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PREFACE TO THE FIRST EDITION

As information technology continues to make more impact on many aspects of our
daily lives, the problems of communication between human beings and information-
processing machines become increasingly important. Up to now such communication
has been almost entirely by means of keyboards and screens, but there are substantial
disadvantages of this method for many applications. Speech, which is by far the most
widely used and natural means of communication between people, is at first sight an
obvious substitute. However, this deceptively simple means of exchanging
information is, in fact, extremely complicated. Although the application of speech in
the man-machine interface is growing rapidly, in their present forms machine
capabilities for generating and interpreting speech are still a travesty of what a young
child can achieve with ease. This volume sets out to explain why the problem is so
difficult, how it is currently being tackled, and what is likely to happen in the future
as our knowledge and technological capability improve. It does not attempt to cover
the human factors aspects of using speech for the man-machine interface, as this is
another specialism.

This book is intended as an introduction to and summary of the current technology of
speech synthesis and recognition. It is most appropriate as a text for those graduate
students or specialist undergraduates in information technology who have an electronic
engineering or computer science background. Although the book should be useful for
people trained in other disciplines, such as linguistics or psychology, some additional
reading on signal processing mathematics and electronic technology would probably be
necessary for such readers to derive the maximum benefit.

This volume should also be suitable as background material for electronic engineers
in industry who need to apply their skills to engineering speech technology products, and
for systems engineers who wish to use speech technology devices in complete
information processing systems.

An advanced mathematical ability is not required, although it is assumed the reader
has some familiarity with the basic mathematics of electronic engineering, such as
Fourier analysis, convolution, continuous and discrete-time filters, etc. No specialist
knowledge of phonetics or of the properties of speech signals is assumed. Chapter 8§,
which describes the application of hidden Markov models to speech recognition, requires
some statistics knowledge—in particular elementary probability theory and the properties
of the normal distribution. I believe that for those trying to understand hidden Markov
models for the first time, a large part of the problem arises from the difficulty of
remembering the meanings of the symbols used in the equations. For this reason the
symbols adopted in Chapter 8 are different from those used almost universally in
research papers in this field. Instead they have been made to have some mnemonic
association with the quantities they describe. Once the form of the equations has become
familiar and their significance is understood, the reader should have no difficulty in
transferring to the standard notation, using a, b, a and /.

Although this book explains some of the basic concepts in great detail, a volume of
this size cannot hope to give a comprehensive coverage of speech synthesis and
recognition. It should, however, provide sufficient information to enable the reader to

Xiii



Xiv Preface to the First Edition

understand many of the current research papers in this area. The subjects described owe
a lot to numerous published papers by many different authors over the last 50 years.
Study of these papers should not be necessary for the reader to follow the explanations
given here, and to simplify the text only a few important original sources of some of the
subjects have been referenced directly. However, in Chapter 11 there is a bibliography
containing sufficient information to enable readers with more specialist interests to trace
all the significant literature in any of the fields covered.

For much of my knowledge in the subjects covered in this book, I am greatly indebted
to all of my many colleagues and other associates in the field of speech research,
particularly during the long period I was in the Joint Speech Research Unit. In preparing
the book I have received much useful advice and detailed help from Andy Downton, in
his role as a series editor. I also wish to express my special gratitude to Norman Green,
Wendy Holmes, Martin Russell and Nigel Sedgwick, who made valuable constructive
comments on drafts of various chapters.

John Holmes, 1988



PREFACE TO THE SECOND EDITION

Since the first publication of Speech Synthesis and Recognition there has been a huge
growth in the number and diversity of successful applications of speech technology. This
increase in deployment of the technology has been made possible by development of the
algorithms, supported by general advances in the processing power and memory provided
by modern computers.

Like the original version, this new edition of the book aims to provide an easy-to-read
introduction to the field of speech technology that is suitable both for students and for
professional engineers. While there are now many other textbooks available, these tend to
be more in-depth and more mathematically demanding, whereas here the emphasis is on
explaining the principles behind the techniques used in speech synthesis and recognition.
This book will hopefully provide the reader with a thorough grounding, from which it
would then be easier to tackle the more advanced texts and many research papers. While
the original version of this book is of course now very out of date, feedback we received
suggested that it had been useful as a compact yet thorough introduction. We have
therefore followed the same style and format as were used in the first edition, but have
tried with this new edition to bring it up to date to reflect the many advances that have
been made in the past 10 years or so. All the chapters in the original book have been
updated and the new edition is longer by six chapters in order to incorporate new
material.

In the area of speech synthesis, there have been significant recent advances in
concatenative synthesis techniques. The material on speech synthesis has therefore now
been split into three chapters, dealing separately with concatenative methods of speech
generation (Chapter 5), phonetic synthesis by rule (Chapter 6) and systems for synthesis
from text or from concept (Chapter 7).

In speech recognition, statistical pattern matching is still the basis for the most
successful systems, and the underlying principles have not changed. Thus, as with the
first edition, the material on speech recognition begins with introductions to template
matching (now Chapter 8) and to hidden Markov models (HMMs) for statistical pattern
matching (now Chapter 9). New chapters have been added to cover the extensive
refinements and developments of the techniques that have been made in recent years.
Chapter 10 provides an introduction to methods for front-end analysis, while Chapter 11
covers other methods that are used to achieve good performance in any practical
recognition system. Chapter 12 deals specifically with large-vocabulary recognition and
includes language modelling. In contrast to the first edition, when describing HMMs the
standard notation for forward and backward probabilities has been adopted. Although the
symbols used in the first edition were intended to provide a more intuitive connection
with the concepts involved, the use of the standard notation should make it easier for the
reader subsequently to follow other publications on this subject.

Short chapters have been added to give introductions to the use of neural networks for
speech recognition (Chapter 13), and the automatic recognition of speaker attributes such
as speaker identity or language (Chapter 14). A further new chapter (Chapter 15) has
been added to summarize performance and applications of current speech technology.
This chapter is intended to give an indication of the types of applications for which

XV



XVi Preface to the Second Edition

different forms of synthesis and recognition technology are appropriate, and to explain
some of the issues in applying these technologies appropriately. However, it has not been
possible in a book of this size to do any more than briefly mention related subjects such
as the design of the user interface and dialogue management.

As with the first edition, the main text of the book concentrates on explaining
concepts and only gives direct references where they were considered essential.
Reference sources are presented separately in Chapter 16, with the aim being to give at
least one reference for each major topic covered. There is now so much published
material available that the references given are necessarily selective, but it is hoped that
they can provide a suitable starting point for studying any particular topic in greater
depth. A short glossary has also been added to cover some of the main terms used in the
book and more generally in speech science and technology.

An influential change since the publication of the first edition of this book is the
availability of the Internet as a rich source of reference material. The Web site http:/
www.speechbook.net has been set up for this book and the intention is to use this site to
list corrections and other information relating to the book, as well as to provide up-to-
date links to Web sites that are relevant to topics covered in the book.

It was around the end of 1996 when my father found out that the first edition was out
of print and would not be reprinted. Although initially he was reluctant to undertake the
major revision required to produce a second edition, he gradually changed his mind and
developed great enthusiasm for it following encouraging comments from users of the first
edition and enlisting a co-author (me!) to help in the updating. In 1998 Taylor & Francis
agreed to take the book on, and my father and I spent time planning and organizing the
contents and layout before starting on the writing itself. Tackling the project jointly was
proving to be a great success, but sadly events did not turn out as we had hoped and my
father died in 1999 when we were only part of the way through our task. Since that time
I have done my best to complete the book following our joint plan and incorporating the
ideas that we had discussed, but I have often had to make decisions without the benefit
of input from my father, with his wealth of experience and great eye for detail of wording
and presentation. While I am relieved to have finally finished the book, I am sad that he
did not live to see the completion of this project to which he was so dedicated.

The material in this book has been drawn from a combination of several published
sources together with personal experience. For my own knowledge I owe a lot to my
father, and I have also benefited from interaction and discussion with many others
working in speech research, especially my past and present colleagues of what was the
Speech Research Unit and is now 20/20 Speech Ltd.

Completing the book has turned out to be a difficult and lengthy task, and I am
grateful to the many people who have offered me support and encouragement. I would
like especially to thank Andy Breen, John Bridle, Dave Carter, Chris Darwin, Phil Green,
Roger Moore, Steve Renals, Peter Roach, Martin Russell, Nigel Sedgwick, Tim Thorpe
and Mike Tomlinson for careful reading and constructive criticism of drafts of various
chapters. I also express my gratitude to Tony Moore and his many colleagues at Taylor &
Francis who have been involved at different stages, both for practical help and for their
patience and understanding during the long time that it has taken for me to complete the
book.

Wendy Holmes, 2001
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CHAPTER 1
Human Speech Communication

1.1 VALUE OF SPEECH FOR HUMAN-MACHINE COMMUNICATION

Advances in electronic and computer technology are causing an explosive growth in the
use of machines for processing information. In most cases this information originates
from a human being, and is ultimately to be used by a human being. There is thus a need
for effective ways of transferring information between people and machines, in both
directions. One very convenient way in many cases is in the form of speech, because
speech is the communication method most widely used between humans; it is therefore
extremely natural and requires no special training.

There are, of course, many circumstances where speech is not the best method for
communicating with machines. For example, large amounts of text are much more easily
received by reading from a screen, and positional control of features in a computer-aided
design system is easier by direct manual manipulation. However, for interactive dialogue
and for input of large amounts of text or numeric data speech offers great advantages.
Where the machine is only accessible from a standard telephone instrument there is no
practicable alternative.

1.2 IDEAS AND LANGUAGE

To appreciate how communication with machines can use speech effectively, it is
important to understand the basic facts of how humans use speech to communicate with
each other. The normal aim of human speech is to communicate ideas, and the words and
sentences we use are not usually important as such. However, development of intellectual
activity and language acquisition in human beings proceed in parallel during early
childhood, and the ability of language to code ideas in a convenient form for mental
processing and retrieval means that to a large extent people actually formulate the ideas
themselves in words and sentences. The use of language in this way is only a convenient
coding for the ideas. Obviously a speaker of a different language would code the same
concepts in different words, and different individuals within one language group might
have quite different shades of meaning they normally associate with the same word.

1.3 RELATIONSHIP BETWEEN WRITTEN AND SPOKEN LANGUAGE

The invention of written forms of language came long after humans had established
systems of speech communication, and individuals normally learn to speak long
before they learn to read and write. However, the great dependence on written
language in modern civilization has produced a tendency for people to consider
language primarily in its written form, and to regard speech as merely a spoken form
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of written text—possibly inferior because it is imprecise and often full of errors. In
fact, spoken and written language are different in many ways, and speech has the
ability to capture subtle shades of meaning that are quite difficult to express in text,
where one’s only options are in choice of words and punctuation. Both speech and
text have their own characteristics as methods of transferring ideas, and it would be
wrong to regard either as an inferior substitute for the other.

1.4 PHONETICS AND PHONOLOGY

The study of how human speech sounds are produced and how they are used in language is
an established scientific discipline, with a well-developed theoretical background. The field is
split into two branches: the actual generation and classification of speech sounds falls within
the subject of phonetics, whereas their functions in languages are the concern of phonology.
These two subjects need not be studied in detail by students of speech technology, but some
phonetic and phonological aspects of the generation and use of speech must be appreciated in
general terms. The most important ones are covered briefly in this chapter.

1.5 THE ACOUSTIC SIGNAL

The normal aim of a talker is to transfer ideas, as expressed in a particular language, but
putting that language in the form of speech involves an extremely complicated extra
coding process (Figure 1.1). The actual signal transmitted is predominantly acoustic, i.e.
a variation of sound pressure with time. Although particular speech sounds tend to have
fairly characteristic properties (better specified in spectral rather than waveform terms),
there is great variability in the relationship between the acoustic signal and the linguistic
units it represents. In analysing an utterance linguistically the units are generally
discrete—e.g. words, phrases, sentences. In speech the acoustic signal is continuous, and
it is not possible to determine a precise mapping between time intervals in a speech
signal and the words they represent. Words normally join together, and in many cases
there is no clear acoustic indication of where one word ends and the next one starts. For
example, in “six seals” the final sound of the “six” is not significantly different from the
[s] at the beginning of “seals”, so the choice of word boundary position will be arbitrary.
All else being equal, however, one can be fairly certain that the [s] sound in the middle
of “sick seals” will be shorter, and this duration difference will probably be the only
reliable distinguishing feature in the acoustic signal for resolving any possible confusion
between such pairs of words. The acoustic difference between “sick seals” and “six eels”
is likely to be even more subtle.

Although the individual sound components in speech are not unambiguously
related to the identities of the words, there is, of course, a high degree of systematic
relationship that applies most of the time. Because speech is generated by the human
vocal organs (explained further in Chapter 2) the acoustic properties can be related to
the positions of the articulators. With sufficient training, phoneticians can, based
entirely on listening, describe speech in terms of a sequence of events related to
articulatory gestures. This auditory analysis is largely independent of age or sex of
the speaker. The International Phonetic Alphabet (IPA) is a system of
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Figure 1.1 Illustration of the processes involved in communicating ideas by speech. It is not
easy to separate the concepts in the brain from their representation in the form of language.

notation whereby phoneticians can describe their analysis as a sequence of discrete units.
Although there will be a fair degree of unanimity between phoneticians about the
transcription of a particular utterance, it has to be accepted that the parameters of speech
articulation are continuously variable. Thus there will obviously be cases where different
people will judge a particular stretch of sound to be on the opposite sides of a phonetic
category boundary.

1.6 PHONEMES, PHONES AND ALLOPHONES

Many of the distinctions that can be made in a narrow phonetic transcription, for example
between different people pronouncing the same word in slightly different ways, will have
no effect on meaning. For dealing with the power of speech sounds to make distinctions
of meaning it has been found useful in phonology to define the phoneme, which is the
smallest unit in speech where substitution of one unit for another might make a
distinction of meaning. For example, in English the words “do” and “to” differ in the
initial phoneme, and “dole” and “doll” differ in the middle (i.e. the vowel sound). There
may be many different features of the sound pattern that contribute to the phonemic
distinction: in the latter example, although the tongue position during the vowel would
normally be slightly different, the most salient feature in choosing between the two
words would probably be vowel duration. A similar inventory of symbols is used for
phonemic notation as for the more detailed phonetic transcription, although the set of
phonemes is specific to the language being described. For any one language only a small
subset of the IPA symbols is used to represent the phonemes, and each symbol will
normally encompass a fair range of phonetic variation. This variation means that there
will be many slightly different sounds which all represent manifestations of the same
phoneme, and these are known as allophones.

Phonologists can differ in how they analyse speech into phoneme sequences,
especially for vowel sounds. Some economize on symbols by representing the long
vowels in English as phoneme pairs, whereas they regard short vowels as single
phonemes. Others regard long and short vowels as different single phonemes, and so
need more symbols. The latter analysis is useful for acknowledging the difference in
phonetic quality between long vowels and their nearest short counterparts, and will be
adopted throughout this book. We will use the symbol set that is most widely used by
the current generation of British phoneticians, as found in Wells (2000) for example.
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With this analysis there are about 44 phonemes in English. The precise number and the
choice of symbols depends on the type of English being described (i.e. some types of
English do not make phonetic distinctions between pairs of words that are clearly
distinct in others). It is usual to write phoneme symbols between oblique lines, e.g. /t/
, but to use square brackets round the symbols when they represent a particular
allophone, e.g. [t]. Sometimes the word phone is used as a general term to describe
acoustic realizations of a phoneme when the variation between different allophones is
not being considered.

Many of the IPA symbols are the same as characters of the Roman alphabet, and often
their phonetic significance is similar to that commonly associated with the same letters in
those languages that use this alphabet. To avoid need for details of the IPA notation in
this book, use of IPA symbols will mostly be confined to characters whose phonemic
meaning should be obvious to speakers of English.

There is a wide variation in the acoustic properties of allophones representing a
particular phoneme. In some cases these differences are the result of the influence of
neighbouring sounds on the positions of the tongue and other articulators. This effect is
known as co-articulation. In other cases the difference might be a feature that has
developed for the language over a period of time, which new users learn as they acquire
the language in childhood. An example of the latter phenomenon is the vowel
difference in the words “coat” and “coal” as spoken in southern England. These vowels
are acoustically quite distinct, and use a slightly different tongue position. However,
they are regarded as allophones of the same phoneme because they are never used as
alternatives to distinguish between words that would otherwise be identical.
Substituting one vowel for the other in either word would not cause the word identity
to change, although it would certainly give a pronunciation that would sound odd to a
native speaker.

1.7 VOWELS, CONSONANTS AND SYLLABLES

We are all familiar with the names vowel and consonant as applied to letters of the
alphabet. Although there is not a very close correspondence in English between the
letters in conventional spelling and their phonetic significance, the categories of vowel
and consonant are for the most part similarly distinct in spoken language.

During vowels the flow of air through the mouth and throat is relatively unconstricted
and the original source of sound is located at the larynx (see Chapter 2), whereas in most
consonants there is a substantial constriction to air flow for some of the time. In some
consonants, known as stop consonants or plosives, the air flow is completely blocked
for a few tens of milliseconds. Although speech sounds that are classified as vowels can
usually be distinguished from consonants by this criterion, there are some cases where
the distinction is not very clear. It is probably more useful to distinguish between vowels
and consonants phonologically, on the basis of how they are used in making up the words
of a language. Languages show a tendency for vowels and consonants to alternate, and
sequences of more than three or four vowels or consonants are comparatively rare. By
considering their functions and distributions in the structure of language it is usually
fairly easy to decide, for each phoneme, whether it should be classified as a vowel or a
consonant.
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In English there are many vowel phonemes that are formed by making a transition
from one vowel quality to another, even though they are regarded as single phonemes
according to the phonological system adopted in this book. Such vowels are known as
diphthongs. The vowel sounds in “by”, “boy” and “bough” are typical examples, and no
significance should be assigned to the fact that one is represented by a single letter and
the others by “oy” and “ough”. Vowels which do not involve such a quality transition are
known as monophthongs.

There are some cases where the different phonological structure will cause
phonetically similar sounds to be classified as vowels in one language and consonants
in another. For example the English word “pie” and the Swedish word “paj”, which
both have the same meaning, also sound superficially rather similar. The main phonetic
difference is that at the end of the word the tongue will be closer to the palate in the
Swedish version. However, the English word has two phonemes: the initial consonant,
followed by a diphthong for the vowel. In contrast the Swedish word has three
phonemes: the initial consonant, followed by a monophthong vowel and a final
consonant. The final consonant is very similar phonetically to the initial consonant in
the English word “yet”.

All spoken languages have a syllabic structure, and all languages permit syllables
consisting of a consonant followed by a vowel. This universal fact probably originates
from the early days of language development many thousands of years ago. The natural
gesture of opening the mouth and producing sound at the larynx will always produce a
vowel-like sound, and the properties of the acoustic system during the opening gesture
will normally generate some sort of consonant. Some languages (such as Japanese) still
have a very simple syllabic structure, where most syllables consist of a single
consonant followed by a vowel. In languages of this type syllable sequences are
associated with alternate increases and decreases of loudness as the vowels and
consonants alternate. In many other languages, however, a much wider range of
syllable types has evolved, where syllables can consist of just a single vowel, or may
contain one or more consonants at the beginning and the end. A syllable can never
contain more than one vowel phoneme (although that one may be a diphthong), but
sometimes it may not contain any. In the second syllable of many people’s
pronunciation of English words such as “button”, “prism” and “little”, the final
consonant sound is somewhat lengthened, but is not preceded by a vowel. The
articulatory constriction needed for the consonant at the end of the first syllable is
followed immediately by that for the final consonant. Other English speakers might
produce a short neutral vowel between the two consonants; the end result will sound
fairly similar, and will be judged by listeners as containing two syllables in both cases.
When the vowel is omitted the final consonant is classified as syllabic.

Perception of syllables in a language like English depends on many different factors.
A reduction of signal level between two higher-level regions generally implies a syllable
boundary, but pitch change is often used for separating syllables. For example, in the
abbreviations “i.e.” and “I.LE.E.” there is no change of vowel quality in the second
abbreviation to indicate that “E.E.” is two syllables, and there may be no obvious change
of signal level. However, there is usually a noticeable drop of pitch to mark the boundary
between the two letters. For any utterance, the decision as to whether there is one E or
two will rely on a combination of duration, pitch change and loudness change, and pitch
change tends to have most influence.

Problems with determining how many syllables there are in a word occur mainly in



6 Speech Synthesis and Recognition

the case of words nominally containing sequences of vowel phonemes. Casual
pronunciation may sometimes merge vowel sequences, so that there is no natural
acoustic boundary between them, and sometimes no obvious change of phonetic quality
during the vowel part of the word. An example is the word “tower”. In the most widely
used pronunciation in southern England this word has two syllables, where the vowel
of the first syllable is a diphthong and in the second syllable is a short neutral vowel;
there is normally no consonant phoneme between them. Some people, however, round
their lips so strongly between the two vowels that a /w/ consonant is perceived in the
middle of the word. Other people go to the other extreme, and merge the vowels of the
two syllables into a single long monophthong, which is not much different from a
lengthened version of the vowel quality at the beginning of the usual diphthong. In a
case such as this the word can only be regarded as having one syllable. But
intermediate pronunciations are possible, so there are some pronunciations which are
in the borderline region where it is impossible to be certain whether there is one
syllable or two.

1.8 PHONEMES AND SPELLING

It is very important in the study of speech not to be confused by the conventional spelling
of words, particularly for English where the relationship between spelling and
pronunciation is so unpredictable. Although the vowel/consonant distinction in English
orthography is not very different from that in phonetics and phonology, there are obvious
anomalies. In the word “gypsy”, for example, both occurrences of the letter y function as
vowels, whereas in “yet” the y is clearly a consonant. The letter X in “vex” represents a
sequence of two consonants (it is transcribed phonemically as /veks/), but gh in “cough”
represents a single phoneme, /f/.

There are many cases in English where the letter e after a consonant is not
pronounced, but its presence modifies the phonemic identity of the vowel before the
consonant (e.g. “dote” contrasts with “dot”). Combinations of vowel letters are often
used to represent a single vowel phoneme (such as in “bean”) and in several varieties of
English a letter r after a vowel is not pronounced as a consonant but causes the vowel
letter to represent a different phoneme (for example, the change of “had” to “hard” and
“cod” to “cord” only involves a change of vowel quality).

1.9 PROSODIC FEATURES

The phoneme identities are not the only carriers of linguistic information in speech.
Pitch, intensity and timing are also important in human speech communication. In some
languages, of which Chinese is the most obvious example, the pattern of pitch within a
word is needed to supplement knowledge of the phonemes to determine the word’s
identity. In Mandarin Chinese there are four different tones that can be used in each
syllable, representing four different pitch patterns. In most European languages pitch,
intensity and timing (collectively known as the prosodic features of the speech) do not
normally affect the identities of the words, but they do provide useful additional
information about what is being said.
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Prosodic features can be used to indicate the mood of the speaker, and to
emphasize certain words. Prosody is also the main factor responsible for determining
which syllables are stressed in polysyllabic words. The most salient prosodic feature
for indicating stress and word prominence is not, as one might expect, intensity but
is in fact pitch—in particular the change of pitch on stressed syllables. Sound
duration also increases for stressed syllables, but there are many other factors that
affect durations of sounds, such as their positions in a sentence and the identities of
the neighbouring sounds. Although prominent syllables do tend to be slightly more
intense, and low-pitched sounds at the ends of phrases are often a few decibels
weaker, intensity is less significant in assisting speech interpretation than are pitch
and duration.

By focusing attention on the most important words, correct prosody is a great help in
the interpretation of spoken English. Speech in which the prosody is appreciably
different from that normally used by a native speaker can be extremely difficult to
understand. Although the detailed structure of the pitch pattern may vary considerably
between different local English accents (for example, between London and Liverpool),
the general way in which prosody is used to mark stress is similar. The rhythmic
structure is however completely different in certain other languages, such as French. In
these syllable-timed languages the syllables seem to come in a much more uniform
stream than in stress-timed languages such as English, where there tends to be a regular
beat on the main stressed syllables. The implication is that in English the unstressed
syllables between the syllables carrying the most prominence are shorter if there are
more of them. Although this difference in type of rhythm between English and French is
clearly perceived by listeners, there has been much controversy over its physical
correlates. Attempts to find a systematic difference in the measured patterns of syllable
durations between English and French in spontaneous conversation have not been very
successful.

1.10 LANGUAGE, ACCENT AND DIALECT

Different languages often use quite different phonetic contrasts to make phonemic
distinctions. This fact causes great difficulty for foreign language learners, particularly if
their speech habits are already firmly established in their native language before another
is encountered. It is beyond the scope of this book to give details of this effect, but a
simple example will illustrate the point. In Japanese there is no phoneme corresponding
to the English /1/, but there is one that is acoustically somewhat similar to the English /
r/. When most Japanese hear an [1] in English it does not sound very close to any sound
in their own language, but it is perceptually nearer to the sound associated with their /r/
than to any other. Speech is used for transmitting language, and there is a strong tendency
to subconsciously replace one’s memory of a speech sound by its linguistic label (i.e.
phoneme) within a second or two of hearing it uttered. It is very common, therefore, for
Japanese to be unable to distinguish, in both perception and production, between English
words that differ only by an /1/-/r/ contrast (e.g. “light” and “right”). This comment is not
to be interpreted as a criticism specifically of foreign speakers of English: native English
speakers have similar difficulties, particularly in discerning vowel contrasts in languages
with a very rich vowel system such as Swedish.
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Different accents of the same language, although they may have just as much acoustic
difference as different languages between representations of equivalent phonemes, do not
normally cause much difficulty for native speakers. Because the underlying linguistic
structure is almost identical, there are not many cases where the differences of phonetic
quality between accents actually cause confusion in the intended word. For example,
Scottish English does not distinguish between the vowels in “good” and “food”, but this
does not cause confusion to southern English listeners because in this case the intended
word (in their own accent) will be more similar to what they hear than any alternative.
Even when there is a possible word confusion (such as in the identical southern English
pronunciations of “flaw” and “floor”, which would be clearly distinct in Scottish), there
is usually enough context available for only one of the word candidates to make sense.

The term dialect is often used to refer to clearly different varieties, spoken by a
substantial group of people, of basically the same language. In addition to having
appreciable variations of pronunciation, as in the examples above, dialects are often
associated with the use of alternative words and sometimes with grammatical changes,
which are not encountered outside the area where the dialect is spoken.

1.11 SUPPLEMENTING THE ACOUSTIC SIGNAL

It is apparent from the comments above that when humans listen to speech they do not
hear an unambiguous sequence of sounds, which can be decoded one by one into
phonemes and grouped into words. In many cases, even for an unambiguous sequence of
phonemes, there is ambiguity about the sequence of words. (Consider the sentences: “It
was a grey day.” and “It was a grade A.”) In fluent speech it will frequently be the case
that the sound pattern associated with phonemes, particularly in unstressed positions, is
not sufficiently distinct from the sound of alternative phonemes for the intended word to
be clear. In normal conversation false starts to words, hesitation and mild stuttering are
all extremely common. In the presence of background noise or a reverberant environment
the speech signal might be further distorted so that distinctions that were clear at the
speaker’s mouth are no longer so at the listener’s ear. Yet people can communicate by
speech extremely easily.

In normal language there is so much redundancy in the linguistic message that only
a small fraction of the information potentially available is necessary for the listener to
deduce the speaker’s meaning (even if, in some cases, there will be uncertainty about
some of the minor words). Relevant information includes what the listener knows about
the speaker, and therefore what he/she is likely to talk about. If the conversation has
already been in progress for some time, there will be a very strong influence from the
previous context. Once the listener has become accustomed to the speaker’s voice,
allowance will be made for his/her particular accent in resolving some phonemic
ambiguities. But most of all, for each sentence or phrase, the listener will choose the
one interpretation that seems to make most sense taking into account all available
information, both acoustic and contextual. In some cases the final decision will
actually involve rejecting some phonemes which accord well with the acoustic signal,
in favour of others which would seem less likely based on the acoustic evidence alone.
Except when the acoustic evidence is very much at variance with the norm for the
chosen phoneme, the listener will not usually even be aware that the acoustic pattern
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was not quite right. By analogy, when people read printed text, minor typographical
errors are often unnoticed, and the intended words are perceived as though they were
really there.

Most people are familiar with the fact that in a crowded room, such as at a cocktail
party, they can converse with the group of people in their immediate vicinity, even
though there is a lot of competing speech at a high acoustic level from all the other
people in the room. There is extra information in this case that is not available, for
example, when listening through a telephone receiver. In the first case the availability of
two ears enables some directional discrimination to be used. The human hearing system
can infer direction by using the difference in intensity and time of arrival at the two ears
of sounds that have otherwise similar structure.

The other important factor in face-to-face communication is the ability to see the
speaker, and to correlate the acoustic signal with observed lip movements, and with other
gestures which may be used to supplement the speech. Although it is usual to associate
lip-reading with deaf people, even those with normal hearing generally develop a
significant degree of subconscious ability to integrate visual with auditory information to
assist in decoding speech. This lip-reading ability may not be sufficient on its own to
resolve what has been said, but it is of great value in selecting between consonant sounds
that can be confusable in background noise if relying on only the acoustic signal, yet
have very distinct lip movements.

For the newcomer to this subject, the most surprising thing is perhaps that the listener
is entirely unaware of this integration of visual with auditory information. The subjective
impression to the listener is of actually “hearing” the acoustically ambiguous stimulus
correctly, and the joke about partially deaf people putting on their glasses so that they can
hear better is a reality. In fact this same phenomenon of integrating knowledge sources in
one’s perception of the words ‘heard’ applies to all knowledge, including knowledge
about the speaker, linguistic knowledge and knowledge of the real world’s influence on
what people are likely to say.

1.12 THE COMPLEXITY OF SPEECH PROCESSING

It is clear that the human perceptual and cognitive systems must be enormously complex
to be able to perform the task of linguistic processing. The very large number of neurons
are, of course, working in parallel. Thus, although the actual processing speed in any one
part of the central nervous system is very slow compared with the speed of modern
electronic circuits, the overall perceptual decisions can be made within a few hundreds of
milliseconds. Where machines are required to recognize and interpret speech, it is
apparent that emulating human performance in processing normal relaxed conversation
will not be possible without the machine having extensive linguistic knowledge and a
very high ability to simulate human intelligence. However, if the task of the machine is
simplified by placing constraints on what can be said, it is already possible to use speech
for many types of human-machine interaction. Recent developments have greatly
increased the range and complexity of tasks for which speech can be usefully applied,
and speech technology capabilities are advancing all the time. Even so, the situation so
often depicted in science fiction, where machines have no difficulty at all in
understanding whatever people say to them, is still many years away.
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CHAPTER 1 SUMMARY

e The use of speech offers great advantages for many types of human-machine
communication, particularly by telephone. Understanding how humans use speech to
communicate with each other highlights some of the issues.

e Speech is mainly used to communicate ideas, and the ideas are normally formulated in
the brain in the form of language. Spoken and written language are quite different in
their capabilities.

e Phonetics is the study of the production and properties of speech sounds, and
phonology is the study of how they are used in language. The relationship between the
acoustic properties of a speech signal and the linguistic units it represents is
extremely complicated.

e The individual speech sounds (phones) are physical realizations of the smallest
linguistic units (phonemes) in a speech signal. Allophones are different sounds that
represent the same phoneme.

e In speech, vowels and consonants can be defined by their phonetic properties, but
phonological functions should also be taken into account. Classification of vowels and
consonants, and determination of the sequence of phonemes, is often only slightly
related to conventional spelling, especially for English.

¢ Pitch, intensity and timing collectively make up the prosodic features of speech,
which supplement the phonetic properties. Prosody is valuable for indicating
important words, and adding emotional content to a message.

¢ Phonetic features are used differently in different languages, and people cannot
generally detect phonetic differences not used in their native language.

¢ Human speech comprehension uses all available information to supplement phonetic
properties of the speech. This information includes the direction of the sound source,
lip movements and other gestures where these can be seen, and extensive knowledge
of the language, context, and state of the world.

e The human speech perception and production processes are so complicated that their
full capabilities will not be emulated by machines for many years. However, for more
limited speech generation and recognition applications there are already useful
systems, and capabilities are improving all the time.

CHAPTER 1 EXERCISES

E1.1 Give examples of circumstances where speech would not be the best medium for
human-machine communication, and other situations where there is a great
advantage in using speech, or even no practical alternative.

E1.2 What is the difference between phonetics and phonology?

E1.3 Explain, with examples, why it may be impossible to unambiguously divide a
speech signal into separate words without knowing the word identities.

E1.4 Explain the relationship between phonemes, phones and allophones.

E1.5 What factors contribute to the distinction between vowels and consonants?

E1.6 Discuss the role of prosody in speech communication.

E1.7 Why is speech communication often possible even if the signal is distorted?



CHAPTER 2

Mechanisms and Models of Human
Speech Production

2.1 INTRODUCTION

When developing speech synthesis and recognition systems for their many possible
applications, the task is made much easier if one understands how humans generate
speech, and how the various human processes can be modelled by electric circuits or in
a computer. A speech generation model, in addition to aiding understanding of speech
production, can itself form a useful basis for a speech synthesis system.

The main organs of the human body responsible for producing speech are the lungs,
larynx, pharynx, nose and various parts of the mouth, which are illustrated by the
cross-section shown in Figure 2.1. Muscular force to expel air from the lungs provides
the source of energy. The air flow is modulated in various ways to produce acoustic
power in the audio frequency range. The properties of the resultant sound are modified
by the rest of the vocal organs to produce speech.

The process of acoustic resonance is of prime importance in determining the
properties of speech sounds. The principal resonant structure, particularly for
vowels, is known as the vocal tract; it starts at the larynx and extends up through the
pharynx and mouth to the lips. For some sounds the nose is also coupled in to

Lungs

Figure 2.1 Diagrammatic cross-section of the human head, showing the vocal organs.
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make a more complicated resonant system. The frequencies of the resonances and the
way they move with time, and to a lesser extent their associated intensities, are crucial in
determining what is being said. The main resonant modes of the vocal tract are known as
formants and by convention they are numbered from the low-frequency end. For
conciseness they are usually referred to as F, F, F , etc. In general F and F (usually in
the range 250 Hz to 3 kHz) are the most sfgnfficant in determi]ning the phonetic
properties of speech sounds, but some higher-frequency formants can also be important
for certain phonemes. The resonant system can be viewed as a filter that shapes the
spectrum of the sound source to produce speech.

2.2 SOUND SOURCES

The air stream from the lungs can produce three different types of sound source to excite
the acoustic resonant system. These various sound sources are brought into operation
according to what type of speech sound is being produced.

For voiced sounds, which normally include all vowels and some consonants, such as
[m, n, 1, w], the air flow from the lungs and up the trachea is modulated by vibrations of
the vocal folds, located in the larynx. The vocal folds (sometimes also known as the
vocal cords) are illustrated in Figure 2.2. They are two folds of tissue stretched across
the opening in the larynx. The front ends of the folds are joined to the thyroid cartilage,
and the rear ends to the arytenoid cartilages. The arytenoids can, under muscular
control, move far apart so that there is a wide triangular opening between the vocal folds.
This is the normal condition for breathing. They can also bring the folds tightly together,
completely closing the top of the trachea. This condition is achieved when one holds
one’s breath, and it occurs automatically during swallowing, to prevent food or drink
from entering the lungs. The arytenoids can also be held so that the vocal folds are almost
touching. If air is forced through the slit-like opening between them (known as the glottis),
the folds will start to vibrate, and so modulate the air flow. The result is a build-up of
vocalfold oscillation whose frequency is mainly determined by the mass and tension of
the folds, but is also affected by the air pressure from the lungs. The modulation of the
air stream by the vibrating vocal folds is known as phonation. When the

Arytenoid
cartilages

Vocal

Thyroid folds

cartilage

Figure 2.2 Cut-away view of the human larynx.
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Figure 2.3 Typical air-flow waveform through the glottis during
phonation.

vibration amplitude has built up sufficiently, which usually happens after one or two
cycles, the extent of the movement is such that the vocal folds make contact in the
closing phase, thus completely and abruptly stopping the air flow.

The variation of volume flow through the glottis is typically as shown in Figure 2.3.
The presence of a sharp corner at the point of closure gives rise to a power spectrum of
the airflow waveform with frequency components of significant (though small)
magnitude up to several kHz. It is thus the shock to the resonant system resulting from
the sudden blocking of the air flow through the glottis that causes the main excitation of
the formants in every phonation cycle. The fundamental frequency of this signal lies
typically in the range 50-200 Hz for adult male speakers, and about one octave higher for
adult females. The subjective impression of voice pitch is very closely related to the
fundamental frequency, and is only slightly affected by the formant frequencies.
Although the spectrum of a single glottal pulse has a continuous distribution in
frequency, periodic repetition of the pulses causes the total voiced excitation to
approximate to a line spectrum.

Besides the gradual build-up of phonation described above, it is also possible for
phonation to start with the vocal folds held just in contact. In this case the build-up of
pressure starts the process by forcing the folds apart to allow the first glottal pulse
through, but within two or three cycles the vibration will settle into a periodic pattern,
similar to that which occurs when the folds are slightly apart at the start of phonation.
With a closed-glottis start, the formants will even be excited by the closure in the first
cycle of vibration.

The cessation of phonation can also have two distinct patterns, depending on whether
the folds are relaxed and pulled apart, or are forced tightly together. In the former case
the vibration dies out gradually, with the folds not touching in the last few cycles. In the
latter, the pulses cease very quickly but the glottal closure remains sharp, even in the last
pulse. In addition, the last two or three pulses before cessation are usually further apart
in time. Firmly closing the glottis to stop phonation for a few tens of milliseconds, and
then allowing phonation to re-start suddenly by relaxing the closing force, produces the
so-called glottal stops that are a feature of many people’s speech in, for example,
London and Glasgow.

The overall complexity of the vocal fold vibration differs for different people, and
the shape of the flow waveform varies with vocal effort and other aspects of voice
quality. For example, sometimes the parting of the vocal folds is sufficiently fast for
there to be significant power in the higher audio frequencies at that part of the cycle
also. In addition to the actual air flow through the glottis, there are other small
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components of the effective volume velocity into the bottom of the pharynx that arise
from surface movements of the vocal folds. During phonation the whole vocal fold
structure moves up and down as well as laterally. On glottal closure there is a rippling
motion of the upper vocal fold surface which causes additional air displacement just
above the larynx during the closed period. The volume displacement caused by this
effect is small compared with the total volume of a glottal pulse, and its influence on
the low-frequency power (i.e. the lowest two or three harmonics) is negligible.
However, these surface movements are fairly rapid (involving times of the order of 1
ms). At higher frequencies, where the energy associated with the sharpness of glottal
closure is only a very small fraction of the total pulse energy, this additional source of
volume flow can significantly modify the spectral components of glottal excitation. In
some situations it might contribute to the characteristic voice qualities of different
speakers, although any effect will be small compared with other speaker-specific
factors affecting voice quality.

The second major source of sound in speech production is the air turbulence that is
caused when air from the lungs is forced through a constriction in the vocal tract. Such
constrictions can be formed in the region of the larynx, as in the case of [h] sounds,
and at many other places in the tract, such as between various parts of the tongue and
the roof of the mouth, between the teeth and lips, or between the lips. The air
turbulence source has a broad continuous spectrum, and the spectrum of the radiated
sound is affected by the acoustics of the vocal tract, as in the case of voiced sounds.
Sustainable consonant sounds that are excited primarily by air turbulence, such as [s,
f], are known as fricatives, and hence the turbulence noise is often referred to as
frication.

The third type of sound source results from the build-up of pressure that occurs
when the vocal tract is closed at some point for a stop consonant. The subsequent
plosive release of this pressure produces a transient excitation of the vocal tract which
causes a sudden onset of sound. If the vocal folds are not vibrating during the closure,
the onset is preceded by silence. If the vocal folds are vibrating during the pressure
build-up, the plosive release is preceded by low-level sound; the power of this sound is
mostly at the fundamental frequency of phonation, and is radiated through the walls of
the vocal tract. The plosive release approximates a step function of pressure, with a
consequent -6 dB/octave spectrum shape, but its effect is very brief and the resultant
excitation merges with the turbulent noise at the point of constriction, which normally
follows the release.

In connected speech muscular control is used to bring all of these sound sources into
play with just the right timing for them to combine, in association with the appropriate
dimensions of the resonant system, to produce the complex sequence of sounds that we
recognize as a linguistic message. For many sounds (such as [v, z]) voiced excitation
from the vocal folds occurs simultaneously with turbulent excitation. It is also possible to
have turbulence generated in the larynx during vowels to achieve a breathy voice quality.
This quality is produced by not closing the arytenoids quite so much as in normal
phonation, and by generating the vibration with a greater air flow from the lungs. There
will then be sufficient random noise from air turbulence in the glottis combined with the
periodic modulation of the air flow to produce a characteristic breathiness that is
common for some speakers. If this effect is taken to extremes, a slightly larger glottal
opening, tense vocal folds and more flow will not produce any phonation, but there will
then be enough turbulence at the larynx to produce whispered speech.
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2.3 THE RESONANT SYSTEM

In the discussion that follows, the concepts of acoustic resonance, coupling, damping,
impedance, etc. are widely used. For electrical engineers these concepts in acoustics are
not normally familiar, but they are, in fact, very closely analogous to their electrical
counterparts, and it can therefore be helpful to think of them in electrical terms. In
acoustic systems it is normal to regard sound pressure as analogous to voltage, and
volume flow as analogous to current. Energy loss as a result of viscosity is then
represented by series electrical resistance, and heat conduction losses can be associated
with shunt conductance. The inertance of a mass of air corresponds to inductance, and
compliance of the air to capacitance.

Using these concepts the theory of sound transmission in the vocal tract is very similar
to electrical transmission line theory, and the major structural discontinuity at the larynx
end can be modelled fairly well by appropriate lumped values of resistive and reactive
components. There are, however, many idealizing assumptions necessary about sound
propagation if the equivalent electrical circuits are to be simple enough for easy analysis.

If the soft palate (or velum) is raised and held in contact with the rear wall of the
pharynx there will be no opening between the pharynx and nose; the properties of the
vocal tract between larynx and lips can then be modelled fairly closely by an unbranched
air-filled tube with several cylindrical sections butted together. Assuming the cross
dimensions of this tube are such that there is only plane wave propagation along its
length at audio frequencies, and assuming sound propagation within the tube is totally
without loss, it is not too difficult to calculate the response of such a tube, i.e. the
mathematical transfer function relating volume velocity inserted at the larynx end to that
radiated from the lips. The mathematics becomes more practical if, instead of radiating
into free space, the lip opening is represented as coupling into an infinite length tube of
cross-section that is large compared with the opening, as illustrated in Figure 2.4. A full
analysis of this situation is beyond the scope of this book, but is given by Rabiner and
Schafer (1978), pp. 92-98.

Area
fem?)
40—
Infinite length
termination at
mouth end
30
20—

T T T I | Distance from
0 50 100 150 200 250 glottis (mm)

Figure 2.4 Graph of cross-section of a 10-section acoustic tube
modelling a typical vowel. The mouth termination is shown
coupling into an infinite tube of cross-section 40 cm?.
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Figure 2.5 Typical response of a 10-section acoustic tube, such as is illustrated in Figure 2.4.

The results of this analysis show that the transfer function is periodic in frequency,
with a repetition every ¢N/2L, where c is the velocity of sound, N is the number of
elementary tubes and L is the total length of the model tract. As any transfer function
for a real system must have a frequency response that is symmetrical about zero
frequency, the periodicity implies there is also symmetry about odd multiples of ¢N/4L.
A typical response is shown in Figure 2.5. The frequency-domain periodicity is exactly
the same as that which occurs in sampled-data filters, and is evident in the s-plane to
z-plane transformation used in sampled-data filter theory. The relevance of sampled-
data filter theory is a consequence of the fact that a wave travelling in an abutted set of
uniform tubes only has any disturbance to its propagation when it meets a change in
diameter, to cause partial reflection. As these changes occur at regular distances, and
therefore at regular time intervals, the response must be representable by a sampled-
data system, which has a sampling rate of ¢N/2L (i.e. the sampling interval is equal to
twice the wave propagation time through one tube section). The factor of 2 arises
because the minimum time before any partial reflection can again influence the
conditions at any tube junction is equal to the time taken for the reflected component
to return to the previous junction, and then be reflected back to the point under
consideration.

For a sound velocity of 350 m/s and a tract length of 0.175 m (typical for an adult
male speaker) a total of 10 elementary tubes will specify a total of five resonances
within the range 0-5 kHz, which will be the five lowest formants of the system. There
will, however, be mirrored and repeated resonances at higher frequencies, which will
be very unlikely to fit the real speech spectrum above 5 kHz. A greater number of tube
sections would enable the resonant modes to be independently specified up to a higher
frequency, and could be represented by a sampled-data filter with a higher sampling
rate.

The transfer function of the acoustic tube model has an infinite number of poles, but
no zeros. The magnitude of the transfer function is directly related to the frequencies of
the poles, and when the dimensions of the tube are such that two resonant modes move
close in frequency, the intensities associated with these resonances will increase. If the
tube is uniform the resonances will be equally spaced, at ¢/4L, 3¢/4L, 5c/AL, etc., and the
magnitude of the transfer function will be the same at each resonant frequency.

The above calculations involve several idealizing assumptions, many of which do not
fit the facts of human speech production very closely. However, this acoustic tube model
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will predict the frequencies of the three or four lowest formants in the vocal tract fairly
well if the cross-sectional area is known as a function of distance along the tract. The
model will not, however, describe the high frequencies well, for a number of reasons.
First, the assumption of plane waves is only valid when the cross dimensions of the tube
are small compared with a half-wavelength of sound. This assumption will be seriously
in error at some places in the tract from about 3 kHz upwards. Second, the complexities
of shape around, for example, the epiglottis, the sides of the tongue, the teeth, etc., are
totally unlike the abutted cylindrical tubes of the model. Third, there are significant
losses in the vocal tract from many causes. These losses will give rise to an increase in
damping of the resonances, and in particular the higher frequency resonances will
become very heavily damped because the reflection from the mouth opening will not be
so effective for wavelengths comparable with the mouth dimensions.

For nasal consonants, e.g. [m, n], the velum is lowered to produce appreciable
coupling between the top of the pharynx and the nose. In addition, the mouth is blocked
at some point determined by the identity of the consonant. There will thus be a branched
acoustic system, illustrated in Figure 2.6, with a closed side branch (the mouth). Apart
from the effect of vocal tract wall vibrations, all the sound will come out of the nose.
Mathematical analysis then becomes much more difficult, partly because of the unknown
and variable coupling at the velar opening, but even more due to the very complicated
structure of the nasal cavities. Apart from the division into two parts by the nasal septum,
the inside of the nasal cavities has elaborately shaped bony structures, some acoustic
coupling into the sinus cavities, and a considerable quantity of hair around the nostrils.
The effect of all of these features is to increase the damping of the resonances, to
increase the total number of resonant modes in a given frequency range, and to cause
spectral zeros as well as poles in the transfer function as a result of the side branch.

Velum
lowered
to couple

in the nose \Sound radiates

from nostrils

\ Lips closed

for [m] sound

Figure 2.6 Acoustic system for producing a typical nasal consonant, [m].
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It is also possible to have the velum lowered during vowel sounds, to produce
nasalized vowels. In languages such as French the nasalized vowels are distinct
phonemes, and the change to the properties of the acoustic signal as a result of
nasalization is very noticeable. In other languages, such as English, nasality in vowels
has no linguistic significance. However, because specific muscular effort is required to
keep the velum raised to decouple the nose, it is common for there to be a considerable
degree of nasal coupling during English vowels, particularly when those vowels are
adjacent to nasal consonants. The most prominent acoustic effects are to cause an
additional resonance near to the first formant, and to cause additional first formant
damping. Nasalization in vowels is not so common near to fricative or plosive
consonants, because the velum has to be raised to allow the pressure build-up needed
during consonant production.

The resonant frequencies (and therefore the poles of the transfer function) of the vocal
tract for a given configuration are independent of the position of the sound source.
However, there are three differences which make the spectral envelope of the radiated
sound very different for voiced excitation, compared with plosive or fricative excitation.
First, the spectrum of the voiced source has nearly all of its power in the lowest few
harmonics, and the slope of the spectral intensity above about 1 kHz is at least -12 dB/
octave. At low vocal effort the fall-off is often a lot faster. Second, the vocal tract is much
less constricted for most of the time during voiced sounds, except at the glottis, where it
is closed or almost closed. During voiceless sounds the glottis is normally fairly wide
open, such that the acoustic system behind the source of frication includes the sub-glottal
system. Because of the coupling with the bronchi and the lungs, this system is quite
heavily damped. The third effect is that (except when the constriction is in the laryngeal
region) the sound source is further forward in the vocal tract. Figure 2.7 illustrates a
typical vocal tract configuration for producing the sound [s].

Constriction behind the
teeth causes air turbulence

Velum raised
to block off
the nasal
passage
Sound radiates
from the mouth

Figure 2.7 Articulator positions for producing the fricative consonant, [s].
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There are two alternative ways of analysing the effect of the different position of the
sound source. One way is to consider the whole acoustic system, which has transfer
function poles that are independent of placement of the source. That part of the vocal
tract behind the source acts as though it were a closed tube in series with the source to
the total system, and its transfer function poles will cause absorption of power from the
source at the pole frequencies, and thus add zeros at these frequencies to the transfer
function from source to lips. However, as there is normally a close constriction at any
point of frication or stop release, the acoustic systems on each side of the constriction
are almost independent (i.e. there is very little coupling between them). In this
circumstance the poles of the overall system are almost the same as the poles of the
two part-systems considered in isolation; the poles associated with the part of the tract
behind the constriction will thus be almost coincident with the zeros, and will therefore
have their effects substantially cancelled. It is then possible to regard the tract length as
consisting only of the part from the constriction to the lips, and to ignore the part
behind the constriction. This shorter vocal tract will, of course, have more widely
spaced resonances, and for sounds where the constriction is very near the mouth
opening (e.g. [s, f]) the resonant length will be so short and the ratio of mouth opening
to cavity volume will be so large that there will be only one or two obvious resonant
modes, tuned to high frequencies (above 3.5 kHz) and very broad because of their
heavy damping.

2.4 INTERACTION OF LARYNGEAL AND VOCAL TRACT FUNCTIONS

During voiceless sounds, for which the glottis is normally wide open, there is strong
acoustic coupling between the vocal tract and the sub-glottal system. However, as
explained above, the constriction needed to produce excitation for these sounds
substantially decouples the region behind the constriction, and so the sub-glottal system
has very little effect on the acoustics of the radiated sound. In the case of sounds excited
primarily by the glottal air flow, the time-varying impedance presented by the glottis to
the lower end of the pharynx will affect the overall sound properties. Of course, the
transfer function relating volume flow at the glottis to sound radiated from the lips does
not depend on glottal opening, but the finite acoustic impedance at the glottis when it is
open will mean that the volume flow through the glottis will depend on the frequency-
dependent load impedance presented by the vocal tract. In consequence there can be
prominent ripple components of the open-phase glottal flow at the formant frequencies,
particularly for F . It is easier to appreciate the effects of the varying glottal impedance,
not by taking intb account this modification to the effective source waveform, but by
estimating the effect of the glottal impedance on the poles of the whole acoustic system,
which includes the glottis. An electrical equivalent circuit of the acoustic system is
shown in Figure 2.8.

The impedance looking down the trachea below the glottis will be fairly low,
because of the large cross-sectional area and the heavy damping on any resonances
caused by the structure of the lungs. Even at its maximum opening in the phonatory
cycle the glottis area is very much smaller than that of the trachea, so the acoustic
impedance presented to the bottom of the pharynx is substantially that of the glottis
itself. This impedance will be a combination of resistance, and reactance
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Time varying glottal resistance
and inductance (impedance high
compared with the vocal tract

input impedance except near | Non-uniform distributed inductance and
the frequencies of the lowest
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Voltage
source represents chm of load at mouth
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Figure 2.8 Electrical equivalent circuit of the glottis coupled to an idealized vocal tract,
with all losses at the terminations.

resulting from the mass of the air in the glottal opening. The effect of the open glottis
impedance for typical vowels is to cause a small increase of F frequency, but a very
noticeable increase of F damping. The higher formants, which are more heavily damped
anyway because of other losses, show much smaller effects.

