic and intermediates are networks. The labels are
processor assignments; underlining indicates a −1 that was altered during the assignment
process.

11

12 namespace adevs
13 {
14

15 template <class X> class ParSimulator: public AbstractSimulator<X>
16 {
17 public:
18 // Create a simulator for the model. This constructor assumes that
19 // the logical processes are all connected to each other
20 ParSimulator(Devs<X>* model, MessageManager<X>* msg_mngr = NULL);
21 // This constructor accepts a directed graph whose edges tell the
22 // simulator which processes feed input to which other processes.
23 ParSimulator(Devs<X>* model, LpGraph& g,
24 MessageManager<X>* msg_mngr = NULL);
25 // Get the model’s next event time
26 double nextEventTime();
27 // Run the simulator until the next event time is greater
28 // than the specified value.
29 void execUntil(double stop_time);
30 // Delete the simulator, but leave the model intact
31 ~ParSimulator();
32 private:
33 LogicalProcess<X>** lp; // Pointers to the logical processes
34 int lp_count; // Number of logical processes in lp
35 MessageManager<X>* msg_manager; // For managing inter-lp events
36 void init(Devs<X>* model);
37 void init_sim(Devs<X>* model, LpGraph& g);
38 };
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39

40 template <class X>
41 ParSimulator<X>::ParSimulator(Devs<X>* model, MessageManager<X>* msg_mngr):
42 AbstractSimulator<X>(),msg_manager(msg_mngr)
43 {
44 // Create an all to all coupling of logical processes in place of
45 // the LpGraph not provided by the user
46 lp_count = omp_get_max_threads();
47 LpGraph g;
48 for (int i = 0; i < lp_count; i++)
49 {
50 for (int j = 0; j < lp_count; j++)
51 {
52 if (i != j)
53 {
54 g.addEdge(i,j);
55 g.addEdge(j,i);
56 }
57 }
58 }
59 init_sim(model,g); // Initialize the simulator
60 }
61

62 template <class X>
63 ParSimulator<X>::ParSimulator(Devs<X>* model, LpGraph& g,
64 MessageManager<X>* msg_mngr):
65 AbstractSimulator<X>(),msg_manager(msg_mngr)
66 {
67 init_sim(model,g); // Initialize the simulator
68 }
69

70 template <class X>
71 void ParSimulator<X>::init_sim(Devs<X>* model, LpGraph& g)
72 {
73 // Create a default manager if one was not provided
74 if (msg_manager == NULL) msg_manager = new NullMessageManager<X>();
75 lp_count = omp_get_max_threads(); // One logical process per thread
76 lp = new LogicalProcess<X>*[lp_count]; // Allocate the lp array
77 // Create the logical processes; IDs are the array positions
78 for (int i = 0; i < lp_count; i++)
79 lp[i] = new LogicalProcess<X>(i,g.getI(i),g.getE(i),lp,
80 this,msg_manager);
81 init(model); // Partition the model for simulation by the processes
82 }
83

84 template <class X>
85 double ParSimulator<X>::nextEventTime()
86 {
87 // Calculate the time of the next event as the smaller of the
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88 // next event times of the logical processes
89 Time tN = Time::Inf();
90 for (int i = 0; i < lp_count; i++)
91 {
92 if (lp[i]->getNextEventTime() < tN)
93 tN = lp[i]->getNextEventTime();
94 }
95 return tN.t;
96 }
97

98 template <class X>
99 ParSimulator<X>::~ParSimulator<X>()

100 {
101 for (int i = 0; i < lp_count; i++)
102 delete lp[i]; // Delete the logical processes
103 delete [] lp; // Delete the array that held them
104 delete msg_manager; // Delete the message manager
105 }
106

107 template <class X>
108 void ParSimulator<X>::execUntil(double tstop)
109 {
110 // Create a separate thread for each logical process and execute
111 // until the simulation stop time is reached
112 #pragma omp parallel
113 {
114 lp[omp_get_thread_num()]->run(tstop);
115 }
116 }
117

