

Koffman-index.indd 660 10/30/2015 7:27:45 PM

DATA STRUCTURES
Abstraction and Design

Using Java
THIRD EDITION

ELLIOT B. KOFFMAN
Temple University

PAUL A. T. WOLFGANG
Temple University

Koffman-ffirs.indd 1 11/3/2015 9:04:31 PM

VICE PRESIDENT & DIRECTOR Laurie Rosatone
SENIOR DIRECTOR Don Fowley
EXECUTIVE EDITOR Brian Gambrel
DEVELOPMENT EDITOR Jennifer Lartz
ASSISTANT Jessy Moor
PROJECT MANAGER Gladys Soto
PROJECT SPECIALIST Nichole Urban
PROJECT ASSISTANT Anna Melhorn
MARKETING MANAGER Dan Sayre
ASSISTANT MARKETING MANAGER Puja Katarawala
ASSOCIATE DIRECTOR Kevin Holm
SENIOR CONTENT SPECIALIST Nicole Repasky
PRODUCTION EDITOR Rajeshkumar Nallusamy
PHOTO RESEARCHER Amanda Bustard
COVER PHOTO CREDIT © Robert Davies/Shutterstock

This book was set in 10/12 pt SabonLTStd-Roman by SPiGlobal and printed and bound by Lightning Source Inc.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people
around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility
to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address
the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact,
paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support.
For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2016, 2010 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authori-
zation through payment of the appropriate per‐copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923
(Web site: www.copyright.com). Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, (201) 748‐6011, fax (201) 748‐6008, or online at: www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next
academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please
return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at: www.wiley.com/go/
returnlabel. If you have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy.
Outside of the United States, please contact your local sales representative.

ISBN: 978-1-119-23914-7 (PBK)
ISBN: 978-1-119-22307-8 (EVALC)

Library of Congress Cataloging-in-Publication Data
Koffman, Elliot B.
 [Objects, abstraction, data structures and design using Java]
 Data structures : abstraction and design using Java / Elliot B. Koffman, Temple University, Paul A.T. Wolfgang, Temple University. —
Third edition.
 pages cm
 Original edition published under title: Objects, abstraction, data structures and design using Java.
 Includes index.
 ISBN 978-1-119-23914-7 (pbk.) 1. Data structures (Computer science) 2. Java (Computer program language) 3. Object-oriented
programming (Computer science) 4. Application program interfaces (Computer software) I. Wolfgang, Paul A. T. II. Title.

 QA76.9.D35K58 2016
 005.7'3—dc23

2015036861

Printing identification and country of origin will either be included on this page and/or the end of the book. In addition, if the ISBN on this
page and the back cover do not match, the ISBN on the back cover should be considered the correct ISBN.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Koffman-ffirs.indd 2 11/4/2015 3:00:52 PM

http://www.wiley.com/go/citizenship
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/goreturnlabel

Preface
Our goal in writing this book was to combine a strong emphasis on problem solving and
software design with the study of data structures. To this end, we discuss applications of each
data structure to motivate its study. After providing the specification (interface) and the
implementation (a Java class), we then cover case studies that use the data structure to solve
a significant problem. Examples include maintaining an ordered list, evaluating arithmetic
expressions using a stack, finding the shortest path through a maze, and Huffman coding
using a binary tree and a priority queue. In the implementation of each data structure and in
the solutions of the case studies, we reinforce the message “Think, then code” by performing
a thorough analysis of the problem and then carefully designing a solution (using pseudo‐
code and UML class diagrams) before the implementation. We also provide a performance
analysis when appropriate. Readers gain an understanding of why different data structures
are needed, the applications they are suited for, and the advantages and disadvantages of their
possible implementations.

Intended Audience
This book was written for anyone with a curiosity or need to know about data structures,
those essential elements of good programs and reliable software. We hope that the text will
be useful to readers with either professional or educational interests.

It is intended as a textbook for the second programming course in a computing curriculum
involving the study of data structures, especially one that emphasizes Object‐Oriented Design
(OOD). The text could also be used in a more‐advanced course in algorithms and data struc-
tures. Besides coverage of the basic data structures and algorithms (lists, stacks, queues, trees,
recursion, sorting), there are chapters on sets and maps, balanced binary search trees, graphs,
and an online appendix on event‐oriented programming. Although we expect that most read-
ers will have completed a first programming course in Java, there is an extensive review
chapter (included as an appendix) for those who may have taken a first programming course
in a different language, or for those who need a refresher in Java.

Emphasis on the Java Collections Framework
The book focuses on the interfaces and classes in the Java Collections Framework. We begin
the study of a new data structure by specifying an abstract data type as an interface, which
we adapt from the Java API. Readers are encouraged throughout the text to use the Java
Collections Framework as a resource for their programming.

Our expectation is that readers who complete this book will be familiar with the data struc-
tures available in the Java Collections Framework and will be able to use them in their future
programming. However, we also expect that they will want to know how the data structures
are implemented, so we provide thorough discussions of classes that implement these data
structures. Each class follows the approach taken by the Java designers where appropriate.
However, when their industrial‐strength solutions appear to be too complicated for beginners
to understand, we have provided simpler implementations but have tried to be faithful to
their approach.

Koffman-preface.indd 3 10/20/2015 3:02:35 PM

iv Preface

Think, then Code
To help you “Think, then code” we discuss problem solving and introduce appropriate soft-
ware design tools throughout the textbook. For example, Chapter 1 focuses on OOD and
Class Hierarchies. It introduces the Uniform Modeling Language (also covered in Appendix B)
to document an OOD. It introduces the use of interfaces to specify abstract data types and to
facilitate contract programming and describes how to document classes using Javadoc‐style
comments. There is also coverage of exceptions and exception handling. Chapter 2 intro-
duces the Java Collections Framework and focuses on the List interface, and it shows how to
use big‐O notation to analyze program efficiency. In Chapter 3, we cover different testing
strategies in some detail including a discussion of test‐driven design and the use of the JUnit
program to facilitate testing.

Features of the Third Edition
We had two major goals for the third edition. The first was to bring the coverage of Java up to
Java 8 by introducing new features of Java where appropriate. For example, we use the Java 7
diamond operator when creating new Collection objects. We use the Java 8 StringJoiner in
place of the older StringBuilder for joining strings.

A rather significant change was to introduce Java 8 lambda expressions and functional inter-
faces as a way to facilitate functional programming in Java in a new Section 6.4. Using these
features significantly improved the code.

The second major goal was to provide additional emphasis on testing and debugging. To
facilitate this, we moved our discussion of testing and debugging from an appendix to
Chapter 3 and expanded our coverage of testing including more discussion of JUnit. We also
added a new section that introduced test‐driven development.

A third goal was to ease the transition to Java for Python programmers. When introducing
Java data structures (for example, arrays, lists, sets, and maps), we compared them to equiva-
lent Python data structures.

Other changes to the text included reorganizing the chapter on lists and moving the discussion
of algorithm analysis to the beginning of the chapter so that big‐O notation could be used to
compare the efficiency of different List implementations. We also combined the chapters on
stacks and queues and increased our emphasis on using Deque as an alternative to the legacy
Stack class. We also added a discussion of Timsort, which is used in Java 8, to the chapter on
sorting algorithms. Finally, some large case studies and an appendix were moved to online
supplements.

Case Studies
We illustrate OOD principles in the design and implementation of new data structures and in
the solution of approximately 20 case studies. Case studies follow a five‐step process (prob-
lem specification, analysis, design, implementation, and testing). As is done in industry, we
sometimes perform these steps in an iterative fashion rather than in strict sequence. Several
case studies have extensive discussions of testing and include methods that automate the test-
ing process. Some case studies are revisited in later chapters, and solutions involving different
data structures are compared. We also provide additional case studies on the Web site for the
textbook (www.wiley.com/college/koffman), including one that illustrates a solution to the
same problem using several different data structures.

Koffman-preface.indd 4 10/20/2015 3:02:35 PM

http://www.wiley.com/college/koffman

Preface v

Prerequisites
Our expectation is that the reader will be familiar with the Java primitive data types including
int, boolean, char, and double; control structures including if, case, while, for, and try‐catch;
the String class; the one‐dimensional array; input/output using either JOptionPane dialog win-
dows or text streams (class Scanner or BufferedReader) and console input/output. For those
readers who lack some of the concepts or who need some review, we provide complete coverage
of these topics in Appendix A. Although labeled an Appendix, the review chapter provides full
coverage of the background topics and has all the pedagogical features (discussed below) of the
other chapters. We expect most readers will have some experience with Java programming, but
someone who knows another programming language should be able to undertake the book
after careful study of the review chapter. We do not require prior knowledge of inheritance,
wrapper classes, or ArrayLists as we cover them in the book (Chapters 1 and 2).

Pedagogy
The book contains the following pedagogical features to assist inexperienced programmers
in learning the material.

• Learning objectives at the beginning of each chapter tell readers what skills they should
develop.

• Introductions for each chapter help set the stage for what the chapter will cover and tie
the chapter contents to other material that they have learned.

• Case Studies emphasize problem solving and provide complete and detailed solutions to
real‐world problems using the data structures studied in the chapter.

• Chapter Summaries review the contents of the chapter.
• Boxed Features emphasize and call attention to material designed to help readers become

better programmers.

Pitfall boxes help readers identify common problems and how to avoid
them.

Design Concept boxes illuminate programming design decisions and
trade‐offs.

Programming Style boxes discuss program features that illustrate good
 programming style and provide tips for writing clear and effective code.

Syntax boxes are a quick reference for the Java structures being
introduced.

• Self‐Check and Programming Exercises at the end of each section provide immediate
feedback and practice for readers as they work through the chapter.

• Quick‐Check, Review Exercises, and Programming Projects at the end of each chapter
review chapter concepts and give readers a variety of skill‐building activities, including
longer projects that integrate chapter concepts as they exercise the use of data structures.

Theoretical Rigor
In Chapter 2, we discuss algorithm efficiency and big‐O notation as a measure of algorithm
efficiency. We have tried to strike a balance between pure “hand waving” and extreme rigor
when determining the efficiency of algorithms. Rather than provide several paragraphs of

Koffman-preface.indd 5 10/20/2015 3:02:42 PM

vi Preface

formulas, we have provided simplified derivations of algorithm efficiency using big‐O nota-
tion. We feel this will give readers an appreciation of the performance of various algorithms
and methods and the process one follows to determine algorithm efficiency without bogging
them down in unnecessary detail.

Overview of the book
Chapter 1 introduces Object Oriented Programming, inheritance, and class hierarchies
including interfaces and abstract classes. We also introduce UML class diagrams and Javadoc‐
style documentation. The Exception class hierarchy is studied as an example of a Java class
hierarchy.

Chapter 2 introduces the Java Collections Framework as the foundation for the traditional
data structures. These are covered in separate chapters: lists (Chapter 2), stacks, queues and
deques (Chapter 4), Trees (Chapters 6 and 9), Sets and Maps (Chapter 7), and Graphs
(Chapter 10). Each new data structure is introduced as an abstract data type (ADT). We pro-
vide a specification of each ADT in the form of a Java interface. Next, we implement the data
structure as a class that implements the interface. Finally, we study applications of the data
structure by solving sample problems and case studies.

Chapter 3 covers different aspects of testing (e.g. top‐down, bottom‐up, white‐box, black‐
box). It includes a section on developing a JUnit test harness and also a section on Test‐
Driven Development. It also discuses using a debugger to help find and correct errors.

Chapter 4 discusses stacks, queues, and deques. Several applications of these data structures
are provided.

Chapter 5 covers recursion so that readers are prepared for the study of trees, a recursive data
structure. This chapter could be studied earlier. There is an optional section on list processing
applications of recursion that may be skipped if the chapter is covered earlier.

Chapter 6 discusses binary trees, including binary search trees, heaps, priority queues, and
Huffman trees. It also shows how Java 8 lambda expressions and functional interfaces sup-
port functional programming.

Chapter 7 covers the Set and Map interfaces. It also discusses hashing and hash tables and
shows how a hash table can be used in an implementation of these interfaces. Building an
index for a file and Huffman Tree encoding and decoding are two case studies covered in this
chapter.

Chapter 8 covers various sorting algorithms including mergesort, heapsort, quicksort and
Timsort.

Chapter 9 covers self‐balancing search trees, focusing on algorithms for manipulating them.
Included are AVL and Red‐Black trees, 2‐3 trees, 2‐3‐4 trees, B‐trees, and skip‐lists.

Chapter 10 covers graphs. We provide several well‐known algorithms for graphs, including
Dijkstra’s shortest path algorithm and Prim’s minimal spanning tree algorithm. In most pro-
grams, the last few chapters would be covered in a second course in algorithms and data
structures.

Supplements and Companion Web Sites
The following supplementary materials are available on the Instructor’s Companion Web Site
for this textbook at www.wiley.com/college/koffman. Items marked for students are accessi-
ble on the Student Companion Web Site at the same address.

Koffman-preface.indd 6 10/20/2015 3:02:42 PM

http://www.wiley.com/college/koffman

Preface vii

• Additional homework problems with solutions
• Additional case studies, including one that illustrates a solution to the same problem

using several different data structures
• Source code for all classes in the book (for students and instructors)
• PowerPoint slides
• Electronic test bank for instructors
• Solutions to end‐of‐section odd‐numbered self‐check and programming exercises (for students)
• Solutions to all exercises for instructors
• Solutions to chapter‐review exercises for instructors
• Sample programming project solutions for instructors
• Additional homework and laboratory projects, including cases studies and solutions

Acknowledgments
Many individuals helped us with the preparation of this book and improved it greatly. We are
grateful to all of them. These include students at Temple University who have used notes that
led to the preparation of this book in their coursework, and who class‐tested early drafts of the
book. We would like to thank Rolf Lakaemper and James Korsh, colleagues at Temple
University, who used earlier editions in their classes. We would also like to thank a former
Temple student, Michael Mayle, who provided preliminary solutions to many of the exercises.

We would also like to acknowledge support from the National Science Foundation (grant num-
ber DUE‐1225742) and Principal Investigator Peter J. Clarke, Florida International University
(FIU), to attend the Fifth Workshop on Integrating Software Testing into Programming Courses
(WISTPC 2014) at FIU. Some of the testing methodologies discussed at the workshop were
integrated into the chapter on Testing and Debugging.

We are especially grateful to our reviewers who provided invaluable comments that helped
us correct errors in each version and helped us set our revision goals for the next version. The
individuals who reviewed this book are listed below.

Reviewers
Sheikh Iqbal Ahamed, Marquette University
Justin Beck, Oklahoma State University
John Bowles, University of South Carolina
Mary Elaine Califf, Illinois State University
Tom Cortina, SUNY Stony Brook
Adrienne Decker, SUNY Buffalo
Chris Dovolis, University of Minnesota
Vladimir Drobot, San Jose State University
Kenny Fong, Southern Illinois University, Carbondale
Ralph Grayson, Oklahoma State University
Allan M. Hart, Minnesota State University, Mankato
James K. Huggins, Kettering University
Chris Ingram, University of Waterloo
Gregory Kesden, Carnegie Mellon University
Sarah Matzko, Clemson University
Lester McCann, University of Arizona

Koffman-preface.indd 7 10/20/2015 3:02:42 PM

viii Preface

Ron Metoyer, Oregon State University
Rich Pattis, Carnegie Mellon University
Thaddeus F. Pawlicki, University of Rochester
Sally Peterson, University of Wisconsin—Madison
Salam N. Salloum, California State Polytechnic University, Pomona
Mike Scott, University of Texas—Austin
Victor Shtern, Boston University
Mark Stehlik, Carnegie Mellon University
Ralph Tomlinson, Iowa State University
Frank Tompa, University of Waterloo
Renee Turban, Arizona State University
Paul Tymann, Rochester Institute of Technology
Karen Ward, University of Texas—El Paso
Jim Weir, Marist College
Lee Wittenberg, Kean University
Martin Zhao, Mercer University

Although all the reviewers provided invaluable suggestions, we do want to give special thanks
to Chris Ingram who reviewed every version of the first edition of the manuscript, including
the preliminary pages for the book. His care, attention to detail, and dedication helped us
improve this book in many ways, and we are very grateful for his efforts.

Besides the principal reviewers, there were a number of faculty members who reviewed
 sample pages of the first edition online and made valuable comments and criticisms of its
content. We would like to thank those individuals, listed below.

Content Connections Online Review
Razvan Andonie, Central Washington University
Antonia Boadi, California State University Dominguez Hills
Mikhail Brikman, Salem State College
Robert Burton, Brigham Young University
Chakib Chraibi, Barry University
Teresa Cole, Boise State University
Jose Cordova, University of Louisiana Monroe
Joyce Crowell, Belmont University
Robert Franks, Central College
Barabra Gannod, Arizona State University East
Wayne Goddard, Clemson University
Simon Gray, College of Wooster
Wei Hu, Houghton College
Edward Kovach, Franciscan University of Steubenville
Saeed Monemi, California Polytechnic and State University
Robert Noonan, College of William and Mary

Koffman-preface.indd 8 10/20/2015 3:02:43 PM

Preface ix

Kathleen O’Brien, Foothill College
Rathika Rajaravivarma, Central Connecticut State University
Sam Rhoads, Honolulu Community College
Vijayakumar Shanmugasundaram, Concordia College Moorhead
Gene Sheppard, Perimeter College
Linda Sherrell, University of Memphis
Meena Srinivasan, Mary Washington College
David Weaver, Sheperd University
Stephen Weiss, University of North Carolina—Chapel Hill
Glenn Wiggins, Mississippi College
Bruce William, California State University Pomona

Finally, we want to acknowledge the participants in focus groups for the second programming
course organized by John Wiley & Sons at the Annual Meeting of the SIGCSE Symposium in
March 2004. They reviewed the preface, table of contents, and sample chapters and also
 provided valuable input on the book and future directions of the course.

Focus Group
Claude Anderson, Rose-Hulman Institute of Technology
Jay M. Anderson, Franklin & Marshall University
John Avitabile, College of Saint Rose
Cathy Bishop‐Clark, Miami University—Middletown
Debra Burhans, Canisius College
Michael Clancy, University of California—Berkeley
Nina Cooper, University of Nevada Las Vegas
Kossi Edoh, Montclair State University
Robert Franks, Central College
Evan Golub, University of Maryland
Graciela Gonzalez, Sam Houston State University
Scott Grissom, Grand Valley State University
Jim Huggins, Kettering University
Lester McCann, University of Wisconsin—Parkside
Briana Morrison, Southern Polytechnic State University
Judy Mullins, University of Missouri—Kansas City
Roy Pargas, Clemson University
J.P. Pretti, University of Waterloo
Reza Sanati, Utah Valley State College
Barbara Smith, University of Dayton
Suzanne Smith, East Tennessee State University
Michael Stiber, University of Washington, Bothell
Jorge Vasconcelos, University of Mexico (UNAM)
Lee Wittenberg, Kean University

Koffman-preface.indd 9 10/20/2015 3:02:43 PM

x Preface

We would also like to acknowledge and thank the team at John Wiley & Sons who were
responsible for the management of this edition and ably assisted us with all phases of the
book development and production. They were Gladys Soto, Project Manager, Nichole Urban,
Project Specialist, and Rajeshkumar Nallusamy, Production Editor.

We would like to acknowledge the help and support of our colleague Frank Friedman who
also read an early draft of this textbook and offered suggestions for improvement. Frank and
Elliot began writing textbooks together many years ago and Frank has had substantial influ-
ence on the format and content of these books. Frank also influenced Paul to begin his teach-
ing career as an adjunct faculty member and then hired him as a full‐time faculty member
when he retired from industry. Paul is grateful for his continued support.

Finally, we would like to thank our wives who provided us with comfort and support through
this arduous process. We very much appreciate their understanding and their sacrifices that
enabled us to focus on this book, often during time we would normally be spending with
them. In particular, Elliot Koffman would like to thank

 Caryn Koffman

and Paul Wolfgang would like to thank

 Sharon Wolfgang

Koffman-preface.indd 10 10/20/2015 3:02:43 PM

Contents xi

Contents
Preface iii

 Chapter 1 Object-Oriented Programming and Class Hierarchies 1

 1.1 ADTs, Interfaces, and the Java API 2
Interfaces 2
The implements Clause 5
Declaring a Variable of an Interface Type 6
Exercises for Section 1.1 6

 1.2 Introduction to Object‐Oriented Programming (OOP) 7
A Superclass and Subclass Example 8
Use of this. 9
Initializing Data Fields in a Subclass 10
The No‐Parameter Constructor 11
Protected Visibility for Superclass Data Fields 11
Is‐a versus Has‐a Relationships 12
Exercises for Section 1.2 12

 1.3 Method Overriding, Method Overloading, and Polymorphism 13
Method Overriding 13
Method Overloading 15
Polymorphism 17
Methods with Class Parameters 17
Exercises for Section 1.3 18

 1.4 Abstract Classes 19
Referencing Actual Objects 21
Initializing Data Fields in an Abstract Class 21
Abstract Class Number and the Java Wrapper Classes 21
Summary of Features of Actual Classes, Abstract Classes,
and Interfaces 22
Implementing Multiple Interfaces 23
Extending an Interface 23
Exercises for Section 1.4 23

 1.5 Class Object and Casting 24
The Method toString 24
Operations Determined by Type of Reference Variable 25
Casting in a Class Hierarchy 26
Using instanceof to Guard a Casting Operation 27
The Class Class 29
Exercises for Section 1.5 29

 1.6 A Java Inheritance Example—The Exception Class Hierarchy 29
Division by Zero 29
Array Index Out of Bounds 30
Null Pointer 31
The Exception Class Hierarchy 31

Koffman-ftoc.indd 11 10/20/2015 3:01:55 PM

xii Contents

The Class Throwable 31
Checked and Unchecked Exceptions 32
Handling Exceptions to Recover from Errors 34
Using try‐catch to Recover from an Error 34
Throwing an Exception When Recovery Is Not Obvious 35
Exercises for Section 1.6 36

 1.7 Packages and Visibility 36
Packages 36
The No‐Package‐Declared Environment 37
Package Visibility 38
Visibility Supports Encapsulation 38
Exercises for Section 1.7 39

 1.8 A Shape Class Hierarchy 39
Case Study: Processing Geometric Figures 40
Exercises for Section 1.8 45
Java Constructs Introduced in This Chapter 46
Java API Classes Introduced in This Chapter 46
User‐Defined Interfaces and Classes in This Chapter 47
Quick‐Check Exercises 47
Review Questions 47
Programming Projects 48
Answers to Quick-Check Exercises 51

 Chapter 2 Lists and the Collections Framework 53

 2.1 Algorithm Efficiency and Big-O 54
Big-O Notation 56
Formal Definition of Big-O 57
Summary of Notation 60
Comparing Performance 60
Algorithms with Exponential and Factorial Growth Rates 62
Exercises for Section 2.1 62

 2.2 The List Interface and ArrayList Class 63
The ArrayList Class 64
Generic Collections 66
Exercises for Section 2.2 68

 2.3 Applications of ArrayList 68
A Phone Directory Application 69
Exercises for Section 2.3 69

 2.4 Implementation of an ArrayList Class 70
The Constructor for Class KWArrayList<E> 71
The add(E anEntry) Method 72
The add(int index, E anEntry) Method 73
The set and get Methods 73
The remove Method 74
The reallocate Method 74
Performance of the KWArrayList Algorithms 74
Exercises for Section 2.4 75

 2.5 Single‐Linked Lists 75
A List Node 77

Koffman-ftoc.indd 12 10/20/2015 3:01:55 PM

Contents xiii

Connecting Nodes 78
A Single-Linked List Class 79
Inserting a Node in a List 79
Removing a Node 80
Completing the SingleLinkedList Class 81
The get and set Methods 82
The add Methods 82
Exercises for Section 2.5 83

2.6 Double‐Linked Lists and Circular Lists 84
The Node Class 85
Inserting into a Double‐Linked List 86
Removing from a Double‐Linked List 86
A Double‐Linked List Class 86
Circular Lists 87
Exercises for Section 2.6 88

2.7 The LinkedList Class and the Iterator, ListIterator, and Iterable Interfaces 89
The LinkedList Class 89
The Iterator 89
The Iterator Interface 90
The Enhanced for Loop 92
The ListIterator Interface 92
Comparison of Iterator and ListIterator 94
Conversion between a ListIterator and an Index 95
The Iterable Interface 95
Exercises for Section 2.7 95

2.8 Application of the LinkedList Class 96
Case Study: Maintaining an Ordered List 96
Testing Class OrderedList 101
Exercises for Section 2.8 103

2.9 Implementation of a Double‐Linked List Class 103
Implementing the KWLinkedList Methods 104
A Class that Implements the ListIterator Interface 104
The Constructor 105
The hasNext and next Methods 106
The hasPrevious and previous Methods 107
The add Method 107
Inner Classes: Static and Nonstatic 111
Exercises for Section 2.9 111

2.10 The Collections Framework Design 112
The Collection Interface 112
Common Features of Collections 113
The AbstractCollection, AbstractList, and
AbstractSequentialList Classes 113
The List and RandomAccess Interfaces (Advanced) 114
Exercises for Section 2.10 114
Java API Interfaces and Classes Introduced in this Chapter 116
User‐Defined Interfaces and Classes in this Chapter 116
Quick‐Check Exercises 116
Review Questions 117
Programming Projects 117
Answers to Quick-Check Exercises 119

Koffman-ftoc.indd 13 10/20/2015 3:01:55 PM

xiv Contents

 Chapter 3 Testing and Debugging 121

 3.1 Types of Testing 122
Preparations for Testing 124
Testing Tips for Program Systems 124
Exercises for Section 3.1 125

 3.2 Specifying the Tests 125
Testing Boundary Conditions 125
Exercises for Section 3.2 126

 3.3 Stubs and Drivers 127
Stubs 127
Preconditions and Postconditions 127
Drivers 128
Exercises for Section 3.3 128

 3.4 The JUnit Test Framework 128
Exercises for Section 3.4 132

 3.5 Test‐Driven Development 132
Exercises for Section 3.5 136

 3.6 Testing Interactive Programs in JUnit 137
ByteArrayInputStream 138

ByteArrayOutputStream 138

Exercises for Section 3.6 139

 3.7 Debugging a Program 139
Using a Debugger 140
Exercises for Section 3.7 142
Java API Classes Introduced in This Chapter 144
User‐Defined Interfaces and Classes in This Chapter 144
Quick‐Check Exercises 144
Review Questions 144
Programming 144
Answers to Quick-Check Exercises 146

 Chapter 4 Stacks and Queues 147

 4.1 Stack Abstract Data Type 148
Specification of the Stack Abstract Data Type 148
Exercises for Section 4.1 150

 4.2 Stack Applications 151
Case Study: Finding Palindromes 151
Exercises for Section 4.2 155

 4.3 Implementing a Stack 155
Implementing a Stack with an ArrayList Component 155
Implementing a Stack as a Linked Data Structure 157
Comparison of Stack Implementations 158
Exercises for Section 4.3 159

 4.4 Additional Stack Applications 159
Case Study: Evaluating Postfix Expressions 160
Case Study: Converting From Infix To Postfix 165

Koffman-ftoc.indd 14 10/20/2015 3:01:55 PM

Contents xv

Case Study: Converting Expressions with Parentheses 173
Tying the Case Studies Together 176
Exercises for Section 4.4 176

 4.5 Queue Abstract Data Type 177
A Print Queue 177
The Unsuitability of a “Print Stack” 178
A Queue of Customers 178
Using a Queue for Traversing a Multi‐Branch Data Structure 178
Specification for a Queue Interface 179
Class LinkedList Implements the Queue Interface 179
Exercises for Section 4.5 180

 4.6 Queue Applications 181
Case Study: Maintaining a Queue 181
Exercises for Section 4.6 186

 4.7 Implementing the Queue Interface 187
Using a Double‐Linked List to Implement the Queue Interface 187
Using a Single‐Linked List to Implement the Queue Interface 187
Using a Circular Array to Implement the Queue Interface 189
Exercises for Section 4.7 196

 4.8 The Deque Interface 196
Classes that Implement Deque 198
Using a Deque as a Queue 198
Using a Deque as a Stack 198
Exercises for Section 4.8 199
Java API Classes Introduced in This Chapter 200
User‐Defined Interfaces and Classes in This Chapter 200
Quick‐Check Exercises 201
Review Questions 202
Programming Projects 203
Answers to Quick-Check Exercises 207

 Chapter 5 Recursion 211

 5.1 Recursive Thinking 212
Steps to Design a Recursive Algorithm 214
Proving that a Recursive Method Is Correct 216
Tracing a Recursive Method 216
The Run‐Time Stack and Activation Frames 217
Exercises for Section 5.1 218

 5.2 Recursive Definitions of Mathematical Formulas 219
Tail Recursion versus Iteration 222
Efficiency of Recursion 223
Exercises for Section 5.2 225

 5.3 Recursive Array Search 226
Design of a Recursive Linear Search Algorithm 226
Implementation of Linear Search 227
Design of a Binary Search Algorithm 228
Efficiency of Binary Search 229
The Comparable Interface 230

Koffman-ftoc.indd 15 10/20/2015 3:01:55 PM

xvi Contents

Implementation of Binary Search 230
Testing Binary Search 232
Method Arrays.binarySearch 233
Exercises for Section 5.3 233

 5.4 Recursive Data Structures 233
Recursive Definition of a Linked List 234
Class LinkedListRec 234
Removing a List Node 236
Exercises for Section 5.4 237

 5.5 Problem Solving with Recursion 238
Case Study: Towers of Hanoi 238
Case Study: Counting Cells in a Blob 243
Exercises for Section 5.5 247

 5.6 Backtracking 247
Case Study: Finding a Path through a Maze 248
Exercises for Section 5.6 252
User‐Defined Classes in This Chapter 253
Quick‐Check Exercises 253
Review Questions 253
Programming Projects 254
Answers to Quick-Check Exercises 255

 Chapter 6 Trees 257

 6.1 Tree Terminology and Applications 258
Tree Terminology 258
Binary Trees 259
Some Types of Binary Trees 260
Full, Perfect, and Complete Binary Trees 263
General Trees 263
Exercises for Section 6.1 264

 6.2 Tree Traversals 265
Visualizing Tree Traversals 266
Traversals of Binary Search Trees and Expression Trees 266
Exercises for Section 6.2 267

 6.3 Implementing a BinaryTree Class 268
The Node<E> Class 268
The BinaryTree<E> Class 269
Exercises for Section 6.3 275

 6.4 Java 8 Lambda Expressions and Functional Interfaces 276
Functional Interfaces 277
Passing a Lambda Expression as an Argument 279
A General Preorder Traversal Method 280
Using preOrderTraverse 280
Exercises for Section 6.4 281

 6.5 Binary Search Trees 282
Overview of a Binary Search Tree 282
Performance 283

Koffman-ftoc.indd 16 10/20/2015 3:01:55 PM

Contents xvii

Interface SearchTree 283
The BinarySearchTree Class 283
Insertion into a Binary Search Tree 285
Removal from a Binary Search Tree 288
Testing a Binary Search Tree 293
Case Study: Writing an Index for a Term Paper 294
Exercises for Section 6.5 297

 6.6 Heaps and Priority Queues 297
Inserting an Item into a Heap 298
Removing an Item from a Heap 298
Implementing a Heap 299
Priority Queues 302
The PriorityQueue Class 303
Using a Heap as the Basis of a Priority Queue 303
The Other Methods 306
Using a Comparator 306
The compare Method 306
Exercises for Section 6.6 307

 6.7 Huffman Trees 308
Case Study: Building a Custom Huffman Tree 310
Exercises for Section 6.6 315
Java API Interfaces and Classes Introduced in This Chapter 316
User‐Defined Interfaces and Classes in This Chapter 317
Quick‐Check Exercises 317
Review Questions 318
Programming Projects 318
Answers to Quick-Check Exercises 320

 Chapter 7 Sets and Maps 323

 7.1 Sets and the Set Interface 324
The Set Abstraction 324
The Set Interface and Methods 325
Comparison of Lists and Sets 327
Exercises for Section 7.1 328

 7.2 Maps and the Map Interface 329
The Map Hierarchy 330
The Map Interface 330
Exercises for Section 7.2 332

 7.3 Hash Tables 333
Hash Codes and Index Calculation 333
Methods for Generating Hash Codes 334
Open Addressing 335
Table Wraparound and Search Termination 335
Traversing a Hash Table 337
Deleting an Item Using Open Addressing 337
Reducing Collisions by Expanding the Table Size 338
Reducing Collisions Using Quadratic Probing 338
Problems with Quadratic Probing 339

Koffman-ftoc.indd 17 10/20/2015 3:01:55 PM

xviii Contents

Chaining 340
Performance of Hash Tables 340
Exercises for Section 7.3 342

 7.4 Implementing the Hash Table 344
Interface KWHashMap 344
Class Entry 344
Class HashtableOpen 345
Class HashtableChain 350
Testing the Hash Table Implementations 353
Exercises for Section 7.4 354

 7.5 Implementation Considerations for Maps and Sets 354
Methods hashCode and equals 354
Implementing HashSetOpen 355
Writing HashSetOpen as an Adapter Class 355
Implementing the Java Map and Set Interfaces 356
Interface Map.Entry and Class AbstractMap.SimpleEntry 356
Creating a Set View of a Map 357
Method entrySet and Classes EntrySet and SetIterator 357
Classes TreeMap and TreeSet 358
Exercises for Section 7.5 359

 7.6 Additional Applications of Maps 359
Case Study: Implementing a Cell Phone Contact List 359
Case Study: Completing the Huffman Coding Problem 361
Encoding the Huffman Tree 365
Exercises for Section 7.6 366

 7.7 Navigable Sets and Maps 366
Application of a NavigableMap 368
Exercises for Section 7.7 370
Java API Interfaces and Classes Introduced in This Chapter 372
User‐Defined Interfaces and Classes in This Chapter 372
Quick‐Check Exercises 372
Review Questions 372
Programming Projects 373
Answers to Quick-Check Exercises 374

 Chapter 8 Sorting 375

 8.1 Using Java Sorting Methods 376
Exercises for Section 8.1 380

 8.2 Selection Sort 380
Analysis of Selection Sort 381
Code for Selection Sort 381
Exercises for Section 8.2 383

 8.3 Insertion Sort 383
Analysis of Insertion Sort 384
Code for Insertion Sort 385
Exercises for Section 8.3 386

 8.4 Comparison of Quadratic Sorts 386
Comparisons versus Exchanges 387
Exercises for Section 8.4 388

Koffman-ftoc.indd 18 10/20/2015 3:01:55 PM

Contents xix

8.5 Shell Sort: A Better Insertion Sort 388
Analysis of Shell Sort 389
Code for Shell Sort 390
Exercises for Section 8.5 391

8.6 Merge Sort 391
Analysis of Merge 392
Code for Merge 392
Algorithm for Merge Sort 394
Trace of Merge Sort Algorithm 394
Analysis of Merge Sort 394
Code for Merge Sort 395
Exercises for Section 8.6 396

8.7 Timsort 397
Merging Adjacent Sequences 400
Implementation 400

8.8 Heapsort 405
First Version of a Heapsort Algorithm 405
Revising the Heapsort Algorithm 405
Algorithm to Build a Heap 407
Analysis of Revised Heapsort Algorithm 407
Code for Heapsort 407
Exercises for Section 8.8 409

8.9 Quicksort 409
Algorithm for Quicksort 410
Analysis of Quicksort 411
Code for Quicksort 411
Algorithm for Partitioning 412
Code for partition 413
A Revised partition Algorithm 415
Code for Revised partition Method 416
Exercises for Section 8.9 417

8.10 Testing the Sort Algorithms 417
Exercises for Section 8.10 419

8.11 The Dutch National Flag Problem (Optional Topic) 419
Case Study: The Problem of the Dutch National Flag 419
Exercises for Section 8.11 422
Java Classes Introduced in This Chapter 423
User‐Defined Interfaces and Classes in This Chapter 423
Quick‐Check Exercises 424
Review Questions 424
Programming Projects 424
Answers to Quick-Check Exercises 425

 Chapter 9 Self-Balancing Search Trees 427

 9.1 Tree Balance and Rotation 428
Why Balance Is Important 428
Rotation 428
Algorithm for Rotation 429
Implementing Rotation 430
Exercises for Section 9.1 432

Koffman-ftoc.indd 19 10/20/2015 3:01:55 PM

xx Contents

 9.2 AVL Trees 432
Balancing a Left–Left Tree 432
Balancing a Left–Right Tree 433
Four Kinds of Critically Unbalanced Trees 434
Implementing an AVL Tree 436
Inserting into an AVL Tree 438
Removal from an AVL Tree 443
Performance of the AVL Tree 444
Exercises for Section 9.2 444

 9.3 Red–Black Trees 445
Insertion into a Red–Black Tree 445
Removal from a Red–Black Tree 455
Performance of a Red–Black Tree 455
The TreeMap and TreeSet Classes 455
Exercises for Section 9.3 456

 9.4 2–3 Trees 456
Searching a 2–3 Tree 457
Inserting an Item into a 2–3 Tree 457
Analysis of 2–3 Trees and Comparison with
Balanced Binary Trees 461
Removal from a 2–3 Tree 461
Exercises for Section 9.4 462

 9.5 B‐Trees and 2–3–4 Trees 463
B‐Trees 463
Implementing the B‐Tree 464
Code for the insert Method 466
The insertIntoNode Method 467
The splitNode Method 468
Removal from a B‐Tree 470
B+ Trees 471
2–3–4 Trees 471
Relating 2–3–4 Trees to Red–Black Trees 473
Exercises for Section 9.5 474

 9.6 Skip‐Lists 475
Skip‐List Structure 475
Searching a Skip‐List 476
Performance of a Skip‐List Search 477
Inserting into a Skip‐List 477
Increasing the Height of a Skip‐List 477
Implementing a Skip‐List 477
Searching a Skip‐List 478
Insertion 479
Determining the Size of the Inserted Node 480
Completing the Insertion Process 480
Performance of a Skip‐List 480
Exercises for Section 9.6 480
Java Classes Introduced in This Chapter 482
User‐Defined Interfaces and Classes in This Chapter 482
Quick‐Check Exercises 482

Koffman-ftoc.indd 20 10/20/2015 3:01:55 PM

Contents xxi

Review Questions 483
Programming Projects 484
Answers to Quick-Check Exercises 486

 Chapter 10 Graphs 489

10.1 Graph Terminology 490
Visual Representation of Graphs 490
Directed and Undirected Graphs 491
Paths and Cycles 491
Relationship between Graphs and Trees 493
Graph Applications 493
Exercises for Section 10.1 494

10.2 The Graph ADT and Edge Class 494
Representing Vertices and Edges 495
Exercises for Section 10.2 496

10.3 Implementing the Graph ADT 496
Adjacency List 497
Adjacency Matrix 497
Overview of the Hierarchy 499
Class AbstractGraph 499
The ListGraph Class 501
The MatrixGraph Class 503
Comparing Implementations 504
The MapGraph Class 505
Exercises for Section 10.3 505

10.4 Traversals of Graphs 506
Breadth‐First Search 506
Algorithm for Breadth‐First Search 508
Depth‐First Search 511
Exercises for Section 10.4 517

10.5 Applications of Graph Traversals 517
Case Study: Shortest Path through a Maze 517
Case Study: Topological Sort of a Graph 521
Exercises for Section 10.5 524

10.6 Algorithms Using Weighted Graphs 524
Finding the Shortest Path from a Vertex to All Other Vertices 524
Minimum Spanning Trees 528
Exercises for Section 10.6 531
User‐Defined Classes and Interfaces in This Chapter 533
Quick‐Check Exercises 533
Review Questions 534
Programming Projects 534
Answers to Quick-Check Exercises 536

 Appendix A Introduction to Java 541

A.1 The Java Environment and Classes 542
The Java Virtual Machine 543

Koffman-ftoc.indd 21 10/20/2015 3:01:55 PM

xxii Contents

The Java Compiler 543
Classes and Objects 543
The Java API 543
The import Statement 544
Method main 544

Execution of a Java Program 545
Exercises for Section A.1 545

A.2 Primitive Data Types and Reference Variables 545
Primitive Data Types 545
Primitive‐Type Variables 547
Primitive‐Type Constants 547
Operators 547
Postfix and Prefix Increment 549
Type Compatibility and Conversion 549
Referencing Objects 550
Creating Objects 550
Exercises for Section A.2 551

 A.3 Java Control Statements 551
Sequence and Compound Statements 551
Selection and Repetition Control 551
Nested if Statements 553
The switch Statement 555
Exercises for Section A.3 555

 A.4 Methods and Class Math 555
The Instance Methods println and print 556

Call‐by‐Value Arguments 557
The Class Math 557

Escape Sequences 558
Exercises for Section A.4 559

 A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 559
The String Class 559
Strings Are Immutable 562
The Garbage Collector 562
Comparing Objects 562
The String.format Method 564
The Formatter Class 565
The String.split Method 565
Introduction to Regular Expressions 565
Matching One of a Group of Characters 566
Qualifiers 566
Defined Character Groups 567
Unicode Character Class Support 567
The StringBuilder and StringBuffer Classes 567
Java 8 StringJoiner Class 569
Exercises for Section A.5 570

 A.6 Wrapper Classes for Primitive Types 571
Exercises for Section A.6 572

 A.7 Defining Your Own Classes 573
Private Data Fields, Public Methods 576

Koffman-ftoc.indd 22 10/20/2015 3:01:56 PM

Contents xxiii

Constructors 577
The No‐Parameter Constructor 577
Modifier and Accessor Methods 578
Use of this. in a Method 578
The Method toString 578
The Method equals 579
Declaring Local Variables in Class Person 580
An Application that Uses Class Person 580
Objects as Arguments 581
Classes as Components of Other Classes 582
Java Documentation Style for Classes and Methods 582
Exercises for Section A.7 585

A.8 Arrays 585
Data Field length 587
Method Arrays.copyOf 588
Method System.arrayCopy 588
Array Data Fields 589
Array Results and Arguments 590
Arrays of Arrays 590
Exercises for Section A.8 593

A.9 Enumeration Types 594
Using Enumeration Types 595
Assigning Values to Enumeration Types 596
Exercises for Section A.9 596

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 596
The Scanner 597
Using a Scanner to Read from a File 599
Exceptions 599
Tokenized Input 599
Extracting Tokens Using Scanner.findInLine 600
Using a BufferedReader to Read from an Input Stream 600
Output Streams 600
Passing Arguments to Method main 600
Closing Streams 601
Try with Resources 601
A Complete File‐Processing Application 601
Class InputStream and Character Codes (Optional) 603
The Default Character Coding (Optional) 603
UTF‐8 (Optional) 604
Specifying a Character Encoding (Optional) 605
Input/Output Using Class JOptionPane 605
Converting Numeric Strings to Numbers 606
GUI Menus Using Method showOptionDialog 607
Exercises for Section A.10 607

A.11 Catching Exceptions 608
Catching and Handling Exceptions 608
Exercises for Section A.11 614

A.12 Throwing Exceptions 614
The throws Clause 615

Koffman-ftoc.indd 23 10/20/2015 3:01:56 PM

xxiv Contents

The throw Statement 616
Exercises for Section A.12 619
Java Constructs Introduced in This Appendix 621
Java API Classes Introduced in This Appendix 622
User‐Defined Interfaces and Classes in This Appendix 622
Quick‐Check Exercises 622
Review Questions 622
Programming Projects 623
Answer to Quick‐Check Exercises 624

 Appendix B Overview of UML 625

B.1 The Class Diagram 626
Representing Classes and Interfaces 626
Generalization 629
Inner or Nested Classes 629
Association 629
Aggregation and Composition 630
Generic Classes 631

B.2 Sequence Diagrams 631
Time Axis 632
Objects 633
Life Lines 633
Activation Bars 633
Messages 633
Use of Notes 633

Glossary 635

Index 643

Koffman-ftoc.indd 24 10/20/2015 3:01:56 PM

C h a p t e r

1

T
his chapter describes important features of Java that support Object‐Oriented
Programming (OOP). Object‐oriented languages allow you to build and exploit
 hierarchies of classes in order to write code that may be more easily reused in new

applications. You will learn how to extend an existing Java class to define a new class that
inherits all the attributes of the original, as well as having additional attributes of its own.
Because there may be many versions of the same method in a class hierarchy, we show how
polymorphism enables Java to determine which version to execute at any given time.

We introduce interfaces and abstract classes and describe their relationship with each other and
with actual classes. We introduce the abstract class Number. We also discuss class Object, which
all classes extend, and we describe several of its methods that may be used in classes you create.

As an example of a class hierarchy and OOP, we describe the Exception class hierarchy
and explain that the Java Virtual Machine (JVM) creates an Exception object whenever an
error occurs during program execution. Finally, you will learn how to create packages in Java
and about the different kinds of visibility for instance variables (data fields) and methods.

Object‐Oriented Programming
and Class Hierarchies

1C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To learn about interfaces and their role in Java

 ◆ To understand inheritance and how it facilitates code reuse

 ◆ To understand how Java determines which method to execute when there are multiple
methods with the same name in a class hierarchy

 ◆ To become familiar with the Exception hierarchy and the difference between checked and
unchecked exceptions

 ◆ To learn how to define and use abstract classes as base classes in a hierarchy

 ◆ To learn the role of abstract data types and how to specify them using interfaces

 ◆ To study class Object and its methods and to learn how to override them

 ◆ To become familiar with a class hierarchy for shapes

 ◆ To understand how to create packages and to learn more about visibility

Koffman-c01.indd 1 10/30/2015 7:39:45 PM

2 Chapter 1 Object‐Oriented Programming and Class Hierarchies

1.1 ADTs, Interfaces, and the Java API

In earlier programming courses, you learned how to write individual classes consisting of
attributes and methods (operations). You also learned how to use existing classes (e.g., String
and Scanner) to facilitate your programming. These classes are part of the Java Application
Programming Interface (API).

One of our goals is to write code that can be reused in many different applications. One way
to make code reusable is to encapsulate the data elements together with the methods that
operate on that data. A new program can then use the methods to manipulate an object’s data
without being concerned about details of the data representation or the method implementa-
tions. The encapsulated data together with its methods is called an abstract data type (ADT).

Figure 1.1 shows a diagram of an ADT. The data values stored in the ADT are hidden inside
the circular wall. The bricks around this wall are used to indicate that these data values can-
not be accessed except by going through the ADT’s methods.

A class provides one way to implement an ADT in Java. If the data fields are private, they can
be accessed only through public methods. Therefore, the methods control access to the data
and determine the manner in which the data is manipulated.

Another goal of this text is to show you how to write and use ADTs in programming. As you
progress through this book, you will create a large collection of ADT implementations
(classes) in your own program library. You will also learn about ADTs that are available for
you to use through the Java API.

Our principal focus will be on ADTs that are used for structuring data to enable you to more
easily and efficiently store, organize, and process information. These ADTs are often called
data structures. We introduce the Java Collections Framework (part of the Java API), which
provides implementation of these common data structures, in Chapter 2 and study it through-
out the text. Using the classes that are in the Java Collections Framework will make it much
easier for you to design and implement new application programs.

Interfaces
A Java interface is a way to specify or describe an ADT to an applications programmer. An
interface is like a contract that tells the applications programmer precisely what methods are
available and describes the operations they perform. It also tells the applications programmer

I n h e r i t a n c e a n d C l a s s H i e r a r c h i e s

1.1 ADTs, Interfaces, and the Java API
1.2 Introduction to Object‐Oriented Programming
1.3 Method Overriding, Method Overloading, and Polymorphism
1.4 Abstract Classes
1.5 Class Object and Casting
1.6 A Java Inheritance Example—The Exception Class Hierarchy
1.7 Packages and Visibility
1.8 A Shape Class Hierarchy

Case Study: Processing Geometric Figures

ADT
operations

ADT
data

F I G U R E 1 . 1

Diagram of an ADT

Koffman-c01.indd 2 10/30/2015 7:39:47 PM

1.1 ADTs, Interfaces, and the Java API 3

what arguments, if any, must be passed to each method and what result the method will
return. Of course, in order to make use of these methods, someone else must have written a
class that implements the interface by providing the code for these methods.

The interface tells the coder precisely what methods must be written, but it does not provide
a detailed algorithm or prescription for how to write them. The coder must “program to the
interface,” which means he or she must develop the methods described in the interface with-
out variation. If each coder does this job well, that ensures that other programmers can use
the completed class exactly as it is written, without needing to know the details of how it was
coded.

There may be more than one way to implement the methods; hence, several classes may
implement the interface, but each must satisfy the contract. One class may be more efficient
than the others at performing certain kinds of operations (e.g., retrieving information from a
database), so that class will be used if retrieval operations are more likely in a particular
application. The important point is that the particular implementation that is used will not
affect other classes that interact with it because every implementation satisfies the contract.

Besides providing the complete definition (implementation) of all methods declared in the
interface, each implementer of an interface may declare data fields and define other methods
not in the interface, including constructors. An interface cannot contain constructors because
it cannot be instantiated—that is, one cannot create objects, or instances, of it. However, it
can be represented by instances of classes that implement it.

EXAMPLE 1.1 An automated teller machine (ATM) enables a user to perform certain banking operations
from a remote location. It must support the following operations.

1. Verify a user’s Personal Identification Number (PIN).
2. Allow the user to choose a particular account.
3. Withdraw a specified amount of money.
4. Display the result of an operation.
5. Display an account balance.

A class that implements an ATM must provide a method for each operation. We can write
this requirement as the interface ATM and save it in file ATM.java, shown in Listing 1.1. The
keyword interface on the header line indicates that an interface is being declared. If you are
unfamiliar with the documentation style shown in this listing, read about Java documenta-
tion at the end of Section A.7 in Appendix A.

L I S T I N G 1 . 1

Interface ATM.java

/** The interface for an ATM. */
public interface ATM {

 /** Verifies a user's PIN.
 @param pin The user's PIN
 @return Whether or not the User's PIN is verified
 */
 boolean verifyPIN(String pin);

 /** Allows the user to select an account.
 @return a String representing the account selected
 */

Koffman-c01.indd 3 10/30/2015 7:39:47 PM

4 Chapter 1 Object‐Oriented Programming and Class Hierarchies

SYNTAX Interface Definition
FORM:

public interface interfaceName {
 abstract method declarations
 constant declarations
}

EXAMPLE:
public interface Payable {
 public abstract double calcSalary();
 public abstract boolean salaried();
 public static final double DEDUCTIONS = 25.5;
}

MEANING:

Interface interfaceName is defined. The interface body provides headings for abstract
methods and constant declarations. Each abstract method must be defined in a class

 String selectAccount();

 /** Withdraws a specified amount of money
 @param account The account from which the money comes
 @param amount The amount of money withdrawn
 @return Whether or not the operation is successful
 */
 boolean withdraw(String account, double amount);

 /** Displays the result of an operation
 @param account The account for the operation
 @param amount The amount of money
 @param success Whether or not the operation was successful
 */
 void display(String account, double amount, boolean success);

 /** Displays the result of a PIN verification
 @param pin The user's pin
 @param success Whether or not the PIN was valid
 */
 void display(String pin, boolean success);

 /** Displays an account balance
 @param account The account selected
 */
 void showBalance(String account);
}

The interface definition shows the heading only for several methods. Because only the head-
ings are shown, they are considered abstract methods. Each actual method with its body must
be defined in a class that implements the interface. Therefore, a class that implements this
interface must provide a void method called verifyPIN with an argument of type String.
There are also two display methods with different signatures. The first is used to display the
result of a withdrawal, and the second is used to display the result of a PIN verification. The
keywords public abstract are optional (and usually omitted) in an interface because all
interface methods are public abstract by default.

Koffman-c01.indd 4 10/30/2015 7:39:47 PM

1.1 ADTs, Interfaces, and the Java API 5

The implements Clause
The class headings for two classes that implement interface ATM are

public class ATMbankAmerica implements ATM
public class ATMforAllBanks implements ATM

Each class heading ends with the clause implements ATM. When compiling these classes, the
Java compiler will verify that they define the required methods in the way specified by the
interface. If a class implements more than one interface, list them all after implements, with
commas as separators.

Figure 1.2 is a UML (Unified Modeling Language) diagram that shows the ATM interface
and these two implementing classes. Note that a dashed line from the class to the interface is
used to indicate that the class implements the interface. We will use UML diagrams through-
out this text to show relationships between classes and interfaces. Appendix B provides
detailed coverage of UML diagrams.

that implements the interface. Constants defined in the interface (e.g., DEDUCTIONS) are
accessible in classes that implement the interface or in the same way as static fields
and methods in classes (see Section A.4).

NOTES:

The keywords public and abstract are implicit in each abstract method declaration,
and the keywords public static final are implicit in each constant declaration. We
show them in the example here, but we will omit them from now on.

Java 8 also allows for static and default methods in interfaces. They are used to add
features to existing classes and interfaces while minimizing the impact on existing
programs. We will discuss default and static methods when describing where they are
used in the API.

ATMbankAmerica

boolean verifyPIN(String pin)

String selectAccount()

boolean withdraw(String account, double amount)

void display(String account, double amount, boolean success)

void display(String pin, boolean success)

void showBalance(String account)

ATMforAllBanks

boolean verifyPIN(String pin)

String selectAccount()

boolean withdraw(String account, double amount)

void display(String account, double amount, boolean success)

void display(String pin, boolean success)

void showBalance(String account)

‹‹interface››
ATM

boolean verifyPIN(String pin)

String selectAccount()

boolean withdraw(String account, double amount)

void display(String account, double amount, boolean success)

void display(String pin, boolean success)

void showBalance(String account)

F I G U R E 1 . 2

UML Diagram Showing the ATM Interface and Its Implementing Classes

Koffman-c01.indd 5 10/30/2015 7:39:48 PM

6 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Declaring a Variable of an Interface Type
In the previous programming pitfall, we mentioned that you cannot instantiate an interface.
However, you may want to declare a variable that has an interface type and use it to reference
an actual object. This is permitted if the variable references an object of a class type that
implements the interface. After the following statements execute, variable ATM1 references an
ATMbankAmerica object, and variable ATM2 references an ATMforAllBanks object, but both ATM1
and ATM2 are type ATM.

ATM ATM1 = new ATMbankAmerica(); // valid statement
ATM ATM2 = new ATMforAllBanks(); // valid statement

E X E R C I S E S F O R S E C T I O N 1 . 1

S E L F ‐ C H E C K

1. What are the two parts of an ADT? Which part is accessible to a user and which is not?
Explain the relationships between an ADT and a class, between an ADT and an interface,
and between an interface and classes that implement the interface.

2. Correct each of the following statements that is incorrect, assuming that class PDGUI and
class PDConsoleUI implement interface PDUserInterface.
a. PDGUI p1 = new PDConsoleUI();
b. PDGUI p2 = new PDUserInterface();

 P I T F A L L

Not Properly Defining a Method to Be Implemented
If you neglect to define method verifyPIN in class ATMforAllBanks or if you use a
different method signature, you will get the following syntax error:

class ATMforAllBanks should be declared abstract; it does not define method
verifyPIN(String) in interface ATM.

The above error indicates that the method verifyPin was not properly defined.
Because it contains an abstract method that is not defined, Java incorrectly believes
that ATM should be declared to be an abstract class. If you use a result type other than
boolean, you will also get a syntax error.

 P I T F A L L

Instantiating an Interface
An interface is not a class, so you cannot instantiate an interface. The statement

 ATM anATM = new ATM(); // invalid statement

will cause the following syntax error:

 interface ATM is abstract; cannot be instantiated.

Koffman-c01.indd 6 10/30/2015 7:39:48 PM

1.2 Introduction to Object‐Oriented Programming (OOP) 7

1.2 Introduction to Object‐Oriented Programming (OOP)

In this course, you will learn to use features of Java that facilitate the practice of OOP. A
major reason for the popularity of OOP is that it enables programmers to reuse previously
written code saved as classes, reducing the time required to code new applications. Because
previously written code has already been tested and debugged, the new applications should
also be more reliable and therefore easier to test and debug.

However, OOP provides additional capabilities beyond the reuse of existing classes. If an appli-
cation needs a new class that is similar to an existing class but not exactly the same, the pro-
grammer can create it by extending, or inheriting from, the existing class. The new class (called
the subclass) can have additional data fields and methods for increased functionality. Its objects
also inherit the data fields and methods of the original class (called the superclass).

Inheritance in OOP is analogous to inheritance in humans. We all inherit genetic traits from
our parents. If we are fortunate, we may even have some earlier ancestors who have left us

c. PDUserInterface p3 = new PDUserInterface();
d. PDUserInterface p4 = new PDConsoleUI();
e. PDGUI p5 = new PDUserInterface();
 PDUserInterface p6 = p5;

f. PDUserInterface p7;
 p7 = new PDConsoleUI();

3. Explain how an interface is like a contract.

4. What are two different uses of the term interface in programming?

P R O G R A M M I N G

1. Define an interface named Resizable with just one abstract method, resize, that is a void
method with no parameter.

2. Write a Javadoc comment for the following method of a class Person. Assume that class
Person has two String data fields familyName and givenName with the obvious meanings.
Provide preconditions and postconditions if needed.
public int compareTo(Person per) {
 if (familyName.compareTo(per.familyName) == 0)
 return givenName.compareTo(per.givenName);
 else
 return familyName.compareTo(per.familyName);
}

3. Write a Javadoc comment for the following method of class Person. Provide preconditions
and postconditions if needed.
public void changeFamilyName(boolean justMarried, String newFamily) {
 if (justMarried)
 familyName = newFamily;
}

4. Write method verifyPIN for class ATMbankAmerica assuming this class has a data field pin
(type String).

Koffman-c01.indd 7 10/30/2015 7:39:48 PM

8 Chapter 1 Object‐Oriented Programming and Class Hierarchies

an inheritance of monetary value. As we grow up, we benefit from our ancestors’ resources,
knowledge, and experiences, but our experiences will not affect how our parents or ancestors
developed. Although we have two parents to inherit from, Java classes can have only one
parent.

Inheritance and hierarchical organization allow you to capture the idea that one thing may be
a refinement or an extension of another. For example, an object that is a Human is a Mammal (the
superclass of Human). This means that an object of type Human has all the data fields and meth-
ods defined by class Mammal (e.g., method drinkMothersMilk), but it may also have more data
fields and methods that are not contained in class Mammal (e.g., method thinkCreatively).
Figure 1.3 shows this simple hierarchy. The solid line in the UML class diagram shows that
Human is a subclass of Mammal, and, therefore, Human objects can use methods drinkMothersMilk
and thinkCreatively. Objects farther down the hierarchy are more complex and less general
than those farther up. For this reason an object that is a Human is a Mammal, but the converse is
not true because every Mammal object does not necessarily have the additional properties of a
Human. Although this seems counterintuitive, the subclass Human is actually more powerful
than the superclass Mammal because it may have additional attributes that are not present in
the superclass.

A Superclass and Subclass Example
To illustrate the concepts of inheritance and class hierarchies, let’s consider a simple case of
two classes: Computer and Notebook. A Computer object has a manufacturer, processor, RAM,
and disk. A notebook computer is a kind of computer, so it has all the properties of a com-
puter plus some additional features (screen size and weight). There may be other subclasses,
such as tablet computer or game computer, but we will ignore them for now. We can define
class Notebook as a subclass of class Computer. Figure 1.4 shows the class hierarchy.

Class Computer

Listing 1.2 shows class Computer.Java. It is defined like any other class. It contains a construc-
tor, several accessors, a toString method, and a method computePower, which returns the
product of its RAM size and processor speed as a simple measure of its power.

Mammal

drinkMothersMilk()

Human

thinkCreatively()

F I G U R E 1 . 3

Classes Mammal and

Human

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
double computePower()
String toString()

Notebook

double screenSize
double weight

F I G U R E 1 . 4

Classes NoteBook and

Computer

L I S T I N G 1 . 2

Class Computer.java

/** Class that represents a computer. */
public class Computer {
 // Data Fields
 private String manufacturer;
 private String processor;
 private double ramSize;
 private int diskSize;
 private double processorSpeed;

 // Methods
 /** Initializes a Computer object with all properties specified.
 @param man The computer manufacturer
 @param processor The processor type
 @param ram The RAM size
 @param disk The disk size
 @param procSpeed The processor speed
 */
 public Computer(String man, String processor, double ram,
 int disk, double procSpeed) {

Koffman-c01.indd 8 10/30/2015 7:39:49 PM

1.2 Introduction to Object‐Oriented Programming (OOP) 9

Use of this.
In the constructor for the Computer class, the statement

this.processor = processor;

sets data field processor in the object under construction to reference the same string as
parameter processor. The prefix this. makes data field processor visible in the constructor.
This is necessary because the declaration of processor as a parameter hides the data field
declaration.

 manufacturer = man;
 this.processor = processor;
 ramSize = ram;
 diskSize = disk;
 processorSpeed = procSpeed;
 }

 public double computePower() { return ramSize * processorSpeed; }
 public double getRamSize() { return ramSize; }
 public double getProcessorSpeed() { return processorSpeed; }
 public int getDiskSize() { return diskSize; }
 // Insert other accessor and modifier methods here.

 public String toString() {
 String result = "Manufacturer: " + manufacturer +
 "\nCPU: " + processor +
 "\nRAM: " + ramSize + " gigabytes" +
 "\nDisk: " + diskSize + " gigabytes" +
 "\nProcessor speed: " + processorSpeed + " gigahertz";
 return result;
 }
}

Class Notebook

In the Notebook class diagram in Figure 1.4, we show just the data fields declared in class
Notebook; however, Notebook objects also have the data fields that are inherited from class
Computer (processor, ramSize, and so forth). The first line in class Notebook (Listing 1.3),

public class Notebook extends Computer {

 P I T F A L L

Not Using this. to Access a Hidden Data Field
If you write the preceding statement as

processor = processor; // Copy parameter processor to itself.

you will not get an error, but the data field processor in the Computer object under
construction will not be initialized and will retain its default value (null). If you later
attempt to use data field processor, you may get an error or just an unexpected result.
Some IDEs will provide a warning if this. is omitted.

Koffman-c01.indd 9 10/30/2015 7:39:49 PM

10 Chapter 1 Object‐Oriented Programming and Class Hierarchies

indicates that class Notebook extends class Computer and inherits its data and methods. Next,
we define any additional data fields

// Data Fields
private double screenSize;
private double weight;

Initializing Data Fields in a Subclass
The constructor for class Notebook must begin by initializing the four data fields inherited
from class Computer. Because those data fields are private to the superclass, Java requires that
they be initialized by a superclass constructor. Therefore, a superclass constructor must be
invoked as the first statement in the constructor body using a statement such as

super(man, proc, ram, disk, procSpeed);

This statement invokes the superclass constructor with the signature Computer(String,
String, double, int, double), passing the four arguments listed to the constructor. (A method
signature consists of the method’s name followed by its parameter types.) The following con-
structor for Notebook also initializes the data fields that are not inherited. Listing 1.3 shows
class Notebook.

public Notebook(String man, String proc, double ram, int disk,
 double procSpeed, double screen, double wei) {
 super(man, proc, ram, disk, procSpeed);
 screenSize = screen;
 weight = wei;
}

L I S T I N G 1 . 3

Class Notebook

/** Class that represents a notebook computer. */
public class Notebook extends Computer {
 // Data Fields
 private double screenSize;
 private double weight;

 // Methods
 /** Initializes a Notebook object with all properties specified.
 @param man The computer manufacturer
 @param proc The processor type
 @param ram The RAM size

SYNTAX super(. . .);

FORM:
super();
super(argumentList);

EXAMPLE:
super(man, proc, ram, disk, procSpeed);

MEANING:

The super() call in a class constructor invokes the superclass’s constructor that has
the corresponding argumentList. The superclass constructor initializes the inherited
data fields as specified by its argumentList. The super() call must be the first
statement in a constructor.

Koffman-c01.indd 10 10/30/2015 7:39:49 PM

1.2 Introduction to Object‐Oriented Programming (OOP) 11

The No‐Parameter Constructor
If the execution of any constructor in a subclass does not invoke a superclass constructor,
Java automatically invokes the no‐parameter constructor for the superclass. Java does this to
initialize that part of the object inherited from the superclass before the subclass starts to
initialize its part of the object. Otherwise, the part of the object that is inherited would
remain uninitialized.

 @param disk The disk size
 @param procSpeed The processor speed
 @param screen The screen size
 @param wei The weight

 */
 public Notebook(String man, String proc, double ram, int disk,
 double procSpeed, double screen, double wei) {
 super(man, proc, ram, disk, procSpeed);
 screenSize = screen;
 weight = wei;

 }
}

Protected Visibility for Superclass Data Fields
The data fields inherited from class Computer have private visibility. Therefore, they can be
accessed only within class Computer. Because it is fairly common for a subclass method to
reference data fields declared in its superclass, Java provides a less restrictive form of visibil-
ity called protected visibility. A data field (or method) with protected visibility can be accessed
in the class defining it, in any subclass of that class, or in any class in the same package.
Therefore, if we had used the declaration

protected String manufacturer;

in class Computer, the following assignment statement would be valid in class Notebook:
manufacturer = man;

 P I T F A L L

Not Defining the No‐Parameter Constructor
If no constructors are defined for a class, the no‐parameter constructor for that class
will be provided by default. However, if any constructors are defined, the no‐parameter
constructor must also be defined explicitly if it needs to be invoked. Java does not
provide it automatically because it may make no sense to create a new object of that
type without providing initial data field values. (It was not defined in class Notebook or
Computer because we want the client to specify some information about a Computer
object when that object is created.) If the no‐parameter constructor is defined in a
subclass but is not defined in the superclass, you will get a syntax error constructor
not defined. You can also get this error if a subclass constructor does not explicitly call
a superclass constructor. There will be an implicit call to the no‐parameter superclass
constructor, so it must be defined.

Koffman-c01.indd 11 10/30/2015 7:39:49 PM

12 Chapter 1 Object‐Oriented Programming and Class Hierarchies

We will use protected visibility on occasion when we are writing a class that we intend to
extend. However, in general, it is better to use private visibility because subclasses may be
written by different programmers, and it is always a good practice to restrict and control
access to the superclass data fields. We discuss visibility further in Section 1.7.

Is‐a versus Has‐a Relationships
One misuse of inheritance is confusing: the has‐a relationship with the is‐a relationship. The
is‐a relationship between classes means that one class is a subclass of the other class. For
example, a game computer is a computer with specific attributes that make it suitable for
gaming applications (enhanced graphics, fast processor) and is a subclass of the Computer
class. The is‐a relationship is achieved by extending a class.

The has‐a relationship between classes means that one class has the second class as an attrib-
ute. For example, a game box is not really a computer (it is a kind of entertainment device),
but it has a computer as a component. The has‐a relationship is achieved by declaring a
Computer data field in the game box class.

Another issue that sometimes arises is determining whether to define a new class in a hierarchy
or whether a new object is a member of an existing class. For example, netbook computers have
recently become very popular. They are smaller portable computers that can be used for general‐
purpose computing but are also used extensively for Web browsing. Should we define a separate
class NetBook, or is a netbook computer a Notebook object with a small screen and low weight?

E X E R C I S E S F O R S E C T I O N 1 . 2

S E L F ‐ C H E C K

1. Explain the effect of each valid statement in the following fragment. Indicate any invalid
statements.
Computer c1 = new Computer();
Computer c2 = new Computer("Ace", "AMD", 8.0, 500, 3.5);
Notebook c3 = new Notebook("Ace", "AMD", 4.0, 500, 3.0);
Notebook c4 = new Notebook("Bravo", "Intel", 4.0, 750, 3.0, 15.5, 5.5);
System.out.println(c2.manufacturer + ", " + c4.processor);
System.out.println(c2.getDiskSize() + ", " + c4.getRamSize());
System.out.println(c2.toString() + "\n" + c4.toString());

2. Indicate where in the hierarchy you might want to add data fields for the following and
the kind of data field you would add.

Cost
The battery identification
Time before battery discharges
Number of expansion slots
Wireless Internet available

3. Can you add the following constructor to class Notebook? If so, what would you need to
do to class Computer?
public Notebook() {}

P R O G R A M M I N G

1. Write accessor and modifier methods for class Computer.

2. Write accessor and modifier methods for class Notebook.

Koffman-c01.indd 12 10/30/2015 7:39:49 PM

1.3 Method Overriding, Method Overloading, and Polymorphism 13

1.3 Method Overriding, Method Overloading, and Polymorphism

In the preceding section, we discussed inherited data fields. We found that we could not access
an inherited data field in a subclass object if its visibility was private. Next, we consider inher-
ited methods. Methods generally have public visibility, so we should be able to access a method
that is inherited. However, what if there are multiple methods with the same name in a class
hierarchy? How does Java determine which one to invoke? We answer this question next.

Method Overriding
Let’s use the following main method to test our class hierarchy.

/** Tests classes Computer and Notebook. Creates an object of each and
 displays them.
 @param args[] No control parameters
 */
 public static void main(String[] args) {
 Computer myComputer =
 new Computer("Acme", "Intel", 4, 750, 3.5);
 Notebook yourComputer =
 new Notebook("DellGate", "AMD", 4, 500,
 2.4, 15.0, 7.5);
 System.out.println("My computer is:\n" + myComputer.toString());
 System.out.println("\nYour computer is:\n" +
 yourComputer.toString());
}

In the second call to println, the method call
yourComputer.toString()

applies method toString to object yourComputer (type Notebook). Because class Notebook
doesn’t define its own toString method, class Notebook inherits the toString method defined
in class Computer. Executing this method displays the following output lines:

My computer is:
Manufacturer: Acme
CPU: Intel
RAM: 4.0 gigabytes
Disk: 750 gigabytes
Speed: 3.5 gigahertz

Your computer is:
Manufacturer: DellGate
CPU: AMD
RAM: 4.0 gigabytes
Disk: 500 gigabytes
Speed: 2.4 gigahertz

Unfortunately, this output doesn’t show the complete state of object yourComputer. To show
the complete state of a notebook computer, we need to define a toString method for class
Notebook. If class Notebook has its own toString method, it will override the inherited method
and will be invoked by the method call yourComputer.toString(). We define method toString
for class Notebook next.

public String toString() {
 String result = super.toString() +
 "\nScreen size: " + screenSize + " inches" +
 "\nWeight: " + weight + " pounds";
 return result;
}

Koffman-c01.indd 13 10/30/2015 7:39:49 PM

14 Chapter 1 Object‐Oriented Programming and Class Hierarchies

This method Notebook.toString returns a string representation of the state of a Notebook
object. The first line

String result = super.toString()

uses method call super.toString() to invoke the toString method of the superclass (method
Computer.toString) to get the string representation of the four data fields that are inherited
from the superclass. The next two lines append the data fields defined in class Notebook to
this string.

SYNTAX super.

FORM:
super.methodName()
super.methodName(argumentList)

EXAMPLE:
super.toString()

MEANING:

Using the prefix super. in a call to method methodName calls the method with that
name defined in the superclass of the current class.

 P I T F A L L

Overridden Methods Must Have Compatible Return Types
If you write a method in a subclass that has the same signature as one in the
superclass but a different return type, you may get the following error message: in
subclass‐name cannot override method‐name in superclass‐name; attempting to use
incompatible return type. The subclass method return type must be the same as or a
subclass of the superclass method’s return type.

 P R O G R A M S T Y L E

Calling Method toString() Is Optional
In the println statement shown earlier,

 System.out.println("My computer is:\n" + myComputer.toString());

the explicit call to method toString is not required. The statement could be written as

 System.out.println("My computer is:\n" + myComputer);

Java automatically applies the toString method to an object referenced in a String
expression. Normally, we will not explicitly call toString.

Koffman-c01.indd 14 10/30/2015 7:39:50 PM

1.3 Method Overriding, Method Overloading, and Polymorphism 15

Method Overloading
Let’s assume we have decided to standardize and purchase our notebook computers from
only one manufacturer. We could then introduce a new constructor with one less parameter
for class Notebook.

public Notebook(String proc, int ram, int disk, double procSpeed,
 double screen, double wei) {
 this(DEFAULT_NB_MAN, proc, ram, disk, procSpeed, screen, wei);
}

The method call
this(DEFAULT_NB_MAN, proc, ram, disk, procSpeed, screen, wei);

invokes the six‐parameter constructor (see Listing 1.3), passing on the five arguments it
receives and the constant string DEFAULT_NB_MAN (defined in class Notebook). The six‐ parameter
constructor begins by calling the superclass constructor, satisfying the requirement that it be
called first. We now have two constructors with different signatures in class Notebook. Having
multiple methods with the same name but different signatures in a class is called method
overloading.

Now we have two ways to create new Notebook objects. Both of the following statements are
valid:

Notebook lTP1 = new Notebook("Intel", 4, 500, 1.8, 14, 6.5);
Notebook lTP2 = new Notebook("MicroSys", "AMD", 4, 750, 3.0, 15, 7.5);

The manufacturer of lTP1 is DEFAULT_NB_MAN.

Listing 1.4 shows the complete class Notebook. Figure 1.5 shows the UML diagram, revised
to show that Notebook has a toString method and a constant data field. The next Pitfall dis-
cusses the reason for the @Override annotation preceding method toString.

L I S T I N G 1 . 4

Complete Class Notebook with Method toString

/** Class that represents a notebook computer. */
public class Notebook extends Computer {
 // Data Fields
 private static final String DEFAULT_NB_MAN = "MyBrand";
 private double screenSize;
 private double weight;

SYNTAX this(. . .);

FORM:
this(argumentList);

EXAMPLE:
this(DEFAULT_NB_MAN, proc, ram, disk, procSpeed);

MEANING:

The call to this() invokes the constructor for the current class whose parameter list
matches the argument list. The constructor initializes the new object as specified by its
arguments. The invocation of another constructor (through either this() or super())
must be the first statement in a constructor.

Koffman-c01.indd 15 10/30/2015 7:39:50 PM

16 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Computer

String manufacturer
String processor
int ramSize
int diskSize
double processorSpeed

int getRamSize()
int getDiskSize()
double getProcessorSpeed()
double computePower()
String toString()

String toString()

Notebook

String DEFAULT_NB_MAN
double screenSize
double weight

F I G U R E 1 . 5

Revised UML Diagram

for Computer Class

Hierarchy

 /** Initializes a Notebook object with all properties specified.
 @param man The computer manufacturer
 @param proc The processor type
 @param ram The RAM size
 @param disk The disk size
 @param screen The screen size
 @param wei The weight
 */
 public Notebook(String man, String proc, int ram, int disk,
 double procSpeed, double screen, double wei) {
 super(man, proc, ram, disk, procSpeed);
 screenSize = screen;
 weight = wei;
 }

 /** Initializes a Notebook object with 6 properties specified. */
 public Notebook(String proc, int ram, int disk,
 double procSpeed, double screen, double wei) {
 this(DEFAULT_NB_MAN, proc, ram, disk, procSpeed, screen, wei);
 }

 @Override
 public String toString() {
 String result = super.toString() +
 "\nScreen size: " + screenSize + " inches" +
 "\nWeight: " + weight + " pounds";
 return result;
 }
}

 P I T F A L L

Overloading a Method When Intending to Override It
To override a method, you must use the same name and the same number and types
of the parameters as the superclass method that is being overridden. If the name is
the same but the number or types of the parameters are different, then the method is
overloaded instead. Normally, the compiler will not detect this as an error. However, it
is a sufficiently common error that a feature was added to the Java compiler so that
programmers can indicate that they intend to override a method. If you precede the
declaration of the method with the annotation @Override, the compiler will issue an
error message if the method is overloaded instead of overridden.

 P R O G R A M S T Y L E

Precede an Overridden Method with the Annotation @Override
Whenever a method is overridden, we recommend preceding it with the annotation
@Override. Some Java integrated development environments such as Netbeans and
Eclipse will either issue a warning or add this annotation automatically.

Koffman-c01.indd 16 10/30/2015 7:39:50 PM

1.3 Method Overriding, Method Overloading, and Polymorphism 17

Polymorphism
An important advantage of OOP is that it supports a feature called polymorphism, which
means many forms or many shapes. Polymorphism enables the JVM to determine at run time
which of the classes in a hierarchy is referenced by a superclass variable or parameter. Next
we will see how this simplifies the programming process.

Suppose you are not sure whether a computer referenced in a program will be a notebook or
a regular computer. If you declare the reference variable

Computer theComputer;

you can use it to reference an object of either type because a type Notebook object can be
referenced by a type Computer variable. In Java, a variable of a superclass type (general) can
reference an object of a subclass type (specific). Notebook objects are Computer objects with
more features. When the following statements are executed,

theComputer = new Computer("Acme", "Intel", 2, 160, 2.6);
System.out.println(theComputer.toString());

you would see four output lines, representing the state of the object referenced by
theComputer.

Now suppose you have purchased a notebook computer instead. What happens when the
following statements are executed?

theComputer = new Notebook("Bravo", "Intel", 4, 240, 2.4. 15.0, 7.5);
System.out.println(theComputer.toString());

Recall that theComputer is type Computer. Will the theComputer.toString() method call return a
string with all seven data fields or just the five data fields defined for a Computer object? The
answer is a string with all seven data fields. The reason is that the type of the object receiving the
toString message determines which toString method is called. Even though variable theComputer
is type Computer, it references a type Notebook object, and the Notebook object receives the
toString message. Therefore, the method toString for class Notebook is the one called.

This is an example of polymorphism. Variable theComputer references a Computer object at one
time and a Notebook object another time. At compile time, the Java compiler can’t determine
what type of object theComputer will reference, but at run time, the JVM knows the type of the
object that receives the toString message and can call the appropriate toString method.

EXAMPLE 1.2 If we declare the array labComputers as follows:
Computer[] labComputers = new Computer[10];

each subscripted variable labComputers[i] can reference either a Computer object or a Notebook
object because Notebook is a subclass of Computer. For the method call labComputers[i].
toString(), polymorphism ensures that the correct toString method is called. For each value of
subscript i, the actual type of the object referenced by labComputers[i] determines which
toString method will execute (Computer.toString or Notebook.toString).

Methods with Class Parameters
Polymorphism also simplifies programming when we write methods that have class param-
eters. For example, if we want to compare the power of two computers without polymor-
phism, we will need to write overloaded comparePower methods in class Computer, one for
each subclass parameter and one with a class Computer parameter. However, polymorphism
enables us to write just one method with a Computer parameter.

Koffman-c01.indd 17 10/30/2015 7:39:50 PM

18 Chapter 1 Object‐Oriented Programming and Class Hierarchies

E X E R C I S E S F O R S E C T I O N 1 . 3

S E L F ‐ C H E C K

1. Explain the effect of each of the following statements. Which one(s) would you find in
class Computer? Which one(s) would you find in class Notebook?
super(man, proc, ram, disk, procSpeed);
this(man, proc, ram, disk, procSpeed);

2. Indicate whether methods with each of the following signatures and return types (if any)
would be allowed and in what classes they would be allowed. Explain your answers.

 Computer()
 Notebook()
 int toString()
 double getRamSize()
 String getRamSize()
 String getRamSize(String)
 String getProcessor()
 double getScreenSize()

3. For the loop body in the following fragment, indicate which method is invoked for each
value of i. What is printed?

 Computer comp[] = new Computer[3];
 comp[0] = new Computer("Ace", "AMD", 8, 750, 3.5);
 comp[1] = new Notebook("Dell", "Intel", 4, 500, 2.2, 15.5, 7.5);
 comp[2] = comp[1];
 for (int i = 0; i < comp.length; i++) {
 System.out.println(comp[i].getRamSize() + "\n" +
 comp[i].toString());
 }

4. When does Java determine which toString method to execute for each value of i in the
for statement in the preceding question: at compile time or at run time? Explain your
answer.

EXAMPLE 1.3 Method Computer.comparePowers compares the power of the Computer object it is applied to
with the Computer object passed as its argument. It returns −1, 0, or +1 depending on which
computer has more power. It does not matter whether this or aComputer references a Computer
or a Notebook object.

/** Compares power of this computer and its argument computer
 @param aComputer The computer being compared to this computer
 @return ‐1 if this computer has less power,
 0 if the same, and
 +1 if this computer has more power.
 */
 public int comparePower(Computer aComputer) {
 if (this.computePower() < aComputer.computePower())
 return ‐1;
 else if (this.computePower() == aComputer.computePower())
 return 0;
 else return 1;
}

Koffman-c01.indd 18 10/30/2015 7:39:51 PM

1.4 Abstract Classes 19

1.4 Abstract Classes

In this section, we introduce another kind of class called an abstract class. An abstract class
is denoted by the use of the word abstract in its heading:

visibility abstract class className
An abstract class differs from an actual class (sometimes called a concrete class) in two
respects:

An abstract class cannot be instantiated.
An abstract class may declare abstract methods.

Just as in an interface, an abstract method is declared through a method heading in the
abstract class definition. This heading indicates the result type, method name, and parame-
ters, thereby specifying the form that any actual method declaration must take:

visibility abstract resultType methodName(parameterList);
However, the complete method definition, including the method body (implementation),
does not appear in the abstract class definition.

In order to compile without error, an actual class that is a subclass of an abstract class must
provide an implementation for each abstract method of its abstract superclass. The heading
for each actual method must match the heading for the corresponding abstract method.

We introduce an abstract class in a class hierarchy when we need a base class for two or more
actual classes that share some attributes. We may want to declare some of the attributes and
define some of the methods that are common to these base classes. If, in addition, we want to
require that the actual subclasses implement certain methods, we can accomplish this by
making the base class an abstract class and declaring these methods abstract.

P R O G R A M M I N G

1. Write constructors for both classes that allow you to specify only the processor, RAM size,
and disk size.

2. Complete the accessor and modifier methods for class Computer.

3. Complete the accessor and modifier methods for class Notebook.

EXAMPLE 1.4 The Food Guide Pyramid provides a recommendation of what to eat each day based on
established dietary guidelines. There are six categories of foods in the pyramid: fats, oils, and
sweets; meats, poultry, fish, and nuts; milk, yogurt, and cheese; vegetables; fruits; and bread,
cereal, and pasta. If we wanted to model the Food Guide Pyramid, we might have each of
these as actual subclasses of an abstract class called Food:

/** Abstract class that models a kind of food. */
public abstract class Food {
 // Data Field
 private double calories;

 // Abstract Methods
 /** Calculates the percent of protein in a Food object. */

Koffman-c01.indd 19 10/30/2015 7:39:51 PM

20 Chapter 1 Object‐Oriented Programming and Class Hierarchies

 public abstract double percentProtein();
 /** Calculates the percent of fat in a Food object. */
 public abstract double percentFat();
 /** Calculates the percent of carbohydrates in a Food object. */
 public abstract double percentCarbohydrates();

 // Actual Methods
 public double getCalories() { return calories; }
 public void setCalories(double cal) {
 calories = cal;
 }
}

The three abstract method declarations
public abstract double percentProtein();
public abstract double percentFat();
public abstract double percentCarbohydrates();

impose the requirement that all actual subclasses implement these three methods. We would
expect a different method definition for each kind of food. The keyword abstract must
appear in all abstract method declarations in an abstract class. Recall that this is not required
for abstract method declarations in interfaces.

SYNTAX Abstract Class Definition
FORM:

public abstract class className {
 data field declarations
 abstract method declarations
 actual method definitions
}

EXAMPLE:

public abstract class Food {
 // Data Field
 private double calories;

 // Abstract Methods
 public abstract double percentProtein();
 public abstract double percentFat();
 public abstract double percentCarbohydrates();

 // Actual Methods
 public double getCalories() { return calories; }
 public void setCalories(double cal) {
 calories = cal;
 }

}

INTERPRETATION:

Abstract class className is defined. The class body may have declarations for data
fields and abstract methods as well as actual method definitions. Each abstract
method declaration consists of a method heading containing the keyword abstract.
All of the declaration kinds shown above are optional.

Koffman-c01.indd 20 10/30/2015 7:39:51 PM

1.4 Abstract Classes 21

Referencing Actual Objects
Because class Food is abstract, you can’t create type Food objects. However, you can use a type
Food variable to reference an actual object that belongs to a subclass of type Food. For exam-
ple, an object of type Vegetable can be referenced by a Vegetable or Food variable because
Vegetable is a subclass of Food (i.e., a Vegetable object is also a Food object).

EXAMPLE 1.5 The following statement creates a Vegetable object that is referenced by variable mySnack
(type Food).

Food mySnack = new Vegetable("carrot sticks");

Initializing Data Fields in an Abstract Class
An abstract class can’t be instantiated. However, an abstract class can have constructors that
initialize its data fields when a new subclass object is created. The subclass constructor will
use super(...) to call such a constructor.

Abstract Class Number and the Java Wrapper Classes
The abstract class Number is predefined in the Java class hierarchy. It has as its subclasses all
the wrapper classes for primitive numeric types (e.g., Byte, Double, Integer, and Short). A
wrapper class is used to store a primitive‐type value in an object type. Each wrapper class
contains constructors to create an object that stores a particular primitive‐type value. For
example, Integer(35) or Integer("35") creates a type Integer object that stores the int 35.
A wrapper class also has methods for converting the value stored to a different numeric type.

Figure 1.6 shows a portion of the class hierarchy with base class Number. Italicizing the class
name Number in its class box indicates that Number is an abstract class and, therefore, cannot
be instantiated. Listing 1.5 shows part of the definition for class Number. Two abstract meth-
ods are declared (intValue and doubleValue), and one actual method (byteValue) is defined.

Number

Byte Double Integer Short

F I G U R E 1 . 6

The Abstract Class

Number and Selected

Subclasses

 P I T F A L L

Omitting the Definition of an Abstract Method in a Subclass
If you write class Vegetable and forget to define method percentProtein, you will get
the syntax error class Vegetable should be declared abstract, it does not define
method percentProtein in class Food. Although this error message is misleading (you
did not intend Vegetable to be abstract), any class with undefined methods is abstract
by definition. The compiler’s rationale is that the undefined method is intentional, so
Vegetable must be an abstract class, with a subclass that defines percentProtein.

Koffman-c01.indd 21 10/30/2015 7:39:51 PM

22 Chapter 1 Object‐Oriented Programming and Class Hierarchies

In the actual implementation of Number, the body of byteValue would be provided, but we
just indicate its presence in Listing 1.5.

L I S T I N G 1 . 5

Part of Abstract Class java.lang.Number

public abstract class Number {
 // Abstract Methods
 /** Returns the value of the specified number as an int.
 @return The numeric value represented by this object after
 conversion to type int
 */
 public abstract int intValue();
 /** Returns the value of the specified number as a double.
 @return The numeric value represented by this object
 after conversion to type double
 */
 public abstract double doubleValue();

 ...

 // Actual Methods
 /** Returns the value of the specified number as a byte.
 @return The numeric value represented by this object
 after conversion to type byte
 */
 public byte byteValue() {
 // Implementation not shown.
 ...
 }
}

Summary of Features of Actual Classes,
Abstract Classes, and Interfaces
It is easy to confuse abstract classes, interfaces, and actual classes (concrete classes). Table 1.1
summarizes some important points about these constructs.

A class (abstract or actual) can extend only one other class; however, there is no restriction
on the number of interfaces a class can implement. An interface cannot extend a class.

TA B L E 1 . 1

Comparison of Actual Classes, Abstract Classes, and Interfaces

Property Actual Class Abstract Class Interface

Instances (objects) of this can be created Yes No No

This can define instance variables Yes Yes No

This can define methods Yes Yes Yes

This can define constants Yes Yes Yes

The number of these a class can extend 0 or 1 0 or 1 0

The number of these a class can implement 0 0 Any number

This can extend another class Yes Yes No

This can declare abstract methods No Yes Yes

Variables of this type can be declared Yes Yes Yes

Koffman-c01.indd 22 10/30/2015 7:39:51 PM

1.4 Abstract Classes 23

An abstract class may implement an interface just as an actual class does, but unlike an actual
class, it doesn’t have to define all of the methods declared in the interface. It can leave the
implementation of some of the abstract methods to its subclasses.

Both abstract classes and interfaces declare abstract methods. However, unlike an interface,
an abstract class can also have data fields and methods that are not abstract. You can think
of an abstract class as combining the properties of an actual class, by providing inherited data
fields and methods to its subclasses, and of an interface, by specifying requirements on its
subclasses through its abstract method declarations.

Implementing Multiple Interfaces
A class can extend only one other class, but it may extend more than one interface. For exam-
ple, assume interface StudentInt specifies methods required for student‐like classes and inter-
face EmployeeInt specifies methods required for employee‐like classes. The following header
for class StudentWorker

public class StudentWorker implements StudentInt, EmployeeInt

means that class StudentWorker must define (provide code for) all of the abstract methods
declared in both interfaces. Therefore, class StudentWorker supports operations required for
both interfaces.

Extending an Interface
Interfaces can also extend other interfaces. In Chapter 2 we will introduce the Java Collection
Framework. This class hierarchy contains several interfaces and classes that manage the col-
lection of objects. At the top of this hierarchy is the interface Iterable, which declares the
method iterator. At the next lower level is interface Collection, which extends Iterable.
This means that all classes that implement Collection must also implement Iterable and
therefore must define the method iterator.

An interface can extend more than one other interface. In this case, the resulting interface
includes the union of the methods defined in the superinterfaces. For example, we can define the
interface ComparableCollection, which extends both Comparable and Collection, as follows:

public interface ComparableCollection extends Comparable, Collection { }

Note that this interface does not define any methods itself but does require any implementing
class to implement all of the methods required by Comparable and by Collection.

E X E R C I S E S F O R S E C T I O N 1 . 4

S E L F ‐ C H E C K

1. What are two important differences between an abstract class and an actual class? What
are the similarities?

2. What do abstract methods and interfaces have in common? How do they differ?

3. Explain the effect of each statement in the following fragment and trace the loop execu-
tion for each value of i, indicating which doubleValue method executes, if any. What is the
final value of x?
Number[] nums = new Number[5];
nums[0] = new Integer(35);
nums[1] = new Double(3.45);
nums[4] = new Double("2.45e6");
double x = 0;

Koffman-c01.indd 23 10/30/2015 7:39:51 PM

24 Chapter 1 Object‐Oriented Programming and Class Hierarchies

1.5 Class Object and Casting

The class Object is a special class in Java because it is the root of the class hierarchy, and
every class has Object as a superclass. All classes inherit the methods defined in class Object;
however, these methods may be overridden in the current class or in a superclass (if any).
Table 1.2 shows a few of the methods of class Object. We discuss method toString next and
the other Object methods shortly thereafter.

The Method toString
You should always override the toString method if you want to represent an object’s state
(information stored). If you don’t override it, the toString method for class Object will exe-
cute and return a string, but not what you are expecting.

for (int i = 0; i < nums.length; i++) {
 if (nums[i] != null)
 x += nums[i].doubleValue();
}

4. What is the purpose of the if statement in the loop in Question 3? What would happen if
it were omitted?

P R O G R A M M I N G

1. Write class Vegetable. Assume that a vegetable has three double constants: VEG_FAT_CAL,
VEG_PROTEIN_CAL, and VEG_CARBO_CAL. Compute the fat percentage as VEG_FAT_CAL div ided
by the sum of all the constants.

2. Earlier we discussed a Computer class with a Notebook class as its only subclass. However,
there are many different kinds of computers. An organization may have servers, main-
frames, desktop PCs, and notebooks. There are also personal data assistants and game
computers. So it may be more appropriate to declare class Computer as an abstract class
that has an actual subclass for each category of computer. Write an abstract class Computer
that defines all the methods shown earlier and declares an abstract method with the signa-
ture costBenefit(double) that returns the cost–benefit (type double) for each category of
computer.

TA B L E 1 . 2

The Class Object

Method Behavior

boolean equals(Object obj) Compares this object to its argument

int hashCode() Returns an integer hash code value for this object

String toString() Returns a string that textually represents the object

Class<?> getClass() Returns a unique object that identifies the class of this object

EXAMPLE 1.6 If we didn’t have a toString method in class Computer or Notebook, the method call aComputer.
toString() would call the toString method inherited from class Object. This method would
return a string such as Computer@ef08879, which shows the object’s class name and a special
integer value that is its “hash code”—not its state. Method hashCode is discussed in Chapter 7.

Koffman-c01.indd 24 10/30/2015 7:39:52 PM

1.5 Class Object and Casting 25

Operations Determined by Type of Reference Variable
You have seen that a variable can reference an object whose type is a subclass of the variable
type. Because Object is a superclass of class Integer, the statement

Object aThing = new Integer(25);

will compile without error, creating the object reference shown in Figure 1.7. However, even
though aThing references a type Integer object, we can’t process this object like other Integer
objects. For example, the method call aThing.intValue() would cause the syntax error
method intValue() not found in class java.lang.Object. The reason for this is that the type
of the reference, not the type of the object referenced, determines what operations can be
performed, and class Object doesn’t have an intValue method. During compilation, Java
can’t determine what kind of object will be referenced by a type Object variable, so the only
operations permitted are those defined for class Object. The type Integer instance methods
not defined in class Object (e.g., intValue and doubleValue) can’t be invoked.

The method call aThing.equals(new Integer("25")) will compile because class Object has
an equals method, and a subclass object has everything that is defined in its superclass.
During execution, the equals method for class Integer is invoked, not class Object. (Why?)

Another surprising result is that the assignment statement
Integer aNum = aThing; // incompatible types

won’t compile even though aThing references a type Integer object. The syntax error:
 incompatible types: found: Java.lang.Object, required: Java.lang.Integer indicates that
the expression type is incorrect (type Object, not type Integer). The reason Java won’t compile
this assignment is that Java is a strongly typed language, so the Java compiler always verifies that
the type of the expression (aThing is type Object) being assigned is compatible with the variable
type (aNum is type Integer). We show how to use casting to accomplish this in the next section.

Strong typing is also the reason that aThing.intValue() won’t compile; the method invoked
must be an instance method for class Object because aThing is type Object.

Integer

value = 25

aThing =

F I G U R E 1 . 7

Type Integer Object

Referenced by aThing

(Type Object)

 D E S I G N C O N C E P T

The Importance of Strong Typing
Suppose Java did not check the expression type and simply performed the assignment

 Integer aNum = aThing; // incompatible types

Farther down the line, we might attempt to apply an Integer method to the object
referenced by aNum. Because aNum is type Integer, the compiler would permit this. If
aNum were referencing a type Integer object, then performing this operation would do
no harm. But if aNum was referencing an object that was not type Integer, performing
this operation would cause either a run‐time error or an undetected logic error. It is
much better to have the compiler tell us that the assignment is invalid.

Koffman-c01.indd 25 10/30/2015 7:39:52 PM

26 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Casting in a Class Hierarchy
Java provides a mechanism, casting, that enables us to process the object referenced by
 aThing through a reference variable of its actual type, instead of through a type Object refer-
ence. The expression

(Integer) aThing

casts the type of the object referenced by aThing (type Object) to type Integer. The casting
operation will succeed only if the object referenced by aThing is, in fact, type Integer; if not,
a ClassCastException will be thrown.

What is the advantage of performing the cast? Casting gives us a type Integer reference to
the object in Figure 1.7 that can be processed just like any other type Integer reference. The
expression

((Integer) aThing).intValue()

will compile because now intValue is applied to a type Integer reference. Note that all
parentheses are required so that method intValue will be invoked after the cast. Similarly, the
assignment statement

Integer aNum = (Integer) aThing;

is valid because a type Integer reference is being assigned to aNum (type Integer).

Keep in mind that the casting operation does not change the object referenced by aThing;
instead, it creates a type Integer reference to it. (This is called an anonymous or unnamed
reference.) Using the type Integer reference, we can invoke any instance method of class
Integer and process the object just like any other type Integer object.

The cast
(Integer) aThing

is called a downcast because we are casting from a higher type (Object) to a lower type
(Integer). It is analogous to a narrowing cast when dealing with primitive types:

double x = . . . ;
int count = (int) x; // Narrowing cast, double is wider type than int

You can downcast from a more general type (a superclass type) to a more specific type (a
subclass type) in a class hierarchy, provided that the more specific type is the same type as the
object being cast (e.g., (Integer) aThing). You can also downcast from a more general type
to a more specific type that is a superclass of the object being cast (e.g., (Number) aThing).
Upcasts (casting from a more specific type to a more general type) are always valid; however,
they are unnecessary and are rarely done.

 P I T F A L L

Performing an Invalid Cast
Assume that aThing (type Object) references a type Integer object as before, and you
want to get its string representation. The downcast

 (String) aThing // Invalid cast

is invalid and would cause a ClassCastException (a subclass of RuntimeException) because
aThing references a type Integer object, and a type Integer object cannot be downcast to
type String (String is not a superclass of Integer). However, the method call aThing.
toString() is valid (and returns a string) because type Object has a toString method.
(Which toString method would be called: Object.toString or Integer.toString?)

Koffman-c01.indd 26 10/30/2015 7:39:52 PM

1.5 Class Object and Casting 27

Using instanceof to Guard a Casting Operation
In the preceding Pitfall, we mentioned that a ClassCastException occurs if we attempt an
invalid casting operation. Java provides the instanceof operator, which you can use to guard
against this kind of error.

EXAMPLE 1.7 The following array stuff can store 10 objects of any data type because every object type is
a subclass of Object.

Object[] stuff = new Object[10];

Assume that the array stuff has been loaded with data, and we want to find the sum of all
numbers that are wrapped in objects. We can use the following loop to do so:

double sum = 0;
for (int i = 0; i < stuff.length; i++) {
 if (stuff[i] instanceof Number) {
 Number next = (Number) stuff[i];
 sum += next.doubleValue();
 }
}

The if condition (stuff[i] instanceof Number) is true if the object referenced by stuff[i] is
a subclass of Number. It would be false if stuff[i] referenced a String or other nonnumeric
object. The statement

Number next = (Number) stuff[i];

casts the object referenced by stuff[i] (type Object) to type Number and then references it
through variable next (type Number). The variable next contains a reference to the same object
as does stuff[i], but the type of the reference is different (type Number instead of type Object).
Then the statement

sum += next.doubleValue();

invokes the appropriate doubleValue method to extract the numeric value and add it to sum.
Rather than declare variable next, you could write the if statement as

if (stuff[i] instanceof Number)
 sum += ((Number) stuff[i]).doubleValue();

 P R O G R A M S T Y L E

Polymorphism Eliminates Nested if Statements
If Java didn’t support polymorphism, the if statement in Example 1.7 would be much
more complicated. You would need to write something like the following:

 // Inefficient code that does not take advantage of polymorphism
 if (stuff[i] instanceof Integer)
 sum += ((Integer) stuff[i]).doubleValue();
 else if (stuff[i] instanceof Double)
 sum += ((Double) stuff[i]).doubleValue();
 else if (stuff[i] instanceof Float)
 sum += ((Float) stuff[i]).doubleValue();
 ...

Koffman-c01.indd 27 10/30/2015 7:39:52 PM

28 Chapter 1 Object‐Oriented Programming and Class Hierarchies

EXAMPLE 1.8 Suppose we have a class Employee with the following data fields:
public class Employee {
 // Data Fields
 private String name;
 private double hours;
 private double rate;
 private Address address;
...

To determine whether two Employee objects are equal, we could compare all four data fields.
However, it makes more sense to determine whether two objects are the same employee by
comparing their name and address data fields. Below, we show a method equals that over-
rides the equals method defined in class Object. By overriding this method, we ensure that
the equals method for class Employee will always be called when method equals is applied to
an Employee object. If we had declared the parameter type for Employee.equals as type
Employee instead of Object, then the Object.equals method would be called if the argument
was any data type except Employee.

/** Determines whether the current object matches its argument.
 @param obj The object to be compared to the current object
 @return true if the objects have the same name and address;
 otherwise, return false
 */
@Override
public boolean equals(Object obj) {
 if (obj == this) return true;
 if (obj == null) return false;
 if (this.getClass() == obj.getClass()) {
 Employee other = (Employee) obj;
 return name.equals(other.name) &&
 address.equals(other.address);
 } else {
 return false;
 }
}

If the object referenced by obj is not type Employee, we return false. If it is type Employee, we
downcast that object to type Employee. After the downcast, the return statement calls method
String.equals to compare the name field of the current object to the name field of object
other, and method Address.equals to compare the two address data fields. Therefore, method
equals must also be defined in class Address. The method result is true if both the name and
address fields match, and it is false if one or both fields do not match. The method result is also
false if the downcast can’t be performed because the argument is an incorrect type or null.

Each condition here uses the instanceof operator to determine the data type of the
actual object referenced by stuff[i]. Once the type is known, we cast to that type and
call its doubleValue method. Obviously, this code is very cumbersome and is more
likely to be flawed than the original if statement. More importantly, if a new wrapper
class is defined for numbers, we would need to modify the if statement to process
objects of this new class type. So be wary of selection statements like the one shown
here; their presence often indicates that you are not taking advantage of
polymorphism.

Koffman-c01.indd 28 10/30/2015 7:39:52 PM

1.6 A Java Inheritance Example—The Exception Class Hierarchy 29

The Class Class
Every class has a Class object that is automatically created when the class is loaded into an
application. The Class class provides methods that are mostly beyond the scope of this text.
The important point is that each Class object is unique for the class, and the getClass method
(a member of Object) will return a reference to this unique object. Thus, if this.getClass()
== obj.getClass() in Example 1.8 is true, then we know that obj and this are both of class
Employee.

E X E R C I S E S F O R S E C T I O N 1 . 5

S E L F ‐ C H E C K

1. Indicate the effect of each of the following statements:
Object o = new String("Hello");
String s = o;
Object p = 25;
int k = p;
Number n = k;

2. Rewrite the invalid statements in Question 1 to remove the errors.

P R O G R A M M I N G

1. Write an equals method for class Computer (Listing 1.2).

2. Write an equals method for class Notebook (Listing 1.4).

3. Write an equals method for the following class. What other equals methods should be
defined?

 public class Airplane {
 // Data Fields
 Engine eng;
 Rudder rud;
 Wing[] wings = new Wing[2];
 ...

}

1.6 A Java Inheritance Example—The Exception Class Hierarchy

Next we show how Java uses inheritance to build a class hierarchy that is fundamental to
detecting and correcting errors during program execution (run‐time errors). A run‐time error
occurs during program execution when the Java Virtual Machine (JVM) detects an operation
that it knows to be incorrect. A run‐time error will cause the JVM to throw an exception—
that is, to create an object of an exception type that identifies the kind of incorrect operation
and also interrupts normal processing. Table 1.3 shows some examples of exceptions that are
run‐time errors. All are subclasses of class RuntimeException. Following are some examples
of the exceptions listed in the table.

Division by Zero
If count represents the number of items being processed and it is possible for count to be zero,
then the assignment statement

average = sum / count;

Koffman-c01.indd 29 10/30/2015 7:39:53 PM

30 Chapter 1 Object‐Oriented Programming and Class Hierarchies

can cause a division‐by‐zero error. If sum and count are int variables, this error is indicated
by the JVM throwing an ArithmeticException. You can easily guard against such a division
with an if statement so that the division operation will not be performed when count is zero:

if (count == 0)
 average = 0;
else
 average = sum / count;

Normally, you would compute an average as a double value, so you could cast an int value
in sum to type double before doing the division. In this case, an exception is not thrown if
count is zero. Instead, average will have one of the special values Double.POSITIVE_INFINITY,
Double.NEGATIVE_INFINITY, or Double.NaN depending on whether sum was positive, negative,
or zero.

Array Index Out of Bounds
An ArrayIndexOutOfBoundsException is thrown by the JVM when an index value (subscript)
used to access an element in an array is less than zero or greater than or equal to the array’s
length. For example, suppose we define the array scores as follows:

int[] scores = new int[500];

The subscripted variable scores[i] uses i (type int) as the array index. An
ArrayIndex OutOfBoundsException will be thrown if i is less than zero or greater than 499.

Array index out of bounds errors can be prevented by carefully checking the boundary values
for an index that is also a loop control variable. A common error is using the array size as the
upper limit rather than the array size minus 1.

TA B L E 1 . 3

Subclasses of java.lang.RuntimeException

Class Cause/Consequence

ArithmeticException An attempt to perform an integer division by zero

ArrayIndexOutOfBoundsException An attempt to access an array element using an index (subscript) less than
zero or greater than or equal to the array’s length

NumberFormatException An attempt to convert a string that is not numeric to a number

NullPointerException An attempt to use a null reference value to access an object

NoSuchElementException An attempt to get a next element after all elements were accessed

InputMismatchException The token returned by a Scanner next . . . method does not match the
pattern for the expected data type

EXAMPLE 1.9 The following loop would cause an ArrayIndexOutOfBoundsException on the last pass, when
i is equal to x.length.

for (int i = 0; i <= x.length; i++)
 x[i] = i * i;

The loop repetition test should be i < x.length.

Koffman-c01.indd 30 10/30/2015 7:39:53 PM

1.6 A Java Inheritance Example—The Exception Class Hierarchy 31

NumberFormatException and InputMismatchException

The NumberFormatException is thrown when a program attempts to convert a nonnumeric
string (usually a data value) to a numeric value. For example, if the user types in the string
"2.6e", method parseDouble, in the following code:

String speedStr = JOptionPane.showInputDialog("Enter speed");
double speed = Double.parseDouble(speedStr);

would throw a NumberFormatException because "2.6e" is not a valid numeric string (it has no
exponent after the e). There is no general way to avoid this exception because it is impossible
to guard against all possible data entry errors the user can make.

A similar error can occur if you are using a Scanner object for data entry. If scan is a Scanner,
the statement

double speed = scan.nextDouble();

will throw an InputMismatchException if the next token scanned is "2.6e".

Null Pointer
The NullPointerException is thrown when there is an attempt to access an object that does
not exist; that is, the reference variable being accessed contains a special value, known as
null. You can guard against this by testing for null before invoking a method.

The Exception Class Hierarchy
The exceptions in Table 1.3 are all subclasses of Runtime. All Exception classes are defined
within a class hierarchy that has the class Throwable as its superclass (see the UML diagram
in Figure 1.8). The UML diagram shows that classes Error and Exception are subclasses of
Throwable. Each of these classes has subclasses that are shown in the figure. We will focus on
class Exception and its subclasses in this chapter. Because RuntimeException is a subclass of
Exception, it is also a subclass of Throwable (the subclass relationship is transitive).

The Class Throwable
The class Throwable is the superclass of all exceptions. The methods that you will use from
class Throwable are summarized in Table 1.4. Because all exception classes are subclasses of
class Throwable, they can call any of its methods including getMessage, printStackTrace, and
toString. If ex is an Exception object, the call

ex.printStackTrace();

Error

AssertionError

Throwable

Exception

RuntimeException Checked Exception
Classes

Unchecked Exception
Classes

Other Error
Classes

F I G U R E 1 . 8

Summary of

Exception Class

Hierarchy

Koffman-c01.indd 31 10/30/2015 7:39:53 PM

32 Chapter 1 Object‐Oriented Programming and Class Hierarchies

displays a stack trace, discussed in Appendix A (Section A.11). The statement
System.err.println(ex.getMessage());

displays a detail message (or error message) describing the exception. The statement
System.err.println(ex.toString);

displays the name of the exception followed by the detail message.

Checked and Unchecked Exceptions
There are two categories of exceptions: checked and unchecked. A checked exception is an
error that is normally not due to programmer error and is beyond the control of the pro-
grammer. All exceptions caused by input/output errors are considered checked exceptions.
For example, if the programmer attempts to access a data file that is not available because of
a user or system error, a FileNotFoundException is thrown. The class IOException and its
subclasses (see Table 1.5) are checked exceptions. Even though checked exceptions are
beyond the control of the programmer, the programmer must be aware of them and must
handle them in some way (discussed later). All checked exceptions are subclasses of Exception,
but they are not subclasses of RuntimeException. Figure 1.9 is a more complete diagram of
the Exception hierarchy.

The unchecked exceptions represent error conditions that may occur as a result of program-
mer error or of serious external conditions that are considered unrecoverable. For example,
exceptions such as NullPointerException or ArrayIndexOutOfBounds‐Exception are unchecked
exceptions that are generally due to programmer error. These exceptions are all subclasses of
RuntimeException. While you can sometimes prevent these exceptions via defensive program-
ming, it is impractical to try to prevent them all or to provide exception handling for all of
them. Therefore, you can handle these exceptions, but Java does not require you to do so.

The class Error and its subclasses represent errors that are due to serious external conditions.
An example of such an error is OutOfMemoryError, which is thrown when there is no memory
available. You can’t foresee or guard against these kinds of errors. You can attempt to handle
these exceptions, but you are strongly discouraged from trying to do so because you probably
will be unsuccessful. For example, if an OutOfMemoryError is thrown, there is no memory
available to process the exception‐handling code, so the exception would be thrown again.

TA B L E 1 . 4

Summary of Commonly Used Methods from the java.lang.Throwable Class

Method Behavior

String getMessage() Returns the detail message

void printStackTrace() Prints the stack trace to System.err

String toString() Returns the name of the exception followed by the detail message

TA B L E 1 . 5

Class java.io.IOException and Some Subclasses

Exception Class Cause

IOException Some sort of input/output error

EOFException Attempt to read beyond the end of data with a DataInputStream

FileNotFoundException Inability to find a file

Koffman-c01.indd 32 10/30/2015 7:39:53 PM

1.6 A Java Inheritance Example—The Exception Class Hierarchy 33

Error

AssertionError

Throwable

Exception

RuntimeException IOException

ArithmeticException

Other IOException
Subclasses

Other RuntimeException Subclasses

Other Error Classes

Other Checked Exception
Classes

IllegalArgument
Exception

NumberFormatException

IndexOutOfBounds
Exception

ArrayIndexOutOfBounds
Exception

NoSuchElementException

InputMismatchException

NullPointerException

VirtualMachineError

OutOfMemoryError

EOFException

FileNotFoundException

F I G U R E 1 . 9

Exception Hierarchy Showing Selected Checked and Unchecked Exceptions

How do we know which exceptions are checked and which are unchecked? Exception classes
that are subclasses of RuntimeException and Error are unchecked. All other exception classes
are checked exceptions.

We discuss Java exceptions further in Appendix A Section A.11 describes how to use the
try‐catch statement to handle different kinds of exceptions; Section A.12 shows how to
write statements that throw exceptions when your code detects an error during run time.

Koffman-c01.indd 33 10/30/2015 7:39:53 PM

34 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Handling Exceptions to Recover from Errors
Exceptions enable Java programmers to write code that can report errors and sometimes
recover from them. The key to this process is the try‐catch sequence. We will cover the essen-
tials of catching and throwing exceptions in this section. A complete discussion is provided
in Sections A.11 and A.12.

The try‐catch Sequence

The try‐catch sequence is used to catch and handle exceptions. It resembles an if‐then‐else
statement. It consists of one try block followed by one or more catch clauses. The statements
in the try block are executed first. If they execute without error, the catch clauses are skipped.
If a statement in the try block throws an exception, the rest of the statements in the try block
are skipped and execution continues with the statements in the catch clause for that particu-
lar type of exception. If there is no catch clause for that exception type, the exception is
rethrown to the calling method. If the main method is reached and no appropriate catch
clause is located, the program terminates with an unhandled exception error. A try block
with two catch clauses follows.

try {
 // Execute the following statements until an exception is thrown
 ...
 // Skip the catch blocks if no exceptions were thrown
} catch (ExceptionTypeA ex) {
 // Execute this catch block if an exception of type ExceptionTypeA
 // was thrown in the try block
 ...
} catch (ExceptionTypeB ex) {
 // Execute this catch block if an exception of type ExceptionTypeB
 // was thrown in the try block
 ...
}

A catch clause header resembles a method header. The expression in parentheses in the catch
clause header is like a method parameter declaration (the parameter is ex). The statements in
curly braces, the catch block, execute if the exception that was thrown is the specified excep-
tion type or is a subclass of that exception type.

Using try‐catch to Recover from an Error
One common source of exceptions is user input. For example, the Scanner nextInt method is
supposed to read a type int value. If an int is not the next item read, Java throws an
InputMismatchException. Rather than have this problem terminate the program, you can
read the data value in a try block and catch an InputMismatchException in the catch clause.
If one is thrown, you can give the user another chance to enter an integer as shown in method
getIntValue, as follows.

 P I T F A L L

Unreachable catch block
In the above, ExceptionTypeA cannot be a superclass of ExceptionTyeB. If it is,
ExceptionTypeB is considered unreachable because its exceptions would be caught by
the first catch clause.

Koffman-c01.indd 34 10/30/2015 7:39:53 PM

1.6 A Java Inheritance Example—The Exception Class Hierarchy 35

/** Reads an integer using a scanner.
 @return the first integer read.
*/
public static int getIntValue(Scanner scan) {
 int nextInt = 0; // next int value
 boolean validInt = false; // flag for valid input
 while (!validInt) {
 try {
 System.out.println("Enter number of kids:");
 nextInt = scan.nextInt();
 validInt = true;
 } catch (InputMismatchException ex) {
 scan.nextLine(); // clear buffer
 System.out.println("Bad data ‐‐ enter an integer:");
 }
 }
 return nextInt;
}

The while loop repeats while validInt is false (its initial value). The try block attempts to
read a type int value using Scanner scan. If the user enters an integer, validInt is set to true
and the try‐catch statement and while loop are exited. The integer data value will be returned
as the method result.

If the user enters a data item that is not an integer, however, Java throws an
InputMismatchException. This is caught by the catch clause

catch (InputMismatchException ex)

The first statement in the catch block clears the Scanner buffer, and the user is prompted to
enter an integer. Because validInt is still false, the while loop repeats until the user success-
fully enters an integer.

Throwing an Exception When Recovery Is Not Obvious
In the last example, method getIntValue was able to recover from a bad data item by giving
the user another chance to enter data. In some cases, you may be able to write code that
detects certain kinds of errors, but there may not be an obvious way to recover from them.
In these cases, the best approach is just to throw an exception reporting the error to the
method that called it. The caller can then catch the exception and handle it.

Method processPositiveInteger requires a positive integer as its argument. If the argument is
not positive, there is no reason to continue executing the method because the result may be mean-
ingless, or the method execution may cause a different exception to be thrown, which could
confuse the method caller. There is also no obvious way to correct this error because the method
has no way of knowing what n should be, so a try‐catch sequence would not fix the problem.

public static void processPositiveInteger(int n) {
 if (n < 0)
 throw new IllegalArgumentException(
 "Invalid negative argument");
 else {
 // Process n as required
 //...
 System.out.println("Finished processing " + n);
 }
}

If the argument n is not positive, the statement
throw new IllegalArgumentException("Invalid negative argument");

Koffman-c01.indd 35 10/30/2015 7:39:54 PM

36 Chapter 1 Object‐Oriented Programming and Class Hierarchies

executes and throws an IllegalArgumentException object. The string in the last line is stored
in the exception object’s message data field, and the method is exited, returning control to the
caller. The caller is then responsible for handling this exception. If possible, the caller may be
able to recover from this error and would attempt to do so.

The main method, which follows, calls both getIntValue and processPositiveInteger in
the try block. If an IllegalArgumentException is thrown, the message invalid negative
 argument is displayed, and the program terminates with an error indication. If no exception
is thrown, the program exits normally.

public static void main(String[] args) {
 Scanner scan = new scanner (system.in);
 try {
 int num = getIntValue(scan);
 processPositiveInteger(num);
 } catch (IllegalArgumentException ex) {
 System.err.println(ex.getMessage());
 System.exit(1); // error indication
 }
 System.exit(0); //normal exit
}

E X E R C I S E S F O R S E C T I O N 1 . 6

S E L F ‐ C H E C K

1. Explain the key difference between checked and unchecked exceptions. Give an example
of each kind of exception. What criterion does Java use to decide whether an exception is
checked or unchecked?

2. What is the difference between the kind of unchecked exceptions in class Error and the
kind in class Exception?

3. List four subclasses of RuntimeException.

4. List two subclasses of IOException.

5. What happens in the main method preceding the exercises if an exception of a different
type occurs in method processPositiveInteger?

6. Trace the execution of method getIntValue if the following data items are entered by a
careless user. What would be displayed?
ace
7.5
‐5

7. Trace the execution of method main preceding the exercises if the data items in Question
6 were entered. What would be displayed?

1.7 Packages and Visibility

Packages
You have already seen packages. The Java API is organized into packages such as java.lang,
java.util, java.io, and javax.swing. The package to which a class belongs is declared by the
first statement in the file in which the class is defined using the keyword package, followed

Koffman-c01.indd 36 10/30/2015 7:39:54 PM

1.7 Packages and Visibility 37

by the package name. For example, we could begin each class in the computer hierarchy
(class Notebook and class Computer) with the line:

package computers;

All classes in the same package are stored in the same directory or folder. The directory must
have the same name as the package. All the classes in the folder must declare themselves to
be in the package.

Classes that are not part of a package may access only public members (data fields or meth-
ods) of classes in the package. If the application class is not in the package, it must reference
the classes by their complete names. The complete name of a class is packageName.className.
However, if the package is imported by the application class, then the prefix packageName. is
not required. For example, we can reference the constant GREEN in class java.awt.Color as
Color.GREEN if we import package java.awt. Otherwise, we would need to use the complete
name java.awt.Color.GREEN.

The No‐Package‐Declared Environment
So far we have not specified packages, yet objects of one class could communicate with objects
of another class. How does this work? Just as there is a default visibility, there is a default pack-
age. Files that do not specify a package are considered part of the default package. Therefore, if
you don’t declare packages, all your classes belong to the same package (the default package).

SYNTAX Package Declaration
FORM:

package packageName ;

EXAMPLE:
package computers;

INTERPRETATION:

This declaration appears as the first line of the file in which a class is defined. The
class is now considered part of the package. This file must be contained in a folder
with the same name as the package.

 P R O G R A M S T Y L E

When to Package Classes
The default package facility is intended for use during the early stages of implementing
classes or for small prototype programs. If you are developing an application that has
several classes that are part of a hierarchy of classes, you should declare them all to be
in the same package. The package declaration will keep you from accidentally referring
to classes by their short names in other classes that are outside the package. It will
also restrict the visibility of protected members of a class to only its subclasses
outside the package (and to other classes inside the package) as intended.

Koffman-c01.indd 37 10/30/2015 7:39:54 PM

38 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Package Visibility
So far, we have discussed three layers of visibility for classes and class members (data fields
and methods): private, protected, and public. There is a fourth layer, called package visibility,
that sits between private and protected. Classes, data fields, and methods with package visi-
bility are accessible to all other methods of the same package but are not accessible to meth-
ods outside of the package. By contrast, classes, data fields, and methods that are declared
protected are visible within subclasses that are declared outside the package, in addition to
being visible to all members of the package.

We have used the visibility modifiers private, public, and protected to specify the visibility
of a class member. If we do not use one of these visibility modifiers, then the class member
has package visibility and it is visible in all classes of the same package, but not outside the
package. Note that there is no visibility modifier package; package visibility is the default if
no visibility modifier is specified.

Visibility Supports Encapsulation
The rules for visibility control how encapsulation occurs in a Java program. Table 1.6 sum-
marizes the rules in order of decreasing protection. Note that private visibility is for members
of a class that should not be accessible to anyone but the class, not even classes that extend
it. Except for inner classes, it does not make sense for a class to be private. It would mean that
no other class can use it.

Also, note that package visibility (the default if a visibility modifier is not given) allows the
developer of a library to shield classes and class members from classes outside the package.
Typically, such classes perform tasks required by the public classes within the package.

Use of protected visibility allows the package developer to give control to other program-
mers who want to extend classes in the package. Protected data fields are typically essen-
tial to an object. Similarly, protected methods are those that are essential to an extending
class.

Table 1.6 shows that public classes and members are universally visible. Within a package,
the public classes are those that are essential to communicating with objects outside the
package.

TA B L E 1 . 6

Summary of Kinds of Visibility

Visibility Applied to Classes Applied to Class Members

private Applicable to inner classes. Accessible only to
members of the class in which it is declared

Visible only within this class

Default or package Visible to classes in this package Visible to classes in this package

protected Applicable to inner classes. Visible to classes
in this package and to classes outside the
package that extend the class in which it is
declared

Visible to classes in this package and to
classes outside the package that extend
this class

public Visible to all classes Visible to all classes. The class defining the
member must also be public

Koffman-c01.indd 38 10/30/2015 7:39:54 PM

1.8 A Shape Class Hierarchy 39

E X E R C I S E S F O R S E C T I O N 1 . 7

S E L F ‐ C H E C K

1. Consider the following declarations:
package pack1;
public class Class1 {
 private int v1;
 protected int v2;
 int v3;
 public int v4;
}

package pack1;
public class Class2 {...}

package pack2;
public class Class3 extends pack1.Class1 {...}

package pack2;
public class Class4 {...}

a. What visibility must variables declared in pack1.Class1 have in order to be visible in
pack1.Class2?

b. What visibility must variables declared in pack1.Class1 have in order to be visible in
pack2.Class3?

c. What visibility must variables declared in pack1.Class1 have in order to be visible in
pack2.Class4?

1.8 A Shape Class Hierarchy

In this section, we provide a case study that illustrates some of the principles in this chapter. For
each case study, we will begin with a statement of the problem (Problem). Then we analyze the
problem to determine exactly what is expected and to develop an initial strategy for solution
(Analysis). Next, we design a solution to the problem, developing and refining an algorithm
(Design). We write one or more Java classes that contain methods for the algorithm steps (Imple-
mentation). Finally, we provide a strategy for testing the completed classes and discuss special
cases that should be investigated (Testing). We often provide a separate class that does the testing.

 P I T F A L L

Protected Visibility Can Be Equivalent to Public Visibility
The intention of protected visibility is to enable a subclass to access a member (data field
or method) of a superclass directly. However, protected members can also be accessed
within any class that is in the same package. This is not a problem if the class with the
protected members is declared to be in a package; however, if it is not, then it is in the
default package. Protected members of a class in the default package are visible in all other
classes you have defined that are not part of an actual package. This is generally not a
desirable situation. You can avoid this dilemma by using protected visibility only with
members of classes that are in explicitly declared packages. In all other classes, use either
public or private visibility because protected visibility is virtually equivalent to public visibility.

Koffman-c01.indd 39 10/30/2015 7:39:54 PM

40 Chapter 1 Object‐Oriented Programming and Class Hierarchies

CASE STUDY Processing Geometric Figures

 Problem We would like to process some standard geometric shapes. Each figure object will be one of
three standard shapes (rectangle, circle, and right triangle). We would like to be able to do
standard computations, such as finding the area and perimeter, for any of these shapes.

 Analysis For each of the geometric shapes we can process, we need a class that represents the shape
and knows how to perform the standard computations on it (i.e., find its area and perimeter).
These classes will be Rectangle, Circle, and RtTriangle. To ensure that these shape classes
all define the required computational methods (finding area and perimeter), we will make
them abstract methods in the base class for the shape hierarchy. If a shape class does not have
the required methods, we will get a syntax error when we attempt to compile it.

 Figure 1.10 shows the class hierarchy. We used abstract class Shape as the base class of the
hierarchy. We didn’t consider using an actual class because there are no actual objects of
the base class type. The single data field shapeName stores the kind of shape object as a
String.

 Design We will discuss the design of the Rectangle class here. The design of the other classes is simi-
lar and is left as an exercise. Table 1.7 shows class Rectangle. Class Rectangle has data fields
width and height. It has methods to compute area and perimeter, a method to read in the
attributes of a rectangular object (readShapeData), and a toString method.

Shape

Rectangle Circle RtTriangle

getShapeName()
toString()
computeArea()
computePerimeter()
readShapeData()

String shapeName

double width
double height

double base
double height

double radius

computeArea()
computePerimeter()
readShapeData()
toString()

computeArea()
computePerimeter()
readShapeData()
toString()

computeArea()
computePerimeter()
readShapeData()
toString()

F I G U R E 1 . 1 0

Abstract Class Shape and Its Three Actual Subclasses

Koffman-c01.indd 40 10/30/2015 7:39:54 PM

1.8 A Shape Class Hierarchy 41

 Implementation Listing 1.6 shows abstract class Shape.

L I S T I N G 1 . 6

Abstract Class Shape (Shape.java)

/** Abstract class for a geometric shape. */
public abstract class Shape {

 /** The name of the shape */
 private String shapeName = "";
 /** Initializes the shapeName.
 @param shapeName the kind of shape
 */

public Shape(String shapeName) {
 this.shapeName = shapeName;
}

/** Get the kind of shape.
 @return the shapeName
 */
public String getShapeName() { return shapeName; }

@Override
public String toString() { return "Shape is a " + shapeName; }

// abstract methods
public abstract double computeArea();
public abstract double computePerimeter();
public abstract void readShapeData();

}

Listing 1.7 shows class Rectangle.

TA B L E 1 . 7

Class Rectangle

Data Field Attribute

double width Width of a rectangle

double height Height of a rectangle

Method Behavior

double computeArea() Computes the rectangle area (width × height)

double computePerimeter() Computes the rectangle perimeter (2 × width + 2 × height)

void readShapeData() Reads the width and height

String toString() Returns a string representing the state

Koffman-c01.indd 41 10/30/2015 7:39:54 PM

42 Chapter 1 Object‐Oriented Programming and Class Hierarchies

L I S T I N G 1 . 7

Class Rectangle (Rectangle.java)

import java.util.Scanner;

/** Represents a rectangle.
 Extends Shape.
 */
public class Rectangle extends Shape {

 // Data Fields
 /** The width of the rectangle. */
 private double width = 0;
 /** The height of the rectangle. */
 private double height = 0;

 // Constructors
 public Rectangle() {
 super("Rectangle");
 }

 /** Constructs a rectangle of the specified size.
 @param width the width
 @param height the height
 */
 public Rectangle(double width, double height) {
 super("Rectangle");
 this.width = width;
 this.height = height;
 }

 // Methods
 /** Get the width.
 @return The width
 */
 public double getWidth() {
 return width;
 }

 /** Get the height.
 @return The height
 */
 public double getHeight() {
 return height;
 }

 /** Compute the area.
 @return The area of the rectangle
 */
 @Override
 public double computeArea() {
 return height * width;
 }

 /** Compute the perimeter.
 @return The perimeter of the rectangle
 */

Koffman-c01.indd 42 10/30/2015 7:39:54 PM

1.8 A Shape Class Hierarchy 43

 @Override
 public double computePerimeter() {
 return 2 * (height + width);
 }

 /** Read the attributes of the rectangle. */
 @Override
 public void readShapeData() {
 Scanner in = new Scanner(System.in);
 System.out.println("Enter the width of the Rectangle");
 width = in.nextDouble();
 System.out.println("Enter the height of the Rectangle");
 height = in.nextDouble();
 }

 /** Create a string representation of the rectangle.
 @return A string representation of the rectangle
 */
 @Override
 public String toString() {
 return super.toString() + ": width is " + width + ", height is " +
 height;
 }

}

 Testing To test the shape hierarchy, we will write a program that will prompt for the kind of fig-
ure, read the parameters for that figure, and display the results. The code for
ComputeAreaAndPerimeter is shown in Listing 1.8. The main method is very straightfor-
ward, and so is displayResult. The main method first calls getShape, which displays a list
of available shapes and prompts the user for the choice. The reply is expected to be a single
character. The nested if statement determines which shape instance to return. For example,
if the user’s choice is C (for Circle), the statement

return new Circle();

returns a reference to a new Circle object.

After the new shape instance is returned to myShape in main, the statement
myShape.readShapeData();

uses polymorphism to invoke the correct member function readShapeData to read the
shape object’s parameter(s). The methods computeArea and computePerimeter are then
called to obtain the values of the area and perimeter. Finally, displayResult is called to
display the result.

A sample of the output from ComputeAreaAndPerimeter follows.
Enter C for circle
Enter R for Rectangle
Enter T for Right Triangle
R
Enter the width of the Rectangle
120
Enter the height of the Rectangle
200
Shape is a Rectangle: width is 120.0, height is 200.0
The area is 24000.00
The perimeter is 640.00

Koffman-c01.indd 43 10/30/2015 7:39:54 PM

44 Chapter 1 Object‐Oriented Programming and Class Hierarchies

L I S T I N G 1 . 8

ComputeAreaAndPerimeter.java

import java.util.Scanner;

/**
 Computes the area and perimeter of selected figures.
 @author Koffman and Wolfgang
 */
public class ComputeAreaAndPerimeter {

 /** The main program performs the following steps.
 1. It asks the user for the type of figure.
 2. It asks the user for the characteristics of that figure.
 3. It computes the perimeter.
 4. It computes the area.
 5. It displays the result.
 @param args The command line arguments ‐‐ not used
 */
 public static void main(String args[]) {
 Shape myShape;
 double perimeter;
 double area;
 myShape = getShape(); // Ask for figure type
 myShape.readShapeData(); // Read the shape data
 perimeter = myShape.computePerimeter(); // Compute perimeter
 area = myShape.computeArea(); // Compute the area
 displayResult(myShape, area, perimeter); // Display the result
 System.exit(0); // Exit the program
 }

 /** Ask the user for the type of figure.
 @return An instance of the selected shape
 */
 public static Shape getShape() {
 Scanner in = new Scanner(System.in);
 System.out.println("Enter C for circle");
 System.out.println("Enter R for Rectangle");
 System.out.println("Enter T for Right Triangle");
 String figType = in.next();
 if (figType.equalsIgnoreCase("c")) {
 return new Circle();
 }
 else if (figType.equalsIgnoreCase("r")) {
 return new Rectangle();
 }
 else if (figType.equalsIgnoreCase("t")) {
 return new RtTriangle();
 }
 else {
 return null;
 }
 }

Koffman-c01.indd 44 10/30/2015 7:39:54 PM

1.8 A Shape Class Hierarchy 45

 /** Display the result of the computation.
 @param area The area of the figure
 @param perim The perimeter of the figure
 */

 private static void displayResult(Shape myShape, double area, double perim) {
 System.out.println(myShape);
 System.out.printf("The area is %.2f%nThe perimeter is %.2f%n",
 area, perim);
 }
}

E X E R C I S E S F O R S E C T I O N 1 . 8

S E L F ‐ C H E C K

1. Explain why Shape cannot be an actual class.

2. Explain why Shape cannot be an interface.

P R O G R A M M I N G

1. Write class Circle.

2. Write class RtTriangle.

 P R O G R A M S T Y L E

Using Factory Methods to Return Objects
The method getShape is an example of a factory method because it creates a new
object and returns a reference to it. The author of the main method does not need to
know what kinds of shapes are available. Knowledge of the available shapes is
confined to the getShape method. This function must present a list of available shapes
to the user and decode the user’s response to return an instance of the desired shape.
If you add a new geometric shape class to the class hierarchy, you only need to modify
the if statement in the factory method so that it can create and return an object of
that type.

Koffman-c01.indd 45 10/30/2015 7:39:55 PM

46 Chapter 1 Object‐Oriented Programming and Class Hierarchies

C h a p t e r R e v i e w

 ◆ Inheritance and class hierarchies enable you to capture the idea that one thing may be a
refinement or an extension of another. For example, a plant is a living thing. Such is‐a rela-
tionships create the right balance between too much and too little structure. Think of
inheritance as a means of creating a refinement of an abstraction. The entities farther down
the hierarchy are more complex and less general than those higher up. The entities farther
down the hierarchy may inherit data members (attributes) and methods from those farther
up, but not vice versa. A class that inherits from another class extends that class.

 ◆ Encapsulation and inheritance impose structure on object abstractions. Polymorphism pro-
vides a degree of flexibility in defining methods. It loosens the structure a bit in order to
make methods more accessible and useful. Polymorphism means “many forms.” It captures
the idea that methods may take on a variety of forms to suit different purposes.

 ◆ All exceptions in the Exception class hierarchy are derived from a common superclass
called Throwable. This class provides methods for collecting and reporting the state of the
program when an exception is thrown. The commonly used methods are getMessage and
toString, which return a detail message describing what caused the exception to be thrown,
and printStackTrace, which prints the exception and then shows the line where the excep-
tion occurred and the sequence of method calls leading to the exception.

 ◆ There are two categories of exceptions: checked and unchecked. Checked exceptions are
generally due to an error condition external to the program. Unchecked exceptions are
generally due to a programmer error or a dire event.

 ◆ The keyword interface defines an interface. A Java interface can be used to specify an
abstract data type (ADT), and a Java class can be used to implement an ADT. A class that
implements an interface must define the methods that the interface declares.

 ◆ The keyword abstract defines an abstract class or method. An abstract class is like an
interface in that it leaves method implementations up to subclasses, but it can also have
data fields and actual methods. You use an abstract class as the superclass for a group of
classes in a hierarchy.

 ◆ Visibility is influenced by the package in which a class is declared. You assign classes to a
package by including the statement package packageName; at the top of the file. You can
refer to classes within a package by their direct names when the package is imported
through an import declaration.

Java Constructs Introduced in This Chapter

Java API Classes Introduced in This Chapter

abstract
extends
instanceof
interface
package

private
protected
public
super.

super(...)
this.
this(...)

java.lang.Byte
java.lang.Float
java.lang.Integer

java.lang.Number
java.lang.Object
java.lang.Short

Koffman-c01.indd 46 10/30/2015 7:39:55 PM

 Chapter 1 Review 47

User‐Defined Interfaces and Classes in This Chapter
ComputeAreaAndPerimeter
Computer
Employee
EmployeeInt

Food
Notebook
Rectangle
Shape

Student
StudentInt
StudentWorker

Quick‐Check Exercises
1. What does polymorphism mean, and how is it used in Java? What is method overriding? Method

overloading?
2. What is a method signature? Describe how it is used in method overloading.
3. Describe the use of the keywords super and this.
4. Indicate whether each error or exception in the following list is checked or unchecked: IOException,

EOFException, VirtualMachineError, IndexOutOfBoundsException, OutOfMemoryError.
5. When would you use an abstract class, and what should it contain?
6. An ______ specifies the requirements of an ADT as a contract between the ______ and ______; a

______ implements the ADT.
7. An interface can be implemented by multiple classes. (True/False)
8. Describe the difference between is‐a and has‐a relationships.
9. Which can have more data fields and methods: the superclass or the subclass?

10. You can reference an object of a ______ type through a variable of a ______ type.
11. You cast an object referenced by a ______ type to an object of a ______ type in order to apply

methods of the ______ type to the object. This is called a ______.

12. The four kinds of visibility in order of decreasing visibility are ______, ______, ______, and ______.

Review Questions
1. Which method is invoked in a particular class when a method definition is overridden in several

classes that are part of an inheritance hierarchy? Answer the question for the case in which the class
has a definition for the method and also for the case where it doesn’t.

2. Explain how assignments can be made within a class hierarchy and the role of casting in a class
hierarchy. What is strong typing? Why is it an important language feature?

3. If Java encounters a method call of the following form:

superclassVar.methodName()

 where superclassVar is a variable of a superclass that references an object whose type is a subclass,
what is necessary for this statement to compile? During run time, will method methodName from the
class that is the type of superclassVar always be invoked, or is it possible that a different method
methodName will be invoked? Explain your answer.

4. Assume the situation in Question 3, but method methodName is not defined in the class that is the
type of superclassVar, although it is defined in the subclass type. Rewrite the method call so that
it will compile.

5. Explain the process of initializing an object that is a subclass type in the subclass constructor. What
part of the object must be initialized first? How is this done?

6. What is default or package visibility?
7. Indicate what kind of exception each of the following errors would cause. Indicate whether each

error is a checked or an unchecked exception.
a. Attempting to create a Scanner for a file that does not exist
b. Attempting to call a method on a variable that has not been initialized
c. Using −1 as an array index

Koffman-c01.indd 47 10/30/2015 7:39:55 PM

48 Chapter 1 Object‐Oriented Programming and Class Hierarchies

8. Discuss when abstract classes are used. How do they differ from actual classes and from
interfaces?

9. What is the advantage of specifying an ADT as an interface instead of just going ahead and imple-
menting it as a class?

10. Define an interface to specify an ADT Money that has methods for arithmetic operations (addition,
subtraction, multiplication, and division) on real numbers having exactly two digits to the right of
the decimal point, as well as methods for representing a Money object as a string and as a real
number. Also, include methods equals and compareTo for this ADT.

11. Answer Review Question 10 for an ADT Complex that has methods for arithmetic operations on
a complex number (a number with a real and an imaginary part). Assume that the same operations
(+, –, *, /) are supported. Also, provide methods toString, equals, and compareTo for the ADT
Complex.

12. Like a rectangle, a parallelogram has opposite sides that are parallel, but it has a corner angle,
theta, that is less than 90 degrees. Discuss how you would add parallelograms to the class hierar-
chy for geometric shapes (see Figure 1.10). Write a definition for class Parallelogram.

Programming Projects
1. A veterinary office wants to store information regarding the kinds of animals it treats. Data includes

diet, whether the animal is nocturnal, whether its bite is poisonous (as for some snakes), whether it
flies, and so on. Use a superclass Pet with abstract methods and create appropriate subclasses to
support about 10 animals of your choice.

2. A student is a person, and so is an employee. Create a class Person that has the data attributes com-
mon to both students and employees (name, social security number, age, gender, address, and tele-
phone number) and appropriate method definitions. A student has a grade‐point average (GPA),
major, and year of graduation. An employee has a department, job title, and year of hire. In addition,
there are hourly employees (hourly rate, hours worked, and union dues) and salaried employees
(annual salary). Define a class hierarchy and write an application class that you can use to first store
the data for an array of people and then display that information in a meaningful way.

3. Create a pricing system for a company that makes individualized computers, such as you might see
on a Web site. There are two kinds of computers: notebooks and desktop computers. The customer
can select the processor speed, the amount of memory, and the size of the disk drive. The customer
can also choose a CD drive (CD ROM, CD‐RW), a DVD drive, or both. For notebooks, there is a
choice of screen size. Other options are a modem, a network card, or a wireless network. You should
have an abstract class Computer and subclasses DeskTop and Notebook. Each subclass should have
methods for calculating the price of a computer, given the base price plus the cost of the different
options. You should have methods for calculating memory price, hard drive price, and so on. There
should be a method to calculate shipping cost.

4. Write a banking program that simulates the operation of your local bank. You should declare the
following collection of classes.

 Class Account

Data fields: customer (type Customer), balance, accountNumber, transactions array
(type Transaction[]). Allocate an initial Transaction array of a reasonable size (e.g.,
20) and provide a reallocate method that doubles the size of the Transaction array
when it becomes full.

Methods: getBalance, getCustomer, toString, setCustomer
 Class SavingsAccount extends Account

Methods: deposit, withdraw, addInterest
 Class CheckingAccount extends Account

Methods: deposit, withdraw, addInterest

Koffman-c01.indd 48 10/30/2015 7:39:55 PM

 Chapter 1 Review 49

 Class Customer

Data fields: name, address, age, telephoneNumber, customerNumber

Methods: Accessors and modifiers for data fields plus the additional abstract meth-
ods getSavingsInterest, getCheckInterest, and getCheckCharge.

 Classes Senior, Adult, Student, all these classes extend Customer

Each has constant data fields SAVINGS_INTEREST, CHECK_INTEREST, CHECK_CHARGE,
good! and OVERDRAFT_PENALTY that define these values for customers of that type, and
each class implements the corresponding accessors.

 Class Bank

Data field: accounts array (type Account[]). Allocate an array of a reasonable size
(e.g., 100) and provide a reallocate method.

Methods: addAccount, makeDeposit, makeWithdrawal, getAccount
 Class Transaction

Data fields: customerNumber, transactionType, amount, date, and fees (a string
describing unusual fees)

Methods: processTran

 You need to write all these classes and an application class that interacts with the user. In the applica-
tion, you should first open several accounts and then enter several transactions.

5. You have a sizable collection of music and videos and want to develop a database for storing and
processing information about this collection. You need to develop a class hierarchy for your media
collection that will be helpful in designing the database. Try the class hierarchy shown in Figure 1.11,
where Audio and Video are media categories. Then CDs and cassette tapes would be subclasses of
Audio, and DVDs and VHS tapes would be subclasses of Video.

 If you go to the video store to get a movie, you can rent or purchase only movies that are recorded
on VHS tapes or DVDs. For this reason, class Video (and also classes Media and Audio) should be
abstract classes because there are no actual objects of these types. However, they are useful classes to
help define the hierarchy.

 Class Media should have data fields and methods common to all classes in the hierarchy. Every
media object has a title, major artist, distributor, playing time, price, and so on. Class Video should
have additional data fields for information describing movies recorded on DVDs and videotapes.
This would include information about the supporting actors, the producer, the director, and the
movie’s rating. Class DVD would have specific information about DVD movies only, such as the
format of the picture and special features on the disk. Figure 1.12 shows a possible class diagram for
Media, Video, and subclasses of Video.

DVDCD

Audio

Media

VHSCassette

Video

F I G U R E 1 . 1 1

Media Class Hierarchy

Koffman-c01.indd 49 10/30/2015 7:39:55 PM

50 Chapter 1 Object‐Oriented Programming and Class Hierarchies

Media

String title
String majorArtist
int playingTime
int numPlays

void playMedia()
void incrementPlays()
void setYourRating()
int getPlayingTime()
String toString()

Video

DVD VHS

String[] supportingActors
String director
String format

String toString()

String[] specialFeatures
boolean wideScreenFormat
boolean TVFormat
String[] soundOptions

void playMedia()
String toString()

String[] trailers

void playMedia()
String toString()

F I G U R E 1 . 1 2

Class Video and Its

Supers and Subclasses

 Provide methods to load the media collection from a file and write it back out to a file. Also, provide
a method to retrieve the information for a particular item identified by its title and a method to
retrieve all your items for a particular artist.

6. Add shape classes Square and EquilateralTriangle to the figures hierarchy in Section 1.7.
Modify class ComputeAreaAndPerim (Listing 1.8) to accept the new figures.

7. Complete the Food class hierarchy in Section 1.4. Read and store a list of your favorite foods. Show
the total calories for these foods and the overall percentages of fat, protein, and carbohydrates for
this list. To find the overall percentage, if an item has 200 calories and 10 percent is fat calories, then
that item contributes 20 fat calories. You need to find the totals for fat calories, protein calories, and
carbohydrate calories and then calculate the percentages.

8. A hospital has different kinds of patients who require different procedures for billing and approval
of procedures. Some patients have insurance and some do not. Of the insured patients, some are on
Medicare, some are in HMOs, and some have other health insurance plans. Develop a collection of
classes to model these different kinds of patients.

9. A company has two different kinds of employees: professional and nonprofessional. Generally, pro-
fessional employees have a monthly salary, whereas nonprofessional employees are paid an hourly
rate. Similarly, professional employees have a certain number of days of vacation, whereas nonpro-
fessional employees receive vacation hours based on the number of hours they have worked. The
amount contributed for health insurance is also different for each kind of employee. Use an abstract
class Employee to store information common to all employees and to declare methods for calculat-
ing weekly salary and computing health care contributions and vacation days earned that week.
Define subclasses Professional and Nonprofessional. Test your class hierarchy.

Koffman-c01.indd 50 10/30/2015 7:39:55 PM

 Chapter 1 Review 51

10. Implement class AMTbandkAmerica in Section 1.1.
11. For the shape class hierarchy discussed in Section 1.8, consider adding classes DrawableRectangle,

DrawableCircle, and so on that would have additional data fields and methods that would ena-
ble a shape to be drawn on a monitor. Provide an interface DrawableInt that specifies the meth-
ods required for drawing a shape. Class DrawableRectangle, for example, should extend
Rectangle and implement this interface. Draw the new class hierarchy and write the new inter-
face and classes. Using the Java Abstract Window Toolkit (AWT) to draw objects is described in
Appendix Section C.7.

Answers to Quick-Check Exercises
1. Polymorphism means “many forms.” Method overriding means that the same method appears in

a subclass and a superclass. Method overloading means that the same method appears with differ-
ent signatures in the same class.

2. A signature is the form of a method determined by its name and arguments. For example, doIt(int,
double) is the signature for a method doIt that has one type int parameter and one type double
parameter. If several methods in a class have the same name (method overloading), Java applies the
one with the same signature as the method call.

3. The keyword this followed by a dot and a name means use the named member (data field or
method) of the object to which the current method is applied rather than the member with the
same name declared locally in the method. The keyword super. means use the method (or data
field) with this name defined in the superclass of the object, not the one belonging to the object.
Using super(...) as a method call in a constructor tells Java to call a constructor for the super-
class of the object being created. Similarly, using this(...) as a method call in a constructor tells
Java to call another constructor for the same class but with a different parameter list. The
super(...) or this(...) call must be the first statement in a subclass constructor.

4. VirtualMachineError, OutOfMemoryError, and IndexOutOfBoundsException are unchecked;
the rest are checked.

5. An abstract class is used as a parent class for a collection of related subclasses. An abstract class
cannot be instantiated. The abstract methods (identified by modifier abstract) defined in the
abstract class act as placeholders for the actual methods. Also, you should define data fields that
are common to all the subclasses in the abstract class. An abstract class can have actual methods
as well as abstract methods.

6. An interface specifies the requirements of an ADT as a contract between the developer and the
user; a class implements the ADT.

7. True.
8. An is‐a relationship between classes means that one class is a subclass of a parent class. A has‐a

relationship means that one class has data members of the other class type.
9. Subclass.

10. You can reference an object of a subclass type through a variable of a superclass type.
11. You cast an object referenced by a superclass type to an object of a subclass type in order to apply

methods of the subclass type to the object. This is called a downcast.
12. The four kinds of visibility in order of decreasing visibility are public, protected, package, and

private.

Koffman-c01.indd 51 10/30/2015 7:39:55 PM

Koffman-c01.indd 52 10/30/2015 7:39:55 PM

C h a p t e r

53

S
o far we have one data structure that you can use in your programming—the array.
Giving a programmer an array and asking her to develop software systems is like giving
a carpenter a hammer and asking him to build a house. In both cases, more tools are

needed. The Java designers attempted to supply those tools by providing a rich set of data
structures written as Java classes. The classes are all part of a hierarchy called the Java
Collections Framework. We will discuss classes from this hierarchy in the rest of the book,
starting in this chapter with the classes that are considered lists.

A list is an expandable collection of elements in which each element has a position or
index. Some lists enable their elements to be accessed in arbitrary order (called random
access) using a position value to select an element. Alternatively, you can start at the begin-
ning and process the elements in sequence. We will also discuss iterators and their role in
facilitating sequential access to lists.

In this chapter, we will discuss the ArrayList and linked lists (class LinkedList) and their
similarities and differences. We will show that these classes are subclasses of the abstract class
AbstractList and that they implement the List interface.

Lists and the Collections
Framework

2C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To understand the meaning of big‐O notation and how it is used as a measure of an
 algorithm’s efficiency

 ◆ To become familiar with the List interface and the Java Collections Framework

 ◆ To understand how to write an array‐based implementation of the List interface

 ◆ To study the differences between single‐, double‐, and circular‐linked list data structures

 ◆ To learn how to implement a single‐linked list

 ◆ To learn how to implement the List interface using a double‐linked list

 ◆ To understand the Iterator interface

 ◆ To learn how to implement the Iterator for a linked list

 ◆ To become familiar with the Java Collections Framework

Koffman-c02.indd 53 10/30/2015 7:38:52 PM

54 Chapter 2 Lists and the Collections Framework

First, we will discuss algorithm efficiency and how to characterize the efficiency of an
algorithm. You will learn about big‐O notation, which you can use to compare the relative
efficiency of different algorithms.

L i s t s a n d t h e C o l l e c t i o n s F r a m e w o r k

 2.1 Algorithm Efficiency and Big‐O
 2.2 The List Interface and ArrayList Class
 2.3 Applications of ArrayList
 2.4 Implementation of an ArrayList Class
 2.5 Single‐Linked Lists
 2.6 Double‐Linked Lists and Circular Lists
 2.7 The LinkedList Class and the Iterator, ListIterator, and Iterable Interfaces
 2.8 Application of the LinkedList Class

 Case Study: Maintaining an Ordered List
 2.9 Implementation of a Double‐Linked List Class
 2.10 The Collections Framework Design

2.1 Algorithm Efficiency and Big-O

Whenever we write a new class, we will discuss the efficiency of its methods so that you know
how they compare to similar methods in other classes. You can’t easily measure the amount
of time it takes to run a program with modern computers. When you issue the command

java MyProgram

(or click the Run button of your integrated development environment [IDE]), the operating
system first loads the Java Virtual Machine (JVM). The JVM then loads the .class file for
MyProgram, it then loads other .class files that MyProgram references, and finally your pro-
gram executes. (If the .class files have not yet been created, the Java IDE will compile the
source file before executing the program.) Most of the time it takes to run your program is
occupied with the first two steps. If you run your program a second time immediately after
the first, it may seem to take less time. This is because the operating system may have kept
the files in a local memory area called a cache. However, if you have a large enough or com-
plicated enough problem, then the actual running time of your program will dominate the
time required to load the JVM and .class files.

Because it is very difficult to get a precise measure of the performance of an algorithm or pro-
gram, we normally try to approximate the effect of a change in the number of data items, n, that
an algorithm processes. In this way, we can see how an algorithm’s execution time increases
with respect to n, so we can compare two algorithms by examining their growth rates.

For many problems, there are algorithms that are relatively obvious but inefficient. Although
every day computers are getting faster, with larger memories, there are algorithms whose
growth rate is so large that no computer, no matter how fast or with how much memory, can
solve the problem above a certain size. Furthermore, if a problem that has been too large to
be solved can now be solved with the latest, biggest, and fastest supercomputer, adding a few
more inputs may make the problem impractical, if not impossible, again. Therefore, it is
important to have some idea of the relative efficiency of different algorithms. Next, we see
how we might obtain such an idea by examining three methods in the following examples.

Koffman-c02.indd 54 10/30/2015 7:38:52 PM

2.1 Algorithm Efficiency and Big-O 55

EXAMPLE 2 .1 Consider the following method, which searches an array for a value:
public static int search(int[] x, int target) {
 for (int i = 0; i < x.length; i++) {
 if (x[i] == target)
 return i;
 }
 // target not found
 return ‐1;
}

If the target is not present in the array, then the for loop body will be executed x.length
times. If the target is present, it could be anywhere. If we consider the average over all cases
where the target is present, then the loop body will execute x.length/2 times. Therefore, the
total execution time is directly proportional to x.length. If we doubled the size of the array,
we would expect the time to double (not counting the overhead discussed earlier).

EXAMPLE 2 .2 Now let us consider another problem. We want to find out whether two arrays have no
common elements. We can use our search method to search one array for values that are in
the other.

/** Determine whether two arrays have no common elements.
 @param x One array
 @param y The other array
 @return true if there are no common elements
*/
public static boolean areDifferent(int[] x, int[] y) {
 for (int i = 0; i < x.length; i++) {
 if (search(y, x[i]) != ‐1)
 return false;
 }
 return true;
}

The loop body will execute at most x.length times. During each iteration, it will call method
search to search for current element, x[i], in array y. The loop body in search will execute
at most y.length times. Therefore, the total execution time would be proportional to the
product of x.length and y.length.

EXAMPLE 2 .3 Let us consider the problem of determining whether each item in an array is unique. We could
write the following method:

/** Determine whether the contents of an array are all unique.
 @param x The array
 @return true if all elements of x are unique
*/
public static boolean areUnique(int[] x) {
 for (int i = 0; i < x.length; i++) {
 for (int j = 0; j < x.length; j++) {
 if (i != j && x[i] == x[j])
 return false;
 }
 }
 return true;
}

Koffman-c02.indd 55 10/30/2015 7:38:52 PM

56 Chapter 2 Lists and the Collections Framework

If all values are unique, the outer loop will execute x.length times. For each iteration of the
outer loop, the inner loop will also execute x.length times. Thus, the total number of times
the body of the inner loop will execute is (x.length)2.

EXAMPLE 2 .4 The method we showed in Example 2.3 is very inefficient because we do approximately twice
as many tests as necessary. We can rewrite the inner loop as follows:

/** Determine whether the contents of an array are all unique.
 @param x The array
 @return true if all elements of x are unique
*/
public static boolean areUnique(int[] x) {
 for (int i = 0; i < x.length; i++) {
 for (int j = i + 1; j < x.length; j++) {
 if (x[i] == x[j])
 return false;
 }
 }
 return true;
}

We can start the inner loop index at i + 1 because we have already determined that elements
preceding this one are unique. The first time, the inner loop will execute x.length−1 times.
The second time, it will execute x.length–2 times, and so on. The last time, it will execute just
once. The total number of times it will execute is

x.length-1 + x.length-2 +. . .+ 2 + 1

The series 1 2 3 1· · · –()n is a well‐known series that has a value of

n n n n()
or

1
2 2

2

Therefore, this sum is

x.length
2

x.length

2

-

Big-O Notation
Today, the type of analysis just illustrated is more important to the development of efficient
software than measuring the milliseconds in which a program runs on a particular computer.
Understanding how the execution time (and memory requirements) of an algorithm grows as
a function of increasing input size gives programmers a tool for comparing various algo-
rithms and how they will perform. Computer scientists have developed a useful terminology
and notation for investigating and describing the relationship between input size and execu-
tion time. For example, if the time is approximately doubled when the number of inputs, n,
is doubled, then the algorithm grows at a linear rate. Thus, we say that the growth rate has
an order of n. If, however, the time is approximately quadrupled when the number of inputs
is doubled, then the algorithm grows at a quadratic rate. In this case, we say that the growth
rate has an order of n2.

Koffman-c02.indd 56 10/30/2015 7:38:53 PM

2.1 Algorithm Efficiency and Big-O 57

In the previous section, we looked at four methods: one whose execution time was related to
x.length, another whose execution time was related to x.length times y.length, one whose
execution time was related to (x.length)2, and one whose execution time was related to
(x.length)2 and x.length. Computer scientists use the notation O(n) to represent the first
case, O(n × m) to represent the second, and O(n2) to represent the third and fourth, where n
is x.length and m is y.length. The symbol O (which you will see in a variety of typefaces and
styles in computer science literature) can be thought of as an abbreviation for “order of mag-
nitude.” This notation is called big‐O notation.

Often, a simple way to determine the big‐O of an algorithm or program is to look at the
loops and to see whether the loops are nested. Assuming that the loop body consists only of
simple statements, a single loop is O(n), a pair of nested loops is O(n2), a nested loop pair
inside another is O(n3), and so on. However, you also must examine the number of times the
loop executes.

Consider the following:
for (i = 1; i < x.length; i *= 2) {
 // Do something with x[i]
}

The loop body will execute k − 1 times, with i having the following values: 1, 2, 4, 8, 16,
32, . . ., 2k until 2k is greater than x.length. Since 2k − 1 = x.length < 2k and log22

k is k, we
know that k − 1 = log2(x.length) < k. Thus, we say that this loop is O(log n). The logarithm
function grows slowly. The log to the base 2 of 1,000,000 is approximately 20. Typically, in
analyzing the running time of algorithms, we use logarithms to the base 2.

Formal Definition of Big-O
Consider a program that is structured as follows:

for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 Simple Statement
 }
}
for (int k = 0; i < n; k++) {
 Simple Statement 1
 Simple Statement 2
 Simple Statement 3
 Simple Statement 4
 Simple Statement 5
}
Simple Statement 6
Simple Statement 7
...
Simple Statement 30

Let us assume that each Simple Statement takes one unit of time and that the for statements
are free. The nested loop executes a Simple Statement n2 times. Then five Simple Statements
are executed n times in the loop with control variable k. Finally, 25 Simple Statements are
executed after this loop. We would then conclude that the expression

T()n n n= + +2 5 25
shows the relationship between processing time and n (the number of data items processed
in the loop), where T(n) represents the processing time as a function of n. It should be clear
that the n2 term dominates as n becomes large.

Koffman-c02.indd 57 10/30/2015 7:38:53 PM

58 Chapter 2 Lists and the Collections Framework

In terms of T(n), formally, the big‐O notation
T() (f())n n= O

means that there exist two constants, n0 and c, greater than zero, and a function, f(n), such
that for all n > n0, cf(n) ≥ T(n). In other words, as n gets sufficiently large (larger than n0),
there is some constant c for which the processing time will always be less than or equal to
cf(n), so cf(n) is an upper bound on the performance. The performance will never be worse
than cf(n) and may be better.

If we can determine how the value of f(n) increases with n, we know how the processing time
will increase with n. The growth rate of f(n) will be determined by the growth rate of the
fastest‐growing term (the one with the largest exponent), which in this case is the n2 term.
This means that the algorithm in this example is an O(n2) algorithm rather than an O(n2 +
5n + 25) algorithm. In general, it is safe to ignore all constants and drop the lower‐order
terms when determining the order of magnitude for an algorithm.

EXAMPLE 2 .5 Given T(n) = n2 + 5n + 25, we want to show that this is indeed O(n2). Thus, we want to show
that there are constants n0 and c such that for all n > n0, cn2 > n2 + 5n + 25.

One way to do this is to find a point where
cn n n2 2 5 25= + +

If we let n be n0 and solve for c, we get

c n n= + +1 5 250 0
2/ /

We can evaluate the expression on the right easily when n0 is 5(1 + 5/5 + 25/25). This gives
us a c of 3. So 3n2 > n2 + 5n + 25 for all n greater than 5, as shown in Figure 2.1.

1 20
0

20

40

60

80

100

120

140

160

180

200

3 4 5 6 7 8
n

f(
n)

3n2

n2 + 5n + 25

F I G U R E 2 . 1

3n2 versus n2 + 5n + 25

Koffman-c02.indd 58 10/30/2015 7:38:55 PM

2.1 Algorithm Efficiency and Big-O 59

EXAMPLE 2 .6 Consider the following program loop:

for (int i = 0; i < n ‐ 1; i++) {
 for (int j = i + 1; j < n; j++) {

 3 simple statements
 }
}

The first time through the outer loop, the inner loop is executed n − 1 times; the next time,
n − 2; and the last time, once. The outer loop is executed n times. So we get the following
expression for T(n):

3 1 3 2 3 2 3 1() () () ()n n . . .

We can factor out the 3 to get

3 1 2 2 1(() ())n n . . .

The sum 1 2 2 1· · · () ()n n (in parentheses above) is equal to

n n2

2

Thus, our final T n() is

T n n n() 1 5 1 52. .

This polynomial is zero when n is 1. For values greater than 1, 1.5n2 is always greater than
1.5n2 − 1.5n. Therefore, we can use 1 for n0 and 1.5 for c to conclude that our T(n) is O(n2)
(see Figure 2.2).

20

15

10

5

0

5

f(
n)

1.5n2

1.5n2 – 1.5n

n

20 1 43

F I G U R E 2 . 2

1.5n2 versus 1.5n2 – 1.5n

If T(n) is the form of a polynomial of degree d (the highest exponent), then it is O(nd). A
mathematically rigorous proof of this is beyond the scope of this text. An intuitive proof is
demonstrated in the previous two examples. If the remaining terms have positive coefficients,
find a value of n where the first term is equal to the remaining terms. As n gets bigger than
this value, the nd term will always be bigger than the remaining terms.

Koffman-c02.indd 59 10/30/2015 7:38:56 PM

60 Chapter 2 Lists and the Collections Framework

We use the expression O(1) to represent a constant growth rate. This is a value that doesn’t
change with the number of inputs. The simple steps all represent O(1). Any finite number of
O(1) steps is still considered O(1).

Summary of Notation
In this section, we have used the symbols T(n), f(n), and O(f(n)). Their meaning is summarized
in Table 2.1.

TA B L E 2 . 1

Symbols Used in Quantifying Software Performance

Symbol Meaning

T(n) The time that a method or program takes as a function of the number of
inputs, n. We may not be able to measure or determine this exactly

f(n) Any function of n. Generally, f(n) will represent a simpler function than
T(n), for example, n2 rather than 1.5n2 – 1.5n

O(f(n)) Order of magnitude. O(f(n)) is the set of functions that grow no faster than
f(n). We say that T(n) = O(f(n)) to indicate that the growth of T(n) is
bounded by the growth of f(n)

TA B L E 2 . 2

Common Growth Rates

Big‐O Name

O(1) Constant

O(log n) Logarithmic

O(n) Linear

O(n log n) Log‐linear

O(n2) Quadratic

O(n3) Cubic

O(2n) Exponential

O(n!) Factorial

Figure 2.3 shows the growth rate of a logarithmic, a linear, a log‐linear, a quadratic, a cubic, and
an exponential function by plotting f(n) for a function of each type. Note that for small values
of n, the exponential function is smaller than all of the others. As shown, it is not until n reaches
20 that the linear function is smaller than the quadratic. This illustrates two points. For small
values of n, the less efficient algorithm may be actually more efficient. If you know that you are
going to process only a limited amount of data, the O(n2) algorithm may be much more appro-
priate than the O(n log n) algorithm that has a large constant factor. However, algorithms with
exponential growth rates can start out small but very quickly grow to be quite large.

Comparing Performance
Throughout this text, as we discuss various algorithms, we will discuss how their execution
time or storage requirements grow as a function of the problem size using this big‐O nota-
tion. Several common growth rates will be encountered and are summarized in Table 2.2.

Koffman-c02.indd 60 10/30/2015 7:38:56 PM

2.1 Algorithm Efficiency and Big-O 61

15,000

10,000

5,000

0
200 40

Cubic

Log-linear

Linear

Logarithmic

Quadratic

60

Exponential

f(
n)

n

F I G U R E 2 . 3

Different Growth Rates

The raw numbers in Figure 2.3 can be deceiving. Part of the reason is that big‐O notation
ignores all constants. An algorithm with a logarithmic growth rate O(log n) may be more com-
plicated to program, so it may actually take more time per data item than an algorithm with a
linear growth rate O(n). For example, at n = 25, Figure 2.3 shows that the processing time is
approximately 1800 units for an algorithm with a logarithmic growth rate and 2500 units for
an algorithm with a linear growth rate. Comparisons of this sort are pretty meaningless. The
logarithmic algorithm may actually take more time to execute than the linear algorithm for this
relatively small data set. Again, what is important is the growth rate of these two kinds of algo-
rithms, which tells you how the performance of each kind of algorithm changes with n.

EXAMPLE 2 .7 Let’s look at how growth rates change as we double the value of n (say, from n = 50 to
n = 100). The results are shown in Table 2.3. The third column gives the ratio of processing
times for the two different data sizes. For example, it shows that it will take 2.35 times as long
to process 100 numbers as it would to process 50 numbers with an O(n log n) algorithm.

TA B L E 2 . 3

Effects of Different Growth Rates

O(f(n)) f(50) f(100) f(100)/f(50)

O(1) 1 1 1

O(log n) 5.64 6.64 1.18

O(n) 50 100 2

O(n log n) 282 664 2.35

O(n2) 2500 10,000 4

O(n3) 12,500 100,000 8

O(2n) 1.126 × 1015 1.27 × 1030 1.126 × 1015

O(n!) 3.0 × 1064 9.3 × 1057 3.1 × 1093

Koffman-c02.indd 61 10/30/2015 7:38:56 PM

62 Chapter 2 Lists and the Collections Framework

Algorithms with Exponential and Factorial Growth Rates
Algorithms with exponential and factorial (even faster) growth rates have an effective
practical upper limit on the size of problem they can be used for, even with faster and faster
computers. For example, if we have an O(2n) algorithm that takes an hour for 100 inputs,
adding the 101st input will take a second hour, adding 5 more inputs will take 32 hours
(more than a day!), and adding 14 inputs will take 16,384 hours, which is almost 2 years!
This relation is the basis for cryptographic algorithms—algorithms that encrypt text using a
special key to make it unreadable by anyone who intercepts it and does not know the key.
Encryption is used to provide security for sensitive data sent over the Internet. Some crypto-
graphic algorithms can be broken in O(2n) time, where n is the number of bits in the key. A
key length of 40 bits is considered breakable by a modern computer, but a key length of 100
(60 bits longer) is not because the key with a length of 100 bits will take approximately a
billion–billion (1018) times as long as the 40-bit key to crack.

E X E R C I S E S F O R S E C T I O N 2 . 1

S E L F ‐ C H E C K

1. Determine how many times the output statement is executed in each of the following frag-
ments. Indicate whether the algorithm is O(n) or O(n2).

a. for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 System.out.println(i + " " + j);

b. for (int i = 0; i < n; i++)
 for (int j = 0; j < 2; j++)
 System.out.println(i + " " + j);

c. for (int i = 0; i < n; i++)
 for (int j = n ‐ 1; j >= i; j‐‐)
 System.out.println(i + " " + j);

d. for (int i = 1; i < n; i++)
 for (int j = 0; j < i; j++)
 if (j % i == 0)
 System.out.println(i + " " + j);

2. For the following T(n), find values of n0 and c such that cn3 is larger than T(n) for all n
larger than n0.

T()n n n n3 25 20 10

3. How does the performance grow as n goes from 2000 to 4000 for the following? Answer
the same question as n goes from 4000 to 8000. Provide tables similar to Table 2.3.
a. O(log n)
b. O(n)
c. O(n log n)
d. O(n2)
e. O(n3)

4. According to the plots in Figure 2.3, what are the processing times at n = 20 and at
n = 40 for each of the growth rates shown?

P R O G R A M M I N G

1. Write a program that compares the values of y1 and y2 in the following expressions for
values of n up to 100 in increments of 10. Does the result surprise you?
y1 = 100 * n + 10
y2 = 5 * n * n + 2

Koffman-c02.indd 62 10/30/2015 7:38:57 PM

2.2 The List Interface and ArrayList Class 63

2.2 The List Interface and ArrayList Class

An array is an indexed data structure, which means you can select its elements in arbitrary
order as determined by the subscript value. You can also access the elements in sequence using
a loop that increments the subscript. However, you can’t do the following with an array object:

Increase or decrease its length, which is fixed.
Add an element at a specified position without shifting the other elements to make room.
Remove an element at a specified position without shifting the other elements to fill in the
resulting gap.

The classes that implement the Java List interface (part of Java API java.util) all provide
methods to do these operations and more. Table 2.4 shows some of the methods in the Java
List interface.

These methods perform the following operations:

Return a reference to an element at a specified location (method get).
Find a specified target value (method get).
Add an element at the end of the list (method add).
Insert an element anywhere in the list (method add).
Remove an element (method remove).
Replace an element in the list with another (method set).
Return the size of the list (method size).
Sequentially access all the list elements without having to manipulate a subscript.

The symbol E in Table 2.4 is a type parameter. Type parameters are analogous to method
parameters. In the declaration of an interface or class, the type parameter represents the data
type of all objects stored in a collection.

Although all of the classes we study in this chapter support the operations in Table 2.4, they
do not do them with the same degree of efficiency. The kinds of operations you intend to per-
form in a particular application should influence your decision as to which List class to use.

One feature that the array data structure provides that these classes don’t is the ability to
store primitive‐type values. The List classes all store references to Objects, so all primitive‐
type values must be wrapped in objects. Autoboxing facilitates this.

Figure 2.4 shows an overview of the List interface and the four actual classes that implement
it. We will study the ArrayList and LinkedList classes in this chapter; we will study the Stack

TA B L E 2 . 4

Methods of Interface java.util.List<E>

Method Behavior

public E get(int index) Returns the data in the element at position index

public E set(int index, E anEntry) Stores a reference to anEntry in the element at position index. Returns
the data formerly at position index

public int size() Gets the current size of the List

public boolean add(E anEntry) Adds a reference to anEntry at the end of the List. Always returns true

public void add(int index, E anEntry) Adds a reference to anEntry, inserting it before the item at position index

int indexOf(E target) Searches for target and returns the position of the first occurrence, or –1
if it is not in the List

E remove(int index) Removes the entry formerly at position index and returns it

Koffman-c02.indd 63 10/30/2015 7:38:57 PM

64 Chapter 2 Lists and the Collections Framework

class Chapter 4. Class Vector has been deprecated, which means it is included for historical
reasons. Deprecated classes have been replaced by better classes and should not be used in
new applications. We will briefly discuss the RandomAccess interface and the two abstract
classes AbstractList and AbstractSequentialList in Section 2.10.

The ArrayList Class
The simplest class that implements the List interface is the ArrayList class. An ArrayList
object is an improvement over an array object in that it supports all of the operations just
listed. ArrayList objects are used most often when a programmer wants to be able to grow a
list by adding new elements to the end but still needs the capability to access the elements
stored in the list in arbitrary order. These are the features we would need for an e‐mail
address book application: New entries should be added at the end, and we would also need
to find e‐mail addresses for entries already in the address book. The size of an ArrayList
automatically increases as new elements are added to it, and the size decreases as elements are
removed. An ArrayList object has an instance method size that returns its current size.

Each ArrayList object has a capacity, which is the number of elements it can store. If you add
a new element to an ArrayList whose current size is equal to its capacity, the capacity is
automatically increased.

‹‹interface››
RandomAccess

‹‹interface››
List

ArrayList Vector

AbstractList

AbstractSequentialList

Stack LinkedList

F I G U R E 2 . 4

The java.util.List

Interface and Its

Implementers

EXAMPLE 2 .8 The Statements
 List<String> yourList;
 yourList = new ArrayList<>();

 List<String> myList = new ArrayList<>();

declare List variables myList and yourList whose elements will reference String objects. The
actual lists referenced by myList and yourList are ArrayList<String> objects. Variable your-
List is declared as type List in the first statement and then it is created as an ArrayList in the

 F O R P Y T H O N P R O G R A M M E R S

The Python list class is similar to the Java ArrayList class. Both can store a collection of
objects and both automatically expand when extra space is needed. Both have methods
to add elements, insert elements, and get the list length. However, you cannot use array
index notation (e.g., scores[3]) with an ArrayList but you can with a Python list.

Koffman-c02.indd 64 10/30/2015 7:38:57 PM

2.2 The List Interface and ArrayList Class 65

The new size is 5. The strings formerly referenced by the elements with subscripts 2 and 3 are
now referenced by the elements with subscripts 3 and 4. This is the same as what happens
when someone cuts into a line of people waiting to buy tickets; everyone following the per-
son who cuts in moves back one position in the line.