When looking at the speech waveform for the period from one main glottal excitation
point to the next, it is not at all easy to know whether to attribute observed departures
from a simple decaying resonant system response to variations in glottal impedance, or to
changes in volume flow stemming directly from phonation. For example, if the vocal
folds part sharply enough at the beginning of their open phase, the start of the glottal
flow can cause significant secondary excitation of F, which may be in such a phase
relationship to the decaying F response from the pre\llious glottal closure that it causes
partial cancellation, producing] a sudden reduction in amplitude. It would be difficult in
such a case to distinguish the effect from that caused by a sudden increase of formant
damping. The same phenomenon occurring with slightly different phonation or formant
frequencies might cause an amplitude increase which would be clearly seen as secondary
excitation, and would normally be followed by an obvious increase in rate of amplitude
decay because of the extra damping. The extra formant damping in the open glottis
period is most noticeable for open vowels, such as the [a] sound in the first syllable of
“father”. These vowels are associated with a smaller pharynx cross-section, which is
more closely matched to the glottal area, so substantially reducing wave reflections at the
glottis. When the glottis is closed, the damping of F is such that the 3 dB bandwidth of
the formant is about 50 Hz, but for the open glottis it can be at least four times greater.
Typical closed-glottis bandwidths for F are around 80 Hz, and for the higher formants
can be 150 Hz or more. :

In addition to glottal opening having an effect on F, F can also have some effect on
the glottis. If a low-order harmonic of the fundamental freq‘uency of phonation is near the
frequency of F , the F flow through the glottis causes a slight tendency for the relaxation
oscillation of the vocal folds to be ‘pulled’ by the formant frequency, thus making the
harmonic move with the formant.

Another interaction between the fundamental frequency and the formants occurs
because the muscular force needed to raise the pitch also raises the larynx. (This
movement might be as much as 20 mm.) The raising of the larynx shortens the pharynx,
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and thus tends to increase the formant frequencies. This modification to the formant
frequencies is one reason why it is possible to perceive pitch changes even when speech
is whispered.

2.5 RADIATION

So far the discussion has been on the properties of the sound sources, and the effect
of the resonant system on the properties of the volume velocity at the lips and
nostrils. The volume flow leaving these openings causes a pressure wave to be
radiated, which can be heard by a listener or cause a response from a microphone.
The waveform shape of the radiated pressure wave from a small opening in a large
baffle can be found by taking the time-derivative of the volume flow from the
radiating orifice. The spectrum of the radiated sound therefore differs from that of
the volume velocity by a 6 dB/octave lift. When the mouth and nose are both
radiating at the same time (in nasalized vowels) the two pressure waves will
combine. At all frequencies where the audio power is significant the wavelength will
be so great compared with the spacing between mouth and nostrils that simple
addition of the volume velocities from the two sources will suffice. Diffraction round
the head will reduce the level in front of the head by up to 3 dB for wavelengths that
are large compared with the head dimensions, due to a significant fraction of the
power at these frequencies being radiated behind the speaker. However, this level
change is fairly small compared with the effect of the wide variety of different
acoustic environments that the human listener is easily able to allow for. For
example, the low-frequency spectrum drop can be compensated to a large extent by
having the speaker stand with his/her back to a wall, and a low-frequency boost
would arise when a speaker stands facing outwards from a corner.

2.6 WAVEFORMS AND SPECTROGRAMS

An annotated typical speech waveform, representing the sentence “The new bricks fell
over” spoken by an adult male with a southern British English accent, is shown in Figure
2.9. The variety of structure associated with the various speech sounds is very obvious,
and some information about the phonetic content can be derived from waveform plots.
However, the waveform is not useful for illustrating the properties of speech that are
most important to the general sound quality or to perception of phonetic detail.

In view of the crucial significance in speech communication of resonances and their
time variations, it is very important to have some means of displaying these features. The
short-time spectrum of the signal, equivalent to the magnitude of a Fourier transform of
the waveform after it has been multiplied by a timewindow function of appropriate
duration, cannot, of course, show any information that is not in the original signal. It
will, however, be more suitable for displaying the resonances. Because the time
variations of the resonances are responsible for carrying the phonetic information that
results from moving the articulators, it is important to have a means of displaying a
succession of Fourier transforms at short time intervals (at most a few milliseconds
apart).
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Figure 2.9 Waveform of the sentence “The new bricks fell over” spoken by an adult male
talker with a southern British English accent. Although the sentence is less than 1.4 s long,
the timescale is too compressed to show the detail. The text is marked above the graph in
conventional orthography and below in phonemic notation, both in approximate time
alignment with the waveform.
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There are many ways in which a succession of Fourier transforms can be displayed.
Using current computer technology, the speech waveform for analysis could be input to
the computer using an analogue-to-digital converter, and the required Fourier
transforms could be calculated and plotted, each one just below the next, on a screen or
on paper. This method of spectral analysis can be useful for some purposes, but it is not
easy to interpret formant movements from such a succession of spectral cross-sections,
partly because when they are plotted far enough apart to be distinguishable, the total
amount of display area needed for even a fairly short sequence of phonetic events is
excessive. It has been found much easier for general study of the acoustic properties of
speech signals to use the horizontal dimension for time, the vertical dimension for
frequency, and to represent the short-time spectral intensity at each frequency by visual
intensity, or colour, or some combination of the two. In this manner it is possible to get
a very compact display of a few seconds of speech, in a way that allows the
phonetically important acoustic features to be easily interpreted. It is obviously not
possible to judge relative intensities of different parts of the signal so precisely from
such a variable-intensity display as it would be from a spectral cross-section plot, but
in practice a variable-intensity plot is usually adequate for most purposes. If a
combined colour and intensity scale is available, it is, of course, possible to get finer
spectral level discrimination.

So far this discussion has assumed that a computer and Fourier transforms will be
used for generating spectrograms. This requires a lot of computation, but these days
computational power is not expensive, and the method is widely used in research
laboratories with normal computing facilities. The earliest spectrograms (in the
1940s) were, however, made by purpose-built spectrographs to obtain equivalent
pictures by a completely different technique. The magnitude of the short-time Fourier
transform at a particular frequency and time is equivalent to the signal amplitude at
the appropriate time from a suitable band-pass filter centred on the required
frequency. The width and shape of the filter pass-band have to be chosen so that the
envelope of its impulse response is of similar shape to the time window used on the
input to the Fourier transform, although a very close match is not normally possible
using a hardware filter.

The original spectrographs stored a short passage of speech on a magnetic drum
so that it could be played back repetitively. On the same shaft as the magnetic drum
was another drum, on which was wrapped a sheet of electrosensitive paper. Held in
contact with the paper was a stylus mounted on a slide driven by a screw geared to
the drum. When a sufficient voltage was applied to the stylus, the resultant sparking
caused the paper to burn, so turning it black. For each revolution of the drum the
stylus moved along by about 0.25 mm, so that it eventually covered the whole surface
of the paper. The movement of the stylus was also used to vary the frequency of a
heterodyne oscillator, which effectively varied the tuning of the band-pass analysis
filter to select successive frequencies for analysis. The signal from the magnetic
drum was fed into the filter, and after a sufficient number of drum revolutions a
complete picture was built up, in the form of closely spaced horizontal lines of
varying blackness. Although some spectrographs working on this principle may still
be in use, they have now almost completely been superseded by the Fourier transform
method.
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One very important parameter in short-time Fourier analysis is the width (and also the
shape) of the time window. A long window corresponds to a narrow bandpass filter, and
if the bandwidth is appreciably less than the fundamental frequency of phonation the
analysis will separate the individual harmonics of the voiced excitation source. If the
time window is short it will only contain at most the response to one excitation pulse,
which cannot display the harmonic structure. In effect, the bandwidth of the equivalent
filter is wider than the fundamental frequency and so the harmonics will not be separated.
With a wide filter, because its impulse response is shorter, the instrument will display the
fine time-structure of the signal in more detail than with a narrow filter. Figures 2.10 and
2.11 show wide-band and narrow-band spectrograms of the same short sentence from a
typical adult male talker. From the wide-band spectrogram it is easy to see the formant
movements, and the responses to the individual glottal excitation pulses can be seen in
the time pattern of the display for each formant. On the other hand, the narrow-band
picture shows the harmonic structure clearly, but blurs the rapid changes. Although the
formant movements are still embodied in the variations of harmonic intensities, they are
much more difficult to discern because of the distracting effect of the independent
movements of the harmonics. The useful range of filter bandwidths for speech analysis
lies between about 25 and 400 Hz. Narrow-band spectrum cross-sections of the marked
points in Figure 2.11 are shown in Figure 2.12.
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Figure 2.12 Narrow-band spectral cross-sections, taken at the points marked on Figure 2.11.
(a) Section through the end of the vowel in the word “new”.
(b) Section through the final consonant of “fell”.

2.7 SPEECH PRODUCTION MODELS

If the various functions of human speech production can be modelled, either
acoustically, electronically, or in a computer program, it is possible to produce speech
synthetically. Although early such attempts used acoustic models (see Linggard (1985)
for a comprehensive review), electronic models took over in the 1930s, and computer
models are more widely used today. In all these models the utterances to be spoken
must be provided in the form of control signals that, in effect, represent the muscular
control of the human vocal system. Because of the inertia of the articulators, such
control signals do not change extremely fast, and each control signal can be
represented well enough for almost all practical purposes within a bandwidth of 50 Hz,
or by sample values every 10 ms.
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In order to use a speech production model for speech synthesis, it is necessary to
model both the sound sources and the resonant structure of the vocal tract. The methods
to be used for these two operations are not independent. If it is required to model the
human speech production process very closely it should ideally be necessary to model the
detailed mechanics of vocal fold vibration, and also to have models of turbulent and
plosive excitation that can be inserted in the appropriate places in an articulatory model
of the complete vocal tract. In principle such models are possible, but there are enormous
practical difficulties in making them adequately represent the complete process of
realistic speech production.

2.7.1 Excitation models

Ishizaka and Flanagan (1972) modelled vocal fold vibration on a computer by
considering each fold as two adjacent masses, representing the upper and lower parts,
coupled by springs. They found that this model well represented the gross behaviour of
real vocal folds, in that it would start and stop phonation in generally plausible ways as
the sub-glottal pressure and vocal fold spacing were given appropriate values. However
this model cannot represent the more subtle aspects of the motion of real vocal folds,
such as are seen on high-speed motion pictures of the larynx. For more complicated
models the computation time is greatly increased and it becomes much more difficult to
deduce realistic values for the parameters of a more elaborate structure. For these reasons
it is not usual to use models of the actual vocal folds in practical speech synthesis, but
instead to adopt other means for generating a functional approximation to the voiced
excitation signal.

Bearing in mind that the most important property of the glottal flow is its
excitation of the formants at every glottal closure, it is possible to represent the flow
merely by a train of impulses repeating at the fundamental frequency. As a real
glottal pulse has most of its energy at low frequencies, an impulse train, with its flat
spectral envelope, will not produce the correct relative intensities of the formants.
However, the spectral balance can be approximately corrected by a simple linear
filter. As the ear is not very sensitive to moderate amounts of phase distortion, even
using a minimum-phase filter can give an excitation source that approximates fairly
well to the important features of glottal excitation. A much better approximation, that
is still far easier to generate than a vocal fold model, is achievable by representing
the air-flow pulse shape by some simple mathematical function (e.g. by a small
number of segments from a cosine wave). By varying the numerical parameters
specifying each segment it is then even possible to model the variations in shape with
vocal effort, and some of the differences between different speakers. Closer
approximations to more complex pulse shapes can be produced by storing one or
more typical shapes as sets of waveform samples, and repeating those sample
sequences at the required fundamental frequency. To get good results by this
technique it is necessary to have some method of varying the timescale of the pulses,
particularly as the fundamental frequency varies.

As most speech synthesizers these days are implemented digitally, using sampled-data
filters, it is naturally attractive for implementation to make voiced excitation pulses have
a spacing equal to an integer number of sampling periods. At typical sampling rates of
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around 10 kHz this quantization of pulse positions can cause noticeable roughness in the
perceived pitch of synthetic speech, particularly for high pitches, and so it is also
desirable to have some means of interpolating excitation points between the signal
samples. If these precautions are taken, the stored-shape models of voiced excitation can
be used to generate synthetic speech almost totally indistinguishable from high-quality
recorded natural speech.

Turbulent excitation can be very well modelled by random electrical noise or, in
digitally implemented synthesizers, by a pseudo-random sequence generator. On
occasions when fricative and voiced excitation are produced simultaneously, the fricative
intensity in natural speech will be modulated by the periodically varying air flow through
the glottis. It is not difficult to include this effect in a synthesizer, particularly in digital
implementations, although there seems to be little evidence so far that it influences
perception of even the highest quality synthetic speech.

Plosive excitation can be well represented by a single impulse, in conjunction
with an appropriate filter to achieve the desired spectrum shape. However, as the
spectral fine structure of a single pulse is the same as that of random noise, it is quite
usual to use the same noise generator for plosive as for fricative excitation. The
difference will be that the phase coherence of impulsive excitation will not then be
achieved on plosive bursts. As the duration of such bursts is normally only a few
milliseconds, the difference can only be perceived under very favourable listening
conditions.

2.7.2 Vocal tract models

As with the vocal folds, a computer model can be made to represent the physical
structure of the remainder of the vocal system. The limitations of a simple acoustic tube
model have already been discussed. Some improvement can be obtained by modelling the
losses distributed along the tube, and Flanagan et al. (1975) achieved this by representing
the vocal tract by a simulation of a 20-section lumped constant transmission line with
realistic losses in each section. With their model, comprising the vocal folds and the
simulated pharyngeal, oral and nasal tracts, they have produced complete utterances by
controlling dimensions and other parameters of the model to copy the articulatory
behaviour of real speakers. However, the problems of determining and controlling the
details of the model parameters are extreme, and their model does not attempt the very
difficult task of representing the departures from plane wave propagation. For these
reasons, although continuing developments in articulatory synthesis are providing
valuable insights into the mechanisms of speech production, it is likely to be very many
years before it will be practicable to use these techniques for routine generation of
synthetic speech.

There is, however, a particular use of the acoustic tube model for speech synthesis
which is both practical and very widely used. An acoustic tube with N sections has N
degrees of freedom in its specification (usually represented by the N reflection coefficients
at the section boundaries). These N degrees of freedom are responsible for determining the
N co-ordinates of the independent poles in the transfer function of the tube. (Each pair of
poles can be complex conjugate or real, in both cases requiring two co-ordinates to specify
two poles.) When fed with a suitable excitation signal, the dimensions of the tube can be
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chosen so that those poles give the best possible approximation to spectral properties of a
short segment of speech signal, according to some suitable error criterion. If N is high
enough, but the sampling rate of the synthesizer is kept near the Nyquist rate for the
bandwidth of signal required (e.g. around 10 kHz) it is possible to make an all-pole
minimum-phase filter that will give a very close approximation to any actual spectral shape
of a speech signal. If N is made sufficient to represent the number of formants within the
given bandwidth, and if the speech sound being produced is the result of an unbranched
vocal tract excited at the glottis, then the resultant acoustic tube shape will approximate
fairly well to the area function of the vocal tract that produced the sound. In general,
however, this will not be so, and some of the poles of the filter will often be real, with a
role for controlling general spectral balance of the signal instead of providing resonant
modes. The analysis method used for this type of synthesizer, known as linear predictive
coding (see Chapter 4), is not concerned with modelling the articulation, but merely with
optimizing the filter specification to make the best approximation to acoustic properties of
the signal. It is just an incidental property of the method that, under the right conditions
(i.e. for non-nasal vowels), the articulatory approximation of the equivalent tube is not too
bad.

A practical alternative to articulatory synthesis is merely to generate the signal by
means of excitation provided to a set of resonators for representing the individual formants.
If there are, say, five formants to be modelled within the desired audio bandwidth, then five
resonators will be needed. There are two basic ways in which such resonators can be
connected—cascade or parallel. If they are connected in cascade (Figure 2.13) there is
only one amplitude control, and the relative intensities of the formants are determined
entirely by their frequencies and their damping factors or bandwidths. If sampled-data
resonators are used, the resultant all-pole filter will be exactly equivalent to the acoustic
tube model referred to in the last paragraph, except that the filter will be specified in terms
of formant frequencies and bandwidths instead of tube reflection coefficients. This
different method of specification has the advantage that it can be easily related to the
acoustic properties of speech, as seen on spectrograms, but it will not in general be
easy to model the effects of varying vocal effort on the voiced source spectrum, of
excitation inserted further forward than the glottis, or of nasal coupling. For these
reasons cascade formant synthesis in its simplest form is normally used only
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Figure 2.13 Cascade connection of formant generators.



Mechanisms and Models of Human Speech Production 29

for modelling non-nasal vowels, and complete synthesizers using this method are usually
provided with other methods for generating plosives, fricatives and nasals.

The claimed advantage of cascade formants over the parallel connection for non-nasal
vowels is that they offer a theoretical representation of the unbranched acoustic tube.
While this is true, a synthesizer with parallel resonators is in fact able to approximate
just as well to the unbranched tube for all practical purposes, if sufficient care is taken
over the design details.

If a small number (e.g. 4 or 5) of analogue resonators is used to model the formants
in a cascade synthesizer, the transfer function will not have the infinite series of poles
that is present with sampled-data systems. The result in the speech frequency range will
be to remove the combined effect of the lower skirts of the infinite number of periodic
poles that the sampled-data implementation would give, so making the upper formants
much less intense. When analogue cascade synthesizers were still in common use, the
solution to this problem was to include a special higher-pole correction circuit which
gave an approximation to the effect of the missing higher poles that was fairly accurate
up to about 5 kHz.

With a parallel formant synthesizer, outputs from the separate resonators are added, and
each one has a separate gain control to vary the formant intensity. The increase in formant
amplitude when two formants move close in frequency, which occurs automatically in an all-
pole cascade formant synthesizer, has to be specified explicitly in the amplitude controls of a
parallel system. Thus more control information needs to be provided. The transfer function of
a parallel connection of resonators has the same poles as the cascade connection, but will also
in general have zeros as a direct consequence of the parallel paths. The zero co-ordinates can
be found by putting the second-order transfer functions of the individual resonators over a
common denominator, and then factorizing the resultant numerator.

The phase characteristics of individual resonators show a change from 90° lead to
90° lag as the frequency passes resonance, and so between any pair of adjacent
formants the phase characteristics will differ by approximately 180°. If the formant
waveforms are combined by simple addition there will be a deep dip in the spectrum,
caused by the zeros, between every pair of formants, and the lower skirts of all
formants will add in phase below the frequency of F (Figure 2.14). This pattern of
response does not occur in the spectrum of human sf)eech. If on the other hand the
gain coefficients of adjacent formants have opposite signs the response from the
skirts of neighbouring formants will reinforce each other, and there will be
substantial lower-skirt cancellation below Fl. In effect this change will move the
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Figure 2.14 Thick line: typical spectral envelope during a vowel. Thin line: the result
of simple addition of the outputs from parallel formant generators.
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zeros of the transfer function well away from the frequency axis in the s plane (or from
the unit circle in the z plane for sampled-data synthesizers). In fact, if all resonators are
arranged to have the same bandwidth, it is possible to choose the gain coefficients so that
the transfer function reduces to an all-pole one, and the parallel circuit will then have the
identical response to a cascade connection.

The advantage of a parallel formant synthesizer is that it is possible to achieve a
reasonable approximation to the spectral shape of sounds for which the all-pole
design is not well suited. As the perceptual properties of speech are largely
determined by the frequencies and intensities of the formants, it is possible to
represent these properties very well by a suitable excitation signal feeding a parallel
set of resonators with the appropriate frequency and amplitude parameters. In fact it
is most convenient in such a system to incorporate the different spectral trends of the
different types of excitation simply by varying the formant amplitude controls, so
that both voiced and voiceless excitation are arranged to have the same spectral
envelope. The difficulties with this method arise when formants in different parts of
the spectrum are set to have very different amplitudes. During voiceless fricatives the
high formants will be very intense, while F will be extremely weak, and the reverse
will occur in nasal consonants. The skirts of the frequency responses of some
resonators may then be of comparable level to the signal required at the peaks of the
other, less intense, resonances. There will then be a danger that the assumptions
about spectral shape between the formants will not be justified, and the overall
response will not be acceptable, particularly at the very low and very high ends of the
spectrum.

By putting very simple filter circuits in each formant output to modify the shape of
the formant skirts before mixing, it is possible to achieve a very acceptable
approximation to the overall spectral shape of any speech sounds using a parallel
formant synthesizer. A block diagram of a complete formant system of this type is
shown in Figure 2.15. There are two features of the spectral shape specification that
deserve special comment. The first is the use of a special heavily damped low-
frequency resonator (F ) below the frequency of F. By choosing the appropriate
setting of A it is pogsible to control the level in the bottom few hundred Hz
independentlfof the level of F, to give a better control of the low-frequency spectral
shape of vowels, and more partLlcularly of nasalized vowels and nasal consonants. The
second feature is the use of a fixed filter with multiple resonances in the F region.
Because of the cross-dimensions of the vocal tract the region above 3 kHz often has
many more resonant modes than are predicted by the simple acoustic tube theory, but
the detail of the spectral shape in this region is not important. The approximation given
by this fixed filter, when it is supplied with a suitable amplitude control, is
perceptually sufficient to achieve the highest quality for speech band-limited to about
4 kHz. Additional fixed filters with associated amplitude controls can be used for
synthesis at frequencies above 4 kHz.

The excitation circuits for the synthesizer shown in Figure 2.15 have provision for
mixed voiced and voiceless sound sources. In human speech, when voiced and
turbulent sources are simultaneously in operation, the lower formants will be
predominantly voiced, whereas the upper formants will be predominantly voiceless.
This difference arises as a direct consequence of the different spectral balance and
different points of application of the two sources. The synthesizer shown in Figure
2.15 has a separate excitation mixing circuit for each formant
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Figure 2.15 Block diagram of the parallel-formant filter system described in Holmes (1983).

generator. The mixing fraction is arranged to be different for the different formants, and
is controlled by an overall degree-of-voicing signal. When the speech is half voiced the
lowest formant receives only voiced excitation, the middle ones have a mixture, and the
highest formant is completely voiceless. Experience has shown that this method is
extremely successful in generating voiced fricatives and stops, and also breathy vowels.

CHAPTER 2 SUMMARY

¢ Models of human speech production help understanding of the nature of speech
signals as well as being directly useful for speech generation.

e Muscular force on the lungs provides air flow which is modulated by vibrating vocal
folds in the larynx, or by turbulence or a blockage in the vocal tract. The resultant
sound sources have their spectra modified by the acoustic resonances (or formants),
whose frequencies are controlled by position of the tongue, etc.

¢ Vowels and some consonants normally use the vocal fold sound source, which is
periodic with a fundamental frequency (which determines the pitch) typically in the
range 50-400 Hz, and thus has a line spectrum. Most other consonants use turbulence
as the main sound source.

¢ For many sounds the resonant structure can be approximately analysed using
electrical transmission line theory by representing it as a set of acoustic tubes of
different cross-section butted together. It has a transfer function which has only poles
and, in spite of the idealizations in the analysis, this function gives a fairly good
specification of the three or four main resonances.

¢ For most consonant sounds the simple acoustic tube analogue is not really adequate.
Nasal sounds require the very complicated structure of the nose to be considered, and
the way it couples with the pharynx and mouth. Other consonants normally have a close
constriction in the mouth, which effectively decouples the back part of the acoustic
system and makes it easier to consider only the part in front of the constriction.
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During many voiced sounds the effect of the glottal impedance on the resonances of
the vocal tract causes a substantial extra damping when the vocal folds are at their
farthest apart.

The effect of radiation at the mouth can be well represented by simple differentiation
of the volume flow waveform.

Spectrograms are generally a more useful way of displaying the significant properties
of speech sounds than are waveforms. Narrow-band spectrograms clearly show the
changes in pitch, whereas wide-band spectrograms are better for illustrating formant
structure.

The speech production process can be modelled electronically, and such models are
used as practical speech synthesizers. These days they are mostly implemented
digitally using sampled-data techniques.

The details of vocal fold vibration need not be copied closely for realistic speech
synthesis, provided the main acoustic consequences are represented. Turbulence is
easily represented by random electrical noise or a pseudorandom sequence generator,
and plosive excitation by a single impulse or by a very short burst of random noise.
Speech synthesis can in principle use vocal tract (articulatory) models for the
resonant system, but these are mostly too complicated to control except for the special
case of linear predictive coding (LPC, see Chapter 4). More practical models use
explicit separate resonators for the formants. The resonators can be connected in
cascade, which is theoretically attractive for vowels but unsuitable for most consonant
sounds. When carefully designed, a parallel resonator system using individual
amplitude controls can give excellent results for all types of speech sound. A realistic
representation of mixed vocal-fold and turbulent excitation can also be provided in a
parallel formant system.

CHAPTER 2 EXERCISES

E2.1 What are the main differences between the spectra of voiced and voiceless

excitation?

E2.2 What are the possible contributions to voiced excitation besides air flow through

the glottis?

E2.3 Discuss the idealizing assumptions that are made in the simple theory of vocal

tract acoustics.

E2.4 Describe the effects of having the sound source remote from the glottis during

consonant production.

E2.5 In what ways are fundamental frequency and formant frequencies interdependent?
E2.6 Give examples of factors which influence formant bandwidth.
E2.7 Why is a spectrogram more useful than the waveform when studying the

communication function of speech signals?

E2.8 Discuss the different uses of wide-band and narrow-band spectrograms.
E2.9 Summarize the relative merits of cascade and parallel formant synthesis.
E2.10 Why has articulatory synthesis been less successful than formant synthesis?



CHAPTER 3
Mechanisms and Models of the Human
Auditory System

3.1 INTRODUCTION

When considering the requirements for speech synthesis, or methods for automatic
speech recognition, much insight can be gained from knowledge about the workings of
the human auditory system. Unfortunately, because of the invasive nature of most
physiological studies and the large number and extremely small size of the neurons
involved, study in this area has been extremely difficult, and our knowledge is very
incomplete. Even so, over the recent decades much progress has been made, with a
combination of psychophysical studies on humans, neurophysiological studies on
experimental animals, and computer modelling to investigate plausible hypotheses.

3.2 PHYSIOLOGY OF THE OUTER AND MIDDLE EARS

Figure 3.1 illustrates the structure of the human ear. The outer ear consists of the
pinna, which is the visible structure of the ear, and the passage known as the auditory
canal. Sound impinging on the side of the head travels down the auditory canal to
reach the eardrum, or tympanic membrane. However, the pinna plays a significant
role because the effect of reflections from the structures of the pinna is to introduce
spectral changes at high frequencies, which can be used to judge the direction of a
sound source. The effect is confined to frequencies above 3 kHz or so, as it is only at
these high frequencies that the wavelength of the sound is short enough for it to
interact with the structures of the pinna. The length of the auditory canal is such that
it forms an acoustic resonator, with a rather heavily damped main resonance at about
3.5 kHz, and some slight secondary resonances at higher frequencies. The principal
effect of this resonant behaviour is to increase the ear’s sensitivity to sounds in the 3—
4 kHz range. Sound arriving at the eardrum causes it to vibrate, and the vibrations are
transmitted through the middle ear by three inter-connected small bones, known as the
ossicles and comprising the malleus, incus and stapes. The stapes is in contact with
the oval window, which is a membrane-covered opening at one end of the cochlea. The
cochlea is the main structure of the inner ear. The ossicles vibrate with a lever action,
and enable the small air pressure changes that vibrate the eardrum to be coupled
effectively to the oval window. In this way the ossicles act as a transformer, to match
the low acoustic impedance of the eardrum to the higher impedance of the input to the
cochlea.

Although the pinna and the ossicles of the middle ear play an important role in the
hearing process, the main function of processing sounds is carried out within the cochlea
and in higher levels of neural processing.

33
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Figure 3.1 Structure of the peripheral auditory system. (Figure from HUMAN
INFORMATION PROCESSING: AN INTRODUCTION TO PSYCHOLOGY by Peter
H.Lindsay and Donald A.Norman, copyright © 1972 by Harcourt, Inc., reproduced by
permission of the publisher.)

3.3 STRUCTURE OF THE COCHLEA

As can be seen from Figure 3.1, the cochlea is a spiral tapered tube, with the stapes in
contact with the outer, larger cross-section, end. At this end also are the semicircular
canals, whose main function is control of balance, rather than hearing. Figure 3.2 shows
a section through one turn of the spiral, and it can be seen that it is divided along its
length into three parts by two membranes. The three parts are known as the scala
vestibuli, the scala media and the scala tympani. The scala media is filled with a fluid
known as endolymph. The structure separating the scala vestibuli and the scala tympani
stops just short of the inner end of the cochlear spiral, to leave a small interconnecting
opening known as the helicotrema. Both of these scalae are filled with another fluid,
perilymph. One of the membranes, Reissner’s membrane, is relatively wide, and serves
to separate the fluids in the scala media and the scala vestibuli but has little effect
acoustically. The other membrane, the basilar membrane (BM), is a vital part of the
hearing process. As can be seen, the membrane itself only occupies a small proportion of
the width of the partition between the scala media and the scala tympani. The remainder
of the space is occupied by a bony structure, which supports the organ of Corti along
one edge of the BM. Rather surprisingly, as the cochlea becomes narrower towards the
helicotrema, the BM actually becomes wider. In humans it is typically 0.1 mm wide at
the basal end, near the oval window, and is 0.5 mm wide at the apical end, near the
helicotrema.
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vestibuli
(perilymph)

Figure 3.2 Cross-section of one turn of the cochlear spiral.

As the stapes vibrates, and so causes movements in the incompressible perilymph,
there are compensatory movements of the small membrane covering the round
window, which is situated near the basal end of the scala vestibuli. If the stapes is
given an impulsive movement, its immediate effect is to cause a distortion of the basal
end of the BM. These initial movements are followed by a travelling wave along the
cochlea, with corresponding displacements spreading along the length of the BM.
However, the mechanical properties of the membrane in conjunction with its
environment cause a resonance effect in the membrane movements; the different
frequency components of the travelling wave are transmitted differently, and only the
lowest audio frequency components of the wave cause any significant movement at the
apical end.

Because of the frequency dependence of the wave motion in the cochlea it is
informative to study the response of the BM to sinusoids of different frequencies. The
pioneering measurements of the movement of the membrane in cadaver ears by von
Békésy (1947) showed a filtering action, in which each position along the membrane
was associated with a different frequency for maximum response. The highest audio
frequencies cause most response near the basal end, and the lowest frequencies cause a
peak response near the helicotrema. However, the frequency selectivity is not
symmetrical: at frequencies higher than the preferred frequency the response falls off
more rapidly than for lower frequencies. The response curves obtained by von Békésy
were quite broad, but more recent measurements from living animals have shown that
in a normal, healthy ear each point on the BM is in fact sharply tuned, responding with
high sensitivity to a limited range of frequencies. The sharpness of the tuning is
dependent on the physiological condition of the animal, as is evident from the tuning
curves shown in Figure 3.3. The sharp tuning is generally believed to be the result of
biological structures actively influencing the mechanics of the cochlea. The most likely
structures to play this role are the outer hair cells, which are part of the organ of
Corti.
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Figure 3.3 Tuning curves representing measurements at a single point on the BM of
a guinea pig. Each curve shows the input sound level required to produce a constant
velocity on the BM, plotted as a function of stimulus frequency. The curve marked by
solid circles was obtained at the start of the experiment when the animal was in good
physiological condition, the one marked by open circles after deterioration during the
experiment, and the one marked with solid squares following death of the animal.
(Reprinted with permission from Sellick et al., 1982. Copyright © 1982, Acoustical
Society of America.)

The magnitude of the BM response does not increase directly in proportion with the
input magnitude: although at very low and at high levels the response grows roughly
linearly with increasing level, in the mid-range it increases more gradually. This pattern
shows a compressive non-linearity, whereby a large range of input sound levels is
compressed into a smaller range of BM responses.

For the purpose of hearing, the frequency-selective BM movements must be converted
to a neural response. This transduction process takes place by means of the inner hair
cells in the organ of Corti. In a normal human ear this organ contains around 25,000
outer hair cells and 3,500 inner hair cells, arranged in rows spread along the cochlear
spiral and attached to one side of the BM. Movement of the BM causes bending of the
hair cells, and so stimulates firing of the neurons in the auditory nerve. This transduction
function is performed by the inner hair cells, while the outer hair cells have the very
different role of actively influencing cochlear mechanics to maximize sensitivity and
selectivity as described above.

3.4 NEURAL RESPONSE

Just as the mechanical movement of a point on the BM can be investigated as a
function of frequency, so it is also possible to study the rate of firing for single
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Figure 3.4 Firing rates from a single auditory nerve fibre of a squirrel monkey at various intensity
levels. (Rose et al., 1971. Reproduced by permission of the American Physiological Society.)

nerve fibres in the auditory nerve. It is found that each fibre has a characteristic
frequency, at which it is most easily stimulated to fire; as might be expected, this
frequency is closely related to the part of the BM associated with the corresponding inner
hair cell. In addition, characteristic frequencies are distributed in an orderly manner in
the auditory nerve, so that the place representation of frequency along the BM is
preserved as a place representation in the auditory nerve. If a tuning curve is plotted for
a single neuron, showing response threshold as a function of frequency, the sharpness of
tuning is found to be very similar to the sharpness of tuning for the healthy BM as shown
in Figure 3.3.

The neural transduction process is extremely non-linear and so the shape of a curve
plotting firing rate as a function of frequency depends very much on signal level (see
Figure 3.4). Most neurons show some spontaneous firing, even in the absence of
stimulation, and they rarely respond at mean rates in excess of a few hundred firings
per second even for very intense stimuli. When a neuron no longer responds to an
increase in sound level with an increase in firing rate, it is said to be saturated. Most
neurons have a fairly high rate of spontaneous firing, and a dynamic range of levels
between threshold and saturation of around 20-50 dB. A small proportion of neurons
have a lower spontaneous rate and a much wider dynamic range, and are useful at high
sound levels.

Figure 3.4 does not, of course, attempt to indicate the precise times of firing of the
neurons in relation to the instantaneous value of the sinusoidal stimulus. There is a strong
tendency for individual firings to be at roughly the same points on the sine wave cycle,
so the ‘spikes’ of waveform detected on the nerve fibre show interspike intervals that are
very close to integer multiples of one period of the stimulating signal. At stimulation
frequencies above about 4 kHz, this tendency to phase locking is no longer apparent,
mainly because capacitance of the inner hair cells prevents them from changing in
voltage sufficiently rapidly.



38 Speech Synthesis and Recognition

Research is continuing into the processes of neural coding of audio signals, and they
are certainly not yet fully understood. There is still considerable debate over the extent to
which information provided by the timing of neural impulses is used in perceptual
processes. For example, timing information may contribute to our ability to distinguish
between different sounds of high intensity. This ability is still quite good, even when the
intensities of the frequency components are such that at least most of the neurons at the
appropriate characteristic frequencies can be expected to be fully saturated, and firing at
their maximum rates. It is known that, as the level of a frequency component of a
stimulus is increased, both the degree and the regularity of phase locking to that
component show an increase. Thus changes in the pattern of phase locking could
contribute to the detection of changes in spectral content (for frequencies up to about 4
kHz). It is likely that phase locking is relevant to our perception of the pitch of pure and
complex tones.

3.5 PSYCHOPHYSICAL MEASUREMENTS

In the absence of complete knowledge of the physical processes of auditory analysis, it is
useful to measure the functional performance of the hearing system by means of
psychophysical experiments. In such experiments, various types of auditory stimuli are
given to human subjects, who are asked to respond in various ways according to what
they hear.

One of the most basic types of auditory measurement is known as an audiogram, which
displays the r.m.s. pressure of sound which is just audible as a function of frequency of sinusoidal
stimulation. This display can be extended to include plots of subjective judgements of equal
loudness at different frequencies, for levels well above the threshold of detection. Such a display
is shown in Figure 3.5. The units of loudness are phons, which are defined as the level in

Sound 140
pressure

level 120}
{dB)

100

80

60

40 4

20 . :

> ~. e j
~———— n i
0 Minimum ~..”
audible field
-20 1 1 1 1 1 L i 1

20 50 100 200 5001000 5000 20000
Frequency (Hz)

Figure 3.5 Curves showing the sound pressure level needed for various perceived
loudness values, (redrawn from Robinson and Dadson, 1956. © Crown Copyright
1956. Reproduced by permission of the Controller of HMSO.)
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decibels (dB) of a tone at 1 kHz that would be judged to be of the same loudness as the
test stimulus. The reference level for 0 dB sound pressure level (SPL) has been
arbitrarily adopted to be 2x10-° N/m> This level was chosen because it is approximately
equal to the average threshold of hearing for humans with normal hearing at 1 kHz
(which is a frequency at which our ears are nearly at their most sensitive). On Figure 3.5
the small ripples in auditory sensitivity in the range from 1 to 10 kHz are caused by the
standing wave resonances in the auditory canal.

Perceptual experiments can be conducted to investigate the frequency selectivity of
the auditory system, and to estimate the characteristics of the auditory filters. These
measurements are generally made using the technique of masking. There are many
different types of masking experiment for determining the frequency resolution
capabilities of the ear, of which the following is a typical example. If a low-level
sinusoid (or pure tone) is mixed with a narrow band of random noise of much higher
level and centred on the same frequency, perception of the tone will be masked by the
noise. In general the presence of the tone cannot be detected if the noise power is more
than a few dB above that of the tone. If the centre frequency of the noise is now shifted
away from the tone frequency, it will not cause its main effect at the same place on the
BM, and so its masking action is reduced. A psychophysical tuning curve (PTC) can be
derived for any tone frequency by plotting the level of noise that is just sufficient to mask
the tone, as a function of noise centre frequency. These curves can be plotted for different
tone frequencies and various stimulus levels. The PTCs so derived (see Figure 3.6 for
some typical examples) are generally similar in form to the BM response curves shown
in Figure 3.3 and also to neural tuning curves.
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Figure 3.6 Psychophysical tuning curves found by a masking experiment. The dashed line
shows the absolute threshold of hearing for the subject. The filled diamonds indicate the
frequencies and levels of the six short probe tones that were used. The curves show the
corresponding levels of masker tones needed at various frequencies to just obscure the probe
tones. The superimposed sloping lines represent slopes of 40 and 80 dB/octave. (Adapted
from Vogten (1974), copyright © 1974 by Springer-Verlag GmbH & Co., reproduced by
permission of the publisher and of the author.)
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The useful dynamic range of representation and variation of resolution with frequency
are such that it is most useful to plot PTCs with logarithmic intensity and frequency
scales. The examples shown in Figure 3.6 were derived by using a pure tone as the
masker, and a brief low-level tone as the probe signal. The response at frequencies above
the peak of sensitivity falls off at more than 80 dB/octave. The steepest slope below the
peak response is nearer 40 dB/octave, but the slope then reduces to a lower value as the
frequency is further reduced. This asymmetry indicates that intense low frequencies are
able to mask higher-frequency test tones much more than high frequencies will mask
lower ones.

The bandwidth between 3 dB points (i.e. the points indicating a change in power by
a factor of two) of the PTC is typically between 10% and 15% of the centre frequency for
frequencies above about 1 kHz, and a somewhat larger percentage for lower centre
frequencies. However, the estimates of bandwidth vary somewhat according to the
precise experimental method used.

Due to the masking effect within the bandwidth of a single filter, the human auditory
system is not sensitive to the detailed spectral structure of a sound within this bandwidth,
except to the extent that beats between spectral components cause variations of the
intensity envelope that are slow enough for the neural system to respond to. The bandwidth
over which the main masking effect operates is usually known as the critical bandwidth.
This term was introduced by Fletcher (1940), who also used the phrase critical band to
refer to the concept of the auditory filter. The critical bandwidth provides an indication of
the effective bandwidth of the auditory filter. However, because the auditory filters do not
have a rectangular response in the frequency domain, they are not completely specified
by their critical bandwidths. Since Fletcher first described the critical band concept, a
variety of different experiments have been carried out to investigate critical band
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Figure 3.7 Estimates of auditory filter bandwidths. The symbols indicate estimates of the
ERB of the auditory filter at various centre frequencies, as obtained by the workers
specified. The solid curve shows the frequency-dependent function for ERB given by Moore
(1997), which is compared with the dashed curve showing the traditional critical bandwidth
function as tabulated by Zwicker (1961).
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phenomena and to estimate critical bandwidth. Based on the results of early
experiments, Zwicker (1961) tabulated critical bandwidth as a function of centre
frequency, and these values are shown graphically as the dashed curve in Figure 3.7.
The critical bandwidth was estimated to be constant at 100 Hz for centre frequencies
below 500 Hz, while for higher frequencies the bandwidth increases roughly in
proportion with centre frequency. Zwicker proposed the Bark scale, whereby a
difference of 1 Bark represents the width of one critical band over the entire frequency
range. The Bark scale corresponds very closely with another perceptual scale, the mel
scale, which represents the pitch (perceived frequency) of a tone as a function of its
acoustic frequency.

The ‘traditional’ critical bandwidth function tabulated by Zwicker was derived
when there were relatively few estimates available for low centre frequencies, but
more recent experiments have provided evidence that the critical bandwidth
continues to decrease at frequencies below 500 Hz. Many of the more recent
estimates of critical bandwidth are based on masking experiments to determine the
shape of the auditory filter and estimate the equivalent rectangular bandwidth
(ERB). The ERB is defined as the bandwidth of an ideal rectangular-passband filter
that will transmit the same power of a flat-spectrum input as the auditory filter
would, when the gains of both filters are equal at the peak-response frequency.
Figure 3.7 shows estimates of the ERB of the auditory filter as a function of
frequency taken from a variety of experiments, and also shows a function suggested
by Moore (1997) to approximate these data.

3.6 ANALYSIS OF SIMPLE AND COMPLEX SIGNALS

In pitch perception experiments in the mid-audio frequency range, subjects are able to
perceive changes in frequency of pure tones of approximately 0.1%. It is thus clear that
there is some frequency-determining mechanism that is far more powerful than the
mere frequency-selective filtering of the inner ear and its associated low-level neural
interactions. At frequencies above 4 kHz pitch discrimination reduces substantially.
This fact gives a hint that neural phase-locking may be responsible for passing precise
timing information to higher centres, so that some measurement of time intervals is
probably involved. Further support for some time-domain processing can be found in
the ability to infer sound direction as a result of very small relative delays in signals
reaching the two ears.

In the case of complex signals such as speech, it is much less clear what the
capabilities and processes of the auditory system are. The range of SPL between
signals that are just audible and those that actually cause physical discomfort is more
than 100 dB (the SPL of music as produced in a modern discotheque is frequently at
the upper end of this range). In the middle of the range, it is possible to vary the
intensity of speech signals by at least 20 dB without listeners regarding them as being
significantly changed in quality, even though they would regard these as quite
substantial changes of loudness. The just-discriminable difference in formant
frequency is roughly constant at about 10 Hz in the F1 region (up to around 800 Hz)
and then increases to about 20 Hz at 2000 Hz.

The filtering action of the ear is such that the lower harmonics are generally
resolved, and so there will be no single peak in response that corresponds to the
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frequency of F1, which suggests that determination of F1 frequency may be based on
relative amplitudes of harmonics rather than on locating a single spectral peak. The
higher formants (at least for male voices) do produce clear peaks in the auditory
response. There is evidence that peaks in the spectrum of the audio signal are detected
more easily than features between spectral peaks, and such preferential treatment of
peaks is probably caused by the shape of the auditory filter in combination with higher-
level neural processes. By analogy with the fact that the higher levels of the visual
system are known to have particular neurons that fire in response to objects of
particular shape or orientation, it seems plausible that the auditory system may be able
to respond specifically to formant frequency movements of particular rates, such as
occur in many consonant transitions.

3.7 MODELS OF THE AUDITORY SYSTEM

Modelling the auditory system’s behaviour when exposed to sound is of interest for two
reasons. The first is to assist in understanding how sound is interpreted by humans and
other living organisms. The second reason is to use the model directly in machines
intended for processing sound that would usually be interpreted by human beings—in
particular for automatic speech recognition. Humans are extremely competent at
interpreting speech-like sounds, even when there may be multiple sound sources, or the
sounds are modified by interfering noises or by other influences such as reverberation. A
functional model of the auditory system might be a very good first-stage processor in an
automatic speech recognizer, because it should retain those features of a speech signal
which are used for human speech recognition, but would discard information that humans
make no use of.

3.7.1 Mechanical filtering

The modelling of the outer and middle ears is fairly straightforward, at least for low or
moderate sound levels, because these parts of the auditory system can then be assumed to
be approximately linear and can be represented as a fairly simple electrical filter with
appropriate characteristics. The main function of this filter is to model the lowest
resonance of the auditory canal.

The filtering of the cochlea presents a more difficult problem. This filtering is a direct
consequence of the way the waves travelling along the tapered tube interact with the
mechanical properties of the BM. It is possible to represent each small section along the
coclear spiral as a section of transmission line, where the constants of each successive
section are scaled to represent the narrowing of the cochlea and the changing mechanical
properties of the membrane. The function of the outer hair cells to provide adaptive gain
control and ensure high sensitivity can be simulated by means of an appropriate feedback
circuit. With careful design, cochlear models (implemented either as a lumped-constant
electrical analogue or in a computer program) can be shown to yield quite close
approximations to physiological measurements. The ability of such models to reproduce
real-ear measurements gives considerable confidence that the mechanical filtering in the
cochlea is now fairly well understood.
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Due to the high computational load involved in implementing travelling wave models
in transmission lines, it is often more convenient to achieve the filtering effect by using
a number of independent filters, each representing the filtering characteristic at a single
point on the BM. Because the individual filters have a fairly broad passband it is possible
to represent the continuously distributed filter system reasonably well with as few as
about 40 separate channels. Even with this small number the overlap between adjacent
channels is so great that all significantly different filtered signals are available in at least
one channel.

3.7.2 Models of neural transduction

The relationship between BM motion and neural firing is quite complicated. A typical
functional model of the transduction process involves first half-wave rectifying the
waveform output from the filtering stage. Physiological evidence suggests that the inner
hair cells are only stimulated to release neurotransmitter for movement of the BM in a
single direction, and the rectification acts to simulate this characteristic. The next stage
is to apply a compression function to reduce the very large dynamic range of the input
signal. The output of this process can be used to influence the probability of firing of a
model neuron. Models of this type are able to represent saturation of firing rate at high
signal levels and phase locking to particular points in the vibration. The probability of
firing should, however, also be influenced by the time interval after the immediately
previous firing of the same model neuron, so that a much greater stimulus will be needed
to cause two firings to occur close in time than is needed for a longer interval. To be
realistic, it is also necessary to include a certain amount of randomness, to represent the
fact that the time of firing of any one fibre is not precisely determined by the stimulus
history. With suitable parameters for this type of model it is possible to simulate the
observed firing statistics of real nerve fibres, including the slow spontaneous firing that
occurs in the absence of stimulation, the saturation at high levels, and the tendency to
phase locking. By also making the firing probability depend on the average rate over the
previous few tens of milliseconds it is possible to incorporate the short-term adaptation
that occurs to steady sound patterns.

There have been many animal studies on the responses of individual fibres in the
auditory nerve. There is sufficient similarity in the physiological structure of the ears of
humans and experimental animals for us to assume that the effects in human ears are very
similar. There is thus a reasonable amount of confidence that the modelling of neural
transduction is fairly accurate. Unfortunately it is much more difficult to get
physiological data to define the further processing of these neural signals, so any
modelling of the higher levels is inherently more speculative, and must be guided by the
results of psychophysical experiments.

3.7.3 Higher-level neural processing

A number of models have been suggested for the representation of speech-evoked activity
in the auditory nerve. There are two main characteristics that distinguish different
modelling approaches: the extent to which a model uses explicit knowledge about a nerve
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fibre’s place of origin in the cochlea, and whether a model is based on instantaneous
firing rate alone or on temporal properties of the firing pattern. Thus it is common to
divide these models into three categories according to the nature of the representation
they use, which may be:

e place/rate (using explicit knowledge of place, and only instantaneous rate),

e place/temporal (using place and local temporal firing pattern), or

¢ place-independent/temporal (ignoring place and using only temporal properties of the
global firing pattern).

Place/rate models

A model based on the pattern of average firing rate as a function of the nerve fibre’s
characteristic frequency (which is in turn related to ‘place’ on the BM) can be shown to
give a well-defined formant pattern for vocalic sounds at low sound-pressure levels.
However, at higher sound-pressure levels typical of normal conversation, saturation
effects are such that there is a loss of definition in the spectral pattern. A representation
that uses only average firing rate information is thus unable to account for observations
that speech intelligibility improves as sound-pressure level increases, and cannot fully
account for the frequency resolution and dynamic range of the auditory system. Several
workers have therefore developed models that make use of the synchrony between the
firings of different neurons. We have no clear understanding of how real nervous systems
might detect such synchrony, but functional models have been developed that seem to
have the right properties. Examples of these models are described briefly below.

Place/temporal models

The idea behind place/temporal models is to compare intervals between firings of an
auditory neuron with the reciprocal of the neuron’s characteristic frequency (i.e. the
period corresponding to the preferred frequency for the neuron). One such model is the
generalized synchrony detector (GSD) developed by Seneff (1988).

In Seneff’s model, the signals from the neural transduction stage are assumed to
represent estimates of the probability of firing for neurons connected to the corresponding
parts of the BM. If there is a dominant peak in the input spectrum at the preferred
frequency for a point on the BM, the response waveform representing the probability of
firing for that point will be a half-wave rectified signal, roughly periodic at the frequency
of the spectrum peak. Let this waveform be represented by u(z). Define a quantity T as the
reciprocal of the characteristic frequency for the neurons being considered. It follows that
u(t) and u(t-t) will be very similar. For a nearby point on the membrane, the cochlear filter
will still be dominated by the same spectral peak, so the periodicity of the neural response
will be the same. However, the characteristic frequency of the neurons associated with this
point on the membrane will be slightly different. The value of ¢ corresponding to this point
will therefore no longer correspond to one period of the waveform, so u(z) will now not be
nearly the same as u(z-t). Seneff’s GSD uses the following ratio:

, e |u(t) +u(t - r)[— )
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where § is a small constant representing a threshold that is included in order to reduce
the value of the ratio for very weak signals. Aside from the thresholding of very weak
signals, the use of the sum waveform in the numerator of Equation (3.1) ensures that the
peak value of r is independent of the peak magnitude of u. The value of r can be very
large for points on the simulated membrane whose preferred frequencies are close to the
frequency of a spectral peak, but will become much smaller when moving quite small
distances along the membrane. To avoid problems with r becoming arbitrarily large in the
case of exact periodicity at a channel centre frequency, Seneff found it useful to
compress the range of the output by applying a saturating non-linear function prior to
subsequent processing.

The outputs from Seneff’s GSD and from similar devices developed by other workers
have been found to be extremely sensitive for detecting spectral peaks associated with
formants, although in the form described here they give no indication of formant
intensity. Seneff was also able to make use of intensity by having her complete auditory
model give an additional set of output signals depending on the mean firing rate of the
simulated neurons.

Place/temporal models are able to provide a good account of data for speech
intelligibility across a wide range of sound pressure levels. However, it is more difficult
to use these models to explain evidence, both from studies of people with selective
hearing loss and from masking experiments, that speech intelligibility is not necessarily
correlated with the effectiveness of neurons with particular characteristic frequencies. It
is also unclear exactly how the necessary information about a nerve fibre’s characteristic
frequency would be obtained in a real system.

Place-independent/temporal models

An alternative to a place/temporal spectral representation is to use information about
firing synchrony without any reference to the nerve fibres’ characteristic frequencies.
One model based on this idea is the ensemble interval histogram (EIH) model
developed by Ghitza (1988, 1992). In Ghitza’s model, an interval histogram is
constructed for the neurons corresponding to each auditory channel, and an EIH is then
obtained by combining these histograms across all channels. At moderate and high sound
pressure levels, a spectral peak will cause a pattern of common synchrony across neurons
for several channels. The timing can be used to determine the frequency of the peak,
while the extent of the common synchrony across different neurons provides information
about amplitude.

