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Preface

In the last decade the user base of machine learning has grown dramatically. From a rel-
atively small circle in computer science, engineering, and mathematics departments the
users of machine learning now include students and researchers from every corner of the
academic universe, as well as members of industry, data scientists, entrepreneurs, and
machine learning enthusiasts. The book before you is the result of a complete tearing
down of the standard curriculum of machine learning into its most basic components,
and a curated reassembly of those pieces (painstakingly polished and organized) that we
feel will most benefit this broadening audience of learners. It contains fresh and intu-
itive yet rigorous descriptions of the most fundamental concepts necessary to conduct
research, build products, tinker, and play.

Intended audience and book pedagogy

This book was written for readers interested in understanding the core concepts of ma-
chine learning from first principles to practical implementation. To make full use of
the text one only needs a basic understanding of linear algebra and calculus (i.e., vec-
tor and matrix operations as well as the ability to compute the gradient and Hessian
of a multivariate function), plus some prior exposure to fundamental concepts of com-
puter programming (i.e., conditional and looping structures). It was written for first time
learners of the subject, as well as for more knowledgeable readers who yearn for a more
intuitive and serviceable treatment than what is currently available today.

To this end, throughout the text, in describing the fundamentals of each concept, we
defer the use of probabilistic, statistical, and neurological views of the material in favor
of a fresh and consistent geometric perspective. We believe that this not only permits
a more intuitive understanding of many core concepts, but helps establish revealing
connections between ideas often regarded as fundamentally distinct (e.g., the logis-
tic regression and support vector machine classifiers, kernels, and feed-forward neural
networks). We also place significant emphasis on the design and implementation of al-
gorithms, and include many coding exercises for the reader to practice at the end of
each chapter. This is because we strongly believe that the bulk of learning this subject
takes place when learners “get their hands dirty” and code things up for themselves. In
short, with this text we have aimed to create a learning experience for the reader where
intuitive leaps precede intellectual ones and are tempered by their application.
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xii Preface

What this book is about

The core concepts of our treatment of machine learning can be broadly summarized in
four categories. Predictive learning, the first of these categories, comprises two kinds of
tasks where we aim to either predict a continuous valued phenomenon (like the future
location of a celestial body), or distinguish between distinct kinds of things (like differ-
ent faces in an image). The second core concept, feature design, refers to a broad set of
engineering and mathematical tools which are crucial to the successful performance of
predictive learning models in practice. Throughout the text we will see that features are
generated along a spectrum based on the level of our own understanding of a dataset.
The third major concept, function approximation, is employed when we know too lit-
tle about a dataset to produce proper features ourselves (and therefore must learn them
strictly from the data itself). The final category, numerical optimization, powers the first
three and is the engine that makes machine learning run in practice.

Overview of the book

This book is separated into three parts, with the latter parts building thematically on
each preceding stage.

Part I: Fundamental tools and concepts

Here we detail the fundamentals of predictive modeling, numerical optimization, and
feature design. After a general introduction in Chapter 1, Chapter 2 introduces the rudi-
ments of numerical optimization, those critical tools used to properly tune predictive
learning models. We then introduce predictive modeling in Chapters 3 and 4, where the
regression and classification tasks are introduced, respectively. Along the way we also
describe a number of examples where we have some level of knowledge about the un-
derlying process generating the data we receive, which can be leveraged for the design
of features.

Part 2: Tools for fully data-driven machine learning

In the absence of useful knowledge about our data we must broaden our perspective
in order to design, or learn, features for regression and classification tasks. In Chap-
ters 5 and 6 we review the classical tools of function approximation, and see how they
are applied to deal with general regression and classification problems. We then end in
Chapter 7 by describing several advanced topics related to the material in the preceding
two chapters.

Part 3: Methods for large scale machine learning

In the final stage of the book we describe common procedures for scaling regression
and classification algorithms to large datasets. We begin in Chapter 8 by introducing
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Preface xiii

a number of advanced numerical optimization techniques. A continuation of the intro-
duction in Chapter 2, these methods greatly enhance the power of predictive learning
by means of more effective optimization algorithms. We then detail in Chapter 9 gen-
eral techniques for properly lowering the dimension of input data, allowing us to deflate
large datasets down to more manageable sizes.

Readers: how to use this book

As mentioned earlier, the only technical prerequisites for the effective use of this
book are a basic understanding of linear algebra and vector calculus, as advanced
concepts are introduced as necessary throughout the text, as well as some prior com-
puter programming experience. Readers can find a brief tutorial on the Python and
MATLAB/OCTAVE programming environments used for completing coding exercises,
which introduces proper syntax for both languages as well as necessary libraries to
download (for Python) as well as useful built-in functions (for MATLAB/OCTAVE),
on the book website.

For self-study one may read all the chapters in order, as each builds on its direct prede-
cessor. However, a solid understanding of the first six chapters is sufficient preparation
for perusing individual topics of interest in the final three chapters of the text.

Instructors: how to use this book

The contents of this book have been used for a number of courses at Northwestern
University, ranging from an introductory course for senior level undergraduate and be-
ginning graduate students, to a specialized course on advanced numerical optimization
for an audience largely consisting of PhD students. Therefore, with its treatment of foun-
dations, applications, and algorithms this book is largely self-contained and can be used
for a variety of machine learning courses. For example, it may be used as the basis for:

A single quarter or semester long senior undergraduate/beginning graduate level
introduction to standard machine learning topics. This includes coverage of basic
techniques from numerical optimization, regression/classification techniques and ap-
plications, elements of feature design and learning, and feed-forward neural networks.
Chapters 1–6 provide the basis for such a course, with Chapters 7 and 9 (on kernel meth-
ods and dimension reduction/unsupervised learning techniques) being optimal add-ons.

A single quarter or semester long senior level undergraduate/graduate course on
large scale optimization for machine learning. Chapters 2 and 6–8 provide the ba-
sis for a course on introductory and advanced optimization techniques for solving the
applications and models introduced in the first two-thirds of the book.
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1 Introduction

Machine learning is a rapidly growing field of study whose primary concern is the design
and analysis of algorithms which enable computers to learn. While still a young disci-
pline, with much more awaiting to be discovered than is currently known, today machine
learning can be used to teach computers to perform a wide array of useful tasks. This
includes tasks like the automatic detection of objects in images (a crucial component
of driver-assisted and self-driving cars), speech recognition (which powers voice com-
mand technology), knowledge discovery in the medical sciences (used to improve our
understanding of complex diseases), and predictive analytics (leveraged for sales and
economic forecasting). In this chapter we give a high level introduction to the field of
machine learning and the contents of this textbook. To get a big picture sense of how
machine learning works we begin by discussing a simple toy machine learning problem:
teaching a computer how to distinguish between pictures of cats from those with dogs.
This will allow us to informally describe the procedures used to solve machine learning
problems in general.

1.1 Teaching a computer to distinguish cats from dogs

To teach a child the difference between “cat” versus “dog”, parents (almost!) never give
their children some kind of formal scientific definition to distinguish the two; i.e., that
a dog is a member of Canis Familiaris species from the broader class of Mammalia,
and that a cat while being from the same class belongs to another species known as
Felis Catus. No, instead the child is naturally presented with many images of what they
are told are either “dogs” or “cats” until they fully grasp the two concepts. How do
we know when a child can successfully distinguish between cats and dogs? Intuitively,
when they encounter new (images of) cats and dogs, and can correctly identify each new
example. Like human beings, computers can be taught how to perform this sort of task
in a similar manner. This kind of task, where we aim to teach a computer to distinguish
between different types of things, is referred to as a classification problem in machine
learning.

1. Collecting data Like human beings, a computer must be trained to recognize the
difference between these two types of animal by learning from a batch of examples, typ-
ically referred to as a training set of data. Figure 1.1 shows such a training set consisting
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2 Introduction

Fig. 1.1 A training set of six cats (left panel) and six dogs (right panel). This set is used to train a machine
learning model that can distinguish between future images of cats and dogs. The images in this
figure were taken from [31].

of a few images of different cats and dogs. Intuitively, the larger and more diverse the
training set the better a computer (or human) can perform a learning task, since exposure
to a wider breadth of examples gives the learner more experience.

2. Designing features Think for a moment about how you yourself tell the difference
between images containing cats from those containing dogs. What do you look for in
order to tell the two apart? You likely use color, size, the shape of the ears or nose,
and/or some combination of these features in order to distinguish between the two. In
other words, you do not just look at an image as simply a collection of many small square
pixels. You pick out details, or features, from images like these in order to identify what
it is you are looking at. This is true for computers as well. In order to successfully train a
computer to perform this task (and any machine learning task more generally) we need
to provide it with properly designed features or, ideally, have it find such features itself.

This is typically not a trivial task, as designing quality features can be very application
dependent. For instance, a feature like “number of legs” would be unhelpful in discrim-
inating between cats and dogs (since they both have four!), but quite helpful in telling
cats and snakes apart. Moreover, extracting the features from a training dataset can also
be challenging. For example, if some of our training images were blurry or taken from
a perspective where we could not see the animal’s head, the features we designed might
not be properly extracted.

However, for the sake of simplicity with our toy problem here, suppose we can easily
extract the following two features from each image in the training set:

1. size of nose, relative to the size of the head (ranging from small to big);
2. shape of ears (ranging from round to pointy).

Examining the training images shown in Fig. 1.1, we can see that cats all have small
noses and pointy ears, while dogs all have big noses and round ears. Notice that with
the current choice of features each image can now be represented by just two numbers:
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1.1 Teaching a computer to distinguish cats from dogs 3

Fig. 1.2 Feature space representation of the training set where the horizontal and vertical axes represent
the features “nose size” and “ear shape” respectively. The fact that the cats and dogs from our
training set lie in distinct regions of the feature space reflects a good choice of features.

a number expressing the relative nose size, and another number capturing the pointy-
ness or round-ness of ears. Therefore we now represent each image in our training set
in a 2-dimensional feature space where the features “nose size” and “ear shape” are the
horizontal and vertical coordinate axes respectively, as illustrated in Fig. 1.2. Because
our designed features distinguish cats from dogs in our training set so well the feature
representations of the cat images are all clumped together in one part of the space, while
those of the dog images are clumped together in a different part of the space.

3. Training a model Now that we have a good feature representation of our training
data the final act of teaching a computer how to distinguish between cats and dogs is
a simple geometric problem: have the computer find a line or linear model that clearly
separates the cats from the dogs in our carefully designed feature space.1 Since a line (in
a 2-dimensional space) has two parameters, a slope and an intercept, this means finding
the right values for both. Because the parameters of this line must be determined based
on the (feature representation) of the training data the process of determining proper
parameters, which relies on a set of tools known as numerical optimization, is referred
to as the training of a model.

Figure 1.3 shows a trained linear model (in black) which divides the feature space
into cat and dog regions. Once this line has been determined, any future image whose
feature representation lies above it (in the blue region) will be considered a cat by the
computer, and likewise any representation that falls below the line (in the red region)
will be considered a dog.

1 While generally speaking we could instead find a curve or nonlinear model that separates the data, we will
see that linear models are by far the most common choice in practice when features are designed properly.
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4 Introduction

Fig. 1.3 A trained linear model (shown in black) perfectly separates the two classes of animal present in
the training set. Any new image received in the future will be classified as a cat if its feature
representation lies above this line (in the blue region), and a dog if the feature representation lies
below this line (in the red region).

Fig. 1.4 A testing set of cat and dog images also taken from [31]. Note that one of the dogs, the Boston
terrier on the top right, has both a short nose and pointy ears. Due to our chosen feature
representation the computer will think this is a cat!

4. Testing the model To test the efficacy of our learner we now show the computer a
batch of previously unseen images of cats and dogs (referred to generally as a testing
set of data) and see how well it can identify the animal in each image. In Fig. 1.4 we
show a sample testing set for the problem at hand, consisting of three new cat and dog
images. To do this we take each new image, extract our designed features (nose size and
ear shape), and simply check which side of our line the feature representation falls on.
In this instance, as can be seen in Fig. 1.5 all of the new cats and all but one dog from
the testing set have been identified correctly.
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1.1 Teaching a computer to distinguish cats from dogs 5

Fig. 1.5 Identification of (the feature representation of) our test images using our trained linear model.
Notice that the Boston terrier is misclassified as a cat since it has pointy ears and a short nose,
just like the cats in our training set.

The misidentification of the single dog (a Boston terrier) is due completely to our
choice of features, which we designed based on the training set in Fig. 1.1. This dog has
been misidentified simply because its features, a small nose and pointy ears, match those
of the cats from our training set. So while it first appeared that a combination of nose
size and ear shape could indeed distinguish cats from dogs, we now see that our training
set was too small and not diverse enough for this choice of features to be completely
effective.

To improve our learner we must begin again. First we should collect more data, form-
ing a larger and more diverse training set. Then we will need to consider designing more
discriminating features (perhaps eye color, tail shape, etc.) that further help distinguish
cats from dogs. Finally we must train a new model using the designed features, and
test it in the same manner to see if our new trained model is an improvement over the
old one.

1.1.1 The pipeline of a typical machine learning problem

Let us now briefly review the previously described process, by which a trained model
was created for the toy task of differentiating cats from dogs. The same process is used
to perform essentially all machine learning tasks, and therefore it is worthwhile to pause
for a moment and review the steps taken in solving typical machine learning problems.
We enumerate these steps below to highlight their importance, which we refer to all
together as the general pipeline for solving machine learning problems, and provide a
picture that compactly summarizes the entire pipeline in Fig. 1.6.
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6 Introduction

Fig. 1.6 The learning pipeline of the cat versus dog classification problem. The same general pipeline is
used for essentially all machine learning problems.

0 Define the problem. What is the task we want to teach a computer to do?

1 Collect data. Gather data for training and testing sets. The larger and more
diverse the data the better.

2 Design features. What kind of features best describe the data?

3 Train the model. Tune the parameters of an appropriate model on the
training data using numerical optimization.

4 Test the model. Evaluate the performance of the trained model on the testing
data. If the results of this evaluation are poor, re-think the particular features used
and gather more data if possible.

1.2 Predictive learning problems

Predictive learning problems constitute the majority of tasks machine learning can
be used to solve today. Applicable to a wide array of situations and data types, in
this section we introduce the two major predictive learning problems: regression and
classification.

1.2.1 Regression

Suppose we wanted to predict the share price of a company that is about to go public
(that is, when a company first starts offering its shares of stock to the public). Following
the pipeline discussed in Section 1.1.1, we first gather a training set of data consisting
of a number of corporations (preferably active in the same domain) with known share
prices. Next, we need to design feature(s) that are thought to be relevant to the task at
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1.2 Predictive learning problems 7

Fig. 1.7 (top left panel) A toy training dataset of ten corporations with their associated share price and
revenue values. (top right panel) A linear model is fit to the data. This trend line models the
overall trajectory of the points and can be used for prediction in the future as shown in the
bottom left and bottom right panels.

hand. The company’s revenue is one such potential feature, as we can expect that the
higher the revenue the more expensive a share of stock should be.2 Now in order to
connect the share price to the revenue we train a linear model or regression line using
our training data.

The top panels of Fig. 1.7 show a toy dataset comprising share price versus revenue
information for ten companies, as well as a linear model fit to this data. Once the model
is trained, the share price of a new company can be predicted based on its revenue, as
depicted in the bottom panels of this figure. Finally, comparing the predicted price to the
actual price for a testing set of data we can test the performance of our regression model
and apply changes as needed (e.g., choosing a different feature). This sort of task, fitting
a model to a set of training data so that predictions about a continuous-valued variable
(e.g., share price) can be made, is referred to as regression. We now discuss some further
examples of regression.

Example 1.1 The rise of student loan debt in the United States

Figure 1.8 shows the total student loan debt, that is money borrowed by students to pay
for college tuition, room and board, etc., held by citizens of the United States from 2006
to 2014, measured quarterly. Over the eight year period reflected in this plot total student
debt has tripled, totaling over one trillion dollars by the end of 2014. The regression line
(in magenta) fit to this dataset represents the data quite well and, with its sharp positive
slope, emphasizes the point that student debt is rising dangerously fast. Moreover, if

2 Other potential features could include total assets, total equity, number of employees, years active, etc.
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Fig. 1.8 Total student loan debt in the United States measured quarterly from 2006 to 2014. The rapid
increase of the debt, measured by the slope of the trend line fit to the data, confirms the
concerning claim that student debt is growing (dangerously) fast. The debt data shown in this
figure was taken from [46].

this trend continues, we can use the regression line to predict that total student debt will
reach a total of two trillion dollars by the year 2026.

Example 1.2 Revenue forecasting

In 1983, Academy Award winning screenwriter William Goldman coined the phrase
“nobody knows anything” in his book Adventures in the Screen Trade, referring to his
belief that at the time it was impossible to predict the success or failure of Hollywood
movies. However, in the post-internet era of today, accurate estimation of box office rev-
enue to be earned by upcoming movies is becoming possible. In particular, the quantity
of internet searches for trailers, as well as the amount of discussion about a movie on so-
cial networks like Facebook and Twitter, have been shown to reliably predict a movie’s
opening weekend box office takings up to a month in advance (see e.g., [14, 62]). Sales
forecasting for a range of products/services, including box office sales, is often per-
formed using regression. Here the input feature can be for instance the volume of web
searches for a movie trailer on a certain date, with the output being revenue made during
the corresponding time period. Predicted revenue of a new movie can then be estimated
using a regression model learned on such a dataset.

Example 1.3 Associating genes with quantitative traits

Genome-wide association (GWA) studies (Fig. 1.9) aim at understanding the connec-
tions between tens of thousands of genetic markers, taken from across the human
genome of numerous subjects, with diseases like high blood pressure/cholesterol, heart
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Fig. 1.9 Conceptual illustration of a GWA study employing regression, wherein a quantitative trait is to
be associated with specific genomic locations.

disease, diabetes, various forms of cancer, and many others [26, 76, 80]. These stud-
ies are undertaken with the hope of one day producing gene-targeted therapies, like
those used to treat diseases caused by a single gene (e.g., cystic fibrosis), that can help
individuals with these multifactorial diseases. Regression as a commonly employed tool
in GWA studies, is used to understand complex relationships between genetic markers
(features) and quantitative traits like level of cholesterol or glucose (a continuous output
variable).