The bottom diagram in Figure 2.5 shows the effect of the statement
myList.add("Dopey");

which adds a reference to "Dopey" at the end of the ArrayList. The size of myList is now 6.

Similarly, if you remove an element from an ArrayList object, the size automatically decreases,
and the elements following the one removed shift over to fill the vacated space. This is the
same as when someone leaves a ticket line; the people in back all move forward. Here is
object myList after using the statement

myList.remove(1);

After removal of "Awful"

"Bashful" "Jumpy" "Happy""Doc" "Dopey"

[0] [1] [2] [3] [4]

myList =

to remove the element with subscript 1. Note that the strings formerly referenced by sub-
scripts 2 through 5 are now referenced by subscripts 1 through 4 (in the darker color), and
the size has decreased by 1.

Even though an ArrayList is an indexed collection, you can’t access its elements using a sub-
script. Instead, you use the get method to access its elements. For example, the statement

String dwarf = myList.get(2)

stores a reference to the string object "Jumpy" in variable dwarf, without changing myList.

second statement. The third statement both declares the type of myList (List) and creates it
as an ArrayList. Initially, myList is empty; however, it has an initial capacity of 10 elements
(the default capacity).

The statements
myList.add("Bashful");
myList.add("Awful");
myList.add("Jumpy");
myList.add("Happy");

add references to four strings as shown in the top diagram of Figure 2.5. The value of myList.
size() is now 4.

The middle diagram of Figure 2.5 shows ArrayList object myList after the insertion of the
reference to "Doc" at the element with subscript 2:

myList.add(2, "Doc");

myList =

After insertion of "Doc" before the third element

After insertion of "Dopey" at the end

Original List

"Bashful"

[0] [1] [2] [3]

"Awful" "Jumpy" "Happy"

"Bashful" "Awful" "Jumpy" "Happy"

"Bashful" "Awful" "Jumpy" "Happy""Doc"

"Doc" "Dopey"

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4] [5]

myList =

myList =
F I G U R E 2 . 5

Insertion into an

ArrayList

Koffman-c02.indd 65 10/30/2015 7:38:58 PM

66 Chapter 2 Lists and the Collections Framework

You use the set method to store a value in an ArrayList. The method call
myList.set(2, "Sneezy")

stores a reference to string "Sneezy" at index 2, replacing the reference to string "Jumpy".
However, variable dwarf would still reference the string "Jumpy".

After replacing "Jumpy" with"Sneezy"

"Bashful" "Sneezy" "Happy""Doc" "Dopey"

[0] [1] [2] [3] [4]

myList =

You can also search an ArrayList. The method call
myList.indexOf("Jumpy")

would return –1 after the reference to "Jumpy" was replaced, indicating an unsuccessful
search. The method call

myList.indexOf("Sneezy")

would return 2.

 P I T F A L L

Using Subscripts with an Arraylist
If you use a subscript with an ArrayList (e.g., myList[i]), you will get the syntax error
array type required for [] but ArrayList found. This means that subscripts can be
used only with arrays, not with indexed collections.

Generic Collections
The statement

List<String> myList = new ArrayList<String>();

uses a language feature introduced in Java 5.0 called generic collections (or generics). Generics
allow you to define a collection that contains references to objects of a specific type. The dec-
laration for myList specifies that it is a List of String where String is a type parameter.
Furthermore, myList references an ArrayList<String> object. Therefore, only references to
objects of type String can be stored in myList, and all items retrieved would be of type String.

SYNTAX Creating a Generic Collection
FORM:
CollectionClassName<E> variable = new CollectionClassName<>();
CollectionClassName<E> variable = new CollectionClassName<E>();

EXAMPLE:
List<Person> people = new ArrayList<>();
List<String> myList = new ArrayList<String>();
ArrayList<Integer> numList = new ArrayList<>();

MEANING:

An initially empty CollectionClassName<E> object is created that can be used to store
references to objects of type E (the type parameter). The actual object type stored in

Koffman-c02.indd 66 10/30/2015 7:38:58 PM

2.2 The List Interface and ArrayList Class 67

an object of type CollectionClassName<E> is specified when the object is created. If
the CollectionClassName on the left is an interface, the CollectionClassName on the
right must be a class that implements it. Otherwise, it must be the same class or a
subclass of the one on the left.

The examples above show different ways to create an ArrayList. In this text,
we normally specify the interface name on the left of the = operator and the
implementing class name on the right as shown in the first two examples. Since the
type parameter E must be the same on both sides of the assignment operator, Java 7
introduced the diamond operator <> which eliminates the need to specify the type
parameter twice. We will follow this convention. In some cases, we will declare the
variable type in one statement and create it in a later statement.

In earlier versions of Java, generic collections were not supported. In these versions,
you use the statement

 List yourList = new ArrayList();

to create an initially empty ArrayList. Each element of yourList is a type Object
reference. The data types of the actual objects referenced by elements of yourList are
not specified, and in fact, different elements can reference objects of different types.

Use of the adjective “generic” is a bit confusing. A nongeneric collection in Java is
very general in that it can store objects of different data types. A generic collection,
however, can store objects of one specified data type only. Therefore, generics enable
the compiler to do more strict type checking to detect errors at compile time instead
of at run time. They also eliminate the need to downcast from type Object to a specific
type. For these reasons, we will always use generic collections.

 P R O G R A M S T Y L E

The examples above show different ways to create an ArrayList. In this text, we
normally specify the interface name on the left of the = operator and the implementing
class name on the right as shown in the first two examples in the Syntax box above.
Since the type parameter E must be the same on both sides of the assignment
operator, Java 7 introduced the diamond operator <> that eliminates the need to specify
the type parameter twice. We will follow this convention. In some cases, we will
declare the variable type in one statement and create it in a later statement.

 P I T F A L L

Adding Incompatible Type Objects to a Generic Arraylist
The advantage of generics is that the compiler can ensure that all operations involving
objects referenced by a generic ArrayList are “safe” and will not cause exceptions
during run time. Any type of incompatibility will be detected during compilation. If
myList is type ArrayList<String>, the statement

 myList.add(35);

will not compile because 35 (type int) is not compatible with type String.

Koffman-c02.indd 67 10/30/2015 7:38:58 PM

68 Chapter 2 Lists and the Collections Framework

2.3 Applications of ArrayList

We illustrate two applications of ArrayList objects next.

E X E R C I S E S F O R S E C T I O N 2 . 2

S E L F ‐ C H E C K

1. Describe the effect of each of the following operations on object myList as shown at the
bottom of Figure 2.5. What is the value of myList.size() after each operation?
myList.add("Pokey");
myList.add("Campy");
int i = myList.indexOf("Happy");
myList.set(i, "Bouncy");
myList.remove(myList.size() ‐ 2);
String temp = myList.get(1);
myList.set(1, temp.toUpperCase());

P R O G R A M M I N G

1. Write the following static method:
/** Replaces each occurrence of oldItem in aList with newItem. */
public static void replace(ArrayList<String> aList, String oldItem,
 String newItem)

2. Write the following static method:
/** Deletes the first occurrence of target in aList. */
public static void delete(ArrayList<String> aList, String target)

EXAMPLE 2 .9 The following statements create an ArrayList<Integer> object and load it with the values
stored in a type int[] array. The statement

some.add(numsNext);

retrieves a value from array nums (type int[]), automatically wraps it in an Integer object,
and stores a reference to that object in some (type ArrayList<Integer>).
The println statement shows how the list grows as each number is inserted.

List<Integer> some = new ArrayList<>();
int[] nums = {5, 7, 2, 15};
for (int numsNext : nums) {
 some.add(numsNext);
 System.out.println(some);
}

Loop exit occurs after the last Integer object is stored in some. The output displayed by this
fragment follows:

[]

[5, 7]

[5, 7, 2]

[5, 7, 2, 15]

5

Koffman-c02.indd 68 10/30/2015 7:38:58 PM

2.3 Applications of ArrayList 69

A Phone Directory Application
If we want to write a program to store a list of names and phone numbers, we can use class
DirectoryEntry to represent each item in our phone directory.

public class DirectoryEntry {
 String name;
 String number;
}

We can declare an ArrayList<DirectoryEntry> object to store a phone directory (theDirectory)
with our friends’ names and phone numbers:

private List<DirectoryEntry> theDirectory =
 new ArrayList<>();

We can use the statement
theDirectory.add(new DirectoryEntry("Jane Smith", "555‐549‐1234"));

to add an entry to theDirectory. If we want to retrieve the entry for a particular name
(String aName), we can use the statements

int index = theDirectory.indexOf(new DirectoryEntry(aName, ""));

to locate the entry for the person referenced by aName. Method indexOf searches theDirectory by
applying the equals method for class DirectoryEntry to each element of theDirectory. We are
assuming that method DirectoryEntry.equals compares the name field of each element to the
name field of the argument of indexOf (an anonymous object with the desired name). The
statement

if (index != ‐1)
 dE = theDirectory.get(index);
else
 dE = null;

uses ArrayList.get to retrieve the desired entry (name and phone number) if found and
stores a reference to it in dE (type DirectoryEntry). Otherwise, null is stored in dE.

The following fragment computes and displays the sum (29) of the Integer object values in
ArrayList some. Note that we can use the enhanced for loop with an array and an ArrayList.
We will talk more about this in Section 2.7.

int sum = 0;
for (Integer someText : some) {
 sum += someNext;
}

System.out.println("sum is " + sum);

Although it may seem wasteful to carry out these operations when you already have an array
of ints, the purpose of this example is to illustrate the steps needed to process a collection of
Integer objects referenced by an ArrayList<Integer>.

E X E R C I S E S F O R S E C T I O N 2 . 3

S E L F ‐ C H E C K

1. What does the following code fragment do?
List<Double> myList = new ArrayList<>();
myList.add(3.456);
myList.add(5.0);
double result = myList.get(0) + myList.get(1);
System.out.println("Result is " + result);

Koffman-c02.indd 69 10/30/2015 7:38:58 PM

70 Chapter 2 Lists and the Collections Framework

2.4 Implementation of an ArrayList Class

We will implement our own version of the ArrayList class called KWArrayList. Just as Java
does for an ArrayList, we use a Java array internally to contain the data of a KWArrayList, as
shown in Figure 2.6. The physical size of the array is indicated by the data field capacity. The
number of data items is indicated by the data field size. The elements between size and
capacity are available for the storage of new items.

P R O G R A M M I N G

1. Write a method addOrChangeEntry for a class that has a data field theDirectory (type
ArrayList<DirectoryEntry>) where class DirectoryEntry is described just before
the exercises. Assume class DirectoryEntry has an accessor method getNumber and a
setter method setNumber.

/** Add an entry to theDirectory or change an existing entry.
 @param aName The name of the person being added or changed
 @param newNumber The new number to be assigned
 @return The old number, or if a new entry, null
 */
public String addOrChangeEntry(String aName, String newNumber) {

2. Write a removeEntry method for the class in programming exercise 1. Use ArrayList meth-
ods indexOf and remove.

/** Remove an entry.
 @param aName The name of the person being removed
 @return The entry removed, or null if there is no entry for aName
 */
public Entry removeEntry(String aName) {

Space occupied
by data

Space available
for new items

0 size capacity – 1

.

F I G U R E 2 . 6

Internal Structure of

KWArrayList

We are assuming the following data fields in the discussion of our KWArrayList class. This is
not exactly how it is done in Java, but it will give you a feel for how to write the class methods.
The constructor shown in the following code allocates storage for the underlying array and
initializes its capacity to 10. We will not provide a complete implementation because we expect
you to use the standard ArrayList class provided by the Java API (package java.util).

We show the definition of a generic class KWArrayList<E> where E is the parameter type. The
actual parameter type is specified when a generic KWArrayList object is declared. The data
type of the references stored in the underlying array theData (type E[]) is also determined
when the KWArrayList object is declared. If no parameter type is specified, the implicit param-
eter type is Object, and the underlying data array is type Object[].

import java.util.*;
/** This class implements some of the methods of the Java ArrayList class. It
 does not implement the List interface.
*/

Koffman-c02.indd 70 10/30/2015 7:38:59 PM

2.4 Implementation of an ArrayList Class 71

public class KWArrayList<E> {
 // Data Fields
 /** The default initial capacity */
 private static final int INITIAL_CAPACITY = 10;

 /** The underlying data array */
 private E[] theData;

 /** The current size */
 private int size = 0;

 /** The current capacity */
 private int capacity = 0;
...

The Constructor for Class KWArrayList<E>
The constructor declaration follows. Because the constructor is for a generic class, the type
parameter <E> is implied but it must not appear in the constructor heading.

public KWArrayList() {
 capacity = INITIAL_CAPACITY;
 theData = (E[]) new Object[capacity];
}

The statement
theData = (E[]) new Object[capacity];

allocates storage for an array with type Object references and then casts this array object to
type E[] so that it is type compatible with variable theData. Because the actual type corre-
sponding to E is not known, the compiler issues the warning message: KWArrayList.java uses
unchecked or unsafe operations. Don’t be concerned about this warning—everything is fine.

 P I T F A L L

Declaring a Generic Array
Rather than use the approach shown in the above constructor, you might try to create a
generic array directly using the statement

 theData = new E[capacity]; // Invalid generic array type.

However, this statement will not compile because Java does not allow you to create an
array with an unspecified type. Remember, E is a type parameter that is not specified
until a generic ArrayList object is created. Therefore, the constructor must create an
array of type Object[] since Object is the superclass of all types and then downcast
this array object to type E[].

 P R O G R A M S T Y L E

Java provides an annotation that enables you to compile the constructor without an
error message. If you place the statement

 @SuppressWarnings("unchecked")

before the constructor, the compiler warning will not appear.

Koffman-c02.indd 71 10/30/2015 7:38:59 PM

72 Chapter 2 Lists and the Collections Framework

The add(E anEntry) Method
We implement two add methods with different signatures. The first appends an item to the
end of a KWArrayList; the second inserts an item at a specified position. If size is less than
capacity, then to append a new item:

a. Insert the new item at the position indicated by the value of size.
b. Increment the value of size.
c. Return true to indicate successful insertion.

This sequence of operations is illustrated in Figure 2.7. The add method is specified in the
Collection interface, which is discussed in Section 2.10. The Collection interface is a super-
interface to the List interface. The add method must return a boolean to indicate whether or
not the insertion is successful. For an ArrayList, this is always true. The old value of size is
in gray; its new value is in black.

If the size is already equal to the capacity, we must first allocate a new array to hold the
data and then copy the data to this new array. The method reallocate (explained shortly)
does this. The code for the add method follows.

public boolean add(E anEntry) {
 if (size == capacity) {
 reallocate();
 }
 theData[size] = anEntry;
 size++;
 return true;
}

Space occupied
by data

Space available
for new items

New value
inserted

0 size capacity – 1

.

size

F I G U R E 2 . 7

Adding an Element to

the End of a

KWArrayList

 P R O G R A M S T Y L E

Using the Postfix (or Prefix) Operator with a Subscript
Some programmers prefer to combine the two statements before return in the add
method and write them as

 theData[size++] = theValue;

This is perfectly valid. Java uses the current value of size as the array subscript and
then increments it. The only difficulty is the fact that two operations are written in one
statement and are carried out in a predetermined order (first access array and then
increment subscript). If you write the prefix operator (++size) by mistake, the subscript
will increase before array access.

Koffman-c02.indd 72 10/30/2015 7:38:59 PM

2.4 Implementation of an ArrayList Class 73

The add(int index, E anEntry) Method
To insert an item into the middle of the array (anywhere but the end), the values that are at
the insertion point and beyond must be shifted over to make room. In Figure 2.8, the arrow
with label 1 shows the first element moved, the arrow with label 2 shows the next element
moved, and so on. This data move is done using the following loop:

for (int i = size; i > index; i‐‐) {
 theData[i] = theData[i – 1];
}

Note that the array subscript starts at size and moves toward the beginning of the array
(down to index + 1). If we had started the subscript at index + 1 instead, we would duplicate
the value at index in each element of the array following it. Before we execute this loop, we
need to be sure that size is not equal to capacity. If it is, we must call reallocate.

After increasing the capacity (if necessary) and moving the other elements, we can then add the
new item. The complete code, including a test for an out‐of‐bounds value of index, follows:

public void add(int index, E anEntry) {
 if (index < 0 || index > size) {
 throw new ArrayIndexOutOfBoundsException(index);
 }
 if (size == capacity) {
 reallocate();
 }
 // Shift data in elements from index to size ‐ 1
 for (int i = size; i > index; i‐‐) {
 theData[i] = theData[i – 1];
 }
 // Insert the new item.
 theData[index] = anEntry;
 size++;
}

k k–1 k–2 k–3 7 6 5 4 3 2 1

index

.

sizesize

F I G U R E 2 . 8

Making Room to Insert

an Item into an Array

The set and get Methods
Methods set and get throw an exception if the array index is out of bounds; otherwise,
method get returns the item at the specified index. Method set inserts the new item (param-
eter newValue) at the specified index and returns the value (oldValue) that was previously
stored at that index.

public E get(int index) {
 if (index < 0 || index >= size) {
 throw new ArrayIndexOutOfBoundsException(index);
 }
 return theData[index];
}

public E set(int index, E newValue) {
 if (index < 0 || index >= size) {
 throw new ArrayIndexOutOfBoundsException(index);
 }

Koffman-c02.indd 73 10/30/2015 7:38:59 PM

74 Chapter 2 Lists and the Collections Framework

 E oldValue = theData[index];
 theData[index] = newValue;
 return oldValue;
}

The remove Method
To remove an item, the items that follow it must be moved forward to close up the space. In
Figure 2.9, the arrow with label 1 shows the first element moved, the arrow with label 2
shows the next element moved, and so on. This data move is done using the for loop in
method remove shown next. The item removed is returned as the method result.

public E remove(int index) {
 if (index < 0 || index >= size) {
 throw new ArrayIndexOutOfBoundsException(index);
 }
 E returnValue = theData[index];
 for (int i = index + 1; i < size; i++) {
 theData[i – 1] = theData[i];
 }
 size‐‐;
 return returnValue;
}

 k–2 k–1 k1 2 3 4

.

index sizesize

F I G U R E 2 . 9

Removing an Item from

an Array

The reallocate Method
The reallocate method creates a new array that is twice the size of the current array and
then copies the contents of the current array into the new one. The Arrays.copyOf method
makes a copy of the given array truncating if the new array is shorter or padding with nulls
if the new array is larger, so that the copy has the specified length. The reference variable
theData is then set to reference this new array. The code is as follows:

private void reallocate() {
 capacity = 2 * capacity;
 theData = Arrays.copyOf(theData, capacity);
}

The reason for doubling is to spread out the cost of copying. We discuss this next.

Performance of the KWArrayList Algorithms
The set and get methods are each a few lines of code and contain no loops. Thus, we say that
these methods execute in constant time, or O(1).

If we insert into (or remove from) the middle of a KWArrayList, then at most n items have to
be shifted. Therefore, the cost of inserting or removing an element is O()n . What if we have
to allocate a larger array before we can insert? Recall that when we reallocate the array, we
double its size. Doubling an array of size n allows us to add n more items before we need to
do another array copy. Therefore, we can add n new items after we have copied over n exist-
ing items. This averages out to 1 copy per add. Because each new array is twice the size of the
previous one, it will take only about 20 reallocate operations to create an array that can
store over a million references (220 is greater than 1,000,000). Therefore, reallocation is effec-
tively an O()1 operation, so the insertion is still O()n .

Koffman-c02.indd 74 10/30/2015 7:39:01 PM

2.5 Single‐Linked Lists 75

2.5 Single‐Linked Lists

The ArrayList has the limitation that the add and remove methods operate in linear (())O n
time because they require a loop to shift elements in the underlying array (see Figures 2.8
and 2.9). In this section, we introduce a data structure, the linked list, that overcomes this
limitation by providing the ability to add or remove items anywhere in the list in constant
(())O 1 time. A linked list is useful when you need to insert and remove elements at arbitrary
locations (not just at the end) and when you do frequent insertions and removals.

One example would be maintaining an alphabetized list of students in a course at the begin-
ning of a semester while students are adding and dropping courses. If you were using an
ArrayList, you would have to shift all names that follow the new person’s name down one
position before you could insert a new student’s name. Figure 2.10 shows this process. The
names in gray were all shifted down when Barbara added the course. Similarly, if a student
drops the course, the names of all students after the one who dropped (in gray in Figure 2.11)
would be shifted up one position to close up the space.

Another example would be maintaining a list of students who are waiting to register for a
course. Instead of having the students waiting in an actual line, you can give each student a

Before adding Browniten, Barbara
Abidoye, Olandunni
Boado, Annabelle
Butler, James
Chee, Yong-Han
Debaggis, Tarra
.
.
.

After adding Browniten, Barbara
Abidoye, Olandunni
Boado, Annabelle
Browniten, Barbara
Butler, James
Chee, Yong-Han
Debaggis, Tarra
.
.
.

F I G U R E 2 . 1 0

Removing a Student

from a Class List

E X E R C I S E S F O R S E C T I O N 2 . 4

S E L F ‐ C H E C K

1. Trace the execution of the following:
int[] anArray = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = 3; i < anArray.length – 1; i++)
 anArray[i + 1] = anArray[i];

 and the following:
int[] anArray = {0, 1, 2, 3, 4, 5, 6, 7};
for (int i = anArray.length – 1; i > 3; i‐‐)
 anArray[i] = anArray[i – 1];

 What are the contents of anArray after the execution of each loop?

2. Write statements to remove the middle object from a KWArrayList and place it at the end.

P R O G R A M M I N G

1. Implement the indexOf method of the KWArrayList<E> class.

2. Provide a constructor for class KWArrayList<E> that accepts an int argument that repre-
sents the initial array capacity. Use this instead of INITIAL_CAPACITY.

Koffman-c02.indd 75 10/30/2015 7:39:01 PM

76 Chapter 2 Lists and the Collections Framework

number, which is the student’s position in the line. If someone drops out of the line, everyone
with a higher number gets a new number that is 1 lower than before. If someone cuts into
the line because they “need the course to graduate,” everyone after this person gets a new
number, which is one higher than before. The person maintaining the list is responsible for
giving everyone their new number after a change. Figure 2.12 illustrates what happens when
Alice is inserted and given the number 1: Everyone whose number is ≥ 1 gets a new number.
This process is analogous to maintaining the names in an ArrayList; each person’s number
is that person’s position in the list, and some names in the list are shifted after every change.

Before inserting Alice at position 1
0. Warner, Emily
1. Dang, Phong
2. Feldman, Anna
3. Barnes, Aaron
4. Torres, Kristopher
.
.
.

After inserting Alice at position 1
0. Warner, Emily
1. Franklin, Alice
2. Dang, Phong
3. Feldman, Anna
4. Barnes, Aaron
5. Torres, Kristopher
.
.
.

F I G U R E 2 . 1 2

Inserting into a

Numbered List of

Students Waiting to

Register

Before inserting Alice

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
.
.
.

Person to call
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
...
.
.
.

After inserting Alice

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
.
.
.
Franklin, Alice

Person to call
Franklin, Alice
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
...
.
.
.

Dang, Phong

F I G U R E 2 . 1 3

Inserting into a List

Where Each Student

Knows Who Is Next

Before dropping Boado, Annabelle
Abidoye, Olandunni
Boado, Annabelle
Browniten, Barbara
Butler, James
Chee, Yong-Han
Debaggis, Tarra
.
.
.

After dropping Boado, Annabelle
Abidoye, Olandunni
Browniten, Barbara
Butler, James
Chee, Yong-Han
Debaggis, Tarra
.
.
.

F I G U R E 2 . 1 1

Removing a Student

from a Class List

A better way to do this would be to give each person the name of the next person in line,
instead of his or her own position in the line (which can change frequently). To start the reg-
istration process, the person who is registering students calls the person who is at the head of
the line. After he or she finishes registration, the person at the head of the line calls the next
person, and so on. Now what if person A lets person B cut into the line after her? Because B
will now register after A, person A must call B. Also, person B must call the person who origi-
nally followed A. Figure 2.13 illustrates what needs to be done to insert Alice in the list after
Emily. Only the two highlighted entries need to be changed (Emily must call Alice instead of
Phong, and Alice must call Phong). Although Alice is shown at the bottom of Figure 2.13
(third column), she is really the second student in the list. The first four students in the list are
Emily Warner, Alice Franklin, Phong Dang, and Anna Feldman.

What happens if someone drops out of our line? In this case, the name of the person who
follows the one who drops out must be given to the person who comes before the one who
drops out. This is illustrated in Figure 2.14. If Aaron drops out, only one entry needs to be
changed (Anna must call Kristopher instead of Aaron).

Koffman-c02.indd 76 10/30/2015 7:39:02 PM

2.5 Single‐Linked Lists 77

Using a linked list is analogous to the process just discussed and illustrated in Figures 2.13
and 2.14 for storing our list of student names. After we find the position of a node to be
inserted or removed, the actual insertion or removal is done in constant time and no shifts are
required. Each element in a linked list, called a node, stores information and a link to the next
node in the list. For example, for our list of students in Figure 2.14, the information "Warner,
Emily" would be stored in the first node, and the link to the next node would reference a node
whose information part was "Franklin, Alice". Here are the first three nodes of this list:

"Warner, Emily" ==> "Franklin, Alice" ==> "Dang, Phong"

We discuss how to represent and manipulate a linked list next.

A List Node
A node is a data structure that contains a data item and one or more links. A link is a refer-
ence to a node. A UML (Unified Modeling Language) diagram of this relationship is shown
in Figure 2.15. This shows that a Node contains a data field named data of type E and a refer-
ence (as indicated by the open diamond) to a Node. The name of the reference is next, as
shown on the line from the Node to itself.

Figure 2.16 shows four nodes linked together to form the list "Tom" ==> "Dick" ==> "Harry"
==> "Sam". In this figure, we show that data references a String object. In subsequent figures,
we will show the string value inside the Node. We will explain the purpose of the box in the
left margin when we define class KWSingleLinkedList.

Next, we define a class Node<E> (see Listing 2.1) as an inner class that can be placed inside a
generic list class. When each node is created, the type parameter E specifies the type of data
stored in the node.

Before dropping Aaron

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
.
.
.
Franklin, Alice

Person to call
Franklin, Alice
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
. . .
.
.
.
Dang, Phong

After dropping Aaron

Person in line

Warner, Emily
Dang, Phong
Feldman, Anna
Barnes, Aaron
Torres, Kristopher
.
.
.

Franklin, Alice

Person to call

Franklin, Alice
Feldman, Anna
Torres, Kristopher
Torres, Kristopher
. . .
.
.
.

Dang, Phong

F I G U R E 2 . 1 4

Removing a Student

from a List Where

Each Student Knows

Who Is Next

Node

E data

next

F I G U R E 2 . 1 5

Node and Link

Node

next =
data =

Node Node Node

String

value = "Tom"

next = null
data =

next =
data =

next =
data =

String

value = "Dick"

String

value = "Harry"

String

value = "Sam"

KWSingleLinkedList

head =
size = 4

F I G U R E 2 . 1 6

Nodes in a Linked List

Koffman-c02.indd 77 10/30/2015 7:39:02 PM

78 Chapter 2 Lists and the Collections Framework

The keyword static in the class header indicates that the Node<E> class will not reference its
outer class. (It can’t because it has no methods other than constructors.) In the Java API
documentation, static inner classes are also called nested classes.

Generally, we want to keep the details of the Node class private. Thus, the qualifier private is
applied to the class as well as to the data fields and the constructor. However, the data fields
and methods of an inner class are visible anywhere within the enclosing class (also called the
parent class).

The first constructor stores the data passed to it in the instance variable data of a new node. It
also sets the next field to null. The second constructor sets the next field to reference the same
node as its second argument. We didn’t define a default constructor because none is needed.

Connecting Nodes
We can construct the list shown in Figure 2.16 using the following sequence of statements:

Node<String> tom = new Node<>("Tom");
Node<String> dick = new Node<>("Dick");
Node<String> harry = new Node<>("Harry");
Node<String> sam = new Node<>("Sam");
tom.next = dick;
dick.next = harry;
harry.next = sam;

The assignment statement
tom.next = dick;

stores a reference (link) to the node with data "Dick" in the variable next of node tom.

L I S T I N G 2 . 1

An Inner Class Node

/** A Node is the building block for a single‐linked list. */
private static class Node<E> {
 // Data Fields
 /** The reference to the data. */
 private E data;
 /** The reference to the next node. */
 private Node<E> next;

 // Constructors
 /** Creates a new node with a null next field.
 @param dataItem The data stored
 */
 private Node(E dataItem) {
 data = dataItem;
 next = null;
 }

 /** Creates a new node that references another node.
 @param dataItem The data stored
 @param nodeRef The node referenced by new node
 */
 private Node(E dataItem, Node<E> nodeRef) {
 data = dataItem;
 next = nodeRef;
 }
}

Koffman-c02.indd 78 10/30/2015 7:39:02 PM

2.5 Single‐Linked Lists 79

A Single-Linked List Class
Java does not have a class that implements single‐linked lists. Instead, it has a more general
double‐linked list class, which we will be discussed in the next section. However, we will create
a KWSingleLinkedList class to show you how these operations could be implemented.
 /** Class to represent a linked list with a link from each node to the next
 node. SingleLinkedList does not implement the List interface.
 */
 public class KWSingleLinkedList<E> {
 /** Reference to list head. */
 private Node<E> head = null;
 /** The number of items in the list */
 private int size = 0;
 ...

A new KWSingleLinkedList object has two data fields, head and size, with initial values null
and 0, respectively, as shown in the diagram in the margin. The data field head will reference
the first list node called the list head. Method addFirst below inserts one element at a time
to the front of the list, thereby changing the node pointed to by head. In the call to the con-
structor for Node, the argument head references the current first list node. A new node is cre-
ated, which is referenced by head and is linked to the previous list head. Variable data of the
new list head references item.

/** Add an item to the front of the list.
 @param item The item to be added
 */
public void addFirst(E item) {
 head = new Node<>(item, head);
 size++;
}

The following fragment creates a linked list names and builds the list shown in Figure 2.16
using method addFirst:

KWSingleLinkedList<String> names = new KWSingleLinkedList<>();
names.addFirst("Sam");
names.addFirst("Harry");
names.addFirst("Dick");
names.addFirst("Tom");

Inserting a Node in a List
If we have a reference harry to node "Harry", we can insert a new node, "Bob", into the list
after "Harry" as follows:

Node<String> bob = new Node<>("Bob");
bob.next = harry.next; // Step 1
harry.next = bob; // Step 2

The linked list now is as shown in Figure 2.17. We show the number of the step that created
each link alongside it.

We can generalize this by writing the method addAfter as follows:
/** Add a node after a given node
 @param node The node preceding the new item
 @param item The item to insert
 */
private void addAfter(Node<E> node, E item) {
 node.next = new Node<>(item, node.next);
 size++;
}

KWSingleLinkedList

head = null
size = 0

Koffman-c02.indd 79 10/30/2015 7:39:03 PM

80 Chapter 2 Lists and the Collections Framework

We declare this method private since it should not be called from outside the class. This is
because we want to keep the internal structure of the class hidden. Such private methods are
known as helper methods because they will help implement the public methods of the class.
Later we will see how addAfter is used to implement the public add methods.

Removing a Node
If we have a reference, tom, to the node that contains "Tom", we can remove the node that
follows "Tom":

tom.next = tom.next.next;

The list is now as shown in Figure 2.18. Note that we did not start with a reference to "Dick"
but instead began with a reference to "Tom". To delete a node, we need a reference to the node
that precedes it, not the node being deleted. (Recall from our registration list example that
the person in front of the one dropping out of line must be told to call the person who follows
the one who is dropping out.)

Again, we can generalize this by writing the removeAfter method:
/** Remove the node after a given node
 @param node The node before the one to be removed
 @return The data from the removed node, or null
 if there is no node to remove
 */

NodeNode Node Node Node

next =
data = "Tom"

next =
data = "Dick"

next =
data = "Harry"

next = null
data = "Sam"

next =
data = "Bob"

KWSingleLinkedList

head =
size = 5 4

F I G U R E 2 . 1 8

After Removing "Dick"

Node Node Node Node

next =
data = "Tom"

next =
data = "Dick"

next =
data = "Harry"

next = null
data = "Sam"

Node

next =
data = "Bob"

Step 1

Step 2

KWSingleLinkedList

head =
size = 4 5

F I G U R E 2 . 1 7

After Inserting "Bob"

Koffman-c02.indd 80 10/30/2015 7:39:03 PM

2.5 Single‐Linked Lists 81

private E removeAfter(Node<E> node) {
 Node<E> temp = node.next;
 if (temp != null) {
 node.next = temp.next;
 size‐‐;
 return temp.data;

 } else {
 return null;
 }
}

The removeAfter method works on all nodes except for the first one. For that we need a spe-
cial method, removeFirst:

/** Remove the first node from the list
 @return The removed node's data or null if the list is empty
 */
private E removeFirst() {
 Node<E> temp = head;
 if (head != null) {
 head = head.next;
 }
 // Return data at old head or null if list is empty
 if (temp != null) {
 size‐‐;
 return temp.data;
 } else {
 return null;
 }
}

Completing the SingleLinkedList Class
We conclude our illustration of the single‐linked list data structure by showing how it can be
used to implement a limited subset of the methods required by the List interface (see Table 2.5).
Specifically, we will write the get, set, and add, methods. Methods size, indexOf, and remove
are left as exercises. Recall from the ArrayList class that each of these methods takes an index
parameter, but we showed above that the methods to add and remove a node need a reference
to a node. We need an additional helper method to get a node at a given index.

TA B L E 2 . 5

Methods of Interface java.util.List<E>

Method Behavior

public E get(int index) Returns the data in the element at position index

public E set(int index, E anEntry) Stores a reference to anEntry in the element at position index. Returns
the data formerly at position index

public int size() Gets the current size of the List

public boolean add(E anEntry) Adds a reference to anEntry at the end of the List. Always returns
true

public void add(int index, E anEntry) Adds a reference to anEntry, inserting it before the item at position
index

int indexOf(E target) Searches for target and returns the position of the first occurrence, or
–1 if it is not in the List

E remove(int index) Removes the entry formerly at position index and returns it

Koffman-c02.indd 81 10/30/2015 7:39:03 PM

82 Chapter 2 Lists and the Collections Framework

/** Find the node at a specified position
 @param index The position of the node sought
 @return The node at index or null if it does not exist
 */
private Node<E> getNode(int index) {

 Node<E> node = head;
 for (int i = 0; i < index && node != null; i++) {
 node = node.next;
 }
 return node;

}

The get and set Methods
Using the getNode method, the get and set methods are straightforward:

/** Get the data at index
 @param index The position of the data to return
 @return The data at index
 @throws IndexOutOfBoundsException if index is out of range
 */
public E get(int index) {

 if (index < 0 || index >= size) {
 throw new IndexOutOfBoundsException(Integer.toString(index));
 }
 Node<E> node = getNode(index);
 return node.data;

}

/** Store a reference to anEntry in the element at position index.
 @param index The position of the item to change
 @param newValue The new data
 @return The data previously at index
 @throws IndexOutOfBoundsException if index is out of range
 */
public E set(int index, E newValue) {

 if (index < 0 || index >= size) {
 throw new IndexOutOfBoundsException(Integer.toString(index));
 }
 Node<E> node = getNode(index);
 E result = node.data;
 node.data = newValue;
 return result;

}

The add Methods
After verifying that the index is in range, the index is checked for the special case of adding
at the first element. If the index is zero, then the addFirst method is used to insert the new
item; otherwise the addAfter method is used. Note that getNode (called before addAfter)
returns a reference to the predecessor of the node to be inserted.

/** Insert the specified item at index
 @param index The position where item is to be inserted
 @param item The item to be inserted
 @throws IndexOutOfBoundsException if index is out of range
 */
public void add(int index, E item) {
 if (index < 0 || index > size) {
 throw new IndexOutOfBoundsException(Integer.toString(index));
 }

Koffman-c02.indd 82 10/30/2015 7:39:03 PM

2.5 Single‐Linked Lists 83

 if (index == 0) {
 addFirst(item);
 } else {
 Node<E> node = getNode(index‐1);
 addAfter(node, item);
 }
}

The List interface also specifies an add method without an index that adds (appends) an item
to the end of a list. It can be easily implemented by calling the add(int index, E item) method
using size as the index.

/** Append item to the end of the list
 @param item The item to be appended
 @return true (as specified by the Collection interface)
 */
public boolean add(E item) {
 add(size, item);
 return true;
}

E X E R C I S E S F O R S E C T I O N 2 . 5

S E L F ‐ C H E C K

1. What is the big-O for the single‐linked list get operation?

2. What is the big‐O for the set operation?

3. What is the big‐O for each add method?

4. Draw a single‐linked list of Integer objects containing the integers 5, 10, 7, and 30 and
referenced by head. Complete the following fragment, which adds all Integer objects in a
list. Your fragment should walk down the list, adding all integer values to sum.
int sum = 0;
Node<Integer> nodeRef = _________________;
while (nodeRef != null) {
 int next = _____________________;
 sum += next;
 nodeRef = __________________;
}

5. For the single‐linked list in Figure 2.16, data field head (type Node<string>) references the
first node. Explain the effect of each statement in the following fragments.
a. head = new Node<>("Shakira", head.next);
b. Node<String> nodeRef = head.next;
 nodeRef.next = nodeRef.next.next;

c. Node<String> nodeRef = head;
 while (nodeRef.next != null)

 nodeRef = nodeRef.next;
 nodeRef.next = new Node<>("Tamika");
d. Node<String> nodeRef = head;
 while (nodeRef != null && !nodeRef.data.equals("Harry"))
 nodeRef = nodeRef.next;

if (nodeRef != null) {
 nodeRef.data = "Sally";
 nodeRef.next = new Node<>("Harry", nodeRef.next.next);

}

Koffman-c02.indd 83 10/30/2015 7:39:03 PM

84 Chapter 2 Lists and the Collections Framework

2.6 Double‐Linked Lists and Circular Lists

Our single‐linked list data structure has some limitations:

Insertion at the front of the list is O(1). Insertion at other positions is O(n), where n is
the size of the list.
We can insert a node only after a node for which we have a reference. For example, to
insert "Bob" in Figure 2.17, we needed a reference to the node containing "Harry". If we
wanted to insert "Bob" before "Sam" but did not have a reference to "Harry", we would
have to start at the beginning of the list and search until we found a node whose next
node was "Sam".
We can remove a node only if we have a reference to its predecessor node. For example,
to remove "Dick" in Figure 2.18, we needed a reference to the node containing "Tom". If
we wanted to remove "Dick" without having this reference, we would have to start at
the beginning of the list and search until we found a node whose next node was "Dick".
We can move in only one direction, starting at the list head, whereas with an ArrayList
we can move forward (or backward) by incrementing (or decrementing) the index.

P R O G R A M M I N G

1. Using the single‐linked list shown in Figure 2.16, and assuming that head references the first
Node and tail references the last Node, write statements to do each of the following:

a. Insert "Bill" before "Tom".
b. Insert "Sue" before "Sam".
c. Remove "Bill".
d. Remove "Sam".

2. Write method size.

3. Write method indexOf.

4. Write method remove. Use helper methods getNode, removeFirst and removeAfter.
Method remove should throw and exception if index is out‐of‐bounds.

5. Write the remove method whose method heading follows.
/** Remove the first occurrence of element item.
 @param item The item to be removed
 @return true if item is found and removed; otherwise, return false.
 */
public boolean remove(E item)

6. Write the following method add for class SingleLinkedList<E> without using any helper
methods.
/** Insert a new item before the one at position index,
 starting at 0 for the list head. The new item is inserted between the one

at position index‐1 and the one formerly at position index.
 @param index The index where the new item is to be inserted
 @param item The item to be inserted
 @throws IndexOutOfBoundsException if the index is out of range
 */
public void add(int index, E item)

Koffman-c02.indd 84 10/30/2015 7:39:04 PM

2.6 Double‐Linked Lists and Circular Lists 85

We can overcome these limitations by adding a reference to the previous node in the Node
class, as shown in the UML class diagram in Figure 2.19. The open diamond indicates that
both prev and next are references whose values can be changed. Our double‐linked list is
shown in Figure 2.20.

Node

E data

nextprev

F I G U R E 2 . 1 9

Double‐Linked List Node UML Diagram

Node Node Node Node

next =
prev = null
data = "Tom"

next =
prev =
data = "Dick"

next =
prev =
data = "Harry"

next = null
prev =
data = "Sam"

F I G U R E 2 . 2 0

A Double‐Linked List

 P I T F A L L

Falling Off the End of a List
If nodeRef is at the last list element and you execute the statement

 nodeRef = nodeRef.next;

nodeRef will be set to null, and you will fall off the end of the list. This is not an error.
However, if you execute this statement again, you will get a NullPointerException,
because nodeRef.next is undefined when nodeRef is null.

The Node Class

The Node class for a double‐linked list has references to the data and to the next and previous
nodes. The declaration of this class follows.
 /** A Node is the building block for a double‐linked list. */
 private static class Node<E> {
 /** The data value. */
 private E data;
 /** The link to the next node. */
 private Node<E> next = null;
 /** The link to the previous node. */
 private Node<E> prev = null;

 /** Construct a node with the given data value.
 @param dataItem The data value
 */
 private Node(E dataItem) {
 data = dataItem;
 }
 }

Koffman-c02.indd 85 10/30/2015 7:39:04 PM

86 Chapter 2 Lists and the Collections Framework

Inserting into a Double‐Linked List
If sam is a reference to the node containing "Sam", we can insert a new node containing
"Sharon" into the list before "Sam" using the following statements. Before the insertion, we
can refer to the predecessor of sam as sam.prev. After the insertion, this node will be refer-
enced by sharon.prev.

Node<String> sharon = new Node<>("Sharon");
// Link new node to its neighbors.
 sharon.next = sam; // Step 1
 sharon.prev = sam.prev; // Step 2
// Link old predecessor of sam to new predecessor.
 sam.prev.next = sharon; // Step 3
// Link to new predecessor.
 sam.prev = sharon; // Step 4

The three nodes affected by the insertion are shown in Figures 2.21 and 2.22. The old links are
shown in black, and the new links are shown in gray. Next to each link we show the number
of the step that creates it. Figure 2.21 shows the links after Steps 1 and 2, and Figure 2.22
shows the links after Steps 3 and 4.

Removing from a Double‐Linked List
If we have a reference, harry, to the node that contains "Harry", we can remove that node
without having a named reference to its predecessor:

harry.prev.next = harry.next; // Step 1
harry.next.prev = harry.prev; // Step 2

The list is now as shown in Figure 2.23.

A Double‐Linked List Class
So far we have shown just the internal Nodes for a linked list. A double‐linked list object
would consist of a separate object with data fields head (a reference to the first list Node), tail
(a reference to the last list Node), and size (the number of Nodes) (see Figure 2.24). Because
both ends of the list are directly accessible, now insertion at either end is O()1 ; insertion else-
where is still O()n .

Node

next =
prev =
data = "Sharon"

Step 1

Step 2

Node

next = null
prev =
data = "Sam"

sam =

Node

next =
prev =
data = "Harry"

From
predecessor

To
predecessor

sharon =
F I G U R E 2 . 2 1

Steps 1 and 2 in

Inserting "Sharon"

Koffman-c02.indd 86 10/30/2015 7:39:05 PM

2.6 Double‐Linked Lists and Circular Lists 87

Circular Lists
We can create a circular list from a double‐linked list by linking the last node to the first node
(and the first node to the last one). If head references the first list node and tail references
the last list node, the statements

head.prev = tail;
tail.next = head;

would accomplish this (see Figure 2.25).

Node

next =
prev =
data = "Sharon"

sharon =
Step 4

Step 3

Node

next = null
prev =
data = "Sam"

sam =

Node

next =
prev =
data = "Harry"

From
predecessor

To
predecessor

F I G U R E 2 . 2 2

After Inserting "Sharon"

before "Sam"

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next =
prev =
data = "Sharon"

Step 1

Step 2

Node

next = null
prev =
data = "Sam"

Node

next =
prev = null
data = "Tom"

harry =

F I G U R E 2 . 2 3

Removing "Harry" from a Double‐Linked List

LinkedList

head =
tail =
size =

F I G U R E 2 . 2 4

A Double‐Linked List

Object

LinkedList

head =
tail =
size = 4

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next =
prev =
data = "Sam"

Node

next =
prev =
data = "Tom"

F I G U R E 2 . 2 5

A Circular Linked List

Koffman-c02.indd 87 10/30/2015 7:39:06 PM

88 Chapter 2 Lists and the Collections Framework

You could also create a circular list from a single‐linked list by executing just the statement
tail.next = head;

This statement connects the last list element to the first list element. If you keep a reference
to only the last list element, tail, you can access the last element and the first element (tail.
next) in O(1)time.

One advantage of a circular list is that you can continue to traverse in the forward (or
reverse) direction even after you have passed the last (or first) list node. This enables you to
visit all the list elements from any starting point. In a list that is not circular, you would have
to start at the beginning or at the end if you wanted to visit all the list elements. A second
advantage of a circular list is that you can never fall off the end of the list. There is a disad-
vantage: you must be careful not to set up an infinite loop.

E X E R C I S E S F O R S E C T I O N 2 . 6

S E L F ‐ C H E C K

1. Answer the following questions about lists.
a. Each node in a single‐linked list has a reference to and .
b. In a double‐linked list, each node has a reference to , , and .
c. To remove an item from a single‐linked list, you need a reference to .
d. To remove an item from a double‐linked list, you need a reference to .

2. For the double‐linked list in Figure 2.20, explain the effect of each statement in the follow-
ing fragments.
a. Node<String> nodeRef = tail.prev;

nodeRef.prev.next = tail;
tail.prev = nodeRef.prev;

b. Node<String> nodeRef = head;
head = new Node<>("Tamika");
head.next = nodeRef;
nodeRef.prev = head;

c. Node<String> nodeRef = new Node<>("Shakira");
nodeRef.prev = head;
nodeRef.next = head.next;
head.next.prev = nodeRef;
head.next = nodeRef;

P R O G R A M M I N G

1. For the double‐linked list shown in Figure 2.20, assume head references the first list node
and tail references the last list node. Write statements to do each of the following:
a. Insert "Bill" before "Tom".
b. Insert "Sue" before "Sam".
c. Remove "Bill".
d. Remove "Sam".

Koffman-c02.indd 88 10/30/2015 7:39:06 PM

2.7 The LinkedList Class and the Iterator, ListIterator, and Iterable Interfaces 89

2.7 The LinkedList Class and the Iterator, ListIterator,
and Iterable Interfaces

The LinkedList Class
The LinkedList class, part of the Java API package java.util, is a double‐linked list that
implements the List interface. A selected subset of the methods from this Java API is shown
in Table 2.6. Because the LinkedList class, like the ArrayList class, implements the List
interface, it contains many of the methods found in the ArrayList class as well as some addi-
tional methods.

TA B L E 2 . 6

Selected Methods of the java.util.LinkedList<E> Class

Method Behavior

public void add(int index, E obj) Inserts object obj into the list at position index

public void addFirst(E obj) Inserts object obj as the first element of the list

public void addLast(E obj) Adds object obj to the end of the list

public E get(int index) Returns the item at position index

public E getFirst() Gets the first element in the list. Throws NoSuchElementException
if the list is empty

public E getLast() Gets the last element in the list. Throws NoSuchElementException
if the list is empty

public boolean remove(E obj) Removes the first occurrence of object obj from the list. Returns true
if the list contained object obj; otherwise, returns false

public int size() Returns the number of objects contained in the list

The Iterator
Let’s say we want to process each element in a LinkedList. We can use the following loop to
access the list elements in sequence, starting with the one at index 0.

// Access each list element.
for (int index = 0; index < aList.size(); index++) {
 E nextElement = aList.get(index);
 // Do something with the element at position index (nextElement)
 . . .
}

The loop is executed aList.size() times; thus it is O()n . During each iteration, we call the
method get to retrieve the element at position index.

If we assume that the method get begins at the first list node (head), each call to method get
must advance a local reference (nodeRef) to the node at position index using a loop such as:

// Advance nodeRef to the element at position index.
Node<E> nodeRef = head;
for (int j = 0; j < index; j++) {
 nodeRef = nodeRef.next;
}

Koffman-c02.indd 89 10/30/2015 7:39:06 PM

90 Chapter 2 Lists and the Collections Framework

This loop (in method get) executes index times, so it is also O(n). Therefore, the performance
of the nested loops used to process each element in a LinkedList is O(n2) and is very ineffi-
cient. We would like to have an alternative way to access the elements in a linked list
sequentially.

We can use the concept of an iterator to accomplish this. Think of an iterator as a moving
place marker that keeps track of the current position in a particular linked list. The
Iterator object for a list starts at the first element in the list. The programmer can use the
Iterator object’s next method to retrieve the next element. Each time it does a retrieval,
the Iterator object advances to the next list element, where it waits until it is needed
again. We can also ask the Iterator object to determine whether the list has more ele-
ments left to process (method hasNext). Iterator objects throw a NoSuchElementException
if they are asked to retrieve the next element after all elements have been processed.

EXAMPLE 2 .10 Assume iter is declared as an Iterator object for LinkedList myList. We can replace the
fragment shown at the beginning of this section with the following.

// Access each list element.
while (iter.hasNext()) {
 E nextElement = iter.next();
 // Do something with the next element (nextElement).
 . . .
}

This fragment is O(n) instead of O(n2). All that remains is to determine how to declare iter
as an Iterator for LinkedList object myList. We show how to do this in the next section and
discuss Iterator a bit more formally.

The Iterator Interface
The interface Iterator<E> is defined as part of API package java.util. Table 2.7 summarizes
the methods declared by this interface.

The List interface declares the method iterator, which returns an Iterator object that will
iterate over the elements of that list. (The requirement for the iterator method is actually in
the Collection interface, which is the superinterface for the List interface. We discuss the
Collection interface in Section 2.9.)

In the following loop, we process all items in List<Integer> aList through an Iterator.
// Obtain an Iterator to the list aList.
Iterator<Integer> itr = aList.iterator();
while (itr.hasNext()) {
 int value = itr.next());
 // Do something with value.
 . . .
}

TA B L E 2 . 7

The java.util.Iterator<E> Interface

Method Behavior

boolean hasNext() Returns true if the next method returns a value

E next() Returns the next element. If there are no more elements, throws the
NoSuchElementException

void remove() Removes the last element returned by the next method

Koffman-c02.indd 90 10/30/2015 7:39:06 PM

2.7 The LinkedList Class and the Iterator, ListIterator,and Iterable Interfaces 91

An Iterator does not refer to or point to a particular object at any given time. Rather, you
should think of an Iterator as pointing between objects within a list. The method hasNext
tells us whether or not calling the next method will succeed. If hasNext returns true, then
a call to next will return the next object in the list and advance the Iterator (see
Figure 2.26). If hasNext returns false, a call to next will cause the NoSuchElementException
to be thrown.

You can use the Iterator remove method to remove elements from a list as you access them.
You can remove only the element that was most recently accessed by next. Each call to
remove must be preceded by a call to next to retrieve the next element.

Returned
element

Iterator
current
position

Iterator
new

position

F I G U R E 2 . 2 6

Advancing an

Iterator via the

next Method

EXAMPLE 2 .11 We wish to remove all elements from aList (type LinkedList<Integer>) that are divisible by
a particular value. The following method will accomplish this:

/** Remove the items divisible by div. */
 @pre LinkedList aList contains Integer objects.
 @post Elements divisible by div have been removed.
 */
public static void removeDivisibleBy(LinkedList<Integer> aList, int div) {
 Iterator<Integer> iter = aList.iterator();
 while (iter.hasNext()) {
 int nextInt = iter.next();
 if (nextInt % div == 0)
 iter.remove();
 }
}

The method call iter.next retrieves the next Integer in the list. Its value is unboxed, and if
it is divisible by div, the statement

iter.remove();

removes the element just retrieved from the list.

 P I T F A L L

Improper use of Remove
If a call to remove is not preceded by a call to next, remove will throw an
IllegalStateException. If you want to remove two consecutive elements in a list, a
separate call to next must occur before each call to remove.

Koffman-c02.indd 91 10/30/2015 7:39:06 PM

92 Chapter 2 Lists and the Collections Framework

The Enhanced for Loop
The enhanced for loop (also called the for each loop) makes it easier to sequence through
arrays. It also enable sequential access to List objects without the need to create and manipu-
late an iterator. The following loop uses the enhanced for loop to count the number of times
that target occurs in myList (type List<String>).

count = 0;
for (String nextStr : myList) {
 if (target.equals(nextStr)) {
 count++;
 }
}

The enhanced for loop creates an Iterator object and implicitly calls its hasNext and next
methods. Other Iterator methods, such as remove, are not available.

 P R O G R A M S T Y L E

Removal Using Iterator.remove versus List.remove

You could also use method LinkedList.remove to remove elements from a list. However,
it is more efficient to remove multiple elements from a list using Iterator.remove than it
would be to use LinkedList.remove. The LinkedList.remove method removes only one
element at a time, so you would need to start at the beginning of the list each time and
advance down the list to each element that you wanted to remove (O(n2) process). With
the Iterator.remove method, you can remove elements as they are accessed by the
Iterator object without having to go back to the beginning of the list (O(n) process).

The ListIterator Interface
The Iterator has some limitations. It can traverse the List only in the forward direction. It
also provides only a remove method, not an add method. Also, to start an Iterator some-
where other than at first List element, you must write your own loop to advance the Iterator
to the desired starting position.

SYNTAX The Enhanced for loop (for each) with a Collection Class
FORM:
for (formalParameter : expression) { . . . }

EXAMPLE:
for (String nextStr : myList) { . . . }
for (int nextInt : aList) { . . . }

MEANING:

During each repetition of the loop, the variable specified by formalParameter accesses
the next element of expression, starting with the first element and ending with the
last. The expression must be an array or a collection that implements the Iterable
interface. The Collection interface extends the Iterable interface so that all classes
that implement it are implementors of the Iterable interface (see next section).

Koffman-c02.indd 92 10/30/2015 7:39:06 PM

2.7 The LinkedList Class and the Iterator, ListIterator,and Iterable Interfaces 93

0 1 2 i – 2 i – 1 i i + 1 i + 2 size – 2 size – 1 size

Returned
by

previous

Returned
by
next

.

F I G U R E 2 . 2 7

The ListIterator

TA B L E 2 . 8

The java.util.ListIterator<E> Interface

Method Behavior

void add(E obj) Inserts object obj into the list just before the item that would be returned by the
next call to method next and after the item that would have been returned by
method previous. If the method previous is called after add, the newly inserted
object will be returned

boolean hasNext() Returns true if next will not throw an exception

boolean hasPrevious() Returns true if previous will not throw an exception

E next() Returns the next object and moves the iterator forward. If the iterator is at the end,
the NoSuchElementException is thrown

int nextIndex() Returns the index of the item that will be returned by the next call to next. If the
iterator is at the end, the list size is returned

E previous() Returns the previous object and moves the iterator backward. If the iterator is at the
beginning of the list, the NoSuchElementExcepton is thrown

int previousIndex() Returns the index of the item that will be returned by the next call to previous. If
the iterator is at the beginning of the list, −1 is returned

void remove() Removes the last item returned from a call to next or previous. If a call to remove
is not preceded by a call to next or previous, the IllegalStateException is
thrown

void set(E obj) Replaces the last item returned from a call to next or previous with obj. If a call
to set is not preceded by a call to next or previous, the IllegalStateException
is thrown

The Java API also contains the ListIterator<E> interface, which is an extension of the
Iterator<E> interface that overcomes these limitations. Like the Iterator, the ListIterator
should be thought of as being positioned between elements of the linked list. The positions
are assigned an index from 0 to size, where the position just before the first element has
index 0 and the position just after the last element has index size. The next method moves
the iterator forward and returns the element that was jumped over. The previous method
moves the iterator backward and also returns the element that was jumped over. This is illus-
trated in Figure 2.27, where i is the current position of the iterator. The methods defined by
the ListIterator interface are shown in Table 2.8.

To obtain a ListIterator, you call the listIterator method of the LinkedList class. This
method has two forms, as shown in Table 2.9.

Koffman-c02.indd 93 10/30/2015 7:39:07 PM

94 Chapter 2 Lists and the Collections Framework

TA B L E 2 . 9

Methods in java.util.LinkedList<E> that Return ListIterators

Method Behavior

public ListIterator<E> listIterator() Returns a ListIterator that begins just before the first
list element

public ListIterator<E> listIterator(int index) Returns a ListIterator that begins just before the
position index

EXAMPLE 2 .13 The Fragment
ListIterator<String> myIter = myList.listIterator();
while (myIter.hasNext()) {
 if (target.equals(myIter.next())) {
 myIter.set(newItem);
 break; // Exit loop
 }
}

searches for target in list myList (type List<String>) and, if target is present, replaces its
first occurrence with newItem.

EXAMPLE 2 .12 If myList is type LinkedList<String>, the statement
ListIterator<String> myIter = myList.listIterator(3);

would create a ListIterator object myIter positioned between the elements at positions 2
and 3 of the linked list. The method call

myIter.next()

would return a reference to the String object at position 3 and move the iterator forward;
the method call

myIter.nextIndex()

would return 4. The method call
myIter.previous()

would return a reference to the String object at position 3 and move the iterator back to its
original position. The method call

myIter.previousIndex()

would return 2. The method call
myIter.hasNext()

would return true if the list has at least four elements; the method call
myIter.hasPrevious()

would return true.

Comparison of Iterator and ListIterator
Because the interface ListIterator<E> is a subinterface of Iterator<E>, classes that imple-
ment ListIterator must provide all of the capabilities of both. The Iterator interface
requires fewer methods and can be used to iterate over more general data structures—that is,
structures for which an index is not meaningful and ones for which traversing in only the
forward direction is required. It is for this reason that the Iterator is required by the

Koffman-c02.indd 94 10/30/2015 7:39:07 PM

2.7 The LinkedList Class and the Iterator, ListIterator,and Iterable Interfaces 95

Collection interface (more general), whereas the ListIterator is required only by the List
interface (more specialized). We will discuss the Collection interface in Section 2.10.

Conversion between a ListIterator and an Index
The ListIterator has the methods nextIndex and previousIndex, which return the index
values associated with the items that would be returned by a call to the next or previous
methods. The LinkedList class has the method listIterator(int index), which returns a
ListIterator whose next call to next will return the item at position index. Thus, you can
convert between an index and a ListIterator. However, remember that the listIterator(int
index) method creates the desired ListIterator by creating a new ListIterator that starts
at the beginning and then walks along the list until the desired position is found. There is a
special case where index is equal to size(), but all others are an O(n) operation.

The Iterable Interface
Next we show the Iterable interface. This interface requires only that a class that imple-
ments it provides an iterator method. As mentioned above, the Collection interface extends
the Iterable interface, so all classes that implement the List interface (a subinterface of
Collection) must provide an iterator method.

public interface Iterable<E> {
 /** Returns an iterator over the elements in this collection. */
 Iterator<E> iterator();
}

E X E R C I S E S F O R S E C T I O N 2 . 7

S E L F ‐ C H E C K

1. The method indexOf, part of the List interface, returns the index of the first occurrence of
an object in a List. What does the following code fragment do?
int indexOfSam = myList.indexOf("Sam");
ListIterator<String> iteratorToSam = myListlistIterator(indexOfSam);
iteratorToSam.previous();
iteratorToSam.remove();

 where the internal nodes of myList (type LinkedList<String>) are shown in the figure
below:

2. In Question 1, what if we change the statement
iteratorToSam.previous();

 to
iteratorToSam.next();

Node Node Node Node

next =
prev = null
data = "Tom"

next =
prev =
data = "Dick"

next =
prev =
data = "Harry"

next = null
prev =
data = "Sam"

Koffman-c02.indd 95 10/30/2015 7:39:07 PM

96 Chapter 2 Lists and the Collections Framework

2.8 Application of the LinkedList Class

In this section, we introduce a case study that uses the Java LinkedList class to solve a com-
mon problem: maintaining an ordered list. We will develop an OrderedList class.

3. In Question 1, what if we omit the statement
iteratorToSam.previous();

P R O G R A M M I N G

1. Write the method indexOf as specified in the List interface by adapting the code shown in
Example 2.13 to return the index of the first occurrence of an object.

2. Write the method lastIndexOf specified in the List interface by adapting the code shown
in Example 2.13 to return the index of the last occurrence of an object.

3. Write a method indexOfMin that returns the index of the minimum item in a List, assum-
ing that each item in the list implements the Comparable interface.

CASE STUDY Maintaining an Ordered List

 Problem As discussed in Section 2.5, we can use a linked list to maintain a list of students who are
registered for a course. We want to maintain this list so that it will be in alphabetical order
even after students have added and dropped the course.

 Analysis Instead of solving this problem just for a list of students, we will develop a generic OrderedList
class that can be used to store any group of objects that can be compared. Java classes whose
object types can be compared implement the Comparable interface, which is defined as
follows:

/** Instances of classes that realize this interface can be compared.
 */
public interface Comparable<E> {
 /** Method to compare this object to the argument object.
 @param obj The argument object
 @return Returns a negative integer if this object < obj;
 zero if this object equals obj;
 a positive integer if this object > obj
 */
 int compareTo(E obj);
}

Koffman-c02.indd 96 10/30/2015 7:39:07 PM

2.8 Application of the LinkedList Class 97

 Therefore, a class that implements the Comparable interface must provide a compareTo
method that returns an int value that indicates the relative ordering of two instances of
that class. The result is negative if this object < argument; zero if this object equals argu-
ment; and positive if this object > argument.

We can either extend the Java LinkedList class to create a new class OrderedList, or create
an OrderedList class that uses a LinkedList to store the items. If we implement our
OrderedList class as an extension of LinkedList, a client will be able to use methods in the
List interface that can insert new elements or modify existing elements in such a way that
the items are no longer in order. Therefore, we will use the LinkedList class as a component
of the OrderedList class and we will implement only those methods that preserve the order
of the items.

 Design The class diagram in Figure 2.28 shows the relationships among the OrderedList class, the
LinkedList class, and the Comparable interface. The filled diamond indicates that
the LinkedList is a component of the OrderedList, and the open diamond indicates that the
LinkedList will contain Comparable objects. We explain the meaning of the text E extends
Comparable<E> shortly.

 Because we want to be able to make insertions and deletions in the ordered linked list, we
must implement add and remove methods. We also provide a get method, to access the ele-
ment at a particular position, and an iterator method, to provide the user with the ability
to access all of the elements in sequence efficiently. Table 2.10 describes the class. Although

OrderedList<E>

compareTo(E)

‹‹interface››
Comparable<E>

add(E obj)
iterator()
get(int index)
size()
remove(E obj)

LinkedList<E>theList

E extends Comparable<E>
F I G U R E 2 . 2 8

OrderedList

Class Diagram

TA B L E 2 . 1 0

Class OrderedList<E extends Comparable<>>

Data Field Attribute

private LinkedList<E> theList A linked list to contain the data

Method Behavior

public void add(E obj) Inserts obj into the list preserving the list’s order

public Iterator iterator() Returns an Iterator to the list

public E get(int index) Returns the object at the specified position

public int size() Returns the size of the list

public boolean remove(E obj) Removes first occurrence of obj from the list.
Returns true if the list contained object obj;
otherwise, returns false

Koffman-c02.indd 97 10/30/2015 7:39:08 PM

98 Chapter 2 Lists and the Collections Framework

not shown in Figure 2.28, class OrderedList<E> implements Iterable<E> because it has an
iterator method. Following is the start of its definition.

import java.util.*;

/** A class to represent an ordered list. The data is stored in
 a linked list data field.
 */

public class OrderedList<E extends Comparable<E>>
 implements Iterable<E> {
 /** A list to contain the data. */
 private List<E> theList = new LinkedList<>();

Because we want our ordered list to contain only objects that implement the Comparable
interface, we need to tell the compiler that only classes that meet this criterion should be
bound to the type parameter E. We do this by declaring our ordered list as OrderedList<E
extends Comparable<E>>.

 Implementation Let’s say we have an ordered list that contains the data: "Alice", "Andrew", "Caryn",
"Sharon", and we want to insert "Bill" (see Figure 2.29). If we start at the beginning of the
list and access "Alice", we know that "Bill" must follow "Alice", but we can’t insert
"Bill" yet. If we access "Andrew", we know that "Bill" must follow "Andrew", but we can’t

Node

next =
prev =
data = "Andrew"

ListIterator
position after

first call to next

Node

next =
prev =
data = "Caryn"

Node

next =
prev =
data = "Sharon"

...

...

Node

next =
prev = null
data = "Alice"

ListIterator
position after

second call to next

ListIterator
position after

third call to next

F I G U R E 2 . 2 9

Inserting "Bill"

before "Caryn" in

an Ordered List

SYNTAX Specifying Requirements on Generic Types
FORM:
class ClassName<TypeParameter extends ClassOrInterfaceName<TypeParameter>>

EXAMPLE:
class OrderedList<E extends Comparable<E>>

MEANING:

When we declare actual objects of type ClassName<TypeParameter>, class
TypeParameter must extend class ClassOrInterfaceName or implement interface
ClassOrInterfaceName.

Koffman-c02.indd 98 10/30/2015 7:39:08 PM

2.8 Application of the LinkedList Class 99

insert "Bill" yet. However, when we access "Caryn", we know we must insert "Bill" before
"Caryn". Therefore, to insert an element in an ordered list, we need to access the first ele-
ment whose data is larger than the data in the element to be inserted. Once we have accessed
the successor of our new node, we can insert a new node just before it. (Note that in order
to access "Caryn" using the method next, we have advanced the iterator just past "Caryn".)

Algorithm for Insertion

The algorithm for insertion is as follows:

1. Find the first item in the list that is greater than the item to be inserted.
2. Insert the new item before this one.

 We can refine this algorithm as follows:

1.1 Create a ListIterator that starts at the beginning of the list.

1.2 while the ListIterator is not at the end and the item to be inserted is greater than or
equal to the next item.

1.3 Advance the ListIterator.

2. Insert the new item before the current ListIterator position.

The add Method

A straightforward coding of the insertion algorithm would be the following:
// WARNING – THIS DOES NOT WORK.
ListIterator<E> iter = theList.listIterator();
while (iter.hasNext()
 && obj.compareTo(iter.next()) >= 0) {
 // iter was advanced ‐ check new position.
}
iter.add(obj);

 Unfortunately, this does not work. When the while loop terminates, either we are at the
end of the list or the ListIterator has just skipped over the first item that is greater than
the item to be inserted (see Figure 2.30). In the first case, the add method will insert the
item at the end of the list, just as we want, but in the second case, it will insert the item just
after the position where it belongs. Therefore, we must separate the two cases and code the
add method as follows:

/** Insert obj into the list preserving the list's order.
 @pre The items in the list are ordered.
 @post obj has been inserted into the list
 such that the items are still in order.
 @param obj The item to be inserted
 */
public void add(E obj) {
 ListIterator<E> iter = theList.listIterator();
 // Find the insertion position and insert.
 while (iter.hasNext()) {
 if (obj.compareTo(iter.next()) < 0) {
 // Iterator has stepped over the first element
 // that is greater than the element to be inserted.
 // Move the iterator back one.
 iter.previous();

Koffman-c02.indd 99 10/30/2015 7:39:08 PM

100 Chapter 2 Lists and the Collections Framework

 // Insert the element.
 iter.add(obj);
 // Exit the loop and return.
 return;
 }
 }
 // assert: All items were examined and no item is larger than
 // the element to be inserted.
 // Add the new item to the end of the list.
 iter.add(obj);
}

Using Delegation to Implement the Other Methods

The other methods in Table 2.10 are implemented via delegation to the LinkedList class.
They merely call the corresponding method in the LinkedList. For example, the get and
iterator methods are coded as follows:

/** Returns the element at the specified position.
 @param index The specified position
 @return The element at position index
 */

public E get(int index) {
 return theList.get(index);
}

/** Returns an iterator to this OrderedList.
 @return The iterator, positioning it before the first element
 */
public Iterator<E> iterator() {
 return theList.iterator();
}

Case 2: Inserting in the middle of a list

First item
> item to
be inserted

Items > object
to be inserted

ListIterator
position

Case 1: Inserting at the end of a list

Items <_ object
to be inserted

ListIterator
position

Items <_ object
to be inserted

F I G U R E 2 . 3 0

Attempted Insertion

into an Ordered List

Koffman-c02.indd 100 10/30/2015 7:39:08 PM

2.8 Application of the LinkedList Class 101

 P I T F A L L

Omitting <E> After Listiterator<E> or Iterable<E>
If you omit <E> in the declaration for ListIterator<E> iter in method add of
OrderedList:

 ListIterator<E> iter = theList.listIterator();

you will get an incompatible types syntax error when the if statement

 if (obj.compareTo(iter.next()) < 0) {

is compiled. The reason is that the object returned by iter.next() will be type Object
instead of type E, so the argument of compareTo will not be type E as required.

Similarly, if you omit the <E> after Iterable in the header for class OrderedList:

 public class OrderedList<E extends <Comparable<E>> implements Iterable<E> {

you will get an incompatible types syntax error if an Iterator method or an enhanced
for loop is compiled. The reason is that the data type of the object returned by an
Iterator method would be Object, not type E as required.

Testing Class OrderedList
Next, we illustrate the design of a class that tests our implementation of the OrderedList. The
next chapter provides a thorough discussion of testing.

 Testing You can test the OrderedList class by storing a collection of randomly generated positive
integers in an OrderedList. You can then insert a negative integer and an integer larger than
any integer in the list. This tests the two special cases of inserting at the beginning and at the
end of the list. You can then create an iterator and use it to traverse the list, displaying an
error message if the current integer is smaller than the previous integer, which is an indica-
tion that the list is not ordered. You can also display the list during the traversal so that you
can inspect it to verify that it is in order. Finally, you can remove the first element, the last
element, and an element in the middle and repeat the traversal to show that removal does
not affect the ordering. Listing 2.2 shows a class with methods that performs these tests.

 Method traverseAndShow traverses an ordered list passed as an argument using an
enhanced for statement to access the list elements. Each Integer is stored in thisItem. The
if statement displays an error message if the previous value is greater than the current
value (prevItem > thisItem is true). Method main calls traverseAndShow after all ele-
ments are inserted and after the three elements are removed. In method main, the loop

CASE STUDY Maintaining an Ordered List (continued)

Koffman-c02.indd 101 10/30/2015 7:39:09 PM

102 Chapter 2 Lists and the Collections Framework

for (int i = 0; i < START_SIZE; i++) {
 int anInteger = random.nextInt(MAX_INT);
 testList.add(anInteger);
}

fills the ordered list with randomly generated values between 0 and MAX_INT‐1. Variable ran-
dom is an instance of class Random (in API java.util), which contains methods for generating
pseudorandom numbers. Method Random.nextInt generates random integers between 0 and
its argument. Chapter 3 provides a thorough discussion of testing.

L I S T I N G 2 . 2

Class TestOrderedList

import java.util.*;
public class TestOrderedList {
 /** Traverses ordered list and displays each element.
 Displays an error message if an element is out of order.
 @param testList An ordered list of integers
 */
 public static void traverseAndShow(OrderedList<Integer> testList) {
 int prevItem = testList.get(0);

 // Traverse ordered list and display any value that
 // is out of order.

 for (Integer thisItem : testList) {
 System.out.println(thisItem);

 if (prevItem > thisItem)
 System.out.println("*** FAILED, value is " + thisItem);
 prevItem = thisItem;
 }

 }

 public static void main(String[] args) {
 OrderedList<Integer> testList = new OrderedList<>();
 final int MAX_INT = 500;
 final int START_SIZE = 100;

 // Create a random number generator.
 Random random = new Random();
 // Fill list with START_SIZE random values.
 for (int i = 0; i < START_SIZE; i++) {
 int anInteger = random.nextInt(MAX_INT);
 testList.add(anInteger);
 }

 // Add to beginning and end of list.
 testList.add(‐1);
 testList.add(MAX_INT + 1);
 traverseAndShow(testList); // Traverse and display.

 // Remove first, last, and middle elements.
 Integer first = testList.get(0);
 Integer last = testList.get(testList.size() ‐ 1);
 Integer middle = testList.get(testList.size() / 2);
 testList.remove(first);
 testList.remove(last);
 testList.remove(middle);
 traverseAndShow(testList); // Traverse and display.
 }
}

Koffman-c02.indd 102 10/30/2015 7:39:09 PM

2.9 Implementation of a Double‐Linked List Class 103

E X E R C I S E S F O R S E C T I O N 2 . 8

S E L F ‐ C H E C K

1. Why don’t we implement the OrderedList by extending LinkedList? What would happen
if someone called the add method? How about the set method?

2. What other methods in the List interface could we include in the OrderedList class? See
the Java API documentation for a complete list of methods.

3. Why don’t we provide a listIterator method for the OrderedList class?

P R O G R A M M I N G

1. Write the code for the other methods of the OrderedList class that are listed in Table 2.10.

2. Rewrite the OrderedList.add method to start at the end of the list and iterate using the
ListIterator’s previous method.

2.9 Implementation of a Double‐Linked List Class

In this section, we will describe the class KWLinkedList that implements some of the methods
of the List interface using a double‐linked list. We will not provide a complete implementa-
tion because we expect you to use the standard LinkedList class provided by the Java API (in
package java.util). The data fields for the KWLinkedList class are shown in Table 2.11. They
are declared as shown here.

import java.util.*;

/** Class KWLinkedList implements a double‐linked list and
 a ListIterator. */
public class KWLinkedList<E> {
 // Data Fields
 /** A reference to the head of the list. */
 private Node<E> head = null;
 /** A reference to the end of the list. */
 private Node<E> tail = null;
 /** The size of the list. */
 private int size = 0;
 ...

TA B L E 2 . 1 1

Data Fields for Class KWLinkedList<E>

Data Field Attribute

private Node<E> head A reference to the first item in the list

private Node<E> tail A reference to the last item in the list

private int size A count of the number of items in the list

Koffman-c02.indd 103 10/30/2015 7:39:09 PM

104 Chapter 2 Lists and the Collections Framework

Implementing the KWLinkedList Methods
We need to implement the methods shown earlier in Table 2.6 for the LinkedList class. The
algorithm for the add(int index, E obj) method is

1. Obtain a reference, nodeRef, to the node at position index.
2. Insert a new Node containing obj before the Node referenced by nodeRef.

Similarly, the algorithm for the get (int index) method is

1. Obtain a reference, nodeRef, to the node at position index.
2. Return the contents of the Node referenced by nodeRef.

We also have the listIterator (int index) method with the following algorithm:

1. Obtain a reference, nodeRef, to the node at position index.
2. Return a ListIterator that is positioned just before the Node referenced by nodeRef.

These three methods all have the same first step. Therefore, we want to use a common
method to perform this step.

If we look at the requirements for the ListIterator, we see that it has an add method that
inserts a new item before the current position of the iterator. Thus, we can refine the algo-
rithm for the KWLinkedList.add (int index, E obj) method to

1. Obtain an iterator that is positioned just before the Node at position index.
2. Insert a new Node containing obj before the Node currently referenced by this iterator.

Thus, the KWLinkedList<E> method add can be coded as
/** Add an item at position index.
 @param index The position at which the object is to be
 inserted
 @param obj The object to be inserted
 @throws IndexOutOfBoundsException if the index is out
 of range (i < 0 || i > size())
 */
public void add(int index, E obj) {
 listIterator(index).add(obj);
}

Note that it was not necessary to declare a local ListIterator object in the KWLinkedList
method add. The method call listIterator(index) returns an anonymous ListIterator
object, to which we apply the ListIterator.add method.

Similarly, we can code the get method as
/** Get the element at position index.
 @param index Position of item to be retrieved
 @return The item at index
 */
public E get(int index) {
 return listIterator(index).next();
}

Other methods in Table 2.6 (addFirst, addLast, getFirst, getLast) can be implemented by
delegation to methods add and get above.

A Class that Implements the ListIterator Interface
We can implement most of the KWLinkedList methods by delegation to the class KWListIter,
which will implement the ListIterator interface (see Table 2.8). Because it is an inner class

Koffman-c02.indd 104 10/30/2015 7:39:09 PM

2.9 Implementation of a Double‐Linked List Class 105

of KWLinkedList, its methods will be able to reference the data fields and members of the
parent class (and also the other inner class, Node). The data fields for class KWListIter are
shown in Table 2.12.

/** Inner class to implement the ListIterator interface. */
private class KWListIter implements ListIterator<E> {
 /** A reference to the next item. */
 private Node<E> nextItem;
 /** A reference to the last item returned. */
 private Node<E> lastItemReturned;
 /** The index of the current item. */
 private int index = 0;

Figure 2.31 shows an example of a KWLinkedList object and a KWListIter object. The next
method would return "Harry", and the previous method would return "Dick". The nextIndex
method would return 2, and the previousIndex method would return 1.

The Constructor
The KWListIter constructor takes as a parameter the index of the Node at which the iteration
is to begin. A test is made for the special case where the index is equal to the size; in that case
the iteration starts at the tail. Otherwise, a loop starting at the head walks along the list until
the node at index is reached.

TA B L E 2 . 1 2

Data Fields of Class KWListIter

private Node<E> nextItem A reference to the next item

private Node<E> lastItemReturned A reference to the node that was last returned by next or previous

private int index The iterator is positioned just before the item at index

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next = null
prev =
data = "Sam"

Node

next =
prev = null
data = "Tom"

KWListIter

nextItem =
lastItemReturned =

 index = 2

KWLinkedList

head =
tail =
size = 4

F I G U R E 2 . 3 1

Double‐Linked List with KWListIter

Koffman-c02.indd 105 10/30/2015 7:39:09 PM

106 Chapter 2 Lists and the Collections Framework

/** Construct a KWListIter that will reference the ith item.
 @param i The index of the item to be referenced
 */
public KWListIter(int i) {
 // Validate i parameter.
 if (i < 0 || i > size) {
 throw new IndexOutOfBoundsException("Invalid index " + i);
 }
 lastItemReturned = null; // No item returned yet.
 // Special case of last item.
 if (i == size) {
 index = size;
 nextItem = null;
 } else { // Start at the beginning
 nextItem = head;
 for (index = 0; index < i; index++) {
 nextItem = nextItem.next;
 }
 }
}

The hasNext and next Methods
The data field nextItem will always reference the Node that will be returned by the next
method. Therefore, the hasNext method merely tests to see whether nextItem is null.

/** Indicate whether movement forward is defined.
 @return true if call to next will not throw an exception
 */
public boolean hasNext() {
 return nextItem != null;
}

The next method begins by calling hasNext. If the result is false, the NoSuchElemenentException
is thrown. Otherwise, lastItemReturned is set to nextItem; then nextItem is advanced to the
next node, and index is incremented. The data field of the node referenced by lastItem-
Returned is returned. As shown in Figure 2.32, the previous iterator position is indicated by
the dashed arrows and the new position by the gray arrows.

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next = null
prev =
data = "Sam"

Node

next =
prev = null
data = "Tom"

KWLinkedList

head =
tail =
size = 4

KWListIter

2

nextItem =

index = /3
lastItemReturned =

F I G U R E 2 . 3 2

Advancing a KWListIter

Koffman-c02.indd 106 10/30/2015 7:39:09 PM

2.9 Implementation of a Double‐Linked List Class 107

/** Move the iterator forward and return the next item.
 @return The next item in the list
 @throws NoSuchElementException if there is no such object
 */
public E next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 lastItemReturned = nextItem;
 nextItem = nextItem.next;
 index++;
 return lastItemReturned.data;
}

The hasPrevious and previous Methods
The hasPrevious method is a little trickier. When the iterator is at the end of the list, nextItem is
null. In this case, we can determine that there is a previous item by checking the size—a non-
empty list will have a previous item when the iterator is at the end. If the iterator is not at the end,
then nextItem is not null, and we can check for a previous item by examining nextItem.prev.

/** Indicate whether movement backward is defined.
 @return true if call to previous will not throw an exception
 */
public boolean hasPrevious() {
 return (nextItem == null && size != 0)
 || nextItem.prev != null;
}

The previous method begins by calling hasPrevious. If the result is false, the NoSuch-
ElementException is thrown. Otherwise, if nextItem is null, the iterator is past the last ele-
ment, so nextItem is set to tail because the previous element must be the last list element. If
nextItem is not null, nextItem is set to nextItem.prev. Either way, lastItemReturned is set to
nextItem, and index is decremented. The data field of the node referenced by lastItem-
Returned is returned.

/** Move the iterator backward and return the previous item.
 @return The previous item in the list
 @throws NoSuchElementException if there is no such object
 */
public E previous() {
 if (!hasPrevious()) {
 throw new NoSuchElementException();
 }
 if (nextItem == null) { // Iterator is past the last element
 nextItem = tail;
 } else {
 nextItem = nextItem.prev;
 }
 lastItemReturned = nextItem;
 index‐‐;
 return lastItemReturned.data;
}

The add Method
The add method inserts a new node before the node referenced by nextItem. There are four
cases: add to an empty list, add to the head of the list, add to the tail of the list, and add to
the middle of the list. We next discuss each case separately; you can combine them to write
the method.

Koffman-c02.indd 107 10/30/2015 7:39:09 PM

108 Chapter 2 Lists and the Collections Framework

An empty list is indicated by head equal to null. In this case, a new Node is created, and both
head and tail are set to reference it. This is illustrated in Figure 2.33.

/** Add a new item between the item that will be returned
 by next and the item that will be returned by previous.
 If previous is called after add, the element added is
 returned.
 @param obj The item to be inserted
 */
public void add(E obj) {
 if (head == null) { // Add to an empty list.
 head = new Node<>(obj);
 tail = head;
 ...

The KWListIter object in Figure 2.33 shows a value of null for lastItemReturned and 1 for
index. These data fields are set at the end of the method. In all cases, data field nextItem is
not changed by the insertion. It must reference the successor of the item that was inserted, or
null if there is no successor.

If nextItem equals head, then the insertion is at the head. The new Node is created and is linked
to the beginning of the list.

} else if (nextItem == head) { // Insert at head.
 // Create a new node.
 Node<E> newNode = new Node<>(obj);
 // Link it to the nextItem.
 newNode.next = nextItem; // Step 1
 // Link nextItem to the new node.
 nextItem.prev = newNode; // Step 2
 // The new node is now the head.
 head = newNode; // Step 3

This is illustrated in Figure 2.34.

If nextItem is null, then the insertion is at the tail. The new node is created and linked to the tail.
} else if (nextItem == null) { // Insert at tail.
 // Create a new node.
 Node<E> newNode = new Node<>(obj);
 // Link the tail to the new node.
 tail.next = newNode; // Step 1
 // Link the new node to the tail.
 newNode.prev = tail; // Step 2
 // The new node is the new tail.
 tail = newNode; // Step 3

Node

next = null
prev = null
data = "Tom"

KWLinkedList

KWListIter

0

head =
tail =
size = /1

0

nextItem = null
lastItemReturned = null

 index = /1

F I G U R E 2 . 3 3

Adding to an Empty

List

Koffman-c02.indd 108 10/30/2015 7:39:10 PM

2.9 Implementation of a Double‐Linked List Class 109

This is illustrated in Figure 2.35.

If none of the previous cases is true, then the addition is into the middle of the list. The new
node is created and inserted before the node referenced by nextItem.

} else { // Insert into the middle.
 // Create a new node.
 Node<E> newNode = new Node<>(obj);
 // Link it to nextItem.prev.
 newNode.prev = nextItem.prev; // Step 1
 nextItem.prev.next = newNode; // Step 2
 // Link it to the nextItem.
 newNode.next = nextItem; // Step 3
 nextItem.prev = newNode; // Step 4
}

This is illustrated in Figure 2.36.

After the new node is inserted, both size and index are incremented and lastItemReturned
is set to null.

 // Increase size and index and set lastItemReturned.
 size++;
 index++;
 lastItemReturned = null;
} // End of method add.

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next = null
prev =
data = "Sam"

Node

next =
prev =
data = "Tom"

Node

next =
prev = null
data = "Ann"

KWLinkedList

Step 3 Step 1Step 2

KWListIter

4

head =
tail =
size = /5

0

nextItem =

lastItemReturned = null
index = /1

F I G U R E 2 . 3 4

Adding to the Head of the List

Koffman-c02.indd 109 10/30/2015 7:39:10 PM

110 Chapter 2 Lists and the Collections Framework

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next =
prev =
data = "Sam"

Node

next =
prev = null
data = "Tom"

Node

next = null
prev =
data = "Ann"

KWLinkedList

Step 3

Step 1
Step 2

KWListIter

4

head =
tail =
size = /5

nextItem = null
lastItemReturned = null

4index = /5

F I G U R E 2 . 3 5

Adding to the Tail of the List

Node

next =
prev =
data = "Dick"

Node

next =
prev =
data = "Harry"

Node

next = null
prev =
data = "Sam"

Node

next =
prev = null
data = "Tom"

Node

next =
prev =
data = "Sharon"

KWLinkedList

Step 1 Step 3 Step 4

Step 2

KWListIter

4

2

head =
tail =
size = /5

index = /3

nextItem =
lastItemReturned = null

F I G U R E 2 . 3 6

Adding to the Middle

of the List

Koffman-c02.indd 110 10/30/2015 7:39:11 PM

2.9 Implementation of a Double‐Linked List Class 111

Inner Classes: Static and Nonstatic
There are two inner classes in class KWLinkedList<E>: class Node<E> and class KWListIter.
We declare Node<E> to be static because there is no need for its methods to access the data
fields of its parent class (KWLinkedList<E>). We can’t declare KWListIter to be static
because its methods access and modify the data fields of the KWLinkedList object that cre-
ates the KWListIter object. An inner class that is not static contains an implicit reference
to its parent object, just as it contains an implicit reference to itself. Because KWListIter is
not static and can reference data fields of its parent class KWLinkedList<E>, the type param-
eter <E> is considered to be previously defined; therefore, it cannot appear as part of the
class name.

 P I T F A L L

Defining Kwlistiter as a Generic Inner Class
If you define class KWListIter as

 private class KWListIter<E>...

you will get an incompatible types syntax error when you attempt to reference data
field head or tail (type Node<E>) inside class KWListIter.

E X E R C I S E S F O R S E C T I O N 2 . 9

S E L F ‐ C H E C K

1. Why didn’t we write the hasPrevious method as follows?
public boolean hasPrevious() {
 return nextItem.prev != null
 || (nextItem == null && size != 0);
}

2. Why must we call next or previous before we call remove?

3. What happens if we call remove after we call add? What does the Java API documentation
say? What does our implementation do?

P R O G R A M M I N G

1. Implement the KWListIter.remove method.

2. Implement the KWListIter.set method.

3. Implement the KWLinkedList listIterator and iterator methods.

4. Implement the KWLinkedList addFirst, addLast, getFirst, and getLast methods.

Koffman-c02.indd 111 10/30/2015 7:39:11 PM

112 Chapter 2 Lists and the Collections Framework

2.10 The Collections Framework Design

The Collection Interface
The Collection interface specifies a subset of the methods specified in the List interface.
Specifically, the add(int, E), get(int), remove(int), set(int, E), and related methods (all of
which have an int parameter that represents a position) are not in the Collection interface,
but the add(E) and remove(Object) methods, which do not specify a position, are included.
The iterator method is also included in the Collection interface. Thus, you can use an
Iterator to access all of the items in a Collection, but the order in which they are retrieved
is not necessarily related to the order in which they were inserted.

The Collection interface is part of the Collections Framework as shown in Figure 2.37. This
interface has three subinterfaces: the List interface, the Queue interface (Chapter 4), and the Set
interface (Chapter 7). The Java API does not provide any direct implementation of the Collection
interface. The interface is used to reference collections of data in the most general way.

ArrayList

AbstractList

‹‹interface››
NavigableSet

TreeSet

ConcurrentSkipListSet

AbstractSequentialList

StackLinkedList LinkedHashSet

HashSetVector

AbstractSet

AbstractCollection
‹‹interface››

List
‹‹interface››

Queue

‹‹interface››
Deque

‹‹interface››
Set

‹‹interface››
Collection

‹‹interface››
SortedSet

‹‹interface››
Iterable

F I G U R E 2 . 3 7

The Collections Framework

Koffman-c02.indd 112 10/30/2015 7:39:11 PM

2.10 The Collections Framework Design 113

The AbstractCollection, AbstractList, and
AbstractSequentialList Classes
If you look at the Java API documentation, you will see that the Collection and List inter-
faces specify a large number of methods. To help implement these interfaces, the Java API
includes the AbstractCollection and AbstractList classes. You can think of these classes as a
kit (or as a cake mix) that can be used to build implementations of their corresponding inter-
face. Most of the methods are provided, but you need to add a few to make it complete.

To implement the Collection interface completely, you need only extend the Abstract Collection
class, provide an implementation of the add, size, and iterator methods, and supply an inner
class to implement the Iterator interface. To implement the List interface, you can extend the
AbstractList class and provide an implementation of the add(int, E), get(int), remove(int),
set(int, E), and size() methods. Since we provided these methods in our KWArrayList, we can
make it a complete implementation of the List interface by changing the class declaration to

public class KWArrayList<E> extends AbstractList<E> implements List<E>

Common Features of Collections
Because it is the superinterface of List, Queue, and Set, the Collection interface specifies a
set of common methods. If you look at the documentation for the Java API java.util.
Collection, you will see that this is a fairly large set of methods and other requirements. A
few features can be considered fundamental:

Collections grow as needed.
Collections hold references to objects.
Collections have at least two constructors: one to create an empty collection and one to
make a copy of another collection.

Table 2.13 shows selected methods defined in the Collection interface. We have already seen
and described these methods in the discussions of the ArrayList and LinkedList. The
Iterator provides a common way to access all of the elements in a Collection. For collec-
tions implementing the List interface, the order of the elements is determined by the index of
the elements. In the more general Collection, the order is not specified.

In the ArrayList and LinkedList, the add(E) method always inserts the object at the end and
always returns true. In the more general Collection, the position where the object is inserted
is not specified. The Set interface extends the Collection by requiring that the add method
not insert an object that is already present; instead, in that case it returns false. The Set
interface is discussed in Chapter 7.

TA B L E 2 . 1 3

Selected Methods of the java.util.Collection<E> Interface

Method Behavior

boolean add(E obj) Ensures that the collection contains the object obj. Returns true
if the collection was odified

boolean contains(E obj) Returns true if the collection contains the object obj

Iterator<E> iterator() Returns an Iterator to the collection

int size() Returns the size of the collection

Koffman-c02.indd 113 10/30/2015 7:39:11 PM

114 Chapter 2 Lists and the Collections Framework

Note that the AbstractList class implements the iterator and listIterator methods using
the index associated with the elements.

Another way to implement the List interface is to extend the AbstractSequentialList class,
implement the listIterator and size methods, and provide an inner class that implements
the ListIterator interface. This was the approach we took in our KWLinkedList. Thus, by
changing the class declaration to

public class KWLinkedList<E> extends AbstractSequentialList<E>
 implements List<E>

it becomes a complete implementation of the List interface. Our KWLinkedList class included
the add, get, remove, and set methods. These are provided by the AbstractSequentialList,
so we could remove them from our KWLinkedList class and still have a complete List
implementation.

The List and RandomAccess Interfaces (Advanced)
The ArrayList and the LinkedList implement the List interface that we described in
Section 2.2. Both the ArrayList and LinkedList represent a collection of objects that can
be referenced using an index. This may not be the best design because accessing elements
of a LinkedList using an index requires an O(n) traversal of the list until the item selected
by the index is located. Unfortunately, the Java designers cannot easily change the design
of the API since a lot of programs have been written and the users of Java do not want
to go back and change their code. Also, there are other implementations of the List inter-
face in which the indexed operations get and set are approximately O(n) instead
of O(1).

The RandomAccess interface is applied only to those implementations in which indexed opera-
tions are efficient (e.g., ArrayList). An algorithm can then test to see if a parameter of type
List is also of type RandomAccess and, if not, copy its contents into an ArrayList temporarily
so that the indexed operations can proceed more efficiently. After the indexed operations are
completed, the contents of the ArrayList are copied back to the original.

E X E R C I S E S F O R S E C T I O N 2 . 1 0

S E L F ‐ C H E C K

1. Look at the AbstractCollection definition in the Java API documentation. What methods
are abstract? Could we use the KWArrayList and extend the AbstractCollection, but not the
AbstractList, to develop an implementation of the Collection interface? How about using
the KWLinkedList and the AbstractCollection, but not the Abstract SequentialList?

P R O G R A M M I N G

1. Using either the KWArrayList or the KWLinkedList as the base, develop an implementation
of the Collection interface by extending the AbstractCollection. Test it by ensuring that
the following statements compile:
Collection<String> testCollection = new KWArrayList<>();
Collection<String> testCollection = new KWLinkedList<>();

Koffman-c02.indd 114 10/30/2015 7:39:11 PM

 Chapter 2 Review 115

C h a p t e r R e v i e w

 ◆ We use big‐O notation to describe the performance of an algorithm. Big‐O notation speci-
fies how the performance increases with the number of data items being processed by an
algorithm. The best performance is O(1), which means the performance is constant regard-
less of the number of data items processed.

 ◆ The List is a generalization of the array. As in the array, elements of a List are accessed by
means of an index. Unlike the array, the List can grow or shrink. Items may be inserted or
removed from any position.

 ◆ The Java API provides the ArrayList<E> class, which uses an array as the underlying struc-
ture to implement the List. We provided an example of how this might be implemented by
allocating an array that is larger than the number of items in the list. As items are inserted
into the list, the items with higher indices are moved up to make room for the inserted item,
and as items are removed, the items with higher indices are moved down to fill in the emp-
tied space. When the array capacity is reached, a new array is allocated that is twice the size
and the old array is copied to the new one. By doubling the capacity, the cost of the copy
is spread over each insertion so that the copies can be considered to have a constant time
contribution to the cost of each insertion.

 ◆ A linked list data structure consists of a set of nodes, each of which contains its data and a
reference to the next node in the list. In a double‐linked list, each node contains a reference
to both the next and the previous node in the list. Insertion into and removal from a linked
list is a constant‐time operation.

 ◆ To access an item at a position indicated by an index in a linked list requires walking along
the list from the beginning until the item at the specified index is reached. Thus, traversing
a linked list using an index would be an O(n2) operation because we need to repeat the
walk each time the index changes. The Iterator provides a general way to traverse a list so
that traversing a linked list using an iterator is an O(n) operation.

 ◆ An iterator provides us with the ability to access the items in a List sequentially. The
Iterator interface defines the methods available to an iterator. The List interface defines
the iterator method, which returns an Iterator to the list. The Iterator.hasNext method
tells whether there is a next item, and the Iterator.next method returns the next item and
advances the iterator. The Iterator also provides the remove method, which lets us remove
the last item returned by the next method.

 ◆ The ListIterator interface extends the Iterator interface. The ListIterator provides us
with the ability to traverse the list either forward or backward. In addition to the hasNext
and next methods, the ListIterator has the hasPrevious and previous methods. Also, in
addition to the remove method, it has an add method that inserts a new item into the list
just before the current iterator position.

 ◆ The Iterable interface is implemented by the Collection interface. It imposes a require-
ment that its implementers (all classes that implement the Collection interface) provide an
iterator method that returns an Iterator to an instance of that collection class. The
enhanced for loop makes it easier to iterate through these collections without explicitly
manipulating an iterator and also to iterate through an array object without manipulating
an array index.

Koffman-c02.indd 115 10/30/2015 7:39:11 PM

116 Chapter 2 Lists and the Collections Framework

 ◆ The Java API provides the LinkedList class, which uses a double‐linked list to implement
the List interface. We show an example of how this might be implemented. Because the
class that realizes the ListIterator interface provides the add and remove operations, the
corresponding methods in the linked list class can be implemented by constructing an itera-
tor (using the listIterator(int) method) that references the desired position and then
calling on the iterator to perform the insertion or removal.

 ◆ The Collection interface is the root of the Collections Framework. The Collection is
more general than the List because the items in a Collection are not indexed. The add
method inserts an item into a Collection but does not specify where it is inserted. The
Iterator is used to traverse the items in a Collection, but it does not specify the order of
the items.

 ◆ The Collection interface and the List interface define a large number of methods that make
these abstractions useful for many applications. In our discussion of both the ArrayList and
LinkedList, we showed how to implement only a few key methods. The Collections
Framework includes the AbstractCollection, AbstractList, and AbstractSequentialList
classes. These classes implement their corresponding interface except for a few key methods;
these are the same methods for which we showed implementations.

Java API Interfaces and Classes Introduced in this Chapter

User‐Defined Interfaces and Classes in this Chapter
KWArrayList Node
KWLinkedList OrderedList
KWListIter SingleLinkedList

java.util.AbstractCollection java.util.Iterator
java.util.AbstractList java.util.LinkedList
java.util.AbstractSequentialList java.util.List
java.util.ArrayList java.util.ListIterator
java.util.Collection java.util.RandomAccess
java.util.Iterable

Quick‐Check Exercises
1. Elements of a List are accessed by means of .
2. A List can or as items are added or removed.
3. When we allocate a new array for an ArrayList because the current capacity is exceeded, we

make the new array at least . This allows us to .
4. Determine the order of magnitude (big-O) for an algorithm whose running time is given by the

equation T(n) = 3n4 − 2n2 + 100n + 37.
5. In a single‐linked list, if we want to remove a list element, which list element do we need to access?

If nodeRef references this element, what statement removes the desired element?
6. Suppose a single‐linked list contains three Nodes with data "him", "her", and "it" and head

references the first element. What is the effect of the following fragment?

Node<String> nodeRef = head.next;
nodeRef.data = "she";

7. Answer Question 5 for the following fragment.

Node<String> nodeRef = head.next;
head.next = nodeRef.next;

Koffman-c02.indd 116 10/30/2015 7:39:12 PM

 Chapter 2 Review 117

8. Answer Question 5 for the following fragment.
head = new Node<String>("his", head);

9. An Iterator allows us to access items of a List .
10. A ListIterator allows us to access the elements .
11. The Java LinkedList class uses a to implement the List interface.
12. The Collection is a of the List.

Review Questions
1. What is the difference between the size and the capacity of an ArrayList? Why might we have a

constructor that lets us set the initial capacity?
2. What is the difference between the remove(Object obj) and remove(int index) methods?
3. When we insert an item into an ArrayList, why do we start shifting at the last element?
4. The Vector and ArrayList both provide the same methods, since they both implement the List

interface. The Vector has some additional methods with the same functionality but different
names. For example, the Vector addElement and add methods have the same functionality. There
are some methods that are unique to Vector. Look at the Java API documentation and make a list
of the methods that are in Vector that have equivalent methods in ArrayList and ones that are
unique. Can the unique methods be implemented using the methods available in ArrayList?

5. If a loop processes n items and n changes from 1024 to 2048, how does that affect the running time
of a loop that is O(n2)? How about a loop that is O(log n)? How about a loop that is O(n log n)?

6. What is the advantage of a double‐linked list over a single‐linked list? What is the disadvantage?
7. Why is it more efficient to use an iterator to traverse a linked list?
8. What is the difference between the Iterator and ListIterator interfaces?
9. How would you make a copy of a ListIterator? Consider the following:

ListIterator copyOfIter =
 myList.ListIterator(otherIterator.previousIndex());

 Is this an efficient approach? How would you modify the KWLinkedList class to provide an effi-
cient method to copy a ListIterator?

10. What is a Collection? Are there any classes in the Java API that completely implement the
Collection interface?

Programming Projects
1. Develop a program to maintain a list of homework assignments. When an assignment is assigned,

add it to the list, and when it is completed, remove it. You should keep track of the due date. Your
program should provide the following services:

Add a new assignment.
Remove an assignment.
Provide a list of the assignments in the order they were assigned.
Find the assignment(s) with the earliest due date.

2. We can represent a polynomial as a list of terms, where the terms are in decreasing order by expo-
nent. You should define a class Term that contains data fields coef and exponent. For example, –5x4
has a coef value of –5 and an exponent value of 4. To add two polynomials, you traverse both lists
and examine the two terms at the current iterator position. If the exponent of one is smaller than the
exponent of the other, then insert the larger one into the result and advance that list’s iterator. If the
exponents are equal, then create a new term with that exponent and the sum of the two coefficients,
and advance both iterators. For example:

3 2 3 7 2 5 5 3 2 2 2 124 2 3 4 3 2x x x x x x x x xadded to is

Koffman-c02.indd 117 10/30/2015 7:39:12 PM

118 Chapter 2 Lists and the Collections Framework

 Write a polynomial class with an inner class Term. The polynomial class should have a data field
terms that is of type LinkedList <Term>. Provide an addpoly method and a readpoly method.
Method readypoly reads a string represending a polynomial such as “2 43 2x x ” and returns a
polynomial list with two terms. You also need a toString method for class Term and Polynomial
that would display this stored polynomial 2x^3 + −4x^2.

3. Provide a multiple method for your polynomial class. To multiply, you iterate through polynomial A
and then multiply all terms of polynomial B by the current term of polynomial A. You then add each
term you get by multiplying two terms to the polynomial result. Hint: to multiply two terms, multi-
ply their coefficients and add their exponents. For example, 2 4 83 2 5x x xis .

4. Write a program to manage a list of students waiting to register for a course as described in
Section 2.5. Operations should include adding a new student at the end of the list, adding a new
student at the beginning of the list, removing the student from the beginning of the list, and remov-
ing a student by name.

5. A circular‐linked list has no need of a head or tail. Instead, you need only a reference to a current
node, which is the nextNode returned by the Iterator. Implement such a CircularList class. For
a nonempty list, the Iterator.hasNext method will always return true.

6. The Josephus problem is named after the historian Flavius Josephus, who lived between the years 37
and 100 CE. Josephus was also a reluctant leader of the Jewish revolt against the Roman Empire.
When it appeared that Josephus and his band were to be captured, they resolved to kill themselves.
Josephus persuaded the group by saying, “Let us commit our mutual deaths to determination by lot.
He to whom the first lot falls, let him be killed by him that hath the second lot, and thus fortune shall
make its progress through us all; nor shall any of us perish by his own right hand, for it would be
unfair if, when the rest are gone, somebody should repent and save himself” (Flavius Josephus, The
Wars of the Jews, Book III, Chapter 8, Verse 7, tr. William Whiston, 1737). Yet that is exactly what
happened; Josephus was left for last, and he and the person he was to kill surrendered to the Romans.
Although Josephus does not describe how the lots were assigned, the following approach is generally
believed to be the way it was done. People form a circle and count around the circle some predeter-
mined number. When this number is reached, that person receives a lot and leaves the circle. The
count starts over with the next person. Using the circular‐linked list developed in Exercise 4, simu-
late this problem. Your program should take two parameters: n, the number of people who start, and
m, the number of counts. For example, try n 20 and m 12. Where does Josephus need to be in
the original list so that he is the last one chosen?

7. To mimic the procedure used by Josephus and his band strictly, the person eliminated remains in the
circle until the next one is chosen. Modify your program to take this into account. You may need to
modify the circular‐linked list class to make a copy of an iterator. Does this change affect the outcome?

8. A two‐dimensional shape can be defined by its boundary‐polygon, which is simply a list of all coor-
dinates ordered by a traversal of its outline. See the following figure for an example.

Koffman-c02.indd 118 10/30/2015 7:39:13 PM

 Chapter 2 Review 119

 The left picture shows the original shape; the middle picture, the outline of the shape. The rightmost
picture shows an abstracted boundary, using only the “most important” vertices. We can assign an
importance measure to a vertex P by considering its neighbors L and R. We compute the distances
LP, PR, and LR. Call these distances l1, l2, and l3. Define the importance as l l l1 2 3.

 Use the following algorithm to find the n most important points.

1. while the number of points is greater than n.
2. Compute the importance of each point.
3. Remove the least significant one.

 Write a program to read a set of coordinates that form an outline and reduce the list to the n most
significant ones, where n is an input value. Draw the initial and resulting shapes. Note: This problem
and the algorithm for its solution are based on the paper: L. J. Latecki and R. Lakämper, “Convexity
Rule for Shape Decomposition Based on Discrete Contour Evolution,” Computer Vision and Image
Understanding (CVIU) 73(1999): 441–454.

9. As an additional feature, add a slider to your application in Project 8, showing each step of the
 simplification. Because a slider can go back and forth, you have to store the results of each single
simplification step. Consult the Java API documentation on how to use a slider.

L

l1

P

l2

l3 R

Answers to Quick-Check Exercises
1. an index.
2. grow, shrink.
3. twice the size, spread out the cost of the reallocation so that it is effectively a constant‐time

operation.
4. O(n4)

5. The predecessor of this node. nodeRef.next = nodeRef.next.next;
6. Replaces "her" with "she".
7. Deletes the second list element ("she").
8. Insert a new first element containing "his".
9. sequentially.

10. both forward and backward.
11. double‐linked list.
12. superinterface.

Koffman-c02.indd 119 10/30/2015 7:39:13 PM

Koffman-c02.indd 120 10/30/2015 7:39:13 PM

C h a p t e r

121

T
his chapter introduces and illustrates some testing and debugging techniques. We begin
by discussing testing in some detail. You will learn how to generate a proper test plan
and the differences between unit and integration testing as they apply to an object-

oriented design (OOD). Next we describe the JUnit Test Framework, which has become a
commonly used tool for creating and running unit tests. We also describe test-driven develop-
ment, a design approach in which the tests and programs are developed in parallel. Finally,
we illustrate the debugger, which allows you to suspend program execution at a specified
point and examine the value of variables to assist in isolating errors.

Testing and Debugging

3C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To understand different testing strategies and when and how they are performed

 ◆ To introduce testing using the JUnit test framework

 ◆ To show how to write classes using test‐driven development

 ◆ To illustrate how to use a debugger within a Java Integrated Development Environment (IDE)

Te s t i n g a n d D e b u g g i n g

 3.1 Types of Testing
 3.2 Specifying the Tests
 3.3 Stubs and Drivers
 3.4 Testing Using the JUnit Framework
 3.5 Test-Driven Development

Case Study: Finding a target in an array.
 3.6 Testing Interactive Methods
 3.7 Debugging a Program

Koffman-c03.indd 121 10/30/2015 7:38:19 PM

122 Chapter 3 Testing and Debugging

3.1 Types of Testing

Testing is the process of exercising a program (or part of a program) under controlled condi-
tions and verifying that the results are as expected. The purpose of testing is to detect pro-
gram defects after all syntax errors have been removed and the program compiles successfully.
The more thorough the testing, the greater the likelihood that the defects will be found.
However, no amount of testing can guarantee the absence of defects in sufficiently complex
programs. The number of test cases required to test all possible inputs and states that each
method may execute can quickly become prohibitively large. That is often why commercial
software products have different versions or patches that the user must install. Version n usu-
ally corrects the defects that were still present in version n 1.

Testing is generally done at the following levels and in the sequence shown below:

Unit testing refers to testing the smallest testable piece of the software. In OOD, the unit
will be either a method or a class. The complexity of a method determines whether it
should be tested as a separate unit or whether it can be tested as part of its class.
Integration testing involves testing the interactions among units. If the unit is the method,
then integration testing includes testing interactions among methods within a class.
However, generally it involves testing interactions among several classes.
System testing is the testing of the whole program in the context in which it will be used.
A program is generally part of a collection of other programs and hardware, called a
system. Sometimes a program will work correctly until some other software is loaded
onto the system and then it will fail for no apparent reason.
Acceptance testing is system testing designed to show that the program meets its func-
tional requirements. It generally involves use of the system in the real environment or as
close to the real environment as possible.

There are two types of testing:

Black-box testing tests the item (method, class, or program) based on its interfaces and
functional requirements. This is also called closed-box testing or functional testing. For
testing a method, the input parameters are varied over their allowed range and the
results compared against independently calculated results. In addition, values outside
the allowed range are tested to ensure that the method responds as specified (e.g., throws
an exception or computes a nominal value). Also, the inputs to a method are not only
the parameters of the method, but also the values of any global data that the method
accesses.
White-box testing tests the software element (method, class, or program) with the knowledge
of its internal structure. Other terms used for this type of testing are glass-box testing,
open-box testing, and coverage testing. The goal is to exercise as many paths through
the element as possible or practical. There are various degrees of coverage. The simplest
is statement coverage, which ensures that each statement is executed at least once.
Branch coverage ensures that every choice at each branch (if statements, switch state-
ments, and loops) is tested. For example, if there are only if statements, and they are not
nested, then each if statement is tried with its condition true and with its condition
false. This could possibly be done with two test cases: one with all of the if conditions
true and the other with all of them false. Path coverage tests each path through a method.
If there are n if statements, path coverage could require 2n test cases if the if statements
are not nested (each condition has two possible values, so there could be 2n possible
paths).

Koffman-c03.indd 122 10/30/2015 7:38:19 PM

3.1 Types of Testing 123

EXAMPLE 3 .1 Method testMethod has a nested if statement and displays one of four messages, path 1
through path 4, depending on which path is followed. The values passed to its arguments
determine the path. The ellipses represent the other statements in each path.

public void testMethod(char a, char b) {
 if (a < 'M') {
 if (b < 'X') {
 System.out.println("path 1");
 ...

 } else {
 System.out.println("path 2");
 ...

 }
 } else {

 if (b < 'C') {
 System.out.println("path 3");
 ...
 } else {
 System.out.println("path 4");
 ...
 }

 }
}

TA B L E 3 . 1

Testing All Paths of testMethod

a b Message

‘A’ ‘A’ path 1

‘A’ ‘Z’ path 2

‘Z’ ‘A’ path 3

‘Z’ ‘Z’ path 4

To test this method, we need to pass values for its arguments that cause it to follow the dif-
ferent paths. Table 3.1 shows some possible values and the corresponding path.

The values chosen for a and b in Table 3.1 are the smallest and largest uppercase let-
ters. For a more thorough test, you should see what happens when a and b are passed
values that are between A and Z. For example, what happens if the value changes from
L to M? We pick those values because the condition (a < 'M') has different values for
each of them.

Also, what happens when a and b are not uppercase letters? For example, if a and b are
both digit characters (e.g., '2'), the path 1 message should be displayed because the digit
characters precede the uppercase letters (see Appendix A, Table A.2). If a and b are both
lowercase letters, the path 4 message should be displayed (Why?). If a is a digit and b is a
lowercase letter, the path 2 message should be displayed (Why?). As you can see, the num-
ber of test cases required to test even a simple method such as testMethod thoroughly can
become quite large.

Koffman-c03.indd 123 10/30/2015 7:38:20 PM

124 Chapter 3 Testing and Debugging

Preparations for Testing
Although testing is usually done after each unit of the software is coded, a test plan should
be developed early in the design stage. Some aspects of a test plan include deciding how the
software will be tested, when the tests will occur, who will do the testing, and what test data
will be used. If the test plan is developed early in the design stage, testing can take place con-
currently with the design and coding. Again, the earlier an error is detected, the easier and less
expensive it is to correct it.

Another advantage of deciding on the test plan early is that this will encourage programmers
to prepare for testing as they write their code. A good programmer will practice defensive
programming and include code that detects unexpected or invalid data values. For example,
if the parameter n for a method is required to be greater than zero, you can place the if
statement

if (n <= 0)
 throw new IllegalArgumentException("n <= 0: " + n);

at the beginning of the method. This if statement will throw an exception and provide a
diagnostic message in the event that the parameter passed to the method is invalid. Method
exit will occur and the exception can be handled by the method caller.

Testing Tips for Program Systems
Most of the time, you will be testing program systems that contain collections of classes,
each with several methods. Next, we provide a list of testing tips to follow in writing these
methods.

1. Carefully document each method parameter and class attribute using comments as you
write the code. Also, describe the method operation using comments, following the
Javadoc conventions discussed in Section A.7.

2. Leave a trace of execution by displaying the method name as you enter it.
3. Display the values of all input parameters upon entry to a method. Also, display the values

of any class attributes that are accessed by this method. Check that these values make
sense.

4. Display the values of all method outputs after returning from a method. Also, display any
class attributes that are modified by this method. Verify that these values are correct by
hand computation.

You should plan for testing as you write each module rather than after the fact. Include the
output statements required for Steps 2 and 3 in the original Java code for the method.
When you are satisfied that the method works as desired, you can “remove” the testing
statements. One efficient way to remove them is to enclose them in an if (TESTING) block
as follows:

if (TESTING) {
 // Code that you wish to "remove"
 . . .
}

You would then define TESTING at the beginning of the class as true to enable testing,
private static final boolean TESTING = true;

or as false to disable testing,
private static final boolean TESTING = false;

If you need, you can define different boolean flags for different kinds of tests.

Koffman-c03.indd 124 10/30/2015 7:38:20 PM

3.2 Specifying the Tests 125

E X E R C I S E S F O R S E C T I O N 3 . 1

S E L F ‐ C H E C K

1. Explain why a method that does not match its declaration in the interface would not be
discovered during white-box testing.

2. During which phase of testing would each of the following tests be performed?
a. Testing whether a method worked properly at all its boundary conditions.
b. Testing whether class A can use class B as a component.
c. Testing whether a phone directory application and a word-processing application can

run simultaneously on a personal computer.
d. Testing whether a method search can search an array that was returned by method

buildArray that stores input data in the array.
e. Testing whether a class with an array data field can use a static method search defined

in a class ArraySearch.

3.2 Specifying the Tests

In this section, we discuss how to specify the tests needed to test a program system and its
components. The test data may be specified during the analysis and design phases. This
should be done for the different levels of testing: unit, integration, and system. In black-box
testing, we are concerned with the relationship between the unit inputs and outputs. There
should be test data to check for all expected inputs as well as unanticipated data. The test
plan should also specify the expected unit behavior and outputs for each set of input data.

In white-box testing, we are concerned with exercising alternative paths through the code.
Thus, the test data should be designed to ensure that all if statement conditions will evaluate
to both true and false. For nested if statements, test different combinations of true and
false values. For switch statements, make sure that the selector variable can take on all val-
ues listed as case labels and some that are not.

For loops, verify that the result is correct if an immediate exit occurs (zero repetitions). Also,
verify that the result is correct if only one iteration is performed and if the maximum number
of iterations is performed. Finally, verify that loop repetition can always terminate.

Testing Boundary Conditions
When hand-tracing through an algorithm using white-box testing, you must exercise all
paths through the algorithm. It is also important to check special cases called boundary con-
ditions to make sure that the algorithm works for these cases as well as the more common
ones. For example, if you are testing a method that searches for a particular target element in
an array testing, the boundary conditions means that you should make sure that the method
works for the following special cases:

The target element is the first element in the array.
The target element is the last element in the array.
The target is somewhere in the middle.

Koffman-c03.indd 125 10/30/2015 7:38:20 PM

126 Chapter 3 Testing and Debugging

The target element is not in the array.
There is more than one occurrence of the target element, and we find the first
occurrence.
The array has only one element and it is not the target.
The array has only one element and it is the target.
The array has no elements.

These boundary condition tests would be required in black-box testing too.

E X E R C I S E S F O R S E C T I O N 3 . 2

S E L F ‐ C H E C K

1. List two boundary conditions that should be checked when testing method readInt below.
The second and third parameters represent the upper and lower bounds for a range of
valid integers.

/** Returns an integer data value within range minN and maxN inclusive
 * @param scan a Scanner object
 * @param minN smallest possible value to return
 * @param maxN largest possible value to return
 * @return the first value read between minN and maxN
 */
public static int readInt (Scanner scan, int minN, int maxN) {
 if (minN > maxN)
 throw new IllegalArgumentException ("In readlnt, minN " + minN
 + " not <= maxN " + maxN) ;
 boolean inRange = false; // Assume no valid number read.

 int n = 0;
 while (!inRange) { // Repeat until valid number read.

 System.out.println("Enter an integer from " + minN + " to "
 + maxN + ": ") ;
 try {
 n = scan.nextlnt();
 inRange = (minN <= n & & n <= maxN) ;
 } catch (InputMismatchException ex) {
 scan.nextLine();
 System.out.println("not an integer ‐ try again");
 }
 } // End while
 return n; // n is in range

}

2. Devise test data to test the method readInt using
a. white-box testing
b. black-box testing

P R O G R A M M I N G

1. Write a search method with four parameters: the search array, the target, the start
subscript, and the finish subscript. The last two parameters indicate the part of the
array that should be searched. Your method should catch or throw exceptions where
warranted.

Koffman-c03.indd 126 10/30/2015 7:38:20 PM

3.3 Stubs and Drivers 127

3.3 Stubs and Drivers

In this section, we describe two kinds of methods, stubs and drivers, that facilitate testing. We
also show how to document the requirements that a method should meet using preconditions
and postconditions.

Stubs
Although we want to do unit testing as soon as possible, it may be difficult to test a method
or a class that interacts with other methods or classes. The problem is that not all methods
and not all classes will be completed at the same time. So if a method in class A calls a method
defined in class B (not yet written), the unit test for class A can’t be performed without the
help of a replacement method for the one in class B. The replacement for a method that has
not yet been implemented or tested is called a stub. A stub has the same header as the method
it replaces, but its body only displays a message indicating that the stub was called.

Preconditions and Postconditions
In the comment for the method save, the lines

@pre the initial directory contents are read from a data file.
@post Writes the directory contents back to a data file.
 The boolean flag modified is reset to false.

show the precondition (following @pre) and postcondition (following @post) for the method
save. A precondition is a statement of any assumptions or constraints on the method data
(input parameters) before the method begins execution. A postcondition describes the result
of executing the method. A method’s preconditions and postconditions serve as a contract
between a method caller and the method programmer—if a caller satisfies the precondition,
the method result should satisfy the postcondition. If the precondition is not satisfied, there
is no guarantee that the method will do what is expected, and it may even fail. The precondi-
tions and postconditions allow both a method user and a method implementer to proceed
without further coordination.

EXAMPLE 3 .2 The following method is a stub for a void method save. The stub will enable a method that
calls save to be tested, even though the real method save has not been written.

/** Stub for method save.
 @pre the initial directory contents are read from a data file.
 @post Writes the directory contents back to a data file.
 The boolean flag modified is reset to false.
 */
public void save() {
 System.out.println("Stub for save has been called");
 modified = false;
}

Besides displaying an identification message, a stub can print out the values of the inputs and
can assign predictable values (e.g., 0 or 1) to any outputs to prevent execution errors caused
by undefined values. Also, if a method is supposed to change the state of a data field, the stub
can do so (modified is set to false by the stub just shown). If a client program calls one or
more stubs, the message printed by each stub when it is executed provides a trace of the call
sequence and enables the programmer to determine whether the flow of control within the
client program is correct.

Koffman-c03.indd 127 10/30/2015 7:38:20 PM

128 Chapter 3 Testing and Debugging

We will use postconditions to describe the change in object state caused by executing a muta-
tor method. As a general rule, you should write a postcondition comment for all void meth-
ods. If a method returns a value, you do not usually need a postcondition comment because
the @return comment describes the effect of executing the method.

Drivers
Another testing tool for a method is a driver program. A driver program declares any necessary
object instances and variables, assigns values to any of the method’s inputs (as specified in the
method’s preconditions), calls the method, and displays the values of any outputs returned by
the method. Alternatively, driver methods can be written in a separate test class and executed
under the control of a test framework such as JUnit, which we discuss in the next section.

E X E R C I S E S F O R S E C T I O N 3 . 3

S E L F ‐ C H E C K

1. Can a main method be used as a stub or a driver? Explain your answer.

P R O G R A M M I N G

1. Writer a driver program to the test method readInt in Self Check exercise 1 of Section 3.2
using the test data derived for Self-Check Exercise 2, part b in Section 3.2.

2. Write a stub to use in place of the method readInt.

3. Write a driver program to test method search in programming Exercise 1, Section 3.2.

3.4 The JUnit Test Framework

A test harness is a driver program written to test a method or class. It does this by providing
known inputs for a series of tests, called a test suite, and then compares the expected and
actual results of each test and an indication of pass or fail.

A test framework is a software product that facilitates writing test cases, organizing the test
cases into test suites, running the test suites, and reporting the results. One test framework
often used for Java projects is JUnit, an open-source product that can be used in a stand-
alone mode and is available from junit.org. It is also bundled with at least two popular
IDEs (NetBeans and Eclipse). In the next section, we show a test suite for the ArraySearch
class constructed using the JUnit framework.

JUnit uses the term test suite to represent the collection of tests to be run at one time. A test
suite may consist of one or more classes that contain the individual tests. These classes are
called test harnesses. A test harness may also contain common code to be executed before/
after each test so that the class being tested is in a known state.

Each test harness in a test suite that will be run by the JUnit main method (called a test run-
ner) begins with the two import statements:

import org.junit.Test;
import static org.junit.Assert.*;

The first import makes the Test interface visible, which allows us to use the @Test attribute
to identify test cases. Annotations such as @Test are directions to the compiler and other

Koffman-c03.indd 128 10/30/2015 7:38:20 PM

3.4 The JUnit Test Framework 129

language-processing tools; they do not affect the execution of the program. The JUnit main
method (test runner) searches the classes that are listed in the args parameter for methods
with the @Test annotation. When it executes them, it keeps track of the pass/fail results.

The second import statement makes the methods in the Assert class visible. The assert meth-
ods are used to determine pass/fail for a test. Table 3.2 describes the various assert methods
that are defined in org.junit.Assert. If an assert method fails, then an exception is thrown
causing an error to be reported as specified in the description for method assert ArrayEquals.
If one of the assertions fail, then the test fails; if none fails, then the test passes.

TA B L E 3 . 2

Methods Defined in org.junit.Assert

Method Parameters Description

assertArrayEquals [message,] expected,
actual

Tests to see whether the contents of the two array parameters expected and
actual are equal. This method is overloaded for arrays of the primitive types
and Object. Arrays of Objects are tested with the .equals method applied
to the corresponding elements. The test fails if an unequal pair is found, and
an AssertionError is thrown. If the optional message is included, the
AssertionError is thrown with this message followed by the default
message; otherwise it is thrown with a default message

assertEquals [message,] expected,
actual

Tests to see whether expected and actual are equal. This method is
overloaded for the primitive types and Object. To test Objects, the
.equals method is used

assertFalse [message,] condition Tests to see whether the boolean expression condition is false

assertNotNull [message,] object Tests to see if the object is not null

assertNotSame [message,] expected,
actual

Tests to see if expected and actual are not the same object. (Applies the !=
operator.)

assertNull [message,] object Tests to see whether the object is null

assertSame [message,] expected,
actual

Tests to see whether expected and actual are the same object. (Applies the ==
operator.)

assertTrue [message,] condition Tests to see whether the boolean expression condition is true

fail [message] Always throws AssertionError

EXAMPLE 3 .3 Listing 3.1 shows a JUnit test harness for an array search method (ArraySearch.search) that
returns the location of the first occurrence of a target value (the second parameter) in an
array (the first parameter) or −1 if the target is not found. The test harness contains methods
that implement the tests first described in Section 3.2 and repeated below.

The target element is the first element in the array.
The target element is the last element in the array.
The target is somewhere in the middle.
The target element is not in the array.
There is more than one occurrence of the target element and we find the first occurrence.
The array has only one element and it is not the target.
The array has only one element and it is the target.
The array has no elements.

Koffman-c03.indd 129 10/30/2015 7:38:20 PM

130 Chapter 3 Testing and Debugging

Method firstElementTest in Listing 3.1 implements the first test case. It tests to see whether
the target is the first element in the 7-element array {5, 12, 15, 4, 8, 12, 7}. In the statement

assertEquals("5 is not found at position 0", 0, ArraySearch.search(x, 5));

the call to method ArraySearch.search returns the location of the target (5) in array x. The
test passes (ArraySearch.search returns 0), and JUnit remembers the result. After all tests are
run, JUnit displays a message such as

Testsuite: KW.CH03New.ArraySearchTest
Tests run: 9, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.111 sec

where 0.111 is the execution time in seconds. The Netbeans IDE also shows a Test Results
window as shown in Figure 3.1. (The gray box at the end of Section 3.5 shows how to access
JUnit in Netbeans.)

If instead we used the following statement that incorrectly searches for target 4 as the first
element

assertEquals("4 is not found at position 0", 0, ArraySearch.search(x, 4));

the test would fail and AssertionErrorException would display the messages
Testcase: firstElementTest: FAILED
4 not found a position 0 expected:<0> but was:<3>

If we omitted the first argument in the call to assertEquals, the default message
Testcase: firstElementTest: FAILED
expected:<0> but was:<3>

would be displayed instead where 3 is the position of the target 4.

F I G U R E 3 . 1

Test Results

L I S T I N G 3 . 1

JUnit test of ArraySearch.search

import org.junit.Test;
import static org.junit.Assert.*;

/**
 * JUnit test of ArraySearch.search
 * @author Koffman and Wolfgang
 */
public class ArraySearchTest {

 // Common array to search for most of the tests
 private final int[] x = {5, 12, 15, 4, 8, 12, 7};

Koffman-c03.indd 130 10/30/2015 7:38:20 PM

3.4 The JUnit Test Framework 131

 @Test
 public void firstElementTest() {
 // Test for target as first element.
 assertEquals("5 not at position 0",
 0, ArraySearch.search(x, 5));
 }

 @Test
 public void lastElementTest() {
 // Test for target as last element.
 assertEquals("7 not at position 6",
 6, ArraySearch.search(x, 7));
 }

 @Test
 public void inMiddleTest() {
 // Test for target somewhere in middle.
 assertEquals("4 is not found at position 3",
 3, ArraySearch.search(x, 4));
 }

 @Test
 public void notInArrayTest() {
 // Test for target not in array.
 assertEquals(‐1, ArraySearch.search(x, ‐5));
 }

 @Test
 public void multipleOccurencesTest() {
 // Test for multiple occurrences of target.
 assertEquals(1, ArraySearch.search(x, 12));
 }

 @Test
 public void oneElementArrayTestItemPresent() {
 // Test for 1‐element array
 int[] y = {10};
 assertEquals(0, ArraySearch.search(y, 10));
 }

 @Test
 public void oneElementArrayTestItemAbsent() {
 // Test for 1‐element array
 int[] y = {10};
 assertEquals(‐1, ArraySearch.search(y, ‐10));
 }

 @Test
 public void emptyArrayTest() {
 // Test for an empty array
 int[] y = new int[0];
 assertEquals(‐1, ArraySearch.search(y, 10));
 }

 @Test(expected = NullPointerException.class)
 public void nullArrayTest() {
 int[] y = null;
 int i = ArraySearch.search(y, 10);
 }

}

Koffman-c03.indd 131 10/30/2015 7:38:20 PM

132 Chapter 3 Testing and Debugging

3.5 Test‐Driven Development

Rather than writing a complete method and then testing it, test-driven development involves
writing the tests and the method in parallel. The sequence is as follows:

Write a test case for a feature.
Run the test and observe that it fails, but other tests still pass.
Make the minimum change necessary to make the test pass.
Revise the method to remove any duplication between the code and the test.
Rerun the test to see that it still passes.

We then repeat these steps adding a new feature until all of the requirements for the method
have been implemented.

We will use this approach to develop a method to find the first occurrence of a target in an array.

Case Study: Test‐Driven Development of ArraySearch.search
Write a program to search an array that performs the same way as Java method ArraySearch.
search. This method should return the index of the first occurrence of a target in an array,
or 1 if the target is not present.

E X E R C I S E S F O R S E C T I O N 3 . 4

S E L F ‐ C H E C K

1. Modify the test(s) in the list for Example 3.3 to verify a method that finds the last occur-
rence of a target element in an array?

2. List the boundary conditions and tests needed for a method with the following heading:
/**
 * Search an array to find the first occurrence of the
 * largest element
 * @param x Array to search
 * @return The subscript of the first occurrence of the
 * largest element
 * @throws NullPointerException if x is null
 */
public static int findLargest(int[] x) {

P R O G R A M M I N G

1. Write the JUnit test harness for the method described in Self-Check Question 1.

2. Write the JUnit test harness for the tests listeded in Self-Check Exercise 1.

The last test case in Listing 3.1 does not implement one of the tests in our earlier list of test
cases. Its purpose is to test that the ArraySearch.search method fails as it should when it is
passed a null array. To tell JUnit that a test is expected to throw an exception, we added the
parameter expected = exception-class to the @Test attribute. This parameter tells JUnit that
the test should cause a NullPointerException (the result of calling ArraySearch.search with
a null array). Without this parameter, JUnit would have indicated that the test case did not
pass but reported an error instead. If the exception is not thrown as expected, the test will fail.

Koffman-c03.indd 132 10/30/2015 7:38:21 PM

3.5 Test‐Driven Development 133

We start by creating a test list like that in the last section and then work through them one at
a time. During this process, we may think of additional tests to add to the test list.

Our test list is as follows:

1. The target element is not in the list.
2. The target element is the first element in the list.
3. The target element is the last element in the list.
4. There is more than one occurrence of the target element and we find the first occurrence.
5. The target is somewhere in the middle.
6. The array has only one element.
7. The array has no elements.

We start by creating a stub for the method we want to code:
/**
 * Provides a static method search that searches an array
 * @author Koffman & Wolfgang
 */
public class ArraySearch {

/**
 * Search an array to find the first occurrence of a target
 * @param x Array to search
 * @param target Target to search for
 * @return The subscript of the first occurrence if found:
 * otherwise return ‐1
 * @throws NullPointerException if x is null
 */
public static int search(int[] x, int target) {
 return Integer.MIN_VALUE;

 }
}

Now, we create the first test that combines tests 1 and 6 above. We will screen the test code
in gray to distinguish it from the search method code.

/**
 * Test for ArraySearch class
 * @author Koffman & Wolfgang
 */
public class ArraySearchTest {
 @Test

public void itemNotFirstElementInSingleElementArray() {
 int[] x = {5};
 assertEquals(‐1, ArraySearch.search(x, 10));
 }
}

And when we run this test, we get the message:
Testcase: itemNotFirstElementInSingleElementArray: FAILED
expected:<‐1> but was:<‐2147483648>

The minimum change to enable method search to pass the test is
public static int search(int[] x, int target) {
 return ‐1; // target not found
}

Now, we can add a second test to see whether we find the target in the first element (tests 2
and 6 above).

@Test
public void itemFirstElementInSingleElementArray() {

Koffman-c03.indd 133 10/30/2015 7:38:21 PM

134 Chapter 3 Testing and Debugging

 int[] x = new int[]{5};
 assertEquals(0, ArraySearch.search(x, 5));
}

As expected, this test fails because the search method returns −1. To make it pass, we modify
our search method:

public static int search(int[] x, int target) {
 if (x[0] == target) {
 return 0; // target found at 0
 }
 return ‐1; // target not found
}

Both tests for a single element array now pass. Before moving on, let us see whether we can
improve this. The process of improving code without changing its functionality is known as
refactoring. Refactoring is an important step in test-driven development. It is also facilitated
by TDD since having a working test suite gives you the confidence to make changes. (Kent
Beck, a proponent of TDD says that TDD gives courage.1)

The statement:
return 0;

is a place for possible improvement. The value 0 is the index of the target. For a single element
array this is obviously 0, but for larger arrays it may be different. Thus, an improved version is

public static int search(int[] x, int target) {
 int index = 0;
 if (x[index] == target)
 return index; // target at 0
 return ‐1; // target not found
}

Now, let us see whether we can find an item that is last in a larger array (test 3 above). We
start with a 2-element array:

@Test
public void itemSecondItemInTwoElementArray() {
 int[] x = {10, 20};
 assertEquals(1, ArraySearch.search(x, 20));
}

The first two tests still pass, but the new test fails. As expected, we get the message:
Testcase: itemSecondItemInTwoElementArray: FAILED
expected:<1> but was:<‐1>

The test failed because we did not compare the second array element to the target. We can
modify the method to do this as shown next.

public static int search(int[] x, int target) {
 int index = 0;
 if (x[index] == target)
 return index; // target at 0
 index = 1;
 if (x[index] == target)
 return index; // target at 1
 return ‐1; // target not found
}

However, this would result in an ArrayOutOfBoundsException error for test itemNotFirst-
ElementInSingleElementArray because there is no second element in the array {5}. If we
change the method to first test that there is a second element before comparing it to target,
all tests will pass.
1 Beck, Kent. Test-Driven Development by Example. Addison-Wesley, 2003.

Koffman-c03.indd 134 10/30/2015 7:38:21 PM

3.5 Test‐Driven Development 135

public static int search(int[] x, int target) {
 int index = 0;
 if (x[index] == target)
 return index; // target at 0
 index = 1;
 if (index < x.length) {
 if (x[index] == target)
 return index; // target at 1
 }
 return ‐1; // target not found
}

However, what happens if we increase the number of elements beyond 2?
@Test
public void itemLastInMultiElementArray() {
 int[] x = new int[]{5, 10, 15};
 assertEquals(2, ArraySearch.search(x, 15));
}

This test would fail because the target is not at position 0 or 1. To make it pass, we could
continue to add if statements to test more elements, but this is a fruitless approach. Instead,
we should modify the code so that the value of index advances to the end of the array. We
can change the second if to a while and add an increment of index.

public static int search(int[] x, int target) {
 int index = 0;
 if (x[index] == target)
 return index; // target at 0
 index = 1;
 while (index < x.length) {

 if (x[index] == target)
 return index; // target at index

 index++;
 }
 return ‐1; // target not found
}

At this point, we have a method that will pass all of the tests for any size array. We can group
all the tests in a single testing method to verify this.

@Test
public void verificationTests() {
 int[] x = {5, 12, 15, 4, 8, 12, 7};
 // Test for target as first element
 assertEquals(0, ArraySearch.search(x, 5));
 // Test for target as last element
 assertEquals(6, ArraySearch.search(x, 7));
 // Test for target not in array
 assertEquals(‐1, ArraySearch.search(x, ‐5));
 // Test for multiple occurrences of target
 assertEquals(1, ArraySearch.search(x, 12));
 // Test for target somewhere in middle
 assertEquals(3, ArraySearch.search(x, 4));
}

Although it may look like we are done, we are not finished because we also need to check
that an empty array will always return −1:

@Test
public void itemNotInEmptyArray() {
 int[] x = new int[0];
 assertEquals(‐1, ArraySearch.search(x, 5));
}

Koffman-c03.indd 135 10/30/2015 7:38:21 PM

136 Chapter 3 Testing and Debugging

Unfortunately, this test does not pass because of an ArrayIndexOutofboundsException in the
first if condition for method search (there is no element x[0] in an empty array). If we look
closely at the code for search, we see that the initial test for when index is 0 is the same as
for the other elements. So we can remove the first statement and start the loop at 0 instead
of 1 (another example of refactoring). Our code becomes more compact and this test will also
pass. A slight improvement would be to replace the while with a for statement.

public static int search(int[] x, int target) {
 int index = 0;
 while (index < x.length) {
 if (x[index] == target)
 return index; // target at index
 index++;
 }
 return ‐1; // target not found
}

Finally, if we pass a null pointer instead of a reference to an array, a NullPointerException
should be thrown (an additional test not in our original list).

@Test(expected = NullPointerException.class)
public void nullValueOfXThrowsException() {
 assertEquals(0, ArraySearch.search(null, 5));
}

E X E R C I S E S F O R S E C T I O N 3 . 5

S E L F - C H E C K

1. Why did the first version of method search that passed the first test itemNotFirst-
ElementInSingleElementArray contain only the statement return 1?

2. Assume the first JUnit test for the findLargest method described in Self-Check Exercise 2
in Section 3.4 is a test that determines whether the first item in a one element array is the
largest. What would be the minimal code for a method findLargest that passed this test?

P R O G R A M M I N G

1. Write the findLargest method described in Self-Check Exercise 2 in Section 3.4 using
Test-Driven Development.

JUnit in Netbeans
It is fairly easy to create a JUnit test harness in Netbeans. Once you have written class
ArraySearch.java, right click on the class name in the Projects view and then select
Tools −> Create/Update Tests. A Create Tests window will pop up. Select OK and then
a Select JUnit Version window will pop up: select the most recent version of JUnit
(currently JUnit 4.x). At this point, a new class will be created (ArraySearchTest.java)
that will contain prototype tests for all the public functions in class ArraySearch. You
can replace the prototype tests with your own. To execute the tests, right click on class
ArraySearchTest.

Koffman-c03.indd 136 10/30/2015 7:38:21 PM

3.6 Testing Interactive Programs in JUnit 137

3.6 Testing Interactive Programs in JUnit

In this section, we show how to use JUnit to test a method that gets an integer value in a
specified range from the program user method readInt is defined in class MyInput:

/**
 * Method to return an integer data value between two
 * specified end points.
 * @pre minN <= maxN.
 * @param prompt Message
 * @param minN Smallest value in range
 * @param maxN Largest value in range
 * @throws IllegalArgumentException
 * @return The first data value that is in range
 */
public static int readInt(String prompt, int minN, int maxN) {
 if (minN > maxN) {
 throw new IllegalArgumentException("In readInt, minN " + minN +
 "not <= maxN " + maxN);
 }
 // Arguments are valid, read a number
 boolean inRange = false; //Assume no valid number read
 int n = 0;
 Scanner in = new Scanner(System.in);
 while (!inRange) {

 try {
 System.out.println(prompt + "\nEnter an integer between "
 + minN + " and " + maxN);
 String line = in.nextLine();
 n = Integer.parseInt(line);
 inRange = (minN <= n && n <= maxN);
 } catch (NumberFormatException ex) {
 System.out.println("Bad numeric string ‐ Try again");
 }

 }
 return n;
}

The advantage of using a test framework such as JUnit is that tests are automated. They do
not require any user input, and they always present the same test cases to the unit being
tested. With JUnit, we can test that an IllegalArgumentException is thrown if the input
parameters are not valid:

@Test(expected=IllegalArgumentException.class)
public void testForInvalidInput() {
 int n = MyInput.readInt("Enter weight", 5, 2);
}

We also need to test that the method works correctly for values that are within a valid
range and for values that are outside without requiring the user to enter these data. So we
need to provide repeatable user input, and we need to verify that the output displayed is
correct.

System.in is a public static field in the System class. It is initialized to an InputStream that
reads from the system-defined standard input. The method System.setIn can be used to
change the value of System.in. Similarly, System.out is initialized to a PrintStream that writes
to the operating system-defined standard output, and the method System.setOut can be used
to change it.

Koffman-c03.indd 137 10/30/2015 7:38:21 PM

138 Chapter 3 Testing and Debugging

ByteArrayInputStream
The ByteArrayInputStream is an InputStream that provides input from a fixed array of bytes.
The array is initialized by the constructor. Calls to the read method return successive bytes
from the array until the end of the array is reached. Thus, if we wanted to test what readInt
does when the string "3" is entered, we can do the following:

@Test
public void testForNormalInput() {
 ByteArrayInputStream testIn = new ByteArrayInputStream("3".getBytes());
 System.setIn(testIn);
 int n = MyInput.readInt("Enter weight", 2, 5);
 assertEquals(n, 3);
}

ByteArrayOutputStream
The ByteArrayOutputStream is an OutputStream that collects each byte written to it into
an internal byte array. The toString method will then convert the current contents into
a String. To capture and verify output written to System.out, we need to create a
PrintStream that writes to a ByteArrayOutputStream and then set System.out to this
PrintStream.

To verify that the prompt is properly displayed for the normal case, we use the following test:
@Test
public void testThatPromptIsCorrectForNormalInput() {
 ByteArrayInputStream testIn = new ByteArrayInputStream("3".getBytes());
 System.setIn(testIn);
 ByteArrayOutputStream testOut = new ByteArrayOutputStream();
 System.setOut(new PrintStream(testOut));
 int n = MyInput.readInt("Enter weight", 2, 5);
 assertEquals(n, 3);
 String displayedPrompt = testOut.toString();
 String expectedPrompt = "Enter weight" +
 "\nEnter an integer between 2 and 5" + NL;
 assertEquals(expectedPrompt, displayedPrompt);
}

For the data string “3”, the string formed by testOut.toString() should match the string in
expectedPrompt. String expectedPrompt ends with the string constant NL instead of \n. This
is because the println method ends the output with a system-dependent line terminator. On
the Windows operating system, this is the sequence \r\n, and on the Linux operating system
it is \n. The statement

private static final String NL = System.getProperty("line.separator");

initializes the String constant NL to the system-specific line terminator.

Finally, we need to write additional tests (4 in all) that verify that method readInt works
properly when an invalid integer string is entered and when the integer string entered is not
in range. Besides verifying that the value returned is correct, you should verify the prompts
displayed. For each of these tests, your test input should include a valid input following the
invalid input so that the method will return normally. These tests are left to programming
exercises 1 and 2. For example, the statement

ByteArrayInputStream testIn = new ByteArrayInputStream("X\n 3".getBytes());

would provide a data sample for the first test case ("X" is an invalid integer string, "3" is
valid).

Koffman-c03.indd 138 10/30/2015 7:38:21 PM

3.7 Debugging a Program 139

3.7 Debugging a Program

In this section, we will discuss the process of debugging (removing errors) both with
and without the use of a debugger program. Debugging is the major activity per-
formed by programmers during the testing phase. Testing determines whether you
have an error; during debugging you determine the cause of run-time and logic errors
and correct them, without introducing new ones. If you have followed the sugges-
tions for testing described in the previous section, you will be well prepared to debug
your program.

Debugging is like detective work. To debug a program, you must inspect carefully the infor-
mation displayed by your program, starting at the beginning, to determine whether what you
see is what you expect. For example, if the result returned by a method is incorrect but the
arguments (if any) passed to the method had the correct values, then there is a problem inside
the method. You can try to trace through the method to see whether you can find the source
of the error and correct it. If you can’t, you may need more information. One way to get that
information is to insert additional diagnostic output statements in the method. For example,
if the method contains a loop, you may want to display the values of loop control variables
during loop execution.

E X E R C I S E S F O R S E C T I O N 3 . 6

S E L F ‐ C H E C K

1. Explain why it is not necessary to write a test to verify that readInt works properly when
the input consists of an invalid integer string, followed by an out-of-range integer, then
followed by an integer that is in range.

P R O G R A M M I N G

1. Write separate tests to verify the result returned by readInt and the prompts displayed
when the input consists of an invalid integer string followed by a valid integer. Verify
that the expected error message is presented followed by a repeat of the prompt.

2. Write separate tests to verify the result returned by readInt and the prompts displayed
when the input consists of an out-of-range integer followed by a valid integer. Verify
that the expected error message is presented followed by a repeat of the prompt.

EXAMPLE 3 .4 The loop in Listing 3.2 does not seem to terminate when the user enters the sentinel string
("***"). The loop exits eventually after the user has entered 10 data items but the string
returned contains the sentinel.

Koffman-c03.indd 139 10/30/2015 7:38:21 PM

140 Chapter 3 Testing and Debugging

To determine the source of the problem, you should insert a diagnostic output statement that
displays the values of word and count to make sure that word is receiving the sentinel string
("***"). You could insert the line

System.out.println("!!! Next word is " + word + ", count is " + count);

as the first statement in the loop body. If the third data item you enter is the sentinel string,
you will get the output line:

!!! next word is ***, count is 2

This will show you that word does indeed receive the sentinel string, but the loop body con-
tinues to execute. Therefore, there must be something wrong with the if statement that tests
for the sentinel. In fact, the if statement must be changed to

if (word == null || word.equals("***")) break;

because word == "***" compares the address of the string stored in word with the address
of the literal string "***", not the contents of the two strings as intended. The strings’
addresses will always be different, even when their contents are the same. To compare
their contents, the equals method must be used. Note that we needed to do the test word
== null first because we would get a NullPointerException if equals was called when
word was null.

Using a Debugger
If you are using an IDE, you will most likely have a debugger program as part of the IDE. A
debugger can execute your program incrementally rather than all at once. After each incre-
ment of the program executes, the debugger pauses, and you can view the contents of variables
to determine whether the statement(s) executed as expected. You can inspect all the program
variables without needing to insert diagnostic output statements. When you have finished
examining the program variables, you direct the debugger to execute the next increment.

You can choose to execute in increments as small as one program statement (called single-
step execution) to see the effect of each statement’s execution. Another possibility is to set
breakpoints in your program to divide it into sections. The debugger can execute all the state-
ments from one breakpoint to the next as a group. For example, if you wanted to see the

L I S T I N G 3 . 2

The Method getSentence

/**
 * Return the individual words entered by the user.
 * The user can enter the sentinel *** to terminate data entry.
 * @return A string with a maximum of 10 words
 */
public static String getSentence() {
 Scanner in = new Scanner(System.in);
 StringJoiner stb = new StringJoiner(" ");
 int count = 0;
 while (count < 10) {
 System.out.println("Enter a word or *** to quit");
 String word = in.next();
 if (word == "***") break;
 stb.add(word);
 count++;
 }
 return stb.toString();

}

Koffman-c03.indd 140 10/30/2015 7:38:21 PM

3.7 Debugging a Program 141

effects of a loop’s execution but did not want to step through every iteration, you could set
breakpoints at the statements just before and just after the loop.

When your program pauses, if the next statement contains a call to a method, you can select
single-step execution in the method being called (i.e., step into the method). Alternatively,
you can execute all the method statements as a group and pause after the return from the
method execution (i.e., step over the method).

The actual mechanics of using a debugger depends on the IDE that you are using. However,
the process that you follow is similar among IDEs, and if you understand the process for one,
you should be able to use any debugger. In this section, we demonstrate how to use the
debugger in NetBeans, the IDE that is distributed by Sun along with the software develop-
ment kit (SDK).

Before starting the debugger, you must set a breakpoint. Figure 3.2 is the display produced
by the debugger at the beginning of debugging the GetSentence.main method. In NetBeans,
you set a breakpoint by clicking in the vertical bar just to the left of the statement that you
want to select as a breakpoint. The small squares and highlighted bars indicate the break-
points. You can click again on a small square to remove the breakpoint. The source editor
window displays the code to be debugged. The Debug pull-down menu shows the options for
executing the code. The selected item, Step Into, is a common technique for starting single-
step execution, as we have just described. A window (such as window Variables in the center
left) typically shows the values of data fields and local variables. In this case, there is one local
variable for method main: the String array args, which is empty. The arrow to the left of the
highlighted line in the source editor window indicates the next step to execute (the call to
method getSentence). Select Step Into again to execute the individual statements of method
getSentence.

Figure 3.3 shows the editor and Variables windows after we have entered "Hello", "world",
and "***". The contents of sentence is "Hello world", the value of count is 2, and the con-
tents of word is "***". The next statement to execute is highlighted. It is the if statement,
which tests for the sentinel. Although we expect the condition to be true, it is false (why?), so
the loop continues to execute and "***" will be appended to sentence.

F I G U R E 3 . 2

Using the Debugger

for NetBeans

Koffman-c03.indd 141 10/30/2015 7:38:21 PM

142 Chapter 3 Testing and Debugging

F I G U R E 3 . 3

Editor and Debugging

Windows

E X E R C I S E S F O R S E C T I O N 3 . 7

S E L F ‐ C H E C K

1. The following method does not appear to be working properly if all data are negative
numbers. Explain where you would add diagnostic output statements to debug it, and give
an example of each statement.
/** Finds the target value in array elements x[start] through x[last].
 @param x array whose largest value is found
 @param start first subscript in range
 @param last last subscript in range
 @return the largest value of x[start] through x[last]
 @pre first <= last
 */
public int findMax(int[] x, int start, int last) {
 if (start > last)
 throw new IllegalArgumentException("Empty range");
 int maxSoFar = 0;
 for (int i = start; i < last; i++) {
 if (x[i] > maxSoFar)
 maxSoFar = i;
 }
 return maxSoFar;
}

2. Explain the difference between selecting Step Into and Step Over during debugging.

Koffman-c03.indd 142 10/30/2015 7:38:22 PM

 Chapter 3 Review 143

C h a p t e r R e v i e w

 ◆ Program testing is done at several levels starting with the smallest testable piece of the
program, called a unit. A unit is either a method or a class, depending on the complexity.

 ◆ Once units are individually tested, they can be tested together; this level is called integra-
tion testing.

 ◆ Once the whole program is put together, it is tested as a whole; this level is called system
testing.

 ◆ Finally, the program is tested in an operational manner demonstrating its functionality; this
is called acceptance testing.

 ◆ Black-box (also called closed-box) testing tests the item (unit or system) based on its func-
tional requirements without using any knowledge of the internal structure.

 ◆ White-box (also called glass-box or open-box) testing tests the item using knowledge of its
internal structure. One of the goals of white-box testing is to achieve test coverage. This can
range from testing every statement at least once, to testing each branch condition (if state-
ments, switch statements, and loops) to verify each possible path through the program.

 ◆ Test drivers and stubs are tools used in testing. A test driver exercises a method or class and
drives the testing. A stub stands in for a method that the unit being tested calls. This can be
used to provide test results, and it can be used to enable a call of that method to be tested
when the method being called is not yet coded.

 ◆ The JUnit test framework is a software product that facilitates writing test cases, organiz-
ing the test cases into test suites, running the test suites, and reporting the results.

 ◆ Test-Driven development is an approach to developing programs that has gained popular-
ity among professional software developers. The approach is to write test cases one at a
time and the make the changes to the program to pass the test.

 ◆ Interactive programs can be tested by using the ByteArrayInputStream to provide known
input and the ByteArrayOutputStream to verify output.

 ◆ We described the debugging process and showed an example of how a debugger can be
used to obtain information about a program’s state.

3. Explain the rationale for the position of the breakpoints in method getSentence.

4. How would the execution of method getSentence change if the breakpoint were set at the
statement just before the loop instead of at the loop heading?

P R O G R A M M I N G

1. After debugging, provide a corrected version of the method in Self-Check Exercise 1.
Leave the debugging statements in, but execute them only when the global constant
TESTING is true.

 2. Write and test a driver program to test method findMax in Self-Check exercise 1.

Koffman-c03.indd 143 10/30/2015 7:38:22 PM

144 Chapter 3 Testing and Debugging

Java API Classes Introduced in This Chapter
ByteArrayInputStream

ByteArrayOutputStream

User‐Defined Interfaces and Classes in This Chapter
class ArraySearch

class MyInput

Quick‐Check Exercises
1. ______ testing requires the use of test data that exercises each statement in a module.
2. ______ testing focuses on testing the functional characteristics of a module.
3. ______ determines whether a program has an error: ______ determines the ______ of the error and

helps you ______ it.
4. A method’s ______ and ______ serve as a ______ between a method caller and the method programmer—

if a caller satisfies the, the method result should satisfy the ______.
5. Explain how the old adage “We learn from our mistakes” applies to test-driven development.

Review Questions
1. Indicate in which state of testing (unit, integration, system) each of the following kinds of errors

should be detected:
a. An array index is out of bounds.
b. A FileNotFoundException is thrown.
c. An incorrect value of withholding tax is being computed under some circumstances.

2. Describe the differences between stubs and drivers.
3. What is refactoring? How it is used in test-driven development?
4. Modify the list of tests for finding the first occurrence of a target in an array shown in Section 3.4

to finding the last occurrence.
5. Use the list of tests for review question 4. To develop a JUnit test harness.
6. Use test-driven development to code the method for finding the last occurrence of a target in an

array.

Programming
1. Design and code a JUnit test harness for a method that finds the smallest element in an array.
2. Develop the method in project 1 using test-driven development.
3. Design and code the JUnit test cases for a class that computes the sine and cosine functions in a

specialized manner. This class is going to be part of an embedded system running on a processor that
does not support floating-point arithmetic or the Java Math class. The class to be tested is shown in
Listing 3.3. You job is to test the methods sin and cos; you are to assume that the methods sin0to90
and sin45to90 have already been tested.
You need to design a set of test data that will exercise each of the if statements. To do this, look at
the boundary conditions and pick values that are

Exactly on the boundary
Close to the boundary
Between boundaries

Koffman-c03.indd 144 10/30/2015 7:38:22 PM

 Chapter 3 Review 145

L I S T I N G 3 . 3

SinCos.java

/** This class computes the sine and cosine of an angle
 expressed in degrees. The result will be an
 an integer representing the sine or cosine as
 ten‐thousandths.
 */
public class SinCos {
 /** Compute the sine of an angle in degrees.
 @param x The angle in degrees
 @return the sine of x
 */

public static int sin(int x) {
 if (x < 0) {
 x = ‐x;
 }
 x = x % 360;
 if (0 <= x && x <= 45) {
 return sin0to45(x);
 } else if (45 <= x && x <= 90) {
 return sin45to90(x);
 } else if (90 <= x && x <= 180) {
 return sin(180 ‐ x);
 } else {
 return ‐sin(x ‐ 180);
 }

 }

/** Compute the cosine of an angle in degrees
 @param x The angle in degrees
 @return the cosine of x
 */
public static int cos(int x) {
 return sin(x + 90);
}

/** Compute the sine of an angle in degrees
 between 0 and 45
 @param x The angle
 @return the sine of x
 @pre 0 <= x < 45
 */
private static int sin0to45(int x) {
 // In a realistic program this method would
 // use a polynomial approximation that was
 // optimized for the input range
 // Insert code to compute sin(x) for x between 0 and 45 degrees
}

/** Compute the sine of an angle in degrees
 between 45 and 90.
 @param x ‐ The angle
 @return the sine of x
 @pre 45 <= x <= 90
 */
private static int sin45to90(int x) {
 // In a realistic program this method would
 // use a polynomial approximation that was
 // optimized for the input range
 // Insert code to compute sin(x) for x between 45 and 90 degrees
}

}

Koffman-c03.indd 145 10/30/2015 7:38:22 PM

146 Chapter 3 Testing and Debugging

Answers to Quick-Check Exercises
1. White-box testing requires the use of test data that exercises each statement in a module.
2. Black-box testing focuses on testing the functional characteristics of a module.
3. Testing determines whether a program has an error: debugging determines the cause of the error and

helps you correct it.
4. A method’s precondition and postcondition serve as a contract between a method caller and the

method programmer—if a caller satisfies the precondition the method result should satisfy the
postconditon.

5. In test-driven development, failing a test informs the method coder that the method developed so far
needs to be modified. By repeated failure and adaptation of the code to pass the test just failed while
still passing the rest of the tests in the test harness, the method coder develops a correct version of
the desired method.

Koffman-c03.indd 146 10/30/2015 7:38:22 PM

C h a p t e r

147

I
n this chapter we study two abstract data types, the stack and queue, that are widely used.
A stack is a LIFO (last-in, first-out) list because the last element pushed onto a stack will
be the first element to be popped off. A queue, on the other hand, is a FIFO (first-in, first-

out) list because the first element inserted in the queue will be the first element removed.
Stacks and queues are more restrictive than the list data type that we studied in Chapter 2.

A client can access any element in a list and can insert elements at any location. However, a client
can access only a single element in a stack or queue: the one that was most recently inserted in
the stack or the oldest one in the queue. This may seem like a serious restriction that would make
them not very useful, but it turns out that stacks and queues are actually two of the most com-
monly used data structures in computer science. For example, during program execution, a stack
is used to store information about the parameters and return points for all the methods that are
currently executing (you will see how this is done in Chapter 5, “Recursion”). Compilers also
use stacks to store information while evaluating expressions.

Operating systems also make extensive use of queues. One application of queues is to
manage process execution. In a modern operating system, several processes may be executing

Stacks and Queues

4C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To learn about stack data type and how to use its four methods: push, pop, peek, and empty

 ◆ To understand how Java implements a stack

 ◆ To learn how to implement a stack using an underlying array or a linked list

 ◆ To see how to use a stack to perform various applications, including finding palindromes,
testing for balanced (properly nested) parentheses, and evaluating arithmetic expressions

 ◆ To learn how to represent a waiting line (queue) and how to use the methods in the Queue
interface for insertion (offer and add), for removal (remove and poll), and for accessing the
element at the front (peek and element)

 ◆ To understand how to implement the Queue interface using a single-linked list, a circular
 array, and a double-linked list

 ◆ To become familiar with the Deque interface and how to use its methods to insert and
 remove items from both ends of a deque

Koffman-c04.indd 147 10/30/2015 7:37:23 PM

148 Chapter 4 Stacks and Queues

at the same time and, therefore, may request the use of the same computer resource (for
example, the CPU or a printer). The operating system stores these requests in a queue and
then removes them so that the process that is waiting the longest will be the next one to get
access to the desired resource.

We will discuss several applications of stacks and queues. We will also show how to
implement them using both arrays and linked lists.

4.1 Stack Abstract Data Type

In a cafeteria you can see stacks of dishes placed in spring-loaded containers. Usually, several
dishes are visible above the top of the container, and the rest are inside the container. You can
access only the dish that is on top of the stack. If you want to place more dishes on the stack,
you can place the dishes on top of those that are already there. The spring inside the stack
container compresses under the weight of the additional dishes, adjusting the height of the
stack so that only the top few dishes are always visible.

Another physical example of a stack is a Pez® dispenser (see Figure 4.1). A Pez dispenser is a
toy that contains candies. There is also a spring inside the dispenser. The top of the dispenser
is a character’s head. When you open the dispenser, a single candy pops out. You can only
extract one candy at a time. If you want to eat more than one candy, you have to open the
dispenser multiple times.

In programming, a stack is a data structure with the property that only the top element of
the stack is accessible. In a stack, the top element is the data value that was most recently
stored in the stack. Sometimes this storage policy is known as last-in, first-out, or LIFO.

Next, we specify some of the operations that we might wish to perform on a stack.

Specification of the Stack Abstract Data Type
Because only the top element of a stack is visible, a stack performs just a few operations. We
need to be able to inspect the top element (method peek), retrieve the top element (method
pop), push a new element onto the stack (method push), and test for an empty stack (method

S t a c k s a n d Q u e u e s

 4.1 Stack Abstract Data Type
 4.2 Stack Application

Case Study: Finding Palindromes
 4.3 Implementing a Stack
 4.4 Additional Stack Applications

Case Study: Evaluating Postfix Expressions
Case Study: Converting from Infix to Postfix
Case Study: Converting Expressions with Parentheses

 4.5 Queue Abstract Data Type
 4.6 Queue Applications

Case Study: Maintaining a Queue
 4.7 Implementing the Queue Interface
 4.8 The Deque Interface

F I G U R E 4 . 1

A Pez Dispenser

Koffman-c04.indd 148 10/30/2015 7:37:24 PM

4.1 Stack Abstract Data Type 149

isEmpty). Table 4.1 shows a specification for the Stack ADT that specifies the stack operations.
We will write this as interface StackInt<E>.

Listing 4.1 shows the interface StackInt<E>, which declares the methods in the Stack ADT.

TA B L E 4 . 1

Specification of StackInt<E>

Methods Bhavior

boolean isEmpty() Returns true if the stack is empty; otherwise, returns false

E peek() Returns the object at the top of the stack without removing it

E pop() Returns the object at the top of the stack and removes it

E push(E obj) Pushes an item onto the top of the stack and returns the item pushed

L I S T I N G 4 . 1

StackInt.java

/** A Stack is a data structure in which objects are inserted into
 and removed from the same end (i.e., Last-In, First-Out).
 @param <E> The element type
 */
public interface StackInt<E> {

 /** Pushes an item onto the top of the stack and returns
 the item pushed.
 @param obj The object to be inserted
 @return The object inserted
 */
 E push(E obj);

 /** Returns the object at the top of the stack
 without removing it.
 @post The stack remains unchanged.
 @return The object at the top of the stack
 @throws NoSuchElementException if stack is empty
 */
 E peek();

 /** Returns the object at the top of the stack
 and removes it.
 @post The stack is one item smaller.
 @return The object at the top of the stack
 @throws NoSuchElementException if stack is empty
 */
 E pop();

 /** Returns true if the stack is empty; otherwise,
 returns false.
 @return true (false) if the stack is empty (not empty)
 */
 boolean isEmpty();
}

Koffman-c04.indd 149 10/30/2015 7:37:24 PM

150 Chapter 4 Stacks and Queues

EXAMPLE 4 .1 A stack names (type Stack<String>) contains five strings as shown in Figure 4.2(a). The name
"Rich" was placed on the stack before the other four names; "Jonathan" was the last element
placed on the stack.

For stack names in Figure 4.2(a), the value of names.isEmpty() is false. The statement
String last = names.peek();

stores "Jonathan" in last without changing names. The statement
String temp = names.pop();

removes "Jonathan" from names and stores a reference to it in temp. The stack names now
contains four elements and is shown in Figure 4.2(b). The statement

names.push("Philip");

pushes "Philip" onto the stack; the stack names now contains five elements and is shown in
Figure 4.2(c).

Jonathan

Dustin

Robin

Debbie

Rich

Philip

Dustin

Robin

Debbie

Rich

Dustin

Robin

Debbie

Rich

(a) (b) (c)

F I G U R E 4 . 2

Stack Names

E X E R C I S E S F O R S E C T I O N 4 . 1

S E L F - C H E C K

1. Assume that the stack names is defined as in Figure 4.2(c) and perform the following
sequence of operations. Indicate the result of each operation and show the new stack if it
is changed.
names.push("Jane");
names.push("Joseph");
String top = names.pop();
String nextTop = names.peek();

2. For the stack names in Figure 4.2 (c), what is the effect of the following:
while (!names.isEmpty()) {
 System.out.println(names.pop());
}

3. What would be the effect of using peek instead of pop in Question 2?

P R O G R A M M I N G

1. Write a main function that creates three stacks of Integer objects. Store the numbers –1,
15, 23, 44, 4, 99 in the first two stacks. The top of each stack should store 99.

2. Write a loop to get each number from the first stack and store it into the third stack.

3. Write a second loop to remove a value from the second and third stacks and display each pair
of values on a separate output line. Continue until the stacks are empty. Show the output.

Koffman-c04.indd 150 10/30/2015 7:37:24 PM

4.2 Stack Applications 151

4.2 Stack Applications

In this section we will study a client program that uses a stack, a palindrome finder. The java.
util.Stack class is part of the original Java API but is not recommended for new applica-
tions. Instead, the Java designers recommend that we use the java.util.Deque interface and
the java.util.ArrayDeque class to provide the methods listed in Table 4.1. The Deque inter-
face specifies the methods in our interface StackInt (see Table 4.1) and also those needed for
a queue. We discuss the Deque interface and class ArrayDeque in more detail in Section 4.8.

CASE STUDY Finding Palindromes

 Problem A palindrome is a string that reads the same in either direction: left to right or right to left.
For example, “kayak” is a palindrome, as is “I saw I was I.” A well-known palindrome
regarding Napoleon Bonaparte is “Able was I ere I saw Elba” (the island where he was sent
in exile). We would like a program that reads a string and determines whether it is a
palindrome.

 Analysis This problem can be solved in many different ways. For example, you could set up a loop
in which you compare the characters at each end of a string as you work toward the mid-
dle. If any pair of characters is different, the string can’t be a palindrome. Another approach
would be to scan a string backward (from right to left) and append each character to the
end of a new string, which would become the reverse of the original string. Then you can
see whether the strings are equal. The approach we will study here uses a stack to assist in
forming the reverse of a string. It is not the most efficient way to solve the problem, but it
makes good use of a stack.

 If we scan the input string from left to right and push each character in the input string
onto a stack, or we can form the reverse of the string by popping the characters and join-
ing them together in the order that they come off the stack. For example, the stack at left
contains the characters in the string "I saw".

 If we pop them off and join them together, we will get "w" + "a" + "s" + " " + "I", or
the string "was I". When the stack is empty, we can compare the string we formed with
the original. If they are the same, the original string is a palindrome. Because char is a
primitive type, each character must be wrapped in a Character object before it can be
pushed onto the stack.

Data Requirements

PROBLEM INPUTS

An input string to be tested

PROBLEM OUTPUTS

A message indicating whether the string is a palindrome

w

a

s

I

Koffman-c04.indd 151 10/30/2015 7:37:24 PM

152 Chapter 4 Stacks and Queues

 Design We can define a class called PalindromeFinder (Table 4.2) with three static methods:
fillStack pushes all characters from the input string onto a stack, buildReverse builds a
new string by popping the characters off the stack and joining them, and isPalindrome
compares the input string and new string to see whether they are palindromes. Method
isPalindrome is the only public method and is called with the string to be tested as its
argument.

 Implementation Listing 4.2 shows the class. Method isPalindrome calls buildReverse, which calls
fillStack to build the stack (an ArrayDeque). In fillStack, the statement

charStack.push(inputString.charAt(i));

autoboxes a character and pushes it onto the stack.

 In method buildReverse, the loop
while (!charStack.isEmpty()) {
 // Remove top item from stack and append it to result.
 result.append(charStack.pop());

}

pops each object off the stack and appends it to the result string.

Method isPalindrome uses the String method equalsIgnoreCase to compare the original
string with its reverse.

return inputString.equalsIgnoreCase(buildReverse(inputString));

L I S T I N G 4 . 2

PalindromeFinder.java

import java.util.*;

/** Class with methods to check whether a string is a palindrome. */
public class PalindromeFinder {

 /** Fills a stack of characters from an input string.
 * @param inputString the string to be checked
 * @return a stack of characters in inputString
 */
 private static Deque<Character> fillStack(String inputString) {
 Deque<Character> charStack = new ArrayDeque<>();

TA B L E 4 . 2

Class PalindromeFinder

Methods Behavior

private static Deque<Character>

fillStack(String inputString)

Returns a stack that is filled with the characters in inputString

private String buildReverse(String

inputString)

Calls fillStack to fill the stack based on inputString and
returns a new string formed by popping each character from this
stack and joining the characters. Empties the stack

public boolean isPalindrome(String

inputString)

Returns true if inputString and the string built by buildReverse
have the same contents, except for case. Otherwise, returns false

Koffman-c04.indd 152 10/30/2015 7:37:24 PM

4.2 Stack Applications 153

 for (int i = 0; i < inputString.length(); i++) {
 charStack.push(inputString.charAt(i));
 }
 return charStack;
 }

 /**
 * Builds the reverse of a string by calling fillsStack
 * to push its characters onto a stack and then popping them
 * and appending them to a new string.
 * @post The stack is empty.
 * @return The string containing the characters in the stack
 */
 private static String buildReverse(String inputString) {
 Deque<Character> charStack = fillStack(inputString);
 StringBuilder result = new StringBuilder();
 while (!charStack.isEmpty()) {
 // Remove top item from stack and append it to result.
 result.append(charStack.pop());
 }
 return result.toString();
 }

 /** Calls buildReverse and compares its result to inputString
 * @param inputString the string to be checked
 * @return true if inputString is a palindrome, false if not
 */
 public static boolean isPalindrome(String inputString) {
 return inputString.equalsIgnoreCase(buildReverse(inputString));
 }
}

 Testing To test this class, you should run it with several different strings, including both palin-
dromes and nonpalindromes, as follows:

A single character (always a palindrome)
Multiple characters in one word
Multiple words
Different cases
Even-length strings
Odd-length strings
An empty string (considered a palindrome)

 Listing 4.3 is a JUnit test suite for the PalindromeFinder class.

L I S T I N G 4 . 3

PalindromeFinderTest

import org.junit.Test;
import static org.junit.Assert.*;

/**
 * Test of the PalindromeFinder
 * @author Koffman & Wolfgang
 */

Koffman-c04.indd 153 10/30/2015 7:37:25 PM

154 Chapter 4 Stacks and Queues

public class PalindromeFinderTest {
 public PalindromeFinderTest() {
 }

 @Test
 public void singleCharacterIsAlwaysAPalindrome() {
 assertTrue(PalindromeFinder.isPalindrome("x"));
 }

 @Test
 public void aSingleWordPalindrome() {
 assertTrue(PalindromeFinder.isPalindrome("kayak"));
 }

 @Test
 public void aSingleWordNonPalindrome() {
 assertFalse(PalindromeFinder.isPalindrome("foobar"));
 }

 @Test
 public void multipleWordsSameCase() {
 assertTrue(PalindromeFinder.isPalindrome("I saw I was I"));
 }

 @Test
 public void multipleWordsDifferentCase() {
 assertTrue(PalindromeFinder.isPalindrome
 ("Able was I ere I saw Elba"));
 }

 @Test
 public void anEmptyStringIsAPalindrome() {
 assertTrue(PalindromeFinder.isPalindrome(""));
 }

 @Test
 public void anEvenLengthStringPalindrome() {
 assertTrue(PalindromeFinder.isPalindrome("foooof"));
 }

}

 P I T F A L L

Attempting to Pop an Empty Stack
If you attempt to pop an empty stack, your program will throw a NoSuchElementExcepton.
You can guard against this error by testing for a nonempty stack before popping the
stack. Alternatively, you can catch the error if it occurs and handle it.

Stack Application on Textbook Website
There is an additional case study on the textbook website that uses a stack to check
that the parentheses in an expression are balanced. This can be found at the URL
specified in the preface.

Koffman-c04.indd 154 10/30/2015 7:37:25 PM

4.3 Implementing a Stack 155

4.3 Implementing a Stack

This section discusses how to implement our stack interface (StackInt). We will show how
to do this using class ArrayList and also using class LinkedList.

Implementing a Stack with an ArrayList Component
You may have recognized that a stack is very similar to an ArrayList. In fact, in the Java
Collections framework, the class Stack extends class Vector, which is the historical pre-
decessor of ArrayList. Just as they suggest using class Deque instead of the Stack class
in new applications, the Java designers recommend using class ArrayList instead of class
Vector.

Next we show how to write a class, which we will call ListStack, that has an ArrayList
component. We will call this component theData, and it will contain the stack data.

We code the ListStack<E>.push method as:
public E push(E obj) {
 theData.add(obj);
 return obj;
}

The ListStack class is said to be an adapter class because it adapts the methods available in
another class (a List) to the interface its clients expect by giving different names to essentially
the same operations (e.g., push instead of add). This is an example of method delegation.

Listing 4.4 shows the ListStack class. Note that the statements that manipulate the stack
explicitly refer to data field theData. For example, in ListStack push we use the statement

theData.add(obj);

to push obj onto the stack as the new last element of ArrayList theData.