118 template <class X>
119 void ParSimulator<X>::init(Devs<X>* model)
120 {
121 // If the model wants a process that exists, then do the assignment
122 if (model->getProc() >= 0 && model->getProc() < lp_count)
123 {
124 lp[model->getProc()]->addModel(model);
125 return;
126 }
127 // Otherwise, try to place it
128 Atomic<X>* a = model->typeIsAtomic();
129 if (a != NULL) // Atomic models are assigned at random
130 {
131 int lp_assign = a->getProc();
132 if (lp_assign < 0 || lp_assign >= lp_count)
133 lp_assign = ((long int)a)%lp_count;
134 lp[lp_assign]->addModel(a);
135 }
136 // The components of a network model are recursively assigned
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137 else
138 {
139 Set<Devs<X>*> components;
140 model->typeIsNetwork()->getComponents(components);
141 typename Set<Devs<X>*>::iterator iter = components.begin();
142 for (; iter != components.end(); iter++) init(*iter);
143 }
144 }
145

146 } // End of namespace
147

148 #endif

B.3 DEMONSTRATION OF GUSTAFSON’S AND AMDAHL’S LAWS

The conservative algorithm works best when the model is partitioned such that
information flows forward. The connections between processes ideally form a tree
with data originating at the root and flowing down to the leaves. With this arrangement,
each branch of the tree can be executed as quickly as the upstream process provides
input to it. Feedback, by which a process at a lower level in the tree feeds information
to its parent, limits the exploitable parallelism to simultaneous state transitions.

For example, consider just two models connected in a feedback arrangement.
Beginning at time zero, suppose that the first model has a lookahead ε1 and time
advance of �t1 and the second model of ε2 and �t2, respectively. The first act of each
processor is to send the smaller of its �t and ε to its neighbor and thereby establish
the earliest input times.

Consider first what happens if ε1 < �t1 and ε2 < �t2. Neither process can do
anything useful; each merely updates its estimate of the earliest input time by the
ε of its neighbor. This happens again and again until the accumulated εs reach the
smaller of the �ts and the first event finally occurs. Clearly, no useful work is done
in parallel and substantial time is wasted while the processors agree on the time of
the next executable event. This is the worst-case scenario.

In the best circumstances, �t1 < ε1 and �t2 < ε2. In this case, the processes
exchange their next event times and if, say, �t2 < �t1, the internal event at the
second processor and external event at the first processor are executed in parallel.
Some small amount of parallelism is exploited, but any benefit is likely overwhelmed
by time lost to the exchange of estimates for the earliest output times and the output
values themselves.

With this in mind, the benchmark model embodies the ideal case where models
feed information forward. With careful attention to how the model is partitioned
for parallel simulation, this ideal can often be realized in practice. Manufacturing
problems provide a good example. Raw material enters a plant and is processed in
stages. Specific stages may send defective parts back for reprocessing, and the stages
connected by feedback loops are incorporated into a single logical process. The
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FIGURE B.9 The benchmark model with nine servers in three lines and its partitioning for
three processors. The box labels indicate the model’s class.

remaining stages constitute serial or parallel flows of material. Doing this necessarily
restricts the number of processors that can be usefully exploited, and the benchmark
reflects this fact. We will consider a small number of processors and a relatively large
problem, an ideal circumstance for showing Gustafson’s law applied to simulations
executing on a multicore workstation.

The benchmark model is a queuing network constructed from atomic models that
contain a queue and server with a first-come, first-served policy. The servers have a
processing time of 1 + r seconds, where r is exponentially distributed with a mean
of one second. These form N serial arrangements of Q servers each. The lines of
servers are fed by a single generator that produces a new job every 2/N seconds and
chooses at random one of the N lines of servers to process it. This ensures that, on
average, each line of queues receives a job every two seconds. The output from the
lines of servers arrive at a collector, which counts the finished jobs as they arrive. The
model is illustrated in Figure B.9.