It seems plausible that all the types of representation described above could contribute
to give a robust system for the perception of speech signals, with the optimum
representation being dependent on the acoustic environment. Many separate research
groups have experimented with various different functional models for the properties of
the higher levels of the auditory system, and research effort is still continuing in this
area. While auditory models have not yet been widely adopted as the front-end
representation for automatic speech recognition systems, some encouraging results have
been reported from preliminary speech recognition experiments based on the use of such
models, especially under noisy conditions. The choice of front-end representation for use
in automatic speech recognizers will be discussed further in Chapters 10 and 11.
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CHAPTER 3 SUMMARY

e The outer ear has a damped resonance which enhances the response of the tympanic
membrane at around 3.5 kHz. The ossicles of the middle ear couple the vibrations of
the tympanic membrane to the spiral-shaped cochlea of the inner ear.

¢ The cochlea is filled with fluids, and divided along its length by the basilar membrane
(BM) except for a small gap at the inner end of the spiral (the helicotrema). The BM
in a normal healthy ear shows a sharply-tuned resonant behaviour, and its resonant
frequency varies along its length, being high at the outer end of the cochlea and low
near the helicotrema.

e Hair cells in contact with the membrane are coupled to nerve cells, and convert the
membrane vibrations into neural firings in the auditory nerve. The mean rate of firing
is a very non-linear function of vibration amplitude, and individual firings tend to be
at a fixed part of the vibration cycle of the corresponding part of the BM.

¢ Psychophysical tuning curves are derived using masking techniques to show human
ability to separate the responses to individual frequency components of a complex
signal. Separation is not effective for components closer than the bandwidth of the
auditory filter, which is about 10% of centre frequency above 1 kHz and a somewhat
larger percentage for lower centre frequencies.

¢ Human ability to judge the pitch of tones and the frequency of resonances is much
better than indicated by the width of critical bands, and is believed to be the result of
analysing the timing pattern of neural firings.

e A simple filter can provide a good model of the outer and middle ears. The filtering
of the cochlea can be modelled as a series of transmission line sections or as a set of
discrete filters. Suitable non-linear functions applied to the filter outputs can provide
estimates of the probability of neurons firing. Further processing to emulate the
human ability to detect frequency changes needs to somehow exploit temporal
information in the pattern of neural firings.

e Auditory models are showing promise as acoustic analysers for automatic speech
recognition.

CHAPTER 3 EXERCISES

E3.1 Discuss the relationship between psychophysical tuning curves, neural tuning
curves, and basilar membrane response as a function of frequency.

E3.2 Suggest possible explanations for the wide dynamic range of the human ear, given
that the firing rates of individual hair cells saturate at moderate sound levels.

E3.3 Comment on the difference in frequency discrimination for simple tones and for
spectral features of complex sounds, such as speech.

E3.4 Discuss the role of non-linearity in neural transduction in the ear.

E3.5 Why should it be advantageous to use models of the auditory system for speech
signal analysis in automatic speech recognition?



CHAPTER 4
Digital Coding of Speech

4.1 INTRODUCTION

There are two justifications for including a chapter on speech coding in a book on
speech synthesis and recognition. The first is that some specialized low-data-rate
communication channels actually code the speech so that it can be regenerated by
synthesis using a functional model of the human speaking system, and some systems
even use automatic speech recognition to identify the units for coding. The second
justification arises, as will be explained in Chapter 5, because a common method of
automatic speech synthesis is to replay a sequence of message parts which have been
derived directly from human utterances of the appropriate phrases, words or parts of
words. In any modern system of this type the message components will be stored in
digitally coded form. For these reasons this chapter will briefly review some of the
most important methods of coding speech digitally, and will discuss the compromises
that must be made between the number of digits that need to be transmitted or stored,
the complexity of the coding methods, and the intelligibility and quality of the decoded
speech. Most of these coding methods were originally developed for real-time speech
transmission over digital links, which imposes the need to avoid appreciable delay
between the speech entering the coder and emerging from the decoder. This
requirement does not apply to the use of digital coding for storing message
components, and so for this application there is greater freedom to exploit variable
redundancy in the signal structure.

To reproduce an arbitrary audio signal it is possible to calculate the necessary
information rate (bits/s) in terms of the bandwidth of the signal and the degree of
accuracy to which the signal must be specified within that bandwidth. For typical
telephone quality the bandwidth is about 3 kHz and the signal-to-noise ratio might be 40
dB. The information rate in this case is about 40,000 bits/s. For a high-fidelity
monophonic sound reproducing system the bandwidth would be about five times greater,
and the noise would probably be 60-70 dB below the peak signal level. In this case a rate
of about 300,000 bits/s is required to specify any of the possible distinct signals that
could be reproduced by such a system.

In contrast to these very high figures, it is known that human cognitive processes
cannot take account of an information rate in excess of a few tens of bits per second, thus
implying a ratio of information transmitted to information used of between 1,000 and
10,000. This very large ratio indicates that the full information capacity of an audio
channel should not be necessary for speech transmission. Unfortunately for the
communications engineer, the human listener can be very selective in deciding what
aspects of the signal are chosen for attention by the few tens of bits per second available
for cognitive processing. Usually the listener concentrates on the message, which, with
its normal high degree of linguistic redundancy, falls well within the capacity available.
However, the listener may pay attention specifically to the voice quality of the speaker,
the background noise, or even to the way certain speech sounds are reproduced.

47
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There are two properties of speech communication that can be heavily exploited in
speech coding. The first is the restricted capacity of the human auditory system,
explained in Chapter 3. Auditory limitations make the listener insensitive to various
imperfections in speech reproduction. When designing speech coding systems it can
also be advantageous to make use of the fact that the signal is known to be produced by
a human talker. As explained in Chapter 2, the physiology of the speaking mechanism
puts strong constraints on the types of signal that can occur, and this fact may be
exploited by modelling some aspects of human speech production at the receiving end
of a speech link. The potential reduction in digit rate that can ultimately be achieved
from this approach is much greater than is possible from exploiting auditory
restrictions alone, but such systems are only suited to auditory signals that are speech-
like.

Coding methods can be divided into three general classes, thus:

simple waveform coders, which operate at data rates of 16 kbits/s and above;

. analysis/synthesis systems, which are most useful at low rates from 4 kbits/s down to
less than 1,000 bits/s and, in the extreme, as low as about 100 bits/s;

3. intermediate systems, which share some features of both of the first two categories

and cover a wide range of rates in the region of 4-32 kbits/s.

o =

Members of each class exploit aspects of production constraints and of perception
tolerance, but to varying extents for different types of coders. In the following discussion
of individual coding methods some mention will be made of the extent to which
properties of perception and production are exploited.

4.2 SIMPLE WAVEFORM CODERS
4.2.1 Pulse code modulation

Waveform coders, as their name implies, attempt to copy the actual shape of the
waveform produced by the microphone and its associated analogue circuits. If the
bandwidth is limited, the sampling theorem shows that it is theoretically possible to
reconstruct the waveform exactly from a specification in terms of the amplitudes of
regularly spaced ordinate samples taken at a frequency of at least twice the signal
bandwidth. In its conceptually simplest form a waveform coder consists of a
bandlimiting filter, a sampler and a device for coding the samples. The sampler operates
at a rate higher than twice the cut-off frequency of the filter. The amplitudes of the
samples are then represented as a digital code (normally binary) with enough digits to
specify the signal ordinates sufficiently accurately. There is obviously no point in making
the specification much more accurate than can be made use of for the given input signal-
to-noise ratio. This principle of coding, known as pulse code modulation (PCM), was
suggested by Reeves (1938), and is now widely used for feeding analogue signals into
computers or other digital equipment for subsequent processing (in which case it is
known as analogue-to-digital (A-D) conversion). The process is not normally used in its
simplest form for transmission or for bulk storage of speech, because the required digit
rate for acceptable quality is too high. Simple PCM does not exploit any of the special
properties of speech production or auditory perception except their limited bandwidth.
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The distortion caused by PCM can be considered as the addition of a signal
representing the successive sample errors in the coding process. If the number of bits per
sample in the code is fairly large (say>5) this quantizing noise has properties not
obviously related to the structure of the speech, and its effect is then perceptually
equivalent to adding a small amount of flat-spectrum random noise to the signal. If the
number of digits in the binary code is small or if the input signal level exceeds the
permitted coder range, the quantizing noise will have different properties and will be
highly correlated with the speech signal. In this case the fidelity of reproduction of the
speech waveform will obviously be much worse, but the degradation will no longer
sound like the addition of random noise. It will be more similar perceptually to the result
of non-linear distortion of the analogue signal. Such distortion produces many
intermodulation products from the main spectral components of the speech signal, but
even when extremely distorted the signal usually contains sufficient of the spectral
features of the original signal for much of the intelligibility to be retained.

The sound pressure waveform of a speech signal has a substantial proportion of its
total power (for some speakers more than half) in the frequency range below 300 Hz,
even though the information content of the signal is almost entirely carried by the
spectrum above 300 Hz. As quantizing noise has a flat spectrum its effect on the signal-
to-noise ratio is much more serious for the weaker but more important higher-frequency
components. A considerable performance improvement for PCM can be obtained by
taking into account this property of speech production, and applying pre-emphasis to the
speech signal with a simple linear filter to make the average spectrum more nearly flat.
After PCM decoding the received signal can be restored to its original spectral shape by
de-emphasis, so reducing the higher-frequency components of the quantizing noise. For
normal communication purposes it is not, however, necessary that the de-emphasis
should match the preemphasis, as speech intelligibility is actually improved by
attenuating the low-frequency components, because it reduces the upward spread of
auditory masking.

The amplitude of the quantizing noise of simple PCM is determined by the step size
associated with a unit increment of the binary code. During low-level speech or silence
this noise can be very noticeable, but in loud speech it is masked, partially or in some
cases completely, by the wanted signal. For a given perceptual degradation in PCM it
is therefore permissible to allow the quantizing noise to vary with signal level, so
exploiting a property of perception. The variation can be achieved either by using a
non-uniform distribution of quantizing levels or by making the quantizing step size
change as the short-term average speech level varies. Both methods have been adopted,
and have enabled excellent quantizing-noise performance to be achieved at 8 bits/
sample, and useful communications performance at 4 bits/sample. Civil telephony uses
PCM with 8 bits/sample at 8 kHz sampling rate, so needing 64 kbits/s. In this system
there is an instantaneous companding characteristic that gives an approximately
exponential distribution of quantizing intervals except at the lowest levels. (The two
slightly different variants of this law used by different telephone administrations are
known as A-law and p-law.) The sampling rate is generous for the 300-3,400 Hz
bandwidth required, but this high sampling rate simplifies the requirements for the
band-limiting filters.

The time resolution properties of the auditory system ensure that masking of quantizing
noise by the higher-level wanted signals is effective for at least a few milliseconds at a
time, but instantaneous companding will give finer quantization near zero crossings even
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for large-amplitude signals. It is obvious that more effective use will be made of the
transmitted digits if the step size is not determined by the instantaneous waveform ordinate
height, but is changed in sympathy with the short-term average speech level. In this case,
however, some means must be devised to transmit the extra information about the
quantizing step size. This information can be sent as a small proportion of extra digits
interleaved in the digital waveform description, but more usually it is embodied in the
waveform code itself. The latter process is achieved by using a feedback loop that modifies
the quantal step size slowly up or down according to whether the transmitted codes are near
the extremities or near the centre of their permitted range. As the same codes are available
at the receiver it is in principle easy to keep the receiver quantizing interval in step with
that at the transmitter, but digital errors in the transmission path disturb this process and
will thus affect the general signal level besides adding noise to the received audio
waveform. Another disadvantage of this method of backward adaptation is that when the
signal level increases suddenly it will overload the coder for at least a few samples before
the quantizing interval has had time to adapt. Use of a separate channel for forward
adaptation of the quantizing control can avoid this problem, but needs a small signal delay
to enable the quantizer to be correctly set before the signal is coded, in addition to the small
amount of extra information needed to specify the quantizer step size.

4.2.2 Deltamodulation

Deltamodulation is a very simple alternative type of waveform coding. A
deltamodulator uses its transmitted digital codes to generate a local copy of the input
waveform, and chooses successive digital codes so that the copy reproduces the input
waveform as closely as possible, within the constraints of the coder. The basic
scheme is illustrated in Figure 4.1. In its original and simplest form the quantizer
uses only one bit per sample, and merely indicates whether the copy is to be
increased or decreased by one quantum. Such a coder offers the possibility of
extremely simple hardware implementation, and if run at a high enough sampling
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Figure 4.1. Block diagram of a simple deltamodulator.
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rate can approximate waveforms very closely. The process of following the waveform in
small steps makes deltamodulation work best on signals in which differences between
successive ordinates are small. Thus the low-frequency dominance in speech signals is
accommodated directly by deltamodulation without pre-emphasis, and it is acceptable to
use a quantal step that is only a very small fraction of the waveform amplitude range. In
contrast, a flat-spectrum input would cause frequent slope overloading if used with the
same step size and sampling rate. Typical waveforms in simple deltamodulation are
illustrated by Figure 4.2.

The use of a single bit per sample in deltamodulation is basically inefficient because
a sampling rate much in excess of twice the highest frequency in the input signal is
needed for close following of the input waveform. However, the intrinsic feedback loop
in the coding process gives the coder some ‘memory’ of coding overload on previous
waveform ordinates, for which it continues to compensate on later samples. This
advantage of deltamodulation can be combined with those of PCM if a PCM coder is
used instead of a one-bit quantizer in the feedback loop. Current terminology describes
this arrangement as differential PCM (DPCM).

The advantages of and techniques for level adaptation apply to deltamodulation in the
same way as to PCM, and adaptive forms of coder are normally used, so exploiting the
noise-masking properties of auditory perception and the slow level changes of speech
production. Adaptive DPCM (ADPCM) incorporating an adaptive quantizer seems to be
the most efficient of the simpler waveform coding processes. At 16 kbits/s the quantizing
noise is noticeable, but slightly less objectionable than the noise given by adaptive
deltamodulation or adaptive PCM at the same digit rate.

Many authors have also used the term ADPCM to describe waveform-following
coders where the adaptation is based on much more complicated models of speech
generation, with consequent much greater complexity than the simple coders described in
this section. Coders of this more complicated type, but referred to as ADPCM, include a
group of coders which have been recommended by the International Telecommunications
Union (ITU) as standards for network telephony.

There are in fact a variety of waveform-following coders which incorporate adaptation
but applied to a speech generation model of some complexity. It seems most useful,
therefore, to describe these more elaborate systems in terms of the types of speech
generation models they use and, in view of their higher complexity, they will be
considered in the intermediate category (Section 4.4).
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4.3 ANALYSIS/SYNTHESIS SYSTEMS (VOCODERS)

An alternative to direct waveform coding is to analyse the speech signal in terms of
parameters describing its perceptually important characteristics. These parameters are
transmitted and used to generate a new waveform at the receiver. The regenerated
waveform will not necessarily resemble the original waveform in appearance, but should
be perceptually similar. This type of coding system was first described by Homer Dudley
of Bell Telephone Laboratories (Dudley, 1939), who called his system a vocoder (a
contraction of VOice CODER). The term vocoder has since been widely used to refer to
analysis/synthesis coders in general.

Most vocoders are based on a model of speech production which exploits the fact that
it is possible substantially to separate the operations of sound generation and subsequent
spectrum shaping. The basic elements of such a vocoder are shown in Figure 4.3. The
sources of sound are modelled by periodic or random excitation, and in several of the
more recent vocoders it is also possible to have mixtures of both types of excitation. The
excitation is used as input to a dynamically controllable filter system. The filter system
models the combined effects of the spectral trend of the original sound source and the
frequency response of the vocal tract. The specifications for the sound sources and for
the spectral envelope are both derived by analysis of the input speech. By separating the
fine structure specification of the sound sources from the overall spectral envelope
description, and identifying both in terms of a fairly small number of slowly varying
parameters, it is possible to produce a reasonable description of the speech at data rates
of 1,000-3,000 bits/s. The general principles of synthesis used in the receiver to
regenerate speech from this description were discussed in Section 2.7.

There are many different types of coder that use analysis/synthesis, but our discussion will
concentrate on four of the most influential ones. These are channel vocoders, sinusoidal
coders, linear predictive coding (LPC) vocoders and formant vocoders. With all these
types the data are coded into frames representing speech spectra measured at intervals of 10—
30 ms. There are also techniques for efficient coding of frames and sequences of frames, and
some specialized vocoders which code whole sequences of frames as single units. Discussion
of these techniques will be postponed until Sections 4.3.5 and 4.3.6.

Of the four types of vocoder mentioned above, up until around the late 1980s LPC
and channel vocoders predominated. The advantages and disadvantages of the two
types were nearly equally balanced; both gave usable but rather poor speech
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Figure 4.3 Block diagram of the basic elements of a vocoder.



Digital Coding of Speech 53

transmission performance at 2,400 bits/s using fairly complex processing. The advent of
digital signal processor (DSP) chips made implementation very easy, and standard LPC
is somewhat simpler than a channel vocoder when these devices are used. More recently,
various enhancements have been added to LPC vocoders and sinusoidal coders have
emerged to take over from channel vocoders as an alternative at comparable data rates.
Formant vocoders have a long history, but there are special advantages and problems with
their use in practical systems and their implementation is much more complex, as will be
explained in Section 4.3.4.

4.3.1 Channel vocoders

In a channel vocoder (of which Dudley’s was the first example) the spectrum is
represented by the response of a bank of contiguous variable-gain bandpass filters. The
way in which the desired overall response can be approximated using the separate
contributions from individual channels is shown in Figure 4.4. The control signals for the
channels are derived by measuring the short-term-average power from a similar set of
filters fed with the input speech signal in the transmitter.

Unless a very large number of channels can be used (with consequent high digit rate)
it is difficult to achieve a good match to the spectrum shapes around the formant peaks
with a channel vocoder. However, the quality achievable with around 15-20 channels is
reasonable for communications purposes, and has been achieved in several systems
operating at data rates of around 2,400 bits/s or lower.

Level

(dB}
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Figure 4.4. Contributions of individual channels to a channel vocoder output
spectrum. Thick line: desired spectrum shape. Thin lines: contributions from the
separate channels.

4.3.2 Sinusoidal coders

The key feature of sinusoidal analysis/synthesis models is the concept of representing the
short-term spectrum of a speech signal as a sum of sinusoids specified in terms of frequency,
amplitude and phase. One such coding method is known as sinusoidal transform coding
(STC). For each frame, a set of frequencies, amplitudes and phases is estimated
corresponding to peaks in the short-term Fourier transform. An economical code is achieved
by representing voiced speech as a constrained set of harmonically related sinusoids, and
unvoiced speech as a set of sinusoids with appropriately defined random phases.
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Multi-band excitation (MBE) coding is another method that uses a sinusoidal
model. The main features of the MBE approach that distinguish it from STC are the
treatment of the excitation and the method used to generate unvoiced components of the
speech. The fundamental frequency is estimated, then the spectrum is divided into
harmonic bands and a binary voiced/unvoiced decision is made separately for each band.
The voiced components of the speech are regenerated as a combination of the relevant set
of harmonic sinusoids, with the amplitudes of all sinusoids associated with an ‘unvoiced’
harmonic being set to zero. The unvoiced components are generated separately using a
frequency-domain method. In this method, the spectrum shape taken from the unvoiced
samples of the estimated vocal tract spectral envelope is multiplied by the spectrum of a
whitenoise excitation signal. The resulting transform is used to synthesize the unvoiced
speech signal components, which are added to the voiced components to produce the
final synthesized speech waveform.

Efficient coding techniques have been developed both for STC and for MBE coding,
and have enabled these methods to achieve considerable success at data rates in the
2,000-4,000 bits/s range, providing more natural-sounding speech than traditional
channel vocoders at these data rates.

4.3.3 LPC vocoders

In LPC vocoders, spectral approximation to a speech signal is given by the response
of a sampled-data filter, whose all-pole transfer function is chosen to give a least-
squared error in waveform prediction. The configuration of such a filter is illustrated
in Figure 4.5.

The principle of linear prediction applied to a resonant system depends on the fact
that resonance causes the future output of a system to depend on its previous history,
because resonant modes continue to ‘ring’ after their excitation has ceased. The
characteristics of this ringing are determined by a linear difference equation of
appropriate order. If a system is ringing entirely as a result of previous excitation,
and can be represented exactly by a small number of resonant modes with constant
characteristics, a difference equation can be derived to predict its future output
exactly. In speech, however, these assumptions are only approximately true. Although
the formants cause a strong resonance effect, they vary slowly with time. Their
damping is also modified by opening and closing of the glottis. The resonances are
always being excited to some extent by the sound sources, and receive substantial
excitation at the instants of glottal closure. In spite of all these deviations from the
ideal, it is possible to derive a useful description of the spectrum by choosing the
parameters of a predictor filter to minimize the average prediction error power over
a frame of input samples of around 10-20 ms duration. The predictor filter is a finite-
impulse-response filter whose output is a weighted linear combination of previous
input speech samples. At the receiver the predictor is connected in a feedback loop to
give an all-pole recursive filter, whose resonant modes approximate those for the
input signal. The two main methods that are used for deriving the predictor filter
coefficients are known as the covariance and autocorrelation methods, but their
details are outside the scope of this book.
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Figure 4.5. Predictor filter as used in LPC systems. When connected as shown in the
synthesizer, the finite-impulse-response predictor filter provides the feedback path in an
allpole recursive filter. Because the formant resonances are effectively removed, the residual
signal is a more suitable input for excitation analysis than the original speech waveform.

In any practical LPC-based coding system, the parameters describing the predictor
filter must be quantized prior to transmission to the decoder. The filter coefficients are
not quantized directly, because small quantization errors can give rise to large changes in
the spectral response of the filter. The coefficients are therefore converted to some
alternative representation, which is chosen to be more robust under quantization. For
recent implementations, including the LPC-derived intermediate-rate coders described
later, the most popular choice is a parameter set called line spectrum pairs, details of
which may be found in the literature.

When the predictor filter has been adjusted to predict the input as best it can from the
immediately preceding samples, the difference between the input speech and the
predictor output (known as the residual) will have a roughly flat spectrum. The obvious
spectral peaks caused by the resonances of speech production will have been removed.
For this reason the complete filtering process is sometimes referred to as inverse
filtering.

In LPC vocoders the resonant properties of the synthesis filter make possible fairly
good approximations to the spectral shapes of the formants. However, the correct
analysis to achieve this result will only be obtained when the overall speech spectrum
really is like the response of an all-pole filter. During vowel sounds this approximation is
often very close, although at normal frame rates standard LPC cannot deal correctly with
the fact that the formant bandwidths in natural speech change significantly as the glottis
opens and closes in each excitation period. There are frequent other occasions when the
spectral modelling is quite poor, particularly during nasalized vowels and many voiced
consonant sounds. On these occasions the LPC synthesis frequently produces spectral
peaks whose bandwidths are too large, with a consequent ‘buzziness’ in the speech
quality. Another inherent property of normal LPC vocoders is that all regions of the
spectrum are treated equally with regard to accuracy of frequency specifications, and so
no advantage is taken of the variable frequency resolution of auditory perception.

Simple LPC coding produces speech which is buzzy but intelligible, and a version
of the algorithm was used for many years as a U.S. Government standard at 2,400 bits/
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s for secure voice communications in both military and civilian use. Recently, this
standard has been replaced by a new standard at the same data rate but using an
enhanced LPC algorithm that gives speech of considerably better quality. This
algorithm, known as mixed excitation linear prediction (MELP), uses a frequency-
dependent mixture of pulse and noise excitation (similar in concept to that described in
Section 2.7.2 for a parallel-formant synthesizer). Other new features of the MELP
coder include a spectral enhancement filter to improve the match to the natural speech
in regions close to the formant frequencies, and a dispersion filter applied after the
LPC synthesis filter in order to improve the modelling of regions between the
formants. The new developments have removed a lot of the buzziness traditionally
associated with LPC-coded speech.

4.3.4 Formant vocoders

In formant vocoders the spectrum shape is specified in terms of the frequencies and
amplitudes associated with the resonant modes of the speaker’s vocal tract. The
relationship between the formant control signals and the synthesized spectral shape can
be seen from Figure 4.6.

Formant vocoders are different from the other types described above, as they use
a synthesizer that is much more closely related to human speech production. In
addition to modelling periodic and noise sources, the synthesizer has a spectral filter
system with resonators that are explicitly related to the principal formants of the
input speech. Thus the coding system can be constrained to deal only with the known
frequency range and necessary accuracy of specification for each formant. The
systematic variation of formant bandwidth with glottal opening can easily be
provided in a formant synthesizer and requires no extra information to be
transmitted. Apart from this effect, the bandwidths of the formants do not vary much
and such variation as does occur is fairly predictable; provided they are within the
limits of natural variation, preservation of the actual formant bandwidths is not
perceptually important. In consequence this property of the resonances is not usually
transmitted in formant vocoders. For formant vocoders it is not practicable to use a
simple cascade connection of resonators (Figure 2.13), because occasional
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Figure 4.6. Illustration of how formant amplitude and frequency control signals
affect the output spectrum in a formant vocoder. Thick line: desired spectrum. Thin
lines: contributions from individual formants.
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errors of formant frequency could then cause serious formant amplitude errors. The
parallel connection, such as is shown in Figure 2.15, is therefore necessary.

Analysis is the main difficulty with formant vocoders. When the spectral envelope
of a speech sound shows a small number of well-defined peaks it is trivial to assign
these to formants in a sensible way. However, there are occasions, particularly in
consonants, near vowel/consonant boundaries or even in the middle of vowels if the
fundamental frequency is very high, when it is not clear what is the most appropriate
way to assign the parameters of the synthesizer to spectral peaks of the input signal.
Because of the analysis difficulties formant vocoders are not yet used operationally,
but a few have been demonstrated in a research environment, and some of these have
been extremely successful, though computationally expensive. Formant analysers
have been used to derive stored components for message synthesis, because the
analysis can then be carried out more slowly than real time on only a moderate
amount of speech material, and serious analysis errors can be corrected by
subsequent interactive editing. This possibility is, of course, not available for coding
real-time conversation.

4.3.5 Efficient parameter coding

For all types of analysis/synthesis systems it is possible to achieve some saving in digit
rate by exploiting the redundancy in the measured parameters. Any technique of this type
will add complexity, but the analysis process itself gives such a reduction of digit rate
compared with the original speech that the computational speed needed for further
processing can be quite low. With modern implementation technology fairly complex
coding is possible even in single-chip microprocessors.

Vector quantization (VQ) considers only one frame at a time and exploits the fact
that the multi-dimensional parameter space is not uniformly occupied. By choosing from
a subset of possible combinations of parameter values (which are stored in a codebook),
fewer bits are required per frame than are needed for independent coding of the
parameters. However, quite a lot of computation is needed to select the most appropriate
member of the codebook for each frame.

The data rate can also be reduced by taking into account the relationship between the
data in a sequence of frames, although it will always be necessary to provide buffer delay
for this reduction to be exploited in a constant-rate real-time link. A simple method, often
referred to as frame fill, involves only transmitting every alternate frame and sending an
additional code of just 1 or 2 bits to indicate how to reconstruct the missing frames
(typically by repeating one of the frames either side or by interpolating between them).
There are also more elaborate schemes for transmission at a variable frame rate. In
these methods, a frame is only transmitted when the spectrum change since the preceding
transmitted frame exceeds some threshold and missing frames are obtained by
interpolation. Thus frames are transmitted more frequently when the speech
characteristics are changing rapidly, and less frequently when the characteristics are
changing only slowly. However, in order to obtain the full benefit of the method, a longer
delay must be included than with fixed frame-fill methods. Variable-frame-rate schemes
are especially suited to formant vocoders because the control parameters tend to vary in
a much more orderly way than they do in other types of vocoders.
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Reduced-frame-rate schemes can achieve very good speech quality for realtime
systems at about 1,200 bits/s. Lower rates are possible for coding stored message
components, because the delay due to variable-rate coding is acceptable and interactive
editing can overcome some of the limitations of automatic coding.

4.3.6 Vocoders based on segmental/phonetic structure

Even lower bit rates can be achieved by coding whole sequences of frames as single
units. In segment vocoders, consistent segments of speech are identified and an extended
form of VQ is used to provide a compact codebook that contains variable-length
segments. An utterance can then be coded by finding the sequence of these segments that
provides the best fit according to some suitable distance criterion. Segment vocoders
have been produced with reasonable intelligibility at rates of less than 300 bits/s.
However, they work best when used to code speech from a known speaker, so that a
speaker-specific codebook can be used. If coding of speech from any (unknown) speaker
is required, it becomes difficult to retain speaker characteristics while keeping the
codebook at a manageable size.

The lowest bit rates are possible by explicitly taking advantage of the phonetic
structure of spoken language and using a phoneme-based coding scheme. For example,
given that English contains about 44 phonemes (which can be generously specified using
6 bits) and a typical speaking rate might be an average of around 12 phonemes/s, the
phoneme sequence can be coded at a rate of approximately 70 bits/s. Including some
additional bits for pitch and timing information may only increase the bit rate to not
much more than 100 bits/s. The term phonetic vocoder is generally used to describe a
type of segment vocoder in which the segments are explicitly defined in phonetic terms.
These coders involve applying automatic speech recognition at the transmitter and using
some synthesis technique at the receiver, and are therefore sometimes referred to as
recognition-synthesis coders. The coding performance is obviously critically dependent
both on the quality of the synthesizer, and especially on the recognition performance as
any recognition errors will lead to coding errors. As with other segment vocoders, it is
difficult for phonetic vocoders to retain speaker characteristics if they are to be used to
code speech from any arbitrary speaker.

Segment and phonetic vocoders typically use complex processing to produce speech
of limited quality, and they operate at a variable frame rate, so some delay is
unavoidable. They do, however, make possible speech transmission at very low data
rates, and have so far been of most interest for their potential use in specialized military
communications where there may be severe bandwidth restrictions but the task can be
quite tightly controlled and a delay is tolerable.

4.4 INTERMEDIATE SYSTEMS

There are many ways of combining some of the detailed signal description possibilities
of simple waveform coders with some of the signal redundancy exploitation of vocoders.
The resultant intermediate systems normally give much better speech reproduction in the
4-16 kbits/s range than is possible with either of the other two classes of system at these



Digital Coding of Speech 59

digit rates. Their complexity is, of course, always greater than for simple waveform
coders, and most of the higher-performance systems are more complicated than the
majority of vocoders.

The importance of these systems has increased dramatically over the past 10 years
because of the explosive growth in mobile telephony of various sorts during this period.
The restrictions of radio bandwidth, and the need for extra bits for the detection and
correction of the inevitable digital transmission errors, has made it important to keep the
digit rate for speech coding to much less than the 64 kbits/s or 32 kbits/s used in line
transmission. But the requirement for acceptable speech quality from the general
population means that the performance currently obtainable from vocoders would not be
adequate for these applications. Although mobile telephones must be small and not too
expensive, it is fortunate that modern integrated circuit technology is making it possible
to implement many very complicated coding algorithms while still satisfying the cost and
size constraints.

4.4.1 Sub-band coding

Waveform coding can make use of masking effects and the ear’s tolerance to less accurate
signal specification at higher frequencies by filtering the speech signal into many bands and
coding each band separately (Figure 4.7). Systems that use this technique are known as
sub-band coders. Each sub-band is coded by a waveform coding process, using a sampling
rate equal to twice the bandwidth in each case. If the bands are made as narrow as the
ear’s critical bands, the quantizing noise in each band can be largely masked by the
speech signal in the same band. In addition, the fact that most power in the higher bands
is from the ‘unvoiced’ randomly excited sounds means that the waveform shape in these
bands need not be specified so accurately, and therefore requires fewer bits per sample.
In practice, complexity of suitable filter designs makes a choice of about five bands
more attractive than the 15-20 needed for critical bands, and even with this number the
speech quality in the 16-32 kbits/s range is much improved over that possible
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Figure 4.7. Block diagram of a sub-band coder.
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with the best simple waveform coders at the same bit rates. Because they do not exploit
the constraints of speech production, sub-band coders have mainly been used where non-
speech signals must also be transmitted.

4.4.2 Linear prediction with simple coding of the residual

The technique of linear prediction analysis for vocoders inherently makes available in
the analyser the low-power prediction error signal, the residual. If applied as input to
the LPC vocoder synthesis filter, this residual signal will regenerate the original speech
waveform exactly. This fact can be exploited to give an improvement in speech quality
by transmitting to the receiver a digitally coded representation of the residual to
replace the conventional vocoder excitation. A further stage of prediction can be
included to predict the periodicity at the fundamental frequency of excitation for
voiced sounds, and the residual will then be of even lower power and will be much
more random in structure. Although the residual must inherently contain important
detail in its time structure, its gross spectral shape will always be fairly flat because it
is the output of the LPC ‘inverse filter’. The objective in coding the residual is to retain
as much as possible of its perceptually important features, because the quality of the
output speech will depend on the extent to which these features are available at the
receiver.

There is a whole family of related techniques that all depend on linear prediction
analysis, with some form of excitation derived from the residual. At one extreme is, of
course, the LPC vocoder, where the excitation is generated taking into account only the
periodicity of the residual, which is transmitted as a low-data-rate parameter. Another
technique is to transmit the low-frequency waveform structure of the residual, sampled at
a reduced rate, and to regenerate a wide-band excitation by non-linear action or by
spectral folding. This method has usually been called residual-excited linear prediction
(RELP). It exploits the fact that the detail of the spectrum structure is perceptually not
so important at the higher audio frequencies. Other simple residual coding systems have
also been developed, but are no longer of interest because of more effective methods
described below.

4.4.3 Adaptive predictive coding

There is another group of techniques depending on linear prediction analysis, which
are essentially waveform-following coders, somewhat similar in principle to ADPCM
(see Section 4.2.2). However, as mentioned in Section 4.2.2, it seems more informative
to name them to include their speech modelling method in the title, and the early
research papers on these systems in general used such names. One of the earliest
systems of this type (developed in the 1970s and early 1980s) was referred to as
adaptive predictive coding (APC). The early versions used a comparatively simple
coding scheme for the residual, and lacked many of the refinements introduced over the
next ten years. Now systems of this general class use a much more complicated
structure than these early APC systems, and they normally include most or all of the
features illustrated in Figure 4.8.
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Figure 4.8. General APC-type coder and decoder with two predictors in the feedback loop
and spectral shaping of the quantizing noise.

The important features of this group are:

. They are essentially waveform coders, in that they have a feedback loop that attempts
to copy the input waveform, using a suitable error criterion.

. They normally include a predictor for both the spectral resonances and the
fundamental period of voiced speech, and parameters for these two predictors are
coded and sent as side information.

. The predictors in the feedback loop are controlled by the quantized predictor
coefficients. The quantizer used to code the residual is also placed in the feedback
loop. As a result, the waveform of the residual takes into account the imperfections of
both quantizers. The overall coding accuracy can then be much better than would be
possible by using the same number of bits to code the residual in isolation.

. The minimization of the overall quantizing noise is achieved through a noiseshaping
filter that gives less weight to the noise in high-level regions of the spectrum. The
action of the noise-shaping filter causes an increase in the total noise power, but the
noise is concentrated in regions of the spectrum where the speech power is high and
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hence the noise is more effectively masked by the speech signal. Comparatively more
weight is given to the error signal in low-level regions between the formants, so
giving a better signal-to-noise ratio in these regions than would otherwise be
achieved. A suitable noise-shaping characteristic can easily be derived by adjusting
the response of the resonance predictor to give slightly reduced peak heights at the
formant frequencies.

If the fundamental-period predictor is included the residual power will be very low
during long periodic sounds, but there will still be higher-level transients whenever either
the fundamental frequency or the formant frequencies change. As the ear is in general
less sensitive to noise and distortion in transient sounds, the presence of this extra stage
of prediction is just what is wanted to make the coding more accurate when it matters
most. It is therefore always worth putting in the fundamental predictor if the extra
complexity is acceptable.

4.4.4 Multipulse LPC

There are many techniques for coding the residual in the APC family of systems, and
some have attained such importance that they have been given their own separate names.
One of these is multipulse LPC, where the residual is represented by a much smaller
number of pulses than is indicated by the Nyquist rate for the signal. Analysis by
synthesis is used to optimize the amplitudes and positions of these pulses to minimize the
spectrally shaped quantizing noise, and it is these amplitudes and positions that are coded
for transmission. Typically only 10-20 pulses are used for every 20 ms of speech, so
reducing the sampling rate of the residual by a factor of more than 10. The success of
multipulse LPC is fairly easy to understand, and stems directly from the fact that voiced
speech is typically excited by only a small number of glottal pulses every 20 ms. The
multipulse algorithm will place the largest excitation pulses to correspond with the main
glottal excitation points, and will then add extra smaller pulses to correct for the
inadequacy of the LPC filter in predicting the waveform detail. The inadequacy arises
from the fact that neither the excitation nor the vocal tract response can be accurately
represented by the simple models that are assumed in LPC vocoders.

4.4.5 Code-excited linear prediction

Another variant of the APC family is code-excited linear prediction (CELP). The
principle is to use analysis by synthesis to select the best excitation from one or more
codebooks. The original version of CELP used a codebook populated with random noise
sequences, but more recent designs usually employ deterministic or structured codebooks
that are chosen to permit faster codebook search techniques.

A typical simple implementation of the basic CELP algorithm uses a set of 1024
waveform code sequences, selected by a 10-bit code. Each sequence corresponds to a
waveform section of around 40 samples (5 ms at 8 kHz sampling rate), thus involving
only one quarter of a bit per sample of coded residual. For each 40-sample section of
residual, the available codes are tested to choose the one that minimizes the weighted
quantizing noise power, just as in multipulse LPC.
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In the period since CELP coding was first proposed in the mid-1980s many
refinements and different variants of the original algorithm have been developed.
However, most of the current variants of CELP include the following elements:

1. A fixed excitation codebook. One example is the random-noise codebook used in the
original version of CELP. A widespread implementation uses linear combinations of
the vectors from two small codebook tables. Another implementation uses a sparse
codebook with only a few non-zero pulses, similar to the method used in the
multipulse LPC described in Section 4.4.4.

2. An adaptive codebook. This ‘codebook’ is arranged to operate as a fundamental
period (pitch) predictor (as mentioned in Section 4.4.3 describing APC). The
codebook contains the previous excitation used, and this excitation is tested at a range
of delay values (the codebook is therefore regarded as adaptive, as it changes
depending on the speech). The codebook is searched to find the optimal delay (and
hence the pitch period).

3. An error-weighting filter. This filter has the same objective as the noise-shaping filter
used in APC, allowing the coder to choose excitation which will not minimize the
squared error, but instead gives rise to a perceptually better spectral distribution of the
quantization noise. This distribution of the noise takes into account the speech
spectrum shape, so that the noise is concentrated in those spectral regions that have
high energy. The filter may be adaptive, with different weightings for voiced and
unvoiced speech.

4. An adaptive post-filter. This filter is appended to the decoder, but does not require any
additional transmitted parameters. Individual implementations vary, but the general
aim is to reimpose speech-like characteristics that may have been lost in the coding
process. For example, a voiced-speech detector may be applied followed by a comb
filter to enhance the pitch harmonics. Other characteristics which may be modified
include spectral tilt and bandwidths of spectral peaks. Any post-filter may need to be
disabled for non-speech signals such as music or DTMF (touch-tone) signals.

In comparison with the other intermediate-rate systems described in this section, CELP
coders usually offer better performance at the cost of greater computational
complexity. Improvements in the technology of signal processing chips, and the
general increase in available computational power, have made complexity less
important than before, and CELP coders now dominate in the field of mobile telephony
and in related application areas.

4.5 EVALUATING SPEECH CODING ALGORITHMS

In order to make meaningful comparisons between the performance of different speech
coding algorithms, it is important to have a means of formally evaluating the ability to
preserve the characteristics of the original speech. The ultimate criterion for judging the
performance of a speech transmission or reproduction system must be the satisfaction of
the human users, which can only be assessed by subjective testing. Subjective test
measures are based on listeners’ responses to questions about the speech, and may be
subdivided into those that measure intelligibility and those that are intended to gauge
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perceived quality (including attributes such as naturalness and recognizability of the
speaker). Subjective tests are essential for assessing the reactions of listeners, but it can
be helpful to also use objective test measures to provide a mathematical comparison
between the original and the coded speech signals. Objective tests are especially valuable
when there are only small differences in quality to be assessed, and have the advantage
of being easier and less time-consuming to carry out than tests involving human listeners.
There are a variety of both subjective and objective measures available, and a few
examples of the different measures are described briefly below.

4.5.1 Subjective speech intelligibility measures

Intelligibility tests are often based on listeners’ responses to single-syllable rhyming
words of the form consonant-vowel-consonant (e.g. “bat”, “cat”, etc.). One widely used
test is the diagnostic rhyme test (DRT), whereby a listener hears a succession of test
stimuli and, for each stimulus, selects from a choice of just two words. The members of
each word pair differ only in the initial consonant and this difference is further restricted
to be in only one distinctive feature (such as voicing or nasality). Example pairs are
“goat-coat” (which differ in the voicing feature) and “moss-boss” (which differ in the
nasality feature). The overall DRT score is obtained as follows:

N, -N,
DRT score (%) = —<omeet_—_tneonect (1 ()()
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(4.1)

where N is the number of tests, N et is the number of correct responses, and N, omeet
is the number of incorrect responses. A system that produces speech of ‘good’ quality
would typically have a DRT score in the region of 85-90%. An advantage of the DRT is
that the results can be analysed to determine how well different phonetic distinctions are

preserved in a speech coding system.

4.5.2 Subjective speech quality measures

Speech ‘quality’ is more difficult to quantify, but can be assessed using an opinion rating
method such as the mean opinion score (MOS). With this method, listeners rate the
quality of the speech under test on a five-point scale ranging from 1 (unsatisfactory) to 5
(excellent). Care must be taken when conducting and interpreting the results of these
tests, as listeners can vary greatly in their interpretation of the subjective scale, and any
one listener may not be consistent across evaluation sessions. Using set reference signals
as part of each evaluation session can help to normalize for these types of variation.

4.5.3 Objective speech quality measures

A widely used objective measure of speech quality is the signal-to-noise ratio (SNR).
The SNR for a speech coder is the ratio of the average energy in the original speech
waveform to the average energy in the error (or ‘noise’) signal representing the distortion
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introduced by the coding algorithm (see Section 4.2.1). If s(n) represents the original
speech signal at time n and ¢ (n) is the corresponding coded signal, the error signal e(n)
can be written as

e(n)=s(n)- g(n). (4.2)

The SNR is usually given in decibels, thus:

Zsz(n)

£(s)
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where E(s) and E(e) denote the energy in the speech and error signals respectively.

The criterion for success of an objective quality measure is that it should be a good
predictor of subjective speech quality. Classical SNR is an energy ratio which is
computed over an entire signal and so makes no distinction between errors that occur in
high-energy regions and those in the low-energy regions, where any errors will have a
greater perceptual effect. An improved measure is the segmental SNR, whereby the SNR
is measured over short intervals (typically 15-25 ms) and the individual SNR measures
are averaged. There are also several other SNR variants, all of which are aimed at
improving the estimate of perceptual speech quality.

Because they are based on a waveform comparison, SNR measures are only
appropriate for coders that are intended to reproduce the original input waveform. For
coders which aim to reproduce the perceptually important features of a speech signal
without necessarily copying the waveform detail, some form of spectral comparison
measure can be used. Various objective measures have been proposed which attempt to be
influenced only by perceptually relevant differences between the spectral characteristics
of the coded and original signals. One such measure is the perceptual speech-quality
measure (PSQM), which has been standardized by the ITU as recommendation P.861.
This objective measure has been shown to predict subjective speech quality quite well for
a limited range of speech coders and test circumstances. However, objective quality
measures are still an active research area and care is required to assess their validity and
applicability to any particular case.

4.6 CHOOSING A CODER

It can be seen that there is a bewildering variety of speech coding methods available,
each with its own particular advantages and disadvantages, and it is very difficult for a
system designer to make the best compromise between the conflicting factors which
should influence the choice. Characteristics such as cost, size, weight and digit rate can
be assessed using mainly engineering and economic criteria. The communications delay
caused by the coder must also be considered, both from an engineering perspective and
in terms of usability. These assessments need to be balanced against an evaluation of the
quality of the coded speech, which is not straightforward but which should include
properly controlled subjective testing to ensure making the correct choice of speech
coder.
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CHAPTER 4 SUMMARY

e Speech coding always involves a three-way compromise between data rate, speech
quality and algorithm complexity.

¢ Simple waveform coders, using pulse code modulation or deltamodulation, can
achieve fairly good quality with very simple equipment, but require a high data rate.
Adaptation of the quantizer in these coders improves the performance at any data rate
with only a small increase in complexity.

e Analysis/synthesis systems (‘vocoders’) provide much lower data rates by using some
functional model of the human speaking mechanism at the receiver. The excitation
properties and spectral envelope are usually specified separately. Different types of
vocoder describe the slowly varying spectral envelope in different ways. Channel
vocoders specify the power in a set of contiguous fixed band-pass filters, and
sinusoidal coders specify frequencies, amplitudes and phases of sinusoids. LPC
vocoders use an all-pole sampled-data filter to model the short-term speech spectrum.
Formant vocoders specify the frequencies and intensities of the lowest-frequency
formants.

e Currently the most successful coders for real-time speech communication at 2,400
bits/s use sinusoidal coding or mixed-excitation linear prediction.

¢ Intermediate systems have some of the advantages both of vocoders and of simple
waveform coders, and often use digit rates in the 4-16 kbits/s range.

* Many intermediate systems use linear prediction analysis to exploit the resonant
properties of speech production, but with different ways of coding the prediction
residual for use as excitation in the receiver. Adaptive predictive coding, multipulse
linear prediction and code-excited linear prediction can all give excellent speech
quality at data rates well below 16 kbits/s.

e Very low data rates of a few hundred bits/s can be achieved by coding whole
sequences of frames as single units using segment or phonetic vocoders, but at the
expense of complex processing and often quite poor speech quality.

¢ Ideally speech coders need to be evaluated by subjective tests of both quality and
naturalness, but objective comparison measures can also be useful.

CHAPTER 4 EXERCISES

E4.1 Why are simple speech waveform coders extravagant with digit rate, and why
should economies be possible?

E4.2 Why is it not useful to specify the ratio of signal to quantizing noise as a
performance criterion for PCM when there are very few bits per sample?

E4.3 Why are simple waveform coders greatly improved by some form of adaptation to
variations in speech level?

E4.4 What are the essential features of a vocoder?

E4.5 Why do the theoretically attractive features of LPC vocoders not necessarily result
in improved performance over channel vocoders or sinusoidal coders?

E4.6 Describe possibilities for reducing the transmission data rate in vocoders.

E4.7 Discuss the role of linear prediction in intermediate-rate coding techniques.



CHAPTER 5

Message Synthesis from Stored Human
Speech Components

5.1 INTRODUCTION

Several years ago the term “speech synthesis” was used almost exclusively for the process
of generating speech sounds completely artificially in a machine which to some extent
modelled the human speaking system, as described in Chapter 2. The applications were
mainly for research in speech production and perception. These days, particularly in an
engineering environment, speech synthesis has come to mean provision of information in
the form of speech from a machine, in which the messages are structured dynamically to
suit the particular circumstances required. The applications include information services,
reading machines for the blind and communication aids for people with speech disorders.
Speech synthesis can also be an important part of complicated man-machine systems, in
which various types of structured dialogue can be made using voice output, with either
automatic speech recognition or key pressing for the human-to-machine direction of
communication.

A conceptually simple approach to message synthesis is to concatenate fragments of
human speech for the message components. This chapter describes a variety of
concatenative synthesis techniques, categorizing them according to the size of the units
to be concatenated and the type of signal representation used. These synthesis techniques
can be used for preparing limited sets of known messages, but they are also frequently
used as the speech-generation component of more general systems for speech synthesis
from unrestricted text (see Chapter 7).

5.2 CONCATENATION OF WHOLE WORDS
5.2.1 Simple waveform concatenation

An obvious way of producing speech messages by machine is to have recordings of a
human being speaking all the various words, and to replay the recordings at the required
times to compose the messages. The first significant application of this technique was a
speaking clock, introduced into the UK telephone system in 1936, and now provided by
telephone administrations all over the world. The original UK Speaking Clock used optical
recording on glass discs for the various phrases, words and part-words that were required
to make up the full range of time announcements (see Figure 5.1). Some words can be split
into parts for this application, because, for example, the same recording can be used for
the second syllables of “twenty”, “thirty”, etc. The next generation of equipment used
analogue storage on magnetic drums. For general applications of voice output there is
a serious disadvantage with analogue storage on tapes, discs or drums: the words can
only start when the recording medium is in the right position, so messages need

67
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Figure 5.1 A glass disc used for message storage in the 1936
UK speaking clock. By courtesy of BT Archives.

to be structured to use words at regular intervals in order to avoid delays approaching the
duration of one word or more. When the desired messages can be successfully made
merely by replaying separately stored words in a specified order, the use of recorded
natural speech means that the technical quality of the reproduction can be extremely
high. It is apparent from the excellent speech from speaking clocks that there are
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applications where this method has worked extremely well. In the late 1960s it was used
for some announcing machine applications in association with general-purpose
computers, such as to provide share prices from the New York Stock Exchange to
telephone enquirers.

The development of large cheap computer memories has made it practicable to store
speech signals in digitally coded form for use with computer-controlled replay. As long
as sufficiently fast memory access is available, this arrangement overcomes the timing
problems of analogue waveform storage. Digitally coded speech waveforms of adequate
quality for announcing machines generally use digit rates of 16-32 kbits per second of
message stored, so quite a large memory is needed if many different elements are
required to make up the messages.

For several years now there have been many computer voice-response systems
commercially available that work on the principle of stored digitally coded message
elements derived from human speech. The simplest of these systems involve merely
recording the required components of the messages, which are then concatenated
together without any modification to the individual elements. This simple
concatenation can work well when the messages are in the form of a list, such as a
simple digit sequence, or if each message unit always occurs in the same place in a
sentence, so that it is comparatively easy to ensure that it is spoken with a suitable
timing and pitch pattern. Where a particular sentence structure is required, but with
alternative words at particular places in the sentence, it is important that the
alternative words should all be recorded as part of the right sort of sentence, because
they would otherwise not fit in with the required sentence intonation. For list
structures it is desirable to record two versions of every element that can occur either
in the final or non-final position. The appropriate falling pitch can then be used for
the final element in each list. Even for messages that are suitable for simple stored
waveform concatenation, great care has to be taken in recording and editing the
separate message components, so that they sound reasonably fluent when presented
in sequence. For any large body of messages it is worthwhile to provide a special
interactive editing system, in which any section of waveform can be marked and
replayed, either in isolation or joined to other sections. By this means it is possible
to select the best available recording and choose the precise cutting points for
greatest fluency. Even with these special tools the editing is labour-intensive, and it
can be very time-consuming to achieve good results with a message set of moderate
size.

There are a number of difficulties associated with using stored speech waveforms
for voice output when a variety of different messages are required. In normal human
speech the words join together, and the inherently slow movements of the articulators
mean that the ends of words interact to modify the sound pattern in a way that depends
on the neighbouring sounds. The pitch of the voice normally changes smoothly, and
intonation is very important in achieving fluency and naturalness of speech. It therefore
follows that if single versions of each word are stored they cannot produce fluent
speech if simply joined together in all the different orders that might be needed for a
wide variety of messages. Over 30 years ago laboratory experiments with arbitrary
messages generated in this way demonstrated that the completely wrong rhythm and
intonation made such messages extremely difficult to listen to, even though the quality
of the individual words was very high. In recent years techniques have been developed
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which have made it possible to modify the pitch and timing of stored waveforms, and
these methods will be described in Section 5.5.

Another problem with waveform storage is merely the size of memory needed to store
a large vocabulary, although the current trend in memory costs is making this
disadvantage less serious for many applications.

5.2.2 Concatenation of vocoded words

The large amount of digital storage needed for speech waveforms can be greatly
reduced by using a low-bit-rate coding method for the message elements. Some
ingenious methods have been developed to reduce the digit rate of stored waveforms,
by exploiting various forms of redundancy. A widespread technique is to use some
type of vocoder (most often using LPC, see Chapter 4), which can reduce the digit
rate of the stored utterances to 2,400 or even 1,200 bit/s, albeit with some reduction
in speech quality compared with the high-digit-rate stored waveform approach. A
good example of the use of LPC vocoder methods to reduce the memory
requirements is in the “Speak & Spell” educational toy that was produced by Texas
Instruments. Since the first introduction of single-chip LPC synthesizers in “Speak &
Spell” in the late 1970s, devices of this type have become widely used for message
synthesis, and there are now many products which include speech synthesis based on
LPC vocoder storage.