E X E R C I S E S F O R S E C T I O N 4 . 2

S E L F - C H E C K

1. The result returned by the palindrome finder depends on all characters in a string, includ-
ing spaces and punctuation. Discuss how you would modify the palindrome finder so that
only the letters in the input string are used to determine whether the input string is a pal-
indrome. You should ignore any other characters.

P R O G R A M M I N G

1. Write a method that reads a line and reverses the words in the line (not the characters)
using a stack. For example, given the following input:
The quick brown fox jumps over the lazy dog

you should get the following output:
dog lazy the over jumps fox brown quick The

2. Three different approaches to finding palindromes are discussed in the Analysis section of
that case study. Code the first approach.

3. Code the second approach to find palindromes.

Koffman-c04.indd 155 10/30/2015 7:37:25 PM

156 Chapter 4 Stacks and Queues

L I S T I N G 4 . 4

ListStack.java

import java.util.*;

/** Class ListStack<E> implements the interface StackInt<E> as
 an adapter to the List.
 @param <E> The type of elements in the stack.
 */
public class ListStack<E> implements StackInt<E> {

 /** The List containing the data */
 private List<E> theData;

 /** Construct an empty stack using an ArrayList as the container. */
 public ListStack() {
 theData = new ArrayList<>();
 }

 /** Push an object onto the stack.
 @post The object is at the top of the stack.
 @param obj The object to be pushed
 @return The object pushed
 */
 @Override
 public E push(E obj) {
 theData.add(obj);
 return obj;
 }

 /** Peek at the top object on the stack.
 @return The top object on the stack
 @throws NoSuchElementException if the stack is empty
 */
 @Override
 public E peek() {
 if (isEmpty()) {
 throw new NoSuchElementException();
 }
 return theData.get(theData.size() — 1);
 }

 /** Pop the top object off the stack.
 @post The object at the top of the stack is removed.
 @return The top object, which is removed
 @throws NoSuchElementException if the stack is empty
 */
 @Override
 public E pop() {
 if (isEmpty()) {
 throw new NoSuchElementException();
 }
 return theData.remove(theData.size() — 1);
 }

 /** See whether the stack is empty.
 @return true if the stack is empty
 */
 @Override
 public boolean isEmpty() {
 return theData.isEmpty();
 }
}

Koffman-c04.indd 156 10/30/2015 7:37:25 PM

4.3 Implementing a Stack 157

Implementing a Stack as a Linked Data Structure
We can also implement a stack using a single-linked list of nodes. We show the stack contain-
ing the characters in "Java" in Figure 4.3, with the last character in the string stored in the
node at the top of the stack. Class LinkedStack<E> contains a collection of Node<E> objects
(see Section 2.5). Recall that inner class Node<E> has attributes data (type E) and next (type
Node<E>).

Reference variable topOfStackRef (type Node<E>) references the last element placed on the
stack. Because it is easier to insert and delete from the head of a linked list, we will have
topOfStackRef reference the node at the head of the list.

Method push inserts a node at the head of the list. The statement
topOfStackRef = new Node<>(obj, topOfStackRef);

sets topOfStackRef to reference the new node; topOfStackRef.next references the old top of
the stack. When the stack is empty, topOfStackRef is null, so the attribute next for the first
object pushed onto the stack (the item at the bottom) will be null.

Method peek will be very similar to the LinkedList method getFirst. Method isEmpty tests
for a value of topOfStackRef equal to null. Method pop simply resets topOfStackRef to the
value stored in the next field of the list head and returns the old topOfStackRef data. Listing
4.5 shows class LinkedStack.

Node
LinkedStack

Node Node Node

data =
next = topOfStackRef =

data =
next =

data =
next =

data =
next = null

Character

= 'a'value

Character

= 'v'value

Character

= 'a'value

Character

= 'J'value

F I G U R E 4 . 3

Stack of Character

Objects in a Linked List

L I S T I N G 4 . 5

Class LinkedStack

import java.util.NoSuchElementException;

/** Class to implement interface StackInt<E> as a linked list. */
public class LinkedStack<E> implements StackInt<E> {
 // Insert inner class Node<E> here. (See Listing 2.1)

 // Data Fields
 /** The reference to the first stack node. */
 private Node<E> topOfStackRef = null;

 /** Insert a new item on top of the stack.
 @post The new item is the top item on the stack.
 All other items are one position lower.
 @param obj The item to be inserted
 @return The item that was inserted
 */

Koffman-c04.indd 157 10/30/2015 7:37:25 PM

158 Chapter 4 Stacks and Queues

Comparison of Stack Implementations
The easiest approach to implementing a stack in Java would be to give it a List component
for storing the data. Since all insertions and deletions are at one end, the stack operations
would all be O(1) operations. You could use an object of any class that implements the List
interface to store the stack data, but the ArrayList is the simplest.

Finally, you could also use your own linked data structure. This has the advantage of using
exactly as much storage as is needed for the stack. However, you would also need to allocate

 @Override
 public E push(E obj) {
 topOfStackRef = new Node<>(obj, topOfStackRef);
 return obj;
 }

 /** Remove and return the top item on the stack.
 @pre The stack is not empty.
 @post The top item on the stack has been
 removed and the stack is one item smaller.
 @return The top item on the stack
 @throws NoSuchElementException if the stack is empty
 */
 @Override
 public E pop() {
 if (isEmpty()) {
 throw new NoSuchElementException();
 }
 else {
 E result = topOfStackRef.data;
 topOfStackRef = topOfStackRef.next;
 return result;
 }
 }

 /** Return the top item on the stack.
 @pre The stack is not empty.
 @post The stack remains unchanged.
 @return The top item on the stack
 @throws NoSuchElementException if the stack is empty
 */
 @Override
 public E peek() {
 if (isEmpty()) {
 throw new NoSuchElementException ();
 }
 else {
 return topOfStackRef.data;
 }
 }

 /** See whether the stack is empty.
 @return true if the stack is empty
 */
 @Override
 public boolean isEmpty() {
 return topOfStackRef == null;
 }
}

Koffman-c04.indd 158 10/30/2015 7:37:25 PM

4.4 Additional Stack Applications 159

storage for the links. Because all insertions and deletions are at one end, the flexibility
 provided by a linked data structure is not utilized. All stack operations using a linked data
structure would also be O(1).

E X E R C I S E S F O R S E C T I O N 4 . 3

S E L F - C H E C K

1. For the implementation of stack s using an ArrayList as the underlying data structure,
show how the underlying data structure changes after each statement below executes.
Assume the characters in "Happy" are already stored on the stack (H pushed on first).
s.push('i');
s.push('s');
char ch1 = s.pop(); s.pop();
s.push(' ');
char ch2 = s.peek();

2. How do your answers to Question 1 change if the initial capacity is 4 instead of 7?

3. For the implementation of stack s using a linked list of nodes as the underlying data struc-
ture (see Figure 4.3), show how the underlying data structure changes after each of the
following statements executes. Assume the characters in "Happy" are already stored on the
stack (H pushed on first).
s.push('i');
s.push('s');
char ch1 = s.pop();
s.pop();
s.push(' ');
char ch2 = s.peek();

P R O G R A M M I N G

1. Write a method size for class LinkedStack<E> that returns the number of elements cur-
rently on a LinkedStack<E>.

2. Write method size for the ArrayList implementation.

4.4 Additional Stack Applications

In this section we consider two case studies that relate to evaluating arithmetic expressions.
The first problem is slightly easier, and it involves evaluating expressions that are in postfix
form. The second problem discusses how to convert from infix notation (common mathemat-
ics notation) to postfix form.

Normally we write expressions using infix notation, in which binary operators (*, +, etc.) are
inserted between their operands. Infix expressions present no special problem to humans
because we can easily scan left and right to find the operands of a particular operator. A cal-
culator (or computer), however, normally scans an expression string in the order that it is
input (left to right). Therefore, it is easier to evaluate an expression if the user types in the
operands for each operator before typing the operator (postfix notation). Table 4.3 shows

Koffman-c04.indd 159 10/30/2015 7:37:25 PM

160 Chapter 4 Stacks and Queues

some examples of expressions in postfix and infix form. The braces under each postfix
expression will help you visualize the operands for each operator.

The advantage of the postfix form is that there is no need to group subexpressions in paren-
theses or even to consider operator precedence. (We talk more about postfix form in the
second case study in this section.) The next case study develops a program that evaluates a
postfix expression.

TA B L E 4 . 3

Postfix Expressions

Postfix Expression Infix Expression Value

4 * 27 8

4 * (7 + 2) 36

(4 * 7) – 20 8

3 + ((4 * 7) / 2) 173 4 7 * 2 / +

4 7 * 20 -

4 7 2 + *

4 7 *

CASE STUDY Evaluating Postfix Expressions

 Problem Write a class that evaluates a postfix expression. The postfix expression will be a string
containing digit characters and operator characters from the set +, −, *, /. The space char-
acter will be used as a delimiter between tokens (integers and operators).

 Analysis In a postfix expression, the operands precede the operators. A stack is the perfect place
to save the operands until the operator is scanned. When the operator is scanned, its
operands can be popped off the stack (the last operand scanned, i.e., the right oper-
and, will be popped first). Therefore, our program will push each integer operand onto
the stack. When an operator is read, the top two operands are popped, the operation
is performed on its operands, and the result is pushed back onto the stack. The final
result should be the only value remaining on the stack when the end of the expression
is reached.

 Design We will write class PostfixEvaluator to evaluate postfix expressions. The class should
define a method eval, which scans a postfix expression and processes each of its tokens,
where a token is either an operand (an integer) or an operator. We also need a method
evalOp, which evaluates each operator when it is scanned, and a method isOperator,
which determines whether a character is an operator. Table 4.4 describes the class.

 The algorithm for eval follows. The stack operators perform algorithm steps 1, 5, 7, 8, 10,
and 11.

 Table 4.5 shows the evaluation of the third expression in Table 4.3 using this algorithm.
The arrow under the expression points to the character being processed; the stack diagram
shows the stack after this character is processed.

Koffman-c04.indd 160 10/30/2015 7:37:26 PM

4.4 Additional Stack Applications 161

Algorithm for method eval

 1. Create an empty stack of integers.
 2. while there are more tokens
 3. Get the next token.
 4. if the first character of the token is a digit.
 5. Push the integer onto the stack.
 6. else if the token is an operator
 7. Pop the right operand off the stack.
 8. Pop the left operand off the stack.
 9. Evaluate the operation.
10. Push the result onto the stack.
11. Pop the stack and return the result.

TA B L E 4 . 4

Class PostfixEvaluator

Method Behavior

public static int eval(String expression) Returns the value of expression

private static int evalOp(char op,

Deque<Integer> operandStack)

Pops two operands and applies operator op to its operands,
returning the result

private static boolean isOperator(char ch) Returns true if ch is an operator symbol

TA B L E 4 . 5

Evaluating a Postfix Expression

Expression Action Stack

4 7 * 20 –
↑

Push 4 4

4 7 * 20 –
 ↑

Push 7

4 7 * 20 –
 ↑

Pop 7 and 4
Evaluate 4 * 7
Push 28

4 7 * 20 –
 ↑

Push 20

4 7 * 20 –
 ↑

Pop 20 and 28
Evaluate 28 − 20
Push 8

4 7 * 20 –
 ↑

Pop 8
Stack is empty
Result is 8

7
4

28

20
28

8

Koffman-c04.indd 161 10/30/2015 7:37:27 PM

162 Chapter 4 Stacks and Queues

 Implementation Listing 4.6 shows the implementation of class PostfixEvaluator. There is an inner class
that defines the exception SyntaxErrorException.

 Method eval implements the algorithm shown in the design section. To simplify the
extraction of tokens, we will assume that there are spaces between operators and oper-
ands. As explained in Appendix A.5, the method call

String[] tokens = expression.split("\\s+");

 stores in array tokens the individual tokens (operands and operators) of string expression
where the argument string "\\s+" specifies that the delimiter is one or more white-space
characters. (We will remove the requirement for spaces between tokens and consider
parentheses in the last case study of this section.)
The enhanced for statement

for (String nextToken : tokens) {

ensures that each of the strings in tokens is processed, and the if statement in the loop
tests the first character of each token to determine its category (number or operator).
Therefore, the body of method eval is enclosed within a try-catch sequence. A
NoSuchElement Exception, thrown either as a result of a pop operation in eval or by a pop
operation in a method called by eval, will be caught by the catch clause. In either case,
a SyntaxErrorException is thrown.

Private method isOperator determines whether a character is an operator. When an opera-
tor is encountered, private method evalOp is called to evaluate it. This method pops the top
two operands from the stack. The first item popped is the right‐hand operand, and the
second is the left‐hand operand.

int rhs = operandStack.pop();
int lhs = operandStack.pop();

A switch statement is then used to select the appropriate expression to evaluate for the
given operator. For example, the following case processes the addition operator and saves
the sum of lhs and rhs in result.

case '+' : result = lhs + rhs; break;

L I S T I N G 4 . 6

PostfixEvaluator.java

import java.util.*;

/** Class that can evaluate a postfix expression. */
public class PostfixEvaluator {

 // Nested Class
 /** Class to report a syntax error. */
 public static class SyntaxErrorException extends Exception {
 /** Construct a SyntaxErrorException with the specified message.
 @param message The message
 */
 SyntaxErrorException(String message) {
 super(message);
 }
 }

 // Constant
 /** A list of operators. */
 private static final String OPERATORS = "+–*/";

Koffman-c04.indd 162 10/30/2015 7:37:27 PM

4.4 Additional Stack Applications 163

 // Methods
 /** Evaluates the current operation.
 This function pops the two operands off the operand
 stack and applies the operator.
 @param op A character representing the operator
 @param operandStack the current stack of operands
 @return The result of applying the operator
 @throws NoSuchElementException if pop is attempted on an empty stack
 */
 private static int evalOp(char op, Deque<Integer> operandStack) {
 // Pop the two operands off the stack.
 int rhs = operandStack.pop();
 int lhs = operandStack.pop();
 int result = 0;
 // Evaluate the operator.
 switch (op) {
 case '+' : result = lhs + rhs;
 break;
 case '‐' : result = lhs ‐ rhs;
 break;
 case '/' : result = lhs / rhs;
 break;
 case '*' : result = lhs * rhs;
 break;
 }
 return result;
 }

 /** Determines whether a character is an operator.
 @param op The character to be tested
 @return true if the character is an operator
 */
 private static boolean isOperator(char ch) {
 return OPERATORS.indexOf(ch) != ‐1;
 }

 /** Evaluates a postfix expression.
 @param expression The expression to be evaluated
 @return The value of the expression
 @throws SyntaxErrorException if a syntax error is detected
 */
 public static int eval(String expression) throws SyntaxErrorException {
 // Create an empty stack.
 Deque<Integer> operandStack = new ArrayDeque<>();

 // Process each token.
 String[] tokens = expression.split("\\s+");
 try {
 for (String nextToken : tokens) {
 char firstChar = nextToken.charAt(0);
 // Does it start with a digit?
 if (Character.isDigit(firstChar)) {
 // Get the integer value.
 int value = Integer.parseInt(nextToken);
 // Push value onto operand stack.
 operandStack.push(value);
 } // Is it an operator?

Koffman-c04.indd 163 10/30/2015 7:37:27 PM

164 Chapter 4 Stacks and Queues

 else if (isOperator(firstChar)) {
 // Evaluate the operator.
 int result = evalOp(firstChar, operandStack);
 // Push result onto the operand stack.
 operandStack.push(result);
 }
 else {
 // Invalid character.
 throw new SyntaxErrorException
 ("Invalid character encountered: " + firstChar);
 }
 } // End for.

 // No more tokens ‐ pop result from operand stack.
 int answer = operandStack.pop();
 // Operand stack should be empty.
 if (operandStack.isEmpty()) {
 return answer;
 } else {
 // Indicate syntax error.
 throw new SyntaxErrorException
 ("Syntax Error: Stack should be empty");
 }
 } catch (NoSuchElementException ex) {
 // Pop was attempted on an empty stack.
 throw new SyntaxErrorException("Syntax Error: Stack is empty");

 }
 }

}

 Testing You will need to write a JUnit test harness for the PostfixEvaluator class. Each test case
should pass an expression to eval and compare the expected and actual results. A white‐
box approach to testing would lead you to consider the following test cases. First, you
want to exercise each path in the evalOp method by entering a simple expression that uses
each operator. Then you need to exercise the paths through eval by trying different order-
ings and multiple occurrences of the operators. These tests exercise the normal cases, so
you next need to test for possible syntax errors. You should consider the following cases:
an operator without any operands, a single operand, an extra operand, an extra operator,
a variable name, and finally an empty string.

 P R O G R A M S T Y L E

Creating Your Own Exception Class
The program would work just the same if we did not bother to declare the
SyntaxErrorException class and just threw a new Exception object each time an error
occurred. However, we feel that this approach gives the user a more meaningful
description of the cause of an error. Also, if other errors are possible in a client of this
class, any SyntaxErrorException can be caught and handled in a separate catch clause.

Koffman-c04.indd 164 10/30/2015 7:37:28 PM

4.4 Additional Stack Applications 165

CASE STUDY Converting From Infix To Postfix

We normally write expressions in infix notation. Therefore, one approach to evaluating
expressions in infix notation is first to convert it to postfix and then to apply the evalua-
tion technique just discussed. We will show in this case study how to accomplish this
conversion using a stack. An infix expression can also be evaluated directly using two
stacks. This is left as a programming project.

 Problem To complete the design of an expression evaluator, we need a set of methods that convert
infix expressions to postfix form. We will assume that the expression will consist only of
spaces, operands, and operators, where the space is a delimiter character between tokens.
All operands that are identifiers begin with a letter or underscore character; all operands
that are numbers begin with a digit. (Although we are allowing for identifiers, our postfix
evaluator can’t really handle them.)

 Analysis Table 4.3 showed the infix and postfix forms of four expressions. For each expression pair,
the operands are in the same sequence; however, the placement of the operators changes
in going from infix to postfix. For example, in converting

w ‐ 5.1 / sum * 2

to its postfix form
w 5.1 sum / 2 * ‐

 we see that the four operands (the tokens w, 5.1, sum, 2) retain their relative ordering
from the infix expression, but the order of the operators is changed. The first operator in
the infix expression, −, is the last operator in the postfix expression. Therefore, we can
insert the operands in the output expression (postfix) as soon as they are scanned in the
input expression (infix), but each operator should be inserted in the postfix string after
its operands and in the order in which they should be evaluated, not the order in which
they were scanned. For expressions without parentheses, there are two criteria that deter-
mine the order of operator evaluation:

Operators are evaluated according to their precedence or rank. Higher precedence
operators are evaluated before lower precedence operators. For example, *, /, and %
(the multiplicative operators) are evaluated before +, −.
Operators with the same precedence are evaluated in left‐to‐right order (left‐associative
rule).

If we temporarily store the operators on a stack, we can pop them whenever we need to
and insert them in the postfix string in an order that indicates when they should be evalu-
ated, rather than when they were scanned. For example, if we have the first two operators
from the string "w - 5.1 / sum * 2" stored on a stack as follows,

operatorStack =

the operator / (scanned second) must come off the stack and be placed in the postfix string
before the operator − (scanned first). If we have the stack as just shown and the next
operator is *, we need to pop the / off the stack and insert it in the postfix string before *,
because the multiplicative operator scanned earlier (/) should be evaluated before the mul-
tiplicative operator (*) scanned later (the left‐associative rule).

/
-

Koffman-c04.indd 165 10/30/2015 7:37:28 PM

166 Chapter 4 Stacks and Queues

 Design Class InfixToPostfix contains methods needed for the conversion. The class should have
a data field operatorStack, which stores the operators. It should also have a method con-
vert, which does the initial processing of all tokens (operands and operators). Method
convert needs to get each token and process it. Each token that is an operand should be
appended to the postfix string. Method processOperator will process each operator token.
Method isOperator determines whether a token is an operator, and method precedence
returns the precedence of an operator. Table 4.6 describes class InfixToPostfix.

The algorithm for method convert follows. The while loop extracts and processes each
token, calling processOperator to process each operator token. After all tokens are
extracted from the infix string and processed, any operators remaining on the stack should
be popped and appended to the postfix string. They are appended to the end because they
have lower precedence than those operators inserted earlier.

Algorithm for Method convert

 1. Initialize postfix to an empty StringJoiner.
 2. Initialize the operator stack to an empty stack.
 3. while there are more tokens in the infix string.
 4. Get the next token.
 5. if the next token is an operand.
 6. Append it to postfix.
 7. else if the next token is an operator.
 8. Call processOperator to process the operator.
 9. else

TA B L E 4 . 6

Class InfixToPostfix

Data Field Attribute

private static final String OPERATORS The operators

private static final int[] PRECEDENCE The precedence of the operators, matches their order in OPERATORS

private Deque<Character> operatorStack Stack of operators

private StringJoiner postfix The postfix string being formed

Method Behavior

public static String convert(String infix) Instantiates an instance of the InfixToPostfix class, calls
convertToPostfix and then returns the result of calling getPostifx

public void convertToPostfix(String infix) Extracts and processes each token in infix and stores the result in
StringJoiner postfix

private void processOperator(char op) Processes operator op by updating operatorStack and postfix

private String getPostfix() Returns the result of postfix.toString()

private static int precedence(char op) Returns the precedence of operator op

private static boolean isOperator(char ch) Returns true if ch is an operator symbol

Koffman-c04.indd 166 10/30/2015 7:37:28 PM

4.4 Additional Stack Applications 167

10. Indicate a syntax error.
11. Pop remaining operators off the operator stack and append them to postfix.

Method processOperator

The real decision making happens in method processOperator. By pushing operators onto
the stack or popping them off the stack (and into the postfix string), this method controls
the order in which the operators will be evaluated.

Each operator will eventually be pushed onto the stack. However, before doing this, process-
Operator compares the operator’s precedence with that of the stacked operators, starting with
the operator at the top of the stack. If the current operator has higher precedence than the
operator at the top of the stack, it is pushed onto the stack immediately. This will ensure that
none of the stacked operators can be inserted into the postfix string before it.

However, if the operator at the top of the stack has higher precedence than the current opera-
tor, it is popped off the stack and inserted in the postfix string, because it should be performed
before the current operator, according to the precedence rule. Also, if the operator at the top
of the stack has the same precedence as the current operator, it is popped off the stack and
inserted into the postfix string, because it should be performed before the current operator,
according to the left‐associative rule. After an operator is popped off the stack, we repeat the
process of comparing the precedence of the operator currently at the top of the stack with the
precedence of the current operator until the current operator is pushed onto the stack.

A special case is an empty operator stack. In this case, there are no stacked operators to
compare with the new one, so we will simply push the current operator onto the stack. We
use method peek to access the operator at the top of the stack without removing it.

Algorithm for Method processOperator

1. if the operator stack is empty
2. Push the current operator onto the stack.
 else

3. Peek the operator stack and let topOp be the top operator.
4. if the precedence of the current operator is greater than the precedence of topOp
5. Push the current operator onto the stack.
 else

6. while the stack is not empty and the precedence of the current operator is less
than or equal to the precedence of topOp

7. Pop topOp off the stack and append it to postfix.
 8. if the operator stack is not empty
 9. Peek the operator stack and let topOp be the top operator.
10. Push the current operator onto the stack.

Table 4.7 traces the conversion of the infix expression w − 5.1 / sum * 2 to the postfix
expression w 5.1 sum / 2 * −. The final value of postfix shows that / is performed first (oper-
ands 5.1 and sum), * is performed next (operands 5.1 / sum and 2), and − is performed last.

Although the algorithm will correctly convert a well‐formed expression and will detect
some expressions with invalid syntax, it doesn’t do all the syntax checking required. For

Koffman-c04.indd 167 10/30/2015 7:37:28 PM

168 Chapter 4 Stacks and Queues

example, an expression with extra operands would not be detected. We discuss this further
in the testing section.

 Implementation Listing 4.7 shows the InfixToPostfix class. A client would call method convert, passing it
an infix string. Method convert creates object infixToPostfix and calls convertToPostfix
to convert the argument string to postfix and return the conversion result.

The convertToPostfix method begins by initializing postfix and the operatorStack. The
tokens are extracted using String.split and processed within a try block. The condition

(Character.isJavaIdentifierStart(firstChar)
 || Character.isDigit(firstChar))

tests the first character (firstChar) of the next token to see whether the next token is an
operand (identifier or number). Method isJavaIdentifierStart returns true if the next
token is an identifier; method isDigit returns true if the next token is a number (starts with
a digit). If this condition is true, the token is added to postfix. The next condition,

(isOperator(firstChar))

is true if nextToken is an operator. If so, method processOperator is called. If the next
token is not an operand or an operator, the exception SyntaxErrorException is thrown.

 Once the end of the expression is reached, the remaining operators are popped off the
stack and appended to postfix.

TA B L E 4 . 7

Conve rsion of w ‐ 5.1 / sum * 2

Next Token Action Effect on

operatorStack

Effect on

postfix

w Append w to postfix w

‐ The stack is empty
Push – onto the stack

- w

5.1 Append 5.1 to postfix - w 5.1

/ precedence(/) > precedence(‐),

Push / onto the stack
/
-

w 5.1

sum Append sum to postfix /
-

w 5.1 sum

* precedence(*) equals precedence(/)
Pop / off of stack and append to postfix

- w 5.1 sum /

* precedence(*) > precedence(‐),

Push * onto the stack

*
-

w 5.1 sum /

2 Append 2 to postfix *
-

w 5.1 sum / 2

End of input Stack is not empty, Pop * off the stack and append
to postfix

- w 5.1 sum / 2 *

End of input Stack is not empty, Pop − off the stack and
append to postfix

w 5.1 sum / 2 * ‐

Koffman-c04.indd 168 10/30/2015 7:37:29 PM

4.4 Additional Stack Applications 169

Method processOperator uses private method precedence to determine the precedence of
an operator (2 for *, /; 1 for +, –.). If the stack is empty or the condition

(precedence(op) > precedence(topOp))

is true, the current operator, op, is pushed onto the stack. Otherwise, the while loop exe-
cutes, popping all operators off the stack that have the same or greater precedence than op
and appending them to the postfix string (a StringJoiner).

while (!operatorStack.isEmpty()
 && precedence(op) <= precedence(topOp)) {
 operatorStack.pop();
 postfix.add(new Character(topOp).toString())

After loop exit, the statement
operatorStack.push(op);

pushes the current operator onto the stack.

In method precedence, the statement
return PRECEDENCE[OPERATORS.indexOf(op)];

returns the element of int[] array PRECEDENCE selected by the method call OPERATORS.
indexOf(op). The precedence value returned will be 1 or 2.

L I S T I N G 4 . 7

InfixToPostfix.java

import java.util.*;

/** Translates an infix expression to a postfix expression. */
public class InfixToPostfix {

 // Insert nested class SyntaxErrorException. See Listing 4.6.

 // Data Fields
 /** The operator stack */
 private final Deque<Character> operatorStack = new ArrayDeque<>();
 /** The operators */
 private static final String OPERATORS = "+‐*/";
 /** The precedence of the operators matches order in OPERATORS. */
 private static final int[] PRECEDENCE = {1, 1, 2, 2};
 /** The postfix string */
 private final StringJoiner postfix = new StringJoiner<>(" ");

 /** Convert a string from infix to postfix. Public convert is called
 * by a client − Calls private method convertToPostfix to do the conversion.
 * @param infix The infix expression
 * @throws SyntaxErrorException
 * @return the equivalent postfix expression.
 */
 public static String convert(String infix)
 throws SyntaxErrorException {
 InfixToPostfix infixToPostfix = new InfixToPostfix();
 infixToPostfix.convertToPostfix(infix);
 return infixToPostfix.getPostfix();
 }

Koffman-c04.indd 169 10/30/2015 7:37:29 PM

170 Chapter 4 Stacks and Queues

 /** Return the final postfix string. */
 private String getPostfix() {
 return postfix.toString();
 }

 /** Convert a string from infix to postfix. Public convert is called
 * by a client − Calls private method convertToPostfix to do the conversion.
 * Uses a stack to convert an infix expression to postfix
 * @pre operator stack is empty
 * @post postFix contains postfix expression and stack is empty
 * @param infix the string to convert to postfix
 * @throws SyntaxErrorException if argument is invalid
 */
 private void convertToPostfix(String infix) throws SyntaxErrorException {
 String[] tokens = infix.split("\\s+");
 try {

 // Process each token in the infix string.
 for (String nextToken : tokens) {
 char firstChar = nextToken.charAt(0);
 // Is it an operand?
 if (Character.isJavaIdentifierStart(firstChar)
 || Character.isDigit(firstChar)) {
 postfix.add(nextToken);
 } // Is it an operator?
 else if(isOperator(firstChar)) {
 processOperator(firstChar);
 }
 else {
 throw new SyntaxErrorException
 ("Unexpected Character Encountered: " + firstChar);
 }

 } // end loop.
 // Pop any remaining operators and
 // append them to postfix.
 while (!operatorStack.isEmpty()) {
 char op = operatorStack.pop();
 postfix.add(new Character(op).toString());

 }
 // assert: Stack is empty, return.

 } catch (NoSuchElementException ex) {
 throw new SyntaxErrorException
 ("Syntax Error: The stack is empty");
 }

 }

 /** Method to process operators.
 @param op The operator
 @throws NoSuchElementException
 */
 private void processOperator(char op) {
 if (operatorStack.isEmpty()) {
 operatorStack.push(op);
 } else {
 // Peek the operator stack and
 // let topOp be top operator.

Koffman-c04.indd 170 10/30/2015 7:37:29 PM

4.4 Additional Stack Applications 171

 char topOp = operatorStack.peek();
 if (precedence(op) > precedence(topOp)) {
 operatorStack.push(op);
 }
 else {
 // Pop all stacked operators with equal
 // or higher precedence than op.
 while (!operatorStack.isEmpty() && precedence(op) <=
 precedence(topOp)) {
 operatorStack.pop();
 postfix.add(new Character(topOp).toString());
 if (!operatorStack.isEmpty()) {
 // Reset topOp.
 topOp = operatorStack.peek();
 }
 }
 // assert: Operator stack is empty or
 // current operator precedence >
 // top of stack operator precedence.
 operatorStack.push(op);
 }
 }
 }

 /** Determine whether a character is an operator.
 @param ch The character to be tested
 @return true if ch is an operator
 */
 private static boolean isOperator(char ch) {
 return OPERATORS.indexOf(ch) != ‐1;
 }

 /** Determine the precedence of an operator.
 @param op The operator
 @return the precedence
 */
 private static int precedence(char op) {
 return PRECEDENCE[OPERATORS.indexOf(op)] ;

 }
}

 P R O G R A M S T Y L E

Updating a StrigJoiner Is an Efficient Operation
We used a StringJoiner object for postfix because we knew that postfix was going
to be continually updated and each token was separated by a space. Because String
objects are immutable, it would have been less efficient to use a String object for
postfix. A new String object would have to be allocated each time postfix changed.

Koffman-c04.indd 171 10/30/2015 7:37:29 PM

172 Chapter 4 Stacks and Queues

 Testing Listing 4.8 shows a JUnit test for the InfixToPostfix class. Note that we are careful to
type a space character between operands and operators.
We use enough test expressions to satisfy ourselves that the conversion is correct for prop-
erly formed input expressions. For example, try different orderings and multiple occur-
rences of the operators. You should also try infix expressions where all operators have the
same precedence (e.g., all multiplicative).
If convert detects a syntax error, it will throw the exception InfixToPostfix.Syntax
ErrorException. The driver will catch this exception and display an error message. If an
exception is not thrown, the driver will display the result. Unfortunately, not all possible
errors are detected. For example, an adjacent pair of operators or operands is not detected.
To detect this error, we would need to add a boolean flag whose value indicates whether the
last token was an operand. If the flag is true, the next token must be an operator; if the flag
is false, the next token must be an operand. This modification is left as an exercise.

L I S T I N G 4 . 8

JUnit test for InfixToPostfix

 /**
 * Test for InfoxToPostfix
 * @author Koffman & Wolfgang
 */
public class InfixToPostfixTest {

 public InfixToPostfixTest() {
 }

 @Test
 public void simpleExpressionWithSamePrecedence() throws Exception {
 String infix = "a + b";
 String expResult = "a b + ";
 String result = InfixToPostfix.convert(infix);
 assertEquals(expResult, result);
 }

 @Test
 public void simpleExpressionWithNumbersSamePrecedence() throws Exception {
 String infix = "2.5 * 6";
 String expResult = "2.5 6 *";
 String result = InfixToPostfix.convert(infix);
 assertEquals(expResult, result);
 }

 @Test
 public void expressionWithMixedPrecedence() throws Exception {
 String infix = "x1 ‐ y / 2 + foo";
 String expResult = "x1 y 2 / ‐ foo +";
 String result = InfixToPostfix.convert(infix);
 assertEquals(expResult, result);
 }

 @Test(expected = InfixToPostfix.SyntaxErrorException.class)
 public void expressionWithInvalidOperator() throws Exception {
 String infix = "x1 & 2";
 String expResult = "x1 2";
 String result = InfixToPostfix.convert(infix);
 assertEquals(expResult, result);
 }

}

Koffman-c04.indd 172 10/30/2015 7:37:29 PM

4.4 Additional Stack Applications 173

CASE STUDY Converting Expressions with Parentheses

 Problem The ability to convert expressions with parentheses is an important (and necessary)
 addition. Parentheses are used to separate expressions into subexpressions.

 Analysis We can think of an opening parenthesis on an operator stack as a boundary or fence
between operators. Whenever we encounter an opening parenthesis, we want to push it
onto the stack. A closing parenthesis is the terminator symbol for a subexpression.
Whenever we encounter a closing parenthesis, we want to pop off all operators on the
stack until we pop the patching opening parenthesis. Neither opening nor closing
parentheses should appear in the postfix expression. Because operators scanned after
the opening parenthesis should be evaluated before the opening parenthesis, the prec-
edence of the opening parentheses must be smaller than any other operator. We also
give a closing parenthesis the lowest precedence. This ensures that a "(" can only be
popped by a ")".

 Design We should modify method processOperator to push each opening parenthesis onto the
stack as soon as it is scanned. Therefore, the method should begin as follows:

if (operatorStack.isEmpty() || op == '(') {
 operatorStack.push(op);

 When a closing parenthesis is scanned, we want to pop all operators up to and including
the matching opening parenthesis, inserting all operators popped (except for the opening
parenthesis) in the postfix string. This will happen automatically in the while statement if
the precedence of the closing parenthesis is smaller than that of any other operator except
for the opening parenthesis:

while (!operatorStack.isEmpty() && precedence(op) <= precedence(topOp)) {
 operatorStack.pop();
 if (topOp == '(') {
 // Matching '(' popped ‐ exit loop.
 break;
 }
 postfix.add(new Character(topOp).toString());

 A closing parenthesis is considered processed when an opening parenthesis is popped from
the stack and the closing parenthesis is not placed on the stack. The following if statement
executes after the while loop exits:

if (op != ')')
 operatorStack.push(op);

 Implementation Listing 4.9 shows class InfixToPostfixParens, modified to handle parentheses. The addi-
tions are shown in bold. We have omitted parts that do not change.

 Rather than impose the requirement of spaces between delimiters, we will use the Scanner
method findInLine to extract tokens. The statements

Scanner scan = new Scanner(infix);
while ((nextToken = scan.findInLine(PATTERN)) != null) {

 create a Scanner object to scan the characters in infix (see Appendix A.10). The while
loop repetition condition calls method findInLine to extract the next token from infix.
The string constant PATTERN is a regular expression that describes the form of a token:

Koffman-c04.indd 173 10/30/2015 7:37:30 PM

174 Chapter 4 Stacks and Queues

L I S T I N G 4 . 9

InfixToPostfixParens.java

import java.util.*;

/** Translates an infix expression with parentheses
 to a postfix expression.
 */
public class InfixToPostfixParens {

 // Insert nested class SyntaxErrorException here. See Listing 4.6.
 // Data Fields
 /** The operators. */
 private static final String OPERATORS = "‐+*/()";
 /** The precedence of the operators, matches order of OPERATORS. */
 private static final int[] PRECEDENCE = {1, 1, 2, 2, ‐1, ‐1};
 /** The Pattern to extract tokens.
 A token is either a number, an identifier, or an operator */
 private static final String PATTERN =
 "\\d+\\.\\d*|\\d+|" + "\\p{L}[\\p{L}\\p{N}]*" + "|[" + OPERATORS + "]";
 /** The stack of characters. */
 private final Deque<Character> operatorStack = new ArrayDeque<>();
 /** The postfix string. */
 private final StringJoiner postfix = new StringJoiner(" ");

 /** Convert a string from infix to postfix. Public convert is called
 by a client − Calls private method convertToPostfix to do the conversion.
 @param infix The infix expression
 @throws SyntaxErrorException
 @return the equivalent postfix expression.
 */
 public static String convert(String infix) throws SyntaxErrorException {
 InfixToPostfixParens infixToPostfixParens = new InfixToPostfixParens();
 infixToPostfixParens.convertToPostfix(infix);
 return infixToPostfixParens.getPostfix();
 }

 /** Return the final postfix string.
 * @return The final postfix string
 */
 private String getPostfix() {
 return postfix.toString();
 }

private static final String PATTERN =
 "\\d+\\.\\d*|\\d+|" + "\\p{L}[\\p{L}\\p{N}]*" + "|[" + OPERATORS + "]";

Each token can be an integer (a sequence of one or more digits), a double (a sequence of one
or more digits followed by a decimal point followed by zero or more digits), an identifier (a
letter followed by zero or more letters or digits), or an operator. The operators are processed
in the same way as was done in Listing 4.7. Loop exit occurs after all tokens are extracted
(findInLine returns null).

Koffman-c04.indd 174 10/30/2015 7:37:30 PM

4.4 Additional Stack Applications 175

 /**
 * Convert a string from infix to postfix.
 * Uses a stack to convert an infix expression to postfix
 * @pre operator stack is empty
 * @post postFix contains postfix expression and stack is empty
 * @param infix the string to convert to postfix
 * @throws SyntaxErrorException if argument is invalid
 */
 private void convertToPostfix(String infix) throws SyntaxErrorException {

 // Process each token in the infix string.
 try {
 String nextToken;
 Scanner scan = new Scanner(infix);
 while ((nextToken = scan.findInLine(PATTERN)) != null) {
 char firstChar = nextToken.charAt(0);
 // Is it an operand?
 if (Character.isLetter(firstChar) || Character.isDigit(firstChar)) {
 postfix.add(nextToken);
 } // Is it an operator?
 else if(isOperator(firstChar)) {
 processOperator(firstChar);
 }
 else {
 throw new SyntaxErrorException
 ("Unexpected Character Encountered: " + firstChar);
 }

 } // end loop.

 // Pop any remaining operators
 // and append them to postfix.
 while (!operatorStack.isEmpty()) {
 char op = operatorStack.pop();
 // Any '(' on the stack is not matched.
 if (op == '(') throw new SyntaxErrorException
 ("Unmatched opening parenthesis");
 postfix.add(new Character(op).toString());
 }
 // assert: Stack is empty, return result.
 return postfix.toString();
 } catch (NoSuchElementException ex) {
 throw new SyntaxErrorException("Syntax Error: The stack is empty");
 }
}

 /** Method to process operators.
 @param op The operator
 @throws NoSuchElementException
 */
 private void processOperator(char op) {
 if (operatorStack.isEmpty() || op == '(') {
 operatorStack.push(op);
 }
 else {
 // Peek the operator stack and
 // let topOp be the top operator.
 char topOp = operatorStack.peek();

Koffman-c04.indd 175 10/30/2015 7:37:30 PM

176 Chapter 4 Stacks and Queues

 if (precedence(op) > precedence(topOp)) {
 operatorStack.push(op);

 }
 else {
 // Pop all stacked operators with equal

 // or higher precedence than op.
 while (!operatorStack.isEmpty() && precedence(op) <=
 precedence(topOp)) {
 operatorStack.pop();
 if (topOp == '(') {
 // Matching '(' popped ‐ exit loop.
 break;
 }
 postfix.add(new Character(topOp).toString());

 if (!operatorStack.isEmpty()) {
 // Reset topOp.
 topOp = operatorStack.peek();
 }

 }

 // assert: Operator stack is empty or
 // current operator precedence >
 // top of stack operator precedence.
 if (op != ')')
 operatorStack.push(op);
 }
 }
 }

 // Insert isOperator and precedence here. See Listing 4.7.
}

Tying the Case Studies Together
You can use the classes developed for the previous case studies to evaluate infix expressions with
integer operands and nested parentheses. The argument for InfixToPostfix.convert will be the
infix expression. The result will be its postfix form. Next it will apply the method PostfixEvaluator.
eval. The argument for eval will be the postfix expression returned by convert.

E X E R C I S E S F O R S E C T I O N 4 . 4

S E L F ‐ C H E C K

1. Trace the evaluation of the following expressions using class PostfixEvaluator. Show the
operand stack each time it is modified.
13 2 * 5 / 6 2 5 * – +
5 4 * 6 7 + 4 2 / ‐ *

Koffman-c04.indd 176 10/30/2015 7:37:30 PM

4.5 Queue Abstract Data Type 177

2. Trace the conversion of the following expressions to postfix using class InfixToPostfix or
InfixToPostfixParens. Show the operator stack each time it is modified.
y – 7 / 35 + 4 * 6 ‐ 10
(x + 15) * (3 * (4 – (5 + 7 / 2))

P R O G R A M M I N G

1. Modify class InfixToPostfix to handle the exponentiation operator, indicated by the sym-
bol ^. The first operand is raised to the power indicated by the second operand. Assume that
a sequence of ^ operators will not occur and that precedence('^') > precedence('*').

2. Discuss how you would modify the infix‐to‐postfix convert method to detect a sequence of
two operators or two operands.

4.5 Queue Abstract Data Type

You can think of a queue as a line of customers waiting for a scarce resource, such as a line wait-
ing to buy tickets to an event. Figure 4.4 shows a line of “men” waiting to enter a restroom. The
next one to enter the restroom is the one who has been waiting the longest, and latecomers are
added to the end of the line. The Queue ADT gets its name from the fact that such a waiting line
is called a “queue” in English‐speaking countries other than the United States.

A Print Queue
In computer science, queues are used in operating systems to keep track of tasks waiting
for a scarce resource and to ensure that the tasks are carried out in the order that they were
generated. One example is a print queue. A Web surfer may select several pages to be

Caryn J. Koffman

F I G U R E 4 . 4

Co-author Elliot

Koffman is the last

person in the queue.

Koffman-c04.indd 177 10/30/2015 7:37:32 PM

178 Chapter 4 Stacks and Queues

printed in a few seconds. Because a printer is a relatively slow device (approximately 10
pages/minute), you will often select new pages to print faster than they can be printed.
Rather than require you to wait until the current page is finished before you can select a
new one, the operating system stores documents to be printed in a print queue (see
Figure 4.5). Because they are stored in a queue, the pages will be printed in the same order
as they were selected (first‐in, first‐out). The document first inserted in the queue will be
the first one printed.

The Unsuitability of a “Print Stack”
Suppose your operating system used a stack (last‐in, first‐out) instead of a queue to store
documents waiting to be printed. Then the most recently selected Web page would be the
next page to be printed. This may not matter if only one person is using the printer.
However, if the printer is connected to a computer network, this would be a big problem.
Unless the print queue was empty when you selected a page to print (and the page printed
immediately), that page would not print until all pages selected after it (by yourself or any
other person on the network) were printed. If you were waiting by the printer for your page
to print before going to your next class, you would have no way of knowing how long your
wait might be. You would also be very unhappy if people who started after you had their
documents printed before yours. So a print queue is a much more sensible alternative than
a print stack.

A Queue of Customers
A queue of three customers waiting to buy concert tickets is shown in Figure 4.6. The name
of the customer who has been waiting the longest is Thome; the name of the most recent
arrival is Jones. Customer Thome will be the first customer removed from the queue (and
able to buy tickets) when a ticket agent becomes available, and customer Abreu will then
become the first one in the queue. Any new customers will be inserted in the queue after cus-
tomer Jones.

Using a Queue for Traversing a Multi‐Branch Data Structure
In Chapter 10, you will see a data structure, called a graph, that models a network of nodes,
with many links connecting each node to other nodes in the network (see Figure 4.7). Unlike
a linked list, in which each node has only one successor, a node in a graph may have several
successors. For example, node 0 in Figure 4.7 has nodes 1 and 3 as its successors.
Consequently, it is not a simple matter to visit the nodes in a systematic way and to ensure
that each node is visited only once. Programmers often use a queue to ensure that nodes
closer to the starting point are visited before nodes that are farther away. We will not go into
the details here because we cover them later, but the idea is to put nodes that have not yet

F I G U R E 4 . 5

A Print Queue in the

Windows Operating

System

Ticket agent

Thome

Abreu

Jones

F I G U R E 4 . 6

A Queue of

Customers

0

5

4

8

6

72

13

9

F I G U R E 4 . 7

A Network of Nodes

Koffman-c04.indd 178 10/30/2015 7:37:33 PM

4.5 Queue Abstract Data Type 179

been visited into the queue when they are first encountered. After visiting the current node,
the next node to visit is taken from the queue. This ensures that nodes are visited in the same
order that they were encountered. Such a traversal is called a breadth‐first traversal because
the nodes visited spread out from the starting point. If we use a stack to hold the new nodes
that are encountered and take the next node to visit from the stack, we will follow one path
to the end before embarking on a new path. This kind of traversal is called a depth‐first
traversal.

Specification for a Queue Interface
The java.util API provides a Queue interface (Table 4.8) that extends the Collection inter-
face and, therefore, the Iterable interface (see Table 2.34).

Method offer inserts an element at the rear of the queue and returns true if successful and
false if unsuccessful. Methods remove and poll both remove and return the element at the
front of the queue. The only difference in their behavior is when the queue happens to be
empty: remove throws an exception and poll just returns null. Methods peek and element
both return the element at the front of the queue without removing it. The difference is that
element throws an exception when the queue is empty.

Because interface Queue extends interface Collection, a full implementation of the Queue
interface must implement all required methods of the Collection interface. Classes that
implement the Queue interface need to code the methods in Table 4.1 as well as methods add,
iterator, isEmpty, and size declared in the Collection interface.

Class LinkedList Implements the Queue Interface
Because the LinkedList class provides methods for inserting and removing elements at
either end of a double‐linked list, all the Queue methods can be easily implemented in
class LinkedList. For this reason, the LinkedList class implements the Queue interface.
The statement

Queue<String> names = new LinkedList<>();

creates a new Queue reference, names, that stores references to String objects. The actual
object referenced by names is type LinkedList<String>. However, because names is a type
Queue<String> reference, you can apply only the Queue methods to it.

TA B L E 4 . 8

Specification of Interface Queue<E>

Method Behavior

boolean offer(E item) Inserts item at the rear of the queue. Returns true if successful; returns false if the item
could not be inserted

E remove() Removes the entry at the front of the queue and returns it if the queue is not empty. If the
queue is empty, throws a NoSuchElementException

E poll() Removes the entry at the front of the queue and returns it; returns null if the queue is
empty

E peek() Returns the entry at the front of the queue without removing it; returns null if the queue
is empty

E element() Returns the entry at the front of the queue without removing it. If the queue is empty,
throws a NoSuchElementException

Koffman-c04.indd 179 10/30/2015 7:37:33 PM

180 Chapter 4 Stacks and Queues

EXAMPLE 4 .2 The queue names created above contains five strings as shown in Figure 4.5(a). The name
"Jonathan" was placed in the queue before the other four names; "Rich" was the last element
placed in the queue.

For queue names in Figure 4.8(a), the value of names.isEmpty() is false. The statement
String first = names.peek();

or
String first = names.element();

stores "Jonathan" in first without changing names. The statement
String temp = names.remove();

or
String temp = names.poll();

removes "Jonathan" from names and stores a reference to it in temp. The queue names now
contains four elements and is shown in Figure 4.8(b). The statement

names.offer("Philip");

or
names.add("Philip");

adds "Philip" to the rear of the queue; the queue names now contains five elements and is
shown in Figure 4.8(c).

Jonathan

Dustin

Robin

Debbie

Rich

Dustin

Robin

Debbie

Rich

Philip

Dustin

Robin

Debbie

Rich

(a) (b) (c)

F I G U R E 4 . 8

Queue Names

E X E R C I S E S F O R S E C T I O N 4 . 5

S E L F ‐ C H E C K

1. Draw the queue in Figure 4.6 as it will appear after the insertion of customer Harris and
the removal of one customer from the queue. Which customer is removed? How many
customers are left?

2. Answer Question 1 for the queue in Figure 4.8(c).

3. Assume that myQueue is an instance of a class that implements Queue<String> and myQueue
is an empty queue. Explain the effect of each of the following operations.
myQueue.offer("Hello");
myQueue.offer("Bye");
System.out.println(myQueue.peek());
myQueue.remove();
myQueue.offer("Welcome");
if (!myQueue.isEmpty()) {
 System.out.println(myQueue.remove() + ", new size is " + myQueue.size());
 System.out.println("Item in front is " + myQueue.peek());
}

Koffman-c04.indd 180 10/30/2015 7:37:33 PM

4.6 Queue Applications 181

4. For the queue names in Figure. 4.6, what is the effect of the following?
while (!names.isEmpty()) {
 System.out.println(names.remove());
}

5. What would be the effect of using peek instead of remove in Question 4?

P R O G R A M M I N G

1. Write a main function that creates two stacks of Integer objects and a queue of Integer
objects. Store the numbers −1, 15, 23, 44, 4, 99 in the first stack. The top of the stack
should store 99.

2. Write a loop to get each number from the first stack and store it in the second stack and
in the queue.

3. Write a second loop to remove a value from the second stack and from the queue and
display each pair of values on a separate output line. Continue until the data structures are
empty. Show the output.

'

4.6 Queue Applications

In this section we present an application that maintains a queue of Strings representing the
names of customers waiting for service. Our goal is just to maintain the list and ensure that
customers are inserted and removed properly. We will allow a user to determine the queue
size, the person at the front of the queue, and how many people are ahead of a particular
person in the queue.

CASE STUDY Maintaining a Queue

 Problem Write a menu‐driven program that maintains a list of customers waiting for service. The
program user should be able to insert a new customer in the line, display the customer
who is next in line, remove the customer who is next in line, display the length of the line,
or determine how many people are ahead of a specified customer.

 Analysis As discussed earlier, a queue is a good data structure for storing a list of customers waiting
for service because they would expect to be served in the order in which they arrived. We
can display the menu and then perform the requested operation by calling the appropriate
Queue method to update the customer list.

Problem Inputs

The operation to be performed
The name of a customer

Problem Outputs

The effect of each operation

Koffman-c04.indd 181 10/30/2015 7:37:33 PM

182 Chapter 4 Stacks and Queues

 Design We will write a class MaintainQueue to store the queue and control its processing.
 Class MaintainQueue has a Queue<String> component customers.

Method processCustomers displays a menu of choices and processes the user selection by
calling the appropriate Queue method. Table 4.9 shows class MaintainQueue.

The algorithm for method processCustomers follows.

Algorithm for processCustomers
1. while the user is not finished
2. Display the menu and get the operation selected.
3. Perform the operation selected.

 Each operation is performed by a call to one of the Queue methods, except for determining the
position of a particular customer in the queue. The algorithm for this operation follows.

Algorithm for Determining the Position of a Customer

1. Get the customer name.
2. Set the count of customers ahead of this one to 0.
3. for each customer in the queue
4. if this customer is not the one sought
5. Increment the count.
6. else
7. Display the count of customers and exit the loop.
8. if all customers were examined without success
9. Display a message that the customer is not in the queue.

 The loop that begins at step 3 requires us to access each element in the queue. However,
only the element at the front of the queue is directly accessible using method peek or
 element. We will show how to get around this limitation by using an Iterator to access
each element of the queue.

 Implementation Listing 4.10 shows the data field declarations and the constructor for class MaintainQueue.
The constructor sets customers to reference an instance of class LinkedList<String>.

L I S T I N G 4 . 1 0

Constructor for Class MaintainQueue

import java.util.Queue;
import java.util.LinkedList;
import java.util.NoSuchElementException;
import java.util.Scanner;
import java.util.Arrays;

TA B L E 4 . 9

Class MaintainQueue

Method Behavior

public static void processCustomers() Accepts and processes each user’s selection

Koffman-c04.indd 182 10/30/2015 7:37:33 PM

4.6 Queue Applications 183

/**
 * Class to maintain a queue of customers.
 * @author Koffman & Wolfgang
 */
public class MaintainQueue {

 // Data Field
 private final Queue<String> customers;
 private final Scanner in;

 // Constructor
 /** Create an empty queue. */
 public MaintainQueue() {
 customers = new LinkedList<>();
 in = new Scanner(System.in);

 }

In method processCustomers (Listing 4.11), the while loop executes until the user enters
"quit". The user enters each desired operation into choice. The switch statement calls a
Queue method to perform the selected operation. For example, if the user enters "add", the
 following statements read the customer name and insert it into the queue.
 System.out.println("Enter new customer name");
 name = in.nextLine();
 customers.offer(name);

Case "position" finds the position of a customer in the queue. The enhanced for state-
ment uses an Iterator to access each element of the queue and store it in nextName. The if
 condition compares nextName to the name of the customer being sought. The variable
countAhead is incremented each time this comparison is unsuccessful.
int countAhead = 0;
for (String nextName : customers) {
 if (!nextName.equals(name)) {
 countAhead ++;
 } else {

 System.out.println("The number of customers ahead of " + name
 + " is " + countAhead);
 break; // Customer found, exit loop.

 }
}

If the desired name is accessed, its position is displayed and the loop is exited. If the name
is not found, the loop is exited after the last name is processed. The if statement following
the loop displays a message if the name was not found. This will be the case when countAhead
is equal to the queue size.

The switch statement is inside a try-catch sequence that handles a NoSuchElementException
(caused by an attempt to remove or retrieve an element from an empty queue) by displaying
an error message.

L I S T I N G 4 . 1 1

Method processCustomers in Class MaintainQueue

/**
 * Performs the operations selected on queue customers.
 * @pre customers has been created.
 * @post customers is modified based on user selections.
 */

Koffman-c04.indd 183 10/30/2015 7:37:33 PM

184 Chapter 4 Stacks and Queues

public void processCustomers() {
 String choice = "";
 String[] choices =
 {"add", "peek", "remove", "size", "position", "quit"};
 // Perform all operations selected by user.
 while (!choice.equals("quit")) {
 // Process the current choice.
 try {
 String name;
 System.out.println("Choose from the list: "
 + Arrays.toString(choices));
 choice = in.nextLine();
 switch (choice) {
 case "add":
 System.out.println("Enter new customer name");
 name = in.nextLine();
 customers.offer(name);
 System.out.println("Customer " + name +
 " added to the queue");
 break;
 case "peek":
 System.out.println("Customer " + customers.element() +
 " is next in the queue");
 break;
 case "remove":
 System.out.println("Customer " + customers.remove() +
 " removed from the queue");
 break;
 case "size":
 System.out.println("Size of queue is " + customers.size());
 break;
 case "position":
 System.out.println("Enter customer name");
 name = in.nextLine();
 int countAhead = 0;
 for (String nextName : customers) {
 if (!nextName.equals(name)) {
 countAhead++;
 } else {
 System.out.println("The number of customers ahead of "
 + name + " is " + countAhead);
 break;
 // Customer found, exit loop.
 }
 }

 // Check whether customer was found.
 if (countAhead == customers.size()) {
 System.out.println(name + " is not in queue");
 }
 break;
 case "quit":
 System.out.println("Leaving customer queue. "
 + "\nNumber of customers in queue is "
 + customers.size());
 break;
 default:
 System.out.println("Invalid choice - try again");

Koffman-c04.indd 184 10/30/2015 7:37:33 PM

4.6 Queue Applications 185

 } // end switch
 } catch (NoSuchElementException e) {
 System.out.println("The Queue is empty");
 } // end try-catch
 } // end while
}

 Testing You can use class MaintainQueue to test each of the different Queue implementations dis-
cussed in the next section. You should verify that all customers are stored and retrieved in
FIFO order. You should also verify that a NoSuchElementException is thrown if you attempt
to remove or retrieve a customer from an empty queue. Thoroughly test the queue by
selecting different sequences of queue operations. Figure 4.9 shows a sample run.

Choose from the list: [add, peek, remove, size, position, quit]

add

Enter new customer name

koffman

Customer koffman added to the queue

Choose from the list: [add, peek, remove, size, position, quit]

add

Enter new customer name

wolfgang

Customer wolfgang added to the queue

Choose from the list: [add, peek, remove, size, position, quit]

remove

Customer koffman removed from the queue

Choose from the list: [add, peek, remove, size, position, quit]

peel

Invalid choice - try again

Choose from the list: [add, peek, remove, size, position, quit]

peek

Customer wolfgang is next in the queue

Choose from the list: [add, peek, remove, size, position, quit]

quit

Leaving customer queue.

Number of customers in queue is 1

F I G U R E 4 . 9

Sample Run of Client

of MaintainQueue

 P R O G R A M S T Y L E

When to Use the Different Queue Methods
For a queue of unlimited size, add and offer are logically equivalent. Both will return
true and never throw an exception. For a bounded queue, add will throw an exception if
the queue is full, but offer will return false.

Koffman-c04.indd 185 10/30/2015 7:37:34 PM

186 Chapter 4 Stacks and Queues

E X E R C I S E S F O R S E C T I O N 4 . 6

S E L F ‐ C H E C K

1. Write an algorithm to display all the elements in a queue using just the queue operations.
How would your algorithm change the queue?

2. Trace the following fragment for a Stack<String> s and an empty queue q (type
Queue<String>).
String item;
while (!s.empty()) {
 item = s.pop();
 q.offer(item);
}
while (!q.isEmpty()) {
 item = q.remove();
 s.push(item);
}

a. What is stored in stack s after the first loop executes? What is stored in queue q after
the first loop executes?

b. What is stored in stack s after the second loop executes? What is stored in queue q after
the second loop executes?

P R O G R A M M I N G

1. Write a toString method for class MaintainQueue.

For peek versus element and poll versus remove, peek and poll don’t throw exceptions,
but the user should either check for a return value of null, or be sure that the calls are
within an if or while block that tests for a nonempty queue before they are called.

Using Queues for Simulation
Simulation is a technique used to study the performance of a physical system by using a
physical, mathematical, or computer model of the system. Through simulation, the
designers of a new system can estimate the expected performance of the system
before they actually build it. The use of simulation can lead to changes in the design
that will improve the expected performance of the new system. Simulation is
especially useful when the actual system would be too expensive to build or too
dangerous to experiment with after its construction.

The textbook website provides a case study of a computer simulation of an airline
check‐in counter in order to compare various strategies for improving service and
reducing the waiting time for each passenger. It uses a queue to simulate the
passenger waiting line. A special branch of mathematics called queuing theory has been
developed to study these kinds of problems using mathematical models (systems of
equations) instead of computer models.

Koffman-c04.indd 186 10/30/2015 7:37:34 PM

4.7 Implementing the Queue Interface 187

4.7 Implementing the Queue Interface

In this section we discuss three approaches to implementing a queue: using a double‐linked
list, a single‐linked list, and an array. We begin with a double‐linked list.

Using a Double‐Linked List to Implement
the Queue Interface
Insertion and removal from either end of a double‐linked list is O(1), so either end can be the
front (or rear) of the queue. The Java designers decided to make the head of the linked list the
front of the queue and the tail the rear of the queue. If you declare your queue using
the statement:

Queue<String> myQueue = new LinkedList<>();

the fact that the actual class for myQueue is a LinkedList is not visible. The only methods
available for myQueue are those declared in the Queue interface.

Using a Single‐Linked List to Implement the Queue
Interface
We can implement a queue using a single‐linked list like the one shown in Figure 4.10. Class
ListQueue contains a collection of Node<E> objects (see Section 2.5). Recall that class Node<E>
has attributes data (type E) and next (type Node<E>).

Insertions are at the rear of a queue, and removals are from the front. We need a reference to
the last list node so that insertions can be performed in O(1) time; otherwise, we would have
to start at the list head and traverse all the way down the list to do an insertion. There is a
reference variable front to the first list node (the list head) and a reference variable rear to
the last list node. There is also a data field size.

The number of elements in the queue is changed by methods insert and remove, so size must
be incremented by one in insert and decremented by one in remove. The value of size is
tested in isEmpty to determine the status of the queue. The method size simply returns the
value of data field size.

Listing 4.12 shows class ListQueue<E>. Method offer treats insertion into an empty queue as
a special case because both front and rear should reference the new node after the insertion.

rear = new Node<>(item, null); front = rear;

If we insert into a queue that is not empty, the new node must be linked to the old rear of the
queue, but front is unchanged.

rear.next = new Node<>(item, null);
rear = rear.next;

NodeListQueue

next =
data = "Thome"

3

front =
rear =
size =

Node

next =
data = "Abreu"

Node

next = null
data = "Jones"

F I G U R E 4 . 1 0

A Queue as a

Single‐Linked List

Koffman-c04.indd 187 10/30/2015 7:37:34 PM

188 Chapter 4 Stacks and Queues

If the queue is empty, method peek returns null. Otherwise, it returns the element at the front
of the queue:

return front.data;

Method poll calls method peek and returns its result. However, before returning, it discon-
nects the node at the front of a nonempty queue and decrements size.

front = front.next;
size‐‐;

Listing 4.12 is incomplete. To finish it, you need to write methods remove, element, size, and
isEmpty. You also need to code an iterator method and a class Iter with methods next,
hasNext, and remove. This class will be similar to class KWListIter (see Section 2.6).

You can simplify this task by having ListQueue<E> extend class java.util.AbstractQueue<E>.
This class implements add, remove, and element using offer, poll, and peek, and inherits from
its superclass, AbstractCollection<E>, all methods needed to implement the Collection<E>
interface (the superinterface of Queue<E>).

L I S T I N G 4 . 1 2

Class ListQueue

import java.util.*;
/** Implements the Queue interface using a single‐linked list. */
public class ListQueue<E> extends AbstractQueue<E>
 implements Queue<E> {

 // Data Fields
 /** Reference to front of queue. */
 private Node<E> front;
 /** Reference to rear of queue. */
 private Node<E> rear;
 /** Size of queue. */
 private int size;

 // Insert inner class Node<E> for single‐linked list here.
 // (See Listing 2.1.)
 // Methods
 /** Insert an item at the rear of the queue.
 @post item is added to the rear of the queue.
 @param item The element to add
 @return true (always successful)
 */
 @Override
 public boolean offer(E item) {
 // Check for empty queue.
 if (front == null) {
 rear = new Node<>(item);
 front = rear;
 } else {
 // Allocate a new node at end, store item in it, and
 // link it to old end of queue.
 rear.next = new Node<>(item);
 rear = rear.next;
 }
 size++;
 return true;
 }

 /** Remove the entry at the front of the queue and return it
 if the queue is not empty.

Koffman-c04.indd 188 10/30/2015 7:37:34 PM

4.7 Implementing the Queue Interface 189

 @post front references item that was second in the queue.
 @return The item removed if successful, or null if not
 */
 @Override
 public E poll() {
 E item = peek();
 // Retrieve item at front.
 if (item == null)
 return null;
 // Remove item at front.
 front = front.next; size‐‐;
 return item;
 // Return data at front of queue.
 }

 /** Return the item at the front of the queue without removing it.
 @return The item at the front of the queue if successful;
 return null if the queue is empty
 */
 @Override
 public E peek() {
 if (size == 0)
 return null;
 else
 return front.data;
 }

 // Insert class Iter and other required methods.
 . . .
}

Using a Circular Array to Implement the Queue Interface
While the time efficiency of using a single‐ or double‐linked list to implement the Queue is
acceptable, there is some space inefficiency. Each node of a single‐linked list contains a refer-
ence to its successor, and each node of a double‐linked list contains references to its prede-
cessor and successor. These additional references will increase the storage space required.

An alternative is to use an array. If we use an array, we can do an insertion at the rear of the
array in O(1) time. However, a removal from the front will be an O(n) process if we shift all
the elements that follow the first one over to fill the space vacated. Similarly, removal from the
rear is O(1), but insertion at the front is O(n). We next discuss how to avoid this inefficiency.

Overview of the Design

To represent a queue, we will use an object with four int data members (front, rear, size,
capacity) and an array data member, theData, which provides storage for the queue elements.

/** Index of the front of the queue. */
private int front;
/** Index of the rear of the queue. */
private int rear;
/** Current number of elements in the queue. */
private int size;
/** Current capacity of the queue. */
private int capacity;
/** Default capacity of the queue. */
private static final int DEFAULT_CAPACITY = 10;

/** Array to hold the data. */
private E[] theData;

Koffman-c04.indd 189 10/30/2015 7:37:34 PM

190 Chapter 4 Stacks and Queues

The int fields front and rear are indices to the queue elements at the front and rear of the
queue, respectively. The int field size keeps track of the actual number of items in the queue
and allows us to determine easily whether the queue is empty (size is 0) or full (size is
capacity).

It makes sense to store the first queue item in element 0, the second queue item in element 1,
and so on. So we should set front to 0 and rear to −1 when we create an initially empty
queue. Each time we do an insertion, we should increment size and rear by 1 so that front
and rear will both be 0 if a queue has one element. Figure 4.11 shows an instance of a queue
that is filled to its capacity (size is capacity). The queue contains the symbols &,*, +, /, –,
inserted in that order.

Because the queue in Figure 4.11 is filled to capacity, we cannot insert a new character with-
out allocating more storage. However, we can remove a queue element by decrementing size
and incrementing front to 1, thereby removing theData[0] (the symbol &) from the queue.
Figure 4.12 shows the queue after removing the first element (it is still in the array, but not
part of the queue). The queue contains the symbols *, +, /, – in that order.

Although the queue in Figure 4.12 is no longer filled, we cannot insert a new character
because rear is at its maximum value. One way to solve this problem is to

shift the elements in array theData so that the empty cells come after rear and then adjust
front and rear accordingly. This array shifting must be done very carefully to avoid losing
track of active array elements. It is also an O(n) operation.

A better way to solve this problem is to represent the array field theData as a circular
array. In a circular array, the elements wrap around so that the first element actually
follows the last. This is like counting modulo size; the array subscripts take on the val-
ues 0, 1, . . ., size – 1, 0, 1, and so on. This allows us to “increment” rear to 0 and store
a new character in theData[0]. Figure 4.13 shows the queue after inserting a new ele-
ment (the character A). After the insertion, front is still 1 but rear becomes 0. The con-
tents of theData[0] change from & to A. The queue now contains the symbols *, +, /, –,
A in that order.

&

*

+

/

‒

front = 0

rear = 4

size = 5

capacity = 5

F I G U R E 4 . 1 1

A Queue Filled with

Characters

&

*

+

/

‒

front = 1

rear = 4

size = 4

capacity = 5

F I G U R E 4 . 1 2

The Queue after

Deletion of the First

Element

A

*

+

/

‒

front =
0rear =

1

size =

capacity = 5

5F I G U R E 4 . 1 3

A Queue as a Circular

Array

Koffman-c04.indd 190 10/30/2015 7:37:35 PM

4.7 Implementing the Queue Interface 191

Implementing ArrayQueue<E>

Listing 4.13 shows the implementation of the class ArrayQueue<E>.

The constructors set size to 0 and front to 0 because array element theData[0] is considered
the front of the empty queue, and rear is initialized to capacity – 1 (instead of –1) because
the queue is circular.

In method offer, the statement
rear = (rear + 1) % capacity;

is used to increment the value of rear modulo capacity. When rear is less than capacity, this
statement simply increments its value by one. But when rear becomes equal to capacity – 1,
the next value of rear will be 0 (capacity mod capacity is 0), thereby wrapping the last ele-
ment of the queue around to the first element. Because the constructor initializes rear to
capacity − 1, the first queue element will be placed in theData[0] as desired.

In method poll, the element currently stored in theData[front] is copied into result before
front is incremented modulo capacity; result is then returned. In method peek, the element
at theData[front] is returned, but front is not changed.

EXAMPLE 4 .3 The upper half of Figure 4.14 shows the effect of removing two elements from the queue just
described. There are currently three characters in this queue (stored in theData[3], theData[4],
and theData[0]). The queue now contains the symbols /, –, A in that order.

The lower half of Figure 4.14 shows the queue after insertion of a new character (B). The
value of rear is incremented to 1, and the next element is inserted in theData[1]. This queue
element follows the character A in theData[0]. The value of front is still 3 because the char-
acter / at theData[3] has been in the queue the longest. theData[2] is now the only queue
element that is unused. The queue now contains the symbols /, –, A, B in that order.

F I G U R E 4 . 1 4

The Effect of

Two Deletions . . . and

One Insertion

A

*

+

/

‒

front =

0rear =

3

size =

capacity = 5

3

A

B

+

/

‒

front =

1rear =

3

size =

capacity = 5

4

L I S T I N G 4 . 1 3

ArrayQueue.java

/** Implements the Queue interface using a circular array. */
public class ArrayQueue<E> extends AbstractQueue<E>
 implements Queue<E> {

 // Data Fields
 /** Index of the front of the queue. */

Koffman-c04.indd 191 10/30/2015 7:37:35 PM

192 Chapter 4 Stacks and Queues

 private int front;
 /** Index of the rear of the queue. */
 private int rear;
 /** Current size of the queue. */
 private int size;
 /** Current capacity of the queue. */
 private int capacity;
 /** Default capacity of the queue. */
 private static final int DEFAULT_CAPACITY = 10;
 /** Array to hold the data. */
 private E[] theData;

 // Constructors
 /** Construct a queue with the default initial capacity. */
 public ArrayQueue() {
 this(DEFAULT_CAPACITY);
 }

 @SuppressWarnings("unchecked")
 /** Construct a queue with the specified initial capacity.
 @param initCapacity The initial capacity
 */
 public ArrayQueue(int initCapacity) {
 capacity = initCapacity;
 theData = (E[]) new Object[capacity];
 front = 0;
 rear = capacity ‐ 1;
 size = 0;
 }

 // Public Methods
 /** Inserts an item at the rear of the queue.
 @post item is added to the rear of the queue.
 @param item The element to add
 @return true (always successful)
 */
 @Override
 public boolean offer(E item) {
 if (size == capacity) {
 reallocate();
 }
 size++;
 rear = (rear + 1) % capacity; theData[rear] = item;
 return true;
 }

 /** Returns the item at the front of the queue without removing it.
 @return The item at the front of the queue if successful; return null if

the queue is empty
 */
 @Override
 public E peek() {
 if (size == 0)
 return null;
 else
 return theData[front];
 }

 /** Removes the entry at the front of the queue and returns it if the queue is
not empty.

Koffman-c04.indd 192 10/30/2015 7:37:35 PM

4.7 Implementing the Queue Interface 193

Increasing Queue Capacity

When the capacity is reached, we double the capacity and copy the array into the new one,
as was done for the ArrayList. However, we can’t simply use the reallocate method we
developed for the ArrayList because of the circular nature of the array. We can’t copy over
elements from the original array to the first half of the expanded array, maintaining their
position. We must first copy the elements from position front through the end of the original
array to the beginning of the expanded array; then copy the elements from the beginning of
the original array through rear to follow those in the expanded array (see Figure 4.15).

We begin by creating an array newData, whose capacity is double that of theData. The loop
int j = front;
for (int i = 0; i < size; i++) {
 newData[i] = theData[j];
 j = (j + 1) % capacity;
}

copies size elements over from theData to the first half of newData. In the copy operation
newData[i] = theData[j]

subscript i for newData goes from 0 to size – 1 (the first half of newData). Subscript j for
theData starts at front. The statement

j = (j + 1) % capacity;

 @post front references item that was second in the queue.
 @return The item removed if successful or null if not
 */
 @Override
 public E poll() {
 if (size == 0) {
 return null;
 }
 E result = theData[front];
 front = (front + 1) % capacity;
 size‐‐;
 return result;
 }

 // Private Methods
 /** Double the capacity and reallocate the data.
 @pre The array is filled to capacity.
 @post The capacity is doubled and the first half of the expanded array is

filled with data.
 */
 @SuppressWarnings("unchecked")
 private void reallocate() {
 int newCapacity = 2 * capacity;
 E[] newData = (E[]) new Object[newCapacity];
 int j = front;
 for (int i = 0; i < size; i++) {
 newData[i] = theData[j];
 j = (j + 1) % capacity;
 }
 front = 0;
 rear = size ‐ 1;
 capacity = newCapacity;
 theData = newData;
 }
}

Koffman-c04.indd 193 10/30/2015 7:37:35 PM

194 Chapter 4 Stacks and Queues

increments the subscript for array theData. Therefore, subscript j goes from front to capacity
– 1 (in increments of 1) and then back to 0. So the elements are copied from theData in the
sequence theData[front], . . ., theData[capacity – 1], theData[0], . . ., theData[rear],
where theData[front] is stored in newData[0] and theData[rear] is stored in newData[size
– 1]. After the copy loop, front is reset to 0 and rear is reset to size ‐ 1 (see Figure 4.15).

By choosing a new capacity that is twice the current capacity, the cost of the reallocation is
amortized across each insert, just as for an ArrayList. Thus, insertion is still considered an
O(1) operation.

.

.

.

.

.

.

front

front0
1 1

rear

 capacity

 2 * capacity - 1

rearcapacity - 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

F I G U R E 4 . 1 5

Reallocating a Circular

Array

Implementing Class ArrayQueue<E>.Iter
Just as for class ListQueue<E>, we must implement the missing Queue methods and an inner
class Iter to fully implement the Queue interface. Listing 4.14 shows inner class Iter.

Data field index stores the subscript of the next element to access. The constructor initializes
index to front when a new Iter object is created. Data field count keeps track of the number
of items accessed so far. Method hasNext returns true if count is less than the queue size.

 P I T F A L L

Incorrect Use of Arrays.copyOf to Expand a Circular Array
You might consider using the following method to copy all of the elements over from
the original array theData to the first half of the expanded array theData.

private void reallocate() {
 capacity = 2 * capacity;
 theData = Arrays.copyOf(theData, capacity);
}

The problem is that in the circular array before expansion, element theData[0] followed
the last array element. However, after expansion, the element that was formerly in the
last position would now be in the middle of the array, so theData[0] would not follow it.

Koffman-c04.indd 194 10/30/2015 7:37:36 PM

4.7 Implementing the Queue Interface 195

L I S T I N G 4 . 1 4

Class ArrayQueue<E>.Iter

/** Inner class to implement the Iterator<E> interface. */
private class Iter implements Iterator<E> {
 // Data Fields
 // Index of next element
 private int index;
 // Count of elements accessed so far
 private int count = 0;

 // Methods
 // Constructor

 /** Initializes the Iter object to reference the first queue element. */
 public Iter() {
 index = front;
 }

 /** Returns true if there are more elements in the queue to access. */
 @Override
 public boolean hasNext() {
 return count < size;
 }

 /** Returns the next element in the queue.
 @pre index references the next element to access.
 @post index and count are incremented.
 @return The element with subscript index
 */
 @Override
 public E next() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 E returnValue = theData[index];
 index = (index + 1) % capacity;
 count++;
 return returnValue;
 }

 /** Remove the item accessed by the Iter object – not implemented. */
 @Override
 public void remove() {
 throw new UnsupportedOperationException();
 }
}

Method next returns the element at position index and increments index and count. Method
Iter.remove throws an UnsupportedOperationException because it would violate the con-
tract for a queue to remove an item other than the first one.

Comparing the Three Implementations

As mentioned earlier, all three implementations of the Queue interface are comparable in
terms of computation time. All operations are O(1) regardless of the implementation.
Although reallocating an array is an O(n) operation, it is amortized over n items, so the cost
per item is O(1).

Koffman-c04.indd 195 10/30/2015 7:37:36 PM

196 Chapter 4 Stacks and Queues

In terms of storage requirements, both linked‐list implementations require more storage
because of the extra space required for links. To perform an analysis of the storage require-
ments, you need to know that Java stores a reference to the data for a queue element in each
node in addition to the links. Therefore, each node for a single‐linked list would store a total
of two references (one for the data and one for the link), a node for a double‐linked list would
store a total of three references, and a node for a circular array would store just one reference.
Therefore, a double-linked list would require 1.5 times the storage required for a single‐
linked list with the same number of elements. A circular array that is filled to capacity would
require half the storage of a single‐linked list to store the same number of elements. However,
if the array were just reallocated, half the array would be empty, so it would require the same
storage as a single‐linked list.

E X E R C I S E S F O R S E C T I O N 4 . 7

S E L F ‐ C H E C K

1. Show the new array for the queue in Figure 4.13 after the array size is doubled.

2. Provide the algorithm for the methods in Programming Exercise 1 below.

3. Redraw the queue in Figure 4.10 so that rear references the list head and front references
the list tail. Show the queue after an element is inserted and an element is removed. Explain
why the approach used in the book is better.

P R O G R A M M I N G

1. Write the missing methods required by the Queue interface and inner class Iter for class
ListQueue<E>. Class Iter should have a data field current of type Node<E>. Data field
 current should be initialized to first when a new Iter object is created. Method next
should return the value of current and advance current. Method remove should throw an
UnsupportedOperationException.

2. Write the missing methods for class ArrayQueue<E> required by the Queue interface.

3. Replace the loop in method reallocate with two calls to System.arraycopy.

4.8 The Deque Interface

As we mentioned in Section 4.2, Java provides the Deque interface. The name deque (pro-
nounced "deck") is short for double‐ended queue, which means that it is a data structure that
allows insertions and removals from both ends (front and rear). Methods are provided to
insert, remove, and examine elements at both ends of the deque. Method names that end in
first access the front of the deque, and method names that end in last access the rear of the
deque. Table 4.10 shows some of the Deque methods.

As you can see from the table, there are two pairs of methods that perform each of the
insert, remove, and examine operations. One pair returns a boolean value indicating the

Koffman-c04.indd 196 10/30/2015 7:37:36 PM

4.8 The Deque Interface 197

TA B L E 4 . 1 0

The Deque<E> Interface

Method Behavior

boolean offerFirst(E item) Inserts item at the front of the deque. Returns true if successful;
returns false if the item could not be inserted

boolean offerLast(E item) Inserts item at the rear of the deque. Returns true if successful;
returns false if the item could not be inserted

void addFirst(E item) Inserts item at the front of the deque. Throws an exception if the
item could not be inserted

void addLast(E item) Inserts item at the rear of the deque. Throws an exception if the
item could not be inserted

E pollFirst() Removes the entry at the front of the deque and returns it;
returns null if the deque is empty

E pollLast() Removes the entry at the rear of the deque and returns it; returns
null if the deque is empty

E removeFirst() Removes the entry at the front of the deque and returns it if the
deque is not empty. If the deque is empty, throws a
NoSuchElementException

E removeLast() Removes the item at the rear of the deque and returns it. If the
deque is empty, throws a NoSuchElementException

E peekFirst() Returns the entry at the front of the deque without removing it;
returns null if the deque is empty

E peekLast() Returns the item at the rear of the deque without removing it;
returns null if the deque is empty

E getFirst() Returns the entry at the front of the deque without removing it.
If the deque is empty, throws a NoSuchElementException

E getLast() Returns the item at the rear of the deque without removing it. If
the deque is empty, throws a NoSuchElementException

boolean removeFirstOccurrence
(Object item)

Removes the first occurrence of item in the deque. Returns true
if the item was removed

boolean removeLastOccurrence(Object item) Removes the last occurrence of item in the deque. Returns true if
the item was removed

Iterator<E> iterator() Returns an iterator to the elements of this deque in the proper
sequence

Iterator<E> descendingIterator() Returns an iterator to the elements of this deque in reverse
sequential order

method result, and the other pair throws an exception if the operation is unsuccessful.
For example, offerFirst and offerLast return a value indicating the insertion result,
whereas addFirst and addLast throw an exception if the insertion is not successful.
Normally, you should use a method that returns a value. Table 4.11 shows the use of
these methods.

Koffman-c04.indd 197 10/30/2015 7:37:36 PM

198 Chapter 4 Stacks and Queues

Classes that Implement Deque
The Java Collections Framework provides four implementations of the Deque interface,
including ArrayDeque and LinkedList. ArrayDeque utilizes a resizable circular array like our
class ArrayQueue and is the recommended implementation because, unlike LinkedList, it does
not support indexed operations.

Using a Deque as a Queue
The Deque interface extends the Queue interface, which means that a class that implements
Deque also implements Queue. The Queue methods are equivalent to Deque methods, as shown
in Table 4.12. If elements are always inserted at the front of a deque and removed from the
rear (FIFO), then the deque functions as a queue. In this case, you could use either method
add or addLast to insert a new item.

TA B L E 4 . 1 1

Effect of Using Deque Methods on an Initially Empty Deque<Character> d.

Deque Method Deque d Effect

d.offerFirst('b') b 'b' inserted at front

d.offerLast('y') by 'y' inserted at rear

d.addLast('z') byz 'z' inserted at rear

d.addFirst('a') abyz 'a' inserted at front

d.peekFirst() abyz Returns 'a'

d.peekLast() abyz Returns 'z'

d.pollLast() aby Removes 'z'

d.pollFirst() by Removes 'a'

TA B L E 4 . 1 2

Equivalent Queue and Deque Methods

Queue Method Equivalent Deque Method

add(e) addLast(e)

offer(e) offerLast(e)

remove() removeFirst()

poll() pollFirst()

element() getFirst()

peek() peekFirst()

Using a Deque as a Stack
Earlier in vthis chapter, we used Deques as stacks (LIFO). When a deque is used as a stack,
elements are always pushed and popped from the front of the deque. Using the Deque inter-
face is preferable to using the legacy Stack class (based on the Vector class). Stack methods
are equivalent to Deque methods, as shown in Table 4.13.

Koffman-c04.indd 198 10/30/2015 7:37:36 PM

4.8 The Deque Interface 199

TA B L E 4 . 1 3

Equivalent Stack and Deque Methods

Stack Method Equivalent Deque Method

push(e) addFirst(e)

pop() removeFirst()

peek() peekFirst()

isEmpty() isEmpty()

E X E R C I S E S F O R S E C T I O N 4 . 8

S E L F ‐ C H E C K

1. For object stackOfStrings declared above, replace each stack operation with the appro-
priate Deque method and explain the effect of each statement in the following fragment.
stackOfStrings.push("Hello");
String one = stackOfStrings.pop();
if (!stackOfStrings.isEmpty())
 System.out.println(stackOfStrings.peek());
stackOfStrings.push("Good bye");
for (String two : stackOfStrings)

 System.out.println(two);

2. What would be the effect of omitting the conditional test before calling the peek method?

3. Would the following statements execute without error? If your answer is “yes,” what
would their effect be? If “no,” why not?
stackOfStrings.offer("away");
String three = stackOfStrings.remove();

P R O G R A M M I N G

1. Write a fragment that reads a sequence of strings and inserts each string that is not numeric
at the front of a deque and each string that is numeric at the rear of a deque. Your fragment
should also count the number of strings of each kind.

2. For a deque that has the form required by Programming Exercise 1, display the message
"Strings that are not numeric" followed by the nonnumeric strings and then the message
"Strings that are numbers" followed by the numeric strings. Do not empty the deque.

3. Write a Deque.addFirst method for class ArrayQueue.

The statement
Deque<String> stackOfStrings = new ArrayDeque<>();

creates a new Deque object called stackOfStrings. You can use methods push, pop, peek, and
isEmpty in the normal way to manipulate stackOfStrings.

Koffman-c04.indd 199 10/30/2015 7:37:36 PM

200 Chapter 4 Stacks and Queues

C h a p t e r R e v i e w

 ◆ A stack is a LIFO data structure. This means that the last item added to a stack is the first
one removed.

 ◆ A stack is a simple but powerful data structure. It has only four operators: empty, peek,
pop, and push.

 ◆ Stacks are useful when we want to process information in the reverse of the order that it is
encountered. For this reason, a stack was used to implement the palindrome finder.

 ◆ java.util.Stack is implemented as an extension of the Vector class. The problem with this
approach is that it allows a client to invoke other methods from the Vector class.

 ◆ We showed three different ways to implement stacks: using an object of a class that imple-
ments the List interface as a container; using an array as a container; and using a linked
list as a container.

 ◆ Stacks can be applied in algorithms for evaluating arithmetic expressions. We showed how
to evaluate postfix expressions and how to translate infix expressions with and without
parentheses to postfix.

 ◆ The queue is an abstract data type with a FIFO structure. This means that the item that has
been in the queue the longest will be the first one removed. Queues can be used to represent
reservation lists and waiting lines (from which the data structure gets its name “queue”).

 ◆ The Queue interface declares methods offer, remove, poll, peek, and element.

 ◆ We discussed three ways to implement the Queue interface: as a double‐linked list, as a
single‐linked list, and as a circular array. All three implementations support insertion and
removal in O(1) time; however, there will be a need for reallocation in the circular array
implementation (amortized O(1) time). The array implementation requires the smallest
amount of storage when it is close to capacity. The LinkedList class requires the most stor-
age but no implementation because it is part of java.util.

 ◆ We discussed the Deque interface and showed how its methods allow insertion and removal
at either end of a deque. We showed the correspondence between its methods and methods
found in the Stack class and Queue interface.

Java API Classes Introduced in This Chapter

java.util.Stack
java.lang.UnsupportedOperationException
java.util.AbstractQueue
java.util.ArrayDeque
java.util.Deque
java.util.NoSuchElementException
java.util.Queue

User‐Defined Interfaces and Classes in This Chapter

ArrayStack PalindromeFinder
InfixToPostfix
InfixToPostfixParens

PostfixEvaluator

IsPalindrome
StackInt

Koffman-c04.indd 200 10/30/2015 7:37:36 PM

 Chapter 4 Review 201

LinkedStack SyntaxErrorException
ListStack ListQueue
ArrayQueue MaintainQueue
ArrayQueue.Iter KWQueue

Quick‐Check Exercises
1. A stack is a ______-in, ______‐out data structure.
2. Draw this stack s as an object of type ArrayStack<Character>. What is the value of data field

topOfStack?

$
*
&

3. What is the value of s.empty() for the stack shown in Question 2?
4. What is returned by s.pop() for the stack shown in Question 2?
5. Answer Question 2 for a stack s implemented as a linked list (type LinkedStack<Character>).
6. Why should the statement s.remove(i), where s is of type StackInt and i is an integer index, not

appear in a client program? Can you use this statement with an object of the Stack class defined in
java.util? Can you use it with an object of class ArrayStack or LinkedStack?

7. What would be the postfix form of the following expression?

x + y – 24 * zone – ace / 25 + c1

 Show the contents of the operator stack just before each operator is processed and just after all
tokens are scanned using method InfixToPostfix.convert.

8. Answer Question 7 for the following expression.

 (x + y - 24) * (zone - ace / (25 + c1))

9. The value of the expression 20 35 – 5 / 10 7 * + is _____. Show the contents of the operand stack
just before each operator is processed and just after all tokens are scanned.

10. A queue is a ______‐in, _____‐out data structure.
11. Would a compiler use a stack or a queue in a program that converts infix expressions to postfix?
12. Would an operating system use a stack or a queue to determine which print job should be handled

next?
13. Assume that a queue q of capacity 6 circular array representation) contains the five characters +, *, –,

&, and # (all wrapped in Character objects), where + is the first character inserted. Assume that + is
stored in the first position in the array. What is the value of q.front? What is the value of q.rear?

14. Remove the first element from the queue in Question 13 and insert the characters \ then%. Draw the
new queue. What is the value of q.front? What is the value of q.rear?

15. If a single‐linked list were used to implement the queue in Question 13, the character ______ would
be at the head of the list and the character ______ would be at the tail of the list.

16. For a nonempty queue implemented as a single‐linked list, the statement ______ would be used
inside method offer to store a new node whose data field is referenced by item in the queue; the
statement ______ would be used to disconnect a node after its data was retrieved from the queue.

17. Pick the queue implementation (circular array, single‐linked list, double‐linked list) that is most
appropriate for each of the following conditions.
a. Storage must be reallocated when the queue is full.
b. This implementation is normally most efficient in use of storage.
c. This is an existing class in the Java API.

Koffman-c04.indd 201 10/30/2015 7:37:36 PM

202 Chapter 4 Stacks and Queues

Review Questions
1. Show the effect of each of the following operations on stack s. Assume that y (type Character)

contains the character '&'. What are the final values of x and success and the contents of the stack
s?

 Deque<Character> s = new ArrayDeque<>();
 char x;
 s.push('+');
 try {
 x = s.pop();
 success = true;
 }
 catch (NoSuchElement Exception e) {
 success = false;
 }
 try {
 x = s.pop();
 success = true;
 }
 catch (NoSuchElement Exception e) {
 success = false;
 }
 s.push('(');
 s.push(y);
 try {
 x = s.pop();
 success = true;
 }
 catch (NoSuchElement Exception e) {
 success = false;
 }

2. Write a toString method for class ArrayStack<E>.
3. Write a toString method for class LinkedStack<E>.
4. Write an infix expression that would convert to the postfix expression in Quick‐Check Question 9.
5. Write a constructor for class LinkedStack<E> that loads the stack from an array parameter. The

last array element should be at the top of the stack.
6. Write a client that removes all negative numbers from a stack of Integer objects. If the original

stack contained the integers 30, −15, 20, −25 (top of stack), the new stack should contain the inte-
gers 30, 20.

7. Write a method peekNextToTop that allows you to retrieve the element just below the one at the top
of the stack without removing it. Write this method for both ArrayStack<E> and LinkedStack<E>.
It should return null if the stack has just one element, and it should throw an exception if the stack
is empty.

8. Show the effect of each of the following operations on queue q. Assume that y (type Character)
contains the character '&'. What are the final values of x and success (type boolean) and the
contents of queue q?

 Queue<Character> q = new ArrayQueue<>();

 boolean success = true;
 char x;
 q.offer('+');
 try {
 x = q.remove();
 x = q.remove();
 success = true;
 } catch(NoSuchElementException e) {
 success = false;
 }

Koffman-c04.indd 202 10/30/2015 7:37:36 PM

 Chapter 4 Review 203

 q.offer('(');
 q.offer(y);
 try {
 x = q.remove(); success = true;
 } catch(NoSuchElementException e) {
 success = false;
 }

 9. Write a new queue method called moveToRear that moves the element currently at the front of the
queue to the rear of the queue. The element that was second in line will be the new front element.
Do this using methods Queue.offer and Queue.remove.

10. Answer Question 9 without using methods Queue.offer or Queue.remove for a single‐linked list
implementation of Queue. You will need to manipulate the queue internal data fields directly.

11. Answer Question 9 without using methods Queue.offer or Queue.remove for a circular array
implementation of Queue. You will need to manipulate the queue internal data fields directly.

12. Write a new queue method called moveToFront that moves the element at the rear of the queue to
the front of the queue, while the other queue elements maintain their relative positions behind the
old front element. Do this using methods Queue.offer and Queue.remove.

13. Answer Question 12 without using Queue.offer and Queue.remove for a single‐linked list imple-
mentation of Queue.

14. Answer Question 12 without using methods Queue.offer or Queue.remove for a circular array
implementation of Queue.

Programming Projects
1. Add a method isPalindromeLettersOnly to the PalindromeFinder class that bases its findings

only on the letters in a string (ignoring spaces, digits, and other characters that are not letters).
2. Provide a complete implementation of class LinkedStack and test it on each of the applications in

this chapter.
3. Provide a complete implementation of class ArrayStack and test it on each of the applications in

this chapter.
4. Develop an Expression Manager that can do the following operations:

Balanced Symbols Check
Read a mathematical expression from the user.
Check and report whether the expression is balanced.
{, }, (,), [,] are the only symbols considered for the check. All other characters can be ignored.

Infix to Postfix Conversion
Read an infix expression from the user.
Perform the Balanced Parentheses Check on the expression read.
If the expression fails the Balanced Parentheses Check, report a message to the user that the
expression is invalid.
If the expression passes the Balanced Parentheses Check, convert the infix expression into a post-
fix expression and display it to the user.
Operators to be considered are +, –, *, /, %.

Postfix to Infix Conversion
Read a postfix expression from the user.
Convert the postfix expression into an infix expression and display it to the user.
Display an appropriate message if the postfix expression is not valid.
Operators to be considered are +, –, *, /, %.

Evaluating a Postfix Expression
Read the postfix expression from the user.
Evaluate the postfix expression and display the result.

Koffman-c04.indd 203 10/30/2015 7:37:36 PM

204 Chapter 4 Stacks and Queues

Display an appropriate message if the postfix expression is not valid.
Operators to be considered are +, –, *, /, %.
Operands should be only integers.

Implementation
Design a menu that has buttons or requests user input to select from all the aforementioned
operations.

5. Write a client program that uses the Stack abstract data type to simulate a session with a bank teller.
Unlike most banks, this one has decided that the last customer to arrive will always be the first to
be served. Create classes that represent information about a bank customer and a transaction.
For each customer, you need to store a name, current balance, and a reference to the transaction. For
each transaction, you need to store the transaction type (deposit or withdrawal) and the amount of
the transaction. After every five customers are processed, display the size of the stack and the name
of the customer who will be served next.

6. Write a program to handle the flow of widgets into and out of a warehouse. The warehouse will
have numerous deliveries of new widgets and orders for widgets. The widgets in a filled order are
billed at a profit of 50 percent over their cost. Each delivery of new widgets may have a different cost
associated with it. The accountants for the firm have instituted a LIFO system for filling orders. This
means that the newest widgets are the first ones sent out to fill an order. Also, the most recent orders
are filled first. This method of inventory can be represented using two stacks: orders‐to‐be‐filled and
widgets‐on‐hand. When a delivery of new widgets is received, any unfilled orders (on the orders‐to‐
be‐filled stack) are processed and filled. After all orders are filled, if there are widgets remaining in
the new delivery, a new element is pushed onto the widgets‐on‐hand stack. When an order for new
widgets is received, one or more objects are popped from the widgets‐on‐hand stack until the order
has been filled. If the order is completely filled and there are widgets left over in the last object
popped, a modified object with the quantity updated is pushed onto the widgets‐on‐hand stack. If
the order is not completely filled, the order is pushed onto the orders‐to‐be‐filled stack with an
updated quantity of widgets to be sent out later. If an order is completely filled, it is not pushed onto
the stack.
Write a class with methods to process the shipments received and to process orders. After an order
is filled, display the quantity sent out and the total cost for all widgets in the order. Also indicate
whether there are any widgets remaining to be sent out at a later time. After a delivery is processed,
display information about each order that was filled with this delivery and indicate how many widg-
ets, if any, were stored in the object pushed onto the widgets‐on‐hand stack.

7. You can combine the algorithms for converting between infix to postfix and for evaluating postfix
to evaluate an infix expression directly. To do so you need two stacks: one to contain operators and
the other to contain operands. When an operand is encountered, it is pushed onto the operand stack.
When an operator is encountered, it is processed as described in the infix to postfix algorithm. When
an operator is popped off the operator stack, it is processed as described in the postfix evaluation
algorithm: The top two operands are popped off the operand stack, the operation is performed, and
the result is pushed back onto the operand stack. Write a program to evaluate infix expressions
directly using this combined algorithm.

8. Write a client program that uses the Stack abstract data type to compile a simple arithmetic expres-
sion without parentheses. For example, the expression

a + b * c ‐ d

 should be compiled according to the following table:

Operator Operand 1 Operand 2 Result

* b c z

+ a z y

– y d x

Koffman-c04.indd 204 10/30/2015 7:37:37 PM

 Chapter 4 Review 205

 The table shows the order in which the operations are performed (*, +, –) and operands for each
operator. The result column gives the name of an identifier (working backward from z) chosen to
hold each result. Assume the operands are the letters a through m and the operators are (+, –, *, /).
Your program should read each character and process it as follows: If the character is blank,
ignore it. If the character is neither blank nor an operand nor an operator, display an error mes-
sage and terminate the program. If it is an operand, push it onto the operand stack. If it is an
operator, compare its precedence to that of the operator on top of the operator stack. If the cur-
rent operator has higher precedence than the one currently on top of the stack (or stack is
empty), it should be pushed onto the operator stack. If the current operator has the same or
lower precedence, the operator on top of the operator stack must be evaluated next. This is done
by popping that operator off the operator stack along with a pair of operands from the operand
stack and writing a new line in the output table. The character selected to hold the result should
then be pushed onto the operand stack. Next, the current operator should be compared to the
new top of the operator stack. Continue to generate output lines until the top of the operator
stack has lower precedence than the current operator or until it is empty. At this point, push the
current operator onto the top of the stack and examine the next character in the data string.
When the end of the string is reached, pop any remaining operator along with its operand pair
just described. Remember to push the result character onto the operand stack after each table line
is generated.

 9. Another approach to checking for palindromes would be to store the characters of the string being
checked in a stack and then remove half of the characters, pushing them onto a second stack. When
you are finished, if the two stacks are equal, then the string is a palindrome. This works fine if the
string has an even number of characters. If the string has an odd number of characters, an addi-
tional character should be removed from the original stack before the two stacks are compared. It
doesn’t matter what this character is because it doesn’t have to be matched. Design, code, and test
a program that implements this approach.

10. Operating systems sometimes use a fixed array storage area to accommodate a pair of stacks such
that one grows from the bottom (with its first item stored at index 0) and the other grows from the
top (with its first item stored at the highest array index). As the stacks grow, the top of the stacks
will move closer together.

... ...

[0]

stack 1 stack 2

[top1] [top2]

 The stacks are full when the two top elements are stored in adjacent array elements (top2 == top1 +
1). Design, code, and test a class DoubleStack that implements this data structure. DoubleStack
should support the normal stack operations (push, pop, peek, empty, etc.). Each stack method
should have an additional int parameter that indicates which of the stacks (1 or 2) is being
 processed. For example, push(1, item) will push item onto stack 1.

11. Redo Programming Project 6, assuming that widgets are shipped using a FIFO inventory system.
12. Write a class MyArrayDeque that extends class ArrayQueue. Class MyArrayDeque should imple-

ment the Deque interface. Test your new class by comparing its operation to that of the ArrayDeque
class in the Java Collections Framework.

13. Write a program that reads in a sequence of characters and stores each character in a deque.
Display the deque contents. Then use a second deque to store the characters in reverse order. When
done, display the contents of both deques.

14. Write a program that simulates the operation of a busy airport that has only two run‐ways to han-
dle all takeoffs and landings. You may assume that each takeoff or landing takes 15 minutes to
complete. One runway request is made during each 5‐minute time interval, and the likelihood of a
landing request is the same as for a takeoff request.

 Priority is given to planes requesting a landing. If a request cannot be honored, it is added to a
takeoff or landing queue.

Koffman-c04.indd 205 10/30/2015 7:37:37 PM

206 Chapter 4 Stacks and Queues

 Your program should simulate 120 minutes of activity at the airport. Each request for runway
clearance should be time‐stamped and added to the appropriate queue. The output from your pro-
gram should include the final queue contents, the number of take‐offs completed, the number of
landings completed, and the average number of minutes spent in each queue.

15. An operating system assigns jobs to print queues based on the number of pages to be printed (less
than 10 pages, less than 20 pages, or more than 20 pages but less than 50 pages). You may assume
that the system printers are able to print 10 pages per minute. Smaller print jobs are printed before
larger print jobs, and print jobs of the same priority are queued up in the order in which they are
received. The system administrators would like to compare the time required to process a set of
print jobs using one, two, or three system printers.

 Write a program that simulates processing 100 print jobs of varying lengths using one, two, or three
printers. Assume that a print request is made every minute and that the number of pages to print
varies from 1 to 50 pages.

 The output from your program should indicate the order in which the jobs were received, the order
in which they were printed, and the time required to process the set of print jobs. If more than one
printer is being used, indicate which printer each job was printed on.

16. Write a menu‐driven program that uses an array of queues to keep track of a group of executives
as they are transferred from one department to another, get paid, or become unemployed. Executives
within a department are paid based on their seniority, with the person who has been in the depart-
ment the longest receiving the most money. Each person in the department receives $1000 in salary
for each person in her department having less seniority than she has. Persons who are unemployed
receive no compensation.

 Your program should be able to process the following set of commands:

Join <person> <department> <person> is added to <department>

Quit <person> <person> is removed from his or her department

Change <person> <department> <person> is moved from old department to <department>

Payroll Each executive’s salary is computed and displayed by
department in decreasing order of seniority

 Hint: You might want to include a table that contains each executive’s name and information and
the location of the queue that contains his or her name, to make searching more efficient.

17. Simulate the operation of a bank. Customers enter the bank, and there are one or more tellers. If a
teller is free, that teller serves the customer. Otherwise the customer enters the queue and waits until
a teller is free. Your program should accept the following inputs:

The arrival rate for the customers
The average processing time
The number of tellers

Use your program to determine how many tellers are required for a given arrival rate and average
processing time.

18. Simulate a checkout area of a supermarket consisting of one superexpress counter, two express
counters, and numStandLines standard counters. All customers with numSuper or fewer items
proceed to a superexpress counter with the fewest customers, unless there is a free express or regu-
lar line, and those with between numSuper and numExp proceed to the express counter with the
shortest line unless there is a free standard line. Customers with more than numExp go to the stand-
ard counter with the shortest standard line.

 The number of items bought will be a random number in the range 1 to maxItems.
 The time to process a customer is 5 seconds per item.
 Calculate the following statistics:

Average waiting time for each of the lines
Overall average waiting time

Koffman-c04.indd 206 10/30/2015 7:37:37 PM

 Chapter 4 Review 207

Maximum length of each line
Number of customers per hour for each line and overall
Number of items processed per hour for each line and overall
Average free time of each counter
Overall free time

 Note: The average waiting time for a line is the total of the customer waiting times divided by the
number of customers. A customer’s waiting time is the time from when he (or she) enters the queue
for a given checkout line until the checkout processing begins. If the customer can find a free line,
then the wait time is zero.

 Your program should read the following data:

numSuper The number of items allowed in the superexpress line

numExp The number of items allowed in the express line

numStandLines The number of regular lines

arrivalRate The arrival rate of customers per hour

maxItems The maximum number of items

maxSimTime The simulation time

 It may be that some lines do not get any business. In that case you must be sure, in calculating the average,
not to divide by zero.

19. A randomized queue is similar to a queue, except that the item removed is chosen at random from
the items in the queue. Create a RandomizedQueue that contains the normal queue methods except
that the remove method will delete an item chosen using a uniform distribution. You should write
this class as an extension of the ArrayQueue class.

Answers to Quick-Check Exercises
1. A stack is a LIFO data structure.
2. Each character in array theData should be wrapped in a Character object. The value of

topOfStack should be 2.

Object[]

= '&'
= '*'
= '$'

[0]
[1]
[2]

ArrayStack

theData
topOfStack

=
= 2

s =

3. Method empty returns false.
4. pop returns a reference to the Character object that wraps '$'.

5.
Node Node Node

data = '$'
next =

s =

data = '*'
next =

data = '&'
next = null

LinkedStack

topOfStackRef =

Koffman-c04.indd 207 10/30/2015 7:37:37 PM

208 Chapter 4 Stacks and Queues

6. Method remove(int i) is not defined for classes that implement interface StackInt. The Stack
class defined in API java.util would permit its use. Classes ArrayStack and LinkedStack would
not.

7. Infix: x + y ‐ 24 * zone ‐ ace / 25 + c1

 Postfix: x y + 24 zone * ‐ ace 25 / ‐ c1 +
Operator stack before first + : | Empty stack (vertical bar is bottom of stack)
Operator stack before first ‐ : | +
Operator stack before first * : | –
Operator stack before second – : | –, *
Operator stack before first / : | –
Operator stack before second + : | –, /
Operator stack after all tokens
 scanned: | +

8. Infix: (x + y - 24) * (zone – ace / (25 + c1))

 Postfix: x y + 24 - zone ace 25 c1 + / – *
Operator stack before first (: | Empty stack (vertical bar is bottom of stack)
Operator stack before first + : | (
Operator stack before first – : | (, +
Operator stack before first) : | (, –
Operator stack before first * : | Empty stack
Operator stack before second (: | *
Operator stack before second - : | *, (
Operator stack before second / : | *, (, –
Operator stack before third (: | *, (, –, /
Operator stack before second + : | *, (, –, /, (
Operator stack before second) : | *, (, –, /, (, +
Operator stack before third) : | *, (, –, /
Operator stack after all tokens
 scanned: | *

9. 20 35 – 5 / 10 7 * + is 67 (–3 + 70)
 Operand stack just before - : | 20, 35

 Operand stack just before / : | –15, 5
 Operand stack just before * : | –3, 10, 7
 Operand stack just before + : | –3, 70
 Operand stack after all tokens
 scanned: | 67

10. first, first
11. stack
12. queue
13. q.front is 0; q.rear is 4.
14. %

*
-
&
#
\

q.rear

q.front

 q.front is 1; q.rear is 0

Koffman-c04.indd 208 10/30/2015 7:37:37 PM

 Chapter 4 Review 209

15. '*', '%'
16. For insertion: rear.next = new Node<E>(item);
 To disconnect the node removed: front = front.next;
17. a. circular array

b. single-linked list
c. double-linked list (class LinkedList)

Koffman-c04.indd 209 10/30/2015 7:37:38 PM

Koffman-c04.indd 210 10/30/2015 7:37:38 PM

C h a p t e r

211

T
his chapter introduces a programming technique called recursion and shows you how
to think recursively. You can use recursion to solve many kinds of programming prob-
lems that would be very difficult to conceptualize and solve without recursion.

Computer scientists in the field of artificial intelligence (AI) often use recursion to write pro-
grams that exhibit intelligent behavior: playing games such as chess, proving mathematical
theorems, recognizing patterns, and so on.

In the beginning of the chapter, you will be introduced to recursive thinking and how
to design a recursive algorithm and prove that it is correct. You will also learn how to trace
a recursive method and use activation frames for this purpose.

Recursive algorithms and methods can be used to perform common mathematical
operations, such as computing a factorial or a greatest common divisor(gcd). Recursion can
be used to process familiar data structures, such as strings, arrays, and linked lists, and to
design a very efficient array search technique called binary search. You will also see that a
linked list is a recursive data structure and learn how to write recursive methods that perform
common list‐processing tasks.

Recursion can be used to solve a variety of other problems. The case studies in this
chapter use recursion to solve a game, to search for “blobs” in a two‐dimensional image, and
to find a path through a maze.

Recursion

5C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To understand how to think recursively

 ◆ To learn how to trace a recursive method

 ◆ To learn how to write recursive algorithms and methods for searching arrays

 ◆ To learn about recursive data structures and recursive methods for a LinkedList class

 ◆ To understand how to use recursion to solve the Towers of Hanoi problem

 ◆ To understand how to use recursion to process two‐dimensional images

 ◆ To learn how to apply backtracking to solve search problems such as finding a path through
a maze

Koffman-c05.indd 211 10/30/2015 7:36:50 PM

212 Chapter 5 Recursion

5.1 Recursive Thinking

Recursion is a problem‐solving approach that can be used to generate simple solutions to
certain kinds of problems that would be difficult to solve in other ways. In a recursive algo-
rithm, the original problem is split into one or more simpler versions of itself. For example,
if the solution to the original problem involved n items, recursive thinking might split it into
two problems: one involving n − 1 items and one involving just a single item. Then the prob-
lem with n − 1 items could be split again into one involving n − 2 items and one involving
just a single item, and so on. If the solution to all the one‐item problems is “trivial,” we can
build up the solution to the original problem from the solutions to the simpler problems.

As an example of how this might work, consider a collection of nested wooden figures as
shown in Figure 5.1. If you wanted to write an algorithm to “process” this collection in some
way (such as counting the figures or painting a face on each figure), you would have difficulty
doing it because you don’t know how many objects are in the nest. But you could use recur-
sion to solve the problem in the following way.

Recursive Algorithm to Process Nested Figures

1. if there is one figure in the nest
2. Do whatever is required to the figure.

 else
3. Do whatever is required to the outer figure in the nest.
4. Process the nest of figures inside the outer figure in the same way.

R e c u r s i o n

 5.1 Recursive Thinking
 5.2 Recursive Definitions of Mathematical Formulas
 5.3 Recursive Array Search
 5.4 Recursive Data Structures
 5.5 Problem Solving with Recursion

Case Study: Towers of Hanoi
Case Study: Counting Cells in a Blob

 5.6 Backtracking
Case Study: Finding a Path through a Maze

F I G U R E 5 . 1

A Set of Nested Wooden Figures

Koffman-c05.indd 212 10/30/2015 7:36:50 PM

5.1 Recursive Thinking 213

In this recursive algorithm, the solution is trivial if there is only one figure: perform Step 2.
If there is more than one figure, perform Step 3 to process the outer figure. Step 4 is the
recursive operation—recursively process the nest of figures inside the outer figure. This nest
will, of course, have one less figure than before, so it is a simpler version of the original
problem.

As another example, let’s consider searching for a target value in an array. Assume that the
array elements are sorted and are in increasing order. A recursive approach, which we will
study in detail in Section 5.3, involves replacing the problem of searching an array of n ele-
ments with one of searching an array of n/2 elements. How do we do that? We compare the
target value to the value of the element in the middle of the sorted array. If there is a match,
we have found the target. If not, based on the result of the comparison, we either search the
elements that come before the middle one or the elements that come after the middle one. So
we have replaced the problem of searching an array with n elements to one that involves
searching a smaller array with only n/2 elements. The recursive algorithm follows.

Recursive Algorithm to Search an Array

1. if the array is empty
2. Return –1 as the search result.
 else if the middle element matches the target
3. Return the subscript of the middle element as the result.
 else if the target is less than the middle element
4. Recursively search the array elements before the middle element

and return the result.
 else
5. Recursively search the array elements after the middle element and

return the result.

The condition in Step 1 is true when there are no elements left to search. Step 2 returns –1 to
indicate that the search failed. Step 3 executes when the middle element matches the target.
Otherwise, we recursively apply the search algorithm (Steps 4 and 5), thereby searching a
smaller array (approximately half the size), and return the result. For each recursive search,
the region of the array being searched will be different, so the middle element will also be
different.

The two recursive algorithms we showed so far follow this general approach:

General Recursive Algorithm

1. if the problem can be solved for the current value of n
2. Solve it.
 else
3. Recursively apply the algorithm to one or more problems involving

smaller values of n.
4. Combine the solutions to the smaller problems to get the solution to

the original.

Step 1 involves a test for what is called the base case: the value of n for which the problem
can be solved easily. Step 3 is the recursive case because we recursively apply the algorithm.
Because the value of n for each recursive case is smaller than the original value of n, each
recursive case makes progress toward the base case. Whenever a split occurs, we revisit Step 1
for each new problem to see whether it is a base case or a recursive case.

Koffman-c05.indd 213 10/30/2015 7:36:50 PM

214 Chapter 5 Recursion

Steps to Design a Recursive Algorithm
From what we have seen so far, we can summarize the characteristics of a recursive solution:

There must be at least one case (the base case), for a small value of n, that can be solved
directly.
A problem of a given size (say, n) can be split into one or more smaller versions of the
same problem (the recursive case).

Therefore, to design a recursive algorithm, we must

Recognize the base case and provide a solution to it.
Devise a strategy to split the problem into smaller versions of itself. Each recursive case
must make progress toward the base case.
Combine the solutions to the smaller problems in such a way that each larger problem
is solved correctly.

Next, we look at a recursive algorithm for a common programming problem. We will also
provide a Java method that solves this problem. All of the methods in this section and in
the next will be found in class RecursiveMethods.java on this textbook’s Web site.

EXAMPLE 5 .1 Let’s see how we could write our own recursive method for finding the string length. How
would you go about doing this? If there is a special character that marks the end of a string,
then you can count all the characters that precede this special character. But if there is no
special character, you might try a recursive approach. The base case is an empty string—its
length is 0. For the recursive case, consider that each string has two parts: the first character
and the “rest of the string.” If you can find the length of the “rest of the string,” you can then
add 1 (for the first character) to get the length of the larger string. For example, the length of
"abcde" is 1 + the length of "bcde".

Recursive Algorithm for Finding the Length of a String

1. if the string is empty (has no characters)
2. The length is 0.
 else

3. The length is 1 plus the length of the string that excludes the first
character.

We can implement this algorithm as a static method with a String argument. The test for
the base case is a string reference of null or a string that contains no characters (""). In either
case, the length is 0. In the recursive case,

return 1 + length(str.substring(1));

the method call str.substring(1) returns a reference to a string containing all characters in
string str except for the character at position 0. Then we call method length again with this
substring as its argument. The method result is one more than the value returned from the
next call to length. Each time we reenter the method length, the if statement executes with
str referencing a string containing all but the first character in the previous call. Method
length is called a recursive method because it calls itself.

/** Recursive method length (in RecursiveMethods.java).
 @param str The string
 @return The length of the string
 */

Koffman-c05.indd 214 10/30/2015 7:36:51 PM

5.1 Recursive Thinking 215

EXAMPLE 5 .2 Method printChars is a recursive method that displays each character in its string argument
on a separate line. In the base case (an empty or nonexistent string), the method return occurs
immediately and nothing is displayed. In the recursive case, printChars displays the first
character of its string argument and then calls itself to display the characters in the rest of the
string. If the initial call is printChars("hat"), the method will display the lines

h
a
t

Unlike the method length in Example 5.1, printChars is a void method. However, both
methods follow the format for the general recursive algorithm shown earlier.

/** Recursive method printChars (in RecursiveMethods.java).
 post: The argument string is displayed, one character per line.
 @param str The string
 */
public static void printChars(String str) {
 if (str == null || str.isEmpty()) {
 return;
 } else {
 System.out.println(str.charAt(0));
 printChars(str.substring(1));
 }
}

You get an interesting result if you reverse the two statements in the recursive case.
/** Recursive method printCharsReverse (in RecursiveMethods.java).
 post: The argument string is displayed in reverse,
 one character per line.
 @param str The string
 */
public static void printCharsReverse(String str) {
 if (str == null || str.isEmpty()) {
 return;
 } else {
 printCharsReverse(str.substring(1));
 System.out.println(str.charAt(0));
 }
}

Method printCharsReverse calls itself to display the rest of the string before displaying the
first character in the current string argument. The effect will be to delay displaying the first
character in the current string until all characters in the rest of the string are displayed.
Consequently, the characters in the string will be displayed in reverse order. If the initial call
is printCharsReverse("hat"), the method will display the lines

t
a
h

public static int length(String str) {
 if (str == null || str.isEmpty())
 return 0;
 else
 return 1 + length(str.substring(1));
}

Koffman-c05.indd 215 10/30/2015 7:36:51 PM

216 Chapter 5 Recursion

Proving that a Recursive Method Is Correct
To prove that a recursive method is correct, you must verify that you have performed cor-
rectly the design steps listed earlier. You can use a technique that mathematicians use to
prove that a theorem is true for all values of n. A proof by induction works the follow-
ing way:

Prove the theorem is true for the base case of (usually) n = 0 or n = 1.
Show that if the theorem is assumed true for n, then it must be true for n + 1.

We can extend the notion of an inductive proof and use it as the basis for proving that a
recursive algorithm is correct. To do this:

Verify that the base case is recognized and solved correctly.
Verify that each recursive case makes progress toward the base case.
Verify that if all smaller problems are solved correctly, then the original problem is also
solved correctly.

If you can show that your algorithm satisfies these three requirements, then your algorithm
will be correct.

EXAMPLE 5 .3 To prove that the length method is correct, we know that the base case is an empty string and
its length is correctly set at 0. The recursive case involves a call to length with a smaller
string, so it is making progress toward the base case. Finally, if we know the length of the rest
of the string, adding 1 gives us the length of the longer string consisting of the first character
and the rest of the string.

return 1 + length("ce");

length("ace")

return 1 + length("e");

return 1 + length("");

2

3

1

0

F I G U R E 5 . 2

Trace of

length("ace")

Tracing a Recursive Method
Figure 5.2 traces the execution of the method call length("ace"). The diagram shows a
sequence of recursive calls to the method length. After returning from each call to length,
we complete execution of the statement return 1 + length(...); by adding 1 to the result
so far and then returning from the current call. The final result, 3, would be returned from
the original call. The arrow alongside each word return shows which call to length is asso-
ciated with that result. For example, 0 is the result of the method call length(""). After
adding 1, we return 1, which is the result of the call length("e"), and so on. This process
of returning from the recursive calls and computing the partial results is called unwinding
the recursion.

Koffman-c05.indd 216 10/30/2015 7:36:52 PM

5.1 Recursive Thinking 217

str: ""
return address in length("e")

Frame for
length("")

Frame for
length("e")

Frame for
length("ce")

Frame for
length("ace")

Frame for
length("e")

Frame for
length("ce")

Frame for
length("ace")

str: "e"
return address in length("ce")

str: "ce"
return address in length("ace")

str: "ace"
return address in caller

str: "e"
return address in length("ce")

str: "ce"
return address in length("ace")

str: "ace"
return address in caller

Run-time stack after all calls Run-time stack after return from last call

F I G U R E 5 . 3

Run‐Time Stack before and after Removal of Frame for length("")

The Run‐Time Stack and Activation Frames
You can also trace a recursive method by showing what Java does when one method calls
another. Java maintains a run‐time stack, on which it saves new information in the form of
an activation frame. The activation frame contains storage for the method arguments and
any local variables as well as the return address of the instruction that called the method.
Whenever a method is called, Java pushes a new activation frame onto the run‐time stack
and saves this information on the stack. This is done whether or not the method is
recursive.

The left side of Figure 5.3 shows the activation frames on the run‐time stack after the last
recursive call (corresponding to length("")) resulting from an initial call to length("ace").
At any given time, only the frame at the top of the stack is accessible, so its argument values
will be used when the method instructions execute. When the return statement executes,
control will be passed to the instruction at the specified return address, and this frame will be
popped from the stack (Figure 5.3, right). The activation frame corresponding to the next‐to‐
last call (length("e")) is now accessible.

You can think of the run‐time stack for a sequence of calls to a recursive method as an office
tower in which an employee on each floor has the same list of instructions.1 The employee in
the bottom office carries out part of the instructions on the list, calls the employee in the
office above, and is put on hold. The employee in the office above starts to carry out the list
of instructions, calls the employee in the next higher office, is put on hold, and so on. When
the employee on the top floor is called, that employee carries out the list of instructions to
completion and then returns an answer to the employee below. The employee below then
resumes carrying out the list of instructions and returns an answer to the employee on the
next lower floor, and so on, until an answer is returned to the employee in the bottom office,
who then resumes carrying out the list of instructions.

To make the flow of control easier to visualize, we will draw the activation frames from the
top of the page down (see Figure 5.4). For example, the activation frame at the top, which
would actually be at the bottom of the run‐time stack, represents the first call to the recursive
method. The downward‐pointing arrows connect each statement that calls a method with the

1Analogy suggested by Rich Pattis, University of California, Irvine, CA.

Koffman-c05.indd 217 10/30/2015 7:36:52 PM

218 Chapter 5 Recursion

frame for that particular execution of the method. The upward‐pointing arrows show the
return point from each lower‐level call with the value returned alongside the arrow. For each
frame, the return point is to the addition operator in the statement return 1 + length(...);.
For each frame, the code in the gray screen is executed prior to the creation of the next activa-
tion frame; the rest of the code shown is executed after the return.

str: "ace"
"ace" == null ||

"ace".isEmpty() is false
return 1 + length("ce");

str: "ce"
"ce" == null ||

"ce".isEmpty() is false
return 1 + length("e");

str: "e"
"e" == null ||

"e".isEmpty() is false
return 1 + length("");

str: ""
"" == null ||
"".isEmpty() is true
return 0

length("ace")

length("ce")

length("e")

length("")

3

2

1

0

F I G U R E 5 . 4

Trace of

length("ace")

Using Activation

Frames

E X E R C I S E S F O R S E C T I O N 5 . 1

S E L F ‐ C H E C K

1. Trace the execution of the call mystery(4) for the following recursive method using the technique
shown in Figure 5.2. What does this method do?

public static mystery(int n) {
 if (n == 0)
 return 0;
 else
 return n * n + mystery(n – 1);
}

2. Answer Exercise 1 above using activation frames.

3. Trace the execution of printChars("tic") (Example 5.2) using activation frames.

4. Trace the execution of printCharsReverse("toc") using activation frames.

5. Prove that the printChars method is correct.

6. Trace the execution of length("tictac") using a diagram like Figure 5.2.

Koffman-c05.indd 218 10/30/2015 7:36:53 PM

5.2 Recursive Definitions of Mathematical Formulas 219

7. Write a recursive algorithm that determines whether a specified target character is present
in a string. It should return true if the target is present and false if it is not. The stopping
steps should be
a. a string reference to null or a string of length 0, the result is false
b. the first character in the string is the target, the result is true.
The recursive step would involve searching the rest of the string.

P R O G R A M M I N G

1. Write a recursive method toNumber that forms the integer sum of all digit characters in a string.
For example, the result of toNumber("3ac4") would be 7. Hint: If next is a digit character ('0'
through '9'), Character.isDigit(next) is true and the numeric value of next is Character.
digit(next, 10).

2. Write a recursive method stutter that returns a string with each character in its argument
repeated. For example, if the string passed to stutter is "hello", stutter will return the
string "hheelllloo".

3. Write a recursive method that implements the recursive algorithm for searching a string in
Self‐Check Exercise 7. The method heading should be

 public static boolean searchString(String str, char ch)

5.2 Recursive Definitions of Mathematical Formulas

Mathematicians often use recursive definitions of formulas. These definitions lead very natu-
rally to recursive algorithms.

EXAMPLE 5 .4 The factorial of n, or n!, is defined as follows:

0! 1
! (1)!n n n

The first formula identifies the base case: n equal to 0. The second formula is a recursive defi-
nition. It leads to the following algorithm for computing n!.

Recursive Algorithm for Computing n!

1. if n equals 0
2. n! is 1.
 else

3. n! = n × (n – 1)!
To verify the correctness of this algorithm, we see that the base case is solved correctly (0! is
1). The recursive case makes progress toward the base case because it involves the calculation
of a smaller factorial. Also, if we can calculate (n – 1)!, the recursive case gives us the correct
formula for calculating n!.

The recursive method follows. The statement
return n * factorial(n – 1);

Koffman-c05.indd 219 10/30/2015 7:36:53 PM

220 Chapter 5 Recursion

implements the recursive case. Each time factorial calls itself, the method body executes
again with a different argument value. An initial method call such as factorial(4) will gener-
ate four recursive calls, as shown in Figure 5.5.

/** Recursive factorial method (in RecursiveMethods.java).
 pre: n >= 0
 @param n The integer whose factorial is being computed
 @return n!
 */
public static int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n – 1);
}

F I G U R E 5 . 5

Trace of

factorial(4) return 4 * factorial(3);

factorial(4)

return 3 * factorial(2);

return 2 * factorial(1);

6

24

2

return 1 * factorial(0);
1

1

 P I T F A L L

Infinite Recursion and Stack Overflow
If you call method factorial with a negative argument, you will see that the recursion
does not terminate. It will continue forever because the stopping case, n equals 0, can
never be reached, as n gets more negative with each call. For example, if the original
value of n is –4, you will make method calls factorial(–5), factorial(–6),
factorial(–7), and so on. You should make sure that your recursive methods are
constructed so that a stopping case is always reached. One way to prevent the infinite
recursion in this case would be to change the terminating condition to n <= 0.
However, this would incorrectly return a value of 1 for n! if n is negative. A better
solution would be to throw an IllegalArgumentException if n is negative.

If your program does not terminate properly, you may see an extremely long display on
the console (if the console is being used to display its results). Eventually the exception
StackOverflowError will be thrown. This means that the memory area used to store
information about method calls (the run‐time stack) has been used up because there
have been too many calls to the recursive method. Because there is no memory available
for this purpose, your program can’t execute any more method calls.

Koffman-c05.indd 220 10/30/2015 7:36:54 PM

5.2 Recursive Definitions of Mathematical Formulas 221

EXAMPLE 5 .5 Let’s develop a recursive method that raises a number x to a power n, where n is positive or
zero. You can raise a number to a power by repeatedly multiplying that number by itself. So
if we know xk, we can get xk+1 by multiplying xk by x. The recursive definition is

x x xn n–1

This gives us the recursive case. You should know that any number raised to the power 0 is
1, so the base case is

x0 1

Recursive Algorithm for Calculating xn (n ≥ 0)

1. if n is 0
2. The result is 1.
 else

3. The result is x xn–1.

We show the method next.

/** Recursive power method (in RecursiveMethods.java).
 pre: n >= 0
 @param x The number being raised to a power
 @param n The exponent
 @return x raised to the power n
 */
public static double power(double x, int n) {
 if (n == 0)
 return 1;
 else
 return x * power(x, n – 1);
}

EXAMPLE 5 .6 The greatest common divisor (gcd) of two numbers is the largest integer that divides both
numbers. For example, the gcd of 20, 15 is 5; the gcd of 36, 24 is 12; the gcd of 36, 18 is 18.
The mathematician Euclid devised an algorithm for finding the greatest common divisor
(gcd) of two integers, m and n, based on the following definition.

Definition of gcd(m, n) for m > n

 gcd(m, n) = n if n is a divisor of m

 gcd(m, n) = gcd(n, m % n) if n isn’t a divisor of m

This definition states that gcd(m, n) is n if n divides m. This is correct because no number
larger than n can divide n. Otherwise, the definition states that gcd(m, n) is the same as gcd(n,
m % n), where m % n is the integer remainder of m divided by n. Therefore, gcd(20, 15) is
the same as gcd(15, 5), or 5, because 5 divides 15. This recursive definition leads naturally to
a recursive algorithm.

Recursive Algorithm for Calculating gcd(m, n) for m > n
1. if n is a divisor of m
2. The result is n.
 else

3. The result is gcd(n, m % n).

Koffman-c05.indd 221 10/30/2015 7:36:55 PM

222 Chapter 5 Recursion

Tail Recursion versus Iteration
Method gcd above is an example of tail recursion. In tail recursion, the last thing a method
does is to call itself. You may have noticed that there are some similarities between tail recur-
sion and iteration. Both techniques enable us to repeat a compound statement. In iteration, a
loop repetition condition in the loop header determines whether we repeat the loop body or
exit from the loop. We repeat the loop body while the repetition condition is true. In tail
recursion, the condition usually tests for a base case. In a recursive method, we stop the recur-
sion when the base case is reached (the condition is true), and we execute the method body
again when the condition is false.

We can always write an iterative solution to any problem that is solvable by recursion.
However, the recursive solutions will be easier to conceptualize and should, therefore, lead to
methods that are easier to write, read, and debug—all of which are very desirable attributes
of code.

EXAMPLE 5 .7 In Example 5.4, we wrote the recursive method.
public static int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n – 1);
}

It is a straightforward process to turn this method into an iterative one, replacing the if
statement with a loop, as we show next.

To verify that this is correct, we need to make sure that there is a base case and that it is
solved correctly. The base case is “n is a divisor of m.” If so, the solution is n (n is the gcd),
which is correct. Does the recursive case make progress to the base case? It must because both
arguments in each recursive call are smaller than in the previous call, and the new second
argument is always smaller than the new first argument (m % n must be less than n).
Eventually a divisor will be found, or the second argument will become 1. Since 1 is a base
case (1 divides every integer), we have verified that the recursive case makes progress toward
the base case.

Next, we show method gcd. Note that we do not need a separate clause to handle arguments
that initially are not in the correct sequence. This is because if m < n, then m % n is m and the
recursive call will transpose the arguments so that m > n in the first recursive call.

/** Recursive gcd method (in RecursiveMethods.java).
 pre: m > 0 and n > 0
 @param m The larger number
 @param n The smaller number
 @return Greatest common divisor of m and n
 */
public static double gcd(int m, int n) {
 if (m % n == 0)
 return n;
 else
 return gcd(n, m % n);
}

Koffman-c05.indd 222 10/30/2015 7:36:55 PM

5.2 Recursive Definitions of Mathematical Formulas 223

/** Iterative factorial method.
 pre: n >= 0
 @param n The integer whose factorial is being computed
 @return n!
 */
public static int factorialIter(int n) {
 int result = 1;
 while (n > 0){
 result *= n;
 n = n ‐ 1;
 }
 return result;
}

Efficiency of Recursion
The iterative method factorialIter multiplies all integers between 1 and n to compute n!. It
may be slightly less readable than the recursive method factorial, but not much. In terms of
efficiency, both algorithms are O(n) because the number of loop repetitions or recursive calls
increases linearly with n. However, the iterative version is probably faster because the over-
head for a method call and return would be greater than the overhead for loop repetition
(testing and incrementing the loop control variable). The difference, though, would not be
significant. Generally, if it is easier to conceptualize an algorithm using recursion, then you
should code it as a recursive method because the reduction in efficiency does not outweigh
the advantage of readable code that is easy to debug.

EXAMPLE 5 .8 The Fibonacci numbers fibn are a sequence of numbers that were invented to model the
growth of a rabbit colony. Therefore, we would expect this sequence to grow very quickly,
and it does. For example, fib10 is 55, fib15 is 610, fib20 is 6765, and fib25 is 75,025 (that’s a
lot of rabbits!). The definition of this sequence follows:

fib
fib
fib fib fib

0

1

1

0
1

n n n 2

Next, we show a method that calculates the nth Fibonacci number. The last line codes the
recursive case.

/** Recursive method to calculate Fibonacci numbers
 (in RecursiveMethods.java).
 pre: n >= 0
 @param n The position of the Fibonacci number being calculated
 @return The Fibonacci number
 */
public static int fibonacci(int n) {
 if (n == 0)
 return 0;
 else if (n == 1)
 return 1;
 else
 return fibonacci(n – 1) + fibonacci(n – 2);
}

Koffman-c05.indd 223 10/30/2015 7:36:56 PM

224 Chapter 5 Recursion

Unfortunately, this solution is very inefficient because of multiple calls to fibonacci with the
same argument. For example, calculating fibonacci(5) results in calls to fibonacci(4) and
fibonacci(3). Calculating fibonacci(4) results in calls to fibonacci(3) (second call) and
also fibonacci(2). Calculating fibonacci(3) twice results in two more calls to fibonacci(2)
(three calls total), and so on (see Figure 5.6).

Because of the redundant method calls, the time required to calculate fibonacci(n) increases
exponentially with n. For example, if n is 100, there are approximately 2100 activation frames.
This number is approximately 1030. If you could process one million activation frames per
second, it would still take 1024 seconds, which is approximately 3 × 1016 years. However, it is
possible to write recursive methods for computing Fibonacci numbers that have O(n) perfor-
mance. We show one such method next.

/** Recursive O(n) method to calculate Fibonacci numbers
 (in RecursiveMethods.java).
 pre: n >= 1
 @param fibCurrent The current Fibonacci number
 @param fibPrevious The previous Fibonacci number
 @param n The count of Fibonacci numbers left to calculate
 @return The value of the Fibonacci number calculated so far
 */
private static int fibo(int fibCurrent, int fibPrevious, int n) {
 if (n == 1)
 return fibCurrent;
 else
 return fibo(fibCurrent + fibPrevious, fibCurrent, n – 1);
}

Unlike method fibonacci, method fibo does not follow naturally from the recursive defini-
tion of the Fibonacci sequence. In the method fibo, the first argument is always the current
Fibonacci number and the second argument is the previous one. We update these values for
each new call. When n is 1 (the base case), we have calculated the required Fibonacci number,
so we return its value (fibCurrent). The recursive case

return fibo(fibCurrent + fibPrevious, fibCurrent, n – 1);

passes the sum of the current Fibonacci number and the previous Fibonacci number to the
first parameter (the new value of fibCurrent); it passes the current Fibonacci number to
the second parameter (the new value of fibPrevious); and it decrements n, making progress
toward the base case.

fibonacci(5)

fibonacci(4)

fibonacci(3) fibonacci(2) fibonacci(2) fibonacci(1)

fibonacci(3)

fibonacci(2) fibonacci(1)

F I G U R E 5 . 6

Method Calls Resulting

from fibonacci(5)

Koffman-c05.indd 224 10/30/2015 7:36:56 PM

5.2 Recursive Definitions of Mathematical Formulas 225

To start this method executing, we need the following wrapper method, which is not recursive.
This method is called a wrapper method because its main purpose is to call the recursive
method and return its result. Its parameter, n, specifies the position in the Fibonacci sequence of
the number we want to calculate. After testing for the special case n equals 0, it calls the recur-
sive method fibo, passing the first Fibonacci number as its first argument and n as its third.

/** Wrapper method for calculating Fibonacci numbers
 (in RecursiveMethods.java).
 pre: n >= 0
 @param n The position of the desired Fibonacci number
 @return The value of the nth Fibonacci number
 */
public static int fibonacciStart(int n) {
 if (n == 0)
 return 0;
 else
 return fibo(1, 0, n);
}

Figure 5.7 traces the execution of the method call fibonacciStart(5). Note that the first argu-
ments for the method calls to fibo form the sequence 1, 1, 2, 3, 5, which is the Fibonacci
sequence. Also note that the result of the first return (5) is simply passed on by each successive
return. That is because the recursive case does not specify any operations other than returning
the result of the next call. Note that the method fibo is an example of tail recursion.

return fibo(1, 0, 5);

fibonacciStart(5)

return fibo(1, 1, 4);

return fibo(2, 1, 3);

5

5

5

return fibo(3, 2, 2);
5

return fibo(5, 3, 1);
5

5

F I G U R E 5 . 7

Trace of

fibonacciStart(5)

E X E R C I S E S F O R S E C T I O N 5 . 2

S E L F ‐ C H E C K

1. Does the recursive algorithm for raising x to the power n work for negative values of n? Does
it work for negative values of x? Indicate what happens if it is called for each of these cases.

2. Trace the execution of fibonacciStart(5) using activation frames.

3. Trace the execution of the following using activation frames.
gcd(33, 12)
gcd(12, 33)
gcd(11, 5)

Koffman-c05.indd 225 10/30/2015 7:36:56 PM

226 Chapter 5 Recursion

5.3 Recursive Array Search

Searching an array is an activity that can be accomplished using recursion. The simplest way
to search an array is a linear search. In a linear search, we examine one array element at a
time, starting with the first element or the last element, to see whether it matches the target.
The array element we are seeking may be anywhere in the array, so on average we will exam-

ine
n
2

 items to find the target if it is in the array. If it is not in the array, we will have to
examine all n elements (the worst case). This means linear search is an O(n) algorithm.

Design of a Recursive Linear Search Algorithm
Let’s consider how we might write a recursive algorithm for an array search that returns the
subscript of a target item.

The base case would be an empty array. If the array is empty, the target cannot be there, so
the result should be –1. If the array is not empty, we will assume that we can examine just the
first element of the array, so another base case would be when the first array element matches
the target. If so, the result should be the subscript of the first array element.

The recursive step would be to search the rest of the array, excluding the first element. So our
recursive step should search for the target starting with the current second array element,
which will become the first element in the next execution of the recursive step. The algorithm
follows.

4. For each of the following method calls, show the argument values in the activation frames
that would be pushed onto the run‐time stack.
a. gcd(6, 21)
b. factorial(5)
c. gcd(31, 7)
d. fibonacci(6)
e. fibonacciStart(7)

5. See for what value of n the method fibonacci begins to take a long time to run on your computer
(over 1 minute). Compare the performance of fibonacciStart and fibo for this same value.

P R O G R A M M I N G

1. Write a recursive method for raising x to the power n that works for negative n as well as

 positive n. Use the fact that x
x

n
n

1
.

2. Modify the factorial method to throw an IllegalArgumentException if n is negative.

3. Modify the Fibonacci method to throw an illegal argument exception if its argument is less
than or equal to zero.

4. Write a class that has an iterative method for calculating Fibonacci numbers. Use an array
that saves each Fibonacci number as it is calculated. Your method should take advantage
of the existence of this array so that subsequent calls to the method simply retrieve the
desired Fibonacci number if it has been calculated. If not, start with the largest Fibonacci
number in the array rather than repeating all calculations.

Koffman-c05.indd 226 10/30/2015 7:36:57 PM

5.3 Recursive Array Search 227

Algorithm for Recursive Linear Array Search

1. if the array is empty
2. The result is –1.
 else if the first element matches the target
3. The result is the subscript of the first element.
 else

4. Search the array excluding the first element and return the result.

Implementation of Linear Search
The following method, linearSearch (part of class RecursiveMethods), shows the linear
search algorithm.

/** Recursive linear search method (in RecursiveMethods.java).
 @param items The array being searched
 @param target The item being searched for
 @param posFirst The position of the current first element
 @return The subscript of target if found; otherwise –1
 */
private static int linearSearch(Object[] items,
 Object target, int posFirst) {
 if (posFirst == items.length)
 return –1;
 else if (target.equals(items[posFirst]))
 return posFirst;
 else
 return linearSearch(items, target, posFirst + 1);
}

The method parameter posFirst represents the subscript of the current first element.
The first condition tests whether the array left to search is empty. The condition
(posFirst == items.length) is true when the subscript of the current first element is
beyond the bounds of the array. If so, method linearSearch returns –1. The statement

return linearSearch(items, target, posFirst + 1);

implements the recursive step; it increments posFirst to exclude the current first element
from the next search.

To search an array x for target, you could use the method call
RecursiveMethods.linearSearch(x, target, 0)

However, since the third argument would always be 0, we can define a nonrecursive wrapper
method (also called linearSearch) that has just two parameters: items and target.

/** Wrapper for recursive linear search method (in
 RecursiveMethods.java).
 @param items The array being searched
 @param target The object being searched for
 @return The subscript of target if found; otherwise –1
 */
public static int linearSearch(Object[] items, Object target) {
 return linearSearch(items, target, 0);
}

The sole purpose of this method is to call the recursive method, passing on its arguments with
0 as a third argument, and return its result. This method definition overloads the previous
one, which has private visibility.

Koffman-c05.indd 227 10/30/2015 7:36:57 PM

228 Chapter 5 Recursion

linearSearch(greetings, "Hello")

items: {"Hi", "Hello", "Shalom"}

target: "Hello"

return linearSearch(greetings, "Hello", 0);

linearSearch(greetings, "Hello", 0)

items: {"Hi", "Hello", "Shalom"}

target: "Hello"

posFirst: 0

posFirst == items.length is false
"Hello".equals("Hi") is false
return linearSearch(greetings, "Hello", 1)

linearSearch(greetings, "Hello", 1)

items: {"Hi", "Hello", "Shalom"}

target: "Hello"

posFirst: 1

posFirst == items.length is false
"Hello".equals("Hello") is true
return 1

1

1

1

F I G U R E 5 . 8

Trace of linearSearch(greetings, "Hello")

Figure 5.8 traces the execution of the call to linearSearch in the second statement.
String[] greetings = {"Hi", "Hello", "Shalom"};
int posHello = linearSearch(greetings, "Hello");

The value returned to posHello will be 1.

Design of a Binary Search Algorithm
A second approach to searching an array is called binary search. Binary search can be per-
formed only on an array that has been sorted. In binary search, the stopping cases are the
same as for linear search:

When the array is empty.
When the array element being examined matches the target.

However, rather than examining the last array element, binary search compares the “middle”
element of the array to the target. If there is a match, it returns the position of the middle
element. Otherwise, because the array has been sorted, we know with certainty which half of
the array must be searched to find the target. We then can exclude the other half of the array
(not just one element as with linear search). The binary search algorithm (first introduced in
Section 5.1) follows.

Binary Search Algorithm

1. if the array is empty
2. Return –1 as the search result.
 else if the middle element matches the target

Koffman-c05.indd 228 10/30/2015 7:36:57 PM

5.3 Recursive Array Search 229

3. Return the subscript of the middle element as the result.
 else if the target is less than the middle element
4. Recursively search the array elements before the middle element

and return the result.
 else

5. Recursively search the array elements after the middle element and return the
result.

Figure 5.9 illustrates binary search for an array with seven elements. The shaded array ele-
ments are the ones that are being searched each time. The array element in bold is the one
that is being compared to the target. In the first call, we compare "Dustin" to "Elliot".
Because "Dustin" is smaller, we need to search only the part of the array before "Elliot"
(consisting of just three candidates). In the second call, we compare "Dustin" to "Debbie".
Because "Dustin" is larger, we need to search only the shaded part of the array after "Debbie"
(consisting of just one candidate). In the third call, we compare "Dustin" to "Dustin", and the
subscript of "Dustin" (2) is our result. If there were no match at this point (e.g., the array
contained "Duncan" instead of "Dustin"), the array of candidates to search would become an
empty array.

Efficiency of Binary Search
Because we eliminate at least half of the array elements from consideration with each recursive
call, binary search is an O(log n) algorithm. To verify this, an unsuccessful search of an array
of size 16 could result in our searching arrays of size 16, 8, 4, 2, and 1 to determine that the

target kidNames

Caryn Debbie Dustin Elliot Jacquie Jonathan RichDustin

first = 0 middle = 3 last = 6

First call

target kidNames

Caryn Debbie Dustin Elliot Jacquie Jonathan RichDustin

first = 0

middle = 1

last = 2

Second call

target kidNames

Caryn Debbie Dustin Elliot Jacquie Jonathan RichDustin

first = middle = last = 2

Third call

F I G U R E 5 . 9

Binary Search for "Dustin"

Koffman-c05.indd 229 10/30/2015 7:36:58 PM

230 Chapter 5 Recursion

target was not present. Thus, an array of size 16 requires a total of 5 probes in the worst case
(16 is 24, so 5 is log 216 + 1). If we double the array size, we would need to make only 6 probes
for an array of size 32 in the worst case (32 is 25, so 6 is log2 32 + 1). The advantages of binary
search become even more apparent for larger arrays. For an array with 32,768 elements, the
maximum number of probes required would be 16 (log2 32,768 is 15), and if we expand the
array to 65,536 elements, we would increase the number of probes required only to 17.

The Comparable Interface
We introduced the Comparable interface in Section 2.8. Classes that implement this interface
must define a compareTo method that enables its objects to be compared in a standard way.
The method compareTo returns an integer whose value indicates the relative ordering of the
two objects being compared (as described in the @return tag below). If the target is type
Comparable, we can apply its compareTo method to compare the target to the objects stored in
the array. T represents the type of the object being compared.

/** Instances of classes that realize this interface can be
 compared.
 @param <T> The type of object this object can be compared to.
 */
public interface Comparable<T> {
 /** Method to compare this object to the argument object.
 @param obj The argument object
 @return Returns a negative integer if this object < obj;
 zero if this object equals obj;
 a positive integer if this object > obj
 */
 int compareTo(T obj);
}

Implementation of Binary Search
Listing 5.1 shows a recursive implementation of the binary search algorithm and its nonre-
cursive wrapper method. The parameters first and last are the subscripts of the first ele-
ment and last element in the array being searched. For the initial call to the recursive method
from the wrapper method, first is 0 and last is items.length – 1. The parameter target is
type Comparable.

The condition (first > last) becomes true when the list of candidates is empty. The
statement

int middle = (first + last) / 2;

computes the subscript of the “middle” element in the current array (midway between first
and last).

The statement
int compResult = target.compareTo(items[middle]);

saves the result of comparing the target to the middle element of the array. If the result is 0 (a
match), the subscript middle is returned. If the result is negative, the recursive step

return binarySearch(items, target, first, middle – 1);

returns the result of searching the part of the current array before the middle item (with sub-
scripts first through middle – 1). If the result is positive, the recursive step

return binarySearch(items, target, middle + 1, last);

returns the result of searching the part of the current array after the middle item (with sub-
scripts middle + 1 through last).

Koffman-c05.indd 230 10/30/2015 7:36:58 PM

5.3 Recursive Array Search 231

L I S T I N G 5 . 1

Method binarySearch

/** Recursive binary search method (in RecursiveMethods.java).
 @param <T> The item type
 @param items The array being searched
 @param target The object being searched for
 @param first The subscript of the first element
 @param last The subscript of the last element
 @return The subscript of target if found; otherwise –1.
 */
private static <T> int binarySearch(T[] items, Comparable<T> target,
 int first, int last) {
 if (first > last)
 return –1; // Base case for unsuccessful search.
 else {
 int middle = (first + last) / 2; // Next probe index.
 int compResult = target.compareTo(items[middle]);
 if (compResult == 0)
 return middle; // Base case for successful search.
 else if (compResult < 0)
 return binarySearch(items, target, first, middle – 1);
 else
 return binarySearch(items, target, middle + 1, last);
 }
}

/** Wrapper for recursive binary search method (in RecursiveMethods.java).
 @param <T> The item type.
 @param items The array being searched
 @param target The object being searched for
 @return The subscript of target if found; otherwise –1.
 */
public static <T> int binarySearch(T[] items, Comparable<T> target) {
 return binarySearch(items, target, 0, items.length – 1);
}

Figure 5.10 traces the execution of binarySearch for the array shown in Figure 5.9. The
parameter items always references the same array; however, the pool of candidates changes
with each call.

SYNTAX Declaring a Generic Method
FORM:
methodModifiers <genericParameters> returnType methodName(methodParameters)

EXAMPLE

public static <T> int binarySearch(T[] items, Comparable<T> target)

MEANING

To declare a generic method, list the genericParameters inside the symbol pair <>
and between the methodModifers (e.g., public static) and the returnType. The
genericParameters can then be used in the specification of the methodParameters
and in the method body.

Koffman-c05.indd 231 10/30/2015 7:36:58 PM

232 Chapter 5 Recursion

binarySearch(kidNames, "Dustin")

items: kidNames

target: "Dustin"

return binarySearch(kidNames, "Dustin", 0, 6);

binarySearch(kidNames, "Dustin", 0, 6)

items: kidNames

target: "Dustin"

first: 0

last: 6

middle = (0 + 6) / 2 = 3

(0 > 6) is false
compResult is negative
return binarySearch(kidNames, "Dustin", 0, 2);

binarySearch(kidNames, "Dustin", 0, 2)

items: kidNames

target: "Dustin"

first: 0

last: 2

middle = (0 + 2) / 2 = 1

(0 > 2) is false
compResult is positive
return binarySearch(kidNames, "Dustin", 2, 2);

2

2

2

binarySearch(kidNames, "Dustin", 2, 2)

items: kidNames

target: "Dustin"

first: 2

last: 2

middle = (2 + 2) / 2 = 2

(2 > 2) is false
compResult is zero
return 2

2

F I G U R E 5 . 1 0

Trace of binarySearch(kidNames, "Dustin")

Testing Binary Search
To test the binary search algorithm, you must test arrays with an even number of elements
and arrays with an odd number of elements. You must also test arrays that have duplicate
items. Each array must be tested for the following cases:

The target is the element at each position of the array, starting with the first position and
ending with the last position.
The target is less than the smallest array element.
The target is greater than the largest array element.
The target is a value between each pair of items in the array.

Koffman-c05.indd 232 10/30/2015 7:36:59 PM

5.4 Recursive Data Structures 233

Method Arrays.binarySearch
The Java API class Arrays contains a binarySearch method. It can be called with sorted
arrays of primitive types or with sorted arrays of objects. If the objects in the array are not
mutually comparable or if the array is not sorted, the results are undefined. If there are
 multiple copies of the target value in the array, there is no guarantee as to which one will
be found. This is the same as for our binarySearch method. The method throws a
ClassCastException if the target is not comparable to the array elements (e.g., if the target is
type Integer and the array elements are type String).

E X E R C I S E S F O R S E C T I O N 5 . 3

S E L F ‐ C H E C K

1. For the array shown in Figure 5.9, show the values of first, last, middle, and compResult
in successive frames when searching for a target of "Rich"; when searching for a target of
"Alice"; and when searching for a target of "Daryn".

2. How many elements will be compared to target for an unsuccessful binary search in an
array of 1000 items? What is the answer for 2000 items?

3. If there are multiple occurrences of the target item in an array, what can you say about the
subscript value that will be returned by linearSearch? Answer the same question for
binarySearch.

4. Write a recursive algorithm to find the largest value in an array of integers.

5. Write a recursive algorithm that searches a string for a target character and returns the
position of its first occurrence if it is present or −1 if it is not.

P R O G R A M M I N G

1. Write a recursive method to find the sum of all values stored in an array of integers.

2. Write a recursive linear search method with a recursive step that finds the last occurrence
of a target in an array, not the first. You will need to modify the linear search method so
that the last element of the array is always tested, not the first. You will need to pass the
current length of the array as an argument.

3. Implement the method for Self‐Check Exercise 4. You will need to keep track of the largest
value found so far through a method parameter.

4. Implement the method for Self‐Check Exercise 5. You will need to keep track of the cur-
rent position in the string through a method parameter.

5.4 Recursive Data Structures

Computer scientists often encounter data structures that are defined recursively. A recursive
data structure is one that has another version of itself as a component. We will define the tree
data structure as a recursive data structure in Chapter 6, but we can also define a linked list,
described in Chapter 2, as a recursive data structure. In this section, we demonstrate that
recursive methods provide a very natural mechanism for processing recursive data structures.
The first language developed for artificial intelligence research was a recursive language
designed expressly for LISt Processing and therefore called LISP.

Koffman-c05.indd 233 10/30/2015 7:36:59 PM

234 Chapter 5 Recursion

Recursive Definition of a Linked List
The following definition implies that a nonempty linked list is a collection of nodes such that
each node references another linked list consisting of the nodes that follow it in the list. The
last node references an empty list.

A linked list is empty, or it consists of a node, called the list head, that stores data and a refer-
ence to a linked list.

Class LinkedListRec
We will define a class LinkedListRec<E> that implements several list operations using recur-
sive methods. The class LinkedListRec<E> has a private inner class called Node<E>, which is
defined in Listing 2.1. A Node<E> object has attributes data (type E) and next (type Node).
Class LinkedListRec<E> has a single data field head (data type Node<E>).

/** A recursive linked list class with recursive methods. */
public class LinkedListRec<E> {

 /** The list head */
 private Node<E> head;

 // Insert inner class Node<E> here. See Listing 2.1.
 . . .
}

We will write the following recursive methods: size (returns the size), toString (represents
the list contents as a string), add (adds an element to the end of the list), and replace (replaces
one object in a list with another). We code each operation using a pair of methods: a public
wrapper method that calls a private recursive method. To perform a list operation, you apply
a wrapper method to an instance of class LinkedListRec.

Method size
The method size returns the size of a linked list and is similar to the method length defined
earlier for a string. The recursive method returns 0 if the list is empty (head == null is true).
Otherwise, the statement

return 1 + size(head.next);

returns 1 plus the size of the rest of the list that is referenced by head.next.

The wrapper method calls the recursive method, passing the list head as an argument, and
returns the value returned by the recursive method. In the initial call to the recursive method,
head will reference the first list node. In each subsequent call, head will reference the successor
of the node that it currently references.

/** Finds the size of a list.
 @param head The head of the current list
 @return The size of the current list
 */
private int size(Node<E> head) {
 if (head == null)
 return 0;
 else
 return 1 + size(head.next);
}

/** Wrapper method for finding the size of a list.
 @return The size of the list
 */
public int size() {
 return size(head);
}

Koffman-c05.indd 234 10/30/2015 7:36:59 PM

5.4 Recursive Data Structures 235

Method toString
The method toString returns a string representation of a linked list. The recursive method is
very similar to the method size. The statement

return head.data + "\n" + toString(head.next);

appends the data in the current list head to the string representation of the rest of the list. The
line space character is inserted after each list item. If the list contains the elements "hat", "55",
and "dog", the string result would be "hat\n55\ndog\n".

/** Returns the string representation of a list.
 @param head The head of the current list
 @return The state of the current list
 */
private String toString(Node<E> head) {
 if (head == null)
 return "";
 else
 return head.data + "\n" + toString(head.next);
}

/** Wrapper method for returning the string representation of a list.
 @return The string representation of the list
 */
public String toString() {
 return toString(head);
}

Method replace
The method replace replaces each occurrence of an object in a list (parameter oldObj) with
a different object (parameter newObj). The if statement in the recursive method is different
from what we are used to. The method does nothing for the base case of an empty list. If the
list is not empty, the if statement

if (oldObj.equals(head.data))
 head.data = newObj;

tests whether the item in the current list head matches oldObj. If so, it stores newObj in the
current list head. Regardless of whether or not a replacement is performed, the method
replace is called recursively to process the rest of the list.

/** Replaces all occurrences of oldObj with newObj.
 post: Each occurrence of oldObj has been replaced by newObj.
 @param head The head of the current list
 @param oldObj The object being removed
 @param newObj The object being inserted
 */
private void replace(Node<E> head, E oldObj, E newObj) {
 if (head != null) {
 if (oldObj.equals(head.data))
 head.data = newObj;
 replace(head.next, oldObj, newObj);
 }
}

/** Wrapper method for replacing oldObj with newObj.
 post: Each occurrence of oldObj has been replaced by newObj.
 @param oldObj The object being removed
 @param newObj The object being inserted
 */
public void replace(E oldObj, E newObj) {
 replace(head, oldObj, newObj);
}

Koffman-c05.indd 235 10/30/2015 7:36:59 PM

236 Chapter 5 Recursion

Method add
You can use the add method to add nodes to an existing list. You can also use it to build a list
by adding new nodes to the end of an initially empty list.

The add methods have two features that are different from what we have seen before. The
wrapper method tests for an empty list (head == null is true), and it calls the recursive add
method only if the list is not empty. If the list is empty, the wrapper add method creates a new
node, which is referenced by the data field head, and stores the first list item in this node.

/** Adds a new node to the end of a list.
 @param head The head of the current list
 @param data The data for the new node
 */
private void add(Node<E> head, E data) {
 // If the list has just one element, add to it.
 if (head.next == null)
 head.next = new Node<>(data);
 else
 add(head.next, data); // Add to rest of list.
}

/** Wrapper method for adding a new node to the end of a list.
 @param data The data for the new node
 */
public void add(E data) {
 if (head == null)
 head = new Node<>(data); // List has 1 node.
 else
 add(head, data);
}

For each node referenced by argument head, the recursive method tests to see whether the
node referenced by argument head is the last node in the list (head.next is null). If so, the
method add then resets head.next to reference a new node that contains the data being inserted.

Removing a List Node
One of the reasons for using linked lists is that they enable easy insertion and removal of
nodes. We show how to do removal next and leave insertion as an exercise. In the following
recursive method remove, the first base case returns false if the list is empty. The second base
case determines whether the list head should be removed by comparing its data field to
 outData. If there is a match, the assignment statement removes the list head by connecting its

 P I T F A L L

Testing for an Empty List Instead of Testing for the Last List Node
In the recursive method add, we test whether head.next is null. This condition is true
when head references a list with just one node. We then reset its next field to
reference a new node. If we tested whether head was null (an empty list) and then
executed the statement

 head = new Node<>(data);

this would have no effect on the original list. The local reference head would be changed
to reference the new node, but this node would not be connected to a node in the
original list.

Koffman-c05.indd 236 10/30/2015 7:36:59 PM

5.4 Recursive Data Structures 237

predecessor (referenced by pred) to the successor of the list head. For this case, method
remove returns true. The recursive case applies remove to the rest of the list. In the next execu-
tion of the recursive method, the current list head will be referenced by pred, and the succes-
sor of the current list head will be referenced by head.

/** Removes a node from a list.
 post: The first occurrence of outData is removed.
 @param head The head of the current list
 @param pred The predecessor of the list head
 @param outData The data to be removed
 @return true if the item is removed
 and false otherwise
 */
private boolean remove(Node<E> head, Node<E> pred, E outData) {
 if (head == null) // Base case – empty list.
 return false;
 else if (head.data.equals(outData)) { // 2nd base case.
 pred.next = head.next; // Remove head.
 return true;
 } else
 return remove(head.next, head, outData);
}

The following wrapper method takes care of the special case where the node to be removed
is at the head of the list. The first condition returns false if the list is empty. The second condi-
tion removes the list head and returns true if the list head contains the data to be removed. The
else clause calls the recursive remove method. In the first execution of the recursive method,
head will reference the actual second node and pred will reference the actual first node.

/** Wrapper method for removing a node (in LinkedListRec).
 post: The first occurrence of outData is removed.
 @param outData The data to be removed
 @return true if the item is removed,
 and false otherwise
 */
public boolean remove(E outData) {
 if (head == null)
 return false;
 else if (head.data.equals(outData)) {
 head = head.next;
 return true;
 } else
 return remove(head.next, head, outData);
}

E X E R C I S E S F O R S E C T I O N 5 . 4

S E L F ‐ C H E C K

1. Describe the result of executing each of the following statements:

LinkedListRec<String> aList = new LinkedListRec<String>();
aList.add("bye");
aList.add("hello");
System.out.println(aList.size() + ", " + aList.toString());
aList.replace("hello", "welcome");
aList.add("OK");
aList.remove("bye");
aList.remove("hello");
System.out.println(aList.size() + ", " + aList.toString());

Koffman-c05.indd 237 10/30/2015 7:36:59 PM

238 Chapter 5 Recursion

2. Trace each call to a LinkedListRec method in Exercise 1 above.

3. Write a recursive algorithm for method insert(E obj, int index) where index is the posi-
tion of the insertion.

4. Write a recursive algorithm for method remove(int index) where index is the position of
the item to be removed.

P R O G R A M M I N G

1. Write an equals method for the LinkedListRec class that compares this LinkedListRec object to
one specified by its argument. Two lists are equal if they have the same number of nodes and store
the same information at each node. Don’t use the size method.

2. Write a search method that returns true if its argument is stored as the data field of a
LinkedListRec node and returns false if its argument is not stored in any node.

3. Write a recursive method insertBefore that inserts a specified data object before the
first occurrence of another specified data object. For example, the method call
aList.insertBefore(target, inData) would insert the object referenced by inData in a
new node just before the first node of aList that stores a reference to target as its data.

4. Write a recursive method reverse that reverses the elements in a linked list.

5. Code method insert in Self‐Check Exercise 3.

6. Code method remove in Self‐Check Exercise 4.

5.5 Problem Solving with Recursion

In this section, we discuss recursive solutions to two problems. Our recursive solutions will
break each problem up into multiple smaller versions of the original problem. Both prob-
lems are easier to solve using recursion because recursive thinking enables us to split each
problem into more manageable subproblems. They would both be much more difficult to
solve without recursion.

CASE STUDY Towers of Hanoi

 Problem You may be familiar with a version of this problem that is sold as a child’s puzzle. There
is a board with three pegs and three disks of different sizes (see Figure 5.11). The goal of
the game is to move the three disks from the peg where they have been placed (largest disk
on the bottom, smallest disk on the top) to one of the empty pegs, subject to the following
constraints:

Only the top disk on a peg can be moved to another peg.
A larger disk cannot be placed on top of a smaller disk.

 Analysis We can solve this problem by displaying a list of moves to be made. The problem inputs will be the
number of disks to move, the starting peg, the destination peg, and the temporary peg. Table 5.1
shows the problem inputs and outputs. We will write a class Tower that contains a method
 showMoves that builds a string with all the moves.

Koffman-c05.indd 238 10/30/2015 7:36:59 PM

5.5 Problem Solving with Recursion 239

 Design We still need to determine a strategy for making a move. If we examine the situation in
Figure 5.11 (all three disks on the L peg), we can derive a strategy to solve it. If we can
figure out how to move the top two disks to the M peg (a two‐disk version of the original
problem), we can then place the bottom disk on the R peg (see Figure 5.12). Now all we
need to do is move the two disks on the M peg to the R peg. If we can solve both of these
two‐disk problems, then the three‐disk problem is also solved.

Solution to Two‐Disk Problem: Move Three Disks from Peg L to Peg R

1. Move the top two disks from peg L to peg M.
2. Move the bottom disk from peg L to peg R.
3. Move the top two disks from peg M to peg R.

L M R

TA B L E 5 . 1

Inputs and Outputs for Towers of Hanoi Problem

Problem Inputs

Number of disks (an integer)

Letter of starting peg: L (left), M (middle), or R (right)

Letter of destination peg: (L, M, or R), but different from starting peg

Letter of temporary peg: (L, M, or R), but different from starting peg and destination peg

Problem Outputs

A list of moves

F I G U R E 5 . 1 1

Children’s Version of Towers of Hanoi

L M R

1

2

F I G U R E 5 . 1 2

Towers of Hanoi After the First Two Steps in Solution of the Three‐Disk Problem

Koffman-c05.indd 239 10/30/2015 7:37:00 PM

240 Chapter 5 Recursion

We can split the solution to each two‐disk problem into three problems involving single
disks. We solve the second two‐disk problem next; the solution to the first one (move
the top two disks from peg L to peg M) is quite similar.

Solution to Two‐Disk Problem: Move Top Two Disks from Peg M to Peg R

1. Move the top disk from peg M to peg L.
2. Move the bottom disk from peg M to peg R.
3. Move the top disk from peg L to peg R.

In Figure 5.13, we show the pegs after Steps 1 and 2. When Step 3 is completed, the
three pegs will be on peg R.

In a similar way, we can split a four‐disk problem into two three‐disk problems. Figure 5.14
shows the pegs after the top three disks have been moved from peg L to peg M.
Because we know how to solve three‐disk problems, we can also solve four‐disk
problems.

Solution to Four‐Disk Problem: Move Four Disks from Peg L to Peg R

1. Move the top three disks from peg L to peg M.
2. Move the bottom disk from peg L to peg R.
3. Move the top three disks from peg M to peg R.

Next, we show a general recursive algorithm for moving n disks from one of the three
pegs to a different peg.

L M R

F I G U R E 5 . 1 4

Towers of Hanoi after the First Two Steps in Solution of the Four‐Disk Problem

F I G U R E 5 . 1 3

Towers of Hanoi after First Two Steps in Solution of the Two‐Disk Problem

L M R

1 2

Koffman-c05.indd 240 10/30/2015 7:37:00 PM

5.5 Problem Solving with Recursion 241

Recursive Algorithm for n‐Disk Problem: Move n Disks from
the Starting Peg to the Destination Peg

1. if n is 1
2. Move disk 1 (the smallest disk) from the starting peg to the destination

peg.
3. else
4. Move the top n − 1 disks from the starting peg to the temporary peg

(neither starting nor destination peg).
5. Move disk n (the disk at the bottom) from the starting peg to the

destination peg.
6. Move the top n − 1 disks from the temporary peg to the destination peg.

The stopping case is the one‐disk problem. The recursive step enables us to split the n-disk
problem into two (n − 1) disk problems and a single‐disk problem. Each problem has a
different starting peg and destination peg.

Our recursive solution method showMoves will display the solution as a list of disk moves.
For each move, we show the number of the disk being moved and its starting and destina-
tion pegs. For example, for the two‐disk problem shown earlier (move two disks from the
middle peg, M, to the right peg, R), the list of moves would be

Move disk 1 from peg M to peg L
Move disk 2 from peg M to peg R
Move disk 1 from peg L to peg R

The method showMoves must have the number of disks, the starting peg, the destination
peg, and the temporary peg as its parameters. If there are n disks, the bottom disk has
number n (the top disk has number 1). Table 5.2 describes the method required for class
TowersOfHanoi.

 Implementation Listing 5.2 shows class TowersOfHanoi. In method showMoves, the recursive step
return showMoves(n – 1, startPeg, tempPeg, destPeg)
 + "Move disk " + n + " from peg " + startPeg
 + " to peg " + destPeg + "\n”
 + showMoves(n – 1, tempPeg, destPeg, startPeg);

 returns the string formed by concatenating the list of moves for the first (n – 1)‐disk prob-
lem (the recursive call after return), the move required for the bottom disk (disk n), and
the list of moves for the second (n – 1)‐disk problem.

TA B L E 5 . 2

Class TowersOfHanoi

Method Behavior

public String showMoves(int n, char

startPeg, char destPeg, char tempPeg)
Builds a string containing all moves for a game with n disks
on startPeg that will be moved to destPeg using
tempPeg for temporary storage of disks being moved

Koffman-c05.indd 241 10/30/2015 7:37:00 PM

242 Chapter 5 Recursion

 Testing Figure 5.15 shows the result of executing the following main method for the data 3, L, and
R (“move 3 disks from peg L to peg R”). The first three lines are the solution to the
 problem “move 2 disks from peg L to peg M,” and the last three lines are the solution to
the problem “move 2 disks from peg M to peg R.”

public static void main(String[] args) {
 Scanner in = new Scanner(System.in);
 System.out.print("Enter number of disks ");
 int nDisks = in.nextInt();
 String moves = showMoves(nDisks, 'L', 'R', 'M');
 System.out.println(moves);
}

F I G U R E 5 . 1 5

Solution to “Move 3

Disks from Peg L to

Peg R”

L I S T I N G 5 . 2

Class TowersOfHanoi

/** Class that solves Towers of Hanoi problem. */
public class TowersOfHanoi {
 /** Recursive method for "moving" disks.
 pre: startPeg, destPeg, tempPeg are different.
 @param n is the number of disks
 @param startPeg is the starting peg
 @param destPeg is the destination peg
 @param tempPeg is the temporary peg
 @return A string with all the required disk moves
 */
 public static String showMoves(int n, char startPeg,
 char destPeg, char tempPeg) {
 if (n == 1) {
 return "Move disk 1 from peg " + startPeg +
 " to peg " + destPeg + "\n";
 } else { // Recursive step
 return showMoves(n – 1, startPeg, tempPeg, destPeg)
 + "Move disk " + n + " from peg " + startPeg
 + " to peg " + destPeg + "\n"
 + showMoves(n – 1, tempPeg, destPeg, startPeg);
 }
 }
}

Visualization of Towers of Hanoi

We have provided a graphical visualization that you can use to observe the movement of disks
in a solution to the Towers of Hanoi. You can access it through the textbook Web site for this
book.

Koffman-c05.indd 242 10/30/2015 7:37:00 PM

5.5 Problem Solving with Recursion 243

CASE STUDY Counting Cells in a Blob

In this case study, we consider how we might process an image that is presented as a two‐
dimensional array of color values. The information in the two‐dimensional array might
come from a variety of sources. For example, it could be an image of part of a person’s
body that comes from an X‐ray or an MRI, or it could be a picture of part of the earth’s
surface taken by a satellite. Our goal in this case study is to determine the size of any area
in the image that is considered abnormal because of its color values.

 Problem You have a two‐dimensional grid of cells, and each cell contains either a normal back-
ground color or a second color, which indicates the presence of an abnormality. The user
wants to know the size of a blob, where a blob is a collection of contiguous abnormal cells.
The user will enter the x, y coordinates of a cell in the blob, and the count of all cells in
that blob will be determined.

 Analysis Data Requirements
PROBLEM INPUTS

The two‐dimensional grid of cells
The coordinates of a cell in a blob

PROBLEM OUTPUTS

The count of cells in the blob

Classes

We will have two classes. Class TwoDimGrid will manage the two‐dimensional grid of cells.
You can find the discussion of the design and implementation of this class on the Web site
for this book. Here we will focus on the design of class Blob, which contains the recursive
method that counts the number of cells in a blob.

 Design Table 5.3 describes the public methods of class TwoDimGrid, and Table 5.4 describes class Blob.

Method countCells in class Blob is a recursive method that is applied to a TwoDimGrid
object. Its parameters are the (x, y) position of a cell. The algorithm follows.

TA B L E 5 . 3

Class TwoDimGrid

Method Behavior

void recolor(int x, int y, Color aColor) Resets the color of the cell at position (x, y) to aColor

Color getColor(int x, int y) Retrieves the color of the cell at position (x, y)

int getNRows() Returns the number of cells in the y‐axis

int getNCols() Returns the number of cells in the x‐axis

TA B L E 5 . 4

Class Blob

Method Behavior

int countCells(int x, int y) Returns the number of cells in the blob at (x, y)

Koffman-c05.indd 243 10/30/2015 7:37:01 PM

244 Chapter 5 Recursion

Algorithm for countCells(x, y)

1. if the cell at (x, y) is outside the grid
2. The result is 0.
 else if the color of the cell at (x, y) is not the abnormal color
3. The result is 0.
 else

4. Set the color of the cell at (x, y) to a temporary color.
5. The result is 1 plus the number of cells in each piece of the blob that includes a

nearest neighbor.
The two stopping cases are reached if the coordinates of the cell are out of bounds or if the
cell does not have the abnormal color and, therefore, can’t be part of a blob. The recursive
step involves counting 1 for a cell that has the abnormal color and adding the counts for the
blobs that include each immediate neighbor cell. Each cell has eight immediate neighbors:
two in the horizontal direction, two in the vertical direction, and four in the diagonal
directions.

If no neighbor has the abnormal color, then the result will be just 1. If any neighbor cell has
the abnormal color, then it will be counted along with all its neighbor cells that have the
abnormal color, and so on until no neighboring cells with abnormal color are encountered
(or the edge of the grid is reached). The reason for setting the color of the cell at (x, y) to a
temporary color is to prevent it from being counted again when its neighbors’ blobs are
counted.

 Implementation Listing 5.3 shows class Blob. The interface GridColors defines the three constants: BACKGROUND,
ABNORMAL, and TEMPORARY. We make these constants available by using the static import statement:

import static GridColors.*;

 The first terminating condition,

(x < 0 || x >= grid.getNCols() || y < 0 || y >= grid.getNRows())

compares x to 0 and the value returned by getNCols(), the number of columns in the grid.
Because x is plotted along the horizontal axis, it is compared to the number of columns, not
the number of rows. The same test is applied to y and the number of rows. The second termi-
nating condition,

(!grid.getColor(x, y).equals(ABNORMAL))

is true if the cell at (x, y) has either the background color or the temporary color.

The recursive step is implemented by the statement

return 1
 + countCells(x – 1, y + 1) + countCells(x, y + 1)
 + countCells(x + 1, y + 1) + countCells(x – 1, y)
 + countCells(x + 1, y) + countCells(x – 1, y – 1)
 + countCells(x, y – 1) + countCells(x + 1, y – 1);

Each recursive call to countCells has as its arguments the coordinates of a neighbor of the cell
at (x, y). The value returned by each call will be the number of cells in the blob it belongs to,
excluding the cell at (x, y) and any other cells that may have been counted already.