The model is partitioned for P processors in the following way. The generator
and 
N/P� of the lines of servers are assigned to the first processor. Processors
2, . . . , P − 1 each get 
N/P� lines of servers, and processor P gets the collector
and the lines of servers that remain. With this partitioning, processor 1 provides input
to 2, . . . , P , and processors 1, . . . , P − 1 provide input to P . A partitioning of three
lines of servers is illustrated in Figure B.9. The generator, which is input-free, and the
collector, which is output-free, each have infinite lookahead. The individual servers
have a lookahead of 1, and each line of Q servers therefore has a lookahead of Q.
The lines are arranged in parallel, and so each processor can conservatively estimate
its lookahead as Q. In fact, the first processor, which has the generator, has infinite
lookahead and likewise the last processor, which contains the collector.
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FIGURE B.10 Execution time of the benchmark as a function of size and the number of
processors used: (a) execution times; (b) closeup view of part (a) illustrating Gustafson’s and
Amdahl’s laws.

The servers with queues, the lines of servers, the generator, and the collector
differ only minimally from the discrete-event models that we have seen so far; they
are implemented by the Sq, Ql, Genr, and Collector classes, respectively. The Qn
class, which connects these components and assigns them to processors, and the
main function, which creates and executes the parallel simulator, show how the new
elements of the simulation engine are used. The code for these is listed below.

This benchmark can be scaled in three dimensions: the number N of lines of
servers, the number Q of queues and servers in each line; and the simulation ending
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time T . In this instance, the model is set up with N = Q and T = 3N ; so a problem
of size 100 has N = Q = 100 and T = 300. The choice of N = Q is arbitrary. Using
T = 3N ensures that some of the jobs arrive at the collector before the simulation
terminates. What is important is that, as Gustafson’s law requires, the parallel part of
the simulation grows with its size while the serial part remains essentially unchanged.
Therefore, as the size of the model grows, we can maintain a reasonable execution
time by using a larger computer.

Figure B.10 confirms our expectations. These results were produced with a four-
core Intel processor. A critical feature of this plot is the horizontal line connecting
equal execution times using one, two, three, and four cores. The parallel fraction of the
program grows with the size of the problem, and the trend predicted by Gustafson’s
law is unmistakable: the speedup, although not ideal, is steady when the number of
processors matches the size of the problem. Amdahl’s law can also be seen in this
plot: the vertical line connecting the execution times for a fixed-size simulation shows
diminishing returns. This experiment reinforces the argument with which the chapter
began. Parallel computers are marginally useful for speeding up small problems but
are very good for maintaining a reasonable execution time as the simulation grows.

Main Function for the Benchmark Program
1 #include "Qn.h"
2 #include "adevs_par_simulator.h"
3 #include <iostream>
4 using namespace adevs;
5 using namespace std;
6

7 int main(int argc, char** argv)
8 {
9 if (argc < 4) {

10 cerr << "Need # queues, # lines, and end time" << endl;
11 return 0;
12 }
13 if (argc == 5)
14 cout << "Using " << omp_get_max_threads()<< " threads" << endl;
15 int queues = atoi(argv[1]);
16 int lines = atoi(argv[2]);
17 double tend = atof(argv[3]);
18 LpGraph lpg;
19 Qn* model = new Qn(queues,lines,lpg);
20 AbstractSimulator<int>* sim;
21 if (argc == 5) sim = new ParSimulator<int>(model,lpg);
22 else sim = new Simulator<int>(model);
23 sim->execUntil(tend);
24 delete sim; delete model;
25 return 0;
26 }
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Qn Class for the Benchmark Program
1 #ifndef _Qn_h_
2 #define _Qn_h_
3 #include "adevs.h"
4 #include "Genr.h"
5 #include "Sq.h"
6 #include <iostream>
7