1.2.2 Classification

The machine learning task of classification is similar in principle to that of regression.
The key difference between the two is that instead of predicting a continuous-valued
output (e.g., share price, blood pressure, etc.), with classification what we aim at pre-
dicting takes on discrete values or classes. Classification problems arise in a host of
forms. For example object recognition, where different objects from a set of images are
distinguished from one another (e.g., handwritten digits for the automatic sorting of mail
or street signs for semi-autonomous and self-driving cars), is a very popular classifica-
tion problem. The toy problem of distinguishing cats from dogs discussed in Section
1.1 was such a problem. Other common classification problems include speech recog-
nition (recognizing different spoken words for voice recognition systems), determining
the general sentiment of a social network like Twitter towards a particular product or
service, as well as determining what kind of hand gesture someone is making from a
finite set of possibilities (for use in e.g., controlling a computer without a mouse).

Geometrically speaking, a common way of viewing the task of classification is one
of finding a separating line (or hyperplane in higher dimensions) that separates the two3

3 Some classification problems (e.g., handwritten digit recognition) have naturally more than two classes for
which we need a better model than a single line to separate the classes. We discuss in detail how multiclass
classification is done later in Sections 4.4 and 6.3.
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Fig. 1.10 (top left panel) A toy 2-dimensional training set consisting of two distinct classes, red and blue.
(top right panel) A linear model is trained to separate the two classes. (bottom left panel) A test
point whose class is unknown. (bottom right panel) The test point is classified as blue since it lies
on the blue side of the trained linear classifier.

classes of data from a training set as best as possible. This is precisely the perspective
on classification we took in describing the toy example in Section 1.1, where we used
a line to separate (features extracted from) images of cats and dogs. New data from
a testing set is then automatically classified by simply determining which side of the
line/hyperplane the data lies on. Figure 1.10 illustrates the concept of a linear model or
classifier used for performing classification on a 2-dimensional toy dataset.

Example 1.4 Object detection

Object detection, a common classification problem, is the task of automatically identi-
fying a specific object in a set of images or videos. Popular object detection applications
include the detection of faces in images for organizational purposes and camera focus-
ing, pedestrians for autonomous driving vehicles,4 and faulty components for automated
quality control in electronics production. The same kind of machine learning framework,
which we highlight here for the case of face detection, can be utilized for solving many
such detection problems.

After training a linear classifier on a set of training data consisting of facial and non-
facial images, faces are sought after in a new test image by sliding a (typically) square

4 While the problem of detecting pedestrians is a particularly well-studied classification problem
[29, 32, 53], a standard semi-autonomous or self-driving car will employ a number of detectors that scan
the vehicle’s surroundings for other important objects as well, like road markings, signs, and other cars on
the road.
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input image feature space non-face
face

Fig. 1.11 To determine if any faces are present in a test image (in this instance an image of the Wright
brothers, inventors of the airplane, sitting together in one of their first motorized flying machines
in 1908) a small window is scanned across its entirety. The content inside the box at each
instance is determined to be a face by checking which side of the learned classifier the feature
representation of the content lies. In the figurative illustration shown here the area above and
below the learned classifier (shown in black on the right) are the “face” and “non-face” sides of
the classifier, respectively.

window over the entire image. At each location of the sliding window the image content
inside is tested to see which side of the classifier it lies on (as illustrated in Fig. 1.11).
If the (feature representation of the) content lies on the “face side” of the classifier the
content is classified as a face.5

Example 1.5 Sentiment analysis

The rise of social media has significantly amplified the voice of consumers, providing
them with an array of well-tended outlets on which to comment, discuss, and rate prod-
ucts and services. This has led many firms to seek out data intensive methods for gauging
their customers’ feelings towards recently released products, advertising campaigns, etc.
Determining the aggregated feelings of a large base of customers, using text-based con-
tent like product reviews, tweets, and comments, is commonly referred to as sentiment
analysis. Classification models are often used to perform sentiment analysis, learning to
identify consumer data of either positive or negative feelings.

Example 1.6 Classification as a diagnostic tool in medicine

Cancer, in its many variations, remains among the most challenging diseases to diag-
nose and treat. Today it is believed that the culprit behind many types of cancers lies in
accumulation of mutated genes, or in other words erroneous copies of an individual’s

5 In practice, to ensure that all faces at different distances from the camera are detected in a test image,
typically windows of various sizes are used to scan as described here. If multiple detections are made
around a single face they are then combined into a single highlighted window encasing the detected face.
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DNA sequence. With the use of DNA microarray technology, geneticists are now able to
simultaneously query expression levels of tens of thousands of genes from both healthy
and tumorous tissues. This data can be used in a classification framework as a means
of automatically identifying patients who have a genetic predisposition for contracting
cancer. This problem is related to that of associating genes with quantitative biological
traits, as discussed in Example 1.3.

Classification is also being increasingly used in the medical community to diag-
nose neurological disorders such as autism and attention deficit hyperactivity disorder
(ADHD), using functional Magnetic Resonance Imaging (fMRI) of the human brain.
These fMRI brain scans capture neural activity patterns localized in different regions
of the brain over time as patients perform simple cognitive activities such as tracking
a small visual object. The ultimate goal here is to train a diagnostic classification tool
capable of distinguishing between patients who have a particular neurological disorder
from those who do not, based solely on fMRI scans.

1.3 Feature design

As we have described in previous sections, features are those defining characteristics
of a given dataset that allow for optimal learning. Indeed, well-designed features are
absolutely crucial to the performance of both regression and classification schemes.
However, broadly speaking the quality of features we can design is fundamentally de-
pendent on our level of knowledge regarding the phenomenon we are studying. The
more we understand (both intellectually and intuitively) the process generating the data
we have at our fingertips, the better we can design features ourselves or, ideally, teach
the computer to do this design work itself. At one extreme where we have near perfect
understanding of the process generating our data, this knowledge having come from
considerable intuitive, experimental, and mathematical reflection, the features we design
allow near perfect performance. However, more often than not we know only a few facts,
or perhaps none at all, about the data we are analyzing. The universe is an enormous and
complicated place, and we have a solid understanding only of how a sliver of it works.

Below we give examples that highlight how our understanding of a phenomenon
guides the design of features, from knowing quite a lot about a phenomenon to knowing
just a few basic facts. A main thrust of the text will be to detail the current state of ma-
chine learning technology in dealing with this issue. One of the end goals of machine
learning, which is still far from being solved adequately, is to develop effective tools
for dealing with (finding patterns in) arbitrary kinds of data, a problem fundamentally
having to do with finding good features.

Example 1.7 Galileo and uniform acceleration

In 1638 Galileo Galilei, infamous for his expulsion from the Catholic church for daring
to claim that the earth orbited the sun and not the converse (as was the prevailing belief at
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Fig. 1.12 Galileo’s ramp experiment setup used for exploring the relationship between time and the
distance an object falls due to gravity. To perform this experiment he repeatedly rolled a ball
down a ramp and timed how long it took to get 1/4,1/2, 2/3, 3/4, and all the way down the ramp.
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Fig. 1.13 Galileo’s experimental data consisting of six points whose input is time and output is the fraction
of the ramp traveled. Shown in the plot is the output with the feature time squared, along with a
linear fit in magenta. In machine learning we call the variable “time squared” a feature of the
original input variable “time.”

the time) published his final book: Dialogues Concerning Two New Sciences [35]. In this
book, written as a discourse among three men in the tradition of Aristotle, he described
his experimental and philosophical evidence for the notion of uniformly accelerated
physical motion. Specifically, Galileo (and others) had intuition that the acceleration of
an object due to (the force we now know as) gravity is uniform in time, or in other
words that the distance an object falls is directly proportional (i.e., linearly related) to
the amount of time it has been traveling, squared. This relationship was empirically
solidified using the following ingeniously simple experiment performed by Galileo.

Repeatedly rolling a metal ball down a grooved 51/2 meter long piece of wood set at
an incline as shown in Fig. 1.12, Galileo timed how long the ball took to get 1/4,1/2, 2/3,
3/4, and all the way down the wood ramp.6

Data from a modern reenactment [75] of these experiments (averaged over 30 trials),
results in the six data points shown in Fig. 1.13. However, here we show not the original
input (time) and output (corresponding fraction of the ramp traveled) data, but the output

6 A ramp was used, as opposed to simply dropping the ball vertically, because time keeping devices in the
time of Galileo were not precise enough to make accurate measurements if the ball was simply dropped.
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paired with the feature time squared, measured in milliliters of water7 as in Galileo’s
original experiment. By using square of the time as a feature the dataset becomes very
much linearly related, allowing for a near perfect linear regression fit.

Example 1.8 Feature design for visual object detection

A more modern example of feature design, where we have only partial understanding
of the underlying process generating data, lies in the task of visual object detection
(first introduced in Example 1.4). Unlike the case with Galileo and uniform acceleration
described previously, here we do not know nearly as much about the underlying process
of visual cognition in both an experimental and philosophical sense. However, even with
only pieces of a complete understanding we can still design useful features for object
detection.

One of the most crucial and commonly leveraged facts in designing features for vi-
sual classification tasks (as we will see later in Section 4.6.2) is that the distinguishing
information in a natural image, that is an image a human being would normally be ex-
posed to like a forest or outdoor scene, cityscapes, other people, animals, the insides of
buildings, etc., is largely contained in the relatively small number of edges in an image
[15, 16]. For example Fig. 1.14 shows a natural image along with an image consisting
of its most prominent edges. The majority of the pixels in this image do not belong to
any edges, yet with just the edges we can still tell what the image contains.

Fig. 1.14 (left panel) A natural image, in this instance of the two creators/writers of the television show
South Park (this image is reproduced with permission of Jason Marck). (right panel) The edge
detected version of this image, where the bright yellow pixels indicate large edge content, still
describes the scene very well (in the sense that we can still tell there are two people in the image)
using only a fraction of the information contained in the original image. Note that edges have
been colored yellow for visualization purposes only.

7 Chronological watches (personal timepieces that keep track of hours/minutes/seconds like we have today)
did not exist in the time of Galileo. Instead time was measured by calculating the amount of water dripped
from a spout into a small cup while each ball rolled down the ramp. This clever time keeping device was
known as a “water clock.”
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1.4 Numerical optimization 15

Fig. 1.15 Visual information is processed in an area of the brain where each neuron detects in the observed
scene edges of a specific orientation and width. It is thought that what we (and other mammals)
“see” is a processed interpolation of these edge detected images.

From visual studies performed largely on frogs, cats, and primates, where a subject
is shown visual stimuli while electrical impulses are recorded in a small area in the
subject’s brain where visual information is processed, neuroscientists have determined
that individual neurons involved roughly operate by identifying edges [41, 55]. Each
neuron therefore acts as a small “edge detector,” locating edges in an image of a specific
orientation and thickness, as shown in Fig. 1.15. It is thought that by combining and
processing these edge detected images, humans and other mammals “see.”

1.4 Numerical optimization

As we will see throughout the remainder of the book, we can formalize the search for pa-
rameters of a learning model via well-defined mathematical functions. These functions,
commonly referred to as cost functions, take in a specific set of model parameters and
return a score indicating how well we would accomplish a given learning task using that
choice of parameters. A high value indicates a choice of parameters that would give poor
performance, while the opposite holds for a set of parameters providing a low value.
For instance, recall the share price prediction example from Section 1.2.1, in which we
aimed at learning a regression line to predict a company’s share price based on its rev-
enue. This line is fit properly by optimally tuning its two parameters: slope and intercept.
Geometrically, this corresponds to finding the set of parameters providing the smallest
value (called a minimum) of a 2-dimensional cost function, as shown in Fig. 1.16.
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Fig. 1.16 (top panels) The 2-dimensional cost function associated with learning the slope and intercept
parameters of a linear model for share price prediction based on revenue for a toy dataset first
shown in Fig. 1.7. Also shown here are two different sets of parameter values, one (left) at the
minimum of the cost function and the other (right) at a point with larger cost function value.
(bottom panels) The linear model corresponding to each set of parameters in the top panel. The
set of parameters resulting in the best performance are found at the minimum of the cost surface.

This concept plays a similarly fundamental role with classification as well. Recall the
toy problem of distinguishing between images of cats and dogs, described in Section
1.1. There we discussed how a linear classifier is trained on the feature representations
of a training set by finding ideal values for its two parameters, which are again slope and
intercept. The ideal setting for these parameters again corresponds with the minimum of
a cost function, as illustrated in Fig. 1.17.

Because a low value corresponds to a high performing model in the case of both re-
gression and classification, we will always look to minimize cost functions in order to
find the ideal parameters of their associated learning models. As the study of compu-
tational methods for minimizing formal mathematical functions, the tools of numerical
optimization therefore play a fundamental role throughout the text.

1.5 Summary

In this chapter we have given a broad overview of machine learning, with an em-
phasis on critical concepts we will see repeatedly throughout the book. We began in
Section 1.1 where we described a prototypical machine learning problem, as well as
the steps typically taken to solve such a problem (summarized in Fig. 1.6). In Section
1.2 we then introduced the two fundamental problems of machine learning: regression
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Fig. 1.17 (top panels) The 2-dimensional cost function associated with learning the slope and intercept
parameters of a linear model separating two classes of data. Also shown here are two different
sets of parameter values, one (left) corresponding to the minimum of the cost function and the
other (right) corresponding to a point with larger cost function value. (bottom panels) The linear
classifiers corresponding to each set of parameters in the top panels. The optimal set of
parameters, i.e., those giving the minimum value of the associated cost function, allow for the
best performance.

and classification, detailing a number of applications of both. Next, Section 1.3 intro-
duced the notion of features, or those uniquely descriptive elements of data that are
crucial to effective learning. Finally in Section 1.4 we motivated the need for numerical
optimization due to the pursuit of ideal parameters of a learning model having direct
correspondence to the geometric problem of finding the smallest value of an associated
cost function (summarized pictorially in Fig. 1.16 and 1.17).
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Fundamental tools and concepts
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Overview of Part I

In the three chapters that follow we describe in significant detail the basic concepts of
machine learning introduced in Chapter 1, beginning with an introduction to several
fundamental tools of numerical optimization in Chapter 2. This includes a thorough
description of calculus-defined optimality, as well as the widely used gradient descent
and Newton’s method algorithms. Discussing these essential tools first will enable us to
immediately and effectively deal with all of the formal learning problems we will see
throughout the entirety of the text. Chapters 3 and 4 then introduce linear regression and
classification respectively, the two predictive learning problems which form the bedrock
of modern machine learning. We motivate both problems naturally, letting illustrations
and geometric intuition guide our formal derivations, and in each case describe (through
a variety of examples) how knowledge is used to forge effective features.
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2 Fundamentals of numerical
optimization

In this chapter we review fundamental concepts from the field of numerical optimiza-
tion that will be used throughout the text in order to determine optimal parameters for
learning models (as described in Section 1.4) via the minimization of a differentiable
function. Specifically, we describe two basic but widely used algorithms, known as gra-
dient descent and Newton’s method, beginning with a review of several important ideas
from calculus that provide the mathematical foundation for both methods.

2.1 Calculus-defined optimality

In this section we briefly review how calculus is used to describe the local geometry of
a function, as well as its minima or lowest points. As we will see later in the chapter,
powerful numerical algorithms can be built using these simple concepts.

2.1.1 Taylor series approximations

To glean some basic insight regarding the geometry of a many times differentiable func-
tion g (w) near a point v we may form a linear approximation to the function near this
point. This is just a tangent line passing through the point (v, g (v)), as illustrated in
Fig. 2.1, which contains the first derivative information g′ (v).

Such a linear approximation (also known as a first order Taylor series) is written as

h (w) = g (v)+ g′ (v) (w− v) . (2.1)

Note that indeed this function is a) linear in w, b) tangent to g(w) at v since h (v) = g (v)
and because it contains the first derivative information of g at v i.e., h′ (v) = g′ (v). This
linear approximation holds particularly well near v because the derivative contains slope
information.

To understand even more about g near v we may form a quadratic approximation (also
illustrated in Fig. 2.1) that contains both first and second derivative information g′ (v)
and g′′ (v). This quadratic, referred to as the second order Taylor series approximation,
is written as

h (w) = g (v)+ g′ (v) (w− v)+ 1

2
g′′ (v) (w− v)2 . (2.2)
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u υ w

g (w)

Fig. 2.1 Linear (in green) and quadratic (in blue) approximations to a differentiable function g (w) at two
points: w = u and w = v. Often these linear and quadratic approximations are equivalently
referred to as first and second order Taylor series approximations, respectively.

This quadratic contains the same tangency and first order information of the linear
approximation (i.e., h (v) = g (v) and h′ (v) = g′ (v)) with additional second order
derivative information as well at g near v since h′′ (v) = g′′ (v). The second order Taylor
series approximation more closely resembles the underlying function around v because
the second derivative contains so-called curvature information.

We may likewise define linear and quadratic approximations for a many times differ-

entiable function g (w) of vector valued input w = [ w1 w2 · · · wN
]T

. In general
we may formally write the linear approximation as

h (w) = g (v)+ ∇g (v)T (w− v) , (2.3)

where ∇g (v) =
[

∂
∂w1

g (v) ∂
∂w2

g (v) · · · ∂
∂wN

g (v)
]T

is the N × 1 gradient of

partial derivatives (which reduces to g′ (v) = ∂
∂w g (v) in the case N = 1). We may also

generally write the quadratic approximation as

h (w) = g (v)+∇g (v)T (w− v)+ 1

2
(w− v)T ∇2g (v) (w− v) , (2.4)

where ∇2g (v) is the N × N symmetric Hessian matrix of second derivatives (which is

just the second derivative g′′ (v) = ∂2

∂w2 g (v) when N = 1) defined as

∇2g (v) =

⎡⎢⎢⎢⎢⎢⎣
∂2

∂w1∂w1
g (v) ∂2

∂w1∂w2
g (v) · · · ∂2

∂w1∂wN
g (v)

∂2

∂w2∂w1
g (v) ∂2

∂w2∂w2
g (v) · · · ∂2

∂w2∂wN
g (v)

...
...

. . .
...