Besides memory size reduction there is another great potential advantage with
vocoder storage of message elements: the pitch and timing of messages can easily be
changed without disturbing the spectral envelope pattern of the stored words. It is thus
possible in principle to modify the prosody to suit a word’s function in a sentence,
without storing alternative versions of each word. Although techniques are now
available for making prosodic modifications directly to stored waveforms (see Section
5.5), the process is much simpler with a vocoder. In a vocoder the pitch is changed
merely by varying the fundamental frequency parameter fed into the synthesizer. The
timing can be varied by omitting or repeating occasional frames of the control data.
There are, of course, difficulties in deriving suitable methods to control the timing and
intonation patterns. If there is a fixed sentence structure that sometimes requires
different words in particular places, the intonation pattern can be specified in advance,
and merely imposed on the words that are chosen. If the sentence structures of the
messages are not determined in advance it is necessary to derive the pitch and timing
according to a set of rules. This aspect will be discussed in Chapter 7. Even when an
appropriate prosody can be imposed, there are still problems at word boundaries
because speech properties will in general not match where words join, but it is easier
to avoid discontinuities than when concatenating stored waveforms. Co-articulation at
word boundaries can be crudely simulated with concatenation of vocoder words by
applying some smoothing to the control signals where the words join. A smoothing
time constant of about 50 ms will remove the more serious effects of discontinuity at
the word boundaries. Alternatively, one can have an overlap region, where the
parameters for the end of one word can be gradually blended with those for the start of
the next. Such crude methods will, of course, be very unrepresentative of the actual co-
articulation that occurs between words of human speech.
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5.2.3 Limitations of concatenating word-size units

Whether using waveform or vocoder storage, there is an insuperable limitation with all
systems using stored human speech as words or larger units: every message component
must have been previously spoken by a human speaker. It is thus not possible to add even
a single new word without making a new recording. This process needs a suitable
acoustic environment and either finding the original talker to say the new material or re-
recording and editing the entire vocabulary with a new talker. This restriction prevents
whole-word message storage from giving good results whenever it is necessary to add
new items locally to a system already in service. The vocabulary size for word
concatenation systems is limited by memory availability and by the problem of recording
and editing all the words.

5.3 CONCATENATION OF SUB-WORD UNITS: GENERAL PRINCIPLES
5.3.1 Choice of sub-word unit

One obvious way of overcoming the limitations of word concatenation systems is to
reduce the size of the stored units. Harris (1953) described early experiments with
“building blocks of speech”, in which he tried to synthesize words by concatenating
waveform recordings of the length of individual phones. He found that it was essential to
have several allophones of most phonemes, and even then intelligibility of some words
was poor, due to the lack of natural co-articulation. A way of using small units, while
still achieving natural co-articulation, is to make the units include the transition regions.
Many speech sounds contain an approximately steady-state region, where the spectral
characteristics are not greatly influenced by the identities of the neighbouring sounds.
Thus concatenation of small units is better if each unit represents the transition from one
phone to the next, rather than a single phone in isolation. A popular unit is the diphone
(sometimes called a dyad), defined to contain the transition from the steady-state portion
of one phone to the steady-state portion of its immediate neighbour. Storing transition
regions in this way requires the number of units to be of the order of the square of the
number of individual phonemes in the language, so might typically be about 1,600. This
number makes it possible to achieve an unlimited vocabulary. Diphones provide a
straightforward way of capturing the most immediate effects of co-articulation with
manageable storage requirements as the individual units are quite short and not too
numerous.

Another type of transition unit is the demisyllable, which represents half a syllable
split in the centre of the vowel. Demisyllables are slightly more numerous than diphones,
because they may need to provide several consonant clusters. The use of demisyllables
can be a great advantage for languages like English, where consonant clusters are
common, because some consonant phonemes are acoustically quite different when they
occur in clusters, compared with when they are in simple sequences of alternating
consonants and vowels.

Diphone-type methods work well provided that any units to be concatenated have
similar acoustic characteristics in the region of the join. However, in fact there may
be significant variation even at the centres of some phones (i.e. at the
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Figure 5.2 Construction of the words “when” and “well” using interpolation between
formant-coded diphones to reduce discontinuity effects at junctions.

diphone boundaries) according to the identities of the adjacent phonemes. As a result
there can often be a considerable discontinuity in the acoustic specification where two
diphones join. Consider the words “well” and “Ben”. The /w/ and /I/ phonemes are
normally associated with long formant transitions, due to the large articulatory
movements associated with these consonants. On the other hand the stop consonants /b/
and /n/ involve much more rapid transitions. In the middle of “well” therefore, the
normal articulatory position associated with the isolated form of the /e/ phoneme is not
reached, whereas in “Ben” any undershoot will be quite minor. If we now consider the
word “when”, it is obvious that a [we] diphone appropriate for “well” will not join
correctly to the [en] diphone suitable for “Ben”. If a vocoder representation is used, one
way of obtaining reasonable transitions in these cases is to store minimal-length
transitions and interpolate the synthesis parameters between the ends of the stored
diphones, as illustrated in Figure 5.2.

Another approach to the problem of discontinuities is to extend the set of diphones to
include allophones whenever there is too much variation for a single diphone to be
sufficient. A similar effect can be achieved by using larger units for these problematic
contexts, so that one or more complete phones are retained together with the surrounding
transitions. Variable-size units (often referred to as polyphone or N-phone units) have
become popular in recent years as computing power and memory have increased. By
careful selection of larger units where necessary, speech quality can be improved
considerably, although at the expense of greater memory requirements and added
complexity in choosing the units to use.

5.3.2 Recording and selecting data for the units

The quality of the speech obtained from a concatenative synthesis system is critically
dependent upon obtaining good examples of the synthesis units, spoken clearly and
consistently by a single human talker. It is usual to construct a special corpus,
generally designed to cover all possible diphone contexts and possibly other context
groupings known to show allophonic variation (e.g. valid consonant clusters in the
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language). There is some debate about whether the recorded data should consist of
isolated words or of sentences, and about whether real words or nonsense words should
be used. A popular approach is to use nonsense words, with the diphones embedded in
a few carefully selected carrier phrases. This approach has the advantage that it is easy
to systematically vary phonemic context, while keeping prosodic context and stress
level as constant as possible for all the diphone units. The level of stress needs to be
chosen carefully so that the speech is perceived to be clear but not over-articulated, and
naturalness may be improved by also incorporating separate units for unstressed
vowels.

Speech is highly variable, and there may be considerable acoustic variability even
between different repetitions of the same phrase spoken in the same way by the same
talker. Any variability is a problem for unit concatenation, and it is often helpful to
record a few different examples of each phone sequence for later selection of the units.
Once the data have been recorded the units need to be excised from the recordings,
choosing the units and the breakpoints carefully to obtain the smoothest joins between
units that need to be concatenated. Extracting suitable units has traditionally been a
labour-intensive process, with some initial segmentation being performed
automatically but followed by fine-tuning of the segmentation and final selection of the
units by a human expert. Recently, automatic techniques have become increasingly
used for all aspects of the process, including selecting the units to use, choosing the
best example of each one, and locating the breakpoints for each example. These
methods are generally based on minimizing distance measures based on spectral
discontinuities, while also satisfying practical criteria such as total memory
requirements.

5.3.3 Varying durations of concatenative units

In human speech, durations of sounds vary according to their positions in relation to the
prosodic pattern of the sentence they are in. In a practical synthesis system it will
therefore generally be necessary to vary the durations of the synthesis units. In the case
of a text-to-speech system, phone durations will be generated by rule (see Section 7.5.1),
and these durations must then be imposed on the synthesis units. The positions of phone
boundaries would normally be included with the diphones or other units spanning phone
boundaries, so it is straightforward to calculate the amount of duration modification
required for each portion of a unit. One simple way of obtaining the required duration is
to apply a uniform lengthening or shortening over the whole phone, which is appropriate
for modifying the duration of a fricative for example. To change the duration of a vowel,
it is probably better to lengthen or shorten the central region (around the join between
two diphones), because inherent limitations in the speed of articulatory movements tend
to mean that transitions vary less in duration than the more steady-state regions of
vowels. There is no doubt, however, that transitions produced at one rate of articulation
will not be of exactly the same form as would be produced at a very different speed. Thus
concatenative methods may be less suitable for systems in which it is required to provide
extensive variation in the speed of talking. The techniques for achieving the lengthening
or shortening of the synthesized signal depend on the synthesis method used, and are
described in the following sections.
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5.4 SYNTHESIS BY CONCATENATING VOCODED SUB-WORD UNITS

Vocoder parameters for the sequence of synthesis units can be simply joined together,
applying any necessary duration modifications. When shortening is required frames can
be removed, and lengthening can be achieved by interpolating the synthesis parameters
for the region to be lengthened. Interpolation across the boundary between two units has
the advantage of reducing any discontinuities in the parameters. Thus, by only storing
short transition regions (see Figure 5.2), interpolation will usually be required to
lengthen the units and at the same time minimize discontinuities. Any remaining
discontinuities can be reduced after concatenation by applying a smoothing function to
the parameters, in the same way as for concatenating vocoded words (see Section 5.2.2).
Pitch modifications are easily achieved by varying the separate fundamental frequency
parameter.

The quality of speech synthesized by vocoder-based concatenation cannot be better
than the vocoder method employed. Although formant synthesizers can produce very
natural-sounding speech if the controls are set appropriately, the quality of speech from
formant vocoders suffers due to the difficulties involved in deriving these controls
automatically. If careful hand-editing is used to correct analysis errors, a formant
vocoder could be applied to generate the synthesis units. However, mainly because of the
ease of analysis and availability of very-low-cost synthesis chips, LPC methods are much
more widely used. The underlying quality is then limited to that possible from an LPC
vocoder (see Section 4.3.3).

5.5 SYNTHESIS BY CONCATENATING WAVEFORM SEGMENTS

Consider the problem of joining together two segments of vowel waveform.
Discontinuities in the combined waveform will be minimized if the join occurs at the
same position during a glottal cycle for both the segments. This position should
correspond to the lowest-amplitude region when the vocal-tract response to the current
glottal pulse has largely decayed and just before the following pulse. Thus the two
segments are joined together in a pitch-synchronous manner. To obtain a smooth join, a
tapered window is applied to the end of the first segment and to the start of the second
segment, and the two windowed signals are overlapped before being added together (see
Figure 5.3). Because the method involves a combination of pitch-synchronous processing
with an overlap-add (OLA) procedure to join the waveform segments, it is known as
pitch-synchronous overlap-add (PSOLA).

The PSOLA technique can be used to modify pitch and timing directly in the waveform
domain, without needing any explicit parametric analysis of the speech. The position of
every instance of glottal closure (i.e. pitch pulse) is first marked on the speech waveform.
These pitch markers can be used to generate a windowed segment of waveform for every
pitch period. For each period, the window should be centred on the region of maximum
amplitude, and the shape of the window function should be such that it is smoothly tapered
to either side of the centre. A variety of different window functions have been used, but the
Hanning window (shown in Figure 5.3) is a popular choice. The window length is set to be
longer than a single period’s duration, so that there will always be some overlap between
adjacent windowed signals. The OLA procedure can then be used to join together a
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Original waveforms

a b first segment

a b

second segment

Windowed waveforms for individual pitch periods
a

first segment b
‘ a

second segment b

Synthesized waveform with the segments concatenated

Figure 5.3 Decomposing speech waveforms into a sequence of pitch-synchronous overlapping
windows. For two voiced speech segments, pitch markers and window placement are shown in
the top plots, and the outputs of the analysis windows are shown in the middle plots. The
bottom plot shows the waveform that is obtained if the PSOLA technique is used to join the
last analysis window of the first segment to the first analysis window of the second.

sequence of windowed signals, where each one is centred on a pitch marker and is
regarded as characterizing a single pitch period. By adding the sequence of windowed
waveform segments in the relative positions given by the analysed pitch markers, the
original signal can be reconstructed exactly. However, by adjusting the relative positions
and number of the pitch markers before resynthesizing, it is possible to alter the pitch
and timing, as described below.

5.5.1 Pitch modification

The pitch of the signal can be raised by reducing the spacing between the pitch markers,
and lowered by increasing this spacing. Examples of these modifications are shown in
Figure 5.4. As the degree of overlap between successive windows is altered, the energy
in the resynthesized signal will tend to vary, but a normalization factor can be applied to
compensate for this artefact of the technique.

To be successful, the pitch-modification technique needs to change the pitch of
the signal (given by the repetition rate of the pitch pulses) while not altering the
spectral envelope (i.e. the formant frequencies and bandwidths). Thus the analysis
window length needs to be short enough to be dominated by only a single pitch pulse,
but long enough to capture the formant structure with sufficient accuracy. The
popular window length of twice the local pitch period has been found to be a
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Figure 5.4 Using PSOLA to modify the pitch of a speech signal: (a) raising the pitch
by 20% (the period, P, is multiplied by 0.75), (b) lowering the pitch by 20% (P is
multiplied by 1.25). To modify the pitch, the pitch markers for the original signal are
first repositioned according to the new pitch. The new signal is then constructed by
adding the outputs of the analysis windows at this new pitch spacing.

good compromise, and can be used to achieve pitch modifications ranging from one half
to twice the pitch of the original signal. The effect of this windowing of the signal tends
to cause some widening of the formant bandwidths when the pitch is modified, but a
moderate degree of widening does not seem to be perceptually significant. Widening of
formant bandwidths becomes more severe as the pitch of the analysed signal increases,
so the analysis window becomes shorter and hence there is a decrease in the accuracy
with which the formant structure is preserved.
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5.5.2 Timing modification

It is straightforward to use PSOLA to modify the timing of an utterance by careful
selection of the sequence of pitch markers to use for synthesis. Pitch markers can be
replicated where lengthening is required, and removed when a region is to be shortened.
The sequence of pitch markers gives the order of the analysis windows to use when
constructing the synthesized signal. Synthesis is achieved by applying the OLA
procedure to join these windowed segments together at a spacing corresponding to the
required synthesis pitch period. When choosing the sequence of pitch markers to use in
order to achieve the required timing, it is necessary to take into account the changes in
duration that will occur as a by-product of any pitch modifications. If the pitch is altered,
some adjustment to the sequence of pitch markers will be needed even to keep the timing
the same as for the original signal.

Timing can be modified with little acoustic distortion using the above method to
achieve the effect of increasing speaking rate by a factor of up to about four, but to
reduce speaking rate by rather less. When slowing down unvoiced regions by more than
a factor of about two, the regular repetition of identical segments of signal tends to
introduce a buzzy quality to the synthesized speech. This buzziness can be avoided by
reversing the time-axis for every alternate segment, after which reasonable quality is
obtained for slowing down by a factor of up to about four.

5.5.3 Performance of waveform concatenation

For PSOLA to work well, the positions of instances of glottal closure must be marked
accurately on all the waveform segments. There are methods for determining these pitch
markers automatically from the speech waveform, but these methods generally make
some errors which need to be corrected by hand based on expert visual inspection of the
waveform. More reliable automatic extraction of pitch markers is possible by using a
laryngograph to record glottal activity simultaneously with the speech recordings.
Whatever method is used to derive the pitch markers, part of this process will involve
identifying unvoiced regions of the speech. For these regions, the positions of the
analysis windows are not critical, and it is generally sufficient to place the pitch markers
in arbitrary positions at a constant rate (although some care is needed for stop
consonants).

Once speech segments and associated pitch markers are available, the PSOLA method
described above is extremely simple to implement and requires very little computation,
but it does need a lot of memory for storing the units. Some memory saving is possible
by using a simple waveform coding technique such as DPCM (which typically more than
halves the amount of memory required). However, the more complex coding methods that
would be needed to obtain greater compression are not generally used with time-domain
waveform synthesis, mainly because they would add considerable complexity to an
otherwise simple synthesis procedure.

Because the individual message parts are obtained directly from human utterances,
speech synthesized by waveform concatenation can be very natural-sounding. However,
this naturalness is only achieved if any two segments to be concatenated have similar
pitch periods and spectral envelopes that match at the join. Concatenation of waveforms



78 Speech Synthesis and Recognition

provides no straightforward mechanism for avoiding spectral discontinuities. Thus
achieving natural-sounding fluent synthetic speech often requires a painstaking trial-and-
error process to select examples that are known to join together smoothly for the most
common combinations.

The PSOLA method described in this section operates directly on the speech
waveform, and is therefore known as time-domain PSOLA (TD-PSOLA). There are
now several other variants of the general PSOLA technique, a few of which are briefly
mentioned in the next section.

5.6 VARIANTS OF CONCATENATIVE WAVEFORM SYNTHESIS

An alternative to performing the signal manipulations directly in the time domain is to
first apply a Fourier transform to compute the short-term spectrum. Prosodic
modifications and segment joining are then carried out in the frequency domain, before
applying an inverse Fourier transform to convert back to the time domain. For this
frequency-domain PSOLA (FD-PSOLA) approach, a longer window of typically four
times the local pitch period is used so that the pitch harmonics are resolved in the
spectral representation. The short-term spectral envelope is then estimated (using linear
prediction for example). Taking the short-term spectrum that was obtained from the
original Fourier transform and dividing by the estimated spectral envelope gives an
estimate of the spectrum of the glottal source. The spacing between the harmonics in this
source spectrum can then be modified to change the pitch. FD-PSOLA has the advantage
of providing the flexibility to modify the spectral characteristics of a speech signal,
including applying spectral smoothing at diphone boundaries. However, although the
technique has proved to be a useful research tool, it has not been widely adopted for
practical systems as it is very demanding computationally as well as having high memory
requirements for segment storage.

In linear-predictive PSOLA (LP-PSOLA), speech is parameterized using LPC and
the TD-PSOLA method for prosodic modification is applied to the linear-prediction error
signal. Thus, as with FD-PSOLA, the excitation is separated out from the spectral
shaping due to the vocal tract, so it is easy to modify the spectral envelope (to smooth
segment boundaries for example). However, in the case of LP-PSOLA, prosodic
modifications are easier as they are applied in the time domain. In addition, substantial
memory savings are possible by using coded forms of the prediction error signal (using
CELP for example). Due to these advantages, versions of LP-PSOLA have been adopted
in a number of synthesis systems.

Multi-band resynthesis PSOLA (MBR-PSOLA) uses simple waveform
concatenation, but first applies MBE coding (which represents voiced speech as a sum of
harmonically related sinusoids: see Section 4.3.2) to the segment database. The idea is to
modify (and resynthesize) the segments so that they will then be more amenable to
waveform concatenation. The pitch is set to be constant throughout the database and, in
addition, the phases of the harmonics are reset to the same (appropriately chosen) values
at the beginning of each pitch period. Advantages of making these modifications are:

1. Explicit pitch marking is no longer required because all segments have the same
known pitch value.
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2. The method completely avoids potential problems due to mismatches between the
pitch or phase structure of the segments to be concatenated.

3. Because all the voiced segments have the same pitch and the same harmonic phases,
the effect of spectral envelope interpolation between two segments can be achieved by
performing interpolation in the time domain. This temporal interpolation provides an
efficient yet effective method for smoothing spectral discontinuities at segment
boundaries.

The modifications are applied just once to the stored database, so these advantages are
achieved without adding to the complexity of the simple timedomain synthesis operation
itself. Furthermore, because the database has a constant pitch and fixed harmonic phases,
and because characteristics due to the vocal tract evolve only slowly with time, the
sample value at a given position in any pitch period will generally be similar to the value
for the corresponding position in the previous pitch period. It is therefore possible to
make a large saving in memory by applying a version of DPCM in which the differential
coding is applied to corresponding samples in adjacent pitch periods (rather than to
adjacent samples). This technique has been used in a modified, storage-efficient variant
of MBR-PSOLA, termed simply multi-band resynthesis overlap-add (MBROLA),
which has been used for synthesis systems in a variety of different languages.

5.7 HARDWARE REQUIREMENTS

Considering word-based systems first, stored waveforms are typically coded at 16-32
kbits/s. Assuming the lower figure, 1 Mbyte will store about 8 minutes of speech. This
duration would be suitable for a reasonable range of pre-determined messages, and could
be sufficient for an announcing system with a large variety of alternative words used in
a few standard sentence types, such as for routine railway station announcements. The
decoders for use with simple waveform storage are extremely cheap and many are
available as single-chip devices. The word-selection process is simple, so memory costs
are likely to dominate for a complete system.

For a system providing information to the general public over the telephone network
the economics of system design are very different. Here many enquirers may access the
system simultaneously, all wanting different messages. However, the memory can be
common to the whole system, and if the number of channels is very large the memory
cost will not contribute greatly to the cost per channel, so it becomes practicable to
provide many more messages using waveform storage.

A set of diphones provides a simple sub-word system and might represent somewhere in
the region of 3-4 minutes of speech from one talker for a single language. The memory
requirements obviously depend on how the diphones are stored. At one extreme the original
speech waveforms at a 16 kHz sampling rate with 16 bits per sample typically occupy
around 5 Mbytes, whereas an LPC version of this database would need less than 200
kbytes. Methods such as LP-PSOLA and MBROLA require more memory than a simple
LPC system, but would generally need less than 1 Mbyte for a complete diphone set. Of
course, memory requirements increase if a larger inventory of synthesis units is used.

Computational requirements are very low for TD-PSOLA, and increase only slightly
for MBROLA (for 16 kHz-sampled speech, real-time operation has been achieved on an



80 Speech Synthesis and Recognition

Intel486 processor). LP-PSOLA increases the computation by a factor of about 10
relative to TD-PSOLA, and real-time implementations of LP-PSOLA have generally
used a dedicated DSP. A low-cost alternative is provided by simple LPC synthesis, for
which suitable DSP chips are widely available.

CHAPTER 5 SUMMARY

¢ Message synthesis from stored waveforms is a long-established technique for
providing a limited range of spoken information. The simplest systems join together
word-size units. The technical quality of the speech can be high, but it is not possible
to produce good results for a wide range of message types.

e Synthesis from diphones gives complete flexibility of message content, but is limited
by the difficulty of making the diphones represent all the coarticulation effects that
occur in different phonetic environments. To obtain the best quality from diphone
synthesis, care must be taken in selecting and excising the examples. Quality may be
improved by adding to the simple diphone set to include allophone-based units or
longer units spanning several phones.

e Vocoders require a small fraction of the memory needed for simple waveform storage, and
also make it easy to vary the pitch and timing, and to smooth the joins between any units
being concatenated. Synthesis quality is, however, limited by the inherent vocoder quality.

e The technique known as pitch-synchronous overlap-add (PSOLA) allows good
synthesis quality to be achieved by concatenating short waveform segments. Smooth
joins are obtained by concatenating segments pitch-synchronously and overlapping
the end of one segment with the start of the next.

¢ By decomposing the speech signal into individual pitch periods with overlapping
windows, prosodic modifications are easy with PSOLA. Timing can be modified by
repeating or removing individual pitch periods, and pitch can be changed by altering
the spacing between windows before resynthesis.

¢ Time-domain PSOLA is simple to implement, but needs a lot of memory and cannot
smooth any spectral discontinuities occurring at segment boundaries.

e Other variants of PSOLA address the above limitations by incorporating some
parametric representation of the speech, such as LPC or MBE coding, while retaining
the PSOLA technique for prosodic modifications.

e The hardware cost for synthesis from stored human speech is dominated by the
memory requirements except for multi-channel systems.

CHAPTER 5 EXERCISES

ES.1 Discuss the advantages and disadvantages of message synthesis by waveform
concatenation of whole words.

ES.2 Why can it be beneficial to use vocoders for concatenative synthesis?

ES5.3 What are the advantages and disadvantages of diphone synthesis?

ES.4 What are the potential problems with synthesis by concatenating waveform
fragments and how are these problems addressed by the PSOLA technique?



CHAPTER 6
Phonetic Synthesis by Rule

6.1 INTRODUCTION

Concatenative synthesis techniques join together (often in quite sophisticated ways)
fragments of human utterances, either as raw waveforms or in some coded form. An
alternative is to generate synthetic speech by applying a set of rules to convert from a
symbolic description to control parameters to drive an articulatory or formant
synthesizer. We will use the term phonetic synthesis by rule to refer to the use of
acoustic-phonetic rules for generating synthesizer control parameters from a phonemic
description of an utterance together with any required prosodic information. For some
applications requiring limited sets of messages or special effects, it can be appropriate
to use such a description directly as the input to a synthesis system. It is, however,
more usual for phonetic synthesis by rule to form one component of a more general
system for generating speech from text or some other higher-level message description.
Rules can also be used in the other components of such a system. These uses of
synthesis by rule will be discussed in the next chapter, while the current chapter
concentrates on the acoustic-phonetic level. A characteristic of the methods considered
in this chapter is that they do not store utterances of human speech in any form,
although they do, of course, usually make extensive use of human utterances for
guidance in formulating the rules.

6.2 ACOUSTIC-PHONETIC RULES

Human speech is produced as a result of muscular control of the articulators. The acoustic
properties caused by even quite simple gestures can, however, be very complicated. For
example, in the release of a stop consonant, such as [t], there may be very noticeable
acoustic differences caused by slight variation of the relative timing of the tongue
movement away from the alveolar ridge and the bringing together of the vocal folds in
preparation for the voicing of a following vowel. If the voice onset time (VOT) is short
there will be very little aspiration, and the perceptual quality will be much closer to [d].
Because the voicing then starts during the early stages of the tongue movement, it excites
the transition of the first formant, which can be clearly seen on spectrograms. For a longer
VOT the glottis will be wide open at release, and the resultant greater air flow gives rise to
aspiration, i.e. turbulent noise excitation of the higher formants for 60—100 ms.

The complex consequences of simple gestures have led some people to suggest that
rules for the phonetic level of synthesis would be easiest to specify in articulatory terms,
for driving an articulatory synthesizer. This viewpoint obviously has merit, but
articulatory rules have not generally been adopted in practical speech synthesis systems
for a number of reasons.

The most fundamental argument against using articulatory rules is that when
humans acquire speech it is the auditory feedback that modifies their behaviour,

81
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without the speaker being consciously aware of the articulatory gestures. There are
frequent cases of significantly non-standard articulatory strategies being used by some
individuals to produce particular phonetic events. Although careful analysis sometimes
reveals that the articulation of such people produces acoustic properties that differ
consistently from the norm, the differences are not sufficient to cause phonetic
confusion and will frequently not be noticed. In other cases the differences from the
normal acoustic pattern are within the variation that occurs naturally between users of
the more common articulation, and are not even detectable perceptually. The prime
example of differing articulation for similar phonetic percepts occurs in the case of a
good ventriloquist, who can produce a full range of speech sounds without externally
obvious mouth movements. In developing an articulatory synthesis-by-rule system, it is
thus often not easy to decide what the articulatory gestures should be for any particular
phonetic event.

The second argument against using articulatory synthesis is merely the difficulty of
accurately measuring articulatory gestures. Various techniques are available, such as X-
rays, electro-myography, fibre-scopes etc., but all are inconvenient to use and of limited
accuracy. By contrast, synthesis methods that specify sounds directly in terms of
measurable acoustic properties can have their control rules simply related to the acoustic
features that are required, even though these features might be quite complicated in some
cases. It is not then necessary even to consider the possible underlying articulatory
gestures.

The third main reason for not using articulatory synthesis for machine voice output is
that existing articulatory synthesizers have been much less successful than formant-based
methods for modelling the perceptually important acoustic features (as already
mentioned in Chapter 2).

6.3 RULES FOR FORMANT SYNTHESIZERS

For the reasons outlined above, most acoustic-phonetic rule systems are designed for
directly driving some form of formant synthesizer. The input at this level is normally a
sequence of allophones, each associated with prosodic information to specify duration,
pitch and possibly also intensity. Allophonic variation in speech arises from two causes,
both of which are normally systematic in operation. The first cause results from the
phonological rules of a language, which may specify that a particular extrinsic allophone
of a phoneme should be used in certain environments, even though other allophones
could be produced by a speaker without much difficulty. The second cause, giving rise to
intrinsic allophones, is a direct consequence of the constraints of articulation. The actual
formant frequencies in a short vowel are greatly influenced by the articulatory gestures
for the consonants on either side, and in consequence the acoustic properties in the centre
of the sound representing a particular vowel phoneme may differ substantially for
different consonant environments. The extrinsic allophones must be specified by the
input to a phonetic rule system, but it is possible to generate many of the co-articulation
effects that give rise to intrinsic allophones automatically as a consequence of the way
the rules operate.

Phonetic rule systems have been developed in a number of laboratories, and some
have been incorporated in commercial text-to-speech products. With some phonetic rule
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systems, the researchers have found it advantageous to write a special notation for
expressing the rules, to facilitate writing rule systems for a variety of languages. In
others the rules have been written in a standard algorithmic computer language (e.g.
Pascal or Fortran), with large numbers of conditional expressions to determine what
synthesizer control signals should be generated for each type of phonetic event. A third
approach is to have a very small number of computational procedures, driven by a large
set of tables to represent the inventory of possible allophones. The numbers from the
tables are then used by the computation to determine how all the synthesizer control
signals should vary for any particular allophone sequence. An example of this table-
driven method will be described in more detail, to illustrate the types of rules that are
typically found useful.

6.4 TABLE-DRIVEN PHONETIC RULES

The rules described in this section are appropriate for a parallel formant synthesizer such
as the one illustrated in Figure 2.15. They are based on the technique described by
Holmes, Mattingly and Shearme (1964) for a simpler parallel formant synthesizer. The
following description includes some minor improvements to the computational algorithm
given in the 1964 paper.

The synthesizer control parameters are calculated as a succession of frames, each of
which has a duration of 10 ms. The input to the system comprises the sequence of speech
sounds required, and for each sound there is a duration (in frames), and a specification of
how to derive the fundamental frequency contour. There is also an option to vary the
loudness of each sound from its default value.

This table-driven system is based on the idea that most speech sounds can be
associated with some target acoustic specification, which might not be reached, but
which can be regarded as an ideal that would be aimed for in long isolated utterances.
Simple vowels and continuant consonants are obvious examples where this concept
seems generally appropriate. The target values for the 10 synthesizer control signals
shown in Figure 2.15 are stored in a table for each such phone.

Other sounds, such as diphthongs and stop consonants, clearly have a sequence of
acoustic properties, and each member of the sequence may be associated with a target
specification and some transition rules for changing between targets. These sounds can
be represented by a sequence of two or more component parts, each having its own table.
Because a table in this system sometimes corresponds to a complete phone, and
sometimes only to part of a phone, the term phonetic element has been used to describe
the chunk of sound generated by the use of one table.

The table for each phonetic element also contains information relating to how
transitions between target values are calculated around phonetic-element boundaries. In
general, for transitions between a consonant and a vowel, it is the identity of the
consonant that decides the nature of the transition. For example, nasal consonants have
acoustic properties that change only slightly during the oral occlusion, but cause rapid
changes at the boundary between consonant and vowel and fairly rapid but smooth
formant transitions during the vowel. Fricative-vowel boundaries, on the other hand, can
also have quite clearly discernible formant transitions during the frication. These types of
transition are largely independent of the identity of the vowel involved, although the
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actual numerical parameter values in each transition obviously depend on the associated
vowel target value.

The Holmes-Mattingly-Shearme (HMS) system was designed to achieve the above
properties without requiring special tables for each possible vowel/consonant
combination. As the type of transition in a vowel-consonant (VC) or consonant-vowel
(CV) sequence is determined mainly by the consonant, the table entries associated with
the consonant are used to define the transition type. The only quantities used from the
vowel tables are their target values. The operation of a transition calculation in the HMS
system is explained below.

6.4.1 Simple transition calculation

Consider a transition between a consonant, [w], and a following vowel, [e], for the
second-formant frequency parameter. Appropriate values for the targets of the two
sounds might be 750 Hz and 2000 Hz respectively. The system has a nominal boundary,
where the two elements join, and has a method for calculating the parameter value at that
boundary, taking into account the target value for the vowel and the identity of the
consonant. The values either side of the boundary are derived by simple interpolation
between the boundary value and the two target values, where the two interpolations are
carried out over times that are specified in the consonant table. For each parameter the
table for [w] will include:

its own target value;

the proportion of the vowel target used in deriving the boundary value;
a ‘fixed contribution’ to the boundary value, specified for the consonant;
the ‘internal’ transition duration within the consonant (in frames);

the ‘external’ transition duration within the vowel (in frames).

Al

The boundary value is given by: fixed contribution+(proportionxvowel target). The [w]
table might have the following values for F : target=750 Hz, proportion=0.5, fixed
contribution=350 Hz, internal duration=4 framés, external duration=10 frames. If the F
target for the [e] is 2000 Hz, the boundary value is 350+(0.5%2000), which is 1350 HZ
The complete transition would then be as shown in Figure 6.1. For simplicity, this
diagram does not illustrate the level quantization or time quantization that will be used in
any practical system.

In the original HMS system, the entries controlling the form of a transition were only
specified once for each parameter in a table, and so the transition calculation was of exactly
the same form for CV and for VC pairs. To a first approximation, this symmetry is reasonable
as the articulatory movements between the vowel and consonant configurations are likely to
be of broadly similar form irrespective of the direction of the change. This arrangement
was used in the 1964 system because it allowed an appreciable saving of memory for the
limited-performance computers which were available at that time. However, now that
computer memory is so cheap, there is no need to maintain this restriction and so each
table can include separate specifications for the initial and final transitions.

The description above has focused on a transition calculation for one control signal
in one CV pair. Different values in the tables are used to achieve appropriate transitions
for other control signals, and different tables are provided for all other
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Figure 6.1 Second-formant transition for the sequence [we], using the
Holmes-Mattingly-Shearme (HMS) rule system.

vowels and consonants. Of course, speech does not consist entirely of alternating
consonants and vowels. Consonants often occur in clusters, and vowel sequences also
occur, both within diphthongs and between syllables or words. The HMS system makes
provision for these events by associating every phonetic element with a rank. Some
phonemes that are undoubtedly consonants from a phonological point of view, such as
[w], are acoustically more like vowels, and hence will contain formant transitions caused
by adjacent consonants just as vowels will. Consonants such as stops will also tend to
cause formant transitions in fricatives. The ranking system gives highest rank to those
elements which have the strongest effect in determining the nature of transitions, and
lowest rank to vowels. For any sequence of two elements the transition calculation is as
described above; the table of the higher-rank element determines the nature of the
transition, and the table of the lower-rank element is used only to provide parameter
targets. If two adjacent elements have the same rank, the earlier one is arbitrarily
regarded as dominant.

6.4.2 Overlapping transitions

The input to phonetic-level synthesis is required to specify a duration for each element. It
can happen that the transition durations as specified in the tables are so long in relation to
the element duration that there is insufficient time for the element to contain both the initial
and final transitions without them overlapping in time. This effect is illustrated in Figure
6.2 for the F transition of the sequence [wel] (the word “well”). The original HMS paper
advocated a 2very crude method of producing some sort of transition in such cases, but a
more satisfactory method is as follows. For the element under consideration ([e] in Figure
6.2), first construct separately that part of each transition which lies within the specified
duration for the element, filling in the target value if necessary for the remainder of the
frames of the element. Then construct the final parameter track by taking a weighted sum
of the two component transitions over the duration of the element. The weighting
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Figure 6.2 Method for dealing with overlapping transitions in a variant of the HMS technique.

function goes linearly from 1 to O for the initial transition, and from O to 1 for the final
transition. The result of applying the linear weighting function to the linear transitions is
to make the final components of the two transitions parabolic.

The use of the weighting functions when constructing parameter tracks produces
smoother trajectories with a more natural-looking shape, whether or not the two
transitions overlap. It is therefore preferable to apply this method of determining
trajectories throughout, although listening comparisons have indicated that the difference
is not obvious perceptually in the non-overlapping case.

6.4.3 Using the tables to generate utterances

Examples of table entries for the 10 parameters for a few typical elements are shown
in Figure 6.3, and the resultant parameter tracks generated for the word “wells” for
F,A,F and A are shown in Figure 6.4. The graphs in Figure 6.4 include the time
qlllant]iza%ion intd frames, and also show magnitude quantization of each parameter
into 6-bit integer values. The phonemic significance of the element



Tgt. L.Prop. LF.C. LLD. LED. RProp. RF.C. RID. RED.

Elementname = Q Fy 250 1 0 63 0 1 0 63 0
Rank = 63 Arr 1 1 -10 0 3 1 -10 0 3
F, 900 1 0 63 0 1 0 63 0
Ay 1 1 -10 0 3 1 -10 0 3
F,; 2100 1 0 63 0 1 0 63 0
A, 1 1 -10 0 3 1 -10 0 3
F3 2900 1 0 63 0 1 0 63 0
As 1 1 -10 0 3 1 -10 0 3
Ayr 1 1 -10 0 3 1 -10 0 3
A% 1 1 0 63 ¢] 1 0 63 0
Element name=w Fy 250 0.5 125 0 4 0.5 125 4 4
Rank =10 Arr 51 0.5 21 4 4 0.5 23 4 4
Fy 200 0.5 100 4 4 0.5 50 4 6
Ay 43 0.5 21 4 4 0.5 22 4 4
F, 750 0.5 550 4 8 0.5 350 4 10
A, 40 0.5 24 4 4 0.5 20 4 4
F; 2000 0.5 800 4 4 0.5 1000 4 4
A; 36 0.5 22 4 4 0.5 18 4 4
Axr 1 0.5 0 4 4 0.5 0 4 4
\% 63 0.5 32 0 0 0.5 32 0 0
Element name=e  Fy 250 0.5 125 0 0 0.5 125 0 0
Rank =2 Arr 52 0.5 23 3 3 0.5 21 4 4
Fi 650 0.5 325 3 3 0.5 290 4 4
Ay 49 0.5 23 3 3 0.5 21 4 4
F, 2000 0.5 1000 3 3 0.5 950 4 4
A, 48 0.5 24 3 3 0.5 24 4 4
Fy 2500 0.5 1375 3 3 05 1375 4 4
As 53 0.5 24 3 3 0.5 24 4 4
Anr 54 0.5 23 3 3 0.5 23 4 4
\" 63 0.5 32 0 0 0.5 32 0 0
Element name =1 Fy 250 0.5 125 0 6 0.5 125 0 0
Rank =11 AL 49 0.5 1 0 0 0.5 20 0 2
F\ 350 0.5 225 0 6 0.5 175 0 6
Ay 46 0.5 -2 0 0 0.5 -13 0 2
F, 950 0.5 450 0 6 0.5 400 0 6
A, 47 0.5 12 0 0 0.5 -9 0 2
F3 2500 0.5 1250 0 6 0.5 1400 0 6
A; 50 0.5 15 0 0 0.5 -6 0 2
Ayr 47 0.5 12 0 0 0.5 -6 0 2
\% 63 0.5 32 0 0 0.5 32 0 0
Element name =2z  Fy 250 0.5 125 2 3 0.5 125 0 0
Rank =20 Avr 36 0.5 1 0 0 0.5 20 0 0
F, 275 0.5 150 2 3 0.5 125 2 3
Ay 33 0.5 -2 0 0 0.5 14 0 0
F, 1700 0.5 950 2 3 0.5 850 2 3
A, 37 0.5 12 0 0 0.5 16 2 2
F; 2550 0.5 0 2 3 0.5 1300 2 3
A; 40 0.5 15 0 0 0.5 16 2 2
Agr 57 0.5 12 0 0 0.5 25 2 2
\Y 32 1 -31 10 2 0.5 32 0 0

Figure 6.3 Example table entries for five phonetic elements in a modified HMS system. For
each parameter of each element, the table specifies the target value and, for both the initial
(left) and final (right) transitions, the proportion, the fixed contribution and the internal and
external transition durations.
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Figure 6.4 Tracks of four parameters for the word “wells”, [welz], generated from
the tables in Figure 6.3.

names shown in Figures 6.3 and 6.4 should be obvious from the conventions of English
orthography, except for Q which is used to signify silence.

The method of calculating parameter tracks in this table-driven system is extremely
versatile. By suitable choice of table entries a wide variety of transitions, appropriate for
formant frequencies, formant amplitudes and degree of voicing, can be constructed. The
dominance system, determined by the ranks, is able to provide many of the co-
articulatory effects that occur, particularly where high-ranking consonants are adjacent to
vowel-like sounds. However, values chosen to suit CV boundaries will not normally give
sensible results if used to define the transitions between, for example, pairs of stop
consonants, or between stops and nasals.

The system described above can be vastly improved by providing different elements
for different allophones of some of the phonemes. Element selection rules can then be
used to take into account the phonetic environment of every phoneme in determining
which element or sequence of elements should be used to specify the appropriate
allophone. Without these selection rules around 60 elements are needed to provide one
element or element sequence for each English phoneme. Increasing the number of
elements to be a few hundred, where many of the extras are provided specifically to
deal with the particular problems that would otherwise occur with consonant clusters,
can considerably improve the naturalness of the synthesized speech. The additional
elements only require a modest amount of extra memory, and do not significantly
increase the cost of a speech synthesis system, once the table values have been
determined. The number of elements is still far less than the number of items needed in
a diphone system because so much of the coarticulation between vowels and
consonants can be generated by the rules.
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As it stands, the technique described above does not deal with co-articulation
spreading across several phonemes. For example, lip-rounding for [w] is often
maintained for several of the following speech sounds if none of them specifically
requires spread lips. Here again, however, element selection rules can take into account
remote phonetic environment to generate a suitable allophone in each case. Extra
elements can also be added for any situation in which the notion of a single target
specification for a phoneme is not sufficient to capture all realisations of that phoneme in
all different phonetic contexts.

Even if several hundred tables were needed to cover allophonic variation, the memory
requirements are modest compared with those for concatenative synthesis systems. For
example, using 6-bit controls with the tables shown in Figure 6.3, each table would
occupy a total of less than 70 bytes. Thus, for example, 500 tables would occupy less
than 35 kbytes. If memory saving were important, the tables could in fact be stored more
economically by employing efficient coding methods or by using fewer than 6 bits for
certain parameters (such as the degree of voicing).

6.5 OPTIMIZING PHONETIC RULES

So far the usual method of choosing rules for a phonetic synthesis-by-rule system has
required a large amount of effort and the skill of an experimental phonetician, assisted by
speech analysis tools providing, for example, spectrograms. Human subjective judgement
provides, of course, the ultimate criterion for success, but it is very dangerous to rely too
much on listening to guide small improvements because the listener easily gets
perceptually saturated by repeated listening to the same short utterance. Phonetic theory,
specifying the normal acoustic consequences of various articulatory events, has been
widely used to formulate initial sets of rules for subsequent improvement. It can,
however, be restrictive to structure a rule system primarily to deal with phonetic
generalizations, because further study of imperfections in the rules may in many cases
show the theory to be incorrect in detail, so requiring many special cases to be added to
the rules.

Table-driven systems have a very large number of table values to be determined, and
so at first sight it would seem that preparing rules for this method involves far more work
than incorporating rules derived from theory directly in a computer program. However, it
is quite practicable to use theory to guide the choice of initial table entries, and the
experimenter can then introduce exceptions as they are shown to be necessary merely by
modifying selected table entries.

6.5.1 Automatic adjustment of phonetic rules

Another possibility for adjusting phonetic rules is to prepare a fairly large corpus of
phonetically transcribed speech data. The same phonetic sequence can then be generated
by the current set of rules, and the rules successively modified to achieve the optimal fit
to the natural data as measured by some suitable objective distance criterion. One option
is to analyse the natural speech in terms of the parameters that are calculated by the rules
(e.g. formant frequencies and amplitudes) and compare these parameters with the rule-
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generated ones. An alternative, which does not rely on analysing the natural speech in
this way, is to make a direct comparison between the spectra of natural speech and rule-
generated synthetic speech.

These methods are potentially very powerful, as a completely automatic process could
be envisaged to optimize the parameters of a rule system to match natural speech data. The
idea has some similarities to the automatic determination of waveform segments for
concatenative synthesis which was described in Chapter 5. However, the situation is more
complex for synthesis by rule because, rather than simply identifying segments to be used
for synthesis, the task here is to optimize the parameters of a synthesis system. Although
there are many issues that need to be addressed to develop such a system, some of the
techniques used in automatic speech recognition are relevant. For example, one obvious
problem, of aligning the timescales of the natural and synthesized speech, can be solved by
using the method of dynamic programming that will be described in Chapter 8.

A major difficulty for the automatic optimization of phonetic rule systems is deciding
in advance how many different allophones will be needed to achieve good synthesis for
each phoneme. It should be possible to automate the choice of allophones, again based on
a measure of distance between rule-generated synthetic speech and the natural data. One
option would be simply to allocate a new allophone for a particular phonemic
environment whenever it is found that rule-generated utterances match the natural data
less well for one environment compared with others. Another possibility would be to
start with many more allophones, optimize the parameters of the rules for each
allophone, and then combine those allophones that are similar into a single allophone.
The issue of automatically determining allophones will be considered again in Chapter
12, for the task of selecting models to use for large-vocabulary speech recognition.

6.5.2 Rules for different speaker types

In any practical synthesis system the user may want many different types of voice for
different occasions, and in particular may wish to switch from male to female or vice
versa. For either concatenative or rule-based methods, one option would be to set up the
system from scratch each time a new voice is required, which is easiest if an automatic
procedure is available.

Another option for a rule-based formant synthesis system is to change the voice
quality by applying some transformation to the parameters of the rule system. An
extreme would be to convert a system for male speech into one for female speech.
Although the phonetic descriptions of male and female speech for the same accent are
very similar, their acoustic realizations are quite different. The fundamental frequency of
female speech is normally about an octave higher than for male. Because of a shorter
vocal tract, the formant frequencies are also higher, usually by about 20%. The different
dimensions of the vocal folds in a female larynx also cause the voiced excitation
spectrum to be different in female speech, with far less power at the frequencies of the
higher formants.

It seems almost certain that most of the effects mentioned above are systematic, so
that transformations could be devised for converting rule systems between male and
female speech. However, attempts so far to generate acceptable voice quality of female
speech from male rules have had only limited success. It has been suggested by various
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workers that at least a part of the speech differences between the sexes is socially
conditioned, in that the two sexes actually learn different styles of speech. If this effect
is significant it could account for some of the difficulty in devising rule transformations
between the sexes.

6.5.3 Incorporating intensity rules

A large proportion of the intensity variation between phones depends merely on the
identity of the phone being considered. For example, voiceless fricatives are fairly
weak, and most vowels are quite strong. Those variations will be incorporated in the
rules for generating the phones, and therefore do not require to be specified in the input
to the acoustic-phonetic system. Intensity specifications could, however, be desirable
as an optional modification to the default intensity for each individual allophone.

There are three obvious classes of intensity variation that may be desirable. First,
for some applications it may be required to vary the overall loudness in a way that
gives the impression of variation of vocal effort by the synthetic talker. This variation
does not have the same effect as applying an overall scale change to the output
waveform, because the spectral balance of the excitation changes with vocal effort.
Loud speech has relatively more power in the higher-frequency region. The second
factor affecting intensity is stress. Stressed syllables in a sentence are normally a little
louder than unstressed syllables, although a part of this increase is simply a
consequence of the increase in voiced excitation power that automatically arises from
the pitch increase often associated with stressed syllables. The third cause of intensity
change is the result of the lowering of vocal effort that normally occurs towards the end
of each breath group.

In general, the above intensity variations only involve changes of a few dB from
phone to phone, and most current synthesis systems completely ignore them without
serious damage to the output quality. However, the small intensity changes that might
be desirable could easily be accomplished by additional rules to adjust the appropriate
parameters within a formant synthesis-by-rule system, provided that the syllable stress
pattern and position in the breath group were known. This information could be
provided by higher-level components of a synthesis system, as described in the next
chapter.

6.6 CURRENT CAPABILITIES OF PHONETIC SYNTHESIS BY RULE

The first synthesis-by-rule programs for synthesizing speech from a phonemic
representation were written in the early 1960s, and many different systems were
developed during the late 1960s and early 1970s. By the 1980s, there were several text-
to-speech systems that used synthesis by rule for the acoustic-phonetic component, often
following years of careful research to refine the rules. The most well-known of these
systems is MITalk (Allen et al., 1987), which formed the basis for Digital Equipment
Corporation’s commercial text-to-speech system, DECtalk. This system has
demonstrated a variety of different voice qualities, including men, women and children.
At present, the best text-to-speech systems using phonetic synthesis by rule produce
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speech which is very intelligible for much of the time, but which does not sound natural
and has a ‘machine-like’ quality.

More recently, with the advent of PSOLA and low-cost computer memory, phonetic
synthesis by rule has been largely abandoned for text-to-speech systems in favour of
waveform-based concatenative techniques, which currently give more natural-sounding
synthetic speech. However, formant synthesis by rule has important advantages in its
inherently smooth model of co-articulation, and also in the flexibility to easily
incorporate effects due to changes in speaking rate, voice quality, vocal effort and so on,
by applying appropriate transformations to just the relevant controls. Although this
flexibility is shared to some degree by parametric concatenative methods, it can be
achieved in a more disciplined way with rule-driven synthesis. Techniques for automatic
optimization using natural speech data may offer the opportunity for much higher-quality
formant synthesis by rule to be achieved in the future. Related issues will be discussed
further in Chapter 16.

CHAPTER 6 SUMMARY

¢ Phonetic synthesis by rule involves applying acoustic-phonetic rules to generate
synthesizer control parameters from a description of an utterance in terms of a
sequence of phonetic segments together with prosodic information.

*  Most acoustic-phonetic rule systems are designed for a formant synthesizer.

* A convenient implementation is to store the rules as tables of numbers for use by a
single computational procedure.

e Typically, a table for each phone holds some target synthesizer control values,
together with transition durations and information used to calculate the controls at the
nominal boundary between any pair of phones. Such a system can capture much of the
co-articulation effects between phones.

e Separate tables can be included for any allophonic variation which is not captured by
the co-articulation rules. The total number of different units will still be far fewer than
the number required in a concatenative system.

¢ Acoustic-phonetic rule systems have tended to be set up ‘by hand’, but automatic
procedures can be used to derive the parameters of these systems, based on optimizing
the match of the synthesized speech to phonetically transcribed natural speech data.

CHAPTER 6 EXERCISES

E6.1 Discuss the benefits and difficulties that arise from using articulatory rules for
speech synthesis.

E6.2 In view of the very large number of table entries that must be provided, why are
table-driven phonetic rules practically convenient?

E6.3 How can allophonic variation be provided for in acoustic-phonetic synthesis rules?

E6.4 Explain the concept of ‘rank’ in the Holmes-Mattingly-Shearme synthesis
technique.



CHAPTER 7

Speech Synthesis from Textual or
Conceptual Input

7.1 INTRODUCTION

The previous two chapters have described two different methods for generating an
acoustic waveform from an input phoneme sequence together with prosodic information.
Either of the methods can form one component of a more general speech synthesis
system in which the input is at some higher level, which may be orthographic text or even
concepts that are somehow represented in the machine.

7.2 EMULATING THE HUMAN SPEAKING PROCESS

When human beings speak, many factors control how the acoustic output is related to the
linguistic content of their utterances. At one level, there are constraints determined by the
physiology of their vocal apparatus. Although the physiology is generally similar
between people, there are also clear differences of detail, partly related to age and sex,
but also caused by genetic differences between individuals.

For a given vocal system, the speech depends on the sequence of muscular actions that
control the articulatory gestures. These gestures are learnt from early childhood, and
their details are determined partly by the properties of the inherited central nervous
system, but also very much by the speech environment in which the child grows up. The
latter feature is entirely responsible for determining the inventory of available phonetic
productions of any individual, which is closely tied to his/her native language. At a
higher level, the relationship between the ideas to be expressed by the choice of words,
with their pitch, intensity and timing, is entirely determined by the language.

In acquiring competence in speech the human has two forms of feedback. On the one
hand, auditory self-monitoring is paramount for comparing the acoustic patterns
produced with those heard as model utterances. The second main form of feedback is the
response by other human beings to imperfect utterances produced during language
acquisition. Once the right types of utterances can be produced and the necessary
gestures have been learnt, kinaesthetic feedback can be used for detailed control of
articulatory positions, and can ensure continuation of competent speech even if auditory
feedback is not available for any reason.

All the above aspects of speech acquisition imply that the human develops a set of
rules at many different levels, to convert concepts to speech. Although some parts of
these rules are determined by inherited physiology and some by learning from the
environment, it is not easy to separate these two aspects. However, it is clear that there
must be a set of rules to guide humans generating speech, although in many cases the
utterances will be modified by chance or by creative variation within the limits of what
is acceptable to retain the desired effect on the listeners. To embody the complete process

93



94 Speech Synthesis and Recognition

of human speaking, these rules must be fantastically complicated—particularly in the
linguistic process of expressing subtle shades of meaning by choice of words and
prosody.