Koffman-c05.indd 244 10/30/2015 7:37:01 PM

5.5 Problem Solving with Recursion 245

L I S T I N G 5 . 3

Class Blob

import java.awt.*;
import static GridColors.*;

/** Class that solves problem of counting abnormal cells. */
public class Blob {

 /** The grid */
 private TwoDimGrid grid;

 /** Constructors */
 public Blob(TwoDimGrid grid) {
 this.grid = grid;
 }

 /** Finds the number of cells in the blob at (x,y).
 pre: Abnormal cells are in ABNORMAL color;
 Other cells are in BACKGROUND color.
 post: All cells in the blob are in the TEMPORARY color.
 @param x The x‐coordinate of a blob cell
 @param y The y‐coordinate of a blob cell
 @return The number of cells in the blob that contains (x, y)
 */
 public int countCells(int x, int y) {
 int result;

 if (x < 0 || x >= grid.getNCols()
 || y < 0 || y >= grid.getNRows())
 return 0;
 else if (!grid.getColor(x, y).equals(ABNORMAL))
 return 0;
 else {
 grid.recolor(x, y, TEMPORARY);
 return 1
 + countCells(x – 1, y + 1) + countCells(x, y + 1)
 + countCells(x + 1, y + 1) + countCells(x – 1, y)
 + countCells(x + 1, y) + countCells(x – 1, y – 1)
 + countCells(x, y – 1) + countCells(x + 1, y – 1);
 }
 }
}

SYNTAX Static Import
FORM:
import static Class.*;

or

import static Class.StaticMember;

EXAMPLE:
import static GridColors.*;

MEANING:

The static members of the class Class or interface Class are visible in the file
containing the import. If * is specified, then all static members are imported,
otherwise if a specific member is listed, then this member is visible.

Koffman-c05.indd 245 10/30/2015 7:37:01 PM

246 Chapter 5 Recursion

 Testing To test the recursive algorithm in this case study and the one in the next section, we will need
to implement class TwoDimGrid. To make the program interactive and easy to use, we imple-
mented TwoDimGrid as a two‐dimensional grid of buttons placed in a panel. When the button
panel is placed in a frame and displayed, the user can toggle the color of a button (from normal
to abnormal and back to normal) by clicking it. Similarly, the program can change the color of
a button by applying the recolor method to the button. Information about the design of class
TwoDimGrid is on the textbook Web site for this book, as is the class itself.

We also provide a class BlobTest on the textbook Web site. This class allows the user to load
the colors for the button panel from a file that contains a representation of the image as lines
of 0s and 1s, where 0 is the background color and 1 is the abnormal color. Alternatively, the
user can set the dimensions of the grid and then enter the abnormal cells by clicking on each
button that represents an abnormal cell. When the grid has been finalized, the user clicks
twice on one of the abnormal cells (to change its color to normal and then back to abnormal)
and then clicks the button labeled Solve. This invokes method countCells with the coordi-
nates of the last button clicked as its arguments. Figure 5.16 shows a sample grid of buttons
with the x, y coordinate of each button shown as the button label. The background cells are
dark gray, and the abnormal cells are light gray. Invoking countCells with a starting point of
(x = 4, y = 1) should return a count of 7. Figure 5.17 shows the blob cells in the temporary
color (black) after the execution of method countCells.

When you test this program, make sure you verify that it works for the following cases:

A starting cell that is on the edge of the grid.
A starting cell that has no neighboring abnormal cells.
A starting cell whose only abnormal neighbor cells are diagonally connected to it.
A “bull’s‐eye”: a starting cell whose neighbors are all normal but their neighbors are
abnormal.
A starting cell that is normal.
A grid that contains all abnormal cells.
A grid that contains all normal cells.

F I G U R E 5 . 1 6

A Sample Grid for Counting Cells in a Blob

F I G U R E 5 . 1 7

Blob Cells (in Black) after Execution of countCells

Koffman-c05.indd 246 10/30/2015 7:37:01 PM

5.6 Backtracking 247

5.6 Backtracking

In this section, we consider the problem‐solving technique called backtracking. Backtracking
is an approach to implementing systematic trial and error in a search for a solution. An appli-
cation of backtracking is finding a path through a maze.

If you are attempting to walk through a maze, you will probably follow the general approach
of walking down a path as far as you can go. Eventually either you will reach your destina-
tion and exit the maze, or you won’t be able to go any further. If you exit the maze, you are
done. Otherwise, you need to retrace your steps (backtrack) until you reach a fork in the
path. At each fork, if there is a branch you did not follow, you will follow that branch hoping
to reach your destination. If not, you will retrace your steps again, and so on.

What makes backtracking different from random trial and error is that backtracking pro-
vides a systematic approach to trying alternative paths and eliminating them if they don’t
work out. You will never try the exact same path more than once, and you will eventually
find a solution path if one exists.

Problems that are solved by backtracking can be described as a set of choices made by some
method. If, at some point, it turns out that a solution is not possible with the current set
of choices, the most recent choice is identified and removed. If there is an untried alternative
choice, it is added to the set of choices and search continues. If there is no untried alternative
choice, then the next most recent choice is removed and an alternative is sought for it. This
process continues until either we reach a choice with an untried alternative and can continue
our search for a solution, or we determine that there are no more alternative choices to try.

E X E R C I S E S F O R S E C T I O N 5 . 5

S E L F ‐ C H E C K

1. What is the big-O for the Towers of Hanoi as a function of n, where n represents the number of
disks? Compare it to the function 2n.

2. How many moves would be required to solve the five‐disk problem?

3. Provide a “trace” of the solution to a four‐disk problem by showing all the calls to
 showMoves that would be generated.

4. Explain why the first condition of method countCells must precede the second
condition.

P R O G R A M M I N G

1. Modify method countCells, assuming that cells must have a common side in order to
be counted in the same blob. This means that they must be connected horizontally
or vertically but not diagonally. Under this condition, the value of the method call
aBlob.countCells(4, 1) would be 4 for the grid in Figure 5.16.

2. Write a method Blob.restore that restores the grid to its original state. You will need to
reset the color of each cell that is in the temporary color back to its original color.

Koffman-c05.indd 247 10/30/2015 7:37:01 PM

248 Chapter 5 Recursion

Recursion allows us to implement backtracking in a relatively straightforward manner because
we can use each activation frame to remember the choice that was made at that particular
decision point.

We will show how to use backtracking to find a path through a maze, but it can be applied
to many other kinds of problems that involve a search for a solution. For example, a program
that plays chess may use a kind of backtracking. If a sequence of moves it is considering does
not lead to a favorable position, it will backtrack and try another sequence.

CASE STUDY Finding a Path through a Maze

 Problem Use backtracking to find and display the path through a maze. From each point in a maze,
you can move to the next cell in the horizontal or vertical direction, if that cell is not blocked.
So there are at most four possible moves from each point.

 Analysis Our maze will consist of a grid of colored cells like the grid used in the previous case study.
The starting point is the cell at the top left corner (0, 0), and the exit point is the cell at the
bottom right corner (getNCols() – 1, getNRows() – 1). All cells that can be part of a path will
be in the BACKGROUND color. All cells that represent barriers and cannot be part of a path will be
in the ABNORMAL color. To keep track of a cell that we have visited, we will set it to the TEMPORARY
color. If we find a path, all cells on the path will be reset to the PATH color (a new color for a
button defined in GridColors). So there are a total of four possible colors for a cell.

 Design The following recursive algorithm returns true if a path is found. It changes the color of all
cells that are visited but found not to be on the path to the temporary color. In the recursive
algorithm, each cell (x, y) being tested is reachable from the starting point. We can use recur-
sion to simplify the problem of finding a path from cell (x, y) to the exit. We know that we can
reach any unblocked neighbor cell that is in the horizontal or vertical direction from cell (x, y).
So a path exists from cell (x, y) to the maze exit if there is a path from a neighbor cell of (x, y)
to the maze exit. If there is no path from any neighbor cell, we must backtrack and replace
(x, y) with an alternative that has not yet been tried. That is done automatically through recur-
sion. If there is a path, it will eventually be found and findMazePath will return true.

Recursive Algorithm for findMazePath(x, y)

1. if the current cell is outside the maze
2. Return false (you are out of bounds).
 else if the current cell is part of the barrier or has already been visited
3. Return false (you are off the path or in a cycle).
 else if the current cell is the maze exit
4. Recolor it to the path color and return true (you have successfully

completed the maze).
 else // Try to find a path from the current path to the exit:
5. Mark the current cell as on the path by recoloring it to the path color.
6. for each neighbor of the current cell

Koffman-c05.indd 248 10/30/2015 7:37:01 PM

5.6 Backtracking 249

7. if a path exists from the neighbor to the maze exit
8. Return true.
 // No neighbor of the current cell is on the path.
9. Recolor the current cell to the temporary color (visited) and return

false.

If no stopping case is reached (Steps 2, 3, or 4), the recursive case (the else clause) marks
the current cell as being on the path and then tests whether there is a path from any neigh-
bor of the current cell to the exit. If a path is found, we return true and begin unwinding
from the recursion. During the process of unwinding from the recursion, the method will
continue to return true. However, if all neighbors of the current cell are tested without find-
ing a path, this means that the current cell cannot be on the path, so we recolor it to the
temporary color and return false (Step 9). Next, we backtrack to a previous call and try to
find a path through a cell that is an alternative to the cell just tested. The cell just tested will
have been marked as visited (the temporary color), so we won’t try using it again.

Note that there is no attempt to find the shortest path through the maze. We just show the
first path that is found.

 Implementation Listing 5.4 shows class Maze with data field maze (type TwoDimGrid). There is a wrapper
method that calls recursive method findMazePath with its argument values set to the
coordinates of the starting point (0, 0). The wrapper method returns the result of this call
(true or false).

The recursive version of findMazePath begins with three stopping cases: two unsuccessful
and one successful [(x, y) is the exit point]. The recursive case contains an if condition
with four recursive calls. Because of short‐circuit evaluation, if any call returns true, the
rest are not executed. The arguments for each call are the coordinates of a neighbor cell.
If a path exists from a neighbor to the maze exit, then the neighbor is part of the solution
path, so we return true. If a neighbor cell is not on the solution path, we try the next
neighbor until all four neighbors have been tested. If there is no path from any neighbor,
we recolor the current cell to the temporary color and return false.

L I S T I N G 5 . 4

Class Maze

import java.awt.*;
import static GridColors.*;

/** Class that solves maze problems with backtracking. */
public class Maze {

 /** The maze */
 private TwoDimGrid maze;

 public Maze(TwoDimGrid m) {
 maze = m;
 }

 /** Wrapper method. */
 public boolean findMazePath() {
 return findMazePath(0, 0); // (0, 0) is the start point.
 }

Koffman-c05.indd 249 10/30/2015 7:37:02 PM

250 Chapter 5 Recursion

 /** Attempts to find a path through point (x, y).
 pre: Possible path cells are in BACKGROUND color;
 barrier cells are in ABNORMAL color.
 post: If a path is found, all cells on it are set to the
 PATH color; all cells that were visited but are
 not on the path are in the TEMPORARY color.
 @param x The x‐coordinate of current point
 @param y The y‐coordinate of current point
 @return If a path through (x, y) is found, true;
 otherwise, false
 */
 public boolean findMazePath(int x, int y) {
 if (x < 0 || y < 0
 || x >= maze.getNCols() || y >= maze.getNRows())
 return false; // Cell is out of bounds.
 else if (!maze.getColor(x, y).equals(BACKGROUND))
 return false; // Cell is on barrier or dead end.
 else if (x == maze.getNCols() – 1
 && y == maze.getNRows() – 1) {
 maze.recolor(x, y, PATH); // Cell is on path
 return true; // and is maze exit.
 } else { // Recursive case.
 // Attempt to find a path from each neighbor.
 // Tentatively mark cell as on path.
 maze.recolor(x, y, PATH);
 if (findMazePath(x – 1, y)
 || findMazePath(x + 1, y)
 || findMazePath(x, y – 1)
 || findMazePath(x, y + 1)) {
 return true;
 } else {
 maze.recolor(x, y, TEMPORARY); // Dead end.
 return false;
 }
 }
 }
}

The Effect of Marking a Cell as Visited

If a path can’t be found from a neighbor of the current cell to the maze exit, the current
cell is considered a “dead end” and is recolored to the temporary color. You may be won-
dering whether the program would still work if we just recolored it to the background
color. The answer is “yes.” In this case, cells that turned out to be dead ends or cells that
were not visited would be in the background color after the program terminated. This
would not affect the ability of the algorithm to find a path or to determine that none
exists; however, it would affect the algorithm’s efficiency. After backtracking, the method
could try to place on the path a cell that had been found to be a dead end. The cell would
be classified once again as a dead end. Marking it as a dead end (color TEMPORARY) the first
time prevents this from happening.

To demonstrate the efficiency of this approach, we tested the program on a maze with four
rows and six columns that had a single barrier cell at the maze exit. When we recolored
each dead end cell in the TEMPORARY color, it took 93 recursive calls to findMazePath to

Koffman-c05.indd 250 10/30/2015 7:37:02 PM

5.6 Backtracking 251

determine that a path did not exist. When we recolored each tested cell in the BACKGROUND
color, it took 177,313 recursive calls to determine that a path did not exist.

 Testing We will use class TwoDimGrid and class MazeTest (from the textbook Web site) to test the
maze. The MazeTest class is very similar to BlobTest. The main method prompts for the
grid dimensions and creates a new TwoDimGrid object with those dimensions. The class
constructor builds the graphical user interface (GUI) for the maze solver, including the
button panel, and registers a listener for each button. When the SOLVE button is clicked,
method MazeTest.actionPerformed calls findMazePath and displays its result. Figure 5.18
shows the GUI before the SOLVE button is clicked (barrier cells are in light gray, and other
cells are in dark gray), and Figure 5.19 shows it after the SOLVE button is clicked and the
final path is displayed. In Figure 5.19, the barrier cells are in light gray (ABNORMAL color),
the cells on the final path are in white (PATH color), and the cells that were visited but then
rejected (not on the path) are in black (TEMPORARY color).

You should test this with a variety of mazes, some that can be solved and some that can’t
(no path exists). You should also try a maze that has no barrier cells and one that has a
single barrier cell at the exit point. In the latter case, no path exists.

F I G U R E 5 . 1 8

Maze as Grid of Buttons before SOLVE Is Clicked

F I G U R E 5 . 1 9

Maze as Grid of Buttons after SOLVE Is Clicked

Koffman-c05.indd 251 10/30/2015 7:37:02 PM

252 Chapter 5 Recursion

C h a p t e r R e v i e w

 ◆ A recursive method has the following form, where Step 2 is the base case, and Steps 3 and
4 are the recursive case:

1. if the problem can be solved for the current value of n
2. Solve it.
 else

3. Recursively apply the algorithm to one or more problems involving
smaller values of n.

4. Combine the solutions to the smaller problems to get the solution to the
original.

 ◆ To prove that a recursive algorithm is correct, you must

— Verify that the base case is recognized and solved correctly.
— Verify that each recursive case makes progress toward the base case.
— Verify that if all smaller problems are solved correctly, then the original problem must

also be solved correctly.

 ◆ The run‐time stack uses activation frames to keep track of argument values and return
points during recursive method calls. Activation frames can be used to trace the execution
of a sequence of recursive method calls.

 ◆ Mathematical sequences and formulas that are defined recursively can be implemented
naturally as recursive methods.

 ◆ Recursive data structures are data structures that have a component that is the same data
structure. A linked list can be considered a recursive data structure because each node

E X E R C I S E S F O R S E C T I O N 5 . 6

S E L F ‐ C H E C K

1. The terminating conditions in findMazePath must be performed in the order specified.
What could happen if the second or third condition was evaluated before the first? If the
third condition was evaluated before the second condition?

2. Does it matter in which order the neighbor cells are tested in findMazePath? How could
this order affect the path that is found?

3. Is the path shown in Figure 5.19 the shortest path to the exit? If not, list the cells on the
shortest path.

P R O G R A M M I N G

1. Show the interface GridColors.

2. Write a Maze.resetTemp method that recolors the cells that are in the TEMPORARY color to
the BACKGROUND color.

3. Write a Maze.restore method that restores the maze to its initial state.

Koffman-c05.indd 252 10/30/2015 7:37:02 PM

 Chapter 5 Review 253

 consists of a data field and a reference to a linked list. Recursion can make it easier to write
methods that process a linked list.

 ◆ Two problems that can be solved using recursion were investigated: the Towers of Hanoi
problem and counting cells in a blob.

 ◆ Backtracking is a technique that enables you to write programs that can be used to explore
different alternative paths in a search for a solution.

User‐Defined Classes in This Chapter

Blob MazeTest
BlobTest RecursiveMethods
GridColors TowersOfHanoi
LinkedListRec TwoDimGrid
Maze

Quick‐Check Exercises
 1. A recursive method has two cases: and .
 2. Each recursive call of a recursive method must lead to a situation that is to the

 case.
 3. The control statement used in a recursive method is the statement.
 4. What three things are stored in an activation frame? Where are the activation frames stored?
 5. You can sometimes substitute for recursion.
 6. Explain how a recursive method might cause a stack overflow exception.
 7. If you have a recursive method and an iterative method that calculate the same result, which do you

think would be more efficient? Explain your answer.
 8. Binary search is an O() algorithm and linear search is an O() algorithm.
 9. Towers of Hanoi is an O() algorithm. Explain your answer.
10. Why did you need to provide a wrapper method for recursive methods linearSearch and

binarySearch?
11. Why did you need to provide a wrapper method for recursive methods in the LinkedListRec

class?

Review Questions
1. Explain the use of the run‐time stack and activation frames in processing recursive method calls.
2. What is a recursive data structure? Give an example.
3. For class LinkedListRec, write a recursive search method that returns true if its target argument

is found and false otherwise. If you need a wrapper method, provide one.
4. For class LinkedListRec, write a recursive replaceFirst method that replaces the first occurrence

of a reference to its first argument with a reference to its second argument. If you need a wrapper
method, provide one.

5. For Towers of Hanoi, show the output string that would be created by the method call
 showMoves(3, 'R', 'M', 'L'). Also, show the sequence of method calls.

6. For the counting cells in a blob problem, show the activation frames in the first 10 recursive calls to
countCells following countCells(4, 1).

7. For the maze path found in Figure 5.19, explain why cells (3, 4), (2, 5), (3, 5), and (4, 5) were never
visited and why cells (5, 1) and (3, 0) through (9, 0) were visited and rejected. Show the activation
frames for the first 10 recursive calls in solving the maze.

Koffman-c05.indd 253 10/30/2015 7:37:02 PM

254 Chapter 5 Recursion

Programming Projects
 1. Download and run class BlobTest. Try running it with a data file made up of lines consisting of 0s

and 1s with no spaces between them. Also run it without a data file.
 2. Download and run class MazeTest. Try running it with a data file made up of lines consisting of 0s

and 1s with no spaces between them. Also run it without a data file.
 3. Write a recursive method that converts a decimal integer to a binary string. Write a recursive

method that converts a binary string to a decimal integer.
 4. Write a LinkedListRec class that has the following methods: size, empty, insertBefore,

 insertAfter, addAtHead, addAtEnd, remove, replace, peekFront, peekEnd, removeFront,
removeEnd, toString. Use recursion to implement most of these methods.

 5. As discussed in Chapter 3, a palindrome is a word that reads the same left to right as right to left.
Write a recursive method that determines whether its argument string is a palindrome.

 6. Write a program that will read a list of numbers and a desired sum, then determine the subset of
numbers in the list that yield that sum if such a subset exists.

 7. Write a recursive method that will dispense change for a given amount of money. The method will
display all combinations of quarters, dimes, nickels, and pennies that equal the desired amount.

 8. Produce the Sierpinski fractal. Start by drawing an equilateral triangle that faces upward. Then
draw an equilateral triangle inside it that faces downward.

 Continue this process on each of the four smaller triangles. Stop when the side dimension for a
triangle to be drawn is smaller than a specified minimum size.

 9. Write a recursive method for placing eight queens on a chessboard. The eight queens should be
placed so that no queen can capture another. Recall that a queen can move in the horizontal, verti-
cal, or diagonal direction.

10. Write a recursive method that will find and list all of the one‐element sequences of a letters in a
char[] array, then all the two‐element sequences, then all of the three element sequences, and so
on such that the characters in each sequence appear in the same order as they are in the array. For
example, for the following array:

char[] letters = {'A', 'C', 'E', 'G'};

the one‐element sequences are "A", "C", "E", and "G"
the two‐element sequences are "AC", "AE", "AG", "CE", "CG", "EG"
the three‐element sequences are "ACE", "ACG", "AEG", and "CEG"
the four‐element sequence is "ACEG"

11. One method of solving a continuous numerical function for a root implements a technique similar
to the binary search. Given a numerical function, defined as f(x), and two values of x that are
known to bracket one of the roots, an approximation to this root can be determined through a
method of repeated division of this bracket. For a set of values of x to bracket a root, the value of
the function for one x must be negative and the other must be positive as illustrated below, which
plots f(x) for values of x between x1 and x2.

 The algorithm requires that the midpoint between x1 and x2 be evaluated in the function, and if
it equals zero the root is found; otherwise, x1 or x2 is set to this midpoint. To determine whether
to replace x1 or x2, the sign of the midpoint is compared against the signs of the values f(x1) and
f(x2). The midpoint replaces the x (x1 or x2) whose function value has the same sign as the function
value at the midpoint.

Koffman-c05.indd 254 10/30/2015 7:37:03 PM

 Chapter 5 Review 255

f(x) = 0

Root desired

x

f(x)

x1
x2

 This algorithm can be written recursively. The terminating conditions are true when either the
midpoint evaluated in the function is zero or the absolute value of x1 – x2 is less than some small
predetermined value (e.g., 0.0005). If the second condition occurs, then the root is said to be
approximately equal to the last midpoint.

12. We can use a merge technique to sort two arrays. The mergesort begins by taking adjacent pairs of
array values and ordering the values in each pair. It then forms groups of four elements by merging
adjacent pairs (first pair with second pair, third pair with fourth pair, etc.) into another array. It
then takes adjacent groups of four elements from this new array and merges them back into the
original array as groups of eight, and so on. The process terminates when a single group is formed
that has the same number of elements as the array. The mergesort is illustrated here for an array
with eight elements. Write a mergeSort method.

5

8

7

3

9

12

5

1

1

3

5

5

7

8

9

12

5

8

3

7

9

12

1

5

3

5

7

8

1

5

9

12

Original
array

Pairs
ordered

Merged
pairs

Merged
quads

Answers to Quick-Check Exercises
 1. A recursive method has two cases: base case and recursive case.

 2. Each recursive call of a recursive method must lead to a situation that is closer to the base case.
 3. The control statement used in a recursive method is the if statement.
 4. An activation frame stores the following information on the run‐time stack: the method argument

values, the method local variable values, and the address of the return point in the caller of the
method.

 5. You can sometimes substitute iteration for recursion.
 6. A recursive method that doesn’t stop would continue to call itself, eventually pushing so many

activation frames onto the run‐time stack that a stack overflow exception would occur.
 7. An iterative method would generally be more efficient because there is more overhead associated

with multiple method calls.
 8. Binary search is an O(log2 n) algorithm and linear search is an O(n) algorithm.
 9. Towers of Hanoi is an O(2n) algorithm because each problem splits into two problems at the next

lower level.
10. Both search methods should be called with the array name and target as arguments. However, the

recursive linear search method needs the subscript of the element to be compared to the target. The
binary search method needs the search array bounds.

11. The wrapper method should be applied to a LinkedListRec object. The recursive method needs
the current list head as an argument.

Koffman-c05.indd 255 10/30/2015 7:37:03 PM

Koffman-c05.indd 256 10/30/2015 7:37:03 PM

C h a p t e r

257

T
he data organizations you have studied so far are linear in that each element has only
one predecessor or successor. Accessing all the elements in sequence is an O(n) process.
In this chapter, we begin our discussion of a data organization that is nonlinear or

hierarchical: the tree. Instead of having just one successor, a node in a tree can have multiple
successors, but it has just one predecessor. A tree in computer science is like a natural tree,
which has a single trunk that may split off into two or more main branches. The predecessor
of each main branch is the trunk. Each main branch may spawn several secondary branches
(successors of the main branches). The predecessor of each secondary branch is a main
branch. In computer science, we draw a tree from the top down, so the root of the tree is at
the top of the diagram instead of the bottom.

Because trees have a hierarchical structure, we use them to represent hierarchical organ-
izations of information, such as a class hierarchy, a disk directory and its subdirectories (see
Figure 6.1), or a family tree. You will see that trees are recursive data structures because they
can be defined recursively. For this reason, many of the methods used to process trees are
written as recursive methods.

Trees

6C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To learn how to use a tree to represent a hierarchical organization of information

 ◆ To learn how to use recursion to process trees

 ◆ To understand the different ways of traversing a tree

 ◆ To understand the difference between binary trees, binary search trees, and heaps

 ◆ To learn how to implement binary trees, binary search trees, and heaps using linked data
structures and arrays

 ◆ To learn how to use Java 8 Lambda Expressions and Functional Interfaces to simplify coding

 ◆ To learn how to use a binary search tree to store information so that it can be retrieved in
an efficient manner

 ◆ To learn how to use a Huffman tree to encode characters using fewer bits than ASCII or
Unicode, resulting in smaller files and reduced storage requirements

Koffman-c06.indd 257 10/30/2015 7:31:22 PM

258 Chapter 6 Trees

This chapter will focus on a restricted tree structure, a binary tree, in which each ele-
ment has, at most, two successors. You will learn how to use linked data structures and
arrays to represent binary trees. You will also learn how to use a special kind of binary tree
called a binary search tree to store information (e.g., the words in a dictionary) in an ordered
way. Because each element of a binary tree can have two successors, you will see that search-
ing for an item stored in a binary search tree is much more efficient than searching for an
item in a linear data structure: (generally O(log n) for a binary tree versus O(n) for a list).

You also will learn about other kinds of binary trees. Expression trees are used to rep-
resent arithmetic expressions. The heap is an ordered tree structure that is used as the basis
for a very efficient sorting algorithm and for a special kind of queue called the priority queue.
The Huffman tree is used for encoding information and compressing files.

Programs

NetscapeMicrosoft Office

TemplatesOffice Cool PluginsChrome

F I G U R E 6 . 1

Part of the Programs

Directory

Tr e e s

 6.1 Tree Terminology and Applications
 6.2 Tree Traversals
 6.3 Implementing a BinaryTree Class
 6.4 Java 8 Lambda Expressions and Functional Interfaces
 6.5 Binary Search Trees

Case Study: Writing an Index for a Term Paper
 6.6 Heaps and Priority Queues
 6.7 Huffman Trees

Case Study: Building a Custom Huffman Tree

6.1 Tree Terminology and Applications

Tree Terminology
We use the same terminology to describe trees in computer science as we do trees in nature.
A computer science tree consists of a collection of elements or nodes, with each node linked
to its successors. The node at the top of a tree is called its root because computer science trees
grow from the top down. The links from a node to its successors are called branches. The
successors of a node are called its children. The predecessor of a node is called its parent.
Each node in a tree has exactly one parent except for the root node, which has no parent.
Nodes that have the same parent are siblings. A node that has no children is a leaf node. Leaf
nodes are also known as external nodes, and nonleaf nodes are known as internal nodes.

Koffman-c06.indd 258 10/30/2015 7:31:23 PM

6.1 Tree Terminology and Applications 259

A generalization of the parent–child relationship is the ancestor–descendant relationship. If
node A is the parent of node B, which is the parent of node C, node A is node C’s ancestor,
and node C is node A’s descendant. Sometimes we say that node A and node C are a grand-
parent and grandchild, respectively. The root node is an ancestor of every other node in a
tree, and every other node in a tree is a descendant of the root node.

Figure 6.2 illustrates these features in a tree that stores a collection of words. The branches
are the lines connecting a parent to its children. In discussing this tree, we will refer to a node
by the string that it stores. For example, we will refer to the node that stores the string "dog"
as node dog.

dog

cat wolf

canine

The root node, parent of cat and
wolf and ancestor of canine

A leaf node, child of dog
and sibling of cat

Child of dog, parent of canine,
and sibling of wolf

A leaf node, child of cat
and descendant of dog

F I G U R E 6 . 2

A Tree of Words

A subtree of a node is a tree whose root is a child of that node. For example, the nodes cat
and canine and the branch connecting them are a subtree of node dog. The other subtree of
node dog is the tree consisting of the single node wolf. The subtree consisting of the single
node canine is a subtree of node cat.

The level of a node is a measure of its distance from the root. It is defined recursively as
follows:

If node n is the root of tree T, its level is 1.
If node n is not the root of tree T, its level is 1 + the level of its parent.

For the tree in Figure 6.2, node dog is at level 1, nodes cat and wolf are at level 2, and node
canine is at level 3. Since nodes are below the root, we sometimes use the term depth as an
alternative term for level. The two have the same meaning.

The height of a tree is the number of nodes in the longest path from the root node to a leaf
node. The height of the tree in Figure 6.2 is 3 (the longest path goes through the nodes dog,
cat, and canine). Another way of saying this is as follows:

If T is empty, its height is 0.
If T is not empty, its height is the maximum depth of its nodes.

An alternate definition of the height of a tree is the number of branches in the longest path
from the root node to a leaf node +1.

Binary Trees
The tree in Figure 6.2 is a binary tree. Informally, this is a binary tree because each node has
at most two subtrees. A more formal definition for a binary tree follows.

Koffman-c06.indd 259 10/30/2015 7:31:23 PM

260 Chapter 6 Trees

A set of nodes T is a binary tree if either of the following is true:

T is empty.
If T is not empty, its root node has two subtrees, TL and TR, such that TL and TR are
binary trees.

We refer to TL as the left subtree and TR as the right subtree. For the tree in Figure 6.2, the
right subtree of node cat is empty. The leaf nodes (wolf and canine) have empty left and right
subtrees. This is illustrated in Figure 6.3, where the empty subtrees are indicated by the
squares. Generally, the empty subtrees are represented by null references, but another value
may be chosen. From now on, we will consistently use a null reference and will not draw
the squares for the empty subtrees.

Some Types of Binary Trees
Next, we discuss three different types of binary trees that are common in computer science.

An Expression Tree

Figure 6.4 shows a binary tree that stores an expression. Each node contains an operator (+, ‐,
*, /, %) or an operand. The expression in Figure 6.4 corresponds to (x + y) * ((a + b) / c).
Operands are stored in leaf nodes. Parentheses are not stored in the tree because the tree struc-
ture dictates the order of operator evaluation. Operators in nodes at higher levels are evalu-
ated after operators in nodes at lower levels, so the operator * in the root node is evaluated
last. If a node contains a binary operator, its left subtree represents the operator’s left operand
and its right subtree represents the operator’s right operand. The left subtree of the root
 represents the expression x + y, and the right subtree of the root represents the expression
(a + b) / c.

dog

cat wolf

canine

F I G U R E 6 . 3

A Tree of Words with

Null Subtrees Indicated

c

a b

x +

+ /

*

y

F I G U R E 6 . 4

Expression Tree

Koffman-c06.indd 260 10/30/2015 7:31:24 PM

6.1 Tree Terminology and Applications 261

A Huffman Tree

Another use of a binary tree is to represent Huffman codes for characters that might appear
in a text file. Unlike ASCII or Unicode encoding, which use the same number of bits to encode
each character, a Huffman code uses different numbers of bits to encode the letters. It uses
fewer bits for the more common letters (e.g., space, e, a, and t) and more bits for the less com-
mon letters (e.g., q, x, and z). On average, using Huffman codes to encode text files should
give you files with fewer bits than you would get using other codes. Many programs that
compress files use Huffman encoding to generate smaller files in order to save disk space or
to reduce the time spent sending the files over the Internet.

Figure 6.5 shows the Huffman encoding tree for an alphabet consisting of the lowercase
 letters and the space character. All the characters are at leaf nodes. The data stored at nonleaf
nodes is not shown. To determine the code for a letter, you form a binary string by tracing the
path from the root node to that letter. Each time you go left, append a 0, and each time you
go right, append a 1. To reach the space character, you go right three times, so the code is 111.
The code for the letter d is 10110 (right, left, right, right, left).

The two characters shown at level 4 of the tree (space, e) are the most common and, there-
fore, have the shortest codes (111, 010). The next most common characters (a, o, i, etc.) are
at level 5 of the tree.

You can store the code for each letter in an array. For example, the code for the space ' '
would be at position 0, the letter 'a' would be at position 1, and the code for letter 'z'
would be at position 26. You can encode each letter in a file by looking up its code in the
array.

0 1

0 1

0 1 0 1 0 1 0 1

0 1

0 1

0 1

0 1 0 1

0 1

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 10 1

0 1

c

e

h nir s

u

o a

d

b p g y

v

k

x q z j

w m f

t

l
[

F I G U R E 6 . 5

Huffman Code Tree

Koffman-c06.indd 261 10/30/2015 7:31:24 PM

262 Chapter 6 Trees

However, to decode a file of letters and spaces, you walk down the Huffman tree, starting at
the root, until you reach a letter and then append that letter to the output text. Once you have
reached a letter, go back to the root. Here is an example. The substrings that represent the
individual letters are shown in alternate shades of black to help you follow the process. The
underscore in the second line represents a space character (code is 111).

10001010011110101010100010101110100011
 g o _ e a g l e s

Huffman trees are discussed further in Section 6.7.

A Binary Search Tree

The tree in Figure 6.2 is a binary search tree because, for each node, all words in its left sub-
tree precede the word in that node, and all words in its right subtree follow the word in that
node. For example, for the root node dog, all words in its left subtree (cat, canine) precede
dog in the dictionary, and all words in its right subtree (wolf) follow dog. Similarly, for the
node cat, the word in its left subtree (canine) precedes it. There are no duplicate entries in a
binary search tree.

More formally, we define a binary search tree as follows:

A set of nodes T is a binary search tree if either of the following is true:

T is empty.
If T is not empty, its root node has two subtrees, TL and TR, such that TL and TR are
binary search trees and the value in the root node of T is greater than all values in TL and
is less than all values in TR.

The order relations in a binary search tree expedite searching the tree. A recursive algorithm
for searching a binary search tree follows:

1. if the tree is empty
2. Return null (target is not found).
 else if the target matches the root node’s data
3. Return the data stored at the root node.
 else if the target is less than the root node’s data
4. Return the result of searching the left subtree of the root.
 else
5. Return the result of searching the right subtree of the root.

The first two cases are base cases and self‐explanatory. In the first recursive case, if the target
is less than the root node’s data, we search only the left subtree (TL) because all data items in
TR are larger than the root node’s data and, therefore, larger than the target. Likewise, we
execute the second recursive step (search the right subtree) if the target is greater than the
root node’s data.

Just as with a binary search of an array, each probe into the binary search tree has the poten-
tial of eliminating half the elements in the tree. If the binary search tree is relatively balanced
(i.e., the depths of the leaves are approximately the same), searching a binary search tree is
an O(log n) process, just like a binary search of an ordered array.

What is the advantage of using a binary search tree instead of just storing elements in an
array and then sorting it? A binary search tree never has to be sorted because its elements
always satisfy the required order relations. When new elements are inserted (or removed), the
binary search tree property can be maintained. In contrast, an array must be expanded when-
ever new elements are added, and it must be compacted whenever elements are removed.
Both expanding and contracting involve shifting items and are thus O(n) operations.

Koffman-c06.indd 262 10/30/2015 7:31:24 PM

6.1 Tree Terminology and Applications 263

Full, Perfect, and Complete Binary Trees
The tree on the left in Figure. 6.6 is called a full binary tree because all nodes have either 2
children or 0 children (the leaf nodes). The tree in the middle is a perfect binary tree, which
is defined as a full binary tree of height n(n is 3) with exactly 2n − 1 (7) nodes. The tree on
the right is a complete binary tree, which is a perfect binary tree through level n − 1 with
some extra leaf nodes at level n (the tree height), all toward the left.

General Trees
A general tree is a tree that does not have the restriction that each node of a tree has at most
two subtrees. So nodes in a general tree can have any number of subtrees. Figure 6.7 shows
a general tree that represents a family tree showing the descendants of King William I (the
Conqueror) of England.

F I G U R E 6 . 6

Full, Perfect, and Complete Binary Trees

4 6

12

8 10

0 9

2 5

1 11

7

3 60 4

1 5

3

2 0 4

1 5

3

2

William I

Robert

Richard

Edmund

William

William II

Richard I John

Adela Henry I

Henry III

Edward I

Stephen William

Henry Geoffrey

Arthur

Matilda

EdmundThomasEdward II

Edward III

Henry II

F I G U R E 6 . 7

Family Tree for the

Descendants of William

I of England

Koffman-c06.indd 263 10/30/2015 7:31:25 PM

264 Chapter 6 Trees

We will not discuss general trees in this chapter. However, it is worth mentioning that a gen-
eral tree can be represented using a binary tree. Figure 6.8 shows a binary tree representation
of the family tree in Figure 6.7. We obtained it by connecting the left branch from a node to
the oldest child (if any). Each right branch from a node is connected to the next younger
sibling (if any).

The names of the men who became kings are in boldface type. You would expect the eldest
son to succeed his father as king; however, this would not be the case if the eldest male died
before his father. For example, Robert died before William I, so William II became king
instead. Starting with King John (near the bottom of the tree), the eldest son of each king did
become the King of England.

William I

William II

Robert

Richard

Edmund

William

Richard I

John

Adela

Matilda

Henry I

Henry II

Henry III

Edward I

Stephen
William

Henry

Geoffrey

Arthur

Edmund

Thomas

Edward II

Edward III

F I G U R E 6 . 8

Binary Tree Equivalent

of King William’s Family

Tree

E X E R C I S E S F O R S E C T I O N 6 . 1

S E L F ‐ C H E C K

1. Draw binary expression trees for the following infix expressions. Your trees should enforce
the Java rules for operator evaluation (higher‐precedence operators before lower‐
precedence operators and left associativity).
a. x / y + a – b * c
b. (x * a) – y / b * (c + d)
c. (x + (a * (b – c))/d

2. Using the Huffman tree in Figure 6.5,
a. Write the binary string for the message “scissors cuts paper”.
b. Decode the following binary string using the tree in Figure 6.5:
 1100010001010001001011101100011111110001101010111101101001

Koffman-c06.indd 264 10/30/2015 7:31:25 PM

6.2 Tree Traversals 265

6.2 Tree Traversals

Often we want to determine the nodes of a tree and their relationship. We can do this by
walking through the tree in a prescribed order and visiting the nodes (processing the informa-
tion in the nodes) as they are encountered. This process is known as tree traversal. We will
discuss three kinds of traversal in this section: inorder, preorder, and postorder. These three
methods are characterized by when they visit a node in relation to the nodes in its subtrees
(TL and TR).

Preorder: Visit root node, traverse TL, and traverse TR.
Inorder: Traverse TL, visit root node, and traverse TR.
Postorder Traverse TL, traverse TR, and visit root node.

Because trees are recursive data structures, we can write similar recursive algorithms for all
three techniques. The difference in the algorithms is whether the root is visited before the
children are traversed (pre), in between traversing the left and right children (in), or after the
children are traversed (post).

Algorithm for
Preorder Traversal

1. if the tree is empty
2. Return.
 else
3. Visit the root.
4. Preorder traverse

the left subtree.
5. Preorder traverse

the right subtree.

Algorithm for
Inorder Traversal

1. if the tree is empty
2. Return.
 else
3. Inorder traverse

the left subtree.
4. Visit the root.
5. Inorder traverse

the right subtree.

Algorithm for
Postorder Traversal

1. if the tree is empty
2. Return.
 else
3. Postorder traverse

the left subtree.
4. Postorder traverse

the right subtree.
5. Visit the root.

3. For each tree shown below, answer these questions. What is its height? Is it a full tree? Is
it a complete tree? Is it a binary search tree? If not, make it a binary search tree.

4. For the binary trees in Figures 6.2–6.5, indicate whether each tree is full, perfect, complete,
or none of the above.

5. Represent the general tree in Figure 6.1 as a binary tree.

32

30 55

40

32 50

30 55

40

35

Koffman-c06.indd 265 10/30/2015 7:31:25 PM

266 Chapter 6 Trees

Visualizing Tree Traversals
You can visualize a tree traversal by imagining a mouse that walks along the edge of the tree.
If the mouse always keeps the tree to the left (from the mouse’s point of view), it will trace
the route shown in gray around the tree shown in Figure 6.9. This is known as an Euler tour.

If we record each node as the mouse first encounters it (indicated by the arrows pointing
down in Figure 6.9), we get the following sequence:

a b d g e h c f i j

This is a preorder traversal because the mouse visits each node before traversing its subtrees.
The mouse also walks down the left branch (if it exists) of each node before going down the
right branch, so the mouse visits a node, traverses its left subtree, and traverses its right
subtree.

If we record each node as the mouse returns from traversing its left subtree (indicated by the
arrows pointing to the right in Figure 6.9), we get the following sequence:

d g b h e a i f j c

This is an inorder traversal. The mouse traverses the left subtree, visits the root, and then
traverses the right subtree. Node d is visited first because it has no left subtree.

If we record each node as the mouse last encounters it (indicated by the arrows pointing up
in Figure 6.9), we get the following sequence:

g d h e b i j f c a

This is a postorder traversal because we visit the node after traversing both its subtrees. The
mouse traverses the left subtree, traverses the right subtree, and then visits the node.

g h ji

d f

b c

a

e

F I G U R E 6 . 9

Traversal of a Binary

Tree

Traversals of Binary Search Trees and Expression Trees
An inorder traversal of a binary search tree results in the nodes being visited in sequence by
increasing data value. For example, for the binary search tree shown earlier in Figure 6.2, the
inorder traversal would visit the nodes in the sequence:

canine, cat, dog, wolf

Traversals of expression trees give interesting results. If we perform an inorder traversal of
the expression tree first shown in Figure 6.4 and repeated here, we visit the nodes in the
sequence x + y* a + b / c. If we insert parentheses where they belong, we get the infix
expression

Koffman-c06.indd 266 10/30/2015 7:31:26 PM

6.2 Tree Traversals 267

(x + y) * ((a + b) / c)

The postorder traversal of this tree would visit the nodes in the sequence

x y + a b + c / *

which is the postfix form of the expression. To illustrate this, we show the operand–operand–
operator groupings under the expression.

The preorder traversal visits the nodes in the sequence

* + x y / + a b c

which is the prefix form of the expression. To illustrate this, we show the operator–operand–
operand groupings under the expression.

c

a b

x +

+ /

*

y

E X E R C I S E S F O R S E C T I O N 6 . 2

S E L F ‐ C H E C K

1. For the following trees:

32 50

30 55

40

3532

30 55

40

 If visiting a node displays the integer value stored, show the inorder, preorder, and pos-
torder traversal of each tree.

2. Repeat Exercise 1 above for the trees in Figure 6.6, redrawn below.

4 6

12

8 10

0 9

2 5

1 11

7

3 60 4

1 5

3

2 0 4

1 5

3

2

Koffman-c06.indd 267 10/30/2015 7:31:27 PM

268 Chapter 6 Trees

6.3 Implementing a BinaryTree Class

In this section, we show how to use linked data structures to represent binary trees and
binary tree nodes. We begin by focusing on the structure of a binary tree node.

The Node<E> Class
Just as for a linked list, a node consists of a data part and links (references) to successor
nodes. So that we can store any kind of data in a tree node, we will make the data part a refer-
ence of type E. Instead of having a single link (reference) to a successor node as in a list, a
binary tree node must have links (references) to both its left and right subtrees. Figure 6.10
shows the structure of a binary tree node; Listing 6.1 shows its implementation.

3. Draw an expression tree corresponding to each of the following:
a. Inorder traversal is x / y + 3 * b / c (Your tree should represent the Java meaning

of the expression.)
b. Postorder traversal is x y z + a b – c * / –
c. Preorder traversal is * + a – x y / c d

4. Explain why the statement “Your tree should represent the Java meaning of the expres-
sion” was not needed for parts b and c of Exercise 3 above.

Node

left =
right =
data =

F I G U R E 6 . 1 0

Linked Structure to

Represent a Node

L I S T I N G 6 . 1

Nested Class Node

/** Class to encapsulate a tree node. */
protected static class Node<E> implements Serializable {
 // Data Fields
 /** The information stored in this node. */
 protected E data;
 /** Reference to the left child. */
 protected Node<E> left;
 /** Reference to the right child. */
 protected Node<E> right;

 // Constructors
 /** Construct a node with given data and no children.
 @param data The data to store in this node
 */
 public Node(E data) {
 this.data = data;
 left = null;
 right = null;
 }

Koffman-c06.indd 268 10/30/2015 7:31:27 PM

6.3 Implementing a BinaryTree Class 269

Class Node<E> is nested within class BinaryTree<E>. Note that it is declared protected and its
data fields are all protected. Later, we will use the BinaryTree<E> and Node<E> classes as
superclasses. By declaring the nested Node<E> class and its data fields protected, we make
them accessible in the subclasses of BinaryTree<E> and Node<E>.

The constructor for class Node<E> creates a leaf node (both left and right are null). The
toString method for the class just displays the data part of the node.

Both the BinaryTree<E> class and the Node<E> class are declared to implement the Serializable
interface. The Serializable interface defines no methods; it is used to provide a marker for
classes that can be written to a binary file using the ObjectOutputStream and read using the
ObjectInputStream. We clarify what this means later in the section.

The BinaryTree<E> Class
Table 6.1 shows the design of the BinaryTree<E> class. The single data field root references
the root node of a BinaryTree<E> object. It has protected visibility because we will need to
access it in subclass BinarySearchTree, discussed later in this chapter. In Figure 6.11, we draw

 // Methods
 /** Return a string representation of the node.
 @return A string representation of the data fields
 */
 public String toString () {
 return data.toString();
 }
}

TA B L E 6 . 1

Design of the BinaryTree<E> Class

Data Field Attribute

protected Node<E> root Reference to the root of the tree

Constructor Behavior

public BinaryTree() Constructs an empty binary tree

protected BinaryTree(Node<E> root) Constructs a binary tree with the given node as the root

public BinaryTree(E data, BinaryTree<E> leftTree,

BinaryTree<E> rightTree)

Constructs a binary tree with the given data at the root
and the two given subtrees

Method Behavior

public BinaryTree<E> getLeftSubtree() Returns the left subtree

public BinaryTree<E> getRightSubtree() Returns the right subtree

public E getData() Returns the data in the root

public boolean isLeaf() Returns true if this tree is a leaf, false otherwise

public String toString() Returns a String representation of the tree

public void preOrderTraverse (BiConsumer<E, Integer>

consumer)

Performs a preorder traversal of the tree. Each node and
its depth are passed to the consumer function

public static BinaryTree<E> readBinaryTree(Scanner

scan)

Constructs a binary tree by reading its data using
Scanner scan

Koffman-c06.indd 269 10/30/2015 7:31:27 PM

270 Chapter 6 Trees

the expression tree for ((x + y) * (a / b)) using our Node representation. Each character
shown as tree data would be stored in a Character object.

Node

left =
right =
data =

Node

left = null
right = null
data = 'x'

Node

Node

left =
right =
data =

BinaryTree

root =

Node

left =
right =
data =

Node Node

 '*'

'+' '/'

left = null
right = null
data = 'y'

left = null
right = null
data = 'a'

left = null
right = null
data = 'b'

F I G U R E 6 . 1 1

Linked Representation of

Expression Tree

((x + y) * (a / b))

EXAMPLE 6 .1 Assume the tree drawn in Figure 6.11 is referenced by variable bT (type BinaryTree).

bT.root.data references the Character object storing '*'.
bT.root.left references the left subtree of the root (the root node of tree x + y).
bT.root.right references the right subtree of the root (the root node of tree a / b).
bT.root.right.data references the Character object storing '/'.

The class heading and data field declarations follow:
import java.io.*;

/** Class for a binary tree that stores type E objects. */
public class BinaryTree<E> implements Serializable {

 // Insert inner class Node<E> here.

 // Data Field
 /** The root of the binary tree */
 protected Node<E> root;
 . . .

The Constructors

There are three constructors: a no‐parameter constructor, a constructor that creates a tree with
a given node as its root, and a constructor that builds a tree from a data value and two trees.

Koffman-c06.indd 270 10/30/2015 7:31:28 PM

6.3 Implementing a BinaryTree Class 271

The no‐parameter constructor merely sets the data field root to null.
public BinaryTree() {
 root = null;
}

The constructor that takes a Node as a parameter is a protected constructor. This is because
client classes do not know about the Node class. This constructor can be used only by methods
internal to the BinaryTree class and its subclasses.

protected BinaryTree(Node<E> root) {
 this.root = root;
}

The third constructor takes three parameters: data to be referenced by the root node and two
BinaryTrees that will become its left and right subtrees.

/** Constructs a new binary tree with data in its root leftTree
 as its left subtree and rightTree as its right subtree.
 */
public BinaryTree(E data, BinaryTree<E> leftTree,
 BinaryTree<E> rightTree) {
 root = new Node<>(data);
 if (leftTree != null) {
 root.left = leftTree.root;
 } else {
 root.left = null;
 }
 if (rightTree != null) {
 root.right = rightTree.root;
 } else {
 root.right = null;
 }
}

If leftTree is not null, the statement
root.left = leftTree.root;

executes. After its execution, the root node of the tree referenced by leftTree (leftTree.root)
is referenced by root.left, making leftTree the left subtree of the new root node. If lT and
rT are type BinaryTree<Character> and lT.root references the root node of binary tree x + y
and rT.root references the root node of binary tree a / b, the statement

BinaryTree<Character> bT = new BinaryTree<> ('*', lT, rT);

would cause bT to reference the tree shown in Figure 6.12.

bx a

+ /

*

y

F I G U R E 6 . 1 2

The Expression Tree

(x + y) * (a / b)

The getLeftSubtree and getRightSubtree Methods

The getLeftSubtree method returns a binary tree whose root is the left subtree of the object
on which the method is called. It uses the protected constructor discussed before to construct

Koffman-c06.indd 271 10/30/2015 7:31:28 PM

272 Chapter 6 Trees

a new BinaryTree<E> object whose root references the left subtree of this tree. The
 getRightSubtree method is symmetric.

/** Return the left subtree.
 @return The left subtree or null if either the root or
 the left subtree is null
 */
public BinaryTree<E> getLeftSubtree() {
 if (root != null && root.left != null) {
 return new BinaryTree<>(root.left);
 } else {
 return null;
 }
}

The isLeaf Method

The isLeaf method tests to see whether this tree has any subtrees. If there are no subtrees,
then true is returned.

/** Determine whether this tree is a leaf.
 @return true if the root has no children
 */
public boolean isLeaf() {
 return (root.left == null && root.right == null);
}

The toString Method

The toString method generates a string representation of the BinaryTree for display pur-
poses. The string representation is a preorder traversal in which each local root is indented a
distance proportional to its depth. If a subtree is empty, the string "null" is displayed. The
tree in Figure 6.12 would be displayed as follows:

*
 +
 x
 null
 null
 y
 null
 null
 /
 a
 null
 null
 b
 null
 null

The toString method creates a StringBuilder and then calls the recursive toString method
(described next) passing the root and 1 (depth of root node) as arguments.

public String toString() {
 StringBuilder sb = new StringBuilder();
 toString(root, 1, sb);
 return sb.toString();
}

The Recursive toString Method

This method follows the preorder traversal algorithm given in Section 6.2. It begins by append-
ing a string of spaces proportional to the level so that all nodes at a particular level will be

Koffman-c06.indd 272 10/30/2015 7:31:28 PM

6.3 Implementing a BinaryTree Class 273

indented to the same point in the tree display. Then, if the node is null, the string "null\n" is
appended to the StringBuilder. Otherwise the string representation of the node is appended
to the StringBuilder and the method is recursively called on the left and right subtrees.

/** Converts a sub‐tree to a string.
 Performs a preorder traversal.
 @param node The local root
 @param depth The depth
 @param sb The StringBuilder to save the output
 */
private void toString(Node<E> node, int depth,
 StringBuilder sb) {
 for (int i = 1; i < depth; i++) {
 sb.append(" ");
 }
 if (node == null) {
 sb.append("null\n");
 } else {
 sb.append(node.toString());
 sb.append("\n");
 toString(node.left, depth + 1, sb);
 toString(node.right, depth + 1, sb);
 }
}

Reading a Binary Tree

If we use a Scanner to read the individual lines created by the toString method previously
discussed, we can reconstruct the binary tree using the algorithm:

1. Read a line that represents information at the root.
2. Remove the leading and trailing spaces using the String.trim method.
3. if it is "null"
4. Return null.
 else
5. Recursively read the left child.
6. Recursively read the right child.
7. Return a tree consisting of the root and the two children.

The tree that is constructed will be type BinaryTree<String>. The code for a method that
implements this algorithm is shown in Listing 6.2.

L I S T I N G 6 . 2

Method to Read a Binary Tree

/** Method to read a binary tree.
 pre: The input consists of a preorder traversal
 of the binary tree. The line "null" indicates a null tree.
 @param scan the Scanner attached to the input file.
 @return The binary tree
 */
public static BinaryTree<String> readBinaryTree(Scanner scan) {
 // Read a line and trim leading and trailing spaces.
 String data = scan.nextLine().trim();
 if (data.equals("null")) {
 return null;
 } else {
 BinaryTree<String> leftTree = readBinaryTree(scan);

Koffman-c06.indd 273 10/30/2015 7:31:28 PM

274 Chapter 6 Trees

Using an ObjectOutputStream and ObjectInputStream
The Java API includes the class ObjectOutputStream that will write any object that is
declared to be Serializable. You declare that an object is Serializable by adding the
declaration

implements Serializable

to the class declaration. The Serializable interface (in java.io) contains no methods, but it
serves to mark the class as being Serializable. This gives you control over whether or not
you want your class to be written to an external file. Generally, you will want to have this
capability.

To write an object of a Serializable class to a file, you do the following:
try {
 ObjectOutputStream out =

 new ObjectOutputStream(new FileOutputStream(nameOfFile));
 out.writeObject(nameOfObject);
} catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
}

The writeObject method performs a traversal of whatever data structure is referenced by the
object being written. Thus, if the object is a binary tree, a deep copy of all of the nodes of the
binary tree will be written to the file.

To read a Serializable class from a file, you do the following:
try {
 ObjectInputStream in =
 new ObjectInputStream(new FileInputStream(nameOfFile));
 objectName = (objectClass) in.readObject();
} catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
}

This code will reconstruct the object that was saved to the file, including any referenced
objects. Thus, if a BinaryTree is written to an ObjectOutputStream, this method will read it
back and restore it completely.

 BinaryTree<String> rightTree = readBinaryTree(scan);
 return new BinaryTree<>(data, leftTree, rightTree);
 }

}

 P I T F A L L

Modifying the Class File of a Serialized Object
When an object is serialized, a unique class signature is recorded with the data. If
you recompile the Java source file for the class to re‐create the .class file, even
though you did not make any changes, the resulting .class file will have a
different class signature. When you attempt to read the object, you will get an
exception.

Koffman-c06.indd 274 10/30/2015 7:31:28 PM

6.3 Implementing a BinaryTree Class 275

E X E R C I S E S F O R S E C T I O N 6 . 3

S E L F ‐ C H E C K

1. Draw the linked representation of the following two trees.

FE

B D

A

C C

B E

F

A

D

2. Show the tree that would be built by the following input string:
30
 15
 4
 null
 null
 20
 18
 null
 19
 null
 null
 null
 35
 32
 null
 null
 38
 null
 null

3. What can you say about this tree?

4. Write the strings that would be displayed for the two binary trees in Figure 6.6.

P R O G R A M M I N G

1. Write a method for the BinaryTree class that returns the preorder traversal of a binary tree
as a sequence of strings each separated by a space.

2. Write a method to display the postorder traversal of a binary tree in the same form as
Programming Exercise 1.

3. Write a method to display the inorder traversal of a binary tree in the same form as
Programming Exercise 1, except place a left parenthesis before each subtree and a right paren-
thesis after each subtree. Don’t display anything for an empty subtree. For example, the
expression tree shown in Figure 6.12 would be represented as (((x) + (y)) * ((a) / (b))).

Koffman-c06.indd 275 10/30/2015 7:31:28 PM

276 Chapter 6 Trees

We will see how to execute lambda expressions (anonymous methods) in the next section.

6.4 Java 8 Lambda Expressions and Functional Interfaces

Java 8 introduces new features that enable functional programming. In functional program-
ming, you can assign functions (methods) to variables or pass them as arguments to another
function. The behavior of the function called with a function argument will vary, depending
on its function argument. Assume you wrote a function called plot that cycled through
angles from 0 to 360 ° in 5 ° increments and produced a graph showing a particular function
value for each angle. If plot took a function argument, you could pass it a function such as
sin or cosin. If you passed it sin, function plot would show a graph of sine values; if you
passed it cosin, it would show a graph of cosine values.

Java can’t really pass methods as arguments, but it accomplishes the same thing using lambda
expressions and functional interfaces. A lambda expression is a method without a
 declaration—sometimes called an anonymous method because it doesn’t have a name. A
lambda expression is a shorthand notation that allows you to write a method where you are
going to use it. This is useful when a method is going to be used only once and it saves you
the effort of writing a separate method declaration. A lambda expression consists of a param-
eter list and either an expression or a statement block separated by the symbol −>.

EXAMPLE 6 .2 The following lambda expression has no arguments as indicated by the empty parentheses. It
simply displays the message shown in the println.

() ‐> System.out.println("That's all folks") // displays message

EXAMPLE 6 .3 The next lambda expression has the value of m cubed. Because it has a single untyped argu-
ment m, the parentheses are omitted.

m ‐> m * m * m

EXAMPLE 6 .4 The next lambda expression represents a method that returns the larger of its two arguments.
Because the method body has multiple statements, it is enclosed in braces. The argument
types could be omitted but the parentheses are required.

(int x, int y) ‐> {
 if (x >= y)
 return x;
 return y;
}

SYNTAX Lambda Expression
FORM:

(parameter list) −> expression

or

(parameter list) −> {statement list }

Koffman-c06.indd 276 10/30/2015 7:31:28 PM

6.4 Java 8 Lambda Expressions and Functional Interfaces 277

Functional Interfaces
To cause a lambda expression to be executed, we must first assign it to a variable or pass it
as an argument to another method. The data type of the variable being assigned to, or the
corresponding parameter, must be a functional interface. A functional interface is an interface
that declares exactly one abstract method. Java provides a set of functional interfaces, but
you can also create your own.

EXAMPLE:
x ‐> x * x
(d, e) ‐> {
 sb.append(d.toString());
 sb.append(" : ");
 sb.append(e.toString());
}

INTERPRETATION

The parameter list for the anonymous method has the same syntax as the parameter
list for a method—a comma separated list of type identifier sequences enclosed in
parentheses. If the compiler can infer the types, they can be omitted. If there is only
one parameter, then the parentheses may also be omitted. An empty parameter list is
denoted by (). The method body (following the ‐>) may be an expression or a
statement block enclosed in curly braces.

EXAMPLE 6 .5 The following is an example of a custom functional interface called MyFunction. It has a single
abstract method apply that accepts two integer arguments and returns an integer result.

@FunctionalInterface
interface MyFunctionType {
 public int apply(int x, int y);
}

Listing 6.3 shows a class that uses the lambda expression from Example 6.4 that returns the
larger of its two arguments. The statement

MyFunctionType mFT = (x, y) ‐> {
 if (x > y)
 return x;
 return y;
 };

creates an object of an anonymous class type that implements interface MyFunctionType. The
statement block to the right of ‐> implements method apply. Therefore, the statement

System.out.println("The larger number is : " + mFT.apply(m, n));

causes the statement block above to execute with m and n as its arguments. The larger of the
two data values entered will be returned as the method result and displayed.

L I S T I N G 6 . 3

Using Functional Interface MyFunctionType with a Lambda Expression

import java.util.Scanner;
@FunctionalInterface
interface MyFunctionType {
 public int apply(int x, int y);
}

Koffman-c06.indd 277 10/30/2015 7:31:29 PM

278 Chapter 6 Trees

public class TestMyFunctionType {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 System.out.println("Enter 2 integers: ");
 int m = sc.nextInt();
 int n = sc.nextInt();

 MyFunctionType mFT = (x, y) ‐> {
 if (x > y)
 return x;
 return y;
 };

 System.out.println("The larger number is : " + mFT.apply(m, n));
 }
}

The Java developers created a set of functional interfaces in the java.util.function package.
Table 6.2 lists some of these; there are many more. The type parameters T and U represent
input types and R the result type. Each functional interface has a single abstract method; you
need to check the Java documentation to see what it is.

Since our lambda expression in Listing 6.3 takes two arguments and returns a result of the
same type, we can insert the statement

import java.util.function.BinaryOperator;

in our program and delete our custom interface. Object mFT should implement the
BinaryOperator<T> interface (declared as type BinaryOperator<Integer> instead of

TA B L E 6 . 2

Selected Java Functional Interfaces

Interface Abstract Method Description

BiConsumer<T, U> void accept(T t, U u) Represents an operation that accepts two input arguments
and returns no result

BiFunction<T, U, R> R apply(T t, U u) Represents an operation that accepts two arguments of
different types and produces a result

BinaryOperator<T> T apply(T t1, T t2) Represents an operation upon two operands of the same
type, producing a result of the operand type

Comparator<T> int compare(T t1, T t2) Represents an operation that accepts two arguments of the
same type and returns a positive, zero, or negative result
based on their ordering (negative if t1 < t2, zero if t1 equals
t2, positive if t1 > t2)

Consumer<T> void accept(T t) Represents an operation that accepts one input argument
and returns no result

Function<T, R> R apply(T t) Represents a function that accepts one argument and
produces a result

Predicate<T> boolean test(T t) Represents a predicate (boolean‐valued function) of one
argument

Koffman-c06.indd 278 10/30/2015 7:31:29 PM

6.4 Java 8 Lambda Expressions and Functional Interfaces 279

MyFuntionType) and the method specified in the lambda expression will still implement
abstract method apply. The revised declaration for function object mFT will start with

BiConsumer<Integer, Integer> mFT = (x, y) -> {

Passing a Lambda Expression as an Argument
We started our discussion of lambda expressions by stating that we wanted to be able to
write a function that could plot the values of another function passed to it. The plot would
vary depending on the function argument. To accomplish this in Java, we need to pass a
lambda expression as an argument to a method.

EXAMPLE 6 .6 The following method displays the values of a function (its last argument) in the range rep-
resented by low to high in increments of step. The function represented by f takes an int
argument and returns a double result.

/** Displays values associated with function f in the range specified.
 * @param low the lower bound
 * @param high the upper bound
 * @param step the increment
 * @param f the function object
 */
public static void show(int low, int high, int step,
 Function<Integer, Double> f) {
 for (int i = low; i <= high; i += step) {
 System.out.println(i + “ : “ + f.apply(i));
 }
}

We can call function show using the statements
 Function<Integer, Double> f;
 f = angle ‐> Math.cos(Math.toRadians(angle));
 show(0, 360, 30, f);

The first statement declares f to be an object of type Function<Integer, Double>. The second
statement assigns f to a lambda expression with an integer argument angle. The method
body implements abstract method Function.apply. Therefore, f.apply(angle) in show will
calculate and return the value of the cosine after first converting an angle value to radians.
The last statement calls show, passing it the range boundaries and increment and function f.
The for loop body in method show will display a table of angle and cosine values for 0 °
through 360 °,

0 : 1.0
30 : 0.8660254037844387
60 : 0.5000000000000001
...

A more compact way of doing this would be to replace the three statements above that
declare and initialize f and call show with

 show(0, 360, 30, angle ‐> Math.cos(Math.toRadians(angle));

This statement passes the lambda expression directly to method show as an anonymous
Function object.

Koffman-c06.indd 279 10/30/2015 7:31:29 PM

280 Chapter 6 Trees

A General Preorder Traversal Method
The recursive toString method in the previous section performs a preorder traversal to gen-
erate the string representation of a tree. There are other applications that require a preorder
traversal. Thus, we want to separate the traversal from the action performed on each node.
We will specify the action in a lambda interface.

At each node, we need to know the current node and its depth to perform an action, so we
will use a functional interface that has parameter types Node<E> for the current node and
Integer for the depth. Table 6.2 shows functional interface BiConsumer<T, U> that takes two
arguments and has an abstract method accept whose return type is void. We will specify the
action in a lambda expression that instantiates this interface. The preorder traversal starter
method is passed a lambda expression with the action to be performed (referenced by
 consumer), and it calls the recursive preorder traversal passing it the root node, 1 for its level,
and the object referenced by consumer.

/** Starter method for preorder traversal
 * @param consumer an object that instantiates
 * the BiConsumer interface. Its method implements
 * abstract method apply.
 */
public void preOrderTraverse(BiConsumer<E, Integer> consumer) {
 preOrderTraverse(root, 1, consumer);
}

The private preOrderTraverse method performs the actual traversal.
/**
 * Performs a recursive pre‐order traversal of the tree,
 * applying the action specified in the consumer object.
 * @param consumer object whose accept method specifies
 * the action to be performed on each node
 */
private void preOrderTraverse(Node<E> node, int depth,
 BiConsumer<E, Integer> consumer) {
 if (node == null) {
 consumer.accept(null, depth);
 } else {
 consumer.accept(node.data, depth);
 preOrderTraverse(node.left, depth + 1, consumer);
 preOrderTraverse(node.right, depth + 1, consumer);
 }
}

Using preOrderTraverse
We can rewrite the toString method to use the preOrderTraverse method. The preOrderTraverse
method visits each node in preorder applying the statement block specified in the lambda
expression passed as an argument to the preorder traversal methods. The lambda expression
passed by toString to PreOrderTraverse has arguments representing the node and its depth.
When PreOrderTraverse applies its statement block to a node, it creates a new StringBuilder
object consisting of d (the node depth) blanks followed by the string representation of the cur-
rent node and "\n".

public String toString() {
 final StringBuilder sb = new StringBuilder();
 preOrderTraverse((e, d) ‐> {
 for (int i = 1; i < d; i++) {

Koffman-c06.indd 280 10/30/2015 7:31:29 PM

6.4 Java 8 Lambda Expressions and Functional Interfaces 281

 sb.append(" ");
 }
 sb.append(e);
 sb.append("\n");
 });
 return sb.toString();
}

E X E R C I S E S F O R S E C T I O N 6 . 4

S E L F ‐ C H E C K

1. Describe the effect of each lambda expression below that is valid. Correct the expression
if it is not a valid lambda expression and then describe its effect.
a. (int m, n) ‐> 2 * m + 3 * n
b. (int m, double x) ‐> m * (int) x
c. msg ‐> return "***" + msg + "***"
d. ‐> System.out.println("Hello")
e. (x, y) ‐> {System.out.println(x);
 System.out.println("_________________");
 System.out.println(y);
 System.out.println("_________________");
 System.out.println("_________________");
 };
f. (x, y) ‐> Math.sqrt(x * x + y * y)
g. (x) ‐> x > 0

2. Select a Functional Interface appropriate for each of the expressions in Self‐Check Exercise 1
from Table 6.2 or the java.util.function library.

3. Declare a function object of the correct type for each of the lambda expressions in Self‐
Check Exercise 1 and assign the lambda expression to it.

P R O G R A M M I N G

1. Write a lambda expression that takes a double argument (x) and an integer argument (n).
The method result should be the double value raised to the power n. Do this using a Java
API method and also using a loop.

2. Write and test a Java class that enters two numbers and displays the result of calling each
lambda expression in Programming Exercise 1. Also, compare the results to make sure
that they are the same.

3. Modify the program in Example 6.6 to use two function objects that calculate trigonomet-
ric values and display the angle and corresponding values for each function object on the
same line.

4. Write a general postOrderTraverse method for the BinaryTree class similar to the
 preOrderTraverse method.

5. Write a general inOrderTraverse method for the BinaryTree class similar to the preOrder-
Traverse method.

Koffman-c06.indd 281 10/30/2015 7:31:29 PM

282 Chapter 6 Trees

6.5 Binary Search Trees

Overview of a Binary Search Tree
In Section 6.1, we provided the following recursive definition of a binary search tree:

A set of nodes T is a binary search tree if either of the following is true:

T is empty.
If T is not empty, its root node has two subtrees, TL and TR, such that TL and TR are
binary search trees and the value in the root node of T is greater than all values in TL and
is less than all values in TR.

Figure 6.13 shows a binary search tree that contains the words in lowercase from the nursery
rhyme “The House That Jack Built.” We can use the following algorithm to find an object in
a binary search tree.

Recursive Algorithm for Searching a Binary Search Tree

1. if the root is null
2. The item is not in the tree; return null.
3. Compare the value of target, the item being sought, with root.data.
4. if they are equal
5. The target has been found, return the data at the root.
 else if target is less than root.data
6. Return the result of searching the left subtree.
 else
7. Return the result of searching the right subtree.

EXAMPLE 6 .7 Suppose we wish to find jill in Figure 6.13. We first compare jill with lay. Because jill is less
than lay, we continue the search with the left subtree and compare jill with house. Because
jill is greater than house, we continue with the right subtree and compare jill with jack.
Because jill is greater than jack, we continue with killed followed by kept. Now, kept has no
left child, and jill is less than kept, so we conclude that jill is not in this binary search tree.
(She’s in a different nursery rhyme.) Follow the path shown in gray in Figure 6.14.

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

F I G U R E 6 . 1 3

Binary Search Tree Containing All of the

Words from “The House That Jack Built”

Koffman-c06.indd 282 10/30/2015 7:31:29 PM

6.5 Binary Search Trees 283

Performance
Searching the tree in Figure 6.14 is O(log n). However, if a tree is not very full, performance
will be worse. The tree in the figure at left has only right subtrees, so searching it is O(n).

Interface SearchTree
As described, the binary search tree is a data structure that enables efficient insertion, search,
and retrieval of information (best case is O(log n)). Table 6.3 shows a SearchTree<E> inter-
face for a class that implements the binary search tree. The interface includes methods for
insertion (add), search (boolean contains and E find), and removal (E delete and boolean
remove). Next, we discuss a class BinarySearchTree<E> that implements this interface.

The BinarySearchTree Class
Next, we implement class BinarySearchTree<E extends Comparable<E>>. The type parameter
specified when we create a new BinarySearchTree must implement the Comparable interface.

Table 6.4 shows the data fields declared in the class. These data fields are used to store a
second result from the recursive add and delete methods that we will write for this class.
Neither result can be returned directly from the recursive add or delete method because they
return a reference to a tree node affected by the insertion or deletion operation. The interface
for method add in Table 6.3 requires a boolean result (stored in addReturn) to indicate success

TA B L E 6 . 3

The SearchTree<E> Interface

Method Behavior

boolean add(E item) Inserts item where it belongs in the tree. Returns true if item is inserted; false
if it isn’t (already in tree)

boolean contains(E target) Returns true if target is found in the tree

E find(E target) Returns a reference to the data in the node that is equal to target. If no such
node is found, returns null

E delete(E target) Removes target (if found) from tree and returns it; otherwise, returns null

boolean remove(E target) Removes target (if found) from tree and returns true; otherwise, returns false

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

F I G U R E 6 . 1 4

Looking for Jill

cat

cow

 dog

 fox

Koffman-c06.indd 283 10/30/2015 7:31:30 PM

284 Chapter 6 Trees

or failure. Similarly, the interface for delete requires a type E result (stored in deleteReturn)
that is either the item deleted or null.

The class heading and data field declarations follow. Note that class BinarySearchTree
extends class BinaryTree and implements the SearchTree interface (see Figure 6.15). Besides
the data fields shown, class BinarySearchTree inherits the data field root from class
BinaryTree (declared as protected) and the inner class Node<E>.

public class BinarySearchTree<E extends Comparable<E>>
 extends BinaryTree<E> implements SearchTree<E> {
 // Data Fields
 /** Return value from the public add method. */
 protected boolean addReturn;
 /** Return value from the public delete method. */
 protected E deleteReturn;
 . . .
}

Implementing the find Methods

Earlier, we showed a recursive algorithm for searching a binary search tree. Next, we show how
to implement this algorithm and a nonrecursive starter method for the algorithm. Our method
find will return a reference to the node that contains the information we are seeking.

TA B L E 6 . 4

Data Fields of Class BinarySearchTree<E extends Comparable<E>>

Data Field Attribute

protected boolean addReturn Stores a second return value from the recursive add method that indicates
whether the item has been inserted

protected E deleteReturn Stores a second return value from the recursive delete method that references the
item that was stored in the tree

addReturn
deleteReturn

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

BinaryTree

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

‹‹interface››
SearchTree

+ getLeftSubtree()
+ getRightSubtree()
+ getData()

BinaryTree.Node

data

root

left right

BinarySearchTree

F I G U R E 6 . 1 5

UML Diagram of

BinarySearchTree

Koffman-c06.indd 284 10/30/2015 7:31:30 PM

6.5 Binary Search Trees 285

Listing 6.4 shows the code for method find. The starter method calls the recursive method
with the tree root and the object being sought as its parameters. If bST is a reference to a
BinarySearchTree, the method call bST.find(target) invokes the starter method.

The recursive method first tests the local root for null. If it is null, the object is not in the
tree, so null is returned. If the local root is not null, the statement

int compResult = target.compareTo(localRoot.data);

compares target to the data at the local root. Recall that method compareTo returns an int
value that is negative, zero, or positive depending on whether the object (target) is less than,
equal to, or greater than the argument (localRoot.data).

If the objects are equal, we return the data at the local root. If target is smaller, we recur-
sively call the method find, passing the left subtree root as the parameter.

return find(localRoot.left, target);

Otherwise, we call find to search the right subtree.
return find(localRoot.right, target);

L I S T I N G 6 . 4

BinarySearchTree find Method

/** Starter method find.
 pre: The target object must implement
 the Comparable interface.
 @param target The Comparable object being sought
 @return The object, if found, otherwise null
 */
public E find(E target) {
 return find(root, target);
}

/** Recursive find method.
 @param localRoot The local subtree's root
 @param target The object being sought
 @return The object, if found, otherwise null
 */
private E find(Node<E> localRoot, E target) {
 if (localRoot == null)
 return null;

 // Compare the target with the data field at the root.
 int compResult = target.compareTo(localRoot.data);
 if (compResult == 0)
 return localRoot.data;
 else if (compResult < 0)
 return find(localRoot.left, target);
 else
 return find(localRoot.right, target);
}

Insertion into a Binary Search Tree
Inserting an item into a binary search tree follows a similar algorithm as searching for the
item because we are trying to find where in the tree the item would be, if it were there. In
searching, a result of null is an indicator of failure; in inserting, we replace this null with a
new leaf that contains the new item. If we reach a node that contains the object we are trying
to insert, then we can’t insert it (duplicates are not allowed), so we return false to indicate
that we were unable to perform the insertion. The insertion algorithm follows.

Koffman-c06.indd 285 10/30/2015 7:31:30 PM

286 Chapter 6 Trees

Recursive Algorithm for Insertion in a Binary Search Tree

1. if the root is null
2. Replace empty tree with a new tree with the item at the root and return true.
3. else if the item is equal to root.data
4. The item is already in the tree; return false.
5. else if the item is less than root.data
6. Recursively insert the item in the left subtree.
7. else
8. Recursively insert the item in the right subtree.

The algorithm returns true when the new object is inserted and false if it is a duplicate
(the second stopping case). The first stopping case tests for an empty tree. If so, a new
BinarySearchTree is created and the new item is stored in its root node (Step 2).

EXAMPLE 6 .8 To insert jill into Figure 6.13, we would follow the steps shown in Example 6.7 except that
when we reached kept, we would insert jill as the left child of the node that contains kept (see
Figure 6.16).

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn jill married sowing the torn waked worried

F I G U R E 6 . 1 6

Inserting Jill

Implementing the add Methods

Listing 6.5 shows the code for the starter and recursive add methods. The recursive add fol-
lows the algorithm presented earlier, except that the return value is the new (sub)tree that
contains the inserted item. The data field addReturn is set to true if the item is inserted and
to false if the item already exists. The starter method calls the recursive method with the
root as its argument. The root is set to the value returned by the recursive method (the modi-
fied tree). The value of addReturn is then returned to the caller.

In the recursive method, the statements
addReturn = true;
return new Node<>(item);

execute when a null branch is reached. The first statement sets the insertion result to true;
the second returns a new node containing item as its data.

Koffman-c06.indd 286 10/30/2015 7:31:30 PM

6.5 Binary Search Trees 287

The statements
addReturn = false;
return localRoot;

execute when item is reached. The first statement sets the insertion result to false; the second
returns a reference to the subtree that contains item in its root.

If item is less than the root’s data, the statement
localRoot.left = add(localRoot.left, item);

attempts to insert item in the left subtree of the local root. After returning from the call, this
left subtree is set to reference the modified subtree, or the original subtree if there is no inser-
tion. The statement

localRoot.right = add(localRoot.right, item);

affects the right subtree of localRoot in a similar way.

L I S T I N G 6 . 5

BinarySearchTree add Methods

/** Starter method add.
 pre: The object to insert must implement the
 Comparable interface.
 @param item The object being inserted
 @return true if the object is inserted, false
 if the object already exists in the tree
 */
public boolean add(E item) {
 root = add(root, item);
 return addReturn;
}

/** Recursive add method.
 post: The data field addReturn is set true if the item is added to
 the tree, false if the item is already in the tree.
 @param localRoot The local root of the subtree
 @param item The object to be inserted
 @return The new local root that now contains the
 inserted item
 */
private Node<E> add(Node<E> localRoot, E item) {
 if (localRoot == null) {
 // item is not in the tree — insert it.
 addReturn = true;
 return new Node<>(item);
 } else if (item.compareTo(localRoot.data) == 0) {
 // item is equal to localRoot.data
 addReturn = false;
 return localRoot;
 } else if (item.compareTo(localRoot.data) < 0) {
 // item is less than localRoot.data
 localRoot.left = add(localRoot.left, item);
 return localRoot;
 } else {
 // item is greater than localRoot.data
 localRoot.right = add(localRoot.right, item);
 return localRoot;
 }
}

Koffman-c06.indd 287 10/30/2015 7:31:30 PM

288 Chapter 6 Trees

Removal from a Binary Search Tree
Removal also follows the search algorithm except that when the item is found, it is removed.
If the item is a leaf node, then its parent’s reference to it is set to null, thereby removing the
leaf node. If the item has only a left or right child, then the grandparent references the remain-
ing child instead of the child’s parent (the node we want to remove).

 P R O G R A M S T Y L E

Comment on Insertion Algorithm and add Methods
Note that as we return along the search path, the statement
 localRoot.left = add(localRoot.left, item);

or
 localRoot.right = add(localRoot.right, item);

resets each local root to reference the modified tree below it. You may wonder whether
this is necessary. The answer is “No.” In fact, it is only necessary to reset the reference
from the parent of the new node to the new node; all references above the parent
remain the same. We can modify the insertion algorithm to do this by checking for a
leaf node before making the recursive call to add:

5.1. else if the item is less than root.data
5.2. if the local root is a leaf node.
5.3. Reset the left subtree to reference a new node with the item as its data.
 else
5.4. Recursively insert the item in the left subtree.

A similar change should be made for the case where item is greater than the local
root’s data. You would also have to modify the starter add method to check for an
empty tree and insert the new item in the root node if the tree is empty instead of
calling the recursive add method.

One reason we did not write the algorithm this way is that we want to be able to
adjust the tree if the insertion makes it unbalanced. This involves resetting one or more
branches above the insertion point. We discuss how this is done in Chapter 9.

 P R O G R A M S T Y L E

Multiple Calls to compareTo
Method add has two calls to method compareTo. We wrote it this way so that the code
mirrors the algorithm. However, it would be more efficient to call compareTo once and
save the result in a local variable as we did for method find. Depending on the
number and type of data fields being compared, the extra call to method compareTo
could be costly.

Koffman-c06.indd 288 10/30/2015 7:31:30 PM

6.5 Binary Search Trees 289

EXAMPLE 6 .9 If we remove is from Figure 6.13, we can replace it with in. This is accomplished by changing
the left child reference in jack (the grandparent) to reference in (see Figure 6.17).

A complication arises when the item we wish to remove has two children. In this case, we
need to find a replacement parent for the children. Remember that the parent must be larger
than all of the data fields in the left subtree and smaller than all of the data fields in the right
subtree. If we take the largest item in the left subtree and promote it to be the parent, then all
of the remaining items in the left subtree will be smaller. This item is also less than the items
in the right subtree. This item is also known as the inorder predecessor of the item being
removed. (We could use the inorder successor instead; this is discussed in the exercises.)

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in

in

kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

F I G U R E 6 . 1 7

Removing is

EXAMPLE 6.10 If we remove house from Figure 6.13, we look in the left subtree (root contains cow) for the
largest item, horn. We then replace house with horn and remove the node containing horn
(see Figure 6.18).

cow

house

lay

rat

jack

horn

milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

F I G U R E 6 . 1 8

Removing house

Koffman-c06.indd 289 10/30/2015 7:31:31 PM

290 Chapter 6 Trees

Recursive Algorithm for Removal from a Binary Search Tree

 1. if the root is null
 2. The item is not in tree – return null.
 3. Compare the item to the data at the local root.
 4. if the item is less than the data at the local root
 5. Return the result of deleting from the left subtree.
 6. else if the item is greater than the local root
 7. Return the result of deleting from the right subtree.
 8. else // The item is in the local root
 9. Store the data in the local root in deleteReturn.
10. if the local root has no children
11. Set the parent of the local root to reference null.
12. else if the local root has one child
13. Set the parent of the local root to reference that child.
14. else // Find the inorder predecessor
15. if the left child has no right child it is the inorder predecessor
16. Set the parent of the local root to reference the left child.
17. else
18. Find the rightmost node in the right subtree of the left

child.
19. Copy its data into the local root’s data and remove it by

setting its parent to reference its left child.

EXAMPLE 6 .11 If we want to remove rat from the tree in Figure 6.13, we would start the search for the
 inorder successor at milked and see that it has a right child, priest. If we now look at priest,
we see that it does not have a right child, but it does have a left child. We would then replace
rat with priest and replace the reference to priest in milked with a reference to morn (the left
subtree of the node containing priest). See Figure 6.19.

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest

priest

shorn tosseddog

forlorn in kept kissed maiden man morn

morn

shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

F I G U R E 6 . 1 9

Removing rat

Koffman-c06.indd 290 10/30/2015 7:31:31 PM

6.5 Binary Search Trees 291

Implementing the delete Methods

Listing 6.6 shows both the starter and the recursive delete methods. As with the add method,
the recursive delete method returns a reference to a modified tree that, in this case, no longer
contains the item. The public starter method is expected to return the item removed. Thus,
the recursive method saves this value in the data field deleteReturn before removing it from
the tree. The starter method then returns this value.

L I S T I N G 6 . 6

BinarySearchTree delete Methods

/** Starter method delete.
 post: The object is not in the tree.
 @param target The object to be deleted
 @return The object deleted from the tree
 or null if the object was not in the tree
 @throws ClassCastException if target does not implement
 Comparable
 */
public E delete(E target) {
 root = delete(root, target);
 return deleteReturn;
}
/** Recursive delete method.
 post: The item is not in the tree;
 deleteReturn is equal to the deleted item
 as it was stored in the tree or null
 if the item was not found.
 @param localRoot The root of the current subtree
 @param item The item to be deleted
 @return The modified local root that does not contain
 the item
 */
private Node<E> delete(Node<E> localRoot, E item) {
 if (localRoot == null) {
 // item is not in the tree.
 deleteReturn = null;
 return localRoot;
 }

 // Search for item to delete.
 int compResult = item.compareTo(localRoot.data);
 if (compResult < 0) {
 // item is smaller than localRoot.data.
 localRoot.left = delete(localRoot.left, item);
 return localRoot;
 } else if (compResult > 0) {
 // item is larger than localRoot.data.
 localRoot.right = delete(localRoot.right, item);
 return localRoot;
 } else {
 // item is at local root.
 deleteReturn = localRoot.data;
 if (localRoot.left == null) {
 // If there is no left child, return right child
 // which can also be null.
 return localRoot.right;

Koffman-c06.indd 291 10/30/2015 7:31:31 PM

292 Chapter 6 Trees

For the recursive method, the two stopping cases are an empty tree and a tree whose root
contains the item being removed. We first test to see whether the tree is empty (local root is
null). If so, then the item sought is not in the tree. The deleteReturn data field is set to null,
and the local root is returned to the caller.

Next, localRoot.data is compared to the item to be deleted. If the item to be deleted is less than
localRoot.data, it must be in the left subtree if it is in the tree at all, so we set localRoot.left
to the value returned by recursively calling this method.

localRoot.left = delete(localRoot.left, item);

If the item to be deleted is greater than localRoot.data, the statement
localRoot.right = delete(localRoot.right, item);

affects the right subtree of localRoot in a similar way.

If localRoot.data is the item to be deleted, we have reached the second stopping case, which
begins with the lines

} else {
 // item is at local root.
 deleteReturn = localRoot.data;
. . .

The value of localRoot.data is saved in deleteReturn. If the node to be deleted has one child
(or zero children), we return a reference to the only child (or null), so the parent of the
deleted node will reference its only grandchild (or null).

If the node to be deleted (jack in the figure at left) has two children, we need to find the
replacement for this node. If its left child has no right subtree, the left child (is) is the inorder
predecessor. The first statement below

localRoot.data = localRoot.left.data;
// Replace the left child with its left child.
localRoot.left = localRoot.left.left;

jack

is killed

in

is

 } else if (localRoot.right == null) {
 // If there is no right child, return left child.
 return localRoot.left;

 } else {
 // Node being deleted has 2 children, replace the data
 // with inorder predecessor.
 if (localRoot.left.right == null) {
 // The left child has no right child.
 // Replace the data with the data in the
 // left child.
 localRoot.data = localRoot.left.data;
 // Replace the left child with its left child.
 localRoot.left = localRoot.left.left;
 return localRoot;
 } else {
 // Search for the inorder predecessor (ip) and
 // replace deleted node's data with ip.
 localRoot.data = findLargestChild(localRoot.left);
 return localRoot;
 }
 }

 }
}

Koffman-c06.indd 292 10/30/2015 7:31:31 PM

6.5 Binary Search Trees 293

copies the left child’s data into the local node’s data (is to jack); the second resets the local
node’s left branch to reference its left child’s left subtree (in).

If the left child of the node to be deleted has a right subtree, the statement
localRoot.data = findLargestChild(localRoot.left);

calls findLargestChild to find the largest child and to remove it. The largest child’s data is
referenced by localRoot.data. This is illustrated in Figure 6.19. The left child milked of the
node to be deleted (rat) has a right child priest, which is its largest child. Therefore, priest
becomes referenced by localRoot.data (replacing rat) and morn (the left child of priest)
becomes the new right child of milked.

Method findLargestChild

Method findLargestChild (see Listing 6.7) takes the parent of a node as its argument. It then
follows the chain of rightmost children until it finds a node whose right child does not itself
have a right child. This is done via tail recursion.

When a parent node is found whose right child has no right child, the right child is the
 inorder predecessor of the node being deleted, so the data value from the right child is saved.

E returnValue = parent.right.data;
parent.right = parent.right.left;

The right child is then removed from the tree by replacing it with its left child (if any).

L I S T I N G 6 . 7

BinarySearchTree findLargestChild Method

/** Find the node that is the
 inorder predecessor and replace it
 with its left child (if any).
 post: The inorder predecessor is removed from the tree.
 @param parent The parent of possible inorder
 predecessor (ip)
 @return The data in the ip
 */
private E findLargestChild(Node<E> parent) {
 // If the right child has no right child, it is
 // the inorder predecessor.
 if (parent.right.right == null) {
 E returnValue = parent.right.data;
 parent.right = parent.right.left;
 return returnValue;
 } else {
 return findLargestChild(parent.right);
 }
}

Testing a Binary Search Tree
To test a binary search tree, you need to verify that an inorder traversal will display the tree
contents in ascending order after a series of insertions (to build the tree) and deletions are
performed. You need to write a toString method for a BinarySearchTree that returns the
String built from an inorder traversal (see Programming Exercise 3).

Koffman-c06.indd 293 10/30/2015 7:31:31 PM

294 Chapter 6 Trees

CASE STUDY Writing an Index for a Term Paper

 Problem You would like to write an index for a term paper. The index should show each word in the
paper followed by the line number on which it occurred. The words should be displayed in
alphabetical order. If a word occurs on multiple lines, the line numbers should be listed in
ascending order. For example, the three lines

a, 3
a, 13
are, 3

 show that the word a occurred on lines 3 and 13 and the word are occurred on line 3.

 Analysis A binary search tree is an ideal data structure to use for storing the index entries. We can store
each word and its line number as a string in a tree node. For example, the two occurrences of
the word Java on lines 5 and 10 could be stored as the strings "java, 005" and "java, 010".
Each word will be stored in lowercase to ensure that it appears in its proper position in the
index. The leading zeros are necessary so that the string "java, 005" is considered less than the
string "java, 010". If the leading zeros were removed, this would not be the case ("java, 5" is
greater than "java, 10"). After all the strings are stored in the search tree, we can display them
in ascending order by performing an inorder traversal. Storing each word in a search tree is an
O(log n) process where n is the number of words currently in the tree. Storing each word in an
ordered list would be an O(n) process.

 Design We can represent the index as an instance of the BinarySearchTree class just discussed or as
an instance of a binary search tree provided in the Java API. The Java API provides a class
TreeSet<E> (discussed further in Section 7.1) that uses a binary search tree as its basis. Class
TreeSet<E> provides three of the methods in interface SearchTree: insertion (add), search
(boolean contains), and removal (boolean remove). It also provides an iterator that enables
inorder access to the elements of a tree. Because we are only doing tree insertion and inorder
access, we will use class TreeSet<E>.

 We will write a class IndexGenerator (see Table 6.5) with a TreeSet<String> data field.
Method buildIndex will read each word from a data file and store it in the search tree.
Method showIndex will display the index.

TA B L E 6 . 5

Data Fields and Methods of Class IndexGenerator

Data Field Attribute

private TreeSet<String> index The search tree used to store the index

private static final String PATTERN Pattern for extracting words from a line. A word is a
string of one or more letters or numbers or characters

Method Behavior

public void buildIndex(Scanner scan) Reads each word from the file scanned by scan and
stores it in tree index

public void showIndex() Performs an inorder traversal of tree index

Koffman-c06.indd 294 10/30/2015 7:31:32 PM

6.5 Binary Search Trees 295

 Implementation Listing 6.8 shows class IndexGenerator. In method buildIndex, the repetition condition
for the outer while loop calls method hasNextLine, which scans the next data line into a
buffer associated with Scanner scan or returns null (causing loop exit) if all lines were
scanned. If the next line is scanned, the repetition condition for the inner while loop below

while ((token = scan.findInLine(PATTERN)) != null) {
 token = token.toLowerCase();
 index.add(String.format("%s, %3d", token, lineNum));
}

 calls Scanner method findInLine to extract a token from the buffer (a sequence of letters,
digits, and the apostrophe character). Next, it inserts in index a string consisting of the next
token in lowercase followed by a comma, a space, and the current line number formatted
with leading spaces so that it occupies a total of three columns. This format is prescribed
by the first argument "%s, %3d" passed to method String.format (see Appendix A.5). The
inner loop repeats until findInLine returns null, at which point the inner loop is exited, the
buffer is emptied by the statement

scan.nextLine(); // Clear the scan buffer

 and the outer loop is repeated.

L I S T I N G 6 . 8

Class IndexGenerator.java

import java.io.*;
import java.util.*;

/** Class to build an index. */
public class IndexGenerator {

 // Data Fields
 /** Tree for storing the index. */
 private final TreeSet<String> index;

 /** Pattern for extracting words from a line. A word is a string of
 one or more letters or numbers or ' characters */
 private static final String PATTERN =
 "[\\p{L}\\p{N}']+";

 // Methods
 public IndexGenerator() {
 index = new TreeSet<>();
 }

 /** Reads each word in a data file and stores it in an index
 along with its line number.
 post: Lowercase form of each word with its line
 number is stored in the index.
 @param scan A Scanner object
 */
 public void buildIndex(Scanner scan) {
 int lineNum = 0; // line number

 // Keep reading lines until done.
 while (scan.hasNextLine()) {
 lineNum++;

Koffman-c06.indd 295 10/30/2015 7:31:32 PM

296 Chapter 6 Trees

 // Extract each token and store it in index.
 String token;
 while ((token = scan.findInLine(PATTERN)) != null) {
 token = token.toLowerCase();
 index.add(String.format("%s, %3d", token, lineNum));
 }
 scan.nextLine(); // Clear the scan buffer

 }
 }

 /** Displays the index, one word per line. */
 public void showIndex() {
 index.forEach(next ‐> System.out.println(next));
 }
}

Method showIndex at the end of Listing 6.8 uses the the default method forEach to display
each line of the index. We describe the forEach in the next syntax box. Without the
forEach, we could use the enhanced for loop below with an iterator.

public void showIndex() {
 // Use an iterator to access and display tree data.
 for (String next : index) {
 System.out.println(next);
 }
}

SYNTAX Using The Java 8 forEach statement
FORM
iterable.forEach(lambda expression);

EXAMPLE

index.forEach(next ‐> System.out.println(next));

INTERPRETATION

Java 8 added the default method forEach to the Iterable interface. A default
method enables you to add new functionality to an interface while still retaining
compatibility with earlier implementations that did not provide this method. The
forEach method applies a method (represented by lambda expression) to each
item of an Iterable object. Since the Set interface extends the Iterable interface
and TreeSet implements Set, we can use the forEach method on the index as
shown in the example above.

 Testing To test class IndexGenerator, write a main method that declares new Scanner and
IndexGenerator<String> objects. The Scanner can reference any text file stored on your
hard drive. Make sure that duplicate words are handled properly (including duplicates on
the same line), that words at the end of each line are stored in the index, that empty lines
are processed correctly, and that the last line of the document is also part of the index.

Koffman-c06.indd 296 10/30/2015 7:31:32 PM

6.6 Heaps and Priority Queues 297

6.6 Heaps and Priority Queues

In this section, we discuss a binary tree that is ordered but in a different way from a binary search
tree. At each level of a heap, the value in a node is less than all values in its two subtrees. Figure 6.20
shows an example of a heap. Observe that 6 is the smallest value. Observe that each parent is
smaller than its children and that each parent has two children, with the exception of node 39 at
level 3 and the leaves. Furthermore, with the exception of 66, all leaves are at the lowest level.
Also, 39 is the next‐to‐last node at level 3, and 66 is the last (rightmost) node at level 3.

E X E R C I S E S F O R S E C T I O N 6 . 5

S E L F ‐ C H E C K

1. Show the tree that would be formed for the following data items. Exchange the first and
last items in each list, and rebuild the tree that would be formed if the items were inserted
in the new order.
a. happy, depressed, manic, sad, ecstatic
b. 45, 30, 15, 50, 60, 20, 25, 90

2. Explain how the tree shown in Figure 6.13 would be changed if you inserted mother. If
you inserted jane? Does either of these insertions change the height of the tree?

3. Show or explain the effect of removing the nodes kept, cow from the tree in Figure 6.13.

4. In Exercise 3 above, a replacement value must be chosen for the node cow because it has
two children. What is the relationship between the replacement word and the word cow?
What other word in the tree could also be used as a replacement for cow? What is the
relationship between that word and the word cow?

5. The algorithm for deleting a node does not explicitly test for the situation where the node
being deleted has no children. Explain why this is not necessary.

6. In Step 19 of the algorithm for deleting a node, when we replace the reference to a node
that we are removing with a reference to its left child, why is it not a concern that we
might lose the right subtree of the node that we are removing?

P R O G R A M M I N G

1. Write methods contains and remove for the BinarySearchTree class. Use methods find and
delete to do the work.

2. Self‐Check Exercise 4 indicates that two items can be used to replace a data item in a
binary search tree. Rewrite method delete so that it retrieves the leftmost element in the
right subtree instead. You will also need to provide a method findSmallestChild.

3. Write a main method to test a binary search tree. Write a toString method that returns the
tree contents in ascending order (using an inorder traversal) with newline characters sepa-
rating the tree elements.

4. Write a main method for the index generator that declares new Scanner and IndexGenerator
objects. The Scanner can reference any text file stored on your hard drive.

Koffman-c06.indd 297 10/30/2015 7:31:32 PM

298 Chapter 6 Trees

More formally, a heap is a complete binary tree with the following properties:

The value in the root is the smallest item in the tree.
Every subtree is a heap.

Inserting an Item into a Heap
We use the following algorithm for inserting an item into a heap. Our approach is to place
each item initially in the bottom row of the heap and then move it up until it reaches the
position where it belongs.

Algorithm for Inserting in a Heap

1. Insert the new item in the next position at the bottom of the heap.
2. while new item is not at the root and new item is smaller than its parent
3. Swap the new item with its parent, moving the new item up the heap.

New items are added to the last row (level) of a heap. If a new item is larger than or equal to
its parent, nothing more need be done. If we insert 89 in the heap in Figure 6.20, 89 would
become the right child of 39 and we are done. However, if the new item is smaller than its
parent, the new item and its parent are swapped. This is repeated up the tree until the new
item is in a position where it is no longer smaller than its parent. For example, let’s add 8 to
the heap shown in Figure 6.21. Since 8 is smaller than 66, these values are swapped as shown
in Figure 6.22. Also, 8 is smaller than 29, so these values are swapped resulting in the updated
heap shown in Figure 6.23. But 8 is greater than 6, so we are done.

Removing an Item from a Heap
Removal from a heap is always from the top. The top item is first replaced with the last item
in the heap (at the lower right‐hand position) so that the heap remains a complete tree. If we
used any other value, there would be a “hole” in the tree where that value used to be. Then
the new item at the top is moved down the heap until it is in its proper position.

Algorithm for Removal from a Heap

1. Remove the item in the root node by replacing it with the last item in the heap (LIH).
2. while item LIH has children, and item LIH is larger than either of its children
3. Swap item LIH with its smaller child, moving LIH down the heap.

20 28

37 26 76 32

39 66

74 89 8

18 29

6

F I G U R E 6 . 2 1

Inserting 8 into a Heap

20 28

37 26 76 32

39 8

74 89 66

18 29

6

F I G U R E 6 . 2 2

Swapping 8 and 66

20 28

37 26 76 32

39 29

74 89 66

18 8

6

F I G U R E 6 . 2 3

Swapping 8 and 29

20 28

37 26 76 32

39 66

74

18 29

6

F I G U R E 6 . 2 0

Example of a Heap

Koffman-c06.indd 298 10/30/2015 7:31:33 PM

6.6 Heaps and Priority Queues 299

As an example, if we remove 6 from the heap shown in Figure 6.23, 66 replaces it as shown
in Figure 6.24. Since 66 is larger than both of its children, it is swapped with the smaller of the
two, 8, as shown in Figure 6.25. The result is still not a heap because 66 is larger than both its
children. Swapping 66 with its smaller child, 29, restores the heap as shown in Figure 6.26.

Implementing a Heap
Because a heap is a complete binary tree, we can implement it efficiently using an array (or
ArrayList) instead of a linked data structure. We can use the first element (subscript 0) for storing
a reference to the root data. We can use the next two elements (subscripts 1 and 2) for storing the
two children of the root. We can use elements with subscripts 3, 4, 5, and 6 for storing the four
children of these two nodes, and so on. Therefore, we can view a heap as a sequence of rows; each
row is twice as long as the previous row. The first row (the root) has one item, the second row
two, the third four, and so on. All of the rows are full except for the last one (see Figure 6.27).

Observe that the root, 6, is at position 0. The root’s two children, 18 and 29, are at positions
1 and 2. For a node at position p, the left child is at 2p + 1 and the right child is at 2p + 2.
A node at position c can find its parent at (c – 1) / 2. Thus, as shown in Figure 6.27, children
of 28 (at position 4) are at positions 9 and 10.

Insertion into a Heap Implemented as an ArrayList
We will use an ArrayList for storing our heap because it is easier to expand and contract
than an array. Figure 6.28 shows the heap after inserting 8 into position 13. This corresponds
to inserting the new value into the lower right position as shown in the figure, right. Now we
need to move 8 up the heap, by comparing it to the values stored in its ancestor nodes. The
parent (66) is in position 6 (13 minus 1 is 12, divided by 2 is 6). Since 66 is larger than 8, we
need to swap as shown in Figure 6.29.

Now the child is at position 6 and the parent is at position 2 (6 minus 1 is 5, divided by 2 is 2).
Since the parent, 29, is larger than the child, 8, we must swap again as shown in Figure 6.30.

The child is now at position 2 and the parent is at position 0. Since the parent is smaller than
the child, the heap property is restored. In the heap insertion and removal algorithms that
follow, we will use table to reference the ArrayList that stores the heap. We will use
table[index] to represent the element at position index of table. In the actual code, a sub-
script cannot be used with an ArrayList.

20 28

37 26 76 32

39 29

74 89

18 8

66

F I G U R E 6 . 2 4

After Removal of 6

20 28

37 26 76 32

39 66

74 89

18

8

29

F I G U R E 6 . 2 6

Swapping 66 and 29

20 28

37 26 76 32

39 29

74 89

18

8

66

F I G U R E 6 . 2 5

Swapping 66 and 8

F I G U R E 6 . 2 7

Internal Representation

of the Heap

6

0 1 2 3 4 5 6 7 8 9 10 11 12

18 29 2820 39 66 37 26 76 32 74 89

Parent

L
eft child

R
ight child

20 28

37 26 76 32

39 66

74 89

18 29

6

Koffman-c06.indd 299 10/30/2015 7:31:33 PM

300 Chapter 6 Trees

Insertion of an Element into a Heap Implemented as an ArrayList

1. Insert the new element at the end of the ArrayList and set child to
table.size() – 1.

2. Set parent to (child – 1) / 2.
3. while (parent >= 0 and table[parent] > table[child])
4. Swap table[parent] and table[child].
5. Set child equal to parent.
6. Set parent equal to (child – 1) / 2.

Removal from a Heap Implemented as an ArrayList
In removing elements from a heap, we must always remove and save the element at the top
of the heap, which is the smallest element. We start with an ArrayList that has been organ-
ized to form a heap. To remove the first item (6), we begin by replacing the first item with the
last item and then removing the last item. This is illustrated in Figure 6.31. The new value of
the root (position 0) is larger than both of its children (18 in position 1 and 8 in position 2).
The smaller of the two children (8 in position 2) is swapped with the parent as shown in

F I G U R E 6 . 2 8

Internal Representation

of Heap after Insertion

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

18 29 2820 39 66 37 26 76 32 74 89 8

Parent

C
hild

20 28

37 26 76 32

39

29

74 889

18

6

66

F I G U R E 6 . 3 0

Internal Representation

of Heap after Second

Swap

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

18 292820 39 37 26 76 32 74 898 66

Parent

C
hild

20 28

37 26 76 32

39

8

74

29

89

18

6

66

F I G U R E 6 . 2 9

Internal Representation

of Heap after First

Swap

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

18 29 2820 39 37 26 76 32 74 898 66

Parent

C
hild

20 28

37 26 76 32

39

29

74

8

89

18

6

66

F I G U R E 6 . 3 1

Internal Representation

of Heap after 6 Is

Removed

66

0 1 2 3 4 5 6 7 8 9 10 11 12

18 8 2820 39 37 26 76 32 74 8929

Parent

R
ight child

L
eft child

20 28

37 26 76 32

39

8

74

29

89

18

66

Koffman-c06.indd 300 10/30/2015 7:31:35 PM

6.6 Heaps and Priority Queues 301

Figure 6.32. Next, 66 is swapped with the smaller of its two new children (29), and the heap
is restored (Figure 6.33).

The algorithm for removal from a heap implemented as an ArrayList follows.

Removing an Element from a Heap Implemented as an ArrayList

 1. Remove the last element (i.e., the one at size() – 1) and set the item at 0
to this value.

 2. Set parent to 0.
 3. while (true)
 4. Set leftChild to (2 * parent) + 1 and rightChild to leftChild + 1.
 5. if leftChild >= table.size()
 6. Break out of loop.
 7. Assume minChild (the smaller child) is leftChild.
 8. if rightChild < table.size() and

table[rightChild] < table[leftChild]

 9. Set minChild to rightChild.
10. if table[parent] > table[minChild]
11. Swap table[parent] and table[minChild].
12. Set parent to minChild.
 else
13. Break out of loop.

The loop (Step 3) is terminated under one of two circumstances: either the item has moved down
the tree so that it has no children (line 5 is true), or it is smaller than both its children (line 10 is
false). In these cases, the loop terminates (line 6 or 13). This is shown in Figure 6.33. At this point
the heap property is restored, and the next smallest item can be removed from the heap.

Performance of the Heap

Method remove traces a path from the root to a leaf, and method insert traces a path from
a leaf to the root. This requires at most h steps, where h is the height of the tree. The largest
heap of height h is a full tree of height h. This tree has 2h – 1 nodes. The smallest heap of

F I G U R E 6 . 3 2

Internal Representation

of Heap after 8 and 66

Are Swapped

8

0 1 2 3 4 5 6 7 8 9 10 11 12

18 66 2820 39 37 26 76 32 74 8929

Parent

R
ight child

L
eft child

20 28

37 26 76 32

39

66

74

29

89

18

8

F I G U R E 6 . 3 3

Internal Representation

of Heap after Swap of

66 and 29

8

0 1 2 3 4 5 6 7 8 9 10 11 12

18 29 2820 39 37 26 76 32 74 8966

Parent

R
ight child

L
eft child

20 28

37 26 76 32

39

29

74

66

89

18

8

Koffman-c06.indd 301 10/30/2015 7:31:36 PM

302 Chapter 6 Trees

height h is a complete tree of height h, consisting of a full tree of height h – 1, with a single
node as the left child of the leftmost child at height h – 1. Thus, this tree has 2(h – 1) nodes.
Therefore, both insert and remove are O(log n) where n is the number of items in the heap.

Priority Queues
In computer science, a heap is used as the basis of a very efficient algorithm for sorting arrays,
called heapsort, which you will study in Chapter 8. The heap is also used to implement a
special kind of queue called a priority queue. However, the heap is not very useful as an
abstract data type (ADT) on its own. Consequently, we will not create a Heap interface or
code a class that implements it. Instead we will incorporate its algorithms when we imple-
ment a priority queue class and heapsort.

Sometimes a FIFO (first‐in‐first‐out) queue may not be the best way to implement a waiting
line. In a print queue, you might want to print a short document before some longer documents
that were ahead of the short document in the queue. For example, if you were waiting by the
printer for a single page to print, it would be very frustrating to have to wait until several docu-
ments of 50 pages or more were printed just because they entered the queue before yours did.
Therefore, a better way to implement a print queue would be to use a priority queue. A priority
queue is a data structure in which only the highest priority item is accessible. During insertion,
the position of an item in the queue is based on its priority relative to the priorities of other
items in the queue. If a new item has higher priority than all items currently in the queue, it will
be placed at the front of the queue and, therefore, will be removed before any of the other items
inserted in the queue at an earlier time. This violates the FIFO property of an ordinary queue.

EXAMPLE 6.12 Figure 6.34 sketches a print queue that at first (top of diagram) contains two documents. We
will assume that each document’s priority is inversely proportional to its page count

(
page count

)priority is
1

. The middle queue shows the effect of inserting a document three

pages long. The bottom queue shows the effect of inserting a second one‐page document. It
follows the earlier document with that page length.

pages = 1
title = "web page 1"

After inserting document with 3 pages

After inserting document with 1 page

pages = 4
title = "history paper"

pages = 1
title = "web page 1"

pages = 3
title = "Lab1"

pages = 4
title = "history paper"

pages = 1
title = "web page 1"

pages = 1
title = "receipt"

pages = 3
title = "Lab1"

pages = 4
title = "history paper"

F I G U R E 6 . 3 4

Insertion into a Priority Queue

Koffman-c06.indd 302 10/30/2015 7:32:37 PM

6.6 Heaps and Priority Queues 303

The PriorityQueue Class
Java provides a PriorityQueue<E> class that implements the Queue<E> interface given in
Chapter 4. The differences are in the specification for the peek, poll, and remove methods.
These are defined to return the smallest item in the queue rather than the oldest item in the
queue. Table 6.6 summarizes the methods of the PriorityQueue<E> class.

Using a Heap as the Basis of a Priority Queue
The smallest item is always removed first from a priority queue (the smallest item has the
highest priority) just as it is for a heap. Because insertion into and removal from a heap is
O(log n), a heap can be the basis for an efficient implementation of a priority queue. We will
call our class KWPriorityQueue to differentiate it from class PriorityQueue in the java.util
API, which also uses a heap as the basis of its implementation.

A key difference is that class java.util.PriorityQueue class uses an array of type Object[] for
heap storage. We will use an ArrayList for storage in KWPriorityQueue because the size of an
ArrayList automatically adjusts as elements are inserted and removed. To insert an item into
the priority queue, we first insert the item at the end of the ArrayList. Then, following the
algorithm described earlier, we move this item up the heap until it is smaller than its parent.

To remove an item from the priority queue, we take the first item from the ArrayList; this is
the smallest item. We then remove the last item from the ArrayList and put it into the first
position of the ArrayList, overwriting the value currently there. Then, following the algo-
rithm described earlier, we move this item down until it is smaller than its children or it has
no children.

Design of KWPriorityQueue Class

The design of the KWPriorityQueue<E> class is shown in Table 6.7. The data field theData is
used to store the heap. We discuss the purpose of data field comparator shortly. We have
added methods compare and swap to those shown earlier in Table 6.6. Method compare com-
pares its two arguments and returns a type int value indicating their relative ordering. The
class heading and data field declarations follow.

import java.util.*;

/** The KWPriorityQueue implements the Queue interface
 by building a heap in an ArrayList. The heap is structured
 so that the “smallest” item is at the top.
 */

TA B L E 6 . 6

Methods of the PriorityQueue<E> Class

Method Behavior

boolean offer(E item) Inserts an item into the queue. Returns true if successful; returns false if the item
could not be inserted

E remove() Removes the smallest entry and returns it if the queue is not empty. If the queue is
empty, throws a NoSuchElementException

E poll() Removes the smallest entry and returns it. If the queue is empty, returns null

E peek() Returns the smallest entry without removing it. If the queue is empty, returns null

E element() Returns the smallest entry without removing it. If the queue is empty, throws a
NoSuchElementException

Koffman-c06.indd 303 10/30/2015 7:32:37 PM

304 Chapter 6 Trees

public class KWPriorityQueue<E> extends AbstractQueue<E>
 implements Queue<E> {

 // Data Fields
 /** The ArrayList to hold the data. */
 private ArrayList<E> theData;
 /** An optional reference to a Comparator object. */
 Comparator<E> comparator = null;

 // Methods
 // Constructor
 public KWPriorityQueue() {
 theData = new ArrayList<>();
 }
. . .

TA B L E 6 . 7

Design of KWPriorityQueue<E> Class

Data Field Attribute

ArrayList<E> theData An ArrayList to hold the data

Comparator<E> comparator An optional object that implements the Comparator<E> interface by providing
a compare method

Method Behavior

KWPriorityQueue() Constructs a heap‐based priority queue that uses the elements’ natural ordering

KWPriorityQueue

(Comparator<E> comp)

Constructs a heap‐based priority queue that uses the compare method of
Comparator comp to determine the ordering of the elements

private int compare(E left,

E right)
Compares two objects and returns a negative number if object left is less than
object right, zero if they are equal, and a positive number if object left is
greater than object right

private void swap(int i, int j) Exchanges the object references in theData at indexes i and j

The offer Method

The offer method appends the new item to the ArrayList theData. It then moves this item
up the heap until the ArrayList is restored to a heap.

/** Insert an item into the priority queue.
 pre: The ArrayList theData is in heap order.
 post: The item is in the priority queue and
 theData is in heap order.
 @param item The item to be inserted
 @throws NullPointerException if the item to be inserted is null.
 */
@Override
public boolean offer(E item) {
 // Add the item to the heap.
 theData.add(item);
 // child is newly inserted item.
 int child = theData.size() ‐ 1;
 int parent = (child ‐ 1) / 2; // Find child's parent.
 // Reheap
 while (parent >= 0 && compare(theData.get(parent),
 theData.get(child)) > 0) {

Koffman-c06.indd 304 10/30/2015 7:32:37 PM

6.6 Heaps and Priority Queues 305

 swap(parent, child);
 child = parent;
 parent = (child ‐ 1) / 2;
 }
 return true;
}

The poll Method

The poll method first saves the item at the top of the heap. If there is more than one item in
the heap, the method removes the last item from the heap and places it at the top. Then it
moves the item at the top down the heap until the heap property is restored. Next it returns
the original top of the heap.

/** Remove an item from the priority queue
 pre: The ArrayList theData is in heap order.
 post: Removed smallest item, theData is in heap order.
 @return The item with the smallest priority value or null if empty.
 */
@Override
public E poll() {
 if (isEmpty()) {
 return null;
 }
 // Save the top of the heap.
 E result = theData.get(0);
 // If only one item then remove it.
 if (theData.size() == 1) {
 theData.remove(0);
 return result;
 }

 /* Remove the last item from the ArrayList and place it into
 the first position. */
 theData.set(0, theData.remove(theData.size() ‐ 1));
 // The parent starts at the top.
 int parent = 0;
 while (true) {
 int leftChild = 2 * parent + 1;
 if (leftChild >= theData.size()) {
 break; // Out of heap.
 }
 int rightChild = leftChild + 1;
 int minChild = leftChild; // Assume leftChild is smaller.
 // See whether rightChild is smaller.
 if (rightChild < theData.size()
 && compare(theData.get(leftChild),
 theData.get(rightChild)) > 0) {
 minChild = rightChild;
 }
 // assert: minChild is the index of the smaller child.
 // Move smaller child up heap if necessary.
 if (compare(theData.get(parent),
 theData.get(minChild)) > 0) {
 swap(parent, minChild);
 parent = minChild;
 } else { // Heap property is restored.
 break;
 }
 }
 return result;
}

Koffman-c06.indd 305 10/30/2015 7:32:37 PM

306 Chapter 6 Trees

The Other Methods
The iterator and size methods are implemented via delegation to the corresponding
ArrayList methods. Method isEmpty tests whether the result of calling method size is 0 and
is inherited from class AbstractCollection (a super interface to AbstractQueue). Methods
peek and remove (based on poll) must also be implemented; they are left as exercises. Methods
add and element are inherited from AbstractQueue where they are implemented by calling
methods offer and peek, respectively.

Using a Comparator
How do we compare elements in a PriorityQueue? In many cases, we will insert objects that
implement Comparable<E> and use their natural ordering as specified by method compareTo.
However, we may need to insert objects that do not implement Comparable<E>, or we may
want to specify a different ordering from that defined by the object’s compareTo method. For
example, files to be printed may be ordered by their name using the compareTo method, but
we may want to assign priority based on their length. The Java API contains the Comparator<E>
interface, which allows us to specify alternative ways to compare objects. An implementer of
the Comparator<E> interface must define a compare method that is similar to compareTo except
that it has two parameters (see Table 6.7).

To indicate that we want to use an ordering that is different from the natural ordering for the
objects in our heap, we will provide a constructor that has a Comparator<E> parameter. The
constructor will set data field comparator to reference this parameter. Otherwise, comparator
will remain null. To match the form of this constructor in the java.util.PriorityQueue
class, we provide a first parameter that specifies the initial capacity of ArrayList theData.

/** Creates a heap‐based priority queue with the specified initial
 capacity that orders its elements according to the specified
 comparator.
 @param cap The initial capacity for this priority queue
 @param comp The comparator used to order this priority queue
 @throws IllegalArgumentException if cap is less than 1
 */
public KWPriorityQueue(int cap, Comparator<E> comp) {
 if (cap < 1)
 throw new IllegalArgumentException();
 theData = new ArrayList<>();
 comparator = comp;
}

The compare Method
If data field comparator references a Comparator<E> object, method compare will delegate the
task of comparing its argument objects to that object’s compare method. If comparator is null,
the natural ordering of the objects should be used, so method compare will delegate to method
compareTo. Note that parameter left is cast to type Comparable<E> in this case. In the next
example, we show how to write a Comparator class.

/** Compare two items using either a Comparator object's compare method
 or their natural ordering using method compareTo.
 @pre: If comparator is null, left and right implement Comparable<E>.
 @param left One item
 @param right The other item
 @return Negative int if left less than right,
 0 if left equals right,
 positive int if left > right
 @throws ClassCastException if items are not Comparable
 */

Koffman-c06.indd 306 10/30/2015 7:32:37 PM

6.6 Heaps and Priority Queues 307

@SuppressWarnings("unchecked")
private int compare(E left, E right) {
 if (comparator != null) { // A Comparator is defined.
 return comparator.compare(left, right);
 } else { // Use left's compareTo method.
 return ((Comparable<E>) left).compareTo(right);
 }
}

EXAMPLE 6.13 The class PrintDocument is used to define documents to be printed on a printer. This class
implements the Comparable interface, but the result of its compareTo method is based on the
name of the file being printed. The class also has a getSize method that gives the number
of bytes to be transmitted to the printer and a getTimeStamp method that gets the time
that the print job was submitted. Instead of basing the ordering on file names, we want to
order the documents by a value that is a function of both size and the waiting time of a
document. If we were to use either time or size alone, small documents could be delayed
while big ones are printed, or big documents would never be printed. By using a priority
value that is a combination, we achieve a balanced usage of the printer.

In Java 8, the Comparator interface is also defined as a functional interface (see Table 6.2). Its
abstract method compare takes two arguments of the same type and returns an integer
 indicating their ordering. We can pass a lambda expression as a function parameter to the
constructor that creates a KWPriorityQueue object. This method will implement the abstract
compare method and determine the ordering of objects in the print queue.

The compare method for printQueue specified in the following fragment uses the weighted
sum of the size and time stamp for documents left and right using the weighting factors P1
and P2. Method Double.compare in this fragment compares two double values and returns a
negative value, 0, or a positive value depending on whether leftValue is <, equal to, or >
rightValue.
 final double P1 = 0.8;
 final double P2 = 0.2;
 Queue<PrintDocument> printQueue =
 new KWPriorityQueue<>(25, (left, right) ‐> {
 double leftValue = P1 * left.getSize() + P2 * left.getTimeStamp();
 double rightValue = P1 * right.getSize() + P2 * right.getTimeStamp();
 return Double.compare(leftValue, rightValue);

 });

E X E R C I S E S F O R S E C T I O N 6 . 5

S E L F ‐ C H E C K

1. Show the heap that would be used to store the words this, is, the, house, that, jack, built,
assuming they are inserted in that sequence. Exchange the order of arrival of the first and
last words and build the new heap.

2. Draw the heaps for Exercise 1 above as arrays.

Earlier versions of Java could not implement the Comparator object by passing a lambda
expression to a constructor. The textbook website discusses how to define the Comparator
object before Java 8.

Koffman-c06.indd 307 10/30/2015 7:32:37 PM

308 Chapter 6 Trees

6.7 Huffman Trees

In Section 6.1, we showed the Huffman coding tree and how it can be used to decode a
message. We will now implement some of the methods needed to build a tree and decode
a message. We will do this using a binary tree and a PriorityQueue (which also uses a
binary tree).

A straight binary coding of an alphabet assigns a unique binary number k to each symbol in
the alphabet ak. An example of such a coding is Unicode, which is used by Java for the char
data type. There are 65,536 possible characters, and they are assigned a number between 0
and 65,535, which is a string of 16 binary digit ones. Therefore, the length of a message
would be 16 × n, where n is the total number of characters in the message. For example, the
message “go eagles” contains 9 characters and would require 9 × 16 or 144 bits. As shown in
the example in Section 6.1, a Huffman coding of this message requires just 38 bits.

Table 6.8, based on data published in Donald Knuth, The Art of Computer Programming,
Vol 3: Sorting and Searching (Addison‐Wesley, 1973), p. 441, represents the relative frequen-
cies of the letters in English text and is the basis of the tree shown in Figure 6.35. The letter
e occurs an average of 103 times every 1000 letters, or 10.3 percent of the letters are es. (This
is a useful table to know if you are a fan of Wheel of Fortune.) We can use this Huffman tree
to encode and decode a file of English text. However, files may contain other symbols or may
contain these symbols in different frequencies from what is found in normal English. For this
reason, you may want to build a custom Huffman tree based on the contents of the file you
are encoding. You would from attach this tree to the encoded file so that it can be used to
decode the file. We discuss how to build a Huffman tree in the next case study.

3. Show the result of removing the number 18 from the heap in Figure 6.26. Show the new
heap and its array representation.

4. The heaps in this chapter are called min heaps because the smallest key is at the top of the
heap. A max heap is a heap in which each element has a key that is smaller than its parent,
so the largest key is at the top of the heap. Build the max heap that would result from the
numbers 15, 25, 10, 33, 55, 47, 82, 90,18 arriving in that order.

5. Show the printer queue after receipt of the following documents:

time stamp size

1100 256

1101 512

1102 64

1103 96

P R O G R A M M I N G

1. Complete the implementation of the KWPriorityQueue class. Write method swap. Also write
methods peek, remove, isEmpty, and size.

Koffman-c06.indd 308 10/30/2015 7:32:37 PM

6.7 Huffman Trees 309

TA B L E 6 . 8

Frequency of Letters in English Text

Symbol Frequency Symbol Frequency Symbol Frequency

⎵ 186 h 47 g 15

e 103 d 32 p 15

t 80 l 32 b 13

a 64 u 23 v 8

o 63 c 22 k 5

i 57 f 21 j 1

n 57 m 20 q 1

s 51 w 18 x 1

r 48 y 16 z 1

0 1

0 1

0 1 0 1 0 1 0 1

0 1

0 1

0 1

0 1 0 1

0 1

0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 10 1

0 1

c

e

h nir s

u

o a

d

b p g y

v

k

x q z j

w m f

t

l

[

F I G U R E 6 . 3 5

Huffman Tree Based on Frequency of Letters in English Text

Koffman-c06.indd 309 10/30/2015 7:32:38 PM

310 Chapter 6 Trees

CASE STUDY Building a Custom Huffman Tree

 Problem You want to build a custom Huffman tree for a particular file. Your input will consist of
an array of objects such that each object contains a reference to a symbol occurring in that
file and the frequency of occurrence (weight) for the symbol in that file.

 Analysis Each node of a Huffman tree has storage for two data items: the weight of the node and the
symbol associated with that node. All symbols will be stored at leaf nodes. For nodes that are
not leaf nodes, the symbol part has no meaning. The weight of a leaf node will be the frequency
of the symbol stored at that node. The weight of an interior node will be the sum of frequen-
cies of all nodes in the subtree rooted at the interior node. For example, the interior node with
leaf nodes c and u (on the left of Figure 6.35) would have a weight of 45 (22 + 23).

We will use a priority queue as the key data structure in constructing the Huffman
tree. We will store individual symbols and subtrees of multiple symbols in order by their
priority (frequency of occurrence). We want to remove symbols that occur less frequently
first because they should be lower down in the Huffman tree we are constructing. We
discuss how this is done next.

To build a Huffman tree, we start by inserting references to trees with just leaf nodes in a
priority queue. Each leaf node will store a symbol and its weight. The queue elements will
be ordered so that the leaf node with the smallest weight (lowest frequency) is removed
first. Figure 6.36 shows a priority queue, containing just the symbols a, b, c, d, and e, that
uses the weights shown in Table 6.8. The item at the front of the queue stores a reference
to a tree with a root node that is a leaf node containing the symbol b with a weight
(frequency) of 13. To represent the tree referenced by a queue element, we list the root
node information for that tree. The queue elements are shown in priority order.

Now we start to build the Huffman tree. We build it from the bottom up. The first step is
to remove the first two tree references from the priority queue and combine them to form
a new tree. The weight of the root node for this tree will be the sum of the weights of its left
and right subtrees. We insert the new tree back into the priority queue. The priority queue
now contains references to four binary trees instead of five. The tree referenced by the
 second element of the queue has a combined weight of 35 (13 + 22) as shown on the left.

Again we remove the first two tree references and combine them. The new binary tree will
have a weight of 67 in its root node. We put this tree back in the queue, and it will be
referenced by the second element of the queue.

We repeat this process again. The new queue follows:

F I G U R E 6 . 3 6

Priority Queue with

the Symbols a, b, c,
d, and e

13 22 32 64 103

b c d a e

32 35 64 103

d

13

b

22

c

a e

64 67 103

32

d

35

a e

13

b

22

c

131103

64

a

67

e

32

d

35

13

b

22

c

Koffman-c06.indd 310 10/30/2015 7:32:39 PM

6.7 Huffman Trees 311

 Design The class HuffData will represent the data to be stored in each node of the Huffman binary
tree. For a leaf, a HuffData object will contain the symbol and the weight.

Our class HuffmanTree will have the methods and attributes listed in Table 6.10.

Algorithm for Building a Huffman Tree

1. Construct a set of trees with root nodes that contain each of the individual symbols
and their weights.

2. Place the set of trees into a priority queue.
3. while the priority queue has more than one item
4. Remove the two trees with the smallest weights.
5. Combine them into a new binary tree in which the weight of the tree root is the

sum of the weights of its children.
6. Insert the newly created tree back into the priority queue.

Each time through the while loop, two nodes are removed from the priority queue and one
is inserted. Thus, effectively one tree is removed, and the queue gets smaller with each pass
through the loop.

Finally, we combine the last two elements into a new tree and put a reference to it in
the priority queue. Now there is only one tree in the queue, so we have finished build-
ing the Huffman tree (see Figure 6.37). Table 6.9 shows the codes for this tree.

0 1

0 1

0 1

0 1

e

a

cd

cb cc

F I G U R E 6 . 3 7

Huffman Tree of a, b, c,
d, and e

TA B L E 6 . 9

Huffman Code for a, b, c, d, and e

Symbol Code

a 10

b 1110

c 1111

d 110

e 0

TA B L E 6 . 1 0

Data Fields and Methods of Class HuffmanTree

Data Field Attribute

BinaryTree<HuffData> huffTree A reference to the Huffman tree

Method Behavior

buildTree(HuffData[] input) Builds the Huffman tree using the given alphabet and weights

String decode(String message) Decodes a message using the generated Huffman tree

printCode(PrintStream out) Outputs the resulting code

 Implementation Listing 6.9 shows the data field declarations for class HuffmanTree. Method buildTree and
the comparator are discussed in the next section.

Koffman-c06.indd 311 10/30/2015 7:32:39 PM

312 Chapter 6 Trees

L I S T I N G 6 . 9

Class HuffmanTree

import java.util.*;
import java.io.*;

/** Class to represent and build a Huffman tree. */
public class HuffmanTree implements Serializable {

 // Nested Classes
 /** A datum in the Huffman tree. */
 public static class HuffData implements Serializable {
 // Data Fields
 /** The weight or probability assigned to this HuffData. */
 private double weight;
 /** The alphabet symbol if this is a leaf. */
 private char symbol;

 public HuffData(double weight, Character symbol) {
 this.weight = weight;
 this.symbol = symbol;
 }
 }

 // Data Fields
 /** A reference to the completed Huffman tree. */
 private BinaryTree<HuffData> huffTree;

The buildTree Method

Method buildTree (see Listing 6.10) takes an array of HuffData objects as its parameter.
The statement

Queue<BinaryTree<HuffData>> theQueue
 = new PriorityQueue<>(symbols.length,
 (lt, rt) ‐> Double.compare(lt.getData().weight,
 rt.getData().weight)
);

 creates a new priority queue for storing BinaryTree<HuffData> objects using the
PriorityQueue class in the java.util API. The constructor above takes two arguments repre-
senting the initial capacity and comparator for theQueue. The lambda expression passed as
the constructor’s second argument is the comparator:

(lt, rt) ‐> Double.compare(lt.getData().weight,
 rt.getData().weight)

 The enhanced for loop loads the priority queue with trees consisting just of leaf nodes.
Each leaf node contains a HuffData object with the weight and alphabet symbol.

The while loop builds the tree. Each time through this loop, the trees with the smallest
weights are removed and referenced by left and right. The statements

HuffData sum = new HuffData(wl + wr, '\u0000');
BinaryTree<HuffData> newTree
 = new BinaryTree<>(sum, left, right);

combine them to form a new BinaryTree with a root node whose weight is the sum of the
weights of its children and whose symbol is the null character '\u0000'. This new tree is then
inserted into the priority queue. The number of trees in the queue decreases by 1 each time we
do this. Eventually there will only be one tree in the queue, and that will be the completed
Huffman tree. The last statement sets the variable huffTree to reference this tree.

Koffman-c06.indd 312 10/30/2015 7:32:39 PM

6.7 Huffman Trees 313

L I S T I N G 6 . 1 0

The buildTree Method (HuffmanTree.java)

/** Builds the Huffman tree using the given alphabet and weights.
 post: huffTree contains a reference to the Huffman tree.
 @param symbols An array of HuffData objects
 */
public void buildTree(HuffData[] symbols) {
 Queue<BinaryTree<HuffData>> theQueue
 = new PriorityQueue<>(symbols.length,
 (lt, rt) ‐> Double.compare(lt.getData().weight,
 rt.getData().weight));
 // Load the queue with the leaves.
 for (HuffData nextSymbol : symbols) {
 BinaryTree<HuffData> aBinaryTree =
 new BinaryTree<>(nextSymbol, null, null);
 theQueue.offer(aBinaryTree);
 }

 // Build the tree.
 while (theQueue.size() > 1) {
 BinaryTree<HuffData> left = theQueue.poll();
 BinaryTree<HuffData> right = theQueue.poll();
 double wl = left.getData().weight;
 double wr = right.getData().weight;
 HuffData sum = new HuffData(wl + wr, '\u0000');
 BinaryTree newTree =
 new BinaryTree<>(sum, left, right);
 theQueue.offer(newTree);
 }

 // The queue should now contain only one item.
 huffTree = theQueue.poll();
}

The textbook Web site shows how to write method buildTree and a comparator without
using the new features of Java 8.

 Testing Methods printCode and decode can be used to test the custom Huffman tree. Method
printCode displays the tree, so you can examine it and verify that the Huffman tree that
was built is correct based on the input data.

Method decode will decode a message that has been encoded using the code stored in the
Huffman tree and displayed by printCode, so you can pass it a message string that consists
of binary digits only and see whether it can be transformed back to the original symbols.

We will discuss testing the Huffman tree further in the next chapter when we continue the
case study.

The printCode Method

To display the code for each alphabet symbol, we perform a preorder traversal of the final
tree. The code so far is passed as a parameter along with the current node. If the current
node is a leaf, as indicated by the symbol not being null, then the code is output. Otherwise
the left and right subtrees are traversed. When we traverse the left subtree, we append a 0
to the code, and when we traverse the right subtree, we append a 1 to the code. Recall that
at each level in the recursion, there is a new copy of the parameters and local variables.

Koffman-c06.indd 313 10/30/2015 7:32:39 PM

314 Chapter 6 Trees

/** Outputs the resulting code.
 @param out A PrintStream to write the output to
 @param code The code up to this node
 @param tree The current node in the tree
 */
private void printCode(PrintStream out, String code,
 BinaryTree<HuffData> tree) {
 HuffData theData = tree.getData();
 if (theData.symbol != '\u0000') {
 if (theData.symbol.equals(" ")) {
 out.println("space: " + code);
 } else {
 out.println(theData.symbol + ": " + code);
 }
 } else {
 printCode(out, code + "0", tree.getLeftSubtree());
 printCode(out, code + "1", tree.getRightSubtree());
 }
}

The decode Method

To illustrate the decode process, we will show a method that takes a String that contains a
sequence of the digit characters '0' and '1' and decodes it into a message that is also a String.
Method decode starts by setting currentTree to the Huffman tree. It then loops through
the coded message one character at a time. If the character is a '1', then currentTree is set to the
right subtree; otherwise, it is set to the left subtree. If the currentTree is now a leaf, the symbol
is appended to the result and currentTree is reset to the Huffman tree (see Listing 6.11). Note
that this method is for testing purposes only. In actual usage, a message would be encoded as a
string of bits (not digit characters) and would be decoded one bit at a time.

L I S T I N G 6 . 1 1

The decode Method (HuffmanTree.java)

/** Method to decode a message that is input as a string of
 digit characters '0' and '1'.
 @param codedMessage The input message as a String of
 zeros and ones.
 @return The decoded message as a String
 */
public String decode(String codedMessage) {
 StringBuilder result = new StringBuilder();
 BinaryTree<HuffData> currentTree = huffTree;
 for (int i = 0; i < codedMessage.length(); i++) {
 if (codedMessage.charAt(i) == '1') {
 currentTree = currentTree.getRightSubtree();
 } else {
 currentTree = currentTree.getLeftSubtree();
 }
 if (currentTree.isLeaf()) {
 HuffData theData = currentTree.getData();
 result.append(theData.symbol);
 currentTree = huffTree;
 }
 }
 return result.toString();
}

Koffman-c06.indd 314 10/30/2015 7:32:39 PM

6.7 Huffman Trees 315

E X E R C I S E S F O R S E C T I O N 6 . 6

S E L F ‐ C H E C K

1. What is the Huffman code for the letters a, j, k, l, s, t, and v using Figure 6.35?

2. Trace the execution of method printCode for the Huffman tree in Figure 6.37.

3. Trace the execution of method decode for the Huffman tree in Figure 6.37 and the encoded
message string "11101011011001111".

4. Create the Huffman code tree for the following frequency table. Show the different states
of the priority queue as the tree is built (see Figure 6.36).

Symbol Frequency

* 50

+ 30

‐ 25

/ 10

% 5

5. What would the Huffman code look like if all symbols in the alphabet had equal
frequency?

P R O G R A M M I N G

1. Write a method encode for the HuffmanTree class that encodes a String of letters that is
passed as its first argument. Assume that a second argument, codes (type String[]), con-
tains the code strings (binary digits) for the symbols (space at position 0, a at position 1,
b at position 2, etc.).

 P R O G R A M S T Y L E

A Generic HuffmanTree Class
We chose to implement a nongeneric HuffmanTree class to simplify the coding.
However, it may be desirable to build a Huffman tree for storing Strings (e.g., to
encode words in a document instead of the individual letters) or for storing groups of
pixels in an image file. A generic HuffmanTree<T> class would define a generic inner
class HuffData<T> where the T is the data type of data field symbol. Each parameter
type <HuffData> in our class HuffmanTree would be replaced by <HuffData<T>>, which
indicates that T is a type parameter for class HuffData.

Koffman-c06.indd 315 10/30/2015 7:32:39 PM

316 Chapter 6 Trees

C h a p t e r R e v i e w

 ◆ A tree is a recursive, nonlinear data structure that is used to represent data that is organized
as a hierarchy.

 ◆ A binary tree is a collection of nodes with three components: a reference to a data object,
a reference to a left subtree, and a reference to a right subtree. A binary tree object has a
single data field, which references the root node of the tree.

 ◆ In a binary tree used to represent arithmetic expressions, the root node should store the
operator that is evaluated last. All interior nodes store operators, and the leaf nodes store
operands. An inorder traversal (traverse left subtree, visit root, traverse right subtree) of
an expression tree yields an infix expression, a preorder traversal (visit root, traverse left
subtree, traverse right subtree) yields a prefix expression, and a postorder traversal (trav-
erse left subtree, traverse right subtree, visit root) yields a postfix expression.

 ◆ Java 8 lambda expressions enable a programmer to practice functional programming in Java.
A lambda expression is an anonymous method with a special shorthand notation to specify
its arguments and method body. A lambda interface may be assigned to a object that instanti-
ates a functional interface. The method body of the lambda expression will implement the
single abstract method of the functional interface and will execute when applied to the func-
tional object. Java 8 provides a set of functional interfaces in library java.util.function. A
lambda expression may also be passed to a method with a parameter that is a function object.

 ◆ A binary search tree is a tree in which the data stored in the left subtree of every node is
less than the data stored in the root node, and the data stored in the right subtree of every
node is greater than the data stored in the root node. The performance depends on the full-
ness of the tree and can range from O(n) (for trees that resemble linked lists) to O(log n) if
the tree is full. An inorder traversal visits the nodes in increasing order.

 ◆ A heap is a complete binary tree in which the data in each node is less than the data in both
its subtrees. A heap can be implemented very effectively as an array. The children of the
node at subscript p are at subscripts 2p + 1 and 2p + 2. The parent of child c is at (c – 1) / 2.
The item at the top of a heap is the smallest item.

 ◆ Insertion and removal in a heap are both O(log n). For this reason, a heap can be used to
efficiently implement a priority queue. A priority queue is a data structure in which the
item with the highest priority (indicated by the smallest value) is removed next. The item
with the highest priority is at the top of a heap and is always removed next.

 ◆ A Huffman tree is a binary tree used to store a code that facilitates file compression. The
length of the bit string corresponding to a symbol in the file is inversely proportional to its
frequency, so the symbol with the highest frequency of occurrence has the shortest length.
In building a Huffman tree, a priority queue is used to store the symbols and trees formed
so far. Each step in building the Huffman tree consists of removing two items and forming
a new tree with these two items as the left and right subtrees of the new tree’s root node. A
reference to each new tree is inserted in the priority queue.

Java API Interfaces and Classes Introduced in This Chapter
java.text.DecimalFormat java.util.PriorityQueue
java.util.Comparator java.util.TreeSet
java.util.function.BiConsumer java.util.function.BinaryOperator
java.util.function.Consumer java.util.function.Function
java.util.function.IntPredicate

Koffman-c06.indd 316 10/30/2015 7:32:40 PM

 Chapter 6 Review 317

BinarySearchTree IndexGenerator
BinaryTree KWPriorityQueue
CompareHuffmanTrees Node
ComparePrintDocuments PrintDocument
HuffData PriorityQueue
HuffmanTree SearchTree

User‐Defined Interfaces and Classes in This Chapter

Quick‐Check Exercises
 1. For the following expression tree

ec

a b

- d

+

/*

 a. Is the tree full? _____ Is the tree complete? _____
 b. List the order in which the nodes would be visited in a preorder traversal.
 c. List the order in which the nodes would be visited in an inorder traversal.
 d. List the order in which the nodes would be visited in a postorder traversal.

 2. Searching a full binary search tree is O(____).
 3. A heap is a binary tree that is a (full / complete) tree.
 4. Write a lambda expression that can be used as a comparator that compares two objects by weight

Assume there is method getWeight() that returns a double value.
 5. Show the binary search tree that would result from inserting the items 35, 20, 30, 50, 45, 60, 18,

25 in this sequence.
 6. Show the binary search tree in Exercise 4 after 35 is removed.
 7. Show the heap that would result from inserting the items from Exercise 4 in the order given.
 8. Draw the heap from Exercise 6 as an array.
 9. Show the heap in Exercise 7 after 18 is removed.
10. In a Huffman tree, the item with the highest frequency of occurrence will have the _____ code.
11. List the code for each symbol shown in the following Huffman tree.

h r

a t e

s i n o

[

Koffman-c06.indd 317 10/30/2015 7:32:40 PM

Review Questions
1. Draw the tree that would be formed by inserting the words in this question into a binary search tree.

Use lowercase letters.
2. Show all three traversals of this tree.
3. Show the tree from Question 1 after removing draw, by, and letters in that order.
4. Answer Question 1, but store the words in a heap instead of a binary search tree.
5. Write a lambda expression that can be used as a predicate that returns true if object’s color is red.

Assume there is a method getColor that returns the color as a string.
6. Given the following frequency table, construct a Huffman code tree. Show the initial priority queue

and all changes in its state as the tree is constructed.

Symbol Frequency

x 34

y 28

w 20

a 10

b 8

c 5

Programming Projects
1. Assume that a class ExpressionTree has a data field that is a BinaryTree. Write an instance

method to evaluate an expression stored in a binary tree whose nodes contain either integer values
(stored in Integer objects) or operators (stored in Character objects). Your method should imple-
ment the following algorithm.

Algorithm to Evaluate an Expression Tree

1. if the root node is an Integer object
2. Return the integer value.
3. else if the root node is a Character object
4. Let leftVal be the value obtained by recursively applying this algorithm to

the left subtree.
5. Let rightVal be the value obtained by recursively applying this algorithm

to the right subtree.
6. Return the value obtained by applying the operator in the root node to leftVal

and rightVal.

Use method readBinaryTree to read the expression tree.

2. Write an application to test the HuffmanTree class. Your application will need to read a text file
and build a frequency table for the characters occurring in that file. Once that table is built, create
a Huffman code tree and then a string consisting of '0' and '1' digit characters that represents
the code string for that file. Read that string back in and re‐create the contents of the original file.

3. Solve Programming Project 4 in Chapter 4, “Queues,” using the class PriorityQueue.
4. Build a generic HuffmanTree<T> class such that the symbol type T is specified when the tree is

 created. Test this class by using it to encode the words in your favorite nursery rhyme.
5. Write clone, size, and height methods for the BinaryTree class.
6. In a breadth‐first traversal of a binary tree, the nodes are visited in an order prescribed by their level.

First visit the node at level 1, the root node. Then visit the nodes at level 2, in left‐to‐right order, and
so on. You can use a queue to implement a breadth‐first traversal of a binary tree.

318 Chapter 6 Trees

Koffman-c06.indd 318 10/30/2015 7:32:40 PM

 Chapter 6 Review 319

Algorithm for Breadth‐First Traversal of a Binary Tree

1. Insert the root node in the queue.
2. while the queue is not empty
3. Remove a node from the queue and visit it.
4. Place references to its left and right subtrees in the queue.

Code this algorithm and test it on several binary trees.
7. Define an IndexTree class such that each node has data fields to store a word, the count of occur-

rences of that word in a document file, and the line number for each occurrence. Use an ArrayList
to store the line numbers. Use an IndexTree object to store an index of words appearing in a text
file, and then display the index by performing an inorder traversal of this tree.

8. Extend the BinaryTreeClass to implement the Iterable interface by providing an iterator. The
iterator should access the tree elements using an inorder traversal. The iterator is implemented as a
nested private class. (Note: Unlike Node, this class should not be static.)

 Design hints:
 You will need a stack to hold the path from the current node back to the root. You will also need a

reference to the current node (current) and a variable that stores the last item returned.
 To initialize current, the constructor should start at the root and follow the left links until a node

is reached that does not have a left child. This node is the initial current node.
 The remove method can throw an UnsupportedOperationException. The next method should

use the following algorithm:

 1. Save the contents of the current node.
 2. If the current node has a right child
 3. push the current node onto the stack
 4. set the current node to the right child
 5. while the current node has a left child
 6. push the current node onto the stack
 7. set the current node to the left child
 8. else the current node does not have a right child
 9. while the stack is not empty and
 the top node of the stack’s right child is equal to the current node
10. set the current node to the top of the stack and pop the stack
11. if the stack is empty
12. set the current node to null indicating that iteration is complete
13. else
14. set the current node to the top of the stack and pop the stack
15. return the saved contents of the initial current node

9. The Morse code (see Table 6.11) is a common code that is used to encode messages consisting of
letters and digits. Each letter consists of a series of dots and dashes; for example, the code for the
letter a is − and the code for the letter b is − . Store each letter of the alphabet in a node of a
binary tree of level 5. The root node is at level 1 and stores no letter. The left node at level 2 stores
the letter e t (code is −). The four nodes at level 3 store
the letters with codes (, −, − , −−). To build the tree (see Figure 6.38), read a file in which each
line consists of a letter followed by its code. The letters should be ordered by tree level. To find the
position for a letter in the tree, scan the code and branch left for a dot and branch right for a dash.
Encode a message by replacing each letter by its code symbol. Then decode the message using the
Morse code tree. Make sure you use a delimiter symbol between coded letters.

Koffman-c06.indd 319 10/30/2015 7:32:40 PM

320 Chapter 6 Trees

10. Create an abstract class Heap that has two subclasses, MinHeap and MaxHeap. Each subclass should
have two constructors, one that takes no parameters and the other that takes a Comparator object.
In the abstract class, the compare method should be abstract, and each subclass should define its
own compare method to ensure that the ordering of elements corresponds to that required by the
heap. For a MinHeap, the key in each node should be greater than the key of its parent; the ordering
is reversed for a MaxHeap.

11. A right‐threaded tree is a binary search tree in which each right link that would normally be null is
a “thread” that links that node to its inorder successor. The thread enables nonrecursive algorithms
to be written for search and inorder traversals that are more efficient than recursive ones. Implement
a RightThreadTree class as an extension of a BinarySearchTree. You will also need an RTNode
that extends the Node class to include a flag that indicates whether a node’s right link is a real link
or a thread.

TA B L E 6 . 1 1

Morse Code for Letters

a – b – c − − d − e f –

g – – h i j – – – k – – l –

m – – n – o – – – p – – q – – – r –

s t – u – v – w – – x – –

y – – – z – –

h v f l p j

ws r

i a

b x c y

kd

n

z q

og

m

u

e tF I G U R E 6 . 3 8

Morse Code Tree

Answers to Quick-Check Exercises
1. a. Not full, complete

b. + * – a b c / d e
c. a – b * c + d / e
d. a b – c * d e / +

2. O(log n)
3. A heap is a binary tree that is a complete tree.
4. (o1, o2) ‐> Double.compare(o1.getWeight(), 02.getWeight())
5.

6018

25

45

20 50

35

30

Koffman-c06.indd 320 10/30/2015 7:32:41 PM

 Chapter 6 Review 321

 6.

 7.

 8. 18, 25, 20, 35, 45, 60, 30, 50, where 18 is at position 0 and 50 is at position 7.
 9.

10. In a Huffman tree, the item with the highest frequency of occurrence will have the shortest code.

11.

6018 45

20 50

30

25

50

3035 60

25 20

18

45

5035 60

25 30

20

45

Symbol Code Symbol Code

Space 01 n 1110

a 000 o 1111

e 101 r 1001

h 1000 s 1100

i 1101 t 001

Koffman-c06.indd 321 10/30/2015 7:32:41 PM

Koffman-c06.indd 322 10/30/2015 7:32:41 PM

C h a p t e r

323

I
n Chapter 2, we introduced the Java Collections Framework, focusing on the List interface
and the classes that implement it (ArrayList and LinkedList). The classes that implement
the List interface are all indexed collections. That is, there is an index or a subscript associ-

ated with each member (element) of an object of these classes. Often an element’s index
reflects the relative order of its insertion in the List object. Searching for a particular value
in a List object is generally an O(n) process. The exception is a binary search of a sorted
object, which is an O(log n) process.

In this chapter, we consider the other part of the Collection hierarchy: the Set interface
and the classes that implement it. Set objects are not indexed, and the order of insertion of
items is not known. Their main purpose is to enable efficient search and retrieval of informa-
tion. It is also possible to remove elements from these collections without moving other ele-
ments around. By contrast, if an element is removed from the collection in an ArrayList
object, the elements that follow it are normally shifted over to fill the vacated space.

A second, related interface is the Map. Map objects provide efficient search and retrieval
of entries that consist of pairs of objects. The first object in each pair is the key (a unique
value), and the second object is the information associated with that key. You retrieve an
object from a Map by specifying its key.

We also study the hash table data structure. The hash table is a very important data
structure that has been used very effectively in compilers and in building dictionaries. It can be

Sets and Maps

7C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To understand the Java Map and Set interfaces and how to use them

 ◆ To learn about hash coding and its use to facilitate efficient search and retrieval

 ◆ To study two forms of hash tables—open addressing and chaining—and to understand their
relative benefits and performance tradeoffs

 ◆ To learn how to implement both hash table forms

 ◆ To be introduced to the implementation of Maps and Sets

 ◆ To see how two earlier applications can be implemented more easily using Map objects for
data storage

Koffman-c07.indd 323 10/30/2015 7:30:39 PM

324 Chapter 7 Sets and Maps

used as the underlying data structure for a Map or Set implementation. It stores objects at
arbitrary locations and offers an average constant time for insertion, removal, and searching.

We will see two ways to implement a hash table and how to use it as the basis for a class
that implements the Map or Set. We will not show you the complete implementation of an
object that implements Map or Set because we expect that you will use the ones provided by
the Java API. However, we will certainly give you a head start on what you need to know to
implement these interfaces.

S e t s a n d M a p s

 7.1 Sets and the Set Interface
 7.2 Maps and the Map Interface
 7.3 Hash Tables
 7.4 Implementing the Hash Table
 7.5 Implementation Considerations for Maps and Sets
 7.6 Additional Applications of Maps

Case Study: Implementing a Cell Phone Contact List
Case Study: Completing the Huffman Coding Problem

 7.7 Navigable Sets and Maps

7.1 Sets and the Set Interface

We introduced the Java Collections Framework in Chapter 2. We covered the part of that
framework that focuses on the List interface and its implementers. In this section, we explore
the Set interface and its implementers.

Figure 7.1 shows the part of the Collections Framework that relates to sets. It includes inter-
faces Set, Sortedset, and Navigableset; abstract class AbstractSet; and actual classes HashSet,
TreeSet, and ConcurrentSkipListSet. The HashSet is a set that is implemented using a hash
table (discussed in Section 7.3). The TreeSet is implemented using a special kind of binary
search tree, called the Red–Black tree (discussed in Chapter 9). The ConcurrentSkipListSet is
implemented using a skip list (discussed in Chapter 9). In Section 6.5, we showed how to use
a TreeSet to store an index for a term paper.

The Set Abstraction
The Java API documentation for the interface java.util.Set describes the Set as follows:

A collection that contains no duplicate elements. More formally, sets contain no
pair of elements e1 and e2 such that e1.equals(e2), and at most one null ele-
ment. As implied by its name, this interface models the mathematical set
abstraction.

What mathematicians call a set can be thought of as a collection of objects. There is the addi-
tional requirement that the elements contained in the set are unique. For example, if we have
the set of fruits {"apples", "oranges", and "pineapples"} and add "apples" to it, we still
have the same set. Also, we usually want to know whether or not a particular object is a
member of the set rather than where in the set it is located. Thus, if s is a set, we would be
interested in the expression

s.contains("apples")

Koffman-c07.indd 324 10/30/2015 7:30:39 PM

which returns the value true if "apples" is in set s and false if it is not. We would not have
a need to use a method such as

s.indexOf("apples")

which might return the location or position of "apples" in set s. Nor would we have a need
to use the expression

s.get(i)

where i is the position (index) of an object in set s.

We assume that you are familiar with sets from a course in discrete mathematics. Just as a
review, however, the operations that are performed on a mathematical set are testing for
membership (method contains), adding elements, and removing elements. Other common
operations on a mathematical set are set union (A ∪ B), set intersection (A ∩ B), and set dif-
ference (A – B). There is also a subset operator (A ⊂ B). These operations are defined as
follows:

The union of two sets A, B is a set whose elements belong either to A or B or to both A
and B.
Example: {1, 3, 5, 7} ∪ {2, 3, 4, 5} is {1, 2, 3, 4, 5, 7}
The intersection of sets A, B is the set whose elements belong to both A and B.
Example: {1, 3, 5, 7} ∩ {2, 3, 4, 5} is {3, 5}
The difference of sets A, B is the set whose elements belong to A but not to B.
Examples: {1, 3, 5, 7} – {2, 3, 4, 5} is {1, 7}; {2, 3, 4, 5} – {1, 3, 5, 7} is {2, 4}
Set A is a subset of set B if every element of set A is also an element of set B.
Example: {1, 3, 5, 7} ⊂ {1, 2, 3, 4, 5, 7} is true

The Set Interface and Methods
A Set has required methods for testing for set membership (contains), testing for an empty
set (isEmpty), determining the set size (size), and creating an iterator over the set (iterator).
It has optional methods for adding an element (add) and removing an element (remove). It

HashSet

‹‹interface››
Collection

AbstractCollection

AbstractSet

‹‹interface››
Set

‹‹interface››
SortedSet

TreeSet ConcurrentSkipListSet

‹‹interface››
NavigableSet

F I G U R E 7 . 1

The Set Hierarchy

7.1 Sets and the Set Interface 325

Koffman-c07.indd 325 10/30/2015 7:30:39 PM

326 Chapter 7 Sets and Maps

provides the additional restriction on constructors that all sets they create must contain no
duplicate elements. It also puts the additional restriction on the add method that a duplicate
item cannot be inserted. Table 7.1 shows the commonly used methods of the Set interface.
The Set interface also has methods that support the mathematical set operations. The
required method containsAll tests the subset relationship. There are optional methods for
set union (addAll), set intersection (retainAll), and set difference (removeAll). We show the
methods that are used to implement the mathematical set operations in italics in Table 7.1.

Calling a method “optional” means just that an implementer of the Set interface is not
required to provide it. However, a method that matches the signature must be provided. This
method should throw the UnsupportedOperationException whenever it is called. This gives
the class designer some flexibility. For example, if a class instance is intended to provide effi-
cient search and retrieval of the items stored, the class designer may decide to omit the
optional mathematical set operations.

TA B L E 7 . 1

Some java.util.Set<E> Methods (with Mathematical Set Operations in Italics)

Method Behavior

boolean add(E obj) Adds item obj to this set if it is not already present (optional
operation) and returns true. Returns false if obj is already in the set

boolean addAll(Collection<E> coll) Adds all of the elements in collection coll to this set if they’re not
already present (optional operation). Returns true if the set is
changed. Implements set union if coll is a Set

boolean contains(Object obj) Returns true if this set contains an element that is equal to obj.
Implements a test for set membership

boolean containsAll(Collection<E> coll) Returns true if this set contains all of the elements of collection
coll. If coll is a set, returns true if this set is a subset of coll

boolean isEmpty() Returns true if this set contains no elements

Iterator<E> iterator() Returns an iterator over the elements in this set

boolean remove(Object obj) Removes the set element equal to obj if it is present (optional
operation). Returns true if the object was removed

boolean removeAll(Collection<E> coll) Removes from this set all of its elements that are contained in
collection coll (optional operation). Returns true if this set is
changed. If coll is a set, performs the set difference operation

boolean retainAll(Collection<E> coll) Retains only the elements in this set that are contained in collection
coll (optional operation). Returns true if this set is changed. If
coll is a set, performs the set intersection operation

int size() Returns the number of elements in this set (its cardinality)

 F O R P Y T H O N P R O G R A M M E R S

The Python Set class is similar to the Java HashSet class. Both have operations for creating
sets, adding and removing objects, and forming union, intersection, and difference.

Koffman-c07.indd 326 10/30/2015 7:30:39 PM

EXAMPLE 7.1 Listing 7.1 contains a main method that creates three sets: setA, setAcopy, and setB. It loads
these sets from two arrays and then forms their union in setA and their intersection in
 setAcopy, using the statements

setA.addAll(setB); // Set union
setAcopy.retainAll(setB); // Set intersection

Running this method generates the output lines below. The brackets and commas are inserted
by method toString.

The 2 sets are:
[Jill, Ann, Sally]
[Bill, Jill, Ann, Bob]
Items in set union are: [Bill, Jill, Ann, Sally, Bob]
Items in set intersection are: [Jill, Ann]

L I S T I N G 7 . 1

Illustrating the Use of Sets

public static void main(String[] args) {

 // Create the sets.
 String[] listA = {"Ann", "Sally", "Jill", "Sally"};
 String[] listB = {"Bob", "Bill", "Ann", "Jill"};
 Set<String> setA = new HashSet<>();
 Set<String> setAcopy = new HashSet<>(); // Copy of setA
 Set<String> setB = new HashSet<>();

 // Load sets from arrays.
 for (String s : listA) {
 setA.add(s);
 setAcopy.add(s);
 }
 for (String s : listB) {
 setB.add(s);
 }
 System.out.println("The 2 sets are: " + "\n" + setA
 + "\n" + setB);
 // Display the union and intersection.
 setA.addAll(setB); // Set union
 setAcopy.retainAll(setB); // Set intersection
 System.out.println("Items in set union are: " + setA);
 System.out.println("Items in set intersection are: "
 + setAcopy);
}

Comparison of Lists and Sets
Collections implementing the Set interface must contain unique elements. Unlike the List.add
method, the Set.add method will return false if you attempt to insert a duplicate item.

Unlike a List, a Set does not have a get method. Therefore, elements cannot be accessed by
index. So if setA is a Set object, the method call setA.get(0) would cause the syntax error
method get(int) not found.

Although you can’t reference a specific element of a Set, you can iterate through all its ele-
ments using an Iterator object. The loop below accesses each element of Set object setA.

7.1 Sets and the Set Interface 327

Koffman-c07.indd 327 10/30/2015 7:30:39 PM

328 Chapter 7 Sets and Maps

However, the elements will be accessed in arbitrary order. This means that they will not nec-
essarily be accessed in the order in which they were inserted.

// Create an iterator to setA.
Iterator<String> setAIter = setA.iterator();
while (setAIter.hasNext()) {
 String nextItem = setAIter.next();
 // Do something with nextItem
 . . .
}

We can simplify the task of accessing each element in a Set using the Java 5.0 enhanced for
statement.

for (String nextItem : setA) {
 // Do something with nextItem
 . . .
}

E X E R C I S E S F O R S E C T I O N 7 . 1

S E L F ‐ C H E C K

1. Explain the effect of the following method calls.
Set<String> s = new HashSet<String>();
s.add("hello");
s.add("bye");
s.addAll(s);
Set<String> t = new TreeSet<String>();
t.add("123");
s.addAll(t);
System.out.println(s.containsAll(t));
System.out.println(t.containsAll(s));
System.out.println(s.contains("ace"));
System.out.println(s.contains("123"));
s.retainAll(t);
System.out.println(s.contains("123"));
t.retainAll(s);
System.out.println(t.contains("123"));

2. What is the relationship between the Set interface and the Collection interface?

3. What are the differences between the Set interface and the List interface?

4. In Example 7.1, why is setAcopy needed? What would happen if you used the statement
 setAcopy = setA;

 to define setAcopy?

P R O G R A M M I N G

1. Assume you have declared three sets a, b, and c and that sets a and b store objects. Write
statements that use methods from the Set interface to perform the following operations:
a. c = (a ∪ b)
b. c = (a ∩ b)
c. c = (a – b)

Koffman-c07.indd 328 10/30/2015 7:30:40 PM

7.2 Maps and the Map Interface 329

7.2 Maps and the Map Interface

The Map is related to the Set. Mathematically, a Map is a set of ordered pairs whose elements
are known as the key and the value. The key is required to be unique, as are the elements of
a set, but the value is not necessarily unique. For example, the following would be a map:

{(J, Jane), (B, Bill), (S, Sam), (B1, Bob), {B2, Bill)}

The keys in this example are strings consisting of one or two characters, and each value is a
person’s name. The keys are unique but not the values (there are two Bills). The key is based
on the first letter of the person’s name. The keys B1 and B2 are the keys for the second and
third person whose name begins with the letter B.

You can think of each key as “mapping” to a particular value (hence the name map). For
example, the key J maps to the value Jane. The keys B and B2 map to the value Bill. You can
also think of the keys as forming a set (keySet) and the values as forming a set (valueSet).
Each element of keySet maps to a particular element of valueSet, as shown in Figure 7.2. In
mathematical set terminology, this is a many‐to‐one mapping (i.e., more than one element of
keySet may map to a particular element of valueSet). For example, both keys B and B2 map
to the value Bill. This is also an onto mapping in that all elements of valueSet have a corre-
sponding member in keySet.

A Map can be used to enable efficient storage and retrieval of information in a table. The key
is a unique identification value associated with each item stored in a table. As you will see,
each key value has an easily computed numeric code value.

d. if (a ⊂ b)
 c = a;
else
 c = b;

2. Write a toString method for a class that implements the Set interface and displays the set
elements in the form shown in Example 9.1.

keySet valueSet

J

B

B2

S

B1

Jane

Bill

Sam

Bob

F I G U R E 7 . 2

Example of Mapping

EXAMPLE 7.2 When information about an item is stored in a table, the information stored may consist of a
unique ID (identification code, which may or may not be a number) as well as descriptive
data. The unique ID would be the key, and the rest of the information would represent the
value associated with that key. Some examples follow.

Type of Item Key Value

University student Student ID number Student name, address, major,
grade‐point average

Customer for online store E‐mail address Customer name, address, credit
card information, shopping cart

Inventory item Part ID Description, quantity,
manufacturer, cost, price

In the above examples, the student ID number may be assigned by the university, or it may be
the student’s social security number. The e‐mail address is a unique address for each customer,
but it is not numeric. Similarly, a part ID could consist of a combination of letters and digits.

Koffman-c07.indd 329 10/30/2015 7:30:40 PM

330 Chapter 7 Sets and Maps

In comparing maps to indexed collections, you can think of the keys as selecting the elements
of a map, just as indexes select elements in a List object. The keys for a map, however, can
have arbitrary values (not restricted to 0, 1, etc., as for indexes). As you will see later, an
implementation of the Map interface should have methods of the form

V get(Object key)
V put(K key, V value)

The get method retrieves the value corresponding to a specified key; the put method stores a
key–value pair in a map.

The Map Hierarchy
Figure 7.3 shows part of the Map hierarchy in the Java API. Although not strictly part of the
Collection hierarchy, the Map interface defines a structure that relates elements in one set to
elements in another set. The first set, called the keys, must implement the Set interface; that
is, the keys are unique. The second set is not strictly a Set but an arbitrary Collection known
as the values. These are not required to be unique. The Map is a more useful structure than the
Set. In fact, the Java API implements the Set using a Map.

HashMap

‹‹interface››
Map

AbstractMap
‹‹interface››
SortedMap

TreeMap ConcurrentSkipListMap

‹‹interface››
NavigableMap

F I G U R E 7 . 3

The Map Hierarchy

The TreeMap uses a Red–Black binary search tree (discussed in Chapter 9) as its underlying
data structure, and the ConcurrentSkipListMap uses a skip list (also discussed in Chapter 9) as
its underlying data structure. We will focus on the HashMap and show how to implement it later
in the chapter.

The Map Interface
Methods of the Map interface (in Java API java.util) are shown in Table 7.2. The put
method either inserts a new mapping or changes the value associated with an existing map-
ping. The get method returns the current value associated with a given key or null if there
is none. The getOrDefault method returns the provided default value instead of null if the
key is not present. The remove method deletes an existing mapping.

The getOrDefault method is a default method, which means that the implementation of this
method is defined in the interface. The code for getOrDefault is equivalent to the following:

default getOrDefault(Object key, V defaultValue) {
 V value = get(key);
 if (value != null) return value;
 return defaultValue;
}

Koffman-c07.indd 330 10/30/2015 7:30:40 PM

Both put and remove return the previous value (or null, if there was none) of the mapping
that is changed or deleted. There are two type parameters, K and V, and they represent the
data type of the key and value, respectively.

TA B L E 7 . 2

Some java.util.Map<K, V> Methods

Method Behavior

V get(Object key) default Returns the value associated with the specified key. Returns null if the
key is not present

V getOrDefault(Object key, V default) Returns the value associated with the specified key. Returns default if the
key is not present

boolean isEmpty() Returns true if this map contains no key‐value mappings

V put(K key, V value) Associates the specified value with the specified key in this map (optional
operation). Returns the previous value associated with the specified key,
or null if there was no mapping for the key

V remove(Object key) Removes the mapping for this key from this map if it is present (optional
operation). Returns the previous value associated with the specified key,
or null if there was no mapping for the key

void forEach(BiConsumer<K, V>) Performs the action given by the BiConsumer to each entry in the map,
binding the key to the first parameter and the value to the second

int size() Returns the number of key‐value mappings in this map

EXAMPLE 7.3 The following statements build a Map object that contains the mapping shown in Figure 7.2.
Map<String, String> aMap = new HashMap<>();
 // HashMap implements Map
aMap.put("J", "Jane");
aMap.put("B", "Bill");
aMap.put("S", "Sam");
aMap.put("B1", "Bob");
aMap.put("B2", "Bill");

The statement
System.out.println("B1 maps to " + aMap.get("B1"));

would display "B1 maps to Bob". The statement
System.out.println("Bill maps to " + aMap.get("Bill"));

would display "Bill maps to null" because "Bill" is a value, not a key.

EXAMPLE 7.4 In Section 6.5, we used a binary search tree to store an index of words occurring in a term
paper. Each data element in the tree was a string consisting of a word followed by a three‐
digit line number.

Although this is one approach to storing an index, it would be more useful to store each word
and all the line numbers for that word as a single index entry. We could do this by storing the
index in a Map in which each word is a key and its associated value is a list of all the line num-
bers at which the word occurs. While building the index, each time a word is encountered, its
list of line numbers would be retrieved (using the word as a key) and the most recent line
number would be appended to this list (a List<Integer>). For example, if the word fire has

7.2 Maps and the Map Interface 331

Koffman-c07.indd 331 10/30/2015 7:30:40 PM

332 Chapter 7 Sets and Maps

already occurred on lines 4 and 8 and we encounter it again on line 20, the List<Integer>
associated with fire would reference three Integer objects wrapping the numbers 4, 8, and 20.

Listing 7.2 shows method buildIndex (adapted from buildIndex in Listing 6.8). Data field
index is a Map with key type String and value type List<Integer>.

private Map<String, List<Integer>> index;

The statement
List<Integer> lines = index.getOrDefault(token, new ArrayList<>());

retrieves the value (an ArrayList<Integer>) associated with the next token or an empty ArrayList
if this is the first occurrence of token. The statements

lines.add(lineNum);
index.put(token, lines); // Store the list.

add the new line number to the ArrayList lines and store it back in the Map. In Section 7.5,
we show how to display the final index.

L I S T I N G 7 . 2

Method buildIndexAllLines

/** Reads each word in a data file and stores it in an index
 along with a list of line numbers where it occurs.
 @post Lowercase form of each word with its line
 number is stored in the index.
 @param scan A Scanner object
 */
public void buildIndex(Scanner scan) {
 int lineNum = 0; // Line number

 // Keep reading lines until done.
 while (scan.hasNextLine()) {
 lineNum++;

 // Extract each token and store it in index.
 String token;
 while ((token = scan.findInLine(PATTERN)) != null) {
 token = token.toLowerCase();
 // Get the list of line numbers for token
 List<Integer> lines = index.getOrDefault(token, new ArrayList<>());
 lines.add(lineNum);
 index.put(token, lines); // Store new list of line numbers
 }
 scan.nextline(); // Clear the scan buffer
 }

}

E X E R C I S E S F O R S E C T I O N 7 . 2

S E L F ‐ C H E C K

1. If you were using a Map to store the following lists of items, which data field would you
select as the key, and why?
a. textbook title, author, ISBN (International Standard Book Number), year, publisher
b. player’s name, uniform number, team, position
c. computer manufacturer, model number, processor, memory, disk size
d. department, course title, course ID, section number, days, time, room

Koffman-c07.indd 332 10/30/2015 7:30:40 PM

7.3 Hash Tables 333

7.3 Hash Tables

Before we discuss the details of implementing the required methods of the Set and Map inter-
faces, we will describe a data structure, the hash table, that can be used as the basis for such
an implementation. The goal behind the hash table is to be able to access an entry based on
its key value, not its location. In other words, we want to be able to access an element directly
through its key value rather than having to determine its location first by searching for the
key value in an array. (This is why the Set interface has method contains(obj) instead of
get(index).) Using a hash table enables us to retrieve an item in constant time (expected
O(1)). We say expected O(1) rather than just O(1) because there will be some cases where the
performance will be much worse than O(1) and may even be O(n), but on the average, we
expect that it will be O(1). Contrast this with the time required for a linear search of an array,
O(n), and the time to access an element in a binary search tree, O(log n).

Hash Codes and Index Calculation
The basis of hashing (and hash tables) is to transform the item’s key value to an integer value
(its hash code) that will then be transformed into a table index. Figure 7.4 illustrates this
process for a table of size n. We discuss how this might be done in the next few examples.

2. For the Map index in Example 7.4, what key–value pairs would be stored for each token
in the following data file?
 this line is first
 and line 2 is second
 followed by the third line

3. Explain the effect of each statement in the following fragment on the index built in Self‐
Check Exercise 2.
 lines = index.get("this");
 lines = index.get("that");
 lines = index.get("line");
 lines.add(4);
 index.put("is", lines);

P R O G R A M M I N G

1. Write statements to create a Map object that will store each word occurring in a term paper
along with the number of times the word occurs.

2. Write a method buildWordCounts (based on buildIndex) that builds the Map object described
in Programming Exercise 1.

[0]
[1]
[2]
.
.
.

[n-1]

Key Index calculation

Table index
F I G U R E 7 . 4

Index Calculation

for a Key

Koffman-c07.indd 333 10/30/2015 7:30:41 PM

334 Chapter 7 Sets and Maps

EXAMPLE 7.5 Consider the Huffman code problem discussed in Section 6.7. To build the Huffman tree, you
needed to know the number of occurrences of each character in the text being encoded. Let’s
assume that the text contained only the ASCII characters (the first 128 Unicode values start-
ing with \u0000). We could use a table of size 128, one element for each possible character,
and let the Unicode for each character be its location in the table. Using this approach, table
element 65 would give us the number of occurrences of the letter A, table element 66 would
give us the number of occurrences of the letter B, and so on. The hash code for each character
is its Unicode value (a number), which is also its index in the table. In this case, we could
calculate the table index for character asciiChar using the following assignment statement,
where asciiChar represents the character we are seeking in the table:

int index = asciiChar;

EXAMPLE 7.6 Let’s consider a slightly harder problem: assume that any of the Unicode characters can occur
in the text, and we want to know the number of occurrences of each character. There are over
65,000 Unicode characters, however. For any file, let’s assume that at most 100 different char-
acters actually appear. So, rather than use a table with 65,536 elements, it would make sense
to try to store these items in a much smaller table (say, 200 elements). If the hash code for each
character is its Unicode value, we need to convert this value (between 0 and 65,536) to an
array index between 0 and 199. We can calculate the array index for character uniChar as

int index = uniChar % 200

Because the range of Unicode values (the key range) is much larger than the index range, it is
likely that some characters in our text will have the same index value. Because we can store
only one key–value pair in a given array element, a situation known as a collision results. We
discuss how to deal with collisions shortly.