∂2

∂wN∂w1
g (v) ∂2

∂wN∂w2
g (v) · · · ∂2

∂wN∂wN
g (v)

⎤⎥⎥⎥⎥⎥⎦ . (2.5)

2.1.2 The first order condition for optimality

Minimum values of a function g are naturally located at “valley floors” where the line
or hyperplane tangent to the function has zero slope. Because the derivative/gradient
contains this slope information, calculus thereby provides a convenient way of finding
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w

Fig. 2.2 Stationary points of the general function g include minima, maxima, and saddle points. At all
such points the gradient is zero.

minimum values of g. In N = 1 dimension any point v where g′ (v) = 0 is a potential
minimum. Analogously with general N-dimensional input any point v where ∇g (v) =
0N×1 is a potential minimum as well. Note that the condition ∇g (v) = 0N×1 can be
equivalently written as a system of N equations:

∂
∂w1

g = 0,

∂
∂w2

g = 0,
...

∂
∂wN

g = 0.

(2.6)

However, for a general function g minima are not the only points that satisfy this condi-
tion. As illustrated in Fig. 2.2, a function’s maxima as well as saddle points (i.e., points at
which the curvature of the function changes from negative to positive or vice-versa) are
also points at which the function has a vanishing gradient. Together minima, maxima,
and saddle points are referred to as stationary points of a function.

In short, while calculus provides us with a useful method for determining minima
of a general function g, this method unfortunately determines other undesirable points
(maxima and saddle points) as well.1 Regardless, as we will see later in this chapter the
condition ∇g (w) = 0N×1 is a hugely important tool for determining minima, generally
referred to as the first order condition for optimality, or in short the first order condition.

A stationary point v of a function g (including minima, maxima, and saddle points)
satisfies the first order condition ∇g (v) = 0N×1.

1 Although there is a second order condition for optimality that can be used to distinguish between various
types of stationary points, it is not often used in practice since it is much easier to construct optimization
schemes based solely on the first order condition stated here.
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24 Fundamentals of numerical optimization

Fig. 2.3 From left to right, plots of functions g (w) = w3, g (w) = ew, g (w) = sin (w), and g (w) = w2.

Example 2.1 Stationary points of simple functions

In this example we use the first order condition for optimality to compute stationary
points of functions g (w) = w3, g (w) = ew, g (w) = sin (w), g (w) = w2, and g (w) =
1
2 wTQw+ rTw+ d.

• g (w) = w3, plotted in the first panel of Fig. 2.3, the first order condition gives
g′ (w) = 3w2 = 0 with a saddle point at w = 0.
• g (w) = ew, plotted in the second panel of Fig. 2.3, the first order condition gives

g′ (w) = ew = 0 which is only satisfied as w goes to −∞, giving a minimum.
• g (w) = sin (w), plotted in the third panel of Fig. 2.3, the first order condition gives

stationary points wherever g′ (w) = cos (w) = 0 which occurs at odd integer multi-
ples of π/2, i.e., maxima at w = (4n+1)π

2 and minima at w = (4n+3)π
2 where n is any

integer.
• g (w) = w2, plotted in the fourth panel of Fig. 2.3, the first order condition gives

g′ (w) = 2w = 0 with a minimum at w = 0.
• g (w) = 1

2 wTQw+ rTw+ d where Q is an N × N symmetric matrix (i.e., Q = QT ),
r is an N × 1 vector, and d is a scalar. Then ∇g (w) = Qw + r and thus stationary
points exist for all solutions to the linear system of equations Qw = −r.

2.1.3 The convenience of convexity

As discussed in Section 1.4, solving a machine learning problem eventually reduces to
finding the minimum of an associated cost function. Of all (potentially many) minima of
a cost function, we are especially interested in the one that provides the lowest possible
value of the function, known as the global minimum. For a special family of functions,
referred to as convex functions, the first order condition is particularly useful because
all stationary points of a convex function are global minima. In other words, convex
functions are free of maxima and saddle points as well as non-global minima.

To determine if a function g is convex (facing upward, as the function shown in
Fig. 2.1 is at the point u) or concave (facing downward, as the function shown in Fig. 2.1
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2.1 Calculus-defined optimality 25

is at the point v) at a point v we check its curvature or second derivative information
there:

g′′ (v) ≥ 0 ⇐⇒ g is convex at v
g′′ (v) ≤ 0 ⇐⇒ g is concave at v.

(2.7)

Here, if a statement on one side of the symbol ⇐⇒ (which reads “if and only if”) is
true then the statement on the other side is true as well (likewise if one is false then
the other is false as well). Similarly, for general N an analogous statement can be made
regarding the eigenvalues of ∇2g (v), i.e., g is convex (or concave) at v if and only if the
Hessian matrix evaluated at this point has all non-negative (or non-positive) eigenvalues,
in which case the Hessian is called positive semi-definite (or negative semi-definite).

Based on this rule, g (w) is convex everywhere, a convex function, if its second deriva-
tive g′′ (w) is always non-negative. Likewise g (w) is convex if ∇2g (w) always has
non-negative eigenvalues. This is generally referred to as the second order definition of
convexity.2

A twice differentiable function is convex if and only if g′′ (w) ≥ 0 for all w (or
∇2g (w) has non-negative eigenvalues for all w)

Example 2.2 Convexity of simple functions with scalar input

In this example we use the second order definition of convexity to verify whether each
of the functions shown in Fig. 2.3 is convex or not:

• g (w) = w3 has second derivative g′′ (w) = 6w which is not always non-negative,
hence g is not convex.
• g (w) = ew has second derivative g′′ (w) = ew which is positive for any choice of w,

and so g is convex.
• g (w) = sin (w) has second derivative g′′ (w) = −sin (w). Since this is not always

non-negative g is non-convex.
• g (w) = w2 has second derivative g′′ (w) = 2, and so g is convex.

Example 2.3 Convexity of a quadratic function with vector input

In N-dimensions a quadratic function in w takes the form

g (w) = 1

2
wTQw+ rTw+ d, (2.8)

2 While there are a number of ways to formally check that a function is convex, we will see that the second
order approach is especially convenient. The interested reader can see Appendix D for additional
information regarding convex functions.
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0

2

g

–1 –1
w2 w21 1

0

0

1

g g

–1 –1
w2 w11 1

–2

–3

–1w2 w12 1

Fig. 2.4 Three quadratic functions of the form g (w) = 1
2 wT Qw+ rT w+ d generated by different

instances of matrix Q in Example 2.3. In all three cases r = 02×1 and d = 0. As can be visually
verified, only the first two functions are convex. The last “saddle-looking” function on the right
has a saddle point at zero!

with its Hessian given by

∇2g (w) = 1

2

(
Q+QT) . (2.9)

Note that if Q is symmetric, then ∇2g (w) = Q. Also note that r and d have no influence
on the convexity of g. We now verify convexity for three simple instances of Q where
N = 2. We discuss a convenient way to determine the convexity of more general vector
input functions in the exercises.

• When Q =
[

2 0
0 2

]
the Hessian ∇2g (w) = Q has two eigenvalues equaling 2, so

the corresponding quadratic, shown in the left panel of Fig. 2.4, is convex.

• When Q =
[

2 0
0 0

]
again the Hessian ∇2g (w) = Q has two eigenvalues (2 and 0),

so the corresponding quadratic, shown in the middle panel of Fig. 2.4, is convex.

• When Q =
[

2 0
0 −2

]
again the Hessian is ∇2g (w) = Q and has eigenvalues

2 and −2, so the corresponding quadratic, shown in the right panel of Fig. 2.4, is
non-convex.

2.2 Numerical methods for optimization

In this section we introduce two basic but widely used numerical techniques, known
as gradient descent and Newton’s method, for finding minima of a function g (w). The
formal manner of describing the minimization of a function g is commonly written as

minimize
w

g (w) , (2.10)

which is simply shorthand for saying “minimize g over all input values w.” The solution
to (2.10), referred to as the optimal w, is typically denoted as w�. While both gradient
descent and Newton’s method operate sequentially by finding points at which g gets
smaller and smaller, both methods are only guaranteed to find stationary points of g, i.e.,
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2.2 Numerical methods for optimization 27

those points satisfying the first order condition (discussed in Section 2.1.2). Thus one
can also consider these techniques for numerically solving the system of N equations
∇g (w) = 0N×1.

2.2.1 The big picture

All numerical optimization schemes for minimization of a general function g work as
follows:

1 Start the minimization process from some initial point w0.

2 Take iterative steps denoted by w1, w2, . . ., going “downhill” towards a
stationary point of g.

3 Repeat step 2 until the sequence of points converges to a stationary point
of g.

This idea is illustrated in Fig. 2.5 for the minimization of a non-convex function. Note
that since this function has three stationary points, the one we reach by traveling down-
hill depends entirely on where we begin the optimization process. Ideally we would like
to find the global minimum, or the lowest of the function’s minima, which for a gen-
eral non-convex function requires that we run the procedure several times with different
initializations (or starting points).

As we will see in later chapters, many important machine learning cost functions
are convex and hence have only global minima, as in Fig. 2.6, in which case any
initialization will recover a global minimum.

The numerical methods discussed here halt at a stationary point w, that is a point
where ∇g (w) = 0N×1, which as we have previously seen may or may not constitute a
minimum of g if g is non-convex. However, this issue does not at all preclude the use
of non-convex cost functions in machine learning (or other scientific disciplines), it is
simply worth being aware of.

2.2.2 Stopping condition

One of several stopping conditions may be selected to halt numerical algorithms that
seek stationary points of a given function g. The two most commonly used stopping
criteria are:

1 When a pre-specified number of iterations are complete.

2 When the gradient is small enough, i.e.,
∥∥∇g

(
wk
)∥∥

2 < ε for some small
ε > 0.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.004
http:/www.cambridge.org/core


28 Fundamentals of numerical optimization

Fig. 2.5 The stationary point of a non-convex function found via numerical optimization is dependent on
the choice of initial point w0. In the top panel our initialization leads us to find the global
minimum, while in the bottom panel the two different initializations lead to a saddle point on the
left, and a non-global minimum on the right.

Fig. 2.6 A global minimum of a convex function is found via numerical optimization regardless of our
choice of the initial point w0.
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2.2 Numerical methods for optimization 29

Perhaps the most naive stopping condition for a numerical algorithm is to halt the
procedure after a pre-defined number of iterations. Note that this extremely simple
condition does not provide any convergence guarantee, and hence is typically used in
practice in conjunction with other stopping criteria as a necessary cap on the number
of iterations when the convergence is achieved slowly. The second condition directly
translates our desire to finding a stationary point at which the gradient is by defini-
tion zero. One could also stop the procedure when continuing it does not considerably
decrease the objective function (or the stationary point itself) from one iteration to
the next.

2.2.3 Gradient descent

The defining characteristic differentiating various numerical optimization methods is
the way iterative steps are taken for reducing the value of g. The two classic methods,
gradient descent and Newton’s method, use local models for the function at each step
in order to find smaller and smaller values of the function. As illustrated in Fig. 2.7, the
basic idea with gradient descent is to build a linear model of the function g, determine
the “downward” direction on this hyperplane, travel a short distance along this direction,
hop back on to the function g, and repeat until convergence. Starting at an initial point w0

and by carefully choosing how far we travel at each step, the gradient descent procedure
produces a sequence of points w1, w2, w3 . . . , that shrinks the value of g at each step
and eventually reaches a stationary point of g.

Formally, beginning at an initial point w0 the linear model of g at this point is given
precisely by the first order Taylor series approximation in (2.3) centered at w0:

h (w) = g
(

w0
)
+ ∇g

(
w0
)T (

w− w0
)

. (2.11)

We now take our first step by traveling in the direction in which the tangent hyperplane
most sharply angles downward (referred to as the steepest descent direction). Using a

Fig. 2.7 With the gradient descent method, we travel in the downward direction of a linear
approximation, hop back onto the function, and repeat in order to find a stationary point of g.
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30 Fundamentals of numerical optimization

simple calculus-based argument3 it can be shown that this steepest descent direction is
given precisely as −∇g

(
w0
)
. Thus we descend in the direction of the negative gradient

(hence the name of the algorithm, gradient descent) taking our first step to a point w1

where

w1 = w0 − α1∇g
(

w0
)

. (2.12)

Here α1 is a positive constant, called a step length (sometimes referred to as a learning
rate), that controls how far we descend in the negative gradient direction, from our
initial point w0. We then repeat this procedure constructing the first order Taylor series
approximation at w1, travel in its steepest descent direction, which is again given by the
negative gradient −∇g

(
w1
)
, taking our second step to the point w2 where

w2 = w1 − α2∇g
(

w1
)

. (2.13)

Once again α2 is a small positive step length, perhaps different from α1, that controls
the length of our travel along the negative gradient from w1. This entire procedure is
repeated with the kth step being given analogously as

wk = wk−1 − αk∇g
(

wk−1
)

, (2.14)

where αk is the step length associated with the kth gradient descent step. Note that
this procedure only stops when at some iteration ∇g

(
wk−1

) ≈ 0N×1, that is when we
have approximately satisfied the first order condition and essentially reached a stationary
point wk of g. For easy reference we give the gradient descent procedure (with a fixed
given step length) in Algorithm 2.1.

Algorithm 2.1 Gradient descent (with fixed step length)

Input: differentiable function g, fixed step length α, and initial point w0

k = 1
Repeat until stopping condition is met:

wk = wk−1 − α∇g
(
wk−1

)
k← k + 1

How do we choose a proper value for the step length at each iteration? As illustrated in
the top panel of Fig. 2.8, it cannot be set too large, because then the algorithm travels
too far at each step and will bounce around and perhaps never converge. On the other

3 Note that for a unit length direction d, h in (2.11) can be written as h (d) = g
(

w0
)
− ∇g

(
w0
)T

w0

+∇g
(

w0
)T

d, where the first two terms on the right hand side are constant with respect to d. Thus the

unit length direction d that minimizes the inner product ∇g
(

w0
)T

d will result in the sharpest descent in

h. From the inner product rule (see Appendix A) this is smallest when d = − ∇g
(

w0
)

∥∥∇g
(
w0
)∥∥

2
, and so the

steepest descent direction is indeed −∇g
(

w0
)

.
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2.2 Numerical methods for optimization 31

Fig. 2.8 The effect of step length on the convergence of gradient descent. (top) Too large a step length
and we may overshoot the minimum and possibly never converge. (bottom) A small step length
makes the gradient descent converge to the minimum very slowly.

hand, if αk is made too small at each step as illustrated in the bottom panel of Fig. 2.8,
the algorithm crawls downward far too slowly and may never reach the stationary point
in our lifetime!

For machine learning problems it is common practice to choose a value for the step
length by trial and error. In other words, just try a range of values, for each performing
a complete run of the gradient descent procedure with the step length at every iteration
fixed at this value. One can then choose the particular step length value that provides
(the fastest) convergence (you can practice this in Exercise 2.14). There are also formal
methods that do not rely on trial and error for determining appropriate step lengths which
guarantee convergence. These methods are detailed in Sections 8.1 and 8.2.

The step length for gradient descent can be chosen by trial and error and
fixed for all iterations, or determined using the formal schemes described in
Sections 8.1 and 8.2.
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0.5
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1g
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0

w

Fig. 2.9 Gradient descent applied for minimizing a convex function with scalar input (see Example 2.4)

initialized at w0 = 1. At each step wk of the procedure, the point
(

wk, g
(

wk
))

is colored green

and numbered on the function itself, with the final point colored red. Note that only the first five
points as well as the final point are numbered in this figure, since the rest blur together as the
minimum is approached.

Example 2.4 Gradient descent for a cost function with scalar input

Suppose that g (w) = log
(

1+ ew2
)

, whose first derivative is given as g′ (w) = 2ew2
w

1+ew2 .

As illustrated in Fig. 2.9, g is convex, and with the initial point w0 = 1 and a step
length fixed at α = 10−1 (determined by trial and error) gradient descent requires a fair
number of steps to converge to the global minimum of g. Specifically, it takes 15 steps
for gradient descent to reach a point at which the absolute value of the derivative falls
below ε = 10−3.

Example 2.5 Gradient descent for a cost function with vector input

Take g (w) = −cos
(
2πwTw

) + 2wTw, where w is a 2-dimensional vector, and the
gradient of g is given as ∇g (w) = 4πsin

(
2πwTw

)
w + 4w. In Fig. 2.10 we show

the objective value of gradient descent steps g
(
wk
)

with two starting points where a
fixed step length of α = 10−3 (determined by trial and error) was used for all iterations

of each run. In this instance one of the starting points (w0 = [ −0.7 0
]T

) allows
gradient descent to reach the global minimum of the function, while the other (w0 =[

0.85 0.85
]T

) ends up at a local minimum of the surface.
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0

0

5

g

–1

–0.7

0.85

0.85

w1

w2

Fig. 2.10 Gradient descent applied for minimizing a non-convex function with 2-dimensional input (see
Example 2.5). Of the two initializations used here only one leads to the global minimum. For

each run the point
(

wk
1, wk

2, g
(

wk
1, wk

2

))
is colored green at each step of the procedure, with the

final point colored red.

2.2.4 Newton’s method

Like gradient descent, Newton’s method works by using approximations to a function
at each step in order to lower its value. However, with Newton’s method a quadratic ap-
proximation, again generated via the Taylor series approximation, is used. As illustrated
in the top panel of Fig. 2.11, starting at an initial point w0 Newton’s method produces
a sequence of points w1, w2, . . . , that minimizes g by repeatedly creating a quadratic
approximation to the function, traveling to a stationary point of this quadratic, and hop-
ping back onto the function. Because Newton’s method uses quadratic as opposed to
linear approximations at each step, with a quadratic more closely mimicking the asso-
ciated function, it is often much more effective than gradient descent (in the sense that
it requires far fewer steps for convergence [24, 50]). However this reliance on quadratic
information makes Newton’s method more difficult to use with non-convex functions,4

since at concave portions of such a function the algorithm can climb to a maximum, as
illustrated in the bottom panel of Fig. 2.11.