The aim for computer speech synthesis from either textual or conceptual input is to
imitate the characteristics of the typical human speaking process well enough to produce
synthetic speech that is acceptable to human listeners. Synthesis from text should be
able to apply the rules used by a good reader in interpreting written text and producing
speech. In its most advanced form such a system should be able to apply semantic
interpretation, so that the manner of speaking appropriate for the text can be conveyed
where this is not immediately obvious from the short-span word sequences alone.
Synthesis from concept poses rather different challenges, as the computer will already
have some representation of the meaning to be conveyed, but an appropriate sequence of
words must be generated for the required concepts before the words can be further
converted into their acoustic realisation. Most work on speech synthesis has concentrated
on text-to-speech (TTS) conversion, and TTS will form the main focus for this chapter,
although synthesis from concept will be mentioned briefly later in the chapter.

7.3 CONVERTING FROM TEXT TO SPEECH

The generation of synthetic speech from text is often characterized as a two-stage
analysis-synthesis process, as illustrated in Figure 7.1. The first part of this process
involves analysis of the text to determine underlying linguistic structure. This abstract
linguistic description will include a phoneme sequence and any other information, such
as stress pattern and syntactic structure, which may influence the way in which the text
should be spoken. The second part of the TTS conversion process generates synthetic
speech from the linguistic description. This synthesis stage can be further subdivided into
prosody generation followed by generation of a synthetic speech waveform from the
phonemic and prosodic specifications.

weur T ABSTRACT — [speech OUTPUT
— aralvsis [P LINGUISTIC  —)» ( Mwaveform {—p SYNTHETIC

TEXT - 7[T¥®] 7 pescripTioN generation generation |  SPEECH
WAVEFORM

Figure 7.1 The conversion from text to speech as an analysis-synthesis process.

7.3.1 TTS system architecture

Both the analysis and synthesis processes of TTS conversion involve a number of
processing operations, and most modern TTS systems incorporate these different
operations within a modular architecture such as the one illustrated in Figure 7.2.
When text is input to the system, each of the modules takes some input related to the
text, which may need to be generated by other modules in the system, and generates
some output which can then be used by further modules, until the final synthetic
speech waveform 1is generated. However, all information within the
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Figure 7.2 Block diagram showing a modular TTS system architecture with typical modules
for performing text analysis and speech generation operations.

system passes from one module to another via a separate processing ‘engine’ and the
modules do not communicate directly with each other. The processing engine controls
the sequence of operations to be performed, stores all the information in a suitable data
structure and deals with the interfaces required to the individual modules. A major
advantage of this type of architecture is the ease with which individual modules can be
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changed or new modules added. The only changes that are required are in the accessing
of the modules in the TTS processing engine; the operation of the individual modules
is not affected. In addition, data required by the system (such as a pronunciation
dictionary to specify how words are to be pronounced) tend to be separated from the
processing operations that act on the data. This structure has the advantage that it is
relatively straightforward to tailor a general TTS system to a specific application or to
a particular accent, or even to a new language. There is a growing interest in
multilingual TTS synthesis, whereby the aim is to use the same TTS system for
synthesis in a range of languages, just by changing language-specific data and possibly
varying a few of the modules. Our description will concentrate mainly on English, but
the overall design and many of the techniques for the individual modules are also
applicable to other languages.

7.3.2 Overview of tasks required for TTS conversion

This section will give an overview of typical TTS tasks (as shown in Figure 7.2), together
with some explanation of why they are needed and how they are used in the TTS
conversion process. The aim of this section is to provide background for the more
detailed description of individual tasks that will be given in later sections.

Linguistic text analysis

Text consists of alphanumeric characters, blank spaces and possibly a variety of special
characters. The first step in text analysis usually involves pre-processing the input text
(including expanding numerals, abbreviations etc.) to convert it to a sequence of words.
The pre-processing stage will normally also detect and record instances of punctuation
and other relevant formatting information such as paragraph breaks. The following text
analysis modules then convert the sequence of words into a linguistic description. A
major function of these modules is to determine the pronunciation of the individual
words. In a language such as English the relationship between the spellings of words and
their phonemic transcriptions is extremely complicated. Furthermore, this relationship
can be different for different words with the same structure, as is illustrated by the
pronunciation of the letter string “ough” in the words “through”, “though”, “bough”,
“rough” and “cough”.

Word pronunciation is normally obtained using some combination of a pronunciation
dictionary and letter-to-sound rules. In early TTS systems the emphasis was on deriving
pronunciation by rule and using a small exceptions dictionary for common words with
irregular pronunciation (such as “one”, “two”, “said”, etc.). However, now that large
computer memory is available at low cost, it is more usual for the main work of the
pronunciation task to be accomplished using a very large dictionary (which may include
several tens of thousands of words) to ensure that known words are pronounced correctly.
Rules are nevertheless still required to deal with unknown words, as for example new
words are continually being added to languages and it would be impossible to rely on
including all proper nouns (e.g. place names and surnames) in a dictionary. The task of
determining word pronunciation is made easier if the structure, or morphology, of the
words is known, and most TTS systems include some morphological analysis. This
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analysis determines the ‘root form’ of each word (for example, the root for “gives” is
“give”), and avoids the need to include all derived forms in the dictionary. Some
syntactic analysis of the text will also be required to determine the pronunciation of
certain words. For example, “live” is pronounced differently depending on whether it is
a verb (“they live here”) or an adjective (“live wire”). Once pronunciations have been
derived for the individual words as if they were spoken in isolation, some adjustments are
then needed to incorporate phonetic effects occurring across word boundaries, in order to
improve the naturalness of the synthetic speech.

In addition to determining the pronunciation of the word sequence, the text-analysis
modules must determine other information relevant to how the text should be spoken.
This information, which includes phrasing, lexical (word-level) stress and the pattern of
accentuation of the different words (sentence-level stress), will then be used to generate
the prosody for the synthesized speech. Markers for lexical stress can be included for
each word in the dictionary, but rules will also be needed to assign lexical stress to any
words not found in the dictionary. Some words, such as “permit”, have their primary
stress on a different syllable depending on whether they are being used as a noun or a
verb, and so syntactic information will be needed in order to assign the correct stress
pattern. The result of a syntactic analysis can also be used to group words into prosodic
phrases, and to determine which words are to be accented so that a stress pattern can be
assigned to the word sequence. While syntactic structure provides useful clues to
accenting and phrasing (and hence prosody), in many cases truly expressive prosody
cannot be obtained without really understanding the meaning of the text. However,
although some simple semantic effects are sometimes incorporated, comprehensive
semantic and pragmatic analyses are beyond the capabilities of current TTS systems.

Speech synthesis

Information derived in the text analysis can be used to generate prosody for the utterance,
including the timing pattern, overall intensity level and fundamental-frequency (pitch)
contour. The final modules in a TTS system perform speech sound generation by first
selecting the appropriate synthesis units to use, and then synthesizing from these units
together with the prosodic information. Nowadays, this synthesis stage is usually
achieved by concatenative techniques (explained in Chapter 5), although an alternative is
to use phonetic synthesis by rule (Chapter 6).

As methods for speech generation have already been described in the previous two
chapters, they will not be discussed in any detail here. The following sections describe
the text analysis and prosody generation stages in more detail.

7.4 TEXT ANALYSIS

7.4.1 Text pre-processing

Text will enter the TTS system as a string of characters in some electronically coded
format, which in the case of English would normally be ASCII. The first stage in text

analysis is text segmentation, whereby the character string is split into manageable
chunks, usually sentences with each sentence subdivided into individual words. For a
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language such as English the separation into words is fairly easy as words are usually
delimited by white space. The detection of sentence boundaries is less straightforward.
For example, a full stop can usually be interpreted as marking the end of a sentence, but
is also used for other functions, such as to mark abbreviations and as a decimal point in
numbers.

Any unrestricted input text is likely to include numerals, abbreviations, special
symbols such as %, *, etc., capitalization and a variety of punctuation and formatting
information (white space, tab characters, etc.). It is therefore usual for the text pre-
processing to also include a process of text normalization, in which the input text is
converted to a sequence of pronounceable words. The normalized text will typically
consist of a sequence of explicitly separated words, consisting only of lower-case letters,
and with punctuation associated with some of the words. For example, the text “Dr.
Smith lives at 16 Castle St.” could be converted to:

{[doctor] [smith] [lives] [at] [sixteen] [castle] [street]}

where square brackets have been used to delimit each individual word and curly brackets
to delimit the sentence. Each word can be marked with tags to indicate detection of an
expanded abbreviation, expanded numerals, capital letters and so on. In this way, all of
the information can be passed on but at the same time the text is put into a format which
is more suitable for further processing. Most TTS systems include a large number of
rules to deal with the variety of text formats that may be encountered, and a few
examples are given in the following paragraphs.

In the case of numerals, the correct pronunciation will depend on the context. In many
contexts a four-digit number beginning in 1 represents a year and should therefore be
pronounced according to the conventions for dates, but in other cases it will be “one
thousand” followed by the hundreds, tens and units (e.g. “1999” could be the year
“nineteen ninety nine” or “one thousand nine hundred and ninety nine”). Telephone
numbers in English are usually pronounced as a sequence of separate digits. A number
with two decimal places will be pronounced as a sum of money if preceded by a currency
symbol (e.g. “$24.75” becomes “twenty-four dollars and seventy-five cents”), but will
otherwise include the word “point” (e.g. “24.75” becomes “twenty-four point seven five”.

Conversions for abbreviations and special symbols can be provided in a look-up table.
Special symbols are replaced by the relevant words (e.g. “%” is changed to “per cent”,
and “&” to “and”), and certain abbreviations need to be expanded as appropriate (e.g.
“Mr.” to “mister”, and “etc.” to “et cetera”). Some abbreviations are ambiguous and
context needs to be taken into account to determine the correct expansion. Commonly
cited examples are “Dr.”, which can expand to “doctor” or to “drive”, and “St.”, which
can expand to “saint” or to “street”. While some abbreviations need to be expanded,
others (e.g. “USA”, “GMT”) must be spelled out and these will be replaced by the
appropriate sequence of letter names.

In general, dealing with abbreviations is quite straightforward as long as they are
known in advance and have been included in a conversion table. It will, however, be
impossible to predict all abbreviations that might occur in any arbitrary text, and so it is
usual to include rules for detecting abbreviations. The presence of full stops between the
letters can be taken as a good indication that the letter names should be pronounced
separately. A word in capitals is also likely to be an abbreviation, at least if the
surrounding words are in lower case. If the sequence of letters forms a pronounceable
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word, it is probably an acronym (e.g. “NATO”) and should therefore be treated as a word,
but otherwise the abbreviation can be pronounced as a sequence of letter names.
However, some pronounceable sequences should also be spelled out as individual letters
(e.g. “MIT”). The best strategy is probably to treat abbreviations of four or more letters
as words if they are pronounceable. For shorter abbreviations, or if the letter combination
is unpronounceable, it is more appropriate to spell out the individual letters.

Text pre-processing rules of the types described above can cope adequately with many
text formatting phenomena, but unrestricted text is always likely to contain some
formatting features which will be difficult to decode without sophisticated analysis of
syntax and even meaning. It may be possible to overcome any ambiguity by delaying
decisions that cannot be resolved at a pre-processing stage until the later stages of text
analysis. Currently, however, the best results are still obtained if the designer prepares
the TTS system for a known restricted range of applications, so that the pre-processing
can be tailored appropriately.

7.4.2 Morphological analysis

Morphemes are the minimum meaningful units of language. For example, the word
“played” contains two morphemes: “play” and a morpheme to account for the past tense.
Morphemes are abstract units which may appear in several forms in the words they
affect, so that for example the word “thought” comprises the morpheme “think” together
with the same past-tense morpheme as was one used in the previous example. When there
is a direct mapping between the abstract morphemes and segments in the textual form of
the word, these text segments are referred to as morphs. In many words, such as
“carrot”, the whole word consists of a single morph. Others, such as “lighthouse”, have
two or more. Morphs can be categorized into roots and affixes, and the addition of
common affixes can vastly increase the number of morphs in a word. For example,
“antidisestablishmentarianism” has six morphs if “establish” is regarded as a single root
morph. A high proportion of words in languages such as English can be combined with
prefixes and/or suffixes to form other words, but the pronunciations of the derived forms
are closely related to the pronunciations of the root words.

Rules can be devised to correctly decompose the majority of words (generally at least
95% of words in typical texts) into their constituent morphs. This morphological analysis
is a useful early step in TTS conversion for several reasons:

e It is then not necessary for all derived forms of regularly inflected words to be stored
in the pronunciation dictionary. Instead, the pronunciation of any derived word can be
determined from the pronunciation of the root morphs together with the normal
pronunciations of the affixes. For example, inclusion of the word “prove” would
enable the correct pronunciation of “improvement”, “proving”, etc. to be determined.
(Note that it is necessary to take account of the fact that in many words a final “e”
needs to be removed before the addition of certain suffixes.)

e If the pronunciation of individual morphs is known, it is possible to deal with the
many compound words of English and cover a high proportion of the total vocabulary
while keeping the dictionary at a manageable size. A lexicon of N morphs can
generate between SN and 10N words. Complete words need then only be included in
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the dictionary if they do not follow the regular morpheme composition rules of the
language. A morph lexicon is also useful in predicting the pronunciation of unknown
words. While the words in a language are continually changing, it is rare for a new
morpheme to enter a language.

e Even when it is necessary to apply letter-to-sound rules (see Section 7.4.3), some
attempt to locate morph boundaries is beneficial as many of the rules for the
pronunciation of consonant clusters do not apply across morph boundaries. For
example, the usual pronunciation of the letter sequence “th” does not apply in the
word “hothouse”, due to the position of the morph boundary.

*  Morphological analysis gives information about attributes such as syntactic category,
number, case, gender (in the case of some languages) and so on. This information is
useful for later syntactic analysis (see Section 7.4.4).

Extensive use of morphological analysis and morph dictionaries was pioneered in the
MITalk system (Allen et al., 1987), which covered over 100,000 English words with a
morph lexicon of about 12,000 entries and hence moderate cost in terms of storage.
While storage cost is no longer such an issue, the other advantages of morph
decomposition are such that the better TTS systems all include at least some
morphological analysis.

7.4.3 Phonetic transcription

It is usual for the task of determining the pronunciation of a text to begin by assigning an
idealized phonemic transcription to each of the words individually. Nowadays, most TTS
systems use a large dictionary. This dictionary will generally only contain the root forms
of words and not their morphological derivatives, except for those derivatives that cannot
be correctly predicted by rule. For words with alternative pronunciations, both
possibilities can be offered by the dictionary and syntactic analysis may be used to
choose between them (see Section 7.4.4).

A typical strategy for determining word pronunciation is to start by searching the
dictionary to check whether the complete word is included. If it is not, the component
morphs can be searched for. Provided that the individual morphs are in the dictionary, the
pronunciation of the derived word can then be determined by rule from the pronunciation
of its component morphs. When deriving pronunciations of derived words from their root
form, it is necessary to take into account any pronunciation-modification rules associated
with the affixes. For example, the suffix “ion” changes the phonemic interpretation of the
final /t/ sound in words like “create”.

For any words (or component morphs) whose pronunciation cannot be determined
using the dictionary, letter-to-sound rules are needed. The complexity of the relationship
between the spellings of words and their phonemic transcription is different for different
languages. However, even in a language such as English which has a particularly
complicated mapping between letters and phonemes, it is obvious that human readers
must have some rules for relating spelling to phoneme sequences because they can
usually make a reasonable guess at the pronunciation of an unfamiliar word. While it
cannot be guaranteed that letter-to-sound rules will always give the pronunciation that
most people would regard as correct, a human reader will also often make errors with
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unfamiliar words. However, these words are usually quite rare and the nature of any
errors tends to be such that the incorrect phoneme sequence is often sufficient to indicate
the intended word. Predicting the pronunciation of proper names is especially
challenging, as names often follow quite different pronunciation rules from ordinary
words and may be from many different languages. Many TTS systems include special
rules for names, sometimes using a scheme based on analogy with known names (e.g. the
pronunciation of “Plotsky” can be predicted by analogy with the pronunciation of
“Trotsky™).

In naturally spoken continuous speech, word pronunciations are influenced by the
identities of the surrounding words. TTS systems incorporate these effects by applying
post-lexical rules to make phonetic adjustments to the individual-word phonemic
transcriptions. For example, the correct pronunciation of the vowel in the word “the”
depends on whether the following word begins with a vowel (e.g. “the apple”) or a
consonant (e.g. “the dog”). Other effects on pronunciation are related to the
consequences of co-articulation and the preferred option may depend on the speaking
style. For example, the consonant sequence in the middle of “handbag” may be
pronounced [ndb] in highly articulated speech, but would more usually be reduced to
[nb], and may even become [mb] in casual speech.

7.4.4 Syntactic analysis and prosodic phrasing

Some syntactic analysis is needed both to resolve pronunciation ambiguities and to
determine how the utterance should be structured into phrases. Possible syntactic classes
can be included with each entry in the dictionary, and the morphological analysis will
also provide useful information about likely parts of speech. However, very many
English words may be used as both nouns and verbs, and several can also be adjectives,
so very little definite information about syntax can be resolved without taking into
account the relationships between the words.

Assignment of syntactic classes, or part-of-speech tags, is often achieved using a
statistical model of language, based both on probabilities for particular tags appearing in
a certain context and on probabilities of the tags being associated with the given words.
The model probabilities can be derived from large amounts of correctly marked text, and
the modelling technique itself is one that is widely used for language modelling in
automatic speech recognition (see Chapter 12).

Once the part of speech has been decided for each word in a sentence, the phrase
structure of the sentence can be determined. In order for suitable prosody to be generated,
it is necessary to decide on sentence type (declarative, imperative or question), and to
identify phrases and clauses. Some systems have included full syntactic parsing, while
others perform a more superficial syntactic analysis, for example to locate noun phrases
and verb phrases and possibly group these phrases into clauses. There are also methods for
using statistical models trained to predict prosodic phrases directly from information about
parts of speech, stress, position in the sentence and other relevant factors. The general aim
is to produce a reasonable analysis for any text, even if the text contains syntactic errors.
There will always be instances for which correct assignment of appropriate phrasing cannot
be achieved without incorporating semantic and pragmatic constraints, but current TTS
systems do not have more than very limited capability to apply such constraints.
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7.4.5 Assignment of lexical stress and pattern of word accents

In the case of polysyllabic words, there is normally one syllable that is given primary
stress, and other syllables are either unstressed, or carry a less prominent secondary
stress. These lexical stress markings can be included for each entry in the dictionary.
When the pronunciation of a word is obtained by combining morphs, the stress pattern
for the individual morphs may be changed, so it is necessary to apply rules to
determine the stress pattern for the complete word. For example, the addition of the
suffix “ity” to “electric” moves the primary stress from the second syllable to the third.
For some words, such as “permit”, the stress assignment depends on syntactic category,
so the choice between alternative stress patterns must be made following the syntactic
analysis.

With any word whose pronunciation has to be obtained by letter-to-sound rules,
additional rules are also needed to assign lexical stress. For many polysyllabic words of
English the placement of primary and secondary stresses on the syllables can be
determined reasonably accurately using very complicated rules that depend on how many
vowels there are in the word, how many consonants follow each vowel, the vowel
lengths, etc. There are, however, many words for which the normal rules do not apply, as
exemplified by the fact that some pairs of words are of similar structure yet are stressed
differently. Examples are “Canada” and “camera”, contrasting with “Granada” and
“banana”. Words such as these will need to be included in the dictionary to ensure correct
lexical stress assignment.

One of the last tasks in text analysis is to assign sentence-level stress to the utterance,
whereby different words in a sentence are accented to different extents. Assignment of
accents depends on a number of factors. Function words (such as articles, conjunctions,
prepositions and auxiliary verbs) serve to indicate the relationships between the content
words that carry the main information content of an utterance. Function words are not
normally accented, whereas content words tend to be accented to varying degrees
dependent on factors such as parts of speech and the phrase structure. In addition to the
syntax-driven placement of stress, emphasis may be placed on important words in the
sentence. For example, when a speaker wishes to emphasize his or her attitude towards
the truth of something, words such as “surely”, “might” and “not” may be used with
stress. Stress may also be used to make a distinction between new and old information,
or to emphasize a contrast. Some TTS systems include rules to model a number of these
types of effects. The pattern of accents on the different words will usually be realized as
movements in fundamental frequency, often referred to as pitch accents (see Section
7.5.2 for further discussion).

7.5 PROSODY GENERATION

The acoustic correlates of prosody are intensity, timing pattern and fundamental
frequency. Intensity is mainly determined by phone identity, although it also varies with
stress for example. It is fairly easy to include rules to simulate such effects, as was
discussed in Section 6.5.3. From the perspective of prosody, intensity variations are in
general less influential than variations in timing pattern and in fundamental frequency
contour, which are discussed in the following sections.



Speech Synthesis from Textual or Conceptual Input 103

7.5.1 Timing pattern

Both in concatenative synthesis and in most synthesis-by-rule methods, utterances are
generated as sequences of speech segments. For any utterance, a duration needs to be
chosen for each segment such that the synthesized speech mimics the temporal structure
of typical human utterances. The temporal structure of human speech is influenced by a
wide variety of factors which cause the durations of speech segments to vary.
Observations about this variability include the following:

1. The inherent durations of different speech sounds differ considerably. Some vowels
are intrinsically short and others long. The vowels in the words “bit” and “beet” in
English differ in this way. Diphthongs are usually longer than monophthongs, and
consonant sounds also show systematic differences.

2. Durations differ according to speed of speaking, but sounds that are mainly steady in
character, such as fricatives and vowels, tend to vary in duration more than inherently
transient sounds, such as the bursts of stop consonants.

3. If a particular word in a sentence is emphasized, its most prominent syllable is
normally lengthened.

4. Durations of phones vary according to their position in a word, particularly if there
are several syllables.

5. When at the end of a phrase, a syllable tends to be longer than when the same syllable
occurs in other locations in a phrase.

6. Vowels before voiced consonants are normally longer than occurrences of the same
vowels before unvoiced consonants. For example, in the English words “feed” and
“feet” the vowel is substantially longer in “feed”. There are also other systematic
duration modifications that depend on the identities of neighbouring phones.

7. Some evidence suggests that, in a ‘stress-timed’ language such as English, unstressed
syllables tend to be shorter if there are several of them between two stressed syllables.
However, the empirical evidence is less conclusive for this effect than for the other
effects listed above.

A number of systems have been developed for deriving segment durations by applying a
succession of rules. These rules operate on phonetic transcriptions with the stressed
syllables marked, and assume that some decision has been made about speed of speaking.
It is then possible to estimate a suitable duration for each phone by having some intrinsic
duration for the phone, and to modify it by various amounts according to each of the
circumstances mentioned above. The amount of the modification could in general depend
on the circumstances causing it and on the identity of the phone whose duration is being
calculated. Sets of rules have been devised and refined based on phonetic knowledge in
combination with statistics of speech segment durations and the results of small-scale
experiments investigating the effect of varying different factors on synthesis quality. While
reasonable success has been achieved in producing acceptable timing patterns, this
approach is not able to guarantee that the rules are optimized simultaneously to the very
wide range of utterances that general TTS systems must be able to deal with.

In recent years, as large speech corpora and increased computational resources have
become available, there has been a growth in alternative approaches using automatic
optimization to derive the parameters of a general model based on large databases of
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segmented and labelled speech. It is quite straightforward to apply these data-driven
methods to derive a reasonable duration model for a new language, provided that
sufficient labelled speech data are available.

Automatic methods have achieved some improvement over the older rule-based
systems. However, current TTS systems are still not able to produce the rhythm that
humans can adopt naturally in sentences containing rhyming clauses, or to generate other
systematic variations related to meaning. Speech synthesized from text also lacks the
pattern of pauses and decelerations that are found in speech from a good human reader,
and which serve to enhance a listener’s comprehension. More elaborate linguistic
analysis would be necessary to produce all these effects.

7.5.2 Fundamental frequency contour

The fundamental frequency of voiced speech, which determines the perceived pitch, is
widely used by all languages to convey information that supplements the sequence of
phonemes. In some languages, such as Chinese, pitch changes are used to distinguish
different meanings for syllables that are phonetically similar. In most Western languages
pitch does not help directly in identifying words, but provides additional information,
such as which words in a sentence are most prominent, whether a sentence is a question,
statement or command, the mood of the speaker, etc. Even for these Western languages,
the type of intonation pattern that is used to achieve particular effects varies considerably
from one language to another, and even between accents of the same language. Obviously
the model for generating a suitable intonation pattern must be developed to suit the
required language. For the purposes of this book, examples will be given for typical
southern British English.

Most sentences in English show a general tendency for pitch to fall gradually from
beginning to end of each sentence, but with many local variations around this trend. Two
major factors determining these variations are the way in which the sentence is
subdivided into phrases and the sentence stress pattern. The most significant pitch
variations occur at major phrase boundaries and on words that the user wishes to be more
prominent. In the case of polysyllabic words, the syllable with primary stress carries the
main pitch movement.

The normal structure of English is such that the last syllable carrying primary stress
in any breath group is given the biggest pitch change, and is known as the nuclear
syllable. Usually the nuclear tone (i.e. the pitch pattern on the nuclear syllable) on a
simple statement is a pitch fall, but a number of other patterns are possible to indicate
other types of utterance. (The number of possible nuclear tones is at least three, but some
workers have claimed that there are up to six significantly different patterns.) The nuclear
tone for a question expecting a yes/no answer shows a substantial pitch rise. On the non-
final stressed syllables the pitch usually shows a local small rise and then continues its
steady fall. The amount of this rise and the subsequent rate of fall can depend on the
syntactic function of the word in the sentence: verbs, for example, generally have less
pitch variation than nouns and adjectives. At the beginning of an utterance the pitch often
starts fairly low, and then rises to a high value on the first stressed syllable.

In addition to these pitch changes caused by the pattern of stressed syllables, there
are smaller pitch variations that are influenced by the phonetic detail of an
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Figure 7.3. Generating a fundamental frequency (F,) contour as a filtered sequence of phrase
commands and accent commands, combined with a baseline /) value (F,). The generated F,
contour is indicated by the solid line in the right-hand graph. The dotted line shows the contour
given by the phrase commands alone (adapted from Fujisaki and Ohno (1995)).

utterance. When voicing restarts after a voiceless consonant there is a tendency for the
pitch to be a little higher for a few tens of milliseconds than it would be after a voiced
consonant. Also, due to muscular interactions between the articulators and the larynx,
some vowels tend to have intrinsically higher pitch than others.

Various models have been proposed to generate fundamental frequency (F )
characteristics of the type described above. There are differences between some of the
models that are related to differences between the theories of intonation on which they
are based. However a general characteristic of all the models is that they operate in two
stages. The first stage generates an abstract description of an intonation contour (which
will include some expression of pitch accents), and the second stage converts from the
abstract description into a sequence of F values.

Superposition models are hierarchi%ally organized and generate F' contours by
overlaying multiple components of different types. An example of this$ approach to
generating intonation is shown in Figure 7.3. This model distinguishes between phrase
commands and accent commands. The commands are discrete events, represented as
pulses for the phrase commands and step functions for the accent commands. The F
contour is obtained by filtering each sequence of commands and combining the output of
the two filters, superimposed on a baseline F' value.

In contrast, tone sequence models generatg an F' contour from a sequence of discrete
tones that are locally determined and do not interact with each other. One especially
influential model was developed by Pierrehumbert (1980). Here a tone is defined as
being either high or low, and of a different type, depending on whether it is associated
with a pitch accent, a phrase boundary or an intermediate position between a pitch accent
and a boundary tone. To use the model for synthesis, Pierrehumbert (1981) defined a
time-varying F' range and used rules to assign a high or low target tone within that range
to each stressed syllable. An F' contour was generated by applying a quadratic function
to interpolate between successive targets, as shown in Figure 7.4. Pierrehumbert’s
approach to labelling intonation has formed the basis for the intonation transcription
system called TOBI (TOnes and Break Indices), which was proposed by Silverman et
al. (1992). There are speech databases transcribed according to the TOBI system, which
have facilitated the development of various automatic methods for training models both
to predict abstract TOBI labels from information such as stress pattern and phrase
structure, and for generating an F contour once TOBI symbols are available.

Although some research grooups have demonstrated very natural-sounding
utterances using intonation generated by models such as the ones described above,
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Figure 7.4. Generating a fundamental frequency (F,) contour by interpolating between targets.
The dashed lines indicate the F, range, and the numbers represent local target F, values,
expressed as a proportion of the current range. The targets are located on the stressed syllables
of content words and at phrase boundaries (indicated by % in the text). (Reprinted with
permission from Pierrehumbert, 1981. Copyright © 1981, Acoustical Society of America.)

to achieve these results the input to the model has needed a very detailed specification of
the utterance structure. Complete TTS systems do not generally produce such natural-
sounding speech, and the intonation sounds less ‘interesting’ than one would expect from
a human talker. It seems likely that a major limitation is the difficulty of making a
sufficiently accurate linguistic analysis of the text to provide the appropriate information
as input to the intonation prediction model.

7.6 IMPLEMENTATION ISSUES

The pronunciation dictionary can account for a substantial proportion of the total
memory requirements. The dictionary might require an average of around 30 bytes per
word, so a modest 10,000-word dictionary would need 300 kbytes of memory, and a
100,000-word dictionary would involve 3 Mbytes. The memory requirements for the
synthesis component are different for different synthesis methods. Synthesis by rule
tends to be the most efficient in terms of memory: for example, the table-driven system
described in Chapter 6 could provide a useful set of allophone tables using less than 50
kbytes. Much more memory may be needed with concatenative synthesis (see Section
5.7), and the waveform-based methods can require several Mbytes when using a large
inventory of synthesis units. The total memory usage for systems giving the best quality
may even be as high as around 100 Mbytes.

The processing requirements will also depend on the synthesis method. Time-domain
waveform synthesis obviously involves less computation than LPC or formant synthesis.
However, although a large amount of arithmetic would be needed for the signal
processing in LPC or formant synthesis, the calculations are simple and can easily be
handled by current microprocessors. Alternatively, DSP chips may be used for some or
all of the calculations.

The higher-level processing may be quite complicated, but the input and output data
rates are very low (only about 20 symbols per second for each stage of the processing).
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Semantic processing is still insufficiently developed for it to be possible to predict the
computational load needed, but if semantics are excluded fairly complex high-level
processing can be implemented serially in real time.

Currently available TTS systems include software-only versions for personal
computers, small stand-alone devices and plug-in processing boards. The best of present-
day capabilities for TTS can be implemented on a single processing card of appropriate
design, generally including software, memory (which may be quite large), DSP chips and
a controlling microprocessor.

7.7 CURRENT TTS SYNTHESIS CAPABILITIES

For several years now there have been many TTS systems working in research
laboratories, and also various commercial products. Often a limited choice between
different voices is included. There are systems for a variety of different languages, and
some systems are multilingual. As explained in Chapters 5 and 6, the majority of current
TTS systems use concatenative waveform synthesis for the speech generation
component, as it has not yet been possible to achieve the same degree of naturalness
using phonetic synthesis by rule.

As with speech coders, speech synthesizers need to be evaluated in terms of both
intelligibility and naturalness, and the techniques described in Section 4.5 are also
applicable to assessing the capabilities of TTS systems. The best systems produce speech
which is highly intelligible and quite natural-sounding for straightforward material with
a simple linguistic content. However, even the best examples of speech from TTS
systems are unlikely to be mistaken for natural speech. On more than just a very short
utterance the synthesized speech quickly becomes very boring to listen to, and the
intonation rarely matches the naturalness of a human speaker. On difficult material,
especially texts such as poetry or plays which require a special speaking style, both
intelligibility and naturalness fall far short of the performance of a good human reader of
the same text.

Improvements are still needed at all levels of the TTS synthesis process, but most
especially in the synthetic prosody. This aspect in particular is likely to be limited for
many years to come by the difficulties of automatically analysing semantics and, most
fundamentally, achieving some ‘understanding’ of the text.

7.8 SPEECH SYNTHESIS FROM CONCEPT

As an alternative to generating synthetic speech from text input, in systems for speech
synthesis from concept the input is in the form of ideas or concepts that the machine must
express in spoken language. For example, in an information-retrieval system, a computer
may be required to respond to queries about some stored database of facts (such as sports
scores or weather reports). Thus it will be necessary to determine the concepts to be
conveyed and convert these into natural language. Because concepts inherently provide
semantic information, and the generation of language must include syntactic structure, it
should be easier to predict word pronunciation and to determine the most appropriate
prosody than when this information has to be extracted from text. However, natural
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language generation, including the choice of words and sentences that are appropriate for
each situation, is a very challenging research topic in its own right and outside the scope of
this book. Current systems for synthesis from concept tend to be set up for particular
applications, so restrictions can be placed on the language to be generated.

CHAPTER 7 SUMMARY

¢ Human beings have acquired rules to convert from ideas to speech, and also to read
from written text.

e Machine models for the same processes involve several levels, and are usually
implemented with a modular architecture to separate the different components.

e At a high level, the input to a synthesis system can be text or concept, but most
systems currently only deal with text input.

e Text-to-speech synthesis involves analysis of the text to determine underlying
linguistic structure, followed by synthesis from the linguistic information. Synthesis
includes generation of prosody and of a synthetic speech waveform.

e The first step in text analysis is pre-processing, including expanding abbreviations,
etc., to give a sequence of words with punctuation marked.

¢ For English it is difficult to determine correct pronunciation and stress pattern from
ordinary text. The task is made easier by including a pronunciation dictionary, often
with morph decomposition and syntactic analysis.

* Prosody generation involves using information about stress pattern and sentence
structure to specify the fundamental frequency pattern and duration of each phone,
and possibly also intensity modifications.

e Several Mbytes of storage may be needed for the pronunciation dictionary and for the
synthesis units. Because most of the more complicated processing only needs to
operate slowly, real-time TTS conversion is practical.

e Current products give speech that is intelligible and reasonably natural on short
passages of simple text, but quality still suffers on more difficult texts.

CHAPTER 7 EXERCISES

E7.1 Describe a technique for converting from conventional to phonetic spelling for a
language such as English, highlighting any special difficulties.

E7.2 Why is morphological analysis useful in TTS systems?

E7.3 What types of text pre-processing are needed for TTS systems to handle
unrestricted text? Why is this processing not always straightforward?

E7.4 Discuss the relative importance of pitch, intensity and duration when generating
synthetic prosody.

E7.5 What information in text can be used to determine utterance prosody?

E7.6 Discuss the main influences on processing and memory requirements in TTS
systems for English.

E7.7 Why should conventional orthography not be used as an intermediate
representation in systems for synthesis from concept?



CHAPTER 8

Introduction to Automatic Speech
Recognition: Template Matching

8.1 INTRODUCTION

Much of the early work on automatic speech recognition (ASR), starting in the 1950s,
involved attempting to apply rules based either on acoustic/phonetic knowledge or in
many cases on simple ad hoc measurements of properties of the speech signal for
different types of speech sound. The intention was to decode the signal directly into a
sequence of phoneme-like units. These early methods, extensively reviewed by Hyde
(1972), achieved very little success. The poor results were mainly because co-articulation
causes the acoustic properties of individual phones to vary very widely, and any rule-
based hard decisions about phone identity will often be wrong if they use only local
information. Once wrong decisions have been made at an early stage, it is extremely
difficult to recover from the errors later.

An alternative to rule-based methods is to use pattern-matching techniques.
Primitive pattern-matching approaches were being investigated at around the same time
as the early rule-based methods, but major improvements in speech recognizer
performance did not occur until more general pattern-matching techniques were invented.
This chapter describes typical methods that were developed for spoken word recognition
during the 1970s. Although these methods were widely used in commercial speech
recognizers in the 1970s and 1980s, they have now been largely superseded by more
powerful methods (to be described in later chapters), which can be understood as a
generalization of the simpler pattern-matching techniques introduced here. A thorough
understanding of the principles of the first successful pattern-matching methods is thus a
valuable introduction to the later techniques.

8.2 GENERAL PRINCIPLES OF PATTERN MATCHING

When a person utters a word, as we saw in Chapter 1, the word can be considered as a
sequence of phonemes (the linguistic units) and the phonemes will be realized as phones.
Because of inevitable co-articulation, the acoustic patterns associated with individual
phones overlap in time, and therefore depend on the identities of their neighbours. Even
for a word spoken in isolation, therefore, the acoustic pattern is related in a very
complicated way to the word’s linguistic structure.

However, if the same person repeats the same isolated word on separate occasions, the
pattern is likely to be generally similar, because the same phonetic relationships will
apply. Of course, there will probably also be differences, arising from many causes. For
example, the second occurrence might be spoken faster or more slowly; there may be
differences in vocal effort; the pitch and its variation during the word could be different;
one example may be spoken more precisely than the other, etc. It is obvious that the
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waveform of separate utterances of the same word may be very different. There are likely
to be more similarities between spectrograms because (assuming that a short time-
window is used, see Section 2.6), they better illustrate the vocal-tract resonances, which
are closely related to the positions of the articulators. But even spectrograms will differ
in detail due to the above types of difference, and timescale differences will be
particularly obvious.

A well-established approach to ASR is to store in the machine example acoustic
patterns (called templates) for all the words to be recognized, usually spoken by the
person who will subsequently use the machine. Any incoming word can then be
compared in turn with all words in the store, and the one that is most similar is assumed
to be the correct one. In general none of the templates will match perfectly, so to be
successful this technique must rely on the correct word being more similar to its own
template than to any of the alternatives.

It is obvious that in some sense the sound pattern of the correct word is likely to be
a better match than a wrong word, because it is made by more similar articulatory
movements. Exploiting this similarity is, however, critically dependent on how the word
patterns are compared, i.e. on how the ‘distance’ between two word examples is
calculated. For example, it would be useless to compare waveforms, because even very
similar repetitions of a word will differ appreciably in waveform detail from moment to
moment, largely due to the difficulty of repeating the intonation and timing exactly.

It is implicit in the above comments that it must also be possible to identify the start
and end points of words that are to be compared.

8.3 DISTANCE METRICS

In this section we will consider the problem of comparing the templates with the
incoming speech when we know that corresponding points in time will be associated with
similar articulatory events. In effect, we appear to be assuming that the words to be
compared are spoken in isolation at exactly the same speed, and that their start and end
points can be reliably determined. In practice these assumptions will very rarely be
justified, and methods of dealing with the resultant problems will be discussed later in
the chapter.

In calculating a distance between two words it is usual to derive a short-term distance
that is local to corresponding parts of the words, and to integrate this distance over the
entire word duration. Parameters representing the acoustic signal must be derived over
some span of time, during which the properties are assumed not to change much. In one
such span of time the measurements can be stored as a set of numbers, or feature vector,
which may be regarded as representing a point in multi-dimensional space. The
properties of a whole word can then be described as a succession of feature vectors (often
referred to as frames), each representing a time slice of, say, 10-20 ms. The integral of
the distance between the patterns then reduces to a sum of distances between
corresponding pairs of feature vectors. To be useful, the distance must not be sensitive to
small differences in intensity between otherwise similar words, and it should not give too
much weight to differences in pitch. Those features of the acoustic signal that are
determined by the phonetic properties should obviously be given more weight in the
distance calculation.
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8.3.1 Filter-bank analysis

The most obvious approach in choosing a distance metric which has some of the
desirable properties is to use some representation of the short-term power spectrum. It
has been explained in Chapter 2 how the short-term spectrum can represent the effects of
moving formants, excitation spectrum, etc.

Although in tone languages pitch needs to be taken into account, in Western languages
there is normally only slight correlation between pitch variations and the phonetic
content of a word. The likely idiosyncratic variations of pitch that will occur from
occasion to occasion mean that, except for tone languages, it is normally safer to ignore
pitch in whole-word pattern-matching recognizers. Even for tone languages it is probably
desirable to analyse pitch variations separately from effects due to the vocal tract
configuration. It is best, therefore, to make the bandwidth of the spectral resolution such
that it will not resolve the harmonics of the fundamental of voiced speech. Because the
excitation periodicity is evident in the amplitude variations of the output from a broad-
band analysis, it is also necessary to apply some time-smoothing to remove it. Such time-
smoothing will also remove most of the fluctuations that result from randomness in
turbulent excitation.

At higher frequencies the precise formant positions become less significant, and the
resolving power of the ear (critical bandwidth—see Chapter 3) is such that detailed
spectral information is not available to human listeners at high frequencies. It is
therefore permissible to make the spectral analysis less selective, such that the
effective filter bandwidth is several times the typical harmonic spacing. The desired
analysis can thus be provided by a set of bandpass filters whose bandwidths and
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Figure 8.1 Spectrographic displays of a 10-channel filter-bank analysis (with a non-linear
frequency spacing of the channels), shown for one example of the word “three” and two
examples of the word “eight”. It can be seen that the examples of “eight” are generally
similar, although the lower one has a shorter gap for the [t] and a longer burst.
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spacings are roughly equal to those of critical bands and whose range of centre
frequencies covers the frequencies most important for speech perception (say from 300
Hz up to around 5 kHz). The total number of band-pass filters is therefore not likely to
be more than about 20, and successful results have been achieved with as few as 10.
When the necessary time-smoothing is included, the feature vector will represent the
signal power in the filters averaged over the frame interval.

The usual name for this type of speech analysis is filter-bank analysis. Whether it is
provided by a bank of discrete filters, implemented in analogue or digital form, or is
implemented by sampling the outputs from short-term Fourier transforms, is a matter of
engineering convenience. Figure 8.1 displays word patterns from a typical 10-channel
filter-bank analyser for two examples of one word and one example of another. It can be
seen from the frequency scales that the channels are closer together in the lower-
frequency regions.

A consequence of removing the effect of the fundamental frequency and of using
filters at least as wide as critical bands is to reduce the amount of information needed to
describe a word pattern to much less than is needed for the waveform. Thus storage and
computation in the pattern-matching process are much reduced.

8.3.2 Level normalization

Mean speech level normally varies by a few dB over periods of a few seconds, and
changes in spacing between the microphone and the speaker’s mouth can also cause
changes of several dB. As these changes will be of no phonetic significance, it is
desirable to minimize their effects on the distance metric. Use of filter-bank power
directly gives most weight to more intense regions of the spectrum, where a change of 2
or 3 dB will represent a very large absolute difference. On the other hand, a 3 dB
difference in one of the weaker formants might be of similar phonetic significance, but
will cause a very small effect on the power. This difficulty can be avoided to a large
extent by representing the power logarithmically, so that similar power ratios have the
same effect on the distance calculation whether they occur in intense or weak spectral
regions. Most of the phonetically unimportant variations discussed above will then have
much less weight in the distance calculation than the differences in spectrum level that
result from formant movements, etc.

Although comparing levels logarithmically is advantageous, care must be exercised in
very low-level sounds, such as weak fricatives or during stop-consonant closures. At
these times the logarithm of the level in a channel will depend more on the ambient
background noise level than on the speech signal. If the speaker is in a very quiet
environment the logarithmic level may suffer quite wide irrelevant variations as a result
of breath noise or the rustle of clothing. One way of avoiding this difficulty is to add a
small constant to the measured level before taking logarithms. The value of the constant
would be chosen to dominate the greatest expected background noise level, but to be
small compared with the level usually found during speech.

Differences in vocal effort will mainly have the effect of adding a constant to all
components of the log spectrum, rather than changing the shape of the spectrum
cross-section. Such differences can be made to have no effect on the distance metric
by subtracting the mean of the logarithm of the spectrum level of each frame from
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all the separate spectrum components for the frame. In practice this amount of level
compensation is undesirable because extreme level variations are of some phonetic
significance. For example, a substantial part of the acoustic difference between [f]
and any vowel is the difference in level, which can be as much as

Figure 8.2 Graphical representation of the distance between frames of the spectrograms
shown in Figure 8.1. The larger the blob the smaller the distance. It can be seen that there
is a continuous path of fairly small distances between the bottom left and top right when the
two examples of “eight” are compared, but not when “eight” is compared with “three”.
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30 dB. Recognition accuracy might well suffer if level differences of this magnitude
were ignored. A useful compromise is to compensate only partly for level variations,
by subtracting some fraction (say in the range 0.7 to 0.9) of the mean logarithmic level
from each spectral channel. There are also several other techniques for achieving a
similar effect.

A suitable distance metric for use with a filter bank is the sum of the squared
differences between the logarithms of power levels in corresponding channels (i.e. the
square of the Euclidean distance in the multi-dimensional space). A graphical
representation of the Euclidean distance between frames for the words used in Figure 8.1
is shown in Figure 8.2.

There are many other spectrally based representations of the signal that are more
effective than the simple filter bank, and some of these will be described in Chapter 10.
The filter-bank method, however, is sufficient to illustrate the pattern-matching principles
explained in this chapter.

8.4 END-POINT DETECTION FOR ISOLATED WORDS

The pattern comparison methods described above assume that the beginning and end
points of words can be found. In the case of words spoken in isolation in a quiet
environment it is possible to use some simple level threshold to determine start and
end points. There are, however, problems with this approach when words start or end
with a very weak sound, such as [f]. In such cases the distinction in level between the
background noise and the start or end of the word may be slight, and so the end
points will be very unreliably defined. Even when a word begins and ends in a strong
vowel, it is common for speakers to precede the word with slight noises caused by
opening the lips, and to follow the word by quite noisy exhalation. If these spurious
noises are to be excluded the level threshold will certainly have to be set high enough
to also exclude weak unvoiced fricatives. Some improvement in separation of speech
from background noise can be obtained if the spectral properties of the noise are also
taken into account. However, there is no reliable way of determining whether low-
level sounds that might immediately precede or follow a word should be regarded as
an essential part of that word without simultaneously determining the identity of the
word.

Of course, even when a successful level threshold criterion has been found, it is
necessary to take account of the fact that some words can have a period of silence within
them. Any words (such as “containing” and “stop”) containing unvoiced stop consonants
at some point other than the beginning belong to this category. The level threshold can
still be used in such cases, provided the end-of-word decision is delayed by the length of
the longest possible stop gap, to make sure that the word has really finished. When
isolated words with a final unvoiced stop consonant are used in pattern matching, a more
serious problem, particularly for English, is that the stop burst is sometimes, but not
always, omitted by the speaker. Even when the end points are correctly determined, the
patterns being compared for words which are nominally the same will then often be
inherently different.

Although approximate end points can be found for most words, it is apparent from the
above comments that they are often not reliable.
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8.5 ALLOWING FOR TIMESCALE VARIATIONS

Up to now we have assumed that any words to be compared will be of the same length,
and that corresponding times in separate utterances of a word will represent the same
phonetic features. In practice speakers vary their speed of speaking, and often do so
non-uniformly so that equivalent words of the same total length may differ in the
middle. This timescale uncertainty is made worse by the unreliability of end-point
detection. It would not be unusual for two patterns of apparently very different length
to have the underlying utterances spoken at the same speed, and merely to have a final
fricative cut short by the end-point detection algorithm in one case as a result of a
slight difference in level.

Some early implementations of isolated-word recognizers tried to compensate for the
timescale variation by a uniform time normalization to ensure that all patterns being
matched were of the same length. This process is a great improvement over methods such
as truncating the longer pattern when it is being compared with a shorter one, but the
performance of such machines was undoubtedly limited by differences in timescale. In
the 1960s, however, a technique was developed which is capable of matching one word
on to another in a way which applies the optimum non-linear timescale distortion to
achieve the best match at all points. The mathematical technique used is known as
dynamic programming (DP), and when applied to simple word matching the process is
often referred to as dynamic time warping (DTW). DP in some form is now almost
universally used in speech recognizers.

8.6 DYNAMIC PROGRAMMING FOR TIME ALIGNMENT

Assume that an incoming speech pattern and a template pattern are to be compared,
having n and N frames respectively. Some distance metric can be used to calculate
the distance, d(i, j), between frame i of the incoming speech and frame j of the
template. To illustrate the principle, in Figure 8.3 the two sets of feature vectors of
the words have been represented by letters of the word “pattern”. Differences in
timescale have been indicated by repeating or omitting letters of the word, and the
fact that feature vectors will not be identical, even for corresponding points of
equivalent words, is indicated by using different type styles for the letters. It is, of
course, assumed in this explanation that all styles of the letter “a” will yield a lower
value of distance between them than, say, the distance between an “a” and any
example of the letter “p”. To find the total difference between the two patterns, one
requires to find the sum of all the distances between the individual pairs of frames
along whichever path between the bottom-left and top-right corners in Figure 8.3 that
gives the smallest distance. This definition will ensure that corresponding frames of
similar words are correctly aligned.

One way of calculating this total distance is to consider all possible paths, and
add the values of d(i, j) along each one. The distance measure between the patterns
is then taken to be the lowest value obtained for the cumulative distance. Although
this method is bound to give the correct answer, the number of valid paths becomes
so large that the computation is impossible for any practical speech recognition
machine. Dynamic programming is a mathematical technique which guarantees to
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Figure 8.3 Illustration of a time-alignment path between two words that differ in
their timescale. Any point i, j can have three predecessors as shown.

find the cumulative distance along the optimum path without having to calculate the
cumulative distance along all possible paths.

Let us assume that valid paths obey certain common-sense constraints, such that
portions of words do not match when mutually reversed in time (i.e. the path on Figure 8.3
always goes forward with a non-negative slope). Although skipping single frames could be
reasonable in some circumstances, it simplifies the explanation if, for the present, we also
assume that we can never omit from the comparison process any frame from either pattern.
In Figure 8.3, consider a point i, j somewhere in the middle of both words. If this point is
on the optimum path, then the constraints of the path necessitate that the immediately
preceding point on the path is i-1, j or i-1, j-1 or i, j-1. These three points are associated
with a horizontal, diagonal or vertical path step respectively. Let D(i, j) be the cumulative
distance along the optimum path from the beginning of the word to point i, j, thus:

D(i, j) = ﬁd(x, ) .
xy=1,1 (8.1)
along the
best path

As there are only the three possibilities for the point before point i, j it follows that

D(i, j) = min[D(i -1, ), DG -1, j = 1), DG, j ~ D]+ d (i, /) . (8.2)

The best way to get to point i, j is thus to get to one of the immediately preceding points
by the best way, and then take the appropriate step to i, j. The value of D(1, 1) must be
equal to d(1, 1) as this point is the beginning of all possible paths. To reach points along
the bottom and the left-hand side of Figure 8.3 there is only one possible direction
(horizontal or vertical, respectively). Therefore, starting with the value of D(l, 1), values
of D(i, 1) or values of D(1, j) can be calculated in turn for increasing values of i or j. Let
us assume that we calculate the vertical column, D(1, j), using a reduced form of
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Equation (8.2) that does not have to consider values of D(i-1, j) or D(i-1, j-1). (As the
scheme is symmetrical we could equally well have chosen the horizontal direction
instead.) When the first column values for D(/, j) are known, Equation (8.2) can be
applied successively to calculate D(i, j) for columns 2 to n. The value obtained for D(n,
N) is the score for the best way of matching the two words. For simple speech
recognition applications, just the final score is required, and so the only working memory
needed during the calculation is a one-dimensional array for holding a column (or row)
of D(i, j) values. However, there will then be no record at the end of what the optimum
path was, and if this information is required for any purpose it is also necessary to store
a two-dimensional array of back-pointers, to indicate which direction was chosen at each
stage. It is not possible to know until the end has been reached whether any particular
point will lie on the optimum path, and this information can only be found by tracing
back from the end.

8.7 REFINEMENTS TO ISOLATED-WORD DP MATCHING

The DP algorithm represented by Equation (8.2) is intended to deal with variations of
timescale between two otherwise similar words. However, if two examples of a word have
the same length but one is spoken faster at the beginning and slower at the end, there will
be more horizontal and vertical steps in the optimum path and fewer diagonals. As a result
there will be a greater number of values of d(i, j) in the final score for words with timescale
differences than when the timescales are the same. Although it may be justified to have
some penalty for timescale distortion, on the grounds that an utterance with a very different
timescale is more likely to be the wrong word, it is better to choose values of such penalties
explicitly than to have them as an incidental consequence of the algorithm. Making the
number of contributions of d(i, j) to D(n, N) independent of the path can be achieved by
modifying Equation (8.2) to add twice the value of d(7, j) when the path is diagonal. One
can then add an explicit penalty to the right-hand side of Equation (8.2) when the step is
either vertical or horizontal. Equation (8.2) thus changes to:

DG, j) = min[D(i -1, j) + d(i, j) + hdp,
D(i-1,j-1)+2d(,)), (8.3)
DG, j - 1) +d(, j) + vdp).