8 class Qn: public adevs::Network<int>
9 {

10 public:
11 // Create a model with s lines of q servers. The arrangement
12 // of the logical processes is returned via the supplied LpGraph.
13 Qn(int q, int s, adevs::LpGraph& lpg):
14 adevs::Network<int>(),qcount(s),ql(new Ql*[s]),
15 genr((double)s/2.0),collect()
16 {
17 int thrds = omp_get_max_threads(); // Get the number of threads
18 genr.setParent(this); // The generator goes to process zero
19 genr.setProc(0);
20 collect.setParent(this); // Collector goes on the last process
21 collect.setProc(thrds-1);
22 // The queues are split among all the processes
23 for (int i = 0; i < qcount; i++)
24 {
25 ql[i] = new Ql(q);
26 ql[i]->setParent(this);
27 ql[i]->setProc(i%thrds);
28 }
29 // Add 0->[1,thrds) to the LpGraph. This connects the
30 // generator to everyone.
31 for (int i = 1; i < thrds; i++) lpg.addEdge(0,i);
32 // Add [0,thrds-1)->thrds-1 to the LpGraph. This connects
33 // everyone to the collector.
34 for (int i = 0; i < thrds-1; i++) lpg.addEdge(i,thrds-1);
35 }
36 void getComponents(adevs::Set<adevs::Devs<int>*>& c)
37 {
38 for (int i = 0; i < qcount; i++) c.insert(ql[i]);
39 c.insert(&genr); c.insert(&collect);
40 }
41 void route(const int &value, adevs::Devs<int> *model,
42 adevs::Bag<adevs::Event<int> > &r)
43 {
44 if (model == &genr)
45 r.insert(adevs::Event<int>(ql[value%qcount],value));
46 else r.insert(adevs::Event<int>(&collect,value));
47 }
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48 ~Qn()
49 {
50 // Delete the components of the model
51 for (int i = 0; i < qcount; i++) delete ql[i];
52 delete [] ql;
53 }
54 private:
55 const int qcount;
56 Ql** ql;
57 Genr genr;
58 Collector collect;
59 };
60

61 #endif
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APPENDIX C

MATHEMATICAL TOPICS

C.1 SYSTEM HOMOMORPHISMS

A morphism is a mapping from one system to another. When such a mapping exists,
one system, the “big" system, is capable of doing all the essential work of another
system, the “small" system. If the mapping is reversible, so that the small and big
systems can change places, then the two systems are in fact identical except for the
renaming and, possibly, a reversible recombination of their input, output, and state
variables. A homomorphism is a mapping from big system to a small system that
loses some information about the big system. The small system, in this case, does less
than the big system, and the mapping is not reversible. If the mapping is reversible,
then it is an isomorphism and the systems involved are interchangeable.

A trivial example will introduce the idea in an intuitive way. Consider first a
discrete-time system (see Chapter 3) with a single state, single input, and single
output; call this system A. Any other discrete-time system, call it B, is capable of
mimicking A as follows. Let the entire set of states of B be mapped to the single state
of A, and likewise with B’s set of outputs. A’s single input is mapped to any input of
B, which in particular does not matter. Now the input for A is fed, via the mapping,
into B. In response, B changes state and produces an output, and this action, observed
through the lens of the morphism, looks exactly like the response of A: B remains in
its single state (as seen through the mapping) and produces its single output (again, as
seen through the mapping). This is a trivial example of a homomorphism. If B has only
a single state, input, and output to begin with, then A and B are trivially isomorphic.
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FIGURE C.1 Illustration of a homomorphisms from big system S to small system S′.

More generally, a system morphism from a big system with set of states Q, inputs
X , outputs Y , time base T , state transition function �, and output function � to a
small system described by Q′, X ′, Y ′, T ′, �′, and �′ comprises three functions

g :< X ′, T ′ > →< X, T >

h : Q̄ →onto Q′, where Q̄ ⊆ Q

k : Y →onto Y ′

that satisfy

h(�(q, g(x ′))) = �′(h(q), x ′) (C.1)

k(�(q)) = �′(h(q)) (C.2)

where q ∈ Q̄ and x ′ ∈ X ′. The function g transforms an input trajectory for the small
system into an input trajectory for the big system. The function h transforms a subset
of the states of the big system to states of the small system in such a way that all
of the small system’s states are covered (i.e., the function h is onto). The function k
does the same thing as h, but for the sets of output.

Equations C.1–C.2 are illustrated in Figure C.1. The idea is that the following two
procedures produce identical results:

1. Provide to the big system a suitably transformed input for the small system,
compute the resulting state of the big system, and transform this into a state of
the small system.

2. Transform the initial state of the big system into a state for the small system
and apply the same input as above to compute a new state for the small system.
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A useful fact is that if the trajectories are decomposable into generator segments,
then a homomorphism constructed on that set of generators implies a homomorphism
of the complete system (see, e.g., Ref. 157). The primitive segments for discrete-time
and discrete-event systems satisfy this requirement. For instance, every trajectory of a
discrete-time system can be constructed by concatenating trajectories of unit length.
Hence, these constitute generators for the system. The functions h and g can now be
applied to the single-step transition function δ as follows, where x ′ is now a generator
segment:

h(δ(q, g(x ′))) = δ′(h(q), x ′) (C.3)

Equation C.3 implies Equation C.1 and is often a more practicable tool for construct-
ing homomorphisms.