4 A number of procedures exist that adjust Newton’s method at concave portions of a function in order to
make it more effective for use with non-convex functions. See Exercise 3.14 as well as [50, 59] for further
information.
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34 Fundamentals of numerical optimization

Fig. 2.11 Newton’s method illustrated. To find a minimum of g Newton’s method hops down the stationary
points of quadratic approximations generated by g’s second order Taylor series. (top panel) For
convex functions these quadratic approximations are themselves always convex (upward facing)
and so their stationary points are minima, and the sequence leads to a minimum of the original
function. (bottom panel) For non-convex functions, quadratic approximations can be concave or
convex depending on where they are constructed, leading the algorithm to possibly converge to a
maximum.

Formally, beginning at a point w0 the quadratic model of g at this point is given
precisely by the second order Taylor series approximation in (2.4) centered at w0,

h (w) = g
(

w0
)
+∇g

(
w0
)T (

w− w0
)
+ 1

2

(
w− w0

)T ∇2g
(

w0
) (

w− w0
)

. (2.15)

We now wish to travel to a stationary point of this quadratic which is a minimum in the
case where g is convex.5 To do this we can use the first order condition (see Section
2.1.2) by setting the gradient of h to zero and solving for w. This gives the N×N system
of linear equations6

∇2g
(

w0
)

w = ∇2g
(

w0
)

w0 −∇g
(

w0
)

. (2.16)

5 A common way of adjusting Newton’s method for use with non-convex functions is to add a so-called
“regularizer,” described in Section 3.3.2, to the original function. See e.g., [50] for further details.

6 Setting the gradient of h to zero we have ∇h (w) = ∇g
(

w0
)
+ ∇2g

(
w0
) (

w− w0
)
= 0N×1. Solving

for w then gives the linear system of equations ∇2g
(

w0
)

w = ∇2g
(

w0
)

w0 − ∇g
(

w0
)

, which can be

written more familiarly as Aw = b where AN×N = ∇2g
(

w0
)

and bN×1 = ∇2g
(

w0
)

w0 −∇g
(

w0
)

are

a fixed matrix and vector, respectively.
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A solution to this system of equations gives the first point w1 traveled to by Newton’s
method. To take the next step we repeat this procedure, forming a quadratic Taylor series
approximation of g (this time centered at w1) and determine a stationary point of this
quadratic by checking the first order condition. This leads to the same kind of linear
system of equations,

∇2g
(

w1
)

w = ∇2g
(

w1
)

w1 − ∇g
(

w1
)

, (2.17)

a solution of which provides the second step to the point w2. This entire procedure is
repeated until convergence, with the kth Newton step wk defined as a stationary point of
the quadratic approximation centered at wk−1,

h (w) = g
(

wk−1
)
+ ∇g

(
wk−1

)T (
w− wk−1

)
+ 1

2

(
w− wk−1

)T ∇2g
(

wk−1
) (

w− wk−1
)

, (2.18)

which, again applying the first order condition for optimality and solving for w, gives a
linear system of equations,

∇2g
(

wk−1
)

w = ∇2g
(

wk−1
)

wk−1 − ∇g
(

wk−1
)

. (2.19)

As with gradient descent, note that these steps halt when at some kth step we have
∇g
(
wk−1

) ≈ 0N×1, i.e., when we have approximately satisfied the first order condition,
essentially recovering a stationary point wk of g. For convenience we give the Newton’s
method scheme in Algorithm 2.2.

Algorithm 2.2 Newton’s method

Input: twice differentiable function g, and initial point w0

k = 1
Repeat until stopping condition is met:

Solve the system ∇2g
(
wk−1

)
wk = ∇2g

(
wk−1

)
wk−1 −∇g

(
wk−1

)
for wk.

k← k + 1

Note that in cases where the matrix ∇2g
(
wk−1

)
is invertible we may write the solution

to the system in (2.19) algebraically as

wk = wk−1 −
[
∇2g

(
wk−1

)]−1 ∇g
(

wk−1
)

, (2.20)

which makes the Newton step look like a gradient step in (2.14), replacing the step
length with the inverted Hessian matrix. When the Hessian is not invertible (and there
are infinitely many solutions to the system in (2.19)) we may employ the so-called

pseudo-inverse (see Appendix C) of the Hessian, denoted as
[∇2g

(
wk−1

)]†
, and write

the update analogously as

wk = wk−1 −
[
∇2g

(
wk−1

)]† ∇g
(

wk−1
)

. (2.21)
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While not the most computationally efficient7 method of solving the Newton system,
the solution above is always the smallest one possible and so (practically speaking)
it can be a useful choice when the alternative is an unfamiliar numerical linear algebra
solver (e.g., one which may return very large solutions to the system in (2.19), producing
numerical instability in subsequent Newton steps).

As previously mentioned, because it uses more precise second order information,
Newton’s method converges in a much smaller number of steps than gradient descent.
This comes at the cost of having to store a Hessian matrix and solve a correspond-
ing linear system at each step, which with modern computational resources is not
typically problematic for functions with up to several thousand input variables.8 For
such (especially convex) functions the standard Newton’s method described is highly
effective.

Example 2.6 Newton’s method for a cost function with scalar input

Let us consider again the function g (w) = log
(

1+ ew2
)

from Example 2.4, whose

second derivative is given as g′′ (w) = 2ew2
(

2w2+ew2+1
)

(
1+ew2

)2 . Note that g′′ (w) > 0 for all w,

and thus the kth Newton step in (2.20) for a scalar w reduces to

wk = wk−1 − g′
(
wk−1

)
g′′
(
wk−1

) . (2.22)

As illustrated in Fig. 2.12, beginning at point w0 = 1 we need only three Newton steps
to reach the minimum of g (where the absolute value of the derivative falls below ε =
10−3). This is significantly fewer steps than the gradient descent procedure shown in
Fig. 2.9.

Example 2.7 Newton’s method for a cost function with vector input

Let g be the quadratic function g (w) = 1
2 wTQw+rTw+d where Q =

[
1 0.75

0.75 1

]
,

r = [
1 1

]T
, and d = 0. As shown in Fig. 2.13, with the initial point

7 It always more computationally efficient to find wk by directly solving the linear system in (2.19) using
numerical linear algebra software, rather than by calculating the inverse or pseudo-inverse of the Hessian
and forming the explicit update in (2.20) or (2.21). See e.g., [24] for further details.

8 For larger dimensional input, storing the Hessian matrix itself can become problematic, let alone solving
the associated linear system at each step. For example with a 10 000-dimensional input w the
corresponding Hessian matrix will be of size 10 000× 10 000, with 108 values to store for the Hessian
matrix alone. Several approaches exist which aim at addressing both the storage and computation issues
associated with these large linear systems, e.g., subsampling methods (termed quasi-Newton methods)
[50, 59], methods for exploiting special structure in the second order linear system if it is present [24], and
conjugate gradient methods (particularly useful for sparse Hessians) [73].
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Fig. 2.12 Newton’s method applied for minimizing a convex function with scalar input (see Example 2.6)
initialized at w0 = 1.
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Fig. 2.13 Newton’s method applied for minimizing a convex quadratic function with 2-dimensional input
(see Example 2.7). Initialized at any point, only one Newton step is required to reach the
minimum.

w0 = [
10 10

]T
only one Newton step is required to reach the global minimum

of g. This is in fact the case regardless of the initial point chosen since g is quadratic,
and thus at any point its quadratic Taylor series approximation is itself. This can also be
seen by plugging ∇g

(
w0
) = Qw0 + r and ∇2g

(
w0
) = Q into (2.19), giving

Qw1 = Qw0 −
(

Qw0 + r
)
= −r. (2.23)
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Note that using (2.19) to compute w2 results in the exact same linear system since

Qw2 = Qw1 −
(

Qw1 + r
)
= −r. (2.24)

Therefore only one Newton step is required to find the minimum of g at −Q−1r =[ −0.57 −0.57
]T

.

2.3 Summary

In this chapter we have seen how to formalize the search for the minima of a gen-
eral function g. In Section 2.1.2 we saw how calculus provides a useful condition for
characterizing the minima, maxima, and saddle points of a function (together known as
stationary points) via the first order condition for optimality. In the convenient case of
a convex function, as discussed in Section 2.1.3, all such stationary points are global
minima of the function. As described in Section 2.2, numerical algorithms aim at
minimizing a function, but are only guaranteed to converge to stationary points. Two
commonly used numerical methods, gradient descent and Newton’s method, employ
first and second order Taylor series expansions of a function respectively, in order to
produce a converging sequence. Newton’s method, which is easier to apply to con-
vex functions, converges in far fewer steps than gradient descent and, unlike gradient
descent, requires no step length to be determined.

2.4 Exercises

Section 2.1 exercises

Exercises 2.1 Practice derivative calculations I

Compute the first and second derivatives of the following functions (remember to use
the product/chain rules where necessary). Hint: see appendix for more information on
how to compute first and second derivatives if these concepts are unfamiliar.

a) g (w) = 1
2 qw2 + rw+ d where q, r, and d are constants;

b) g (w) = −cos
(
2πw2

)+ w2;

c) g (w) =
P∑

p=1
log
(
1+ e−apw

)
where a1 . . . ap are constants.

Exercises 2.2 Practice derivative calculations II

Compute the gradient and Hessian matrix of the following (remember to use the prod-
uct/chain rules where necessary). Note that here w is an N × 1 dimensional vector in all
three cases. Hint: see appendix for more information on how to compute gradients and
Hessians if these concepts are unfamiliar.
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a) g (w) = 1
2 wTQw+ rTw+ d, here Q is an N ×N symmetric matrix (i.e., Q = QT ), r

is an N × 1 vector, and d is a scalar;

b) g (w) = −cos
(
2πwTw

)+ wTw;

c) g (w) =
P∑

p=1
log
(

1+ e−aT
p w
)

where a1 . . . ap are N × 1 vectors.

Exercises 2.3 Outer products and outer product matrices

Let x and y be N × 1 and M × 1 vectors respectively. The outer product of x and y,
written as xyT , is the N ×M matrix defined as

x yT =

⎡⎢⎢⎢⎣
x1y1 x1y2 · · · x1yM

x2y1 x2y2 · · · x2yM
...

...
. . .

...

xNy1 xNy2 · · · xNyM

⎤⎥⎥⎥⎦ . (2.25)

Suppose that X is an N×P and Y is an M×P matrix and xp and yp are the pth columns

of X and Y respectively, verify that XYT =
P∑

p=1
xpyT

p where xpyT
p is the outer product of

xp and yp.

Exercises 2.4 Taylor series calculations

Write out the first and second order Taylor series approximations for the following
functions:

a) g (w) = log
(

1+ ew2
)

near a point v;

b) g (w) = 1
2 wTQw+rTw+d where Q is an N×N symmetric matrix, r is an N×1 vector,

and d is a constant. In particular show that the second order Taylor series approximation
h (w) centered at any point v is precisely the function g (w) itself. Why is this?

Exercises 2.5 First order Taylor series geometry

Verify that the normal vector to the tangent hyperplane generated by the first order Tay-
lor series approximation centered at a point v shown in Equation (2.3) takes the form

n =
[

1
−∇g (v)

]
.

Exercises 2.6 First order condition calculations

Use the first order condition to find all stationary points of each function below.

a) g (w) = wlog (w)+ (1− w) log (1− w) where w lies between 0 and 1.
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40 Fundamentals of numerical optimization

Fig. 2.14 From left to right, plots of four convex functions g (w) = w2, ew2
, log

(
1+ ew), and −log (w).

b) g (w) = 1
2 wTQw + rTw + d where w is 2-dimensional, Q =

[
1 0.75

0.75 1

]
and

r = [ 1 1
]T

and d = 5.

Exercises 2.7 Second order convexity calculations

In Fig. 2.14 we show several one-dimensional examples of convex functions. Confirm
using the second order definition of convexity that each is indeed convex.

Exercises 2.8 A non-convex function whose only stationary point is a global
minimum

a) Use the first order condition to determine the stationary point of g (w) = wtanh (w)
where tanh (w) is the hyperbolic tangent function. To do this you might find it helpful to
graph the first derivative ∂

∂w g (w) and see where it crosses the w axis. Plot the function
to verify that the stationary point you find is the global minimum of the function.

b) Use the second order definition of convexity to show that g is non-convex. Hint: you

can plot the second derivative ∂2

∂w2 g (w).

Exercises 2.9 How to determine whether or not the eigenvalues of a symmetric
matrix Q are all nonnegative

In this exercise we investigate an alternative approach to checking that the eigenvalues
of a square symmetric matrix Q (e.g., like a Hessian matrix) are all nonnegative, which
does not involve explicitly computing the eigenvalues themselves, and is significantly
easier to employ in practice.

a) Let Q be an N×N symmetric matrix. Show that if Q has all nonnegative eigenvalues
then the quantity zTQz ≥ 0 for all z. Hint: use the eigen-decomposition of Q = EDET =

N∑
n=1

eneT
n dn where the N × N orthogonal matrix E contains eigenvectors en of Q as its

columns, and D = diag (d1 . . . dN) is a diagonal matrix containing the eigenvalues of Q
(see Appendix C for more on the eigenvalue decomposition).

b) Show the converse. That if an N × N square symmetric matrix Q satisfies zTQz ≥ 0
for all z then it must have all nonnegative eigenvalues.
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c) Use this method to verify that the second order definition of convexity holds for the

quadratic function g (w) = 1
2 wTQw+ rTw+d, where Q =

[
1 1
1 1

]
, r = [ 1 1

]T
,

and d = 1.

d) Show that the eigenvalues of Q + λIN×N can all be made to be positive by setting λ
large enough. What is the smallest value of λ that will make this happen?

Exercises 2.10 Outer product matrices have all nonnegative eigenvalues

a) Use the method described in Exercise 2.9 to verify that for any N length vector x the
N × N outer product matrix xxT has all nonnegative eigenvalues.

b) Similarly show for any set of P vectors x1 . . . xP of length N that the sum of outer

product matrices
P∑

p=1
δpxpxT

p has all nonnegative eigenvalues if each δp ≥ 0.

c) Show that the matrix
P∑

p=1
δpxpxT

p + λIN×N where each δp ≥ 0 and λ > 0 has all

positive eigenvalues.

Exercises 2.11 An easier way to check the second order definition of convexity

Recall that the second order definition of convexity for a vector input function g (w)
requires that we verify whether or not the eigenvalues of ∇2g (w) are nonnegative for
each input w. However, to explicitly compute the eigenvalues of the Hessian in order to
check this is a cumbersome or even impossible task for all but the nicest of functions.
Here we use the result of Exercise 2.9 to express the second order definition of convexity
in a way that is often much easier to employ in practice.

a) Using the result of Exercise 2.9 show that the second order definition of convexity
for vector input functions g (w), which has been previously stated as holding if the
eigenvalues of the Hessian ∇2g (w) are nonnegative at every w, equivalently holds if the
quantity zT

(∇2g (w)
)

z ≥ 0 holds at each w for all z.

b) Use this manner of expressing the second order definition of convexity to verify that
the general quadratic function g (w) = 1

2 wTQw+ rTw+ d, where Q is symmetric and
known to have all nonnegative eigenvalues and r and d are arbitrary, always defines a
convex function.

c) Verify that g (w) = −cos
(
2πwTw

)+wTw is non-convex by showing that it does not
satisfy the second order definition of convexity.

Section 2.2 exercises

Exercises 2.12 Play with gradient descent code

Play with the gradient descent demo file convex_grad_surrogate which illustrates the
consequences of using a fixed step length to minimize the simple convex function shown
in the left panel of Fig. 2.4. Try changing the initial point and fixed step-length to see
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42 Fundamentals of numerical optimization

how the gradient descent path changes. For example, find a steplength that causes the
algorithm to diverge (meaning that the steps go off to infinity). Also look inside the
gradient descent subfunction and see how it mirrors Algorithm 2.1.

You can also play with non-convex_grad_surrogate which shows the demo, this time
for a curvy non-convex function.

Exercises 2.13 Code up gradient descent

In this exercise you will reproduce Fig. 2.10 by using gradient descent in or-
der to minimize the function g (w) = −cos

(
2πwTw

) + wTw. Use the wrapper
two_d_grad_wrapper_hw to perform gradient descent, filling in the form of the gradient
in the subfunction

[in,out] = gradient_descent(alpha,w0).

This subfunction performs gradient descent and is complete with exception of the
gradient. Here alpha is a fixed step length and w0 is the initial point (both pro-
vided in the wrapper), the in variable contains each gradient step taken i.e., in ={
wk = wk−1 − α∇g

(
wk−1

)}K
k=0 and corresponding out is a vector of the objective func-

tion evaluated at these steps, i.e., out = {
g
(
wk
)}K

k=0 where K is the total number of
steps taken. These are collected so they may be printed on the cost function surface for
viewing.

Exercises 2.14 Tune fixed step length for gradient descent

When minimizing a function with high dimensional input g (w) using any numerical
method, it is helpful to store each iteration and the corresponding objective value at each
iteration g

(
wk
)

to make sure your algorithm is converging properly. In this example you
will use gradient descent to minimize a simple function, and plot the objective values
at each step, comparing the effect of different step sizes on convergence rate of the
algorithm.

Suppose g (w) = wTw where w is an N = 10 dimensional input vector. This is just a
generalization of the simple parabola in one dimension. g is convex with a single global
minimum at w = 0N×1. Code up gradient descent with a maximum iteration stopping
criterion of 100 iterations (with no other stopping conditions). Using the initial point
w0 = 10 · 1N×1 run gradient descent with step lengths α1 = 0.001, α2 = 0.1 and
α3 = 1.001 and record the objective function value g

(
wk
)

at each iteration of each run.
Plot these on a single graph like the one shown in Fig. 2.15.

Make sure to use the gradient descent as described in Algorithm 2.1 with only the
maximum iteration stopping condition.

Exercises 2.15 Geometry of gradient descent step

The distance between the (k − 1) th and kth gradient step can easily be calculated
as
∥∥wk − wk−1

∥∥
2 =

∥∥(wk−1 − α∇g
(
wk−1

))− wk−1
∥∥

2 = α
∥∥∇g

(
wk−1

)∥∥
2. In this
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Fig. 2.15 Three runs of gradient descent with different step lengths (see text for further details). The
smallest step length (in magenta) causes the algorithm to converge very slowly, while the largest
(in green) causes it to diverge as the objective value here is increasing. The middle step length
value (in blue) causes the algorithm to converge very rapidly to the unique solution of the
problem.