Methods for Generating Hash Codes
In most applications, the keys that we will want to store in a table will consist of strings of
letters or digits rather than a single character (e.g., a social security number, a person’s name,
or a part ID). We need a way to map each string to a particular table index. Again, we have
a situation in which the number of possible key values is much larger than the table size. For
example, if a string can store up to 10 letters or digits, the number of possible strings is 3610
(approximately 3.7 × 1015), assuming the English alphabet with 26 letters.

Generating good hash codes for arbitrary strings or arbitrary objects is somewhat of an experimen-
tal process. Simple algorithms tend to generate a lot of collisions. For example, simply summing
the int values for all characters in a string would generate the same hash code for words that
contained the same letters but in different orders, such as “sign” and “sing”, which would have the
same hash code using this algorithm ('s' + 'i' + 'n' + 'g'). The algorithm used by the Java
API accounts for the position of the characters in the string as well as the character values.

The String.hashCode() method returns the integer calculated by the formula:

s0
1

1
2

131 31() () . . .n n
ns s

where si is the ith character of the string and n is the length of the string. For example, the
string "Cat" would have a hash code of 'C' × 312 + 'a' × 31 + 't'. This is the number
67,510. (The number 31 is a prime number that generates relatively few collisions.)

Koffman-c07.indd 334 10/30/2015 7:30:41 PM

7.3 Hash Tables 335

As previously discussed, the integer value returned by method String.hashCode can’t be
unique because there are too many possible strings. However, the probability of two strings
having the same hash code value is relatively small because the String.hashCode method
distributes the hash code values fairly evenly throughout the range of int values.

Because the hash codes are distributed evenly throughout the range of int values, method
String.hashCode will appear to produce a random value, as will the expressions s.hashCode()
% table.length, which selects the initial value of index for String s. If the object is not
already present in the table, the probability that this expression does not yield an empty slot
in the table is proportional to how full the table is.

One additional criterion for a good hash function, besides a random distribution for its val-
ues, is that it be relatively simple and efficient to compute. It doesn’t make much sense to use
a hash function whose computation is an O(n) process to avoid doing an O(n) search.

Open Addressing
Next, we consider two ways to organize hash tables: open addressing and chaining. In open
addressing, each hash table element (type Object) references a single key–value pair. We can
use the following simple approach (called linear probing) to access an item in a hash table.
If the index calculated for an item’s key is occupied by an item with that key, we have found
the item. If that element contains an item with a different key, we increment the index by 1.
We keep incrementing the index (modulo the table length) until either we find the key
we are seeking or we reach a null entry. A null entry indicates that the key is not in the
table.

Algorithm for Accessing an Item in a Hash Table

1. Compute the index by taking the item’s hashCode() % table.length.
2. if table[index] is null
3. The item is not in the table.
4. else if table[index] is equal to the item
5. The item is in the table.
 else
6. Continue to search the table by incrementing the index until either the item is found

or a null entry is found.

Step 1 ensures that the index is within the table range (0 through table.length – 1). If the
condition in Step 2 is true, the table index does not reference an object, so the item is not in
the table. The condition in Step 4 is true if the item being sought is at position index, in which
case the item is located. Steps 1 through 5 can be done in O(1) expected time.

Step 6 is necessary for two reasons. The values returned by method hashCode are not unique,
so the item being sought can have the same hash code as another one in the table. Also, the
remainder calculated in Step 1 can yield the same index for different hash code values. Both
of these cases are examples of collisions.

Table Wraparound and Search Termination
Note that as you increment the table index, your table should wrap around (as in a circular array)
so that the element with subscript 0 “follows” the element with subscript table.length ‐ 1.
This enables you to use the entire table, not just the part with subscripts larger than the hash
code value, but it leads to the potential for an infinite loop in Step 6 of the algorithm. If the

Koffman-c07.indd 335 10/30/2015 7:30:41 PM

336 Chapter 7 Sets and Maps

table is full and the objects examined so far do not match the one you are seeking, how do you
know when to stop? One approach would be to stop when the index value for the next probe
is the same as the hash code value for the object. This means that you have come full circle to
the starting value for the index. A second approach would be to ensure that the table is never
full by increasing its size after an insertion if its occupancy rate exceeds a specified threshold.
This is the approach that we take in our implementation.

EXAMPLE 7.7 We illustrate insertion of five names in a table of size 5 and in a table of size 11. Table 7.3
shows the names, the corresponding hash code, the hash code modulo 5 (in column 3), and
the hash code modulo 11 (in column 4). We picked prime numbers (5 and 11) because
empirical tests have shown that hash tables with a size that is a prime number often give bet-
ter results.

For a table of size 5 (an occupancy rate of 100 percent), "Tom", "Dick", and "Sam" have hash
indexes of 4, and "Harry" and "Pete" have hash indexes of 3; for a table length of 11 (an
occupancy rate of 45 percent), "Dick" and "Sam" have hash indexes of 5, but the others have
hash indexes that are unique. We see how the insertion process works next.

For a table of size 5, if "Tom" and "Dick" are the first two entries, "Tom" would be stored at
the element with index 4, the last element in the table. Consequently, when "Dick" is inserted,
because element 4 is already occupied, the hash index is incremented to 0 (the table wraps
around to the beginning), where "Dick" is stored.

TA B L E 7 . 3

Names and hashCode Values for Table Sizes 5 and 11

Name hashCode() hashCode()%5 hashCode()%11

"Tom" 84274 4 3

"Dick" 2129869 4 5

"Harry" 69496448 3 10

"Sam" 82879 4 5

"Pete" 2484038 3 7

"Dick"

null

null

null

"Tom"

[0]
[1]
[2]
[3]
[4]

"Harry" is stored in position 3 (the hash index), and "Sam" is stored in position 1 because its
hash index is 4 but the elements at 4 and 0 are already filled.

"Dick"

"Sam"

null

"Harry"

"Tom"

[0]
[1]
[2]
[3]
[4]

Koffman-c07.indd 336 10/30/2015 7:30:41 PM

7.3 Hash Tables 337

Finally, "Pete" is stored in position 2 because its hash index is 3 but the elements at positions
3, 4, 0, 1 are filled.

"Dick"

"Sam"

"Pete"

"Harry"

"Tom"

[0]
[1]
[2]
[3]
[4]

For the table of size 11, the entries would be stored as shown in the following table, assuming
that they were inserted in the order "Tom", "Dick", "Harry", "Sam", and finally "Pete".
Insertions go more smoothly for the table of size 11. The first collision occurs when "Sam" is
stored, so "Sam" is stored at position 6 instead of position 5.

null

null

null

"Tom"

null

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

"Dick"

"Sam"

"Pete"

null

null

"Harry"

For the table of size 5, retrieval of "Tom" can be done in one step. Retrieval of all of the others
would require a linear search because of collisions that occurred when they were inserted.
For the table of size 11, retrieval of all but "Sam" can be done in one step, and retrieval of
"Sam" requires only two steps. This example illustrates that the best way to reduce the prob-
ability of a collision is to increase the table size.

Traversing a Hash Table
One thing that you cannot do is traverse a hash table in a meaningful way. If you visit the
hash table elements in sequence and display the objects stored, you would display the strings
"Dick", "Sam", "Pete", "Harry", and "Tom" for the table of length 5 and the strings "Tom",
"Dick", "Sam", "Pete", and "Harry" for a table of length 11. In either case, the list of names is
in arbitrary order.

Deleting an Item Using Open Addressing
When an item is deleted, we cannot just set its table entry to null. If we do, then when we
search for an item that may have collided with the deleted item, we may incorrectly conclude
that the item is not in the table. (Because the item that collided was inserted after the deleted
item, we will have stopped our search prematurely.) By storing a dummy value when an item
is deleted, we force the search algorithm to keep looking until either the desired item is found
or a null value, representing a free cell, is located.

Koffman-c07.indd 337 10/30/2015 7:30:42 PM

338 Chapter 7 Sets and Maps

Although the use of a dummy value solves the problem, keep in mind that it can lead to
search inefficiency, particularly when there are many deletions. Removing items from the
table does not reduce the search time because the dummy value is still in the table and is
part of a search chain. In fact, you cannot even replace a deleted value with a new item
because you still need to go to the end of the search chain to ensure that the new item is
not already present in the table. So deleted items waste storage space and reduce search
efficiency. In the worst case, if the table is almost full and then most of the items are
deleted, you will have O(n) performance when searching for the few items remaining in
the table.

Reducing Collisions by Expanding the Table Size
Even with a good hashing function, it is still possible to have collisions. The first step in
reducing these collisions is to use a prime number for the size of the table.

In addition, the probability of a collision is proportional to how full the table is. Therefore,
when the hash table becomes sufficiently full, a larger table should be allocated and the
entries reinserted.

We previously saw examples of expanding the size of an array. Generally, what we did was
to allocate a new array with twice the capacity of the original, copy the values in the original
array to the new array, and then reference the new array instead of the original. This approach
will not work with hash tables. If you use it, some search chains will be broken because the
new table does not wrap around in the same way as the original table. The last element in the
original table will be in the middle of the new table, and it does not wrap around to the first
element of the new table. Therefore, you expand a hash table (called rehashing) using the
following algorithm.

Algorithm for Rehashing

1. Allocate a new hash table with twice the capacity of the original.
2. Reinsert each old table entry that has not been deleted into the new hash table.
3. Reference the new table instead of the original.

Step 2 reinserts each item from the old table into the new table instead of copying it over to
the same location. We illustrate this in the hash table implementation. Note that deleted items
are not reinserted into the new table, thereby saving space and reducing the length of some
search chains.

Reducing Collisions Using Quadratic Probing
The problem with linear probing is that it tends to form clusters of keys in the table, caus-
ing longer search chains. For example, if the table already has keys with hash codes of 5
and 6, a new item that collides with either of these keys will be placed at index 7. An item
that collides with any of these three items will be placed at index 8, and so on. Figure 7.5
shows a hash table of size 11 after inserting elements with hash codes in the sequence 5, 6,
5, 6, 7. Each new collision expands the cluster by one element, thereby increasing the
length of the search chain for each element in that cluster. For example, if another element
is inserted with any hash code in the range 5 through 9, it will be placed at position 10, and
the search chain for items with hash codes of 5 and 6 would include the elements at indexes
7, 8, 9, and 10.

Koffman-c07.indd 338 10/30/2015 7:30:42 PM

7.3 Hash Tables 339

One approach to reduce the effect of clustering is to use quadratic probing instead of linear
probing. In quadratic probing, the increments form a quadratic series (1 2 32 2 · · ·).
Therefore, the next value of index is calculated using the steps:

probeNum++;
index = (startIndex + probeNum * probeNum) % table.length

where startIndex is the index calculated using method hashCode and probeNum starts at 0.
Ignoring wraparound, if an item has a hash code of 5, successive values of index will be
6 5 1 9 5 4 14 5 9() () (), , , . . ., instead of 6, 7, 8, Similarly, if the hash code is 6, succes-
sive values of index will be 7, 10, 15, and so on. Unlike linear probing, these two search
chains have only one table element in common (at index 6).

Figure 7.6 illustrates the hash table after elements with hash codes in the same sequence as in the
preceding table (5, 6, 5, 6, 7) have been inserted with quadratic probing. Although the cluster of
elements looks similar, their search chains do not overlap as much as before. Now the search
chain for an item with a hash code of 5 consists of the elements at 5, 6, and 9, and the search
chain for an item with a hash code of 6 consists of the elements at positions 6 and 7.

Problems with Quadratic Probing
One disadvantage of quadratic probing is that the next index calculation is a bit time‐
consuming as it involves a multiplication, an addition, and a modulo division. A more effi-
cient way to calculate the next index follows:

k += 2;
index = (index + k) % table.length;

which replaces the multiplication with an addition. If the initial value of k is –1, successive
values of k will be 1, 3, 5, 7, If the hash code is 5, successive values of index will be
5 6 5 1 9 5 1 3 14 5 1 3 5, , , ,() () () The proof of the equality of these two
approaches to calculating index is based on the following mathematical series:

n n2 1 3 5 2. . . 1–

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

1st item with hash code 5
1st item with hash code 6
2nd item with hash code 5
2nd item with hash code 6
1st item with hash code 7

F I G U R E 7 . 5

Clustering with

Linear Probing

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

1st item with hash code 5
1st item with hash code 6
2nd item with hash code 6
1st item with hash code 7
2nd item with hash code 5

F I G U R E 7 . 6

Insertion with

Quadratic Probing

Koffman-c07.indd 339 10/30/2015 7:30:43 PM

340 Chapter 7 Sets and Maps

A more serious problem with quadratic probing is that not all table elements are examined
when looking for an insertion index, so it is possible that an item can’t be inserted even when
the table is not full. It is also possible that your program can get stuck in an infinite loop
while searching for an empty slot. It can be proved that if the table size is a prime number
and the table is never more than half full, this can’t happen. However, requiring that the table
be half empty at all times wastes quite a bit of memory. For these reasons, we will use linear
probing in our implementation.

Chaining
An alternative to open addressing is a technique called chaining, in which each table ele-
ment references a linked list that contains all the items that hash to the same table index.
This linked list is often called a bucket, and this approach is sometimes called bucket hash-
ing. Figure 7.7 shows the result of chaining for our earlier example with a table of size 5.
Each new element with a particular hash index can be placed at the beginning or the end
of the associated linked list. The algorithm for accessing such a table is the same as for open
addressing, except for the step for resolving collisions. Instead of incrementing the table
index to access the next item with a particular hash code value, you traverse the linked list
referenced by the table element with index hashCode() % table.length.

One advantage of chaining is that only items that have the same value for hashCode() % table.
length will be examined when looking for an object. In open addressing, search chains can over-
lap, so a search chain may include items in the table that have different starting index values.

A second advantage is that you can store more elements in the table than the number of table
slots (indexes), which is not the case for open addressing. If each table index already refer-
ences a linked list, additional items can be inserted in an existing list without increasing the
table size (number of indexes).

Once you have determined that an item is not present, you can insert it either at the beginning
or at the end of the list. To delete an item, simply remove it from the list. In contrast to open
addressing, removing an item actually deletes it, so it will not be part of future search chains.

Performance of Hash Tables
The load factor for a hash table is the number of filled cells divided by table size. The load
factor has the greatest effect on hash table performance. The lower the load factor, the better
the performance because there is less chance of a collision when a table is sparsely populated.
If there are no collisions, the performance for search and retrieval is O(1), regardless of the
table size.

next =
data = "Harry"

Node

next =
data = "Tom"

next = null
data = "Pete"

Node

next =
data = "Dick"

null

null

null

[0]
[1]
[2]
[3]
[4]

Node

next = null
data = "Sam"

Node Node
F I G U R E 7 . 7

Example of Chaining

Koffman-c07.indd 340 10/30/2015 7:30:43 PM

7.3 Hash Tables 341

Performance of Open Addressing Versus Chaining

Donald E. Knuth (Searching and Sorting, vol. 3 of The Art of Computer Programming,
Addison‐Wesley, 1973) derived the following formula for the expected number of compari-
sons, c, required for finding an item that is in a hash table using open addressing with linear
probing and a load factor L:

c
L

1
2

1
1

1

TA B L E 7 . 4

Number of Probes for Different Values of Load Factor (L)

L Number of Probes with Linear Probing Number of Probes with Chaining

0.0 1.00 1.00

0.25 1.17 1.13

0.5 1.50 1.25

0.75 2.50 1.38

0.85 3.83 1.43

0.9 5.50 1.45

0.95 10.50 1.48

Table 7.4 (second column) shows the value of c for different values of load factor (L). It
shows that if L is 0.5 (half full), the expected number of comparisons required is 1.5. If L
increases to 0.75, the expected number of comparisons is 2.5, which is still very respectable.
If L increases to 0.9 (90 percent full), the expected number of comparisons is 5.5. This is true
regardless of the size of the table.

Using chaining, if an item is in the table, on average we have to examine the table element cor-
responding to the item’s hash code and then half of the items in each list. The average number of
items in a list is L, the number of items divided by the table size. Therefore, we get the formula

c
L

1
2

for a successful search. Table 7.4 (third column) shows the results for chaining. For values of
L between 0.0 and 0.75, the results are similar to those of linear probing, but chaining gives
better performance than linear probing for higher load factors. Quadratic probing (not
shown) gives performance that is between those of linear probing and chaining.

Performance of Hash Tables versus Sorted Arrays and Binary Search Trees

If we compare hash table performance with binary search of a sorted array, the number of
comparisons required by binary search is O(log n), so the number of comparisons increases
with table size. A sorted array of size 128 would require up to 7 probes (27 is 128), which is
more than for a hash table of any size that is 90 percent full. A sorted array of size 1024 would
require up to 10 probes (210 is 1024). A binary search tree would yield the same results.

You can insert into or remove elements from a hash table in O(1) expected time. Insertion or
removal from a binary search tree is O(log n), but insertion or removal from a sorted array
is O(n) (you need to shift the larger elements over). (Worst‐case performance for a hash table
or a binary search tree is O(n).)

Koffman-c07.indd 341 10/30/2015 7:30:43 PM

342 Chapter 7 Sets and Maps

Storage Requirements for Hash Tables, Sorted Arrays, and Trees

The performance of hashing is certainly preferable to that of binary search of an array (or a
binary search tree), particularly if L is less than 0.75. However, the tradeoff is that the lower
the load factor, the more unfilled storage cells there are in a hash table, whereas there are no
empty cells in a sorted array. Because a binary search tree requires three references per node
(the item, the left subtree, and the right subtrees), more storage would be required for a
binary search tree than for a hash table with a load factor of 0.75.

Storage Requirements for Open Addressing and Chaining

Next, we consider the effect of chaining on storage requirements. For a table with a load fac-
tor of L, the number of table elements required is n (the size of the table). For open address-
ing, the number of references to an item (a key–value pair) is n. For chaining, the average
number of nodes in a list is L. If we use the Java API LinkedList, there will be three references
in each node (the item, the next list element, and the previous element). However, we could
use our own single‐linked list and eliminate the previous‐element reference (at some time cost
for deletions). Therefore, we will require storage for n L2 references.

EXAMPLE 7.8 A hash table of size 100 with open addressing could store 75 items with a load factor of 0.75.
This would require storage for 100 references. This would require storage for 100 references
(25 references would be null).

EXAMPLE 7.9 If we have 60,000 items in our hash table and use open addressing, we would need a table
size of 80,000 to have a load factor of 0.75 and an expected number of comparisons of 2.5.
Next, we calculate the table size, n, needed to get similar performance using chaining.

2 5 1
2

5 0 2

3 0
60 000

20 000

.

.

.
,

,

L

L

n
n

A hash table of size 20,000 requires storage space for 20,000 references to lists. There will be
60,000 nodes in the table (one for each item). If we use linked lists of nodes, we will need
storage for 140,000 references (2 references per node plus the 20,000 table references). This
is almost twice the storage needed for open addressing.

E X E R C I S E S F O R S E C T I O N 7 . 3

S E L F ‐ C H E C K

1. For the hash table search algorithm shown in this section, why was it unnecessary to test
whether all table entries had been examined as part of Step 5?

2. For the items in the five‐element table of Table 7.3, compute hashCode() % table.
length for lengths of 7 and 13. What would be the position of each word in tables of

Koffman-c07.indd 342 10/30/2015 7:30:44 PM

7.3 Hash Tables 343

these sizes using open addressing and linear probing? Answer the same question for
chaining.

3. The following table stores Integer keys with the int values shown. Show one sequence of
insertions that would store the keys as shown. Which elements were placed in their current
position because of collisions? Show the table that would be formed by chaining.

Index Key

[0] 24

[1] 6

[2] 20

[3]

[4] 14

4. For Table 7.3 and the table size of 5 shown in Example 7.7, discuss the effect of deleting
the entry for Dick and replacing it with a null value. How would this affect the search for
Sam, Pete, and Harry? Answer both questions if you replace the entry for Dick with the
string "deleted" instead of null.

5. Explain what is wrong with the following strategy to reclaim space that is filled with
deleted items in a hash table: when attempting to insert a new item in the table, if you
encounter an item that has been deleted, replace the deleted item with the new item.

6. Compare the storage requirement for a hash table with open addressing, a table size of
500, and a load factor of 0.5 with a hash table that uses chaining and gives the same
performance.

7. One simple hash code is to use the sum of the ASCII codes for the letters in a word.
Explain why this is not a good hash code.

8. If pi is the position of a character in a string and ci is the code for that character, would
c p c p c p1 1 2 2 3 3 . . . be a better hash code? Explain why or why not.

9. Use the hash code in Self‐Check Exercise 7 to store the words "cat", "hat", "tac", and
"act" in a hash table of size 10. Show this table using open hashing and chaining.

P R O G R A M M I N G

1. Code the following algorithm for finding the location of an object as a static method.
Assume a hash table array and an object to be located in the table are passed as arguments.
Return the object’s position if it is found; return –1 if the object is not found.

 1. Compute the index by taking the hashCode() % table.length.

 2. if table[index] is null
 3. The object is not in the table.
 else if table[index] is equal to the object
 4. The object is in the table.
 else
 5. Continue to search the table (by incrementing index) until either the
 object is found or a null entry is found.

Koffman-c07.indd 343 10/30/2015 7:30:44 PM

344 Chapter 7 Sets and Maps

7.4 Implementing the Hash Table

In this section, we discuss how to implement a hash table. We will show implementations for
hash tables using open addressing and chaining.

Interface KWHashMap
Because we want to show more than one way to implement a hash table, we introduce an inter-
face KWHashMap<K, V> in Table 7.5. The methods for interface KWHashMap<K, V> (get, put, isEmpty,
remove, and size) are similar to the ones shown earlier for the Map interface (see Table 7.2). There
is a class Hashtable in the Java API java.util; however, it has been superseded by the class
HashMap. Our interface KWHashMap doesn’t include all the methods of interface Map.

Class Entry
A hash table stores key–value pairs, so we will use an inner class Entry in each hash table
implementation with data fields key and value (see Table 7.6). The implementation of inner
class Entry is straightforward, and we show it in Listing 7.3.

TA B L E 7 . 5

Interface KWHashMap<K, V>

Method Behavior

V get(Object key) Returns the value associated with the specified key. Returns null if the key is not
present

boolean isEmpty() Returns true if this table contains no key‐value mappings

V put(K key, V value) Associates the specified value with the specified key. Returns the previous value
associated with the specified key, or null if there was no mapping for the key

V remove(Object key) Removes the mapping for this key from this table if it is present (optional
operation). Returns the previous value associated with the specified key, or null if
there was no mapping

int size() Returns the size of the table

TA B L E 7 . 6

Inner Class Entry<K, V>

Data Field Attribute

private finalK key The key

private V value The value

Constructor Behavior

public Entry(K key, V value) Constructs an Entry with the given values

Method Behavior

public K getKey() Retrieves the key

public V getValue() Retrieves the value

public V setValue(V val) Sets the value

Koffman-c07.indd 344 10/30/2015 7:30:44 PM

7.4 Implementing the Hash Table 345

Class HashtableOpen
In a hash table that uses open addressing, we represent the hash table as an array of Entry
objects (initial size is START_CAPACITY). We describe the data fields in Table 7.7. The Entry
object DELETED is used to indicate that the Entry at a particular table element has been deleted;
a null reference indicates that a table element was never occupied.

The data field declarations and constructor for HashtableOpen follow. Because generic arrays
are not permitted, the constructor creates an Entry[] array, which is referenced by table
(type Entry<K, V>[]).

/** Hash table implementation using open addressing. */
public class HashtableOpen<K, V> implements KWHashMap<K, V> {

 // Insert inner class Entry<K, V> here.
 // Data Fields
 private Entry<K, V>[] table;
 private static final int START_CAPACITY = 101;

L I S T I N G 7 . 3

Inner Class Entry

/** Contains key‐value pairs for a hash table. */
private static class Entry<K, V> {

 /** The key */
 private finalK key;
 /** The value */
 private V value;

 /** Creates a new key‐value pair.
 @param key The key
 @param value The value
 */
 public Entry(K key, V value) {
 this.key = key;
 this.value = value;
 }

 /** Retrieves the key.
 @return The key
 */
 public K getKey() {
 return key;
 }

 /** Retrieves the value.
 @return The value
 */
 public V getValue() {
 return value;
 }

 /** Sets the value.
 @param val The new value
 @return The old value
 */
 public V setValue(V val) {
 V oldVal = value;
 value = val;
 return oldVal;
 }

}

Koffman-c07.indd 345 10/30/2015 7:30:44 PM

346 Chapter 7 Sets and Maps

 private double LOAD_THRESHOLD = 0.75;
 private int numKeys;
 private int numDeletes;
 private final Entry<K, V> DELETED =
 new Entry<>(null, null);

 // Constructor
 public HashTableOpen() {
 table = new Entry[START_CAPACITY];
 }

 . . .

TA B L E 7 . 8

Private Methods for Class HashtableOpen

Method Behavior

private int find(Object key) Returns the index of the specified key if present in the table;
otherwise, returns the index of the first available slot

private void rehash() Doubles the capacity of the table and permanently removes
deleted items

TA B L E 7 . 7

Data Fields for Class HashtableOpen<K, V>

Data Field Attribute

private Entry<K, V>[] table The hash table array

private static final int START_CAPACITY The initial capacity

private double LOAD_THRESHOLD The maximum load factor

private int numKeys The number of keys in the table excluding keys that were deleted

private int numDeletes The number of deleted keys

private final Entry<K, V> DELETED A special object to indicate that an entry has been deleted

Several methods for class HashtableOpen use a private method find that searches the table
(using linear probing) until it finds either the target key or an empty slot. By expanding the
table when its load factor exceeds the LOAD_THRESHOLD, we ensure that there will always be an
empty slot in the table. Table 7.8 summarizes these private methods.

The algorithm for method find follows. Listing 7.4 shows the method.

Algorithm for HashtableOpen.find(Object key)

1. Set index to key.hashCode() % table.length.
2. if index is negative, add table.length.
3. while table[index] is not empty and the key is not at table[index]
4. Increment index.
5. if index is greater than or equal to table.length
6. Set index to 0.
7. Return the index.

Koffman-c07.indd 346 10/30/2015 7:30:44 PM

7.4 Implementing the Hash Table 347

Note that the method call key.hashCode() calls key’s hashCode. The condition (!key.equals
(table[index].getKey())) compares the key at table[index] with the key being sought (the
method parameter).

Next, we discuss the public methods: get and put. Listing 7.5 shows the code. The get algo-
rithm follows.

Algorithm for get(Object key)

1. Find the first table element that is empty or the table element that contains the key.
2. if the table element found contains the key
 Return the value at this table element.
3. else
4. Return null.

L I S T I N G 7 . 4

Method HashtableOpen.find

/** Finds either the target key or the first empty slot in the
 search chain using linear probing.
 @pre The table is not full.
 @param key The key of the target object
 @return The position of the target or the first empty slot if
 the target is not in the table.
 */
private int find(Object key) {
 // Calculate the starting index.
 int index = key.hashCode() % table.length;
 if (index < 0)
 index += table.length; // Make it positive.

 // Increment index until an empty slot is reached
 // or the key is found.
 while ((table[index] != null)
 && (!key.equals(table[index].getKey()))) {
 index++;
 // Check for wraparound.
 if (index >= table.length)
 index = 0; // Wrap around.
 }
 return index;

}

L I S T I N G 7 . 5

Method HashtableOpen.get

/** Method get for class HashtableOpen.
 @param key The key being sought
 @return the value associated with this key if found;
 otherwise, null
 */
@Override
public V get(Object key) {
 // Find the first table element that is empty
 // or the table element that contains the key.
 int index = find(key);

Koffman-c07.indd 347 10/30/2015 7:30:44 PM

348 Chapter 7 Sets and Maps

Next, we write the algorithm for method put. After inserting a new entry, the method checks
to see whether the load factor exceeds the LOAD_THRESHOLD. If so, it calls method rehash to
expand the table and reinsert the entries. Listing 7.6 shows the code for method put.

Algorithm for HashtableOpen.put(K key, V value)

1. Find the first table element that is empty or the table element that contains the key.
2. if an empty element was found
3. Insert the new item and increment numKeys.
4. Check for need to rehash.
5. Return null.
6. The key was found. Replace the value associated with this table element and return the

old value.

 // If the search is successful, return the value.
 if (table[index] != null)
 return table[index].getValue();
 else
 return null; // key not found.

}

L I S T I N G 7 . 6

Method HashtableOpen.put

/** Method put for class HashtableOpen.
 @post This key‐value pair is inserted in the
 table and numKeys is incremented. If the key is already
 in the table, its value is changed to the argument
 value and numKeys is not changed. If the LOAD_THRESHOLD
 is exceeded, the table is expanded.
 @param key The key of item being inserted
 @param value The value for this key
 @return Old value associated with this key if found;
 otherwise, null
 */
@Override
public V put(K key, V value) {
 // Find the first table element that is empty
 // or the table element that contains the key.
 int index = find(key);

 // If an empty element was found, insert new entry.
 if (table[index] == null) {
 table[index] = new Entry<>(key, value);
 numKeys++;
 // Check whether rehash is needed.
 double loadFactor =
 (double) (numKeys + numDeletes) / table.length;
 if (loadFactor > LOAD_THRESHOLD)
 rehash();
 return null;
 }

 // assert: table element that contains the key was found.
 // Replace value for this key.
 V oldVal = table[index].getValue();
 table[index].setValue(value);
 return oldVal;

}

Koffman-c07.indd 348 10/30/2015 7:30:44 PM

7.4 Implementing the Hash Table 349

Next, we write the algorithm for method remove. Note that we “remove” a table element by
setting it to reference object DELETED. We leave the implementation as an exercise.

Algorithm for remove(Object key)

1. Find the first table element that is empty or the table element that contains the key.
2. if an empty element was found
3. Return null.
4. Key was found. Remove this table element by setting it to reference DELETED, increment

numDeletes, and decrement numKeys.
5. Return the value associated with this key.

Finally, we write the algorithm for private method rehash. Listing 7.7 shows the method. Although
we do not take the effort to make the table size a prime number, we do make it an odd number.

Algorithm for HashtableOpen.rehash

1. Allocate a new hash table that is double the size and has an odd length.
2. Reset the number of keys and number of deletions to 0.
3. Reinsert each table entry that has not been deleted in the new hash table.

 P I T F A L L

Integer Division for Calculating Load Factor
Before calling method rehash, method put calculates the load factor by dividing the
number of filled slots by the table size. This is a simple computation, but if you forget
to cast the numerator or denominator to double, the load factor will be zero (because of
integer division), and the table will not be expanded. This will slow down the
performance of the table when it becomes nearly full, and it will cause an infinite loop
(in method find) when the table is completely filled.

L I S I T I N G 7 . 7

Method HashtableOpen.rehash

/** Expands table size when loadFactor exceeds LOAD_THRESHOLD
 @post The size of the table is doubled and is an odd integer.
 Each nondeleted entry from the original table is
 reinserted into the expanded table.
 The value of numKeys is reset to the number of items
 actually inserted; numDeletes is reset to 0.
 */
private void rehash() {
 // Save a reference to oldTable.
 Entry<K, V>[] oldTable = table;
 // Double capacity of this table.
 table = new Entry[2 * oldTable.length + 1];

 // Reinsert all items in oldTable into expanded table.
 numKeys = 0;
 numDeletes = 0;
 for (int i = 0; i < oldTable.length; i++) {
 if ((oldTable[i] != null) && (oldTable[i] != DELETED)) {
 // Insert entry in expanded table
 put(oldTable[i].getKey(), oldTable[i].getValue());
 }
 }
}

Koffman-c07.indd 349 10/30/2015 7:30:44 PM

350 Chapter 7 Sets and Maps

Class HashtableChain
Next, we turn our attention to class HashtableChain, which implements KWHashMap using
chaining. We will represent the hash table as an array of linked lists as shown in Table 7.9.
Even though a hash table that uses chaining can store any number of elements in the same
slot, we will expand the table if the number of entries becomes three times the number of
slots (LOAD_THRESHOLD is 3.0) to keep the performance at a reasonable level.

TA B L E 7 . 9

Data Fields for Class HashtableChain<K, V>

Data Field Attribute

private LinkedList<Entry<K, V>>[] table A table of references to linked lists of Entry<K, V> objects

private int numKeys The number of keys (entries) in the table

private static final int CAPACITY The size of the table

private static final int LOAD_THRESHOLD The maximum load factor

L I S T I N G 7 . 8

Data Fields and Constructor for HashtableChain.java

import java.util.*;

/** Hash table implementation using chaining. */
public class HashtableChain<K, V> implements KWHashMap<K, V> {

 // Insert inner class Entry<K, V> here.
 /** The table */
 private LinkedList<Entry<K, V>>[] table;
 /** The number of keys */
 private int numKeys;
 /** The capacity */
 private static final int CAPACITY = 101;
 /** The maximum load factor */
 private static final double LOAD_THRESHOLD = 3.0;

 // Constructor
 public HashtableChain() {
 table = new LinkedList[CAPACITY];
 }
. . .

}

Listing 7.8 shows the data fields and the constructor for class HashtableChain.

 P R O G R A M S T Y L E

It is generally preferred that data fields be defined as interfaces and that implementing
classes are assigned by the constructor. However, in this case, we define the data field
table to be a LinkedList. This is because we want a linked list and use a method
(addFirst) that is defined in the LinkedList class, but not in the List interface.

Next, we discuss the three methods get, put, and remove. Instead of introducing a find
method to search a list for the key, we will include a search loop in each method. We will
create a ListIterator object and use that object to access each list element.

Koffman-c07.indd 350 10/30/2015 7:30:44 PM

7.4 Implementing the Hash Table 351

We begin with the algorithm for get. Listing 7.9 shows its code. We didn’t use methods
 getKey and getValue to access an item’s key and value because those private data fields of
class Entry are visible in the class that contains it.

Algorithm for HashtableChain.get(Object key)

 1. Set index to key.hashCode() % table.length.
 2. if index is negative
 3. Add table.length.
 4. if table[index] is null
 5. key is not in the table; return null.
 6. For each element in the list at table[index]
 7. if that element’s key matches the search key
 8. Return that element’s value.
 9. key is not in the table; return null.

L I S T I N G 7 . 9

Method HashtableChain.get

/** Method get for class HashtableChain.
 @param key The key being sought
 @return The value associated with this key if found;
 otherwise, null
 */
@Override
public V get(Object key) {
 int index = key.hashCode() % table.length;
 if (index < 0)
 index += table.length;
 if (table[index] == null)
 return null; // key is not in the table.

 // Search the list at table[index] to find the key.
 for (Entry<K, V> nextItem : table[index]) {
 if (nextItem.getKey().equals(key))
 return nextItem.getValue();
 }

 // assert: key is not in the table.
 return null;

}

Next, we write the algorithm for method put. Listing 7.10 shows its code.

Algorithm for HashtableChain.put(K key, V value)

 1. Set index to key.hashCode() % table.length.
 2. if index is negative, add table.length.
 3. if table[index] is null
 4. Create a new linked list at table[index].
 5. Search the list at table[index] to find the key.
 6. if the search is successful
 7. Replace the value associated with this key.
 8. Return the old value.
 9. else
10. Insert the new key–value pair in the linked list at table[index].

Koffman-c07.indd 351 10/30/2015 7:30:45 PM

352 Chapter 7 Sets and Maps

Last, we write the algorithm for method remove. We leave the implementation of rehash and
remove as an exercise.

Algorithm for HashtableChain.remove(Object key)

 1. Set index to key.hashCode() % table.length.
 2. if index is negative, add table.length.
 3. if table[index] is null
 4. key is not in the table; return null.
 5. Search the list at table[index] to find the key.

L I S T I N G 7 . 1 0

Method HashtableChain.put

/** Method put for class HashtableChain.
 @post This key‐value pair is inserted in the
 table and numKeys is incremented. If the key is already
 in the table, its value is changed to the argument
 value and numKeys is not changed.
 @param key The key of item being inserted
 @param value The value for this key
 @return The old value associated with this key if
 found; otherwise, null
 */
@Override
public V put(K key, V value) {
 int index = key.hashCode() % table.length;
 if (index < 0)
 index += table.length;
 if (table[index] == null) {
 // Create a new linked list at table[index].
 table[index] = new LinkedList<>();
 }

 // Search the list at table[index] to find the key.
 for (Entry<K, V> nextItem : table[index]) {
 // If the search is successful, replace the old value.
 if (nextItem.getKey().equals(key)) {
 // Replace value for this key.
 V oldVal = nextItem.getValue();
 nextItem.setValue(value);
 return oldVal;
 }
 }

 // assert: key is not in the table, add new item.
 table[index].addFirst(new Entry<>(key, value));
 numKeys++;
 if (numKeys > (LOAD_THRESHOLD * table.length))
 rehash();
 return null;

}

11. Increment numKeys.
12. if the load factor exceeds the LOAD_THRESHOLD
13. Rehash.
14. Return null.

Koffman-c07.indd 352 10/30/2015 7:30:45 PM

7.4 Implementing the Hash Table 353

 6. if the search is successful
 7. Remove the entry with this key and decrement numKeys.
 8. if the list at table[index] is empty
 9. Set table[index] to null.
10. Return the value associated with this key.
11. The key is not in the table; return null.

Testing the Hash Table Implementations
We discuss two approaches to testing the hash table implementations. One way is to create a
file of key–value pairs and then read each key–value pair and insert it in the hash table,
observing how the table is filled. To do this, you need to write a toString method for the
table that captures the index of each table element that is not null and then the contents of
that table element. For open addressing, the contents would be the string representation of
the key–value pair. For chaining, you could use a list iterator to traverse the linked list at that
table element and append each key–value pair to the result string (see the Programming exer-
cises for this section).

If you use a data file, you can carefully test different situations. The following are some of the
cases you should examine:

Does the array index wrap around as it should?
Are collisions resolved correctly?
Are duplicate keys handled appropriately? Is the new value retrieved instead of the
original value?
Are deleted keys retained in the table but no longer accessible via a get?
Does rehashing occur when the load factor reaches 0.75 (3.0 for chaining)?

By stepping through the get and put methods, you can observe how the table is probed and
examine the search chain that is followed to access or retrieve a key.

An alternative to creating a data file is to insert randomly generated integers in the hash table.
This will allow you to create a very large table with little effort. The following loop generates
SIZE key–value pairs. Each key is an integer between 0 and 32,000 and is autoboxed in an
Integer object. For each table entry, the value is the same as the key. The Integer.hashCode
method returns the int value of the object to which it is applied.

for (int i = 0; i < SIZE; i++) {
 Integer nextInt = (int) (32000 * Math.random());
 hashTable.put(nextInt, nextInt);
}

Because the keys are generated randomly, you can’t investigate the effect of duplicate
keys as you can with a data file. However, you can build arbitrarily large tables and
observe how the elements are placed in the tables. After the table is complete, you can
interactively enter items to retrieve, delete, and insert and verify that they are handled
properly.

If you are using open addressing, you can add statements to count the number of items
probed each time an insertion is made. You can accumulate these totals and display the aver-
age search chain length. If you are using chaining, you can also count the number of probes
made and display the average. After all items have been inserted, you can calculate the aver-
age length of each linked list and compare that with the number predicted by the formula
provided in the discussion of performance in Section 7.3.

Koffman-c07.indd 353 10/30/2015 7:30:45 PM

354 Chapter 7 Sets and Maps

7.5 Implementation Considerations for Maps and Sets

Methods hashCode and equals
Class Object implements methods hashCode and equals, so every class can access these
 methods unless it overrides them. Method Object.equals compares two objects based on
their addresses, not their contents. Similarly, method Object.hashCode calculates an object’s
hash code based on its address, not its contents. If you want to compare two objects for
equality, you must implement an equals method for that class. In doing so, you should over-
ride the equals method for class Object by providing an equals method with the form

public boolean equals(Object obj) { . . . }

Most predefined classes (e.g., String and Integer) override method equals and method
hashCode. If you override the equals method, Java recommends you also override the hashCode
method. Otherwise, your class will violate the Java contract for hashCode, which states:

If obj1.equals(obj2) is true, then obj1.hashCode() == obj2.hashCode().

Consequently, you should make sure that your hashCode method uses the same data field(s)
as your equals method. We provide an example next.

E X E R C I S E S F O R S E C T I O N 7 . 4

S E L F ‐ C H E C K

1. The following table stores Integer keys with the int values shown. Where would each key
be placed in the new table resulting from rehashing the current table?

Index Key

0 24

1 6

2 20

3

4 14

P R O G R A M M I N G

1. Write a remove method for class HashtableOpen.

2. Write rehash and remove methods for class HashtableChain.

3. Write a toString method for class HashtableOpen.

4. Write a toString method for class HashtableChain.

5. Write a method size for both hash table implementations.

6. Modify method find to count and display the number of probes made each time it is
called. Accumulate these in a data field numProbes and count the number of times find
is called in another data field. Provide a method that returns the average number of
probes per call to find.

Koffman-c07.indd 354 10/30/2015 7:30:45 PM

7.5 Implementation Considerations for Maps and Sets 355

Implementing HashSetOpen
We can modify the hash table methods from Section 7.4 to implement a hash set. Table 7.10
compares corresponding Map and Set methods.

The Set contains method performs a test for set membership instead of retrieving a value, so
it is type boolean. Similarly, each of the other Set methods in Table 7.10 returns a boolean
value that indicates whether the method was able to perform its task. The process of search-
ing the hash table elements would be done the same way in each Set method as it is done in
the corresponding Map method.

EXAMPLE 7.10 Class Person has data field IDNumber, which is used to determine whether two Person objects
are equal. The equals method returns true only if the objects’ IDNumber fields have the same
contents.

public boolean equals(Object obj) {
 if (obj instanceof Person)
 return IDNumber.equals(((Person) obj).IDNumber);
 else
 return false;
}

To satisfy its contract, method Object.hashCode must also be overridden as follows. Now
two objects that are considered equal will also have the same hash code.

public int hashCode() {
 return IDNumber.hashCode();
}

TA B L E 7 . 1 0

Corresponding Map and Set Methods

Map Method Set Method

V get(Object key) boolean contains(Object key)

V put(K key, V value) boolean add(K key)

V remove(Object key) boolean remove(Object key)

For open addressing, method put uses the statement
table[index] = new Entry<>(key, value);

to store a reference to a new Entry object in the hash table. The corresponding statement in
method add would be

table[index] = new Entry<>(key);

because the key is the only data that is stored.

Writing HashSetOpen as an Adapter Class
Instead of writing new methods from scratch, we can implement HashSetOpen as an adapter
class with the data field

private final KWHashMap<K, V> setMap = new HashtableOpen<>();

We can write methods contains, add, and remove as follows. Because the map stores key–value
pairs, we will have each set element reference an Entry object with the same key and value.

/** A hash table for storing set elements using open addressing. */
public class HashSetOpen<K> {
 private final KWHashMap<K, V> setMap = new HashtableOpen<>();

Koffman-c07.indd 355 10/30/2015 7:30:45 PM

356 Chapter 7 Sets and Maps

 /** Adapter method contains.
 @return true if the key is found in setMap
 */
 public boolean contains(Object key) {
 // HashtableOpen.get returns null if the key is not found.
 return (setMap.get(key) != null);
 }

 /** Adapter method add.
 @post Adds a new Entry object (key, key)
 if key is not a duplicate.
 @return true if the key is not a duplicate
 */
 public boolean add(K key) {
 /* HashtableOpen.put returns null if the
 key is not a duplicate. */
 return (setMap.put(key, key) == null);
 }

 /** Adapter method remove.
 @post Removes the key‐value pair (key, key).
 @return true if the key is found and removed
 */
 public boolean remove(Object key) {
 /* HashtableOpen.remove returns null if the
 key is not removed. */
 return (setMap.remove(key) != null);
 }
}

Implementing the Java Map and Set Interfaces
Our goal in this chapter was to show you how to implement the operators in our hash table
interface, not to implement the Map or Set interface fully. However, the Java API uses a hash
table to implement both the Map and Set interfaces (class HashMap and class HashSet). You
may be wondering what additional work would be required to implement the Map and Set
interfaces using the classes we have developed so far.

The task of implementing these interfaces is simplified by the inclusion of abstract classes
AbstractMap and AbstractSet in the Collections framework (see Figures 7.1 and 7.3). These
classes provide implementations of several methods for the Map and Set interfaces. So if class
HashtableOpen extends class AbstractMap, we can reduce the amount of additional work we
need to do. We should also replace KWHashMap with Map. Thus, the declaration for HashtableOpen
would be class HashtableOpen<K, V> extends AbstractMap<K, V> implements Map<K, V>.

The AbstractMap provides relatively inefficient (O(n)) implementations of the get and put
methods. Because we overrode these methods in both our implementations (HashtableOpen
and HashtableChain), we will get O(1) expected performance. There are other, less critical
methods that we don’t need to provide because they are implemented in AbstractMap or
its superclasses, such as clear, isEmpty, putAll, equals, hashCode, and toString.

Interface Map.Entry and Class AbstractMap.SimpleEntry
One requirement on the key–value pairs for a Map object is that they implement the inter-
face Map.Entry<K, V>, which is an inner interface of interface Map. This may sound a bit
confusing, but what it means is that an implementer of the Map interface must contain an
inner class that provides code for the methods described in Table 7.11. The AbstractMap
includes the inner class SimpleEntry that implements the Map.Entry interface. We can remove
the inner class Entry<K, V> (Listing 7.3) and replace new Entry with new SimpleEntry.

Koffman-c07.indd 356 10/30/2015 7:30:45 PM

7.5 Implementation Considerations for Maps and Sets 357

Creating a Set View of a Map
Method entrySet creates a set view of the entries in a Map. This means that method entrySet
returns an object that implements the Set interface—that is, a set. The members of the set
returned are the key–value pairs defined for that Map object. For example, if a key is "0123"
and the corresponding value is "Jane Doe", the pair ("0123", "Jane Doe") would be an ele-
ment of the set view. This is called a view because it provides an alternative way to access the
contents of the Map, but there is only a single copy of the underlying Map object.

We usually call method entrySet via a statement of the form:
Iterator<Map.Entry<K, V>> iter = myMap.entrySet().iterator();

The method call myMap.entrySet() creates a set view of myMap; next, we apply method
 iterator to that set, thereby returning an Iterator object for it. We can access all the ele-
ments in the set through Iterator iter’s methods hasNext and next, but the elements are in
arbitrary order. The objects returned by the iterator’s next method are Map.Entry<K, V>
objects. We show an easier way to do this using the enhanced for statement in Example 7.11.

Method entrySet and Classes EntrySet and SetIterator
Method entrySet returns a set view of the underlying hash table (its key–value pairs) by return-
ing an instance of inner class EntrySet. We define method entrySet next and then class EntrySet.

/** Creates a set view of a map.
 @return a set view of all key‐value pairs in this map
 */
public Set<Map.Entry<K, V>> entrySet() {
 return new EntrySet();
}

We show the inner class EntrySet in Listing 7.11. This class is an extension of the AbstractSet,
which provides a complete implementation of the Set interface except for the size and
 iterator methods. The other methods required by the Set interface are defined using these
methods. Most methods are implemented by using the Iterator object that is returned by the
EntrySet.iterator method to access the contents of the hash table through its set view. You
can also use such an Iterator object to access the elements of the set view.

TA B L E 7 . 1 1

The java.util.Map.Entry<K, V> Interface

Method Behavior

K getKey() Returns the key corresponding to this entry

V getValue() Returns the value corresponding to this entry

V setValue(V val) Resets the value field for this entry to val. Returns its previous value field

L I S T I N G 7 . 1 1

The Inner Class EntrySet

/** Inner class to implement the set view. */
private class EntrySet<K, V> extends AbstractSet<Map.Entry<K, V>> {

 /** Return the size of the set. */
 @Override
 public int size() {
 return numKeys;
 }

Koffman-c07.indd 357 10/30/2015 7:30:45 PM

358 Chapter 7 Sets and Maps

The final step is to write class SetIterator, which implements the Iterator interface. The
inner class SetIterator enables access to the entries in the hash table. The SetIterator class
implements the java.util.Iterator interface and provides methods hasNext, next, and
remove. Its implementation is left as a Programming Project (see Project 6).

Classes TreeMap and TreeSet
Besides HashMap and HashSet, the Java Collections Framework provides classes TreeMap and
TreeSet that implement the Map and Set interfaces. These classes use a Red–Black tree
(Section 9.3), which is a balanced binary search tree. We discussed earlier that the perfor-
mances for search, retrieval, insertion, and removal operations are better for a hash table
than for a binary search tree (expected O(1) versus O(log n)). However, the primary advan-
tage of a binary search tree is that it can be traversed in sorted order. Hash tables, however,
can’t be traversed in any meaningful way. Also, subsets based on a range of key values can be
selected using a TreeMap but not by using a HashMap.

 /** Return an iterator over the set. */
 @Override
 public Iterator<Map.Entry<K, V>> iterator() {
 return new SetIterator<>();
 }
}

EXAMPLE 7.11 In Example 7.4 we showed how to use a Map to build an index for a term paper. Because we
want to display the words of the index in alphabetical order, we must store the index in a
SortedMap. Method showIndex below displays the string representation of each index entry in
the form

key : value

If the word fire appears on lines 4, 8, and 20, the corresponding output line would be
fire : [4, 8, 20]

It would be relatively easy to display this in the more common form: fire 4, 8, 20 (see
Programming Exercise 4).

/** Displays the index, one word per line */
public void showIndex() {
 index.forEach((k, v) ‐> System.out.println(k + " : " + v));
}

The Map.forEach method applies a BiConsumer (See Table 6.2) to each map key–value pair. In
the lambda expression

(k, v) ‐> System.out.println(k + " : " + v)

the parameter k is bound to the key, and the parameter v is bound to the value.

Without Java 8, the enhanced for loop could be used but the code would be more
cumbersome:

/** Displays the index, one word per line */
public void showIndex() {

for (Map.Entry<String, ArrayList<Integer>> entry
 : index.entrySet()) {
 System.out.println(entry);
}

}

Koffman-c07.indd 358 10/30/2015 7:30:45 PM

7.6 Additional Applications of Maps 359

CASE STUDY Implementing a Cell Phone Contact List

 Problem A cell phone manufacturer would like a Java program that maintains the list of contacts
for a cell phone owner. For each contact, a person’s name, there should be a list of phone
numbers that can be changed. The manufacturer has provided the interface for the soft-
ware (see Table 7.12).

 Analysis A map is an ideal data structure for the contact list. It should associate names (which must
be unique) to lists of phone numbers. Therefore, the name should be the key field, and the
list of phone numbers should be the value field. A sample entry would be:

 name: Jane Smith phone numbers: 215‐555‐1234, 610‐555‐4820

Thus, we can implement ContactListInterface by using a Map<String, List<String>>
object for the contact list. For the sample entry above, this object would contain the
key–value pair (“Jane Smith”, [“215‐555‐1234”, “610‐555‐4820”]).

7.6 Additional Applications of Maps

In this section, we will consider two case studies that use a Map object. The first is the design
of a contact list for a cell phone, and the second involves completing the Huffman Coding
Case Study started in Section 6.7.

E X E R C I S E S F O R S E C T I O N 7 . 5

S E L F ‐ C H E C K

1. Explain why the nested interface Map.Entry is needed.

P R O G R A M M I N G

1. Write statements to display all key–value pairs in Map object m, one pair per line. You will
need to create an iterator to access the map entries.

2. Assume that a Person has data fields lastName and firstName. Write an equals method
that returns true if two Person objects have the same first and last names. Write a hashCode
method that satisfies the hashCode contract. Make sure that your hashCode method does
not return the same value for Henry James and James Henry. Your equals method should
return a value of false for these two people.

3. Assume class HashSetOpen is written using an array table for storage instead of a HashMap
object. Write method contains.

4. Modify method showIndex so each output line displays a word followed by a comma and a
list of line numbers separated by commas. You can either edit the string corresponding to each
Map entry before displaying it or use methods Map.Entry.getKey and Map.Entry.getValue
to build a different string.

Koffman-c07.indd 359 10/30/2015 7:30:45 PM

360 Chapter 7 Sets and Maps

 Design We need to design the class MapContactList, which implements ContactListInterface.
The contact list can be stored in the data field declared as follows:
public class MapContactList implements ContactListInterface {

 /** The contact list */
 Map<String, List<String>> contacts =
 new TreeMap<>();

Writing the required methods using the Map methods is a straightforward task.

 Implementation We begin with method addOrChangeEntry:
 public List<String> addOrChangeEntry(String name,
 List<String> newNumbers) {
 List<String> oldNumbers = contacts.put(name, newNumbers);
 return oldNumbers;
 }

 Method put inserts the new name and list of numbers (method arguments) for a Map entry
and returns the old value for that name (the list of numbers) if it was previously stored. If
an entry with the given name was not previously stored, null is returned.

The lookupEntry method uses the Map.get method to retrieve the directory entry. The
entry key field (name) is passed as an argument.
 public List<String> lookupEntry(String name) {
 return contacts.get(name);
 }

The removeEntry method uses the Map.remove method to delete a contact list entry.
 public List<String> removeEntry(String name) {
 return contacts.remove(name);
 }

To display the contact list in order by name, we need to retrieve each name and its associ-
ated list of numbers from the contact list. We can use the Map.entrySet() method to
obtain a view of the map’s contents as a set of Map.Entry<String, List<String>> objects.

TA B L E 7 . 1 2

Methods of ContactListInterface

Method Behavior

List<String> addOrChangeEntry(String name,

List<String> numbers)
Changes the numbers associated with the given name or
adds a new entry with this name and list of numbers.
Returns the old list of numbers or null if this is a new
entry

List<String> lookupEntry(String name) Searches the contact list for the given name and returns its
list of numbers or null if the name is not found

List<String> removeEntry(String name) Removes the entry with the specified name from the contact
list and returns its list of numbers or null if the name is
not in the contact list

void display(); Displays the contact list in order by name

Koffman-c07.indd 360 10/30/2015 7:30:45 PM

7.6 Additional Applications of Maps 361

We can use the for‐each construct to write out the contents of the map as a sequence of
consecutive lines containing the name–number pairs. The iterator accesses the entries in
order by key field, which is what we desire.
 public void display() {
 for (Map.Entry<String, List<String>> current :
 contacts.entrySet()) {
 // Display the name.
 println(current.getKey());
 // Display the list of numbers.
 println(current.getValue());
 }
 }

Each entry is stored in current. Then method getKey returns the key field (the person’s
name), and method getValue returns the value field (the person’s list of phone numbers).

 Testing To test class MapContactList, you can write a main function that creates a new
MapContacList object. Then apply the addOrChangeEntry method several times to this
object, using new names and phone number lists, to build the initial contact list. For example,
the following sequence of statements stores two entries in contactList.

 MapContactList contactList = new MapContactList();
 List<String> nums = new ArrayList<>();
 nums.add("123"); nums.add("345");
 contactList.addOrChangeEntry("Jones", nums);
 nums = new ArrayList<>();
 nums.add("135"); nums.add("357");
 contactList.addOrChangeEntry("King", nums);

 Once you have created an initial contact list, you can display it and then update it to verify
that all the methods are correct.

CASE STUDY Completing the Huffman Coding Problem

 Problem In Section 6.7 we showed how to compress a file by using a Huffman tree to encode the
symbols occurring in the file so that the most frequently occurring characters had
the shortest binary codes. Recall that the custom Huffman tree shown in Fig. 6.37 was
built for a data file in which the letter e occurs most often, then a and then d. The letters
b and c occur least often. The letters are stored in leaf nodes. We used a priority queue
to build the Huffman tree.

In this case study, we discuss how to create the frequency table for the symbols in a data
file. We use a Map for storing each symbol and its corresponding count. We also show
how to encode the data file using a second Map for storing the code table.

Koffman-c07.indd 361 10/30/2015 7:30:46 PM

362 Chapter 7 Sets and Maps

 Analysis In Section 6.7, method buildTree of class HuffmanTree built the Huffman tree. The input
to method buildTree was a frequency table (array HuffData) consisting of (weight, symbol)
pairs, where the weight in each pair was the frequency of occurrence of the corresponding
symbol in a data file to be encoded.

To encode our data file, we used a code table consisting of (symbol, code) pairs for each
symbol in the data file. For both situations, we need to look up a symbol in a table. Using
a Map ensures that the table lookup is an expected O(1) process. We will also need to
write a representation of the Huffman tree to the data file so that we can decode it. We
discuss this later.

 Design To build the frequency table, we need to read a file and count the number of occurrences
of each symbol in the file. The symbol will be the key for each entry in a Map<Character,
Integer> object, and the corresponding value will be the count of occurrences so far. As
each symbol is read, we retrieve its Map entry and increment the corresponding count. If
the symbol is not yet in the frequency table, we insert it with a count of 1.

The algorithm for building the frequency table follows. After all characters are read, we
create a set view of the map and traverse it using an iterator. We retrieve each Map.Entry
and transpose its fields to create the corresponding HuffData array element, a (weight,
symbol) pair.

Algorithm for buildFreqTable

1. while there are more characters in the input file
2. Read a character and retrieve its corresponding entry in Map frequencies.
3. Increment value.
4. Create a set view of frequencies.
5. for each entry in the set view
6. Store its data as a weight–symbol pair in the HuffData array.
7. Return the HuffData array.

Once we have the frequency table, we can construct the Huffman tree using a priority
queue as explained in Section 6.7. Then we need to build a code table that stores the bit
string code associated with each symbol to facilitate encoding the data file. Storing the
code table in a Map<Character, BitString> object makes the encoding process more effi-
cient because we can look up the symbol and retrieve its bit string code (expected O(1)
process). The code table should be declared as:

private Map<Character, BitString> codeTable;

Method buildCodeTable builds the code table by performing a preorder traversal of
the Huffman tree. As we traverse the tree, we keep track of the bit code string so far.
When we traverse left, we append a 0 to the bit string, and when we traverse right,
we append a 1 to the bit string. If we encounter a symbol in a node, we insert that
symbol along with a copy of the code so far as a new entry in the code table. Because
all symbols are stored in leaf nodes, we return immediately without going deeper in
the tree.

Koffman-c07.indd 362 10/30/2015 7:30:46 PM

7.6 Additional Applications of Maps 363

Algorithm for Method buildCodeTable

1. Get the data at the current root.
2. if a symbol is stored in the current root (reached a leaf node)
3. Insert the symbol and bit string code so far as a new code table entry.
4. else
5. Append a 0 to the bit string code so far.
6. Apply the method recursively to the left subtree.
7. Append a 1 to the bit string code.
8. Apply the method recursively to the right subtree.

Finally, to encode the file, we read each character, look up its bit string code in the code
table Map, and then append it to the output BitStringBuilder (described after Listing 7.13).

Algorithm for Method encode

1. while there are more characters in the input file
2. Read a character and get its corresponding bit string code.
3. Append its bit string to the output BitStringBuilder.

 Implementation Listing 7.12 shows the code for method buildFreqTable. The while loop inside the try
block builds the frequency table (Map frequencies). Each character is stored as an int in
nextChar and then cast to type char. Because a Map stores references to objects, each char-
acter is autoboxed in a Character object (the key) and its count in an Integer object (the
value). Once the table is built, we use an enhanced for loop to traverse the set view,
retrieving each entry from the map and using its data to create a new HuffData element for
array freqTable. When we finish, we return freqTable as the method result.

L I S T I N G 7 . 1 2

Method buildFreqTable

public static HuffData[] buildFreqTable(BufferedReader ins) {
 // Map of frequencies.
 Map<Character, Integer> frequencies =
 new HashMap<>();
 try {
 int nextChar; // For storing the next character as an int
 while ((nextChar = ins.read()) != ‐1) { // Test for more data
 // Get the current count and increment it.
 Integer count = frequencies.getOrDefault((char) nextChar, 0);
 count++;

 // Store updated count.
 frequencies.put((char) nextChar, count);
 }
 ins.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 system.exit(1);
 }

 // Copy Map entries to a HuffData[] array.
 HuffData[] freqTable = new HuffData[frequencies.size()];
 int i = 0; // Start at beginning of array.

Koffman-c07.indd 363 10/30/2015 7:30:46 PM

364 Chapter 7 Sets and Maps

 // Get each map entry and store it in the array
 // as a weight‐symbol pair.
 for (Map.Entry<Character, Integer> entry : frequencies.entrySet()) {
 freqTable[i] =
 new HuffData(entry.getValue(), entry.getKey());
 i++;
 }
 return freqTable; // Return the array.
}

 Next, we show method buildCodeTable. We provide a starter method that initializes
codeMap to an empty HashMap and calls the recursive method that implements the algo-
rithm discussed in the Design section.

/** Starter method to build the code table.
 @post The table is built.
 */
public void buildCodeTable() {
 // Initialize the code map.
 codeMap = new HashMap<>();
 // Call recursive method with empty bit string for code so far.
 buildCodeTable(huffTree, new BitString());
}
/** Recursive method to perform breadth‐first traversal
 of the Huffman tree and build the code table.
 @param tree The current tree root
 @param code The code string so far
 */
private void buildCodeTable(BinaryTree<HuffData> tree, BitString code)
{
 // Get data at local root.
 HuffData datum = tree.getData();
 if (datum.symbol != '\u0000') { // Test for leaf node.
 // Found a symbol, insert its code in the map.
 codeMap.put(datum.symbol, code);
 } else {
 // Append 0 to code so far and traverse left.
 BitString leftCode = code.append(0);
 buildCodeTable(tree.getLeftSubtree(), leftCode);
 // Append 1 to code so far and traverse right
 BitString rightCode = code.append(1);
 buildCodeTable(tree.getRightSubtree(), rightCode);
 }
}

The goal of Huffman coding is to produce the smallest possible representation of the
text. If we were to write the file as a String of 0 and 1 characters, the resulting file
would be larger than the original, not smaller! Thus, we need to output a sequence of
individual bits, packed into 8‐bit bytes. The class BitString encapsulates a sequence
of bits much like the String class encapsulates a sequence of characters. Like the String,
BitStrings are immutable. The BitString.append method is equivalent to the + operator
in the String class in that it creates a new BitString with the argument appended to
the original. To facilitate appending individual bits or sequences of bits to a BitString,
the BitStringBuilder provides methods analogous to the StringBuilder. Classes
BitString and BitStringBuilder may be downloaded from the Web site for this
textbook.

Koffman-c07.indd 364 10/30/2015 7:30:46 PM

7.6 Additional Applications of Maps 365

Method encode reads each character again, looks up its bit code string, and writes it to the
output file. We assume that the code table is in Map codeTable (a data field).

/** The Map to store the code table. */
private Map<Character, BitString> codeTable
 = new HashMap<Character, BitString>();

Following is the encode method.
/** Encodes a data file by writing it in compressed bit string form.
 @param ins The input stream
 @return The coded file as a BitString
 */
public BitString encode(BufferedReader ins) {
 BitStringBuilder result = new BitStringBuilder(); // The complete bit string.
 try {
 int nextChar;
 while ((nextChar = ins.read()) != ‐1) { // More data?
 // Get bit string corresponding to symbol nextChar.
 BitString nextChunk = codeMap.get(char)(nextChar);
 result.append(nextChunk); // Append to result string.
 }

 } catch (IOException ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 return result.toBitString();
}

 Testing To test these methods completely, you need to download class BitString and
BitStringBuilder (see Project 1) and write a main method that calls them in the proper
sequence. For interim testing, you can read a data file and display the frequency table that
is constructed to verify that it is correct. You can also use the StringBuilder class instead
of class BitString in methods buildCodeTable and encode. The resulting code string would
consist of a sequence of digit characters '0' and '1' instead of a sequence of 0 and 1 bits.
But this would enable you to verify that the program works correctly.

Encoding the Huffman Tree
Method decode in Listing 6.12 used the Huffman tree to decode the encoded file. This tree
must be available to the receiver of the encoded file. Therefore, we must encode the Huffman
tree and write it to the encoded file.

We can encode the Huffman tree by performing a preorder traversal and appending a 0 bit
when we encounter an internal node and a 1 bit when we encounter a leaf. Also, when we
reach a leaf, we append the 16‐bit Unicode representation of the character. The Huffman tree
in Figure 6.37 (reproduced here) is encoded as follows:

01e01a01d01b1c

where the italic letters are replaced with their Unicode representations.

0 1

0 1

0 1

0 1

a

e

d

b c

Koffman-c07.indd 365 10/30/2015 7:30:46 PM

366 Chapter 7 Sets and Maps

Algorithm for encodeHuffmanTree

1. if the current root is not a leaf
2. Append a 0 to the output BitStringBuilder.
3. Recursively call encodeHuffmanTree on the left subtree.
4. Recursively call encodeHuffmanTree on the right subtree.
 else
5. Append a 1 to the output BitStringBuilder.
6. Append the 16‐bit Unicode of the symbol to the BitStringBuilder.

Reconstructing the Huffman tree is done recursively. If a 1 bit is encountered, construct a leaf
node using the next 16 bits in the BitString, and return this node. If a zero bit is encountered,
recursively decode the left subtree and the right subtree, then create an internal node with the
resulting subtrees.

E X E R C I S E S F O R S E C T I O N 7 . 6

P R O G R A M M I N G

1. Write a class to complete the test of the MapContactList class.

7.7 Navigable Sets and Maps

The SortedSet interface (part of Java 5.0) extends the Set by enabling the user to get an
ordered view of the elements with the ordering defined by a compareTo method or by
means of a Comparator. Because the items have an ordering, additional methods can be
defined, which return the first and last elements and define subsets over a specified range.
However, the ability to define subsets was limited. In particular, subsets were defined
always to include the starting element and to exclude the ending element. The Java 5.0
SortedMap interface provides an ordered view of a map with the elements ordered by key
value. Because the elements of a submap are ordered, submaps can also be defined.

In Java 6, the NavigableSet and NavigableMap interfaces were introduced as an extension to
SortedSet and SortedMap. These interfaces allow the user to specify whether the start or end
items are included or excluded. They also enable the user to specify a subset or submap that
is traversable in the reverse order. As they are more general, we will discuss the NavigableSet
and NavigableMap interfaces. Java retains the SortedSet and SortedMap interfaces for compat-
ibility with existing software. Table 7.13 shows some methods of the NavigableSet
interface.

EXAMPLE 7.12 Listing 7.13 illustrates the use of a NavigableSet. The output of this program consists of the
lines:
The original set odds is [1, 3, 5, 7, 9]
The ordered set b is [3, 5, 7]
Its first element is 3
Its smallest element >= 6 is 7

Koffman-c07.indd 366 10/30/2015 7:30:46 PM

7.7 Navigable Sets and Maps 367

TA B L E 7 . 1 3

NavigableSet Interface

Method Behavior

E ceiling(E e) Returns the smallest element in this set that is greater than or
equal to e, or null if there is no such element

Iterator<E> descendingIterator() Returns an iterator that traverses the Set in descending
order

NavigableSet<E> descendingSet() Returns a reverse order view of this set

E first() Returns the smallest element in the set

E floor(E e) Returns the largest element that is less than or equal to e, or
null if there is no such element

NavigableSet<E> headset(E toEl, boolean incl) Returns a view of the subset of this set whose elements are
less than toEl. If incl is true, the subset includes the
element toEl if it exists

E higher(E e) Returns the smallest element in this set that is strictly greater
than e, or null if there is no such element

Iterator<E> iterator() Returns an iterator to the elements in the set that traverses
the set in ascending order

E last() Returns the largest element in the set

E lower(E e) Returns the largest element in this set that is strictly less than
e, or null if there is no such element

E pollFirst() Retrieves and removes the first element. If the set is empty,
returns null

E pollLast() Retrieves and removes the last element. If the set is empty,
returns null

NavigableSet<E> subSet(E fromEl, boolean

fromIncl, E toEl, boolean toIncl)

Returns a view of the subset of this set that ranges from
fromEl to toEl. If the corresponding fromIncl or toIncl is
true, then the fromEl or toEl elements are included

NavigableSet<E> tailSet(E fromEl, boolean incl) Returns a view of the subset of this set whose elements are
greater than fromEl. If incl is true, the subset includes the
element fromE if it exists

L I S T I N G 7 . 1 3

Using a NavigableSet

public static void main(String[] args) {
 // Create and fill the sets
 NavigableSet<Integer> odds = new TreeSet<>();
 odds.add(5); odds.add(3); odds.add(7); odds.add(1); odds.add(9);
 System.out.println("The original set odds is " + odds);
 NavigableSet b = odds.subSet(1, false, 7, true);
 System.out.println("The ordered set b is " + b);
 System.out.println("Its first element is " + b.first());
 System.out.println("Its smallest element >= 6 is " + b.ceiling(6));
}

Koffman-c07.indd 367 10/30/2015 7:30:46 PM

368 Chapter 7 Sets and Maps

The methods defined by the NavigableMap interface are similar to those defined in
NavibableSet except that the parameters are keys and the results are keys, Map.Entrys, or
submaps. For example, the NavigableSet has a method ceiling that returns a single set ele-
ment or null while the NavigableMap has two similar methods: ceilingEntry(K key), which
returns the Map.Entry that is associated with the smallest key greater than or equal to the
given key, and ceilingKey(K key), which returns just the key of that entry.

Table 7.14 shows some methods of the NavigableMap interface. Not shown are methods
firstKey, firstEntry, floorKey, floorEntry, lowerKey, lowerEntry, lastKey, lastEntry,
higherKey, higherEntry, which have the same relationship to their NavigableSet counter-
parts (methods first, floor, etc.) as do ceilingKey and ceilingEntry.

The entries in a NavigableMap can be processed in key–value order. This is sometimes a desir-
able feature, which is not available in a HashMap (or hash table). Class TreeMap and a Java 6
class, ConcurrentSkipListMap, implement the NavigableMap interface. To use the class
ConcurrentSkipListSet or ConcurrentSkipListMap, you must insert both of the following
statements.

import java.util.*;
import java.util.concurrent.*;

Application of a NavigableMap
Listing 7.14 shows methods computeAverage and computeSpans. The method computeAverage
computes the average of the values defined in a Map. Method computeSpans creates a group
of submaps of a NavigableMap and passes each submap to computeAverage. Given a
NavigableMap in which the keys represent years and the values some statistic for that year,
we can generate a table of averages covering different periods. For example, if we have a map

TA B L E 7 . 1 4

NavigableMap Interface

Method Behavior

Map.Entry<K, V> ceilingEntry(K key) Returns a key–value mapping associated with the least key
greater than or equal to the given key, or null if there is no
such key

K ceilingKey(K key) Returns the least key greater than or equal to the given key, or
null if there is no such key

NavigableSet<K> descendingKeySet() Returns a reverse‐order NavigableSet view of the keys
contained in this map

NavigableMap<K, V> descendingMap() Returns a reverse‐order view of this map

NavigableMap<K, V> headMap(K toKey, boolean
incl)

Returns a view of the submap of this map whose keys are less
than toKey. If incl is true, the submap includes the entry
with key toKey if it exists

NavigableMap<K, V> subMap(K fromKey, boolean
fromIncl, K toKey, boolean toIncl)

Returns a view of the submap of this map that ranges from
fromKey to toKey. If the corresponding fromIncl or toIncl is
true, then the entries with key fromKey or toKey are included

NavigableSet<E> tailMap(K fromKey, boolean
fromIncl)

Returns a view of the submap of this map whose elements are
greater than fromKey. If fromIncl is true, the submap
includes the entry with key fromKey if it exists

NavigableSet<K> navigableKeySet() Returns a NavigableSet view of the keys contained in this map

Koffman-c07.indd 368 10/30/2015 7:30:47 PM

7.7 Navigable Sets and Maps 369

of storms that represents the number of tropical storms in a given year for the period
1960–1969, the method call

List<Number> stormAverage = computeSpans(storms, 2);

will calculate the average number of storms for the years 1960–1961, 1962–1963, and so on
and store these values in the List stormAverage. The value passed to delta is 2, so within
method computeSpans, the first statement below

double average =
 computeAverage(valueMap.subMap(index, true,
 index+delta, false));
result.add(average);

will create a submap for a pair of years (years index and index+1) and then compute the aver-
age of the two values in this submap. The second statement appends the average to the List
result. This would be repeated for each pair of years starting with the first pair (1960–1961).
For the method call

List<Number> stormAverage = computeSpans(storms, 3);

a submap would be created for each nonoverlapping group of 3 years: 1960–1962, 1963–1965,
1966–1968, and then 1969 by itself. The average of the three values in each submap (except
for the last, which contains just one entry) would be calculated and stored in List result.

L I S T I N G 7 . 1 4

Methods computeAverage and computeSpans

/** Returns the average of the numbers in its Map argument.
 @param valueMap The map whose values are averaged
 @return The average of the map values
 */
public static double computeAverage(Map<Integer, Double> valueMap) {
 int count = 0;
 double sum = 0;
 for (Map.Entry<Integer, Double> entry : valueMap.entrySet()) {
 sum += entry.getValue().doubleValue();
 count++;
 }
 return (double) sum / count;
}

/** Returns a list of the averages of nonoverlapping spans of
 values in its NavigableMap argument.
 @param valueMap The map whose values are averaged
 @param delta The number of map values in each span
 @return An ArrayList of average values for each span
 */
public static List<Double> computeSpans(NavigableMap valueMap, int delta)
{

 List<Double> result = new ArrayList<>();
 Integer min = (Integer) valueMap.firstEntry().getKey();
 Integer max = (Integer) valueMap.lastEntry().getKey();
 for (int index = min; index <= max; index += delta) {
 double average =
 computeAverage(valueMap.subMap(index, true,
 index+delta, false));
 result.add(average);
 }
 return result;
}

Koffman-c07.indd 369 10/30/2015 7:30:47 PM

370 Chapter 7 Sets and Maps

E X E R C I S E S F O R S E C T I O N 7 . 7

S E L F ‐ C H E C K

1. What is displayed by the execution of the following program?
public static void main(String[] args) {
 NavigableSet<Integer> s = new TreeSet<>();
 s.add(5); s.add(6); s.add(3); s.add(2); s.add(9);
 NavigableSet<Integer> a = s.subSet(1, true, 9, false);
 NavigableSet<Integer> b = s.subSet(4, true, 9, true);
 System.out.println(a);
 System.out.println(b);
 System.out.println(s.higher(5));
 System.out.println(s.lower(5));
 System.out.println(a.first());
 System.out.println(b.lower(4));
 int sum = 0;
 for (int i : a) {
 System.out.println(i);
 sum += i;
 }
 System.out.println(sum);
}

2. Trace the execution of methods computeSpans and computeAverage for the call computeSpans
(storms, 4) where NavigableMap<Integer, Double> storms has the following entries: {(1960, 10),
(1961, 5), (1962, 20), (1963, 8), (1964, 16), (1965, 50), (1966, 25), (1967, 15), (1968, 21),
(1969, 13)}.

3. Write an algorithm for method computeGaps that has two parameters like computeSpans,
except the int parameter represents the number of years between entries in the
NavigableMap that are being averaged together. For NavigableMap storms defined in
the previous exercise, the call computeGaps(storms, 2) would first compute the average
for the values in {(1960, 10), (1962, 20), (1964, 16) . . . } and then compute the average
for the values in {(1961, 5), (1963, 8), (1965, 50) . . . }.

P R O G R A M M I N G

1. Write a program fragment to display the elements of a set s in normal order and then in
reverse order.

2. Write a main method that tests method computeSpans.

3. Code method computeGaps from Self‐Check Exercise 3.

C h a p t e r R e v i e w

 ◆ The Set interface describes an abstract data type that supports the same operations as a
mathematical set. We use Set objects to store a collection of elements that are not ordered
by position. Each element in the collection is unique. Sets are useful for determining whether
a particular element is in the collection, not its position or relative order.

Koffman-c07.indd 370 10/30/2015 7:30:47 PM

 Chapter 7 Review 371

 ◆ The Map interface describes an abstract data type that enables a user to access information
(a value) corresponding to a specified key. Each key is unique and is mapped to a value that
may or may not be unique. Maps are useful for retrieving or updating the value corre-
sponding to a given key.

 ◆ A hash table uses hashing to transform an item’s key into a table index so that insertions,
retrievals, and deletions can be performed in expected O(1) time. When the hashCode method
is applied to a key, it should return an integer value that appears to be a random number. A
good hashCode method should be easy to compute and should distribute its values evenly
throughout the range of int values. We use modulo division to transform the hash code
value to a table index. Best performance occurs when the table size is a prime number.

 ◆ A collision occurs when two keys hash to the same table index. Collisions are expected,
and hash tables utilize either open addressing or chaining to resolve collisions. In open
addressing, each table element references a key–value pair, or null if it is empty. During
insertion, a new entry is stored at the table element corresponding to its hash index if it is
empty; otherwise, it is stored in the next empty location following the one selected by its
hash index. In chaining, each table element references a linked list of key–value pairs with
that hash index or null if none does. During insertion, a new entry is stored in the linked
list of key–value pairs for its hash index.

 ◆ In open addressing, linear probing is often used to resolve collisions. In linear probing,
finding a target or an empty table location involves incrementing the table index by 1 after
each probe. This approach may cause clusters of keys to occur in the table, leading to over-
lapping search chains and poor performance. To minimize the harmful effect of clustering,
quadratic probing increments the index by the square of the probe number. Quadratic
probing can, however, cause a table to appear to be full when there is still space available,
and it can lead to an infinite loop.

 ◆ The best way to avoid collisions is to keep the table load factor relatively low by rehashing
when the load factor reaches a value such as 0.75 (75 percent full). To rehash, you increase
the table size and reinsert each table element.

 ◆ In open addressing, you can’t remove an element from the table when you delete it, but you
must mark it as deleted. In chaining, you can remove a table element when you delete it. In
either case, traversal of a hash table visits its entries in an arbitrary order.

 ◆ A set view of a Map can be obtained through method entrySet. You can create an Iterator
object for this set view and use it to access the elements in the set view in order by key
value.

 ◆ Two Java API implementations of the Map (Set) interface are HashMap (HashSet) and TreeMap
(TreeSet). The HashMap (and HashSet) implementation uses an underlying hash table; the
TreeMap (and TreeSet) implementations use a Red–Black tree (discussed in Chapter 9).
Search and retrieval operations are more efficient using the underlying hash table (expected
O(1) versus O(log n)). The tree implementation, however, enables you to traverse the key–
value pairs in a meaningful way and allows for subsets based on a range of key values.

 ◆ The Java 6 NavigableSet and NavigableMap interfaces enable the creation of subsets and
submaps that may or may not include specified boundary items. The elements in a
NavigableSet (or NavigableMap) are in increasing order by element value (or by key value
for a NavigableMap).

 ◆ The Java 6 ConcurrentSkipListSet and ConcurrentSkipListMap are classes that implement
these interfaces.

Koffman-c07.indd 371 10/30/2015 7:30:47 PM

372 Chapter 7 Sets and Maps

Java API Interfaces and Classes Introduced in This Chapter
java.util.AbstractMap
java.util.AbstractSet
java.util.concurrent.ConcurrentSkipListMap
java.util.concurrent.ConcurrentSkipListSet
java.util.HashMap
java.util.HashSet
java.util.Map
java.util.Map.Entry
java.util.NavigableMap
java.util.NavigableSet
java.util.Set
java.util.TreeMap
java.util.TreeSet

User‐Defined Interfaces and Classes in This Chapter
BitString
ContactListInterface
Entry
EntrySet
HashSetOpen

HashtableChain
HashtableOpen
KWHashMap
MapContactList
SetIterator

Quick‐Check Exercises
1. If s is a set that contains the characters 'a', 'b', 'c', write a statement to insert the character 'd'.
2. What is the effect of each of the following method calls, given the set in Exercise 1, and what does

it return?

s.add('a');
s.add('A');
next = 'b';
s.contains(next);

 For Questions 3–7, a Map, m, contains the following entries: (1234, "Jane Doe"), (1999, "John
Smith"), (1250, "Ace Ventura"), (2000, "Bill Smythe"), (2999, "Nomar Garciaparra").

3. What is the effect of the statement m.put(1234, "Jane Smith");? What is returned?
4. What is returned by m.get(1234)? What is returned by m.get(1500)?
5. If the entries for Map m are stored in a hash table of size 1000 with open addressing and linear

probing, where would each of the items be stored?
6. Answer Question 5 for the case where the entries were stored using quadratic probing.
7. Answer Question 5 for the case where the entries were stored using chaining.
8. What class does the Java API provide that facilitates coding an implementer of the Map interface?

Of the Set interface?
9. List two classes that the Java API provides that implement the Map interface. List two that imple-

ment the Set interface.
10. You apply method _______ to a Map to create a set view. You apply method _______ to this set

view to get an object that facilitates sequential access to the Map elements.

Review Questions
1. Show where the following keys would be placed in a hash table of size 5 using open addressing:

1000, 1002, 1007, 1003. Where would these keys be after rehashing to a table of size 11?
2. Answer Question 1 for a hash table that uses chaining.

Koffman-c07.indd 372 10/30/2015 7:30:47 PM

 Chapter 7 Review 373

Programming Projects
1. Complete all methods of class HuffmanTree and test them out using a document file and a Java

source file on your computer. You can download class BitString from the Web site for this
textbook.

2. Use a HashMap to store the frequency counts for all the words in a large text document. When you
are done, display the contents of this HashMap. Next, create a set view of the Map and store its
contents in an array. Then sort the array based on key value and display it. Finally, sort the array
in decreasing order by frequency and display it.

3. Solve Project 2 using a TreeMap. You can display the words in key sequence without performing
a sort.

4. Modify Project 2 to save the line numbers for every occurrence of a word as well as the count.
5. Based on an example in Brian W. Kernighan and Rob Pike, The Practice of Programming, Addison‐

Wesley, 1999, we want to generate “random text” in the style of another author. Your first task is
to collect a group of prefix strings of two words that occur in a text file and associate them with
a list of suffix strings using a Map. For example, the text for Charles Dickens’ A Christmas Carol
contains the four phrases:

Marley was dead: to begin with.
Marley was as dead as a door‐nail.
Marley was as dead as a door‐nail.
Marley was dead.

 The prefix string "Marley was" would be associated with the ArrayList containing the four
suffix strings "dead:", "as", "as", "dead.". You must go through the text and examine each
successive pair of two‐word strings to see whether that pair is already in the map as a key. If so,
add the next word to the ArrayList that is the value for that prefix string. For example, in exam-
ining the first two sentences shown, you would first add to the entry ("Marley was", ArrayList
"dead:"). Next you would add the entry ("was dead", ArrayList "as"). Next you would add
the entry ("dead as", ArrayList "a"), and so on. When you retrieve the prefix "Marley was"
again, you would modify the ArrayList that is its value, and the entry would become ("Marley
was", ArrayList "dead:", "as"). When you are all finished, add the entry "THE_END" to the
suffix list for the last prefix placed in the Map.

 Once you have scanned the complete text, it is time to use the Map to begin generating new text
that is in the same style as the old text. Output the first prefix you placed in the Map: "Marley
was". Then retrieve the ArrayList that is the value for this prefix. Randomly select one of the
suffixes and then output the suffix. For example, the output text so far might be "Marley was
dead" if the suffix "dead" was selected from the ArrayList of suffixes for "Marley was". Now
continue with the two‐word sequence consisting of the second word from the previous prefix and
the suffix (that would be the string "was dead"). Look it up in the map, randomly select one of
the suffixes and output it. Continue this process until the suffix "THE_END" is selected.

6. Complete class HashtableOpen so that it fully implements the Map interface described in
Section 7.2. As part of this, write method entrySet and classes EntrySet and SetIterator
as described in Section 7.5. Class SetIterator provides methods hasNext and next. Use data
field index to keep track of the next value of the iterator (initially 0). Data field lastItemRe-
turned keeps track of the index of the last item returned by next; this is used by the remove

3. Write a toString method for class HashtableOpen. This method should display each table
 element that is not null and is not deleted.

4. Class HashtableChain uses the class LinkedList, which is implemented as a double‐linked list.
Write the put method using a single‐linked list to hold elements that hash to the same index.

5. Write the get method for the class in Question 4.
6. Write the remove method for the class in Question 4.
7. Write inner class EntrySet for the class in Question 4 (see Listing. 7.11).

Koffman-c07.indd 373 10/30/2015 7:30:47 PM

374 Chapter 7 Sets and Maps

method. The remove method removes the last item returned by the next method from the Set.
It may only be called once for each call to next. Thus, the remove method checks to see that
lastItemReturned has a valid value (not –1) and then sets it to an invalid value (–1) just
before returning to the caller.

 7. Complete class HashtableChain so that it fully implements the Map interface, and test it out.
Complete class SetIterator as described in Project 6.

 8. Complete the implementation of class HashSetOpen, writing it as an adapter class of HashtableOpen.
 9. Complete the implementation of class HashSetChain, writing it as an adapter class of HashtableChain.
10. Revise method put for HashtableOpen to place a new item into an already deleted spot in the

 search chain. Don’t forget to check the scenario where the key has already been inserted.

Answers to Quick-Check Exercises
 1. s.add('d');
 2. s.add('a'); // add 'a', duplicate – returns false
 s.add('A'); // add 'A', returns true

 next = 'b';

 s.contains(next); // 'b' is in the set, returns true

 3. The value associated with key 1234 is changed to "Jane Smith". The string "Jane Doe" is
returned.

 4. The string "Jane Doe" and then null.
 5. 1234 at 234, 1999 at 999, 1250 at 250, 2000 at 000, 3999 at 001.
 6. 1234 at 234, 1999 at 999, 1250 at 250, 2000 at 000, 3999 at 003.
 7. 2000 in a linked list at 000, 1234 in a linked list at 234, 1250 in a linked list at 250, 1999 and 3999

in a linked list at 999.
 8. AbstractMap, AbstractSet
 9. HashMap and TreeMap, HashSet and TreeSet
10. entrySet, iterator

Koffman-c07.indd 374 10/30/2015 7:30:47 PM

C h a p t e r

375

S
orting is the process of rearranging the data in an array or a list so that it is in increas-
ing (or decreasing) order. Because sorting is done so frequently, computer scientists
have devoted much time and effort to developing efficient algorithms for sorting arrays.

Even though many languages (including Java) provide sorting utilities, it is still very impor-
tant to study these algorithms because they illustrate several well‐known ways to solve the
sorting problem, each with its own merits. You should know how they are written so that
you can duplicate them if you need to use them with languages that don’t have sorting
utilities.

Another reason for studying these algorithms is that they illustrate some very creative
approaches to problem solving. For example, the insertion sort algorithm adapts an approach
used by card players to arrange a hand of cards; the merge sort algorithm builds on a tech-
nique used to sort external data files. Several algorithms use divide‐and‐conquer to break a
larger problem into more manageable subproblems. The Shell sort is a very efficient sort that
works by sorting many small sub‐arrays using insertion sort, which is a relatively inefficient
sort when used by itself. The merge sort and quicksort algorithms are both recursive. Method
heapsort uses a heap as its underlying data structure. The final reason for studying sorting is
to learn how computer scientists analyze and compare the performance of several different
algorithms that perform the same operation.

We will cover two quadratic (O(n2)) sorting algorithms that are fairly simple and appro-
priate for sorting small arrays but are not recommended for large arrays. We will also discuss
four sorting algorithms that give improved performance (O(n log n)) on large arrays and one
that gives performance that is much better than O(n2) but not as good as O(n log n).

Sorting

8C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To learn how to use the standard sorting methods in the Java API

 ◆ To learn how to implement the following sorting algorithms: selection sort, insertion sort,
Shell sort, merge sort, Timsort, heapsort, and quicksort

 ◆ To understand the difference in performance of these algorithms, and which to use for small
arrays, which to use for medium arrays, and which to use for large arrays

Koffman-c08.indd 375 10/30/2015 7:29:53 PM

376 Chapter 8 Sorting

Our goal is to provide a sufficient selection of quadratic sorts and faster sorts. A few
other sorting algorithms are described in the programming projects. Our expectation is that
your instructor will select which algorithms you should study.

S o r t i n g

 8.1 Using Java Sorting Methods
 8.2 Selection Sort
 8.3 Insertion Sort
 8.4 Comparison of Quadratic Sorts
 8.5 Shell Sort: A Better Insertion Sort
 8.6 Merge Sort
 8.7 Timsort
 8.8 Heapsort
 8.9 Quicksort
 8.10 Testing the Sort Algorithms
 8.11 The Dutch National Flag Problem (Optional Topic)

Case Study: The Problem of the Dutch National Flag

8.1 Using Java Sorting Methods

The Java API java.util provides a class Arrays with several overloaded sort methods for
different array types. In addition, the class Collections (also part of the API java.util) con-
tains similar sorting methods for Lists. The methods for arrays of primitive types are based
on the quicksort algorithm (Section 8.9), and the methods for arrays of Objects and for Lists
are based on the Timsort algorithm (Section 8.7). Both algorithms are O(n log n).

Method Arrays.sort is defined as a public static void method and is overloaded (see
Table 8.1). The first argument in a call can be an array of any primitive type (although we
have just shown int[]) or an array of objects. If the first argument is an array of objects, then
either the class type of the array must implement the Comparable interface or a Comparator
object must be passed as the last argument (see Section 6.6). A class that implements the
Comparable interface must define a compareTo method that determines the natural ordering of
its objects. If a Comparator is passed, its compare method will be used to determine the
ordering.

For method Collections.sort (see Table 8.1), the first argument must be a collection of
objects that implement the List interface (e.g., an ArrayList or a LinkedList). If only one
argument is provided, the objects in the List must implement the Comparable interface.
Method compareTo is called by the sorting method to determine the relative ordering of two
objects.

Optionally, a Comparator can be passed as a second argument. Using a Comparator, you can
compare objects based on some other information rather than using their natural ordering
(as determined by method compareTo). The Comparator object must be the last argument in
the call to the sorting method. Rather than rearranging the elements in the List, method sort
first copies the List elements to an array, sorts the array using Arrays.sort, and then copies
them back to the List.

Koffman-c08.indd 376 10/30/2015 7:29:53 PM

8.1 Using Java Sorting Methods 377

In Java 8, the List interface now contains a sort method. This method passes the list (this)
to Collections.sort.

In class Arrays, the two methods that use a Comparator are generic methods. Generic methods,
like generic classes, have parameters. The generic parameter(s) precede the method type. For
example, in the declaration

public static <T> void sort(T[] items, Comparator<? super T> comp)

T represents the generic parameter for the sort method and should appear in the method
parameter list (e.g., T[] items). For the second method parameter, the notation Comparator<?
super T> means that comp must be an object that implements the Comparator interface for
type T or for a superclass of type T. For example, you can define a class that implements
Comparator<Number> and use it to sort an array of Integer objects or an array of Double
objects.

TA B L E 8 . 1

Methods sort in Classes java.util.Arrays and java.util.Collections

Method sort in Class Arrays Behavior

public static void sort(int[] items) Sorts the array items in ascending order

public static void sort(int[] items, int

fromIndex, int toIndex)

Sorts array elements items[fromIndex] to
items[toIndex] in ascending order

public static void sort(Object[] items) Sorts the objects in array items in ascending order using
their natural ordering (defined by method compareTo). All
objects in items must implement the Comparable interface
and must be mutually comparable

public static void sort(Object[] items, int

fromIndex, int toIndex)

Sorts array elements items[fromIndex] to items[toIndex]
in ascending order using their natural ordering (defined by
method compareTo). All objects must implement the
Comparable interface and must be mutually comparable

public static <T> void sort(T[] items,

Comparator<? super T> comp)

Sorts the objects in items in ascending order as defined by
method comp.compare. All objects in items must be
mutually comparable using method comp.compare

public static <T> void sort(T[] items, int

fromIndex, int toIndex, Comparator<? super T>

comp)

Sorts the objects in items[fromIndex] to items[toIndex]
in ascending order as defined by method comp.compare.
All objects in items must be mutually comparable using
method comp.compare

Method sort in Class Collections Behavior

public static <T extends Comparable<T>> void

sort(List<T> list)

Sorts the objects in list in ascending order using their
natural ordering (defined by method compareTo). All objects
in list must implement the Comparable interface and must
be mutually comparable

public static <T> void sort (List<T> list,

Comparator<? super T> comp)

Sorts the objects in list in ascending order as defined by
method comp.compare. All objects must be mutually
comparable

Method sort in Interface List Behavior

default void sort(Comparator<? super E> comp) Sorts the objects in the list in ascending order as defined by
method comp.compare. All objects must be mutually
comparable

Koffman-c08.indd 377 10/30/2015 7:29:53 PM

378 Chapter 8 Sorting

Both methods in class Collections are generic.
public static <T extends Comparable<T>> void sort(List<T> list)

The notation <T extends Comparable<T>> means that generic parameter T must implement
the interface Comparable<T>. The method parameter list (the object being sorted) is of type
List<T>.

EXAMPLE 8 .1 If array items stores a collection of integers, the method call
Arrays.sort(items, 0, items.length / 2) ;

sorts the integers in the first half of the array, leaving the second half of the array
unchanged.

EXAMPLE 8 .2 Let’s assume class Person is defined as follows:
public class Person implements Comparable<Person> {
 // Data Fields
 /* The last name */
 private String lastName;
 /* The first name */
 private String firstName;
 /* Birthday represented by an integer from 1 to 366 */
 private int birthDay;

 // Methods
 /** Compares two Person objects based on names. The result
 is based on the last names if they are different;
 otherwise, it is based on the first names.
 @param obj The other Person
 @return A negative integer if this person's name
 precedes the other person's name;
 0 if the names are the same;
 a positive integer if this person's name follows
 the other person's name.
 */
 @Override
 public int compareTo(Person other) {

SYNTAX Declaring a Generic Method
FORM:

methodModifiers <genericParameters> returnType methodName(methodParameters)

EXAMPLE:

public static <T extends Comparable<T>> int binarySearch(T[] items, T target)

MEANING:

To declare a generic method, list the genericParameters inside the symbol pair <> and
between the methodModifiers (e.g., public static) and the return type. The
genericParameters can then be used in the specification of the methodParameters.

Koffman-c08.indd 378 10/30/2015 7:29:54 PM

8.1 Using Java Sorting Methods 379

 // Compare this Person to other using last names.
 int result = lastName.compareTo(other.lastName);
 // Compare first names if last names are the same.
 if (result == 0)
 return firstName.compareTo(other.firstName);
 else
 return result;
 }

 // Other methods
 . . .
}

Method Person.compareTo compares two Person objects based on their names using the last
name as the primary key and the first name as the secondary key (the natural ordering). If
people is an array of Person objects, the statement

Arrays.sort(people);

places the elements in array people in ascending order based on their names. Although the
sort operation is O(n log n), the comparison of two names is O(k) where k is the length of
the shorter name.

EXAMPLE 8 .3 You can also use a class that implements Comparator<Person> to compare Person objects. As
an example, method compare in class ComparePerson compares two Person objects based on
their birthdays, not their names.

import java.util.Comparator;

public class ComparePerson implements Comparator<Person> {
 /** Compare two Person objects based on birth date.
 @param left The left‐hand side of the comparison
 @param right The right‐hand side of the comparison
 @return A negative integer if the left person's birthday
 precedes the right person's birthday;
 0 if the birthdays are the same;
 a positive integer if the left person's birthday
 follows the right person's birthday.
 */
 @Override
 public int compare(Person left, Person right) {
 return left.getBirthDay() ‐ right.getBirthDay();
 }
}

If peopleList is a List of Person objects, the statement

Collections.sort(peopleList, new ComparePerson());

places the elements in peopleList in ascending order based on their birthdays. Comparing
two birthdays is an O(1) operation.

In Java 8, you can pass a lambda expression as a Comparator object to the List.sort method
instead of writing a class that implements Comparator. We can sort peopleList with the
 following statement,where the lambda expression specifies the compare method to be used
with items of peopleList.

peopleList.sort((p1, p2) ‐> p1.getBirthday() ‐ p2.getBirthday());

Koffman-c08.indd 379 10/30/2015 7:29:54 PM

380 Chapter 8 Sorting

E X E R C I S E S F O R S E C T I O N 8 . 1

S E L F ‐ C H E C K

1. Indicate whether each of the following method calls is valid. Describe why it isn’t valid
or, if it is valid, describe what it does. Assume people is an array of Person objects and
peopleList is a List of Person objects.
a. people.sort();
b. Arrays.sort(people, 0, people.length ‐ 3);
c. Arrays.sort(peopleList, 0, peopleList.length ‐ 3);
d. Collections.sort(people);
e. Collections.sort(peopleList, new ComparePerson());
f. Collections.sort(peopleList, 0, peopleList.size() – 3);

P R O G R A M M I N G

1. Write a method call to sort the last half of array people using the natural ordering.

2. Write a method call to sort the last half of array people using the ordering determined by
class ComparePerson.

3. Write a method call to sort peopleList using the natural ordering.

8.2 Selection Sort

Selection sort is a relatively easy‐to‐understand algorithm that sorts an array by making sev-
eral passes through the array, selecting the next smallest item in the array each time, and
placing it where it belongs in the array. We illustrate all sorting algorithms using an array of
integer values for simplicity. However, each algorithm sorts an array of Comparable objects,
so the int values must be wrapped in Integer objects.

We show the algorithm next, where n is the number of elements in an array with subscripts
0 through n − 1 and fill is the subscript of the element that will store the next smallest item
in the array.

Selection Sort Algorithm

1. for fill = 0 to n – 2 do
2. Set posMin to the subscript of the smallest item in the subarray starting at subscript fill.
3. Exchange the item at posMin with the one at fill.

Step 2 involves a search for the smallest item in each subarray. It requires a loop in which we
compare each element in the subarray, starting with the one at position fill + 1, with the
smallest value found so far. In the refinement of Step 2 shown in the following algorithm
(Steps 2.1 through 2.4), we use posMin to store the subscript of the smallest value found so
far. We assume that its initial position is fill.

Refinement of Selection Sort Algorithm (Step 2)

2.1 Initialize posMin to fill.
2.2 for next = fill + 1 to n ‐ 1

Koffman-c08.indd 380 10/30/2015 7:29:54 PM

8.2 Selection Sort 381

2.3 if the item at next is less than the item at posMin
2.4 Reset posMin to next.

First the selection sort algorithm finds the smallest item in the array (smallest is 20) and
moves it to position 0 by exchanging it with the element currently at position 0. At this point,
the sorted part of the array consists of the new element at position 0. The values to be
exchanged are shaded dark in all diagrams. The sorted elements are in light gray.

35 65 30 2060 20 65 30 3560Exchange 20, 35

Next, the algorithm finds the smallest item in the subarray starting at position 1 (next small-
est is 30) and exchanges it with the element currently at position 1:

20 65 30 3560 20 30 65 3560Exchange 30, 65

At this point, the sorted portion of the array consists of the elements at positions 0 and 1.
Next, the algorithm selects the smallest item in the subarray starting at position 2 (next
smallest is 35) and exchanges it with the element currently at position 2:

20 6530 3560 20 30 6535 60Exchange 35, 65

At this point, the sorted portion of the array consists of the elements at positions 0, 1, and 2.
Next, the algorithm selects the smallest item in the subarray starting at position 3 (next
smallest is 60) and exchanges it with the element currently at position 3:

20 6530 35 60 20 30 6535 60Exchange 60 with itself

The element at position 4, the last position in the array, must store the largest value (largest
is 65), so the array is sorted.

Analysis of Selection Sort
Steps 2 and 3 are performed n − 1 times. Step 3 performs an exchange of items; consequently,
there are n − 1 exchanges.

Step 2.3 involves a comparison of items and is performed (n – 1 – fill) times for each value of
fill. Since fill takes on all values between 0 and n − 2, the following series computes the num-
ber of executions of Step 2.3:

() ()n n– –1 2 3 2 1. . .

This is a well‐known series that can be written in closed form as

n n n n()1
2 2 2

2

For very large n, we can ignore all but the most significant term in this expression, so the
number of comparisons is O(n2) and the number of exchanges is O(n). Because the number
of comparisons increases with the square of n, the selection sort is called a quadratic sort.

Code for Selection Sort
Listing 8.1 shows the code for selection sort, which follows the algorithm above.

Koffman-c08.indd 381 10/30/2015 7:29:55 PM

382 Chapter 8 Sorting

L I S T I N G 8 . 1
SelectionSort.java

/** Implements the selection sort algorithm. */
public class SelectionSort {

 /** Sort the array using selection sort algorithm.
 @pre table contains Comparable objects.
 @post table is sorted.
 @param table The array to be sorted
 */
 public static void sort(Comparable[] table) {
 int n = table.length;
 for (int fill = 0; fill < n ‐ 1; fill++) {
 // Invariant: table[0 . . . fill – 1] is sorted.
 int posMin = fill;
 for (int next = fill + 1; next < n; next++) {
 // Invariant: table[posMin] is the smallest item in
 // table[fill . . . next ‐ 1].
 if (table[next].compareTo(table[posMin]) < 0) {
 posMin = next;
 }
 }
 // assert: table[posMin] is the smallest item in
 // table[fill . . . n ‐ 1].
 // Exchange table[fill] and table[posMin].
 Comparable temp = table[fill];
 table[fill] = table[posMin];
 table[posMin] = temp;
 // assert: table[fill] is the smallest item in
 // table[fill . . . n ‐ 1].
 }
 // assert: table[0 . . . n ‐ 1] is sorted.
 }
}

 P R O G R A M S T Y L E

Making Sort Methods Generic
The code in Listing 8.1 will compile, but it will generate a warning message regarding
an unchecked call to compareTo. You can eliminate this warning message by making
the sort a generic sort. To accomplish this for the sort above, change the method
heading to

 public static <T extends Comparable<T>> void sort(T[] table) {

where the generic type parameter, T, must implement the Comparable<T> interface.
Also, change the data type of variable temp from Comparable to type T, the data type of
the array elements.

 T temp = table[fill];

We will code the other sorting algorithms in this chapter as generic methods.

Koffman-c08.indd 382 10/30/2015 7:29:55 PM

8.3 Insertion Sort 383

8.3 Insertion Sort

Our next quadratic sorting algorithm, insertion sort, is based on the technique used by card
players to arrange a hand of cards. The player keeps the cards that have been picked up so
far in sorted order. When the player picks up a new card, the player makes room for the new
card and then inserts it in its proper place.

The left diagram of Figure 8.1 shows a hand of cards (ignoring suits) after three cards have
been picked up. If the next card is an 8, it should be inserted between the 6 and 10, maintain-
ing the numerical order (middle diagram). If the next card is a 7, it should be inserted between
the 6 and 8 as shown on the right in Figure 8.1.

To adapt this insertion algorithm to an array that has been filled with data, we start with a
sorted subarray consisting of the first element only. For example, in the leftmost array of
Figure 8.2, the initial sorted subarray consists of only the first value 30 (in element 0). The
array element(s) that are in order after each pass are shaded dark, and the elements waiting to
be inserted are in gray. We first insert the second element (25). Because it is smaller than the

E X E R C I S E S F O R S E C T I O N 8 . 2

S E L F ‐ C H E C K

1. Show the progress of each pass of the selection sort for the following array. How many
passes are needed? How many comparisons are performed? How many exchanges? Show
the array after each pass.

 40 35 80 75 60 90 70 75 50 22

2. How would you modify selection sort to arrange an array of values in decreasing sequence?

3. It is not necessary to perform an exchange if the next smallest element is already at posi-
tion fill. Modify the selection sort algorithm to eliminate the exchange of an element
with itself. How does this affect big‐O for exchanges? Discuss whether the time saved by
eliminating unnecessary exchanges would exceed the cost of these extra steps.

P R O G R A M M I N G

1. Modify the selection sort method to sort the elements in decreasing order and to incorpo-
rate the change in Self‐Check Exercise 3.

2. Add statements to trace the progress of selection sort. Display the array contents after
each exchange.

Dr. Elliot Koffman

F I G U R E 8 . 1

Picking Up a Hand

of Cards

Koffman-c08.indd 383 10/30/2015 7:29:55 PM

384 Chapter 8 Sorting

 element in the sorted subarray, we insert it before the old first element (30), and the sorted
subarray has two elements (25, 30 in second diagram). Next, we insert the third element (15).
It is also smaller than all the elements in the sorted subarray, so we insert it before the old first
element (25), and the sorted subarray has three elements (15, 25, 30 in third diagram). Next,
we insert the fourth element (20). It is smaller than the second and third elements in the
sorted subarray, so we insert it before the old second element (25), and the sorted subarray
has four elements (15, 20, 25, 30 in the fourth diagram). Finally, we insert the last element
(28). It is smaller than the last element in the sorted subarray, so we insert it before the old
last element (30), and the array is sorted. The algorithm follows.

Insertion Sort Algorithm

1. for each array element from the second (nextPos = 1) to the last
2. Insert the element at nextPos where it belongs in the array, increasing the length of the

sorted subarray by 1 element.

To accomplish Step 2, the insertion step, we need to make room for the element to be inserted
(saved in nextVal) by shifting all values that are larger than it, starting with the last value in
the sorted subarray.

Refinement of Insertion Sort Algorithm (Step 2)

2.1 nextPos is the position of the element to insert.
2.2 Save the value of the element to insert in nextVal.
2.3 while nextPos > 0 and the element at nextPos – 1 > nextVal
2.4 Shift the element at nextPos – 1 to position nextPos.
2.5 Decrement nextPos by 1.
2.6 Insert nextVal at nextPos.

We illustrate these steps in Figure 8.3. For the array shown on the left, the first three elements
(positions 0, 1, and 2) are in the sorted subarray, and the next element to insert is 20. First we
save 20 in nextVal and 3 in nextPos. Next we shift the value in position 2 (30) down one
position (see the second array in Figure 8.3), and then we shift the value in position 1 (25)
down one position (see third array in Figure 8.3). After these shifts (third array), there will
temporarily be two copies of the last value shifted (25). The first of these (white backround
in Figure 8.3) is overwritten when the value in nextVal is moved into its correct position
(nextPos is 1). The four‐element sorted subarray is shaded dark on the right of Figure 8.3.

Analysis of Insertion Sort
The insertion step is performed n − 1 times. In the worst case, all elements in the sorted
subarray are compared to nextVal for each insertion, so the maximum number of compari-
sons is represented by the series

1 2 3 2 1. . . () ()n n– –

30

25

15

20

28

25

30

15

20

28

15

25

30

20

28

End of
pass 1

End of
pass 2

End of
pass 3

End of
pass 4

15

20

25

30

28

15

20

25

28

30

F I G U R E 8 . 2

An Insertion Sort

Koffman-c08.indd 384 10/30/2015 7:29:56 PM

8.3 Insertion Sort 385

which is O(n2). In the best case (when the array is already sorted), only one comparison is
required for each insertion, so the number of comparisons is O(n). The number of shifts per-
formed during an insertion is one less than the number of comparisons or, when the new
value is the smallest so far, the same as the number of comparisons. However, a shift in an
insertion sort requires the movement of only one item, whereas in a selection sort, an exchange
involves a temporary item and requires the movement of three items. A Java array of objects
contains references to the actual objects, and it is these references that are changed. The
actual objects remain in the physical locations where they were first created.

Code for Insertion Sort
Listing 8.2 shows the InsertionSort. We use method insert to perform the insertion step
shown earlier. It would be more efficient to insert this code inside the for statement; however,
using a method will make it easier to implement the Shell sort algorithm later.

The while statement in method insert compares and shifts all values greater than nextVal in
the subarray table[0 . . . nextPos ‐ 1]. The while condition

((nextPos > 0) && (nextVal.compareTo(table[nextPos ‐ 1]) < 0))

causes loop exit if the first element has been moved or if nextVal is not less than the next
element to move. It could lead to an out‐of‐range subscript error if the order of the conditions
were reversed. Recall that Java performs short‐circuit evaluation. If the left‐hand operand of
an && operation is false, the right‐hand operand is not evaluated. If this were not the case,
when nextPos becomes 0, the array subscript would be –1, which is outside the subscript
range. Because nextPos is a value parameter, variable nextPos in sort is unchanged.

15

25

30

20

28

nextVal 20
nextPos 3

15

25

30

30

28

Shift 30
down

Shift 25
down

Insert nextVal
in place of
last value moved

Position of
nextVal

15

25

25

30

28

15

20

25

30

28

[0]

[1]

[2]

[3]

[4]

nextVal
F I G U R E 8 . 3

Inserting the Fourth

Array Element

L I S T I N G 8 . 2

InsertionSort.java

/** Implements the insertion sort algorithm. */
public class InsertionSort {
 /** Sort the table using insertion sort algorithm.
 @pre table contains Comparable objects.
 @post table is sorted.
 @param table The array to be sorted
 */
 public static <T extends Comparable<T>> void sort(T[] table) {
 for (int nextPos = 1; nextPos < table.length; nextPos++) {
 // Invariant: table[0 . . . nextPos ‐ 1] is sorted.
 // Insert element at position nextPos
 // in the sorted subarray.
 insert(table, nextPos);
 } // End for.
 } // End sort.

Koffman-c08.indd 385 10/30/2015 7:29:56 PM

386 Chapter 8 Sorting

E X E R C I S E S F O R S E C T I O N 8 . 3

S E L F ‐ C H E C K

1. Sort the following array using insertion sort. How many passes are needed? How many
comparisons are performed? How many exchanges? Show the array after each pass.

 40 35 80 75 60 90 70 75 50 22

P R O G R A M M I N G

1. Eliminate method insert in Listing 8.2 and write its code inside the for statement.

2. Add statements to trace the progress of insertion sort. Display the array contents after the
insertion of each value.

 /** Insert the element at nextPos where it belongs
 in the array.
 @pre table[0 . . . nextPos ‐ 1] is sorted.
 @post table[0 . . . nextPos] is sorted.
 @param table The array being sorted
 @param nextPos The position of the element to insert
 */
 private static <T extends Comparable<T>> void insert(T[] table,
 int nextPos) {
 T nextVal = table[nextPos];
 // Element to insert.
 while (nextPos > 0 && nextVal.compareTo(table
 [nextPos ‐ 1]) < 0) {
 table[nextPos] = table[nextPos ‐ 1];
 // Shift down.
 nextPos‐‐;
 // Check next smaller element.
 }
 // Insert nextVal at nextPos.
 table[nextPos] = nextVal;
 }
}

8.4 Comparison of Quadratic Sorts

Table 8.2 summarizes the performance of two quadratic sorts. To give you some idea as to
what these numbers mean, Table 8.3 shows some values of n and n2. If n is small (say, 100 or
less), it really doesn’t matter which sorting algorithm you use. Insertion sort gives the best
performance for larger arrays. Insertion sort is better because it takes advantage of any par-
tial sorting that is in the array and uses less costly shifts instead of exchanges to rearrange
array elements. In the next section, we discuss a variation on insertion sort, known as Shell
sort, that has O(n3/2) or better performance.

Since the time to sort an array of n elements is proportional to n2, none of these algorithms
is particularly good for large arrays (i.e., n > 100). The best sorting algorithms provide n
log n average‐case behavior and are considerably faster for large arrays. In fact, one of the

Koffman-c08.indd 386 10/30/2015 7:29:56 PM

8.4 Comparison of Quadratic Sorts 387

 algorithms that we will discuss has n log n worst‐case behavior. You can get a feel for the
difference in behavior by comparing the last column of Table 8.3 with the middle column.

Recall from Section 2.1 that big‐O analysis ignores any constants that might be involved or
any overhead that might occur from method calls needed to perform an exchange or a com-
parison. However, the tables give you an estimate of the relative performance of the different
sorting algorithms.

We haven’t talked about storage usage for these algorithms. Both quadratic sorts require
storage for the array being sorted. However, there is only one copy of this array, so the
array is sorted in place. There are also requirements for variables that store references to
particular elements, loop control variables, and temporary variables. However, for large n,
the size of the array dominates these other storage considerations, so the extra space usage
is proportional to O(1).

Comparisons versus Exchanges
We have analyzed comparisons and exchanges separately, but you may be wondering whether
one is more costly (in terms of computer time) than the other. In Java, an exchange requires
your computer to switch two object references using a third object reference as an intermedi-
ary. A comparison requires your computer to execute a compareTo method. The cost of a
comparison depends on its complexity, but it will probably be more costly than an exchange
because of the overhead to call and execute method compareTo. In some programming lan-
guages (but not Java), an exchange may require physically moving the information in each
object rather than simply swapping object references. For these languages, the cost of an
exchange would be proportional to the size of the objects being exchanged and may be more
costly than a comparison.

TA B L E 8 . 2

Comparison of Quadratic Sorts

Number of Comparisons Number of Exchanges

Best Worst Best Worst

Selection sort O(n2) O(n2) O(n) O(n)

Insertion sort O(n) O(n2) O(1) O(n2)

TA B L E 8 . 3

Comparison of Rates of Growth

n n2 n log n

8 64 24

16 256 64

32 1024 160

64 4096 384

128 16,384 896

256 65,536 2048

512 262,144 4608

Koffman-c08.indd 387 10/30/2015 7:29:56 PM

388 Chapter 8 Sorting

8.5 Shell Sort: A Better Insertion Sort

Next, we describe the Shell sort, which is a type of insertion sort but with O(n3/2) or better
performance. Unlike the other algorithms, Shell sort is named after its discoverer, Donald
L. Shell (“A High‐Speed Sorting Procedure,” Communications of the ACM, Vol. 2, No. 7
[1959], pp. 30–32). You can think of the Shell sort as a divide‐and‐conquer approach to
insertion sort. Instead of sorting the entire array at the start, the idea behind Shell sort is to
sort many smaller subarrays using insertion sort before sorting the entire array. The initial
subarrays will contain two or three elements, so the insertion sorts will go very quickly. After
each collection of subarrays is sorted, a new collection of subarrays with approximately
twice as many elements as before will be sorted. The last step is to perform an insertion sort
on the entire array, which has been presorted by the earlier sorts.

As an example, let’s sort the following array using initial subarrays with only two and three
elements. We determine the elements in each subarray by setting a gap value between the
subscripts in each subarray. We will explain how we pick the gap values later. We will use an
initial gap of 7.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 35 80 6075 90 70 75 55 90 85 34 45 62 57 65

A gap of 7 means the first subarray has subscripts 0, 7, 14 (element values 40, 75, 57,
medium shade); the second subarray has subscripts 1, 8, 15 (element values 35, 55, 65, darkest
shade); the third subarray has subscripts 2, 9 (element values 80, 90, lightest shade); and so
on. There are seven subarrays. We start the process by inserting the value at position 7 (value
of gap) into its subarray (elements at 0 and 7). Next, we insert the element at position 8 into
its subarray (elements at 1 and 8). We continue until we have inserted the last element (at
position 15) in its subarray (elements at 1, 8, and 15). The result of performing insertion sort
on all seven subarrays with two or three elements follows:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 35 80 3475 45 62 57 55 90 85 60 90 70 75 65

Next, we use a gap of 3. There are only three subarrays, and the longest one has six elements.
The first subarray has subscripts 0, 3, 6, 9, 12, 15; the second subarray has subscripts 1, 4, 7,
10, 13; the third subarray has subscripts 2, 5, 8, 11, 14.

E X E R C I S E S F O R S E C T I O N 8 . 4

S E L F ‐ C H E C K

1. Complete Table 8.3 for n = 1024 and n = 2048.

2. What do the new rows of Table 8.3 tell us about the increase in time required to process
an array of 1024 elements versus an array of 2048 elements for O(n), O(n2), and O(n
log n) algorithms?

Koffman-c08.indd 388 10/30/2015 7:29:57 PM

8.5 Shell Sort: A Better Insertion Sort 389

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 35 80 3475 45 62 57 55 90 85 60 90 70 75 65

We start the process by inserting the element at position 3 (value of gap) into its subarray.
Next, we insert the element at position 4, and so on. The result of all insertions follows:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15][13] [14]

40 34 45 3562 55 65 57 60 75 70 75 90 85 80 90

Finally, we use a gap of 1, which performs an insertion sort on the entire array. Because of the
presorting, it will require 1 comparison to insert 34, 1 comparison to insert 45 and 62,
4 comparisons to insert 35, 2 comparisons to insert 55, 1 comparison to insert 65, 3 compari-
sons to insert 57, 1 comparison to insert 60, and only 1 or 2 comparisons to insert each of
the remaining values except for 80 (3 comparisons).

The algorithm for Shell sort follows. Steps 2 through 4 correspond to the insertion sort
 algorithm shown earlier. Because the elements with subscripts 0 through gap ‐ 1 are the first
elements in their subarrays, we begin Step 4 by inserting the element at position gap instead of
at position 1 as we did for the insertion sort. Step 1 sets the initial gap between subscripts to n
/ 2, where n is the number of array elements. To get the next gap value, Step 6 divides the current
gap value by 2.2 (chosen by experimentation). We want the gap to be 1 during the last insertion
sort so that the entire array will be sorted. Step 5 ensures this by resetting gap to 1 if it is 2.

Shell Sort Algorithm

1. Set the initial value of gap to n / 2.
2. while gap > 0
3. for each array element from position gap to the last element
4. Insert this element where it belongs in its subarray.
5. if gap is 2, set it to 1.
6. else gap = gap / 2.2.

Refinement of Step 4, the Insertion Step

4.1 nextPos is the position of the element to insert.
4.2 Save the value of the element to insert in nextVal.
4.3 while nextPos > gap and the element at nextPos – gap > nextVal
4.4 Shift the element at nextPos – gap to position nextPos.
4.5 Decrement nextPos by gap.
4.6 Insert nextVal at nextPos.

Analysis of Shell Sort
You may wonder why Shell sort is an improvement over regular insertion sort, because it ends
with an insertion sort of the entire array. Each later sort (including the last one) will be per-
formed on an array whose elements have been presorted by the earlier sorts. Because the
behavior of insertion sort is closer to O(n) than O(n2) when an array is nearly sorted, the
presorting will make the later sorts, which involve larger subarrays, go more quickly. As a
result of presorting, only 19 comparisons were required to perform an insertion sort on the
last 15‐element array shown in the previous section. This is critical because it is precisely for

Koffman-c08.indd 389 10/30/2015 7:29:57 PM

390 Chapter 8 Sorting

larger arrays where O(n2) behavior would have the most negative impact. For the same reason,
the improvement of Shell sort over insertion sort is much more significant for large arrays.

A general analysis of Shell sort is an open research problem in computer science. The perfor-
mance depends on how the decreasing sequence of values for gap is chosen. It is known that
Shell sort is O(n2) if successive powers of 2 are used for gap (i.e., 32, 16, 8, 4, 2, 1). If succes-
sive values for gap are of the form 2k – 1 (i.e., 31, 15, 7, 3, 1), however, it can be proven that
the performance is O(n3/2). This sequence is known as Hibbard’s sequence. There are other
sequences that give similar or better performance.

We have presented an algorithm that selects the initial value of gap as n/2 and then divides by
2.2 and truncates to the next lowest integer. Empirical studies of this approach show that the
performance is O(n5/4) or maybe even O(n7/6), but there is no theoretical basis for this result
(M. A. Weiss, Data Structures and Problem Solving Using Java [Addison‐Wesley, 1998],
p. 230).

Code for Shell Sort
Listing 8.3 shows the code for Shell sort. Method insert has a third parameter, gap. The
expression after &&

((nextPos > gap ‐ 1) && (nextVal.compareTo(table[nextPos ‐ gap]) < 0))

compares elements that are separated by the value of gap instead of by 1. The expression
before && is false if nextPos is the subscript of the first element in a subarray. The state-
ments in the while loop shift the element at nextPos down by gap (one position in the
subarray) and reset nextPos to the subscript of the element just moved.

L I S T I N G 8 . 3

ShellSort.java

/** Implements the Shell sort algorithm. */
public class ShellSort {
 /** Sort the table using Shell sort algorithm.
 @pre table contains Comparable objects.
 @post table is sorted.
 @param table The array to be sorted
 */
 public static <T extends Comparable<T>> void sort(T[] table) {
 // Gap between adjacent elements.
 int gap = table.length / 2;
 while (gap > 0) {
 for (int nextPos = gap; nextPos < table.length; nextPos++) {
 // Insert element at nextPos in its subarray.
 insert(table, nextPos, gap);
 } // End for.

 // Reset gap for next pass.
 if (gap == 2) {
 gap = 1;
 } else {
 gap = (int) (gap / 2.2);
 }
 } // End while.
 } // End sort.

 /** Inserts element at nextPos where it belongs in array.
 @pre Elements through nextPos ‐ gap in subarray are sorted.
 @post Elements through nextPos in subarray are sorted.

Koffman-c08.indd 390 10/30/2015 7:29:57 PM

8.6 Merge Sort 391

 @param table The array being sorted
 @param nextPos The position of element to insert
 @param gap The gap between elements in the subarray
 */
 private static <T extends Comparable<T>> void insert(T[] table,
 int nextPos, int gap) {
 T nextVal = table[nextPos];
 // Element to insert.
 // Shift all values > nextVal in subarray down by gap.
 while ((nextPos > gap ‐ 1) && (nextVal.compareTo
 (table [nextPos ‐ gap]) < 0)) {
 // First element not shifted.
 table[nextPos] = table[nextPos ‐ gap];
 // Shift down.
 nextPos ‐= gap;
 // Check next position in subarray.
 }
 table[nextPos] = nextVal;
 // Insert nextVal.
 }
}

E X E R C I S E S F O R S E C T I O N 8 . 5

S E L F ‐ C H E C K

1. Trace the execution of Shell sort on the following array. Show the array after all sorts
when the gap is 5, the gap is 2, and after the final sort when the gap is 1. List the number
of comparisons and exchanges required when the gap is 5, the gap is 2 and when the gap
is 1. Compare this with the number of comparisons and exchanges that would be required
for a regular insertion sort.

 40 35 80 75 60 90 70 65 50 22

2. For the example of Shell sort shown in this section, determine how many comparisons and
exchanges are required to insert all the elements for each gap value. Compare this with the
number of comparisons and exchanges that would be required for a regular insertion sort.

P R O G R A M M I N G

1. Eliminate method insert in Listing 8.3 and write its code inside the for statement.

2. Add statements to trace the progress of Shell sort. Display each value of gap, and display
the array contents after all subarrays for that gap value have been sorted.

8.6 Merge Sort

The next algorithm that we will consider is called merge sort. A merge is a common data
processing operation that is performed on two sequences of data (or data files) with the fol-
lowing characteristics:

Both sequences contain items with a common compareTo method.
The objects in both sequences are ordered in accordance with this compareTo method
(i.e., both sequences are sorted).

Koffman-c08.indd 391 10/30/2015 7:29:57 PM

392 Chapter 8 Sorting

The result of the merge operation is to create a third sequence that contains all of the objects
from the first two sorted sequences. For example, if the first sequence is 3, 5, 8, 15 and the
second sequence is 4, 9, 12, 20, the final sequence will be 3, 4, 5, 8, 9, 12, 15, 20. The algo-
rithm for merging the two sequences follows.

Merge Algorithm

1. Access the first item from both sequences.
2. while not finished with either sequence
3. Compare the current items from the two sequences, copy the smaller current item to

the output sequence, and access the next item from the input sequence whose item
was copied.

4. Copy any remaining items from the first sequence to the output sequence.
5. Copy any remaining items from the second sequence to the output sequence.

The while loop (Step 2) merges items from both input sequences to the output sequence.
The current item from each sequence is the one that has been most recently accessed but
not yet copied to the output sequence. Step 3 compares the two current items and copies
the smaller one to the output sequence. If input sequence A’s current item is the smaller one,
the next item is accessed from sequence A and becomes its current item. If input sequence
B’s current item is the smaller one, the next item is accessed from sequence B and becomes
its current item. After the end of either sequence is reached, Step 4 or Step 5 copies the
items from the other sequence to the output sequence. Note that either Step 4 or Step 5 is
executed, but not both.

As an example, consider the sequences shown in Figure 8.4. Steps 2 and 3 will first copy
the items from sequence A with the values 244 and 311 to the output sequence; then items
from sequence B with values 324 and 415 will be copied; and then the item from sequence
A with value 478 will be copied. At this point, we have copied all items in sequence A, so
we exit the while loop and copy the remaining items from sequence B (499, 505) to the
output (Steps 4 and 5).

Analysis of Merge
For two input sequences that contain a total of n elements, we need to move each element
from its input sequence to its output sequence, so the time required for a merge is O(n). How
about the space requirements? We need to be able to store both initial sequences and the out-
put sequence. So the array cannot be merged in place, and the additional space usage is O(n).

Code for Merge
Listing 8.4 shows the merge algorithm applied to arrays of Comparable objects. Algorithm
Steps 4 and 5 are implemented as while loops at the end of the method.

244 311 478 324 415 499 505

244 311 324

Sequence A Sequence B

Output Sequence

415 478 499 505

F I G U R E 8 . 4

Merge Operation

Koffman-c08.indd 392 10/30/2015 7:29:58 PM

8.6 Merge Sort 393

L I S T I N G 8 . 4

Merge Method

/** Merge two sequences.
 @pre leftSequence and rightSequence are sorted.
 @post outputSequence is the merged result and is sorted.
 @param outputSequence The destination
 @param leftSequence The left input
 @param rightSequence The right input
 */
private static <T extends Comparable<T>> void merge(T[] outputSequence,
 T[] leftSequence,
 T[] rightSequence) {
 int i = 0;
 // Index into the left input sequence.
 int j = 0;
 // Index into the right input sequence.
 int k = 0;
 // Index into the output sequence.
 // While there is data in both input sequences
 while (i < leftSequence.length && j < rightSequence.length) {
 // Find the smaller and
 // insert it into the output sequence.
 if (leftSequence[i].compareTo(rightSequence[j]) < 0) {
 outputSequence[k++] = leftSequence[i++];
 } else {
 outputSequence[k++] = rightSequence[j++];
 }
 }
 // assert: one of the sequences has more items to copy.
 // Copy remaining input from left sequence into the output.
 while (i < leftSequence.length) {
 outputSequence[k++] = leftSequence[i++];
 }
 // Copy remaining input from right sequence into output.
 while (j < rightSequence.length) {
 outputSequence[k++] = rightSequence[j++];
 }
}

 P R O G R A M S T Y L E

By using the postincrement operator on the index variables, you can both extract the
current item from one sequence and append it to the end of the output sequence in
one statement. The statement:

outputSequence[k++] = leftSequence[i++];

is equivalent to the following three statements, executed in the order shown:

outputSequence[k] = leftSequence[i];
k++;
i++;

Both the single statement and the group of three statements maintain the invariant
that the indexes reference the current item.

Koffman-c08.indd 393 10/30/2015 7:29:58 PM

394 Chapter 8 Sorting

Algorithm for Merge Sort
We can modify merging to serve as an approach to sorting a single, unsorted array as
follows:

1. Split the array into two halves.
2. Sort the left half.
3. Sort the right half.
4. Merge the two.

What sort algorithm should we use to do Steps 2 and 3? We can use the merge sort algo-
rithm we are developing! The base case will be a table of size 1, which is already sorted,
so there is nothing to do for the base case. We write the algorithm next, showing its recur-
sive step.

Algorithm for Merge Sort

1. if the tableSize is > 1
2. Set halfSize to tableSize divided by 2.
3. Allocate a table called leftTable of size halfSize.
4. Allocate a table called rightTable of size tableSize – halfSize.
5. Copy the elements from table[0 ... halfSize ‐ 1] into leftTable.
6. Copy the elements from table[halfSize ... tableSize] into rightTable.
7. Recursively apply the merge sort algorithm to leftTable.
8. Recursively apply the merge sort algorithm to rightTable.
9. Apply the merge method using leftTable and rightTable as the input and the original

table as the output.

Trace of Merge Sort Algorithm
Figure 8.5 illustrates the merge sort. Each recursive call to method sort with an array argu-
ment that has more than one element splits the array argument into a left array and a right
array, where each new array is approximately half the size of the array argument. We then

50 60 45 30 90 20 80 15

50 60 3045

50 60

50 60

3045

30 45

30 45 6050

1. Split array into two four-element arrays.

2. Split left array into two two-element arrays.

3. Split left array (50, 60) into two one-element arrays.

4. Merge two one-element arrays into a two-element array.

5. Split right array from Step 2 into two one-element
arrays.

6. Merge two one-element arrays into a two-element array.

7. Merge two two-element arrays into a four-element array.

F I G U R E 8 . 5

Trace of Merge Sort

Koffman-c08.indd 394 10/30/2015 7:29:58 PM

8.6 Merge Sort 395

sort each of these arrays, beginning with the left half, by recursively calling method sort
with the left array and right array as arguments. After returning from the sort of the left
array and right array at each level, we merge these two halves together back into the space
occupied by the array that was split. The left subarray in each recursive call (in gray) will
be sorted before the processing of its corresponding right subarray (shaded dark) begins.
Lines 4 and 6 merge two one‐element arrays to form a sorted two‐element array. At line 7,
the two sorted two‐element arrays (50, 60 and 30, 45) are merged into a sorted four‐
element array. Next, the right subarray shaded dark on line 1 will be sorted in the same
way. When done, the sorted subarray (15, 20, 80, 90) will be merged with the sorted subarray
on line 7.

Analysis of Merge Sort
In Figure 8.5, the size of the arrays being sorted decreases from 8 to 4 (line 1) to 2 (line 2) to 1
(line 3). After each pair of subarrays is sorted, the pair will be merged to form a larger sorted
array. Rather than showing a time sequence of the splitting and merging operations, we sum-
marize them as follows:

50 60 45 30 90 20 80 15

50 60 45 30 90 20 80 15

50 60 45 30 90 20 80 15

1. Split the eight-element array.

2. Split the four-element arrays.

3. Split the two-element arrays.

Lines 1 through 3 show the splitting operations, and lines 4 through 6 show the merge opera-
tions. Line 4 shows the two‐element arrays formed by merging two‐element pairs, line 5
shows the four‐element arrays formed by merging two‐element pairs, and line 6 shows the
sorted array. Because each of these lines involves a movement of n elements from smaller‐size
arrays to larger arrays, the effort to do each merge is O(n). The number of lines that require
merging (three in this case) is log n because each recursive step splits the array in half. So the
total effort to reconstruct the sorted array through merging is O(n log n).

Recall from our discussion of recursion that whenever a recursive method is called, a copy of
the local variables is saved on the run‐time stack. Thus, as we go down the recursion chain

sorting the leftTables, a sequence of rightTables of size
n n n

k2 4 2
, , ,. . . is allocated. Since

n n
n

2 4
2 1 1. . . , a total of n additional storage locations are required.

Code for Merge Sort
Listing 8.5 shows the MergeSort class.

50 60 30 45 20 90 15 80

30 45 50 60 15 20 80 90

15 20 30 45 50 60 80 90

4. Merge the one-element arrays into two-element arrays.

5. Merge the two-element arrays into four-element arrays.

6. Merge the four-element arrays into an eight-element array.

Koffman-c08.indd 395 10/30/2015 7:29:59 PM

396 Chapter 8 Sorting

L I S T I N G 8 . 5

MergeSort.java

/** Implements the recursive merge sort algorithm. In this version, copies
 of the subtables are made, sorted, and then merged.
 */
public class MergeSort {
 /** Sort the array using the merge sort algorithm.
 pre: table contains Comparable objects.
 post: table is sorted.
 @param table The array to be sorted
 */
 public static <T extends Comparable<T>> void sort(T[] table) {
 // A table with one element is sorted already.
 if (table.length > 1) {
 // Split table into halves.
 int halfSize = table.length / 2;
 T[] leftTable = (E[]) new Comparable[halfSize];
 T[] rightTable = (E[]) new Comparable[table.length ‐ halfSize];
 System.arraycopy(table, 0, leftTable, 0, halfSize);
 System.arraycopy(table, halfSize, rightTable, 0,
 table.length ‐ halfSize);

 // Sort the halves.
 sort(leftTable);
 sort(rightTable);

 // Merge the halves.
 merge(table, leftTable, rightTable);
 }
 }
 // See Listing 8.4 for the merge method.
 . . .

}

E X E R C I S E S F O R S E C T I O N 8 . 6

S E L F ‐ C H E C K

1. Trace the execution of the merge sort on the following array, providing a figure similar to
Figure 8.5.

 55 50 10 40 80 90 60 100 70 80 20 50 22

2. For the array in Question 1 above, show the value of halfSize and arrays leftTable and
rightTable for each recursive call to method sort in Listing 8.4 and show the array ele-
ments after returning from each call to merge. How many times is sort called, and how
many times is merge called?

P R O G R A M M I N G

1. Add statements that trace the progress of method sort by displaying the array table
after each merge operation. Also display the arrays referenced by leftTable and
rightTable.

Koffman-c08.indd 396 10/30/2015 7:29:59 PM

8.7 Timsort 397

8.7 Timsort

Timsort was developed by Tim Peters in 2002 as the library sort algorithm for the Python
language. Timsort is a modification of the merge sort algorithm that takes advantage of
sorted subsets that may exist in the data being sorted. The Java 8 API replaced merge sort
with Timsort as the sort algorithm to sort lists of objects.

Recall that merge sort recursively divides the array in half until there are two sequences of
length one. It then merges the adjacent sequences. This is depicted in Figure 8.5. As the algo-
rithm progresses, the run‐time stack holds the left‐hand sequences that are waiting to be
merged with the right‐hand sequences. Merge sort starts with two sequences of length 1 and
merges them to form a sequence of length 2. It then takes the next two sequences of length
1 and merges them. It then merges the two sequences of length 2 to form a sequence of
length 4. The process then repeats building two more sequences of length 2 to create a new
sequence of length 4, which is then merged with the previous sequence of length 4 to form
a sequence of length 8, and so on. If the data contains subsequences that are already sorted,
they are still broken down into sequences of length 1 and then merged back together.

Timsort starts by looking for sequences that are already sorted in either ascending or descend-
ing order (called a run). A descending sequence is in‐place converted to an ascending sequence.
After a sequence is identified, it is placed onto a stack. In merge sort, the stack contains
sequences of decreasing size such that the sequence at position (i − 2) is twice the length of
the sequence at position (i − 1) and four times the length of the sequence at position (i). Thus,
the sequence at (i − 2) is longer than the sum of the lengths of the sequences at positions i and
(i − 1), and the sequence at position (i − 1) is longer than the sequence at position i. Timsort
maintains this same invariant. If the new sequence is at position i on the stack, then if it is
shorter than the one at i − 1 and if the sum of the lengths of the new item and the one at i − 1
is smaller than the one at i − 2, then we leave the new one on the stack and look for the next
sequence. However, if this invariant is violated by the addition of the new sequence, the
invariant is restored by merging the shorter of the sequence at i or i − 2 with the sequence at
i − 1. After the merge is completed, the invariant is again checked and the process repeats
until the invariant is restored. Once all of the runs have been identified, the stack is collapsed
by repeatedly merging the top two items on the stack.

For example, consider the following input data:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

1 3 5 97 8 6 4 12 14 15 16 17 11 10

The stack will contain the start position of the first item in a run and its length. The run from
0 to 4 is identified and is paced onto the stack at stack index 0.

Index Start Length

0 0 5

The next run (from 5 to 7) shown earlier is a descending sequence. It is in‐place converted to
an ascending sequence as shown next

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

1 3 5 97 4 6 8 12 14 15 16 17 11 10

Koffman-c08.indd 397 10/30/2015 7:29:59 PM

398 Chapter 8 Sorting

and it is placed on the stack at stack index 1.

Index Start Length

0 0 5

1 5 3

Since the new sequence is shorter than the sequence below it in the stack, we look for the next
sequence. This sequence is from 8 to 12. It is an ascending sequence and is placed onto the stack.

Index Start Length

0 0 5

1 5 3

2 8 5

This sequence is longer than the one below it. The sequence at 0 is shorter than the com-
bined length of the sequences at 1 and 2. Since the length of the sequence at 0 on the
stack is less than or equal to the length of the sequence at 2, we merge the sequences at
0 and 1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

1 3 4 65 7 8 9 12 14 15 16 17 11 10

The stack now is

Index Start Length

0 0 8

1 8 5

and the invariant is restored.

Now the next sequence is identified from 13 to 14. It is a descending sequence, so it is
in‐place converted to an ascending sequence.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

1 3 4 65 7 8 9 12 14 15 16 17 10 11

The stack is now

Index Start Length

0 0 8

1 8 5

2 13 2

Koffman-c08.indd 398 10/30/2015 7:30:00 PM

8.7 Timsort 399

There are no more sequences, so we finish the merge process by merging the sequences on
the stack, starting with the last two sequences placed on the stack, until there is only one
sequence left.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

1 3 4 65 7 8 9 10 11 12 14 15 16 17

Index Start Length

0 0 8

1 8 7

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

1 3 4 65 7 8 9 10 11 12 14 15 16 17

Index Start Length

0 0 15

Observe that the last two sequences were already sorted (the numbers at array element
[7] is smaller than the number at array element [8]), so there was no actual merging. The
Timsort merge algorithm also takes advantage of this by finding the first item in the left
sequence that is greater than the first item in the right sequence. It also finds the last item
in the right sequence that is less than the last item in the right sequence. The resulting
shortened sequences are then merged.

Algorithm for Timsort

1. Set lo to zero.
2. while lo is less than the length of the array
3. Find the length of the run starting at lo.
4. If this is a decreasing run, reverse it.
5. Add this run to the stack.
6. Set lo to lo + length of the run.
7. Collapse‐merge the stack.
8. Force‐merge the stack.

Algorithm to Find a Run

1. Set hi to lo + 1.
2. if a[hi] < a[lo]
3. while hi < a.length and a[hi] < a[lo]
4. increment hi
 else
5. while hi < a.length and a[hi] ≥ a[lo]
6. increment hi
7. Return hi – lo as the length of the run.

Koffman-c08.indd 399 10/30/2015 7:30:00 PM

400 Chapter 8 Sorting

Algorithm to Reverse a Run

1. Set i to the beginning of the run.
2. Set j to the end of the run (i + length‐1).
3. while i < j
4. swap a[i] and a[j]
5. increment i
6. decrement j

Algorithm for Collapse‐Merge

1. while the stack size is > 1
2. Let top be the index of the top of the stack.
3. if top > 1 and stack[top‐2].length ≤ stack[top‐1].length + stack[top].length
4. if stack[top‐2].length < stack[top].length
5. Merge the runs at stack[top‐2] and stack[top‐1].
 else

6. Merge the runs at stack[top‐1] and stack[top].
7. else if stack[top‐1].length ≤ stack[top].length
8. Merge the runs at stack[top‐1] and stack[top].
 else
9. Exit the while loop.

Algorithm for Force‐Merge

1. while the stack size is > 1
2. Let top be the index of the top of the stack.
3. if top > 1 and stack[top‐2].length < stack[top].length
4. Merge the runs at stack[top‐2] and stack[top‐1].
 else

5. Merge the runs at stack[top‐1] and stack[top].

Merging Adjacent Sequences
The actual merging of the sequences is the same as in merge sort. However, to avoid
unnecessary copying of data to the temporary arrays, the start of the left sequence is
adjusted to the first item that is greater than the first item of the right sequence. Likewise,
the end of the right sequence is adjusted to be the first item that is less than the last item
in the left sequence.

Implementation
Listing 8.6 shows the implementation of Timsort. An internal class, TS, is used to hold the
references to the array being sorted and the stack. An ArrayList is used for the stack
because we need to access the top three items. The internal class run is used to represent
the runs.

Koffman-c08.indd 400 10/30/2015 7:30:00 PM

8.7 Timsort 401

L I S T I N G 8 . 6

Timsort.java

/** A simplified version of the Timsort algorithm.
 * @author Koffman & Wolfgang
 */
public class TimSort implements SortAlgorithm {

 /** Sort the array using the Timsort algorithm
 * @pre table contains Comparable objects.
 * @post table is sorted.
 * @param table The array to be sorted
 */
 @Override
 public <T extends Comparable<T>> void sort(T[] table) {
 new TS(table).sort();
 }

 /** Private inner class to hold the working state of
 * the algorithm.
 */
 private static class TS<T extends Comparable<T>> {

 /** Private inner class to hold definitions
 * of the runs
 */
 private static class Run {

 int startIndex;
 int length;

 Run(int startIndex, int length) {
 this.startIndex = startIndex;
 this.length = length;
 }
 }
 // Array of runs that are pending merging.
 List<Run> runStack;

 // Reference to the array being sorted.
 T[] table;

 /** constructor
 * @param table array to be sorted
 */
 public TS(T[] table) {
 this.table = table;
 runStack = new ArrayList<>();
 }

 /** Sort the array using the Timsort algorithm.
 * @pre table contains Comparable objects.
 * @post table is sorted.
 */
 public void sort() {
 int nRemaining = table.length;
 if (nRemaining < 2) {
 // Single item array is already sorted.
 return;
 }

Koffman-c08.indd 401 10/30/2015 7:30:00 PM

402 Chapter 8 Sorting

 int lo = 0;
 do {
 int runLength = nextRun(lo);
 runStack.add(new Run(lo, runLength));
 mergeCollapse();
 lo += runLength;
 nRemaining ‐= runLength;
 } while (nRemaining != 0);
 mergeForce();
 }

 /** Method to find the length of the next run. A
 * run is a sequence of ascending items such that
 * a[i] <= a[i+1] or descending items such
 * that a[i] > a[i+1].
 * If a descending sequence is found, it is turned
 * into an ascending sequence.
 * @param table The table being sorted
 * @param lo The index where the sequence starts
 * @return the length of the sequence.
 */
 private int nextRun(int lo) {
 if (lo == table.length ‐ 1) {
 return 1;
 }
 int hi = lo + 1;
 if (table[hi ‐ 1].compareTo(table[hi]) <= 0) {
 while (hi < table.length &&
 table[hi ‐ 1].compareTo(table[hi]) <= 0) {
 hi++;
 }
 } else {
 while (hi < table.length &&
 table[hi ‐ 1].compareTo(table[hi]) > 0) {
 hi++;
 }
 swapRun(lo, hi ‐ 1);
 }
 return hi ‐ lo;
 }

 /** Method to convert a descending sequence into
 * an ascending sequence.
 * @param table The table being sorted
 * @param lo The start index
 * @param hi The end index
 */
 private void swapRun(int lo, int hi) {
 while (lo < hi) {
 swap(lo++, hi‐‐);
 }
 }

 /** Swap the items in table[i] and table[j].
 * @param table The array that contains the items
 * @param i The index of one item
 * @param j The index of the other item
 */
 private void swap(int i, int j) {

Koffman-c08.indd 402 10/30/2015 7:30:00 PM

8.7 Timsort 403

 T temp = table[i];
 table[i] = table[j];
 table[j] = temp;
 }

 /** Merge adjacent runs until the following
 * invariant is established.
 * 1. runLength[top ‐ 2] > runLenght[top ‐ 1] + runLength[top]
 * 2. runLength[top ‐ 1] > runLength[top]
 * This method is called each time a new run is
 * added to the stack.
 * Invariant is true before a new run is added to
 * the stack.
 */
 private void mergeCollapse() {
 while (runStack.size() > 1) {
 int top = runStack.size() ‐ 1;
 if (top > 1 && runStack.get(top ‐ 2).length <=
 runStack.get(top ‐ 1).length + runStack.get(top).length) {
 if (runStack.get(top ‐ 2).length <
 runStack.get(top).length) {
 mergeAt(top ‐ 2);
 } else {
 mergeAt(top ‐ 1);
 }
 } else if (runStack.get(top ‐ 1).length <=
 runStack.get(top).length) {
 mergeAt(top ‐ 1);
 } else {
 break;
 }
 }
 }

 /** Merge all remaining runs. This method is called
 * to complete the sort.
 */
 private void mergeForce() {
 while (runStack.size() > 1) {
 int top = runStack.size() ‐ 1;
 if (top > 1 && runStack.get(top ‐ 2).length <
 runStack.get(top).length) {
 mergeAt(top ‐ 2);
 } else {
 mergeAt(top ‐ 1);
 }
 }
 }

 /* Merge the two adjacent runs at i and i+1. i must
 be equal to runStack.size() ‐ 2 or runStack.size() ‐ 3.
 */
 private void mergeAt(int i) {
 int base1 = runStack.get(i).startIndex;
 int len1 = runStack.get(i).length;
 int base2 = runStack.get(i + 1).startIndex;
 int len2 = runStack.get(i + 1).length;
 runStack.set(i, new Run(base1, len1 + len2));

Koffman-c08.indd 403 10/30/2015 7:30:00 PM

404 Chapter 8 Sorting

 if (i == runStack.size() ‐ 3) {
 runStack.set(i + 1, runStack.get(i + 2));
 }
 runStack.remove(runStack.size() ‐ 1);
 int newBase1 = reduceLeft(base1, base2);
 len1 = len1 ‐ (newBase1 ‐ base1);
 if (len1 > 0) {
 len2 = reduceRight(newBase1, len1, base2, len2);
 if (len2 > 0) {
 T[] run1 = (T[]) (new Comparable[len1]);
 T[] run2 = (T[]) (new Comparable[len2]);
 System.arraycopy(table, newBase1, run1, 0, len1);
 System.arraycopy(table, base2, run2, 0, len2);
 merge(newBase1, run1, run2);
 }
 }
 }

 /** Adjust the start of run1 so that its first
 * element is greater than or equal the first element of run2
 * @param base1 The index of the start of run1
 * @param base2 The index of the start of run2
 * @return the new start of run 1
 */
 int reduceLeft(int base1, int base2) {
 T base2Start = table[base2];
 while (table[base1].compareTo(base2Start) < 0) {
 base1++;
 }
 return base1;
 }

 /** Adjust the end of run2 so that its last element
 * is less than or equal to the last element of run1
 * @param base1 The start of run 1
 * @param len1 The length of run 1
 * @param base2 The start of run 2
 * @param len2 The length of run 2
 * @return the new length of run 2
 */
 int reduceRight(int base1, int len1, int base2, int len2) {
 T run1End = table[base1 + len1 ‐ 1];
 while (table[base2 + len2 ‐ 1].compareTo(run1End) > 0) {
 len2‐‐;
 }
 return len2;
 }

 /** Merge two runs into the table
 * @param destIndex Index where the merged run is to be inserted
 * @param run1 Array containing one run
 * @param run2 Array containing the other run
 */
 private void merge(int destIndex, T[] run1, T[] run2) {
 int i = 0;
 int j = 0;
 while (i < run1.length && j < run2.length) {
 if (run1[i].compareTo(run2[j]) < 0) {

Koffman-c08.indd 404 10/30/2015 7:30:00 PM

8.8 Heapsort 405

8.8 Heapsort

The merge sort algorithm has the virtue that its time is O(n log n), but it still requires, at
least temporarily, n extra storage locations. This next algorithm can be implemented with-
out requiring any additional storage. It uses a heap to store the array and so is called
heapsort.

First Version of a Heapsort Algorithm
We introduced the heap in Section 6.6. When used as a priority queue, a heap is a data struc-
ture that maintains the smallest value at the top. The following algorithm first places an
array’s data into a heap. Then it removes each heap item (an O(log n) process) and moves it
back into the array.

Heapsort Algorithm: First Version

1. Insert each value from the array to be sorted into a priority queue (heap).
2. Set i to 0.
3. while the priority queue is not empty
4. Remove an item from the queue and insert it back into the array at position i.
5. Increment i.

Although this algorithm can be shown to be O(n log n), it does require n extra storage loca-
tions (the array and heap are both size n). We address this problem next.

Revising the Heapsort Algorithm
In the heaps we have used so far, each parent node value was less than the values of its chil-
dren. We can also build the heap so that each parent is larger than its children. Figure 8.6
shows an example of such a heap.

Once we have such a heap, we can remove one item at a time from the heap. The item
removed is always the top element, and it will end up at the bottom of the heap. When we
reheap, we move the larger of a node’s two children up the heap, instead of the smaller, so the
next largest item is then at the top of the heap. Figure 8.7 shows the heap after we have

 table[destIndex++] = run1[i++];
 } else {
 table[destIndex++] = run2[j++];
 }
 }
 while (i < run1.length) {
 table[destIndex++] = run1[i++];
 }
 while (j < run2.length) {
 table[destIndex++] = run2[j++];
 }
 }
 }
}

Koffman-c08.indd 405 10/30/2015 7:30:00 PM

406 Chapter 8 Sorting

removed one item, and Figure 8.8 shows the heap after we have removed two items. In both
figures, the items in bold have been removed from the heap. As we continue to remove items
from the heap, the heap size shrinks as the number of the removed items increases. Figure 8.9
shows the heap after we have emptied it.

If we implement the heap using an array, each element removed will be placed at the end of
the array but in front of the elements that were removed earlier. After we remove the last ele-
ment, the array will be sorted. We illustrate this next.

Figure 8.10 shows the array representation of the original heap. As before, the root, 89, is at
position 0. The root’s two children, 76 and 74, are at positions 1 and 2. For a node at position
p, the left child is at 2p + 1 and the right child is at 2p + 2. A node at position c can find its
parent at (c – 1) / 2.

Figure 8.11 shows the array representation of the heaps in Figures 8.7 through 8.9. The items
in gray have been removed from the heap and are sorted. Each time an item is removed, the
heap part of the array decreases by one element and the sorted part of the array increases by
one element. In the array at the bottom of Figure 8.11, all items have been removed from the
heap and the array is sorted.

From our foregoing observations, we can sort the array that represents a heap in the follow-
ing way.

Algorithm for In‐Place Heapsort

1. Build a heap by rearranging the elements in an unsorted array.
2. while the heap is not empty
3. Remove the first item from the heap by swapping it with the last item in the heap

and restoring the heap property.

37 32

20 26 18 28

39 66

29 6

76 74

89

F I G U R E 8 . 6

Example of a Heap with Largest Value in Root

26 32

20 6 18 28

39 66

29 89

37 74

76

F I G U R E 8 . 7

Heap after Removal of Largest Item

26 32

20 6 18 28

39 29

76 89

37 66

74

F I G U R E 8 . 8

Heap after Removal of Two Largest Items

26 28

37 39 66 74

29 32

76 89

18 20

6

F I G U R E 8 . 9

Heap after Removal of All Its Items

Koffman-c08.indd 406 10/30/2015 7:30:01 PM

8.8 Heapsort 407

Each time through the loop (Steps 2 and 3), the largest item remaining in the heap is placed
at the end of the heap, just before the previously removed items. Thus, when the loop termi-
nates, the items in the array are sorted. In Section 6.6, we discussed how to remove an item
from a heap and restore the heap property. We also implemented a remove method for a heap
in an ArrayList.

Algorithm to Build a Heap
Step 1 of the algorithm builds a heap. If we start with an array, table, of length table.length,
we can consider the first item (index 0) to be a heap of one item. We now consider the general
case where the items in array table from 0 through n ‐ 1 form a heap; the items from n
through table.length ‐ 1 are not in the heap. As each is inserted, we must “reheap” to
restore the heap property.

Refinement of Step 1 for In‐Place Heapsort

1.1 while n is less than table.length
1.2 Increment n by 1. This inserts a new item into the heap.
1.3 Restore the heap property.

Analysis of Revised Heapsort Algorithm
From our knowledge of binary trees, we know that a heap of size n has log n levels. Building
a heap requires finding the correct location for an item in a heap with log n levels. Because
we have n items to insert and each insert (or remove) is O(log n), the buildHeap operation is
O(n log n). Similarly, we have n items to remove from the heap, so that is also O(n log n).
Because we are storing the heap in the original array, no extra storage is required.

Code for Heapsort
Listing 8.7 shows the HeapSort class. The sort method merely calls the buildHeap method
followed by the shrinkHeap method, which is based on the remove method shown in
Section 6.6. Method swap swaps the items in the table.

89 76 74 3237 39 66 20 26 18 28 29 6

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
F I G U R E 8 . 1 0

Internal Representation

of the Heap Shown in

Figure 8.6

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

76 37 74 3226 39 66 20 6 18 28 29 89

74 37 66 3226 39 29 20 6 18 28 76 89

6 18 20 2826 29 32 37 39 66 74 76 89

.

.

.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

F I G U R E 8 . 1 1

Internal Representation

of the Heaps Shown in

Figures 8.7 through 8.9

Koffman-c08.indd 407 10/30/2015 7:30:02 PM

408 Chapter 8 Sorting

L I S T I N G 8 . 7

HeapSort.java

/** Implementation of the heapsort algorithm. */
public class HeapSort {
 /** Sort the array using heapsort algorithm.
 @pre table contains Comparable items.
 @post table is sorted.
 @param table The array to be sorted
 */
 public static <T extends Comparable<T>> void sort(T[] table) {
 buildHeap(table);
 shrinkHeap(table);
 }

 /** buildHeap transforms the table into a heap.
 @pre The array contains at least one item.
 @post All items in the array are in heap order.
 @param table The array to be transformed into a heap
 */
 private static <T extends Comparable<T>> void buildHeap(T[] table) {
 int n = 1;
 // Invariant: table[0 . . . n ‐ 1] is a heap.
 while (n < table.length) {
 n++; // Add a new item to the heap and reheap.
 int child = n ‐ 1;
 int parent = (child ‐ 1) / 2; // Find parent.
 while (parent >= 0
 && table[parent].compareTo(table[child]) < 0) {
 swap(table, parent, child);
 child = parent;
 parent = (child ‐ 1) / 2;
 }
 }
 }

 /** shrinkHeap transforms a heap into a sorted array.
 @pre All items in the array are in heap order.
 @post The array is sorted.
 @param table The array to be sorted
 */
 private static <T extends Comparable<T>> void shrinkHeap(T[] table) {
 int n = table.length;
 // Invariant: table[0 . . . n ‐ 1] forms a heap.
 // table[n . . . table.length ‐ 1] is sorted.
 while (n > 0) {
 n‐‐;
 swap(table, 0, n);
 // table[1 . . . n ‐ 1] form a heap.
 // table[n . . . table.length ‐ 1] is sorted.
 int parent = 0;
 while (true) {
 int leftChild = 2 * parent + 1;
 if (leftChild >= n) {
 break; // No more children.
 }
 int rightChild = leftChild + 1;
 // Find the larger of the two children.
 int maxChild = leftChild;
 if (rightChild < n // There is a right child.
 && table[leftChild].compareTo(table[rightChild]) < 0) {

Koffman-c08.indd 408 10/30/2015 7:30:02 PM

8.9 Quicksort 409

 maxChild = rightChild;
 }
 // If the parent is smaller than the larger child,
 if (table[parent].compareTo(table[maxChild]) < 0) {
 // Swap the parent and child.
 swap(table, parent, maxChild);
 // Continue at the child level.
 parent = maxChild;
 } else { // Heap property is restored.
 break; // Exit the loop.
 }
 }
 }
 }

 /** Swap the items in table[i] and table[j].
 @param table The array that contains the items
 @param i The index of one item
 @param j The index of the other item
 */
 private static <T extends Comparable<T>> void swap(T[] table,
 int i, int j) {
 T temp = table[i];
 table[i] = table[j];
 table[j] = temp;
 }
}

E X E R C I S E S F O R S E C T I O N 8 . 8

S E L F ‐ C H E C K

1. Build the heap from the numbers in the following list. How many exchanges were required?
How many comparisons?

 55 50 10 40 80 90 60 100 70 80 20 50 22
2. Shrink the heap from Question 1 to create the array in sorted order. How many exchanges

were required? How many comparisons?

8.9 Quicksort

The next algorithm we will study is called quicksort. Developed by C. A. R. Hoare in 1962,
it works in the following way: given an array with subscripts first . . . last to sort, quick-
sort rearranges this array into two parts so that all the elements in the left subarray are less
than or equal to a specified value (called the pivot) and all the elements in the right subarray
are greater than the pivot. The pivot is placed between the two parts. Thus, all of the elements
on the left of the pivot value are smaller than all elements on the right of the pivot value, so
the pivot value is in its correct position. By repeating this process on the two halves, the
whole array becomes sorted.

Koffman-c08.indd 409 10/30/2015 7:30:02 PM

410 Chapter 8 Sorting

As an example of this process, let’s sort the following array:

 44 75 23 5543 12 64 77 33

We will assume that the first array element (44) is arbitrarily selected as the pivot value. A
possible result of rearranging, or partitioning, the element values follows:

 12 33 23 4443 55 64 77 75

After the partitioning process, the pivot value, 44, is at its correct position. All values less
than 44 are in the left subarray, and all values larger than 44 are in the right subarray, as
desired. The next step would be to apply quicksort recursively to the two subarrays on either
side of the pivot value, beginning with the left subarray (12, 33, 23, 43). Here is the result
when 12 is the pivot value:

 12 33 23 43

The pivot value is in the first position. Because the left subarray does not exist, the right
 subarray (33, 23, 43) is sorted next, resulting in the following situation:

 12 23 33 43

The pivot value 33 is in its correct place, and the left subarray (23) and right subarray (43) have
single elements, so they are sorted. At this point, we are finished sorting the left part of the origi-
nal subarray, and quicksort is applied to the right subarray (55, 64, 77, 75). In the following
array, all the elements that have been placed in their proper position are shaded dark.

 12 23 33 43 44 55 64 77 75

If we use 55 for the pivot, its left subarray will be empty after the partitioning process and
the right subarray 64, 77, 75 will be sorted next. If 64 is the pivot, the situation will be as
follows, and we sort the right subarray (77, 75) next.

 55 64 77 75

If 77 is the pivot and we move it where it belongs, we end up with the following array.
Because the left subarray (75) has a single element, it is sorted and we are done.

 75 77

Algorithm for Quicksort
The algorithm for quicksort follows. We will describe how to do the partitioning later. We
assume that the indexes first and last are the endpoints of the array being sorted and that
the index of the pivot after partitioning is pivIndex.

Algorithm for Quicksort

1. if first < last then
2. Partition the elements in the subarray first . . . last so that the pivot value is in

its correct place (subscript pivIndex).
3. Recursively apply quicksort to the subarray first . . . pivIndex ‐ 1.
4. Recursively apply quicksort to the subarray pivIndex + 1 . . . last.

Koffman-c08.indd 410 10/30/2015 7:30:03 PM

8.9 Quicksort 411

Analysis of Quicksort
If the pivot value is a random value selected from the current subarray, then statistically it
is expected that half of the items in the subarray will be less than the pivot and half will
be greater than the pivot. If both subarrays always have the same number of elements (the
best case), there will be log n levels of recursion. At each level, the partitioning process
involves moving every element into its correct partition, so quicksort is O(n log n), just
like merge sort.

But what if the split is not 50–50? Let us consider the case where each split is 90–10. Instead
of a 100‐element array being split into two 50‐element arrays, there will be one array with
90 elements and one with just 10. The 90‐element array may be split 50–50, or it may also
be split 90–10. In the latter case, there would be one array with 81 elements and one with just
9 elements. Generally, for random input, the splits will not be exactly 50–50, but neither will
they all be 90–10. An exact analysis is difficult and beyond the scope of this book, but the
running time will be bound by a constant × n log n.

There is one situation, however, where quicksort gives very poor behavior. If, each time we
partition the array, we end up with a subarray that is empty, the other subarray will have one
less element than the one just split (only the pivot value will be removed). Therefore, we will
have n levels of recursive calls (instead of log n), and the algorithm will be O(n2). Because of
the overhead of recursive method calls (versus iteration), quicksort will take longer and
require more extra storage on the run‐time stack than any of the earlier quadratic algorithms.
We will discuss a way to handle this situation later.

Code for Quicksort
Listing 8.8 shows the QuickSort class. The public method sort calls the recursive quickSort
method, giving it the bounds of the table as the initial values of first and last. The two
recursive calls in quickSort will cause the procedure to be applied to the subarrays that are
separated by the value at pivIndex. If any subarray contains just one element (or zero ele-
ments), an immediate return will occur.

L I S T I N G 8 . 8

QuickSort.java

/** Implements the quicksort algorithm. */
public class QuickSort {

 /** Sort the table using the quicksort algorithm.
 @pre table contains Comparable objects.
 @post table is sorted.
 @param table The array to be sorted
 */
 public static <T extends Comparable<T>> void sort(T[] table) {
 // Sort the whole table.
 quickSort(table, 0, table.length ‐ 1);
 }

 /** Sort a part of the table using the quicksort algorithm.
 @post The part of table from first through last is sorted.
 @param table The array to be sorted
 @param first The index of the low bound
 @param last The index of the high bound
 */

Koffman-c08.indd 411 10/30/2015 7:30:03 PM

412 Chapter 8 Sorting

Algorithm for Partitioning
The partition method selects the pivot and performs the partitioning operation. When we are
selecting the pivot, it does not really matter which element is the pivot value (if the arrays
are randomly ordered to begin with). For simplicity we chose the element with subscript first.
We then begin searching for the first value at the left end of the subarray that is greater than the
pivot value. When we find it, we search for the first value at the right end of the subarray that is
less than or equal to the pivot value. These two values are exchanged, and we repeat the search
and exchange operations. This is illustrated in Figure 8.12, where up points to the first value
greater than the pivot and down points to the first value less than or equal to the pivot value. The
elements less than the pivot are shaded dark, and the elements greater than the pivot are in gray.

The value 75 is the first value at the left end of the array that is larger than 44, and 33 is the
first value at the right end that is less than or equal to 44, so these two values are exchanged.
The indexes up and down are advanced again, as shown in Figure 8.13.

The value 55 is the next value at the left end that is larger than 44, and 12 is the next value
at the right end that is less than or equal to 44, so these two values are exchanged, and up and
down are advanced again, as shown in Figure 8.14.

After the second exchange, the first five array elements contain the pivot value and all values
less than or equal to the pivot; the last four elements contain all values larger than the pivot.
The value 55 is selected once again by up as the next element larger than the pivot; 12 is
selected by down as the next element less than or equal to the pivot. Since up has now “passed”
down, these values are not exchanged. Instead, the pivot value (subscript first) and the value
at position down are exchanged. This puts the pivot value in its proper position (the new sub-
script is down) as shown in Figure 8.15.

44 44 75

pivot

23

up

43 55 12 64 77 33

down

]tsal[]tsrif[
F I G U R E 8 . 1 2

Locating First Values

to Exchange

44 44 33

pivot

23

up

43 55 12 64 77 75

up down down

F I G U R E 8 . 1 3

Array after the

First Exchange

 private static <T extends Comparable<T>> void quickSort(T[] table,
 int first, int last) {
 if (first < last) { // There is data to be sorted.
 // Partition the table.
 int pivIndex = partition(table, first, last);
 // Sort the left half.
 quickSort(table, first, pivIndex ‐ 1);
 // Sort the right half.
 quickSort(table, pivIndex + 1, last);
 }
 }
 // Insert partition method. See Listing 8.9
 . . .
}

Koffman-c08.indd 412 10/30/2015 7:30:04 PM

8.9 Quicksort 413

The partition process is now complete, and the value of down is returned to the pivot index
pivIndex. Method quickSort will be called recursively to sort the left subarray and the right
subarray. The algorithm for partition follows:

Algorithm for partition Method

 1. Define the pivot value as the contents of table[first].
 2. Initialize up to first and down to last.
 3. do
 4. Increment up until up selects the first element greater than the pivot value or up has

reached last.
 5. Decrement down until down selects the first element less than or equal to the pivot

value or down has reached first.
 6. if up < down then
 7. Exchange table[up] and table[down].
 8. while up is to the left of down
 9. Exchange table[first] and table[down].
10. Return the value of down to pivIndex.

Code for partition
The code for partition is shown in Listing 8.9. The while statement:

while ((up < last) && (pivot.compareTo(table[up]) >= 0)) {
 up++;
}

advances the index up until it is equal to last or until it references an item in table that is
greater than the pivot value. Similarly, the while statement:

while (pivot.compareTo(table[down]) < 0)) {
 down‐‐;
}

moves the index down until it references an item in table that is less than or equal to the
pivot value. The do–while condition

(up < down)

ensures that the partitioning process will continue while up is to the left of down.
What happens if there is a value in the array that is the same as the pivot value? The index
down will stop at such a value. If up has stopped prior to reaching that value, table[up] and
table[down] will be exchanged, and the value equal to the pivot will be in the left partition. If up
has passed this value and therefore passed down, table[first] will be exchanged with table[down]
(same value as table[first]), and the value equal to the pivot will still be in the left partition.

44 44 33

pivot

23

up

43 12 55 64 77 75

down

F I G U R E 8 . 1 4

Array after the

Second Exchange

44 12 33

pivot

23 43 44 55 64 77 75

down
pivIndex

[first]
F I G U R E 8 . 1 5

Array after the Pivot

Is Inserted

Koffman-c08.indd 413 10/30/2015 7:30:04 PM

414 Chapter 8 Sorting

What happens if the pivot value is the smallest value in the array? Since the pivot value is at
table[first], the loop will terminate with down equal to first. In this case, the left partition
is empty. Figure 8.16 shows an array for which this is the case.

By similar reasoning, we can show that up will stop at last if there is no element in the array
larger than the pivot. In this case, down will also stay at last, and the pivot value (table[first])
will be swapped with the last value in the array, so the right partition will be empty. Figure 8.17
shows an array for which this is the case.

85 85 60

pivot

40 75 81 80 50

up
down

]tsal[]tsrif[

85 50 60

After swap

pivot

40 75 81 80 85

up
down

pivIndex

[first] [last]

F I G U R E 8 . 1 7

Values of up, down, and

pivIndex If the Pivot

Is the Largest Value

30 30 43

pivot

55 66 37 35 33

down
pivIndex

]tsal[]tsrif[

up

F I G U R E 8 . 1 6

Values of up, down, and

pivIndex If the Pivot

Is the Smallest Value

L I S T I N G 8 . 9

Quicksort partition Method (First Version)

/** Partition the table so that values from first to pivIndex
 are less than or equal to the pivot value, and values from
 pivIndex to last are greater than the pivot value.
 @param table The table to be partitioned
 @param first The index of the low bound
 @param last The index of the high bound
 @return The location of the pivot value
 */
private static <T extends Comparable<T>> int partition(T[] table,
 int first, int last) {
 // Select the first item as the pivot value.
 T pivot = table[first];
 int up = first;
 int down = last;
 do {
 /* Invariant:
 All items in table[first . . . up ‐ 1] <= pivot
 All items in table[down + 1 . . . last] > pivot
 */
 while ((up < last) && (pivot.compareTo(table[up]) >= 0)) {
 up++;
 }
 // assert: up equals last or table[up] > pivot.
 while (pivot.compareTo(table[down]) < 0) {
 down‐‐;

Koffman-c08.indd 414 10/30/2015 7:30:05 PM

8.9 Quicksort 415

A Revised partition Algorithm
We stated earlier that quicksort is O(n2) when each split yields one empty subarray.
Unfortunately, that would be the case if the array was sorted. So the worst possible perfor-
mance occurs for a sorted array, which is not very desirable.

A better solution is to pick the pivot value in a way that is less likely to lead to a bad split.
One approach is to examine the first, middle, and last elements in the array and select the
median of these three values as the pivot. We can do this by sorting the three‐element subarray
(shaded dark in Figure 8.18). After sorting, the smallest of the three values is in position
first, the median is in position middle, and the largest is in position last.

At this point, we can exchange the first element with the middle element (the median) and use
the partition algorithm shown earlier, which uses the first element (now the median) as the
pivot value. When we exit the partitioning loop, table[first] and table[down] are exchanged,
moving the pivot value where it belongs (back to the middle position). This revised partition
algorithm follows.

 }
 // assert: down equals first or table[down] <= pivot.
 if (up < down) { // if up is to the left of down.
 // Exchange table[up] and table[down].
 swap(table, up, down);
 }
 } while (up < down); // Repeat while up is left of down.
 // Exchange table[first] and table[down] thus putting the
 // pivot value where it belongs.
 swap(table, first, down);
 // Return the index of the pivot value.
 return down;
}

44 75 77 3323 43 55 12 64

]tsal[]tsrif[[middle]

33 75 77 5523 43 44 12 64

]tsal[]tsrif[[middle]

After sorting, median is in table[middle]

F I G U R E 8 . 1 8

Sorting First, Middle,

and Last Elements in

Array

Algorithm for Revised partition Method

 1. Sort table[first], table[middle], and table[last].
 2. Move the median value to table[first] (the pivot value) by exchanging table[first]

and table[middle].
 3. Initialize up to first and down to last.
 4. do
 5. Increment up until up selects the first element greater than the pivot value or up has

reached last.
 6. Decrement down until down selects the first element less than or equal to the pivot

value or down has reached first.

Koffman-c08.indd 415 10/30/2015 7:30:05 PM

416 Chapter 8 Sorting

 7. if up < down then
 8. Exchange table[up] and table[down].
 9. while up is to the left of down.
10. Exchange table[first] and table[down].
11. Return the value of down to pivIndex.

You may be wondering whether you can avoid the double shift (Steps 2 and 10) and just
leave the pivot value at table[middle], where it belongs. The answer is “yes,” but you would
also need to modify the partition algorithm further if you did this. Programming Project 6
addresses this issue and the construction of an industrial‐strength quicksort method.

Code for Revised partition Method
Listing 8.10 shows the revised version of method partition with method sort3, which uses
three pairwise comparisons to sort the three selected items in table so that

table[first] <= table[middle] <= table[last]

Method partition begins with a call to method sort3 and then calls swap to make the median
the pivot. The rest of the method is unchanged.

L I S T I N G 8 . 1 0

Revised partition Method and sort3

private static <T extends Comparable<T>> int partition(T[] table,
 int first, int last) {
 /* Put the median of table[first], table[middle], table[last]
 into table[first], and use this value as the pivot.
 */
 sort3(table, first, last);
 // Swap first element with median.
 swap(table, first, (first + last) / 2);

 // Continue as in Listing 8.9
 // . . .