C.2 SINUSOIDAL STATE-STEADY ANALYSIS

Changes in the speed, output power, and excitation voltage of an electric generator
occur much more slowly than do changes in voltages and currents in transmission
wires, capacitor banks, and other electrical equipment. It is therefore convenient in the
analysis of generator dynamics to avoid dynamic models of purely electrical devices
and use instead simpler algebraic models. For this purpose, it is assumed that these
devices always see a sinusoidal voltage and current characterized by A sin(ωt + θ ).
The amplitude A and phase angle θ may vary with time, but the frequency ω is fixed.
Justification for these assumptions can be found in almost any textbook on power
systems engineering or the analysis of electric circuits (see, e.g., Ref. 52 or 97). This
assumption simplifies the calculation of currents and voltages in the transmission
network by considering only instantaneous changes in amplitudes and phase angles.
We proceed as follows:

1. Each sinusoidal source is replaced by a phasor A cos θ + j A sin θ . With a
slight abuse of notation, this is abbreviated A∠θ .1

2. Inductors L , resistors R, and capacitors C are replaced with complex
impedances jωL , ( jωC)−1, and R, respectively. This produces a network
containing only complex impedances Z that satisfy Ohm’s law when the cur-
rents I and voltages V are phasors: V = I Z . The complex power at a device
is S = V I ∗. The real part of S is called real power and the imaginary part,
reactive power.

3. Voltages at nodes and currents in branches are calculated using the mesh current
or node voltage method.

1In fact, A∠θ = A cos(ωt + θ) and A cos θ + j A sin θ is the phasor transform of that sinusoid. In most
cases, the use of A∠θ for the phasor does not cause confusion.
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There is a slight incongruence when using this method of analysis in conjunction
with dynamic models of the generators. The transmission system model is constructed
by assuming that the power signal has a fixed frequency. However, the synchronous
machine model has a frequency that varies. In fact, frequency variation at the gen-
erators appears on the transmission lines and everywhere else, but they are ignored
when calculating line currents and node voltages. Change in the generator frequen-
cies cannot be similarly eliminated because it drives change in the machines’ phase
angles, and these phase angles determine how power flows from the generators to the
loads. Nonetheless, this method of calculation is very practical and widely used.
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adevs, web site, 5
Admittance matrix, 259–260, 270
Amdahl’s law, 296–298, 327–328

defined, 296
Assembly line, 129–131, 137–141, 165–168.

See also Press and drill
Assertion, 281–282
Asynchronous cellular automata, see Cellular

automata, asynchronous
Atomic model (defined), 8, 32–33, 39, 101

simulation algorithm, 38, 104–105

Bag, 40, 42, 63
defined, 40
implementation, 153–156
systems with, 42, 114

Bond graph, 8, 13–15, 273
Breaker (over- and under- frequency), 257–261

Cart, see Pendulum
Categorical hybrid systems, 236
Causal system, 300
CD++, 229, 273
Cellular automata, 6, 91, 93, 98–99, 273, 276

asynchronous, 176–178, 276
are differential automata, 229–232

Circuit
example of hybrid system, 195–197, 208–210
one-line drawing of a power system, 259
speed control of motor, 10, 14

Code inspection, 280
Code optimization, 280, 291
Combined modeling, 276
Communication network, 226, 237, 256–257
Conservative algorithm, 274, 298–301, 304, 311,

325
earliest input time, 303, 309–311, 315–316, 325
earliest output time, 303–304, 311, 313, 317,

325
feedback, 302, 304, 311, 325
partition, 303, 309, 325–326

Continuous input, 186
Control center, 256–257, 260–261

Dead reckoning, 225–226
Debugger, 280
DEVS, 5, 101, 225, 269, 276

&DESS, 236, 269
generalized (GDEVS, Giambiasi), 225, 269
graph, 21

Differential automata, 229–230, 232, 236. See also
Cellular automata, are differential automata
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ElectricalModel, 261–263
Ethernet, 18, 21, 238, 244–245, 247, 249–250,