Fig. 2.16 The geometry of a gradient descent step.

exercise you will compute the corresponding length traveled along the (k − 1) th linear
surrogate l (w) = g

(
wk−1

)+∇g
(
wk−1

)T (
w− wk−1

)
.

In Fig. 2.16 we show a detailed description of the precise geometry involved in tak-
ing the kth gradient descent step with a fixed step length α. Use the details of this
picture to show that the corresponding length traveled along the linear surrogate, i.e.,

� =
∥∥∥∥[ wk

l
(
wk
) ]− [ wk−1

l
(
wk−1

) ]∥∥∥∥
2

, is given precisely as

� = α
√

1+ ∥∥∇g
(
wk−1

)∥∥2
2

∥∥∥∇g
(

wk−1
)∥∥∥

2
. (2.26)

Hint: use the Pythagorean theorem.
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44 Fundamentals of numerical optimization

Exercises 2.16 Play with Newton’s method code

Play with the Newton’s method demo file convex_newt_demo which illustrates New-
ton’s method applied to minimizing the simple one-dimensional function discussed in
Example 2.6. Look inside the Newton’s method subfunction and see how it mirrors
Algorithm 2.2.

Here also play with non-convex_newt_demo which shows the same kind of demo
for a non-convex function. Here note that, as illustrated in Fig. 2.11, if you begin on a
concave portion of the function Newton’s method will indeed climb to a local maximum
of the function!

Exercises 2.17 Code up Newton’s method

a) Use the first order condition to determine the unique stationary point of the function

g (w) = log
(

1+ ewT w
)

where N = 2 i.e., w = [ w1 w2
]T

.

b) Make a surface plot of the function g (w) or use the second order definition of con-
vexity to verify that g (w) is convex, implying that the stationary point found in part a)
is a global minimum. Hint: to check the second order definition use Exercise 2.10.

c) Perform Newton’s method to find the minimum of the function g (w) determined in
part a). Initialize your algorithm at w0 = 1N×1 and make a plot of the function value
g
(
wk
)

for ten iterations of Newton’s method, as was done in Exercise 2.14 with gradient
descent, in order to verify that your algorithm works properly and is converging.

Make sure to follow the Newton’s method algorithm as described in Algorithm 2.2
with only the maximum iteration stopping condition, and use the pseudo-inverse
solution to each Newton system in your implementation as given in (2.21).

d) Now run your Newton’s method code from part c) again, this time initializing at the
point w0 = 4 · 1N×1. While this initialization is further away from the unique minimum
of g (w) than the one used in part c), your Newton’s method algorithm should converge
faster starting at this point. At first glance this result seems very counter-intuitive, as
we (rightly) expect that an initial point closer to a minimum will provoke more rapid
convergence of Newton’s method!

Can you explain why this result actually makes sense for the particular function g (w)
we are minimizing here? Or, in other words, why the minimum of the second order Tay-
lor series approximation of g (w) centered at w0 = 4 · 1N×1 is essentially the minimum
of g (w) itself? Hint: use the fact for large values of t that log

(
1+ et

) ≈ t, and that the
second order Taylor series approximation of a quadratic function (like the one given in
part b) of Exercise 2.4) is just the quadratic function itself.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.004
http:/www.cambridge.org/core


3 Regression

In this chapter we formally describe the regression problem, or the fitting of a represen-
tative line or curve (in higher dimensions a hyperplane or general surface) to a set of
input/output data points as first broadly detailed in Section 1.2.1. Regression in general
may be performed for a variety of reasons: to produce a so-called trend line (or curve)
that can be used to help visually summarize, drive home a particular point about the
data under study, or to learn a model so that precise predictions can be made regarding
output values in the future. Here we also discuss more formally the notion of feature
design for regression, in particular focusing on rare low dimensional instances (like the
one outlined in Example 1.7) when very specific feature transformations of the data can
be proposed. We finally end by discussing regression problems that have non-convex
cost functions associated with them and a commonly used approach, called �2 regular-
ization, for ameliorating some of the problems associated with the minimization of such
functions.

3.1 The basics of linear regression

With linear regression we aim to fit a line (or hyperplane in higher dimensions) to a
scattering of data. In this section we describe the fundamental concepts underlying this
procedure.

3.1.1 Notation and modeling

Data for regression problems comes in the form of a training set of P input/output
observation pairs:

{(x1, y1) , (x2, y2) , . . . , (xP, yP)} , (3.1)

or
{(

xp, yp
)}P

p=1 for short, where xp and yp denote the pth input and output respectively.
In many instances of regression, like the one discussed in Example 1.1, the input to
regression problems is scalar-valued (the output will always be considered scalar-valued
here) and hence the linear regression problem is geometrically speaking one of fitting a
line to the associated scatter of data points in 2-dimensional space. In general, however,
each input xp may be a column vector of length N
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xp =

⎡⎢⎢⎢⎣
x1,p

x2,p
...

xN,p

⎤⎥⎥⎥⎦ , (3.2)

in which case the linear regression problem is analogously one of fitting a hyperplane to
a scatter of points in N + 1 dimensional space.

In the case of scalar input, fitting a line to the data (see Fig. 3.1) requires we determine
a slope w and bias (or “y-intercept”) b so that the approximate linear relationship holds
between the input/output data,

b+ xpw ≈ yp, p = 1, . . . , P. (3.3)

Note that we have used the approximately equal sign in (3.3) because we cannot be sure
that all data lies completely on a single line. More generally, when the input dimension
is N ≥ 1, then we have a bias and N associated weights,

w =

⎡⎢⎢⎢⎣
w1

w2
...

wN

⎤⎥⎥⎥⎦ , (3.4)

to tune properly in order to fit a hyperplane (see Fig. 3.1). Likewise the linear
relationship in (3.3) is then more generally given as

b+ xT
p w ≈ yp, p = 1, . . . , P. (3.5)

The elements of an input vector xp are referred to as input features to a regression
problem. For instance the student debt data described in Example 1.1 has only one fea-
ture: year. Conversely in the GDP growth rate data described in Example 3.1 the first
element of the input feature vector might contain the feature unemployment rate (that is,

x

x2

x1

y

y

y= b+xw y= b+x1w1+x2w2

Fig. 3.1 (left panel) A dataset in two dimensions along with a well-fitting line. A line in two dimensions
is defined as b+ xw = y, where b is referred to as the bias and w the weight, and a point

(
xp, yp

)
lies close to it if b+ xpw ≈ yp. (right panel) A simulated 3-dimensional dataset along with a
well-fitting hyperplane. A hyperplane is defined as b+ xT w = y, where again b is called the bias
and w the weight vector, and a point

(
xp, yp

)
lies close to it if b+ xT

p w ≈ yp.
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3.1 The basics of linear regression 47

Fig. 3.2 A map of the world where countries are color-coded by their GDP growth rates (the darker the
color the higher the growth rate) as reported by the International Monetary Fund (IMF) in 2013.

the unemployment data from each country under study), the second might contain the
feature education level, and so on.

Example 3.1 Predicting Gross Domestic Product growth rates

As an example of a regression problem with vector-valued input consider the problem
of predicting the growth rate of a country’s Gross Domestic Product (GDP), which is
the value of all goods and services produced within a country during a single year.
Economists are often interested in understanding factors (e.g., unemployment rate, edu-
cation level, population count, land area, income level, investment rate, life expectancy,
etc.,) which determine a country’s GDP growth rate in order to inform better financial
policy making. To understand how these various features of a country relate to its GDP
growth rate economists often perform linear regression [33, 72].

In Fig. 3.2 we show a heat map of the world where countries are color-coded based
on their GDP growth rate in 2013, reported by the International Monetary Fund (IMF)
(data used in this figure was taken from [12]).

3.1.2 The Least Squares cost function for linear regression

To find the parameters of the hyperplane which best fits a regression dataset, it is com-
mon practice to first form the Least Squares cost function. For a given set of parameters
(b, w) this cost function computes the total squared error between the associated hyper-
plane and the data (as illustrated pictorially in Fig. 3.3), giving a good measure of how
well the particular linear model fits the dataset. Naturally then the best fitting hyperplane
is the one whose parameters minimize this error.

Because we aim to have the system of equations in (3.5) hold as well as possible,
to form the desired cost we simply square the difference (or error) between the linear
model b + xT

p w and the corresponding output yp over the entire dataset. This gives the
Least Squares cost function
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Fig. 3.3 A simulated 2-dimensional training dataset along with a line (in magenta) fit to the data using the
Least Squares framework, which aims at recovering the line that minimizes the total squared
length of the dashed error bars.

g (b, w) =
P∑

p=1

(
b+ xT

p w− yp

)2
. (3.6)

We of course want to find a parameter pair (b, w) that provides a small value for g (b, w)
since the larger this value the larger the squared error between the corresponding linear
model and the data, and hence the poorer we represent the given data. Therefore we aim
to minimize g over the bias and weight vector in order to recover the best pair (b, w),
which is written formally (see Section 2.2) as

minimize
b, w

P∑
p=1

(
b+ xT

p w− yp

)2
. (3.7)

By checking the second order definition of convexity (see Exercise 3.3) we can easily
see that the Least Squares cost function in (3.6) is convex. Figure 3.4 illustrates the
Least Squares cost associated with the student loan data in Example 1.1, whose “upward
bending” shape confirms its convexity visually in the instance of that particular dataset.

3.1.3 Minimization of the Least Squares cost function

Now that we have a minimization problem to solve we can employ the tools described in
Chapter 2. To perform calculations it will first be convenient to use the following more
compact notation:

x̃p =
[

1
xp

]
w̃ =

[
b
w

]
. (3.8)

With this notation we can rewrite the cost function shown in (3.6) in terms of the single
vector w̃ of parameters as

g
(
w̃
) = P∑

p=1

(
x̃T

p w̃− yp

)2
. (3.9)
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Fig. 3.4 The surface generated by the Least Squares cost function using the student loan debt data shown
in Fig. 1.8, is clearly convex. However, regardless of the dataset, the Least Squares cost for linear
regression is always convex.

To compute the gradient of this cost we simply apply the chain rule from calculus, which
gives

∇g
(
w̃
) = 2

P∑
p=1

x̃p

(
x̃T

p w̃− yp

)
= 2

⎛⎝ P∑
p=1

x̃px̃T
p

⎞⎠ w̃− 2
P∑

p=1

x̃pyp. (3.10)

Using this we can perform gradient descent to minimize the cost. However, in this (rare)
instance we can actually solve the first order system directly in order to recover a global
minimum. Setting the gradient above to zero and solving for w̃ gives the system of linear
equations ⎛⎝ P∑

p=1

x̃px̃T
p

⎞⎠ w̃ =
P∑

p=1

x̃pyp. (3.11)

In particular one algebraic solution to this system,1 if the matrix
P∑

p=1
x̃px̃T

p is invertible,2

may be written as

1 By setting the input vectors x̃p columnwise to form the matrix X̃ and by stacking the output yp into the

column vector y we may write the linear system in Equation (3.11) equivalently as X̃X̃
T

w̃ = X̃y.

2 In instances where the linear system in (3.11) has more than one solution, or in other words when
P∑

p=1
x̃px̃T

p

is not invertible, one can choose the solution with the smallest length (or �2 norm), sometimes written as

w̃� =
(

P∑
p=1

x̃px̃T
p

)† P∑
p=1

x̃pyp, where (·)† denotes the pseudo-inverse of its input matrix. See Appendix C

for further details.
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w̃� =
⎛⎝ P∑

p=1

x̃px̃T
p

⎞⎠−1
P∑

p=1

x̃pyp. (3.12)

However, while an algebraically expressed solution is appealing it is typically more
computationally efficient in practice to solve the original linear system using numerical
linear algebra software.

3.1.4 The efficacy of a learned model

With optimal parameters w̃� =
[

b�

w�

]
we can compute the efficacy of the linear model

in representing the training set by computing the mean squared error (or MSE),

MSE = 1

P

P∑
p=1

(
b� + xT

p w� − yp

)2
. (3.13)

When possible it is also a good idea to compute the MSE of a learned regression model
on a set of new testing data, i.e., data that was not used to learn the model itself, to
provide some assurance that the learned model will perform well on future data points.
This is explored further in Chapter 5 in the context of cross-validation.

3.1.5 Predicting the value of new input data

With optimal parameters (b�, w�), found by minimizing the Least Squares cost, we can
predict the output ynew of a new input feature xnew by simply plugging the new input
into the tuned linear model and estimating the associated output as

ynew = b� + xT
neww�. (3.14)

This is illustrated pictorially on a toy dataset for the case when N = 1 in Fig. 3.5.

xxnew

ynew

y

y= b
�+xw

�

Fig. 3.5 Once a line/hyperplane has been fit to a dataset via minimizing the Least Squares cost function it
may be used to predict the output value of future input. Here a line has been fit to a
two-dimensional dataset in this manner, giving optimal parameters b� and w�, and the output
value of a new point xnew is created using the learned linear model as ynew = b� + xneww�.
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Fig. 3.6 A simulated regression dataset where the relationship between the input feature x and the output
y is not linear. However, because we can visualize this dataset we can see that there is clearly a
structured nonlinear relationship between its input and output. Our knowledge in this instance,
based on our ability to visualize the data, allows us to design a new feature for the data and
formulate a corresponding function (shown here in dashed black) that appears to be generating
the data.

3.2 Knowledge-driven feature design for regression

In many regression problems the relationship between input feature(s) and output values
is nonlinear, as in Fig. 3.6, which illustrates a simulated dataset where the scalar feature
x and the output y are related in a nonlinear fashion. In such instances a linear model
would clearly fail at representing how the input and output are related. In this brief
section we present two simple examples through which we discuss how to fit a nonlinear
model to the data when we have significant understanding or knowledge about the data
itself. This knowledge may originate from our prior understanding or intuition about the
phenomenon under study or simply our ability to visualize low dimensional data. As
we now see, based on this knowledge we can propose an appropriate nonlinear feature
transformation which allows us to employ the linear regression framework as described
in the previous section.

Example 3.2 Sinusoidal pattern

In the left panel of Fig. 3.7 we show a simulated regression dataset (first shown in
Fig. 3.6) consisting of P = 21 data points. Visually analyzing this data it appears to
trace out (with some noise) one period of a sine wave over the interval [0, 1]. Therefore
we can reasonably propose that some weighted version of the sinusoidal function f (x) =
sin (2πx), i.e., y = b+ f (x)w where b and w are respectively a bias and weight to learn,
will properly describe this data. In machine learning the function f (x), in this instance
a sinusoid, is referred to as a feature transformation of the original input. One could of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.005
http:/www.cambridge.org/core


52 Regression

Fig. 3.7 (left panel) A simulated regression dataset. (middle panel) A weighted form of a simple sinusoid
y = b+ f (x)w (in magenta), where f (x) = sin (2πx) and where b and w are tuned properly,
describes the data quite well. (right panel) Fitting a sinusoid in the original feature space is
equivalent to fitting a line in the transformed feature space where the input feature has undergone
feature transformation x −→ f (x) = sin (2πx).

course propose a more curvy feature, but the sinusoid seems to explain the data fairly
well while remaining relatively simple.

By fitting a simple weighted sinusoid to the data, we would like to find the parameter
pair (b, w) so that

b+ f
(
xp
)

w = b+ sin
(
2πxp

)
w ≈ yp, p = 1, . . . , P. (3.15)

Note that while this is nonlinear in the input x, it is still linear in both b and w. In other
words, the relationship between the output y and the new feature f (x) = sin (2πx) is
linear. Plotting

{(
f
(
xp
)

, yp
)}P

p=1 in the transformed feature space (i.e., the space whose
input is given by the new feature f (x) and whose output is still y) shown in the right
panel of Fig. 3.7, we can see that the new feature and given output are now indeed
linearly related.

After creating the new features for the data by transforming the input as fp = f
(
xp
) =

sin
(
2πxp

)
, we may solve for the parameter pair by minimizing the Least Squares cost

function formed by summing the squared error between the model containing each trans-
formed input b+ fpw and the corresponding output value yp (so that (3.15) holds as well
as possible) as

minimize
b, w

P∑
p=1

(
b+ fpw− yp

)2 . (3.16)

The cost function here is still convex, and can be minimized by a numerical scheme
like gradient descent or by directly solving its first order system to recover a global
minimum. By using the compact notation

f̃p =
[

1
fp

]
, w̃ =

[
b
w

]
, (3.17)
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we can rewrite the cost function in terms of the single vector w̃ of parameters as

g
(
w̃
) = P∑

p=1

(
f̃
T
p w̃− yp

)2
. (3.18)

Mirroring the discussion in Section 3.1.3, setting the gradient of the above to zero then
gives the linear system of equations to solve⎛⎝ P∑

p=1

f̃p f̃
T
p

⎞⎠ w̃ =
P∑

p=1

f̃pyp. (3.19)

In the middle and right panels of Fig. 3.7 we show the resulting fit to the data
y = b� + f (x)w� in magenta, where b� and w� are recovered by solving this system.
We refer to this fit as the estimated data generating function since it is our estimation
of the underlying continuous function generating this dataset (shown in dashed black in
Fig. 3.6). Note that this fit is a sinusoid in the original feature space (middle panel), and
a line in the transformed feature space (right panel).

Example 3.3 Galileo and uniform acceleration

Recall Galileo’s acceleration experiment, first described in Example 1.7. In the left panel
of Fig. 3.8 we show data consisting of P = 6 data points from a modern reenactment
of this experiment [75], where the input x denotes the time and the output y denotes the
corresponding portion of the ramp traversed. Several centuries ago Galileo saw data very
similar looking to the data shown here. To describe the data he saw, Galileo proposed
the relation y = f (x)w, where f (x) = x2 is a simple quadratic feature and w is some
weight to be tuned to the data. Note that in this specific example there is no need to add

70

0

1

y

x
70

0

1

y

x
490

0

1

y

f(x)

Fig. 3.8 Data from a modern reenactment of Galileo’s ramp experiment. (left panel) The raw data seems
to reflect a quadratic relationship between the input and output variables. (middle panel) A
weighted form of a simple quadratic feature y = f (x)w (in magenta) where f (x) = x2 and where
w is tuned properly, describes the data quite well. (right panel) Fitting a quadratic to the data in
the original feature space is equivalent to fitting a line to the data in a transformed feature space
wherein the input feature has undergone feature transformation x −→ f (x) = x2.
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a bias parameter b to the quadratic model since at time zero the ball has not moved at
all, and hence the output must be precisely zero.