}

/** Sort table[first], table[middle], and table[last].
 @param table The table to be sorted
 @param first Index of the first element
 @param last Index of the last element
 */
private static <T extends Comparable<T>> sort3(T[] table,
 int first, int last) {
 int middle = (first + last) / 2;
 /* Sort table[first], table[middle],
 table[last]. */
 if (table[middle].compareTo(table[first]) < 0) {
 swap(table, first, middle);
 }
 // assert: table[first] <= table[middle]
 if (table[last].compareTo(table[middle]) < 0) {
 swap(table, middle, last);
 }
 // assert: table[last] is the largest value of the three.
 if (table[middle].compareTo(table[first]) < 0) {
 swap(table, first, middle);
 }
 // assert: table[first] <= table[middle] <= table[last].
}

Koffman-c08.indd 416 10/30/2015 7:30:05 PM

8.10 Testing the Sort Algorithms 417

E X E R C I S E S F O R S E C T I O N 8 . 9

S E L F ‐ C H E C K

1. Trace the execution of quicksort on the following array, assuming that the first item in
each subarray is the pivot value. Show the values of first and last for each recursive call
and the array elements after returning from each call. Also, show the value of pivot during
each call and the value returned through pivIndex. How many times is sort called, and
how many times is partition called?

 55 50 10 40 80 90 60 100 70 80 20 50 22

2. Redo Question 1 above using the revised partition algorithm, which does a preliminary
sort of three elements and selects their median as the pivot value.

3. Explain why the condition (down > first) is not necessary in the loop that decrements
down.

P R O G R A M M I N G

1. Insert statements to trace the quicksort algorithm. After each call to partition, display the
values of first, pivIndex, and last and the array.

8.10 Testing the Sort Algorithms

To test the sorting algorithms, we need to exercise them with a variety of test cases. We want
to make sure that they work and also want to get some idea of their relative performance
when sorting the same array. We should test the methods with small arrays, large arrays,
arrays whose elements are in random order, arrays that are already sorted, and arrays with
duplicate copies of the same value. For performance comparisons to be meaningful, the meth-
ods must sort the same arrays.

Listing 8.11 shows a driver program that tests methods Arrays.Sort (from the API
java.util) and QuickSort.sort on the same array of random integer values. Method
System. currentTimeMillis returns the current time in milliseconds. This method is called
just before a sort begins and just after the return from a sort. The elapsed time between calls

 P I T F A L L

Falling Off Either End of the Array
A common problem when incrementing up or down during the partition process is falling
off either end of the array. This will be indicated by an ArrayIndexOutOfBoundsException.
We used the condition

 ((up < last) && (pivot.compareTo(table[up]) >= 0))

to keep up from falling off the right end of the array. Self‐Check Exercise 3 asks why
we don’t need to write similar code to avoid falling off the left end of the array.

Koffman-c08.indd 417 10/30/2015 7:30:05 PM

418 Chapter 8 Sorting

L I S T I N G 8 . 1 1

Driver to Test Sort Algorithms

/** Driver program to test sorting methods.
 @param args Not used
 */
public static void main(String[] args) {
 int size = Integer.parseInt(JOptionPane.showInputDialog("Enter Array size:"));
 Integer[] items = new Integer[size]; // Array to sort.
 Integer[] copy = new Integer[size]; // Copy of array.
 Random rInt = new Random(); // For random number generation

 // Fill the array and copy with random Integers.
 for (int i = 0; i < items.length; i++) {
 items[i] = rInt.nextInt();
 copy[i] = items[i];
 }

 // Sort with utility method.
 long startTime = System.currentTimeMillis();
 Arrays.sort(items);
 System.out.println("Utility sort time is "
 + (System.currentTimeMillis()
 ‐ startTime) + "ms");
 System.out.println("Utility sort successful (true/false): "
 + verify(items));

 // Reload array items from array copy.
 for (int i = 0; i < items.length; i++) {
 items[i] = copy[i];
 }

 // Sort with quicksort.
 startTime = System.currentTimeMillis();
 QuickSort.sort(items);
 System.out.println("QuickSort time is "
 + (System.currentTimeMillis()
 ‐ startTime) + "ms");
 System.out.println("QuickSort successful (true/false): "
 + verify(items));

 dumpTable(items); // Display part of the array.
}

/** Verifies that the elements in array test are
 in increasing order.
 @param test The array to verify
 @return true if the elements are in increasing order;
 false if any 2 elements are not in increasing order
 */
private static boolean verify(Comparable[] test) {
 boolean ok = true;
 int i = 0;
 while (ok && i < test.length ‐ 1) {
 ok = test[i].compareTo(test[i + 1]) <= 0;
 i++;
 }
 return ok;
}

Koffman-c08.indd 418 10/30/2015 7:30:05 PM

8.11 The Dutch National Flag Problem (Optional Topic) 419

8.11 The Dutch National Flag Problem (Optional Topic)

A variety of partitioning algorithms for quicksort have been published. Most are variations
on the one presented in this text. There is another popular variation that uses a single left‐
to‐right scan of the array (instead of scanning left and scanning right as we did). The follow-
ing case study illustrates a partitioning algorithm that combines both scanning techniques to
partition an array into three segments. The famous computer scientist Edsger W. Dijkstra
described this problem in his book A Discipline of Programming (Prentice‐Hall, 1976).

is displayed in the console window. Although the numbers shown will not be precise, they
give a good indication of the relative performance of two sorting algorithms if this is the
only application currently executing.

Method verify verifies that the array elements are sorted by checking that each element in
the array is not greater than its successor. Method dumpTable (not shown) should display the
first 10 elements and last 10 elements of an array (or the entire array if the array has 20 or
fewer elements).

E X E R C I S E S F O R S E C T I O N 8 . 1 0

S E L F ‐ C H E C K

1. Explain why method verify will always determine whether an array is sorted. Does verify
work if an array contains duplicate values?

2. Explain the effect of removing the second for statement in the main method.

P R O G R A M M I N G

1. Write method dumpTable.

2. Modify the driver method to fill array items with a collection of integers read from a file
when args[0] is not null.

3. Extend the driver to test all O(n log n) sorts and collect statistics on the different sorting
algorithms. Test the sorts using an array of random numbers and also a data file processed
by the solution to Programming Exercise 2.

CASE STUDY The Problem of the Dutch National Flag

 Problem The Dutch national flag consists of three stripes that are colored (from top to bottom) red, white,
and blue. In Figure 8.19 we use dark gray for blue and light gray for red. Unfortunately,
when the flag arrived, it looked like Figure 8.20; threads of each of the colors were all
scrambled together! Fortunately, we have a machine that can unscramble it, but it needs
software.

Koffman-c08.indd 419 10/30/2015 7:30:05 PM

420 Chapter 8 Sorting

 Analysis Our unscrambling machine has the following abilities:

It can look at one thread in the flag and determine its color.
It can swap the position of two threads in the flag.

Our machine can also execute while loops and if statements.

 Design Loop Invariant

When we partitioned the array in quicksort, we split the array into three regions. Values
between first and up were less than or equal to the pivot; values between down and last
were greater than the pivot; and values between up and down were unknown. We started
with the unknown region containing the whole array (first == up, and down == last).
The partitioning algorithm preserves this invariant while shrinking the unknown region.
The loop terminates when the unknown region becomes empty (up > down).

tovip>seulaVtovip<seulaV Unknown

first up down last

Since our goal is to have three regions when we are done, let us define four regions: the red
region, the white region, the blue region, and the unknown region. Now, initially the whole
flag is unknown. When we get done, however, we would like the red region on top, the white
region in the middle, and the blue region on the bottom. The unknown region must be empty.

Let us assume that the threads are stored in an array threads and that the total number of
threads is HEIGHT. Let us define red to be the upper bound of the red region, white to be
the lower bound of the white region, and blue to be the lower bound of the blue region.
Then, if our flag is complete, we can say the following:

If 0 ≤ i < red, then threads[i] is red.
If white < i ≤ blue, then threads[i] is white.
If blue < i < HEIGHT, then threads[i] is blue.

F I G U R E 8 . 2 0

Scrambled Dutch National Flag
F I G U R E 8 . 1 9

The Dutch National Flag

Koffman-c08.indd 420 10/30/2015 7:30:06 PM

8.11 The Dutch National Flag Problem (Optional Topic) 421

What about the case where red ≤ i ≤ white? When the flag is all sorted, red should equal
white, so this region should not exist. However, when we start, everything is in this region,
so a thread in that region can have any color.

Thus, we can define the following loop invariant:

If 0 ≤ i < red, then threads[i] is red.
If red ≤ i ≤ white, then the color is unknown.
If white < i ≤ blue, then threads[i] is white.
If blue < i < HEIGHT, then threads[i] is blue.

This is illustrated in Figure 8.21.

 Algorithm We can solve our problem by establishing the loop invariant and then executing a loop
that both preserves the loop invariant and shrinks the unknown region.

1. Set red to 0, white to HEIGHT – 1, and blue to HEIGHT ‐ 1. This establishes our loop
invariant with the unknown region the whole flag and the red, white, and blue
regions empty.

2. while red < white
3. Shrink the distance between red and white while preserving the loop invariant.

Preserving the Loop Invariant
Let us assume that we now know the color of threads[white] (the thread at position
white). Our goal is to either leave threads[white] where it is (in the white region if it is
white) or “move it” to the region where it belongs. There are three cases to consider:

Case 1: The color of threads[white] is white. In this case, we merely decrement the value of
white to restore the invariant. By doing so, we increase the size of the white region by one
thread.

Case 2: The color of threads[white] is red. We know from our invariant that the color of
threads[red] is unknown. Therefore, if we swap the thread at threads[red] with the one
at threads[white], we can then increment the value of red and preserve the invariant. By
doing this, we add the thread to the end of the red region and reduce the size of the
unknown region by one thread.

Case 3: The color of threads[white] is blue. We know from our invariant that the color
of threads[blue] is white. Thus, if we swap the thread at threads[white] with the thread
at threads[blue] and then decrement both white and blue, we preserve the invariant.

[0]

[red]

[white]

[blue]

[HEIGHT]

F I G U R E 8 . 2 1

Dutch National Flag

Loop Invariant

Koffman-c08.indd 421 10/30/2015 7:30:07 PM

422 Chapter 8 Sorting

By doing this, we insert the thread at the beginning of the blue region and reduce the
size of the unknown region by one thread.

 Implementation A complete implementation of this program is left as a programming project. We show the
coding of the sort algorithm in Listing 8.12.

L I S T I N G 8 . 1 2

Dutch National Flag Sort

public void sort() {
 int red = 0;
 int white = height ‐ 1;
 int blue = height ‐ 1;
 /* Invariant:
 0 <= i < red ==>threads[i].getColor() == Color.RED
 red <= i <= white ==>threads[i].getColor() is unknown
 white < i < blue ==>threads[i].getColor() == Color.WHITE
 blue < i < height ==>threads[i].getColor() == Color.BLUE
 */
 while (red <= white) {
 if (threads[white].getColor() == Color.WHITE) {
 white‐‐;
 } else if (threads[white].getColor() == Color.RED) {
 swap(red, white, g);
 red++;
 } else { // threads[white].getColor() == Color.BLUE
 swap(white, blue, g);
 white‐‐;
 blue‐‐;
 }
 }
 // assert: red > white so unknown region is now empty.
}

E X E R C I S E S F O R S E C T I O N 8 . 1 1

P R O G R A M M I N G

1. Adapt the Dutch National Flag algorithm to do the quicksort partitioning. Consider the
red region to be those values less than the pivot, the white region to be those values equal
to the pivot, and the blue region to be those values equal to the pivot. You should initially
sort the first, middle, and last items and use the middle value as the pivot value.

Koffman-c08.indd 422 10/30/2015 7:30:07 PM

 Chapter 8 Review 423

Java Classes Introduced in This Chapter

java.util.Arrays
java.util.Collections

User‐Defined Interfaces and Classes in This Chapter

ComparePerson QuickSort

InsertionSort SelectionSort

MergeSort ShellSort

Person Timsort

C h a p t e r R e v i e w

 ◆ We analyzed several sorting algorithms; their performance is summarized in Table 8.4.

 ◆ Two quadratic algorithms, O(n2), are selection sort and insertion sort. They give satis-
factory performance for small arrays (up to 100 elements). Generally, insertion sort is
considered to be the best of the quadratic sorts.

 ◆ Shell sort, O(n5/4), gives satisfactory performance for arrays up to 5000 elements.

 ◆ Quicksort has average‐case performance of O(n log n), but if the pivot is picked poorly, the
worst‐case performance is O(n2).

 ◆ Merge sort and heapsort have O(n log n) performance.

 ◆ The Java API contains “industrial‐strength” sort algorithms in the classes java.util.Arrays
and java.util.Collections. The methods in Arrays use a mixture of quicksort and inser-
tion sort for sorting arrays of primitive‐type values and merge sort for sorting arrays of
objects. For primitive types, quicksort is used until the size of the subarray reaches the point
where insertion sort is quicker (seven elements or less). The sort method in Collections
merely copies the list into an array and then calls Arrays.sort.

TA B L E 8 . 4

Comparison of Sort Algorithms

Number of Comparisons

Best Average Worst

Selection sort O(n2) O(n2) O(n2)

Insertion sort O(n) O(n2) O(n2)

Timsort O(n) O(n log n) O(n log n)

Shell sort O(n7/6) O(n5/4) O(n2)

Merge sort O(n log n) O(n log n) O(n log n)

Heapsort O(n log n) O(n log n) O(n log n)

Quicksort O(n log n) O(n log n) O(n2)

Koffman-c08.indd 423 10/30/2015 7:30:07 PM

424 Chapter 8 Sorting

Quick‐Check Exercises
1. Name two quadratic sorts.
2. Name two sorts with n log n worst‐case behavior.
3. Which algorithm is particularly good for an array that is already sorted? Which is particularly bad?

Explain your answers.
4. What determines whether you should use a quadratic sort or a logarithmic sort?
5. Which quadratic sort’s performance is least affected by the ordering of the array elements? Which is

most affected?
6. What is a good all‐purpose sorting algorithm for medium‐size arrays?

Review Questions
1. When does quicksort work best, and when does it work worst?
2. Write a recursive procedure to implement the insertion sort algorithm.
3. What is the purpose of the pivot value in quicksort? How did we first select it in the text, and what

is wrong with that approach for choosing a pivot value?
4. For the following array
 30 40 20 15 60 80 75 4 20
 show the new array after each pass of insertion sort and selection sort. How many comparisons and

exchanges are performed by each?
5. For the array in Question 4, trace the execution of Shell sort.
6. For the array in Question 4, trace the execution of merge sort.
7. For the array in Question 4, trace the execution of quicksort.

8. For the array in Question 4, trace the execution of heapsort.

Programming Projects
1. Use the random number function to store a list of 1000 pseudorandom integer values in an array.

Apply each of the sort classes described in this chapter to the array and determine the number of
comparisons and exchanges. Make sure the same array is passed to each sort method.

2. Investigate the effect of array size and initial element order on the number of comparisons and
exchanges required by each of the sorting algorithms described in this chapter. Use arrays with
100 and 10,000 integers. Use three initial orderings of each array (randomly ordered, inversely
ordered, and ordered). Be certain to sort the same six arrays with each sort method.

3. A variation of the merge sort algorithm can be used to sort large sequential data files. The basic
strategy is to take the initial data file, read in several (say, 10) data records, sort these records using
an efficient array‐sorting algorithm, and then write these sorted groups of records (runs) alternately
to one of two output files. After all records from the initial data file have been distributed to the two
output files, the runs on these output files are merged one pair of runs at a time and written to the
original data file. After all runs from the output file have been merged, the records on the original
data file are redistributed to the output files, and the merging process is repeated. Runs no longer
need to be sorted after the first distribution to the temporary output files.

 Each time runs are distributed to the output files, they contain twice as many records as the time
before. The process stops when the length of the runs exceeds the number of records in the data file.
Write a program that implements merge sort for sequential data files. Test your program on a file
with several thousand data values.

Koffman-c08.indd 424 10/30/2015 7:30:07 PM

 Chapter 8 Review 425

Answers to Quick-Check Exercises
1. Selection sort, insertion sort
2. Merge sort, heapsort
3. Insertion sort—it requires n – 1 comparisons with no exchanges. Quicksort can be bad if the first

element is picked as the pivot value because the partitioning process always creates one subarray
with a single element.

4. Array size
5. Selection sort
6. Shell sort or any O(n log n) sort

4. Write a method that sorts a linked list.
5. Write an industrial‐strength quicksort method with the following enhancements:

a. If an array segment contains 20 elements or fewer, sort it using insertion sort.
b. After sorting the first, middle, and last elements, use the median as the pivot instead of swapping

the median with the first element. Because the first and last elements are in the correct partitions,
it is not necessary to test them before advancing up and down. This is also the case after each
exchange, so increment up and decrement down at the beginning of the do–while loop. Also, it is
not necessary to test whether up is less than last before incrementing up because the condition
pivot.compareTo(last) > 0 is false when up equals last (the median must be ≤ the last
 element in the array).

6. In the early days of data processing (before computers), data was stored on punched cards. A
machine to sort these cards contained 12 bins (one for each digit value and + and −). A stack of cards
was fed into the machine, and the cards were placed into the appropriate bin depending on the value
of the selected column. By restacking the cards so that all 0s were first, followed by the 1s, followed
by the 2s, and so forth, and then sorting on the next column, the whole deck of cards could be
sorted. This process, known as radix sort, requires c × n passes, where c is the number of columns
and n is the number of cards.

 We can simulate the action of this machine using an array of queues. During the first pass, the
least‐significant digit (the ones digit) of each number is examined and the number is added to the
queue whose subscript matches that digit. After all numbers have been processed, the elements of
each queue are added to an 11th queue, starting with queue[0], followed by queue[1], and so
forth. The process is then repeated for the next significant digit, taking the numbers out of the
11th queue. After all the digits have been processed, the 11th queue will contain the numbers in
sorted order.

 Write a program that implements radix sort on an array of int values. You will need to make 10
passes because an int can store numbers up to 2,147,483,648.

7. Complete the Dutch National Flag case study. You will need to develop the following classes:
a. A main class that extends JFrame to contain the flag and a control button (Sort).
b. A class to represent the flag; an extension of JPanel is suggested. This class will contain the

array of threads and the sort method.
c. A class to represent a thread. Each thread should have a color and a method to draw the thread.

Koffman-c08.indd 425 10/30/2015 7:30:07 PM

Koffman-c08.indd 426 10/30/2015 7:30:07 PM

C h a p t e r

427

I
n Chapter 6 we introduced the binary search tree. The performance (time required to
find, insert, or remove an item) of a binary search tree is proportional to the total height
of the tree, where we define the height of a tree as the maximum number of nodes along

a path from the root to a leaf. A full binary tree of height k can hold 2k – 1 items. Thus, if
the binary search tree were full and contained n items, the expected performance would be
O(log n).

Unfortunately, if we build the binary search tree as described in Chapter 6, the result-
ing tree is not necessarily full or close to being full. Thus, the actual performance is worse
than expected. In this chapter, we explore two algorithms for building binary search trees
so that they are as full as possible. We call these trees self‐balancing because they attempt
to achieve a balance so that the height of each left subtree and right subtree is equal or
nearly equal.

Next, we look at the B‐tree and its specializations, the 2–3 and 2–3–4 trees. These are
not binary search trees, but they achieve and maintain balance.

Finally, we look at the skip‐list. The skip‐list is not a tree structure, but it allows for
search, insertion, and removal in O(log n) time.

In this chapter, we focus on algorithms and methods for search and insertion. We also dis-
cuss removing an item, but we have left the details of removal to the programming projects.

Self‐Balancing
Search Trees

9C h a p t e r

C h a p t e r O b j e c t i v e s

 ◆ To understand the impact that balance has on the performance of binary search trees

 ◆ To learn about the AVL tree for storing and maintaining a binary search tree in balance

 ◆ To learn about the Red–Black tree for storing and maintaining a binary search tree in balance

 ◆ To learn about 2–3 trees, 2–3–4 trees, and B‐trees and how they achieve balance

 ◆ To learn about skip‐lists and how they have properties similar to balanced search trees

 ◆ To understand the process of search and insertion in each of these trees and to be
 introduced to removal

Koffman-c09.indd 427 10/30/2015 7:28:54 PM

428 Chapter 9 Self‐Balancing Search Trees

9.1 Tree Balance and Rotation

Why Balance Is Important
Figure 9.1 shows an example of a valid, but extremely unbalanced, binary search tree.
Searches or inserts into this tree would be O(n), not O(log n). Figure 9.2 shows the binary
search tree resulting from inserting the words of the sentence “The quick brown fox jumps
over the lazy dog”. It too is not well balanced, having a height of 7 but containing only nine
words. (Note that the string "The" is the smallest because it begins with an uppercase letter.)

Rotation
To achieve self‐adjusting capability, we need an operation on a binary search tree that will
change the relative heights of left and right subtrees but preserve the binary search tree
 property—that is, the items in each left subtree are less than the item at the root, and the
items in each right subtree are greater than the item in the root. In Figure 9.3, we show an
unbalanced binary search tree with a height of 4 right after the insertion of node 7. The
height of the left subtree of the root (20) is 3, and the height of the right subtree is 1.

We can transform the tree in Figure 9.3 by doing a right rotation around node 20, making 10
the root and 20 the root of the right subtree of the new root (10). Because 20 is now the right
subtree of 10, we need to move node 10’s old right subtree (root is 15). We will make it the
left subtree of 20, as shown in Figure 9.4.

S e l f ‐ B a l a n c i n g S e a r c h Tr e e s

 9.1 Tree Balance and Rotation
 9.2 AVL Trees
 9.3 Red–Black Trees
 9.4 2–3 Trees
 9.5 B‐Trees and 2–3–4 Trees
 9.6 Skip‐Lists

1

2

3

4

5

6

7

8

9

F I G U R E 9 . 1

Very Unbalanced

Binary Search Tree

Koffman-c09.indd 428 10/30/2015 7:28:54 PM

9.1 Tree Balance and Rotation 429

After these changes, the new binary search tree has a height of 3 (one less than before), and
the left and right subtrees of the new root (10) have a height of 2, as shown in Figure 9.5.
Note that the binary search tree property is maintained for all the nodes of the tree.

This result can be generalized. If node 15 had children, its children would have to be greater
than 10 and less than 20 in the original tree. The left and right subtrees of node 15 would not
change when node 15 was moved, so the binary search tree property would still be main-
tained for all children of node 15 in the new tree (> 10 and < 20). We can make a similar
statement for any of the other leaf nodes in the original tree.

Algorithm for Rotation
Figure 9.6 illustrates the internal representation of the nodes of our original binary search
tree whose three branches (shown in gray) will be changed by rotation. Initially, root refer-
ences node 20. Rotation right is achieved by the following algorithm.

quick

fox

brown the

The

dog jumps

lazy

over

F I G U R E 9 . 2

Realistic Example of

an Unbalanced Binary

Search Tree

40

20

15

7

10

5

F I G U R E 9 . 3

Unbalanced Tree before Rotation

40

20

15

7

10

5

F I G U R E 9 . 4

Right Rotation

407 15

20

10

5

F I G U R E 9 . 5

More Balanced Tree after Rotation

Node

 left =
right =
data =

 root =

20
Node

 left =
right =
data = 10

Node

 left =
right =
data =

Node

 left =
right =
data =

Node

 left =
right =
data =

null
null
40

null
null
7

null
null
15

root.left

root.left.right

Node

 left =
right =
data =

null

5

F I G U R E 9 . 6

Internal Representation of Tree before Rotation

Koffman-c09.indd 429 10/30/2015 7:28:55 PM

430 Chapter 9 Self‐Balancing Search Trees

Algorithm for Rotation Right

1. Remember the value of root.left (temp = root.left).
2. Set root.left to the value of temp.right.
3. Set temp.right to root.
4. Set root to temp.

Figure 9.7 shows the rotated tree. Step 1 sets temp to reference the left subtree (node 10) of
the original root. Step 2 resets the original root’s left subtree to reference node 15. Step 3
resets node temp’s right subtree to reference the original root. Then Step 4 sets root to refer-
ence node temp. The internal representation corresponds to the tree shown in Figure 9.5.

The algorithm for rotation left is symmetric to rotation right and is left as an exercise.

Implementing Rotation
Listing 9.1 shows class BinarySearchTreeWithRotate. This class is an extension of the
BinarySearchTree class described in Chapter 6, and it will be used as the base class for
the other search trees discussed in this chapter. Like class BinarySearchTree, class
BinarySearchTreeWithRotate must be declared as a generic class with type parameter
<E extends Comparable<E>>. It contains the methods rotateLeft and rotateRight. These meth-
ods take a reference to a Node that is the root of a subtree and return a reference to the root of
the rotated tree. Figure 9.8 is a UML (Unified Modeling Language) class diagram that shows
the relationships between BinarySearchTreeWithRotate and the other classes in the hierarchy.
BinarySearchTreeWithRotate is a subclass of BinaryTree as well as BinarySearchTree. Class
BinaryTree has the static inner class Node and the data field root, which references the Node that
is the root of the tree. The figure shows that a Node contains a data field named data and two
references (as indicated by the open diamond) to a Node. The names of the reference are left
and right, as shown on the line from the Node to itself. We cover UML in Appendix B.

Node

 left =
right =
data =

temp =

(new value of root)
20

Node

 left =
right =
data = 10

Node

 left =
right =
data =

Node

 left =
right =
data =

Node

 left =
right =
data =

null
null
40

null
null
7

null
null
15

Node

 left =
right =
data =

null

5

Step 1

Step 2

Step 3

F I G U R E 9 . 7

Effect of Rotation Right on Internal Representation

Koffman-c09.indd 430 10/30/2015 7:28:56 PM

9.1 Tree Balance and Rotation 431

addReturn
deleteReturn

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

BinaryTree

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

‹‹interface››
SearchTree

+ getLeftSubtree()
+ getRightSubtree()
+ getData()

 BinarySearchTreeWithRotate

rotateLeft()
rotateRight()

BinaryTree.Node

data

root

left right

BinarySearchTree

F I G U R E 9 . 8

UML Diagram of BinarySearchTreeWithRotate

L I S T I N G 9 . 1

BinarySearchTreeWithRotate.java

/** This class extends the BinarySearchTree by adding the rotate operations.
 Rotation will change the balance of a search tree while preserving the
 search tree property.
 Used as a common base class for self‐balancing trees.
 */
public class BinarySearchTreeWithRotate<E extends Comparable<E>>
 extends BinarySearchTree<E> {
 // Methods
 /** Method to perform a right rotation.
 @pre root is the root of a binary search tree.
 @post root.right is the root of a binary search tree,
 root.right.right is raised one level,
 root.right.left does not change levels,
 root.left is lowered one level,
 the new root is returned.
 @param root The root of the binary tree to be rotated
 @return The new root of the rotated tree
 */
 protected Node<E> rotateRight(Node<E> root) {
 Node<E> temp = root.left;
 root.left = temp.right;
 temp.right = root;
 return temp;
 }

Koffman-c09.indd 431 10/30/2015 7:28:56 PM

432 Chapter 9 Self‐Balancing Search Trees

 /** Method to perform a left rotation (rotateLeft).
 // See Programming Exercise 1
 */
}

E X E R C I S E S F O R S E C T I O N 9 . 1

S E L F ‐ C H E C K

1. Draw the binary search tree that results from inserting the words of the sentence “Now is
the time for all good men to come to the aid of the party.” What is its height? Compare this
with 4, the smallest integer greater than log2 13, where 13 is the number of distinct words
in this sentence.

2. Try to construct a binary search tree that contains the same words as in Exercise 1 but has
a maximum height of 4.

3. Describe the algorithm for rotation left.

P R O G R A M M I N G

1. Add the rotateLeft method to the BinarySearchTreeWithRotate class.

9.2 AVL Trees

Two Russian mathematicians, G. M. Adel’son‐Vel’skiî and E. M. Landis, published a paper in
1962 that describes an algorithm for maintaining overall balance of a binary search tree.
Their algorithm keeps track of the difference in height of each subtree. As items are added to
(or removed from) the tree, the balance (i.e., the difference in the heights of the subtrees) of
each subtree from the insertion point up to the root is updated. If the balance ever gets out
of the range –1 . . . +1, the subtree is rotated to bring it back into balance. Trees using this
approach are known as AVL trees after the initials of the inventors. As before, we define the
height of a tree as the number of nodes in the longest path from the root to a leaf node,
including the root.

Balancing a Left–Left Tree
Figure 9.9 shows a binary search tree with a balance of –2 caused by an insert into its left–left
subtree. Each white triangle with label a, b, or c represents a tree of height k; the shaded area
at the bottom of the left–left triangle (tree a) indicates an insertion into this tree (its height is
now k 1). We use the formula

h hR L–

to calculate the balance for each node, where hL and hR are the heights of the left and right
subtrees, respectively. The actual heights are not important; it is their relative difference that
matters. The right subtree (b) of node 25 has a height of k; its left subtree (a) has a height of
k 1 , so its balance is –1. The right subtree (of node 50) has a height of k; its left subtree has
a height of k 2 , so its factor is –2. Such a tree is called a Left–Left tree because its root and
the left subtree of the root are both left‐heavy.

Koffman-c09.indd 432 10/30/2015 7:28:56 PM

9.2 AVL Trees 433

Figure 9.10 shows this same tree after a rotation right. The new tree root is node 25. Its right
subtree (root 50) now has tree b as its left subtree. Note that balance has now been achieved.
Also, the overall height has not increased. Before the insertion, the tree height was k 2 ;
after the rotation, the tree height is still k 2.

Balancing a Left–Right Tree
Figure 9.11 shows a left‐heavy tree caused by an insert into the Left–Right subtree. This tree
is called a Left–Right tree because its root is left‐heavy but the left subtree of the root is right‐
heavy. We cannot fix this with a simple rotation right as in the Left–Left case. (See Self‐Check
Exercise 2 at the end of this section.)

Figure 9.12 shows a general Left–Right tree. Node 40, the root of the Left–Right subtree, is
expanded into its subtrees b

L
 and b

R
. Figure 9.12 shows the effect of an insertion into b

L
,

 making node 40 left‐heavy. If the left subtree is rotated left, as shown in Figure 9.13, the
overall tree is now a Left–Left tree, similar to the case of Figure 9.9. Now if the modified tree
is rotated right, overall balance is achieved, as shown in Figure 9.14. Figures 9.15–9.17 illus-
trate the effect of these double rotations after insertion into b

R
.

In both cases, the new tree root is 40; its left subtree has node 25 as its root, and its right
subtree has node 50 as its root. The balance of the root is 0. If the critically unbalanced situ-
ation was due to an insertion into subtree b

L
, the balance of the root’s left child is 0, and the

balance of the root’s right child is +1 (Figure 9.14). For insertion into subtree b
R
, the balance

of the root’s left child is –1, and the balance of the root’s right child is 0 (Figure 9.17).

25 –1

–2

a

50

b

c

F I G U R E 9 . 9

Left‐Heavy Tree

0

0

a

b c

25

50

F I G U R E 9 . 1 0

Left‐Heavy Tree after Rotation Right

–2

+1

a b

c

50

25 Balance 50 = (k – (k + 2))

Balance 25 = ((k + 1) – k)

F I G U R E 9 . 1 1

Left–Right Tree

Koffman-c09.indd 433 10/30/2015 7:28:57 PM

434 Chapter 9 Self‐Balancing Search Trees

Four Kinds of Critically Unbalanced Trees
How do we recognize unbalanced trees and determine what to do to balance them? For the
Left–Left tree shown in Figure 9.9 (parent and child nodes are both left‐heavy, parent bal-
ance is –2, child balance is –1), the remedy is to rotate right around the parent.

For the Left–Right example shown in Figure 9.11 (parent is left‐heavy with balance –2, child
is right‐heavy with balance +1), the remedy is to rotate left around the child and then rotate
right around the parent. We list the four cases that need rebalancing and their remedies next.

Left–Left (parent balance is –2, left child balance is –1): rotate right around parent.
Left–Right (parent balance is –2, left child balance is +1): rotate left around child, then
rotate right around parent.
Right–Right (parent balance is +2, right child balance is +1): rotate left around parent.
Right–Left (parent balance is +2, right child balance is –1): rotate right around child,
then rotate left around parent.

25 +1

–1

–2

a

50

40

bL bR

c

F I G U R E 9 . 1 2

Insertion into b
L

40

25 0

–2

–2

a

50

bL

bR
c

F I G U R E 9 . 1 3

Left Subtree after Rotate Left

40

25

0

0 +1

a

50

bRbL

c

F I G U R E 9 . 1 4

Tree after Rotate Right

–2

+1

+1

50

bL bR

a

c

40

25

F I G U R E 9 . 1 5

Insertion into b
R

–250

bL

bR

a

c

40 –1

–125

F I G U R E 9 . 1 6

Left Subtree after Rotate Left

50

bL bR

a c

40

–1

0

025

F I G U R E 9 . 1 7

Tree after Rotate Right

Koffman-c09.indd 434 10/30/2015 7:28:58 PM

9.2 AVL Trees 435

EXAMPLE 9 .1 We will build an AVL tree from the words in the sentence “The quick brown fox jumps over
the lazy dog”.
After inserting the words The, quick, and brown, we get the following tree.

The subtree with the root quick is left‐heavy by 1, but the overall tree with the root of The is
right‐heavy by 2 (Right–Left case). We must first rotate the subtree around quick to the right:

Then rotate left about The:

We now proceed to insert fox and jumps:

The subtree rooted about quick is now left‐heavy by 2 (Left–Right case). Because this case is
symmetric with the previous one, we rotate left about fox and then right about quick, giving
the following result.

We now insert over.

quick

The +2

brown 0

–1

brown

The +2

quick 0

+1

quick

brown

The

0

00

quick

brown

fox

The

+2

jumps 0

–2

+1

0 quick

brown

jumps

The

+2

fox 0

–2

–1

0

jumps

brown

fox

The

quick 0

+1

0

0

0

jumps

brown

fox

The

quick –1

+2

over 0

+1

0

0

Koffman-c09.indd 435 10/30/2015 7:28:59 PM

436 Chapter 9 Self‐Balancing Search Trees

The subtrees at quick and jumps are unbalanced by 1. The subtree at brown, however, is
right‐heavy by 2 (Right–Right case), so a rotation left solves the problem.

We can now insert the, lazy, and dog without any additional rotations being necessary.

quick

jumps

over

brown

The 0 fox

0

–1

0 0

0

quick

jumps

over

brown

The 0 the 0fox

0

dog 0 lazy 0

–1

–1 –1

+1

addReturn
deleteReturn

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

BinaryTree

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

‹‹interface››
SearchTree

+ getLeftSubtree()
+ getRightSubtree()
+ getData()

BinarySearchTreeWithRotate

rotateLeft()
rotateRight()

AVLNode

- balance

BinaryTree.Node

data

root

left right

BinarySearchTree

- increase

+ add(E)
+ delete(E)

AVLTree

F I G U R E 9 . 1 8

UML Class Diagram of AVLTree

Implementing an AVL Tree
We begin by deriving the class AVLTree from BinarySearchTreeWithRotate (see Listing
9.1). Figure 9.18 is a UML class diagram showing the relationship between AVLTree and
BinarySearchTreeWithRotate. The AVLTree class contains the boolean data field increase,

Koffman-c09.indd 436 10/30/2015 7:29:00 PM

9.2 AVL Trees 437

which indicates whether the current subtree height has increased as a result of the inser-
tion. We override the methods add and delete but inherit method find because searching
a balanced tree is not different from searching an unbalanced tree. We also extend the
inner class BinaryTree.Node with AVLNode. Within this class we add the additional field
balance.

/** Self‐balancing binary search tree using the algorithm defined
 by Adelson‐Velskii and Landis.
 */
public class AVLTree<E extends Comparable<E>>
 extends BinarySearchTreeWithRotate<E> {
 // Insert nested class AVLNode<E> here.

 // Data Fields
 /** Flag to indicate that height of tree has increased. */
 private boolean increase;
. . .

The AVLNode Class

The AVLNode class is shown in Listing 9.2. It is an extension of the BinaryTree.Node class. It
adds the data field balance and the constants LEFT_HEAVY, BALANCED, and RIGHT_HEAVY.

SYNTAX UML SYNTAX

The line from the AVLTree class to the AVLNode class in the diagram in Figure 9.18
indicates that methods in the AVLTree class can access the private data field balance.
The symbol ⊕ next to the AVLTree class indicates that the AVLNode class is an inner
class of AVLTree. The arrow pointing to AVLNode indicates that methods in AVLTree
access the contents of AVLNode, but methods in AVLNode do not access the contents of
AVLTree.

Note that the Node class is an inner class of the BinaryTree class, but we do not show
the ⊕. This is because an object of type Node, called root, is a component of the
BinaryTree class, as indicated by the filled diamond next to the BinaryTree class.
Showing both the ⊕ and the filled diamond would clutter the diagram, so only the
filled diamond is shown.

L I S T I N G 9 . 2

The AVLNode Class

/** Class to represent an AVL Node. It extends the
 BinaryTree.Node by adding the balance field.
 */
private static class AVLNode<E> extends Node<E> {
 /** Constant to indicate left‐heavy */
 public static final int LEFT_HEAVY = ‐1;
 /** Constant to indicate balanced */
 public static final int BALANCED = 0;
 /** Constant to indicate right‐heavy */
 public static final int RIGHT_HEAVY = 1;
 /** balance is right subtree height – left subtree height */
 private int balance;

Koffman-c09.indd 437 10/30/2015 7:29:00 PM

438 Chapter 9 Self‐Balancing Search Trees

Inserting into an AVL Tree
The easiest way to keep a tree balanced is never to let it become unbalanced. If any node
becomes critical and needs rebalancing, rebalance immediately. You can identify critical
nodes by checking the balance at the root node of a subtree as you return to each parent
node along the insertion path. If the insertion was in the left subtree and the left subtree
height has increased, you must check to see whether the balance for the root node of the
left subtree has become critical (–2 or +2). If so, you need to fix it by calling rebalanceLeft
(rebalance a left‐heavy tree when balance is –2) or rebalanceRight (rebalance a right‐
heavy tree when balance is +2). A symmetric strategy should be followed after returning
from an insertion into the right subtree. The boolean variable increase is set before return
from recursion to indicate to the next higher level that the height of the subtree has
increased. This information is then used to adjust the balance of the next level in the tree.
The following algorithm is based on the algorithm for inserting into a binary search tree,
described in Chapter 6.

Algorithm for Insertion into an AVL Tree

 1. if the root is null
 2. Create a new tree with the item at the root and return true.
 else if the item is equal to root.data
 3. The item is already in the tree; return false.
 else if the item is less than root.data
 4. Recursively insert the item in the left subtree.
 5. if the height of the left subtree has increased (increase is true)
 6. Decrement balance.
 7. if balance is zero, reset increase to false.
 8. if balance is less than –1
 9. Reset increase to false.
10. Perform a rebalanceLeft.
 else if the item is greater than root.data
11. The processing is symmetric to Steps 4 through 10. Note that balance is incre-

mented if increase is true.

 // Methods
 /** Construct a node with the given item as the data field.
 @param item The data field

 */
 public AVLNode(E item) {
 super(item);
 balance = BALANCED;
 }

 /** Return a string representation of this object.
 The balance value is appended to the contents.
 @return String representation of this object
 */
 @Override
 public String toString() {
 return balance + ": " + super.toString();
 }

}

Koffman-c09.indd 438 10/30/2015 7:29:00 PM

9.2 AVL Trees 439

After returning from the recursion (Step 4), examine the global data field increase to see
whether the left subtree has increased in height. If it did, then decrement the balance. If the
balance had been +1 (current subtree was right‐heavy), it is now zero, so the overall height
of the current subtree is not changed. Therefore, reset increase to false (Steps 5–7).

If the balance was –1 (current subtree was left‐heavy), it is now –2, and a rebalanceLeft
must be performed. The rebalance operation reduces the overall height of the tree by 1, so
increase is reset to false. Therefore, no more rebalancing operations will occur, so you can
fix the tree by either a single rotation (Left–Left case) or a double rotation (Left–Right case)
(Steps 8–10).

add Starter Method

We are now ready to implement the insertion algorithm. The add starter method merely
calls the recursive add method with the root as its argument. The returned AVLNode is the
new root.

/** add starter method.
 @pre the item to insert implements the Comparable interface.
 @param item The item being inserted.
 @return true if the object is inserted; false
 if the object already exists in the tree
 @throws ClassCastException if item is not Comparable
 */
@Override
public boolean add(E item) {
 increase = false;
 root = add((AVLNode<E>) root, item);
 return addReturn;
}

As for the BinarySearchTree in Chapter 6, the recursive add method will set the data field
addReturn to true (inherited from class BinarySearchTree) if the item is inserted and false
if the item is already in the tree.

Recursive add Method

The declaration for the recursive add method begins as follows:
/** Recursive add method. Inserts the given object into the tree.
 @post addReturn is set true if the item is inserted,
 false if the item is already in the tree.
 @param localRoot The local root of the subtree
 @param item The object to be inserted
 @return The new local root of the subtree with the item inserted
 */
private AVLNode<E> add(AVLNode<E> localRoot, E item)

We begin by seeing whether the localRoot is null. If it is, then we set addReturn and increase
to true and return a new AVLNode, which contains the item to be inserted.

if (localRoot == null) {
 addReturn = true;
 increase = true;
 return new AVLNode<E>(item);
}

Next, we compare the inserted item with the data field of the current node. If it is equal, we
set addReturn and increase to false and return the localRoot unchanged.

Koffman-c09.indd 439 10/30/2015 7:29:00 PM

440 Chapter 9 Self‐Balancing Search Trees

if (item.compareTo(localRoot.data) == 0) {
 // Item is already in the tree.
 increase = false;
 addReturn = false;
 return localRoot;
}

If it is less than this value, we recursively call the add method (Step 4 of the insertion algo-
rithm), passing localRoot.left as the parameter and replacing the value of localRoot.left
with the returned value.

else if (item.compareTo(localRoot.data) < 0) {
 // item < data
 localRoot.left = add((AVLNode<E>) localRoot.left, item);
. . .

Upon return from the recursion, we examine the global data field increase. If increase is
true, then the height of the left subtree has increased, so we decrement the balance by calling
the decrementBalance method. If the balance is now less than –1, we reset increase to false
and call the rebalanceLeft method. The return value from the rebalanceLeft method is the
return value from this call to add. If the balance is not less than –1, or if the left subtree height
did not increase, then the return from this recursive call is the same local root that was passed
as the parameter.

if (increase) {
 decrementBalance(localRoot);
 if (localRoot.balance < AVLNode.LEFT_HEAVY) {
 increase = false;
 return rebalanceLeft(localRoot);
 }
}
return localRoot;

// Rebalance not needed.

If the item is not equal to localRoot.data and not less than localRoot.data, then it must be
greater than localRoot.data. The processing is symmetric with the less‐than case and is left
as an exercise.

Initial Algorithm for rebalanceLeft

Method rebalanceLeft rebalances a left‐heavy tree. Such a tree can be a Left–Left tree (fixed
by a single right rotation) or a Left–Right tree (fixed by a left rotation followed by a right
rotation). If its left subtree is right‐heavy, we have a Left–Right case, so we first rotate left
around the left subtree. Finally, we rotate the tree right.

1. if the left subtree has positive balance (Left–Right case)
2. Rotate left around left subtree root.
3. Rotate right.

The algorithm for rebalanceRight is left as an exercise.

The Effect of Rotations on Balance

The rebalancing algorithm just presented is incomplete. So far we have focused on changes
to the root reference and to the internal branches of the tree being balanced, but we have not
adjusted the balances of the nodes. In the beginning of this section, we showed that for a

Koffman-c09.indd 440 10/30/2015 7:29:00 PM

9.2 AVL Trees 441

Left–Left tree, the balances of the new root node and of its right child are 0 after a right rota-
tion; the balances of all other nodes are unchanged (see Figure 9.10).

The Left–Right case is more complicated. We made the following observation after studying
the different cases.

The balance of the root is 0. If the critically unbalanced situation was due to an insertion into
subtree b

L
, the balance of the root’s left child is 0 and the balance of the root’s right child is

+1 (Figure 9.14). For insertion into subtree b
R
, the balance of the root’s left child is –1, and

the balance of the root’s right child is 0 (Figure 9.17). So we need to change the balances of
the new root node and both its left and right children; all other balances are unchanged. We
will call insertion into subtree b

L
 the Left–Right–Left case and insertion into subtree b

R
 the

Left–Right–Right case.

There is a third case where the left‐right subtree is balanced; this occurs when a left‐right leaf
is inserted into a subtree that has only a left child. In this case after the rotates are performed,
the root, left child, and right child are all balanced.

Revised Algorithm for rebalanceLeft

Based on the foregoing discussion, we can now develop the complete algorithm for
 rebalanceLeft, including the required balance changes. It is easier to store the new balance
for each node before the rotation than after.

 1. if the left subtree has a positive balance (Left–Right case)
 2. if the left–left subtree has a negative balance (Left–Right–Left case)
 3. Set the left subtree (new left subtree) balance to 0.
 4. Set the left–left subtree (new root) balance to 0.
 5. Set the local root (new right subtree) balance to +1.
 else (Left–Right–Right case)
 6. Set the left subtree (new left subtree) balance to –1.
 7. Set the left–left subtree (new root) balance to 0.
 8. Set the local root (new right subtree) balance to 0.
 9. Rotate the left subtree left.
 else (Left–Left case)
10. Set the left subtree balance to 0.
11. Set the local root balance to 0.
12. Rotate the local root right.

The algorithm for rebalanceRight is left as an exercise.

Method rebalanceLeft

The code for rebalanceLeft is shown in Listing 9.3. First, we test to see whether the left
subtree is right‐heavy (Left–Right case). If so, the Left–Right subtree is examined.

Depending on its balance, the balances of the left subtree and local root are set as previ-
ously described in the algorithm. The rotations will reduce the overall height of the tree
by 1, so increase is now set to false. The left subtree is then rotated left, and the tree is
rotated right.

Koffman-c09.indd 441 10/30/2015 7:29:00 PM

442 Chapter 9 Self‐Balancing Search Trees

If the left child is LEFT_HEAVY, the rotation process will restore the balance to both the tree
and its left subtree and reduce the overall height by 1; the balance for the left subtree and
local root are both set to BALANCED, and increase is now set to false. The tree is then rotated
right to correct the imbalance.

We also need a rebalanceRight method that is symmetric with rebalanceLeft (i.e., all lefts
are changed to rights and all rights are changed to lefts). Coding of this method is left as
an exercise.

The decrementBalance Method

As we return from an insertion into a node’s left subtree, we need to decrement the balance
of the node. We also need to indicate whether the subtree height at that node has not increased,
by setting increase (currently true) to false. There are two cases to consider: a node that is
balanced and a node that is right‐heavy. If a node is balanced, insertion into its left subtree
will cause it to become left‐heavy, and its height will also increase by 1 (see Figure 9.19). If a
node is right‐heavy, insertion into its left subtree will cause it to become balanced, and its
height will not increase (see Figure 9.20).

L I S T I N G 9 . 3

The rebalanceLeft Method

/** Method to rebalance left.
 @pre localRoot is the root of an AVL subtree that is critically left‐heavy.
 @post Balance is restored.
 @param localRoot Root of the AVL subtree that needs rebalancing
 @return a new localRoot
 */
private AVLNode<E> rebalanceLeft(AVLNode<E> localRoot) {
 // Obtain reference to left child.
 AVLNode<E> leftChild = (AVLNode<E>) localRoot.left;
 // See whether left‐right heavy.
 if (leftChild.balance > AVLNode.BALANCED) {
 // Obtain reference to left‐right child.
 AVLNode<E> leftRightChild = (AVLNode<E>) leftChild.right;
 /** Adjust the balances to be their new values after
 the rotations are performed.
 */
 if (leftRightChild.balance < AVLNode.BALANCED) {
 leftChild.balance = AVLNode.BALANCED;
 leftRightChild.balance = AVLNode.BALANCED;
 localRoot.balance = AVLNode.RIGHT_HEAVY;
 } else {
 leftChild.balance = AVLNode.LEFT_HEAVY;
 leftRightChild.balance = AVLNode.BALANCED;
 localRoot.balance = AVLNode.BALANCED;
 }
 // Perform left rotation.
 localRoot.left = rotateLeft(leftChild);
 } else { Left‐Left case
 /** In this case the leftChild (the new root) and the root
 (new right child) will both be balanced after the rotation.
 */
 leftChild.balance = AVLNode.BALANCED;
 localRoot.balance = AVLNode.BALANCED;
 }
 // Now rotate the local root right.
 return (AVLNode<E>) rotateRight(localRoot);
}

Koffman-c09.indd 442 10/30/2015 7:29:00 PM

9.2 AVL Trees 443

private void decrementBalance(AVLNode<E> node) {
 // Decrement the balance.
 node.balance‐‐;
 if (node.balance == AVLNode.BALANCED) {
 /** If now balanced, overall height has not increased. */
 increase = false;
 }
}

Step 11 of the insertion algorithm performs insertion into a right subtree. This can cause the
height of the right subtree to increase, so we will also need an incrementBalance method that
increments the balance and resets increase to false if the balance changes from left‐heavy to
balanced. Coding this method is left as an exercise.

0 -1

balance before insert is 0 balance is decreased due to insert;
overall height increased

F I G U R E 9 . 1 9

Decrement of

balance by Insert on

Left (Height Increases)

+1 0

balance before insert is +1 balance is decreased due to insert;
overall height remains the same

F I G U R E 9 . 2 0

Decrement of

balance by Insert on

Left (Height Does Not

Change)

Removal from an AVL Tree
When we remove an item from a left subtree, the balance of the local root is increased,
and when we remove an item from the right subtree, the balance of the local root is
decreased. We can adapt the algorithm for removal from a binary search tree to become
an algorithm for removal from an AVL tree. We need to maintain a data field decrease
that tells the previous level in the recursion that there was a decrease in the height of the
subtree that was just returned from. (This data field is analogous to the data field
increase, which is used in the insertion to indicate that the height of the subtree has
increased.) We can then increment or decrement the local root balance. If the balance is
outside the threshold, then the rebalance methods (rebalanceLeft or rebalanceRight) are
used to restore the balance.

We need to modify methods decrementBalance, incrementBalance, rebalanceLeft, and
rebalanceRight so that they set the value of decrease (as well as increase) after a node’s

Koffman-c09.indd 443 10/30/2015 7:29:01 PM

444 Chapter 9 Self‐Balancing Search Trees

 balance has been decremented. When a subtree changes from either left‐heavy or right‐heavy
to balanced, then the height has decreased, and decrease should be set true; when the subtree
changes from balanced to either left‐heavy or right‐heavy, then decrease should be reset to
false. We also need to provide methods similar to the ones needed for removal in a binary
search tree. Implementing removal is left as a programming project.

Also, observe that the effect of rotations is not only to restore balance but to decrease the
height of the subtree being rotated. Thus, while only one rebalanceLeft or rebalanceRight
was required for insertion, during removal each recursive return could result in a further need
to rebalance.

Performance of the AVL Tree
Since each subtree is kept as close to balanced as possible, one would expect that the AVL tree
provides the expected O(log n) performance. Each subtree is allowed to be out of balance by
±1. Thus, the tree may contain some holes.

It can be shown that in the worst case, the height of an AVL tree can be 1.44 times the height
of a full binary tree that contains the same number of items. However, this would still yield
O(log n) performance because we ignore constants.

The worst‐case performance is very rare. Empirical tests (see, e.g., Donald Knuth, The Art of
Computer Programming, Vol 3: Searching and Sorting [Addison‐Wesley, 1973], p. 460) show
that, on the average, log2 n + 0.25 comparisons are required to insert the nth item into an
AVL tree. Thus, the average performance is very close to that of the corresponding complete
binary search tree.

E X E R C I S E S F O R S E C T I O N 9 . 2

S E L F ‐ C H E C K

1. Show how the final AVL tree for the “The quick brown fox” changes as you insert “apple”,
“cat”, and “hat” in that order.

2. Show the effect of just rotating right on the tree in Figure 9.11. Why doesn’t this fix the
problem?

3. Build an AVL tree that inserts the integers 30, 40, 15, 25, 90, 80, 70, 85, 15, 72 in the given
order.

4. Build the AVL tree from the sentence “Now is the time for all good men to come to the aid
of the party”.

P R O G R A M M I N G

1. Program the rebalanceRight method.

2. Program the code in the add method for the case where item.compareTo(localRoot.data)
> 0.

3. Program the incrementBalance method.

Koffman-c09.indd 444 10/30/2015 7:29:01 PM

9.3 Red–Black Trees 445

9.3 Red–Black Trees

We will now discuss another approach to keeping a tree balanced, called the Red–Black tree.
Rudolf Bayer developed the Red–Black tree as a special case of his B‐tree (the topic of
Section 9.5); Leo Guibas and Robert Sedgewick refined the concept and introduced the color
convention. A Red–Black tree maintains the following invariants:

1. A node is either red or black.
2. The root is always black.
3. A red node always has black children. (A null reference is considered to refer to a black

node.)
4. The number of black nodes in any path from the root to a leaf is the same.

Figure 9.21 shows an example of a Red–Black tree. Invariant 4 states that a Red–Black tree
is always balanced because the root node’s left and right subtrees must be the same height
where the height is determined by counting just black nodes. Note that by the standards of
the AVL tree, this tree is out of balance and would be considered a Left–Right tree.
However, by the standards of the Red–Black tree, it is balanced because there are two
black nodes (counting the root) in any path from the root to a leaf. (We use gray to indi-
cate a red node.)

2

85

14

11

71

F I G U R E 9 . 2 1

Red–Black Tree

35

3010

20 20

35

10 30

20

35

10 30

(a) (b) (c)

F I G U R E 9 . 2 2

Insertion into a Red–

Black Tree, Case 1

Insertion into a Red–Black Tree
The algorithm for insertion follows the same recursive search process used for all binary search
trees to reach the insertion point. When a leaf is found, the new item is inserted, and it is initially
given the color red, so invariant 4 will be maintained. If the parent is black, we are done.

However, if the parent is also red, then invariant 3 has been violated. Figure 9.22(a) shows
the insertion of 35 as a red child of 30. If the parent’s sibling is also red, then we can change
the grandparent’s color to red and change both the parent and parent’s sibling to black. This
restores invariant 3 but does not violate invariant 4 (see Figure 9.22(b)). If the root of the
overall tree is now red, we can change it to black to restore invariant 2 and still maintain
invariant 4 (the heights of all paths to a leaf are increased by 1) (see Figure 9.22(c)).

Koffman-c09.indd 445 10/30/2015 7:29:01 PM

446 Chapter 9 Self‐Balancing Search Trees

If we insert a value with a red parent, but that parent does not have a red sibling (see
Figure 9.23(a)), then we change the color of the grandparent to red and the parent to black
(see Figure 9.23(b)). Now we have violated invariant 4, as there are more black nodes on the
side of the parent. We correct this by rotating about the grandparent so that the parent moves
into the position where the grandparent was, thus restoring invariant 4 (see Figure 9.23(c)).

35

30

20 20

35

30 20 35

30

(a) (b) (c)

F I G U R E 9 . 2 3

Insertion into a Red–

Black Tree, Case 2

25

30

20

25

20

30

25

20

30

(a) (b) (c)

F I G U R E 9 . 2 4

Insertion into a Red–

Black Tree, Case 3

(Single Rotation

Doesn’t Work)

25

30

20

30

25

20

30

20

25 20 30

25

(a) (b) (c) (d)

F I G U R E 9 . 2 5

Insertion into a Red–

Black Tree, Case 3

(Double Rotation)

The preceding maneuver works only if the inserted value is on the same side of its parent as
the parent is to the grandparent. Figure 9.24(a) shows 25 inserted as the left child of 30,
which is the right child of 20. If we change the color of the grandparent (20) to red and the
parent (30) to black (see Figure 9.24(b)) and then rotate (see Figure 9.24(c)), we are still left
with a red parent–red child combination. Before changing the color and rotating about the
grandparent level, we must first rotate about the parent so that the red child is on the same
side of its parent as the parent is to the grandparent (see Figure 9.25(b)). We can then change
the colors (see Figure 9.25(c)) and rotate (see Figure 9.25 (d)).

More than one of these cases can occur. Figure 9.26 shows the insertion of the value 4 into
the Red–Black tree of Figure 9.21. Upon return from the insertion to the parent (node 5), it
may be discovered that a red node now has a red child, which is a violation of invariant 3. If
this node’s sibling (node 8) is also red (Case 1), then they must have a black parent. If we
make the parent red (node 7) and both of the parent’s children black, invariant 4 is preserved,
and the problem is shifted up, as shown in Figure 9.27.

Koffman-c09.indd 446 10/30/2015 7:29:02 PM

9.3 Red–Black Trees 447

Looking at Figure 9.27, we see that 7 is red and that its parent, 2, is also red. However, we
can’t simply change 2’s color as we did before because 2’s sibling, 14, is black. This problem
will require one or two rotations to correct.

Because the red child (7) is not on the same side of its parent (2) as the parent is to the
grandparent (11), this is an example of Case 3. We rotate the tree left (around node 2) so
that the red node 2 is on the same side of red node 7 as node 7 is to the grandparent (11)
(see Figure 9.28). We now change node 7 to black and node 11 to red (Figure 9.29) and
rotate right around node 11, restoring the balance of black nodes as shown in Figure 9.30.

1 7

14

11

5 8

2

F I G U R E 9 . 2 6

Red–Black Tree after Insertion of 4

1

5 8

14

11

4

2

7

F I G U R E 9 . 2 7

Moving Black Down and Red Up

8

1 5

14

11

4

7

2

F I G U R E 9 . 2 8

Rotating Red Node to Outside

8

1 5

147

4

11

2

F I G U R E 9 . 2 9

Changing Colors of Parent and

Grandparent Nodes

51

7

4

148

2 11

F I G U R E 9 . 3 0

Final Red–Black Tree after Insert

Koffman-c09.indd 447 10/30/2015 7:29:03 PM

448 Chapter 9 Self‐Balancing Search Trees

EXAMPLE 9 .2 We will now build the Red–Black tree for the sentence “The quick brown fox jumps over the
lazy dog”.

We start by inserting The, quick, and brown.

The parent of brown (quick) is red, but the sibling of quick is black (null nodes are consid-
ered black), so we have an example of Case 2 or Case 3. Because the child is not on the same
side of the parent as the parent is to the grandparent, this is Case 3. We first rotate right about
quick to get the child on the same side of the parent as the parent is to the grandparent.

We then change the colors of The and brown.

Then we rotate left about The.

Next, we insert fox.

We see that fox has a red parent (quick) whose sibling is also red (The). This is a Case 1 insertion,
so we can change the color of the parent and its sibling to black and the grandparent to red.

Since the root is red, we can change it to black without violating the rule of balanced black nodes.

quick

The

brown

brown

The

quick

brown

The

quick

quick

brown

The

quick

brown

fox

The

quick

brown

fox

The

quick

brown

fox

The

Koffman-c09.indd 448 10/30/2015 7:29:04 PM

9.3 Red–Black Trees 449

Now we add jumps, which gives us another Case 3 insertion.

This triggers a double rotation. First, rotate left about fox and change the color of its
parent jumps to black and its grandparent quick to red. Next, rotate right about quick.

Next, we insert over.

Because quick and fox are red, we have a Case 1 insertion, so we can move the black in jumps
down, changing the color of jumps to red and fox and quick to black.

Next, we add the. No changes are required because its parent is black.

When compared to the corresponding AVL tree, this tree looks out of balance. But the black
nodes are in balance (two in each path).

quick

brown

fox

The

jumps

quick

brown

jumps

The

fox

jumps

brown

fox

The

quick

jumps

brown

fox

The

quick

over

jumps

brown

fox

The

quick

over

jumps

brown

fox

The

quick

over the

Koffman-c09.indd 449 10/30/2015 7:29:05 PM

450 Chapter 9 Self‐Balancing Search Trees

Now we insert lazy.

Because over and the are both red, we can move the black at quick down (Case 1).

But now quick is a red node with a red parent (jumps) whose sibling is black (The). Because
quick and jumps are both right children, this is an example of Case 2. This triggers a rotate
left around brown.

Finally, we can insert dog.

Surprisingly, the result is identical to the AVL tree for the same input, but the intermediate
steps were very different.

jumps

brown

fox

The

quick

over the

lazy

jumps

brown

fox

The

quick

over the

lazy

jumps

brown

fox

The

quick

over the

lazy

quick

jumps

over

brown

The thefox

lazy

quick

jumps

over

brown

The thefox

lazy dog

Koffman-c09.indd 450 10/30/2015 7:29:06 PM

9.3 Red–Black Trees 451

Implementation of Red–Black Tree Class

We begin by deriving the class RedBlackTree from BinarySearchTreeWithRotate (see Listing
9.1). Figure 9.31 is a UML class diagram showing the relationship between RedBlackTree
and BinarySearchTreeWithRotate. The RedBlackTree class overrides the add and delete meth-
ods. The nested class BinaryTree.Node is extended with the RedBlackNode class. This class has
the additional data field isRed to indicate red nodes. Listing 9.4 shows the RedBlackNode class.

L I S T I N G 9 . 4

The RedBlackTree and RedBlackNode Classes

/** Class to represent Red‐Black tree. */
public class RedBlackTree<E extends Comparable<E>>
 extends BinarySearchTreeWithRotate<E> {

 /** Nested class to represent a Red‐Black node. */
 private static class RedBlackNode<E> extends Node<E> {
 // Additional data members
 /** Color indicator. True if red, false if black. */
 private boolean isRed;

 // Constructor
 /** Create a RedBlackNode with the default color of red
 and the given data field.
 @param item The data field
 */
 public RedBlackNode(E item) {
 super(item);
 isRed = true;
 }

 // Methods
 /** Return a string representation of this object.
 The color (red or black) is appended to the node's contents.
 @return String representation of this object
 */
 @Override
 public String toString() {
 if (isRed) {
 return "Red : " + super.toString();
 } else {
 return "Black: " + super.toString();
 }
 }
 }
 . . .

}

Algorithm for Red–Black Tree Insertion

The foregoing outline of the Red–Black tree insertion algorithm is from the point of view of
the node being inserted. It can be, and has been, implemented using a data structure that has
a reference to the parent of each node stored in it so that, given a reference to a node, one can
access the parent, grandparent, and the parent’s sibling (the node’s aunt or uncle).

We are going to present a recursive algorithm where the need for fix‐ups is detected from the
grandparent level. This algorithm has one additional difference from the algorithm as pre-
sented in the foregoing examples: whenever a black node with two red children is detected
on the way down the tree, it is changed to red and the children are changed to black (e.g.,
jumps and its children in the figure at left). If this change causes a problem, it is fixed on the

jumps

brown

fox

The

quick

over

jumps

brown

fox

The

quick

Insert over

Koffman-c09.indd 451 10/30/2015 7:29:06 PM

452 Chapter 9 Self‐Balancing Search Trees

addReturn
deleteReturn

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

BinaryTree

+ add(E)
+ contains(E)
+ find(E)
+ delete(E)
+ remove(E)

‹‹interface››
SearchTree

+ getLeftSubtree()
+ getRightSubtree()
+ getData()

 BinarySearchTreeWithRotate

rotateLeft()
rotateRight()

RedBlackTree

+ add(E)
+ delete(E)

BinaryTree.Node

data

root

left right

BinarySearchTree

RedBlackNode

- isRed

F I G U R E 9 . 3 1

UML Class Diagram of RedBlackTree

way back up. This modification simplifies the logic a bit and improves the performance of the
algorithm. This algorithm is also based on the algorithm for inserting into a binary search
tree that was described in Chapter 6.

Algorithm for Red–Black Tree Insertion

 1. if the root is null
 2. Insert a new Red–Black node and color it black.
 3. Return true.
 4. else if the item is equal to root.data
 5. The item is already in the tree; return false.
 6. else if the item is less than root.data
 7. if the left subtree is null
 8. Insert a new Red–Black node as the left subtree and color it red.
 9. Return true.
10. else
11. if both the left child and the right child are red
12. Change the color of the children to black and change local root to red.
13. Recursively insert the item into the left subtree.

Koffman-c09.indd 452 10/30/2015 7:29:07 PM

9.3 Red–Black Trees 453

14. if the left child is now red
15. if the left grandchild is now red (grandchild is an “outside node”)
16. Change the color of the left child to black and change the

local root to red.
17. Rotate the local root right.
18. else if the right grandchild is now red (grandchild is

 an “inside” node)
19. Rotate the left child left.
20. Change the color of the left child to black and change the

local root to red.
21. Rotate the local root right.
22. else
23. Item is greater than root.data; process is symmetric and is left as an exercise.
24. if the local root is the root of the tree
25. Force its color to be black.

Because Java passes the value of a reference, we have to work with a node that is a local root
of a Red–Black tree. Thus, in Step 8, we replace the null reference to the left subtree with the
inserted node.

If the left subtree is not null (Step 10), we recursively apply the algorithm (Step 13). But
before we do so, we see whether both children are red. If they are, we change the local root
to red and change the children to black (Steps 11 and 12). (If the local root’s parent was red,
this condition will be detected at that level during the return from the recursion.)

Upon return from the recursion (Step 14), we see whether the local root’s left child is now
red. If it is, we need to check its children (the local root’s grandchildren). If one of them is red,
then we have a red parent with a red child, and a rotation is necessary. If the left grandchild
is red, a single rotation will solve the problem (Steps 15 through 17). If the right grandchild
is red, a double rotation is necessary (Steps 18 through 21). Note that there may be only one
grandchild or no grandchildren. However, if there are two grandchildren, they cannot both
be red because they would have been changed to black by Steps 11 and 12, as described in
the previous paragraph.

The add Starter Method

As with the other binary search trees we have studied, the add starter method checks for a
null root and inserts a single new node. Since the root of a Red–Black tree is always black,
we set the newly inserted node to black. The cast is necessary because root is a data field that
was inherited from BinaryTree and is therefore of type Node.

public boolean add(E item) {
 if (root == null) {
 root = new RedBlackNode<>(item);
 ((RedBlackNode<E>) root).isRed = false;
 // root is black.
 return true;
 }
. . .

Otherwise the recursive add method is called. This method takes two parameters: the node
that is the local root of the subtree into which the item is to be inserted and the item to be
inserted. The return value is the node that is the root of the subtree that now contains the
inserted item. The data field addReturn is set to true if the insert method succeeded and to
false if the item is already in the subtree.

Koffman-c09.indd 453 10/30/2015 7:29:07 PM

454 Chapter 9 Self‐Balancing Search Trees

The root is replaced by the return value from the recursive add method, the color of the root is
set to black, and the data field addReturn is returned to the caller of the add starter method.

else {
 root = add((RedBlackNode<E>) root, item);
 ((RedBlackNode<E>) root).isRed = false;
 // root is always black.
 return addReturn;
}

The Recursive add Method

The recursive add method begins by comparing the item to be inserted with the data field of
the local root. If they are equal, then the item is already in the tree; addReturn is set to false
and the localRoot is returned (algorithm Step 5).

private Node<E> add(RedBlackNode<E> localRoot, E item) {
 if (item.compareTo(localRoot.data) == 0) {
 // item already in the tree.
 addReturn = false;
 return localRoot;
 }
. . .

If it is less, then localRoot.left is checked to see whether it is null. If so, then we insert a
new node and return (Steps 7–9).

else if (item.compareTo(localRoot.data) < 0) {
 // item < localRoot.data.
 if (localRoot.left == null) {
 // Create new left child.
 localRoot.left = new RedBlackNode<>(item);
 addReturn = true;
 return localRoot;
 }
. . .

Otherwise, check to see whether both children are red. If so, we make them black and change
the local root to red. This is done by the method moveBlackDown. Then we recursively call the
add method, using root.left as the new local root (Steps 11–13).

else { // Need to search.
 // Check for two red children, swap colors if found.
 moveBlackDown(localRoot);
 // Recursively add on the left.
 localRoot.left = add((RedBlackNode<E>) localRoot.left, item);
. . .

It is upon return from the recursive add that things get interesting. Upon return from the recursive
call, localRoot.left refers to the parent of a Red–Black subtree that may be violating the rule
against adjacent red nodes. Therefore, we check the left child to see whether it is red (Step 14).

// See whether the left child is now red
 if (((RedBlackNode<E>) localRoot.left).isRed) {
. . .

If the left child is red, then we need to check its two children. First, we check the left grand-
child (Step 15).

if (localRoot.left.left != null && ((RedBlackNode<E>)

 localRoot.left.left).isRed) {
 // Left‐left grandchild is also red.
. . .

Koffman-c09.indd 454 10/30/2015 7:29:07 PM

9.3 Red–Black Trees 455

If the left–left grandchild is red, we have detected a violation of invariant 3 (no consecutive
red children), and we have a left–left case. Thus, we change colors and perform a single rota-
tion, returning the resulting local root to the caller (Steps 16–17).

// Single rotation is necessary.
((RedBlackNode<E>) localRoot.left).isRed = false;
localRoot.isRed = true;
return rotateRight(localRoot);

If the left grandchild is not red, we then check the right grandchild. If it is red, the process is
symmetric to the preceding case, except that a double rotation will be required (Steps 18–21).

else if (localRoot.left.right != null && ((RedBlackNode<E>)
 localRoot.left.right).isRed) {
 // Left‐right grandchild is also red.
 // Double rotation is necessary.
 localRoot.left = rotateLeft(localRoot.left);
 ((RedBlackNode<E>) localRoot.left).isRed = false;
 localRoot.isRed = true;
 return rotateRight(localRoot);
}

If upon return from the recursive call the left child is black, the return is immediate, and all
of this complicated logic is skipped. Similarly, if neither the left nor the right grandchild is
also red, nothing is done.

If the item is greater than root.data, the process is symmetric and is left as an exercise
(Step 23 and Programming Exercise 1).

Removal from a Red–Black Tree
Removal follows the algorithm for a binary search tree that was described in Chapter 6.
Recall that we remove a node only if it is a leaf or if it has only one child. Otherwise, the node
that contains the inorder predecessor of the value being removed is the one that is removed.
If the node that is removed is red, nothing further must be done because red nodes do not
affect a Red–Black tree’s balance. If the node to be removed is black and has a red child, then
the red child takes its place, and we color it black. However, if we remove a black leaf, then
the black height is now out of balance. There are several cases that must be considered. We
will describe them in Programming Project 6 at the end of this chapter.

Performance of a Red–Black Tree
It can be shown that the upper limit in the height for a Red–Black tree is 2 log2 n + 2, which
is still O(log n). As with the AVL tree, the average performance is significantly better than the
worst‐case performance. Empirical studies (see Robert Sedgewick, Algorithms in C++,
3rd ed. [Addison‐Wesley, 1998], p. 570) show that the average cost of a search in a Red–
Black tree built from random values is 1.002 log2 n. Thus, both the AVL and Red–Black trees
give performance that is close to that of a complete binary search tree.

The TreeMap and TreeSet Classes
The Java API has a TreeMap class (part of the package java.util) that implements a Red–
Black tree. The TreeMap class implements the SortedMap interface, so it defines methods
get, put (a tree insertion), remove, and containsKey, among others. Because a Red–Black tree
is used, these are all O(log n) operations. There is also a TreeSet class (introduced in
Section 7.5) that implements the SortedSet interface. This class is implemented as an adapter
of the TreeMap class using a technique similar to what was described in Chapter 7 to imple-
ment the HashSet as an adapter of the HashMap.

Koffman-c09.indd 455 10/30/2015 7:29:07 PM

456 Chapter 9 Self‐Balancing Search Trees

9.4 2–3 Trees

In this section, we begin our discussion of three nonbinary trees. We begin with the 2–3 tree,
named for the number of possible children from each node (either 2 or 3). A 2–3 tree is made
up of nodes designated as 2‐nodes and 3‐nodes. A 2‐node is the same as a binary search tree
node: it consists of a data field and references to two children, one child containing values
less than the data field and the other child containing values greater than the data field. A
3‐node contains two data fields, ordered so that the first is less than the second, and refer-
ences to three children: one child containing values less than the first data field, one child
containing values between the two data fields, and one child containing values greater than
the second data field.

Figure 9.32 shows the general forms of a 2‐node (data item is x) and a 3‐node (data items are
x and y). The children are represented as subtrees. Figure 9.33 shows an example of a 2–3
tree. There are only two 3‐nodes in this tree (the right and right–right nodes); the rest are
2‐nodes.

A 2–3 tree has the additional property that all of the leaves are at the lowest level. This is how
the 2–3 tree maintains balance. This will be further explained when we study the insertion
and removal algorithms.

E X E R C I S E S F O R S E C T I O N 9 . 3

S E L F ‐ C H E C K

1. Show how the final AVL tree for the “The quick brown fox” changes as you insert “apple”,
“cat”, and “hat” in that order.

2. Insert the numbers 6, 3, and 0 in the Red–Black tree in Figure 9.21.

3. Build the Red–Black tree from the sentence “Now is the time for all good men to come to
the aid of the party”. Is it the same as the AVL tree?

P R O G R A M M I N G

1. Program the case where the item is greater than root.data.

x

<x >x

x, y

<x >x
<y >y

2-Node 3-Node

F I G U R E 9 . 3 2

2‐Node and 3‐Node

7

3

1 5 9 13

11, 15

17, 19

F I G U R E 9 . 3 3

Example of a 2–3 Tree

Koffman-c09.indd 456 10/30/2015 7:29:07 PM

9.4 2–3 Trees 457

Searching a 2–3 Tree
Searching a 2–3 tree is very similar to searching a binary search tree.

 1. if the local root is null
 2. Return null; the item is not in the tree.
 3. else if this is a 2‐node
 4. if the item is equal to the data1 field
 5. Return the data1 field.
 6. else if the item is less than the data1 field
 7. Recursively search the left subtree.
 8. else
 9. Recursively search the right subtree.
10. else // This is a 3‐node
11. if the item is equal to the data1 field
12. Return the data1 field.
13. else if the item is equal to the data2 field
14. Return the data2 field.
15. else if the item is less than the data1 field
16. Recursively search the left subtree.
17. else if the item is less than the data2 field
18. Recursively search the middle subtree.
19. else
20. Recursively search the right subtree.

EXAMPLE 9 .3 To search for 13 in Figure 9.33, we would compare 13 with 7 and see that it is greater than
7, so we would search the node that contains 11 and 15. Because 13 is greater than 11 but
less than 15, we would next search the middle child, which contains 13: success! The search
path is shown in gray in Figure 9.34.

7

3

1 5 9 13 17, 19

11, 15

F I G U R E 9 . 3 4

Searching a 2–3 Tree

Inserting an Item into a 2–3 Tree
A 2–3 tree maintains balance by being built from the bottom up, not the top down. Instead
of hanging a new node onto a leaf, we insert the new node into a leaf, as discussed in the fol-
lowing paragraphs. We search for the insertion node using the normal process for a 2–3 tree.

Inserting into a 2‐Node Leaf

Figure 9.35 (left) shows a 2–3 tree with three 2‐nodes. We want to insert 15. Because the leaf
we are inserting into is a 2‐node, we can insert 15 directly, creating a new 3‐node (Figure 9.35
right).

Koffman-c09.indd 457 10/30/2015 7:29:08 PM

458 Chapter 9 Self‐Balancing Search Trees

Inserting into a 3‐Node Leaf with a 2‐Node Parent

If we want to insert a number larger than 7 (say, 17), that number will be virtually inserted
into the 3‐node at the bottom right of the tree, giving the virtual node in gray in Figure 9.36.
Because a node can’t store three values, the middle value will propagate up to the 2‐node
parent, and the virtual node will be split into two new 2‐nodes containing the smallest and
largest values. Because the parent is a 2‐node, it will be changed to a 3‐node, and it will refer-
ence the three 2‐nodes, as shown in Figure 9.37.

7

3 11, 15

7

3 11

F I G U R E 9 . 3 5

Inserting into a Tree

with All 2‐Nodes

7

3 11, 15, 17

F I G U R E 9 . 3 6

A Virtual Insertion

7, 15

3 11 17

F I G U R E 9 . 3 7

Result of Propagating

15 to 2‐Node Parent

Let’s now insert the numbers 5, 10, and 20. Each of these would go into one of the leaf nodes
(all 2‐nodes), changing them to 3‐nodes, as shown in Figure 9.38.

7, 15

10, 113, 5 17, 20

F I G U R E 9 . 3 8

Inserting 5, 10, and 20

Inserting into a 3‐Node Leaf with a 3‐Node Parent

In the tree in Figure 9.39, all the leaf nodes are full, so if we insert any other number, one of
the leaf nodes will need to be virtually split, and its middle value will propagate to the parent.
Because the parent is already a 3‐node, it will also need to be split.

For example, if we were to insert 13, it would be virtually inserted into the leaf node with
values 10 and 11 (see Figure 9.39). This would result in two new 2‐nodes with values 10 and
13, and 11 would propagate up to be virtually inserted in the 3‐node at the root (see
Figure 9.40). Because the root is full, it would split into two new 2‐nodes with values 7 and
15, and 11 would propagate up to be inserted in a new root node. The net effect is an increase
in the overall height of the tree, as shown in Figure 9.41.

7, 15

10, 11, 133, 5 17, 20

F I G U R E 9 . 3 9

Virtually Inserting 13

Koffman-c09.indd 458 10/30/2015 7:29:09 PM

9.4 2–3 Trees 459

We summarize these observations in the following insertion algorithm.

Algorithm for Insertion

 1. if the root is null
 2. Create a new 2‐node that contains the new item.
 3. else if the item is in the local root
 4. Return false.
 5. else if the local root is a leaf
 6. if the local root is a 2‐node
 7. Expand the 2‐node to a 3‐node and insert the item.
 8. else
 9. Split the 3‐node (creating two 2‐nodes) and pass the new parent and right

child back up the recursion chain.
10. else
11. if the item is less than the smaller item in the local root
12. Recursively insert into the left child.
13. else if the local root is a 2‐node
14. Recursively insert into the right child.
15. else if the item is less than the larger item in the local root
16. Recursively insert into the middle child.
17. else
18. Recursively insert into the right child.
19. if a new parent was passed up from the previous level of recursion
20. if the new parent will be the tree root
21. Create a 2‐node whose data item is the passed‐up parent, left child is the

old root, and right child is the passed‐up child. This 2‐node becomes the
new root.

22. else
23. Recursively insert the new parent at the local root.
24. Return true.

10 133, 5 17, 20

7, 11, 15F I G U R E 9 . 4 0

Virtually Inserting 11

11

7

1310

15

3, 5 17, 20

F I G U R E 9 . 4 1

Result of Making 11 the

New Root

Koffman-c09.indd 459 10/30/2015 7:29:09 PM

460 Chapter 9 Self‐Balancing Search Trees

EXAMPLE 9 .4 We will create a 2–3 tree using “The quick brown fox jumps over the lazy dog.” The initial
root contains The, quick. If we insert brown, we will split the root. Because brown is between
The and quick, it gets passed up and will become the new root.

quick

brown

The

We now insert fox as the left neighbor of quick, creating a new 3‐node.

fox, quick

brown

The

Next, jumps is inserted between fox and quick, thus splitting this 3‐node, and jumps gets
passed up and inserted next to brown.

fox quick

brown, jumps

The

Then over is inserted next to quick.

Now we insert the. It will be inserted to the right of over, quick, splitting that node, and quick
will be passed up. It will be inserted to the right of brown, jumps, splitting that node as well,
causing jumps to be passed up to the new root.

Finally, lazy and dog are inserted next to over and fox, respectively.

fox over, quick

brown, jumps

The

quick

jumps

brown

The fox over the

quick

jumps

brown

The dog, fox lazy, over the

Koffman-c09.indd 460 10/30/2015 7:29:10 PM

9.4 2–3 Trees 461

Analysis of 2–3 Trees and Comparison with
Balanced Binary Trees
The 2–3 tree resulting from the preceding example is a balanced tree of height 3 that requires
fewer complicated manipulations. There were no rotations, as were needed to build the AVL
and Red–Black trees, which were both of height 4. The number of items that a 2–3 tree of
height h can hold is between 2h – 1 (all 2‐nodes) and 3h – 1 (all 3‐nodes). Therefore, the height
of a 2–3 tree is between log3 n and log2 n. Thus, the search time is O(log n), since logarithms
are all related by a constant factor, and constant factors are ignored in big‐O notation.

Removal from a 2–3 Tree
Removing an item from a 2–3 tree is somewhat the reverse of the insertion process. To
remove an item, we must first search for it. If the item to be removed is in a leaf, we simply
delete it. However, if the item to be removed is not in a leaf, we remove it by swapping it with
its inorder predecessor in a leaf node and deleting it from the leaf node. If removing a node
from a leaf causes the leaf to become empty, items from the sibling and parent can be redis-
tributed into that leaf, or the leaf can be merged with its parent and sibling nodes. In the latter
case, the height of the tree may decrease. We illustrate these cases next.

If we remove item 13 from the tree shown in Figure 9.42, its node would become empty, and
item 15 in the parent node would have no left child. We can merge 15 and its right child to
form the virtual leaf node {15, 17, 19}. Item 17 moves up to the parent node; item 15 is the
new left child of 17 (see Figure 9.43).

We next remove 11 from the 2–3 tree. Because this is not a leaf, we replace it with its prede-
cessor, 9, as shown in Figure 9.44. We now have the case where the left leaf node of 9 has
become empty. So we merge 9 into its right leaf node as shown in Figure 9.45.

7

3

1 5 9 13

11, 15

17, 19

F I G U R E 9 . 4 2

Removing 13 from a

2–3 Tree

7

3

1 5 9 15

11, 17

19

F I G U R E 9 . 4 3

2–3 Tree after

Redistribution of

Nodes Resulting

from Removal

7

3

1 5 9 15

9, 17

19

F I G U R E 9 . 4 4

Removing 11 from the

2–3 Tree (Step 1)

Koffman-c09.indd 461 10/30/2015 7:29:10 PM

462 Chapter 9 Self‐Balancing Search Trees

Finally, let’s consider the case in which we remove the value 1 from Figure 9.45. First, 1’s
parent (3) and its right sibling (5) are merged to form a 3‐node, as shown in Figure 9.46. This
has the effect of deleting 3 from the next higher level. Therefore, the process repeats, and 3’s
parent (7) and 7’s right child (17) are merged, as shown in Figure 9.47. The merged node
becomes the root.

The 2–3 tree served as an inspiration for the more general B‐tree and 2–3–4 tree. Rather than
show an implementation of the 2–3 tree, which has some rather messy complications, we will
describe and implement the more general B‐tree in the next section.

7

3

1 5 19

17

9, 15

F I G U R E 9 . 4 5

2–3 Tree after

Removing 11

3, 5

7

3

19

17

9, 15

F I G U R E 9 . 4 6

After Removing 1

(Intermediate Step)

199, 15

7, 17

3, 5

F I G U R E 9 . 4 7

After Removing 1

(Final Form)

E X E R C I S E S F O R S E C T I O N 9 . 4

S E L F ‐ C H E C K

1. Show the tree after inserting each of the following values one at a time: 1, 4, 9.

7

3 11

2. Show the tree after inserting each of the following one at a time: 9, 13.

7

3 11, 15

3. Show the 2–3 tree that would be built for the sentence “Now is the time for all good men
to come to the aid of their party”.

Koffman-c09.indd 462 10/30/2015 7:29:11 PM

9.5 B‐Trees and 2–3–4 Trees 463

9.5 B‐Trees and 2–3–4 Trees

The 2–3 tree was the inspiration for the more general B‐tree, which allows up to n children
per node, where n may be a very large number. The B‐tree was designed for building indexes
to very large databases stored on a hard disk. The 2–3–4 tree is a special case of a B‐tree.

B‐Trees
In the 2–3 tree, a 2‐node has two children and a 3‐node has three children. In the B‐tree, the
maximum number of children is the order of the B‐tree, which we will represent by the vari-
able order. Other than the root, each node has between order/2 and order children. The
number of data items in a node is 1 less than the number of children. The data items in each
node are in increasing order. Figure 9.48 shows an example of a B‐tree with order equal to 5.
The first link from a node connects to a subtree with values smaller than the parent’s smallest
value (10 for the root node); the last link from a node connects to a subtree with values
greater than the parent’s largest value (40 for the root node); the other links are to subtrees
with values between each pair of consecutive values in the parent node (e.g., > 10 and < 22
or > 22 and < 30).

2210 30 40

1513 18 20 3532 38

75 8 2726 4642

F I G U R E 9 . 4 8

Example of a B‐Tree

B‐trees were developed to store indexes to databases on disk storage. Disk storage is broken
into blocks, and the nodes of a B‐tree are sized to fit in a block, so each disk access to the
index retrieves exactly one B‐tree node. The time to retrieve a block is large compared to the
time required to process it in memory, so by making the tree nodes as large as possible, we
reduce the number of disk accesses required to find an item in the index. Assuming a block
can store a node for a B‐tree of order 200, each node would store at least 100 items. This
would enable 1004 or 100 million items to be accessed in a B‐tree of height 4.

The insertion process for a B‐tree is similar to that of a 2–3 tree, and each insertion is into a
leaf. For Figure 9.48, a number less than 10 would be inserted into the leftmost leaf; a num-
ber greater than 40 would be inserted into the rightmost leaf; and numbers between 11 and
39 would be inserted into one of the interior leaves. A simple case is insertion of the number
39 into the fourth child of the root node (shown in bold in Figure 9.49).

2210 30 40

1513 18 20 3532 38 39

75 8 2726 4642

F I G U R E 9 . 4 9

B‐Tree after Inserting 39

Koffman-c09.indd 463 10/30/2015 7:29:12 PM

464 Chapter 9 Self‐Balancing Search Trees

Implementing the B‐Tree
The Node class holds up to order‐1 data items and order references to children. The array
data stores the data, and the array children stores the references to the children. The number
of data items currently stored is indicated by size.

/** A Node represents a node in a B‐tree. */
private static class Node<E> {
 // Data Fields

 /** The number of data items in this node */
 private int size = 0;
 /** The information */
 private E[] data;
 /** The links to the children. child[i] refers to the subtree of
 children < data[i] for i < size and to the subtree
 of children > data[size‐1] for i == size
 */
 private Node<E>[] child;

 /** Create an empty node of size order
 @param order The size of a node
 */
 @SuppressWarnings("unchecked")
 public Node(int order) {
 data = (E[]) new Comparable[order‐1];
 child = (Node<E>[]) new Node[order];
 size = 0;
 }
}

10

1513 35 38 3932

7 85 4642

2726

22

30 40

2018

17

F I G U R E 9 . 5 0

Inserting into a B‐Tree

However, if the leaf being inserted into is full, it is split into two nodes, each containing
approximately half the items, and the middle item is passed up to the split node’s parent. If
the parent is full, it is split and its middle item is passed up to its parent, and so on. If a node
being split is the root of the B‐tree, a new root node is created, thereby increasing the height
of the B‐tree. The children of the new root will be the two nodes that resulted from splitting
the old root. Figure 9.50 shows the B‐tree after inserting 17. Because 17 is between 10 and
22, it should be inserted into the second leaf node {13, 15, 18, 20}, with 17 as the new third
or middle item {13, 15, 17, 18, 20}. However, the original leaf node was full, so it is split, and
its new middle item, 17, is passed up to the root node {10, 17, 22, 30, 40}. Because the origi-
nal root node was full, it is also split and its new middle item, 22, is passed up as the first item
in a new root node, thereby increasing the height of the tree. It is interesting that the B‐tree
grows by adding nodes to the top of the tree instead of adding them at the bottom.

Koffman-c09.indd 464 10/30/2015 7:29:12 PM

9.5 B‐Trees and 2–3–4 Trees 465

The declaration for the B‐tree class begins as follows:
/** An implementation of the B‐tree. A B‐tree is a search tree
 in which each node contains n data items where n is between
 (order‐1)/2 and order‐1. (For the root, n may be between 1

and order‐1.) Each node not a leaf has n+1 children. The tree is
 always balanced in that all leaves are on the same level, i.e.,
 of the path from the root to a leaf is constant.
 the length @author Koffman and Wolfgang
 */
public class BTree<E extends Comparable<E>>
 // Nested class
 /** A Node represents a node in a B‐tree. */
 private static class Node<E> {
 . . .
 }

 /** The root node. */
 private Node<E> root = null;
 /** The maximum number of children of a node */
 private int order;

 /** Construct a B‐tree with node size order
 @param order the size of a node
 */
 public BTree(int order) {
 this.order = order;
 root = null;
 }

The insert method is very similar to that for the 2–3 tree. Method insert searches the cur-
rent node for the item. If the item is found, insertion is not possible, so it returns false. If
the item is not found in the current node, it follows the appropriate link until it reaches a
leaf and then inserts the item into that leaf. If the leaf is full, it is split. In the 2–3 tree, we
described this process as a virtual insertion into the full leaf, and then the middle data value
is used as the parent of the split‐off node. This parent value was then inserted into the parent
node during the return process of the recursion.

Algorithm for insertion

 1. if the root is null
 2. Create a new Node that contains the inserted item.
 3. else search the local root for the item
 4. if the item is in the local root
 5. return false
 6. else
 7. if the local root is a leaf
 8. if the local root is not full
 9. insert the new item
10. return null as the new_child and true to indicate successful insertion
11. else
12. split the local root
13. return the newParent and a newChild and true to indicate successful

insertion
14. else (note: this else goes with if on line 7)

Koffman-c09.indd 465 10/30/2015 7:29:12 PM

466 Chapter 9 Self‐Balancing Search Trees

15. recursively call the insert method
16. if the returned newChild is not null
17. if the local root is not full
18. insert the newParent and newChild into the local root
19. return null as the newChild and true to indicate successful

insertion
20. else
21. split the local root
22. return the newParent and the newChild and true to indicate

successful insertion
23. else
24. return the success/fail indicator for the insertion

In this algorithm, we showed multiple return values. There is the boolean return value that
indicates success or failure of the insertion. There is the newParent of the split‐off node,
and there is the split‐off node, which we call the newChild. We implement this by using the
return value from the insert function as the success/fail indicator, and newParent and
newChild are private data fields in the BTree class. If there is no new child, newChild is set
to null.

Code for the insert Method
The code for the insert method is shown in Listing 9.5. We use a binary search to locate the
item in the local root. The binarySearch method returns the index of the item if it is present
or the index of the position where the item should be inserted.

We need to test to see whether the local root is full. If it is not full, we can insert the item into
the local root; otherwise, we need to split the local root. In either case, we return true.

if (root.size < order‐1) {
 insertIntoNode(root, index, item, null);
 newChild = null;
} else {
 splitNode(root, index, item, null);
}
return true;

If the local root is not a leaf, then we recursively call the insert method using local.
child[index] as the root argument. Upon return from the recursion, we test the value of
newChild. If it is null, we return the result of the insertion. If it is not null and the local
root is not full, we insert the newParent and newChild into the local root; otherwise, we split
the local root.

boolean result = insert(root.child[index], item);
if (newChild != null) {
 if (root.size < order‐1) {
 insertIntoNode(root, index, newParent, newChild);
 newChild = null;
 } else {
 splitNode(root, index, newParent, newChild);
 }
}
return result;

The insertIntoNode and splitNode methods are described next.

Koffman-c09.indd 466 10/30/2015 7:29:12 PM

9.5 B‐Trees and 2–3–4 Trees 467

The insertIntoNode Method
The insertIntoNode method shifts the data and child values to the right and inserts the new
value and child at the indicated index.

/** Method to insert a new value into a node
 @pre node.data[index‐1] < item < node.data[index];
 @post node.data[index] == item and old values are moved right one position
 @param node The node to insert the value into
 @param index The index where the inserted item is to be placed
 @param item The value to be inserted
 @param child The right child of the value to be inserted
 */
private void insertIntoNode(Node<E> node, int index, E obj, Node<E> child) {
 for (int i = node.size; i > index; i‐‐) {
 node.data[i] = node.data[i ‐ 1];
 node.child[i + 1] = node.child[i];
 }

L I S T I N G 9 . 5

The insert Function from BTree.java

 /** Recursively insert an item into the B‐tree. Inserted
 item must implement the Comparable interface
 @param root The local root
 @param item The item to be inserted
 @return true if the item was inserted,
 false if the item is already in the tree
 */
 private boolean insert(Node<E> root, E item) {
 int index = binarySearch(item, root.data, 0, root.size);
 if (index != root.size && item.compareTo(root.data[index]) == 0) {
 return false;
 }
 if (root.child[index] == null) {
 if (root.size < order‐1) {
 insertIntoNode(root, index, item, null);
 newChild = null;
 } else {
 splitNode(root, index, item, null);
 }
 return true;
 } else {
 boolean result = insert(root.child[index], item);
 if (newChild != null) {
 if (root.size < order‐1) {
 insertIntoNode(root, index, newParent, newChild);
 newChild = null;
 } else {
 splitNode(root, index, newParent, newChild);
 }
 }
 return result;
 }
 }

Koffman-c09.indd 467 10/30/2015 7:29:12 PM

468 Chapter 9 Self‐Balancing Search Trees

The splitNode Method
The splitNode method will perform the virtual insertion of the new item (and its child) into
the node and split it so that half of the items remain in the node being split and the rest are
moved to the split‐off node. The middle value becomes the parent of the split‐off node. The
middle value is passed up to the parent node, which still links to the node that was split. This
is illustrated in Figure 9.51.

 node.data[index] = obj;
 node.child[index + 1] = child;
 node.size++;
}

[0] [(order-1)/2] [order-1]

Split-off node

New parent

Node after split

Node before split
with new item

virtually inserted

F I G U R E 9 . 5 1

Splitting the Node

The code for the splitNode method is shown in Listing 9.6. Since we cannot insert the new
item into the node before it is split, we need to do the split first in such a way that space
is available in either the original node or the split‐off node for the new item. After the
split, we keep half of the items in the original node and move the other half to the split‐off
node. The number of items to keep is order‐1; thus half of them is (order‐1)/2, and the
number of items to move is (order‐1) ‐ (order‐1)/2. The reason that this is not simply
(order‐1)/2 is that order‐1 may be an odd number. Thus, we move (order‐1) ‐

(order‐1)/2 items, unless the new item is to be inserted into the split‐off node, in which
case we move one fewer item. The number of items to be moved is computed using the
following statements:

// Determine number of items to move
int numToMove = (order‐1) ‐ ((order‐1) / 2);
// If insertion point is in the right half, move one less item
if (index > (order‐1) / 2) {
 numToMove‐‐;
}

The System.arrayCopy method is then used to move the data and the corresponding
children.

// Move items and their children
System.arraycopy(node.data, order ‐ numToMove ‐ 1,
 newChild.data, 0, numToMove);

Koffman-c09.indd 468 10/30/2015 7:29:13 PM

9.5 B‐Trees and 2–3–4 Trees 469

System.arraycopy(node.child, order ‐ numToMove,
 newChild.child, 1, numToMove);
node.size = order ‐ numToMove ‐ 1;
newChild.size = numToMove;

Now we are ready to insert the new item and set the newChild.child[0] reference. There are
three cases: the item is to be inserted as the middle item, the item is to be inserted into the
original node, and the item is to be inserted into the newChild. If the item is to be inserted into
the middle, then it becomes the newParent, and its child becomes newChild.child[0].

if (index == ((order‐1) / 2)) { // Insert as middle item
 newParent = item;
 newChild.child[0] = child;
}

Otherwise we can use the insertIntoNode method to insert the item into either the original
node or the newChild node.

if (index < ((order‐1) / 2)) { // Insert into the left
 insertIntoNode(node, index, item, child);
} else {
 insertIntoNode(newChild, index ‐ ((order‐1) / 2) ‐ 1, item, child);
}

In either case, after the insert, the last item in the original node becomes the newParent and
its child becomes newChild.child[0]

// The rightmost item of the node is the new parent
newParent = node.data[node.size ‐ 1];
// Its child is the left child of the split‐off node
newChild.child[0] = node.child[node.size];
node.size‐‐;

L I S T I N G 9 . 6

Function splitNode from BTree.java

private void splitNode(Node<E> node, int index, E item, Node<E> child) {
 // Create new child
 newChild = new Node<E>(order);
 // Determine number of items to move
 int numToMove = (order‐1) ‐ ((order‐1) / 2);
 // If insertion point is in the right half, move one less item
 if (index > (order‐1) / 2) {
 numToMove‐‐;
 }

 // Move items and their children
 System.arraycopy(node.data, order ‐ numToMove ‐ 1,
 newChild.data, 0, numToMove);
 System.arraycopy(node.child, order ‐ numToMove,
 newChild.child, 1, numToMove);
 node.size = order ‐ numToMove ‐ 1;
 newChild.size = numToMove;

 // Insert new item
 if (index == ((order‐1) / 2)) { // Insert as middle item
 newParent = item;
 newChild.child[0] = child;
 } else {
 if (index < ((order‐1) / 2)) { // Insert into the left
 insertIntoNode(node, index, item, child);
 } else {

Koffman-c09.indd 469 10/30/2015 7:29:13 PM

470 Chapter 9 Self‐Balancing Search Trees

Removal from a B‐Tree
Removing an item from a B‐tree is a generalization of removing an item from a 2–3 tree. The
simpler case occurs when the item to be removed is in a leaf; in this case, it is deleted from
the leaf. However, if the item to be removed is in an interior node, it can’t be deleted simply
because that would damage the B‐tree. To retain the B‐tree property, the item must be
replaced by its inorder predecessor (or its inorder successor), which is in a leaf. As an exam-
ple, Figure 9.52 shows the tree that would be formed when 40 is removed from the tree in
Figure 9.50 and is replaced with its inorder predecessor (39).

 insertIntoNode(newChild, index ‐ ((order‐1) / 2) ‐ 1, item, child);
 }
 // The rightmost item of the node is the new parent
 newParent = node.data[node.size ‐ 1];
 // Its child is the left child of the split‐off node
 newChild.child[0] = node.child[node.size];
 node.size‐‐;
 }

 // Remove items and references to moved items
 for (int i = node.size; i < node.data.length; i++) {
 node.data[i] = null;
 node.child[i + 1] = null;
 }
}

22

10 17 30 40

1513 35 38 3932

7 85 2018 4642

2726

22

10 17 30 39

1513 35 38 3932

7 85 2018 4642

2726

Before removing 40

After removing 40

F I G U R E 9 . 5 2

Removing 40 from

B‐Tree of Figure 9.50

Koffman-c09.indd 470 10/30/2015 7:29:13 PM

9.5 B‐Trees and 2–3–4 Trees 471

In both cases described above, if the removal of an item from a leaf results in a leaf node that
is less than half full, this would violate a property of the B‐tree (only the root node can be
less than half full). To correct this, items from a sibling node and parent are redistributed into
that leaf. However, if the sibling is itself exactly half full, the leaf, its parent item, and sibling
are merged into a single node, deleting the parent item from the parent node. If the parent
node is now half full, the process of node redistribution or merging is repeated during the
recursive return process. The merging process may reduce the height of the B‐tree.

We illustrate this process by deleting item 18 from the bottom B‐tree in Figure 9.52. The leaf
node that contained 18 would have only one item (20), so we merge it with its parent and left
sibling into a new full node {13, 15, 17, 20} as shown in Figure 9.53.

The problem is that the parent of {13, 15, 17, 20} has only one item (10), so it is merged with
its parent and right sibling to form a new root node {10, 22, 30, 40} as shown in Figure 9.54.
Note that the height of the resulting B‐tree has also been reduced by 1.

22

10 17 30 39

1513 2017 35 3832

7 85 2018 4642

2726

F I G U R E 9 . 5 3

Step 1 of Removing 18

from Bottom B‐Tree of

Figure 9.52

7 85 15 17 2013

22 30 3910

2726 35 3832 4642

F I G U R E 9 . 5 4

Step 2 of Removing

18 from B‐Tree of

Figure 9.52

B+ Trees
We stated earlier that B‐trees were developed and are still used to create indexes for data-
bases. The Node is stored on a disk block, and the pointers are pointers to disk blocks instead
of being memory addresses. The E is a key‐value pair, where the value is also a pointer to a
disk block. Since in the leaf nodes all of the child pointers are null, there is a significant
amount of wasted space. A modification to the B‐tree, known as the B+ tree, was developed
to reduce this wasted space. In the B+ tree, the leaves contain the keys and pointers to the
corresponding values. The internal nodes only contain keys and pointers to children. In the
B‐tree there are order pointers to children and order‐1 values. In the B+ tree, the parent’s
value is repeated as the first value; thus there are order pointers and order keys. An example
of a B+ tree is shown in Figure 9.55.

2–3–4 Trees
2–3–4 trees are a special case of the B‐tree where order is fixed at 4. We refer to such a node
as a 4‐node (see Figure 9.56). This is a node with three data items and four children.
Figure 9.57 shows an example of a 2–3–4 tree.

Koffman-c09.indd 471 10/30/2015 7:29:13 PM

472 Chapter 9 Self‐Balancing Search Trees

5

5

10

5 7 8 17 18 20 30 32 35 38 40 42 46

22 26 2713 15

10 17 22 30 40

22F I G U R E 9 . 5 5

Example of a B+ Tree

x

<x >x

x, y

<x >x
<y >y

x, y, z

<x >x
<y

>y
<z >z

2-Node 4-Node3-Node

F I G U R E 9 . 5 6

2‐, 3‐, and 4‐Nodes

Fixing the capacity of a node at three data items simplifies the insertion logic. We can search
for a leaf in the same way as for a 2–3 tree or a B‐tree. If a 4‐node is encountered at any point,
we will split it, as discussed subsequently. Therefore, when we reach a leaf, we are guaranteed
that there will be room to insert the item.

For the 2–3–4 tree shown in Figure 9.57, a number larger than 62 would be inserted in a leaf
node in the right subtree. A number between 63 and 78, inclusive, would be inserted in the
3‐node (68, 71), making it a 4‐node. A number larger than 79 would be inserted in the 2‐node
(90), making it a 3‐node.

When inserting a number smaller than 62 (say, 25), we would encounter the 4‐node (14, 21,
38). We would immediately split it into two 2‐nodes and insert the middle value (21) into the
parent (62) as shown in Figure 9.58. Doing this guarantees that there will be room to insert
the new item. We perform the split from the parent level and immediately insert the middle
item from the split child into the parent node. Because we are guaranteed that the parent is
not a 4‐node, we will always have room to do this. We do not need to propagate a child or
its parent back up the recursion chain. Consequently, the recursion becomes tail recursion.

Now we can insert 25 as the left neighbor of 28 as shown in Figure 9.59.

2815 90

14, 21, 38

62

4 55, 56 68, 71

79

F I G U R E 9 . 5 7

Example of a 2‐3‐4

Tree

Koffman-c09.indd 472 10/30/2015 7:29:14 PM

9.5 B‐Trees and 2–3–4 Trees 473

In this example, splitting the 4‐node was not necessary. We could have merely inserted 25 as the
left neighbor of 28. However, if the leaf being inserted into was a 4‐node, we would have had
to split it and propagate the middle item back up the recursion chain, just as we did for the 2–3
tree. Always splitting a 4‐node when it is encountered results in prematurely splitting some
nodes, but it simplifies the algorithm and has minimal impact on the overall performance.

Relating 2–3–4 Trees to Red–Black Trees
A Red–Black tree is a binary‐tree equivalent of a 2–3–4 tree. A 2‐node is a black node (see
Figure 9.60). A 4‐node is a black node with two red children (see Figure 9.61). A 3‐node can
be represented as either a black node with a left red child or a black node with a right red
child (see Figure 9.62).

Suppose we want to insert a value z that is greater than y into the 3‐node shown at the top
of Figure 9.62 (tree with black root y). Node z would become the red right child of black
node y, and the subtree with label >y would be split into two parts, giving Red–Black tree and
the 4‐node shown in Figure 9.61.

Suppose, on the other hand, we want to insert a value z that is between x and y into the
3‐node shown at the bottom of Figure 9.62 (tree with black root x). Node z would become

28 55, 56

38

154 90

14 79

21, 62

68, 71

F I G U R E 9 . 5 8

Result of Splitting

a 4‐Node

55, 5625, 28

38

154 90

14 79

21, 62

68, 71

F I G U R E 9 . 5 9

2‐3‐4 Tree after

Inserting 25

x

<x >x

x

<x >x

F I G U R E 9 . 6 0

A 2‐Node as a Black

Node in a Red–Black

Tree

y

x z

x, y, z

<x >x
<y

>y
<z >z

<x >x
<y

>y
<z >z

F I G U R E 9 . 6 1

A 4‐Node as a Black

Node with Two Red

Children in a Red–Black

Tree

Koffman-c09.indd 473 10/30/2015 7:29:14 PM

474 Chapter 9 Self‐Balancing Search Trees

the red left child of red node y (see the left diagram in Figure 9.63), and a double rotation
would be required. First rotate right around y (the middle diagram) and then rotate left
around x (the right diagram). This corresponds to the situation shown in Figure 9.64
(a 4‐node with x, z, y).

x, z, y

<x >x
<z

>z
<y >y

F I G U R E 9 . 6 4

Inserting into the

Middle of a 3‐Node

(2–3–4 Tree)

y

x

x, y

<x >x
<y >y>y

x, y

<x >x
<y >y

<x >x
<y

>y

<x
>x
<y

x

y

F I G U R E 9 . 6 2

A 3‐Node as a Black

Node with One Red

Child in a Red–Black

Tree

>y

<x

>x
<z

>z
<y

x

y

z

>y

<x
>x
<z

>z
<y

x

z

y

>y<x >x
<z

z

y

>z
<y

x

F I G U R E 9 . 6 3

Inserting into the Middle of a 3‐Node (Red–Black Tree Equivalent)

E X E R C I S E S F O R S E C T I O N 9 . 5

S E L F ‐ C H E C K

1. Draw a B‐tree with order 5 that stores the sequence of integers: 20, 30, 8, 10, 15, 18, 44,
26, 28, 23, 25, 43, 55, 36, 44, 39.

2. Remove items 30, 26, 15, and 17 from the B‐tree in Figure 9.50.

3. Draw the B+ tree that would be formed by inserting the integers shown in Exercise 1.

4. Show the tree after inserting each of the following values one at a time: 1, 5, 9, and 13.

Koffman-c09.indd 474 10/30/2015 7:29:15 PM

9.6 Skip‐Lists 475

9.6 Skip‐Lists

The skip‐list is another data structure that can be used as the basis for the NavigableSet or
NavigableMap and as a substitute for a balanced tree. Like a balanced tree, it provides for
O(log n) search, insert, and remove. It has the additional advantage over the Red–Black tree‐
based TreeSet in that concurrent references are easier to achieve. With the TreeSet class, if
two threads have iterators to the set and one thread makes a modification to the set, then the
iterators are invalid and will throw the ConcurrentModificationException when next refer-
enced. The ConcurrentSkipListSet and ConcurrentSkipListMap were introduced in Java 6.
The concurrency features are beyond the scope of this text, but we will describe the basic
structure of the skip‐list and the algorithms for search, insertion, and removal.

Skip‐List Structure
A skip‐list is a list of lists. Each node in a list contains a data element with a key, and the elements
in each list are in increasing order by key. Unlike the usual list node, which has a single forward
link to the next node, the nodes in a skip list have a varying number of forward links. The num-
ber of such links is determined by the level of a node. A level‐m node has m forward links. When
a new data element is inserted in a skip‐list, a new node is inserted to store the element. The
node’s level is chosen randomly in such a way that approximately 50 percent are level 1 (one
forward link), 25 percent are level 2 (two forward links), 12.5 percent are level 3, and so on.

 2815 90

14, 21, 38

62

4 55, 56 68, 71

79

5. Build a 2–3–4 tree to store the words in the sentence “Now is the time for all good men to
come to the aid of their party”.

6. Draw the Red–Black tree equivalent of the 2–3–4 tree shown in Exercise 5.

7. Draw the 2–3–4 tree equivalent to the following Red–Black tree.

51

7

4

148

2 11

P R O G R A M M I N G

1. Code the binarySearch method of the BTree.

2. Code the insert method for the 2–3–4 tree. The rest of the 2–3–4 tree implementation can
be done by taking the B‐tree implementation and fixing order at 4.

Koffman-c09.indd 475 10/30/2015 7:29:15 PM

476 Chapter 9 Self‐Balancing Search Trees

Figure 9.65 shows a skip‐list with 10 data elements (only the keys are shown). In this skip‐
list, there are five level‐1 nodes (5, 15, 25, 35, and 45), three level‐2 nodes (10, 30, and 50),
one level‐3 node (20), and one level‐4 node (40). If we look at node‐20, we see that its level‐1
link (the top one) is to node‐25, its level‐2 link is to node‐30, and its level‐3 link (the bottom
one) is to node‐40. The last node in the skip‐list, node‐50, is a level‐2 node, and both links
are null.

The level of a skip‐list is defined as its highest node level, or 4 for Figure 9.65. A level‐4 skip‐
list has individual lists of level 4, level 3, level 2, and level 1. The level‐1 list consists of every
node (5, 10, 15, etc.); the level‐2 list (in gray) consists of every other node (10, 20, 30, 40, 50);
the level‐3 list (in dashed gray) consists of nodes‐20 and 40; and the level‐4 list consists of
node‐40. This is an ideal skip‐list; most skip‐lists will not have this exact structure, but their
behavior will be similar.

5045403530252015105?
head

F I G U R E 9 . 6 5

Ideal Skip‐List

5045403530252015105?
head

F I G U R E 9 . 6 6

Searching for 35 in a Skip‐List

Searching a Skip‐List
To search a skip‐list, we start by looking for our target in the highest‐level list. This list
always has the fewest elements. If the target is in this list, the search is successful. If not, we
stop the search in the current list at the element that is the predecessor of the target. Then we
continue the search in the list with level one less than the current list, starting where we left
off (the predecessor to the target). We continue this process until we either find the target or
reach the level‐1 list. If the target is not in the level‐1 list (the list of all elements), then it is
not present.

Figure 9.66 shows the search path for item 35. We start by searching the level‐4 list. Its first
node is 40 (>35), so we move to the level‐3 list. Its first node is 20 and its second node is 40
(>35), so we stop at node‐20. We then follow node‐20’s level‐2 link, which points to a node
whose value is 30. Advancing to the 30‐node, we see that its level‐2 link is to 40 (>35), so we
stop at node‐30. We then follow its level‐1 link, which points to 35, our target. The dashed
gray links point to the predecessor of 35 in each list.

The algorithm for searching a skip‐list follows:
1. Let m be the highest‐level node.
2. while m > 0

Koffman-c09.indd 476 10/30/2015 7:29:16 PM

9.6 Skip‐Lists 477

3. Following the level‐m links, find the node with the largest value that is less than or
equal to the target.

4. If it is equal to the target, the target has been found—exit loop.
5. Set m to m − 1
6. If m = 0, the target is not in the list.

Performance of a Skip‐List Search
Because the first list we search has the fewest elements (generally one or two) and each lower‐
level list we search has approximately half as many elements as the current list, the search
performance is similar to that of a binary search: O(log n), where n is the number of nodes
in the skip‐list. We discuss performance further at the end of this section.

Inserting into a Skip‐List
If the search algorithm fails to find the target, it will find its predecessor in the level‐1 list,
which is the target’s insertion point. Therefore, if we keep track of the last node we visited at
each level, we know where to insert a new node containing the target. The question then is
“What level should this new node be?” The answer is it is chosen at random, based on the
number of items currently in the skip‐list. The random number is chosen with a logarithmic
distribution. Half the time a level‐1 node is chosen; a quarter of the time a level‐2 node is
chosen, and 1/2m time a level‐m node is chosen. To insert 36 into the skip‐list shown in
Figure 9.66, we would follow the same path as to locate 35. Along the way we would have
recorded the last node visited at each level: the 20 node at level 3, the 30 node at level 2, and
the 35 node at level 1. If the random number generator returns a 3, the new node will be a
level‐3 node. The level‐3 link in the 20 node will be set to point to the new 36 node, and the
level‐3 link in the new 36 node will be set to point to node 40. The level‐2 link in the 30 node
will be set to point to the new 36 node, and the level‐2 link in the new 36 node will be set to
point to node 40. Finally, the level‐1 link in the 35 node will be set to point to the new 36
node, and the level‐1 link in the new 36 node will be set to point to the 40 node. The result
is shown in Figure 9.67. The gray links show the new entries in the skip list.

363530252015105? 504540
head

F I G U R E 9 . 6 7

After Insertion of 36

Increasing the Height of a Skip‐List
The skip‐list shown in the figures is a level‐4 skip‐list. Such a skip‐list can efficiently hold up
to 15 items. When a 16th item is inserted, the level is increased by 1. A level‐m skip‐list can
hold between 2m–1 and 2m − 1 items.

Implementing a Skip‐List
Next, we show how to implement a skip‐list. We start with the SLNode class. When a new
level‐m node is created, the declaration for links allocates array links with subscripts 0
through m−1. We use the same kind of node for the head node as the rest of the nodes in the
skip‐list. However, its data field value is not defined (indicated by ? in the figures).

Koffman-c09.indd 477 10/30/2015 7:29:16 PM

478 Chapter 9 Self‐Balancing Search Trees

 /** Static class to contain the data and the links */
 static class SLNode<E> {
 SLNode<E>[] links;
 E data;

 /** Create a node of level m */
 SLNode (int m, E data) {
 links = (SLNode<E>[]) new SLNode[m]; // create links
 this.data = data; // store item
 }
 }

Searching a Skip‐List
Since insertion involves the same algorithm as searching to find the insertion point, we define
a common method, search, which will return an array pred of references to the SLNodes at
each level that were last examined in the search. Because array subscripts start at 0, pred[i]
references the predecessor in the level‐(i+1) list of the target. The level‐(i+1) link for the node
referenced by pred[i] is greater than or equal to the target or is null. The result of searching
for 35 is shown in Figure 9.68. Array element pred[3] references the head node since the
level‐4 link references the node 40, which is greater than 35. Array element pred[2] refer-
ences node 20 whose level‐3 link references node 40. Element pred[1] references node 30
whose level‐2 link references 40 and whose level‐1 link references 35. Finally, pred[0] also
references node 30. By examining links[0] of the node referenced by pred[0], we can deter-
mine whether the target is in the skip‐list.

5045403530252015105?

head

pred
[0]
[1]
[2]
[3]

F I G U R E 9 . 6 8

Result of Search for 35

Listing 9.7 shows the code for searching a skip‐list. Two methods are shown: search and
find. Method find calls search to perform the search. The result returned by search is the
array of references to the predecessor of target in each list. The SkipList data field head
references an array of links to the first element of each list in the skip‐list, where head.
links[i] references the first node in the level‐(i+1) list. Method search begins by setting
 current to head. The for loop ensures that each list is processed beginning with the highest‐
level list. The while loop advances current down the level‐i list until current references the
last node in the list or current references a node that is linked to either target or to the first
element greater than target. The last value of current is saved in pred[i], and the for loop
sets i to i‐1, causing the next list to be searched.

After search returns the array of predecessor references, method find examines the level‐1
link of the predecessor saved for the level‐1 list. If this link is null or if it references a node
greater than the target, null is returned (target is not in the list); otherwise, the data stored
in the node referenced by the level‐1 link is returned as the search result.

Koffman-c09.indd 478 10/30/2015 7:29:16 PM

9.6 Skip‐Lists 479

Insertion
The result of calling search for 36 is shown in Figure 9.69. It is the same as the search for 35
except that pred[0] references 35 since 36 will follow 35. At each level (i+1), the new node
will be inserted between the node referenced by pred[i] and the node referenced by the pre-
decessor node’s links[i]. If the result of search is saved in the array pred and newNode is the
new node, the code to splice newNode into the linked list is

newNode.links[i] = pred[i].links[i];
pred[i].links[i] = newNode;

L I S T I N G 9 . 7

Methods for Searching a Skip‐List

@SuppressWarnings("unchecked")
/** Search for an item in the list
 @param item The item being sought
 @return A SLNode array which references the predecessors
 of the target at each level.
 */
private SLNode<E>[] search (E target) {
 SLNode<E>[] pred = (SLNode<E>[]) new SLNode[maxLevel];
 SLNode<E> current = head;
 for (int i = current.links.length‐1; i >= 0; i‐‐) {
 while (current.links[i] != null
 && current.links[i].data.compareTo(target) < 0) {
 current = current.links[i];
 }
 pred[i] = current;
 }
 return pred;
}

/** Find an object in the skip‐list
 @param target The item being sought
 @return A reference to the object in the skip‐list that matches
 the target. If not found, null is returned.
 */
public E find(E target) {
 SLNode<E>[] pred = search(target);
 if (pred[0].links[0] != null &&
 pred[0].links[0].data.compareTo(target) == 0) {
 return pred[0].links[0].data;
 } else {
 return null;
 }
}

[0]
[1]
[2]
[3]

5045403530252015105?

head

pred

F I G U R E 9 . 6 9

Result of Search for 36

Koffman-c09.indd 479 10/30/2015 7:29:17 PM

480 Chapter 9 Self‐Balancing Search Trees

Determining the Size of the Inserted Node
We define maxCap as the smallest power of 2 that is greater than the current skip‐list size.
Therefore, maxLevel, the skip‐list level is log2 maxCap. The random number class, Random, has
a method nextInt(int n), which returns a uniformly distributed random integer from 0 up
to, but not including, n. If we compute the log2 of this number plus 1, we get a logarithmically
distributed random number between 1 and maxLevel (the skip‐list level). This number has the
opposite distribution of what we desire: 1/2 the numbers will be maxLevel‐1, 1/4 of the num-
bers will be maxLevel‐2, and so on. Thus, we subtract the result from maxLevel.

/** Natural Log of 2 */
static final double LOG2 = Math.log(2.0);

/** Method to generate a logarithmic distributed integer between
 1 and maxLevel. i.e., 1/2 of the values returned are 1, 1/4
 are 2, 1/8 are 3, etc.
 @return a random logarithmic distributed int between 1 and
 maxLevel
 */
private int logRandom() {
 int r = rand.nextInt(maxCap);
 int k = (int) (Math.log(r + 1) / LOG2);
 if (k > maxLevel ‐ 1) {
 k = maxLevel ‐ 1;
 }
 return maxLevel ‐ k;
}

Completing the Insertion Process
Whenever a new item is inserted, the size is compared to maxCap. Recall that maxCap is 2maxLevel –1.
If size is now greater than maxCap, maxLevel is incremented and a new value of maxCap is computed.
The head node’s link array needs to be expanded to accommodate nodes at the increased level.

if (size > maxCap) {
 maxLevel++;
 maxCap = computeMaxCap(maxLevel);
 head.links = Arrays.copyOf(head.links, maxLevel);
 pred = Arrays.copyOf(update, maxLevel);
 pred[maxLevel ‐ 1] = head;
}

Performance of a Skip‐List
In an ideal skip‐list (see Figure 9.65), every other node is at level 1, and every 2mth node is
at least level m. With this ideal structure, searching is the same as a binary search; each rep-
etition reduces the search population by 1/2, and thus the search is O(log n). By randomly
choosing the levels of inserted nodes to have an exponential distribution, the skip‐list will
have the desired distribution of nodes. However, they will be randomly positioned through
the skip‐list. Therefore, on the average, the time for search and insertion will be O(log n).

E X E R C I S E S F O R S E C T I O N 9 . 6

S E L F ‐ C H E C K

1. Show the skip‐list after inserting the values 11, 12, 22, and 33 into the skip‐list shown in
Figure 9.65. Assume that the random number generator returned 2, 1, 3, and 1 for the new
node levels.

Koffman-c09.indd 480 10/30/2015 7:29:17 PM

 Chapter 9 Review 481

C h a p t e r R e v i e w

 ◆ Tree balancing is necessary to ensure that a search tree has O(log n) behavior. Tree balanc-
ing is done as part of an insertion or removal.

 ◆ An AVL tree is a balanced binary tree in which each node has a balance value that is equal
to the difference between the heights of its right and left subtrees (hR – hL). A node is bal-
anced if it has a balance value of 0; a node is left(right)‐heavy if it has a balance of –1 (+1).
Tree balancing is done when a node along the insertion (or removal) path becomes criti-
cally out of balance; that is, the absolute value of the difference of the height of its two
subtrees is 2. The rebalancing is done after returning from a recursive call in the add or
delete method.

 ◆ For an AVL tree, there are four kinds of imbalance and a different remedy for each.

— Left–Left (parent balance is –2, left child balance is –1): rotate right around parent.

— Left–Right (parent balance is –2, left child balance is +1): rotate left around child, then
rotate right around parent.

— Right–Right (parent balance is +2, right child balance is +1): rotate left around parent.

— Right–Left (parent balance is +2, right child balance is –1): rotate right around child,
then rotate left around parent.

 ◆ A Red–Black tree is a balanced tree with red and black nodes. After an insertion or removal,
the following invariants must be maintained for a Red–Black tree:

— A node is either red or black.

— The root is always black.

— A red node always has black children. (A null reference is considered to refer to a black
node.)

— The number of black nodes in any path from the root to a leaf is the same.

 ◆ To maintain tree balance in a Red–Black tree, it may be necessary to recolor a node and
also to rotate around a node. The rebalancing is done inside the add or delete method,
right after returning from a recursive call.

 ◆ Trees whose nodes have more than two children are an alternative to balanced binary search
trees. These include 2–3 and 2–3–4 trees. A 2‐node has two children, a 3‐node has three
children, and a 4‐node has four children. The advantage of these trees is that keeping the
trees balanced is a simpler process. Also, the tree may be less deep because a 3‐node can have
three children and a 4‐node can have four children, but they still have O(log n) behavior.

2. Draw the ideal skip‐list for storing the numbers 5, 10, 15, 20, 25, 30, 36, 42, 45, 50, 55,
60, 68, 72, 86, 93.

P R O G R A M M I N G

1. Complete the code for the add method.

2. To remove a node from a skip‐list, you need to update all references to the node being
deleted to reference its successors. Code the remove method.

Koffman-c09.indd 481 10/30/2015 7:29:17 PM

482 Chapter 9 Self-Balancing Search Trees

2. Show the following Red–Black tree after inserting 12 and then 13. What kind of rotation, if any, is
performed?

51

7

4

148

2 11

 ◆ A B‐tree of order n is a tree whose nodes can store up to n–1 items and have n children and
is a generalization of a 2–3 tree. B‐trees are used as indexes to large databases stored on
disk. The value of n is chosen so that each node is as large as it can be and still fit in a disk
block. The time to retrieve a block is large compared to the time required to process it in
memory. By making the tree nodes as large as possible, we reduce the number of disk
accesses required to find an item in the index.

 ◆ A 2–3–4 tree can be balanced on the way down the insertion path by splitting a 4‐node into
two 2‐nodes before inserting a new item. This is easier than splitting nodes and rebalancing
after returning from an insertion.

Java Classes Introduced in This Chapter
java.util.TreeMap

User‐Defined Interfaces and Classes in This Chapter
AVLTree RedBlackTree.RedBlackNode
AVLTree.AVLNode TwoThreeFourTree
BinarySearchTreeWithRotate TwoThreeFourTree.Node
RedBlackTree

Quick‐Check Exercises
1. Show the following AVL tree after inserting mouse. What kind of imbalance occurs, and what is the

remedy?

cow

house

lay

rat

jack milked that

all ate cat corn

and cock crumpled

built is killed malt priest shorn tosseddog

forlorn in kept kissed maiden man morn shaven tattered withthis

crowed farmer horn married sowing the torn waked worried

3. Show the following 2–3 tree after inserting 45 and then 20.

25

15, 18 33, 44

Koffman-c09.indd 482 10/30/2015 7:29:17 PM

 Chapter 9 Review 483

4. Show the following 2–3–4 tree after inserting 40 and then 50.

2815 90

14, 21, 38

62

4 55, 56 68, 71

79

5. Draw the Red–Black tree equivalent to the following 2–3–4 tree.

4033

30, 35, 50

20 55, 56

6. Draw the 2–3–4 tree equivalent to the following Red–Black tree.

10

25

5 4531

40

30 32

7. Show the following B‐tree after inserting 45 and 21.

2210 30 40

1513 18 20 3532 38

75 8 2726 42 46

Review Questions
1. Draw the mirror images of the three cases for insertion into a Red–Black tree and explain how each

situation is resolved.
2. Show the AVL tree that would be formed by inserting the month names (12 strings) into a tree in

their normal calendar sequence.
3. Show the Red–Black tree that would be formed by inserting the month names into a tree in their

normal calendar sequence.
4. Show the 2–3 tree that would be formed by inserting the month names into a tree in their normal

calendar sequence.
5. Show the 2–3–4 tree that would be formed by inserting the month names into a tree in their normal

calendar sequence.
6. Show a B‐tree of capacity 5 that would be formed by inserting the month names into a tree in their

normal calendar sequence.

Koffman-c09.indd 483 10/30/2015 7:29:18 PM

484 Chapter 9 Self-Balancing Search Trees

Programming Projects
1. Complete the AVLTree class by coding the missing methods for insertion only. Use it to insert a col-

lection of randomly generated numbers. Insert the same numbers in a binary search tree that is not
balanced. Verify that each tree is correct by performing an inorder traversal. Also, display the format
of each tree that was built and compare their heights.

2. Code the RedBlackTree class by coding the missing methods for insertion. Redo Project 1 using this
class instead of the AVLTree class.

3. Code the TwoThreeFourTree class by coding the missing methods. Redo Project 1 using this class
instead of the AVLTree class.

4. Code the TwoThreeTree class. Redo Project 1 using this class instead of the AVLTree class.
5. Complete the AVLTree class by providing the missing methods for removal. Demonstrate that these

methods work.
 Review the changes required for methods decrementBalance, incrementBalance, rebalanceLeft,

and rebalanceRight discussed at the end of Section 9.2. Also, modify rebalanceLeft (and
 rebalanceRight) to consider the cases where the left (right) subtree is balanced. This case can result
when there is a removal from the right (left) subtree that causes the critical imbalance to occur. This
is still a Left–Left (Right–Right) case, but after the rotation the overall balances are not zero. This is
illustrated in Figures 9.70 and 9.71 where an item is removed from subtree c.

0

–2

a

50

b

c

25

F I G U R E 9 . 7 0

Left–Left Imbalance with Left Subtree Balanced

–1

+1

a
c

25

b

50

F I G U R E 9 . 7 1

All Trees Unbalanced after Rotation

 In addition, the Left–Right (or Right–Left) case can have a case in which the Left–Right (Right–Left)
subtree is balanced. In this case, after the double rotation is performed, all balances are zero. This is
illustrated in Figures 9.72 through 9.74.

+1

0

–2

a

50

c

25

40

bL bR

F I G U R E 9 . 7 2

Left–Right Case with Left–Right Subtree Balanced

–1

0

–2

a

50

40

bL

bR

25

c

F I G U R E 9 . 7 3

Imbalance after Single Rotation

Koffman-c09.indd 484 10/30/2015 7:29:19 PM

 Chapter 9 Review 485

0

0 0

a

25

bL bR c

50

40F I G U R E 9 . 7 4

Complete Balance after

Double Rotation

6. Complete the RedBlackTree class by coding the missing methods for removal. The methods remove
and findLargestChild are adapted from the corresponding methods of the BinarySearchTree
class. These adaptations are similar to those done for the AVL tree. A data field fixupRequired
performs a role analogous to the decrease data field in the AVL tree. It is set when a black node is
removed. Upon return from a method that can remove a node, this variable is tested. If the removal
is from the right, then a new method fixupRight is called. If the removal is from the left, then a new
method fixupLeft is called.

 The fixupRight method must consider five cases, as follows:
Case 1: Parent is red and sibling has a red right child. Figure 9.75(a) shows a red node P that is
the root of a subtree that has lost a black node X from its right subtree. The root of the left sub-
tree is S, and it must be a black node. If this subtree has a red right child, as shown in the figure,
we can restore the black balance. First we rotate the left subtree left and change the color of the
parent to black (see Figure 9.75(b)). Then we rotate right about the parent as shown in Figure 9.75(c).
This restores the black balance. As shown in the figure, the node S may also have a left child. This
does not affect the results.

X

P

L

S

R

L

X

P

S

R P

R

L

S

(a) (b) (c)

F I G U R E 9 . 7 5

Red–Black Removal

Case 1

Case 2: Parent is red, and sibling has only a left red child. Figure 9.76(a) shows the case where
the red parent P has a left child S that has a red left child L. In this case, we change the color of S
to red and the color of P to black. Then we rotate right as shown in Figure 9.76(b).
Case 3: Parent is red, and the left child has no red children. Figure 9.77(a) shows the case where
the red parent P has a left child S that has no children. As in the next two cases, this fixup process
is started at the bottom of the tree but can move up the tree. In this case, S may have black chil-
dren, and X may represent the root of a subtree whose black height is one less than the black
height of S. The correction is quite easy. We change P to black and S to red (see Figure 9.77(b)).
Now the balance is restored, and the black height at P remains the same as it was before the black
height at X was reduced.

Koffman-c09.indd 485 10/30/2015 7:29:19 PM

486 Chapter 9 Self-Balancing Search Trees

X

P

L

S P

S

L

(a) (b)

F I G U R E 9 . 7 6

Red–Black Removal Case 2

X

P

S X

P

S

(a) (b)

F I G U R E 9 . 7 7

Red–Black Removal Case 3

Case 4: Parent is black and left child is red. Figure 9.78(a) shows the case where the parent P is
black and the left child S is red. Since the black heights of S and X were equal before removing X,
S must have two black children. We first change the color of the left child to black as shown in
Figure 9.78(b). We rotate the child S left and change the color of P to red as shown in Figure 9.78(c).
Then we rotate right twice, so that S is now where P was, thus restoring the black balance.

X

P

L

S

R

X

P

L

S

R

L

X

P

S

R L

S

P

R

(b)(a) (c)

2

1

(d)

F I G U R E 9 . 7 8

Red–Black Removal Case 4

X

P

S

(a)

P

S

(c)(b)

X

P

S

F I G U R E 9 . 7 9

Red–Black Removal

Case 5

Case 5: Parent is black and left child is black. Figure 9.79(a) shows the case where P is black and
S is black. We then change the color of the parent to red and rotate. The black height of P has
been reduced. Thus, we repeat the process at the next level (P’s parent).

Answers to Quick-Check Exercises
1. When mouse is inserted (to the right of morn), node morn has a balance of +1, and node priest has

a balance of –2. This is a case of Left–Right imbalance. Rotate left around morn and right around
priest. Node mouse will have morn (priest) as its left (right) subtree.

Koffman-c09.indd 486 10/30/2015 7:29:20 PM

 Chapter 9 Review 487

 When we insert 50, the 4‐node 40, 55, 56 is split and the 55 is inserted into the 2‐node 38. Then 50
is inserted into the resulting 2‐node, 40, making it a 3‐node, as follows.

90

79

21, 62

68, 7140, 504 15

14

28 56

38, 55

3. The 2–3 tree after inserting 45 is as follows.

33 4515, 18

25, 44

 The 2–3 tree after inserting 20 is as follows.

33 45

44

25

15 20

18

4. When 40 is inserted, the 4‐node 14, 21, 38 is split and 21 is inserted into the root, 62. The node‐14
has the children 4 and 15, and the node‐38 has the children 28 and the 3‐node 55, 56. We then insert
40 into the 3‐node, making it a 4‐node. The result follows.

90

79

21, 62

68, 714 15

14

28

38

40, 55, 56

2. When we insert 12 as a red node, it has a black parent, so we are done. When we insert 13, we have
the situation shown in the first of the following figures. This is the mirror image of Case 3 in
Figure 9.25. We correct it by first rotating left around 12, giving the second of the following figures.
Then we change 14 to red and 13 to black and rotate right around 13, giving the tree in the third
figure.

4

51

7

2

148

11

12

13

4

51

7

2

148

11

13

12

4

51

7

2

138

11

12 14

Koffman-c09.indd 487 10/30/2015 7:29:21 PM

488 Chapter 9 Self-Balancing Search Trees

5. The equivalent Red–Black tree follows.

35

56403320

5030

55

30, 31, 32

25, 40

5, 10 45

6. The equivalent 2–3–4 tree follows.

7. Insert 45 in a leaf.

2210 30 40

1513 18 20 3532 38

75 8 2726 45 4642

 To insert 21, we need to split node {13, 15, 18, 20} and pass 18 up. Then we split the root and pass
22 up to the new root.

22

10 18 30 40

1513 35 3832

7 85 2120 45 4642

2726

Koffman-c09.indd 488 10/30/2015 7:29:22 PM

489

C h a p t e r

O
ne of the limitations of trees is that they cannot represent information structures in
which a data item has more than one parent. In this chapter, we introduce a data
structure known as a graph that will allow us to overcome this limitation.

Graphs and graph algorithms were being studied long before computers were invented.
The advent of the computer made the application of graph algorithms to real‐world prob-
lems possible. Graphs are especially useful in analyzing networks. Thus, it is not surprising
that much of modern graph theory and application was developed at Bell Laboratories,
which needed to analyze the very large communications network that is the telephone sys-
tem. Graph algorithms are also incorporated into the software that makes the Internet func-
tion. You can also use graphs to describe a road map, airline routes, or course prerequisites.
Computer chip designers use graph algorithms to determine the optimal placement of com-
ponents on a silicon chip.

You will learn how to represent a graph, determine the shortest path through a graph, and
find the minimum subset of a graph.

Graphs

10

C h a p t e r O b j e c t i v e s

 ◆ To become familiar with graph terminology and the different types of graphs

 ◆ To study a Graph ADT (abstract data type) and different implementations of the Graph ADT

 ◆ To learn the breadth‐first and depth‐first search traversal algorithms

 ◆ To learn some algorithms involving weighted graphs

 ◆ To study some applications of graphs and graph algorithms

Koffman-c10.indd 489 10/30/2015 7:28:11 PM

490 Chapter 10 Graphs

10.1 Graph Terminology

A graph is a data structure that consists of a set of vertices (or nodes) and a set of edges (rela-
tions) between the pairs of vertices. The edges represent paths or connections between the verti-
ces. Both the set of vertices and the set of edges must be finite, and either set may be empty. If the
set of vertices is empty, naturally the set of edges must also be empty. We restrict our discussion
to simple graphs in which there is at most one edge from a given vertex to another vertex.

Visual Representation of Graphs
Visually we represent vertices as points or labeled circles and the edges as lines joining the
vertices. Figure 10.1 shows the graph from Example 10.1.

There are many ways to draw any given graph. The physical layout of the vertices, and even
their labeling, are not relevant. Figure 10.2 shows two ways to draw the same graph.

G r a p h s

 10.1 Graph Terminology
 10.2 The Graph ADT and Edge Class
 10.3 Implementing the Graph ADT
 10.4 Traversals of Graphs
 10.5 Applications of Graph Traversals
 Case Study: Shortest Path through a Maze
 Case Study: Topological Sort of a Graph
 10.6 Algorithms Using Weighted Graphs

EXAMPLE 10 .1 The following set of vertices, V, and set of edges, E, define a graph that has five vertices, with
labels A through E, and four edges.

V = {A, B, C, D, E}

E = {{A, B}, {A, D}, {C, E}, {D, E}}

Each edge is a set of two vertices. There is an edge between A and B (the edge {A, B}), between
A and D, between C and E, and between D and E. If there is an edge between any pair of
vertices x, y, this means there is a path from vertex x to vertex y and vice versa. We discuss
the significance of this shortly.

A B

D E C

F I G U R E 1 0 . 1

Graph Given in

Example 10.1

Koffman-c10.indd 490 10/30/2015 7:28:12 PM

10.1 Graph Terminology 491

Directed and Undirected Graphs
The edges of a graph are directed if the existence of an edge from A to B does not necessarily
guarantee that there is a path in both directions. A graph that contains directed edges is known
as a directed graph or digraph, and a graph that contains undirected edges is known as an
undirected graph or simply a graph. A directed edge is like a one‐way street; you can travel on
it in only one direction. Directed edges are represented as lines with an arrow on one end,
whereas undirected edges are represented as single lines. The graph in Figure 10.1 is undi-
rected; Figure 10.3 shows a directed graph. The set of edges for the directed graph follows:

E = {(A, B), (B, A), (B, E), (D, A), (E, A), (E, C), (E, D)}

Each edge above is an ordered pair of vertices instead of a set as in an undirected graph. The
edge (A, B) means there is a path from A to B. Observe that there is a path from both A to B
and from B to A, but these are the only two vertices in which there is an edge in both directions.
Our convention will be to denote an edge for a directed graph as an ordered pair (u, v) where
this notation means that v (the destination) is adjacent to u (the source). We denote an edge in
an undirected graph as the set {u, v}, which means that u is adjacent to v and v is adjacent to u.
Therefore, you can create a directed graph that is equivalent to an undirected graph by substi-
tuting for each edge {u, v} the ordered pairs (u, v) and (v, u). In general, when we describe graph
algorithms in this chapter, we will use the ordered pair notation (u, v) for an edge.

0 6

1 2

3

4

5

4 6

5

1

2 0

3

F I G U R E 1 0 . 2

Two Representations of

the Same Graph

A B

D E C

F I G U R E 1 0 . 3

Example of a Directed

Graph

The edges in a graph may have values associated with them known as their weights. A graph
with weighted edges is known as a weighted graph. In an illustration of a weighted graph, the
weights are shown next to the edges. Figure 10.4 shows an example of a weighted graph.
Each weight is the distance between the two cities (vertices) connected by the edge. Generally,
the weights are nonnegative, but there are graph problems and graph algorithms that deal
with negative weighted edges.

Paths and Cycles
One reason we study graphs is to find pathways between vertices. We use the following defi-
nitions to describe pathways between vertices.

A vertex is adjacent to another vertex if there is an edge to it from that other vertex. In
Figure 10.4, Philadelphia is adjacent to Pittsburgh. In Figure 10.3, A is adjacent to D, but
since this is a directed graph, D is not adjacent to A.

Koffman-c10.indd 491 10/30/2015 7:28:12 PM

492 Chapter 10 Graphs

A path is a sequence of vertices in which each successive vertex is adjacent to its prede-
cessor. In Figure 10.5, the following sequence of vertices is a path: Philadelphia →
Pittsburgh → Columbus → Indianapolis → Chicago.

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148
Chicago

Fort
 Wayne

Indianapolis Columbus

F I G U R E 1 0 . 4

Example of a Weighted

Graph

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148

Chicago

Fort
 Wayne

Indianapolis Columbus

F I G U R E 1 0 . 5

A Simple Path

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148

Chicago

Fort
 Wayne

Indianapolis Columbus

F I G U R E 1 0 . 6

Not a Simple Path

In a simple path, the vertices and edges are distinct, except that the first and last vertices
may be the same. In Figure 10.5, the path Philadelphia → Pittsburgh → Columbus →
Indianapolis → Chicago is a simple path. The path Philadelphia → Pittsburgh →
Columbus → Indianapolis → Chicago → Fort Wayne → Indianapolis is a path but not a
simple path (see Figure 10.6).

Koffman-c10.indd 492 10/30/2015 7:28:13 PM

10.1 Graph Terminology 493

A cycle is a simple path in which only the first and final vertices are the same. In
Figure 10.7, the path Pittsburgh → Columbus → Toledo → Cleveland → Pittsburgh is a
cycle. For an undirected graph, a cycle must contain at least three distinct vertices. Thus,
Pittsburgh → Columbus → Pittsburgh is not considered a cycle.

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148

Chicago

Fort
 Wayne

Indianapolis Columbus

F I G U R E 1 0 . 7

A Cycle

0 6

1 2

3

4

5

7 8

9 10

11 12

F I G U R E 1 0 . 8

Example of an

Unconnected Graph

An undirected graph is called a connected graph if there is a path from every vertex to
every other vertex. Figure 10.7 is a connected graph, whereas Figure 10.8 is not.

If a graph is not connected, it is considered unconnected, but it will still consist of connected
components. A connected component is a subset of the vertices and the edges connected to
those vertices in which there is a path between every pair of vertices in the component. A
single vertex with no edges is also considered a connected component. Figure 10.8 consists
of the connected components {0, 1, 2, 3, 4, 5, 6}, {7, 8}, and {9, 10, 11, 12}.

Relationship between Graphs and Trees
The graph is the most general of the data structures we have studied. It allows for any con-
ceivable relationship among the data elements (the vertices). A tree is actually a special case
of a graph. Any graph that is connected and contains no cycles can be viewed as a tree by
picking one of its vertices (nodes) as the root. For example, the graph shown in Figure 10.1
can be viewed as a tree if we consider the node labeled D to be the root (see Figure 10.9).

Graph Applications
We can use graphs to help solve a number of different kinds of problems. For example, we might
want to know whether there is a connection from one node in a network to all others. If we can
show that the graph is connected, then a path must exist from one node to every other node.

Koffman-c10.indd 493 10/30/2015 7:28:13 PM

494 Chapter 10 Graphs

In college you must take some courses before you take others. These are called prerequisites.
Some courses have multiple prerequisites, and some prerequisites have prerequisites of their
own. It can be quite confusing. You may even feel that there is a loop in the maze of prereq-
uisites and that it is impossible to schedule your classes to meet the prerequisites. We can
represent the set of prerequisites by a directed graph. If the graph has no cycles, then we can
find a solution. We can also find the cycles.

Another application would be finding the least‐cost path or shortest path from each vertex
to all other vertices in a weighted graph. For example, in Figure 10.4, we might want to find
the shortest path from Philadelphia to Chicago. Or we might want to create a table showing
the distance (miles in the shortest route) between each pair of cities.

A B

D E C

D

E A

C B

F I G U R E 1 0 . 9

A Graph Viewed

as a Tree

E X E R C I S E S F O R S E C T I O N 1 0 . 1

S E L F ‐ C H E C K

1. In the graph shown in Figure 10.1, what vertices are adjacent to D? Also check in Figure 10.3.

2. In Figure 10.3, is it possible to get from A to all other vertices? How about from C?

3. In Figure 10.4, what is the shortest path from Philadelphia to Chicago?

10.2 The Graph ADT and Edge Class

Java does not provide a Graph ADT, so we have the freedom to design our own. To write
programs for the applications mentioned at the end of the previous section, we need to be
able to navigate through a graph or traverse it (visit all its vertices). To accomplish this, we
need to be able to advance from one vertex in a graph to all its adjacent vertices. Therefore,
we need to be able to do the following:

1. Create a graph with the specified number of vertices.
2. Iterate through all of the vertices in the graph.
3. Iterate through the vertices that are adjacent to a specified vertex.
4. Determine whether an edge exists between two vertices.
5. Determine the weight of an edge between two vertices.
6. Insert an edge into the graph.

With the exception of item 1, we can specify these requirements in a Java interface. Since a
Java interface cannot include a constructor, the requirements for item 1 can only be specified
in the comment at the beginning of the interface.

Listing 10.1 gives the declaration of the Graph interface.

Koffman-c10.indd 494 10/30/2015 7:28:13 PM

10.2 The Graph ADT and Edge Class 495

Representing Vertices and Edges
Before we can implement this interface, we must decide how to represent the vertices and
edges of a graph. We can represent the vertices by integers from 0 up to, but not including,
|V|. (|V| means the cardinality of V, or the number of vertices in set V.) For edges we will
define the class Edge that will contain the source vertex, the destination vertex, and the

L I S T I N G 1 0 . 1
Graph.java

import java.util.*;

/** Interface to specify a Graph ADT. A graph is a set of vertices and
 a set of edges. Vertices are represented by integers
 from 0 to n ‐ 1. Edges are ordered pairs of vertices.
 Each implementation of the Graph interface should
 provide a constructor that specifies the number of
 vertices and whether or not the graph is directed.
 */
public interface Graph {

 // Accessor Methods
 /** Return the number of vertices.
 @return The number of vertices
 */
 int getNumV();

 /** Determine whether this is a directed graph.
 @return true if this is a directed graph
 */
 boolean isDirected();

 /** Insert a new edge into the graph.
 @param edge The new edge
 */
 void insert(Edge edge);

 /** Determine whether an edge exists.
 @param source The source vertex
 @param dest The destination vertex
 @return true if there is an edge from source to dest
 */
 boolean isEdge(int source, int dest);

 /** Get the edge between two vertices.
 @param source The source vertex
 @param dest The destination vertex
 @return The Edge between these two vertices
 or null if there is no edge
 */
 Edge getEdge(int source, int dest);

 /** Return an iterator to the edges connected to a given vertex.
 @param source The source vertex
 @return An Iterator<Edge> to the vertices connected to source
 */
 Iterator<Edge> edgeIterator(int source);
}

Koffman-c10.indd 495 10/30/2015 7:28:13 PM

496 Chapter 10 Graphs

weight. For unweighted edges we will use the default value of 1.0. Table 10.1 shows the Edge
class. Observe that an Edge is directed. For undirected graphs, we will always have two Edge
objects: one in each direction for each pair of vertices that has an edge between them. A ver-
tex is represented by a type int variable.

E X E R C I S E S F O R S E C T I O N 1 0 . 2

S E L F ‐ C H E C K

1. Use the constructors in Table 10.1 to create the Edge objects connecting vertices 9 through
12 for the graph in Figure 10.8.

P R O G R A M M I N G

1. Implement the Edge class.

TA B L E 1 0 . 1

The Edge Class

Data Field Attribute

private int dest The destination vertex for an edge

private int source The source vertex for an edge

private double weight The weight

Constructor Purpose

public Edge(int source, int dest) Constructs an Edge from source to dest. Sets the weight to 1.0

public Edge(int source, int dest, double w) Constructs an Edge from source to dest. Sets the weight to w

Method Behavior

public boolean equals(Object o) Compares two edges for equality. Edges are equal if their source
and destination vertices are the same. The weight is not considered

public int getDest() Returns the destination vertex

public int getSource() Returns the source vertex

public double getWeight() Returns the weight

public int hashCode() Returns the hash code for an edge. The hash code depends only
on the source and destination

public String toString() Returns a string representation of the edge

10.3 Implementing the Graph ADT

Because graph algorithms have been studied and implemented throughout the history of
computer science, many of the original publications of graph algorithms and their implemen-
tations did not use an object‐oriented approach and did not even use ADTs. The implementa-
tion of the graph was done in terms of fundamental data structures that were used directly in
the algorithm. Different algorithms would use different representations.

Koffman-c10.indd 496 10/30/2015 7:28:13 PM

10.3 Implementing the Graph ADT 497

Two representations of graphs are most common:

Edges are represented by an array of lists called adjacency lists, where each list stores the
vertices adjacent to a particular vertex.
Edges are represented by a two‐dimensional array, called an adjacency matrix, with |V|
rows and |V| columns.

Adjacency List
An adjacency list representation of a graph uses an array of lists. There is one list for each
vertex. Figure 10.10 shows an adjacency list representation of a directed graph. The list ref-
erenced by array element 0 shows the vertices (1 and 3) that are adjacent to vertex 0. The
vertices are in no particular order. For simplicity, we are showing just the destination vertex
as the value field in each node of the adjacency list, but in the actual implementation the
entire Edge will be stored. Instead of storing value = 1 (the destination vertex) in the first
vertex adjacent to 0, we will store a reference to the Edge (0, 1, 1.0) where 0 is the source,
1 is the destination, and 1.0 is the weight. The Edge must be stored (not just the destination)
because weighted graphs can have different values for weights.

For an undirected graph (or simply a “graph”), symmetric entries are required. Thus, if {u, v}
is an edge, then v will appear on the adjacency list for u and u will appear on the adjacency
list for v. Figure 10.11 shows the adjacency list representation for an undirected graph. The
actual lists will store references to Edges.

Adjacency Matrix
The adjacency matrix uses a two‐dimensional array to represent the graph. For an unweighted
graph, the entries in this matrix can be boolean values, where true represents the presence of
an edge and false its absence. Another popular method is to use the value 1 for an edge and
0 for no edge. The integer coding has benefits over the boolean approach for some graph
algorithms that use matrix multiplication.

0 1

3 4

2

5

[0]
[1]
[2]
[3]
[4]
[5]

Node

next =
value = 1

Node

next =
value =

null
4

Node

next =
value = 5

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

null
1

null
3

null
3

null
5

null
4

Node[]

F I G U R E 1 0 . 1 0

Adjacency List

Representation of a

Directed Graph

Koffman-c10.indd 497 10/30/2015 7:28:14 PM

498 Chapter 10 Graphs

Node[]

0 1

4 3

2

Node

next =
value = 1

Node

next =
value =

null
4

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

null
3

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

Node

next =
value =

null
2

Node

next =
value =

null
1

0

1

1 4

3 0

4 2
null
3 [0]

[1]
[2]
[3]
[4]

F I G U R E 1 0 . 1 1

Adjacency List

Representation of an

Undirected Graph

0 1

3 4

2 1.0

1.0

1.0

1.0

1.0

1.0 1.0

1.0

[2]

Column

R
ow [2]

[1]

[1]

[3]

[3]

[4]

[4]

[5]

[5][0]

[0]

5

F I G U R E 1 0 . 1 2

Directed Graph and

Corresponding

Adjacency Matrix

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0 1

4 3

2

Column

R
ow

[2][1] [3] [4][0]

[2]

[1]

[3]

[4]

[0]

F I G U R E 1 0 . 1 3

Undirected Graph and

Adjacency Matrix

Representation

For a weighted graph, the matrix would contain the weights. Since 0 is a valid weight, we will
use Double.POSITIVE_INFINITY (a special double value in Java that approximates the mathe-
matical behavior of infinity) to indicate the absence of an edge, and in an unweighted graph
we will use a weight of 1.0 to indicate the presence of an edge.

Figure 10.12 shows a directed graph and the corresponding adjacency matrix. Instead of
using Edge objects, an edge is indicated by the value 1.0, and the lack of an edge is indicated
by a blank space.

If the graph is undirected, then the matrix is symmetric, and only the lower diagonal of the
matrix needs be saved (the colored squares in Figure 10.13).

Koffman-c10.indd 498 10/30/2015 7:28:15 PM

10.3 Implementing the Graph ADT 499

Overview of the Hierarchy
We will describe Java classes that use each representation. Each class will extend a common
abstract superclass. The interface Graph was introduced in Section 10.2. The class Edge was
also described in that section.

We will define the class AbstractGraph to represent a graph in general. The classes ListGraph and
MatrixGraph will provide concrete representations of graphs using an adjacency list and adja-
cency matrix, respectively (see Figure 10.14). The MatrixGraph class contains an inner class
(indicated by the ⊕ symbol) that we call Iter, which implements the Iterator<Edge> interface.

‹‹interface››
Iterator<Edge>

‹‹interface››
Graph

AbstractGraph

MatrixGraph ListGraph

Iter

Edge

F I G U R E 1 0 . 1 4

UML Class Diagram of

Graph Class Hierarchy

TA B L E 1 0 . 2

The Abstract Class AbstractGraph

Data Field Attribute

private boolean directed true if this is a directed graph

private int numV The number of vertices

Constructor Purpose

public AbstractGraph(int numV, boolean

directed)

Constructs an empty graph with the specified number of
vertices and with the specified directed flag. If directed is
true, this is a directed graph

Method Behavior

public int getNumV() Gets the number of vertices

public boolean isDirected() Returns true if the graph is a directed graph

public void loadEdgesFromFile(Scanner scan) Loads edges from a data file

public static Graph createGraph (Scanner scan,

boolean isDirected, String type)

Factory method to create a graph and load the data from an
input file

Class AbstractGraph
We will use an abstract class, AbstractGraph, as the common superclass for graph implemen-
tations. This will enable us to implement some of the methods for the Graph interface in the
abstract superclass and leave other methods that are implementation specific to its sub-
classes. Graph algorithms will be designed to work on objects that meet the requirements
defined by this abstract class. This class is summarized in Table 10.2. Note that the methods

Koffman-c10.indd 499 10/30/2015 7:28:15 PM

500 Chapter 10 Graphs

 edgeIterator, getEdge, insert, and isEdge, which are required by the Graph interface (see
Listing 10.1), are implicitly declared abstract and must be declared in the concrete subclasses.

Implementation

The implementation is shown in Listing 10.2. Method loadEdgesFromFile reads edges from
individual lines of a data file (see Programming Exercise 1).

L I S T I N G 1 0 . 2
AbstractGraph.java

import java.util.*;
import java.io.*;

/** Abstract base class for graphs. A graph is a set of vertices and
 a set of edges. Vertices are represented by integers
 from 0 to n ‐ 1. Edges are ordered pairs of vertices.
 */
public abstract class AbstractGraph implements Graph {

 // Data Fields
 /** The number of vertices */
 private int numV;
 /** Flag to indicate whether this is a directed graph */
 private boolean directed;

 // Constructor
 /** Construct a graph with the specified number of vertices and the directed
 flag. If the directed flag is true, this is a directed graph.
 @param numV The number of vertices
 @param directed The directed flag
 */
 public AbstractGraph(int numV, boolean directed) {
 this.numV = numV;
 this.directed = directed;
 }

 // Accessor Methods
 /** Return the number of vertices.
 @return The number of vertices
 */
 public int getNumV() {
 return numV;
 }

 /** Return whether this is a directed graph.
 @return true if this is a directed graph
 */
 public boolean isDirected() {
 return directed;
 }

 // Other Methods
 /** Load the edges of a graph from the data in an input file. The file
 should contain a series of lines, each line with two or
 three data values. The first is the source, the second is
 the destination, and the optional third is the weight.
 @param scan The Scanner connected to the data file
 */

Koffman-c10.indd 500 10/30/2015 7:28:15 PM

10.3 Implementing the Graph ADT 501

The ListGraph Class
The ListGraph class extends the AbstractGraph class by providing an internal representation
using an array of lists. Table 10.3 describes the ListGraph class.

The Data Fields

The class begins as follows:
import java.util.*;

/** A ListGraph is an extension of the AbstractGraph abstract class
 that uses an array of lists to represent the edges.
 */
public class ListGraph extends AbstractGraph {

 // Data Field
 /** An array of Lists to contain the edges that
 originate with each vertex.
 */
 private List<Edge>[] edges;
. . .

 public void loadEdgesFromFile(Scanner scan) {
 // Programming Exercise 1
 }

 /** Factory method to create a graph and load the data from an input
 file. The first line of the input file should contain the number
 of vertices. The remaining lines should contain the edge data as
 described under loadEdgesFromFile.
 @param scan The Scanner connected to the data file
 @param isDirected true if this is a directed graph,
 false otherwise
 @param type The string "Matrix" if an adjacency matrix is to be
 created, and the string "List" if an adjacency list
 is to be created
 @throws IllegalArgumentException if type is neither "Matrix"
 nor "List"
 */
 public static Graph createGraph(Scanner scan, boolean isDirected,
 String type) {
 int numV = scan.nextInt();
 AbstractGraph returnValue;

type = type.toLowerCase();
switch (type) {
 case "matrix":
 returnValue = new MatrixGraph(numV, isDirected);
 break;
 case "list":
 returnValue = new ListGraph(numV, isDirected);
 break;
 default:
 throw new IllegalArgumentException();
}

 returnValue.loadEdgesFromFile(scan);
 return returnValue;
 }
}

Koffman-c10.indd 501 10/30/2015 7:28:15 PM

502 Chapter 10 Graphs

The Constructor

The constructor allocates an array of LinkedLists, one for each vertex.
/** Construct a graph with the specified number of vertices and directionality.
 @param numV The number of vertices
 @param directed The directionality flag
 */
public ListGraph(int numV, boolean directed) {
 super(numV, directed);
 edges = new List[numV];
 for (int i = 0; i < numV; i++) {
 edges[i] = new LinkedList<Edge>();
 }
}

The isEdge Method

Method isEdge determines whether an edge exists by searching the list associated with the
source vertex for an entry. This is done by calling the contains method for the List.

/** Determine whether an edge exists.
 @param source The source vertex
 @param dest The destination vertex
 @return true if there is an edge from source to dest
 */
public boolean isEdge(int source, int dest) {
 return edges[source].contains(new Edge(source, dest));
}

Observe that we had to create a dummy Edge object for the contains method to search for. The
Edge.equals method does not check the edge weights, so the weight parameter is not needed.

The insert Method

The insert method inserts a new edge (source, destination, weight) into the graph by add-
ing that edge’s data to the list of adjacent vertices for that edge’s source. If the graph is not

TA B L E 1 0 . 3

The ListGraph Class

Data Field Attribute

private List<Edge>[] edges An array of Lists to contain the edges that originate with
each vertex

Constructor Purpose

public ListGraph(int numV, boolean directed) Constructs a graph with the specified number of vertices
and directionality

Method Behavior

public Iterator<Edge> edgeIterator(int source) Returns an iterator to the edges that originate from a given
vertex

public Edge getEdge(int source, int dest) Gets the edge between two vertices

public void insert(Edge e) Inserts a new edge into the graph

public boolean isEdge(int source, int dest) Determines whether an edge exists from vertex source to
dest

Koffman-c10.indd 502 10/30/2015 7:28:15 PM

10.3 Implementing the Graph ADT 503

directed, it adds a new edge in the opposite direction (destination, source, weight) to the list
of adjacent vertices for that edge’s destination.

/** Insert a new edge into the graph.
 @param edge The new edge
 */
public void insert(Edge edge) {
 edges[edge.getSource()].add(edge);
 if (!isDirected()) {
 edges[edge.getDest()].add(new Edge(edge.getDest(), edge.getSource(),
 edge.getWeight()));
 }
}

The edgeIterator Method

The edgeIterator method will return an Iterator<Edge> object that can be used to iterate
through the edges adjacent to a given vertex. Because each LinkedList entry in the array
edges is a List<Edge>, its iterator method will provide the desired object. Thus, the
edgeIterator merely calls the corresponding iterator method for the specified vertex.

public Iterator<Edge> edgeIterator(int source) {
 return edges[source].iterator();
}

The getEdge Method

Similar to the isEdge method, the getEdge method also requires a search. However, we need to
program the search directly. We will use the enhanced for statement to access all edges in the list
for vertex source. We compare each edge to a target object with source and destination set to the
method arguments. The equals method does not compare edge weights, only the vertices.

/** Get the edge between two vertices.
 @param source The source
 @param dest The destination
 @return the edge between these two vertices
 or null if an edge does not exist.
 */
public Edge getEdge(int source, int dest) {
 Edge target = new Edge(source, dest, Double.POSITIVE_INFINITY);
 for (Edge edge: edges[source]) {
 if (edge.equals(target))
 return edge; // Desired edge found, return it.
 }
 // Assert: All edges for source checked.
 return null; // Desired edge not found.
}

The MatrixGraph Class

The MatrixGraph class extends the AbstractGraph class by providing an internal representa-
tion using a two‐dimensional array for storing the edge weights

double[][] edges;

When a new MatrixGraph object is created, the constructor sets the number of rows (vertices)
in this array. It implements the same methods as class ListGraph and also has an inner itera-
tor class Iter. It needs its own iterator class because there is no Iterator class associated
with an array. The implementation is left as a project (Programming Project 1).

Koffman-c10.indd 503 10/30/2015 7:28:15 PM

504 Chapter 10 Graphs

Comparing Implementations

Time Efficiency

The two implementations present a tradeoff. Which is best depends on the algorithm and the
density of the graph. The density of a graph is the ratio of |E| to |V|2. A dense graph is one in
which |E| is close to but less than |V|2, and a sparse graph is one in which |E| is much less than
|V|2. Therefore, for a dense graph we can assume that |E| is O(|V|2), and for a sparse graph we
can assume that |E| is O(|V|).

Many graph algorithms are of the form:

1. for each vertex u in the graph
2. for each vertex v adjacent to u
3. Do something with edge (u, v).

For an adjacency list representation, Step 1 is O(|V|) and Step 2 is O(|Eu|), where |Eu| is the
number of edges that originate at vertex u. Thus, the combination of Steps 1 and 2 will rep-
resent examining each edge in the graph, giving O(|E|). For an adjacency matrix representa-
tion, Step 2 is also O(|V|), and thus the overall algorithm is O(|V|2). Thus, for a sparse graph,
the adjacency list gives better performance for this type of algorithm, whereas for a dense
graph, the performance is the same for either representation.

Some graph algorithms are of the form

1. for each vertex u in some subset of the vertices
2. for each vertex v in some subset of the vertices
3. if (u, v) is an edge
4. Do something with edge (u, v).

For an adjacency matrix representation, Step 3 tests a matrix value and is O(1), so the overall
algorithm is O(|V|2). However, for an adjacency list representation, Step 3 searches a list and
is O(|Eu|), so the combination of Steps 2 and 3 is O(|E|) and the overall algorithm is O(|V||E|).
For a dense graph, the adjacency matrix gives the best performance for this type of algorithm,
and for a sparse graph, the performance is the same for both representations.

Thus, if a graph is dense, the adjacency matrix representation is best, and if a graph is sparse, the
adjacency list representation is best. Intuitively, this makes sense because a sparse graph will lead
to a sparse matrix, or one in which most entries are POSITIVE_INFINITY. These entries are not
included in a list representation, so they will have no effect on processing time. However, they
are included in a matrix representation and will have an undesirable impact on processing time.

Storage Efficiency

Note that storage is allocated for all vertex combinations (or at least half of them) in an
adjacency matrix. So the storage required is proportional to |V|2. If the graph is sparse (not
many edges), there will be a lot of wasted space in the adjacency matrix. In an adjacency list,
only the adjacent edges are stored.

On the other hand, in an adjacency list, each edge is represented by a reference to an Edge
object containing data about the source, destination, and weight. There is also a reference to
the next edge in the list. In a matrix representation, only the weight associated with an edge
is stored. So each element in an adjacency list requires approximately four times the storage
of an element in an adjacency matrix.

Based on this, we can conclude that the break‐even point in terms of storage efficiency occurs
when approximately 25 percent of the adjacency matrix is filled with meaningful data. That
is, the adjacency list uses less (more) storage when less than (more than) 25 percent of the
adjacency matrix would be filled.

Koffman-c10.indd 504 10/30/2015 7:28:15 PM

10.3 Implementing the Graph ADT 505

The MapGraph Class
We can achieve the performance benefits of both the ListGraph and MatrixGraph by making
a slight modification to the ListGraph. Replacing the array of List<Edge> with an array of
Map<Integer, Edge> allows us to query the existence of an edge in O(1) time, and using the
LinkedHashMap allows iterating through the edges adjacent to a given vertex in O(|Eu|). The
constructor is changed to
 public MapGraph(int numV, boolean isDirected) {
 super(numV, isDirected);
 outgoingEdges = new Map[numV];
 for (int i = 0; i < numV; i++) {
 outgoingEdges[i] = new LinkedHashMap<>();
 }
 }

The insertEdge method is changed to
 public void insertEdge(Edge edge) {
 int source = edge.getSource();
 int dest = edge.getDest();
 double weight = edge.getWeight();
 outgoingEdges[source].put(dest, edge);
 if (!isDirected()) {
 Edge reverseEdge = new Edge(dest, source, weight);
 outgoingEdges[dest].put(source, reverseEdge);
 }
 }

The isEdge and getEdge methods are simplified to
 public boolean isEdge(int source, int dest) {
 return outgoingEdges[source].containsKey(dest);
 }

 public Edge getEdge(int source, int dest) {
 return outgoingEdges[source].get(dest);
 }

And the edgeIterator becomes
 public Iterator<Edge> edgeIterator(int source) {
 return outgoingEdges[source].values().iterator();
 }

E X E R C I S E S F O R S E C T I O N 1 0 . 3

S E L F ‐ C H E C K

1. Represent the following graphs using adjacency lists.

2

6

0 1

3

4 5

2

6

0 1

3

4 5

2. Represent the graphs in Exercise 1 above using an adjacency matrix.

3. For each graph in Exercise 1, what are the |V|, the |E|, and the density? Which representa-
tion is best for each graph? Explain your answers.

Koffman-c10.indd 505 10/30/2015 7:28:15 PM

506 Chapter 10 Graphs

10.4 Traversals of Graphs

Most graph algorithms involve visiting each vertex in a systematic order. Just as with trees,
there are different ways to do this. The two most common traversal algorithms are breadth
first and depth first. Although these are graph traversals, they are more commonly called
breadth‐first and depth‐first search.

Breadth‐First Search
In a breadth‐first search, we visit the start node first, then all nodes that are adjacent to it
next, then all nodes that can be reached by a path from the start node containing two edges,
three edges, and so on. The requirement for a breadth‐first search is that we must visit all
nodes for which the shortest path from the start node is length k before we visit any node for
which the shortest path from the start node is length k + 1. You can visualize a breadth‐first
traversal by “picking up” the graph at the vertex that is the start node, so the start node will
be the highest node and the rest of the nodes will be suspended underneath it, connected by
their edges. In a breadth‐first search, the nodes that are higher up in the picked‐up graph are
visited before nodes that are lower in the graph.

Breadth‐first search starts at some vertex. Unlike the case of a tree, there is no special start
vertex, so we will arbitrarily pick the vertex with label 0. We then visit it by identifying all
vertices that are adjacent to the start vertex. Then we visit each of these vertices, identifying
all of the vertices adjacent to them. This process continues until all vertices are visited. If the
graph is not a connected graph, then the process is repeated with one of the unidentified
vertices. In the discussion that follows, we use color to distinguish among three states for a
node: identified (light gray), visited (dark gray), and not identified (white). Initially, all nodes
are not identified. If a node is in the identified state, that node was encountered while visiting
another, but it has not yet been visited.

Example of Breadth‐First Search

Consider the graph shown in Figure 10.15. We start at vertex 0 and color it light gray (see
Figure 10.16(a)). We visit 0 and see that 1 and 3 are adjacent, so we color them light gray (to
show that they have been identified). We are finished visiting 0 and now color it dark gray
(see Figure 10.16(b)). So far we have visited node 0.

P R O G R A M M I N G

1. Implement the loadEdgesFromFile method for class AbstractGraph. If there are two values
on a line, an edge with the default weight of 1.0 is inserted; if there are three values, the
third value is the weight.

3

0

2

9 8

7

1

4

6

5F I G U R E 1 0 . 1 5

Graph to Be Traversed

Breadth First

Koffman-c10.indd 506 10/30/2015 7:28:16 PM

10.4 Traversals of Graphs 507

We always select the first node that was identified (light gray) but not yet visited and visit it
next. Therefore, we visit 1 and look at its adjacent vertices: 0, 2, 4, 6, and 7. We skip 0
because it is not colored white, and we color the others light gray. Then we color 1 dark gray
(see Figure 10.16(c)). Now we have visited nodes 0 and 1.

Then we look at 3 (the first of the light gray vertices in Figure 10.16(c) to have been identi-
fied) and see that its adjacent vertex, 2, has already been identified and 0 has been visited, so
we are finished with 3 (see Figure 10.16(d)). Now we have visited nodes 0, 1, and 3, which
are the starting vertex and all vertices adjacent to it.

Now we visit 2 and see that 8 and 9 are adjacent. Then we visit 4 and see that 5 is the only
adjacent vertex not identified or visited (Figure 10.16(e)). Finally, we visit 6 and 7 (the last
vertices that are two edges away from the starting vertex), then 8, 9, and 5, and see that there
are no unidentified vertices (Figure 10.16(f)). The vertices have been visited in the sequence
0, 1, 3, 2, 4, 6, 7, 8, 9, 5.

Algorithm for Breadth‐First Search

To implement breadth‐first search, we need to be able to determine the first identified vertex
that has not been visited so that we can visit it. To ensure that the identified vertices are vis-
ited in the correct sequence, we will store them in a queue (first‐in, first‐out). When we need
a new node to visit, we remove it from the queue. We summarize the process in the following
algorithm.

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

3

0

2

9 8

7

1

4

6

5

(a) (b) (c)

(d) (e) (f)

F I G U R E 1 0 . 1 6

Example of a Breadth‐First Search

Koffman-c10.indd 507 10/30/2015 7:28:16 PM

508 Chapter 10 Graphs

Algorithm for Breadth‐First Search

1. Take an arbitrary start vertex, mark it identified (color it light gray), and place it in a queue.
2. while the queue is not empty
3. Take a vertex, u, out of the queue and visit u.
4. for all vertices, v, adjacent to this vertex, u
5. if v has not been identified or visited
6. Mark it identified (color it light gray).
7. Insert vertex v into the queue.
8. We are now finished visiting u (color it dark gray).

Table 10.4 traces this algorithm on the graph shown earlier in Figure 10.15. The initial queue
contents is the start node, 0. The first line shows that after we finish visiting vertex 0, the
queue contains nodes 1 and 3, which are adjacent to node 0 and are colored light gray in
Figure 10.16(b). The second line shows that after removing 1 from the queue and visiting 1,
we insert its neighbors that have not yet been identified or visited: nodes 2, 4, 6, and 7.

Table 10.4 shows that the nodes were visited in the sequence 0, 1, 3, 2, 4, 6, 7, 8, 9, 5. There
are other sequences that would also be valid breadth‐first traversals.

We can also build a tree that represents the order in which vertices would be visited in a breadth‐
first traversal, by attaching the vertices as they are identified to the vertex from which they are
identified. Such a tree is shown in Figure 10.17. Observe that this tree contains all of the vertices

TA B L E 1 0 . 4

Trace of Breadth‐First Search of Graph in Figure 10.15

Vertex Being Visited Queue Contents after Visit Visit Sequence

0 1 3 0

1 3 2 4 6 7 0 1

3 2 4 6 7 0 1 3

2 4 6 7 8 9 0 1 3 2

4 6 7 8 9 5 0 1 3 2 4

6 7 8 9 5 0 1 3 2 4 6

7 8 9 5 0 1 3 2 4 6 7

8 9 5 0 1 3 2 4 6 7 8

9 5 0 1 3 2 4 6 7 8 9

5 Empty 0 1 3 2 4 6 7 8 9 5

6 7

3

4

0

1

8 9 5

2

F I G U R E 1 0 . 1 7

Breadth‐First Search

Tree of Graph in

Figure 10.15

Koffman-c10.indd 508 10/30/2015 7:28:16 PM

10.4 Traversals of Graphs 509

and some of the edges of the original graph. A path starting at the root to any vertex in the tree
is the shortest path in the original graph from the start vertex to that vertex, where we consider
all edges to have the same weight. Therefore, the shortest path is the one that goes through the
smallest number of vertices. We can save the information we need to represent this tree by stor-
ing the parent of each vertex when we identify it (Step 7 of the breadth‐first algorithm).