Suitable values for the horizontal and vertical distortion penalties, hdp and vdp, would
probably have to be found by experiment in association with the chosen distance metric.
It is, however, obvious that, all other things being equal, paths with appreciable timescale
distortion should be given a worse score than diagonal paths, and so the values of the
penalties should certainly not be zero.

Even in Equation (8.3) the number of contributions to a cumulative distance will
depend on the lengths of both the example and the template, and so there will be a
tendency for total distances to be smaller with short templates and larger with long
templates. The final best-match decision will as a result favour short words. This bias can
be avoided by dividing the total distance by the template length.

The algorithm described above is inherently symmetrical, and so makes no
distinction between the word in the store of templates and the new word to be
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identified. DP is, in fact, a much more general technique that can be applied to a wide
range of applications, and which has been popularized especially by the work of
Bellman (1957). The number of choices at each stage is not restricted to three, as in the
example given in Figure 8.3. Nor is it necessary in speech recognition applications to
assume that the best path should include all frames of both patterns. If the properties of
the speech only change slowly compared with the frame interval, it is permissible to
skip occasional frames, so achieving timescale compression of the pattern. A
particularly useful alternative version of the algorithm is asymmetrical, in that vertical
paths are not permitted. The steps have a slope of zero (horizontal), one (diagonal), or
two (which skips one frame in the template). Each input frame then makes just one
contribution to the total distance, so it is not appropriate to double the distance
contribution for diagonal paths. Many other variants of the algorithm have been
proposed, including one that allows average slopes of 0.5, 1 and 2, in which the 0.5 is
achieved by preventing a horizontal step if the previous step was horizontal. Provided
the details of the formula are sensibly chosen, all of these algorithms can work well. In
a practical implementation computational convenience may be the reason for choosing
one in preference to another.

8.8 SCORE PRUNING

Although DP algorithms provide a great computational saving compared with
exhaustive search of all possible paths, the remaining computation can be substantial,
particularly if each incoming word has to be compared with a large number of
candidates for matching. Any saving in computation that does not affect the accuracy
of the recognition result is therefore desirable. One possible computational saving is to
exploit the fact that, in the calculations for any column in Figure 8.3, it is very unlikely
that the best path for a correctly matching word will pass through any points for which
the cumulative distance, D(i, j), is much in excess of the lowest value in that column.
The saving can be achieved by not allowing paths from relatively badly scoring points
to propagate further. (This process is sometimes known as pruning because the
growing paths are like branches of a tree.) There will then only be a small subset of
possible paths considered, usually lying on either side of the best path. If this economy
is applied it can no longer be guaranteed that the DP algorithm will find the best-
scoring path. However, with a value of score-pruning threshold that reduces the
average amount of computation by a factor of 5-10 the right path will almost always be
obtained if the words are fairly similar. The only circumstances where this amount of
pruning is likely to prevent the optimum path from being obtained will be if the words
are actually different, when the resultant over-estimate of total distance would not
cause any error in recognition.

Figures 8.4(a), 8.5 and 8.6 show DP paths using the symmetrical algorithm for
the words illustrated in Figures 8.1 and 8.2. Figure 8.4(b) illustrates the
asymmetrical algorithm for comparison, with slopes of 0, 1 and 2. In Figure 8.4
there is no time-distortion penalty, and Figure 8.5 with a small distortion penalty
shows a much more plausible matching of the two timescales. The score pruning
used in these figures illustrates the fact that there are low differences in cumulative
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Figure 8.4 (a) DP alignment between two examples of the word “eight”, with no timescale
distortion penalty but with score pruning. The optimum path, obtained by tracing back from
the top right-hand corner, is shown by the thick line, (b) Match between the same words as
in (a), but using an asymmetric algorithm with slopes of 0, 1 and 2.

distance only along a narrow band around the optimum path. When time alignment is
attempted between dissimilar words, as in Figure 8.6, a very irregular path is obtained,
with a poor score. Score pruning was not used in this illustration, because any path to the
end of the word would then have been seriously sub-optimal.
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Figure 8.5 As for Figure 8.4(a), but with a small timescale distortion penalty.
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Figure 8.6 The result of trying to align two dissimilar words (“three” and “eight”)
within the same DP algorithm as was used for Figure 8.5. The score pruning was
removed from this illustration, because any path to the end of the word would then have
been seriously sub-optimal. It can be seen that if the last frame had been removed from
the template, the path would have been completely different, as marked by blobs.
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8.9 ALLOWING FOR END-POINT ERRORS

If an attempt is made to match two intrinsically similar words when one has its specified
end point significantly in error, the best-matching path ought to align all the frames of
the two words that really do correspond. Such a path implies that the extra frames of the
longer word will all be lumped together at one end, as illustrated in Figure 8.7. As this
extreme timescale compression is not a result of a genuine difference between the words,
it may be better not to have any timescale distortion penalty for frames at the ends of the
patterns, and in some versions of the algorithm it may be desirable not to include the
values of d(i, j) for the very distorted ends of the path. If the chosen DP algorithm
disallows either horizontal steps or vertical steps, correct matching of words with serious
end-point errors will not be possible, and so it is probably better to remove the path slope
constraints for the end frames.

Time

ssssares

0 NE : Breath noise :

Figure 8.7 An example of the word “one” followed by breath noise, being aligned with a “one”
template. A timescale distortion penalty was used except for the beginning and end frames.

8.10 DYNAMIC PROGRAMMING FOR CONNECTED WORDS

Up to now we have assumed that the words to be matched have been spoken in isolation,
and that their beginnings and ends have therefore already been identified (although perhaps
with difficulty). When words are spoken in a normal connected fashion, recognition is
much more difficult because it is generally not possible to determine where one word ends
and the next one starts independently of identifying what the words are. For example, in the
sequence “‘six teenagers” it would be difficult to be sure that the first word was “six” rather
than “sixteen” until the last syllable of the phrase had been spoken, and “sixty” might also
have been possible before the [n] occurred. In some cases, such as the “grade A” example
given in Chapter 1, a genuine ambiguity may remain, but for most tasks any ambiguities are
resolved when at most two or three syllables have followed a word boundary.

There is another problem with connected speech as a result of co-articulation between
adjacent words. It is not possible even to claim the existence of a clear point where one
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word stops and the next one starts. However, it is mainly the ends of words that are affected
and, apart from a likely speeding up of the timescale, words in a carefully spoken
connected sequence do not normally differ greatly from their isolated counterparts except
near the ends. In matching connected sequences of words for which separate templates are
already available one might thus define the best-matching word sequence to be given by the
sequence of templates which, when joined end to end, offers the best match to the input. It
is of course assumed that the optimum time alignment is used for the sequence, as with DP
for isolated words. Although this model of connected speech totally ignores co-articulation,
it has been successfully used in many connected-word speech recognizers.

As with the isolated-word time-alignment process, there seems to be a potentially
explosive increase in computation, as every frame must be considered as a possible boundary
between words. When each frame is considered as an end point for one word, all other
permitted words in the vocabulary have to be considered as possible starters. Once again the
solution to the problem is to apply dynamic programming, but in this case the algorithm is
applied to word sequences as well as to frame sequences within words. A few algorithms
have been developed to extend the isolated-word DP method to work economically across
word boundaries. One of the most straightforward and widely used is described below.

In Figure 8.8 consider a point that represents a match between frame i of a multi-word
input utterance and frame j of template number k. Let the cumulative distance from the
beginning of the utterance along the best-matching sequence of complete templates
followed by the first j frames of template k be D(i, j, k). The best path through template k
can be found by exactly the same process as for isolated-word recognition. However, in
contrast to the isolated-word case, it is not known where on the input utterance the match
with template k should finish, and for every input frame any valid path that reaches the end
of template k could join to the beginning of the path through another template, representing
the next word. Thus, for each input frame i, it is necessary to consider all templates that
may have just ended in order to find which one has the lowest cumulative score so far. This
score is then used in the cumulative distance at the start of any new template, m:

D(i,1,m) = min[DG -1, L(k), )]+ d(i,1,m), (8.4)
OVer

where L(k) is the length of template k. The use of i-1 in Equation (8.4) implies that
moving from the last frame of one template to the first frame of another always involves
advancing one frame on the input (i.e. in effect only allowing diagonal paths between
templates). This restriction is necessary, because the scores for the ends of all other
templates may not yet be available for input frame i when the path decision has to be
made. A horizontal path from within template m could have been included in Equation
(8.4), but has been omitted merely to simplify the explanation. A timescale distortion
penalty has not been included for the same reason.

In the same way as for isolated words, the process can be started off at the
beginning of an utterance because all values of D(0, L(k), k) will be zero. At the end of
an utterance the template that gives the lowest cumulative distance is assumed to
represent the final word of the sequence, but its identity gives no indication of the
templates that preceded it. These can only be determined by storing pointers to the
preceding templates of each path as it evolves, and then tracing back when the final
point is reached. It is also possible to recover the positions in the input sequence
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Figure 8.8 Diagram indicating the best-matching path from the beginning of an utterance to the j®
frame of template 7, and the /" frame of the input. In the example shown i is in the middle of the
second word of the input, so the best path includes one complete template (T,) and a part of T,. The
cumulative distance at this point is denoted by D(i, j, 3), or in general by D(i, j, k) for the k" template.

where the templates of the matching sequence start and finish, so segmenting the
utterance into separate words. Thus we solve the segmentation problem by delaying the
decisions until we have seen the whole utterance and decided on the words.

The process as described so far assumes that any utterance can be modelled completely
by a sequence of word templates. In practice a speaker may pause between words, so giving
a period of silence (or background noise) in the middle of an utterance. The same algorithm
can still be used for this situation by also storing a template for a short period of silence,
and allowing this silence template to be included between appropriate pairs of valid words.
If the silence template is also allowed to be chosen at the start or end of the sequence, the
problem of end-point detection is greatly eased. It is only necessary to choose a threshold
that will never be exceeded by background noise, and after the utterance has been detected,
to extend it by several frames at each end to be sure that any low-intensity parts of the
words are not omitted. Any additional frames before or after the utterance should then be
well modelled by a sequence of one or more silence templates.

When a sequence of words is being spoken, unintentional extraneous noises (such as
grunts, coughs and lip smacks) will also often be included between words. In an isolated-
word recognizer these noises will not match well to any of the templates, and can be
rejected on this basis. In a connected-word algorithm there is no provision for not matching
any part of the sequence. However, the rejection of these unintentional insertions can be
arranged by having a special template, often called a wildcard template, that bypasses the
usual distance calculation and is deemed to match with any frame of the input to give a
standard value of distance. This value is chosen to be greater than would be expected for
corresponding frames of equivalent words, but less than should occur when trying to match
quite different sounds. The wildcard will then provide the best score when attempting to
match spurious sounds and words not in the stored template vocabulary, but should not
normally be chosen in preference to any of the well-matched words in the input.
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8.11 CONTINUOUS SPEECH RECOGNITION

In the connected-word algorithm just described, start and finish points of the input
utterance must at least be approximately determined. However it is not generally necessary
to wait until the end of an utterance before identifying the early words. Even before the
end, one can trace back along all current paths through the tree that represents the
candidates for the template sequence. This tree will always involve additional branching as
time goes forward, but the ends of many of the ‘twigs’ will not represent a low enough
cumulative distance to successfully compete with other twigs as starting points for further
branching, and so paths along these twigs will be abandoned. It follows that tracing back
from all currently active twigs will normally involve coalescence of all paths into a single
‘trunk’, which therefore represents a uniquely defined sequence of templates (see Figure
8.9). The results up to the first point of splitting of active paths can therefore be output
from the machine, after which the back-pointers identifying that part of the path are no
longer needed, nor are those representing abandoned paths. The memory used for storing
them can therefore be released for re-use with new parts of the input signal.

The recognizer described above can evidently operate continuously, with a single pass
through the input data, outputting its results always a few templates behind the current best
match. Silence templates are used to match the signal when the speaker pauses, and wildcards
are used for extraneous noises or inadmissible words. The time lag for output is determined
entirely by the need to resolve ambiguity. When two alternative sequences of connected
words both match the input well, but with different boundary points (e.g. “grey day” and
“grade A”) it is necessary to reach the end of the ambiguous sequence before a decision can
be reached on any part of it. (In the example just given, the decision might even then

Current point
in time

Unambiguous paths

Currantly active paths
——————— Abandoned paths

Figure 8.9 Trace-back through a word decision tree to identify unambiguous paths for a three-word
vocabulary continuous recognizer. Paths are abandoned when the cumulative distances of all routes
to the ends of the corresponding templates are greater than for paths to the ends of different template
sequences at the same points in the input. Template sequences still being considered are T -T,-T, T,,
T-T,-T,-T, and T -T-T-T,. Thus T, is being scored separately for two preceding sequences.
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be wrong because of inherent ambiguity in the acoustic signal.) On the other hand, if the
input matches very badly to all except one of the permitted words, all paths not including
that word will be abandoned as soon as the word has finished. In fact, if score pruning is
used to cause poor paths to be abandoned early, the path in such a case may be uniquely
determined even at a matching point within the word. There is plenty of evidence that
human listeners also often decide on the identity of a long word before it is complete if
its beginning is sufficiently distinctive.

8.12 SYNTACTIC CONSTRAINTS

The rules of grammar often prevent certain sequences of words from occurring in human
language, and these rules apply to particular syntactic classes, such as nouns, verbs, etc.
In the more artificial circumstances in which speech recognizers are often used, the tasks
can sometimes be arranged to apply much more severe constraints on which words are
permitted to follow each other. Although applying such constraints requires more care in
designing the application of the recognizer, it usually offers a substantial gain in
recognition accuracy because there are then fewer potentially confusable words to be
compared. The reduction in the number of templates that need to be matched at any point
also leads to a computational saving.

8.13 TRAINING A WHOLE-WORD RECOGNIZER

In all the algorithms described in this chapter it is assumed that suitable templates for the
words of the vocabulary are available in the machine. Usually the templates are made
from speech of the intended user, and thus a training session is needed for enrolment of
each new user, who is required to speak examples of all the vocabulary words. If the
same user regularly uses the machine, the templates can be stored in some back-up
memory and re-loaded prior to each use of the system. For isolated-word recognizers the
only technical problem with training is end-point detection. If the templates are stored
with incorrect end points the error will affect recognition of every subsequent occurrence
of the faulty word. Some systems have tried to ensure more reliable templates by time
aligning a few examples of each word and averaging the measurements in corresponding
frames. This technique gives some protection against occasional end-point errors,
because such words would then give a poor match in this alignment process and so could
be rejected.

If a connected-word recognition algorithm is available, each template can be
segmented from the surrounding silence by means of a special training syntax that only
allows silence and wildcard templates. The new template candidate will obviously not
match the silence, so it will be allocated to the wildcard. The boundaries of the wildcard
match can then be taken as end points of the template.

In acquiring templates for connected-word recognition, more realistic training
examples can be obtained if connected words are used for the training. Again the
recognition algorithm can be used to determine the template end points, but the syntax
would specify the preceding and following words as existing templates, with just the new
word to be captured represented by a wildcard between them. Provided the surrounding
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words can be chosen to give clear acoustic boundaries where they join to the new word,
the segmentation will then be fairly accurate. This process is often called embedded
training. More powerful embedded training procedures for use with statistical
recognizers are discussed in Chapters 9 and 11.

CHAPTER 8 SUMMARY

e Most early successful speech recognition machines worked by pattern matching on
whole words. Acoustic analysis, for example by a bank of bandpass filters, describes the
speech as a sequence of feature vectors, which can be compared with stored templates
for all the words in the vocabulary using a suitable distance metric. Matching is
improved if speech level is coded logarithmically and level variations are normalized.

¢ Two major problems in isolated-word recognition are end-point detection and
timescale variation. The timescale problem can be overcome by dynamic
programming (DP) to find the best way to align the timescales of the incoming word
and each template (known as dynamic time warping). Performance is improved by
using penalties for timescale distortion. Score pruning, which abandons alignment
paths that are scoring badly, can save a lot of computation.

¢ DP can be extended to deal with sequences of connected words, which has the added
advantage of solving the end-point detection problem. DP can also operate
continuously, outputting words a second or two after they have been spoken. A
wildcard template can be provided to cope with extraneous noises and words that are
not in the vocabulary.

* A syntax is often provided to prevent illegal sequences of words from being
recognized. This method increases accuracy and reduces the computation.

CHAPTER 8 EXERCISES

E8.1 Give examples of factors which cause acoustic differences between utterances of
the same word. Why does simple pattern matching work reasonably well in spite of
this variability?

E8.2 What factors influence the choice of bandwidth for filter-bank analysis?

E8.3 What are the reasons in favour of logarithmic representation of power in filter-
bank analysis? What difficulties can arise due to the logarithmic scale?

E8.4 Explain the principles behind dynamic time warping, with a simple diagram.

E8.5 Describe the special precautions which are necessary when using the symmetrical
DTW algorithm for isolated-word recognition.

E8.6 How can a DTW isolated-word recognizer be made more tolerant of end-point
errors?

E8.7 How can a connected-word recognizer be used to segment a speech signal into
individual words?

E8.8 What extra processes are needed to turn a connected-word recognizer into a
continuous recognizer?

E8.9 Describe a training technique suitable for connected-word recognizers.



CHAPTER 9

Introduction to Stochastic
Modelling

9.1 FEATURE VARIABILITY IN PATTERN MATCHING

The recognition methods described in the previous chapter exploit the fact that repeated
utterances of the same word normally have more similar acoustic patterns than utterances
of different words. However, it is to be expected that some parts of a pattern may vary
more from occurrence to occurrence than do other parts. In the case of connected words,
the ends of the template representing each word are likely to have a very variable degree
of match, depending on the amount that the input pattern is modified by co-articulation
with adjacent words. There is also no reason to assume that the individual features of a
feature vector representing a particular phonetic event are of equal consistency. In fact, it
may well occur that the value of a feature could be quite critical at a particular position
in one word, while being very variable and therefore not significant in some part of a
different word.

Timescale variability has already been discussed in Chapter 8. It must always be
desirable to have some penalty for timescale distortion, as durations of speech sounds are
not normally wildly different between different occurrences of the same word. However,
there is no reason to assume that the time distortion penalty should be constant for all
parts of all words. For example, it is known that long vowels can vary in length a lot,
whereas most spectral transitions associated with consonants change in duration only
comparatively slightly.

From the above discussion it can be seen that the ability of a recognizer to distinguish
between words is likely to be improved if the variability of the patterns can be taken into
account. We should not penalize the matching of a particular word if the parts that match
badly are parts which are known to vary extensively from utterance to utterance. To use
information about variability properly we need to have some way of collecting statistics
which represent the variability of the word patterns, and a way of using this variability in
the pattern-matching process.

The basic pattern-matching techniques using DTW as described in Chapter 8 started
to be applied to ASR in the late 1960s and became popular during the 1970s. However,
the application of statistical techniques to this problem was also starting to be explored
during the 1970s, with early publications being made independently by Baker (1975)
working at Carnegie-Mellon University (CMU) and by Jelinek (1976) from IBM. These
more powerful techniques for representing variability have gradually taken over from
simple pattern matching. In the period since the early publications by Baker and by
Jelinek, there has been considerable research to refine the use of statistical methods for
speech recognition, and some variant of these methods is now almost universally adopted
in current systems.

This chapter provides an introduction to statistical methods for ASR. In order to
accommodate pattern variability, these methods use a rather different way of defining the
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degree of fit between a word and some speech data, as an alternative to the ‘cumulative
distance’ used in Chapter 8. This measure of degree of fit is based on the notion of
probability, and the basic theory is explained in this chapter. For simplicity in
introducing the concepts, the discussion in this chapter will continue to concentrate on
words as the recognition unit. In practice, the majority of current recognition systems
represent words as a sequence of sub-word units, but the underlying theory is not
affected by the choice of unit. The use of sub-word units for recognition, together with
other developments and elaborations of the basic statistical method will be explained in
later chapters. In the following explanation, some elementary knowledge of statistics and
probability theory is assumed, but only at a level which could easily be obtained by
referring to a good introductory textbook (see Chapter 17 for some references).

9.2 INTRODUCTION TO HIDDEN MARKOV MODELS

Up to now we have considered choosing the best matching word by finding the template
which gives the minimum cumulative ‘distance’ along the optimum matching path. An
alternative approach is, for each possible word, to postulate some device, or model,
which can generate patterns of features to represent the word. Every time the model for
a particular word is activated, it will produce a set of feature vectors that represents an
example of the word, and if the model is a good one, the statistics of a very large number
of such sets of feature vectors will be similar to the statistics measured for human
utterances of the word. The best matching word in a recognition task can be defined as
the one whose model is most likely to produce the observed sequence of feature vectors.
What we have to calculate for each word is thus not a ‘distance’ from a template, but the
a posteriori probability that its model could have produced the observed set of feature
vectors. We do not actually have to make the model produce the feature vectors, but we
use the known properties of each model for the probability calculations. We will assume
for the moment that the words are spoken in an ‘isolated” manner, so that we know where
the start and end of each word are, and the task is simply to identify the word. Extensions
to sequences of words will be considered in Section 9.11.

We wish to calculate the a posteriori probability, P(w|Y), of a particular word, w,
having been uttered during the generation of a set of feature observations, Y. We can use
the model for w to calculate P(Y|w), which is the probability of ¥ conditioned on word
w (sometimes referred to as the likelihood of w). To obtain P(w|Y), however, we must
also include the a priori probability of word w having been spoken. The relationship
between these probabilities is given by Bayes’ rule:

_ P(Y |w)P(w)
Py

This equation states that the probability of the word given the observations is equal to the
probability of the observations given the word, multiplied by the probability of the word
(irrespective of the observations), and divided by the probability of the observations. The
probability, P(Y), of a particular set of feature observations, ¥, does not depend on which
word is being considered as a possible match, and therefore only acts as a scaling factor
on the probabilities. Hence, if the goal is to find the word w which maximizes P(w|Y),
the P(Y) term can be ignored, because it does not affect the choice of word. If for the

P(w|Y) ©.1)
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particular application all permitted words are equally likely, then the P(w) term can also
be ignored, so we merely have to choose the word model that maximizes the probability,
P(Y|w), of producing the observed feature set, Y. In practice for all but the simplest
speech recognizers the probability of any particular word occurring will depend on many
factors, and for large vocabularies it will depend on the statistics of word occurrence in
the language. This aspect will be ignored in the current chapter, but will be considered
further in Chapter 12.

The way we have already represented words as sequences of template frames gives us
a starting point for the form of a possible model. Let the model for any word be capable
of being in one of a sequence of states, each of which can be associated with one or more
frames of the input. In general the model moves from one state to another at regular
intervals of time equal to the frame interval of the acoustic analysis. However, we know
that words can vary in timescale. In the asymmetrical DP algorithm mentioned in
Chapter 8 (Figure 8.4(b), showing slopes of 0, 1 and 2) the timescale variability is
achieved by repeating or skipping frames of the template. In our model this possibility
can be represented in the sequence of states by allowing the model to stay in the same
state for successive frame times, or to bypass the next state in the sequence. The form of
this simple model is shown in Figure 9.1. In fact, if a word template has a sequence of
very similar frames, such as might occur in a long vowel, it is permissible to reduce the
number of states in the model by allowing it to stay in the same state for several
successive frames.

The mathematics associated with a model such as the one shown in Figure 9.1 can be
made more tractable by making certain simplifying assumptions. To be more specific, it
is assumed that the output of the model is a stochastic process (i.e. its operation is
governed completely by a set of probabilities), and that the probabilities of all its
alternative actions at any time ¢ depend only on the state it is in at that time, and not on
the value of ¢. The current output of the model therefore depends on the identity of the
current state, but is otherwise independent of the sequence of previous states that it has
passed through to reach that state. Hence the model’s operation is a first-order Markov
process, and the sequence of states is a first-order Markov chain. Although the model
structure shown in Figure 9.1 is quite appropriate for describing words that vary in
timescale, the equations that represent the model’s behaviour have exactly the same form
in the more general case where transitions are allowed between all possible pairs of
states.

At every frame time the model is able to change state, and will do so randomly
in a way determined by a set of transition probabilities associated with the state
it is currently in. By definition, the probabilities of all transitions from a

Figure 9.1. State transitions for a simple word model, from an initial state, I, to a final state, F.



130 Speech Synthesis and Recognition

state at any frame time must sum to 1, but the sum includes the probability of a transition
that re-enters the same state. When the model is activated a sequence of feature vectors
is emitted, in the same form as might be observed when a word is spoken. However, in
the type of model considered here, observing the feature vectors does not completely
determine what the state sequence is. In addition to its transition probabilities, each state
also has associated with it a probability density function (p.d.f.) for the feature vectors.
Each p.d.f. can be used to calculate the probability that any particular set of feature
values could be emitted when the model is in the associated state. This probability is
usually known as the emission probability. The actual values of the observed features
are, therefore, probabilistic functions of the states, and the states themselves are hidden
from the observer. For this reason this type of model is called a hidden Markov model
(HMM).

The emission p.d.f. for a state may be represented as a discrete distribution, with a
probability specified separately for each possible feature vector. Alternatively, it is
possible to use a parameterized continuous distribution, in which feature vector
probabilities are defined by the parameters of the distribution. Although there are
significant advantages, which will be explained in Section 9.7, in modelling feature
probabilities as continuous functions, it will simplify the following explanation if we
initially consider only discrete probability distributions.

9.3 PROBABILITY CALCULATIONS IN HIDDEN MARKOV MODELS

In order to explain the HMM probability calculations, we will need to introduce some
symbolic notation to represent the different quantities which must be calculated. Notation
of this type can be found in many publications on the subject of HMMs for ASR. Certain
symbols have come to be conventionally associated with particular quantities, although
there is still some variation in the details of the notation that is used. In choosing the
notation for this book, our aims were to be consistent with what appears to be used the
most often in the published literature, while also being conceptually as simple as
possible.

We will start by assuming that we have already derived good estimates for the
parameters of all the word models. (Parameter estimation will be discussed later in the
chapter.) The recognition task is to determine the most probable word, given the
observations (i.e. the word w for which P(w|Y) is maximized). As explained in Section
9.2, we therefore need to calculate the likelihood of each model emitting the observed
sequence of features (i.e. the value of P(¥|w) for each word w).

Considering a single model, an output representing a whole word arises from the
model going through a sequence of states, equal in length to the number of observed
feature vectors, 7, that represents the word. Let the total number of states in the model be
N, and let s denote the state that is occupied during frame ¢ of the model’s output. We
will also postulate an initial state, I and a final state, F, which are not associated with any
emitted feature vector and only have a restricted set of possible transitions. The initial
state is used to specify transition probabilities from the start to all permitted first states
of the model, while the final state provides transition probabilities from all possible last
emitting states to the end of the word. The model must start in state / and end in state F,
so in total the model will go through a sequence of 742 states to generate 7 observations.
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The use of non-emitting initial and final states provides a convenient method for
modelling the fact that some states are more likely than others to be associated with the
first and the last frame of the word respectively'. These compulsory special states will
also be useful in later discussions requiring sequences of models.

The most widely used notation for the probability of a transition from state i to state
j is a . The emission probability of state j generating an observed feature vector y, is
usualfi}/ denoted b (y ). ‘

We need to cjorr'lpute the probability of a given model producing the observed
sequence of feature vectors, y toy . We know that this sequence of observations must
have been generated by a state seqlTJence of length T (plus the special initial and final
states) but, because the model is hidden, we do not know the identities of the states.
Hence we need to consider all possible state sequences of length 7. The probability of the
model generating the observations can then be obtained by finding the joint probability
of the observations and any one state sequence, and summing this quantity over all
possible state sequences of the correct length:

P(J”I’J’,Zs"'sy?’): Z P(.V],J’z,"',yT,SpSz,“',Sr)

over all possible
stale sequences
of length T

= Y P Yol 1805 S )P(S1, 820081, 9.2)

over all possible
State Sequences
of length T

where, for notational convenience, in the equations we are omitting the dependence of all
the probabilities on the identity of the model.

Now the probability of any particular state sequence is given by the product of the
transition probabilities:

T-1
P(s),8550 00 87) = ay, 1 ag, M rs (9.3)
1=1

where @ , is the probability of a transition from the state occupied at frame 7 to the

s
state at frame r+1; afsl and aer similarly define the transition probabilities from the
initial state I and to the final state F. If we assume that the feature vectors are generated
independently for each state, the probability of the observations given a particular state
sequence of duration T is the product of the individual emission probabilities for the
specified states:

T
Py, Y2 s Y0 | 81585, 087) = Hb,:(y,) . (9.4)
t=1

! Some published descriptions of HMM theory do not include special initial and final states. Initial
conditions are sometimes accommodated by a vector of probabilities for starting in each of the states
(e.g. Levinson et at., 1983), which has the same effect as the special initial state used here. For the
last frame of the word, approaches include allowing the model to end in any state (e.g. Levinson et
al., 1983) or enforcing special conditions to only allow the model to end in certain states. The
treatment of the first and last frames does not alter the basic form of the probability calculations, but
it may affect the details of the expressions associated with the start and end of an utterance.
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Thus the probability of the model emitting the complete observation sequence is:

P(yl’yb"')yi"): Z Hb (yr) 55,01 bsr(yT)ang-

over all possible 9.5)
stale sequences

of length T

Unless the model has a small number of states and 7 is small, there will be an
astronomical number of possible state sequences, and it is completely impractical to
make the calculations of Equation (9.5) directly for all sequences. One can, however,
compute the probability indirectly by using a recurrence relationship. We will use the
symbol o,(1) to be the probability? of the model having produced the first ¢ observed
feature vectors and being in state j for frame 7. The recurrence can be computed in terms
of the values of o.(z-1) for all possible previous states, i.

a; (t) P(ylsyp ) »J’; o :j) (96)

Zfr,-(t—l)ag bi(y,) forl<t<T ©.7)

i=1

The value of a (1), for the first frame, is the product of the transition probability a from
the initial staté 7, and the emission probability b (y ).

a;(]) = a,{,‘b;(lﬁ) (9.8)

The value of a(7T), for the last frame in the observation sequence, can be computed for
any of the emiftting states by repeated applications of Equation (9.7), starting from the
result of Equation (9.8).

The total probability of the complete set of observations being produced by the model
must also include the transition probabilities into the final state F. We will define this
quantity as a (T), thus:

N
P(y,,yz,---,yf)=a;(T)=Za£(T)a;F . (9.9)
i=1

Equation (9.9) gives the probability of the model generating the observed data, taking
into account all possible sequences of states. This quantity represents the probability of
the observations given the word model (the P(Y|w) term in Equation (9.1)). Incorporating
the probability of the word, P(w), gives a probability that is a scaled version of P(w|Y),
the probability of the word having been spoken. Provided that the model is a good
representation of its intended word, this probability provides a useful measure which can
be compared with the probability according to alternative word models in order to
identify the most probable word.

2 In the literature, this probability is almost universally represented by the symbol a. However, there
is some variation in the way in which the a symbol is annotated to indicate dependence on state and
time. In particular, several authors (e.g. Rabiner and Juang (1993)) have used a(j), whereas we have
chosen a](t) (as used by Knill and Young (1997) for example). The same variation applies to the
quantities 5, ? and ?, which will be introduced later. The differences are only notational and do not
affect the meaning of the expressions, but when reading the literature it is important to be aware
that such differences exist.
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9.4 THE VITERBI ALGORITHM

The probability of the observations, given the model, is made up of contributions from a very
large number of alternative state sequences. However, the probability distributions associated
with the states will be such that the probability of the observed feature vectors having been
produced by many of the state sequences will be microscopically small compared with the
probabilities associated with other state sequences. One option is to ignore all but the single
most probable state sequence. Equation (9.2) can be modified accordingly to give the
probability, p, of the observations for this most probable state sequence:

P(y, ¥y ¥7) = max (P(y11y2"”’yT!SlfSZ'""ST))‘
over all possible
state sequences (9.10)
of length T

The probability associated with the most probable sequence of states can be calculated
using the Viterbi algorithm (Viterbi, 1967), which is a dynamic programming algorithm
applied to probabilities. Let us define a new probability, &(¢) as the probability of being

J
in the j" state, after having emitted the first 7 feature vectors and having been through the
most probable sequence of t-1 preceding states in the process. Again we have a
recurrence relation, equivalent to the one shown in Equation (9.7):

a(t) = T,f,’f{df(t_l)aﬁ)bf(yf) for 1<t<T . 9.11)

The conditions for the first state are the same as for the total probability, which was
given in Equation (9.8):

&j(l)=aj(1)=a!jbj(yl)‘ (9.12)

Successive applications of Equation (9.11) will eventually yield the values for a7
Defining dF(T) as the probability of the full set of observations being given by the most

probable sequence of states, its value is given by:

ﬁ(ylsyh'“sy?') :dF(T) = rg?r)i((di(T)aiF)- (9.13)

The difference between the total probability and the probability given by the Viterbi
algorithm depends on the magnitude of the contribution of the ‘best’ state sequence to
the total probability summed over all possible sequences. If the feature-vector p.d.f.s of
all states are substantially different from each other, the probability of the observations
being produced by the best sequence might not be appreciably less than the total
probability including all possible sequences. The difference between the total probability
and the probability for the best sequence will, however, be larger if the best path includes
several consecutive frames shared between a group of two or more states which have very
similar p.d.f.s for the feature vectors. Then the probability of generating the observed
feature vectors would be almost independent of how the model distributed its time
between the states in this group. The total probability, which is the sum over all possible
allocations of frames to states, could then be several times the probability for the best
sequence. This point will be considered again in Section 9.14. However, the design of
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models used in current recognizers is such that sequences of states with similar emission
p.d.f.s generally do not occur. As a consequence, in spite of the theoretical disadvantage
of ignoring all but the best path, in practice the differences in performance between the
two methods are usually small. Some variant of the Viterbi algorithm is therefore usually
adopted for decoding in practical speech recognizers, as using only the best path requires
less computation. (There can also be considerable advantages for implementation, as will
be discussed in Section 9.12.)

9.5 PARAMETER ESTIMATION FOR HIDDEN MARKOV MODELS

So far, we have considered the probability calculations required for recognition. We have
assumed that the parameters of the models, i.e. the transition probabilities and emission
p.d.f.s for all the states, are already set to their optimum values for modelling the
statistics of a very large number of human utterances of all the words that are to be
recognized. In the discussion which follows we will consider the problem of deriving
suitable values for these parameters from a quantity of training data. We will assume for
the moment that the body of training data is of sufficient size to represent the statistics
of the population of possible utterances, and that we have sufficient computation
available to perform the necessary operations.

The training problem can be formulated as one of determining the values of the
HMM parameters in order to maximize the probability of the training data being
generated by the models (P(Y|w) in Equation (9.1)). Because this conditional
probability of the observations Y given word w is known as the ‘likelihood’ of the word
w, the training criterion that maximizes this probability is referred to as maximum
likelihood (other training criteria will be considered in Chapter 11). If we knew which
frames of training data corresponded to which model states, then it would be
straightforward to calculate a maximum-likelihood estimate of the probabilities
associated with each state. The transition probabilities could be calculated from the
statistics of the state sequences, and the emission probabilities from the statistics of the
feature vectors associated with each state. However, the ‘hidden’ nature of the HMM
states is such that the allocation of frames to states cannot be known. Therefore,
although various heuristic methods can be formulated for analysing the training data to
give rough estimates of suitable model parameters, there is no method of calculating
the optimum values directly.

If, however, one has a set of rough estimates for all the parameters, it is possible to
use their values in a procedure to compute new estimates for each parameter. This
algorithm was developed by Baum and colleagues and published in a series of papers in
the late 1960s and early 1970s. It has been proved by Baum (1972) that new parameter
estimates derived in this way always produce a model that is at least as good as the old
one in representing the data, and in general the new estimates give an improved model.
If we iterate these operations a sufficiently large number of times the model will
converge to a locally optimum solution. Unfortunately, it is generally believed that the
number of possible local optima is so vast that the chance of finding the global optimum
is negligible. However, it is unlikely that the global optimum would in practice be much
better than a good local optimum, derived after initialization with suitable starting
estimates for the models.
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Baum’s algorithm is an example of a general method which has come to be known as
the expectation-maximization (EM) algorithm (Dempster et al., 1977). The EM
algorithm is applicable to a variety of situations in which the task is to estimate model
parameters when the observable data are ‘incomplete’, in the sense that some information
(in this case the state sequence) is missing.

The detailed mathematical proofs associated with the derivation of the re-estimation
formulae for HMMs are beyond the scope of this book, although Chapter 17 gives
some references. In the current chapter, we will describe the reestimation calculations
and give some intuitive explanation. The basic idea is to use some existing estimates
for the model parameters to calculate the probability of being in each state at every
frame time, given these current estimates of the model parameters and the training
data. The probabilities of occupying the states can then be taken into account when
gathering the statistics of state sequences and of feature vectors associated with the
states, in order to obtain new estimates for the transition probabilities and for the
emission probabilities respectively. In the re-estimation equations we will use a bar
above the symbol to represent a re-estimated value, and the same symbol without the
bar to indicate its previous value.

9.5.1 Forward and backward probabilities

Suppose for the moment that we have just a single example of a word, and that this
example comprises the sequence of feature vectors y, to y,. Also, assume that the word
has been spoken in isolation and we know that y corresponds to the first frame of the
word, with y_ representing the last frame. In Equation (9.7) we showed how to compute
o(1), which is the probability of the model having emitted the first  observed feature
vectors and being in state j. The values of o(1) are computed for successive frames in
order, going forward from the beginning of the utterance. When estimating parameters
for state j, we will need to know the probability of being in the state at time #, while the
model is in the process of emitting all the feature vectors that make up the word. For this
purpose we also need to compute §(1), which is defined as the backward probability of
emitting the remaining 7-f observed vectors that are needed to complete the word, given
that the ;" state was occupied for frame ¢:

ﬁj(r)=P(yr+15y.r+2!'")yTESf =.}) (9.14)

When calculating the backward probabilities, it is necessary to start applying the
recurrence from the end of the word and to work backwards through the sequence of
frames. Each backward probability at time ¢ is therefore derived from the backward
probabilities at time 7+1. Because the notation convention is to move from state i to state
J, it is usual to specify the recurrence relationship for the backward probabilities with the
i" state occupied at time ¢. Thus the value of £ (¢) is computed in terms of the values of
B (t+1) for all possible following states j:
J

N
ﬁ;(r)=Za,}-bj(y,+,)ﬁj(t+1) forT>t>1. 9.15)

J=1
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In contrast to Equation (9.7), it will be noticed that Equation (9.15) does not include the
emission probability for frame z. This difference in form between the definitions of o(1)
and f3(t) is necessary because of the way we will combine these quantities in Equation
(9.17).

The first application of Equation (9.15) uses the fact that the model must be in the
final state, F, at the end of the word. At this point all features will have been emitted, so
the value of (7) is just the probability of a transition from state i to state F:

The probability of the model emitting the full set of T feature vectors and being in the j*
state for the r™ observed frame must be the product of the forward and backward
probabilities for the given state and frame pair, thus:

P(ylsst"'nyvSr=j)=aj(!)ﬁj(t)‘ (917)

Although it is not relevant to parameter re-estimation, it is interesting to note that, as the
probability of generating the full set of feature vectors and being in state j for frame ¢ is
given by ou(1)B(1), the probability of the observations irrespective of which state is
occupied in frame 7 must be the value of this product summed over all states. We can
write this probability as:

N
P(yi,y2,-,yr)= Zai(f)ﬁf () for any value of ¢, (9.18)

i=1

where here we use i as the state index for ease of comparison with Equation (9.9).
Equation (9.18) is true for any value of the frame time, 7, and Equation (9.9) is thus just
a special case for the last frame, where /=T and in consequence 3(T)=a,,.

9.5.2 Parameter re-estimation with forward and backward probabilities

In practice when training a set of models there would be several (say E) examples of each
word, so the total number of feature vectors available is the sum of the numbers of
frames for the individual examples. The re-estimation should use all the training
examples with equal weight. For this purpose it is necessary to take into account that the
current model would be expected to fit some examples better than others, and we need to
prevent these examples from being given more weight in the re-estimation process. The
simple product o,(1)5(1) does not allow for these differences, as it represents the joint
probability of being in state j at time ¢ and generating a particular set of feature vectors
representing one example. In order to be able to combine these quantities for different
examples, we require the conditional probability of occupying state j given the feature
vectors.

We will define a quantity y(#), which is the probability of being in state j for
frame ¢, given the feature vectors for one example of the word. This quantity can be
derived from oL(1)f3 (1) using Bayes’ rule, and it can be seen that the result involves
simply normalizing o, (1)p,(t) by the probability of the model generating the
observations.
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P(yi,y2, . yr |50 = ))P(sc = j)
P(J’l,yzs‘“,)’?‘)
_ PGy s =0 08,0 ©-19)
P(ylsyz""’y?‘) aF(T)

yit)=P(s; = jlyi,y2,---yr)=

The normalization by o (7) thus ensures that when there are several examples of the
word, all frames of all engamples will contribute equally to the re-estimation.

The probability, b (k), of observing some particular feature vector, k, when the model
is in state j can be dérived as the probability of the model being in state j and observing
k, divided by the probability of the model being in state j. In order to take into account
the complete set of training examples of the word, we need to sum both the numerator
and the denominator over all frames of all examples. Hence, assuming E examples of the
word, the re-estimate for the emission probability is given by:

E

> 7.0

gj(k)= e=1 {: y;c=k: 1.2, T}

Zi}’;‘(%e)

e=] t=1

(9.20)

In Equation (9.20), quantities for the e™ example of the word are denoted by 7 for the
number of frames in the example and y  for the feature vector at the " frame of the
example, with (7, e) being used for the value of (1) for the e example.

The denommator in Equation (9.20) is the sum of the individual probabilities of being
in state j for each frame time, given the complete set of training data, and is sometimes
referred to as the state occupancy. In some publications, the term count is also used
when referring to this quantity. Although it is in fact a sum of probabilities, because it
has been summed over the complete data set it is equivalent to the expected number, or
count, of frames for which the state is occupied (although it will not in general be an
integer number of frames).

In order to re-estimate the transition probabilities, we need to calculate the probability
of a transition between any pair of states. This calculation is basically straightforward,
but care needs to be taken to treat the start and end of the word correctly’. In the
following explanation, transitions from the initial state and to the final state will be
treated separately from transitions between emitting states.

Returning for the moment to considering only a single example of the word, let us
define éij( t) to be the probability that there is a transition from state i to state j at time ¢,
given that the model generates the whole sequence of feature vectors representing the
example of the word:

a; (f)ﬂu _;(y.H-l)ﬁ_;(t 1)
ap(T)

;;—(f) for1<t<T. (9.21)

3 The details of the equations given here apply to the use of special initial and final states and there
will be slight differences if, for example, the model is allowed to end in any state (as in some
publications).
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Equation (9.21) can be applied to calculate the probability of a transition between any
pair of emitting states at frame times starting from 7=1 up until r=7-1. For the final
frame, =7, there cannot be a transition to another emitting state and the only possible
transition is to the final state, F; with probability & (T), thus:

a;(Ta;

Sir (1) = 2, (T)

(9.22)

For the initial state, we need to calculate the probability of a transition to each of the
emitting states. This transition from the initial state is only possible at the start of the
word, before any observations have been generated. If we regard this time as being =0
then, given that the model must start in state /, another special instance of Equation
(9.21) can be derived for all transitions out of state /, thus:

a,ybj(yl)ﬁj(l)

O =

(9.23)

The total probability of a transition between any pair of states i and j is obtained by
summing the values of & (1) over all frames for which the relevant transition is possible.
Dividing this quantity by the total probability Y, of occupying state i gives the re-estimate
for the transition probability a, Assuming E examples of the word, for a transition
between any two emitting states we have:

if:,, (te)

ai‘=% forl<i,j<N, 020
}/,-‘{Iae)

Mm

e=1 t=1

where é (1, e) denotes the value of §, (1) for the e™ training example. Note that the
summatlon of &, ;1 e) over time only 1ncludes frames up until time 7 -1. The last frame is
not included as it cannot involve a transition to another emlttmg state, and so by
definition the value of Z:,I.I.(T, e) is zero for all pairs of emitting states.
Transitions from an emitting state to the final state F can only occur at time 7, and so
the transition probability a,, may be re-estimated as:
E

D (L)

el :
ar=-—-2=——— forl<i<N.

T
yi(t,e)

t=1

il
3

(9.25)

Mm

o

Transitions from the initial state / can only occur at the start (time =0), when the model
must be in state I, so y,0, e)=1 for all examples and hence:

E
D £,(0.0)
e=1

(9.26)

a‘r=

n forl<j<N.
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The use of forward and backward probabilities to re-estimate model parameters is
usually known either as the forward-backward algorithm or as the Baum-Welch
algorithm. The second name in “Baum-Welch” recognizes the fact that Lloyd Welch was
working with Baum on this subject in the early 1960s.

After re-estimation using the Baum-Welch algorithm, the probability of the training
data given the new set of models is guaranteed to be higher than the probability for the
previous model set, except at the critical point at which a local optimum has been
reached and therefore the models (and hence the probability) are unchanged. The
procedure can thus be repeated in an iterative manner until the difference between the
new and old probabilities is sufficiently small that the training process can be regarded as
being close enough to its local optimum.

It can be seen from the expression of Equations (9.24), (9.25) and (9.26) using the
quantities defined in Equations (9.21), (9.22) and (9.23) that, if any of the a are
initially given values of zero, their re-estimated values will also always be Jero.
Setting initial values of some transition probabilities to zero is thus a convenient way
of constraining the structure of the word model to prevent it from producing
intrinsically implausible state sequences. For example, it would not seem reasonable
to allow the model to occupy a state early in the word, and then return to it after
having been through several succeeding states. The sequence possibilities in Figure
9.1 are very limited, only allowing three non-zero values of a for any state i, yet this
structure is very plausible as a word model. Constraining the Possible state sequences
by setting most of the initial values of the transition probabilities to zero has the
added benefit of greatly reducing the computation required for both recognition and
training.

Model initialization issues, including the choice of initial conditions for the emission
p.d.f.s, will be discussed in more detail later on in this chapter.

9.5.3 Viterbi training

It is also possible to re-estimate the model parameters using only the most likely path
through the states, as given by the Viterbi algorithm. The calculations are
substantially simplified by just considering a single path. For any frame of input data
the probability of a state being occupied can only be unity or zero, depending on
whether that state is on the path. The most likely path can be found by calculating the
values of a” (z) for all states and frames to the end of the word using Equation (9.11),
and then tracing back from the final state in the same way as for the DTW method
described in Chapter 8. In contrast to Baum-Welch re-estimation, the backward
probabilities are not required.

Having identified the most likely path, each input frame will have been allocated to
a single state to provide a state-level segmentation of the training data. It will therefore
be known which state produced each observed feature vector, and also which states
preceded and followed each state along the path. For the re-estimation it is then only
necessary, for all examples of each training word, to accumulate the statistics of the
feature vectors that occur for each occupied state, and of the transitions between states
along the most likely path. Using the identified path, there will need to be counts of the
following events, totalled over all E examples of the word:



140 Speech Synthesis and Recognition

i. the number of frames for which each state gives rise to each of the possible feature
vectors, with the count for state j and feature vector & being denoted by n(y=k);

ii. the number of frames for which a transition occurs between each pair of states, which
for transitions between states i and j will be denoted by n;

iii. the number of occasions for which each state is occupied for the first frame of each
example of the word, which for state j will be denoted by n,;

iv. the number of occasions for which each state is occupied for the last frame of each
example of the word, which for state i will be denoted by n,,.

v. the number of frames for which each state is occupied, which will be denoted by 7,
and n, for states i and j respectively.

The re-estimation formulae are then simply given by:

- n;(y, =k)
b(k)=—1"—", (9.27)
nj

n.

a; = —L for all pairs of emitting states, 1<i, j< N, (9.28)
n; '

Ty = n,:?_: forallisuchthat1<i< N, (9.29)
i

ay; = ?‘5’ forall jsuchthatl< j<N. (9.30)

Note that the above re-estimation equations for Viterbi training are in fact equivalent to the
corresponding Baum-Welch equations (9.20, 9.24, 9.25, 9.26) with the values of all the
frame-specific state occupancy probabilities (?j(t, e), etc.) set either to one or to zero,
depending on whether or not the relevant states are occupied at the given frame time. As with
the Baum-Welch re-estimation, the Viterbi training procedure (determination of the most
likely state sequence followed by estimation of the model parameters) can be applied in an
iterative manner until the increase in the likelihood of the training data is arbitrarily small.

Because the contribution to the total probability is usually much greater for the most
likely path than for all other paths, an iterative Viterbi training procedure usually gives
similar models to those derived using the Baum—Welch recursions. However, the Viterbi
method requires much less computation and it is therefore often (and successfully)
adopted as an alternative to full Baum-Welch training.

9.6 VECTOR QUANTIZATION

In the discussion above it was assumed that the data used for training the models include
a large enough number of words for reliable values to be obtained for all the parameters.
For any statistical estimation to give sensible results it is obvious that the total number of
data items must be significantly larger than the number of separate parameters to be
estimated for the distribution. If the number of possible feature vectors is very large, as
a result of many possible values for each of several individual features, many feature



Introduction to Stochastic Modelling 141

vectors will not occur at all in a manageable amount of training data. In consequence all
the generation probabilities for these feature vectors will be estimated as zero. If such a
feature vector then occurred in the input during operational use of the recognizer,
recognition would be impossible.

The multi-dimensional feature space for any practical method of speech analysis is
not uniformly occupied. The types of spectrum cross-section that occur in speech signals
cause certain regions of the feature space, for example those corresponding to the spectra
of commonly occurring vowels and fricatives, to be highly used, and other regions to be
only sparsely occupied. It is possible to make a useful approximation to the feature
vectors that actually occur by choosing just a small subset of vectors, and replacing each
measured vector by the one in the subset that is ‘nearest’ according to some suitable
distance metric. This process of vector quantization (VQ) is also used in systems for
efficient speech coding (see Section 4.3.5).

Setting up a vector quantizer usually involves first applying a clustering algorithm to
group similar vectors together, then choosing a representative quantized vector for each
cluster. The performance of such a quantizer depends on the number of different vectors and
how they are chosen, but the details of these decisions are outside the scope of this book. It
is, however, clear that if a fairly small codebook of vectors is chosen to represent the well-
occupied parts of the feature space, all of these quantized vectors will occur frequently in a
training database of moderate size. For each model state it will thus be possible to obtain
good estimates for the probability of all feature vectors that are likely to occur.

Even after vector quantization, a fully trained model for a particular word will often
have some feature vectors that are given zero probability for all states of the word. For
example, the word “one” would not be expected to contain any examples of a feature
representing the typical spectrum of an [s] sound. It is, however, important not to allow
the probabilities to remain exactly at zero. Otherwise there is the danger of error on an
input word that matches fairly well to the properties of one of the models except for just
one non-typical frame that is represented by a zero-probability feature vector. In such a
case the model will yield zero probability for that sequence of vectors, and the recognizer
will therefore not be able to choose the correct word. A simple solution is to replace the
zero value by a very small number. The model will then yield a low probability of
generating the observed features, but if the rest of the word is sufficiently distinctive even
this low value can be expected to be greater than the probability of generating the same
set of features from any of the competing models. Better estimates for the probability of
an unseen feature vector can be obtained by using a measure of distance from the vectors
that are observed for the word, so that the unseen vector is given a higher probability if
it is similar to those vectors which do occur in the training examples.

9.7 MULTI-VARIATE CONTINUOUS DISTRIBUTIONS

Vector quantization involves an approximation which unavoidably loses some
information from the original data, and any method for estimating the probability of an
unseen feature vector will inevitably be somewhat ad hoc. These limitations associated
with discrete distributions can be overcome by representing the distribution of feature
vectors by some suitable parametric description. Provided that an appropriate parametric
distribution can be found for describing the true distribution of the features, a useful
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estimate can be computed for the probability of any feature vector that may occur in the
training and recognition processes.