Looking at how the data is distributed in the left panel of Fig. 3.8, we too can intuit
that such a quadratic feature of the input appears to be a reasonable guess at what lies
beneath the data shown.

By fitting a simple weighted quadratic to the data, we would like to find parameter w
such that

f
(
xp
)

w = x2
pw ≈ yp, p = 1, . . . , P. (3.20)

Although the relationship between the input feature x and output y is nonlinear, this
model is still linear in the weight w. Thus we may tune w by minimizing the Least
Squares cost function after forming the new features. That is, transforming each input
as fp = f

(
xp
) = x2

p we can find the optimal w by solving

minimize
w

P∑
p=1

(
fpw− yp

)2 . (3.21)

The cost function in (3.21) is again convex and we may solve for the optimal w by simply
checking the first order condition. Setting the derivative of the cost function equal to zero
and solving for w, after a small amount of algebraic rearrangement, gives

w� =

P∑
p=1

fpyp

P∑
p=1

f 2
p

. (3.22)

We show in the middle panel of Fig. 3.8 the weighted quadratic fit y = f (x)w� (our
estimated data generating function) to the data (in magenta) in the original feature space.
In the right panel of this figure we show the same fit, this time in the transformed feature
space where the fit is linear.

3.2.1 General conclusions

The two examples discussed above are very special. In each case, by using our ability to
visualize the data we have been able to design an excellent new feature f (x) explicitly
using common algebraic functions. As we have seen in these two examples, a properly
designed feature (or set of features more generally) for linear regression is one that
provides a good nonlinear fit in the original space while, simultaneously, a good linear
fit in the transformed feature space. In other words, a properly designed set of features
for linear regression produces a good linear fit to the feature-transformed data.3

3 Technically speaking there is one subtle yet important caveat to the use of the word “good” in this
statement, this being that we do not want to “overfit” the data (an issue we discuss at length in Chapter 5).
However, for now this issue will not concern us.
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3.2 Knowledge-driven feature design for regression 55

A properly designed feature (or set of features) for linear regression provides a
good nonlinear fit in the original feature space and, simultaneously, a good linear
fit in the transformed feature space.

However, just because we can visualize a low dimensional regression dataset does
not mean we can easily design a proper feature “by eye” as we have done in Ex-
amples 3.2 and 3.3. For instance, in Fig. 3.9 we show a simulated dataset built by
randomly taking P = 30 inputs xp on the interval [0, 1], evaluating each through a
rather wild function4 y (x) (shown in dashed black in the figure), and then adding a
small amount of noise to each output. Here even though we can clearly see a struc-
tured nonlinear relationship in the data, it is not immediately obvious how to formulate
a proper feature f (x) to recover the original data generating function y (x). No common
algebraic function (e.g., a quadratic, a sine wave, an exponential, etc.,) seems to be a
reasonable candidate and hence our knowledge, in this case the fact that we can visu-
alize the data itself, is not enough to form a proper feature (or set of features) for this
data.

For vector-valued input we can say something very similar. While we can imagine
forming a proper set of features for a dataset with vector-valued input, the fact that we
cannot visualize the data prohibits us from “seeing” the right sort of feature(s) to use.

In fact rarely in practice can we use our knowledge of a dataset to construct perfect
features. Often we may only be able to make a rough guess at a proper feature transfor-
mation given our intuition about the data at hand, or can make no educated guess at all.
Thankfully, we can learn feature transformations automatically from the data itself that
can ameliorate this problem. This process will be described in Chapter 5.

0 1

–2

5

y

x

Fig. 3.9 A simulated dataset generated as noisy samples of a data generating function y (x). We show
y (x) here in dashed black. Unlike the previous two cases in Fig. 3.7 and 3.8, it is not so clear
what sort of function would serve as a proper feature f (x) here.

4 Here y (x) = e3x
sin
(

3π2(x−0.5)
)

3π2(x−0.5)
.
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3.3 Nonlinear regression and �2 regularization

In the previous section we discussed examples of regression where the nonlinear re-
lationship in a given dataset could be determined by intuiting a nonlinear feature
transformation, and where (once the data is transformed) the associated cost functions
remained convex and linear in their parameters. Because the input/output relationship
associated to each of these examples was linear in its parameters (see (3.15) and (3.20)),
each is still referred to as a linear regression problem. In this section we explore the
consequences of employing nonlinear models for regression where the corresponding
cost function is non-convex and the input/output relationship nonlinear in its parame-
ters (referred to as instances of nonlinear regression). We also introduce a common tool
for partially ameliorating the practical inconveniences of non-convex cost functions,
referred to as the �2 regularizer. Specifically we describe how the �2 regularizer helps
numerical optimization techniques avoid poor stationary points of non-convex cost func-
tions. Because of this utility, regularization is often used with non-convex cost functions,
as we will see later with e.g., neural networks in Chapters 5–7.5

While the themes of this section are broadly applicable, for the purpose of clarity
we frame our discussion of nonlinear regression and �2 regularization around a single
classic example referred to as logistic regression (which we will also see arise in the
context of classification in the next chapter). Further examples of nonlinear regression
are explored in the chapter exercises.

3.3.1 Logistic regression

At the heart of the classic logistic regression problem is the so-called logistic sigmoid
function, illustrated in the left panel of Fig. 3.10, and defined mathematically as

σ (t) = 1

1+ e−t
, (3.23)

where t can take on any real value. Invented in the early 19th century by mathematician
Pierre François Verhulst [79], this function was designed in his pursuit of modeling how
a population (of microbes, animal species, etc.,) grows over time, taking into account
the realistic assumption that regardless of the kind of organism under study, the system
in which it lives has only a finite amount of resources.6 Thus, as a result, there should
be a strict cap on the total population in any biological system. According to Verhulst’s
model, the initial stages of growth should follow an exponential trend until a satura-
tion level where, due to lack of required resources (e.g., space, food, etc.), the growth
stabilizes and levels off.7

5 Additionally, �2 regularization also arises in the context of the (convex) support vector machine classifier,
as we will see in Section 4.3. Another popular use of �2 regularization is discussed later in Section 7.3 in
the context of ‘cross-validation’.

6 Beyond its classical use in modeling population growth, we will see in the next chapter that logistic
regression can also be used for the task of classification.

7 Like any good mathematician, Verhulst first phrased this ideal population growth model in terms of a
differential equation. Denoting the desired function f and the maximum population level of the system as
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Fig. 3.10 (left panel) Plot of the logistic sigmoid function defined in (3.23). Note that the output of this
function is always between 0 and 1. (right panel) By increasing the weight w of the sigmoid
function σ (wt) from w = 1 (red) to w = 2 (green) and finally to w = 10 (blue), the sigmoid
becomes an increasingly good approximator of a “step function,” that is a function that only
takes on the values 0 and 1 with a sharp transition between the two.

If a dataset of P points
{(

xp, yp
)}P

p=1 is roughly distributed like a sigmoid function,
then this data satisfies

σ
(
b+ xpw

) ≈ yp, p = 1, . . . , P, (3.24)

where b and w are parameters which must be properly tuned. The weight w, as illustrated
in the right panel of Fig. 3.10, controls how quickly the system saturates, and the bias
term b shifts the curve left and right along the horizontal axis. Likewise when the input
is N-dimensional the system of equations given in (3.24) may be written analogously as

σ
(

b+ xT
p w
)
≈ yp, p = 1, . . . , P, (3.25)

where as usual xp =
[

x1,p x2,p . . . xN,p
]T

and w = [
w1 w2 . . . wN

]T
.

Note that unlike the analogous set of equations with linear regression given in
Equation (3.5), each of these equations is nonlinear8 in b and w. These nonlinearities
lead to a non-convex Least Squares cost function which is formed by summing the
squared differences of Equation (3.25) over all p,

g (b, w) =
P∑

p=1

(
σ
(

b+ xT
p w
)
− yp

)2
. (3.26)

1, he supposed that the population growth rate df
dt should, at any time t, be proportional to both the current

population level f as well as the remaining capacity left in the system 1− f . Together this gives the

differential equation df
dt = f (1− f ). One can check by substitution that the logistic sigmoid function

satisfies this relationship with initial condition f (0) = 1/2.
8 In certain circumstances this system may be transformed into one that is linear in its parameters. See

Exercise 3.10 for further details.
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Using the compact notation x̃p =
[

1
xp

]
and w̃ =

[
b
w

]
, the fact that the derivative

of the sigmoid is given as σ ′ (t) = σ (t) (1− σ (t)) (see footnote 7), and the chain rule
from calculus, the gradient of this cost can be calculated as

∇g
(
w̃
) = 2

P∑
p=1

(
σ
(

x̃T
p w̃
)
− yp

)
σ
(

x̃T
p w̃
) (

1− σ
(

x̃T
p w̃
))

x̃p. (3.27)

Due to the many nonlinearities involved in the above system of equations, solving the
first order system directly is a fruitless venture, instead a numerical technique (i.e.,
gradient descent or Newton’s method) must be used to find a useful minimum of the
associated cost function.

Example 3.4 Bacterial growth

In the left panel of Fig. 3.11 we show a real dataset consisting of P = 9 data points cor-
responding to the normalized cell concentration9 of a particular bacteria, Lactobacillus
delbrueckii, in spatially constrained laboratory conditions over the period of 24 hours.
Also shown in this panel are two sigmoidal fits (shown in magenta and green) found
via minimizing the Least Squares cost in (3.26) using gradient descent. In the middle
panel we show the surface of the cost function which is clearly non-convex, having sta-
tionary points in the large flat region colored orange as well as a global minimum in
the long narrow valley highlighted in dark blue. Two paths taken by initializing gradient
descent at different values are shown in magenta and green, respectively, on the surface
itself. While the initialization of the magenta path in the yellow-green area of the surface
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Fig. 3.11 (left panel) A dataset along with two sigmoidal fits (shown in magenta and green), each found via
minimizing the Least Squares cost in (3.26) using gradient descent with a different initialization.
A surface (middle) and contour (right) plot of this cost function, along with the paths taken by
the two runs of gradient descent. Each path has been colored to match the resulting sigmoidal fit
produced in the left panel (see text for further details). Data in this figure is taken from [48].

9 Cell concentration is measured as the mass of organism per unit volume. Here we have normalized the cell
concentration values so that they lie strictly in the interval (0, 1).
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leads to the global minimum, which corresponds with the good sigmoidal fit in magenta
shown in the left panel, the initialization of the green path in the large flat orange region
leads to a poor solution, with corresponding poor fit shown in green in the left panel.
In the right panel we show the contour plot of the same surface (along with the two
gradient descent paths) that more clearly shows the long narrow valley containing the
desired global minimum of the surface.

3.3.2 Non-convex cost functions and �2 regularization

The problematic flat areas posed by non-convex cost functions like the one shown in
Fig. 3.11 can be ameliorated by the addition of a regularizer. A regularizer is a simple
convex function that is often added to such a cost function, slightly convexifying it
and thereby helping numerical optimization techniques avoid poor solutions in its flat
areas. One of the most common regularizers used in practice is the squared �2 norm

of the weights ‖w‖22 =
N∑

n=1
w2

n, referred to as the �2 regularizer. To regularize a cost

function g (b, w) with this regularizer we simply add it to g giving the regularized cost
function

g (b, w)+ λ ‖w‖22 . (3.28)

Here λ ≥ 0 is a parameter (set by the user in practice) that controls the strength of
each term, the original cost function and the regularizer, in the final sum. For example,
if λ = 0 we have our original cost. On the other hand, if λ is set very large then the
regularizer drowns out the cost and we have g (b, w) + λ ‖w‖22 ≈ λ ‖w‖22. Typically in
practice λ is set fairly small (e.g., λ = 0.1 or smaller).

In Fig. 3.12 we show two simple examples of non-convex cost functions which ex-
emplify how the �2 regularizer can help numerical techniques avoid many (but not all)
poor solutions in practice.

The first non-convex cost function,10 shown in the top left panel of Fig. 3.12, is de-
fined over a symmetric interval about the origin and has three large flat areas containing
undesirable stationary points. This kind of non-convex function is highly problematic
because if an algorithm like gradient descent or Newton’s method is initialized at any
point lying in these flat regions it will immediately halt. In the top right panel we show
an �2 regularized version of the same cost. Note how regularization slightly convex-
ifies the entire cost function, and in particular how it forces the flat regions to curve
upwards. Now if e.g., gradient descent is initialized in either of the two flat regions
on the left or right sides it will in fact travel downwards and reach a minimum. Note
that both minima have slightly changed position from the original cost, but as long
as λ is set relatively small this small change does not typically make a difference in
practice. Note in this instance, however, that regularization has not helped with the

10 Here the cost is defined as g (w) = max2 (0, e−wsin (4π (w− 0.1))
)
, and λ has been set fairly high at

λ = 1 for illustrative purposes only.
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Fig. 3.12 Two examples of non-convex functions with flat regions (top left panel) and saddle points
(bottom left panel) where numerical optimization methods can halt undesirably. Using the �2
regularizer we can slightly convexify each (right panels), which can help avoid some of these
undesirable solutions. See text for further details.

problem of gradient descent halting at a poor solution if initialized in the middle flat
region of the original cost. That is, by regularizing we have actually created a local
minimum near the middle of the original flat region in the regularized cost function,
and so if gradient descent is initialized in this region it will halt at this undesirable
solution.

The second non-convex cost function,11 shown in the bottom left panel of Fig. 3.12,
is defined over the unit interval and has two saddle points at which the derivative is
zero and so at which e.g., gradient descent, will halt undesirably if initialized at a point
corresponding to any region on the far left or right. In the lower right panel we show the
�2 regularized cost which no longer has an issue with the saddle point on the right, as
the region surrounding it has been curved upwards. However the saddle point on the left
is still problematic, as regularizing the original cost has created a local minimum near
the point that will cause gradient descent to continue to halt at an undesirable solution.

11 Here the cost is defined as g (w) = max2
(

0, (3w− 2.3)3 + 1
)
+max2

(
0, (−3w+ 0.7)3 + 1

)
, and λ

has been set fairly high at λ = 1 for illustrative purposes only.
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Fig. 3.13 A regularized version of Fig. 3.11. (left panel) Plot of the bacterial growth dataset along with two
overlapping sigmoidal fits (shown in magenta and green) found via minimizing the �2
regularized Least Squares cost for logistic regression in (3.29) using gradient descent. (middle
and right panels) The surface and contour plot of the regularized cost function along with the
paths (in magenta and green) of gradient descent with same two initializations as shown in
Fig. 3.11. While the surface is still non-convex, the large flat region that originally led the
initialization of the green path to a poor solution with the unregularized cost has been curved
upwards by the regularizer, allowing the green run of gradient descent to reach the global
minimum of the problem. Data in this figure is taken from [48].

Example 3.5 �2 regularized Least Squares for logistic regression

We saw in Fig. 3.11 that the initialization of gradient descent in the flat orange region
resulted in a poor fit to the bacterial growth data. A second version of all three panels
from this figure is duplicated in Fig. 3.13, only here we add the �2 regularizer with
λ = 0.1 to the original Least Squares logistic cost in (3.26). Formally, this �2 regularized
Least Squares cost function is written as

g (b, w) =
P∑

p=1

(
σ
(

b+ xT
p w
)
− yp

)2 + λ ‖w‖22 . (3.29)

Once again in order to minimize this cost we can employ gradient descent (see Exercise
3.13). Comparing the regularized surface in Fig. 3.13 to the original shown in Fig. 3.11
we can see that regularizing the original cost curves the flat regions of the surface up-
wards, helping gradient descent avoid poor solutions when initialized in these areas.
Now both initializations first shown in Fig. 3.11 lead gradient descent to the global
minimum of the surface.

3.4 Summary

Linear regression is a fundamental predictive learning problem which aims at determin-
ing the relationship between continuous-valued input and output data via the fitting of
an appropriate model that is linear in its parameters. In this chapter we first saw how
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62 Regression

to fit a linear model (i.e., a line or hyperplane in higher dimensions) to a given dataset,
culminating in the minimization of the Least Squares cost function at the end of Section
3.1. Due to the parameters being linearly related, this cost function may be minimized
by solving the associated first order system.

We then saw in Section 3.2 how in some rare instances our understanding of a phe-
nomenon, typically due to our ability to visualize a low dimensional dataset, can permit
us to accurately suggest an appropriate feature transformation to describe our data. This
provides a proper nonlinear fit to the original data while simultaneously fitting linearly
to the data in an associated transformed feature space.

Finally, using the classical example of logistic regression, we saw in Section 3.3
how a nonlinear regression model typically involves the need to minimize an associated
non-convex cost function. We then saw how �2 regularization is used as a way of “con-
vexifying” a non-convex cost function to help gradient descent avoid some undesirable
stationary points of such a function.

3.5 Exercises

Section 3.1 exercises

Exercises 3.1 Fitting a regression line to the student debt data

Fit a linear model to the U.S. student loan debt dataset shown in Fig. 1.8, called stu-
dent_debt_data.csv, by solving the associated linear regression Least Squares problem.
If this linear trend continues what will the total student debt be in 2050?

Exercises 3.2 Kleiber’s law and linear regression

After collecting and plotting a considerable amount of data comparing the body mass
versus metabolic rate (a measure of at rest energy expenditure) of a variety of animals,
early 20th century biologist Max Kleiber noted an interesting relationship between the
two values. Denoting by xp and yp the body mass (in kg) and metabolic rate (in kJ/day)
of a given animal respectively, treating the body mass as the input feature Kleiber noted
(by visual inspection) that the natural logs of these two values were linearly related.
That is,

w0 + log
(
xp
)

w1 ≈ log
(
yp
)

. (3.30)

In Fig. 3.14 we show a large collection of transformed data points
{(

log
(
xp
)

,

log
(

yp
))}P

p=1, each representing an animal ranging from a small black-chinned hum-
mingbird in the bottom left corner to a large walrus in the top right corner.

a) Fit a linear model to the data shown in Fig. 3.14 (called kleibers_law_data.csv). Make
sure to take the log of both arguments!
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Fig. 3.14 A large set of body mass/metabolic rate data points, transformed by taking the log of each value,
for various animals over a wide range of different masses.

b) Use the optimal parameters you found in part (a) along with the properties of the log
function to write the nonlinear relationship between the body mass x and the metabolic
rate y.

c) Use your fitted line to determine how many calories an animal weighing 10 kg
requires (note each calorie is equivalent to 4.18 J).