269–270
backoff, 249, 252–253
MAC (medium access control), 238, 244, 249,

252
Euler’s method, 183–186, 191, 193, 197, 204–206,

210, 213, 219, 227–229, 246
corrected, 191, 193, 197, 204–206, 210, 213,

219, 246
implicit, 227–229

Event schedule
explicit, 144
implementation, 145–149
percolate up, percolate down, 146–152
sentinel, 145, 150, 152
stored in an array, 144–145

Event, types defined
confluent, internal, and external, 104–106, 114,

127–128
state and time, 198

Feedback, 90, 302, 304, 311, 325

Generator (electric power), 255–257, 259–265,
267–268, 270, 333–334

Gustafson’s law, 297–298, 326–328
defined, 297

Heap, see Event schedule
Homomorphism, 178, 232–233, 235, 331–333

defined, 332–333
Hybrid system, 98–99, 101, 182, 184, 187, 189,

191, 193–194, 198, 200, 230, 236, 269,
272

programming languages, 272

IEEE 118 bus model, 262, 264–266
Influencers, set of Ed and Id defined, 62–63
Interpolate, interpolation, 192–193, 198, 204, 206,

211
Isomorphism, 235, 331

defined, 331

LAPACK, 261
Legitimate, 102, 106–107, 182, 195, 211, 261.

See also Zeno
defined, 106

Load (electric power), 237, 255–257, 259–263,
266–267, 270

aggregator, 256–257, 261–263, 265

Logical function, 56–57, 65, 72, 85
Logical process, 275, 309, 311–314, 317–319,

321–325, 329
implementation, 312–318

Lookahead, 274–275, 299–304, 311, 313–315,
325–326

M/CD++, 273
Mealy type system, 89–90
Modelica, 236, 270, 272–273
Moore type system, 89, 91, 105
Multi-formalism modeling, see Combined

modeling

Networked control systems, 237, 254
Network model (defined, algorithms)

discrete event, 125–126
discrete time, 8–9, 32, 53–56, 79

ObjectPool, 156, 159
OMNET++, 244–247, 249

NED, 244
self events, 245–248
web address, 244

OpenMP, 304–308
lock, 305–307, 318, 320–321
OMP NUM THREADS, 305–306
parallel pragma, 304–306, 308, 324
shared variable, 305–307
volatile, 304, 307–308, 318, 320–321

Output function, defined, 8, 35, 38, 53, 55–56, 89,
105–106, 114, 126–127

discrete event, 105–106, 114, 126–127
discrete time, 35, 38, 53, 55–56, 89

Parallel discrete event simulation, 101, 274–275,
298, 309

conservative, see Conservative algorithm
optimistic, 274–275, 299–300

Pendulum, 238–241, 244, 249, 251–252, 273
controller, 240
equations, 238–239
implementation, 241–244
sensor, 239

PID control, 238, 240, 243, 246–247
implementation, 243, 246–247

Polynomial, 225–226, 228
Press and drill, 129, 137
Primitive segment, 100, 104–105, 109, 333
Proportional-integral-derivative control, see PID

control
Ptolemy, 101, 229, 276
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Resultant
imminents, set of, 127
output function, 56, 127
state, 55, 126
state transition function, see Event types defined

Robot
block diagram, 22
circuit, see Circuit, speed control of motor
equations, 18, 211–212, 217
interrupt handler (event graphs), 20, 112
packet processor (phase graph), 21
performance optimization, 125
performance profile, 292–294

Route algorithm, 79

Schedule, see Event schedule
Semigroup property, 35–37, 40, 100, 180, 281

defined, 35

State event. See also Event types defined
algorithm for finding, 194

State transition function, of a system, 8, 35–38,
42, 53, 55–56, 78, 100, 102–103, 105–106

single-step, 36, 104–105
total, 35, 37–38, 42, 105

TCP protocol, 254–255
Time advance function, 103–107, 125, 127–128
Time invariant, 35–36, 192

UDP protocol, 18, 20, 23–24, 238

Vending machine, 39, 41–43, 48, 99

Zeno, 102, 107. See also Legitimate
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