Many natural processes involve variable quantities which approximate reasonably
well to the normal (or Gaussian) distribution. The normal distribution has only two
independently specifiable parameters, the mean, p, and the standard deviation, 6. For
a quantity x, the probability density, ¢ (x), is given by:

—(x-p)*
20?

exp (9.31)

1
tﬁ():)—- O'-\/E

When quantities are distributed normally, this simple mathematical description of the
distribution makes it possible to calculate the probability of the quantity lying in any
range of values provided the mean and standard deviation of the distribution are known.
To calculate the probability of one particular value (i.e. a measured acoustic feature
vector) occurring, we need to consider the limiting case in which the size of the interval
for the range of values is infinitesimally small.

The definition of the continuous probability density function, ¢(x), of a variate, x, is
such that the probability of an observation lying in an infinitesimal interval of size dx
centred on x is O(x)dx, and is thus infinitesimally small. However, if continuous
probability density functions are used instead of discrete probability distributions in the
HMM equations given in Sections 9.3 to 9.5, the computation will still give the correct
relative likelihoods of the different words, as the infinitesimal interval, dx, is common to
all probability calculations. The probability of observing the features, P(Y),
independently of which word is spoken, is also affected in the same way by the size of
dx. The probability of the word given the features is therefore still correctly given by the
formula expressed in Equation (9.1), even if these probability densities are used instead
of actual probabilities for P(Y) and P(Y|w). Although their theoretical interpretations are
different, it is thus equally suitable to use either discrete or continuous probability
distributions in the calculations of word probability and in parameter re-estimation. In
the following discussion of continuous distributions, it will be convenient to continue to
use the term “probability” even where the quantities are, strictly speaking, probability
densities.

9.8 USE OF NORMAL DISTRIBUTIONS WITH HMMS

It is obvious that many naturally occurring quantities are not normally distributed. For
example, speech intensity measured over successive fixed time intervals of, say, 20 ms
during continuous speech will certainly not approximate to a normal distribution because
it clearly has a hard limit of zero during silences, will be low for much of the time during
weak sounds, but will go up to quite high values during more intense vowels. The
intensity on a logarithmic scale would have a more symmetrical distribution, which
might be nearer to normal, but in this case the low-level end of the distribution will be
very dependent on background noise level.

Normal distributions usually fit best to measurements which can be expected to
have a preferred value, but where there are various chance factors that may cause
deviation either side of that value, with the probability progressively decreasing as the
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distance either side of the preferred value increases. Thus it might be reasonable to use
a normal distribution to approximate a distribution of speech features which are
derived from the same specific part of a specific word spoken in the same way by the
same person. When it is assumed that features are normally distributed for each state of
an HMM, the distributions are often termed single Gaussian.

When different speakers are combined in the same distribution the departures from
normal will be greater, and for different regional accents there is a fairly high
probability that the distribution will be multi-modal, and therefore much less suitable
for modelling as a normal distribution. However, when multi-modal distributions are
likely, as is the case with many current speech recognition systems, it is now almost
universal to model the distributions with a weighted sum, or mixture, of several
normal distributions with different means and variances (usually referred to as
Gaussian mixtures). Provided that there is a sufficient number of mixture
components, any shape of distribution can be approximated very closely. This
characteristic of sums of Gaussian distributions, combined with the attractive
mathematical properties of the Gaussian itself, is largely responsible for their
widespread and successful use for describing emission probability distributions in
HMM-based speech recognition systems.

The theory underlying the use of mixture distributions is a straightforward extension
of the single-Gaussian case and will be discussed in Section 9.10, after first introducing
the probability calculations and model parameter re-estimation equations using single
Gaussian distributions.

9.8.1 Probability calculations

The features are multi-dimensional and so, in the case of single-Gaussian distributions,
they will form a multi-variate normal distribution. In general the features may not vary
independently, and their interdependence is specified by a covariance matrix. The
entries along the main diagonal of this matrix represent the variance of each feature,
while the remaining entries indicate the extent to which the separate feature distributions
are correlated with each other.

Let us first consider the output probability bj(y) for the j" state, where y is a single
feature vector. Assume that the column vector y comprises K features, y, y,,...,,. Let H,
be the column vector of means, Mo My ooer My and X be the covariance matrix for the

distribution of features associated with that state. The definition of the multi-variate
normal distribution gives the output probability compactly in matrix notation:

1 ~y-u)"Z T (v-n))
|Ej 11,"2 (zﬁ)xﬂ 23 2 * (9.32)

b(y)=

where |Zj| is the determinant of Zj and (y-,u/.)T is the transpose of (y-u). In the special case
when the features are uncorrelated, the covariance matrix becomes zero except along its
main diagonal (and is therefore often referred to as a diagonal covariance matrix). The
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probability of a feature vector then reduces to a product of probabilities given by the
univariate distributions of the separate features:

2
LI —Hp

K
b =]]——= J—ﬁ e Il (9.33)

k=l Oy Tk

where y is the k™ feature of y, and 4 and s are the mean and standard deviation of the
distribufion of the k" feature for staté J. "

Equation (9.33) is evidently computationally simpler than Equation (9.32). The
extent of the computational saving provides a strong motivation for choosing methods
of speech analysis for which the features are substantially uncorrelated. Some of these
methods will be described in Chapter 10. Most current speech recognition systems
adopt such a method and use diagonal covariance matrices. Having defined an
expression for the emission probability in terms of the distribution parameters,
recognition can be performed in the same way as when using discrete distributions.
Thus, in the case of the Viterbi algorithm, the new definition of b (y) is simply used in
Equations (9.11) and (9.12).

9.8.2 Estimating the parameters of a normal distribution

When modelling emission probabilities with continuous distributions, the training task is
to optimize the parameters of the feature distribution model, rather than the probabilities
of particular feature vectors. If we had a set of T feature vectors that were known to
correspond to state7, then the maximum-likelihood estimates for the parameters of a
normal distribution are easily calculated. The mean vector ﬁj is equal to the average of

all the observed vectors (i.e. the sample mean), and the covariance matrix ﬁ‘j is obtained

based on the deviation of each of the observed vectors from the estimated mean vector
(i.e. the sample covariance matrix):

1 T
j:}_.:zy:" (934)
t=1
1w T
"T*Z(J’;—ﬂ,-)(y;"ﬂj) ‘ (9.35)
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Obviously, in the case of HMMs, the state sequence is not known, but the standard methods
for estimating mean and covariance given in Equations (9.34) and (9.35) can be extended
for use in either Baum-Welch or Viterbi re-estimation procedures, as explained below.

9.8.3 Baum-Welch re-estimation

For the Baum-Welch algorithm, the parameters are re-estimated using contributions from
all frames of all the E examples of the word in the training data. Each contribution is
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weighted by the probability of being in the state at the relevant frame time, as given by
Equation (9.19). Therefore the re-estimates of the mean vector H, and the covariance
matrix ¥ associated with state j are given by:

ZZ}’ te)y,

— e=] r-
ﬂ' = 3
/ (9.36)
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where y is the feature vector for the 1 frame of the e™ example of the word. Just as for
discrete ‘emission p.d.f.s, it can be shown that iterative application of the above formulae
leads to a locally optimum solution. Baum’s (1972) analysis included a proof for
univariate normal distributions, which was later generalized by Liporace (1982) to a
wider class of distributions, including multi-variate normal distributions.

Note that Equation (9.37) for re-estimating the covariance matrix is based on deviation
of observed vectors from the re-estimated mean vector . In practice, when accumulating
the contributions for covariance re-estimation it is easier to use the current estimate p,
instead of the (yet to be computed) new value i It is then straightforward to correct for the
difference between the old and new mean Values at the end of the calculation.

9.8.4 Viterbi training

For Viterbi re-estimation, the requirement is just to use the state-level segmentation
obtained from the most likely path according to the current set of models as the basis for
collecting the statistics needed to apply Equations (9.34) and (9.35) for each model state.
The statistics for state j are therefore gathered over all examples of the word using all
frames for which state j is occupied. Using s, to denote the state occupied at frame ¢ of
example e, the re-estimation formulae are as follows:

‘:—Z Z Vie s (9.38)

nj e=l tas,=j

fj=—z D DB -H)" (9.39)

J' e=l f3s,=j

where, as in Section 9.5.3, n, is the number of frames for which state j is occupied.
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9.9 MODEL INITIALIZATION

There must be enough states in the model to capture all the acoustically distinct regions
in the word. For example, a typical word of two or three syllables could need around 10—
20 states to model the acoustic structure adequately. Because the training process only
finds a local optimum, the initial estimates for the model parameters can have a strong
influence on the characteristics of the final set of trained models. It is very important to
give careful consideration to how the model parameters, including both transition and
emission probabilities, should be initialized before training. The trained model for each
word needs to capture the spectral and temporal characteristics of all spoken utterances
of that word while at the same time, in order to minimize recognition errors, it must be
a constraining model which does not allow inappropriate sequences of states for the
word.

In an HMM, the probability of a path through the model is computed on a frame-by-
frame basis and therefore cannot take into account any of the previous states occupied
other than the one at the immediately preceding time frame. Thus, if a model allows
many different transitions from each state, recognition errors can result if a sequence of
frames gives a good acoustic match even if the complete state sequence is very
inappropriate for a genuine example of the word. Even the limited degree of flexibility
included in the model structure shown in Figure 9.1 can cause problems if used
throughout a word.

The dangers associated with allowing flexibility of transitions within a word model are
such that most current uses of HMMs only allow a very restricted set of possible
transitions, by initializing most of the transition probabilities to zero. A popular HMM
structure for speech recognition uses a left-to-right topology with the probability of all
transitions set to zero except those to the next state or returning to the current state (i.e. as
for Figure 9.1 but omitting the ‘skip’ transitions). If this model structure is used to
represent a word, the word will be modelled as a sequence of acoustic regions which can
vary in duration but which must always all occur and always in the same fixed order. With
this strong temporal constraint provided by the model structure, re-estimation (using either
the Baum-Welch or the Viterbi approach) can give a useful local optimum even with a
simple initialization approach for the emission probabilities. One popular strategy is to start
with a uniform segmentation of each training example, with the number of segments being
equal to the number of states in the model. This segmentation can then be used to compute
the required statistics for each state emission probability, with the allowed transition
probabilities of all emitting states initialized to identical values.

In the case of Baum-Welch training, an even simpler initialization strategy may be
used for the parameters of discrete or normal distributions. For this method, sometimes
called a flat start (Knill and Young, 1997), all emission p.d.f.s for all states are set to
average values computed over the entire training set, in addition to using identical
transition probabilities for a limited set of allowed transitions. Thus all permitted paths
through the model start with equal probability and the training algorithm is left to
optimize the parameters from this neutral starting position with constraints imposed by
the model structure. This approach has been found to work well if there are several
utterances for each model unit (e.g. Paul and Martin, 1988).

An important advantage of the initialization approaches described above is that the
training process can be carried out completely automatically, without requiring any pre-
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segmented data. Alternatively, if there are any data available for which suitable state
boundaries are ‘known’ (for example, the boundaries could be marked by hand for a
small subset of the training corpus), this segmentation can be used as the basis for
initializing some or all of the model parameters.

If all models use a restricted structure that only allows transitions back to the same state
or on to the next state, it is implicitly assumed that such a model structure is appropriate for
representing all words. There are many cases in human language where pronunciation
varies from occasion to occasion, even for one speaker. The variations may be at the
phonemic level: for example, in the word “seven” many speakers often omit the vowel from
the second syllable and terminate the word with a syllabic [n]. Allophonic variations can
also occur: for example, in words ending in a stop consonant, the consonant may or may
not be released. If a word with alternative pronunciations is represented by a single
sequence of states with the model structure described above, some states will have to cope
with the different pronunciations, and so their p.d.f.s will need to be multi-modal to model
the distributions well. In these cases a normal distribution will not be suitable, and
Gaussian mixtures will be essential for good modelling of the data.

A rather different approach is to explicitly model alternative pronunciations as
alternative state sequences, using either whole-word or sub-word models. Initialization
then involves choosing a constraining topology separately for each word model to take
into account the possible phonetic structure of the word and its expected variation. It will
thus be necessary to decide on the number of states required to represent each phonetic
event and on the allowed transitions between the states, with state skips being allowed
only where a particular phonetic event is sometimes omitted. For this approach to work
it is essential that the emission p.d.f.s of the models are initialized with values roughly
appropriate for the phonetic events expected for each state, because otherwise the
training frames may not be allocated to the states in the intended way. Such models can
be initialized by carefully hand-labelling a few examples of the training words in terms
of state labels, and collecting the statistics of these data to initialize the emission p.d.f.s.
However, the whole method requires a lot of skilled human intervention, and a simpler
model topology is usually adopted, with any limitations in this approach being addressed
by using Gaussian mixtures for the p.d.f.s. Methods used for including some simple
provision for alternative pronunciations will be considered further in Chapter 12.

9.10 GAUSSIAN MIXTURES
9.10.1 Calculating emission probabilities

The expression for the emission probability defined in Equation (9.32) is easily
extended to include a weighted sum of normal distributions, where each component
distribution has a different mean and variance. We will use the notation N(y; u, %) to
represent the probability density of the observed vector y given a normal distribution
with mean vector x# and covariance matrix X. Thus, for an emission p.d.f. defined
according to a Gaussian mixture distribution, the emission probability given by the m™
component for state j is:

Bin D)= Ny, 2 ) - (9.40)
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The total emission probability for a distribution with M components is defined as:
b;(y)= Z‘*’;m im (D)5 (9.41)

where c,, denotes the weight of the m” mixture component for state j. The mixture
component weights can only take positive values, ¢,,=0, and must sum to 1:

M

chm =1. (9.42)

m=1

In the special case where there is only one mixture component, the emission probability
specified by Equation (9.41) is defined in terms of a single Gaussian distribution with
weight equal to 1 and is therefore equivalent to Equation (9.33).

Once the parameters of multiple-component mixture distributions have been trained,
Equation (9.41) can be used as the basis for the recognition calculations in exactly the
same way as with the simpler emission p.d.f.s that we have already discussed. Parameter
estimation for mixture distributions requires more detailed consideration, and is
discussed in the following sections. Firstly we will assume that initial estimates are
available and address the re-estimation problem, before considering ways of obtaining
suitable initial estimates in Section 9.10.4.

9.10.2 Baum-Welch re-estimation

Assuming that initial estimates are available for all the parameters of all the M components
of a Gaussian mixture representing the emission p.d.f. for state j, Baum-Welch re-
estimation can be used to find new estimates for these parameters, ¢, , g, and X, . When
using Gaussian mixtures, the contribution from each observation y, needs to be welghted by
a probability that is specific to the mixture component m. By analogy with the quantity (1)
which was introduced in Section 9.5.2, let us define ?2..(0) 10 be the probability of being in
state j at time ¢ and using component m to generate y, given that the model generates the
whole sequence of T feature vectors representing an example of the word.

Za (t=Dayc,,b;,(¥)B; ()

(1) = (9.43)
Y jm(t)= ()

Now, if we have E examples of the word, summing the values of ?jm(t, e) over all frames
of all examples gives the total probability for the m” component of state j generating an
observation. Dividing this quantity by the corresponding sum of y(7, e) terms gives the
re-estimate for the mixture component weight ¢,
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The re-estimation equations for the mean vector and covariance matrix are the same as
for the single-Gaussian case given in Equations (9.36) and (9.37), but using the
component-specific state occupation probabilities ?, (1, e):

E T,
Z Z Y im (£O)Y,
t=

e=

Him =5 T ’ (9.45)
ZZm (te)
e=1 t=I
E T,
D Vi = E )3 —H)"
v _ e=l t=1
s T, (9.46)

E
DD Vim0

e=] t=1

Juang (1985) extended Liporace’s (1982) analysis to show that iterative application of
the re-estimation formulae leads to a locally optimum solution when emission p.d.f.s are
defined in terms of sums of normal distributions.

9.10.3 Re-estimation using the most likely state sequence

The use of a Gaussian mixture to represent the HMM emission p.d.f. incorporates
another ‘hidden’ element in the model, as it is not known from the observations which
mixture component generated each observation. The probability calculation in Equation
(9.41) uses the total probability taking into account all the mixture components that
could have produced the observation. As a result the Baum-Welch re-estimation formulae
in Equations (9.44) to (9.46) use probabilities not only of state occupancy but also of
mixture components. The formulae can be simplified if the state sequence is known, but
the situation is more complex than for the single-Gaussian case because the mixture
components are still unknown. Thus the state sequence alone does not lead to an analytic
solution for these emission p.d.f.s.

One option is to retain the EM algorithm for estimating the parameters of the mixture
distribution. Equations (9.44) to (9.46) can be simplified accordingly: the summations
are now just over those frames for which state j is occupied, and for each frame the
component-dependent state occupation probability ? (¢, e) simplifies to a component-
dependent emission probability ¢ b (y ). (The total {tate occupation probability ? (t e)
is replaced by the emission probabifityd (y ).)

Alternatively, to estimate the distribufion parameters without requiring an EM
algorithm, each observation must be assigned to a single mixture component. This
assignment can be achieved by using a clustering procedure to divide the observed
feature vectors corresponding to any one model state into a number of groups equal to the
number of mixture components for that state. K-means clustering is a well-established
technique for dividing a set of vectors into a specified number of classes in order to
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locally minimize some within-class distance metric, and was originally applied to vector
quantization (see Section 9.6). The term segmental

K-means is often used to refer to the use of K-means clustering in conjunction with
a Viterbi alignment procedure to identify the state-level segmentation. After clustering,
each frame will be labelled, not only with the state that was occupied, but also with the
mixture component that generated the observation. The re-estimation formula for the
weight associated with the m” mixture component of state j is then given by:

- njm
= (9.47)

(>

where n represents the number of frames for which state j was occupied and mixture
Componémnt m generated an observation. Using s to denote the state occupied and x to
denote the mixture component used at time ¢, the re-estimation formulae for the méan
feature vector and covariance matrix are straightforward extensions of the single-
Gaussian case (Equations (9.38) and (9.39)), as follows:
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9.10.4 Initialization of Gaussian mixture distributions

The segmental K-means procedure outlined above uses an initial set of models to obtain
the state-level segmentation, but does not rely on any existing estimates for the mixture
components. It therefore provides a convenient method for initializing the parameters of
HMMs using mixture distributions. If no models are available, the process can even be
started from a uniform segmentation, as described in Section 9.9. Once initial estimates
have been obtained for all the mixture components, the estimates can be refined using
further iterations of the segmental K-means procedure. At this point the models could be
used for recognition, but they can be trained further using full Baum-Welch re-
estimation, or even using the EM algorithm to update the mixture parameters without
changing the segmentation.

A segmental K-means procedure is often used to initialize mixture models prior to
Baum-Welch training. However, this approach requires the number of mixture
components to be decided in advance. An alternative is to start with trained single-
Gaussian models and to incrementally increase the number of mixture components using
a method often referred to as mixture splitting. Starting with a single Gaussian
distribution for the emission p.d.f., a two-component mixture model is initialized by
duplicating the parameters of the original distribution and perturbing the means by a
small amount in opposite directions (typically+0.2 standard deviations). The variances
are left unchanged and the mixture weights are set to 0.5 for both components. The
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means, variances and mixture weights are all re-estimated, and the mixture-splitting
procedure is then applied to the component with the largest weight (setting the weights of
both new components to half the value for the component from which they were derived).
The model parameters are re-estimated again, and so on until the desired level of
complexity is reached.

For a given number of mixture components, Young and Woodland (1993) reported that
an iterative mixture-splitting training procedure with Baum-Welch re-estimation gave
similar results to using segmental K-means followed by Baum-Welch training. However,
a useful advantage of the mixture-splitting approach is that the number of mixture
components can be chosen for each state individually according to some objective
criterion based on how well the data are modelled. Examples of useful criteria for
deciding on the number of components are the magnitude of the increase in training-data
likelihood from adding a new component, or the quantity of training data available for
the model concerned. This flexibility of mixture modelling is particularly beneficial for
modelling large vocabularies; its use will be discussed further in Chapter 12.

9.10.5 Tied mixture distributions

Increasing the number of components used in a Gaussian mixture distribution allows for
greater flexibility in the shapes of distributions that can be modelled, but a larger
quantity of training data is required to ensure that the parameters are trained robustly. In
any practical recognizer there are often only limited data available for training each
model, which imposes limitations on the number of state-specific mixture components
that can be included. However, similarities between different speech sounds are such that
many of the component distributions will be similar for several different states. One
straightforward way of taking advantage of these similarities to provide more data for
training the model parameters is to use the same Gaussian distributions to represent all
the states of all the models, with only the mixture weights being state-specific. Thus the
distribution parameters are tied across the different states, and this type of model is often
referred to as a tied mixture (Bellegarda and Nahamoo, 1990). The term semi-
continuous HMM has also been used (Huang and Jack, 1989), because the one set of
continuous distribution parameters for all states can be regarded as an alternative to the
VQ-generated codebook used with discrete emission probabilities.

When using tied mixtures, the emission probability b(y) for any one state j is
calculated in the same way as for Equation (9.41), but although the mixture weights ¢,
are state-specific, the b . (y) terms will be the same for all states.

Using the new def1n1t10n of the emission probability, re-estimation formulae can be
derived for the mean u, and covariance matrix X of the m” component (the re-estimation
of the mixture weights €, is unchanged). For example, tied-mixture versions of the
Baum-Welch formulae in Equations (9.45) and (9.46) are as follows:
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Thus the only difference from the original (untied) mixture-distribution re-estimation
formulae is that the contributions are now summed over all states as well as over all
frames of all examples.

Tied mixtures have been used with some success to address the problems associated
with training a large number of model parameters from a limited quantity of training
data. However, although any practical system will have some model states which share
many similarities, there will obviously be others which are quite different, and this
characteristic will be reflected in the mixture weights for the different states. Thus rather
more parameters are being tied together than is necessary, and such extensive tying may
not be desirable for maximum discrimination. It is important to note that tied mixtures
are just one example of the much more general concept of parameter tying, whereby
any parameters of any model states can be tied together and the only effect on the re-
estimation formulae is in the nature of the summations and in the indexing of the model
parameters. The ability to tie together the parameters of HMM states is a significant
factor in the success of current large-vocabulary speech recognition systems, and this use
of tying is explained in Chapter 12.

9.11 EXTENSION OF STOCHASTIC MODELS TO WORD SEQUENCES

In the same way as was described for the dynamic programming methods in Chapter 8,
HMMs extend easily to connected sequences of words. For recognition the word
sequences can be represented by a higher-level model in which the states correspond to
whole words, and the transition probabilities are the language-model probabilities
(recognition using a language model will be discussed in Chapter 12).

In the case of recognition of isolated words we were not interested in the state
sequences as such, but only in the likelihood of each word model emitting the observed
feature vectors. When applying HMMs to connected words, however, we need to know
the most likely sequence of words, so at the word level the Viterbi algorithm is necessary.
The word boundary procedure is then exactly analogous to that described in Section 8.10,
making use of the back-pointers to determine the word sequences.

The HMM training algorithms can also be used when the training data are spoken as
natural connected sequences of words. It is not generally necessary to segment the data
into the individual words prior to training. Instead, an embedded training approach
can be used, whereby a composite model is obtained for the whole utterance by
concatenating the required sequence of word models. This concatenation is very easy if
special non-emitting initial and final states are used for the individual models, as it
simply involves linking the final state of one word to the initial state of the next. The
parameters of the composite model are trained using the same procedure that would be
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carried out if this composite model represented a single word. If a state occurs more
than once in the composite model (i.e. if the utterance contains more than one example
of any particular word), all occurrences of that state will contribute to the parameter re-
estimation. Provided that each word is spoken in a variety of different contexts,
embedded training is very successful (at least for a constrained left-to-right model
structure), even with the simplest ‘flat’ initialization procedure of setting the
parameters of all models to the same values. The ability of the HMM training
framework to automatically find the patterns in the data to associate with individual
models is fundamental to the successful use of HMMs for substantial recognition tasks.

9.12 IMPLEMENTING PROBABILITY CALCULATIONS

The calculation of the forward and backward probabilities for sequences of feature
vectors involves multiplication of a very large number of probability components, the
majority of which are much less than 1. The results will in general have very low values,
and mostly will be smaller than the minimum size of floating point number that can be
held in any normal computer.

One solution to the number range problem is to check the probabilities at each stage
of the recursion, and to multiply them by a scale factor that will bring the numbers back
into the centre of the available range. However, scale factors must be noted and taken
into account in estimating the relative likelihoods that each frame of feature vectors has
been generated by each word model.

An alternative way of avoiding problems with numerical underflow is to represent all
probabilities in logarithmic form, so that no explicit scaling is necessary. The following
sections will discuss the implementation of HMM probability calculations using
logarithms of probabilities.

9.12.1 Using the Viterbi algorithm with probabilities in logarithmic form

Because the logarithmic function is monotonic and increasing, the task of maximizing a
probability can be achieved by maximizing its logarithm, and the main Viterbi
probability calculation given in Equation (9.11) can therefore be replaced by:

G4 (1) = max(@F (t D)+ af J+bF(p) ©9.52)

where &j.'(r) is used for log(dj(t)), aé for log(a,) and b:‘(yl) for log(b, (y)).

When using discrete emission p.d.f.s with vector quantization, the calculation of
Equation (9.52) is very straightforward and can easily be made very efficient: the
quantities log(a,) and log(bj(yr)) are fixed for given values of i, j and y, and hence the
logarithms need to be calculated just once and stored ready for use as required. The
dynamic programming algorithm then only involves summations and comparisons, with
no multiplications or logarithmic functions.

If normal distributions are used for the emission p.d.f.s, we must take the logarithm of
the expression for the emission probability, but this is also straightforward. For example,
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in the case of uncorrelated normal distributions for the individual features, taking
logarithms* of Equation (9.33) gives:

K = 1A Y — 1y ’
b} (ye) =log(b;(y)) == log(27) = 3 log(o ;) == 3, G—&’J 9.53)
k=1 k=1 J

where we are now taking into account the fact that the observations are time-dependent,
and are using the symbol y to denote the k™ feature at the #" frame.

Comparing Equation (9'53) with (9.33), it can be seen that use of logarithms has
eliminated the need for the observation-dependent exponential operation, while the
logarithmic terms are independent of the observed feature values and so can be pre-
computed. Thus, while the computational load when using normal distributions is
somewhat greater than for discrete emission p.d.f.s, the use of logarithms leads to a
considerable computational saving as well as solving the number range problem.

9.12.2 Adding probabilities when they are in logarithmic form

When calculating emission probabilities using Gaussian mixture distributions, and for all
calculations of forward and backward probabilities in Baum-Welch re-estimation,
probabilities must be summed as well as multiplied and so the use of logarithms is more
complicated. If we consider two probabilities, A and B, the task is to compute log(A+B)
given log(A) and log(B). In theory, we could exponentiate both log(A) and log(B), add
them and take the logarithm. However, aside from the computational issues, the
exponential operation puts the probabilities back onto a linear scale and so presents
problems for the wide range of probabilities that may be encountered. This difficulty can
be addressed by first rewriting log(A+B) thus:

log(A + B) =log(A(1+ B/ A)) =log(A4) + log(1+ B/ A). (9.54)

Assume that we have ordered the probabilities such that A=B. The issue is now one of
evaluating the ratio B/A, which can be no greater than 1 and therefore the calculation will
only present problems if this ratio is smaller than the smallest number which can be
represented in the computer. This situation can only arise if B is so much smaller than A
that it can safely be ignored by setting log(A+B)=log(A). A procedure for finding
log(A+B) is therefore as follows:

1. If log(B)>log(A) then transpose log(A) and log(B).

2. Find log(B/A) by forming log(B)-log(A). Store this value in C.
3. If C<a suitable threshold, set C=0.

4. Otherwise C=log(l+exp(C)).

5. Add C to log(A).

The threshold in step 3 is used to prevent underflow when taking the exponential in step
4. The smallest value to which this threshold can be set is the logarithm of the smallest
number that can be represented in the computer.

The procedure described above for performing probability calculations in logarithmic
form is effective and widely used. However, whenever there is the need

4When using normal distributions, the calculations are simplest if natural logarithms are used, and
the use of natural logarithms has been assumed in Equation (9.53).
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to add two probabilities, one exponential and one logarithmic operation are usually
required. These operations can be avoided by using a method which allows the numbers
to be added while in their logarithmic form®. Considering step 4 in the sequence of
calculations described above, both the exponential and the logarithmic operation can be
avoided by using a pre-computed look-up table to store the values of log(1+B/A) in
terms of log(B/A). Thus steps 3 and 4 can be replaced by a single table look-up
operation, with log(B/A) as input (i.e. the value already stored in C at step 2). The
output is log(1+B/A), which can again be stored as the new value of C. Moderate
accuracy in the value of log(A+B) can be achieved with a small look-up table. For
example, a 1% accuracy for A+B enables values of B/A of less than 0.01 to be ignored,
and the look-up table for the larger values of B/A only needs entries for 115 equally
spaced values of log(B/A).

If the above method is implemented using a suitable scale factor for the logarithms, it
is then even possible to make all the probability calculations for recognition and
parameter estimation using integer arithmetic on logarithmically coded numbers. No
multiplications would be required with the VQ method, and no exponential functions
would be needed when using Gaussian distributions. The 1% error proposed above
should have very little effect on the re-estimation, but the error could easily be reduced
if necessary by using a larger look-up table.

9.13 RELATIONSHIP BETWEEN DTW AND A SIMPLE HMM

It is interesting to compare the Markov probability calculation with the cumulative
distance formula for a simple asymmetric dynamic programming algorithm in which
each input frame occurs exactly once in the distance calculation. If the DP uses a squared
Euclidean distance metric, the recognition process can be regarded as a special case of
HMM Viterbi decoding, in which the word models have one state per template frame, and
the features are assumed to be normally distributed with unit variance.

To clarify this relationship, we will return to the Viterbi calculation using logarithms
of probabilities, given in Equation (9.52). The value of bf (y) according to an
uncorrelated normal distribution is given by Equation (9.53), where we are now assuming
that c,=1 for all states j and for all features k. Hence

K
D log(o ) =0,

k=1

and recursive calculation of c?j (t) simplifies to:

. . K 1 & ’
a; (= max_(a; (t-D+ay )—?103(2”)‘"‘:2';(}'&: ~Hp) (9.55)

over

The term K/2 log(2m) is a constant, which will scale the likelihood calculation but will
not affect the choice of optimal state sequence. Thus the only quantities that need be
considered at each frame are the logarithms of the transition probabilities

5 This method was described by Kingsbury and Rayner (1971) for a completely different application.
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and the square of the Euclidean distance between the observed features at time ¢ and the
means for model state j.

As maximizing is equivalent to minimizing— , this recognition task can be
regarded as one of minimizing a distance comprising— , the negative logarithm of
the transition probability (which must itself be positive), plus the squared Euclidean
distance of the features from their model mean values. Thus we have a simple DP
algorithm in which the— terms are interpreted as timescale distortion penalties.
Where only slopes of 0, 1, and 2 are permitted, as is the case for the HMM in Figure
9.1, the time distortion penalties for other values of slope are -log(0), and are
therefore infinite.

9.14 STATE DURATIONAL CHARACTERISTICS OF HMMS

The probability of a model staying in the same state, i, for successive frames is
determined only by the transition probability, a . The expected number of frames it will
stay in state i is 1/(1-a ), so a value of a =0.9 ‘Would be suitable for using one state to
model, for example, a'steady fricative sound whose expected duration is 10 frames.
Although the expected total duration in state i in this case is 10 frames, the most likely
duration is only one frame, with a probability of 0.1. The probabilities for longer
durations decrease exponentially, as shown in trace (i) of Figure 9.2(b). This distribution
is often referred to as a geometric distribution because the probabilities for successive
numbers of frames form a geometric progression.

For any state representing a particular phonetic event, this type of duration
distribution is obviously not sensible. For any such event there will be a most probable
duration, with reducing probability for both shorter and longer durations. If many more
states are available, the durational characteristics of the model can be improved, but
only if a long steady region is modelled by a sequence of states with very similar
feature p.d.f.s and the total likelihood method is used to calculate the word probability.
For example, consider a group of four identical states with a repeat probability of 0.6,
as shown in trace (ii) of Figure 9.2. The expected duration for the group is 10 frames,
as it is for the single state shown in trace (i). However, in the case of the group of
states, the variation of probability with duration is much more appropriate for speech
sounds within a word. This more realistic distribution arises because, while there is
only one possible way of going through the states in the minimum number of frames,
there are more possible paths for longer frame sequences. However, the improved
shape of duration distribution given by this state-splitting approach relies on using total
likelihood probability calculations, whereas the Viterbi algorithm is generally used for
recognition.

A simple method which can be used with the Viterbi algorithm involves merely
imposing a minimum and a maximum duration on state occupancy. Such duration
constraints can be achieved with an easy modification to the recognition algorithm, and
can give worthwhile performance benefits. Many other methods have been proposed for
improving the duration characteristics of HMMs, including some that model duration
distributions of each state explicitly. These methods generally give greater benefits than
simple duration constraints, but at the expense of more computation and some increase in
the number of model parameters.
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Figure 9.2  (a) Two arrangements of states, each with an expected occupation time of 10 frames.

(b) Probability of occupancy of groups of states in the model sections shown in (a).

CHAPTER 9 SUMMARY

The performance of pattern-matching speech recognizers is improved by representing
typical characteristics of speech patterns in a way that also takes account of
variability, which can be achieved by using a stochastic model of each word. Hidden
Markov models (HMMs) represent each word as a sequence of states, with transition
probabilities between each state and its permitted successors, and probability
distributions defining the expected observed features for each state. A recursive
formula can be used to calculate the probability that each word model will produce
the observed data. The model with the highest probability is assumed to represent the
correct word.

Computation can be saved by using the Viterbi dynamic programming algorithm to
calculate the probability of producing the data from only the most likely path through
the states. This probability will always be less than the true probability, but the effect
on recognition performance is usually very small and the Viterbi algorithm is
generally adopted for HMM recognition.

For each word model the transition probabilities and the probability distributions of
the feature vectors can be found by the Baum-Welch re-estimation process. This
process iteratively refines initial guesses to improve the model’s representation of a
set of training examples of the word, taking into account all possible paths through
the states of the model.

An alternative approach to estimating model parameters is to use a Viterbi training
procedure, in which the initial guesses are used to find the most likely state-level
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segmentation of the data and then the model parameters are re-estimated for this
alignment of data frames to model states.

Vector quantization is one method for reducing the set of possible feature vectors to
a number for which robust training is possible. A parametric model, such as the
normal (Gaussian) distribution or, more generally, a weighted sum (mixture) of
Gaussian distributions, can also be used to describe the feature statistics. The re-
estimation is then applied to the distribution parameters.

HMMs can be extended to deal with word sequences, in which each state of the model
represents one word, and the transition probabilities are determined by word sequence
statistics of the language.

One way of overcoming scaling problems because of very small numbers in the
probability calculations is to represent all the numbers by their logarithms, and to use
a special technique for finding the logarithm of the sum of two numbers.

The dynamic programming recognition method described in Chapter 8 can be shown
to be equivalent to using a very simplified form of HMM.

The durational characteristic of an HMM state is determined only by the selfloop
transition probability, and is such that the most likely duration is always only one
frame and probabilities for longer durations decrease exponentially, so forming a
geometric progression.

CHAPTER 9 EXERCISES

E9.1 What is the significance of the word ‘hidden’ in hidden Markov models?

E9.2 Why is it not necessary to explicitly consider all possible state sequences when
calculating the probability of an HMM generating observed data?

E9.3 What is the essential difference between the Viterbi algorithm and the total
likelihood method when calculating the probability of a word model generating
observed data? What practical advantages can be gained by using the Viterbi
algorithm for recognition?

E9.4 How can the form of an HMM be constrained by choice of initial parameters
provided for re-estimation?

E9.5 What is the purpose of the ‘vector quantization’ sometimes used in HMMs?

E9.6 What are the benefits of using normal distributions to model feature statistics for
HMMs? What are the limitations of simple normal distributions and how can
these be overcome?

E9.7 How do the calculations required for Viterbi training differ from those for Baum-
Welch re-estimation?

E9.8 What are the practical difficulties associated with implementing forward and
backward probability calculations? What solutions are usually adopted?

E9.9 How can a simple HMM be interpreted as equivalent to a DTW recognizer?

E9.10 Why are the state durational characteristics of HMMs not very appropriate for

modelling speech? What are the effects on duration characteristics if a single
state is replaced by a sequence of several identical states?



CHAPTER 10

Introduction to Front-end Analysis for
Automatic Speech Recognition

10.1 INTRODUCTION

The term “front-end analysis” refers to the first stage of ASR, whereby the input acoustic
signal is converted to a sequence of acoustic feature vectors. As explained in Section 8.3,
the short-term spectrum provides a convenient way of capturing the acoustic consequences
of phonetic events. Ideally the method of front-end analysis should preserve all the
perceptually important information for making phonetic distinctions, while not being
sensitive to acoustic variations that are irrelevant phonetically. As a general policy for ASR,
it seems desirable not to use features of the acoustic signal that are not used by human
listeners, even if they are reliably present in human productions, because they may be
distorted by the acoustic environment or electrical transmission path without causing the
perceived speech quality to be impaired. Over the years many different front-ends have
been tried, for use first with DTW recognizers and, more recently, with HMM systems.
These front-ends vary in the extent to which they incorporate knowledge about human
auditory perception, but currently the most successful analysis methods include at least
some of the known properties of perception. These successful methods are, however, also
characterized by a compatibility with the mathematical techniques that are generally used
in HMM recognizers (as will be explained later). In this chapter we will introduce various
aspects of front-end analysis for ASR.

10.2 PRE-EMPHASIS

The spectrum of voiced speech is characterized by a downward trend, whereby
frequencies in the upper part of the spectrum are attenuated at about 6 dB/octave. This
downward trend is due to a combination of the typical -12 dB/octave slope of the glottal
source spectrum with the +6 dB/octave lift given by the radiation effect due to the lips
(see Chapter 2). For the purpose of front-end analysis, it is common to compensate by
applying a pre-emphasis of 6 dB/octave so that the analysed signal has a roughly flat
spectral trend. This pre-emphasis is easily applied to the speech signal as the first
processing stage. Although the above argument for pre-emphasis only applies to voiced
regions, in practice it is usually applied throughout without causing any obvious
problems for the analysis of voiceless regions.

10.3 FRAMES AND WINDOWING

Due to physical constraints, the vocal tract shape generally changes fairly slowly with
time and tends to be fairly constant over short intervals (around 10-20 ms). A
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Time {ms)

Figure 10.1 Analysis of a speech signal into a sequence of frames. This example shows a 20
ms Hanning window applied at 10 ms intervals to give a frame rate of 100 frames/s.

reasonable approximation is therefore to analyse the speech signal into a sequence of
frames, where each frame is represented by a single feature vector describing the
average spectrum for a short time interval.

Prior to any frequency analysis, each section of signal is multiplied by a tapered
window (usually a Hamming or Hanning window). This type of windowing is
necessary to reduce any discontinuities at the edges of the selected region, which would
otherwise cause problems for the subsequent frequency analysis by introducing spurious
high-frequency components into the spectrum. The length of each analysis window must
be short enough to give the required time resolution, but on the other hand it cannot be
too short if it is to provide adequate frequency resolution. In addition, because the
analysis is normally performed at a fixed time interval, during voiced speech the window
must be long enough so that it is not sensitive to exact position relative to the glottal
cycle (i.e. there needs to always be at least one complete glottal cycle in the main part of
the window). Long windows also have the advantage of smoothing out some of the
random temporal variation that occurs in unvoiced sounds such as fricatives, but at the
expense of blurring rapid events such as the releases of stop consonants. A common
compromise is to use a 20-25 ms window applied at 10 ms intervals (giving a frame rate
of 100 frames/s and an overlap between adjacent windows of about 50%), as shown in
Figure 10.1.

10.4 FILTER BANKS, FOURIER ANALYSIS AND THE MEL SCALE

In Section 8.3 we introduced a speech signal representation using a filter bank with
channels whose bandwidth and spacing increase with frequency (motivated by
psychophysical studies of the frequency resolving power of the human ear). A convenient
implementation of filter-bank analysis involves applying a Fourier transform. The output
of the Fourier analysis will usually be at a finer frequency resolution than is required,
especially at high frequencies. Thus the Fourier magnitudes are summed into a smaller
number of channels, whose bandwidth and spacing conform to a perceptual scale such as
the Bark or mel scale (see Section 3.5). Typically no more than 20 such channels are used
for speech with a 4 kHz bandwidth, with a few additional channels being needed for
higher-bandwidth signals. As already explained in Section 8.3, it is advantageous for the
filter-bank output to represent power logarithmically, which reflects the phonetic
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Frequency {kHz)

Figure 10.2 Triangular filters of the type suggested by Davis and Mermelstein (1980) for
transforming the output of a Fourier transform onto a mel scale in both bandwidth and spacing.

significance of level variations and accords with evidence of a similar compressive non-
linearity in auditory systems (see Chapter 3). A consequence of the logarithmic
compression is that, when sampled from representative speech over a long period of time,
the distribution of the energy in each of the channels tends to follow a Gaussian
distribution, and is therefore compatible with any Gaussian assumptions that are made in
the modelling.

Figure 10.2 shows a set of triangular ‘filters’ that can be used to compute a weighted
sum of Fourier spectral components, so that the output of the process approximates to a
mel scale. Here the centre frequencies of the filters are spaced equally (at intervals of
100 Hz) on a linear scale from 100 Hz to 1 kHz, and equally on a logarithmic scale above
1 kHz. (Other slightly different spacings are also often used.) Each filter’s magnitude
frequency response is triangular in shape, and is equal to unity at the centre frequency
and decreases linearly to zero at the centre frequencies of the two adjacent filters. This
configuration of mel filters, which is now very widely used in ASR, was suggested by
Davis and Mermelstein (1980).

One option is to use the output of a filter-bank analysis to provide the recognition
features directly. However, although filter-bank energies were widely used and achieved
a fair amount of success as acoustic features in early recognition systems, there are
substantial advantages to be gained by applying further transformations and this
approach is the more usual choice nowadays.

10.5 CEPSTRAL ANALYSIS

The frequency resolution that is given by Fourier analysis applied to a 20-25 ms window
of speech is generally sufficient to resolve the individual harmonics of the voiced
excitation source, as well as showing the spectral shaping that is due to the vocal tract.
Because the filtering operation of the vocal tract is the most influential factor in
determining phonetic properties of speech sounds, it is desirable to separate out the
excitation component from the filter component. The vocoders described in Chapter 4 are
based on this principle. Cepstral analysis is another technique for estimating a
separation of the source and filter components. Here the starting point is the observation
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that passing an excitation signal through a vocaltract filter to generate a speech signal can
be represented as a process of convolution in the time domain, which is equivalent to
multiplying the spectral magnitudes of the source and filter components. When the
spectrum is represented logarithmically, these components are additive, because the
logarithm of a product is equal to the sum of the logarithms (log(AxB)=log(A)+log(B)).
Once the two components are additive, it is relatively straightforward to separate them
using filtering techniques.

A typical logarithmic spectrum cross-section shows the rapidly oscillating component
due to the excitation superimposed on a more gradual trend representing the influence of
the vocal tract resonances (see Figure 10.3(b)). If we now imagine that this combined
shape represents a time-domain signal, the rapid oscillations would correspond to high-
frequency components, while the more gradual changes would be due to low-frequency
components. If a Fourier transform were applied, the two components would therefore
appear at opposite ends of the resulting spectrum. Thus by starting with the log magnitude
spectrum and computing a Fourier transform, to obtain the so-called cepstrum (an
anagram of “spectrum”), the excitation is effectively separated from the vocal-tract
filtering, as shown in Figure 10.3(c). In fact, because the log magnitude spectrum is a
symmetric function, the Fourier transform can be conveniently simplified to a
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Figure 10.3 Analysing a section of speech waveform to obtain the cepstrum and then
to reconstruct a cepstrally smoothed spectrum.
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discrete cosine transform (DCT). For a spectral representation comprising N channels
with log magnitudes A, to A,, the DCT can be computed as follows:

2 7 j(i-0.5 :
c;= ‘/;Z Aicos(%) for0< j <N, (10.1)
izl

where ¢ is the j" cepstral coefficient. When j=0, Equation (10.1) simplifies so that ¢ is
proporti’bnal to the mean of the individual log channel signals A to A . The ¢ term
reflects the balance between energy at low frequencies and energy’ at hié\’h frequelncies.
As j increases, ¢ captures increasingly fine spectral detail: first overall spectrum shape,
then general formant structure, then more detailed spectral structure between the
formants and, at high values of j, the excitation structure. There is no simple relationship
between the ¢ terms and the formants. However, for periodic speech the effect of the
excitation soufce tends to be seen as a clear ‘spike’ at the pitch period duration (see
Figure 10.3(c)). Cepstral analysis is therefore one method that can be used to estimate
fundamental frequency. For example, in Figure 10.3(c) the spike occurs at ¢ which, for
the sampling frequency of 8 kHz (i.e. a sample duration of 0.125 ms), corr@sponds to a
fundamental period of 73x0.125=9.125 ms. This value can be seen to be roughly equal to
the interval between the pitch pulses in Figure 10.3(a).

Although the cosine transformation given by Equation (10.1) ensures that the
Euclidean distance in transformed space is exactly equal to the distance between the
sets of untransformed channel signals, the information that is of phonetic significance
becomes concentrated in the lower-order terms. Filtering the cepstrum (a process
usually referred to as liftering) can be applied to remove certain components or alter
the relative influence of the different components. A simple lifter is one which simply
truncates the cepstral sequence, by giving a weight of one to the low coefficients (up to
some specified index) and a weight of zero to all the higher coefficients. By setting the
cut-off point to just below the coefficient corresponding to the pitch period, most of the
influence of the fundamental period is effectively removed from the spectrum. This
process is shown in Figure 10.3(d), in which the spectrum has been re-constructed (by
a Fourier transform) from just the low-order cepstral coefficients. The resulting
spectrum can be seen to be much smoother than the original and show the formant
peaks more clearly. The lower the cut-off point is set, the more detail will be removed
and the smoother the spectrum will be. The process of smoothing the spectrum by
truncating the sequence of cepstral coefficients is often referred to as cepstral
smoothing.

The effectiveness of cepstral analysis for separating out the fundamental-frequency
component of a speech signal depends on the frequency of the fundamental relative to the
frequencies of the formants. The method generally works best for adult male speech (as
shown in the example in Figure 10.3). For typical female and children’s speech both the
pitch and formant frequencies are higher, but the pitch increases more relative to the
formant frequencies and so the cepstrum gives a less clear separation of the excitation
component. It is therefore more difficult to set a cut-off point for cepstral smoothing that
removes the pitch influence without also removing useful information about the formant
structure.

In addition to the beneficial effect of concentrating on the information that is of
greatest phonetic significance, discarding the high-order cepstral coefficients reduces
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the number of features, so less computation is needed for the pattern-matching
process.

The cepstrum has another desirable property for use in speech recognition. For typical
speech signals it is found that, in contrast with the original channel signals, the variation
of the separate coefficients tends to be uncorrelated. As a consequence, when using
HMMs with continuous-density probability distributions, full covariance matrices can be
replaced by much simpler diagonal covariance matrices (see Section 9.8.1) without any
great loss in performance. Using diagonal covariance matrices substantially reduces both
the computational requirements and the number of parameters needed to represent each
distribution.

Cepstral coefficients have the property that (ignoring coefficients that are associated
with pitch) both the variance and average numerical values decrease as the coefficient
index increases (see Figure 10.3(c)). A consequence for a DTW recognizer using a
simple Euclidean distance metric is that the distance calculation is affected most by the
lowest-order coefficients and the coefficients that are more related to formant structure
tend to be given insufficient weight. A solution that has often been adopted is to apply a
lifter with a weighting for each coefficient that acts to roughly equalize the variances for
the different coefficients. The problem does not arise when using probability
distributions in HMM systems, because the variance is accommodated in the probability
calculations. The liftering is often still applied, however, because the effect of making the
variances of all the features cover a similar range makes it easier to study model
parameters and to place restrictions on variances as part of re-estimation (see Section
11.4.1).

As explained above, the ¢ coefficient is proportional to the mean of the log channel
signals and therefore provi&es an indication of overall level for the speech frame.
Sometimes ¢ is included in the feature set, but often it is discarded and replaced by a
different enef’gy measure that is derived from the true signal energy. The energy in each
frame will depend on overall speaking level, but for identifying sounds the most relevant
factor is the relative level for different frames in an utterance. Therefore, for those
applications for which the whole utterance becomes available before recognition needs to
start, the measured energy is often normalized with respect to the maximum energy
found over all frames in the utterance. (See Section 8.3.2 for further discussion about
measures of speech level.)

In order to retain the advantages of a perceptually motivated filter-bank analysis, for
ASR the cosine transform is usually applied to the output of non-linearly spaced filter-
bank channels (see Section 10.4 above). A popular choice is to use mel-frequency
cepstral coefficients (MFCCs), which are obtained by applying a DCT to the output
of mel filters such as the ones shown in Figure 10.2. An acoustic representation using
MFCCs is often simply referred to as a mel cepstrum. As explained above, it is
generally advantageous to discard the higher-order coefficients. For example, with 8
kHz bandwidth speech, there might be 24 mel channels but only the first 12 MFCCs
are generally used in the final feature set. Although the use of the non-linear filter-bank
means that the cosine transform no longer gives a simple separation of the excitation
from the vocal-tract filtering (and much of the excitation effect will usually have
already been smoothed out by the mel averaging), the truncation of the cepstral
sequence has a general spectral smoothing effect that is normally desirable because it
tends to remove phonetically irrelevant detail.
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10.6 ANALYSIS BASED ON LINEAR PREDICTION

An alternative to filter-bank methods for representing the short-term spectrum is to
derive linear prediction (LP) coefficients (usually called LPC analysis because of its
origin in linear predictive coding, see Chapter 4). In the past, mainly during the 1970s,
many recognizers were built using LPC-derived features and these systems generally
gave performance comparable with that obtained from recognizers using filter-bank
methods. During the 1980s it became more popular to use LPC-derived cepstral
coefficients rather than the LP coefficients themselves because, as in the case of the
filter-bank representation, the addition of the cepstral transformation was found to
improve recognition performance. A convenient method exists for computing cepstral
coefficients directly from the LP coefficients. LP analysis has the advantage that it
produces an estimate of the smoothed spectrum, with much of the influence of the
excitation removed. However, there is less freedom to apply non-linear processing to
combat noise than there is with a filter-bank front-end. In addition, LPC inherently gives
uniform weighting to low- and high-frequency regions of the spectrum. A non-linear
frequency scale can be incorporated, but complicates the analysis to a greater extent than
when using filter-bank methods.

Perceptual linear prediction (PLP) (Hermansky, 1990) is one LP-based analysis
method that successfully incorporates a non-linear frequency scale and other known
properties from the psychophysics of hearing. In PLP analysis, a Fourier transform is
first applied to compute the short-term power spectrum, and the perceptual properties are
applied while the signal is represented in this filter-bank form. The spectrum is
transformed to a Bark scale, and this spectrum is pre-emphasized by a function that
approximates the sensitivity of human hearing at different frequencies (see Figure 3.5).
The output is compressed to approximate the non-linear relationship between the
intensity of a sound and its perceived loudness. The all-pole model of LPC is then used
to give a smooth, compact approximation to the simulated auditory spectrum, and finally
the LP parameters are usually transformed to cepstral coefficients for use as recognition
features. Apart from the use of LPC to achieve spectral smoothing, PLP analysis is very
similar to MFCC analysis, but with perceptual properties incorporated in a way that is
more directly related to psychophysical results (see Table 10.1 for a comparison of the
two methods). In recent years a number of recognition systems have used PLP-based
cepstral coefficients as acoustic features, and experimental evidence suggests that overall
they give performance that is comparable with that obtained using MFCCs.

Table 10.1 Comparison between the properties of PLP cepstral coefficients and typical MFCCs.

MFCCs PLP cepstral coefficients

Cepstrum-based spectral smoothing | LPC-based spectral smoothing

6 dB/octave pre-emphasis applied to | equal-loudness pre-emphasis applied
speech waveform to spectrum

triangular mel filters critical-band filters
logarithmic amplitude compression | cube root amplitude compression
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10.7 DYNAMIC FEATURES

In the HMM probability calculations (see Section 9.3), the probability of a given acoustic
vector corresponding to a given state depends only on the current vector and the current
state, and is otherwise independent of the sequence of acoustic vectors preceding and
following the current vector and state. It is thus assumed that there is no dependency
between the observations, other than through the underlying state sequence. In reality,
however, an acoustic feature vector representing part of a speech signal is highly correlated
with its neighbours. In fact, it is often the dynamic characteristics of the features that
provide most information about phonetic properties of speech sounds (related to, for
example, formant transitions or the closures and releases of stop consonants). These
correlations can be captured to some extent by augmenting the original set of (‘static’)
acoustic features (such as MFCCs) with dynamic features that are a measure of the change
in the static features. These dynamic features are often referred to as time derivatives or
deltas. One way of computing the delta features is by simple differencing between the
feature values for two frames either side of the current frame:

Ay, =Yup~Yi-p> (10.2)

where D represents the number of frames to offset either side of the current frame and
thus controls the width of the window over which the differencing operation is carried
out. Typically D is set to a value of 1 or 2.