Exercises 3.3 The Least Squares cost for linear regression is convex

Show that the Least Squares cost function for linear regression written compactly as in
Section 3.1.3,

g
(
w̃
) = P∑

p=1

(
x̃T

p w̃− yp

)2
, (3.31)

is a convex quadratic function by completing the following steps.

a) Show that g
(
w̃
)

can be written as a quadratic function of the form

g
(
w̃
) = 1

2
w̃TQw̃+ rT w̃+ d (3.32)

by determining proper Q, r, and d.

b) Show that Q has all nonnegative eigenvalues (hint: see Exercise 2.10).

c) Verify that ∇2g
(
w̃
) = Q and so that g satisfies the second order definition of

convexity, and is therefore convex.

d) Show that applying a single Newton step (see Section 2.2.4) to minimize the Least
Squares cost function leads to precisely the first order system of linear equations dis-

cussed in Section 3.1.3, i.e., to the system

(
P∑

p=1
x̃px̃T

p

)
w̃ =

P∑
p=1

x̃pyp. (This is because

the Least Squares cost is a quadratic function, as in Example 2.7.)
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Section 3.2 exercises

Exercises 3.4 Reproduce Galileo’s example

Use the value for the optimal weight shown in Equation (3.22) to reproduce the fits
shown in Fig. 3.8. The data shown in this figure is located in the file Galileo_data.csv.

Exercises 3.5 Reproduce the sinusoidal example

a) Set up the first order system associated with the Least Squares cost function being
minimized in Equation (3.16).

b) Reproduce the sinusoidal and associated linear fit shown in the middle and right pan-
els of Fig. 3.7 by solving for the proper weights via the first order system you determined
in part a). The dataset shown in this figure is called sinusoid_example_data.csv.

Exercises 3.6 Galileo’s extended ramp experiment

In this exercise we modify Galileo’s ramp experiment, discussed in Example 3.3,
to explore the relationship between the angle x of the ramp and the distance y that
the ball travels during a certain fixed amount of time. In Fig. 3.15 we plot six
simulated measurements corresponding to six different angle values x (measured in
degrees).

a) Propose a suitable nonlinear feature transformation for this dataset such that the re-
lationship between the new feature you form and the distance traveled is linear in its
weights. Hint: there is no need for a bias parameter b here.

b) Formulate and minimize a Least Squares cost function using your new feature for a
proper weight w, the data (located in the file another_ramp_experiment.csv). Plot the
resulting fit in the data space.
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Fig. 3.15 An extended set of data from Galileo’s ramp experiment, first described in Example 3.3. See text
for details.
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Exercises 3.7 Moore’s law and the power of future computers

Gordon Moore, co-founder of Intel corporation, predicted in a 1965 paper12 that the
number of transistors on an integrated circuit would double approximately every two
years. This conjecture, referred to nowadays as Moore’s law, has proven to be suffi-
ciently accurate over the past five decades. Since the processing power of computers is
directly related to the number of transistors in their CPUs, Moore’s law provides a trend
model to predict the computing power of future microprocessors. Figure 3.16 plots the
transistor counts of several microprocessors versus the year they were released, starting
from Intel 4004 in 1971 with only 2300 transistors, to Intel’s Xeon E7 introduced in
2014 with more than 4.3 billion transistors.

a) Propose an exponential-based transformation of the Moore’s law dataset shown in
Fig. 3.16 so that the transformed input/output data is related linearly. Hint: to produce a
linear relationship you will end up having to transform the output, not the input.
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Fig. 3.16 As Moore proposed 50 years ago, the number of transistors in microprocessors versus the year
they were invented follows an exponential pattern.

12 One can find a modern reprinting of this paper in e.g., [57].
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b) Formulate and minimize a Least Squares cost function for appropriate weights, and
fit your model to the data in the original data space. The data shown here is located in
the file transistor_counts.csv.

Exercises 3.8 Ohm’s law and linear regression

Ohm’s law, proposed by the German physicist Georg Simon Ohm following a series
of experiments made by him in the 1820s, connects the magnitude of the current in
a galvanic circuit to the sum of all the exciting forces in the circuit, as well as the
length of the circuit. Although he did not publish any account of his experimental re-
sults, it is easy to verify his law using a simple experimental setup, shown in the left
panel of Fig. 3.17, that is very similar to what he then utilized (the data in this figure is
taken from [56]). The spirit lamp heats up the circuit, generating an electromotive force
which creates a current in the coil deflecting the needle of the compass. The tangent
of the deflection angle is directly proportional to the magnitude of the current passing
through the circuit. The magnitude of this current, denoted by I, varies depending on
the length of the wire used to close the circuit (dashed curve). In the right panel of
Fig. 3.17 we plot the readings of the current I (in terms of the tangent of the deflec-
tion angle) when the circuit is closed with a wire of length x (in cm), for five different
values of x.

a) Suggest a suitable nonlinear transformation of the original data to fit (located in the
file ohms_data.csv) so that the transformed input/output data is related linearly. Hint: to
produce a linear relationship you will likely end up having to transform the output.

b) Formulate a proper Least Squares cost function using your transformed data and
minimize it to recover ideal parameters for your model.

c) Fit your proposed model to the data and display it in the original data space.
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Fig. 3.17 (left panel) Experimental setup for verification of Ohm’s law. Black and brown wires are made
up of constantan and copper, respectively. (right panel) Current measurements for five different
lengths of closing wire.
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Fig. 3.18 Simulated observation data for the location of the asteroid Pallas on its orbital plane. The
ellipsoidal curve fit to the data approximates the true orbit of Pallas. (right panel) Fitting an
ellipsoid to the data in the original data space is equivalent to fitting a line to the data in a new
space where both dimensions are squared.

Exercises 3.9 Determining the orbit of celestial bodies

One of the first recorded uses of regression via the Least Squares approach was made
by Carl Frederich Gauss, a German mathematician, physicist, and all round poly-
math, who was interested in calculating the orbit of the asteroid Pallas by leveraging
a dataset of recorded observations. Although Gauss solved the problem using ascen-
sion and declination data observed from the earth (see [61] and references therein),
here we modify the problem so that the simulated data shown in the left panel of
Fig. 3.18 simulates Cartesian coordinates of the location of the asteroid on its orbital
plane. With this assumption, and according to Kepler’s laws of planetary motion, we
need to fit an ellipse to a series of observation points in order to recover the true
orbit.

In this instance the data comes in the form of P = 20 noisy coordinates{(
x1,p, x2,p

)}P
p=1 taken from an ellipsoid with the standard form of(

x1,p

ν1

)2

+
(

x2,p

ν2

)2

≈ 1 for all p = 1 . . .P, (3.33)

where ν1 and ν2 are tunable parameters. By making the substitutions w1 =
(

1
ν1

)2

and w2 =
(

1
ν2

)2
this can be phrased equivalently as a set of approximate linear

equations

x2
1,pw1 + x2

2,pw2 ≈ 1 for all p = 1 . . .P. (3.34)

a) Reformulate the equations shown above using vector notation as

fT
p w ≈ yp for all p = 1 . . .P (3.35)

by determining the appropriate fp and yp where w = [ w1 w2
]T

.
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b) Formulate and solve the associated Least Squares cost function to recover the proper
weights w and plot the ellipse with the data shown in the left panel of Fig. 3.18 located
in the file asteroid_data.csv.

Section 3.3 exercises

Exercises 3.10 Logistic regression as a linear system

In this exercise you will explore particular circumstances that allow one to transform the
nonlinear system of equations in (3.24) into a system which is linear in the parameters
b and w. In order to do this recall that a function f has an inverse at t if another function
f−1 exists such that f−1 (f (t)) = t. For example, the exponential function f (t) = et has
the inverse f−1 (t) = log (t) for every t since we always have f−1 (f (t)) = log

(
et
) = t.

a) Show that the logistic sigmoid has an inverse for each t where 0 < t < 1 of the form

σ−1 (t) = log
(

t
1−t

)
and check that indeed σ−1 (σ (t)) = t for all such values of t.

b) Suppose for a given dataset
{(

xp, yp
)}P

p=1 that 0 < yp < 1 for all p. Apply the
sigmoid inverse to the system shown in Equation (3.24) to derive the equivalent set of
linear equations

b+ xpw ≈ log

(
yp

1− yp

)
p = 1, . . . , P. (3.36)

Since the equations in (3.36) are now linear in both b and w we may solve for these
parameters by simply checking the first order condition for optimality.

c) Using the dataset bacteria_data.csv solve the Least Squares cost function based on
the linear system of equations from part b) and plot the data, along with the logistic
sigmoid fit to the data as shown in Fig. 3.19.

0

0

1

6 12 18 24
x

y

Fig. 3.19 The normalized cell concentration of Lactobacillus delbrueckii in a constrained laboratory
environment over the period of 24 hours. Data in this figure is taken from [48].
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Exercises 3.11 Code up gradient descent for logistic regression

In this exercise you will reproduce the gradient descent paths shown in Fig. 3.11.

a) Verify that the gradient descent step shown in Equation (3.27) is correct.

Note that this gradient can be written more compactly by denoting σ k−1
p =

σ
(

x̃T
p w̃k−1

)
, rk−1

p = 2
(
σ k−1

p − yp

)
σ k−1

p

(
1− σ k−1

p

)
for all p = 1, ..., P, and rk−1 =[

rk−1
1 rk−1

2 · · · rk−1
P

]T
, and stacking the x̃p column-wise into the matrix X̃. Then

the gradient can be written as ∇g
(

w̃k−1
)
= X̃rk−1. For programming languages like

Python and MATLAB/OCTAVE that have especially efficient implementations of ma-
trix/vector operations this can be much more efficient than explicitly summing over the
P points as in Equation (3.27).

b) The surface in this figure was generated via the wrapper nonconvex_logistic_growth
with the dataset bacteria_data.csv, and inside the wrapper you must complete a short
gradient descent function to produce the descent paths called

[in, out] = grad_descent
(

X̃, y, w̃0
)

, (3.37)

where “in” and “out” contain the gradient steps w̃k = w̃k−1 − αk∇g
(

w̃k−1
)

taken and

corresponding objective value g
(

w̃k
)

respectively, X̃ is the input data matrix, y the

output values, and w̃0 the initial point.

Almost all of this function has already been constructed for you. For example, the step
length is fixed at αk = 10−2 for all iterations, etc., and you must only enter the gradient
of the associated cost function. Pressing “run” in the editor will run gradient descent and
will reproduce Fig. 3.11.

Exercises 3.12 A general sinusoid model nonlinear in its parameters

Recall the periodic sinusoidal regression discussed in Example 3.2. There we chose a
model b + sin

(
2πxpw

) ≈ yp that fit the given data which was linear in the weights b
and w, and we saw that the corresponding Least Squares cost function was therefore
convex. This allowed us to solve for the optimal values for these weights in closed form
via the first order system, with complete assurance that they represent a global minimum
of the associated Least Squares cost function. In this exercise you will investigate how a
simple change to this model leads to a comparably much more challenging optimization
problem to solve.

Figure 3.20 shows a set of P = 75 data points
{(

xp, yp
)}P

p=1 generated via the model

w1sin
(
2πxpw2

)+ ε = yp for all p = 1 . . .P, (3.38)

where ε > 0 is a small amount of noise. This dataset may be located in the file
extended_sinusoid_data.csv. Unlike the previous instance here the model is nonlinear

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.005
http:/www.cambridge.org/core


70 Regression

Fig. 3.20 A set of P = 75 periodic data points along with the underlying sinusoidal model used to generate
the data in magenta.

in both the weights. Here w1 controls the amplitude (i.e., stretches the model in the ver-
tical direction) and w2 controls the frequency (i.e., how quickly the sinusoid completes
a single period) of the sinusoidal model.

We can then attempt to recover optimal weights of a representative curve for this data-set
by minimizing the associated Least Squares cost function with respect to the dataset

g (w) =
P∑

p=1

(
w1sin

(
2πxpw2

)− yp
)2 . (3.39)

a) Plot the surface of g over the region defined by −3 ≤ w1, w2 ≤ 3.

b) Discuss the approach you would take to find the best possible stationary point of this
function, along with any potential difficulties you foresee in doing so.

Exercises 3.13 Code up gradient descent for �2 regularized logistic regression

In this exercise you will reproduce Fig. 3.13 by coding up gradient descent to minimize
the regularized logistic regression Least Squares cost function shown in Equation (3.29).

a) Verify that the gradient of the cost function can be written as

∇g
(
w̃
) = 2

P∑
p=1

(
σ
(

x̃T
p w̃
)
− yp

)
σ
(

x̃T
p w̃
) (

1− σ
(

x̃T
p w̃
))

x̃p + 2λ

[
0
w

]
. (3.40)

b) The surface in this figure was generated via the wrapper l2reg_nonconvex_logistic_
growth with the dataset bacteria_data.csv, and inside the wrapper you must complete a
short gradient descent function to produce the descent paths called
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[in, out] = grad_descent
(

X̃, y, w̃0
)

, (3.41)

where “in” and “out” contain the gradient steps w̃k = w̃k−1 − αk∇g
(

w̃k−1
)

taken and

corresponding objective value g
(

w̃k
)

respectively, X̃ is the input data matrix whose pth

column is the input data x̃p, y the output values stacked into a column vector, and w̃0 the
initial point.

Almost all of this function has already been constructed for you. For example, the step
length is fixed at αk = 10−2 for all iterations, etc., and you must only enter the gradient
of the associated cost function. Pressing “run” in the editor will run gradient descent and
will reproduce Fig. 3.13.

Exercises 3.14 The �2 regularized Newton’s method

Recall from Section 2.2.4 that when applied to minimizing non-convex cost functions,
Newton’s method can climb to local maxima (or even diverge) due to the concave shape
of the quadratic second order Taylor series approximation at concave points of the cost
function (see Fig. 2.11). One very common way of dealing with this issue, which we
explore formally in this exercise, is to add an �2 regularizer (centered at each step)
to the quadratic approximation used by Newton’s method in order to ensure that it is
convex at each step. This is also commonly done when applying Newton’s method to
convex functions as well since, as we will see, the addition of a regularizer increases
the eigenvalues of the Hessian and therefore helps avoid numerical problems associated
with solving linear systems with zero (or near-zero) eigenvalues.

a) At the kth iteration of the regularized Newton’s method we add an �2 regularizer

centered at wk−1, i.e., λ2
∥∥w− wk−1

∥∥2
2 where λ ≥ 0, to the second order Taylor series

approximation in (2.18), giving

h (w) = g
(

wk−1
)
+ ∇g

(
wk−1

)T (
w− wk−1

)
+ 1

2

(
w− wk−1

)T

∇2g
(

wk−1
) (

w− wk−1
)
+ λ

2

∥∥∥w− wk−1
∥∥∥2

2
. (3.42)

Show that the first order condition for optimality leads to the following adjusted
Newton’s system for a stationary point of the above quadratic:[
∇2g

(
wk−1

)
+ λIN×N

]
w =

[
∇2g

(
wk−1

)
+ λIN×N

]
wk−1 − ∇g

(
wk−1

)
. (3.43)

b) Show that the eigenvalues of ∇2g
(
wk−1

) + λIN×N in the system above can all be
made to be positive by setting λ large enough. What is the smallest value of λ that will
make this happen? This is typically the value used in practice. Hint: see Exercise 2.9.

c) Using the value of λ determined in part b), conclude that the �2 regularized sec-
ond order Taylor series approximation centered at wk−1 in (3.42) is convex. Hint: see
Exercise 2.11.
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For a non-convex function, λ is typically adjusted at each step so that it just forces the
eigenvalues of ∇2g

(
wk−1

)+λIN×N to be all positive. In the case of a convex cost, since
the eigenvalues of ∇2g

(
wk−1

)
are always nonnegative (via the second order definition

of convexity) any positive value of λ will force the eigenvalues of ∇2g
(
wk−1

)+ λIN×N

to be all positive. Therefore often for convex functions λ is set fixed for all iterations at
some small value like λ = 10−3 or λ = 10−4.
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4 Classification

In this chapter we discuss the problem of classification, where we look to distinguish
between different types of distinct things. Beyond the crucial role such an ability plays
in contributing to what we might consider as “intelligence,” modern applications of clas-
sification arise in a wide range of fields including computer vision, speech processing,
and digital marketing (see e.g., Sections 1.2.2 and 4.6). We begin by introducing the
fundamental model for two class classification: the perceptron. As described pictorially
in Fig. 1.10, the perceptron works by finding a line/hyperplane (or more generally a
curve/surface) that separates two classes of data. We then describe two equally effective
approximations to the basic perceptron known as the softmax and margin perceptrons,
followed by a description of popular perspectives on these approximations where they
are commonly referred to as logistic regression and support vector machines, respec-
tively. In Section 4.4 we see how the two class framework can be easily generalized
to deal with multiclass classification problems that have arbitrary numbers of distinct
classes. Finally, we end the chapter by discussing knowledge-driven feature design
methods for classification. This includes a description of basic histogram-based features
commonly used for text, image, and speech classification problems.

4.1 The perceptron cost functions

In the most basic instance of a classification problem our data consists of just two
classes. Common examples of two class classification problems include face detection,
with classes consisting of facial versus non-facial images, textual sentiment analysis
where classes consist of written product reviews ascribing a positive or negative opin-
ion, and automatic diagnosis of medical conditions where classes consist of medical data
corresponding to patients who either do or do not have a specific malady (see Sections
1.2.2 and 4.6 for further descriptions of these problems). In this section we introduce
the most foundational tool for two class classification, the perceptron, as well as a pop-
ular variation called the margin perceptron. Both tools are commonly used and perform
similarly in practice, as we discuss further in Section 4.1.7.