Refinement of Step 7 of Breadth‐First Search Algorithm

7.1 Insert vertex v into the queue.
7.2 Set the parent of v to u.

Performance Analysis of Breadth‐First Search

The loop at Step 2 will be performed for each vertex. The inner loop at Step 4 is performed
for |Ev| (the number of edges that originate at that vertex). The total number of steps is the
sum of the edges that originate at each vertex, which is the total number of edges. Thus, the
algorithm is O(|E|).

Implementing Breadth‐First Search

Listing 10.3 shows method breadthFirstSearch. Note that nothing is done when we have
finished visiting a vertex (algorithm Step 8).

This method declares three data structures: int[] parent, boolean[] identified, and Queue
theQueue. The array identified is used to keep track of the nodes that have been previously
encountered, and theQueue is used to store nodes that are waiting to be visited.

The method returns array parent, which could be used to construct the breadth‐first search
tree. The element parent[v] contains the parent of vertex v in the tree. The statement

parent[neighbor] = current;

is used to “insert an edge into the breadth‐first search tree.” It does this by setting the parent
of a newly identified node (neighbor) as the node being visited (current). If we run the
breadthFirstSearch method on the graph shown in Figure 10.15, then the array parent will
be defined as follows:

int[]
parent =

-1

0

1

0

1

4

1

1

2

2

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

If you compare array parent to Figure 10.17, you can see that parent[i] is the parent of
vertex i. For example, the parent of vertex 4 is vertex 1. The entry parent[0] is –1 because
node 0 is the start vertex.

Although array parent could be used to construct the breadth‐first search tree, we are gener-
ally not interested in the complete tree but rather in the path from the root to a given vertex.

Koffman-c10.indd 509 10/30/2015 7:28:17 PM

510 Chapter 10 Graphs

L I S T I N G 1 0 . 3

Class BreadthFirstSearch.java

/** Class to implement the breadth‐first search algorithm. */
public class BreadthFirstSearch {

 /** Perform a breadth‐first search of a graph.
 @post The array parent will contain the predecessor
 of each vertex in the breadth‐first search tree.
 @param graph The graph to be searched
 @param start The start vertex
 @return The array of parents
 */
 public static int[] breadthFirstSearch(Graph graph, int start) {
 Queue<Integer> theQueue = new LinkedList<Integer>();
 // Declare array parent and initialize its elements to –1.
 int[] parent = new int[graph.getNumV()];
 for (int i = 0; i < graph.getNumV(); i++) {
 parent[i] = ‐1;
 }

 // Declare array identified and
 // initialize its elements to false.
 boolean[] identified = new boolean[graph.getNumV()];
 /* Mark the start vertex as identified and insert it into the queue */
 identified[start] = true;
 theQueue.offer(start);

 /* Perform breadth‐first search until done */
 while (!theQueue.isEmpty()) {
 /* Take a vertex, current, out of the queue. (Begin visiting current). */
 int current = theQueue.remove();
 /* Examine each vertex, neighbor, adjacent to current. */
 Iterator<Edge> itr = graph.edgeIterator(current);
 while (itr.hasNext()) {
 Edge edge = itr.next();
 int neighbor = edge.getDest();
 // If neighbor has not been identified
 if (!identified[neighbor]) {
 // Mark it identified.
 identified[neighbor] = true;
 // Place it into the queue.
 theQueue.offer(neighbor);
 /* Insert the edge (current, neighbor) into the tree. */
 parent[neighbor] = current;
 }
 }
 // Finished visiting current.
 }
 return parent;
 }
}

Using array parent to trace the path from that vertex back to the root would give you the
reverse of the desired path. For example, the path derived from parent for vertex 4 to the root
would be 4 to 1 to 0. If you place these vertices in a stack and then pop the stack until it is
empty, you will get the path from the root: 0 to 1 to 4.

Koffman-c10.indd 510 10/30/2015 7:28:17 PM

10.4 Traversals of Graphs 511

Depth‐First Search
Another way to traverse a graph is depth‐first search. In depth‐first search you start at a vertex,
visit it, and choose one adjacent vertex to visit. Then choose a vertex adjacent to that vertex to
visit, and so on until you go no further. Then back up and see whether a new vertex (one not
previously visited) can be found. In the discussion that follows, we use color to distinguish
among three states for a node: being visited (light gray), finished visiting (dark gray), and not
yet visited (white). Initially, of course, all nodes are not yet visited. Note that the color light gray
is used in depth‐first search to indicate that a vertex is in the process of being visited, whereas
it was used in our discussion of breadth‐first search to indicate that the vertex was identified.

Example of Depth‐First Search

Consider the graph shown in Figure 10.18. We can start at any vertex, but for simplicity we
will start at 0. The vertices adjacent to 0 are 1, 2, 3, and 4. We mark 0 as being visited (color
it light gray; see Figure 10.19(a)). Next we consider 1. We mark 1 as being visited (see
Figure 10.19(b)). The vertices adjacent to 1 are 0, 3, and 4. But 0 is being visited, so we recur-
sively apply the algorithm with 3 as the start vertex. We mark 3 as being visited (see
Figure 10.19(c)). The vertices adjacent to 3 are 0, 1, and 4. Because 0 and 1 are already being
visited, we recursively apply the algorithm with 4 as the start vertex. We mark 4 as being vis-
ited (see Figure 10.19(d)). The vertices adjacent to 4 are 0, 1, and 3. All of these are being
visited, so we mark 4 as finished (see Figure 10.19(e)) and return from the recursion. Now all
of the vertices adjacent to 3 have been visited, so we mark 3 as finished and return from the
recursion. Now all of the vertices adjacent to 1 have been visited, so we mark 1 as finished and
return from the recursion to the original start vertex, 0. The order in which we started to visit
vertices is 0, 1, 3, 4; the order in which vertices have become finished so far is 4, 3, 1.

We now consider vertex 2, which is adjacent to 0 but has not been visited. We mark 2 as being
visited (see Figure 10.19(f)) and consider the vertices adjacent to it: 5 and 6. We mark 5 as
being visited (see Figure 10.19(g)) and consider the vertices adjacent to it: 2 and 6. Because 2
is already being visited, we next visit 6. We mark 6 as being visited (see Figure 10.19(h)). The
vertices adjacent to 6 (2 and 5) are already being visited. Thus, we mark 6 as finished and
recursively return. The vertices adjacent to 5 have all been visited, so we mark 5 as finished
and return from the recursion. All of the vertices adjacent to 2 have been visited, so we mark
2 as finished and return from the recursion.

Finally, we come back to 0. Because all of the vertices adjacent to it have also been visited, we
mark 0 as finished and we are done (see Figure 10.19(i)). The order in which we started to
visit all vertices is 0, 1, 3, 4, 2, 5, 6; the order in which we finished visiting all vertices is 4, 3,
1, 6, 5, 2, 0. The discovery order is the order in which the vertices are discovered. The finish
order is the order in which the vertices are finished. We consider a vertex to be finished when
we return to it after finishing all its successors.

Figure 10.20 shows the depth‐first search tree for the graph in Figure 10.18. A preorder tra-
versal of this tree yields the sequence in which the vertices were visited: 0, 1, 3, 4, 2, 5, 6. The

1

0

2

3 4 5 6

F I G U R E 1 0 . 1 8

Graph to Be Traversed

Depth First

Koffman-c10.indd 511 10/30/2015 7:28:17 PM

512 Chapter 10 Graphs

dashed lines are the other edges in the graph that are not part of the depth‐first search tree.
These edges are called back edges because they connect a vertex with its ancestors in the
depth‐first search tree. Observe that vertex 4 has two ancestors in addition to its parent 3: 1
and 0. Vertex 1 is a grandparent, and vertex 0 is a great‐grandparent.

Algorithm for Depth‐First Search

Depth‐first search is used as the basis of other graph algorithms. However, rather than
embedding the depth‐first search algorithm into these other algorithms, we will implement
the depth‐first search algorithm to collect information about the vertices, which we can then
use in these other algorithms. The information we will collect is the discovery order (or the
visit order) and the finish order.

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

0

1 2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

1

0

2

3 4 5 6

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 1 0 . 1 9

Example of Depth‐First

Search

4 6

1

0

2

3 5

F I G U R E 1 0 . 2 0

Depth‐First Search Tree

of Figure 10.18

Koffman-c10.indd 512 10/30/2015 7:28:18 PM

10.4 Traversals of Graphs 513

The depth‐first search algorithm follows. Step 5 recursively applies this algorithm to each
vertex as it is discovered.

Algorithm for Depth‐First Search

1. Mark the current vertex, u, visited (color it light gray), and enter it in the discovery order list.
2. for each vertex, v, adjacent to the current vertex, u
3. if v has not been visited
4. Set parent of v to u.
5. Recursively apply this algorithm starting at v.
6. Mark u finished (color it dark gray) and enter u into the finish order list.

Observe that Step 6 is executed after the loop in Step 2 has examined all vertices adjacent to
vertex u. Also, the loop at Step 2 does not select the vertices in any particular order.

Table 10.5 shows a trace of the algorithm as applied to the graph shown in Figure 10.19. We
list each visit or finish step in column 1. Column 2 lists the vertices adjacent to each vertex
when it begins to be visited. The discovery order (the order in which the vertices are visited)
is 0, 1, 3, 4, 2, 5, 6. The finish order is 4, 3, 1, 6, 5, 2, and 0.

Performance Analysis of Depth‐First Search

The loop at Step 2 is executed |Eu| (the number of edges that originate at that vertex) times.
The recursive call results in this loop being applied to each vertex. The total number of steps
is the sum of the edges that originate at each vertex, which is the total number of edges |E|.
Thus, the algorithm is O(|E|).

There is an implicit Step 0 to the algorithm that colors all of the vertices white. This is O(|V|);
thus, the total running time of the algorithm is O(|V|+|E|).

TA B L E 1 0 . 5

Trace of Depth‐First Search of Figure 10.19

Operation Adjacent Vertices Discovery (Visit) Order Finish Order

Visit 0 1, 2, 3, 4 0

Visit 1 0, 3, 4 0, 1

Visit 3 0, 1, 4 0, 1, 3

Visit 4 0, 1, 3 0, 1, 3, 4

Finish 4 4

Finish 3 4, 3

Finish 1 4, 3, 1

Visit 2 0, 5, 6 0, 1, 3, 4, 2

Visit 5 2, 6 0, 1, 3, 4, 2, 5

Visit 6 2, 5 0, 1, 3, 4, 2, 5, 6

Finish 6 4, 3, 1, 6

Finish 5 4, 3, 1, 6, 5

Finish 2 4, 3, 1, 6, 5, 2

Finish 0 4, 3, 1, 6, 5, 2, 0

Koffman-c10.indd 513 10/30/2015 7:28:18 PM

514 Chapter 10 Graphs

Implementing Depth‐First Search

The class DepthFirstSearch is designed to be used as a building block for other algorithms.
When constructed, this class performs a depth‐first search on a graph and records the start
time, finish time, start order, and finish order. For an unconnected graph or for a directed
graph (whether connected or not), a depth‐first search may not visit each vertex in the graph.
Thus, once the recursive method returns, the vertices need to be examined to see whether they
all have been visited; if not, the recursive process repeats, starting with the next unvisited
vertex. Thus, the depth‐first search can generate more than one tree. We will call this collec-
tion of trees a forest. Also, it may be important that we control the order in which the vertices
are examined to form the forest. Thus, one of the constructors for the DepthFirstSearch class
enables its caller to specify the order in which vertices are examined to select a new start
vertex. The default is normal ascending order. The class is described in Table 10.6, and part
of the code is shown in Listing 10.4.

Each constructor allocates storage for the arrays parent, visited, discoveryOrder, and
 finishOrder and initializes all elements of parent to ‐1 (no parent). In the constructor in
Listing 10.4, the for statement

for (int i = 0; i < n; i++) {
 if (!visited[i])
 depthFirstSearch(i);
}

TA B L E 1 0 . 6

Class DepthFirstSearch

Data Field Attribute

private int discoverIndex The index that indicates the discovery order

private int[] discoveryOrder The array that contains the vertices in discovery order

private int finishIndex The index that indicates the finish order

private int[] finishOrder The array that contains the vertices in finish order

private Graph graph A reference to the graph being searched

private int[] parent The array of predecessors in the depth‐first search tree

private boolean[] visited An array of boolean values to indicate whether or not a
vertex has been visited

Constructor Purpose

public DepthFirstSearch(Graph graph) Constructs the depth‐first search of the specified graph
selecting the start vertices in ascending vertex order

public DepthFirstSearch(Graph graph,

int[] order)

Constructs the depth‐first search of the specified graph
selecting the start vertices in the specified order. The first
vertex visited is order[0]

Method Behavior

public void depthFirstSearch(int s) Recursively searches the graph starting at vertex s

public int[] getDiscoveryOrder() Gets the discovery order

public int[] getFinishOrder() Gets the finish order

public int[] getParent() Gets the parents in the depth‐first search tree

Koffman-c10.indd 514 10/30/2015 7:28:18 PM

10.4 Traversals of Graphs 515

calls the recursive depth‐first search method. Method depthFirstSearch follows the algo-
rithm shown earlier. If the graph is connected, all vertices will be visited after the return from
the initial call to depthFirstSearch. If the graph is not connected, additional calls will be
made using a start vertex that has not been visited.

In the constructor (not shown) that allows the client to control the order of selection for start
vertices, the parameter int[] order specifies this sequence. To code this constructor, change
the if statement in the for loop of the first constructor to

if (!visited[order[i]])
 depthFirstSearch(order[i]);

The rest of the code is the same.

L I S T I N G 1 0 . 4

DepthFirstSearch.java

/** Class to implement the depth‐first search algorithm. */
public class DepthFirstSearch {

 // Data Fields
 /** A reference to the graph being searched. */
 private Graph graph;
 /** Array of parents in the depth‐first search tree. */
 private int[] parent;
 /** Flag to indicate whether this vertex has been visited. */
 private boolean[] visited;
 /** The array that contains each vertex in discovery order. */
 private int[] discoveryOrder;
 /** The array that contains each vertex in finish order. */
 private int[] finishOrder;
 /** The index that indicates the discovery order. */
 private int discoverIndex = 0;
 /** The index that indicates the finish order. */
 private int finishIndex = 0;

 // Constructors
 /** Construct the depth‐first search of a Graph starting at
 vertex 0 and visiting the start vertices in ascending order.
 @param graph The graph
 */
 public DepthFirstSearch(Graph graph) {
 this.graph = graph;
 int n = graph.getNumV();
 parent = new int[n];
 visited = new boolean[n];
 discoveryOrder = new int[n];
 finishOrder = new int[n];
 for (int i = 0; i < n; i++) {
 parent[i] = ‐1;
 }
 for (int i = 0; i < n; i++) {
 if (!visited[i])
 depthFirstSearch(i);
 }
 }

 /** Construct the depth‐first search of a Graph
 selecting the start vertices in the specified order.
 The first vertex visited is order[0].

Koffman-c10.indd 515 10/30/2015 7:28:18 PM

516 Chapter 10 Graphs

Testing Method depthFirstSearch

Next, we show a main method that tests the class. It is a simple driver program that can be
used to read a graph and then initiate a depth‐first traversal. After the traversal, the driver
program displays the arrays that represent the search results.

/** Main method to test depth‐first search method
 @pre args[0] is the name of the input file.
 @param args The command line arguments
 */
public static void main(String[] args) {
 Graph g = null;
 int n = 0;
 try {
 Scanner scan = new Scanner(new File(args[0]));
 g = AbstractGraph.createGraph(scan, true, "List");
 n = g.getNumV();
 } catch (IOException ex) {
 ex.printStackTrace();
 System.exit(1);
 // Error
 }

 // Perform depth‐first search.
 DepthFirstSearch dfs = new DepthFirstSearch(g);
 int[] dOrder = dfs.getDiscoveryOrder();

 @param graph The graph
 @param order The array giving the order
 in which the start vertices should be selected
 */
 public DepthFirstSearch(Graph graph, int[] order) {
 // Same as constructor above except for the if statement.
 }

 /** Recursively depth‐first search the graph starting at vertex current.
 @param current The start vertex
 */
 public void depthFirstSearch(int current) {
 /* Mark the current vertex visited. */
 visited[current] = true;
 discoveryOrder[discoverIndex++] = current;
 /* Examine each vertex adjacent to the current vertex */
 Iterator<Edge> itr = graph.edgeIterator(current);
 while (itr.hasNext()) {
 int neighbor = itr.next().getDest();
 /* Process a neighbor that has not been visited */
 if (!visited[neighbor]) {
 /* Insert (current, neighbor) into the depth‐first search tree. */
 parent[neighbor] = current;
 /* Recursively apply the algorithm starting at neighbor. */
 depthFirstSearch(neighbor);
 }
 }
 /* Mark current finished. */
 finishOrder[finishIndex++] = current;
 }
}

Koffman-c10.indd 516 10/30/2015 7:28:18 PM

10.5 Applications of Graph Traversals 517

 int[] fOrder = dfs.getFinishOrder();
 System.out.println("Discovery and finish order");
 for (int i = 0; i < n; i++) {
 System.out.println(dOrder[i] + " " + fOrder[i]);
 }
}

E X E R C I S E S F O R S E C T I O N 1 0 . 4

S E L F ‐ C H E C K

1. Show the breadth‐first search trees for the following graphs.

 0 1

4 3

2

A

D E

B

C

2. Show the depth‐first search trees for the graphs in Exercise 1 above.

P R O G R A M M I N G

1. Provide all accessor methods for class DepthFirstSearch and the constructor that specifies
the order of start vertices.

2. Implement method depthFirstSearch without using recursion. Hint: Use a stack to save
the parent of the current vertex when you start to search one of its adjacent vertices.

10.5 Applications of Graph Traversals

CASE STUDY Shortest Path through a Maze

 Problem We want to design a program that will find the shortest path through a maze. In Chapter 5,
we showed how to write a recursive program that found a solution to a maze. This pro-
gram used a backtracking algorithm that visited alternate paths. When it found a dead
end, it backed up and tried another path, and eventually it found a solution.

Figure 10.21 shows a maze solution generated by this recursive program. The light‐gray
cells are barriers in the maze. The white squares show the solution path, the black squares
show the squares that were visited but rejected, and the dark‐gray squares were not vis-
ited. As you can see, the program did not find an optimal solution. (This is a consequence
of the program advancing the solution path to the south before attempting to advance it
to the east.) We want to find the shortest path, defined as the one with the fewest decision
points in it.

Koffman-c10.indd 517 10/30/2015 7:28:19 PM

518 Chapter 10 Graphs

 Analysis We can represent the maze shown in Figure 10.21 by a graph, where we place a node at
each decision point and at each dead end, as shown in Figure 10.22.

Now that we have the maze represented as a graph, we need to find the shortest path from
the start point (vertex 0) to the end point (vertex 12). The breadth‐first search method will
return the shortest path from each vertex to its parent (the array of parent vertices), and
we can use this array to find the shortest path to the end point. Recall that our shortest
path will contain the smallest number of vertices, but not necessarily the smallest number
of cells, in the path.

 Design Your program will need the following data structures:

An external representation of the maze, consisting of the number of vertices and
the edges.
An object of a class that implements the Graph interface.
An array to hold the predecessors returned from the breadthFirstSearch
method.
A stack to reverse the path.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,...

11,...

12,...

13,...

14,...

15,...

0,1

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

9,1

10,...

11,...

12,...

13,...

14,...

15,...

0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

9,2

10,...

11,...

12,...

13,...

14,...

15,...

0,3

1,3

2,3

3,3

4,3

5,3

6,3

7,3

8,3

9,3

10,...

11,...

12,...

13,...

14,...

15,...

0,4

1,4

2,4

3,4

4,4

5,4

6,4

7,4

8,4

9,4

10,...

11,...

12,...

13,...

14,...

15,...

0,5

1,5

2,5

3,5

4,5

5,5

6,5

7,5

8,5

9,5

10,...

11,...

12,...

13,...

14,...

15,...

0,6

1,6

2,6

3,6

4,6

5,6

6,6

7,6

8,6

9,6

10,...

11,...

12,...

13,...

14,...

15,...

0,7

1,7

2,7

3,7

4,7

5,7

6,7

7,7

8,7

9,7

10,...

11,...

12,...

13,...

14,...

15,...

0,8

1,8

2,8

3,8

4,8

5,8

6,8

7,8

8,8

9,8

10,...

11,...

12,...

13,...

14,...

15,...

0,9

1,9

2,9

3,9

4,9

5,9

6,9

7,9

8,9

9,9

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

F I G U R E 1 0 . 2 1

Recursive Solution to a Maze

Koffman-c10.indd 518 10/30/2015 7:28:19 PM

10.5 Applications of Graph Traversals 519

The algorithm is as follows:

1. Read in the number of vertices and create the graph object.
2. Read in the edges and insert the edges into the graph.
3. Call the breadthFirstSearch method with this graph and the starting vertex as its

argument. The method returns the array parent.
4. Start at v, the end vertex.
5. while v is not –1
6. Push v onto the stack.
7. Set v to parent[v].
8. while the stack is not empty
9. Pop a vertex off the stack and output it.

 Implementation Listing 10.5 shows the program. We assume that the graph that represents the maze
is stored in a text file. The first line of this file contains the number of vertices. The
edges are on subsequent lines. The method loadEdgesFromFile reads the source and
destination vertices and inserts the edge into the graph. The rest of the code follows
the algorithm.

0

1

4 5 6

3

2

7

9

11

10

8

12

F I G U R E 1 0 . 2 2

Graph Representation of the Maze in Figure 10.21

Koffman-c10.indd 519 10/30/2015 7:28:20 PM

520 Chapter 10 Graphs

L I S T I N G 1 0 . 5

Program to Solve a Maze Using a Breadth‐First Search

import java.io.*;
import java.util.*;

/** Program to solve a maze represented as a graph.
 This program performs a breadth‐first search of the graph
 to find the "shortest" path from the start vertex to the
 end. It is assumed that the start vertex is 0, and the
 end vertex is numV‐1.
 */
public class Maze {

 /** Main method to solve the maze.
 @pre args[0] contains the name of the input file.
 @param args Command line argument
 */
 public static void main(String[] args) {
 int numV = 0;
 // The number of vertices.
 Graph theMaze = null;
 // Load the graph data from a file.
 try {
 Scanner scan = new Scanner(new File(args[0]));
 theMaze = AbstractGraph.createGraph(scan, false, "List");
 numV = theMaze.getNumV();
 } catch (IOException ex) {
 System.err.println("IO Error while reading graph");
 System.err.println(ex.toString());
 System.exit(1);
 }
 // Perform breadth‐first search.
 int parent[] = BreadthFirstSearch.breadthFirstSearch(theMaze, 0);
 // Construct the path.
 Deque<Integer> thePath = new ArrayDeque<>();
 int v = numV ‐ 1;
 while (parent[v] != ‐1) {
 thePath.push(v);
 v = parent[v];
 }
 // Output the path.
 System.out.println("The Shortest path is:");
 while (!thePath.isEmpty()) {
 System.out.println(thePath.pop());
 }
 }
}

 Testing Test this program with a variety of mazes. Use mazes for which the original program finds
the shortest path and mazes for which it does not. For the graph shown in Figure 10.23,
the shortest path from 0 to 12 is 0 → 1 → 2 → 8 → 12.

Koffman-c10.indd 520 10/30/2015 7:28:20 PM

10.5 Applications of Graph Traversals 521

CASE STUDY Topological Sort of a Graph

 Problem There are many problems in which one activity cannot be started before another one has
been completed. One that you may have already encountered is determining the order in
which you can take courses. Some courses have prerequisites. Some have more than one
prerequisite. Furthermore, the prerequisites may have prerequisites. Figure 10.24 shows
the courses and prerequisites of a Computer Science program at the authors’ university.

Graphs such as the one shown in Figure 10.24 are known as directed acyclic graphs
(DAGs). They are directed graphs that contain no cycles; that is, there are no loops, so

0

1

4 5 6

3

2

7

9

11

10

8

12

F I G U R E 1 0 . 2 3

Solution to Maze in Figure 10.21

Koffman-c10.indd 521 10/30/2015 7:28:20 PM

522 Chapter 10 Graphs

once you pass through a vertex, there is no path back to that vertex. Figure 10.25 shows
another example of a DAG.

A topological sort of the vertices of a DAG is an ordering of the vertices such that if (u, v)
is an edge, then u appears before v. This must be true for all edges. For example, 0, 1, 2, 3,
4, 5, 6, 7, 8 is a valid topological sort of the graph in Figure 10.25, but 0, 1, 5, 3, 4, 2, 6,
7, 8 is not because 2 → 5 is an edge, but 5 appears before 2. There are many valid paths
through the prerequisite graph and many valid topological sorts. Another valid topologi-
cal sort is 0, 3, 1, 4, 6, 2, 5, 7, 8.

 Analysis If there is an edge from u to v in a DAG, then if we perform a depth‐first search of this
graph, the finish time of u must be after the finish time of v. When we return to u, either v
has not been visited or it has finished. It is not possible that v would be visited but not
finished, because if it were possible, we would discover u on a path that had passed through
v. That would mean that there is a loop or cycle in the graph.

For example, in Figure 10.25, we could start the depth‐first search at 0, then visit 4, followed
by 6, followed by 8. Then, returning to 4, we would have to visit 7 before returning to 0.
Then we would visit 1, and from 1 we would see that 4 has finished. Alternatively, we could

Calculus 1

Calculus 2 CIS 066

CIS 072 CIS 068 CIS 166

200 Level
Elective

Theory
Course

CIS 207 CIS 223

CIS 338

CIS 339

CIS 307

CIS 067

Communications
Elective

300 Level
Elective

F I G U R E 1 0 . 2 4

Prerequisites for a

Computer Science

Program

8

3 4

0

6

5

2 1

7

F I G U R E 1 0 . 2 5

Example of a DAG

Koffman-c10.indd 522 10/30/2015 7:28:21 PM

10.5 Applications of Graph Traversals 523

start at 0 and then go to 1, and we would see that 4 has not been visited. What we cannot
have happen is that we start at 0, then visit 4, and eventually get to 1 before finishing 4.

 Design If we perform a depth‐first search of a graph and then order the vertices by the inverse of
their finish order, we will have one topological sort of a DAG. The topological sort pro-
duced by listing the vertices in the inverse of their finish order after a depth‐first search of
the graph in Figure 10.25 is 0, 3, 1, 4, 6, 2, 5, 7, 8.

Algorithm for Topological Sort

1. Read the graph from a data file.
2. Perform a depth‐first search of the graph.
3. List the vertices in reverse of their finish order.

 Implementation We can use our DepthFirstSearch class to implement this algorithm. Listing 10.6 shows a
program that does this. It begins by reading the graph from an input file. It then creates a
DepthFirstSearch object dfs. The constructor of the DepthFirstSearch class performs the
depth‐first search and saves information about the graph. We then call the getFinishOrder
method to get the vertices in the order in which they finished. If we output this array start-
ing at numVertices – 1, we will obtain the topological sort of the graph.

L I S T I N G 1 0 . 6
TopologicalSort.java

import java.util.*;

/** This program outputs the topological sort of a directed graph
 that contains no cycles.
 */
public class TopologicalSort {

 /** The main method that performs the topological sort.
 @pre arg[0] contains the name of the file
 that contains the graph. It has no cycles.
 @param args The command line arguments
 */
 public static void main(String[] args) {
 Graph theGraph = null;
 int numVertices = 0;
 try {
 // Connect Scanner to input file.
 Scanner scan = new Scanner(new File(args[0]));
 // Load the graph data from a file.
 theGraph = AbstractGraph.createGraph(scan, true, "List");
 numVertices = theGraph.getNumV();
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 // Error exit.
 }
 // Perform the depth‐first search.
 DepthFirstSearch dfs = new DepthFirstSearch(theGraph);
 // Obtain the finish order.
 int[] finishOrder = dfs.getFinishOrder();

Koffman-c10.indd 523 10/30/2015 7:28:21 PM

524 Chapter 10 Graphs

 // Print the vertices in reverse finish order.
 System.out.println("The Topological Sort is");
 for (int i = numVertices ‐ 1; i >= 0; i‐‐) {
 System.out.println(finishOrder[i]);
 }
 }
}

 Testing Test this program using several different graphs. Use sparse graphs and dense graphs.
Make sure that each graph you try has no loops or cycles. If it does, the algorithm may
display an invalid output.

10.6 Algorithms Using Weighted Graphs

Finding the Shortest Path from a Vertex to All Other Vertices
The breadth‐first search discussed in Section 10.4 found the shortest path from the start vertex
to all other vertices, assuming that the length of each edge was the same. We now consider the
problem of finding the shortest path where the length of each edge may be different—that is, in
a weighted directed graph such as that shown in Figure 10.26. The computer scientist Edsger
W. Dijkstra developed an algorithm, now called Dijkstra’s algorithm (“A Note on Two Problems
in Connection with Graphs,” Numerische Mathematik, Vol. 1 [1959], pp. 269–271), to solve
this problem. This algorithm makes the assumption that all of the edge values are positive.

E X E R C I S E S F O R S E C T I O N 1 0 . 5

S E L F ‐ C H E C K

1. Draw the depth‐first search tree of the graph in Figure 10.24 and then list the vertices in
reverse finish order.

2. List some alternative topological sorts for the graph in Figure 10.24.

2

1

10

10

30

50

100

60

20

4

0

3

F I G U R E 1 0 . 2 6

Weighted Directed

Graph

Koffman-c10.indd 524 10/30/2015 7:28:21 PM

10.6 Algorithms Using Weighted Graphs 525

For Dijkstra’s algorithm, we need two sets, S and V–S, and two arrays, d and p. S will contain
the vertices for which we have computed the shortest distance, and V–S will contain the ver-
tices that we still need to process. The entry d[v] will contain the shortest distance from s to
v, and p[v] will contain the predecessor of v in the path from s to v.

We initialize S by placing the start vertex, s, into it. We initialize V–S by placing the remaining
vertices into it. For each v in V–S, we initialize d by setting d[v] equal to the weight of the
edge w(s, v) for each vertex, v, adjacent to s and to ∞ for each vertex that is not adjacent to
s. We initialize p[v] to s for each v in V–S.

For example, given the graph shown in Figure 10.26, the set S would initially be {0}, and V–S
would be {1, 2, 3, 4}. The arrays d and p would be defined as follows.

v d[v] p[v]

1 10 0

2 ∞ 0

3 30 0

4 100 0

The first row shows that the distance from vertex 0 to vertex 1 is 10 and that vertex 0 is the
predecessor of vertex 1. The second row shows that vertex 2 is not adjacent to vertex 0.

We now find the vertex u in V–S that has the smallest value of d[u]. Using our example, this
is 1. We now consider the vertices v that are adjacent to u. If the distance from s to u (d[u])
plus the distance from u to v (i.e., w(u, v)) is smaller than the known distance from s to v,
d[v], then we update d[v] to be d[u] + w(u, v), and we set p[v] to u. In our example, the value
of d[1] is 10, and w(1, 2) is 50. Since 10 + 50 = 60 is less than ∞, we set d[2] to 60 and p[2]
to 1. We remove 1 from V–S and place it into S. We repeat this until V–S is empty.

After the first pass through this loop, S is {0, 1}, V–S is {2, 3, 4}, and d and p are as follows:

v d[v] p[v]

1 10 0

2 60 1

3 30 0

4 100 0

We again select u from V–S with the smallest d[u]. This is now 3. The adjacent vertices to 3
are 2 and 4. The distance from 0 to 3, d[3], is 30. The distance from 3 to 2 is 20. Because
30 + 20 = 50 is less than the current value of d[2], 60, we update d[2] to 50 and change p[2]
to 3. Also, because 30 + 60 = 90 is less than 100, we update d[4] to 90 and set p[4] to 3.

Now S is {0, 1, 3}, and V–S is {2, 4}. The arrays d and p are as follows:

v d[v] p[v]

1 10 0

2 50 3

3 30 0

4 90 3

Koffman-c10.indd 525 10/30/2015 7:28:21 PM

526 Chapter 10 Graphs

Next, we select vertex 2 from V–S. The only vertex adjacent to 2 is 4. Since d[2] + w(2, 4) =
50 + 10 = 60 is less than d[4], 90, we update d[4] to 60 and p[4] to 2. Now S is {0, 1, 2, 3},
V–S is {4}, and d and p are as follows:

v d[v] p[v]

1 10 0

2 50 3

3 30 0

4 60 2

Finally, we remove 4 from V–S and find that it has no adjacent vertices. We are now done.
The array d shows the shortest distances from the start vertex to all other vertices, and the
array p can be used to determine the corresponding paths. For example, the path from vertex
0 to vertex 4 has a length of 60, and it is the reverse of 4, 2, 3, 0; therefore, the shortest path
is 0 → 3 → 2 → 4.

Dijkstra’s Algorithm

 1. Initialize S with the start vertex, s, and V–S with the remaining vertices.
 2. for all v in V–S
 3. Set p[v] to s.
 4. if there is an edge (s, v)
 5. Set d[v] to w(s, v).
 else
 6. Set d[v] to ∞.
 7. while V–S is not empty
 8. for all u in V–S, find the smallest d[u].
 9. Remove u from V–S and add u to S.
10. for all v adjacent to u in V–S
11. if d[u] + w(u, v) is less than d[v]
12. Set d[v] to d[u] + w(u, v).
13. Set p[v] to u.

Analysis of Dijkstra’s Algorithm

Step 1 requires |V| steps.

The loop at Step 2 will be executed |V – 1| times.

The loop at Step 7 will also be executed |V – 1| times.

Within the loop at Step 7, we have to consider Steps 8 and 9. For these steps, we will have to
search each value in V–S. This decreases each time through the loop at Step 7, so we will have
|V| – 1 + |V| – 2 + · · · 1. This is O(|V|2). Therefore, Dijkstra’s algorithm as stated is O(|V|2).
We will look at possible improvements to this for sparse graphs when we discuss a similar
algorithm in the next subsection.

Implementation

Listing 10.7 provides a straightforward implementation of Dijkstra’s algorithm using
HashSet vMinusS to represent set V–S. We chose to implement the algorithm as a static
method with the inputs (the graph and starting point) and outputs (predecessor and distance

Koffman-c10.indd 526 10/30/2015 7:28:21 PM

10.6 Algorithms Using Weighted Graphs 527

array) passed through parameters. An alternative approach would be to make them data
fields in a class that contained this method. We use iterators to traverse vMinusS.

If we used an adjacency list representation for the graph (i.e., class ListGraph, described ear-
lier), then we would code Step 10 (update the distances) to iterate through the edges adjacent
to vertex u, and then update the distance if the destination vertex was in vMinusS. The modi-
fied code follows:

// Update the distances.
Iterator<Edge> edgeIter = graph.edgeIterator(u);
while (edgeIter.hasNext()) {
 Edge edge = edgeIter.next();
 int v = edge.getDest();
 if (vMinusS.contains(new Integer(v)) {
 double weight = edge.getWeight();
 if (dist[u] + weight < dist[v]) {
 dist[v] = dist[u] + weight;
 pred[v] = u;
 }
 }
}

L I S T I N G 1 0 . 7

Dijkstra’s Shortest‐Path Algorithm

/** Dijkstra's Shortest‐Path algorithm.
 @param graph The weighted graph to be searched
 @param start The start vertex
 @param pred Output array to contain the predecessors in the shortest path
 @param dist Output array to contain the distance in the shortest path
 */
public static void dijkstrasAlgorithm(Graph graph, int start, int[] pred,
 double[] dist) {
 int numV = graph.getNumV();
 HashSet<Integer> vMinusS = new HashSet<>(numV);
 // Initialize V–S.
 for (int i = 0; i < numV; i++) {
 if (i != start) {
 vMinusS.add(i);
 }
 }
 // Initialize pred and dist.
 for (int v : vMinusS) {
 pred[v] = start;
 dist[v] = graph.getEdge(start, v).getWeight();
 }

 // Main loop
 while (vMinusS.size() != 0) {
 // Find the value u in V–S with the smallest dist[u].
 double minDist = Double.POSITIVE_INFINITY;
 int u = ‐1;
 for (int v : vMinusS) {
 if (dist[v] < minDist) {
 minDist = dist[v];
 u = v;
 }
 }
 // Remove u from vMinusS.
 vMinusS.remove(u);

Koffman-c10.indd 527 10/30/2015 7:28:22 PM

528 Chapter 10 Graphs

Minimum Spanning Trees
A spanning tree is a subset of the edges of a graph such that there is only one edge
between each vertex, and all of the vertices are connected. If we have a spanning tree for
a graph, then we can access all the vertices of the graph from the start node. The cost of
a spanning tree is the sum of the weights of the edges. We want to find the minimum
spanning tree or the spanning tree with the smallest cost. For example, if we want to start
up our own long‐distance phone company and need to connect the cities shown in
Figure 10.4, finding the minimum spanning tree would allow us to build the cheapest
network.

We will discuss the algorithm published by R. C. Prim (“Shortest Connection Networks and
Some Generalizations,” Bell System Technical Journal, Vol. 36 [1957], pp. 1389–1401) for
finding the minimum spanning tree of a graph. It is very similar to Dijkstra’s algorithm, but
Prim published his algorithm in 1957, 2 years before Dijkstra’s paper that contains an algo-
rithm for finding the minimum spanning tree that is essentially the same as Prim’s as well as
the previously discussed algorithm for finding the shortest paths.

Overview of Prim’s Algorithm

The vertices are divided into two sets: S, the set of vertices in the spanning tree, and V–S,
the remaining vertices. As in Dijkstra’s algorithm, we maintain two arrays: d[v] will con-
tain the length of the shortest edge from a vertex in S to the vertex v that is in V–S, and
p[v] will contain the source vertex for that edge. The only difference between the algo-
rithm to find the shortest path and the algorithm to find the minimum spanning tree is
the contents of d[v]. In the algorithm to find the shortest path, d[v] contains the total
length of the path from the starting vertex. In the algorithm to find the minimum span-
ning tree, d[v] contains only the length of the final edge. We show the essentials of Prim’s
algorithm next.

Prim’s Algorithm for Finding the Minimum Spanning Tree

 1. Initialize S with the start vertex, s, and V–S with the remaining vertices.
 2. for all v in V–S
 3. Set p[v] to s.
 4. if there is an edge (s, v)
 5. Set d[v] to w(s, v).
 else
 6. Set d[v] to ∞.
 7. while V–S is not empty

 // Update the distances.
 for (int v : vMinusS) {
 if (graph.isEdge(u, v)) {
 double weight = graph.getEdge(u, v).getWeight();
 if (dist[u] + weight < dist[v]) {
 dist[v] = dist[u] + weight;
 pred[v] = u;
 }
 }
 }
 }
}

Koffman-c10.indd 528 10/30/2015 7:28:22 PM

10.6 Algorithms Using Weighted Graphs 529

 8. for all u in V–S, find the smallest d[u].
 9. Remove u from V–S and add it to S.
10. Insert the edge (u, p[u]) into the spanning tree.
11. for all v in V–S
12. if w(u, v) < d[v]
13. Set d[v] to w(u, v).
14. Set p[v] to u.

In the array d, d[v] contains the length of the shortest known (previously examined) edge
from a vertex in S to the vertex v, while v is a member of V–S. In the array p, the value p[v]
is the source vertex of this shortest edge. When v is removed from V–S, we no longer update
these entries in d and p.

EXAMPLE 10 .2 Consider the graph shown in Figure 10.27. We initialize S to {0} and V–S to {1, 2, 3, 4, 5}. The
smallest edge from u to v, where u is in S and v is in V–S, is the edge (0, 2). We add this edge
to the spanning tree and add 2 to S (see Figure 10.28(a)). The set S is now {0, 2} and V–S is
{1, 3, 4, 5}. We now have to consider all of the edges (u, v), where u is either 0 or 2, and v is
1, 3, 4, or 5 (there are eight possible edges). The smallest one is (2, 5). We add this to the
spanning tree, and S now is {0, 2, 5} and V–S is {1, 3, 4} (see Figure 10.28(b)). The next small-
est edge is (5, 3). We insert that into the tree and add 3 to S (see Figure 10.28(c)). Now V–S
is {1, 4}. The smallest edge is (2, 1). After adding this edge (see Figure 10.28(d)), we are left
with V–S being {4}. The smallest edge to 4 is (1, 4). This is added to the tree, and the spanning
tree is complete (see Figure 10.28(e)).

1

0

2

6

3

5

2

5

5 5

6

1

4

4

3

5

F I G U R E 1 0 . 2 7

Graph for Example 10.2

1

4 5

3
1

0

2

1

4

3

1

4

0

2

1

4

1

4
2

0

2

4

1

4
2

0

2

1

5

3

4

1

43

5 5

2

0

2

1

5

3

5 5

3

(a) (b) (c) (d) (e)

F I G U R E 1 0 . 2 8

Building a Minimum Spanning Tree Using Prim’s Algorithm

Koffman-c10.indd 529 10/30/2015 7:28:22 PM

530 Chapter 10 Graphs

Analysis of Prim’s Algorithm

Step 8 is O(|V|). Because this is within the loop at Step 7, it will be executed O(|V|) times for
a total time of O(|V|2). Step 11 is O(|Eu|), the number of edges that originate at u. Because
Step 11 is inside the loop of Step 7, it will be executed for all vertices; thus, the total is O(|E|).
Because |V|2 is greater than |E|, the overall cost of the algorithm is O(|V|2).

By using a priority queue to hold the edges from S to V–S, we can improve on this algorithm.
Then Step 8 is O(log n), where n is the size of the priority queue. In the worst case, all of the
edges are inserted into the priority queue, and the overall cost of the algorithm is then O(|E|
log |V|). We say that the algorithm is O(|E| log |V|) instead of saying that it is O(|E| log |E|),
even though the maximum size of the priority queue is |E|, because |E| is bounded by |V|2 and
log |V|2 is 2 × log |V|.

For a dense graph, where |E| is approximately |V|2, this is not an improvement; however, for
a sparse graph, where |E| is significantly less than |V|2, it is. Furthermore, computer science
researchers have developed improved priority queue implementations that give O(|E| + |V|
log |V|) or better performance.

Implementation

Listing 10.8 shows an implementation of Prim’s algorithm using a priority queue to hold the
edges from S to V–S. The arrays p and d given in the algorithm description above are not
needed because the priority queue contains complete edges. For a given vertex d, if a shorter
edge is discovered, we do not remove the entry containing the longer edge from the priority
queue. We merely insert new edges as they are discovered. Therefore, when the next shortest
edge is removed from the priority queue, it may have a destination that is no longer in V–S.
In that case, we continue to remove edges from the priority queue until we find one with a
destination that is still in V–S. This is done with the following loop:

do {
 edge = pQ.remove();
 dest = edge.getDest();
} while(!vMinusS.contains(dest));

L I S T I N G 1 0 . 8

Prim’s Minimum Spanning Tree Algorithm

/** Prim's Minimum Spanning Tree algorithm.
 @param graph The weighted graph to be searched
 @param start The start vertex
 @return An ArrayList of edges that forms the MST
 */
public static ArrayList<Edge> primsAlgorithm(Graph graph, int start) {
 ArrayList<Edge> result = new ArrayList<>();
 int numV = graph.getNumV();
 // Use a HashSet to represent V–S.
 Set<Integer> vMinusS = new HashSet<>(numV);
 // Declare the priority queue.
 Queue<Edge> pQ = new PriorityQueue<>(numV,
 (e1, e2) ‐> Double.compare(e1.getWeight(), e2.getWeight()));
 // Initialize V–S.
 for (int i = 0; i < numV; i++) {
 if (i != start) {
 vMinusS.add(i);
 }
 }

Koffman-c10.indd 530 10/30/2015 7:28:22 PM

10.6 Algorithms Using Weighted Graphs 531

 int current = start;
 // Main loop
 while (vMinusS.size() != 0) {
 // Update priority queue.
 Iterator<Edge> iter = graph.edgeIterator(current);
 while (iter.hasNext()) {
 Edge edge = iter.next();
 int dest = edge.getDest();
 if (vMinusS.contains(dest)) {
 pQ.add(edge);
 }
 }
 // Find the shortest edge whose source is in S and
 // destination is in V–S.
 int dest = ‐1;
 Edge edge = null;
 do {
 edge = pQ.remove();
 dest = edge.getDest();
 } while(!vMinusS.contains(dest));
 // Take dest out of vMinusS.
 vMinusS.remove(dest);
 // Add edge to result.
 result.add(edge);
 // Make this the current vertex.
 current = dest;
 }
 return result;
}

E X E R C I S E S F O R S E C T I O N 1 0 . 6

S E L F ‐ C H E C K

1. Trace the execution of Dijkstra’s algorithm to find the shortest path from Philadelphia to
the other cities shown in the following graph.

Philadelphia

PittsburghCleveland

Ann Arbor

Detroit

Toledo

155

180

150
180

320

130120

50

40 60

260

180 120

148
Chicago

Fort
 Wayne

ColumbusIndianapolis

2. Trace the execution of Dijkstra’s algorithm to find the shortest paths from vertex 0 to the
other vertices in the following graph.

Koffman-c10.indd 531 10/30/2015 7:28:22 PM

532 Chapter 10 Graphs

C h a p t e r R e v i e w

 ◆ A graph consists of a set of vertices and a set of edges. An edge is a pair of vertices. Graphs
may be either undirected or directed. Edges may have a value associated with them known
as the weight.

 ◆ In an undirected graph, if {u, v} is an edge, then there is a path from vertex u to vertex v,
and vice versa.

 ◆ In a directed graph, if (u, v) is an edge, then (v, u) is not necessarily an edge.

 ◆ If there is an edge from one vertex to another, then the second vertex is adjacent to the first.
A path is a sequence of adjacent vertices. A path is simple if the vertices in the path are
distinct except, perhaps, for the first and last vertex, which may be the same. A cycle is a
path in which the first and last vertexes are the same.

 ◆ A graph is considered connected if there is a path from each vertex to every other vertex.

 ◆ A tree is a special case of a graph. Specifically, a tree is a connected graph that contains no
cycles.

 ◆ Graphs may be represented by an array of adjacency lists. There is one list for each vertex,
and the list contains the edges that originate at this vertex.

 ◆ Graphs may be represented by a two‐dimensional square array called an adjacency matrix.
The entry [u][v] will contain a value to indicate that an edge from u to v is present or
absent.

 ◆ A breadth‐first search of a graph finds all vertices reachable from a given vertex via the
shortest path, where the length of the path is based on the number of vertices in the
path.

 ◆ A depth‐first search of a graph starts at a given vertex and then follows a path of unvisited
vertices until it reaches a point where there are no unvisited vertices that are reachable. It then
backtracks until it finds an unvisited vertex, and then continues along the path to that
vertex.

 10

1 20

9

12

4

7

8

3

5 6

11

3

1

3 1

5
3

7

9

5

7

1 2

6 3
7

3 3

4 7

1 1

4 4

9

3. Trace the execution of Prim’s algorithm to find the minimum spanning tree for the graph
shown in Exercise 2.

4. Trace the execution of Prim’s algorithm to find the minimum spanning tree for the graph
shown in Exercise 1.

Koffman-c10.indd 532 10/30/2015 7:28:22 PM

 Chapter 10 Review 533

 ◆ A topological sort determines an order for starting activities that are dependent on the
completion of other activities (prerequisites). The finish order derived from a depth‐first
traversal represents a topological sort.

 ◆ Dijkstra’s algorithm finds the shortest path from a start vertex to all other vertices, where the
distance from one vertex to another is determined by the weight of the edge between them.

 ◆ Prim’s algorithm finds the minimum spanning tree for a graph. This consists of the subset
of the edges of a connected graph whose sum of weights is the minimum and the graph
consisting of only the edges in the subset is still connected.

User‐Defined Classes and Interfaces in This Chapter
AbstractGraph ListGraph

BreadthFirstSearch MatrixGraph

DepthFirstSearch MatrixGraph.Iter

Edge Maze

Graph TopologicalSort

Quick‐Check Exercises

1. For the following graph:
a. List the vertices and edges.
b. True or false: The path 0, 1, 4, 6, 3 is a simple path.
c. True or false: The path 0, 3, 1, 4, 6, 3, 2 is a simple path.
d. True or false: The path 3, 1, 2, 4, 7, 6, 3 is a cycle.

1 20

4

7

3

5 6

2. Identify the connected components in the following graph.

1 20

4

7

3

5 6

3. For the following graph:
a. List the vertices and edges.
b. Does this graph contain any cycles?

1 20

4

7

3

5 6

4. Show the adjacency matrices for the graphs shown in Questions 1, 2, and 3.
5. Show the adjacency lists for the graphs shown in Questions 1, 2, and 3.
6. Show the breadth‐first search tree for the graph shown in Question 1, starting at vertex 0.
7. Show the depth‐first search tree for the graph shown in Question 3, starting at vertex 0.
8. Show a topological sort of the vertices in the graph shown in Question 3.

Koffman-c10.indd 533 10/30/2015 7:28:23 PM

534 Chapter 10 Graphs

9. In the following graph, find the shortest path from 0 to all other vertices.

1 20

4

7

3

5 6

10 15

5

20
10

30 5

10
10

15

10. In the following graph, find the minimum spanning tree.

1 20

4

7

3

5 6

10 15

5
10

20

25

5

15

10 5

15
20

Review Questions
1. What are the different types of graphs?
2. What are the different types of paths?
3. What are two common methods for representing graphs? Can you think of other methods?
4. What is a breadth‐first search? What can it be used for?
5. What is a depth‐first search? What can it be used for?
6. Under what circumstances are the paths found by Dijkstra’s algorithm not unique?
7. Under what circumstances is the minimum spanning tree unique?
8. What is a topological sort?

Programming Projects
1. Design and implement the MatrixGraph class.
2. Rewrite method dijkstrasAlgorithm to use a priority queue as we did for method

 primsAlgorithm. When inserting edges into the priority queue, the weight is replaced by the total
distance from the source vertex to the destination vertex. The source vertex, however, remains
unchanged as it is the predecessor in the shortest path.

3. In both Prim’s algorithm and Dijkstra’s algorithm, edges are retained in the priority queue, even
though a shorter edge to a given destination vertex has been found. This can be avoided, and thus
performance improved, by using a ModifiablePriorityQueue. Extend the PriorityQueue class
described in Chapter 6 as follows:

 /** A ModifiablePriorityQueue stores Comparable objects. Items
 may be inserted in any order. They are removed in priority
 order, with the smallest being removed first, based on the
 compareTo method. The insert method will return a value
 known as a locator. The locator may be used to replace a
 value in the priority queue.
 */

 public class ModifiablePriorityQueue<E extends Comparable<E>>
 extends PriorityQueue<E> {
 /** Insert an item into the priority queue.
 @param obj The item to be inserted
 @return A locator to the item
 */
 int insert(E obj);

 /** Remove the smallest item in the priority queue.
 @return The smallest item in the priority queue

Koffman-c10.indd 534 10/30/2015 7:28:23 PM

 Chapter 10 Review 535

 */
 E poll();
 /** Replace the item at the specified location.
 @param loc The locator value of the current item
 @param newValue The new value
 */
 void replaceItem(int loc, E newValue);
 . . .

4. Implement Dijkstra’s algorithm using the ModifiablePriorityQueue.
5. Implement Prim’s algorithm using the ModifiablePriortyQueue.
6. A maze can be constructed from a series of concentric circles. Between the circles there are walls

placed, and around the circles there are doors. The walls divide the areas between the circles into
chambers, and the doors permit movement between chambers. The positions of the doors and
walls are given in degrees measured counterclockwise from the horizontal. For example, the maze
shown on the left can be described as follows:

Number of circles 4

Position of doors Outer circle 85–90

Next inner circle 26–40, 135–146, 198–215, 305–319

Next inner circle 67–90, 161–180, 243–256, 342–360

Innermost circle 251–288

Position of walls Outer ring 45, 135, 300

Middle ring 0, 100, 225, 270

Inner ring 65, 180

 Write a program that inputs a description of a maze in this format and finds the shortest path
from the outside to the innermost circle. The shortest path is the one that goes through the small-
est number of chambers.

7. In Chapter 5 we discussed the class MazeTest, which reads a rectangular maze as a sequence
of lines consisting of 0s and 1s, where a 0 represents an open square and a 1 represents a closed
one. For example, the maze shown in Figure 10.21 and reproduced here has the following
input file:

011111111111111111111111
000000000000000000000001
011111111111111011111101
011111100000001011111101
011111101111111011000001
000000000000000011011011
110111101101111011011011
110111101101111011011011
110111101101000011011011
110111101101111111011011
110111101100000000011011
110000001101111111111011
111101111100000000001011
111101111111111111101000
111100000000000000001110
111111111111111111111110

Koffman-c10.indd 535 10/30/2015 7:28:23 PM

536 Chapter 10 Graphs

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,...

11,...

12,...

13,...

14,...

15,...

0,1

1,1

2,1

3,1

4,1

5,1

6,1

7,1

8,1

9,1

10,...

11,...

12,...

13,...

14,...

15,...

0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

8,2

9,2

10,...

11,...

12,...

13,...

14,...

15,...

0,3

1,3

2,3

3,3

4,3

5,3

6,3

7,3

8,3

9,3

10,...

11,...

12,...

13,...

14,...

15,...

0,4

1,4

2,4

3,4

4,4

5,4

6,4

7,4

8,4

9,4

10,...

11,...

12,...

13,...

14,...

15,...

0,5

1,5

2,5

3,5

4,5

5,5

6,5

7,5

8,5

9,5

10,...

11,...

12,...

13,...

14,...

15,...

0,6

1,6

2,6

3,6

4,6

5,6

6,6

7,6

8,6

9,6

10,...

11,...

12,...

13,...

14,...

15,...

0,7

1,7

2,7

3,7

4,7

5,7

6,7

7,7

8,7

9,7

10,...

11,...

12,...

13,...

14,...

15,...

0,8

1,8

2,8

3,8

4,8

5,8

6,8

7,8

8,8

9,8

10,...

11,...

12,...

13,...

14,...

15,...

0,9

1,9

2,9

3,9

4,9

5,9

6,9

7,9

8,9

9,9

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

0,...

1,...

2,...

3,...

4,...

5,...

6,...

7,...

8,...

9,...

10,...

11,...

12,...

13,...

14,...

15,...

 Write a program that reads input in this format and finds the shortest path, where the distance
along a path is defined by the number of squares covered.

8. A third possible representation of a graph is to use the TreeSet class to contain the edges. By
defining a comparator that compares first on the source vertex and then the destination ver-
tex, we can use the subSet method to create a view that contains only edges originating at a
specified vertex and then use the iterator of that view to iterate through edges. Design and
implement a class that meets the requirements of the Graph interface and uses a TreeSet to
hold the edges.

Answers to Quick-Check Exercises
1. a. Vertices: {0, 1, 2, 3, 4, 5, 6, 7}
 Edges: {{0, 1}, {0, 3}, {1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 5}, {3, 6}, {4, 6}, {4, 7}, {5, 6}, {6, 7}}
 b. True
 c. False
 d. True
2. The connected components are {0, 3, 5, 6}, {1, 4, 7}, and {2}.
3. a. Vertices: {0, 1, 2, 3, 4, 5, 6, 7}
 Edges: {(0, 1), (0, 3), (0, 5), (1, 2), (2, 4), (3, 4), (4, 7), (5, 3), (5, 6), (6, 7)}
 b. The graph contains no cycles.

Koffman-c10.indd 536 10/30/2015 7:28:24 PM

 Chapter 10 Review 537

4. For the graph shown in Question 1:

1 1 1 1

1

1 1

1 1

1 1

1 1

1 1

1 1 1

1

1

11 1

1

[2]

Column

[1] [3] [4] [5] [6] [7][0]

R
ow

[2]

[1]

[3]

[4]

[5]

[6]

[7]

[0]

 For Question 2:

1

1

1

1 1

1

1

1 1

1 1

1

[2]

Column

[1] [3] [4] [5] [6] [7][0]

R
ow

[2]

[1]

[3]

[4]

[5]

[6]

[7]

[0]

 For Question 3:

1

1

1 1

1

11 1

1

1

[2]

Column

[1] [3] [4] [5] [6] [7]

R
ow

[2]

[1]

[3]

[4]

[5]

[6]

[7]

[0]

[0]

 For Question 1:

[0] → 1 → 3
[1] → 0 → 2 → 3 → 4
[2] → 1 → 4
[3] → 0 → 1 → 5 → 6
[4] → 1 → 2 → 6 → 7
[5] → 3 → 6
[6] → 3 → 4 → 5 → 7
[7] → 4 → 6

Koffman-c10.indd 537 10/30/2015 7:28:24 PM

538 Chapter 10 Graphs

 For Question 2:

[0] → 3 → 5

[1] → 4

[2] →

[3] → 0 → 5 → 6

[4] → 1 → 7

[5] → 0 → 3

[6] → 3

[7] → 4

 For Question 3:

[0] → 1 → 3 → 5

[1] → 2

[2] → 4

[3] → 4

[4] → 7

[5] → 3 → 6

[6] → 7

[7] →

6.

5 6

7

1

0

3

2 4

7.

6

7

4

3

2

1

0

5

8. 0, 5, 6, 3, 1, 2, 4, 7

Koffman-c10.indd 538 10/30/2015 7:28:25 PM

 Chapter 10 Review 539

 9.
Vertex Distance Path

1 10 0 → 1

2 25 0 → 1 → 2

3 30 0 → 3 (or 0 → 5 → 3)

4 30 0 → 1 → 2 → 4

5 20 0 → 5

6 25 0 → 5 → 6

7 40 0 → 5 → 6 → 7 (or 0 → 1 → 2 → 4 → 7)

10. 1 20

4

7

3

5 6

5 5

5
10

10
10

15

Koffman-c10.indd 539 10/30/2015 7:28:25 PM

Koffman-c10.indd 540 10/30/2015 7:28:25 PM

A p p e n d i x

541

A

T
his appendix reviews object‐oriented programming in Java. It is oriented to a student
who has had a first course in programming in Java or another language and who,
therefore, is familiar with control statements for selection and repetition, basic data

types, arrays, and methods or functions. If your first course was in Java, you can skim this
appendix for review or just use it as a reference as needed. However, you should read it more
carefully if your Java course did not emphasize object‐oriented design.

If your first course was not in Java, you should read this appendix carefully. If your first
course followed an object‐oriented approach but was in another language, you should con-
centrate on the differences between Java syntax and the language that you know. If you have
programmed only in a language that was not object‐oriented, you will need to concentrate
on aspects of object‐oriented programming and classes as well as Java syntax.

Introduction to Java

A p p e n d i x O b j e c t i v e s

 ◆ To understand the essentials of object‐oriented programming in Java

 ◆ To learn about the primitive data types of Java

 ◆ To understand how to use the control structures of Java

 ◆ To learn how to use predefined classes such as Math, String, StringBuilder, StringBuffer,
and StringJoiner

 ◆ To introduce regular expressions and Pattern and Matcher classes

 ◆ To learn how to write and document your own Java classes

 ◆ To understand how to use arrays in Java

 ◆ To understand how to use enumerators in Java

 ◆ To learn how to perform input/output (I/O) in Java using simple dialog windows

 ◆ To introduce the Scanner class for input and the Formatter class for output

 ◆ To learn how to perform I/O in Java using streams and readers

 ◆ To learn how to use the try‐catch‐finally sequence to catch and process exceptions

 ◆ To understand what it means to throw an exception and how to throw an exception in a
method

Koffman-a01.indd 541 10/30/2015 7:25:42 PM

542 Appendix A Introduction to Java

The appendix begins with an introduction to the Java environment and the Java Virtual
Machine (JVM). Next, it covers the basic data types of Java, called primitive data types, and
provides an introduction to objects and classes. Control structures and methods are then
discussed.

The Java Application Programming Interface (API) provides a rich collection of
classes that simplify programming in Java. The first Java classes that we cover are the
String, StringBuilder, StringBuffer, StringJoiner, and Math classes. The String class pro-
vides several methods and an operator + (concatenation) that process sequences of charac-
ters (strings). The Math class provides many methods for performing standard mathematical
computations.

Next, we show you how to design and write your own classes consisting of data fields
and methods. We also discuss the Java wrapper classes, which enable a programmer to create
and process objects that contain primitive‐type values.

We describe a specific format for comments in classes. Using this commenting style
enables you to generate HTML pages with clear and complete documentation for classes in
the same form as the Java documentation provided on the Sun Web site.

We also review array objects in Java. We cover both one‐ and two‐dimensional arrays.
Next, we discuss I/O. We show how to use the JOptionPane class (part of package

javax.swing) to create dialog windows for data entry and for output. We also show how to
use streams, readers, and the console for I/O.

Finally, we discuss how to handle exceptions and to throw exceptions.

I n t r o d u c t i o n t o J a v a

 A.1 The Java Environment and Classes
 A.2 Primitive Data Types and Reference Variables
 A.3 Java Control Statements
 A.4 Methods and Class Math
 A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes
 A.6 Wrapper Classes for Primitive Types
 A.7 Defining Your Own Classes
 A.8 Arrays
 A.9 Enumeration Types
 A.10 I/O Using Streams, Class Scanner, and Class JOptionPane
 A.11 Catching Exceptions
 A.12 Throwing Exceptions

A.1 The Java Environment and Classes

Before we talk about the Java language, we will briefly discuss the Java environment and how
Java programs are executed. Java, developed by Sun Microsystems Corporation, enjoys its
popularity because it is a platform‐independent, object‐oriented language and because cer-
tain kinds of Java programs, called applets, can be embedded in Web pages. Being platform
independent means that a Java program will run on any kind of computer. Although platform
independence is a goal for all high‐level language programs, it is not always achieved. Java

Koffman-a01.indd 542 10/30/2015 7:25:42 PM

A.1 The Java Environment and Classes 543

comes closer to achieving this goal than most by providing implementations of the JVM
(discussed next) for many platforms.

The Java Virtual Machine
Java is platform independent because the Java designers utilize the concept of a Java Virtual
Machine (JVM), which is a software “computer” that runs inside an actual computer. Before
you can execute a Java program, the classes in the Java program must first be translated from
the Java language in which they were written into an executable form in the traditional way
by a compiler program. Instead of a file of platform‐dependent machine‐language instruc-
tions, however, which is the normal output from a compiler, the Java compiler generates a file
of platform‐independent Java byte code instructions. When you execute the program, your
computer’s JVM interprets each byte code instruction and carries it out. The JVM for
machines running Microsoft Windows is different from the JVM for UNIX or Apple machines,
but they all process byte code instructions in the same way (see Figure A.1).

The Java Compiler
The Java compiler is also platform specific, even though it produces the same byte code file
for a given Java source program on all platforms. It must be platform specific because it
executes machine‐language instructions for a particular platform, and these instructions are
not the same for all platforms.

Classes and Objects
In Java and object‐oriented programming in general, the class is the fundamental program-
ming unit. Every program is written as a collection of classes, and all code that you write
must be part of a class. In Java, class definitions are stored in separate files with the extension
.java; the file name must be the same as the class name defined within.

A class is a named description for a group of entities (called objects or instances of the class)
that have the same characteristics. These characteristics are the attributes (data fields) for
each object and the operations (methods) that can be performed on these objects.

If you are new to object‐oriented design, you may be confused about the differences between
a class and an object. A class is a general description of a group of entities that all have the
same characteristics—that is, they can all perform the same kinds of actions, and the same
pieces of information are meaningful for all of them. The individual entities are objects. For
example, the class House would describe a collection of entities that each have a number of
bedrooms, a number of bathrooms, a kind of roof, and so on (but not a horsepower rating
or mileage); they can all be built, remodeled, assessed for property tax, and so on (but not
have their transmission fluid changed). The house where you live and the house where your
best friend lives can be represented by two objects of class House.

Classes extend Java by providing additional data types. For example, the class String is a
predefined class that enables the programmer to process sequences of characters easily. We
will discuss the String class in detail in Section A.5.

The Java API
The Java programming language consists of a relatively small core language augmented
by an extensive collection of packages (called libraries in other languages), which con-
stitute the Java API and give Java additional capabilities. Each package contains a
 collection of related Java classes. We will use several of these packages in this textbook.

Java
source files

Java compiler
for your platform

Byte
code files

JVM
for your platform

F I G U R E A . 1

Compiling and

Executing a Java

Program

Koffman-a01.indd 543 10/30/2015 7:25:43 PM

544 Appendix A Introduction to Java

Among them are the javax.swing package and the java.util package. You can find out
about these packages by accessing the Java Web site maintained by Oracle corporation at
http://docs.oracle.com/javase/8/docs/api/index.html.

Java documentation is provided as a linked collection of Web pages. In Section A.7, we will
discuss how you can write your own Java documentation that follows this style.

The import Statement
Next, we show a sample Java source file (HelloWorld.java) that contains an application pro-
gram (class HelloWorld). Our goal in the rest of this section is to give you an overview of the
process of creating and executing an application program. The statements in this program
will be covered in more detail later in this chapter.

import java.util.Scanner;

/** A HelloWorld class.
 * @author Koffman and Wolfgang
 */
public class HelloWorld {

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 System.out.print("Enter your name: ");
 String name = scanner.nextLine();
 System.out.println("Hello " + name + ", welcome to Java!");
 }
}

The Java source file begins with the statement
import java.util.Scanner;

This statement tells the Java compiler to make the class Scanner defined in the java.util
package accessible to this file. The semicolon at the end of the line is used to terminate a Java
statement.

Class HelloWorld begins with the line
public class HelloWorld {

which identifies HelloWorld as a public class and makes it visible to other classes (or the JVM).

Method main
The line

public static void main(String[] args) {

identifies the start of the definition for method main. This is the place where the JVM begins
the execution of an application program. The words public static void tell the compiler
that main is accessible outside of the class (public), it is a static method (explained in Section
A.4), and it does not return a value (void). The part in parentheses after main describes the
method’s parameters, an array of Strings. We always write the heading for method main in
this way.

The first statement declares a Scanner object that will be used to read input from the console
(Sytem.in). The second statement displays the message:

Enter your name:

on the console. The statement
String name = scanner.nextLine();

Koffman-a01.indd 544 10/30/2015 7:25:43 PM

http://docs.oracle.com/javase/8/docs/api/index.html

A.2 Primitive Data Types and Reference Variables 545

reads the characters that are typed on the console until the enter key is pressed. These char-
acters are converted to a String and placed in the variable name. Assuming that the string
“Katherine” was typed on the console, the statement:

System.out.println("Hello " + name + ", welcome to Java!");

will display the output:

Hello Katherine, welcome to Java!

Execution of a Java Program
You can compile and run class HelloWorld using an Integrated Development Environment (IDE)
or the Java Development Kit (JDK). If you are using an IDE, type this class into the edit window
for class HelloWorld.java and select Run. If you are not using an IDE, you must create this file
using an editor program and save it as file HelloWorld.java. Then you can use the command

javac HelloWorld.java

to get the Java compiler to compile it. This will create the Java byte code file called HelloWorld.
class.

The command
java HelloWorld

starts the JVM and causes it to execute the byte code instructions in file Hello World.class.
It begins execution with the byte code instructions for method main.

E X E R C I S E S F O R S E C T I O N A . 1

S E L F ‐ C H E C K

1. What is the Java Virtual Machine? Is it hardware or software? How does its role differ
from that of the Java compiler?

2. Explain the statement: You can write a Java program once and run it anywhere.

3. Explain the relationship between a class and an object. Which is general and which is
specific?

A.2 Primitive Data Types and Reference Variables

Java distinguishes between two kinds of entities: primitive types (numbers, characters) and
objects. Values associated with primitive‐type data are stored in primitive‐type variables.
Objects, however, are associated with reference variables, which store an object’s address. We
will discuss primitive types and introduce objects in this section; we describe objects in more
detail throughout the chapter.

Primitive Data Types
The primitive data types for Java represent numbers, characters, and boolean values (true,
false) (see Table A.1). Integers are represented by data types byte, short, int, and long; real
numbers are represented by float and double. The range of values for the data types is in
increasing order in Table A.1.

Koffman-a01.indd 545 10/30/2015 7:25:43 PM

546 Appendix A Introduction to Java

Type char is used in Java to represent characters. Java uses the Unicode character set (two
bytes per character), which provides a much richer set of characters than the ASCII character
set (one byte per character) used by many earlier languages. Table A.2 shows the first 128
Unicode characters, which correspond to the ASCII characters. These include the control
characters and the Basic Latin alphabet. The Unicode for each character, expressed as a

TA B L E A . 1

Java Primitive Data Types in Increasing Order of Range

Data Type Range of Values

byte –128 through 127

short –32,768 through 32,767

int –2,147,483,648 through 2,147,483,647

long –9,223,372,036,854,775,808 through 9,223,372,036,854,775,807

float Approximately ±10–38 through ±1038 and 0 with 6 digits precision

double Approximately ±10–308 through ±10308 and 0 with 15 digits precision

char The Unicode character set

boolean true, false

TA B L E A . 2

The First 128 Unicode Symbols

000 001 002 003 004 005 006 007

0 Null Space 0 @ P ` p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 Bell ' 7 G W g w

8 Backspace (8 H X h x

9 Tab) 9 I Y I y

A Line feed * : J Z j z

B Escape + ; K [k {

C Form feed , < L \ l |

D Return ‐ = M] m }

E . > N ^ n ~

F / ? O _ o delete

Koffman-a01.indd 546 10/30/2015 7:25:43 PM

A.2 Primitive Data Types and Reference Variables 547

 hexadecimal number, consists of the three‐digit column number (000 through 007) followed
by the row number (0 through F). For example, the Unicode for the letter Q is 0051, and the
Unicode for the letter q is 0071. The characters in the first two columns of Table A.2 and the
Unicode character 007F (delete) are control characters. The hexadecimal digits A through F
are equivalent to the decimal values 10 through 15. The hexadecimal number 007F is equiva-
lent to the decimal number 7 × 16 + 15.

Java uses type boolean to represent logical data. The boolean data type has only two values:
true and false. Some languages allow you to represent type boolean values using the integers
0 and 1, but Java does not allow you to do this.

Primitive‐Type Variables
Java uses declaration statements to declare and initialize primitive‐type variables.

int countItems;
double sum = 0.0;
char star = '*';
boolean moreData;

The second and third of the preceding statements initialize variables sum and star to the values
after the operator =. As shown, you can use primitive‐type values (such as 0.0 and '*') as
 literals in Java statements. A literal is a constant value that appears directly in a statement.

Identifiers, such as variable names in Java, must consist of some combination of letters, digits,
the underscore character, and the $ character, beginning with a letter. Identifiers can’t begin
with a digit.

 P R O G R A M S T Y L E

Java Convention for Identifiers
Many Java programmers use “camel notation” for variable names. All letters are
in lowercase except for identifiers that are made up of more than one word. The
first letter of each word, starting with the second word, is in uppercase (e.g.,
thisLongIdentifier). Camel notation gets its name from the appearance of the
identifier, with the uppercase letters in the interior forming “humps.”

Primitive‐Type Constants
Java programmers usually use all uppercase letters for constant identifiers, with an under-
score symbol between words. The keywords static final identify a constant value that is
static (more on this later) and final—that is, can’t be changed.

static final int MAX_SCORE = 999;
static final double G = 3.82;

Operators
Table A.3 shows the Java operators in decreasing precedence. We will not use any of the
bitwise operators, shifting operators, or conditional operator. The arithmetic operators (*, /,
+, –) can be used with any of the primitive numeric types or type char, but not with type
boolean. This is also the case for the Java remainder operator (%) and the increment (++) and
decrement (–) operators.

Koffman-a01.indd 547 10/30/2015 7:25:43 PM

548 Appendix A Introduction to Java

TA B L E A . 3

Operator Precedence

Rank Operator Operation Associativity

1 [] Array subscript Left

() Method call

. Member access

++ Postfix increment

‐‐ Postfix decrement

2 ++ Prefix increment Right

‐‐ Prefix decrement

+ ‐ Unary plus or minus

! Complement

~ Bitwise complement

(type) Type cast

new Object creation

3 *, /, % Multiply, divide, remainder Left

4 + Addition or string concatenation Left

‐ Subtraction

5 << Signed bit shift left Left

>> Signed bit shift right

>>> Unsigned bit shift right

6 <, <= Less than, less than or equal Left

>, >= Greater than, greater than or equal

instanceof Reference test

7 == Equal to Left

!= Not equal to

8 & Bitwise and Left

9 ^ Bitwise exclusive or Left

10 | Bitwise or Left

11 && Logical and Left

12 || Logical or Left

13 ?: Conditional Left

14 = Assignment Right

 *=, /=, %=, +=, ‐=,
 <<=, >>=, >>>=, &=, |=

Compound assignment

Koffman-a01.indd 548 10/30/2015 7:25:43 PM

A.2 Primitive Data Types and Reference Variables 549

Postfix and Prefix Increment
In Java you can write statements such as

i = i + 1;

using the increment operator:
i++;

This form is the postfix increment. You can also use the prefix increment
++i;

but the postfix increment (or decrement) is more common.

When the postfix form is used in an expression (e.g., x * i++), the variable i is evaluated and
then incremented. When the prefix form is used in an expression (e.g., x * ++i), the variable i
is incremented before it is evaluated.

EXAMPLE A .1 In the assignment
z = i++;

i is incremented, but z gets the value i had before it was incremented. So if i is 3 before the
assignment statement, z would be 3 and i would be 4 after the assignment. In the assignment
statement

z = ++i;

i is incremented and z gets its new value, so if i is 3 before the assignment, z and i would
both be 4 after the assignment statement.

 P I T F A L L

Using Increment and Decrement in Expressions with Other Operators
In the preceding example, the increment operator is used with the assignment operator
in the same statement. Similarly, the expression x * i++ uses the multiplication and
postfix increment operators. In this expression, the variable i is evaluated and then
incremented. When the prefix form is used in an expression (e.g., x * ++i), the variable
i is incremented before it is evaluated. However, you should avoid writing expressions
like these, which could easily be interpreted incorrectly by the human reader.

Type Compatibility and Conversion
In operations involving mixed‐type operands, the numeric type of the smaller range is con-
verted to the numeric type of the larger range. This means that if an operation involves a
type int and a type double operand, the type int operand is automatically converted to type
double. This is called a widening conversion.

In an assignment operation, a numeric type of a smaller range can be assigned to a numeric
type of a larger range; for example, a type int expression can be assigned to a type float or
double variable. Java performs the widening conversion automatically.

int item = . . . ;
double realItem = item; // Valid – automatic widening

Koffman-a01.indd 549 10/30/2015 7:25:43 PM

550 Appendix A Introduction to Java

However, the converse is not true.
double y = . . . ;
int x = y; // Invalid assignment

This statement is invalid because it attempts to store a real value in an integer variable. It
would cause the syntax error possible loss of precision; double, required: int. This
means that a type int expression is required for the assignment. You can use explicit type cast
operations to perform a narrowing conversion and ensure that the assignment statement will
be valid. In the following statement, the expression (int) instructs the compiler to cast the
value of y to type int before assigning the integer value to x.

int x = (int) y; // Cast to int before assignment

Referencing Objects
In Java, you can declare reference variables that can reference objects of specified types. For
example, the statement

String greeting;

declares a reference variable named greeting that can reference a String object. The statement
greeting = "hello";

specifies the particular String object to be referenced by greeting: the one that contains the
characters in the string literal "hello". What is actually stored in the memory cell allocated
to greeting is the address of the area in memory where this particular object of type String
is stored. We illustrate this in Figure A.2 by drawing an arrow from variable greeting to the
object that it references (type String, value is "hello"). In contrast, the memory cell allocated
to a primitive‐type variable stores a value, not an address. Just as with the primitive variable
declarations shown earlier, these two statements can be combined into one.

String greeting = "hello";

String objects are the only ones that can be created by assignment operations such as this
one. We describe how to create other kinds of objects in the next section.

Two reference variables can reference the same object. The statement
String welcome = greeting;

copies the address in greeting to welcome, so String variable welcome also references the
object shown in Figure A.2.

Creating Objects
The Java new operator can be used to create an instance of a class. The expression

new String("qwerty")

creates a new String instance (object) that stores the character sequence consisting of the first
six characters of the top row of letters on the standard keyboard (called a “qwerty” keyboard).
The expression new String("qwerty") invokes a special method for the String class called a
constructor. A constructor executes whenever a new object of any type is created; in this case,
it initializes the contents of a String object to the character sequence "qwerty".

greeting =

String

value = "hello"

F I G U R E A . 2

Variable greeting

References a String

Object

Koffman-a01.indd 550 10/30/2015 7:25:44 PM

A.3 Java Control Statements 551

The object created by the expression new String("qwerty") is an anonymous or unnamed
object. Normally we want to be able to refer to objects that we create. We can declare a refer-
ence variable of type String and assign this object to the reference variable:

String keyboard = new String("qwerty");

E X E R C I S E S F O R S E C T I O N A . 2

S E L F ‐ C H E C K

1. For the following assignment statement, assume that x, y are type double and m, n are type
int. List the order in which the operations would be performed. Include any widening and
narrowing conversions that would occur.
m = (int) (x * y + m / n / y * (m + x));

2. What is the value assigned to m in Exercise 1 when m is 5, n is 3, x is 2.5, and y is 2.0?

3. What is the difference between a reference variable and a primitive‐type variable?

4. Draw a diagram similar to Figure A.2 that shows the effect of the following statements.
String y = new String("abc");
String z = "def";
String w = z;

A.3 Java Control Statements

The control statements of a programming language determine the flow of execution through
a program. They fall into three categories: sequence, selection, and repetition.

Sequence and Compound Statements
A group of statements that is executed in sequence is written as a compound statement delim-
ited (enclosed) by braces. The statements execute in the order in which they are listed.

EXAMPLE A .2 The following statements constitute a compound statement:
{
 double x = 3.45;
 double y = 2 * x;
 int i = (int) y;
 i++;
}

Selection and Repetition Control
Table A.4 shows the Java control statements for selection and repetition. (Java uses the same
syntax for control structures as do C and C++.) We assume that you are familiar with basic
programming control structures from your first course, so we won’t dwell on them here. We
will discuss the enhanced for statement in Chapter 2.

Koffman-a01.indd 551 10/30/2015 7:25:44 PM

552 Appendix A Introduction to Java

TA B L E A . 4

Java Control Statements

Control Structure Purpose Syntax

if ... else Used to write a decision with conditions that select the
alternative to be executed. Executes the first (second)
alternative if the condition is true (false)

 if (condition) {
 . . .
 } else {
 . . .
 }

switch Used to write a decision with scalar values (integers,
characters, enumerators) or strings that select the
alternative to be executed. Executes the statements
following the label that is the selector value. Execution
falls through to the next case if there is no return or
break. Executes the statements following default if
the selector value does not match any label

 switch (selector) {
 case label : statements; break;
 case label : statements; break;
 . . .

 default : statements;
 }

while Used to write a loop that specifies the repetition
condition in the loop header. The condition is tested
before each iteration of the loop, and, if it is true, the
loop body executes; otherwise, the loop is exited

 while (condition) {
 . . .
 }

do . . . while Used to write a loop that executes at least once. The
repetition condition is at the end of the loop. The
condition is tested after each iteration of the loop, and,
if it is true, the loop body executes again; otherwise,
the loop is exited

 do {
 . . .

 } while (condition);

for Used to write a loop that specifies the initialization,
repetition condition, and update steps in the loop
header. The initialization statements execute before
loop repetition begins; the condition is tested before
each iteration of the loop and, if it is true, the loop
body executes; otherwise, the loop is exited. The
update statements execute after each iteration

 for (initialization; condition; update) {
 . . .
 }

for Used to write a loop that operates on each item in an
array (see Section A.8). Each time through the loop
body, the variable is assigned to the next item in the
array. This is known as the enhanced for statement

 for (type variable : array) {
 . . .
 }

In Table A.3, each condition is a boolean expression in parentheses. Type boolean expressions
often involve comparisons written using equality (==, !=) and relational operators (<, <=, >, >=).
For example, the condition (x + y > x – y) is true if the sum of the two variables shown is
larger than their difference. The logical operators ! (not or complement), && (and), and || (or)
are used to combine boolean expressions. For example, the condition (n >= 0 && n <= 10) is
true if n has a value between 0 and 10, inclusive.

Java uses short‐circuit evaluation, which means that evaluation of a boolean expression ter-
minates when its value can be determined. For example, if in the expression bool1 || bool2,
bool1 is true, the expression must be true, so bool2 is not evaluated. Similarly, in the expres-
sion bool3 && bool4, if bool3 is false, the expression must be false, so bool4 is not
evaluated.

Koffman-a01.indd 552 10/30/2015 7:25:44 PM

A.3 Java Control Statements 553

Nested if Statements
You can write if statements that select among more than two alternatives by nesting one if
statement inside another. Often each inner if statement will follow the keyword else of its
corresponding outer if statement.

EXAMPLE A .3 In the condition
(num != 0 && sum / num)

if num is 0, the expression following && is not evaluated. This prevents a division by zero.

EXAMPLE A .4 The operator % in the condition (nextInt % 2 == 0) gives the remainder after an integer divi-
sion, so the condition is true if nextInt is an even number. If maxVal has been defined, the
following loops (for loop on the left, while loop on the right) store the sum of the even inte-
gers from 1 to maxVal in variable sum (initial value 0), and they store the product of the odd
integers in variable prod (initial value 1).

for (int nextInt = 1; int nextInt = 1;
 nextInt <= maxVal; while (nextInt <= maxVal) {
 nextInt++) { if (nextInt % 2 == 0) {
 if (nextInt % 2 == 0) { sum += nextInt;
 sum += nextInt; } else {
 } else { prod *= nextInt;
 prod *= nextInt; }
 } nextInt++
} }

EXAMPLE A .5 The following nested if statement has four alternatives. The conditions are evaluated in
sequence until one evaluates to true. The compound statement following the first true condi-
tion then executes.

if (operator == '+') {
 result = x + y;
 addOp++;
}
else
 if (operator == '‐') {
 result = x ‐ y;
 subtractOp++;
 }
 else
 if (operator == '*') {
 result = x * y;
 multiplyOp++;
 }
 else
 if (operator == '/') {
 result = x / y;
 divideOp++;
 }

Koffman-a01.indd 553 10/30/2015 7:25:44 PM

554 Appendix A Introduction to Java

 P R O G R A M S T Y L E

Braces and Indentation in Control Statements
Java programmers often place the opening brace { on the same line as the control
statement header. The closing brace } aligns with the first word in the control
statement header. We will always indent the statements inside a control structure to
clarify the meaning of the control statement.

Although we write the symbols } else { on one line, another popular style convention
is to place the word else under the symbol } and aligned with if:

if (nextInt % 2 == 0) {
 sum += nextInt;
}
else {
 prod *= nextInt;
}

Some programmers omit the braces when a true task or false task or a loop body consists
of a single statement. Others prefer to include them always, both for clarity and because
having the braces will permit them to insert additional statements later if needed.

 P I T F A L L

Omitting Braces around a Compound Statement
The braces in the preceding example delimit compound statements. Each compound
statement consists of two statements. If you omit a brace, you will get the syntax
error 'else' without 'if'.

 P R O G R A M S T Y L E

Writing if Statements with Multiple Alternatives
Java programmers often write nested if statements like those in the preceding
example without indenting each nested if. The following multiple‐alternative decision
has the same meaning but is easier to write and read.

if (operator == '+') {
 result = x + y;
 addOp++;
} else if (operator == '‐') {
 result = x ‐ y;
 subtractOp++;
} else if (operator == '*') {
 result = x * y;
 multiplyOp++;
} else if (operator == '/') {
 result = x / y;
 divideOp++;
}

Koffman-a01.indd 554 10/30/2015 7:25:44 PM

A.4 Methods and Class Math 555

The switch Statement
The if statement in Example A.5 could also be written as the following switch statement.
Each case label (e.g., '+') indicates a possible value of the selector expression operator. The
statements that follow a particular label execute if the selector has that value. The break
statements cause an exit from the switch statement. Without them, execution would continue
on to the statements in the next case. The last case, with label default, executes if the selector
value doesn’t match any case label. (Note that the compound statements for each case are not
surrounded by braces.)

switch (operator) {
 case '+':
 result = x + y;
 addOp++;
 break;
 case '‐':
 result = x ‐ y;
 subtractOp++;
 break;
 case '*':
 result = x * y;
 multiplyOp++;
 break;
 case '/':
 result = x / y;
 divideOp++;
 break;
 default:
 // Do nothing
}

E X E R C I S E S F O R S E C T I O N A . 3

S E L F ‐ C H E C K

1. What is the purpose of the break statement in the preceding switch statement? List the
statements that would execute when operator is '–' with the break statements in place
and if they were removed.

2. What is the difference between a while loop and a do ... while loop? What is the mini-
mum number of repetitions of the loop body with each kind of loop?

P R O G R A M M I N G

1. Rewrite the for statement in Example A.4 using a do ... while loop.

A.4 Methods and Class Math

Java programmers can use methods to define a group of statements that perform a particular
operation. Methods are very similar to functions in other programming languages such as C
and C++. The Java method minChar that follows returns the character with the smaller

Koffman-a01.indd 555 10/30/2015 7:25:44 PM

556 Appendix A Introduction to Java

Unicode value. The statements beginning with keyword return cause an exit from the
method; the expression following return is the method result.

static char minChar(char ch1, char ch2) {
 if (ch1 <= ch2)
 return ch1;
 else
 return ch2;
}

The modifier static indicates that minChar is a static method or class method. A static
method must be called by listing the name of the class in which it is defined, followed by a
dot, then by the method name and any arguments. This is called dot notation. For example,
the statement

char ch = ClassName.minChar('a', 'A');

would store the letter A in ch because uppercase letters have smaller codes than lowercase
letters. (If method minChar is called within the class that defines it, the prefix ClassName. is
not needed.) If the modifier static does not appear in a method header, the method is an
instance method. We describe how to invoke instance methods next and show how to define
them afterward.

The Instance Methods println and print
Methods that are not preceded by the modifier static are instance methods. To call or
invoke an instance method, you need to apply it to an object using dot notation:

object.method(arguments)

One instance method that is useful for output operations is the method println (defined in
class PrintStream). It can be applied to the PrintStream object System.out (the console win-
dow), which is defined in the System class. It has a single argument of any data type. If x is a
type double variable, the statement

System.out.println(x);

displays the value of x in the console window. The statement
System.out.println("Value of x is " + x);

has a String expression as its argument (+ means concatenate, or join, strings). The string
consists of the character sequence Value of x is followed by the characters that represent
the value of variable x. If x is 123.45, the output line will be

Value of x is 123.45

You would get the same effect using the statement pair
System.out.print("Value of x is ");
System.out.println(x);

The method print also displays its argument in the console window. However, it does not
follow this information with the newline character, so the next execution of print or println
will display information on the same output line.

 P I T F A L L

Static Methods Can’t Call Instance Methods
A static method can call other static methods directly. Also, an instance method can call
a static method. However, a static method, including method main, can’t call an instance
method without first creating an object and applying the instance method to that object.

Koffman-a01.indd 556 10/30/2015 7:25:44 PM

A.4 Methods and Class Math 557

Call‐by‐Value Arguments
In Java, all method arguments are call‐by‐value. This means that if the argument is a primi-
tive type, its value (not its address) is passed to the method, so the method can’t modify the
argument value and have the modification remain after return from the method. Some other
programming languages provide a call‐by‐reference or call‐by‐address mechanism so that a
method can modify a primitive‐type argument.

If the argument is of a class type, the value that is passed to the method is the value of the
reference variable, not the value of the object itself (see Section A.2). The reference variable
value points to the object, allowing the method to access the object itself using the methods
of the object’s own class. Any modification to the object will remain after the return from the
method. This will be discussed in Section A.7.

The Class Math
Class Math is part of the Java language, and it provides a collection of methods that are useful
for performing common mathematical operations. These are all static methods, so the pre-
fix Math. is required in order to invoke a method of this class.

Table A.5 shows some of these methods. The first column shows the result type for each
method followed by its signature (the method name and the argument types). For example,
for method ceil, the first column shows that the method returns a type double result and
has a type double argument. The data type numeric means that any of the numeric types can
be used.

TA B L E A . 5

Class Math Methods

Method Behavior

static numeric abs(numeric) Returns the absolute value of its numeric argument (the result type is
the same as the argument type)

static double ceil(double) Returns the smallest whole number that is not less than its argument

static double cos(double) Returns the trigonometric cosine of its argument (an angle in radians)

static double exp(double) Returns the exponential number e (i.e., 2.718 . . .) raised to the power
of its argument

static double floor(double) Returns the largest whole number that is not greater than its argument

static double log(double) Returns the natural logarithm of its argument

static numeric max(numeric, numeric) Returns the larger of its numeric arguments (the result type is the same
as the argument types)

static numeric min(numeric, numeric) Returns the smaller of its numeric arguments (the result type is the same
as the argument type)

static double pow(double, double) Returns the value of the first argument raised to the power of the second
argument

static double random() Returns a random number greater than or equal to 0.0 and less than 1.0

static double rint(double) Returns the closest whole number to its argument

static long round(double) Returns the closest long to its argument

(Continued)

Koffman-a01.indd 557 10/30/2015 7:25:44 PM

558 Appendix A Introduction to Java

Escape Sequences
The main method in the following SquareRoots class contains a loop that displays the first 10
integers and their square roots (see Figure A.3).

public class SquareRoots {
 public static void main(String[] args) {
 System.out.println("n \tsquare root");
 for (int n = 1; n <= 10; n++) {
 System.out.println(n + "\t" + Math.sqrt(n));
 }
 }
}

The println statements use the escape sequence \t, the tab character, to align the column
label “square root” with the numbers in the second output column (see Figure A.3). An
escape sequence is a sequence of two characters beginning with the character \. Some escape
sequences are used for special output control characters. Others are used to represent char-
acters or symbols that have a special meaning in Java. For example, a double quote charac-
ter by itself is a string delimiter, so we need to use the sequence \" to represent the double
quote character in a string. Table A.6 lists some common escape sequences and their
meaning.

The escape sequence that starts with \u represents a Unicode character. The character code
uses four hexadecimal digits, where a hexadecimal digit is formed using four binary bits and
ranges from 0 (all bits 0) to F (all four bits 1). The hexadecimal digit A corresponds to a deci-
mal value of 10, and the hexadecimal digit F corresponds to a decimal value of 15.

Method Behavior

static int round(float) Returns the closest int to its argument

static double sin(double) Returns the trigonometric sine of its argument (an angle in radians)

static double sqrt(double) Returns the square root of its argument

static double tan(double) Returns the trigonometric tangent of its argument (an angle in radians)

static double toDegrees(double) Converts its argument (in radians) to degrees

static double toRadians(double) Converts its argument (in degrees) to radians

TA B L E A . 5

Continued

F I G U R E A . 3

Sample Run of Class

SquareRoots

Koffman-a01.indd 558 10/30/2015 7:25:45 PM

A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 559

A.5 The String, StringBuilder, StringBuffer, and
StringJoiner Classes

In this section, we discuss four Java classes that are used to process sequences of characters.
We begin with the String class.

The String Class
The String class defines a data type that is used to store a sequence of characters. Table A.7
describes some String class methods. The first column shows the result type for each method
followed by its signature. For example, for method charAt, the first column shows that the
method returns a type char result and has a type int argument. The second column describes

TA B L E A . 6

Escape Sequences

Sequence Meaning

\n Start a new output line

\t Tab character

\\ Backslash character

\" Double quote

\' Single quote or apostrophe

\udddd The Unicode character whose code is dddd where each digit d is a
hexadecimal digit in the range 0 to F (0–9, A–F)

E X E R C I S E S F O R S E C T I O N A . 4

S E L F ‐ C H E C K

1. Identify the escape sequences in the following string. Show how this line would be dis-
played. Which of the escape sequences could be replaced by the second character of the
pair without changing the effect?
System.out.println("Jane\'s motto is \n\"semper fi\"\n, according to Jim");

P R O G R A M M I N G

1. Write a Java program that displays all odd powers of 2 between 1 and 29. Display the
power that 2 is being raised to, as well as the result, on each line. Use tab characters
between numbers.

2. Write a Java program that displays n and the natural log of n for values of n of 1000, 2000,
4000, 8000, and so on. Display the first 20 lines for this sequence. Use tab characters
between numbers.

Koffman-a01.indd 559 10/30/2015 7:25:45 PM

560 Appendix A Introduction to Java

TA B L E A . 7

String Methods in java.lang.String

Method Behavior

char charAt(int pos) Returns the character at position pos

int compareTo(String) Returns a negative integer if this string’s contents precede the argument
string’s contents in the dictionary; returns 0 if this string and the
argument string have the same contents; returns a positive integer if this
string’s contents follow those of the argument string. This comparison is
case‐sensitive

int compareToIgnoreCase(String) Returns a negative, zero, or positive integer according to whether this
string’s contents precede, match, or follow the argument string’s contents
in the dictionary, ignoring case

boolean equals(Object) Returns true if this string’s contents are the same as its argument
string’s contents

boolean equalsIgnoreCase(String) Returns true if this string’s contents are the same as the argument
string’s contents, ignoring case

int indexOf(char)

int indexOf(String)

Returns the index within this string of the first occurrence of its
character or string argument, or –1 if the argument is not found

int indexOf(char, int index)

int indexOf(String, int index)

Returns the index within this string of the first occurrence of its first
character or string argument, starting at the specified index

int lastIndexOf(char)

int lastIndexOf(String)

Returns the index within this string of the rightmost occurrence of its
character or string argument

int lastIndexOf(char, int index)

int lastIndexOf(String, int index)

Returns the index within this string of the last occurrence of its first
character or string argument, searching backward and stopping at the
specified index

int length() Returns the length of this string

String replace(char oldChar, char

newChar)

Returns a new string resulting from replacing all occurrences of oldChar
in this string with newChar

String substring(int start) Returns a new string that is a substring of this string, starting at position
start and going to the end of the string

String substring(int start, int end) Returns a new string that is a substring of this string, starting with the
character at position start and ending with the character at position
end ‐ 1

String toLowerCase() Returns a new string in which all of the letters in this string are
converted to lowercase

String toUpperCase() Returns a new string in which all of the letters in this string are
converted to uppercase

String trim() Returns a new string in which all the white space is removed from both
ends of this string

static String format (String format,

Object... args)

Returns a new string with the arguments args formatted as prescribed
by the string format

String[] split(String pattern) Separates the string into an array of tokens, where each token is
delimited by a string that matches the regular expression pattern

Koffman-a01.indd 560 10/30/2015 7:25:45 PM

A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 561

what the method does. The phrase “this string” means the string to which the method is
applied by the dot notation. If type Object is listed as an argument type in column 1, any kind
of object can be an argument. (We discuss type Object in Chapter 1.)

EXAMPLE A .6 Assume that keyboard (type String) contains "qwerty". We evaluate several expressions:

keyboard.charAt(0) is 'q'.
keyboard.length() is 6.
keyboard.indexOf('o') is –1.
keyboard.indexOf('y') is 5.

The statement
String upper = keyboard.toUpperCase();

creates a new String object, referenced by the variable upper, that stores the character
sequence "QWERTY", but the String object referenced by keyboard is unchanged, as shown
here.

keyboard =

String

value = "qwerty"

upper =

String

value = "QWERTY"

Finally, the expression
keyboard.charAt(keyboard.length() – 1)

applies two instance methods to keyboard. The inner call, to method length, returns the value
6; the outer call, to method charAt, returns y, the last character in the string (at position 5).

The method substring returns a new string containing a portion of the String object to
which it is applied. If it is called with just one argument, the contents of the string returned
will be all characters from its argument position to the end of the string. If it is called with
two arguments, the contents of the string returned will be all characters from its first argu-
ment position up to, but excluding, the character at its second argument position. However,
the string to which method substring is applied is not changed.

EXAMPLE A .7 The expression
keyboard.substring(0, keyboard.length() – 1)

returns a new string "qwert" consisting of all characters except for the last character in the
string referenced by keyboard. The contents of keyboard are unchanged.

Koffman-a01.indd 561 10/30/2015 7:25:45 PM

562 Appendix A Introduction to Java

Strings Are Immutable
Strings are different from most other Java objects in that they are immutable. What this
means is that you cannot modify a String object. If you attempt to do so, Java will create a
new object that contains the modified character sequence. The following statements create a
new String object storing the character sequence "Koffman, Elliot" that is referenced by
myName (indicated by the black arrow in Figure A.4). The original String object still exists (at
least temporarily) and contains the character sequence "Elliot Koffman", but it is no longer
referenced by myName (indicated by the dashed arrow in Figure A.4).

String myName = "Elliot Koffman";
myName = myName.substring(7) + ", " + myName.substring(0, 6);

myName =

String

value = "Elliot Koffman"

String

value = "Koffman, Elliot"

F I G U R E A . 4

Old and New Strings

Referenced by

myName

 P I T F A L L

Attempting to Change a Character in a String
You might try to change the first character in myName using either of the following
statements:

myName.charAt(0) = 'X'; // Invalid attempt to change character at
 position 0
myName[0] = 'X'; // Invalid attempt to treat string as array

Both statements cause syntax errors. The first statement will not work because method
charAt returns a value, but a variable must precede the assignment operator. The
second statement attempts to change the first character in a string by treating it as an
array of characters. You can do this in some programming languages, but not in Java.

The Garbage Collector
Storage space for objects that are no longer referenced is automatically reclaimed by the Java
garbage collector so that the storage space can be reallocated and reused. The storage space
occupied by the first String object in Figure A.4 will be reclaimed by the garbage collector.
In other programming languages, the programmer is responsible for reclaiming any storage
space that is no longer needed.

Comparing Objects
You can’t use the relational (<, <=, >, >=) or equality operators (==, !=) to compare the values
stored in strings or other objects. After the assignment

String anyName = new String(myName);

Koffman-a01.indd 562 10/30/2015 7:25:45 PM

A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 563

the condition (anyName == myName) would be false, even though these variables have the
same contents. The reason is that the == operator compares the addresses stored in anyName
and myName, and the String objects that are referenced by these variables have different
addresses (see Figure A.5).

myName =

String

value = "Koffman, Elliot"

After String anyName = new String(myName);

anyName =

String

value = "Koffman, Elliot"

F I G U R E A . 5

Two String Objects

at Different Addresses

with the Same

Contents

To compare the character sequences stored in two String objects, you need to use one of the Java
String comparison methods: equals, equalsIgnoreCase, compareTo, or compareToIgnoreCase.
In general, if you want to compare instances of classes that you write, you will need to write
at least an equals and a compareTo method for that class.

EXAMPLE A .8 If you execute the statement
String otherName = anyName;

the variables anyName and otherName reference the same String object:

All of the following conditions are then true.
(anyName == otherName)
(anyName.equals(otherName))
(anyName.compareTo(otherName) == 0)
(anyName.equalsIgnoreCase(otherName))

If they had referenced different strings with the same contents, only the first condition would
be false because of the address comparison. If they referenced different strings that con-
tained the same words but one’s contents were in uppercase and the other’s contents were in
lowercase, only the last condition would be true.

anyName =

otherName =

String

value = "Koffman, Elliot"

The compareTo and compareToIgnoreCase operators return negative or positive values accord-
ing to whether the argument, in dictionary order, follows or precedes the string to which the
method is applied. If keyboard contains the string "qwerty", the expression

keyboard.compareTo("rest")

is negative because "r" follows "q". For the same reason, the expression
"rest".compareTo(keyboard)

is positive.

Koffman-a01.indd 563 10/30/2015 7:25:46 PM

564 Appendix A Introduction to Java

The compareTo method performs a case‐sensitive comparison, in which all of the uppercase
letters precede all of the lowercase letters. If keyboard (containing "qwerty") is compared
with "Rest", the results are the opposite of what we have just shown for comparing keyboard
with "rest": keyboard.compareTo("Rest") is positive because "R" precedes "q", and "Rest".
compareTo(keyboard) is negative.

To compare the contents of two strings in alphabetical order regardless of case, use the
 compareToIgnoreCase method: the expressions

keyboard.compareToIgnoreCase("rest")

keyboard.compareToIgnoreCase("Rest")

are both negative because "r" follows "q".

The String.format Method
Java uses a default format for converting the primitive types to Strings. This default format-
ting is applied when you output a primitive value using System.out.print or System.out.
println. For example, the output lines displayed by the statement

System.out.println(n + "\t" + Math.sqrt(n));

for n = 1 and n = 2 are as follows:
1 1.0
2 1.4142135623730951

Note that the numbers in each column are left‐justified and that a large number of significant
digits is shown for the square root of 2, but only one zero is shown for the square root of 1.
Java 5.0 introduced the Formatter class and the format method to the String class that give
us better control over the formatting of numeric values.

Using the String format method, we can rewrite the earlier println statement as
System.out.println(String.format("%2d%10.2f", n, Math.sqrt(n)));

Now the format method is called to build a formatted output string before println executes.
This statement displays the following output lines for n = 1 and n = 2:

 1 1.00
 2 1.41

The format method is unusual in that it takes a variable number of arguments. The first argu-
ment is a format string that specifies how the output string should be formed. The format
string above contains a sequence of two format codes, %2d and %10.2f. Each format code
describes how its corresponding argument should be formatted.

A format code begins with a % character and is optionally followed by an integer for width,
a decimal point and an integer for precision (optional), and a type conversion specification
(e.g., d for integer, f for real number, and s for string). The format code %2d means use two
characters to represent the integer value of its corresponding argument (n); the format code
%10.2f means use a total of 10 characters and 2 decimal places of precision to represent the
real value of its corresponding argument (Math.sqrt(n)).

The width specifier gives the minimum number of characters that are used to represent a
value. If more are required, then they will be inserted, but if fewer are required, then leading
spaces are used to fill the character count (to achieve right‐justification). If the width specifier
is omitted, then the exact number of characters required to represent the value with the pre-
scribed precision will be used.

The precision specifier (e.g., .2) is optional and applies only to the f‐type conversion specifi-
cation. It indicates the number of digits following the decimal point. If omitted, six digits are
displayed following the decimal point.

Koffman-a01.indd 564 10/30/2015 7:25:46 PM

A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 565

You can also have characters other than format codes inside a format string. The arguments
to be formatted are inserted in the formatted string exactly where their format specifiers
appear. For example, when n is 2, the statement

String.format("Value of square root of %d is %.3f", n, Math.sqrt(n))

creates the String
Value of square root of 2 is 1.414

The value 2 and the square root of 2 replace their format specifiers in the formatted string.
Because the width specifiers are omitted, the exact number of characters required to repre-
sent the values to the desired precision is used.

Other format conversion characters used in this text are s (for string) and n for newline.
The format code %10s causes its corresponding string argument to be formatted using 10
characters. Like numbers, strings are displayed right‐justified. The format code %‐10s will
cause the string to be displayed left‐justified. The format code %n will cause an operating
system‐specific newline sequence to be generated. On some operating systems, the newline
is indicated by the \n character, or by the sequence \r\n, and on others by \r. The println
method always terminates its output with the correct sequence for the operating system on
which the program is executing. Using %n achieves the same result when using method
format.

The Formatter Class
You can also use the java.util.Formatter class to create Formatter objects for writing for-
matted output to the console (or elsewhere). The statement

Formatter fOut = new Formatter(System.out);

creates a Formatter object fOut associated with the console. The statements
fOut.format("%2d%10.2f\n", 1, Math.sqrt(1));
fOut.format("%2d%10.2f\n", 2, Math.sqrt(2));

write to object fOut the pair of formatted strings shown earlier, each ending with a newline
character ('\n'). Each string written to fOut will be displayed in the console window. You can
actually apply the format method or the new printf method directly to System.out without
wrapping System.out in a Formatter object.

System.out.printf("%2d%10.2f\n", 1, Math.sqrt(1));
System.out.format("%2d%10.2f\n", 2, Math.sqrt(2));

The String.split Method
Often we want to process individual pieces, or tokens, in a string. For example, in the string
"Doe, John 5/15/65", we are likely to be interested in one or more of the particular pieces
"Doe", "John", "5", "15", and "65". These pieces would have to be extracted from the string
as tokens. You can retrieve tokens from a String object using the String.split method.

Introduction to Regular Expressions
The argument to the split method is a special kind of string known as a regular expression.
A regular expression is a string that describes another string or family of strings.

The simplest regular expression is a string that does not include any special characters, which
matches itself. For example, the string " " represents a single space, and the string ", " repre-
sents a comma followed by a space. For the statements

String personData = "Doe, John 5/15/65";
String[] tokens = personData.split(", ");

Koffman-a01.indd 565 10/30/2015 7:25:46 PM

566 Appendix A Introduction to Java

the string ", " matches the two characters following the letter e, so tokens[0] is "Doe" and
tokens[1] is "John 5/15/65". This is not quite what we desire, as tokens[1] needs to be split
further. The string personData is not changed by this operation. The character sequence
comma followed by space is often called a delimiter because it separates the tokens.

Matching One of a Group of Characters
A string enclosed in brackets ([and]) matches any one of the characters in the string, unless
the first character in the string is ^, in which case the match is to any character not in the
string that follows the ^. For example, the string "[, /]" will match a comma, a space, or a
slash, and the string "[^abc]" will match any character that is not a, b, or c. To match a range
of characters, separate the start and end character of the range with a '–'. For example,
"[a–z]" will match any lowercase letter. For the statement

tokens = personData.split("[, /]");

tokens[0] is "Doe", tokens[1] is an empty string because the space character in personData is
matched immediately by the space in the delimiter string, tokens[2] is "John", tokens[3] is
"5", tokens[4] is "15", and tokens[5] is "65", so we are closer to what we desire.

Qualifiers
Character groups match a single character. Qualifiers are applied to regular expressions to
define a new regular expression that conditionally performs a match. These qualifiers are
shown in Table A.8.

In the statement
String[] tokens = personData.split("[, /]+");

the argument "[, /]+" will match a string of one or more space, comma, and slash characters.
Therefore, tokens[0] is "Doe", tokens[1] is "John", tokens[2] is "5", and so on. This is what
we desire.

TA B L E A . 8

Regular Expression Qualifiers

Qualifier Meaning

X ? Optionally matches the regular expression X

X * Matches zero or more occurrences of regular expression X

X + Matches one or more occurrences of regular expression X

 P I T F A L L

Not Using the + Qualifier to Define a Delimiter Regular Expression
As we explained above, if we had omitted the + qualifier from the delimiter string
"[, /]", there would have been an empty string in the array of tokens. The reason for
this is that the comma after Doe would match the comma in the delimiter. The split
method would then save Doe in tokens[0] and search for another match to the
delimiter. It would immediately find the space, and since there were no characters
between the previously found delimiter and this one, an empty string would be stored.
Using the + qualifier ensures that the comma and space in personData are treated as a
single delimiter, not as two separate delimiters.

Koffman-a01.indd 566 10/30/2015 7:25:46 PM

A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 567

Defined Character Groups
Several character groups are defined and are indicated by a letter preceded by two backslash
characters. The defined groups are shown in Table A.9.

TA B L E A . 9

Defined Character Groups

Regular Expression Equivalent Regular Expression Description

\\d [0‐9] A digit

\\D [^0‐9] Not a digit

\\s [\t\n\f\r] A whitespace character (space,
tab, newline, formfeed, or return)

\\S [^\\s] Not a whitespace character

\\w [a‐zA‐Z_0‐9] A word character (letter,
underscore, or digit)

\\W [^\\w] Not a word character

EXAMPLE A .9 We want to extract the symbols from an expression. We define a symbol as a string of letter
or digit characters. The symbols are separated by one or more whitespace characters. The
statement

String[] symbols = expression.split("\\s+");

will split the string expression into an array of symbols separated by whitespace characters.

EXAMPLE A.10 We want to extract the words from a text. We define a word as a string of letter or digit char-
acters. The characters can be in any language. Thus, the delimiters are any string that consists
of one or more characters that are not letters or digits (e.g., whitespace, punctuation symbols,
and parentheses). The regular expression "[^\\P{L}\\P{N}]+" represents a string consisting
of one or more characters that are not letters or digits. The statement

String[] words = line.split("[^\\p{L}\\p{N}]+");

will split the string line consisting of letters, digits, special characters, and punctuation sym-
bols into an array of words. The meaning of \\p{L} and \\p{N} is discussed next.

Unicode Character Class Support
The groups shown in Table A.9 apply only to the first 128 Unicode characters, which is
adequate for processing English text. However, Java uses the Unicode characters that can be
used to represent languages other than English. In these other languages, a–z do not represent
all of the letters or may not be letters at all. For example, French includes the letters à, á, and
â, which are distinct from a. Greek uses characters such as α, β, and γ. Selected character
groups based on the Unicode character category are shown in Table A.10.

The StringBuilder and StringBuffer Classes
Java provides a class called StringBuilder that, like String, also stores character sequences.
However, unlike a String object, the contents of a StringBuilder object can be changed. Use
a StringBuilder object to store a string that you plan to change; otherwise, use a String

Koffman-a01.indd 567 10/30/2015 7:25:46 PM

568 Appendix A Introduction to Java

TA B L E A . 1 0

Regular Expressions for Selected Unicode Character Categories

Regular Expression Description

\\p{L} Letter

\\p{Lu} Uppercase letter

\\p{Ll} Lowercase letter

\\p{Lt} Titlecase letter

\\p{N} Numbers

\\p{P} Punctuation

\\p{S} Symbols

\\p{Zs} Spaces

TA B L E A . 1 1

StringBuilder Methods in java.lang.StringBuilder

Method Behavior

StringBuilder append(anyType) Appends the string representation of the argument to this
StringBuilder. The argument can be of any data type

int capacity() Returns the current capacity of this StringBuilder

StringBuilder delete(int start,

int end)

Removes the characters in a substring of this StringBuilder, starting
at position start and ending with the character at position end ‐ 1

StringBuilder insert(int offset,
anyType data)

Inserts the argument data (any data type) into this StringBuilder at
position offset, shifting the characters that started at offset to the
right

int length() Returns the length (character count) of this StringBuilder

StringBuilder replace(int start,

int end, String str)

Replaces the characters in a substring of this StringBuilder (from
position start through position end ‐ 1) with characters in the
argument str. Returns this StringBuilder

String substring(int start) Returns a new string containing the substring that begins at the
specified index start and extends to the end of this StringBuilder

String substring(int start,

int end)

Return a new string containing the substring in this StringBuilder
from position start through position end ‐ 1

String toString() Returns a new string that contains the same characters as this
StringBuilder object

object to store that string. Table A.11 describes the methods of class StringBuilder. In
Table A.11, “this StringBuilder” means the StringBuilder object to which the method is
applied through the dot notation. Methods append, delete, insert, and replace modify this
StringBuilder object.

The StringBuilder class was introduced in Java 5.0 as a replacement for the StringBuffer.
The StringBuffer has the same methods as the StringBuilder, but is designed for programs
that have multiple threads of execution. All programs presented in this text are single‐thread.

Koffman-a01.indd 568 10/30/2015 7:25:46 PM

A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes 569

EXAMPLE A.11 The following statements declare three StringBuilder objects using three different construc-
tors. The default capacity of an empty StringBuilder object is 16 characters. The capacity of
a StringBuilder object is automatically doubled as required to accommodate the character
sequence that is stored.

StringBuilder sB1 = new StringBuilder(); // Capacity is 16
StringBuilder sB2 = new StringBuilder(30); // Capacity is 30
StringBuilder sB3 = new StringBuilder("happy"); // Stores "happy"
 // Capacity 16

The following statements result in the character sequence "happy birthday to you" being
stored in sB3.

sB3.append("day me"); // "happyday me"
sB3.insert(9, "to "); // "happyday to me"
sB3.insert(5, " birth"); // "happy birthday to me"
sB3.replace(18, 20, "you"); // "happy birthday to you"

 P I T F A L L

String Index Out of Bounds
If an index supplied to any String, StringBuilder, or StringBuffer method is outside
the valid range of character positions for the string object (i.e., if the index is less than 0
or greater than or equal to the string length), a StringIndexOutOfBounds‐Exception will
occur. This is a run‐time error and will terminate program execution. We will discuss
exceptions in more detail in Section A.11.

Java 8 StringJoiner Class
Assume you have the array of Strings, names, as shown below:

[0] Tom

[1] Dick

[2] Harry

You can format this into the String "Tom, Dick, Harry" using a StringBuilder:
StringBuilder stb = new StringBuilder();
stb.append(names[0]);
for (int i = 1; i < names.length; i++) {
 stb.append(", ");
 stb.append(names[i]);
}
String result = stb.toString();

Note that you needed to apply special handling for the first element in the array, and then
start the loop at 1. The StringJoiner class was introduced in Java 8 to construct a sequence
of characters separated by a delimiter. It also provides for an optional prefix and suffix. You
can construct the String "Tom, Dick, Harry" with less effort using a StringJoiner:

StringJoiner sj = new StringJoiner(", ");
for (int i = 0; i < names.length; i++) {
 sj.add(names[i]);
}
String result = sj.toString();

Koffman-a01.indd 569 10/30/2015 7:25:47 PM

570 Appendix A Introduction to Java

The first line creates a new StringJoiner sj and specifies that the string ", " will be used as
the delimiter. In the loop, each element of array names is appended to sj.

Table A.12 describes the methods of class StringJoiner. The interface CharSequence is imple-
mented by the String, StringBuffer, and StringBuilder classes, so objects of these classes
may be used as arguments that are of type CharSequence.

TA B L E A . 1 2

StringJoiner Methods in java.util.StringJoiner

Method Behavior

StringJoiner(CharSequence delimeter) Constructs an empty StringJoiner with the provided
delimeter and no prefix or suffix

StringJoiner(CharSequence delimeter,

CharSequence prefix, CharSequence suffix)

Constructs an empty StringJoiner with the provided
delimeter, prefix, and suffix

StringJoiner add(CharSequence newElement) Adds a copy of the given input to the StringJoiner

int length() Returns the length of the resulting String

StringJoiner merge(StringJoiner other) Adds the contents of the other StringJoiner to this
StringJoiner. The other StringJoiner’s delimeter,
prefix, and suffix are not copied

StringJoiner setEmptyValue(CharSequence

emptyValue)

Sets the emptyValue to be returned by the toString method
if no elements have been added via the add method

String toString() Constructs a String consisting of the prefix, followed by
the contents with each element separated by the delimiter
and followed by the suffix. If no contents were added via a
call to add, then a String consisting of the prefix followed
by the suffix is returned, unless an empty value has been set

E X E R C I S E S F O R S E C T I O N A . 5

S E L F ‐ C H E C K

1. Evaluate each of these expressions.
"happy".equals("Happy")
"happy".compareTo("Happy")
"happy".equalsIgnoreCase("Happy")
"happy".equals("happy".charAt(0) + "Happy".substring(1))
"happy" == "happy".charAt(0) + "Happy".substring(1)

2. You want to extract the words in the string "Nancy* has thirty‐three*** fine!! teeth."
using the split method. What are the delimiter characters, and what should you use as the
argument string?

3. Rewrite the following statements using StringBuilder objects:
String myName = "Elliot Koffman";
String myNameFirstLast = myName;
myName = myName.substring(7) + ", " + myName.substring(0, 6);

4. Rewrite the statements of Exercise 3 using a StringJoiner object.

Koffman-a01.indd 570 10/30/2015 7:25:47 PM

A.6 Wrapper Classes for Primitive Types 571

A.6 Wrapper Classes for Primitive Types

We have seen that the primitive numeric types are not objects, but sometimes we need to
process primitive‐type data as objects. For example, we may want to pass a numeric value to
a method that requires an object as its argument. Java provides a set of classes called wrapper
classes whose objects contain primitive‐type values: Float, Double, Integer, Boolean,
Character, and so on. These classes provide constructor methods to create new objects that
“wrap” a specified value. They also provide methods to “unwrap,” or extract, an object’s
value and methods to compare two objects. Table A.13 shows some methods for wrapper
class Integer (part of java.lang). The other numeric wrapper classes also provide these
methods, except that method parseInt is replaced by a method parseClassType, where
ClassType is the data type wrapped by that class.

In earlier versions of Java, a programmer could not mix type int values and type Integer objects
in an expression. If you wanted to increment the value stored in Integer object nInt, you would
have to unwrap the value, increment it, and then wrap the value in a new Integer object:

int n = nInt.intValue();
nInt = new Integer(n++);

Java 5.0 introduced a feature known as autoboxing/unboxing for primitive types. This ena-
bles programmers to use a primitive type in contexts where an Object is needed or to use a
wrapper object in contexts where a primitive type is needed. Using autoboxing/unboxing,
you can rewrite the statements above as

int n = nInt;
nInt = n++;

or even as the single statement:
nInt++;

5. What is stored in result after the following statements execute?
StringBuilder result = new StringBuilder();
String sentence = "Let's all learn how to program in Java";
String[] tokens = sentence.split(\\s+);
for (String token : tokens) {
 result.append(token);
}

6. Revise Exercise 5 to insert a newline character between the words in result.

P R O G R A M M I N G

1. Write statements to extract the individual tokens in a string of the form "Doe, John

5/15/65". Use the indexOf method to find the string ", " and the symbol / and use the
substring method to extract the substrings between these delimiters.

2. Write statements to extract the words in Self‐Check Exercise 2 and then create a new String
object with all the words separated by commas. Use StringBuilder to build the new string.

3. For Self‐Check Exercise 4, write a loop to display all the tokens that are extracted.

4. Use a StringJoiner to create a string with a prefix of "(", a suffix of ")" and a delimiter
of " + ". Store the elements of String array symbols in the StringJoiner.

5. Redo Programming Exercise 4 using a StringBuilder.

Koffman-a01.indd 571 10/30/2015 7:25:47 PM

572 Appendix A Introduction to Java

TA B L E A . 1 3

Methods for Class Integer

Method Behavior

int compareTo(Integer anInt) Compares two Integers numerically

double doubleValue() Returns the value of this Integer as a double

boolean equals(Object obj) Returns true if the value of this Integer is equal to its
argument’s value; returns false otherwise

int intValue() Returns the value of this Integer as an int

static int parseInt(String s) Parses the string argument as a signed integer

String toString() Returns a String object representing this Integer’s value

EXAMPLE A.12 The first pair of the following statements creates two Integer objects. The next pair unboxes
the int value contained in each object. The next‐to‐last statement calls the static method
parseInt to parse its string argument to an int (not Integer) value. The last statement dis-
plays the value (35) wrapped in Integer object i1.

Integer i1 = 35; // Autoboxes 35.
Integer i2 = 1234; // Autoboxes 1234.
Integer i3 = i1 + i2; // Unboxes i1 and i2, autoboxes
 // their sum 1269, and assigns
 // it to i3.
int i2Val = i2++; // Unboxes i2, increments it to
 // 1235 and autoboxes it, and
 // assigns 1234 to i2Val.
int i3Val = Integer.parseInt("‐357"); // Parses "‐357" to –357 and
 // assigns it to i3Val.
Integer i4 = new Integer("753"); // Autoboxes 753 and assigns
 // it to i4.
System.out.println(i1); // Automatically calls
 // toString() and displays 35.

E X E R C I S E S F O R S E C T I O N A . 6

S E L F ‐ C H E C K

1. Do you think objects of a wrapper type are immutable or not? Explain your answer.

2. For objects i1, i2 in Example A.12, what do the following two statements display?
System.out.println(i1 + i2);
System.out.println(i1.toString() + i2.toString());

P R O G R A M M I N G

1. Write statements that double the value stored in the Integer object referenced by i1. Draw
a diagram showing the objects referenced by i1 before and after these statements execute.

2. There is no * (multiply) operator for type Integer objects. Suppose you have Integer objects
i1, i2, i3. Write a statement to multiply the three type int values in these objects and store
the product in an Integer object i4. Show how you would do this without using autoboxing/
unboxing.

Koffman-a01.indd 572 10/30/2015 7:25:47 PM

A.7 Defining Your Own Classes 573

A.7 Defining Your Own Classes

We mentioned earlier that a Java program is a collection of classes; consequently, when you
write a Java program, you will develop one or more classes. We will show you how to write
a Java class next.

A class Person might describe a group of objects, each of which is a particular human being.
For example, instances of class Person would be yourself, your mother, and your father.
A Person object could store the following data:

Given name
Family name
ID number
Year of birth

The following are a few of the operations that can be performed on a Person object:

Calculate the person’s age
Test whether two Person objects refer to the same person
Determine whether the person is old enough to vote
Determine whether the person is a senior citizen
Get one or more of the data fields for the Person object
Set one or more of the data fields for the Person object

Figure A.6 shows a diagram of class Person. This figure uses the Unified Modeling Language™
(UML) to represent the class. UML diagrams are a standard means of documenting class
relationships that is widely used in industry. The class is represented by a box. The top com-
partment of the box contains the class name. The data fields are shown in the middle com-
partment, and some of the methods are shown in the bottom compartment. Data fields are
also called instance variables because each class instance (object) has its own storage for
them. We discuss UML further in Appendix B.

Person

String givenName
String familyName
String IDNumber
int birthYear

int age()
boolean canVote()
boolean isSenior()

F I G U R E A . 6

Class Diagram for

Person

Figure A.7 shows how two objects or instances of the class Person (author1 and author2)
are represented in UML. A curved arrow from the reference variable for each object
(author1, author2) points to the object, as we have shown in previous figures. Each object
is represented by a box in which the top compartment contains the class name (Person),
underlined, and the bottom compartment contains the data fields and their values. (For
simplicity, we show the value of each String data field instead of a reference to a String
object.)

Listing A.1 shows class Person and the instance methods for this class. The lines that are delim-
ited by /** and */ are comments. They are program documentation, extremely important for

Koffman-a01.indd 573 10/30/2015 7:25:47 PM

574 Appendix A Introduction to Java

human programmers but ignored by the compiler. We discuss the form of the comments used
in class Person at the end of this section.

We declare four data fields and two constants (all uppercase letters) before the methods
(although many Java programmers prefer to declare methods before data fields). In the con-
stant declarations, the modifier final indicates that the constant value may not be changed.
The modifier static indicates that the constant is being defined for the class and does not
have to be replicated in each instance. In other words, storage for the constant VOTE_AGE is
allocated once, regardless of how many instances of Person are created.

Person

"Elliot"
"Koffman"
"010-55-0123"
1942

givenName =
familyName =

IDNumber =
birthYear =

author1 =

Person

"Paul"
"Wolfgang"
null
1900

givenName =
familyName =

IDNumber =
birthYear =

author2 =

F I G U R E A . 7

Object Diagrams of

Two Instances of Class

Person

L I S T I N G A . 1

Class Person

/** Person is a class that represents a human being. */
public class Person {
 // Data Fields
 /** The given name */
 private String givenName;
 /** The family name */
 private String familyName;
 /** The ID number */
 private String IDNumber;
 /** The birth year */
 private int birthYear = 1900;

 // Constants
 /** The age at which a person can vote */
 private static final int VOTE_AGE = 18;
 /** The age at which a person is considered a senior citizen */
 private static final int SENIOR_AGE = 65;

 // Constructors
 /** Construct a person with given values
 @param first The given name
 @param family The family name
 @param ID The ID number
 @param birth The birth year
 */

Koffman-a01.indd 574 10/30/2015 7:25:47 PM

A.7 Defining Your Own Classes 575

 public Person(String first, String family, String ID, int birth) {
 givenName = first;
 familyName = family;
 IDNumber = ID;
 birthYear = birth;
 }

 /** Construct a person with only an IDNumber specified.
 @param ID The ID number
 */
 public Person(String ID) {
 IDNumber = ID;
 }

 // Modifier Methods
 /** Sets the givenName field.
 @param given The given name
 */
 public void setGivenName(String given) {
 givenName = given;
 }

 /** Sets the familyName field.
 @param family The family name
 */
 public void setFamilyName(String family) {
 familyName = family;
 }

 /** Sets the birthYear field.
 @param birthYear The year of birth
 */
 public void setBirthYear(int birthYear) {
 this.birthYear = birthYear;
 }

 // Accessor Methods
 /** Gets the person's given name.
 @return the given name as a String
 */
 public String getGivenName() { return givenName; }

 /** Gets the person's family name.
 @return the family name as a String
 */
 public String getFamilyName() { return familyName; }

 /** Gets the person's ID number.
 @return the ID number as a String
 */
 public String getIDNumber() { return IDNumber; }

 /** Gets the person's year of birth.
 @return the year of birth as an int value
 */
 public int getBirthYear() { return birthYear; }

 // Other Methods
 /** Calculates a person's age at this year's birthday.
 @param year The current year
 @return the year minus the birth year
 */

Koffman-a01.indd 575 10/30/2015 7:25:47 PM

576 Appendix A Introduction to Java

 public int age(int year) {
 return year ‐ birthYear;
 }

 /** Determines whether a person can vote.
 @param year The current year
 @return true if the person's age is greater than or
 equal to the voting age
 */
 public boolean canVote(int year) {
 int theAge = age(year);
 return theAge >= VOTE_AGE;
 }

 /** Determines whether a person is a senior citizen.
 @param year the current year
 @return true if person's age is greater than or
 equal to the age at which a person is
 considered to be a senior citizen
 */
 public boolean isSenior(int year) {
 return age(year) >= SENIOR_AGE;
 }

 /** Retrieves the information in a Person object.
 @return the object state as a string
 */
 public String toString() {
 return "Given name: " + givenName + "\n"
 + "Family name: " + familyName + "\n"
 + "ID number: " + IDNumber + "\n"
 + "Year of birth: " + birthYear + "\n";
 }

 /** Compares two Person objects for equality.
 @param per The second Person object
 @return true if the Person objects have same
 ID number; false if they don't
 */
 public boolean equals(Person per) {
 if (per == null)
 return false;
 else
 return IDNumber.equals(per.IDNumber);
 }
}

Private Data Fields, Public Methods
The modifier private sets the visibility of each variable or constant to private visibility. This
means that these data fields can be accessed only within the class definition. Only class mem-
bers with public visibility can be accessed outside of the class.

The reason for having private visibility for data fields is to control access to an object’s data
and to prevent improper use and processing of an object’s data. If a data field is private, it can
be processed outside of the class only by invoking one of the public methods that are part of
the class. Therefore, the programmer who writes the public methods controls how the data
field is processed. Also, the details of how the private data are represented and stored can be

Koffman-a01.indd 576 10/30/2015 7:25:47 PM

A.7 Defining Your Own Classes 577

changed at a later time by the programmer who implements the class, and the other programs
that use the class (called the class’s clients) will not need to be changed.

Constructors
In Listing A.1, the two methods that begin with public Person are constructors. One of these
methods is invoked when a new class instance is created. The constructor with four param-
eters is called if the values of all data fields are known before the object is created. For exam-
ple, the statement

Person author1 = new Person("Elliot", "Koffman", "010‐055‐0123", 1942);

creates the first object shown in Figure A.7, initializing its data fields to the values passed as
arguments.

The second constructor is called when only the value of data field IDNumber is known at the
time the object is created.

Person author2 = new Person("030‐555‐5555");

In this case, data field IDNumber is set to "030‐555‐5555", but all the other data fields are ini-
tialized to the default values for their data type (see Table A.14) unless a different initial value
is specified (1900 for birthYear). The String data fields are initialized to null, which means
that no String object is referenced. You can use the modifier methods at a later time to set
the values of the other data fields. The statement

author2.setGivenName("Paul");

TA B L E A . 1 4

Default Values for Data Fields

Data Field Type Default Value

int (or other integer type) 0

double (or other real type) 0.0

boolean false

char \u0000 (the smallest Unicode character: the null character)

Any reference type null

sets the data field givenName to reference the String object "Paul". Note that there is no
setIDNumber method, so this data field value can’t be assigned or changed at a later time.

The No‐Parameter Constructor
A constructor with no parameters is called the no‐parameter constructor (or no‐argument
constructor). This constructor is sometimes called the default constructor because Java
automatically defines this constructor with an empty body for a class that has no construc-
tor definitions. However, if you define one or more constructors for a class, you must also
explicitly define the no‐parameter constructor, or it will be undefined for that class. Because
two constructors are defined for class Person, but the no‐parameter constructor is not, the
statement

Person p = new Person(); // Invalid call to no‐parameter constructor.

will not compile.

Koffman-a01.indd 577 10/30/2015 7:25:47 PM

578 Appendix A Introduction to Java

Modifier and Accessor Methods
Because the data fields have private visibility, we need to provide public methods to access
them. Normally, we want to be able to get or retrieve the value of a data field, so each data
field in class Person has an accessor method (also called getter) that begins with the word get
and ends with the name of the data field (e.g., getFamilyName). If we want to allow a class
user to update or modify the value of a data field, we provide a modifier method (also called
mutator or setter) beginning with the word set and ending with the name of the data field
(e.g., setGivenName). Currently, there is an accessor for each data field in this example and a
modifier for all but the IDNumber data field. The reason for this is to deny a client the ability
to change a person’s ID number.

The modifier methods are type void because they are executed for their effect (to update a
data field), not to return a value. In the method setBirthYear,

public void setBirthYear(int birthYear) {
 this.birthYear = birthYear;
}

the assignment statement stores the integer value passed as an argument in data field
 birthYear. (We explain the reason for this. in the next subsection.)

The accessor method for data field givenName,
public String getGivenName() { return givenName; }

is type String because it returns the String object referenced by givenName. If the class
designer does not want other users (clients) of the class to be able to access or change the data
field values, these methods can be given private visibility.

Use of this. in a Method
Method setBirthYear uses the statement

this.birthYear = birthYear;

to store a value in data field birthYear. We can use this.aDataField in a method to access a
data field of the current object. Because we used birthYear as a parameter in method
 setBirthYear, the Java compiler will translate birthYear without the prefix this. as referring
to the parameter birthYear, not to the data field. The reason is the declaration of birthYear
as a parameter is local to the method and, therefore, hides the data field declaration.

The Method toString
The last two methods, toString and equals, are found in most Java classes. The method
toString creates a String object that represents the information stored in an object (the state
of an object). The escape sequence \n is the newline character, and it terminates an output line
when the string is displayed. A client of class Person could use the statement

System.out.println(author1.toString());

to display the state of author1. In fact, the statement
System.out.println(author1);

would also display the state of author1 because System.out.println and System.out.print
automatically apply method toString to an object that appears in their argument list. The
following lines would be displayed by this statement.

Given name: Elliot
Family name: Koffman
ID number: 010‐055‐0123
Year of birth: 1942

Koffman-a01.indd 578 10/30/2015 7:25:47 PM

A.7 Defining Your Own Classes 579

The Method equals
The method equals compares the object to which it is applied (this object) to the object that
is passed as an argument. It returns true if the objects are determined to be the same based
on the data they store. It returns false if the argument is null or if the objects are not the
same. We will assume that two Persons are the same if they have the same ID number.

 P R O G R A M S T Y L E

Using toString Instead of Displaying Data Fields
Java programmers use method toString to build a string that represents the object
state. This string can then be displayed at the console, written to a file, displayed in a
dialog window, or displayed in a Graphical User Interface (GUI). This is more flexible
than the approach taken in many programming languages, in which each data field is
displayed or written to a file.

public boolean equals(Person per) {
 if (per == null)
 return false;
 else
 return IDNumber.equals(per.IDNumber);
}

The second return statement returns the result of the method call
IDNumber.equals(per.IDNumber)

Note that we can look at parameter per’s private IDNumber because per references an object of
this class (type Person). Because IDNumber is type String, the equals method of class String is
invoked with the IDNumber of the second object as an argument. If the two IDNumber data fields
have the same contents, the String equals method will return true; otherwise, it will return
false. The Person equals method returns the result of the String equals method. In Section 3.5,
we discuss the equals method in more detail and show you a better way to write this method.

 P R O G R A M S T Y L E

Returning a Boolean Value
Some programmers unnecessarily write if statements to return a boolean value. For
example, instead of writing

 return IDNumber.equals(per.IDNumber);

they write

 if (IDNumber.equals(per.IDNumber))
 return true;
 else
 return false;

Resist this temptation. The return statement by itself returns the value of the if
statement condition, which must be true or false. It does this in a clear and succinct
manner using one line instead of four.

Koffman-a01.indd 579 10/30/2015 7:25:47 PM

580 Appendix A Introduction to Java

Declaring Local Variables in Class Person
There are three other methods declared in class Person. Methods age, canVote, and isSenior
are all passed the current year as an argument. Method canVote calls method age to deter-
mine the person’s age. The result is stored in local variable theAge. The result of calling
method canVote is the value of the Boolean expression following the keyword return.

public boolean canVote(int year) {
 int theAge = age(year); // Local variable
 return theAge >= VOTE_AGE;
}

It really was not necessary to introduce local variable theAge; the call to method age could
have been placed directly in the return statement (as it is in method isSenior). We wanted,
however, to show you how to declare local variables in a Java method. The scope of the local
variable theAge and the parameter year is the body of method canVote.

 P I T F A L L

Referencing a Data Field or Parameter Hidden
by a Local Declaration
If you happen to declare a local variable (or parameter) with the same name as a data
field, the Java compiler will translate the use of that name in a method as meaning the
local variable (or parameter), not the data field. So if theAge was also declared as a data
field in class Person, the statement

 theAge++;

would increment the local variable, but the data field value would not change. To access
the data field instead of the local variable, use the prefix this., just as we did earlier
when a parameter had the same name as a data field.

 P I T F A L L

Using Visibility Modifiers with Local Variables
Using a visibility modifier with a local variable would cause a syntax error because a
local variable is visible only within the method that declares it. Therefore, it makes no
sense to give it public or private visibility.

An Application that Uses Class Person
To test class Person, we need to write a Java application program that contains a main
method. The main method should create one or more instances of class Person and display the
results of applying the class methods. Listing A.2 shows a class TestPerson that does this. To
execute the main method, you must compile and run class TestPerson. As long as Person and
TestPerson are in the same folder (directory), the application program will run. Figure A.8
shows a sample run.

Koffman-a01.indd 580 10/30/2015 7:25:47 PM

A.7 Defining Your Own Classes 581

Although we will generally write separate application classes such as TestPerson, you could
also insert the main method directly in class Person and then compile and run class Person.
Program execution will start at the main method, and the result will be the same. If you use
separate classes, make sure that you put them in the same folder (directory).

Objects as Arguments
We stated earlier that Java arguments are passed by value. For primitive‐type arguments, this
protects the value of a method’s argument and ensures that its value can’t be changed by the
method. However, this is not the case for arguments that are objects. If an argument is an
object, its address is passed to the method, so the method parameter will reference the same
object as the method argument. If the method happens to change a data field of its object
parameter, that change will be made to the object argument. We illustrate this next.

L I S T I N G A . 2

Class TestPerson

/** TestPerson is an application that tests class Person. */
public class TestPerson {
 public static void main(String[] args) {
 Person p1 = new Person("Sam", "Jones", "1234", 1940);
 Person p2 = new Person("Jane", "Jones", "5678", 2000);
 System.out.println("Age of " + p1.getGivenName() +
 " is " + p1.age(2014));
 if (p1.isSenior(2014))
 System.out.println(p1.getGivenName() +
 " can ride the subway for free");
 else
 System.out.println(p1.getGivenName() +
 " must pay to ride the subway");

 System.out.println("Age of " + p2.getGivenName() +
 " is " + p2.age(2014));
 if (p2.canVote(2014))
 System.out.println(p2.getGivenName() + " can vote");
 else
 System.out.println(p2.getGivenName() + " can't vote");
 }
}

F I G U R E A . 8

Sample Run of Class

TestPerson

EXAMPLE A.13 Suppose method changeGivenName is defined as follows:
public void changeGivenName(Person per) {
 per.givenName = this.givenName;
}

Also suppose a client program declares firstMan and firstWoman as reference variables of
type Person. After the method call

firstMan.changeGivenName(firstWoman)

Koffman-a01.indd 581 10/30/2015 7:25:48 PM

582 Appendix A Introduction to Java

Classes as Components of Other Classes
Class Person has three data fields that are type String, so String objects are components of
a Person object. In Figure A.10, this component relationship is indicated by the solid dia-
mond symbol at the end of the line drawn from the box representing class String to the box
representing class Person. Like the class diagram in Figure A.6 and the object diagrams in
Figure A.7, Figure A.10 is a UML diagram, showing the relationships between classes. We
will follow UML’s set of conventions for documenting class relationships in this book.

parameter per (declared in method changeGivenName) and reference variable firstWoman
(declared in the client) will reference the same object. The statement

per.givenName = this.givenName;

will set the givenName data field of the object referenced by per (and firstWoman) to reference
the same string as the givenName field of this object (the object referenced by firstMan).
Figure A.9 shows the givenName data field of the objects referenced by firstMan and
 firstWoman after the foregoing statement executes.

Person String

null
null
0

givenName =
familyName =

IDNumber =
birthYear =

value = "Adam"

firstMan =

Person

firstWoman =

String

value = "Eve"

null
null
0

givenName =
familyName =

IDNumber =
birthYear =

F I G U R E A . 9

Reference Variables firstMan and firstWoman

Person String

F I G U R E A . 1 0

UML Diagram Showing that String Objects Are Components of Class Person

Java Documentation Style for Classes and Methods
Java provides a standard form for writing comments and documenting classes, which we will
use in this book. If you use this form, you can run a program called Javadoc (part of the JDK)
to generate a set of HTML pages describing each class and its data fields and methods. These
pages will look just like the ones that document the Java API classes on the Oracle Corporation
Java Web site (https://docs.oracle.com/javase/8/docs/api/).

Koffman-a01.indd 582 10/30/2015 7:25:48 PM

https://docs.oracle.com/javase/8/docs/api

A.7 Defining Your Own Classes 583

The Javadoc program focuses on text that is enclosed within the delimiters /** and */. The
introductory comment that describes the class is displayed on the HTML page exactly as it is
written, so you should write that carefully. The lines that begin with the symbol @ are Javadoc
tags. They are described in Table A.15. In this book, we will use one @param tag for each
method parameter. We will not use a @return tag for void methods. The first line of the com-
ment for each method appears in the method summary part of the HTML page. The informa-
tion provided in the tags will appear in the method detail part. Figures A.11 through A.13
show part of the documentation generated by running Javadoc for a class Person similar to
the Person class in this chapter.

To run the Javadoc program, change to the directory that contains the source files that you
would like to process. Then, to create the HTML documentation files, enter the command

pathName\javadoc className1.java className2.java

where pathName is the directory that contains the Javadoc program, and the Java source file
names (className1.java, className2.java, etc.) follow the javadoc command. If you want
to show the private data fields and methods, add the command line argument –private. If

TA B L E A . 1 5

Javadoc Tags

Javadoc Tag and Example of Use Purpose

@author Koffman and Wolfgang Identifies the class author

@param first The given name Identifies a method parameter

@return The person's age Identifies a method return value

F I G U R E A . 1 1

Field Summary for

Class Person

Koffman-a01.indd 583 10/30/2015 7:25:48 PM

584 Appendix A Introduction to Java

F I G U R E A . 1 2

Method Summary for

Class Person

F I G U R E A . 1 3

Method Detail for

Class Person

Koffman-a01.indd 584 10/30/2015 7:25:49 PM

A.8 Arrays 585

you want to create documentation files for all the .java files in the directory, use the wildcard
* for the class name.

pathName\javadoc –private *.java

Another useful command line argument is –d destinationFolder, which allows you to specify
a folder or directory other than the source folder for the Javadoc HTML files.

E X E R C I S E S F O R S E C T I O N A . 7

S E L F ‐ C H E C K

1. Explain why methods have public visibility but data fields have private visibility.

2. Download file Person.java from the textbook Web site and run javadoc on it.

3. Trace the execution of the following statements.
Person p1 = new Person("Adam", "Jones", "wxyz", 0);
p1.setBirthYear(1990);
Person p2 = new Person();
p2.setGivenName("Eve");
p2.setFamilyName(p1.getFamilyName());
p2.setBirthYear(p1.getBirthYear() + 10);
if (p1.equals(p2))
 System.out.println(p1 + "\nis same person as\n\n" + p2);
else
 System.out.println(p1 + "\nis not the same person as\n\n" + p2);

P R O G R A M M I N G

1. Write a method getInitials that returns a string representing a Person object’s initials.
There should be a period after each initial. Write Javadoc tags for the method.

2. Add a data field motherMaidenName to Person. Write an accessor and a modifier method for
this data field. Modify class toString and class equals to include this data field. Assume
two Person objects are equal if they have the same ID number and mother’s maiden name.
Write Javadoc tags for the method.

3. Write a method compareTo that compares two Person objects and returns an appropriate
result based on a comparison of the ID numbers. That is, if the ID number of the object
that compareTo is applied to is less than (is greater than) the ID number of the argument
object, the result should be negative (positive). The result should be 0 if they have the same
ID numbers. Write Javadoc tags for the method.

4. Write a method switchNames that exchanges a Person object’s given and family names.
Write Javadoc tags for the method.

A.8 Arrays

In Java, an array is also an object. The elements of an array are indexed and are referenced
using a subscripted variable of the form:

arrayName[subscript]

Next, we show some different ways to declare arrays and allocate storage for arrays.

Koffman-a01.indd 585 10/30/2015 7:25:49 PM

586 Appendix A Introduction to Java

EXAMPLE A.14 The following statement declares a variable scores that references a new array object that can
store five type int values (subscripts 0 through 4) as shown. Each element is initialized to 0.

int[] scores = new int[5]; // An array with 5 type int values

scores =

int[]

[0]
[1]
[2]
[3]
[4]

0
0
0
0
0

EXAMPLE A.15 The following statement declares a variable names that references a new array object that can
store four type String objects. The values stored are specified in the initializer list.

String[] names = {"Sally", "Jill", "Hal", "Rick"};

names =

String[]

[0]
[1]
[2]
[3]

String

String

String

String

value = "Sally"

value = "Jill"

value = "Hal"

value = "Rick"

 P I T F A L L

Out‐of‐Bounds Subscripts
Some programming languages allow you to use an array subscript that is outside of the
array bounds. For example, if you attempt to reference scores[5], a C or C++ compiler
would access the first memory cell following the array scores. This is considered an
error, but it is not detected by the run‐time system and will probably lead to another
error that will be detected farther down the road (before it does too much damage, you
hope). Java, however, verifies that the current value of each array subscript is within
the array bounds. If it isn’t, you will get an ArrayIndexOutOfBoundsException error.

Koffman-a01.indd 586 10/30/2015 7:25:49 PM

A.8 Arrays 587

Data Field length
A Java array has a length data field that can be used to determine the array's size. The value
of names.length is 4; the value of people.length is the same as the value of n when storage
was allocated for the array. The subscripted variable people[people.length ‐ 1] references
the last element in array people. The following for statement can be used to display all the
Person objects stored in array people, regardless of the array size.

for (int i = 0; i < people.length; i++)
 if (people[i] != null)
 System.out.println(people[i] + "\n");

EXAMPLE A.16 The first of the following statements declares a variable people that can reference an array
object for storing type Person objects. Storage has not yet been allocated for the array object
(or for the Person objects). The second statement assumes that n is defined, possibly through
an input operation. The last statement allocates storage for an array object with n elements.
Each array element can reference a type Person object, but initially each element has the value
null (no object referenced).

// Declare people as type Person[].
Person[] people;
// Define n in some way.
int n = . . .
// Allocate storage for the array.
people = new Person[n];

We can create some Person objects and store them in the array. The following statements
store two Person objects in array people.

people[0] = new Person("Elliot", "Koffman", "010‐055‐0123", 1942);
people[1] = new Person("Paul", "Wolfgang", "015‐023‐4567", 1945);

 P I T F A L L

Forgetting to Declare Storage for an Array
As just shown, you can separate the declaration of variable people (the array reference
variable) from the step that actually allocates storage (people = new ...). However,
you can't reference the array elements before you allocate storage for the array.
Similarly, if the array elements reference objects, you must separately allocate storage
for each object.

P I T F A L L

Using length Incorrectly
The value of data field length is set when storage is allocated for the array, and it is
final. Therefore, it can’t be changed by the programmer. A statement such as
 people.length++; // invalid attempt to increment length

would cause a syntax error.

Another common error is using parentheses with length. The expression people.
length() causes a syntax error because length is a data field, not a method, of an array.

Koffman-a01.indd 587 10/30/2015 7:25:49 PM

588 Appendix A Introduction to Java

Method Arrays.copyOf
Although you can’t change the length of a particular array object, you can copy the values
stored in one array object to another array object using method Arrays.copyOf. This method
returns a copy of a given array and either truncates or pads the copy to a new length. The
method is overloaded for arrays of each primitive type, and there is a generic form for copying
arrays of class types.

EXAMPLE A.17 The following statements create a new array tempScores that is twice the size of array scores
and contains a copy of elements in array scores to the first half of array tempScores. The
remaining entries of tempScores are set to zero. Finally, we reset variable scores to reference
the same array as tempScores (see Figure A.14). The storage originally allocated to store the
elements of array scores can now be reclaimed by the garbage collector.

int[] tempScores = Arrays.copyOf(scores, 2 * scores.length);
scores = tempScores;

scores =
int[]

[0]
[1]
.
.

[k-1]

65
93

84

tempScores =
int[]

[0]
[1]
.
.

[k-1]
[k]
.
.
.

[2*k-1]

65
93

84
0

0

F I G U R E A . 1 4

Doubling the Size of

the Array Referenced

by Scores

Method System.arrayCopy
The method Arrays.copyOf makes a copy of the whole array. There is also the method
Arrays.copyOfRange, which makes a copy of a part of an array returning the selected part as
a new array. A general method that will copy a selected portion of an array into another array
is System.arrayCopy, which has the general form

System.arraycopy(source, sourcePos, destination, destPos, numElements);

The parameters sourcePos and destPos specify the starting positions in the source and desti-
nation arrays, respectively. The parameter numElements specifies the number of elements to
copy. If this number is too large, an ArrayIndexOutOfBoundsException error occurs.

System.arraycopy is effectively the following:
for (int k = 0; k < numElements; k++) {
 destination[destPos + k] = source[sourcePos + k];
}

but is implemented within the JVM using native machine code instructions that efficiently
copy a block of data from one location to another.

Koffman-a01.indd 588 10/30/2015 7:25:50 PM

A.8 Arrays 589

Array Data Fields
It is very common in Java to encapsulate an array, together with the methods that process it,
within a class. Rather than allocate storage for a fixed‐size array, we would like the client to
be able to specify the array size when an object is created. Therefore, we should define a con-
structor with the array size as a parameter and have the constructor allocate storage for the
array. Class Company in Listing A.3 has a data field employees that references an array of
Person objects. Both constructors allocate storage for a new array when a Company object is
created. The client of this class can specify the size of the array by passing a type int value to
the constructor parameter size. If no argument is passed, the no‐parameter constructor sets
the array size to DEFAULT_SIZE.

L I S T I N G A . 3

Class Company

/** Company is a class that represents a company.
 The data field employees provides storage for
 an array of Person objects.
 */
public class Company {
 // Data Fields
 /** The array of employees */
 private Person[] employees;

 /** The default size of the array */
 private static final int DEFAULT_SIZE = 100;

 // Methods
 /** Creates a new array of Person objects.
 @param size The size of array employees
 */
 public Company(int size) {
 employees = new Person[size];
 }

 public Company() {
 employees = new Person[DEFAULT_SIZE];
 }

 /** Sets field employees.
 @param emp The array of employees
 */
 public void setEmployees(Person[] emp) {
 employees = emp;
 }

 /** Gets field employees.
 @return employees array
 */
 public Person[] getEmployees() {
 return employees;
 }

 /** Sets an element of employees.
 @param index The position of the employee
 @param emp The employee
 */
 public void setEmployee(int index, Person emp) {
 if (index >= 0 && index < employees.length)
 employees[index] = emp;
 }

Koffman-a01.indd 589 10/30/2015 7:25:50 PM

590 Appendix A Introduction to Java

There are modifier and accessor methods that process individual elements of array Company
(setEmployee and getEmployee). Method getEmployee returns the type Person object at posi-
tion index, or null if the value of index is out of bounds.

The toString method returns a string representing the contents of array employees. In the for
loop, the argument in each call to method append is the string returned by applying method
Person.toString to the current employee. This string is appended to the string representing
the data for all employees with smaller subscripts.

The following main method illustrates the use of class Company and displays the state of
object comp.

public static void main(String[] args) {
 Company comp = new Company(2);
 comp.setEmployee(0, new Person("Elliot", "K", "123", 1942));
 comp.setEmployee(1, new Person("Paul", "W", "234", 1945));
 System.out.println(comp);
}

Array Results and Arguments
Method setEmployees in class Company takes a single argument emp that is type Person[]. The
assignment statement

employees = emp;

resets array employees to reference the array argument. Storage allocated to the array previ-
ously referenced by employees can then be reclaimed by the garbage collector.

The return value of method getEmployees is type Person[]. The statement
return employees;

returns a reference to the array employees.

Arrays of Arrays
A Java array can have other arrays as its elements. If all these arrays are of the same size, then
the array of arrays is a two‐dimensional array.

 /** Gets an employee.
 @param index The position of the employee
 @return The employee object or null if not defined
 */
 public Person getEmployee(int index) {
 if (index >= 0 && index < employees.length)
 return employees[index];
 else
 return null;
 }

 /** Builds a string consisting of all employee's
 data, with newline characters between employees.
 @return The object's state
 */
 public String toString() {
 StringBuilder result = new StringBuilder();
 for (int i = 0; i < employees.length; i++)
 result.append(employees[i] + "\n");
 return result.toString();
 }
}

Koffman-a01.indd 590 10/30/2015 7:25:50 PM

A.8 Arrays 591

In Java you can have two‐dimensional arrays with rows of different sizes. We illustrate this
in the next two examples.

EXAMPLE A.18 The declaration
double[][] matrix = new double[5][10];

allocates storage for a two‐dimensional array, matrix, that stores 50 real numbers in 5 rows
and 10 columns. The variable matrix[i][j] references the number with row subscript i and
column subscript j. You can also declare arrays with more than two dimensions.

matrix[0] =

matrix[1] =

matrix[2] =

matrix[3] =

matrix[4] =

matrix[0][9]

matrix[4][9]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

EXAMPLE A.19 The declaration
char[][] letters = new char[5][];

allocates storage for a two‐dimensional array of characters with five rows, but the number of
columns in each row is not specified. The statements

letters[0] = new char[4];
letters[1] = new char[10];

define the size of the first two rows and allocate storage for them. The subscripted variable
letters[0] references the first row; letters.length is 5, the number of rows in the array;
letters[1].length is 10, the number of elements in the row with subscript 1.

letters =

char[][]

[0]
[1]
[2]
[3]
[4]

char[]

[0]
[1]
[2]
[3]

char[]

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

Koffman-a01.indd 591 10/30/2015 7:25:50 PM

592 Appendix A Introduction to Java

EXAMPLE A.20 The declaration
int[][] pascal = {
 {1}, // row 0
 {1, 1}, // row 1
 {1, 2, 1},
 {1, 3, 3, 1},
 {1, 4, 6, 4, 1},
 };

allocates storage for an array of arrays with five rows. The initializer list provides the values
for each row, starting with row 0. The subscripted variable pascal[0] references the one‐
element array {1}, and pascal[4] references the array {1, 4, 6, 4, 1}. Each row has one
more element than the previous one. The values shown above form a well‐known mathemati-
cal entity called Pascal’s triangle. Each element in a row, except for the first and last elements,
is the sum of the two elements on either side of it in the previous row. For example, the
 number 6 in the last row is the sum of the numbers 3, 3 in the previous row. In mathematical
notation,

pascal[i + 1][j] = pascal[i][j ‐ 1] + pascal[i][j].

The first and last elements in each row are 1.

int[][]

[0]
[1]
[2]
[3]
[4]

int[]

[0]

pascal =

1

int[]

[0]
[1]

1
1

int[]

[0]
[1]
[2]

1
2
1

int[]

[0]
[1]
[2]
[3]

1
3
3
1

int[]

[0]
[1]
[2]
[3]
[4]

1
4
6
4
1

Koffman-a01.indd 592 10/30/2015 7:25:50 PM

A.8 Arrays 593

The following nested for statements sum all values in the Pascal triangle. In the outer for
loop header, the expression pascal.length is the number of rows in the triangle. In the inner
for loop header, the expression pascal[row].length is the number of columns in the array
with subscript row.

int sum = 0;
for (int row = 0; row < pascal.length; row++)
 for (int col = 0; col < pascal[row].length; col++)
 sum += pascal[row][col];

E X E R C I S E S F O R S E C T I O N A . 8

S E L F ‐ C H E C K

1. Show the output that would be displayed by method main following Listing A.3.

2. Show that the formula for the interior elements of a Pascal triangle row is correct by evalu-
ating it for each interior element of the last row.

3. What is the output of the following sample code fragment?
int[] x;
int[] y;
int[] z;
x = new int[20];
x[10] = 0;
y = x;
x[10] = 5;
System.out.println(x[10] + ", " + y[10]);
x[10] = 15;
z = new int[x.length];
System.arraycopy(x, 0, z, 0, 20);
x[10] = 25;
System.out.println(x[10] + ", " + y[10]+ ", " + z[10]);

4. What happens if you make a copy of an array of object references using method System.
arraycopy? If the objects referenced by the new array are changed, how will this affect the
original array?

5. Assume there is no initializer list for the Pascal triangle and you are trying to build up its
rows. If row i has been defined, write statements to create row i + 1.

P R O G R A M M I N G

1. Write code for a method
public static boolean sameElements(int[] a, int[] b)

 that checks whether two arrays have the same elements in some order, with the same mul-
tiplicities. For example, two arrays
121 144 19 161 19 144 19 11

 and
11 121 144 19 161 19 144 19

 would be considered to have the same elements because 19 appears three times in each
array, 144 appears twice in each array, and all other elements appear once in each array.

Koffman-a01.indd 593 10/30/2015 7:25:50 PM

594 Appendix A Introduction to Java

2. Write an equals method for class Company. The result should be true if the employees of
one company match element for element with the employees of a different company.
Assume that the objects referenced by each array employees are in order by ID number.

3. For the two‐dimensional array letters in Example A.19, assume letters[i] is going to
be used to store an array that contains the individual characters in String object next.
Allocate storage for letters[i] based on the length of next and write a loop that stores
each character of next in the corresponding element of letters[i]. For example, the first
character in next should be stored in letters[i][0].

A.9 Enumeration Types

In Java, we use classes and objects to represent things in the application domain. However,
there are cases where the things we wish to represent are discrete objects with no attributes.
For example, the colors of a traffic light: RED, YELLOW, and GREEN. One approach is to
assign arbitrary integer values.

final static int RED = 0;
final static int YELLOW = 1;
final static int GREEN = 2;

This approach has limitations. For example, assume we also wanted to represent the colors
of crayons:

final static int RED = 0;
final static int YELLOW = 1;
final static int BLUE = 2;
final static int GREEN = 3;
final static int ORANGE = 4;
final static int BROWN = 5;
final static int VIOLET = 6;
final static int BLACK = 7;

If these were both in the same program, there would be a conflict between the GREEN traffic
light and the GREEN crayon.

Another limitation is input/output. We want our user to be able to enter "GREEN" instead of
knowing that 2 represents green, and we want to output the string "GREEN" instead of the
number 2.

The Java enumeration type allows us to declare a set of identifiers that can then be used to
represent the concept in our application domain.

SYNTAX Enumeration Type Declaration
FORM:

enum enumName {enumIdentifiers}

EXAMPLE:

enum Traffic {RED, YELLOW, GREEN}

INTERPRETATION:

An enumeration type enumName is defined with the listed identifiers as members. An
enumeration type is a class and the enumIdentifiers are objects of the class. These
objects are constants. You cannot create additional instances of the enumeration type.

Koffman-a01.indd 594 10/30/2015 7:25:51 PM

A.9 Enumeration Types 595

Using Enumeration Types
You can create variables of enumeration types, compare enumeration values for equality, and
use them as case labels in switch statements. For example:

switch (lightColor) {
 case Traffic.GREEN:
 // keep going
 ...
 break;
 case Traffic.YELLOW:
 if (/* able to stop at stop line */)
 // apply brakes
 ...
 else
 // keep going
 ...
 break;
 case Traffic.RED:
 // apply brakes
 ...
 break;
}

Each enumeration type is a subtype of Enum<E> where the <E> is a generic parameter repre-
senting the enumeration type. (We explain generic parameters in more detail in Section 2.2.)
Thus, our Traffic example is a subclass of Enum<Traffic>. Table A.16 shows the methods
defined in Enum<E>.

For example, the following code
for (int i = 0; i < Traffic.values().length; i++) {
 System.out.println(Traffic.values()[i]);
}

will output
RED
YELLOW
GREEN

and the expression
Traffic.valueOf("RED")

will result in Traffic.RED.

TA B L E A . 1 6

Methods Defined in Enum<E>

Method Behavior

public static E[] values() Returns an array view of the enumeration.
The indices are assigned in the order in
which the enumerations were declared

public static E valueOf(String name) Returns the enumeration constant with the
specified name. The string must match
exactly the identifier used to declare
this enumeration value. If not, an
IllegalArgumentException is thrown
as described in Section A.12.

Koffman-a01.indd 595 10/30/2015 7:25:51 PM

596 Appendix A Introduction to Java

Assigning Values to Enumeration Types
An enumeration type declaration is a class declaration. Consequently, you can add additional
members to the enumeration class. For example, you can assign arbitrary values by adding a
field and providing a constructor. By default, the constructor is private and it is invoked when
the enumeration constants are declared. For example, you could declare an enumeration
Coin in which each enumeration identifier has a field value in parentheses which is the num-
ber of pennies it represents:

enum Coin {
 PENNY(1), NICKEL(2), DIME(10), QUARTER(25), HALF_DOLLAR(50);
 Coin(int value) {
 this.value = value;
 }
 private final int value;
 public int getValue() {return value;}
}

E X E R C I S E S F O R S E C T I O N A . 9

S E L F ‐ C H E C K

1. Define an enumeration Suit to represent the suits in a deck of cards: CLUBS, DIAMONDS,
HEARTS, and SPADES.

2. Define an enumeration Rank to represent the cards in a suit: DEUCE, TREY, FOUR,
FIVE, . . . NINE, TEN, JACK, QUEEN, KING, and ACE.

P R O G R A M M I N G

1. Define a class Card. This class should contain the Suit and Rank enumerations and two
final fields to contain the Suit and Rank. Define a toString method that returns the string
rank of suit, and a constructor that takes two Strings specifying the rank and suit.

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane

In this section, we will show you the basics of using streams for I/O in Java. An input stream
is a sequence of bytes representing program data. An output stream is a sequence of bytes
representing program output. You can store program data in the stream associated with the
console, System.in. When you type data characters at the console keyboard, they are
appended to System.in. The console window is associated with System.out, the standard
output stream. We have used methods print and println to write information to this stream.

Besides using the console for I/O, you can create and save a text file (using a word processor
or editor) and then use it as an input stream for a program. Similarly, a program can write
characters to an output stream and save it as a disk file. Classes BufferedReader and
FileReader are subclasses of Reader.

Internally Java works with characters. The conversion from bytes to characters is performed
by a Reader for input, and the conversion from characters to bytes is performed by a Writer
for output. We discuss the details of this conversion later in this section.

Koffman-a01.indd 596 10/30/2015 7:25:51 PM

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 597

The Scanner
The Scanner was introduced as part of Java 5.0. The Scanner greatly simplifies the process of
reading data from the console or an input file because it breaks its input into tokens that are
character sequences separated by whitespace (blanks and the newline character). For console
input, the next and hasNext methods suspend execution until input is provided. Table A.17
summarizes selected methods of this class.

To use a Scanner (part of java.util) to read from the console, you need to create a new
Scanner object and connect it the console (System.in)

Scanner scanConsole = new Scanner(Sytem.in);

We illustrate the use of a Scanner in the next example.

TA B L E A . 1 7

Selected Methods of the java.util.Scanner Class

Constructor Behavior

Scanner(File source) Constructs a Scanner that reads from the specified file

Scanner(InputStream source) Constructs a Scanner that reads from the specified InputStream

Scanner(Readable source) Constructs a Scanner that reads from the specified Readable object The
interface Readable is the superclass for Readers

Scanner(String source) Constructs a Scanner that reads from the specified String object

Method Behavior

boolean hasNext() Returns true if there is another token available for input

boolean hasNextDouble() Returns true if the next token can be interpreted as a double value

boolean hasNextInt() Returns true if the next token can be interpreted as an int value

boolean hasNextLine() Returns true if there is another line available for input

IOException ioException() Returns the IOException last thrown by the Readable object that is
used to read the input (The Scanner constructors create a Readable
object to perform the actual input.)

String next() Returns the next token

double nextDouble() Returns the next token as a double value. Throws
InputMismatchException if the input is not in the correct format

int nextInt() Returns the next token as an int value. Throws
InputMismatchException if the input is not in the correct format

String nextLine() Returns the next line of input as a string. A line is a sequence of
characters ending with the newline character (\n). It may contain several
tokens. The newline character is processed, but it is not included in the
string

String findInLine(String pattern) Attempts to find the next occurrence of a substring that matches the
regular expression defined by pattern. Returns the substring if found, or
null if not found

Koffman-a01.indd 597 10/30/2015 7:25:51 PM

598 Appendix A Introduction to Java

EXAMPLE A.21 The program in Listing A.4 prompts the user for a name, an integer value, another name, and
another integer value. It displays the sum of the two integer values read. A sample interaction
follows:

For your blended family,

enter the wife's name: Teresa Heinz

Enter the number of her children: 3

Enter the husband's name: John Kerry

Enter the number of his children: 2

Teresa Heinz and John Kerry have 5 children.

L I S T I N G A . 4

A Program for Counting Children in a Blended Family

import java.util.*;

/** A class to count and display children in a blended family.
 */
public class BlendedFamily {
 public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);
 System.out.print("For your blended family, \nenter the wife's name: ");
 String wife = sc.nextLine();
 System.out.print("Enter the number of her children: ");
 int herKids = sc.nextInt();

 System.out.print("Enter the husband's name: ");
 sc.nextLine(); // Skip over trailing newline character.
 String husband = sc.nextLine();
 System.out.print("Enter the number of his children: ");
 int hisKids = sc.nextInt();

 System.out.println(wife + " and " + husband + " have "
 + (herKids + hisKids) + " children.");

 }
}

P I T F A L L

Not Skipping the Newline Character before Reading a String
In the preceding example, we used the statement pair
 sc.nextLine(); // Skip over trailing newline character.
 String husband = sc.nextLine();

to read a string into husband. The purpose of the first statement is to process the
newline character at the end of the line containing the data value 3. If we did not include
the first statement, the newline character following the data value 3 would terminate
the scanning process immediately, storing an empty string in husband. Because data
entry for husband was completed without the need for typing in additional data, the line

 Enter the husband's name: Enter the number of his children:

would be displayed. At this point, if you enter the husband’s name, you will get an
InputMismatchException. If you enter an integer, you will get the incomplete output line:

 Teresa Heinz and have 5 children.

Koffman-a01.indd 598 10/30/2015 7:25:51 PM

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 599

Using a Scanner to Read from a File
You can also use a Scanner to read from a file. To do this, you need to create a new Scanner
object and connect it to the file.

Scanner scanFile = null;
String fileName = "dataFile.txt"; // data file name
try {
 scanFile = new Scanner(new File(fileName));
} catch (FileNotFoundException ex) {
 System.err.println(filename + " not found");
 System.exit(1);
}

We explain the try‐catch statement in the next section. The try block connects Scanner scan-
File to a data file; the name of the data file is stored in String fileName. The file name is
passed as an argument to the File constructor. Class File is in java.util.io, which must be
imported (as well as java.util for Scanner). The catch block executes if the specified file can-
not be found.

Exceptions
Exceptions are program errors that occur during the execution of a program. We will discuss
exceptions in great detail in Section A.11. In this section, we will tell you just enough about
them to enable you to use streams for I/O.

When you process streams, there is a reasonable chance that a system error will occur. For
example, the system may not be able to locate your file, or an error could occur during a file
read operation. For this reason, Java requires you to perform all file‐processing operations
within the try block of a try–catch sequence, as follows:

try {
 // Statements that perform file‐processing operations
} catch (IOException ex) {
 ex.printStackTrace(System.err); // Display stack trace
 System.exit(1); // Exit with an error indication
}

If all operations in the try block execute without error, the catch block is skipped. If an
IOException or error occurs, the try block is exited and the catch block executes. This catch
block simply displays the sequence of method calls that led to the error (starting with the
most recent one and working backward) in the console window (System.err—the standard
error stream) and then exits with an error indication. If we did not exit the catch block after
catching an error, the program would continue with the first statement following the catch
block.

Tokenized Input
Often a data line will consist of a group of data items separated by spaces. In Section A.5, we
discussed how to extract the individual items (tokens) from each line in order to process
them. You can also use a Scanner. The following loop adds all the numbers read from input
stream ins.

double sum = 0.0;
Scanner sc = new Scanner(ins);
while (sc.hasNextDouble()) {
 nextNum = sc.nextDouble();
 sum += nextNum;
}

Koffman-a01.indd 599 10/30/2015 7:25:51 PM

600 Appendix A Introduction to Java

Extracting Tokens Using Scanner.findInLine
You can use a Scanner to scan the characters in a string as well as the data in a file. The statement

Scanner scan = new Scanner(line);

creates a Scanner object to scan, or process the characters, in string line.

You can also extract substrings that match a specified pattern using Scanner method
 findInLine. If method findInLine is applied to scan, it will extract each sequence of charac-
ters in line matched by its regular expression argument. When there are no characters
remaining that match the regular expression, findInLine will return null. The statements
below store in token each sequence of digit and letter characters and display the tokens. Note
that this regular expression is the same as the one used with method split with the ^ (not)
symbol removed because we are extracting sequences of letters and digits instead of looking
for delimiter characters that are not letters or digits.

String token;
while ((token = scan.findInLine("[\\p{L}\\p{N}]+")) != null) {
 System.out.println(token);
}

Using a BufferedReader to Read from an Input Stream
To use files as input streams, you must import java.io:

import java.io.*;

You also need to create a BufferedReader object:
String fileName = args[0]; // The first main parameter
BufferedReader ins = new BufferedReader(new FileReader(fileName));

Although this looks fairly complicated, you can think of it as “boilerplate” (or a template for
creating a BufferedReader). The only part of this code that can change is the String argument
passed to the FileReader constructor (fileName in this example). Variable fileName refer-
ences the string passed as the first parameter (args[0]) to method main. This should be the
name of a data file.

The BufferedReader constructor needs a parameter that is type FileReader (or type
InputStreamReader). The BufferedReader class defines a method readLine that can be used to
read the next data line in a file (or typed at the console); the method returns a String object
that contains the characters in that data line.

Output Streams
To write to an output file, you need to create an output stream. Use statements such as

String outFileName = args[1]; // The second main parameter
PrintStream outs = new PrintStream(new FileOutputStream(outFileName));

You can apply method print or println to the PrintStream object outs. Variable outFile-
Name references the same string as args[1], the string passed as the second parameter to
method main. This should be the external name of a file. When object outs is created, the
stream it references is always empty. Any information previously stored in the file whose
name is passed to args[1] will be lost.

Passing Arguments to Method main
Earlier we set the variable fileName to reference the same string as args[0], the first param-
eter for method main. You must specify the main method parameters before you run an appli-
cation. When you are using the JDK and therefore running your applications from the console

Koffman-a01.indd 600 10/30/2015 7:25:51 PM

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 601

command line (such as an “MS‐DOS Prompt” window in Windows), you list the parameters
after the name of the class you are executing. For example, if you are running application
FileTest.java with parameters indata.txt and output.txt, use the command line

java FileTest indata.txt output.txt

When you are using an IDE, you can also specify parameters before running an application.
Netbeans provides an option in the Run submenu under the Properties menu. Selecting this
option brings up a window that has a text field with label Arguments. You can type the
parameters into this text field.

Closing Streams
After processing streams, you must disconnect them from the application. The statement

outs.close();

does this for stream outs. Data to be written to a file is stored in an output buffer in memory
before it is written to the disk. The close statement ensures that any data in the output buffer
is written to disk.

 P I T F A L L

Neglecting to Close an Output Stream
If you do not close a stream, it is not considered an error. However, you may find that
not all the information written to the stream is actually stored in the corresponding disk
file unless you close it.

Try with Resources
Properly closing the I/O streams can be tricky, especially if more than one stream is involved.
One or both may not have been created before an exception was thrown. Therefore, the code
to close the streams must be in a finally block (discussed below) and needs to check whether
the stream was opened and whether an exception was thrown. Java 7 introduced the try‐
with‐resources syntax to automatically close any streams when the block is exited either
normally or through an exception. The syntax is as follows:

try (// Declaration of input/output streams) {
 // statements that perform iI/O processing
} catch (IOException ex) {
 ex.printStackTrace();
 System.exit(1);
}

A Complete File‐Processing Application
We put all these pieces together in this example. In Listing A.5, the main method in class
FileTest consists of a try‐with‐resources sequence. The try block creates two BufferedReader
objects: ins1 (associated with data file1) and ins2 (associated with data file2). It also
creates a PrintStream object outs (associated with an output file). The while loop invokes
method readLine to read data lines from stream ins1, storing the information read from
each line in the String object first. When the end of the data file is reached, first will
contain null. If first is not null (the normal situation when a data line is read), a line is
read into String object second. If second is null, the loop is exited via the break statement.