Although time-difference features have been used successfully in many systems, they
are sensitive to random fluctuations in the original static features and therefore tend to be
‘noisy’. A more robust measure of local change is obtained by applying linear regression
over a sequence of frames:

D
ZT(yfn “yf—r)
r=|
D
2272 (10.3)

With linear regression, a value of D=2 is the usual choice for an analysis frame rate of
100 frames/s. This regression window of five frames (50 ms) is long enough to smooth
out random fluctuations, yet short enough to capture local dynamics.

The delta features described above are first-order time derivatives, which can in turn be
used to calculate second-order time derivatives (sometimes referred to as delta-deltas).
Including first-order time derivative features usually gives a large gain in recognition
performance, and adding second-order derivatives (which capture changes in the first-order
dynamics) tends to give an additional but smaller improvement. The majority of current
HMM systems incorporate first-order derivative features, most often applied to a basic
feature set of MFCCs and an energy feature, and many also include second-order
derivatives. Most of the benefit from derivative features is due to their ability to capture
dynamic information. However, these features also have the useful property that they are
not affected by any constant or slowly changing disturbances to the signal (such as linear
filtering in microphone pre-amplifiers and on telephone channels, for example), provided
that these distortions are additive in the feature domain (see Section 11.2).

Ay, =
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10.8 CAPTURING THE PERCEPTUALLY RELEVANT INFORMATION

Both in Chapter 3 and at the beginning of the current chapter we explained the
desirability of capturing properties of human phonetic perception in the front-end
analysis for ASR. Analysis methods such as PLP take into account several known facts
about the lower levels of human auditory processing. However, there is no attempt to
model higher-level auditory processing or more specific properties of speech perception
in any of the analysis methods that have been described above.

It is now well established that the frequencies of the speech formants, particularly the
first and second, are vitally important phonetically. Relative formant amplitudes are
much less important, and the detailed structure of the lower-level spectral regions
between formants is of almost no consequence. There would therefore seem to be
potential for better performance in ASR if these factors could be taken into account when
designing acoustic analysis methods and distance metrics. Although auditory models
have shown considerable promise for incorporating into systems for ASR (see Section
3.7), these types of features have not yet replaced more general spectral features such as
MFCCs or PLP-cepstra as the preferred choice in HMM-based systems. It is possible
that substantial changes in the design of the recognizers themselves will be required
before it will be possible to gain the full benefit from incorporating auditory models. We
will return to this issue in Chapter 16, when we will also discuss the prospects and issues
for extracting and using formant information more explicitly in ASR.

10.9 GENERAL FEATURE TRANSFORMATIONS

The DCT is one orthogonal transformation that reduces the dimensionality of a filter-
bank output by concentrating the most useful information into a small number of
features. Other orthogonal transformations for data reduction include principal
components analysis (PCA) and linear discriminant analysis (LDA). PCA performs
a linear transformation on an input feature set, to produce a different feature set of
lower dimensionality in a way that maximizes the proportion of the total variance that
is accounted for. LDA also applies a linear transformation on the input feature set, but
here the transformation is chosen to maximize a measure of class separability, and
hence to improve discrimination. In order to determine the transformation, this
procedure requires each input feature vector to have first been associated with a single
class. PCA and LDA are both general data-reduction techniques that can usefully be
applied to reduce the dimensionality of any diverse feature set, including for example
static spectral or cepstral features with first- and second-order time derivatives, or even
the output of auditory models. Both PCA and LDA generate new feature sets that are
uncorrelated, thus allowing diagonal covariance matrices to be used for HMM state
emission p.d.f.s.

10.10 VARTABLE-FRAME-RATE ANALYSIS

It has been assumed so far that all the frames in an utterance are of equal importance
when making a comparison with stored templates or models. However, a slight difference
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of vowel quality, for example, may not affect the identity of a word, whereas formant
transitions at vowel-consonant boundaries may be crucial in identifying the consonant.
Because, for many consonants, such transitions are very rapid, they do not occupy many
frames. Although the addition of time-derivative features increases the importance of
matching the transition characteristics, still rapid transitions may make only a small
contribution to the cumulative distance or probability, even when they are matched very
badly. The vowels and steady-state parts of long consonants can, in contrast, make a large
contribution overall even when they match fairly well on each frame.

To overcome this difficulty it is necessary to give more weight to parts of the signal that
are changing rapidly, and less weight to long steady regions. One way that is sometimes
used to achieve this effect is to perform the original acoustic analysis at a fairly high frame
rate (e.g. 100-200 frames/s), but then to discard a variable proportion of the frames
depending on the distance between consecutive pairs of frames. Thus all frames are
retained in rapid transitions, but perhaps only one in five is kept in very steady long vowels.
This variable-frame-rate analysis method is similar to the scheme described in Section
4.3.5 for efficient speech coding. In the case of speech analysis for ASR, not only is there
a computational saving, but also the overall match of an input utterance to stored templates
or models shows much greater relative sensitivity to mismatch in transition regions.

CHAPTER 10 SUMMARY

e When deriving features for speech recognition, input speech is often first
preemphasized by 6 dB/octave, so that the signal for subsequent analysis has a
roughly flat spectral trend. Speech is analysed into a sequence of frames: most usually
a 20-25 ms tapered window is applied at 10 ms intervals.

e One popular method of representing the speech spectrum is to use a filter bank with
triangular filters whose width and spacing follow a mel scale. To obtain features for
ASR, the output of such a filter bank is often subjected to a cosine transform (so
deriving mel-frequency cepstral coefficients: MFCCs). An alternative is to derive
cepstral coefficients from perceptual linear prediction.

e The cosine transform causes the features to become largely decorrelated so that
diagonal covariance matrices can be used in the HMMs. In addition, information of
phonetic significance is concentrated in the lower-order terms, so a more efficient
representation can be obtained with fewer features.

e ASR performance is often greatly improved by adding ‘delta’ (first-order time-
derivative) features, which are usually computed for each frame by applying linear
regression over a window of five frames centred on the current frame.

CHAPTER 10 EXERCISES

E10.1 Why is cepstral analysis a useful tool in speech processing?

E10.2 Explain the stages that are typically used to analyse a speech signal into MFCCs
and their first- and second-order time derivatives.

E10.3 How are properties of auditory perception simulated in front-ends for ASR?



CHAPTER 11

Practical Techniques for Improving
Speech Recognition Performance

11.1 INTRODUCTION

Almost all of the successful current speech recognition systems are based on the HMM
theory that was introduced in Chapter 9. It is now over 20 years since these methods were
first applied to speech recognition. During this time there has been a progressive increase
in the difficulty of the tasks that can be attempted with acceptable recognition
performance. However, although there has been an increase in system complexity, the
underlying theory and the HMM structure are generally unchanged from those used in
the early systems. The main advances have been in tuning the application of these
methods to the task of recognizing spoken language, including coping with all the
variability that exists due to differences between speakers, environments and many other
factors. In this chapter and in the following chapter we will introduce some of the most
influential techniques that have been used to improve recognition performance. Some of
the developments are closely tied to the demands of recognizing large vocabularies, and
these aspects will be considered in Chapter 12. The current chapter concentrates on
methods that are of general relevance to recognition systems irrespective of vocabulary
size, and also discusses some techniques used when recognizing limited vocabularies.

11.2 ROBUSTNESS TO ENVIRONMENT AND CHANNEL EFFECTS

When a person is in a quiet environment speaking into a good-quality close-talking
microphone connected directly into an ASR system, the signal that is input to the
recognizer should be very close to the one that is output from the person’s mouth. In
many real ASR applications, however, this ideal situation does not exist and the speech
that is input to the recognizer will have been corrupted in some way:

1. There may be external noise present in the signal. Sources of environmental noise
include computers and other office equipment, machinery, car engines, music, and
even other people speaking in the background. A speech signal captured in these
conditions will contain additive noise. Noise can also be added by a poor-quality
microphone or a noisy transmission channel.

2. The uttered speech signal itself may undergo some spectral distortion during its
transmission from the talker’s mouth to the speech recognizer. Sources of such
distortion include room reverberation, the microphone transducer and the transmission
channel. The characteristics of the speech will also be affected by any application of
waveform-coding techniques such as CELP. There are many causes for the
degradation that is typical of telephone speech, but a particular problem is the

169
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variability of this degradation: different telephone handsets and channels may have
different characteristics and therefore cause different disturbances to the speech
spectrum; cellular (mobile) telephones are especially problematic. Of the range of
possible disturbances, many, such as channel bandwidth limitation and the spectral
shaping introduced by microphones, have a linear-filtering effect on the speech signal.
The effect of these disturbances can thus be viewed as one of convolving the original
speech signal with a filter representing the characteristics of the disturbance, and
hence this type of corruption to speech signals is often referred to as convolutional
noise.

The difficulties of dealing with noise and other imposed signal disturbances are
exacerbated by the tendency for talkers to modify the way they speak, and in particular
to increase their vocal effort, when the acoustic environment worsens. This phenomenon
is known as the Lombard effect, named after Etienne Lombard who first described it
(Lombard, 1911). As environmental noise level increases, people’s natural response is to
talk more loudly and often with a more exaggerated style of articulation. The
consequence for the acoustic signal is an increase in overall level, but also, perhaps more
significantly, changes in spectrum shape. One effect that has been observed is a change
in spectral tilt. This change can be regarded as being due to another type of convolutional
disturbance, the characteristics of which are dependent upon other (external) causes of
corruption. There may also be changes in formant frequencies and in the durations of
many of the speech sounds, due to factors such as more precise articulation, increased
muscular tension and reduced speaking rate.

Speech recognizers generally perform better in quiet, ‘clean’ conditions than when the
speech signal is noisy or distorted. However, the greatest problem arises when there is a
mismatch between the conditions in which the recognizer is used and those under which
it was trained. It is always best to train an ASR system using speech material that is
recorded under conditions that are as close as possible to the predicted operational
conditions. It is, however, not always possible to predict these conditions in advance and
anyway the conditions may change over time: the noise in an office or car is continually
changing for example, and transmission channels may introduce variable distortion.
Techniques are therefore needed to make the best use of the most reliable information in
the signal whatever corruption may be present, even when the nature of the corruption
may be unknown and variable.

Additive noise is easiest to deal with in the linear spectral domain, where spectral
components due to the noise can be seen as being added to the components representing
the speech. Convolutional noise on the other hand is easier to cope with in the log
spectral or cepstral domain. As explained in Section 10.5, the effect of convolution in the
time domain becomes one of addition in the log spectral (or cepstral) domain, so making
it easier to separate out the different convolved components. Techniques for handling
either type of ‘noise’ can be roughly divided into two categories. The first category
encompasses methods that are applied purely at the level of the features (with no
reference to the models), and includes both the selection of features that are inherently
robust to corruption and the application of speech enhancement techniques to existing
feature sets. The second category covers model-based methods whereby some way of
dealing with the effects of noise or distortion is incorporated into the recognition process
itself.
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11.2.1 Feature-based techniques

A simple way of compensating for additive noise is to estimate the spectrum of the noise
and then to subtract this spectrum from the spectrum of the signal, with the spectral
subtraction being performed in the linear spectral domain. This method requires an
estimate of the noise spectrum, which can be obtained by averaging over a length of
signal that contains only noise. In some cases a second microphone may be available for
assisting with this process. If there is only a single channel available, non-speech regions
of signal can be detected to a reasonable degree of reliability by automatic methods,
which are typically based on some heuristic measure of spectral characteristics. The
noise estimate will represent an average spectrum, so subtraction of this estimate from
the spectrum for any one frame may give negative values for some channels. Any
negative values can simply be set to zero, or alternatively it may be better to set a small
positive threshold for all the subtracted channel levels, to allow for the fact that low-level
channels will be affected more than high-level channels by any errors in the estimated
noise spectrum.

Because convolution in the time domain is equivalent to addition in the
logarithmic spectral domain, the principle of subtracting noise from the spectrum can
be applied to log spectral or cepstral features to remove convolutional noise. In this
case, any estimate of the spectral characteristics of the ‘noise’ needs to be made in
speech regions as speech must be present for the effects of the convolutional
distortion to be evident. Such distortion tends to be fairly constant over the duration
of an utterance, while the speech information is captured in the changing short-term
spectral characteristics. Thus any convolutional distortion can be removed, without
removing useful speech information, by simply subtracting the mean feature vector
computed over the duration of a reasonably long utterance. This technique is widely
applied in speech recognition systems using cepstral features, when the method is
known as cepstral mean subtraction (CMS) or cepstral mean normalization
(CMN).

CMS can be viewed as performing a type of high-pass filtering of the temporal
characteristics of the signal spectrum, to remove just the constant component. This
concept of filtering temporal characteristics can be extended to also remove components
that are changing only slowly or very rapidly, both of which are unlikely to be related to
phonetic properties of the speech. By designing an appropriate band-pass filter for the
temporal characteristics of speech, it is possible to maximize sensitivity to characteristics
that are changing at a rate that is most likely to be related to phonetic properties. The
technique is usually referred to as relative spectral, or RASTA (RelAtive SpecTrAl),
processing.

Time derivatives of log spectra or cepstra are inherently robust to any constant or
slowly changing convolutional distortion, because by definition these features are only
affected by local changes in the feature values.

11.2.2 Model-based techniques

When speech is spoken in noisy conditions, the low-energy parts of the speech spectrum
may be completely corrupted by the noise. However, the higher-level parts of the speech
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spectrum, in the vicinity of intense formants, will generally be above the noise level and
so still provide useful information for speech recognition. It should therefore be
advantageous to use a probability calculation that gives highest weight to those feature
differences which are most likely to be reliable, while ignoring differences where noise
corruption is such that it is not possible to know whether there is really a difference in
the underlying speech. Provided that the acoustic analysis does not mix noise-corrupted
and reliable parts of the signal into the same features (e.g. filter-bank analysis is
suitable), the recognition calculations can be easily modified to have appropriate
properties. As with spectral subtraction methods, it is necessary to have an estimate of
the current noise level in each spectral channel. For each comparison between an
observed speech frame and a reference model state, and for each spectral channel, the
probability calculation can take into account the observed and model values in relation to
the noise level.

A simple strategy involves just replacing any measured channel levels that are below
the noise level by the noise estimate. This procedure is applied both to observed signals
and to the stored model. Provided that the values for both the observation and model are
above the noise level, the comparison between them is not affected. Conversely, if they
are both below the noise level, then the difference will become zero (in this instance it is
not possible to know whether there are really any differences in the underlying speech).
If only one out of the observation and the model is above the noise level, this high-level
signal will be compared with the level of the noise. There are several variants of the
above technique, which is often referred to as noise masking because a noise estimate is
applied as a ‘mask’ both to input speech and to the models (or templates in the case of
a DTW recognizer).

Another possibility is to model the fact that the true values for noise-corrupted
spectral regions of the speech are not known, by modifying the recognition
calculations to allow for all possible values for these ‘missing’ components of the
spectrum.

A natural extension of noise masking is to model variation in the noise. If an HMM
is used to represent the characteristics of the noise, both spectral and temporal variability
can be accommodated. A single state should be sufficient if the noise characteristics are
fairly constant over time (stationary noise), while multiple states can be used to handle
noise with changing spectral characteristics (non-stationary noise). By using parallel
sets of HMMs, one set for the speech and one set for the noise, the modelling process can
be viewed as performing decomposition of a noisy speech signal into its constituent
parts. If the noise HMM has more than one state, the search needs to be extended to deal
with all possible pairings of speech and noise model states. For each of the possible state
pairings, the probability of the observed noisy speech feature vector needs to be
computed. This probability calculation is made tractable by treating each filter-bank
channel separately and making the assumption that the energy in a channel is dominated
either by the speech or by the noise. An approximation to the probability of a noisy
speech observation is then computed as a weighted sum of the probability of the
observation being generated by the speech model and the probability of it being
generated by the noise model.

Both decomposition and noise masking schemes have been shown to improve
HMM recognition performance in noisy conditions when using filter-bank features.
However, because these schemes deal with each filter-bank channel separately and
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Figure 11.1 Using parallel model combination to generate a model for noise-corrupted speech
by combining a speech model with a noise model (adapted from Gales and Young (1995)).

independently, they cannot represent the correlation that exists between the filter-bank
channels. Furthermore, the methods operate in the log-spectral domain and cannot be
applied directly to features that have been obtained after a transformation such as a DCT.
Rather than attempting to separate out the speech and noise components of a noisy
speech signal, an alternative is to combine speech models with noise models in order to
estimate models for the corrupted speech. Having applied the noise compensation to the
models ‘off-line’, the new models are then used for recognition in a standard HMM
system. The technique for combining the models is known as parallel model
combination (PMC).

An important advantage of PMC is that it can be applied to models that use cepstral
features, by adopting the approach shown in Figure 11.1. An inverse DCT is first applied
to convert both sets of model parameters back into the log-spectral domain before
combining them to derive a single set of models representing the corrupted speech. This
new set of model parameters can then be transformed back to the cepstral domain ready
for use in a standard recognition system. The recognizer itself is not altered but, if the
noise model has more than one state, the corrupted speech models will have more states
than the original speech models because it will be necessary to have a model structure
that represents all possible pairings of speech and noise model states. The PMC process
involves some approximations in order to estimate the parameters of the new model for
the corrupted speech, and it is assumed that the original models for both the speech and
the noise provide accurate representations of their true distributions.

11.2.3 Dealing with unknown or unpredictable noise corruption

The model-based noise compensation schemes that have been described in the previous
section can be classed as predictive, because they start with a model of speech in a quiet
environment and some model of the noisy environment and attempt to predict what will
happen to the speech in this noisy environment. Such predictive schemes are useful



174 Speech Synthesis and Recognition

because they can make some reasonable approximation to the effects of a change in the
environment without needing any speech data from the new environment. However, the
success of the technique is dependent upon the accuracy of the predictive model that is
used.

Predictive noise-compensation schemes such as PMC rely on some estimate of the
characteristics of the noise. For noise that is additive in the spectral domain, the
missing-data method mentioned above can be used even when the noise characteristics
are not known, as this approach is dependent only on identifying which spectral
regions have been corrupted. This process might involve using noise estimates, but
could alternatively be achieved by using cues (such as harmonicity) that are related to
speech properties.

Even if the noise characteristics are known, to be able to apply the predictive noise-
compensation schemes described in Section 11.2.2 it is necessary to assume that the
speech and the noise are independent from each other. The reality is that talkers’ speech
usually changes in the presence of noise (the Lombard effect mentioned earlier), but it is
difficult to predict the exact nature of the interactions between the speech and the noise.
If speech data are available for the new environment, this difficulty can be avoided by
using adaptive schemes whereby the new data are used to adjust the parameters of the
models to be more representative of those data. Adaptation methods will be described in
Section 11.4. Some form of predictive compensation for environmental or channel
characteristics can provide a good starting point for any subsequent adaptation.

11.3 SPEAKER-INDEPENDENT RECOGNITION

Many ASR systems are required to work with speech from a wide variety of
individuals without re-training, and such systems are generally referred to as
speaker independent. The acoustic realization of a word may show a wide degree of
variation across different talkers due to many factors, including physical differences
between peoples’ vocal tracts, differences in accent or dialect and variation in
speaking style. Often a single set of HMMs is used to represent speech from all the
different talkers, with multiple-component Gaussian mixture distributions being used
to describe the emission p.d.f.s. Although Gaussian mixtures allow complicated
distributions to be described very accurately, the variation across individuals will
cause the distributions to be broader than corresponding distributions for speech
from a single individual. The result is a greater degree of overlap between the
distributions representing different speech sounds and hence the discrimination
power for any one individual is reduced.

If a recognizer uses a single set of models to represent speech from a variety of
different talkers, the system could work just as well if each successive word were
spoken by a different person. This facility is never normally required for any real task,
so better performance should be obtainable by somehow taking account of consistent
speaker-dependent factors that affect the spectral characteristics of the speech.
Provided that sufficient training data are available, one option is to use different sets of
models for different clearly identifiable categories of talkers. A simple separation that
has been found to be beneficial involves using one set of models for male talkers and
another set for female talkers. Whenever multiple model sets are used, either the
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speech must be classified into one of the different categories prior to recognition,
which will inevitably not be possible with perfect accuracy, or alternatively different
recognizers must operate in parallel (one recognizer for each model set), which
increases the computational load.

ASR systems are often designed with the aim of minimizing the influence of acoustic
differences between speech from different individuals. Standard front-end processing is
influenced to some extent by a desire not to be too sensitive to talker differences by, for
example, removing fundamental-frequency effects. Techniques such as computing time
derivatives, CMS and RASTA also help reduce sensitivity to differences between talkers
by removing long-term bias in feature values.

Performance of speaker-independent recognizers can be greatly enhanced by adapting
the model parameters in order to improve the match between the models and speech from
a particular individual. We will consider adaptation methods in general in Section 11.4.
Other methods use feature transformations that are aimed specifically at normalizing for
differences between individuals, as explained below.

11.3.1 Speaker normalization

Individuals differ in the physical dimensions of their vocal tracts, and the frequencies of
the formants are related to vocal-tract length (see Section 2.3). Thus vocal-tract length
differences are manifested in speech as fairly consistent differences in the positions of
the spectral peaks corresponding to the formant frequencies. The aim of speaker
normalization is to compensate for these differences by applying some appropriate,
speaker-specific, warping of the frequency scale of a filter bank. Any transformation
(such as a DCT) is then computed after applying the warping.

One way of estimating the required frequency warping is to calculate average formant
frequencies, but this approach requires automatic formant analysis which is difficult to
achieve reliably. An alternative method involves finding an ‘optimal’ warping, which is
defined to be the warping factor that maximizes the probability of the feature vectors
given the models. It is usual to select a small set of possible warpings, and then use a
simple search procedure to find the one that gives the highest probability. The procedure
is applied at both the training and testing phases. For training, a set of models is first
trained as normal, then an iterative procedure is used whereby the warpings are
computed, then the models retrained, and so on. The situation for the testing stage is
more difficult because the text of the utterance, and therefore the identity of the model,
is not known. A solution is to begin by performing recognition without applying any
warping of the test utterance, and to use the recognized model as the basis for computing
the optimal frequency warping of the utterance. A second recognition stage is then
applied to the warped version of the utterance in order to decide on the word identities.
Procedures of this type have been found to consistently improve speaker-independent
recognition performance, although at the expense of a considerable increase in
computation.

Techniques of the type described above are often referred to as performing vocal tract
length normalization (VTLN). While methods based on formant frequencies are likely
to be performing compensation that is quite closely related to vocal tract length, search-
based methods of the type described here are really compensating more generally for
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spectral differences. These differences could be due to many factors including, but not
necessarily confined to, vocal tract length.

11.4 MODEL ADAPTATION

As discussed in the previous two sections, a major issue for ASR is coping with acoustic
variability due to differences between different environments, different transmission
channels, different talkers and even the same talker on different occasions. The
techniques described in Sections 11.2 and 11.3 can all help to make machines more
robust to such variation. However, given some speech data that are representative of any
particular recognition task, further performance gains are possible by adapting the
parameters of the models in the recognizer to provide a better match to those data. If the
adaptation process works well, any changes in the characteristics of the acoustic signal
should be compensated for, whatever the cause of the mismatch between the current
acoustics and the original set of models.

For any adaptation to be accurate, ideally it should only take place when words have
been recognized correctly and thus the text of the adaptation data is ‘known’. This
scenario is referred to as supervised adaptation and is possible, for example, when it is
practical to obtain feedback from the user to confirm the recognition results. An
alternative that may also be an option for some applications, especially those that are
used interactively and for a reasonable length of time by any one person, is to require a
new user to start by speaking some known text.

Supervised adaptation will not generally be possible in situations where a recognizer is
used to transcribe speech without interactive involvement of the talker, especially if either
the person or the environment are changing frequently. When the text is not known
unsupervised adaptation is required, which is more difficult because recognition must
proceed concurrently with adaptation. A typical unsupervised adaptation procedure
involves an iterative process whereby recognition is first performed using the current set of
models, and the recognized transcription is then used as the basis for adapting the models
before performing recognition again. This procedure relies on obtaining sufficiently good
recognition accuracy with the first set of models to be useful for the subsequent adaptation.

If sufficient data were available for the new conditions, then ‘adaptation’ could be
performed by simply retraining the models on the new data. However, many recognizers
(especially those designed for large vocabularies) are originally trained on huge
quantities of training data, which is completely impractical for adaptation. In practice it
is often desirable to adapt models using only a very small quantity of data, which may
not even include any examples for some of the model units. Thus the adaptation process
needs somehow to combine the information provided by the new data with the
information provided by the original set of models. Two types of method for achieving
this aim are described below.

11.4.1 Bayesian methods for training and adaptation of HMMs

In Section 9.5 we described the widely used HMM training method, whereby the model
parameters are trained with the aim of obtaining the closest possible fit to a given set of
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training data. Thus, given some training data Y, values are found for some model
parameters ? in order to maximize P(Y|?), the probability of the data being generated by
the models (i.e. the likelihood of the data). This maximum likelihood (ML) approach to
model training can work well provided that there are sufficient examples of each model
unit to give reasonable estimates of the true distributions of the features. However, ML
estimates tend to be unreliable when the data are sparse. As an extreme example,
consider the problem of estimating the parameters of a Gaussian distribution from just
one frame of speech. The ML solution would be to set the mean of the distribution to be
equal to the observed value and the variance equal to zero, so giving a perfect match to
this observation but a probability of zero for any other feature vector. In reality, however,
one observation provides no information about the variance of the features, but from
general knowledge about speech it may be possible to make some reasonable guess. A
practical solution to the problem of variances becoming unrealistically small during
training is to set some suitable allowed minimum value as part of the training process.

Prior knowledge can be incorporated into model training in a more formal way if the
training is performed to maximize the a posteriori probability of the models given the
training data. Given the observed data Y, maximum a posteriori (MAP) estimation of
some HMM parameters 0 involves finding values of 6 that maximize P(6|Y). Using
Bayes’ rule to express this probability in terms of P(Y|0) gives the following expression
for 6 the MAP estimate of the model parameters 6:

MAP’
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where P(0) is the a priori probability of the model parameters 0. This method of training
by incorporating prior information is often referred to as Bayesian learning. If no prior
information is available, effectively P(0) is assumed to be a constant and so the MAP
estimate of 0 is equivalent to the ML estimate.

Intuitively, if we have some idea about likely parameter values before encountering
any speech data, combining this information with whatever data are available should help
in the model estimation process, especially when there is only a limited quantity of
training data. The difficulty lies in knowing what the prior information should be for
typical model feature vectors and in specifying that prior information in such a way that
it can then be used in obtaining the MAP estimate of the model parameters. However, for
the task of model adaptation, amenable prior information exists in the form of the current
estimates of the HMM parameters. By treating these HMM parameters as the prior
information, it is possible to derive MAP re-estimation formulae that give new values for
the HMM parameters to incorporate some adaptation data. The new estimates are a
weighted sum of the original model estimates and the observed data, with the relative
contribution of the observed data depending on how much data is available.

Bayesian adaptation provides an optimal mathematical framework for combining
information from new data with existing models. However, it is only possible to adapt
models for which adaptation data are available. Large-vocabulary systems may contain
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thousands of models, in which case even several minutes of adaptation data are unlikely
to provide examples of all the model units.

11.4.2 Adaptation methods based on linear transforms

A straightforward method for improving the match between some speech data and a set
of models is to apply a suitable linear transformation to the model parameters. One
useful technique for adapting continuous-density HMM parameters is maximum
likelihood linear regression (MLLR), whereby a linear transformation for the Gaussian
distribution parameters is estimated in order to maximize the likelihood of the adaptation
data. For example, given a model mean vector g, a new mean 2 can be derived as

follows:
a=Au+b, (11.2)

where A is a transformation matrix and b is a bias vector, both of which can be estimated
given some speech data for adaptation.

An MLLR transform can also be estimated for the model variances. The variance
transform can either be estimated separately from the mean transform, or alternatively
the system can be constrained so that the same transformation matrix A in Equation
(11.2) is also applied to transform the covariance matrix. It is also possible to share a
single transform between different Gaussian mixture distributions and hence between
different models. Thus the number of transforms can be chosen dependent upon the
amount of data available for adaptation. If the amount of adaptation data is very limited,
a single transform can be shared across all the Gaussian distributions in the models. As
the amount of data increases, the number of transforms can be increased in such a way
that transforms are shared between models that are similar.

For speaker adaptation, MLLR has been found to give worthwhile gains in
recognition performance with just a few seconds of adaptation data, and performance
then improves as the quantity of data increases. The method has also been found to be
useful for adaptation to changes in the environment, although to provide a reasonable
starting point it is beneficial to start by applying some predictive compensation method
such as PMC.

The conventional starting point for speaker adaptation is a set of speaker-independent
models that have been trained using training data from a wide variety of different
individuals. It is, however, possible to use speaker-adaptive training (SAT), whereby
the adaptation technique is incorporated within the training process as well as being used
to adapt to individuals at recognition time. A linear transform is therefore computed for
each speaker in the original training set. The speaker-independent model parameters are
estimated in a way that takes into account the subsequent application of the (speaker-
dependent) transform to improve the fit to the data for any one speaker. In this way, the
speaker-independent models should be less influenced by speaker-specific characteristics
(as these should be captured in the transforms), and should mainly capture the phonetic
properties of different speech sounds. Such models may provide a better starting point
for subsequent adaptation to any new speaker.
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11.5 DISCRIMINATIVE TRAINING METHODS

We have already mentioned the problems that tend to occur with ML training methods
when only a small quantity of training data is available. In practice the quantity of
training data will always be limited, especially for speaker-independent and for large-
vocabulary systems. In both Baum-Welch and Viterbi training each model is trained only
to match the given data for its own class, so there is no guarantee that a model trained in
this way will match badly to the alternative, incorrect classes. In recognition, however,
the task is to find the model M for which P(M|Y) is the highest, and the system must be
able to discriminate between the correct model and all the incorrect models. Training the
models to maximize the likelihood of the training data will not necessarily give optimum
recognition performance.

ML training is widely used and has achieved considerable success. However, the
discrepancy between the ML training criterion and the requirements in recognition has
led several workers to investigate alternative parameter estimation methods. These
discriminative training techniques aim to maximize the ability of the models to
distinguish between the different classes to be recognized, by estimating model
parameters to match training data in a way that improves the likelihood of the correct
models relative to the likelihood for the incorrect models. This training criterion is thus
closely related to the needs of the recognition task.

11.5.1 Maximum mutual information training

One training method that is aimed at maximizing discrimination of a set of models is
maximum mutual information (MMI) training. For a set of model parameters ? and
some observed data Y representing a word w, the mutual information between the data
Y and its corresponding word w is given by:

PY,,w|0)

R A AL TILR

(11.3)

The numerator in Equation (11.3) represents the joint probability of the data Y and the
word w occurring together, while the denominator is the product of the probabilities of the
two separate events. The mutual information /(Y ,w|?) represents the proportion of the total
information that is ‘shared’” between the data and its corresponding model. If the model
provides a good representation of the data, the mutual information should be high. The goal
of MMI training is to maximize the total mutual information for the entire model set and
all the data. To see that this training criterion is discriminative, we first note that:

P(Y,,w|0)=P(¥, |w,0)P(w|06). (11.4)

Thus, substituting back into Equation (11.3) and writing the logarithm of the ratio as the
difference of the logarithms, we have:

I(Y,,w|©)=log P(Y, | w,0)-log P(Y, |©). (11.5)
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Now if there are a total of V models, the last term in Equation (11.5) can be written as
the sum of the joint probabilities of ¥, and each of the models, v, thus:

v
I(Y,,w|©)=log P(Y, | w,0)~log)_ P(¥,, |v,0)P(v|6). (11.6)

v=]

Hence, to increase the mutual information, the probability of the observations given the
correct model must increase more than the sum of the joint probabilities of the
observations and all the possible alternative models.

Equation (11.6) is straightforward to compute for an isolated-word system. In the case
of a connected-word system, this equation needs to be formulated in terms of model
sequences, but the sum of probabilities over all word sequences becomes difficult to
compute, because there may be a vast number of possible word sequences. Various
approximations have been used to obtain some useful estimates for this term. MMI
training has been incorporated in a number of research systems and often gives some
benefit over ML methods, especially for model sets that use a fairly small number of
parameters to represent the recognition vocabulary.

11.5.2 Training criteria based on reducing recognition errors

MMI training seeks to maximize the total discrimination capability of the models over
the entire training set. Another approach to discriminative training is to use a training
criterion that is specifically aimed at minimizing the recognition error rate on the
training data. The aim is to improve recognition performance by giving most weight to
those training examples that are most easily confused with other words. It does not
matter if as a result the match becomes somewhat worse for examples that are easily
recognized, provided that the match for the correct model is still better than the match
for all incorrect models. The procedure known as corrective training starts by
applying the standard forward-backward training algorithm to derive model estimates.
These models are then used to perform recognition on the training data and hence to
identify the confusable examples. These examples will include utterances that are
misrecognized, but also those ‘near-miss’ utterances for which the match for an
incorrect model is unacceptably close to the match for the correct model. For each of
the selected examples, an adjustment is made to the model parameters. The value for
this adjustment is chosen to increase the probability for the correct model and reduce
the probability for the incorrect model. Corrective training is an intuitively appealing
but largely experimental method, because both the model adjustment and the threshold
for deciding on the ‘near-miss’ utterances are parameters that need to be determined
experimentally.

A recent research direction for ASR is the development of discriminative training
methods that generalize the corrective training and MMI approaches to provide a formal
optimization criterion that is designed to minimize classification errors. These minimum
classification error (MCE) methods use generalized probabilistic descent (GPD)
training algorithms and represent a general framework that includes as special cases a
number of discriminative approaches, including MMI and corrective training. The details
of MCE and GPD training are outside the scope of this book, but Chapter 17 gives some
references.
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11.6 ROBUSTNESS OF RECOGNIZERS TO VOCABULARY VARIATION

There are many applications that only need a limited vocabulary of different words (see
Chapter 15). However, even when people are given very specific instructions as to the
words that they are allowed to say, there will inevitably be some occasions when those
instructions are not followed. Often users say extra words in addition to the ones that
are requested. For instance, the system might say “Please say one or two”, to which the
reply could be “I’ll have two please”. Input of this type will cause problems for a
recognizer that expects only a single word, “one” or “two”. However, by using
keyword spotting techniques, it is possible to allow users freedom in their phrasing of
responses, while only attempting to recognize certain keywords from a smaller
vocabulary.

A common approach to keyword spotting uses continuous speech recognition that
incorporates additional models to represent the acoustic background (often called “filler”
or “garbage” models). The structure of the background models can vary from a simple
one-state HMM with a Gaussian mixture output distribution trained on a suitable range
of speech material, to networks of phonetic models or even networks representing word
sequences that are typical of the application in which the system is being used. The
recognition process produces a continuous stream of keywords and fillers, from which
the keywords can be extracted to provide the recognizer output.

The ease and reliability with which keywords can be spotted will depend on the nature
of the other speech material in which they are embedded and on more general acoustic
properties of the signal. It is possible for a word spotter to compute a measure of
confidence in its recognition decision, in order to provide an estimate of the probability
that a word in the recognizer output is correct. This confidence measure is often derived
from a likelihood ratio comparing the likelihood of a hypothesis including the keyword
with that of a hypothesis that only includes filler models. The higher the value of the
ratio, the greater the confidence in the recognition decision. The confidence estimate can
then be evaluated against a threshold in order to decide whether or not the keyword is
finally detected by the system. The value of the threshold may be set according to the
application (i.e. whether it is more critical to miss a genuine keyword or to falsely detect
a keyword when one is not present).

Another use for confidence measures is to detect and hence to reject out-of-
vocabulary words (e.g. “three” for the example given in the first paragraph). It is also
possible to reject utterances that cannot be recognized with enough confidence for some
other reason (such as an unclear pronunciation or a very noisy signal).

CHAPTER 11 SUMMARY

¢ Any mismatch between the conditions under which a speech recognizer is used and
those in which it was trained tends to cause problems. Possible mismatches include
acoustic environment, transmission channel and speaker identity.

¢ Techniques for making features more robust to environmental changes include
spectral subtraction for additive noise and cepstral mean subtraction for convolutional
disturbance (due to channel-filtering effects for example).

¢ A popular and successful model-based method for dealing with noise is parallel model
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combination (PMC). Models for clean speech are combined with models of the
anticipated noise to obtain models for the corrupted speech.

* Robustness to acoustic variation caused by differences between speakers can be
improved by normalizing the frequency scale for the feature analysis.

¢ Performance for any one speaker or environment can be greatly improved by adapting
the models to the new conditions. Adaptation works best when the text of the
adaptation data is known. However, provided the initial recognition performance is
reasonable, unsupervised adaptation can also be useful.

e Bayesian (maximum a posteriori: MAP) adaptation provides a mathematical
framework for combining some new adaptation data with an existing set of models,
but requires data to be available for every model in the system.

¢ Alternatively a linear transform can be estimated to transform the model parameters
to improve the match to some adaptation data. The technique of maximum likelihood
linear regression (MLLR) computes a linear transformation for the parameters of
continuous-density HMMs in order to maximize the likelihood of the adaptation data.
By sharing transforms between models, this approach can be used with very little
adaptation data.

e As an alternative to maximum-likelihood training, discriminative training methods
determine HMM parameters to maximize the separation between correct and incorrect
models. This training criterion is more closely related to the requirements for
recognition and hence may lead to better performance.

*  When users cannot be relied upon to keep to a specified vocabulary, keyword-spotting
techniques can be used to recognize vocabulary words while accommodating non-
vocabulary words with some general background models.

CHAPTER 11 EXERCISES

E11.1 What are the differences between predictive and adaptive noise compensation
schemes? Explain the relative merits of each type.

E11.2 Explain the differences between the MAP and MLLR methods for speaker
adaptation.

E11.3 What is the main advantage of discriminative training over maximum-likelihood
training?



CHAPTER 12

Automatic Speech Recognition for
Large Vocabularies

12.1 INTRODUCTION

The previous four chapters have concentrated on introducing underlying theory and
algorithms for ASR, together with some of the techniques for using the algorithms
successfully in real situations. The discussion so far has deliberately concentrated either
specifically on distinguishing between a small number of different words or on more
general methods irrespective of the particular recognition task. In this chapter, we
consider issues relevant to systems for recognizing continuously spoken utterances using
large vocabularies, which may be anywhere from a few thousand up to around 100,000
different words.

12.2 HISTORICAL PERSPECTIVE

One of the earliest major efforts aimed at large-vocabulary ASR was initiated during
1971 in the United States by the Advanced Research Projects Agency (ARPA), with
funding for a five-year programme of research and development. The overall objective
was to make significant progress in the field of speech understanding by developing
several alternative systems. The specific goal was to achieve a level of performance that
was expressed in terms of semantic errors (less than 10%) on a continuous speech
recognition task with a total vocabulary size of at least 1,000 words but using
constrained-language input.

Although isolated-word recognition using pattern-matching techniques had achieved
some initial success by the time of this ARPA programme, it was not generally obvious
then how to extend the approach to accommodate the contextual effects that were known
to occur in continuous speech. Therefore most systems adopted what at that time was the
more traditional approach, using two separate stages. The first stage began by detecting
phonetic features (e.g. formant frequencies, energy in different frequency bands, etc.)
that were known to be important for distinguishing different speech sounds. Rules were
used to convert from the measured features to a hypothesized phonetic transcription,
which usually included some alternatives. The second stage then converted this
transcription to a recognized word sequence. Inevitably there would be errors in the
initial phonetic transcription, but the hope was that these errors would be corrected by
the higher-level post-processing. However, in practice the first stage was so error-prone
that information was lost which could not be recovered later. As a consequence, all the
systems using this knowledge-based approach gave disappointing performance. In fact,
the only system to achieve the required level of performance used a completely different
method, based on a systematic search of a large network of states with strong syntactic
constraints, and it was one of the early large-vocabulary speech recognition systems
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using HMMs. The system was developed (somewhat separately from the main ARPA
projects) at CMU by Lowerre (1976) as a Ph.D. project, extending the earlier pioneering
work on HMMs by Baker (1975).

The results of the 1970s ARPA programme, while disappointing in terms of
achievements for the money invested, provide a convincing demonstration of the benefits
of data-driven statistical pattern matching over knowledge-based methods. In particular,
the principle of delayed decision making is crucial, as it allows the overall best solution
to be found incorporating all constraints, including those on construction of individual
words and on allowed word sequences. This principle is fundamental to the design of all
modern large-vocabulary speech recognizers.

Concurrent with the ARPA projects, research was in progress at IBM on the use of
statistical methods for ASR. Early work was published by Jelinek (1976), independently
of the work being carried out at CMU during the same period by Baker (1975). Work at
IBM continued with an emphasis on applying HMMs to large-vocabulary speech
recognition, and in the early 1980s the group focused on developing a system for
dictation of office correspondence. The resulting system, “Tangora”, as described by
Jelinek (1985), was a speaker-dependent, isolated-word, near-real-time recognizer with a
5,000-word vocabulary. Although this system required users to leave pauses between
words, it established the principles underlying the use of HMMs for a large-vocabulary
task. Since the mid-1980s, further developments in many laboratories have led to
significant further progress, and systems are now able to recognize fluent, naturally
spoken continuous speech with very large vocabularies. There are a variety of systems
for large-vocabulary continuous speech recognition (LVCSR) in existence, both as
commercial products and as research systems in laboratories. At present, the successful
systems are all based on HMMs, usually incorporating many of the refinements described
in Chapter 11, but also with components that are specific to demands imposed by the
need to cope with large vocabularies.

12.3 SPEECH TRANSCRIPTION AND SPEECH UNDERSTANDING
Large-vocabulary speech recognition tasks fall into two quite distinct categories:

1. Speech transcription: The user wishes to know exactly what the speaker said, in the
form that it would be transcribed by an audio typist to produce orthographic text.
Such a system may be used for dictation, and for tasks such as producing transcripts
of broadcast news programmes.

2. Speech understanding: The semantic content of the message is required, and any
recognition errors do not matter provided that the meaning is not changed. In fact
often the real requirement is for the system to perform the correct action, irrespective
of what words are recognized. Speech understanding systems may involve an
interactive dialogue between a person and a machine to retrieve information from
some computerized database. Other uses include automatic information extraction, for
example to summarize spoken reports or broadcasts.

The interactive nature of many speech-understanding tasks, together with the fact that the
subject area is often restricted, means that the relevant vocabulary at any one point can be
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much smaller than the total vocabulary that is needed for more general transcription
tasks. However, in order to interpret meaning of utterances, more detailed syntactic and
semantic analyses are necessary than are required when just transcribing the words that
were spoken. The principles of large-vocabulary recognition using HMMs apply both to
transcription and to understanding, but the way in which the recognizer output is used is
rather different. The first, main part of this chapter concentrates on transcription, while
the latter part of the chapter briefly describes the use of large-vocabulary ASR in speech
understanding systems.

12.4 SPEECH TRANSCRIPTION

The input speech waveform (typically sampled at 16 kHz) is first analysed into a
sequence of acoustic feature vectors such as MFCCs (see Chapter 10). A popular choice
is the first 12 cepstral coefficients and an overall energy feature together with first and
second time derivatives of these features, giving a 39-element vector.

Once the input speech has been analysed into a sequence of feature vectors, the
recognition task is to find the most probable word sequence W given the observed vector
sequence Y. Revisiting Bayes’ theorem (see Section 9.2), but applying it to the task of
finding a word sequence, the most probable sequence can be derived from the probability
P(W|Y) of any one sequence W as follows:

PY{W)P(W)

) - e P(Y |W)P(W). (12.1

Ff’=argmaxP(W|Y)=argmax
4 w

Equation (12.1) states that the most likely word sequence is the one which maximizes the
product of P(Y|W) and P(W). The first term denotes the probability of observing vector
sequence Y given the word sequence WA, and is determined by an acoustic model. The
second term represents the probability of observing word sequence W independently from
the acoustic signal, and is determined by a language model. Chapter 9 focused on the
task of calculating acoustic-model probabilities, which is fundamental to any speech
recognition system based on statistical models. However, for all but the most simple of
applications, the language-model probability is also a major factor in obtaining good
performance: restrictions imposed by the language model can greatly reduce the number
of different alternatives to be distinguished by the acoustic model. As with the acoustic
model, the language model for LVCSR is usually a statistical model that is automatically
trained on data. In the case of the language model, these data usually take the form of rext
material chosen to be representative of the recognition task.

Assuming that models have been trained, Figure 12.1 illustrates a framework for
classifying an unknown utterance by computing P(Y|W)P(W). The language model
postulates a word sequence (“ten pots” in this example') and determines its
probability P(W). In order to calculate the acoustic-model probability P(Y|W), a

! The phrase “ten pots” will be used in this chapter to illustrate a variety of different points. This
phrase was chosen to provide a simple example for which the phonetic and orthographic
transcriptions are very similar. For convenience of notation, we will represent the vowel in “pots”
with its orthographic transcription /o/ in place of the correct phonetic notation for southern British
English /7/.
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Figure 12.1 Framework for decoding a speech signal by computing the probability of a word
sequence in terms of language-model and acoustic-model probabilities, shown for recognition
of the phrase “ten pots”. A simple filter-bank analysis is shown here for clarity of illustration,
although in practice other features such as MFCCs would be used. Due to space limitations,
only four of the seven models needed to represent the phone sequence in “ten pots” are shown.

composite model for the word sequence is generated. Rather than having a separate
HMM for each word, the component models represent phone-size units and a
pronunciation dictionary is used to specify the sequence of models for each word in the
vocabulary. For any word sequence, the dictionary is used to look up the required
sequence of phone models for each word, and these phone models are concatenated
together to form the model for the word sequence. The probability of that model
generating the observed acoustic sequence is calculated, and this probability is multiplied
together with the language-model probability. In principle, this process can be repeated
for all possible word sequences allowed by the language model, with the most likely
sequence being selected as the recognizer output. In practice, decoding for LVCSR
requires a very efficient search strategy for evaluating the vast number of different
possibilities, as will be explained later.

12.5 CHALLENGES POSED BY LARGE VOCABULARIES
Issues for the design of large-vocabulary recognition systems include the following:

1. In continuous fluent speech, there are many instances when words cannot be distinguished
based on acoustic information alone and it is necessary to rely on a language model for
discrimination. Difficulties in making acoustic distinctions arise for two main reasons.
Firstly, due to co-articulation between adjacent words, word boundaries are not usually
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apparent in the acoustic signal. In some cases, two utterances may be linguistically
different but acoustically very similar or even identical (as in the “grey day” versus “grade
A” example given in Chapter 1). Secondly, the pronunciation of many words, particularly
function words, can be so reduced that there is very little acoustic information at all.

2. The memory and computation requirements can become excessive. In recent years,
advances in computer technology have greatly reduced the impact of this limitation.
However, memory and computation are still influential, especially in determining the
choice of search mechanism for use in decoding.

3. As the vocabulary size increases, it becomes increasingly difficult to provide enough
representative examples of all the words, both as text to train the language model and
as spoken examples to train the acoustic model.

Many of the design features of modern LVCSR systems are determined by the need to
deal with these issues. The design of the acoustic model, the language model and the
decoding operation are all crucial factors for the success of an LVCSR system. The
following three sections describe each of these three components in turn.

12.6 ACOUSTIC MODELLING

Although some early systems used HMMs with discrete distributions for their emission
p.d.f.is (e.g. Lee (1989)), current systems generally use fully continuous distributions or
tied-mixture distributions, usually with diagonal covariance matrices. These latter types
will be the focus of the explanation given here, which is based mainly on descriptions of
the research system developed at Cambridge University (e.g. Young (1996)). This system is
one of the most successful systems to date, but there are many other systems that have
fairly similar structure and give broadly comparable performance, although they differ in
various details.

The need to make the best use of any available acoustic training data has important
consequences for the design of the acoustic-model component. With a large vocabulary, it is
impractical to expect any one person to provide enough examples to train models for all the
words from scratch, even if the system is intended for speaker-dependent operation.
Therefore, a speaker-independent model set is used, at least to provide a starting point.
Speaker-adaptation techniques are often used to improve performance for any one individual.
Unsupervised adaptation may be performed using the recognizer output, as shown by the
dotted data path in Figure 12.1. In addition, for a system to be used by one known person,
that person can be required to speak some specific utterances, which can be used for
supervised model adaptation before the person uses the system to perform any real task.

Even with several speakers to provide the data, it is not practical to train a separate
model for each word in a large-vocabulary system. Even if it were practical, this approach
would not make the best use of the data, as it does not take account of the fact that different
words can share sub-components. Therefore large-vocabulary systems are based on sub-
word models. The usual method, as shown in Figure 12.1, is to use models of phone-size
units, with the sequence of phones for each word being specified in a pronunciation
dictionary. Thus, the requirement for the training is to provide sufficient examples of all the
phone-size units, and all the words in the vocabulary will not necessarily have occurred in
the training data. In fact, provided suitable models are available, words can be added to the
vocabulary at any time simply by extending the pronunciation dictionary.
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12.6.1 Context-dependent phone modelling

As approximately 44 phonemes are needed to represent all English words, this number of
models would be the minimum needed to build word models for English. However, the
effects of co-articulation are such that the acoustic realization of any one phoneme can
vary greatly with acoustic context. Therefore context-dependent HMMs are generally
used, with different models for different phonetic contexts. Additional variation tends to
arise because many speakers will, either consistently or occasionally, use word
pronunciations that are different from those given in the dictionary. Although alternative
pronunciations can be included in the dictionary, it is difficult to include every possible
pronunciation and any that are not covered will need somehow to be accommodated in
the chosen set of context-dependent HMMs.

The simplest and most popular approach is to use triphones, whereby every
phone has a distinct HMM for every unique pair of left and right neighbours. For
example, consider the word “ten”. When spoken in isolation, this word could be
represented by the sequence sil ten sil, with the sil model being used for silence at
the start and end. Using triphones, with the notation y to denote phone y preceded
by phone x and followed by phone z, the word would be modelled as

sil te 8, eNRgyp SiLl.

sil tTn

Now consider the phrase “ten pots”, for which the triphone sequence would be

sil silte t&n enp nPo pot ots t8si1 sil.

The two instances of the phone [t] are represented by different models because their
contexts are different. Note that the triphone contexts span word boundaries, so that the
first and last triphones used to represent a word depend on the preceding and following
words respectively. For example, if the phrase were “ten dogs”, the last triphone used to
model “ten” would be n rather than n . This use of cross-word triphones enables co-
articulation effects actoss word Boundaries to be accommodated, but creates
complications for the decoding process as the sequence of HMMs used to represent any
one word will depend on the following word.

The decoding task can be greatly simplified by using only word-internal triphones,
whereby ‘word boundary’ acts as a context and so the sequence of HMMs is fixed for each
word. Thus, in the above example the triphones n and p would be replaced by n and p
respectively, with—being used to represent a word bouhdary. Early triphone systems weré
restricted to word-internal triphones, but the inability to model contextual effects across word
boundaries is a serious disadvantage and current systems generally include cross-word
context-dependent models. The consequences for decoding are explained in Section 12.8.

12.6.2 Training issues for context-dependent models

For a language with 44 different phones, the number of possible triphones is 44°= 85,184.
In fact, phonotactic constraints are such that not all of these triphones can occur.
However, an LVCSR system which includes cross-word triphones will still typically need
around 60,000 triphones. This large number of possible triphones poses problems for
training the models:
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The total number of parameters needed for the models is very large: it is usual to use
three-state models with somewhere in the region of 10 mixture components to
represent the output distribution for each state. This number of mixture components
tends to be needed to represent the wide range of speakers (including a range of
different accent types) who must be accommodated within a single model. Assuming
that diagonal covariance matrices are used with 39-element acoustic feature vectors
and 10 mixture components, each state would require around 790 parameters (39x10
means, 39x10 variances, and 10 mixture weights). Thus 60,000 three-state models
would h