Koffman-a01.indd 601 10/30/2015 7:25:51 PM

602 Appendix A Introduction to Java

L I S T I N G A . 5

Class FileTest

public class FileTest {
 /**
 * Reads a line from an one input file and then from a second input file.
 * Concatenates the two lines and writes them to an output file.
 * Does this until all input lines have been read from one of the files.
 *
 * @param args The command line arguments
 * args[0] The first input file name
 * args[1] The second input file name
 * args[2] The output file name
 */
 public static void main(String[] args) {
 if (args.length < 3) {
 System.err.println("Please provide three file names");
 System.exit(1);
 }
 try (
 BufferedReader ins1 = new BufferedReader(new FileReader(args[0]));
 BufferedReader ins2 = new BufferedReader(new FileReader(args[1]));
 PrintStream outs = new PrintStream(new FileOutputStream(args[2]);
) {
 // Reads words and writes them to the output file until done.
 String first;
 while ((first = ins1.readLine()) != null) { // Read from file1
 String second = ins2.readLine(); // Read from file2
 if (second == null) {
 break;
 }
 // Append and write
 outs.println(first + ", " + second);
 }
 } catch (FileNotFoundException ex1) {
 System.err.println(ex1);
 } catch (IOException ex2) {
 System.err.println(ex2);
 }
 }
}

Otherwise, the contents of second are appended to first, and the new string is written to
the output file.

outs.println(first + ", " + second); // Append and write

This process continues until the end of the data file is reached, loop exit occurs, and the files
are closed.

If file1.txt contains the three lines:
apple
cat
John

and if file2.txt contains the three lines:
butter
dog
Doe

Koffman-a01.indd 602 10/30/2015 7:25:51 PM

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 603

then the output file will contain:
apple, butter
cat, dog
John, Doe

Class InputStream and Character Codes (Optional)
Data is stored on external media or transmitted over the network as a sequence of bytes. The
abstract class InputStream declares the abstract method read as follows:

/**
 * Reads the next byte of data. The value is returned as an
 * int in the range 0 to 255. If no data is available because
 * the end of stream has been reached, then ‐1 is returned.
 */
public abstract int read();

Class FileInputStream is a subclass of InputStream defined to read bytes from a file. Recall
from Section A.2 that the Java char type is a 16‐bit value used to represent the Unicode char-
acters. The abstract class Reader defines the method read as follows:

/**
 * Reads a single character. The character read is returned as
 * an int in the range 0 to 65535, or ‐1 if the end of stream
 * has been reached.
 */
public int read();

Associated with the Reader is an InputStream. It is the Reader’s responsibility to convert the
bytes into characters. For bytes in the range of 0–127, this is straightforward (see Table A.2).
The class InputStreamReader is the bridge between byte streams and character streams. The
InputStreamReader uses the default character set to perform the conversion from byte values
in the range of 128–255 into corresponding Unicode characters. We discuss character codes in
the next section.

The class FileReader, which we used above, is a simple wrapper class that is effectively the
following:

class FileReader extends Reader {
 private Reader r;
 public FileReader(File file) {
 r = new InputStreamReader(new FileInputStream(file));
 }
 public int read() throws IOException {
 return r.read();
 }
}

Similarly, when we construct a Scanner object from a file, the constructor creates a
FileInputStream and then wraps it in an InputStreamReader.

The Default Character Coding (Optional)
The default character set depends on the native operating system and the locale. On a
Windows computer in the United States, the default character set is known as Cp1252 and is
shown in Table A.18.

Using the default character encoding is fine if files are read and written by computers with the
same operating system and at the same locale. However, if one wrote a file using the Cp1252
character encoding and then tried to read this file on a Macintosh computer that uses MacRoman
as its default, some characters would have different interpretations. For example, a byte value
of x80 representing the euro symbol € (\U20AC) in Cp1252 would be interpreted as the character

Koffman-a01.indd 603 10/30/2015 7:25:51 PM

604 Appendix A Introduction to Java

Ä (\U00C4) on the Mac. If the same file read on a Windows computer in Poland, which uses the
default character coding Cp1250, the euro character would be read correctly, but a byte value
of xF8 representing the ø character (\U00F8) would be interpreted as ř (\U0159).

UTF‐8 (Optional)
The Universal Character Set Transform Format‐8 bit (UTF‐8) is a character encoding that can
encode all possible Unicode characters. UTF‐8 is used on most web pages and is the preferred
coding scheme for file interchange. A variable number of bytes are used as shown in Table A.19.
Unicode characters are called code points and are represented by U+xxxx, where xxxx is the

TA B L E A . 1 8

Code Table for the Cp1252 Character Set

8 9 A B C D E F

0 €

20AC

00A0

°

00B0

À

00C0

Ð

00D0

à

00E0

ð

00F0

1 ’
2018

¡

00A1

±

00B1

Á

00C1

Ñ

00D1

á

00E1

ñ

00F1

2 ’
2014

’
2019

¢

00A2

²

00B2

Â

00C2

Ò

00D2

â

00E2

ò

00F2

3 ƒ

0192

”
201C

£

00A3

³

00B3

Ã

00C3

Ó

00D3

ã

00E3

ó

00F3

4 „

201E

”
201D

¤

00A4

´

00B4

Ä

00C4

Ô

00D4

ä

00E4

ô

5 ...

2126

2022

¥

00A5

μ

00B5

Å

00C5

Õ

00D5

å

00E5

õ

00F5

6 †

2020

–

2013

¦

00A6

¶

00B6

Æ

00C6

Ö

00D6

æ

00E6

ö

00F6

7 ‡

2021

—

2014

§

00A7

·

00B8

Ç

00C7

×

00D7

ç

00E7

÷

00F7

8 ˆ

02c6

˜

02DC

¨

00A8

¸

00B8

È

00C8

Ø

00D8

è

00E8

ø

00F8

9 ‰

2030

™

2122

©

00A9

¹

00B9

É

00C9

Ù

00D9

é

00E9

ù

00F9

A Š

0160

š

0161

ª

00AA

º

00BA

Ê

00CA

Ú

00DA

ê

00EA

ú

00FA

B ‹

2039

›

203A

«

00AB

»

00BB

Ë

00CB

Û

00DB

ë

00EB

û

00FB

C Œ

0152

œ

0153

¬

00AC

¼

00BC

Ì

00CC

Ü

00DC

ì

00EC

ü

00FC

D –

00AD

½

00BD

Í

00CD

Ý

00DD

Í

00ED

ý

00FD

E Ž

017D

ž

017E

®

00AE

¾

00BE

Î

00CE

Þ

00DE

î

00EE

þ

00FE

F Ÿ

0178

¯

00AF

¿

00BF

Ï

00CF

ß

00DF

ï

00EF

ÿ

00FF

Koffman-a01.indd 604 10/30/2015 7:25:52 PM

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 605

hexadecimal value. Note that Unicode contains more than 65,535 code points. Java internally
uses UTF‐16 that represents the code points U+0000 to U+D7FF and U+E000 to U+FFFF
exactly, and represents the remaining code points as two adjacent Java characters.

Observe that the first 128 characters are represented by a single byte. The first byte of a
multibyte sequence begins with a number of 1 bits that indicates how many bytes are in the
sequence. The xs in the table represent the individual bits in the code point. For a code point
that requires 11 bits, the high‐order 5 bits follow the 110 in the first byte, and the remaining
6 bits follow the 10 in the second byte. For a code point that requires 16 bits, the first 4 bits
follow the 1110 in the first byte and the remaining 12 bits are placed in the second and third
bytes following the 10. For example, the euro character (U+20AC) requires 16 bits (0010
0000 1010 1100). Splitting these 16 bits into a 4‐bit group followed by two 6‐bit groups gives
0010 000010 101100. Thus, the UTF‐8 encoding is the byte sequence 11100010 10000010

10101100 or in hexadecimal C2 82 AC.

Specifying a Character Encoding (Optional)
The FileReader class shown earlier is a convenience class that creates a Reader that uses the
default character encoding. To use a specified encoding, such as UTF‐8, we need to use a
FileInputStream to read the data and an InputStreamReader to perform the character coding:

BufferedReader ins = new BufferedReader(new InputStreamReader
 (new FileInputStream(args[0]), "UTF‐8"));

Input/Output Using Class JOptionPane
So far we have discussed console input and input from files. Many of the interactive pro-
grams you see use dialog windows for input and message windows for output (Table A.20).
Class JOptionPane (part of the Swing package) enables this type of interaction. To use class
JOptionPane, you should place the line

import javax.swing.JOptionPane; // Import class JOptionPane

before the class definition in your source file.

TA B L E A . 1 9

UTF‐8 Coding

Bits in Code

Point

First Code

Point

Last Code

Point

Number of

Bytes

First

Byte

Second

Byte

Third

Byte

Fourth

Byte

 7 U+0000 U+007F 1 0XXXXXXX

11 U+0080 U+07FF 2 110XXXXX 10XXXXXX

16 U+0800 U+FFFF 3 1110XXXX 10XXXXXX 10XXXXXX

21 U+10000 U+1FFFF 4 11110XXX 10XXXXXX 10XXXXXX 10XXXXXX

TA B L E A . 2 0

Methods from Class JOptionPane

Method Behavior

static String showInputDialog(String prompt) Displays a dialog window that shows the argument as a
prompt and returns the character sequence typed by the user

static void showMessageDialog(Object parent,

String message)

Displays a window containing a message string (the second
argument) inside the specified container (the first argument)

Koffman-a01.indd 605 10/30/2015 7:25:52 PM

606 Appendix A Introduction to Java

Converting Numeric Strings to Numbers
A dialog window always returns a reference to a string. How can we convert numeric strings
to numbers? Fortunately, as shown in Table A.21, class Integer provides a static method,
parseInt, for converting strings consisting only of digit characters to numbers, and class
Double provides a static method, parseDouble, for converting strings consisting of the charac-
ters for a real number (or integer) to a type double value.

TA B L E A . 2 1

Methods for Converting Strings to Numbers

Method Behavior

static int parseInt(String) Returns an int value corresponding to its argument string.
A NumberFormatException occurs if its argument string contains
characters other than digits

static double parseDouble(String) Returns a double value corresponding to its argument string.
A NumberFormatException occurs if its argument string does not
represent a real number

EXAMPLE A.23 The next pair of statements stores a type int value in numStu if answer references a String
object that contains digit characters only.

String answer = JOptionPane.showInputDialog("Enter number of students");
int numStu = Integer.parseInt(answer);

EXAMPLE A.22 The statement
String name = JOptionPane.showInputDialog("Enter your name");

displays the dialog window shown on the left in Figure A.15. After the OK button is
clicked or the Enter key is pressed, variable name references a String object that stores the
character sequence "Jane Doe". If Cancel is clicked, variable name stores null. The
statement

JOptionPane.showMessageDialog(null, "Your name is " + name);

displays the message window shown on the right in Figure A.15. The first argument specifies
the parent container in which this window will be placed. When the argument is null, the
dialog window is placed in the middle of the screen (the window in which the program is
executing).

F I G U R E A . 1 5

A Dialog Window

(Left) and Message

Window (Right)

Koffman-a01.indd 606 10/30/2015 7:25:52 PM

A.10 I/O Using Streams, Class Scanner, and Class JOptionPane 607

P I T F A L L

Using Nonnumeric Strings with parseInt, parseDouble
If you pass to parseInt a String that contains characters that are not digit characters, you
will get a NumberFormatException error. If you pass to parseDouble a String that contains
characters that can’t be in a number, you will also get a NumberFormatException error.

GUI Menus Using Method showOptionDialog
Another useful method from class JOptionPane is method showOptionDialog. This method
displays a menu of choices with a button for each choice (see Figure A.16). When a button is
clicked, the method returns the index of the button pressed (0 for the first button, etc.). The
index value can be used in a switch statement to select an alternative.

EXAMPLE A.24 The statements
String[] choices = {"insert", "delete", "add", "display"};
int selection = JOptionPane.showOptionDialog(null,
 "Select an operation",
 "Operation menu",
 JOptionPane.YES_NO_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE, null,
 choices, choices[0]);

display the menu shown in Figure A.16. The array choices defines the button labels. After a
button is clicked, the value stored in selection will be the index of that button, an integer
from 0 to 3.

F I G U R E A . 1 6

Displaying a Menu

E X E R C I S E S F O R S E C T I O N A . 1 0

S E L F ‐ C H E C K

1. Show the statements that would be required, using the console for input, to read and store
the data for a Person object prior to calling the constructor with four parameters.

2. Answer Exercise 1 above using a data file instead of the console.

3. What would happen if the output file name matched the name of a file already saved on
disk? What could happen if the user forgets to close an output file?

4. When does the catch block in a try–catch sequence execute?

Koffman-a01.indd 607 10/30/2015 7:25:52 PM

608 Appendix A Introduction to Java

A.11 Catching Exceptions

When an exception is thrown, the normal sequence of execution is interrupted because the
execution of subsequent statements would most likely be erroneous. The default behavior is
for the JVM to halt program execution and to display an error message indicating which type
of exception was thrown and where in the program it was thrown. The JVM also displays a
stack trace that shows the sequence of method calls, starting at the method that threw the
exception, then showing the method that called that method, and so on, all the way back to
the main method.

The stack trace in Figure A.17 shows that an exception occurred during the execution of
class ExceptionDemo. The exception was a NullPointerException. The exception was thrown
in method doSomethingElse (at line 18 of class ExceptionDemo). Method doSomethingElse
was called from method doSomething (at line 13). Method doSomething was called from
method main (at line 7).

5. Show the statements that would be required, using JOptionPane, to read and store the data
for a Person object prior to calling the constructor with four parameters.

P R O G R A M M I N G

1. Write a method for class Person that reads the data for a single employee from a
BufferedReader object (the method argument). Assume there is one data item per line.

2. Write a method for class Company that reads the data for the employees array. This method
should call the one needed for Programming Exercise 1.

3. Write a main method that reads the data for two Person objects, creates the objects, and
displays the objects and a message indicating whether they represent the same Person.

F I G U R E A . 1 7

Example of a Stack Trace for an Uncaught Exception

Catching and Handling Exceptions
In the next few subsections, you will see how to avoid the default behavior when you write a
method that may throw an exception. You will also see why it is advantageous to do this.

The Try–Catch–Finally Sequence

One way to avoid uncaught exceptions is to write a try–catch sequence that actually
“catches” an exception and “handles it” rather than relying on the JVM to do this.

try {
 // Statements that perform file‐processing operations.
}

Koffman-a01.indd 608 10/30/2015 7:25:53 PM

A.11 Catching Exceptions 609

catch (IOException ex) {
 ex.printStackTrace(); // Display stack trace.
 System.exit(1); // Exit with an error indication.
}

If all statements in the try block execute without error, the catch block is skipped. If an
IOException occurs, the try block is exited and the catch block executes. This particular
catch block simply displays the sequence of method calls that led to the error (starting with
the most recent one and working backward) in the console window (System.err – the stand-
ard error stream) and then exits with an error indication.

Although this handles the exception, it basically duplicates the default behavior for uncaught
exceptions. Next, we show you how to use the try–catch sequence to recover from errors
and continue the execution of your program.

Handling Exceptions to Recover from Errors

In addition to reporting errors, exceptions provide us with the opportunity to recover from
errors. One common source of exceptions is user input. For example, the method JOptionPane.
showInputDialog displays a dialog window and allows the user to enter input. After the user
enters input and presses the Enter key, the method will return a string containing the input
characters. If we are expecting an integer value, we need to convert this string to an integer.
The conversion is performed by method parseInt, which can cause a NumberFormatException
to be thrown.

EXAMPLE A.25 Method readInt (Listing A.6) returns the integer value that was typed into a dialog window
by the program user. The method argument is the dialog window prompt.

The while loop repetition condition (true) ensures that the try–catch sequence will execute
“forever” or until the user enters a correct data item. The statements

String numStr = JOptionPane.showInputDialog(prompt);
return Integer.parseInt(numStr);

display the dialog window and return an integer value if numStr contains only digit charac-
ters. If not, a NumberFormatException is thrown, which is handled by the catch clause. The
catch block displays an error message window by calling JOptionPane.showMessageDialog.
The last argument, JOptionPane.ERROR_MESSAGE, causes a window with a stop sign to appear
(see Figure A.18). After closing this window, the user has another opportunity to enter a valid
numeric string.

F I G U R E A . 1 8

Bad Numeric String

Error

L I S T I N G A . 6

Method readInt

/** Method to return an integer data value.
 @param prompt Message
 @return The data value read as an int
 */

Koffman-a01.indd 609 10/30/2015 7:25:53 PM

610 Appendix A Introduction to Java

The try Block

The syntax for the try block is as follows:
try {
 Code that may throw an exception
}

The catch Clauses and Blocks

Exceptions are caught by what is appropriately called a catch clause. A catch clause resem-
bles a method and has the following syntax.

catch (ExceptionClass exceptionArgument) {
 Code to handle the exception
}

The code within the brackets is called the catch block. The catch clause(s) must follow a try
block. There may be multiple catch clauses, one for each exception class that you wish to
handle.

An exception matches a catch clause if the type of the exception is the same as the argument
of the catch clause or is a subclass of the argument type. When an exception is thrown from
within a try block, the associated catch clause(s) is (are) examined to see whether there is a
match in the exception class for any catch clause. If so, that catch block executes. If not, a
search is made back through the chain of method calls to see whether any of them occurs in a
try block with an appropriate catch. If so, that catch block executes. We illustrate this next.

public static int readInt(String prompt) {
 while (true) { // Loop until valid number is read.
 try {
 String numStr = JOptionPane.showInputDialog(prompt);
 return Integer.parseInt(numStr);
 }
 catch (NumberFormatException ex) {
 JOptionPane.showMessageDialog(
 null,
 "Bad numeric string — Try again",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 }
}

EXAMPLE A.26 The body of method readIntTwo below contains just the statements in the try block of
method readInt (Listing A.6), but the catch clause is omitted.

public static int readIntTwo(String prompt) {
 String numStr = JOptionPane.showInputDialog(prompt);
 return Integer.parseInt(numStr);
}

In this case, if a NumberFormatException is thrown by method parseInt, method readIntTwo
will not be able to handle it, so readIntTwo is exited and a search is made for an appropriate
catch clause in the caller of method readIntTwo. If method readIntTwo is called to read a
value into age by the following try block:

try {
 // Enter a value for age.
 age = readIntTwo("Enter your age");

Koffman-a01.indd 610 10/30/2015 7:25:53 PM

A.11 Catching Exceptions 611

} catch (Exception ex) {
 System.err.println("Error occurred in call to readIntTwo");
 age = DEFAULT_AGE;
}

the catch clause will handle the NumberFormatException (because NumberFormatException is
a subclass of Exception) and assign the value of DEFAULT_AGE to age. It will also display an
error message on the console, and program execution will continue with the statement that
follows this try–catch sequence.

EXAMPLE A.27 EOFException is a subclass of IOException. The two catch clauses in the following code must
appear in the sequence shown to avoid a catch is unreachable syntax error. The first catch
block handles an EOFException that occurs when all the data in the file was processed (not an
error). This catch block tells the program user so and then exits the program normally
(System.exit(0)). The second catch clause processes any other I/O exception by calling
method printStackTrace to display a stack trace like the one shown in Figure A.17. It exits
the program with an error indication (System.exit(1)). (Note: The method printStackTrace
is defined in the Throwable class and is inherited by all exception objects.)

catch (EOFException ex) {
 System.out.print("End of file reached ")
 System.out.println(" – processing complete");
 System.exit(0);
}
catch (IOException ex) {
 System.err.println("Input/Output Error:");
 ex.printStackTrace();
 System.exit(1);
}

P I T F A L L

Unreachable catch Block
Note that only the catch block within the first catch clause having an appropriate
exception class executes. All other catch blocks are skipped. If a catch clause
exception type is a subclass of an exception type in an earlier catch clause, the catch
block in the later catch clause cannot execute, so the Java compiler will display a catch
is unreachable syntax error. To correct this error, switch the order of the catch clauses
so that the catch clause whose exception class is the subclass comes first.

The finally Block
When an exception is thrown, the flow of execution is suspended and continues at the
appropriate catch clause. There is no return to the try block. Instead, processing
continues at the first statement after all of the catch clauses associated with the try
from which the exception was thrown.

Note that a catch clause is like a method, and the catch block is like a method body. The term
catch clause refers to both the header and the body, whereas the term catch block refers to
the body alone. This distinction is not generally that important, and you may see the terms
used interchangeably in other texts and documentation.

Koffman-a01.indd 611 10/30/2015 7:25:53 PM

612 Appendix A Introduction to Java

In some situations, allowing the program to continue after an exception without
executing all the statements in the try block could cause problems. For example, if
some calculations needed to be performed before returning from the method, these
calculations would have to be duplicated in both the try block and every catch clause.
To avoid such a duplication (which can be error‐prone), the finally block can be used.
The code in the finally block is executed either after the try block is exited or after a
catch clause is exited (if one is executed). The finally block is optional. We show an
example in the following syntax summary.

SYNTAX try–catch–finally Sequence
FORM:

try {
 Statements that may throw an exception
}
catch (ExceptionClass

1
 exceptionArgument

1
) {

 Statements to process ExceptionClass
1

}
catch (ExceptionClass

2
 exceptionArgument

2
) {

 Statements to process ExceptionClass
2

}
catch (ExceptionClass

n
 exceptionArgument

n
) {

 Statements to process ExceptionClass
n

}
finally {
 Statements to be executed after the try block or the exception block exits
}

EXAMPLE:

try {
 String sizeStr = JOptionPane.showInputDialog("Enter new size");
 size = Integer.parseInt(sizeStr);
}
catch (NumberFormatException ex) {
 size = DEFAULT_SIZE; // Use default value if input error.
}
finally {
 if (size > MAX_CAPACITY)
 size = MAX_CAPACITY;
}

MEANING:

The statements in the try block execute through to completion unless an exception is
thrown. If there is a catch clause to handle the exception, its catch block executes to
completion. After the try block or catch block executes, the finally block executes to
completion.

If there is no catch clause to handle the exception thrown in the try block, the finally
block is executed, and then the exception is passed up the call chain until either it is
caught by some other method in the call chain or it is processed by the JVM as an
uncaught exception.

Koffman-a01.indd 612 10/30/2015 7:25:53 PM

A.11 Catching Exceptions 613

Reporting the Error and Exiting

There are many cases in which an exception is thrown but there is no obvious way to recover.
For example, reading from a file or the system console can result in an IOException being
thrown. In this case, the catch clause should print the stack trace and exit, as follows:

catch (IOException ex) {
 ex.printStackTrace();
 System.exit(1);
}

The method call System.exit(1) causes a return to the operating system with an error
indication.

Checked and Unchecked Exceptions

There are two categories of exceptions: checked and unchecked. A checked exception is
caused by an error that is beyond the programmer’s control, such as an input/output error
(IOException). An unchecked exception is caused by a program error. An example is an
IndexOutOfBoundsException. Checked exceptions must always be handled in some way (dis-
cussed next). There is no requirement to handle unchecked exceptions.

P I T F A L L

Ignoring Exceptions
Exceptions are designed to make the programmer aware of possible error conditions
and to provide a way to handle them. Some programmers do not appreciate this
feature and do the following:

 catch (Exception e){}

Although this clause is syntactically correct and eliminates a lot of pesky error
messages, it is almost always a bad idea. The program continues execution after the
try–catch sequence with no indication that there was a problem. The statement that
caused the exception to be thrown did not execute properly. The statements that follow
it in the try block were not executed at all. The program will have hidden defects that
will make its users very unhappy and could have even more serious consequences.

 P R O G R A M S T Y L E

Using Exceptions to Enable Straightforward Code
In computer languages that did not provide exceptions, programmers had to
incorporate error‐checking logic throughout their code to check for many possibilities,
some of which were of low probability. The result was sometimes messy, as follows:
Step A
if (Step A successful) {
 Step B
 if (Step B successful) {
 Step C
 } else {
 Report error in Step B

Koffman-a01.indd 613 10/30/2015 7:25:53 PM

614 Appendix A Introduction to Java

E X E R C I S E S F O R S E C T I O N A . 1 1

S E L F ‐ C H E C K

1. Assume that method main calls method first at line 10 of class MyApp, method first calls
method second at line 10 of class Others, and method second calls method parseInt at line
20 of class Other. These calls result in a NumberFormatException at line 430 of class Integer.
Show the stack trace.

2. Assume that you have catch clauses for exception classes Exception,
NumberFormatException, and RuntimeException following a try block. Show the required
sequence of catch clauses.

P R O G R A M M I N G

1. For the try block
try {
 numStr = in.readLine();
 num = Integer.parseInt(numStr);
 average = total / num;
}

 write a try–catch–finally sequence with catch clauses for ArithmeticException,
NumberFormatException, and IOException. For class ArithmeticException, set average
to zero and display an error message indicating the kind of exception, display the stack
trace, and exit with an error indication. After exiting the try block or the catch block
for ArithmeticException, display the message "That's all folks" in the finally block.

 Cleanup after Step A
 }
} else {
 Report error in Step A
}

With exceptions this becomes much cleaner, as follows:
try {
 Step A
 Step B
 Step C
} catch (exception indicating Step B failed) {
 Report error in step B
 Cleanup after step A
} catch (exception indicating Step A failed) {
 Report error in step A
}

A.12 Throwing Exceptions

In the previous section, we showed how to catch and handle exceptions using the try–catch
sequence. As an alternative to catching an exception in a lower‐level method, you can allow
it to be caught and handled by a higher‐level method. You can do this in one of two ways:

1. You declare that the lower‐level method may throw a checked exception by adding a
throws clause to the method header.

Koffman-a01.indd 614 10/30/2015 7:25:53 PM

A.12 Throwing Exceptions 615

2. You throw the exception in the lower‐level method, using a throw statement, when the
exception is detected.

The throws Clause
The next example illustrates the use of the throws clause to declare that a method may throw
a particular kind of checked exception. This is a useful approach if a higher‐level module
already contains a catch clause for this exception type. If you don’t use the throws clause, you
must duplicate the catch clause in the lower‐level method to avoid an unreported exception
syntax error.

EXAMPLE A.28 Method readData reads two strings from the BufferedReader object console associated with
System.in (the system console) and stores them in data fields firstName and lastName. Each
call to method readLine may throw a checked IOException, so method readData cannot com-
pile without the throws clause. If you omit it, you will get the syntax error unreported excep-
tion: Java.io.IOException; must be caught or declared to be thrown.

public void readData() throws IOException {
 BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));
 System.out.print("Enter first name: ");
 firstName = console.readLine();
 System.out.print("Enter last name: ");
 lastName = console.readLine();
}

If method readData is called by method setNewPerson, method setNewPerson must have a
catch block that handles exceptions of type IOException.

public void setNewPerson() {
 try {
 readData();
 // Process the data read.
 . . .
 } catch (IOException iOEx) {
 System.err.println("Call to readLine failed in readData");
 iOEx.printStackTrace();
 System.exit(1);
 }
}

If a method can throw more than one exception type, list them all after throws with comma
delimiters. You will get an unreported exception syntax error if you omit any checked excep-
tion type. The compiler verifies that all class names listed are exception classes.

 P R O G R A M S T Y L E

Using Javadoc @throws for Unchecked Exceptions
Listing unchecked exceptions in the throws clause is legal syntax but is considered
poor programming practice. Instead you should use the Javadoc @throws tag to
document any unchecked exceptions that may reasonably be expected to occur but are
not caught in the method.

Koffman-a01.indd 615 10/30/2015 7:25:53 PM

616 Appendix A Introduction to Java

The throw Statement
You can use a throw statement in a lower‐level method to indicate that an error condition has
been detected. When the throw statement executes, the lower‐level method stops executing
immediately, and the JVM begins the search for an exception handler as described earlier.
This approach is usually taken if the exception is unchecked and is likely to be caught in a
higher‐level method. If the exception thrown is a checked exception, this exception must be
declared in the throws clause of the method containing the throw statement.

EXAMPLE A.29 The method addOrChangeEntry takes two String parameters: name and number. The number
parameter is intended to represent a valid phone number. Therefore, we wish to validate its
format to ensure that only validly formatted numbers are entered. Assuming that we have a
method isPhoneNumberFormat that checks for a valid phone number, we could code the
addOrChangeEntry method as follows:

public String addOrChangeEntry(String name, String number) {
 if (!isPhoneNumberFormat(number)) {
 throw new IllegalArgumentException ("Invalid phone number: " + number);
 }
 // Add/change the number.
 . . .
}

The throw statement creates and throws a new IllegalArgumentException, which can be
handled farther back in the call chain or by the JVM if it is uncaught. The constructor argu-
ment ("Invalid phone number: " + number) for the new exception object is a message that
describes the cause of the error.

If we call this method using the following try–catch sequence:
try {
 addOrChangeEntry(myName, myNumber);
} catch (IllegalArgumentException ex) {
 System.err.println(ex.getMessage());
}

and myNumber references the string "1xx1", which is not a valid phone number, the console
output would be

Invalid phone number: 1xx1

SYNTAX throw Statement
FORM:

throw new ExceptionClass();
throw new ExceptionClass(detailMessage);

EXAMPLE:

throw new FileNotFoundException("File " + fileSource + " not found");

MEANING:

A new exception of type ExceptionClass is created and thrown. The optional String
parameter detailMessage is used to specify an error message associated with this
exception. If the higher‐level method that catches this exception has the catch clause

Koffman-a01.indd 616 10/30/2015 7:25:53 PM

A.12 Throwing Exceptions 617

catch (ExceptionClass ex) {
 System.err.println(ex.getMessage());
 System.exit(1);
}

 the detailMessage will be written to the system error stream before system exit occurs.

EXAMPLE A.30 Listing A.7 shows a second method readInt that has three arguments. As in method readInt
in Listing A.6, the first argument is a prompt. The second and third arguments represent the
end points for a range of integer numbers. The method returns the first integer value entered
by the program user that is between the end points.

The if statement tests whether the end points define an empty range (minN > maxN). If so, the
statement

throw new IllegalArgumentException("In readInt, minN " + minN
 + " not <= maxN " + maxN);

throws an IllegalArgumentException, creating an instance of this class. The message passed
to the constructor gives the cause of the exception. This message would be displayed by
printStackTrace or returned by getMessage or toString.

If the range is not empty, the while loop executes. Its repetition condition (!inRange) is true
as long as the user has not yet entered a value that is within the range defined by the end
points. The try block displays a dialog window with a prompt that shows the valid range of
values. The statement

inRange = (minN <= n && n <= maxN);

sets inRange to true when the value assigned to n is within this range. If so, the loop is exited
and this value is returned. However, if the user enters a string that is not numeric, the catch
block displays an error message. If the string is not numeric or its value is not in range,
inRange remains false, so (!inRange) is true and the loop repeats, giving the user another
opportunity to enter a valid number.

L I S T I N G A . 7

Method readInt (part of MyInput.java) with Three Parameters

/** Method to return an integer data value between two
 specified end points.
 @pre: minN <= maxN.
 @param prompt Message
 @param minN Smallest value in range
 @param maxN Largest value in range
 @throws IllegalArgumentException
 @return The first data value that is in range
 */
public static int readInt(String prompt, int minN, int maxN) {
 if (minN > maxN) {
 throw new IllegalArgumentException("In readInt, minN " + minN
 + " not <= maxN " + maxN);
 }
 // Arguments are valid, read a number.
 boolean inRange = false; // Assume no valid number read.
 int n = 0;
 while (!inRange) { // Repeat until valid number read.

Koffman-a01.indd 617 10/30/2015 7:25:53 PM

618 Appendix A Introduction to Java

 try {
 String line = JOptionPane.showInputDialog(
 prompt + "\nEnter an integer between "
 + minN + " and " + maxN);
 n = Integer.parseInt(line);
 inRange = (minN <= n && n <= maxN);
 } catch (NumberFormatException ex) {
 JOptionPane.showMessageDialog(
 null,
 "Bad numeric string — Try again",
 "Error", JOptionPane.ERROR_MESSAGE);
 }
 } // End while
 return n; // n is in range
}

 P R O G R A M S T Y L E

Reasons for Throwing Exceptions
You might wonder what is gained by intentionally throwing an exception. If it is not
caught farther back in the call chain, it will go uncaught and will cause your program to
terminate. However, in the examples in this section, it would not make any sense to
continue with either an empty range (in readInt) or an invalid phone number (in
addOrChangeEntry). In fact, the loop in method readInt would execute forever if the
range of acceptable values was empty. Because the boundary parameters minN and
maxN are defined in a higher‐level method, it would also make no sense to try to get
new values in readInt. However, if the exception is passed back and caught at the
point where the boundary points are defined, the programmer can get new boundary
values and call method readInt again instead of terminating the program.

Catching versus Throwing Exceptions
You can always avoid handling exceptions where they occur by declaring that they are
thrown or by throwing them and letting them be handled farther back in the call chain. In
general, though, it is better to handle an exception where it occurs rather than to pass it
back. This gives you the opportunity to recover from the error and to continue on with the
execution of the current method. We did this, for example, for NumberFormatExceptions in
both readInt methods (see Listings A.6 and A.7). If an error is a nonrecoverable error,
however, and is also likely to occur farther back in the call chain, you might as well allow
the exception to be handled at the farthest point back in the call chain rather than duplicate
the error‐handling code in several methods. We recommend the following guidelines:

 If an exception is recoverable in the current method, handle the exception in the cur-
rent method.

 If a checked exception is likely to be caught in a higher‐level method, declare that it
can occur using a throws clause, and use a @throws tag to document this in the Javadoc
comment for this method.

 If an unchecked exception is likely to be caught in a higher‐level method, use a @throws
tag to document this fact in the Javadoc comment for the method. However, it is not
necessary to use a throws clause with unchecked exceptions.

Koffman-a01.indd 618 10/30/2015 7:25:54 PM

A.12 Throwing Exceptions 619

E X E R C I S E S F O R S E C T I O N A . 1 2

S E L F ‐ C H E C K

1. Explain the difference between the throws clause and the throw statement.

2. When would it be better to declare an exception rather than catch it in a method?

3. When would it be better to throw an exception rather than catch it in a method?

4. What kind of exceptions should appear in a throws clause?

5. For the following situations, indicate whether it would be better to catch an exception,
declare an exception, or throw an exception in the lower‐level method. Explain your
answer and show the code required for the lower‐level method to do it.
a. A lower‐level method contains a call to method readLine; the higher‐level method that

calls it contains a catch clause for class IOException.
b. A method contains a call to method readLine to enter a value that is passed as an argu-

ment to a lower‐level method. The lower‐level method’s argument must be a positive
number.

c. A lower‐level method contains a call to method readLine, but the higher‐level method
that calls it does not have a catch clause for class IOException.

d. A lower‐level method reads a data string and converts it to type int. The higher‐level
method contains a catch clause for class NumberFormatException.

e. A lower‐level method detects an unrecoverable error that is an unchecked exception.

P R O G R A M M I N G

1. The syntax display for the throw statement had the following example:
throw new FileNotFoundException("File " + fileSource + " not found");

 Write a catch clause for a method farther back in the call chain that handles this
exception.

2. Method setElementOfX shown below validates that the parameters index and val are in
bounds before accessing array x. Rewrite this method so that it throws exceptions during
array access if val is out of bounds if index is out of bounds. Pass an appropriate detail
message to the new exception object. Your modified method should be type void because
there is no longer a reason to return a boolean error indicator. Show catch blocks for a
higher‐level method that would handle these exceptions.
public boolean setElementOfX(int index, int val) {
 if (index >= 0 && index < x.length
 && val >= MIN_VAL && val <= MAX_VAL) {
 x[index] = val;
 return true;
 } else {
 return false;
 }
}

Koffman-a01.indd 619 10/30/2015 7:25:54 PM

620 Appendix A Introduction to Java

A p p e n d i x R e v i e w

◆ A Java program is a collection of classes. A programmer can use classes defined in the Java
API to simplify the task of writing new programs and can define new classes to use as
building blocks in future programs. Use
 import packageName.*;

 or
 import packageName.ClassName;

 to make the public names defined in a package or class accessible to the current file.

◆ The JVM enables a Java program written for one machine to execute on any other machine
that has a JVM. The JVM is able to execute instructions that are written in Java byte code.
The byte code instructions are found in the .class file that is created when a Java source
file is compiled.

◆ Java defines a set of primitive data types that are used to represent numbers (int, double,
float, etc.), characters (char), and boolean data. Characters are represented using Unicode.
Primitive‐type variables are used to store primitive data. The Java programmer can use
reference variables to reference objects. Wrapper classes can be used to encapsulate (wrap)
a primitive‐type value in an object.

◆ The control structures of Java are similar to those found in other languages: sequence (a
compound statement), selection (if and switch), and repetition (while, for, do ... while).

◆ There are two kinds of methods: static (or class) methods and instance methods. Static
methods are called using

ClassName.methodName(arguments)
 but instance methods must be applied to objects:

objectReference.methodName(arguments)

◆ The Java String, StringBuilder, StringJoiner, and StringBuffer classes are used to refer-
ence objects that store character strings. String objects are immutable, which means they
can’t be changed, whereas StringBuilder, StringJoiner and StringBuffer objects can be
modified.

◆ Make sure you use methods such as equals and compareTo to compare the contents of two
String objects (or any objects). The operator == compares the addresses of two objects, not
their contents.

◆ You can use the String.format method or Formatter objects to create and display format-
ted strings.

◆ You can declare your own Java classes and create objects (instances) of these classes using
the new operator. A constructor call must follow the new operator. A constructor has the
same name as its class, and a class can define multiple constructors. The no‐parameter
constructor is defined by default if no constructors are explicitly defined.

◆ A class has data fields (instance variables) and instance methods. The default values for
data fields are 0 or 0.0 for numbers, \u0000 for characters, false for boolean, and null for
reference variables. A constructor initializes data fields to values specified by its arguments.
Generally, data fields have private visibility (accessible only within the class), whereas
methods have public visibility (accessible outside the class).

Koffman-a01.indd 620 10/30/2015 7:25:54 PM

 Appendix A Review 621

◆ Array variables can reference array objects. You must use the new operator to allocate stor-
age for the array object.
int[] anArray = new int[mySize];

 The elements of an array can store primitive‐type values or references to other objects. Arrays
of arrays (multidimensional arrays) are permitted. The data field length represents the size of
an array and is always accessible, but length can’t be changed by the programmer. However,
an array variable can be reset to reference a different array object with a different size.

◆ Class JOptionPane (part of Swing) can be used to display dialog windows for data
entry (method showInputDialog) and message windows for output (method
showMessageDialog).

◆ The Scanner class in java.util can be used to read numbers and strings from the console
(System.in) using methods nextInt, nextDouble, and nextLine.

◆ The stream classes in java.io can enable you to read data from input files and write data
to output files. Use statements like
Scanner ins = new Scanner (new File(inputFileName));
PrintWriter outs = new PrintWriter(new FileWriter(outFileName));

 to associate the input stream ins and the output stream outs with specified files. Many file
operations must be performed within a try–catch sequence that catches IOException
exceptions. You must close an output file when you have finished writing all information
to it.

◆ The default behavior for exceptions is for the JVM to catch them by printing an error
message and a call stack trace and then terminating the program. You can use the
try–catch‐finally sequence to catch and handle exceptions, possibly to recover from
the error and continue, thereby avoiding the default behavior.

◆ There are two categories of exceptions: checked and unchecked. Checked exceptions
are generally due to an error condition external to the program. Unchecked exceptions are
generally due to a programmer error or a dire event.

◆ A method that can throw a checked exception must either catch it or declare that it is
thrown using the throws declaration. If you throw it, you must catch it further back in the
call sequence. Methods do not have to catch unchecked exceptions, and they should not be
declared in the throws clause.

◆ Use the throw statement to throw an unchecked exception when you detect one in a method.
You should catch this exception farther back in the call sequence, or it will be processed by
the JVM as an uncaught exception.

Java Constructs Introduced in This Appendix
boolean
catch
char
class
double
final
finally
for
int

main
new
private
public
static
throw
throws
try
while

Koffman-a01.indd 621 10/30/2015 7:25:54 PM

622 Appendix A Introduction to Java

Java API Classes Introduced in This Appendix
java.io.BufferedReader
java.io.FileReader
java.io.InputStreamReader
java.io.IOException
java.io.OutputStreamWriter
java.io.PrintWriter
java.lang.Boolean
java.lang.Character
java.lang.Double
java.lang.Exception
java.lang.FileWriter
java.lang.Math

java.lang.Integer
java.lang.NumberFormatException
java.lang.Object
java.lang.String
java.lang.StringBuffer
java.lang.StringBuilder
java.util.Formatter
java.util.InputMismatchException
java.util.Scanner
java.util.StringJoiner
javax.swing.JOptionPane

User‐Defined Interfaces and Classes in This Appendix
Company
FileTest

HelloWorld
Person

SquareRoots
TestPerson

Quick‐Check Exercises
 1. The Java compiler translates Java source code to _______, which are executed by the _______.
 2. Java _______ are embedded in _______, whereas Java _______ are stand‐alone programs.
 3. A Java program is a collection of _______. Execution of a Java application begins at method

_______.
 4. Java classes declare _______ and _______. Generally, the _______ have public visibility and the

_______ have private visibility.
 5. An _______ method is invoked by applying it to an _______; a _______ method is not.
 6. If you use the operator == with objects, you are comparing their _______, not their _______.
 7. To associate an input stream with the console, you must wrap an _______ object in a _______

object.
 8. To associate an output stream with the console, you must wrap a _______ object in a _______

object.
 9. To associate an input stream with a text file, you must wrap a _______ object in a _______ object.
10. Method _______ of class JOptionPane normally has _______ as its first argument and a _______

as its second argument.

Review Questions
1. Discuss how a Java source file is processed prior to execution and why this approach makes Java

platform independent.
2. Declare storage for an array of arrays that will store a list of integers in its first row, the squares of

all but the last integer in its second row, and the cubes of all but the last two integers in its third row.
Assume that the size of the first row and its integer values are entered by the program user. Read this
data into the array and store the required squares and cubes in the array.

3. Draw diagrams that illustrate the effect of each of the following statements.
String s1 = "woops";
String s2 = new String(s1);
String s3 = s1;
s1 = new String("Oops!");

 What are the values of s1 == s2, s1 == s3, and s2 == s3? What are the values of s1.
equals(s2), s1.equals(s3), s2.equals(s3)? What are the values of s1.compareTo(s2),
s1.compareTo(s3), s2.compareTo(s3)?

Koffman-a01.indd 622 10/30/2015 7:25:54 PM

 Appendix A Review 623

4. Write a class Fraction with integer numerator and denominator data fields. The default value of
denominator should be 1. Define a constructor with two arguments for this class and one with just
one argument (the value of the numerator). Define a method multiply that multiplies this Fraction
object with the one specified by its argument and returns a new Fraction object as its result. Define
a method toDecimal that returns the value of the fraction as a decimal number (be careful about
integer division). Define a toString method for this class that represents a Fraction object as a
string of the form numerator / denominator.

5. Write a main method that reads two Fraction objects using class JOptionPane. Multiply them and
display their result as a fraction and as a decimal number using the instance methods defined in
Review Question 4. Use class JOptionPane to display the results.

6. Write a main method that reads two Fraction objects from the console. Multiply them and display
their result as a fraction and as a decimal number using the instance methods defined in Review
Question 4. Use the console to display the results.

Programming Projects
1. Complete the definition of the Fraction class described in Review Question 4. Provide all the meth-

ods listed in that question and methods to add, subtract, and divide two fractions. Also, provide
methods equals and compareTo to compare two Fraction objects.

2. Provide a class MatrixOps that has a two‐dimensional array of double values as its data field.
Provide the following methods:

MatrixOps() // Default constructor
MatrixOps(int numNows) // Sets the number of rows
MatrixOps(int numRows, int numCols) // Sets the number of rows and columns
MatrixOps(double[][] mat) // Stores the specified array
void setMatrix(double[][] mat) // Stores the specified array
double[][] getMatrix() // Gets the array
void setRow(int row, double[] rowVals) // Stores the array of rowVals in row
double[] getRow(int row) // Returns the specified row
void setElement(int row, int col) // Sets the specified element
double getElement(int row, int col) // Returns the specified element
double sum() // Returns sum of the values in the array
double findMax() // Returns the largest value in the array
double findMin() // Returns the smallest value in the array
double[][] transpose() // Returns the transpose of the matrix
double[] multiply(double[][] mat2) // Returns the product of two matrices
String toString() // Returns a string representing the array

3. Modify class Person to include a person’s hours worked and hourly rate as data fields. Provide
modifier and accessor methods for the new data fields and a method calcSalary that returns a
person’s salary. Also, modify method toString. Provide a method calcPayroll for class Company
that returns the weekly payroll amount for a company (gross payroll only; don’t be concerned about
withholding, payroll taxes, etc.). Write a main method that reads the employee data for a Company
object from a data file. Display the data stored and the calculated payroll in a message window using
class JOptionPane. Also, write this information to an output file.

4. Write a class that stores a collection of exam scores in an array. Provide methods to find the average
score, to assign a letter grade based on a standard scale, to sort the scores so they are in increasing
order, and to display the scores. Test the methods of this class.

5. Write a class Student that stores a person’s name, an array of scores for each person, an average
exam score, and a letter grade. Write a class Gradebook that stores an instructor’s name, a section ID,
a course name, and an array of Student records. Write the following methods to process this array.

Load the array of Student records with data read from a text file.
Write all information stored to an output file.
Calculate and store each student’s average exam score in that student’s record.
Calculate and store the average score for each student in that student’s record.

Koffman-a01.indd 623 10/30/2015 7:25:54 PM

624 Apeendix A Introduction to Java

Assign a letter grade to each student based on that student’s average exam score.
Sort the array of student records so that all information is in increasing order by student.
Sort the array of student records so that all information is in decreasing order by exam score.

 Write a client program that reads the data for a class and performs all the operations in the list
above. Display the information in a Gradebook object after all the data is stored and again after all
student information been calculated and stored. Also, display the information after sorting it by
name and after sorting it by exam score.

Answer to Quick‐Check Exercises
 1. The Java compiler translates Java source code to byte code instructions, which are executed by the

JVM.

 2. Java applets are embedded in Web pages, whereas Java applications are stand‐alone programs.
 3. A Java program is a collection of classes. Execution of a Java application begins at method main.
 4. Java classes declare data fields and methods. Generally, the methods have public visibility and the

data fields have private visibility.
 5. An instance method is invoked by applying it to an object; a static (or class) method is not.
 6. If you use the operator == with objects, you are comparing their addresses, not their contents.

 7. To associate an input stream with the console, you must wrap an InputStreamReader object in a
BufferedReader object.

 8. To associate an output stream with the console, you must wrap a FileWriter object in a
PrintWriter object.

 9. To associate an input stream with a text file, you must wrap a FileReader object in a
BufferedReader object.

10. Method showMessageDialog of class JOptionPane normally has null as its first argument and a
prompt string as its second argument.

Koffman-a01.indd 624 10/30/2015 7:25:54 PM

625

B

T
he Unified Modeling Language (UML) represents the unification of earlier object‐
oriented design modeling techniques. Specifically, notations developed by Grady Booch,
Ivar Jacobson, and James Rumbaugh were adapted to form the initial version. This

version was submitted to the Object Modeling Group for formal standardization. Since that
initial submission, the UML standard has undergone several revisions and continues to be
revised.

We call UML a modeling language much in the same way we call Java a programming
language. There is a formal definition of the syntax and semantics. There are software tools
that are used both to draw the diagrams and to capture the underlying design information.
These tools can then be used to analyze the resulting model, verify the model’s consistency,
and generate code.

UML defines 12 types of diagrams. In this text, we use only two of them: the class dia-
gram and the sequence diagram. Throughout the text, where we use these diagrams, we
provide brief explanations of the diagram and the meaning of the notations used. The pur-
pose of this appendix is to provide a more complete reference to the diagrams as they are
used in this text.

In this text, we use a notation that has been adapted from the UML standard to match
the syntax of Java more closely. Other books may use slightly different versions of these dia-
grams that follow the standard syntax, but the principles are the same.

Overview of UML

O v e r v i e w o f U M L

B.1 The Class Diagram
B.2 Sequence Diagrams

A p p e n d i x

Koffman-a02.indd 625 10/30/2015 7:26:34 PM

626 Appendix B Overview of UML

B.1 The Class Diagram

The class diagram shows the classes and their relationships. It is a static diagram that repre-
sents the structure of the program. The classes (including interfaces) are represented by rec-
tangles, and lines between the classes represent the relationships. The style of a line, symbols
on the ends of the lines, and text placed near the line are used to indicate the kind of relation-
ship being modeled.

A large amount of information about the structure of a program can be represented in a
class diagram. If all of the possible information was presented, the diagram would become
quite cluttered. Therefore, the practice is to show only the essential information. For
example, in a class diagram, the complete method declaration can show the method’s
visibility, return type, name, and parameter types. Sometimes only the method’s name is
necessary, in which case you would elect to suppress the other information. Also, some
methods may not be significant to the discussion, so those methods need not be shown.
Sometimes only the class name is the essential item, and thus the methods and attributes
are not shown.

Representing Classes and Interfaces
A class is represented by a rectangle divided into three segments as shown in Figure B.1.

The Class Name

Every class has a name that distinguishes it from other classes. In Java, a class may be (and
usually is) a member of a package, in which case we may show the complete name including
the package name (e.g., java.util.Stack). In other cases, we just show the class name (e.g.,
Node). Italics indicate abstract classes. The class name is centered in the box representing the
class. For example, Figure B.2 shows the abstract class Number and the concrete classes derived
from it.

Number

Byte Double Integer Short

F I G U R E B . 2

The Abstract Class

Number and Concrete

Subclasses

‹‹interface››
List

F I G U R E B . 3

The Interface List

ClassName

Attributes

Operations

F I G U R E B . 1

General

Representation

of a Class

Interfaces

The word interface enclosed in double angle brackets (« and », called guillemets) placed
before the class name is used to indicate that this class is an interface. Because interfaces, like
abstract classes, cannot be instantiated, the name is shown in italics (see Figure B.3).

Alternative UML Syntax for Class Names

In other texts, you may see the class name in a bold sans‐serif font. Also, abstract classes may
be indicated by {abstract}, as shown in Figure B.4.

Koffman-a02.indd 626 10/30/2015 7:26:35 PM

B.1 The Class Diagram 627

Number

Byte Double Integer Short

{abstract}
F I G U R E B . 4

Alternative Syntax for

Indicating an Abstract

Class

The Attributes

The attributes of a class are the data fields. As a minimum we show the name. Optionally we
can also show the visibility and type. The visibility is indicated by the symbols shown in
Table B.1.

TA B L E B . 1

Visibility Specifiers

Symbol Visibility

+ public

− private

protected

~ package

In this text, we use the Java language syntax to indicate the type of an attribute by placing
the type name before the attribute name. For example, the class Person could have the attrib-
utes familyName, givenName, and address, as shown in the following figure:

- String familyName
- String givenName
- Address address

Person

Where they are not essential to the current discussion, we will omit the visibility indicator, the
type, or both, as shown in the following figure:

familyName
givenName
address

Person

Static attributes are indicated by underlining their name. For example, the class LapTop has
the static attribute DEFAULT_LT_MAN.

String DEFAULT_LT_MAN
double screenSize
double weight

LapTop

Koffman-a02.indd 627 10/30/2015 7:26:35 PM

628 Appendix B Overview of UML

Standard UML Syntax for Attribute Types

In other texts, you may see a different syntax for showing the attribute type. The UML stand-
ard specifies that the attribute type be specified following the name and separated by a colon.

- familyName:String
- givenName:String
- address:Address

Person

The Operations

The operations are the methods of the class. At a minimum, we show the method name fol-
lowed by a pair of parentheses. An empty set of parentheses does not necessarily indicate that
this method takes no parameters. Italics are used to indicate an abstract method, and under-
lining is used to indicate a static method. For example, Figure B.5 shows the class Passenger
with the static method setMaxProcessingTime and the nonstatic methods getArrivalTime and
getProcessingTime. The attributes are not shown.

We may also show the visibility, the parameter types, and the return type. The visibility is
shown using the same symbols as used for the attributes (see Table B.1). In this text, we use
the Java method declaration syntax, as shown in Figure B.6, to show the parameter types and
return type. A return type of void, however, will not be shown.

getArrivalTime()
getProcessingTime()
setMaxProcessingTime()

PassengerF I G U R E B . 5

The Class Passenger

+ int getArrivalTime()
+ int getProcessingTime()
+ setMaxProcessingTime(int maxTime)

PassengerF I G U R E B . 6

Class Passenger

Showing the Return

and Parameter Types

of Its Operations

Standard UML Syntax for Operations

In other texts, you may see a different syntax for showing the parameter types and return
type. The UML standard specifies that the parameter type be preceded by a colon and shown
following the parameter name and that the return type be shown following the operation
name, also preceded by a colon. The class Passenger using this syntax is shown in the follow-
ing figure:

+ int getArrivalTime():int
+ int getProcessingTime():int
+ setMaxProcessingTime(maxTime:int)

Passenger

Koffman-a02.indd 628 10/30/2015 7:26:36 PM

B.1 The Class Diagram 629

Generalization
UML uses the term generalization to describe the relationship between a superclass and its
subclasses. Drawing a solid line with a large open arrowhead pointing to the superclass
shows generalization. Figure B.7 shows the class LapTop as a subclass of Computer.

A dashed line with a large open arrowhead is used to show that a class implements an
interface. Figure B.8 shows that the abstract class AbstractList implements the List
 interface and that the classes ArrayList, Vector, and AbstractSequentialList are sub-
classes of AbstractList. Stack is a subclass of Vector, and LinkedList is a subclass of
AbstractSequentialList.

manufacturer
processor
ramSize
diskSize

getRamSize()
getDiskSize()
toString()

Computer

DEFAULT_LT_MAN
screenSize
weight

toString()

LapTop

F I G U R E B . 7

Class Laptop as a

Subclass of Computer

ArrayList

AbstractList

‹‹interface››
List

Vector

Stack LinkedList

AbstractSequentialList

F I G U R E B . 8

The List Interface and Classes that Implement It

Inner or Nested Classes
A class that is declared within the body of another class is called an inner or nested class. In
UML, this relationship is indicated by a solid line between the two classes, with what the
UML standard calls an anchor on the end connected to the enclosing class. The anchor is a
cross inside a circle. For example, in Figure B.9, the class Node is declared as an inner class of
the class KWLinkedList.

KWLinkedList NodeF I G U R E B . 9

Node as an Inner Class

Association
An association between classes represents a relationship between objects of those classes. In
object‐oriented terminology, we say that “object A sends a message to object B.” This state-
ment implies two things:

1. There is a method in class B that will receive the message.
2. There must be a reference within class A that references object B.

Koffman-a02.indd 629 10/30/2015 7:26:37 PM

630 Appendix B Overview of UML

An association indicates the presence of the reference required by condition 2. Thus, in the
analysis process in which we examine a use case and determine the flow of information from
one object to another, we identify the requirements for methods and associations. Note that
the association may represent a data field or it may represent a parameter.

Figure B.10 shows the UML notation for an association. The association name, multiplicities,
and roles are all optional. The association name is a name given to the association. The mul-
tiplicity represents the number of objects of that class that participate in the association.
Where the association is implemented as a data field, the role name is generally used as the
name of the data field. Thus, in ClassA, there would be a reference of type ClassB with the
name roleB. The role name may have a visibility specifier (see Table B.1). The role and mul-
tiplicity may be either above or below the line.

ClassA
association name

roleA roleB

multiplicityA multiplicityB
ClassBF I G U R E B . 1 0

UML Notation for an

Association

Multiplicity represents the number of objects of the class that are related to the other class.
Thus, multiplicityB represents the number of objects of ClassB that are associated with an
object of ClassA, and multiplicityA represents the number of objects of ClassA that are asso-
ciated with an object of ClassB. Multiplicity may be either a single number or a range of
numbers. The symbol * is used to indicate an indefinite number. A range of numbers is speci-
fied by a low bound followed by a high bound separated by two periods. Examples are
shown in Table B.2.

In addition, an arrow can be placed at one or both ends of the line. The presence of an arrow
indicates the navigation direction. Thus, if there is an arrow on the ClassB end, then objects
of ClassA can send messages to objects of ClassB, but objects of ClassB cannot send messages
to objects of ClassA. The absence of arrows generally represents that navigation in both
directions is possible, but it may also mean that the navigation is not being shown.

TA B L E B . 2

Multiplicity Examples

Multiplicity Meaning

1 There is only 1

1..5 There is at least 1, and there may be as many as 5

3..* There are at least 3

* There could be any number, including 0

Aggregation and Composition
In those cases where we wish to show that an association definitely is represented by a data
field, we place a diamond on the end of the line next to the class that will contain the data
field. This represents the has‐a relationship. If the diamond is open, this is called an aggrega-
tion, and if the diamond is filled, this is called a composition. The difference is that in a
composition, the component objects are not considered to have an independent existence.
For example, an Airplane is composed of two wings, a body, and a tail, none of which would
exist unless it was a component of an Airplane. This would be modeled as shown in
Figure B.11.

Koffman-a02.indd 630 10/30/2015 7:26:37 PM

B.2 Sequence Diagrams 631

However, a Node in either a linked list or a tree has references to other Nodes, but these other
nodes are independent entities, and the value of the reference can be changed. Thus, we use the
open diamond as shown in Figure B.12. Observe that the references are to the same class (Node).

leftWing rightWing tail body

 Airplane

 Tail Wing Body

F I G U R E B . 1 1

Airplane Composed of

Wing, Tail, and Body

sends command contains

contains

reads from
writes to

User

Directory Entry

File

F I G U R E B . 1 3

The Directory and

File Classes as

Aggregations Of

Entrys

Node

Object data

nextprev

F I G U R E B . 1 2

A Node in a Double‐

Linked List

Aggregation is also used to indicate that one class is a collection of objects of another class. For
example, the Directory and File classes are collections of Entry objects, as shown in Figure B.13.

Generic Classes
We will indicate a generic class by placing the generic parameter(s) in a dotted rectangle in
the upper right corner of the rectangle that models the class. Thus, the generic class
ArrayList<E> is modeled by the diagram shown in Figure B.14. Alternatively, you can just
write the class name as ArrayList<E>.

An invocation of a generic class is indicated by including the actual parameters inside a pair
of less than and greater than symbols following the name. This is the same notation used by
the Java language. Thus, an ArrayList of Strings would be written ArrayList<String>.

B.2 Sequence Diagrams

Sequence diagrams are used to show the flow of information through the program. Sequence
diagrams are generally developed on a use‐case basis and show the message sequence associ-
ated with a particular use case. The purpose of developing a sequence diagram is to identify
the messages that are passed from one object to another. This then identifies the requirements
for the corresponding classes. Recall that if objectA sends a message to objectB, then

1. ClassB must have a method to process that message.
2. ClassA must have a reference to an objectB.

ArrayList

E

F I G U R E B . 1 4

Generic Class

Representation

Koffman-a02.indd 631 10/30/2015 7:26:37 PM

632 Appendix B Overview of UML

Thus, when you enter a message on a sequence diagram, you identify a requirement for a
method and an association to be entered on the class diagram. Many UML modeling software
tools automate the process of keeping the sequence diagrams and class diagram consistent.

Figure B.15 shows an example of a sequence diagram. This is a two‐dimensional diagram
with time running down the vertical axis and objects listed across the horizontal axis. The
ordering across the horizontal axis is insignificant.

Time Axis
Time flows down the vertical axis. Generally the scale is not significant, but for some applica-
tions, where timing is critical, a precise timing scale can be used. The sequence along the time
axis is significant.

checkNewArrival

checkNewArrival

new

new

startServe

isEmpty

isEmpty

update

timeDone

getArrivalTime

getProcessingTime

getArrivalTime

getProcessingTime

add

add

update

timeDone

if random() < arrivalRate

!regularPassengerQueue.isEmpty

if random() < arrivalRate

if clock > timeDone

!frequentFlyerQueue.isEmpty()

 && ((frequentFlyersSinceRP <= frequentFlyerMax)

 || regularPassengerQueue.isEmpty)

AirlineCheckinSim frequentFlyerQueue regularPassengerQueue

Passenger

Time

Activation bar

Return

Note

Message to self

Object

Life line

Passenger

F I G U R E B . 1 5

Sequence Diagram Example

Koffman-a02.indd 632 10/30/2015 7:26:38 PM

B.2 Sequence Diagrams 633

Objects
Objects are listed across the horizontal axis. Their order is insignificant. An object is repre-
sented by a rectangle with the name of the object underlined. For anonymous objects, the
name of the class is given.

Objects are listed across the top of the sequence diagram unless they are created during the
time period represented by the sequence diagram. If an object is created, then it is shown
lower in the diagram, at the point at which it is created. As shown in Figure B.15, two
Passenger objects are created during the sequence of events depicted.

Life Lines
Flowing down from each object is its life line. This is a dashed line that begins when the
object is created and ends when the object is destroyed. There is no way to destroy an object
explicitly in Java, so the life lines will continue to the bottom of the diagram.

Activation Bars
The thin long rectangles along the life line are activation bars. These represent the time
that the object is responding to a given message. Note that if a second message is received
while a message is being processed, a second activation bar is drawn on top of and to the
right of the first activation bar. This can be seen in Figure B.15, where the AirlineCheckinSim
object sends itself the startServe message, or where the frequentFlyerQueue and
 regularPassengerQueue objects send themselves the insert message.

Messages
Messages are indicated by a horizontal arrow from the sending object to the receiving object.
The name of the message is shown above the arrow. Optionally, the parameters may be
shown in parentheses following the message name. Also, a small reverse direction arrow may
be used to indicate a return value with the value shown below it. An example of this is shown
in Figure B.15, where timeDone is returned to the AirlineCheckinSim object in response to the
update message sent to the frequentFlyerQueue.

Use of Notes
Notes may be used on any UML diagram. They are free‐form text enclosed in a rectangle
with the upper right corner folded down.

The purpose of the sequence diagram is to identify the sequence of messages that occur dur-
ing a use case. For a given instance of a use case, not all messages will be sent. For example,
as shown in Figure B.15, the checkNewArrival message to the frequentFlyerQueue may or
may not result in the creation of a new Passenger object. Notes can be used to document the
conditions for sending a message. For example, the checkNewArrival message is sent when
the result of the random number generator is less than arrivalRate.

Koffman-a02.indd 633 10/30/2015 7:26:38 PM

Koffman-a02.indd 634 10/30/2015 7:26:38 PM

635

2‐3 tree A search tree in which each node may have two or
three children.

2‐3‐4 tree A search tree in which each node may have two,
three, or four children.

2‐node A node in a 2‐3 or 2‐3‐4 tree with two children.
3‐node A node in a 2‐3 or 2‐3‐4 tree with three children.

abstract class A class that contains at least one abstract
method.

abstract data type An implementation‐independent specifica-
tion of a set of data items and the operations performed on
those data items.

abstraction A model of a physical entity or activity.
abstract method The specification of the signature of a

method without its implementation. Abstract methods are
declared in interfaces and abstract classes. A concrete class
that is a subclass of an abstract class or an implementation
of an interface must implement each abstract method
declared in the abstract superclass or interface.

acceptance testing A sequence of tests that demonstrate to the
customer that a software product meets all of its require-
ments. Acceptance testing generally is observed by a cus-
tomer representative.

activation bar The thick line along the lifeline in a sequence
diagram that indicates the time that a method is executing
in response to the receipt of a message.

activation frame An area of memory allocated to store the
actual parameters and local variables for a particular call to
a method. In Java, references to activation frames are stored
on the run‐time stack. When a method is called, a new acti-
vation frame is pushed onto the stack, and when a method
exits, the activation frame is popped.

actor An entity that is external to a given software system. In
many cases, an actor is a human user of the software sys-
tem, but an actor may be another system.

adapter class A class that provides the same or very similar
functionality as another class but with different method
signatures. The actual work is performed by delegation to
the methods in the other class.

address A number that represents an object’s location in
memory.

adjacency lists A representation of a graph in which the ver-
tices (the destinations) adjacent to a given vertex (the
source) are stored in a list associated with that vertex. The
actual edge (source, destination, weight) from the source
vertex to the destination may be stored.

adjacency matrix A representation of a graph in which the
presence or absence of an edge is indicated by a value in a

matrix that is indexed by two vertices. The value stored is 0
for no edge, 1 for an edge in an unweighted graph, and the
weight itself for a weighted graph.

adjacent [vertex] In a directed graph, a vertex, v, is adjacent
to another vertex, u, if there is an edge, (u, v), from vertex
u to vertex v. In an undirected graph, v is adjacent to u if
there is an edge, {u, v}, between them.

aggregation An association between two classes in which one
class is composed of a collection of objects of the other
class.

analysis In the waterfall model, the phase of the software life
cycle (workflow in the Unified Model) during which the
requirements are clarified and the overall architecture of
the solution is determined.

ancestor A node in a tree that is at a higher level than a given
node and from which there is a path to that node (the
descendant).

ancestor–descendant relationship A generalization of the
 parent–child relationship. (See ancestor and descendant.)

anchor The symbol ⊕ that is used in a UML class diagram to
indicate that a class is an inner class of another class.

annotations Directions to the compiler and other language‐
processing tools; they do not affect the execution of the
program.

anonymous method A method that does not have an explicit
name or method declaration but is declared as a lambda
expression.

anonymous object An object for which there is no named
reference. The Java new operator returns a reference to an
anonymous object.

anonymous reference A reference to an object that itself has
no name. Anonymous references are the result of a cast
operation.

applet A top‐level Java GUI class that is intended to be dis-
played in a frame that is under the control of a web browser.

assertion A statement that is true about the current value of
one or more variables state of a method.

association A relationship between two classes.
attributes The set of data values that determine the state of an

object. Generally, the attributes of a class are represented
by data fields within the class.

auto‐boxing A new Java feature (in Java 1.5) that performs
automatic conversion between the primitive types and their
corresponding wrapper classes.

AVL tree A self‐balancing binary search tree in which the dif-
ference between the heights of subtrees is stored in each tree
node. The insertion and removal algorithms use rotations
to maintain this difference within the range –1 to +1.

Glossary

Koffman-b01.indd 635 10/30/2015 7:27:09 PM

636 Glossary

back edges An edge that is discovered during a depth‐first
search that leads to an ancestor in the depth‐first search
tree.

backtracking An approach to implementing a systematic
trial‐and‐error search for a solution. When a dead end is
reached, the algorithm follows a path back to the decision
point that leads to the dead end, and then moves forward
along a different path.

balanced binary search tree A binary search tree in which the
height of each pair of subtrees is approximately the same.

base case The case in a recursive algorithm that can be solved
directly.

big‐O notation The specification of a set of functions that
represent the upper bound of a given function. Formally,
the function f(n) is said to be O(g(n)) if there are constants
c > 0 and n0 > 0 such that for all n > n0, cg(n) ≥ f(n).

binary search The process of searching a sorted sequence that
begins by examining the middle element. If the middle ele-
ment is greater than the target, then the search is applied
recursively to the lower half; if it is less than the target, the
search is applied recursively to the upper half.

binary search tree A binary tree in which the items in the left
subtree of a node are all less than that node, and the items
in the right subtree are all greater than that node.

binary tree A tree in which each node has 0, 1, or 2 children.
The children are distinguished by the names left and right.
If a node has one child, that child is distinguished as being
a left child or a right child.

black‐box testing A testing approach in which the internal
structure of the item being tested is not known or taken
into account in the design of test cases. The test cases are
based only on the functional requirements for the item
being tested.

block A compound statement that may contain local varia-
bles and class declarations.

bottom‐up design A design process in which the lower level
methods are designed first. A lowest‐level method is one
that does not depend on other methods to perform its
function.

boundary condition A value of a variable that causes a differ-
ent path to be taken. For example, in the statement if
(x > C) { ... } else { ... }, the value of C is a
boundary condition.

branch In a tree, the link between a parent node and one of
its children.

branch coverage A measure of testing thoroughness. Each
alternative from a decision point (if, switch, or while
statement) is considered a branch. If a test exercises a
branch, then that branch is considered covered. The ratio of
the covered branches to the total number of branches is the
branch coverage. See also path coverage and statement
coverage.

breadth‐first search A way of searching through a graph in
which the vertices adjacent to a given vertex are all exam-
ined and placed into a queue. Once all the adjacent vertices
are examined, the next vertex is removed from the queue.
Thus, vertices are examined in increasing distance (as meas-
ured by the number of edges) from the starting vertex.

breadth‐first traversal See breadth‐first search.

breakpoint A point in a program at which the debugger is
instructed to suspend execution when it is reached. This
allows for examination of the value of variables at a given
point before execution is resumed.

B‐tree A balanced search tree in which each node is a leaf or
may have up to n children and n–1 data items. The leaves
are all at the bottom level. Each node (except for the root)
is kept at least half full. That is, each node has between
(n–1)/2 and n–1 data items. The root is either a single node
(leaf) or it has at least one data item and two children.

bucket The list of keys stored in a hash table entry that uses
chaining. All the keys in the list map to the index of that
table entry.

bucket hashing See chaining.
byte code The platform‐independent representation of a Java

program that is the output of the Java compiler and is the
input to the Java Virtual Machine (JVM). The JVM then
interprets this input to execute the program.

casting When applied to a reference to an object, casting rein-
terprets that reference to refer to an object of a different
type. The object must be of the target type (or a subclass of
the target type) for the cast to be valid. When applied to a
primitive numeric value, a cast represents a conversion to
an equivalent value of the target primitive numeric type.

catch block The sequence of statements that will be executed
when an exception is caught by a catch clause.

catch clause The specification of an exception type and the
statements to be executed when an exception of that type is
caught. One or more catch clauses follow a try block and
will catch the exceptions thrown from that try block.

chaining An approach to hashing in which all keys that are
mapped to a given entry in the hash table are placed into a
list. The list is called a bucket.

checked exception An exception that either must be declared
in a throws declaration or caught by a try‐catch sequence.

child A node in a tree that is the immediate descendant of
another node.

class The fundamental programming unit in a Java program.
A class consists of a collection of zero or more data fields
(instance variables) and zero or more methods that operate
on those data fields.

class diagram A UML diagram that shows a number of
classes and the relationships between them.

class method See static method.
client A class or method that uses a given class.
closed‐box testing See black‐box testing.
collection hierarchy The hierarchy of classes in the Java API

that consists of classes designed to represent collections of
other object.

collision The mapping of two or more keys into the same
position in a hash table.

complete binary tree A binary tree in which each node is a
leaf or has two children.

component In a GUI application, an object displayed on the
screen that can interact with the user.

component testing The testing of an individual part of a pro-
gram by itself. In a Java program, a component may be a
method or a class.

Koffman-b01.indd 636 10/30/2015 7:27:10 PM

Glossary 637

composition The association between two classes in which
objects of one class are part of another class. The parts gen-
erally do not have an independent existence but are created
when the parent object is created. For example, an
Airplane object is composed of a Body object, two Wing
objects, and a Tail object.

compound statement Zero or more statements enclosed
within braces { ... }.

concrete class (actual class) A class for which objects can be
instantiated.

connected components A set of vertices within a graph for
which there is a path between every pair of vertices.

connected graph A graph that consists of a single connected
component.

constructor A method that initializes an object when it is first
created.

container In a GUI application, a component that contains
other components.

contract The specification of the pre‐ and postconditions of a
method.

cost of a spanning tree The sum of the weights of the edges.
coverage testing See branch coverage.
cycle A path in a graph in which the first and final vertices are

the same.

data abstraction The specification of the data items of a prob-
lem and the operations to be performed on these data items
that does not specify how the data items will be represented
and stored in memory. See also abstract data type.

data field (instance variable) A variable that is part of a class.
debugging The process of finding and removing defects

(bugs) from a program.
deep copy A copy of an object in which data field values and

references to immutable objects are simply duplicated, but
each reference to a mutable object references a copy of that
object. If there are mutable references in any object that is
copied, these also reference a copy of that object. The effect
is that you can change any value in a deep copy of an object
without modifying the original object.

default constructor The no‐parameter constructor that is
generated by the Java compiler if no constructors are
defined.

default visibility The same as package visibility.
defensive programming An approach to designing a program

that builds in statements to test the values of variables that
might result in an exception or run‐time error (to be sure
that they are valid) before statements that use the variables
are executed.

delegation The implementation of a method in one class that
merely calls a method in another class.

delimiter characters Characters that are defined to separate a
string into tokens.

depth (level) The number of nodes in a path from the root to
a node.

depth‐first search A method of searching a graph in which
adjacent vertices are examined along a path until a dead
end is reached. The search then backtracks until an unex-
amined vertex is found, and the search continues with that
vertex.

depth‐first traversal See depth‐first search.
deque A data structure that combines the features of a stack

and queue. Items may be inserted in one end and removed
from either.

descendant In a tree, a lower node that can be reached by
following a path from a given node.

design The process by which classes and methods are identi-
fied and defined to create a program that satisfies a given
set of requirements.

detail message An optional string to be displayed when an
exception is thrown that provides additional information
about the conditions that led to the exception.

dialog In a GUI application, a window that provides infor-
mation or asks for data entry.

digraph See directed graph.
directed acyclic graph A directed graph that contains no

cycles.
directed edge An edge in a directed graph.
directed graph A graph in which every edge is considered to

have a direction. If u and v are vertices in a graph, then the
presence of the edge (u, v) indicates that v is adjacent to u, but
u may not be adjacent to v. Contrast with undirected graph.

discovery order The order in which vertices are discovered in
a depth‐first search.

downcast A reinterpretation of a reference from a superclass
to a subclass. In Java, downcasts are tested for validity. See
also casting.

driver A method whose purpose is to call a method being
tested and provide it with appropriate argument values.
Usually, the result of executing the method is displayed
immediately to the user.

edges In a graph, the links between pairs of vertices.
escape sequence A sequence of characters beginning with the

backslash (\), which is used to indicate another character
that cannot be directly entered. For example, the sequence
\n represents the newline character.

Euler tour A path around a tree, starting and ending with the
root. The tree is always kept to the left of the path when
viewed from the direction of travel along the path.

event The occurrence of an external input or an internal state
change.

exclusive or (XOR) A graphics drawing mode in which draw-
ing a shape twice has the effect of erasing the original shape
from the image.

extending The process of adding functionality by defining a
new class that adds data fields and/or adds or overrides
methods of an existing class.

external node See leaf.

factory method A method that is responsible for creating
objects of a class. Generally, a factory method will be asso-
ciated with an abstract class or interface and will choose an
appropriate concrete class that extends the abstract class or
implements the interface based on parameters passed to the
factory method and/or system parameters. Returns a refer-
ence to a new object of this concrete class.

finally block A block preceded by the key word finally.
Part of the try‐catch‐finally sequence.

Koffman-b01.indd 637 10/30/2015 7:27:10 PM

638 Glossary

finish order The order in which the vertices are finished in a
depth‐first search. A vertex is considered finished when all
of the paths to adjacent vertices have been finished.

forest A collection of trees that may result from a depth‐first
search of a directed graph or an unconnected graph.

frame A top‐level container in a GUI application. A frame
consists of a window with a border around it.

full binary tree A binary tree in which the nodes at all but the
deepest level contain two children. At the deepest level, all
nodes that have two children are to the left of those that
have no children, and there is at most one node with a left
child that is between these two groups.

functional interface An interface that declares exactly one
abstract method.

functional programming A language feature in which func-
tions (methods) can be assigned to variables or passed as
arguments to other functions.

functional testing Testing that concentrates on verifying that
software meets its functional requirements.

garbage collector The process of reclaiming memory that no
longer has a reference to it. This process generally runs in
the background.

generalization The relationship between two classes in which
one class is the superclass and the other is a subclass. The
superclass is a generalization of the subclass.

generic class A class with type parameters that are specified
when instances are created. These parameters specify the
actual data type for the internal data fields of the object
that is created.

generic method A method with type parameters that are used
to represent the data type of its formal parameters. The
type parameters are specified when the method is called
and enable the method to process actual parameters of dif-
ferent data types.

generic type A type that is defined in terms of another type
where that other type may be specified as a parameter. For
example, the class List<E> is a List designed to hold
objects of type E, where E may be any other class and is
specified when the object is created.

glass‐box testing Testing that takes the internal structure of
the unit being tested into account.

graph A mathematical structure consisting of a set of vertices
and edges. The edges represent a relationship between the
vertices.

hash code A function that transforms an object into an inte-
ger value that may be used as an index into a hash table.

heapsort A sort algorithm in which the items being sorted are
inserted into a heap, and then removed one at a time.

height of a tree The number of nodes in a path from the root
to the deepest leaf.

Huffman code A varying‐length binary code in which each
symbol is assigned a code whose length is inversely propor-
tional to the frequency with which that symbol appears (or
is expected to appear) in a message. The resulting coded
message is the minimum possible length.

immutable A class that is immutable has no methods to
change the value of its data fields. An immutable object
cannot be changed.

implement (an interface) To provide in a class an implemen-
tation of all of the methods specified by an interface.

increment operator The operator that has the side effect of
adding 1 to its operand.

index A value that specifies a position within an array.
infix notation Mathematical notation in which the operators

are between the operands.
inherit To receive from an ancestor. In an object‐oriented lan-

guage, a subclass inherits the visible methods and data
fields from its superclass. These inherited methods and data
fields appear to clients of the subclass as if they were mem-
bers of that class.

initializer list A list of values, enclosed in braces, that initial-
izes the values in an array.

inner class A class that is defined within another class.
Methods of inner classes have access to the data fields and
methods of the outer class in which they are defined and
vice versa.

inorder predecessor For a binary search tree, the inorder pre-
decessor of an item is the largest item that is less than this
item. The node containing an item’s inorder predecessor
would be visited just prior to that item in an inorder
traversal.

insertion sort A sorting algorithm in which each item is
inserted into its proper place in the sorted region.

instance See object.
instance method A method that is associated with an object.

Contrast with static method.
instanceof operator The Java operator that returns true if a

reference variable references an instance of a specified class
or interface.

instance variables A variable of a class that is associated with
an object (i.e., a data field of an object). Contrast with
static variable.

integration testing Testing in which the interaction of the
components or units of a software program is validated.

interface The external view of a class. In Java, an interface is
a class that defines nothing more than public abstract
methods and constants.

internal node A node in a tree that has one or more children.
Contrast with leaf.

interpret To translate or understand the meaning of. The Java
Virtual Machine interprets the machine‐independent byte
code in terms of specific machine‐language instructions for
the computer on which it is executing.

iteration In a loop, a complete execution of the loop body. In
the Unified model of the software life cycle, a sequence of
activities that results in the release of a set of software
artifacts.

iterator An object that accesses the objects contained in a col-
lection one at a time.

Javadoc The commenting convention defined for Java pro-
grams. Also, the program that generates documentation

Koffman-b01.indd 638 10/30/2015 7:27:10 PM

Glossary 639

from the comments that follow this convention in a
program.

key A value or reference that is unique to a particular object
and thereby identifies that object (e.g., a social security
number).

lambda expression A method without a name that is declared
for a single use (see anonymous method).

Last In, First Out (LIFO) An organization of data such that
the most recently inserted item is the one that is removed
first.

last‐line recursion A recursive algorithm or method in which
the recursive call is the last executable statement.

leaf (node) A node in a tree that has no children. Contrast
with internal node.

left rotation The transformation of a binary search tree in
which the right child of the current root becomes the new
root and the old root becomes the left child of the new root.

level of a node The number of nodes in a path from the root
to this node.

life line The dotted vertical line in a UML sequence diagram
that indicates the lifetime of an object.

linear probing A collision resolution method in which sequen-
tial locations in a hash table are searched to find the item
sought or an empty location.

linear search A search algorithm in which items in a sequence
are examined sequentially.

link A reference from one node to another.
literal A constant value that appears directly in a statement.
logic error An error in the design of an algorithm or program.

Contrast with syntax error.
logical view A description of the data stored in an object that

does not specify the physical layout of the data in memory.
loop invariant An assertion that is true before each execution

of the loop body and is true when the loop exits.

many‐to‐one mapping An association among items in which
more than one item (a key) is associated with a single item
(a value).

marker An interface that is defined with no methods or con-
stants. It is used to give a common name to a family of
interfaces or classes.

merge The process of combining two sorted sequences into a
single sorted sequence.

merge sort A sorting algorithm in which sorted sub‐sequences
are merged to form larger sorted sequences.

message In an object‐oriented design, a message represents an
occurrence of a method call.

message to self A message that is passed from an object to
itself. It represents a method calling another method within
the same class.

method A sequence of statements that can be invoked (or
called) passing a fixed number of values as arguments and
optionally returning a value.

method declaration The specification of the name, parame-
ters, and return type of a method. See also signature.

method overloading The presence of multiple methods in a
class with the same name but different signatures.

method overriding The replacement of an inherited method
with a different implementation in a subclass.

minimum spanning tree A subset of the edges of a connected
graph such that the graph remains connected and the sum
of the weights of the edges is the minimum.

multiplicity An indication of the number of objects in an
association.

narrowing conversion A conversion from a type that has a
larger range of values to a type that has a smaller one.

nested class See inner class.
network A system consisting of interconnected entities.
newline The special character that indicates the end of a line

of input or output.
new operator The Java operator that creates objects (or

instances) of a class.
node An object to store data in a linked list or tree. This

object will also contain references to other nodes.

object An example or instance of a class. Internally, it is an
area of memory that is structured as defined by a class. The
methods of that class operate on the values defined within
this memory area.

object‐oriented design A design approach that identifies the
entities, or objects, that participate in a problem or system
and then designs classes to model these objects within a
program.

onto mapping A mapping in which each value in the value set
is mapped to by at least one member of the key set.

open‐box testing See glass‐box testing.
operations The methods defined in a class.
operator For classes, operator is another name for method.

For primitive types, it represents a predefined function on
one or two values (e.g., addition).

output buffer A memory area in which information written
to an output stream is stored prior to being written to
disk.

override Replace a method inherited from a superclass by one
defined in a subclass.

package A grouping of classes under a common package
name.

package visibility A level of visibility whereby variables and
methods are visible to methods defined in classes within the
same package.

panel A general‐purpose GUI component that can be used as
a drawing surface or to contain other GUI components.

parent The node that is directly above a node within a tree.
partitioning The process of separating a sequence into two

sequences; used in quicksort.
path In a graph, a sequence of vertices in which each vertex

is adjacent to its predecessor.
path coverage A measure of testing thoroughness. If a test

exercises a path, then that path is considered covered. The
ratio of the covered paths to the total number of paths is

Koffman-b01.indd 639 10/30/2015 7:27:10 PM

640 Glossary

the path coverage. See also branch coverage and statement
coverage.

phase In the Unified Model of the software life cycle, the span
of time between two major milestones.

physical view A view of an object that considers its actual
representation in computer memory.

pivot In the quicksort algorithm, a value in the sequence
being sorted that is used to partition the sequence. The
sequence is partitioned into values that are less than or
equal to the pivot and values that are greater than the pivot.

polymorphism Many forms or many shapes. In a Java pro-
gram, a method defined in a superclass (or interface) may
be called through a reference to that superclass (or inter-
face). The actual method executed is the one that overrides
that method and is defined in the concrete subclass object
that is referenced by the superclass (or interface) variable.

pop Remove the top element of a stack.
postcondition An assertion that will be true after a method is

executed, assuming that the preconditions were true before
the method is executed.

postfix increment The increment operator (e.g., i++) that has
the side effect of incrementing the variable to which it is
applied, but its current value is the value of the variable
before the increment takes place (e.g., i).

postfix notation A mathematical notation in which the oper-
ators appear after their operands.

precedence The degree of binding of infix operators.
Operators of higher precedence are evaluated before opera-
tors of lower precedence.

precondition An assertion that must be true before a method
is executed for the method to perform as specified.

prefix increment The increment operator (e.g., ++i) that has
the side effect of incrementing the variable to which it is
applied, and its current value is the value of the variable
after the increment takes place (e.g., i + 1).

private visibility A level of visibility whereby variables and
methods are visible only to methods defined in the same
class.

proof by induction A proof method that demonstrates that a
proposition is true for a base case (usually 0) and then dem-
onstrates that if the proposition is true for an arbitrary value
(k), it is then true for the successor of that value (k + 1).

protected visibility A level of visibility whereby variables and
methods are visible to methods defined in the same class,
subclasses of that class, or the same package.

pseudorandom A computer‐generated sequence of values
that appear to be random because they pass various statisti-
cal tests that are consistent with those that would be pro-
duced by a truly random sequence.

public visibility A level of visibility whereby variables and
methods are visible to all methods regardless of which class
or package they are defined in.

quadratic probing In a hash table, a collision resolution tech-
nique in which the sequence of locations that are examined
increases as the square of the number of probes made.

queuing theory The branch of mathematics developed to
solve problems associated with queues by developing math-
ematical models for these problems.

quicksort A sorting algorithm in which a sequence is parti-
tioned into two subsequences, one that is less than or equal
to a pivot value and the other that is greater than the pivot
value. The process is then recursively applied to the subse-
quences until a subsequence with one item is reached.

random access The ability to access any object in a collection
by means of an index.

recursive case A case in a recursive algorithm that is solved by
applying the algorithm to a transformed version of its
parameter.

recursive data structure A data structure that is defined in
terms of itself.

recursive method A method that calls itself.
Red‐Black tree A self‐balancing binary search tree that main-

tains balance by distinguishing the nodes by one of two
states: “red” or “black.” Algorithms for insertion and dele-
tion maintain balance by ensuring that the number of black
nodes in any path from the root to a leaf is the same.

refactoring The process of improving code without changing
its functionality

reference variable A variable that references an object.
rehashing The process of moving the items in one hash table

to a larger hash table using hashing to find each item’s new
location.

requirements specification A document that specifies what a
program or system is to do without specifying how it is
done.

reusable code Code written for one program that can be used
in another.

right rotation The transformation of a binary search tree in
which the left child of the current root becomes the new
root and the old root becomes the right child of the new
root.

root The node in a tree that has no parent and is at the top
level.

run‐time error An error that is detected when the program
executes. In Java, run‐time errors are detected by the Java
Virtual Machine.

starter method See wrapper method.
seed The initial value in a pseudorandom number sequence.

Changing the seed causes a different sequence to be gener-
ated by the pseudorandom number generator.

selection sort A sort algorithm in which the smallest item is
selected from the unsorted portion of the sequence and
placed into the next position in the sorted portion.

self‐balancing search tree A search tree with insertion and
removal algorithms that maintain the tree in balance. See
2‐3 tree, 2‐3‐4 tree, AVL tree, balanced binary search tree,
and Red‐Black tree.

sequence diagram A UML diagram that shows the sequence
of messages between objects that are required to perform a
given function or realize a use case.

set difference For sets A and B, A–B is the subset of a set, A,
that does not contain elements of some other set, B.

set intersection A set of the elements that are common to two
sets.

set union A set of the elements that are in one set or the other.

Koffman-b01.indd 640 10/30/2015 7:27:10 PM

Glossary 641

Shell sort A variation on insertion sort in which elements
separated by a value known as the gap are sorted using the
insertion sort algorithm. This process repeats using a
decreasing sequence of values for the gap.

sibling One of two or more nodes in a tree that have a com-
mon parent.

signature A method’s name and the types of its parameters.
The return type is not part of the signature because it is
illegal to have two methods with the same signature and
different return types.

simple path A path that contains no cycles.
simulation The process of modeling a physical system using a

computer program.
single‐step execution In debugging, the process of executing

one statement at a time so that the user may examine the
values of variables after each statement is executed.

skip‐list A randomized variant of an ordered linked list with
additional parallel lists. Parallel lists at higher levels skip
geometrically more items. Searching begins at the highest
level to quickly get to the right part of the list, then uses
progressively lower level lists. A new item is added by ran-
domly selecting a level, then inserting it in order in the lists
for that and all lower levels. With enough levels, searching
is O(log n).

spanning tree A minimum subset of vertices of a connected
graph that still results in a connected graph.

stack trace A listing of the sequence of method calls that
starts where an error is detected and ends at the program
invocation.

state The current value of all of the data fields in an object.
statement coverage A measure of testing thoroughness. If a

test exercises a statement, then the statement is considered
covered. The ratio of the covered statements to the total
number of statements is the statement coverage. See also
branch coverage and path coverage.

static method A method defined within a class but not associ-
ated with any particular object of that class.

static variable A variable defined in a class that is not a mem-
ber of any particular object but is shared by all objects of
the class.

step into When debugging in single‐step mode, setting the
next statement to be executed to be the first statement of
the method. Each individual statement in the method is
executed in sequence.

step over When debugging in single‐step mode, setting the
method call to be treated as a single statement.

stepwise refinement The process of breaking a complicated
problem into simpler problems. This process is repeated
with the smaller problems until a problem of solvable size
is reached.

strongly typed language A programming language in which
the type of objects is verified when arguments are bound to
parameters and when values are assigned to variables. A
syntax error occurs if the types are not compatible.

stub A dummy method that is used to test another method. A
stub takes the place of a method that the method being
tested calls. A stub typically will return a known result.

subclass A class that is an extension of another class. A sub-
class inherits the members of its superclass.

subset A set that contains only elements that are in some
other set. A subset may contain any or all of the elements of
the other set, or it may be the empty set.

subtree of a node The tree that consists of this node as its
root.

superclass A class that has a subclass. See subclass.
syntax error An error that violates the syntax rules of the

language. Syntax errors are generally the result of a mistake
in entering the program into the computer (typographical
error) or a misunderstanding of the language syntax. Syntax
errors are detected by the compiler.

system testing Testing of a complete program or solution to a
problem.

tail recursion See last‐line recursion.
test case An individual test.
test‐driven development A software‐development approach

that involves writing the tests and the methods in parallel.
The method is refined and adapted to satisfy each new test
that is introduced.

test framework A set of classes and procedures used to design
and conduct tests.

test harness A method that executes the individual test cases
of a test suite and records the results.

test runner A main method in a testing program that initiates
a series of tests.

test suite A collection of test cases.
throw an exception Indicate that the situation that causes an

exception has been detected.
Timsort A sorting method based on merge sort that takes

advantage of sorted subsets that may exist in the data being
sorted. Timsort is used in Java 8 to sort lists of objects.

token A character or string extracted from a larger string.
Tokens are separated by delimiter characters.

topological sort An ordering of a sequence of items for which
a partial order is defined that does not violate the partial
order. For example, if a is defined to be before b (a is a pre-
requisite of b) by the partial order, then a will not appear
later in the sequence than b. A partial order is defined by a
directed acylic graph.

tree traversal The process of systematically visiting each node
in a tree.

try block A block preceded by the reserved word try. Part of
the try‐catch‐finally sequence.

try‐catch‐finally sequence A sequence consisting of a
try block followed by one or more catch clauses and
optionally followed by a finally block. Or a try block
followed by a finally block. Exceptions that are thrown
by the try block are handled by the catch clauses that fol-
low it. Statements in the finally block are executed either
after the try block exits normally or when a catch block
that handles an exception exits.

type cast The process of converting from one type in to
another.

unchecked exception An exception that does not have to be
declared in a throws statement or have the statements that
might throw it enclosed within a try block.

Koffman-b01.indd 641 10/30/2015 7:27:10 PM

642 Glossary

undirected edge An edge in an undirected graph.
undirected graph A graph in which no edge has a direction. If

u and v are vertices in a graph, then the presence of the edge
{u, v} indicates that v is adjacent to u and u is adjacent to v.
Contrast with directed graph.

Unified Modeling Language (UML) A language to describe
the modeling of an object‐oriented design that is unifica-
tion of several previous modeling systems. Specifically, the
modeling techniques developed by Booch, Jacobson, and
Rumbaugh were combined to form the initial version. UML
has since evolved and is defined by a standard issued by the
Object Modeling Group.

unit testing Testing of an individual unit of a software pro-
gram. In Java, a unit is generally a method or class.

unnamed reference See anonymous reference.
unwinding the recursion The process of returning from a

sequence of method calls and forming the result.
upcast Casting a reference to a superclass or interface type.
user interface (UI) The way in which the user and a program

interact, or the class that provides this interaction.

vertices The set of items that are part of a graph. The vertices
are related to one another by edges.

weight A value associated with an edge in a weighted graph.
weighted graph A graph in which each edge is assigned a

value.
widening conversion A conversion from a type that has a

smaller set of values to one that has a larger set of values.
window A top‐level container in a GUI application. Generally,

a window is a rectangular area on the display surface. See
also frame.

wrapper class A class that encapsulates a primitive data type.
wrapper method A method whose only purpose is to call a

recursive method, perhaps providing initial values for some
parameters and returning the result. Also called a starter
method.

Koffman-b01.indd 642 10/30/2015 7:27:10 PM

643

A
abs (numeric), 557
abstract, 20
Abstract classes, 19–24
Abstract data type (ADT), 2
Abstract Graph, 499–501
Abstract method, 4–5, 19–24
Abstract window toolkit (AWT), 544
AbstractCollection class, 113–114, 306
AbstractList class, 113–114
AbstractMap, 356
AbstractQueue, 306
AbstractSequentialList class, 114
AbstractSet, 324, 356, 357
Acceptance testing, 122
Accessor method, 578
Activation bars, 633
Activation frame, 217–218
Actual class, 19, 22
Adapter class, 155, 355–356
add (E item), 283
add (E obj), 93, 113, 326
add (int index, E anEntry), 63, 81
add (int index, E obj), 89
add method, 82–83, 236, 286–287
Add to empty list, 108
Add to head of list, 109
Add to middle of list, 110
Add to tail of list, 110
addAll (Collection<E> coll), 326
addFirst(char c), 198
addFirst (E item), 197
addFirst (E obj), 89
addLast(char c), 198
addLast (E item), 197
addLast (E obj), 89
Adel’son-Vel’skii, G. M., 432
Adjacency list, 497
Adjacency matrix, 497–498
Adjacent [vertex], 491
ADT, 2
Aggregation, 630–631
AI, 211
AirlineCheckinSim, 633
Algorithm efficiency, 54–56
Algorithms. See Case study
Algorithms in C++ (Sedgewick), 455
Analysis. See Case study
Ancestor, 259
Ancestor-descendant relationship, 259

Annotations, 128
Anonymous method, 276
Anonymous object, 551
Anonymous reference, 26
API, 543–544
append (anyType), 568
Applet, 542
ArithmeticException, 30
Array, 63, 585–594

array as element, 590
Arrays.copyOf, 588
data field, 587, 589–590
form, 585
length, 587
out-of-bounds subscript, 586
results/arguments, 590
storage, 587
System.arrayCopy, 588
two-dimensional, 590

Array data fields, 587, 589–590
Array index out of bounds, 30–31
Array results and arguments, 590
arrayCopy, 588
ArrayDeque, 198
ArrayIndexOutofBoundsException, 30–31, 417
ArrayList, 64–66

applications, 68–70
capacity vs. size, 64
implementation, 70–74
implementing stack, 155–157
limitation, 75
methods, 81
phone directory application, 69
subscripts, 66

ArrayList<E>, 304
ArrayQueue<E>, 191–193
ArrayQueue<E>.Iter, 194–195
Arrays of arrays, 590
Arrays.binarySearch, 233
Arrays.copyOf, 194, 588
Arrays.copyOfRange, 588
ArraySearch.search, 132–136
Arrays.sort, 376
Art of Computer Programming, Vol. 3: Sorting and Search,

The (Knuth), 308, 341, 444
Artificial intelligence (AI), 211
assertArrayEquals, 129
assertEquals, 129
assertFalse, 129
assertNotNull, 129

Index

Koffman-index.indd 643 10/30/2015 7:27:43 PM

644 Index

assertNotSame, 129
assertNull, 129
assertSame, 129
assertTrue, 129
Association, 629–630
Autoboxing, 63, 571
AVL tree, 432–444

add starter method, 453–454
algorithm, 432
AVLNode, 437–438
decrementBalance method, 442–443
implementation, 436–437
incrementBalance method, 443
insertion, 438–443
kinds of unbalanced trees, 434
left-left tree, 432–433
left-right tree, 433
performance, 444
rebalanceleft, 441–442
rebalanceright, 442
recursive add method, 439–440
removal, 443–444
UML diagram, 431

AVLNode, 437–438
AVLTree, 436
AWT package, 544

B
Back edges, 512
Backtracking, 247–251
Bad numeric string error, 609
Balanced trees. See Self-balancing search trees
Base case, 213
Bayer, Rudolf, 445
Bell Laboratories, 489
BiConsumer<T, U>, 278
BiFunction<T, U, R>, 278
Big-O notation, 56–60
Binary search, 211, 228–233
Binary search tree, 258, 282–296, 341–342

add methods, 286–287
advantage, 262
balance, 427. See also Self-balancing search trees
boolean add (E obj), 326
boolean addAll (Collection<E> coll), 326
boolean contains (Object obj), 326
boolean containsAll (Collection<E> coll), 326
boolean isEmpty(), 326, 331
boolean remove (Object obj), 326
boolean removeAll (Collection<E> coll), 326
boolean retainAll (Collection<E> coll), 326
case study (index for term paper), 294–296
definition, 262
delete methods, 288–290
find methods, 284–285
findLargestChild, 293
insertion, 285–286
Iterator<E> iterator(), 326

overview, 282–283
performance, 283
recursive algorithm, 262
removal, 288–290
SearchTree, 283
testing, 293
UML diagram, 284

Binary tree, 259–264
BinaryOperator<T, T>, 278
binarySearch, 233
BinarySearchTree Class, 283–285
BinarySearchTree <E extends Comparable<E>>, 283
BinarySearchTreeWithRotate, 436
BinaryTree<E> class, 269–270
BinaryTree<E> readBinaryTree (Scanner scan), 269
Black-box testing, 122
Blob, 243–246
BlobTest, 246, 251
Booch, Grady, 625
boolean, 545, 547, 552
boolean add (E item), 283
boolean add (E obj), 113, 326
boolean addAll (Collection<E> coll), 326
boolean contains (E obj), 113
boolean contains (E target), 283
boolean contains (Object obj), 326
boolean containsAll (Collection<E> coll), 326
boolean equals (Object), 560
boolean equals (Object obj), 24, 572
boolean equalsIgnoreCase (String), 560
boolean hasNext(), 90, 93, 597
boolean hasNextDouble(), 597
boolean hasNextInt(), 597
boolean hasNextLine(), 597
boolean hasPrevious(), 93
boolean isEmpty(), 149, 326
boolean offer (E item), 179, 303
boolean offerFirst (E item), 197
boolean offerLast (E item), 197
boolean remove (E target), 283
boolean remove (Object obj), 326
boolean removeAll (Collection<E> coll), 326
boolean removeFirstOccurrence (Object item), 197
boolean removeLastOccurrence (Object item), 197
boolean retainAll (Collection<E> coll), 326
Boundary conditions testing, 125–126
Braces, 554
Branch, 258
Branch coverage, 122
Breadth-first search, 506–510
Breadth-first traversal, 179
BreadthFirstSearch, 509–510
break, 555
B-tree, 463–475

declaration, 465
implementation, 464–466
insertIntoNode method, 467–468
insertion, 465–470
removal, 470–471

Koffman-index.indd 644 10/30/2015 7:27:43 PM

Index 645

splitNode method, 468–470
bubbleSort3 method, 416–417
Bucket, 340
Bucket hashing, 340
BufferedReader, 600
buildCodeTable, 364
buildFreqTable, 362, 363
buildIndexAllLines, 332
byte, 545
Byte code instruction, 543
ByteArrayInputStream, 138
ByteArrayOutputStream, 138

C
Cache, 54
Call-by-value arguments, 557
Camel notation, 547
capacity(), 568
Cardinality of V, 495
case, 555
Case study

cell phone contact list, 359–361
class hierarchy, 40–45
converting expressions with parentheses, 173–176
converting from infix to postfix, 165–172
counting sells in blob, 243–246
custom Huffman tree, 310–314
Dutch national flag problem, 419–422
find path through maze, 248–251
geometric figures, 40–45
graph, 517–524
Huffman tree, 310–314, 361–365
index for term paper, 294–296
LinkedList class, 96–102
map, 359–361
ordered list, 96–102
palindrome, 151–154
postfix expressions, 160–164
queue, 181–185
recursion, 238–246, 248–251
shortest path through maze, 517–521
sorting, 419–422
stack, 151–154, 160–176
topological sort of graph, 521–524
Towers of Hanoi, 238–242
trees, 294–296, 310–314

Casting, 26–28
catch, 34
catch block, 610, 611
catch clause, 610–611
Catching exceptions, 608–614
ceil (double), 557
ceiling (E e), 367
ceilingKey (K key), 368
Cell phone contact list, 359–361
Chaining, 340

performance, 341
storage requirements for, 342

char, 546
charAt (int pos), 560
Checked exception, 32–33, 613
Check-in line. See Queue
Children, 258
Circle, 40
Circular array, 189–196
Circular list, 87–88
Class

abstract, 19–24
actual, 19, 22
adapter, 155, 355–356
component of other class, as, 582
concrete, 19, 22
definition, 543
generic, 631
nested, 78
parent, 78
user-defined, 573–585
wrapper, 571

Class class, 29
Class diagram, 626–631
Class Entry, 344–345
Class<?> getClass(), 24
Class HashtableChain, 350–353
Class HashtableOpen, 345–350
Class hierarchies. See Inheritance and class hierarchies
Class method, 556
Class Object, 1, 24–25
Client, 577
Closed-box testing, 122
Collapse-merge algorithm, 400
Collection interface, 112
Collections framework design, 112–114

AbstractCollection class, 113–114
AbstractList class, 113–114
AbstractSequentialList class, 114
Collection interface, 112
common features of, 113
List interface, 114
methods, 113
RandomAccess interface, 114
superinterface of List, 113
UML diagram, 112

Collections.sort, 376, 377
Collision, 334, 338–339
Comments, 124, 542, 582
Comparable<E>, 306
Comparable interface, 230, 376
Comparator, 306, 376, 377
Comparator<?> super T, 377
Comparator<E>, 306
Comparator<E> comparator, 304
Comparator<T, T>, 278
compare (E left, E right), 304
compare method, 306–307
compareTo, 230, 288, 306, 563
compareTo (Integer anInt), 572
compareTo (String), 560

Koffman-index.indd 645 10/30/2015 7:27:43 PM

646 Index

compareToIgnoreCase, 563
compareToIgnoreCase (String), 560
Comparing objects, 562–563
Comparison, 387
Compiler, 543
Compiling/executing a program, 543
Complete binary tree, 263
Composition, 630–631
Compound statement, 551
Computer simulation, 186
Concrete class, 19, 22
ConcurrentModificationException, 475
ConcurrentSkipListMap, 330, 368, 475
ConcurrentSkipListSet, 324, 368, 475
Connected component, 493
Connected graph, 493
Console input, 597, 605
Constructor, 270–271, 550, 577
Consumer<T,U>, 278
Contact list, 359–361
ContactListInterface, 359, 360
contains (E obj), 113
contains (E target), 283
contains (Object obj), 326
containsAll (Collection<E> coll), 326
Control statements, 551–555
Conversion, 549–550
Converting

expressions with parentheses, 173–176
infix to postfix, 165–172
strings to numbers, 606

copyOf, 588
copyOfRange, 588
cos (double), 557
Cost of a spanning tree, 528–529
countCells, 243
Counting sells in blob, 243–246
Coverage testing, 122
Creating objects, 550–551
Cryptographic algorithm, 62
Custom Huffman tree, 310–314
Cycle, 493

D
DAG, 521
Data field comparator, 306
Data fields, 543

in abstract class, 21
in subclass, 10
superclass, 11–12

Data structures, 2
Data Structures and Problem Solving Using Java (Weiss), 390
Debugging, 139–143
Declaring variable, 6
Decrement, 549
Default constructor, 577
Default values, 577
Defined character group, 567

delete (E target), 283
delete (int start, int end), 568
Delimiter, 566
Delimiter regular expression, 566
Dense graph, 504
Depth, 259
Depth-first search, 511–517
Depth-first traversal, 179
depthFirstSearch (int s), 514
Deque interface

empty, 198
implementation, 198
methods, 197, 198
queue, 198
stack, 198–199

Descendant, 259
Design. See Case study; Design concept
Design concept. See also Program style

strong typing, 25
Diagram. See UML diagram
Digraph, 491
Dijkstra, Edsger W., 419, 524
Dijkstra’s algorithm, 524, 526
Directed acyclic graph (DAG), 521
Directed graph, 491
Discipline of Programming, A (Dijkstra), 419
Division by zero, 29–30
do . . . while, 552
Documentation, 582–585
Dot notation, 556
double, 545
double doubleValue(), 572
double nextDouble(), 597
Double-linked list, 84–87

circular list, 87–88
implementation, 103–111
insertions, 86
limitations, 84
Node class, 85
queue, 187
removing, 86
schematic diagram, 85
UML diagram, 85

Double-linked list class, 86–87
Double-linked list object, 86
doubleValue(), 572
Downcast, 26
Driver program, 128
Dutch national flag problem, 419–422

E
E ceiling (E e), 367
E delete (E target), 283
E element(), 179, 303
E find (E target), 283
E first(), 367
E floor (E e), 367
E getFirst(), 197

Koffman-index.indd 646 10/30/2015 7:27:44 PM

Index 647

E getLast(), 197
E higher (E e), 367
E last(), 367
E lower (E e), 367
E next(), 90, 93
E peek(), 149, 179, 303
E peekFirst(), 197
E peekLast(), 197
E poll(), 179, 303
E pollFirst(), 197, 367
E pollLast(), 197, 367
E pop(), 149
E previous(), 93
E push (E obj), 149
E remove(), 179, 303
E remove (int index), 63, 81
E removeFirst(), 197
E removeLast(), 197
Edge, 490, 495–496
Edge class, 496
edgeInterator, 503
element(), 179, 303
Empty list, 236
Empty stack, 148
Encapsulation, 38
encode, 365
Encryption, 62
Enhanced for loop, 92
EntrySet, 357–358
EOFException, 32, 611
equals, 563, 579
equals (Object), 560
equals (Object obj), 24, 572
equalsIgnoreCase, 563
equalsIgnoreCase (String), 560
Errors, 31, 32. See also Exceptions
Escape sequence, 558–559
Euclid, 221
Euler tour, 266
Examples. See Case study
Exceptions

array index out of bounds, 30–31
catching, 608–614
checked/unchecked exceptions, 32–33, 613
class hierarchy, 31
division by zero, 29–30
ignoring, 613
input-output, 599
null pointer, 31
pitfalls, 611–614
recovering from errors, 34–36, 609
report error and exit, 613
RuntimeException, 29, 30
style tips, 613–615, 618
Throwable, 31, 32
throwing, 614–619
try-catch, 34–35
try-catch-finally sequence, 608–609
UML diagram, 31, 33

when recovery not obvious, 35–36
Exchange, 387
Execution of Java program, 545
exp (double), 557
Exponential growth rates, 60
Expression tree, 258, 260, 270
Extending an interface, 23
External node, 258

F
Factorial, 219–220
Factorial growth rates, 62
factorialIter, 223
Factory method, 45
fail, 129
Falling off end of array, 417
Falling off end of list, 85
Family tree, 263, 264
Fibonacci numbers, 223–225
FIFO, 147, 185, 198. See also Queue
FileNotFoundException, 32
File-processing operations, 601–602
final, 547, 574
finally block, 611–612
find (E target), 283
find method, 284–285
Find path through maze, 248–251
findInLine (String pattern), 597
findLargestChild, 293
findMazePath, 248–251
first(), 367
First-in, first-out (FIFO), 147, 185, 198. See also Queue
fixupRight method, 485–486
float, 545
floor (E e), 367
floor (double), 557
for, 552
for loop, 92
Force-merge algorithm, 400
format (String format, Object . . . args), 560
Format conversion characters, 564–565
Formatter, 565
4-node, 472
Full binary tree, 263
Function<T,R>, 278
Functional interfaces, 277–279
Functional programming, 276
Functional testing, 122

G
Garbage collector, 562
gcd, 221
General recursive algorithm, 213
General tree, 263–264
Generalization, 629
Generic array, 71
Generic class, 631

Koffman-index.indd 647 10/30/2015 7:27:44 PM

648 Index

Generic collections, 66–67
Generic HuffmanTree class, 315
Generic method, 377
Generic parameter, 231, 377, 378, 631
Generic sort methods, 382
Generic types, 98
Generics, 66
Geometric figures, 40–45
get method, 73–74, 82
getClass method, 29
getEdge, 503
getFirst(), 197
getKey(), 357
getLast(), 197
getLeftSubtree, 271–272
getMessage(), 32
getOrDefault method, 330
getRightSubtree, 271–272
GetSentence.main, 141
Getter, 578
Glass-box testing, 122
Graph, 489–532

Abstract Graph, 499–501
adjacency list, 497
adjacency matrix, 497–498
ADT, 494–496
applications, 493–494
breadth-first search, 506–510
case study (shortest path through maze), 517–521
case study (topological sort), 521–524
connected, 493
cycle, 491–493
DAG, 521
dense/sparse, 504
depth-first search, 511–517
Dijkstra’s algorithm, 526
directed/undirected, 491
Edge class, 494–496
edgeInterator, 503
edges/vertices, 490, 491, 495–496
getEdge, 503
hierarchy, 499
insert, 502–503
isEdge, 502
ListGraph, 501–503
MatrixGraph, 503
minimum spawning tree, 528–531
node, 178
path, 491–493
Prim’s algorithm, 528–531
storage efficiency, 504
terminology, 490–494
time efficiency, 504
topological sort, 521–524
traversal, 506–524
tree, as, 494
unconnected, 493
visual representation, 490
weighted, 491

Graph ADT, 494–496
Graph applications, 493–494
Graph createGraph (Scanner scan, boolean isDirected, String

type), 499
Graphical user interface (GUI), 251, 579
Greatest common divisor (gcd), 221
Growth rates, 60–62, 387
GUI menu, 607
Guibas, Leo, 445

H
has-a relationship, 12
hasCode(), 24
Hash code, 333–335
Hash table, 323–324, 333–354

accessing item in hash table, 335
chaining, 340–342
collision, 334, 338–339
deleting an item, 337–338
expanding table size, 338
hash code, 333–335
implementation, 344–354. See also KWHashMap
index calculation, 333–334
linear probing, 335, 338, 339, 341
load factor, 340–342, 349
open addressing, 335, 337–338
performance, 340–343
quadratic probing, 338–340
rehashing, 338
search termination, 335–336
sorted arrays/trees, compared, 341–342
storage requirements, 342
table wraparound, 335–336
testing, 353
traversing, 336

Hash table implementation, 344–354. See also KWHashMap
hashCode() % table.length, 340
HashMap, 330, 344
HashSet, 324
HashSetOpen, 355–356
HashtableChain, 350–353
HashtableChain.get, 351
HashtableChain.put, 351–352
HashtableChain.remove, 352–353
HashtableOpen, 345–350
HashtableOpen.find, 346–347
HashtableOpen.get, 347–348
HashtableOpen.put, 348–349
HashtableOpen.rehash, 349–350
HashtableOpen.remove, 349
hasNext(), 90, 93, 597
hasNextDouble(), 597
hasNextInt(), 597
hasNextLine(), 597
hasPrevious(), 93
Heap, 294–307

add, 306
ArrayList, 299–301

Koffman-index.indd 648 10/30/2015 7:27:44 PM

Index 649

comparator, 306
compare method, 306–307
definition, 297
element, 306
implementation, 299–302
inserting an item, 298
isEmpty, 306
iterator method, 306
offer method, 304–305
peek, 306
performance, 301–302
poll method, 305
priority queue, 302–305
remove, 306
removing an item, 298–301
size method, 306
uses, 303

Heapsort, 302, 405–409
algorithm, 405
analysis of, 407
code for, 407–409
in-place, 406–407

Helper methods, 80
Hexadecimal digits, 547
Hibbard’s sequence, 390
Hidden data field, 9
Hiearchical organization. See Inheritance and class hierarchies
higher (E e), 367
“High-Speed Sorting Procedure, A” (Shell), 388
Hoare, C. A. R., 409
HuffData, 311
Huffman code, 261
Huffman tree, 261–262, 308–315, 361–366
HuffmanTree, 311–313

I
IDE, 545
Ideal skip-list, 476
Identifiers, 547
if ... else, 552
if statement, 27–28, 551–555
Immutable [string], 562
implements clause, 5
Import, 544
Increment operator, 549
Indentation, 554
Index for term paper, 294–296
Index variables, 393
indexOf (char), 560
indexOf (char, int index), 560
indexOf (E target), 63, 81
indexOf (String), 560
indexOf (String, int index), 560
IndexGenerator, 294–296
IndexOutOfBoundsException, 613
Inductive proof, 216
Infinite recursion, 220
Infix notation, 159

InfixToPostfix, 166, 169–171
InfixToPostfixParens, 173–176
Inheritance and class hierarchies, 1–45

abstract classes, 19–24
ADT, 2
case study (processing geometric figures), 40–45
casting, 26–28
Class class, 29
class Object, 1, 24–25
exception class hierarchy. See Exceptions
implements, 5
initializing data fields in subclass, 10–11
instanceof, 27–28
interfaces, 2–6
is-a/has-a relationship, 12
method overloading, 15–16
method overriding, 13–14
no-parameter constructor, 11
package, 36–37
package visibility, 38
polymorphism, 17
protected visibility, 11–12
shape, 39–45
subclass/superclass, 8–12
this., 9
UML diagram. See UML diagram

Initializing data fields, 21
Initializing data fields in subclass, 10–11
Inner class, 629
Inner class node, 78
Inorder predecessor, 289, 293
Inorder successor, 289
Inorder traversal, 266
In-place heapsort, 406–407
Input streams, 600
InputMismatchException, 30, 31, 598
Input/output, 596–608
insert (Edge e), 502
insert (int offset, anyType data), 568
Insertion sort, 383–386

algorithm, 384
analysis of, 384–385
code for, 385–386
definition, 383
refinement of algorithm, 384

InsertionSort, 385
Instance, 543
Instance method, 556
Instance variable, 573
instanceof, 27–28
Instantiating an interface, 6
int, 189, 190, 545
int capacity(), 568
Int Comparator<T, T>, 278
int compareTo (Integer anInt), 572
int compareTo (String), 560
int compareToIgnoreCase (String), 560
int hasCode(), 24
int indexOf (char), 560

Koffman-index.indd 649 10/30/2015 7:27:44 PM

650 Index

int indexOf (char, int index), 560
int indexOf (E target), 63, 81
int indexOf (String), 560
int indexOf (String, int index), 560
int intValue(), 572
int lastIndexOf (char), 560
int lastIndexOf (char, int index), 560
int lastIndexOf (String), 560
int lastIndexOf (String, int index), 560
int length(), 560, 568
int nextIndex(), 93
int nextInt(), 597
int previousIndex(), 93
int size(), 113, 326, 331
Integer, 571
Integrated development environment (IDE), 545
Integration testing, 122
Interfaces, 2–4, 22

declaring variable, 6
definition, 4–5
extending an, 23
multiple, 23

Internal node, 258
intValue(), 572
Invalid cast, 26
I/O, 596–608
IOException, 32, 611, 613
IOException ioException(), 597
is-a relationship, 12
isEdge, 502
isEmpty(), 149, 326, 331
isLeaf, 272
Iter, 499, 503
Iterable interface, 95
Iteration, 222
Iterator, 89–90, 94–95
Iterator<E> descendingIterator(), 197, 367
Iterator<Edge> edgeIterator (int source), 502
Iterator interface, 90–91
Iterator<E> iterator(), 113, 197, 326, 367
Iterator.remove, 92

J
Jacobson, Ivar, 625
.java, 543
Java API, 543–544
Java basics, 541–618

accessor method, 578
API, 543–544
arguments, 557
array. See Array
class. See Class
compiler, 543
constructor, 577
control statements, 551–555
conversion, 549–550
defined character group, 567
documentation, 582–585

escape sequence, 558–559
exceptions. See Exceptions
execution, 545
Formatter, 565
garbage collector, 562
import, 544
input/output, 596–608
JVM, 543
main, 544–545
Math, 557–558
methods, 556
modifier method, 578
object. See Object
operators, 547–548
paint/println, 556
popularity, 542
prefix/postfix, 549
primitive data types, 545–547
primitive-type constants, 547
primitive-type variables, 547
qualifier, 566
regular expression, 566
Scanner, 597
stream classes, 600–603
String, 559–565
StringBuffer, 567–568
StringBuilder, 567–568
StringJoiner, 569-570
type compatibility, 549–550
Unicode character class support, 567
user-defined class, 573–585
wrapper class, 571–572

Java Collections Framework, 53. See also Collections
framework design

Java compiler, 543
Java control statements, 551–555
Java Development Kit (JDK), 545
Java documentation, 544, 582–585
Java sorting methods, 376–380. See also Sorting
Java Virtual Machine (JVM), 543
Javadoc, 582, 583
Javadoc tags, 583
java.io.IOException, 32
java.lang.RuntimeException, 30
java.lang.String, 560
java.lang.StringBuilder, 568
java.lang.Throwable, 32
java.util.Arrays, 377
java.util.Collection, 113, 377
java.util.Iterator, 90
java.util.LinkedList, 89
java.util.List, 63, 64, 81
java.util.ListIterator<E>, 93
java.util.Map, 331
java.util.Map.Entry, 357
java.util.Scanner, 597
java.util.Set, 324
java.util.Stack, 151
JDK, 545

Koffman-index.indd 650 10/30/2015 7:27:44 PM

Index 651

JOptionPane, 605–607
JOptionPane.showInputDialog, 606
JOptionPane.showMessageDialog, 606
JUnit

test framework, 128–132
testing interactive programs, 137–138

JVM, 543

K
K ceilingKey (K key), 368
K getKey(), 357
Key, 329, 330, 333
keySet, 329
Knuth, Donald E., 308, 341, 444
KWArrayList

add (E an entry) method, 72
add (int index, E anEntry) method, 73
constructor, 71
get, 73–74
internal structure, 70
performance, 74
reallocate, 74
remove, 74
set, 73–74

KWHashMap, 344
KWLinkedList, 103–111

add method, 107–110
add to empty list, 108
add to head of list, 109
add to middle of list, 110
add to tail of list, 110
constructor, 105–106
data fields, 103
hasNext/next methods, 106–107
hasPrevious/previous methods, 107
implementing the methods, 104
inner classes (static/nonstatic), 111
KWListIter, 105
pitfall, 111

KWListIter, 105
KWPriorityQueue, 303–304
KWPriorityQueue (Comparator<E> comp), 304

L
Lambda expression, 276–277, 279
Landis, E. M., 432
last(), 367
Last-in, first-out (LIFO), 147–148, 198. See also Stack
lastIndexOf (char), 560
lastIndexOf (char, int index), 560
lastIndexOf (String), 560
lastIndexOf (String, int index), 560
Leaf node, 258
Left-associative rule, 165, 167
Left-heavy tree, 432, 440
Left-left tree, 432–433
Left-right tree, 433

Length, 587
length(), 560, 568
Level of a node, 259
Levels of a skip-list, 476
Life lines, 633
LIFO, 147, 148, 198. See also Stack
Linear probing, 335, 338, 339, 341
Linear search, 226–228
linearSearch, 227
Link, 77
Linked data structure, 157–158
Linked list. See also Double-linked list; Single-linked list

case study (maintaining an ordered list), 96–102
KWLinkedList. See KWLinkedList
queue, 187–196
recursion, 234–236
stack of character objects, 157

LinkedList class, 89, 96–102, 179
LinkedListRec, 234
LinkedList.remove, 92
LinkedStack, 157
List. See Lists and the Collection framework
List head, 79, 234
List interface, 63–64, 114
List node, 77–78
ListGraph, 501–503
ListGraph (int numV, boolean directed), 502
ListIterator

and index, conversion, 95
Iterator vs., 94–95

ListIterator interface, 92–94
ListIterator<E> listIterator(), 94
ListIterator<E> listIterator (int index), 94
ListQueue, 187
List.remove, 92
Lists and the Collection framework, 53–119

algorithm efficiency, 54–56
ArrayList. See ArrayList
Big-O notation, 56–57
capacity vs. size, 64
case study (maintaining an ordered list), 96–102
circular list, 87–88
Collections framework design. See Collections framework

design
double-linked list. See Double-linked list
falling off end of list, 85
generic array, 71
generic collection, 66–67
growth rates, 60–62
Iterable interface, 95
Iterator, 89–90, 94–95
Iterator interface, 90–91
KWArrayList. See KWArrayList
KWLinkedList. See KWLinkedList
LinkedList class, 89
List interface, 63–64
ListIterator, 94–95
ListIterator interface, 92–94
list/set, compared, 327

Koffman-index.indd 651 10/30/2015 7:27:44 PM

652 Index

Lists and the Collection framework (continued)
single-linked list. See Single-linked list
testing. See Testing

ListStack, 155
Literal, 547
Load factor, 340–342, 349
loadEdgesFromFile (Scanner scan), 499
log (double), 557
long, 545
lower (E e), 367

M
Main, 544–545, 600–601
Main branch, 257
Maintaining a queue, 181–185
MaintainQueue, 182–185
Many-to-one mapping, 329
Map, 329–333. See also Sets and maps

applications, 361–366
case study (cell phone contact list), 359–361
case study (Huffman tree), 361–366
hierarchy, 330
interface, 330–333
key, 329
many-to-one mapping, 329
navigable, 366–370
objects, 323
onto mapping, 329
set, compared, 330
set view, 357
value, 329

Map hierarchy, 330
Map interface, 330–333, 356
Map.Entry, 357
Map.Entry<K, V> ceilingEntry (K key), 368
Marker, 90, 269
Matching one of group of characters, 566
Math, 555–556
Mathematical formulas, 219–226
MatrixGraph, 503
max (numeric, numeric), 557
Maze, 248–251, 517–521
MazeTest, 251
Menu, 607
Merge, 391

algorithm, 392
analysis of, 392
code for, 391–392

Merge sort, 391–396
algorithm for, 394
analysis of, 394–395
code for, 395–396

MergeSort, 395
Method, 543, 556

abstract, 4–5, 19–24
accessor, 578
class, 556
class parameters, 17–18

delegation, 155
generic, 377
instance, 556
modifier, 578
overloading, 15–16
overriding, 13–14
recursive, 214
set interface, 325–326
static, 556
this., 578
wrapper, 225

Method delegation, 155
Method overriding, 13–14
Methodology. See Case study
min (numeric, numeric), 557
Minimum spawning tree, 528–531
Modifier method, 578
Modulo division, 339
Morse code, 319, 320
Multiple interfaces, 23
Multiple-alternative decision, 554
Multiplicity, 630
Mutator, 578
MyFunction, 277–278
myMap.entrySet(), 357

N
Narrowing conversion, 550
Navigable sets and maps, 366–370
NavigableMap<K, V> descendingMap(), 368
NavigableMap<K, V> headMap (K toKey, boolean incl), 368
NavigableMap<K, V> subMap (K fromKey, boolean fromIncl, K

toKey, boolean toIncl), 368
NavigableSet, 324, 366–368
NavigableSet<K> descendingKeySet(), 368
NavigableSet<E> descendingSet(), 367
NavigableSet<E> headset (E toEl, boolean incl), 367
NavigableSet<K> navigableKeySet(), 368
NavigableSet<E> subSet (E fromEl, boolean fromIncl, E toEl,

boolean toIncl), 367
NavigableSet<E> tailMap (K fromKey, boolean fromIncl), 368
NavigableSet<E> tailSet (E fromEl, boolean incl), 367
Nested class, 78, 629
Nested class node, 268
Nested figures, 212–213
Nested if statement, 27–28, 553
Network of nodes, 178
new, 550, 577
Newline character, 597
next(), 90, 93, 597
nextDouble(), 597
nextIndex(), 93
nextInt(), 597
nextLine(), 597
No-argument constructor, 577
Node, 77–78

class, 85
removing, 80–81

Koffman-index.indd 652 10/30/2015 7:27:44 PM

Index 653

Node<E> class, 234, 268–269, 280
Nongeneric collection, 67
Nonstatic, 111
No-package-declared environment, 37
No-parameter constructor, 11, 577
NoSuchElementException, 30, 89, 90
“Note on Two Problems in Connection with Graphs, A”

(Dijkstra), 524
Null pointer, 31
NullPointerException, 30, 31, 608
Number, 21–22
NumberFormatException, 30, 31, 606
numeric, 557
Numerica wrapper class, 571

O
O, 56–60
O(1), 60, 61
O(2n), 60–62
O(log n), 60, 61
O(n), 60, 61
O(n2), 60, 61
O(n3), 60, 61
O(n log n), 60, 61
O(n!), 60, 61
Object

argument, as, 581–582
class, 1, 24–25
comparing, 562–563
creating, 550–551
definition, 543
hashCode/equals, 354–355
referencing, 21, 550
UML diagram, 632, 633

Object.equals, 354
Object.hashCode, 354
ObjectInputStream, 274
Object-oriented languages, 1
Object-oriented programming (OOP), 1

benefits, 8
capabilities, 7
inheritance, 7–8
subclass/superclass, 8–12

ObjectOutputStream, 274
offer (E item), 179, 303
offer method, 304–305
offerFirst(char c), 198
offerFirst (E item), 197
offerLast(char c), 198
offerLast (E item), 197
Onto mapping, 329
Open addressing, 335, 337–338

performance, 341
storage requirements for, 342

Open-box testing, 122
Operator precedence, 548
Operators, 547, 548
Ordered list, 96–102

org.junit.Assert, 129
Out-of-bounds subscripts, 586
OutofMemoryError, 32
Output buffer, 601
Output streams, 601
outs.close(), 601
Overridden method, 13–14
@Override, 15, 16

P
package, 36–37
Package visibility, 38
Palindrome, 151–154
PalindromeFinder, 152–153
Parent, 258
Parent class, 78
Parentheses, converting expressions, 173–176
ParseDouble, 607
ParseInt, 607
parseInt (String s), 572
Partition, 412–416

algorithm for, 412–413
code for, 413–416
revised algorithm, 415–416

Passenger, 186
PassengerQueue, 633
Passing arguments to method main, 600–601
Path, 491–493
Path coverage, 122
peek, 148
peek(), 149, 179, 303
peekFirst(), 197, 198
peekLast(), 197, 198
Perfect binary tree, 263
Pez dispenser, 148
Phone directory application, 69
Pitfall

abstract method in subclass, 21
attempting to change character in string, 562
catch block, 34
circular array, 194
compound statement, 554
decrement, 549
defining a method, 6
delimiter regular expression, 566
empty list, 236
exceptions, 613
falling off end of list, 85
generic array, 71
generic ArrayList, 67
increment, 549
infinite recursion, 220
instantiating an interface, 6
invalid cast, 26
Iterable<E>, 101
Kwlistiter as generic inner class, 111
length, 587
Listiterator<E>, 101

Koffman-index.indd 653 10/30/2015 7:27:45 PM

654 Index

Pitfall (continued)
load factor, 349
local variable/data field/same name, 580
newline character, 598
no-parameter constructor, 11
Omitting <E>, 101
out-of-bounds subscripts, 586
overloading/overriding a method, 16
parseDouble, 607
parseInt, 607
remove, 91
serialized object, 274
stack overflow, 220
static method/instance method, 556
storage requirements for an array, 587
string index out of bounds, 569
subscripts with an ArrayList, 66
this., 9
visibility, 39
visibility modifiers/local variables, 580

Pivot, 409–410
Platform independence, 542
poll(), 179, 303
poll method, 305
pollFirst(), 197, 198, 367
pollLast(), 197, 198, 367
Polymorphism, 17, 27–28
pop, 148
pop(), 149
Popularity, 542–543
Pop-up displayer. See Stack
Postcondition, 127–128
Postfix, 72
Postfix increment, 549
Postfix notation, 159–164
PostfixEvaluator, 160–164
Postincrement operator, 393
Postorder traversal, 266, 267
pow (double, double), 557
Precision specifier, 564
Precondition, 127–128
Predicate<T>, 278
Prefix, 72
Prefix increment, 549
Preorder traversal, 266, 267, 280–281
Prerequisites, 494
previous(), 93
previousIndex(), 93
Prim, R. C., 528
Primitive data types, 545–547
Primitive-type constants, 547
Primitive-type variables, 547
Prim’s algorithm, 528–530
print, 556
Print queue, 177–178
Print stack, 178
printChars, 215
println, 556
printStackTrace, 31

printStackTrace(), 32
Priority queue, 258, 302–305
PriorityQueue<E> class, 303
private, 38, 576
Program design. See Design concept
Program errors. See Exceptions
Program style. See also Design concept; Syntax

add method, 288
constructor, 71
control statements, 554
exceptions, 613
generic HuffmanTree class, 315
generic sort methods, 382
identifiers, 547
index variables, 393
insertion algorithm, 288
Iterator.remove vs. List.remove, 92
multiple cells to compareTo, 288
multiple-alternative decision, 554
nested if statements, 27–28
@Override, 15, 16
packaging classes, 37
postfix, 72
prefix, 72
queue methods, 185–186
returning a boolean value, 579
StringJoiner, 171
@throws, 615
toString(), 14, 579

Program syntax. See Syntax
Programming pitfalls. See Pitfall
Programs directory, 258
Proof by induction, 216
protected, 38
Protected visibility, 11–12, 39
Pseudorandom numbers, 102
public, 38, 39, 576–577
push, 148
push (E obj), 149

Q
Quadratic probing

collisions reduction using, 338–339
problems with, 339–340

Quadratic sort, 381, 386–388
Qualifier, 566
Queue, 177–199

breadth-first/depth-first transversal, 179
capacity, 193–194
case study (maintaining a queue), 181–185
circular array, 189–196
Collection interface, 179
customers, 178
Deque interface, 198
double-linked list, 187
element, 179
exceptions, 185–186
implementation, 187–196

Koffman-index.indd 654 10/30/2015 7:27:45 PM

Index 655

LinkedList class, 179
maintaining, 181–185
methods, 179, 185–186
offer, 179
peek, 179
poll, 179
print, 177–178
print stack, 178
priority, 302–305
remove, 179
for simulation, 186
single-linked list, 187–189
traversing multi-branch data structure, 178–179

Queue interface, 179
Queue of customers, 178
Queuing theory, 186
QuickSort, 411
Quicksort, 409–417

algorithm, 410
analysis of, 411
code for, 411–412
definition, 409

R
random(), 557
Random access, 53
Random class, 102
Random number, 102
RandomAccess interface, 114
Randomized queue, 207
Rates of growth, 387
Reading a binary tree, 273–274
reallocate method, 74
Rectangle, 40, 41
Recursion, 211–251

activation frame, 217–218
backtracking, 247–251
binary search, 228–233
case study (counting cells in blob), 243–246
case study (find path through maze), 248–251
case study (Towers of Hanoi), 238–242
cases, 213
characteristics of recursive solution, 214
data structures, 233–238
definition, 212
design of algorithm, 214
efficiency, 223
general algorithm, 213
infinite, 220
insertion in binary search tree, 286
length of string, 214–215
linear search, 226–228
linked list, 234–237
mathematical formulas, 219–226
n!, 219–220
nested figures, 212–213
problem solving, 238–246
proof of correctness, 216

recursive method, 214
recursive thinking, 212–219
removal from binary search tree, 290
removing a list node, 236–237
run-time stack, 217–218
searching an array, 213, 226–233
searching binary search tree, 282
stack overflow, 220
tail recursion vs. iteration, 222
tracing a recursive method, 216
tree, 257
unwinding, 216
uses, 211

Recursive array search, 226–233
Recursive case, 213
Recursive data structures, 233–238
Recursive method, 214, 216
Recursive thinking, 212–219
Recursive toString, 272–273
Red–Black tree, 324, 445–455

add starter method, 453–454
insertion, 445–447
invariants, 445
performance, 455
recursive add method, 454–455
removal, 455
TreeMap/TreeSet, 455
UML diagram, 452

RedBlackNode, 451
RedBlackTree, 451
Refactoring, 134
Reference variable, 25
Referencing objects, 550
Regular expression, 565–566
Regular expression qualifiers, 566
Rehashing, 338
Remove, 91
remove(), 90, 93, 179, 303
remove (E target), 283
remove (int index), 63, 81
remove (Object obj), 326
remove method, 74
removeAll (Collection<E> coll), 326
removeFirst(), 197
removeFirstOccurrence (Object item), 197
removeLast(), 197
removeLastOccurrence (Object item), 197
Removing a list node, 236–237
Repetition, 551–552
replace (char oldChar, char newChar), 560
replace (int start, int end, String str), 568
replace method, 235
retainAll (Collection<E> coll), 326
return, 556
Returning a boolean value, 579
rint (double), 557
Root, 258, 437
Rotation of trees, 428–432
round (float), 558

Koffman-index.indd 655 10/30/2015 7:27:45 PM

656 Index

round (double), 557
RtTriangle, 40
Rumbaugh, James, 625
Run-time errors. See Exceptions
Run-time stack, 217–218
RuntimeException, 29–32. See also Exceptions

S
Scan.findInLine, 600
Scanner, 597–599
Scanner (File source), 597
Scanner (InputStream source), 597
Scanner (Readable source), 597
Scanner (String source), 597
Scanner.findInLine, 600
search, 132–136
Searching an array, 213, 226–233
SearchTree, 283
Secondary branch, 257
Sedgewick, Robert, 445, 455
Selection and Repetition control, 551–552
Selection sort, 380–383

algorithm, 380
analysis of, 381
code for, 381–382
definition, 380
refinement of algorithm, 380–381

SelectionSort.java, 382
Self-balancing search trees, 427–481. See also Tree

AVL tree. See AVL tree
B+ tree, 471
importance of balance, 428
Red–Black tree. See Red–Black tree
skip-list, 475–481
tree rotation, 428–432
2-3 tree, 456–462
2-3-4 tree, 471–473

Sequence diagram, 631–633
Serializable class, 274
Serializable interface, 269, 274
Serialized object, 274
Set, 324–329. See also Sets and maps

difference, 325–326, 333
hierarchy, 325, 326
intersection, 325–326
list, compared, 327–328
map, compared, 330
membership, 325, 326, 355
methods, 355
navigable, 366–370
objects, 323
optional methods, 325, 326
required methods, 325, 326
subset, 325, 326
union, 325, 326

set (E obj), 93
Set abstraction, 324–325

Set difference, 325–326, 333
Set hierarchy, 325, 326
Set interface, 323, 325–326, 356
Set intersection, 325–326
Set membership, 325, 326, 355
Set union, 325, 326
Set view of map, 357
SetIterator, 357–358
Sets and maps, 323–374

chaining, 340–342
EntrySet, 357–358
hash table. See Hash table
HashSetOpen, 355–356
implementation, 354–359
map. See Map
methods hashCode and equals, 354–355
nested interface Map.Entry, 356
open addressing, 335, 337–338
set. See Set
set view of map, 357
TreeMap/TreeSet, 358

Setter, 578
Shape class hierarchy, 39–45
s.hashCode() % table, 335
Shell, Donald L., 388
Shell sort, 386, 388–391

algorithm, 389
analysis of, 389–390
code for, 390–391
definition, 388

ShellSort, 390
Short-circuit evaluation, 552
“Shortest Connection Networks and Some Generalizations”

(Prim), 528
showInputDialog (String prompt), 605
showMessageDialog (Object parent, String message), 605
showOptionDialog, 607
Siblings, 258
Signature, 557
Simple path, 492
Simulation, 186
sin (double), 558
Single-linked list, 75–77

add, 82–83
completing the class, 81–82
connecting nodes, 78
get, 82
inserting node in, 79–80
list head, 79
methods, 81
node, 77–78
queue, 187–189
removing node, 80–81
set, 82

Single-linked list class, 79
Single-step execution, 140
size(), 63, 81, 89, 113, 326, 331
size method, 234

Koffman-index.indd 656 10/30/2015 7:27:45 PM

Index 657

Skip-list, 475–481
height, 477
ideal, 476
implementation, 477–478
insertion, 477, 479–480
level, 476
performance, 477
search, 476–479
size of inserted node, 480

sort, 376
sort (int[] items), 377
sort (int[] items, int fromIndex, int toIndex), 377
sort (List<T> list), 377
sort (List<T> list, Comparator<? super T> comp), 377
sort (Object[] items), 377
sort (Object[] items, int fromIndex, int toIndex), 377
sort (T[] items, Comparator<? super T> comp), 377
SortedMap, 366, 455
SortedSet, 366, 455
SortedSet interface, 366
Sorting, 375–425

Arrays.sort, 376
best/worst/average, 423
case study (Dutch national flag problem), 419–422
Collections.sort, 376, 377
comparisons vs. exchanges, 387
definition, 375
falling off end of array, 417
generic methods, 382
heapsort, 405–409
insertion sort, 383–386
Java sorting methods, 376–380
merge sort, 391–396
quadratic sort, 381, 386
quicksort, 409–417
selection sort, 380–383
shell sort, 388–391
sort algorithms, compared, 386–388
testing, 417–419
Timsort, 397–405
topological sort of graph, 521–524

Spanning tree, 528
Sparse graph, 504
split (String pattern), 560
splitNode, 468–470
sqrt (double), 558
Stack, 147–177

abstract data type, 148–150
activation frame, 217–218
applications, 151–155
case study (converting expressions with parentheses),

173–176
case study (converting from infix to postfix), 165–172
case study (palindromes), 151–154
case study (postfix expressions), 160–164
definition, 148
Deque, 198–199
empty, 148

implementation, 155–159
as linked data structure, 157–158
overflow, 220
run-time, 217–218
uses, 147

StackInt<E>, 149
Statement coverage, 122
Static, 111
static, 78
Static method, 556
Storage requirements, 342
Stream classes, 600–603
String, 559–565
StringBuffer, 567–568
StringBuilder, 567–568
String findInLine (String pattern), 597
String getMessage(), 32
String index out of bounds, 569
String methods, 560
String next(), 597
String nextLine(), 597
String replace (char oldChar, char newChar), 560
String[] split (String pattern), 560
String substring (int start), 560, 568
String substring (int start, int end), 560, 568
String toLowerCase(), 560
String toString(), 24, 32, 568, 572
String toUpperCase(), 560
String trim(), 560
StringBuffer, 567–568
StringBuilder, 567–568
StringBuilder append (anyType), 568
StringBuilder delete (int start, int end), 568
StringBuilder insert (int offset, anyType data), 568
StringBuilder replace (int start, int end, String str), 568
String.format, 564–565
String.hashCode(), 334–335
StringJoiner, 171
String.split, 565
Strong typing, 25
Stubs, 127–128
Style. See Program style
Subclass, 8–11

abstract method in, 21
definition, 7

Subinterface, 94
Subset operator, 325
substring, 561
substring (int start), 560, 568
substring (int start, int end), 560, 568
Subtree of a node, 259
Sun Microsystems, 542
super., 14
super(. . .), 10
Superclass, 7–12
Superinterface, 113
@SuppressWarnings (“unchecked”), 71
swap (int i, int j), 304

Koffman-index.indd 657 10/30/2015 7:27:45 PM

658 Index

Swing package, 544
switch, 552
Syntax

abstract class definition, 20
enhanced for loop, 92
forEach statement, 296
generic collection, 66–67
generic method, 231, 378
generic types, 98
interface definition, 4–5
lambda expression, 276–277
package declaration, 37
static import, 245
super., 14
super(. . .), 10
this(. . .), 15
throw statement, 616–617
try-catch-finally sequence, 612
UML syntax, 437

System errors. See Exceptions
System testing, 122
System.in, 596
System.out, 596

T
Tail recursion, 222
tan (double), 558
Terminology

graph, 490–494
tree, 258–259

Test data, 124, 125
Test driver, 128
Test framework, 128
Test harness, 128
Test runner, 128
Test suite, 128
Test-driven development, 132–136
Testing, 121–139

binary search, 232
binary search tree, 293
black-box, 122
case study (test‐driven development of ArraySearch.search),

132–136
debugging, 139–143
drivers, 128
examples. See Case study
interactive programs in JUnit, 137–139
JUnit, 128–132
levels, 122
precondition/postcondition, 127–128
preparation, 124
stubs, 127–128
test-driven development, 132–136
tips, 124
white-box, 122

Testing boundary conditions, 125–126
Testing tips, 124

this., 9, 578
this(. . .), 15
3-node, 458, 472
throw statement, 616–617
Throwable, 31, 32
Throwing exceptions, 614–619
@throws, 615
throws clause, 615
Ticket agent, 178
Timsort, 397–405

algorithm for, 399
definition, 397
implementation, 400–405

toDegrees (double), 558
Token, 565
toLowerCase(), 560
Topological sort of graph, 521–524
TopologicalSort, 523–524
toRadians (double), 558
toString(), 14, 24, 32, 235, 269, 272, 280, 496, 568, 572, 578
toUpperCase(), 560
Towers of Hanoi, 238–242
TowersOfHanoi, 241, 242
Tracing a recursive method, 216
Traversing

graph, 506–524
hash table, 336
multi-branch data structure, 178–179

Tree, 257–321
AVL, 432–444
B, 463–475
balancing. See Self-balancing search trees
binary, 259–264
binary search, 262. See also Binary search tree
BinaryTree<E> class, 269–270
case study (custom Huffman tree), 310–314
case study (index for term paper), 294–296
expression, 258, 260
family, 263, 264
functional interfaces, 277–279
general, 263–264
getLeftSubtree, 271–272
getRightSubtree, 271–272
graph, as, 494
heap. See Heap
hierarchical structure, 257–258
Huffman, 261–262, 308–315, 361–366
isLeaf method, 272
lambda expression, 276–277
Node<E> class, 268–269
ObjectInputStream, 274
ObjectOutputStream, 274
preOrderTraverse method, 280–281
priority queue, 302–305
reading a binary tree, 273–274
recursion, 257
red-black, 445–455, 473–474
rotation, 428–432

Koffman-index.indd 658 10/30/2015 7:27:45 PM

Index 659

toString method, 272–273, 280–281
traversal, 265–267
2-3, 456–462
2-3-4, 471–473

Tree balancing. See Self-balancing search trees
Tree of words, 259, 260
Tree terminology, 258–259
Tree traversal, 265–267
TreeMap, 330, 358, 368, 455
TreeSet, 324, 358, 455
trim(), 560
Trunk, 257
try block, 610
try-catch, 34–35
Try-catch-finally sequence, 608–609
Two-dimensional array, 591
TwoDimGrid, 243
2-node, 457–458, 472
2-3 tree

balanced binary tree, compared, 461
insertion, 457–459
removal, 461–462
search, 457
2-node/3-node, 456

2-3-4 tree, 471–473
Type cast, 550
Type compatibility, 549–550
Type parameter, 63, 66

U
UML diagram, 573, 625–633

activation bars, 633
aggregation, 630–631
association, 629–630
ATM interface, 5
AVL tree, 431
binary search tree, 284
BinarySearchTreeWithRotate, 436
checked/unchecked exceptions, 33
class diagram, 626–631
collections framework, 112
composition, 630–631
double-linked lists, 85
Exception class hierarchy, 31, 33
generalization, 629
generic class, 631
graph class hierarchy, 499
inner/nested class, 629
java.util.list, 64
life lines, 633
map hierarchy, 330
messages, 633
modeling language, as, 625
notes, 633
objects, 633
red-black tree, 452
sequence diagram, 631–633

set hierarchy, 325
UML syntax, 437

UML syntax, 437
Unboxing, 571
Unchecked exception, 32–33, 613
Unconnected graph, 493
Undirected graph, 491
Unicode, 546
Unicode character class support, 567
Unified Modeling Language. See UML diagram
Unit testing, 122
Unnamed object, 551
Unnamed reference, 26
Unreachable catch block, 34, 611
UnsupportedOperationException, 326
Unwinding the recursion, 216
Upcasts, 26
User-defined class, 573–585
util package, 544

V
V get (Object key), 331
V getOrDefault (Object key, V default), 331
V getValue(), 357
V put (K key, V value), 331
V remove (Object key), 331
V setValue (V val), 357
Value, 329, 330
Variables

declaring, 6
index, 393
instance, 573
primitive-type, 547
reference, 25

Vector, 64
verifyPIN, 4
Vertex, 490, 491, 495–496
Visibility, 11–12, 38
void, 544
void sort (T[] items, int fromIndex, int toIndex, Comparator<?

super T> comp), 377

W
Waiting line, 177. See also Queue
Weight, 491
Weighted directed graph, 524
Weighted graph, 491
Weiss, M. A., 390
Wheel of Fortune, 308
while, 552
White-box testing, 122
Widening conversion, 549
Width specifier, 564
Wrapper class, 21–22, 571–572
Wrapper method, 224, 225

Koffman-index.indd 659 10/30/2015 7:27:45 PM

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Preface��������������
	Chapter 1 Object-Oriented Programming and Class Hierarchies��
	1.1 ADTs, Interfaces, and the Java API���
	Interfaces�����������������
	The implements Clause����������������������������
	Declaring a Variable of an Interface Type��
	Exercises for Section 1.1��������������������������������

	1.2 Introduction to Object-Oriented Programming (OOP)��
	A Superclass and Subclass Example��
	Use of this.�������������������
	Initializing Data Fields in a Subclass���
	The No-Parameter Constructor�����������������������������������
	Protected Visibility for Superclass Data Fields��
	Is-a versus Has-a Relationships��������������������������������������
	Exercises for Section 1.2��������������������������������

	1.3 Method Overriding, Method Overloading, and Polymorphism��
	Method Overriding������������������������
	Method Overloading�������������������������
	Polymorphism�������������������
	Methods with Class Parameters������������������������������������
	Exercises for Section 1.3��������������������������������

	1.4 Abstract Classes���������������������������
	Referencing Actual Objects���������������������������������
	Initializing Data Fields in an Abstract Class��
	Abstract Class Number and the Java Wrapper Classes���
	Summary of Features of Actual Classes, Abstract Classes, and Interfaces��
	Implementing Multiple Interfaces���������������������������������������
	Extending an Interface�����������������������������
	Exercises for Section 1.4��������������������������������

	1.5 Class Object and Casting�����������������������������������
	The Method toString��������������������������
	Operations Determined by Type of Reference Variable��
	Casting in a Class Hierarchy�����������������������������������
	Using instance of to Guard a Casting Operation
	The Class Class����������������������
	Exercises for Section 1.5��������������������������������

	1.6 A Java Inheritance Example—The Exception Class Hierarchy���
	Division by Zero�����������������������
	Array Index Out of Bounds��������������������������������
	Null Pointer�������������������
	The Exception Class Hierarchy������������������������������������
	The Class Throwable��������������������������
	Checked and Unchecked Exceptions���������������������������������������
	Handling Exceptions to Recover from Errors���
	Using try-catch to Recover from an Error���
	Throwing an Exception When Recovery Is Not Obvious���
	Exercises for Section 1.6��������������������������������

	1.7 Packages and Visibility����������������������������������
	Packages���������������
	The No-Package-Declared Environment��
	Package Visibility�������������������������
	Visibility Supports Encapsulation��
	Exercises for Section 1.7��������������������������������

	1.8 A Shape Class Hierarchy����������������������������������
	Case Study: Processing Geometric Figures���
	Exercises for Section 1.8��������������������������������
	Java Constructs Introduced in This Chapter���
	Java API Classes Introduced in This Chapter��
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 2 Lists and the Collections Framework��
	2.1 Algorithm Efficiency and Big-O���
	Big-O Notation���������������������
	Formal Definition of Big-O���������������������������������
	Summary of Notation��������������������������
	Comparing Performance����������������������������
	Algorithms with Exponential and Factorial Growth Rates���
	Exercises for Section 2.1��������������������������������

	2.2 The List Interface and ArrayList Class���
	The ArrayList Class��������������������������
	Generic Collections��������������������������
	Exercises for Section 2.2��������������������������������

	2.3 Applications of ArrayList������������������������������������
	A Phone Directory Application������������������������������������
	Exercises for Section 2.3��������������������������������

	2.4 Implementation of an ArrayList Class���
	The Constructor for Class KWArrayList<E>���
	The add(E anEntry) Method��������������������������������
	The add(int index, E anEntry) Method���
	The set and get Methods������������������������������
	The remove Method������������������������
	The reallocate Method����������������������������
	Performance of the KWArrayList Algorithms��
	Exercises for Section 2.4��������������������������������

	2.5 Single-Linked Lists������������������������������
	A List Node������������������
	Connecting Nodes�����������������������
	A Single-Linked List Class���������������������������������
	Inserting a Node in a List���������������������������������
	Removing a Node����������������������
	Completing the SingleLinkedList Class��
	The get and set Methods������������������������������
	The add Methods����������������������
	Exercises for Section 2.5��������������������������������

	2.6 Double-Linked Lists and Circular Lists���
	The Node Class���������������������
	Inserting into a Double-Linked List��
	Removing from a Double-Linked List���
	A Double-Linked List Class���������������������������������
	Circular Lists���������������������
	Exercises for Section 2.6��������������������������������

	2.7 The LinkedList Class and the Iterator, ListIterator, and Iterable Interfaces���
	The LinkedList Class���������������������������
	The Iterator�������������������
	The Iterator Interface�����������������������������
	The Enhanced for Loop����������������������������
	The ListIterator Interface���������������������������������
	Comparison of Iterator and ListIterator��
	Conversion between a ListIterator and an Index���
	The Iterable Interface�����������������������������
	Exercises for Section 2.7��������������������������������

	2.8 Application of the LinkedList Class��
	Case Study: Maintaining an Ordered List��
	Testing Class OrderedList��������������������������������
	Exercises for Section 2.8��������������������������������

	2.9 Implementation of a Double-Linked List Class���
	Implementing the KWLinkedList Methods��
	A Class that Implements the ListIterator Interface���
	The Constructor����������������������
	The hasNext and next Methods�����������������������������������
	The hasPrevious and previous Methods���
	The add Method���������������������
	Inner Classes: Static and Nonstatic��
	Exercises for Section 2.9��������������������������������

	2.10 The Collections Framework Design��
	The Collection Interface�������������������������������
	Common Features of Collections�������������������������������������
	The AbstractCollection, AbstractList, and AbstractSequentialList Classes
	The List and RandomAccess Interfaces (Advanced)��
	Exercises for Section 2.10���������������������������������
	Java API Interfaces and Classes Introduced in this Chapter���
	User-Defined Interfaces and Classes in this Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 3 Testing and Debugging��������������������������������������
	3.1 Types of Testing���������������������������
	Preparations for Testing�������������������������������
	Testing Tips for Program Systems���������������������������������������
	Exercises for Section 3.1��������������������������������

	3.2 Specifying the Tests�������������������������������
	Testing Boundary Conditions����������������������������������
	Exercises for Section 3.2��������������������������������

	3.3 Stubs and Drivers����������������������������
	Stubs������������
	Preconditions and Postconditions���������������������������������������
	Drivers��������������
	Exercises for Section 3.3��������������������������������

	3.4 The JUnit Test Framework�����������������������������������
	Exercises for Section 3.4��������������������������������

	3.5 Test-Driven Development����������������������������������
	Exercises for Section 3.5��������������������������������

	3.6 Testing Interactive Programs in JUnit��
	ByteArrayInputStream���������������������������
	ByteArrayOutputStream����������������������������
	Exercises for Section 3.6��������������������������������

	3.7 Debugging a Program������������������������������
	Using a Debugger�����������������������
	Exercises for Section 3.7��������������������������������
	Java API Classes Introduced in This Chapter��
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 4 Stacks and Queues����������������������������������
	4.1 Stack Abstract Data Type�����������������������������������
	Specification of the Stack Abstract Data Type��
	Exercises for Section 4.1��������������������������������

	4.2 Stack Applications�����������������������������
	Case Study: Finding Palindromes��������������������������������������
	Exercises for Section 4.2��������������������������������

	4.3 Implementing a Stack�������������������������������
	Implementing a Stack with an ArrayList Component���
	Implementing a Stack as a Linked Data Structure��
	Comparison of Stack Implementations��
	Exercises for Section 4.3��������������������������������

	4.4 Additional Stack Applications��
	Case Study: Evaluating Postfix Expressions���
	Case Study: Converting From Infix To Postfix���
	Case Study: Converting Expressions with Parentheses��
	Tying the Case Studies Together��������������������������������������
	Exercises for Section 4.4��������������������������������

	4.5 Queue Abstract Data Type�����������������������������������
	A Print Queue��������������������
	The Unsuitability of a “Print Stack”���
	A Queue of Customers���������������������������
	Using a Queue for Traversing a Multi-Branch Data Structure���
	Specification for a Queue Interface��
	Class LinkedList Implements the Queue Interface��
	Exercises for Section 4.5��������������������������������

	4.6 Queue Applications�����������������������������
	Case Study: Maintaining a Queue��������������������������������������
	Exercises for Section 4.6��������������������������������

	4.7 Implementing the Queue Interface���
	Using a Double-Linked List to Implement the Queue Interface��
	Using a Single-Linked List to Implement the Queue Interface��
	Using a Circular Array to Implement the Queue Interface��
	Exercises for Section 4.7��������������������������������

	4.8 The Deque Interface������������������������������
	Classes that Implement Deque�����������������������������������
	Using a Deque as a Queue�������������������������������
	Using a Deque as a Stack�������������������������������
	Exercises for Section 4.8��������������������������������
	Java API Classes Introduced in This Chapter��
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 5 Recursion��������������������������
	5.1 Recursive Thinking�����������������������������
	Steps to Design a Recursive Algorithm��
	Proving that a Recursive Method Is Correct���
	Tracing a Recursive Method���������������������������������
	The Run-Time Stack and Activation Frames���
	Exercises for Section 5.1��������������������������������

	5.2 Recursive Definitions of Mathematical Formulas���
	Tail Recursion versus Iteration��������������������������������������
	Efficiency of Recursion������������������������������
	Exercises for Section 5.2��������������������������������

	5.3 Recursive Array Search���������������������������������
	Design of a Recursive Linear Search Algorithm��
	Implementation of Linear Search��������������������������������������
	Design of a Binary Search Algorithm��
	Efficiency of Binary Search����������������������������������
	The Comparable Interface�������������������������������
	Implementation of Binary Search��������������������������������������
	Testing Binary Search����������������������������
	Method Arrays.binarySearch���������������������������������
	Exercises for Section 5.3��������������������������������

	5.4 Recursive Data Structures������������������������������������
	Recursive Definition of a Linked List��
	Class LinkedListRec��������������������������
	Removing a List Node���������������������������
	Exercises for Section 5.4��������������������������������

	5.5 Problem Solving with Recursion���
	Case Study: Towers of Hanoi����������������������������������
	Case Study: Counting Cells in a Blob���
	Exercises for Section 5.5��������������������������������

	5.6 Backtracking�����������������������
	Case Study: Finding a Path through a Maze��
	Exercises for Section 5.6��������������������������������
	User-Defined Classes in This Chapter���
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 6 Trees����������������������
	6.1 Tree Terminology and Applications��
	Tree Terminology�����������������������
	Binary Trees�������������������
	Some Types of Binary Trees���������������������������������
	Full, Perfect, and Complete Binary Trees���
	General Trees��������������������
	Exercises for Section 6.1��������������������������������

	6.2 Tree Traversals��������������������������
	Visualizing Tree Traversals����������������������������������
	Traversals of Binary Search Trees and Expression Trees���
	Exercises for Section 6.2��������������������������������

	6.3 Implementing a BinaryTree Class��
	The Node<E> Class������������������������
	The BinaryTree<E> Class������������������������������
	Exercises for Section 6.3��������������������������������

	6.4 Java 8 Lambda Expressions and Functional Interfaces��
	Functional Interfaces����������������������������
	Passing a Lambda Expression as an Argument���
	A General Preorder Traversal Method��
	Using preOrderTraverse�����������������������������
	Exercises for Section 6.4��������������������������������

	6.5 Binary Search Trees������������������������������
	Overview of a Binary Search Tree���������������������������������������
	Performance������������������
	Interface SearchTree���������������������������
	The BinarySearchTree Class���������������������������������
	Insertion into a Binary Search Tree��
	Removal from a Binary Search Tree��
	Testing a Binary Search Tree�����������������������������������
	Case Study: Writing an Index for a Term Paper��
	Exercises for Section 6.5��������������������������������

	6.6 Heaps and Priority Queues������������������������������������
	Inserting an Item into a Heap������������������������������������
	Removing an Item from a Heap�����������������������������������
	Implementing a Heap��������������������������
	Priority Queues����������������������
	The PriorityQueue Class������������������������������
	Using a Heap as the Basis of a Priority Queue��
	The Other Methods������������������������
	Using a Comparator�������������������������
	The compare Method�������������������������
	Exercises for Section 6.6��������������������������������

	6.7 Huffman Trees������������������������
	Case Study: Building a Custom Huffman Tree���
	Exercises for Section 6.6��������������������������������
	Java API Interfaces and Classes Introduced in This Chapter���
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 7 Sets and Maps������������������������������
	7.1 Sets and the Set Interface�������������������������������������
	The Set Abstraction��������������������������
	The Set Interface and Methods������������������������������������
	Comparison of Lists and Sets�����������������������������������
	Exercises for Section 7.1��������������������������������

	7.2 Maps and the Map Interface�������������������������������������
	The Map Hierarchy������������������������
	The Map Interface������������������������
	Exercises for Section 7.2��������������������������������

	7.3 Hash Tables����������������������
	Hash Codes and Index Calculation���������������������������������������
	Methods for Generating Hash Codes��
	Open Addressing����������������������
	Table Wraparound and Search Termination��
	Traversing a Hash Table������������������������������
	Deleting an Item Using Open Addressing���
	Reducing Collisions by Expanding the Table Size��
	Reducing Collisions Using Quadratic Probing��
	Problems with Quadratic Probing��������������������������������������
	Chaining���������������
	Performance of Hash Tables���������������������������������
	Exercises for Section 7.3��������������������������������

	7.4 Implementing the Hash Table��������������������������������������
	Interface KWHashMap��������������������������
	Class Entry������������������
	Class HashtableOpen��������������������������
	Class HashtableChain���������������������������
	Testing the Hash Table Implementations���
	Exercises for Section 7.4��������������������������������

	7.5 Implementation Considerations for Maps and Sets��
	Methods hashCode and equals����������������������������������
	Implementing HashSetOpen�������������������������������
	Writing HashSetOpen as an Adapter Class��
	Implementing the Java Map and Set Interfaces���
	Interface Map.Entry and Class AbstractMap.SimpleEntry��
	Creating a Set View of a Map�����������������������������������
	Method entrySet and Classes EntrySet and SetIterator���
	Classes TreeMap and TreeSet����������������������������������
	Exercises for Section 7.5��������������������������������

	7.6 Additional Applications of Maps��
	Case Study: Implementing a Cell Phone Contact List���
	Case Study: Completing the Huffman Coding Problem��
	Encoding the Huffman Tree��������������������������������
	Exercises for Section 7.6��������������������������������

	7.7 Navigable Sets and Maps����������������������������������
	Application of a NavigableMap������������������������������������
	Exercises for Section 7.7��������������������������������
	Java API Interfaces and Classes Introduced in This Chapter���
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 8 Sorting������������������������
	8.1 Using Java Sorting Methods�������������������������������������
	Exercises for Section 8.1��������������������������������

	8.2 Selection Sort�������������������������
	Analysis of Selection Sort���������������������������������
	Code for Selection Sort������������������������������
	Exercises for Section 8.2��������������������������������

	8.3 Insertion Sort�������������������������
	Analysis of Insertion Sort���������������������������������
	Code for Insertion Sort������������������������������
	Exercises for Section 8.3��������������������������������

	8.4 Comparison of Quadratic Sorts��
	Comparisons versus Exchanges�����������������������������������
	Exercises for Section 8.4��������������������������������

	8.5 Shell Sort: A Better Insertion Sort��
	Analysis of Shell Sort�����������������������������
	Code for Shell Sort��������������������������
	Exercises for Section 8.5��������������������������������

	8.6 Merge Sort���������������������
	Analysis of Merge������������������������
	Code for Merge���������������������
	Algorithm for Merge Sort�������������������������������
	Trace of Merge Sort Algorithm������������������������������������
	Analysis of Merge Sort�����������������������������
	Code for Merge Sort��������������������������
	Exercises for Section 8.6��������������������������������

	8.7 Timsort������������������
	Merging Adjacent Sequences���������������������������������
	Implementation���������������������

	8.8 Heapsort�������������������
	First Version of a Heapsort Algorithm��
	Revising the Heapsort Algorithm��������������������������������������
	Algorithm to Build a Heap��������������������������������
	Analysis of Revised Heapsort Algorithm���
	Code for Heapsort������������������������
	Exercises for Section 8.8��������������������������������

	8.9 Quicksort��������������������
	Algorithm for Quicksort������������������������������
	Analysis of Quicksort����������������������������
	Code for Quicksort�������������������������
	Algorithm for Partitioning���������������������������������
	Code for partition�������������������������
	A Revised partition Algorithm������������������������������������
	Code for Revised partition Method��
	Exercises for Section 8.9��������������������������������

	8.10 Testing the Sort Algorithms���������������������������������������
	Exercises for Section 8.10���������������������������������

	8.11 The Dutch National Flag Problem (Optional Topic)��
	Case Study: The Problem of the Dutch National Flag���
	Exercises for Section 8.11���������������������������������
	Java Classes Introduced in This Chapter��
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 9 Self-Balancing Search Trees��
	9.1 Tree Balance and Rotation������������������������������������
	Why Balance Is Important�������������������������������
	Rotation���������������
	Algorithm for Rotation�����������������������������
	Implementing Rotation����������������������������
	Exercises for Section 9.1��������������������������������

	9.2 AVL Trees��������������������
	Balancing a Left–Left Tree���������������������������������
	Balancing a Left–Right Tree����������������������������������
	Four Kinds of Critically Unbalanced Trees��
	Implementing an AVL Tree�������������������������������
	Inserting into an AVL Tree���������������������������������
	Removal from an AVL Tree�������������������������������
	Performance of the AVL Tree����������������������������������
	Exercises for Section 9.2��������������������������������

	9.3 Red–Black Trees��������������������������
	Insertion into a Red–Black Tree��������������������������������������
	Removal from a Red–Black Tree������������������������������������
	Performance of a Red–Black Tree��������������������������������������
	The TreeMap and TreeSet Classes��������������������������������������
	Exercises for Section 9.3��������������������������������

	9.4 2–3 Trees��������������������
	Searching a 2–3 Tree���������������������������
	Inserting an Item into a 2–3 Tree��
	Analysis of 2–3 Trees and Comparison with Balanced Binary Trees��
	Removal from a 2–3 Tree������������������������������
	Exercises for Section 9.4��������������������������������

	9.5 B-Trees and 2–3–4 Trees����������������������������������
	B-Trees��������������
	Implementing the B-Tree������������������������������
	Code for the insert Method���������������������������������
	The insertIntoNode Method��������������������������������
	The splitNode Method���������������������������
	Removal from a B-Tree����������������������������
	B- Trees���������������
	2–3–4 Trees������������������
	Relating 2–3–4 Trees to Red–Black Trees��
	Exercises for Section 9.5��������������������������������

	9.6 Skip-Lists���������������������
	Skip-List Structure��������������������������
	Searching a Skip-List����������������������������
	Performance of a Skip-List Search��
	Inserting into a Skip-List���������������������������������
	Increasing the Height of a Skip-List���
	Implementing a Skip-List�������������������������������
	Searching a Skip-List����������������������������
	Insertion����������������
	Determining the Size of the Inserted Node��
	Completing the Insertion Process���������������������������������������
	Performance of a Skip-List���������������������������������
	Exercises for Section 9.6��������������������������������
	Java Classes Introduced in This Chapter��
	User-Defined Interfaces and Classes in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Chapter 10 Graphs������������������������
	10.1 Graph Terminology�����������������������������
	Visual Representation of Graphs��������������������������������������
	Directed and Undirected Graphs�������������������������������������
	Paths and Cycles�����������������������
	Relationship between Graphs and Trees��
	Graph Applications�������������������������
	Exercises for Section 10.1����������������������������������

	10.2 The Graph ADT and Edge Class��
	Representing Vertices and Edges��������������������������������������
	Exercises for Section 10.2����������������������������������

	10.3 Implementing the Graph ADT��������������������������������������
	Adjacency List���������������������
	Adjacency Matrix�����������������������
	Overview of the Hierarchy��������������������������������
	Class AbstractGraph��������������������������
	The ListGraph Class��������������������������
	The MatrixGraph Class����������������������������
	Comparing Implementations��������������������������������
	The MapGraph Class�������������������������
	Exercises for Section 10.3����������������������������������

	10.4 Traversals of Graphs��������������������������������
	Breadth-First Search���������������������������
	Algorithm for Breadth-First Search���
	Depth-First Search�������������������������
	Exercises for Section 10.4����������������������������������

	10.5 Applications of Graph Traversals��
	Case Study: Shortest Path through a Maze���
	Case Study: Topological Sort of a Graph��
	Exercises for Section 10.5����������������������������������

	10.6 Algorithms Using Weighted Graphs��
	Finding the Shortest Path from a Vertex to All Other Vertices��
	Minimum Spanning Trees�����������������������������
	Exercises for Section 10.6����������������������������������
	User-Defined Classes and Interfaces in This Chapter��
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answers to Quick-Check Exercises���������������������������������������

	Appendix A Introduction to Java��������������������������������������
	A.1 The Java Environment and Classes���
	The Java Virtual Machine�������������������������������
	The Java Compiler������������������������
	Classes and Objects��������������������������
	The Java API�������������������
	The import Statement���������������������������
	Method main������������������
	Execution of a Java Program����������������������������������
	Exercises for Section A.1��������������������������������

	A.2 Primitive Data Types and Reference Variables���
	Primitive Data Types���������������������������
	Primitive-Type Variables�������������������������������
	Primitive-Type Constants�������������������������������
	Operators����������������
	Postfix and Prefix Increment�����������������������������������
	Type Compatibility and Conversion��
	Referencing Objects��������������������������
	Creating Objects�����������������������
	Exercises for Section A.2��������������������������������

	A.3 Java Control Statements
	Sequence and Compound Statements���������������������������������������
	Selection and Repetition Control���������������������������������������
	Nested if Statements���������������������������
	The switch Statement���������������������������
	Exercises for Section A.3��������������������������������

	A.4 Methods and Class Math
	The Instance Methods println and print���
	Call-by-Value Arguments������������������������������
	The Class Math���������������������
	Escape Sequences�����������������������
	Exercises for Section A.4��������������������������������

	A.5 The String, StringBuilder, StringBuffer, and StringJoiner Classes
	The String Class�����������������������
	Strings Are Immutable����������������������������
	The Garbage Collector����������������������������
	Comparing Objects������������������������
	The String.format Method�������������������������������
	The Formatter Class��������������������������
	The String.split Method������������������������������
	Introduction to Regular Expressions��
	Matching One of a Group of Characters��
	Qualifiers�����������������
	Defined Character Groups�������������������������������
	Unicode Character Class Support��������������������������������������
	The StringBuilder and StringBuffer Classes���
	Java 8 StringJoiner Class��������������������������������
	Exercises for Section A.5��������������������������������

	A.6 Wrapper Classes for Primitive Types
	Exercises for Section A.6��������������������������������

	A.7 Defining Your Own Classes
	Private Data Fields, Public Methods��
	Constructors�������������������
	The No-Parameter Constructor�����������������������������������
	Modifier and Accessor Methods������������������������������������
	Use of this. in a Method�������������������������������
	The Method toString��������������������������
	The Method equals������������������������
	Declaring Local Variables in Class Person��
	An Application that Uses Class Person��
	Objects as Arguments���������������������������
	Classes as Components of Other Classes���
	Java Documentation Style for Classes and Methods���
	Exercises for Section A.7��������������������������������

	A.8 Arrays�����������������
	Data Field length������������������������
	Method Arrays.copyOf���������������������������
	Method System.arrayCopy������������������������������
	Array Data Fields������������������������
	Array Results and Arguments����������������������������������
	Arrays of Arrays�����������������������
	Exercises for Section A.8��������������������������������

	A.9 Enumeration Types����������������������������
	Using Enumeration Types������������������������������
	Assigning Values to Enumeration Types��
	Exercises for Section A.9��������������������������������

	A.10 I/O Using Streams, Class Scanner, and Class JOptionPane���
	The Scanner������������������
	Using a Scanner to Read from a File��
	Exceptions�����������������
	Tokenized Input����������������������
	Extracting Tokens Using Scanner.findInLine���
	Using a BufferedReader to Read from an Input Stream��
	Output Streams���������������������
	Passing Arguments to Method main���������������������������������������
	Closing Streams����������������������
	Try with Resources�������������������������
	A Complete File-Processing Application���
	Class InputStream and Character Codes (Optional)���
	The Default Character Coding (Optional)��
	UTF-8 (Optional)�����������������������
	Specifying a Character Encoding (Optional)���
	Input/Output Using Class JOptionPane���
	Converting Numeric Strings to Numbers��
	GUI Menus Using Method showOptionDialog��
	Exercises for Section A.10���������������������������������

	A.11 Catching Exceptions�������������������������������
	Catching and Handling Exceptions���������������������������������������
	Exercises for Section A.11���������������������������������

	A.12 Throwing Exceptions�������������������������������
	The throws Clause������������������������
	The throw Statement��������������������������
	Exercises for Section A.12���������������������������������
	Java Constructs Introduced in This Appendix��
	Java API Classes Introduced in This Appendix���
	User-Defined Interfaces and Classes in This Appendix���
	Quick-Check Exercises����������������������������
	Review Questions�����������������������
	Programming Projects���������������������������
	Answer to Quick-Check Exercises��������������������������������������

	Appendix B Overview of UML���������������������������������
	B.1 The Class Diagram����������������������������
	Representing Classes and Interfaces��
	Generalization���������������������
	Inner or Nested Classes������������������������������
	Association������������������
	Aggregation and Composition����������������������������������
	Generic Classes����������������������

	B.2 Sequence Diagrams����������������������������
	Time Axis����������������
	Objects��������������
	Life Lines�����������������
	Activation Bars����������������������
	Messages���������������
	Use of Notes�������������������

	Glossary
	Index

		2016-01-14T02:01:04+0000
	Preflight Ticket Signature