4.1.1 The basic perceptron model

Recall from the previous chapter that in a linear regression setting, given a training
set of P continuous-valued input/output data points

{(
xp, yp

)}P
p=1, we aim to learn a

hyperplane b+ xTw with parameters b and w such that
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x1

x2
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Fig. 4.1 With linear classification we aim to learn a hyperplane b+ xT w = 0 (shown here in black) to
separate feature representations of the two classes, colored red (class “+1”) and blue (class
“−1”), by dividing the feature space into a red half-space where b+ xT w > 0, and a blue
half-space where b+ xT w < 0. (left panel) A linearly separable dataset where it is possible to
learn a hyperplane to perfectly separate the two classes. (right panel) A dataset with two
overlapping classes. Although the distribution of data does not allow for perfect linear
separation, we can still find a hyperplane that minimizes the number of misclassified points that
end up in the wrong half-space.

b+ xT
p w ≈ yp (4.1)

holds for p = 1, . . . , P. In the case of linear classification a disparate yet simple moti-
vation leads to the pursuit of a different sort of ideal hyperplane. As opposed to linear
regression, where our aim is to represent a dataset, with classification our goal is to sep-
arate two distinct classes of the input/output data with a learned hyperplane. In other
words, we want to learn a hyperplane b + xTw = 0 that separates the two classes of
points as much as possible, with one class lying “above” the hyperplane in the half-
space given by b+ xTw > 0 and the other “below” it in the half-space b+ xTw < 0, as
illustrated in Fig. 4.1.

More formally, with two class classification we still have a training set of P in-
put/output data points

{(
xp, yp

)}P
p=1 where each input xp is N-dimensional (with each

entry representing an input feature, just as with regression). However, the output data
no longer takes on continuous but two discrete values or labels indicating class mem-
bership, i.e., points belonging to each class are assigned a distinct label. While one can
choose any two values for this purpose, we will see that the values ±1 are particularly
useful and therefore will assume that yp ∈ {−1, +1} for p = 1, . . . , P.

We aim to learn the parameters b and w of a hyperplane, so that the first class (where
yp = +1) lies largely above the hyperplane in the half-space defined by b + xTw > 0,
and the second class (where yp = −1) lies mostly below1 it in the half-space defined by
b + xTw < 0. If a given hyperplane places the point xp on its correct side (or we say
that it correctly classifies the point), then we have precisely that

1 The choice of which class we assume lies “above” and “below” the hyperplane is arbitrary, i.e., if we
instead suppose that those points with label yp = −1 lie above and those with label yp = +1 lie below,
similar calculations can be made which lead to the perceptron cost function in Equation (4.5).
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b+ xT
p w > 0 if yp = +1

b+ xT
p w < 0 if yp = −1.

(4.2)

Because we have chosen the labels ±1 we can express (4.2) compactly by multiplying
the two expressions by minus their respective label value −yp, giving one equivalent
expression

− yp

(
b+ xT

p w
)
< 0. (4.3)

By taking the maximum of this quantity and zero we can then write this condition, which
states that a hyperplane correctly classifies the point xp, equivalently as

max
(

0, −yp

(
b+ xT

p w
))
= 0. (4.4)

Note that the expression max
(

0, −yp

(
b+ xT

p w
))

returns zero if xp is classified cor-

rectly, but it returns a positive value if the point is classified incorrectly. This is useful not
only because it characterizes the sort of hyperplane we wish to have, but more impor-
tantly by simply summing this expression over all the points we have the non-negative
cost function

g1 (b, w) =
P∑

p=1

max
(

0, −yp

(
b+ xT

p w
))

, (4.5)

referred to as the perceptron or max cost function.2 Solving the minimization problem

minimize
b, w

P∑
p=1

max
(

0, −yp

(
b+ xT

p w
))

, (4.6)

then determines the optimal parameters for our separating hyperplane. However, while
this problem is fine in principle, there are two readily apparent technical issues regard-
ing the minimization itself. First, one minimum of g1 always presents itself at the trivial
and undesirable values b = 0 and w = 0N×1 (which indeed gives g1 = 0). Sec-
ondly, note that while g1 is continuous (and it is in fact convex) it is not everywhere
differentiable (see Fig. 4.2), thus prohibiting the use of gradient descent and Newton’s
method.3 One simple work-around for both of these issues is to make a particular smooth
approximation to the perceptron function, which we discuss next.

4.1.2 The softmax cost function

One popular way of approximating the perceptron cost is to replace the non-
differentiable “max” function max (s1, s2) (which returns the maximum of the two
scalar inputs s1 and s2) in (4.5) with the smooth softmax function defined as

soft (s1, s2) = log
(
es1 + es2

)
. (4.7)

2 The perceptron is also referred to as the hinge (as it is shaped like a hinge, see Fig. 4.2 for an illustration)
or rectified linear unit.

3 While specialized algorithms can be used to tune the perceptron (see e.g., [19]) differentiable
approximations (that permit the use of gradient descent and/or Newton’s method) are typically preferred
over these options due to their superior efficacy and speed.
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0

5

–5 50
s

g

Fig. 4.2 Plots of the non-differentiable perceptron or hinge cost g (s) = max (0, s) (shown in green) as
well as its smooth softmax approximation g (s) = soft (0, s) = log

(
1+ es) (shown in dashed

black).

That soft (s1, s2) ≈ max (s1, s2), or in words that the softmax approximates the max
function, can be verified formally4 and intuited visually in the particular example shown
in Fig. 4.2.

Replacing the “max” function in the pth summand of g1 in (4.5) with its softmax
approximation,

soft
(

0, −yp

(
b+ xT

p w
))
= log

(
1+ e

−yp

(
b+xT

p w
))

, (4.8)

we have a smooth approximation of the perceptron cost given by

g2 (b, w) =
P∑

p=1

log

(
1+ e

−yp

(
b+xT

p w
))

, (4.9)

which we will refer to as the softmax cost function. Note that this cost function does
not have a trivial minimum at b = 0 and w = 0N×1 as was the case with the original
perceptron. It also has the benefit of being smooth and hence we may apply gradient
descent or Newton’s method for its minimization as detailed in Section 2.2, the latter

4 The fact that the softmax function provides a good approximation to the max function can be shown
formally by the following simple argument. Suppose momentarily that s1 ≤ s2, so that max (s1, s2) = s2.
Therefore max (s1, s2) can be written as max (s1, s2) = s1 + (s2 − s1), or equivalently as max (s1, s2)

= log
(
es1
)+ log

(
es2−s1

)
since s = log

(
es) for any s. Written in this way we can see that log

(
es1
)

+log
(
1+ es2−s1

) = log
(
es1 + es2

) = soft (s1, s2) is always larger than max (s1, s2) but not by much,
especially when es2−s1 � 1. Since the same argument can be made if s1 ≥ s2 we can say generally that
soft (s1, s2) ≈ max (s1, s2).

Note also that the softmax approximation to the max function applies more generally for C inputs, as

max (s1, . . . , sC) ≈ soft (s1, . . . , sC) = log

⎛⎝ C∑
c=1

esc

⎞⎠ .
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of which we may safely use as the softmax cost is indeed convex (see Exercise 4.2).
Formally, the softmax minimization problem is written as

minimize
b, w

P∑
p=1

log

(
1+ e

−yp

(
b+xT

p w
))

. (4.10)

This approximation to the perceptron cost is very commonly used in practice, most
often referred to as the logistic regression for classification (see Section 4.2) or log-loss
support vector machines (see Section 4.3). Due to its immense popularity as the logistic
regression, we will at times refer to the minimization of the softmax cost as the learning
of the softmax or logistic regression classifier.

Example 4.1 Optimization of the softmax cost

Using the compact notation x̃p =
[

1
xp

]
and w̃ =

[
b
w

]
we can rewrite the softmax

cost function in (4.9) more conveniently as

g2
(
w̃
) = P∑

p=1

log
(

1+ e−ypx̃T
p w̃
)

. (4.11)

Using the chain rule5 we can then compute the gradient, and setting it equal to zero we
check the first order condition (see Section 2.1.2),

∇g2
(
w̃
) = − P∑

p=1

σ
(
−ypx̃T

p w̃
)

ypx̃p = 0(N+1)×1. (4.12)

Note here that σ (−t) = 1
1+et denotes the logistic sigmoid function6 evaluated at −t

(see Section 3.3.1). However (4.12) is an unwieldy and highly nonlinear system of

5 To see how to employ the chain rule let us briefly rewrite the pth summand in (4.11) explicitly as a
composition of functions

log

(
1+ e−ypx̃T

p w̃
)
= f

(
r
(
s
(
w̃
)))

,

where f (r) = log (r), r (s) = 1+ e−s, and s
(
w̃
) = ypx̃T

p w̃. To compute the derivative of this with respect
to a single entry w̃n the chain rule gives

∂

∂w̃n
f
(
r
(
s
(
w̃
))) = df

dr
· dr

ds
· ∂

∂w̃n
s
(
w̃
) = 1

r

(−e−s) ypx̃n,p = 1

1+ e−ypx̃T
p w̃

(
−e−ypx̃T

p w̃
)

ypx̃n,p,

which can be written more compactly as −σ
(
−ypx̃T

p w̃
)

ypx̃p,n using the fact that 1
1+e−t

(−e−t)
= 1

1+e−t · −1
et = −1

1+et = −σ (−t), where σ (t) is the logistic sigmoid function. By combining the result

for all entries in w̃ and summing over all P summands we then get the gradient as shown in (4.12).
6 Writing the derivative in this way also helps avoid numerical problems associated with using the

exponential function on a modern computer. This is due to the exponential “overflowing” with large
exponents, like e.g., e1000, as these numbers are too large to store explicitly on the computer and so are
represented symbolically as∞. This becomes a problem when dividing two exponentials like e.g.,

e1000

1+e1000 which, although basically equal to the value 1, is thought of by the computer to be a NaN (not a
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Fig. 4.3 (left panel) A two-dimensional toy dataset with linearly separable classes consisting of P = 100
points in total (90 in the “+1” class and 10 in the “−1” class), along with the softmax classifier
learned using gradient descent. (right panel) A two-dimensional toy dataset with overlapping
classes consisting of P = 100 points in total (50 points in each class), with the softmax classifier
learned again using gradient descent. In both cases the learned classifier does a good job
separating the two classes.

N+1 equations which must be solved numerically by applying e.g., gradient descent or
Newton’s method. By again employing the chain rule, and noting that we always have
that y2

p = 1 since yp ∈ {−1,+1}, one may additionally compute the Hessian of the
softmax as the following sum of weighted outer product matrices (see Exercise 2.10):

∇2g2
(
w̃
) = P∑

p=1

σ
(
−ypx̃T

p w̃
) (

1− σ
(
−ypx̃T

p w̃
))

x̃px̃T
p . (4.13)

Figure 4.3 illustrates the classification of two toy datasets, one linearly separable (left
panel) and the other non-separable or overlapping (right panel), using the softmax
classifier. In both cases a gradient descent scheme is used to learn the hyperplanes’
parameters.

4.1.3 The margin perceptron

Here we discuss an often used variation of the original perceptron, called the margin per-
ceptron, that is once again based on analyzing the geometry of the classification problem

number) as it thinks e1000

1+e1000 = ∞∞ which is undefined. By writing each summand of the gradient such that

it has an exponential in its denominator only we avoid the problem of dividing two overflowing
exponentials. The overflowing exponential issue is discussed further in the exercises, as it is also
something to keep in mind when both choosing an initial point for gradient descent/Newton’s method as
well as recording the value of the softmax cost at each iteration.
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margin

buffer zone b+xTw=–1

b+xTw=0

b+xTw=+1

Fig. 4.4 For linearly separable data the width of the buffer zone confined between two evenly spaced
translates of a separating hyperplane that just touches each respective class, defines the margin of
that separating hyperplane.

where a line (or hyperplane in higher dimensions) is used to separate two classes of data.
Due to the great similarity between the two perceptron concepts, what follows closely
mirrors Sections 4.1.1 and 4.1.2.

Suppose for a moment that we are dealing with a two class dataset that is linearly
separable with a known hyperplane b+xTw = 0 passing evenly between the two classes
as illustrated in Fig. 4.4. This separating hyperplane creates a buffer zone between the
two classes confined between two evenly shifted versions of itself: one version that lies
above the separator and just touches the class having labels yp = +1 taking the form
b + xTw = +1, and one lying below it just touching the class with labels yp = −1
taking the form b + xTw = −1. The width of this buffer zone is commonly referred to
as the margin of such a hyperplane.7

The fact that all points in the “+1” class lie on or above b+xTw = +1, and all points
in the “−1” class lie on or below b+xTw = −1 can be written formally as the following
conditions:

b+ xT
p w ≥ 1 if yp = +1

b+ xT
p w ≤ −1 if yp = −1.

(4.14)

We can combine these conditions into a single statement by multiplying each by their

respective label values, giving the single inequality yp

(
b+ xT

p w
)
≥ 1, which can be

equivalently written as

max
(

0, 1− yp

(
b+ xT

p w
))
= 0. (4.15)

7 The translations above and below the separating hyperplane are more generally defined as b+ xT w = +β
and b+ xT w = −β respectively, where β > 0. However, by dividing off β in both equations and
reassigning the variables as w←− w

β and b←− b
β , we can leave out the redundant parameter β and have

the two translations as stated, b+ xT w = ±1.
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Dropping the assumption that we know the parameters of the hyperplane we can pro-
pose, as we did in devising the perceptron cost in (4.5), to learn them by minimizing the
cost function formed by summing the criterion in (4.15) over all points in the dataset.
Referred to as a margin perceptron or hinge cost this function takes the form

g3 (b, w) =
P∑

p=1

max
(

0, 1− yp

(
b+ xT

p w
))

. (4.16)

Note the striking similarity between the original perceptron cost in (4.5) and the margin
perceptron cost in (4.16): naively we have just “added a 1” to the nonzero input of the
“max” function in each summand. However this additional “1” prevents the issue of
a trivial zero solution with the original perceptron discussed in Section 4.1.1, which
simply does not arise here.

If the data is indeed linearly separable, any hyperplane passing between the two
classes will have a parameter pair (b, w) where g3 (b, w) = 0. However, the margin
perceptron is still a valid cost function even if the data is not linearly separable. The
only difference is that with such a dataset we cannot make the criteria in (4.14) hold
for all points in the dataset. Thus a violation for the pth point adds the positive value of

1− yp

(
b+ xT

p w
)

to the cost function in (4.16).

Regardless of whether the two classes are linearly separable or not, by minimizing
the margin perceptron cost stated formally as

minimize
b, w

P∑
p=1

max
(

0, 1− yp

(
b+ xT

p w
))

, (4.17)

we can learn the parameters for the margin perceptron classifier. However, like the orig-
inal perceptron, the margin cost is still not everywhere differentiable due to presence of
the “max” function. Again it is common practice to make simple differentiable approx-
imations to this cost so that descent methods, such as gradient descent and Newton’s
method, may be employed.

4.1.4 Differentiable approximations to the margin perceptron

To produce a differentiable approximation to the margin perceptron cost in (4.16) we
can of course employ the softmax function first introduced in Section 4.1.2, replac-
ing each summand’s max (·) function with soft (·). Specifically, taking the softmax

approximation of the pth summand of (4.16) gives soft
(

0, 1− yp

(
b+ xT

p w
))
≈

max
(

0, 1− yp

(
b+ xT

p w
))

, where

soft
(

0, 1− yp

(
b+ xT

p w
))
= log

(
1+ e

1−yp

(
b+xT

p w
))

. (4.18)

Summing over p = 1, . . . , P we can produce a cost function that approximates the
margin perceptron, with the added benefit of differentiability. However, note that,
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as illustrated in Fig. 4.7, in fact the softmax approximation of the original percep-

tron summand soft
(

0,−yp

(
b+ xT

p w
))
= log

(
1+ e

−yp

(
b+xT

p w
))

provides, generally

speaking, just as good approximation of the margin perceptron.8 Therefore the original
softmax cost in (4.9) also provides a useful differentiable approximation to the margin
perceptron as well!

Another perhaps more straightforward way of making a differentiable approximation
to the margin perceptron cost is simply to square each of its summands, giving the
squared margin perceptron cost function

g4 (b, w) =
P∑

p=1

max2
(

0, 1− yp

(
b+ xT

p w
))

, (4.19)

where max2 (s1, s2) is a brief way of writing (max (s1, s2))
2. Note that when the two

classes are linearly separable, solutions to the corresponding minimization problem,

minimize
b, w

P∑
p=1

max2
(

0, 1− yp

(
b+ xT

p w
))

, (4.20)

are precisely those of the original problem in (4.17). Moreover its differentiability
permits easily computed gradient for use in gradient descent and Newton’s method.

Example 4.2 Optimization of the squared margin perceptron

Using the compact notation x̃p =
[

1
xp

]
and w̃ =

[
b
w

]
we can compute the gradient

of the squared margin perceptron cost using the chain rule, and form the first order
system of N + 1 equations

∇g4
(
w̃
) = −2

P∑
p=1

max
(

0, 1− ypx̃T
p w̃
)

ypx̃p = 0(N+1)×1. (4.21)

Because once again it is impossible to solve this system for w̃ in closed form, a solution
must be found iteratively by applying gradient descent. Since g4 is convex (see Exercise
4.6) it is also possible to apply Newton’s method, with the Hessian easily computable
(noting that we always have that y2

p = 1 since yp ∈ {−1,+1}) as9

∇2g4
(
w̃
) = 2

∑
p∈w̃

x̃px̃T
p , (4.22)

where w̃ is the index set defined as w̃ =
{

p| 1− ypx̃T
p w̃ > 0

}
.

8 As shown in Fig. 4.7 while the function soft (0, 1− t) better approximates max (0, 1− t) for values of
t ≤ 0, soft (0,−t) provides a better approximation for t > 0.

9 This is actually a “generalized” Hessian since the “max” function in the gradient is not everywhere
differentiable. Nevertheless, it still makes a highly effective Newton’s method for the squared margin cost
(see e.g., [27]).
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Fig. 4.5 Classification of two toy datasets, first shown in Fig. 4.3, using gradient descent for minimizing
the squared margin perceptron cost function. Initializing gradient descent with three different
starting points results in three different classifiers for the linearly separable dataset in the left
panel, each perfectly separating the two classes.

In Fig. 4.5 we show the resulting linear classifiers learned by minimizing the squared
margin perceptron cost for the two toy datasets first shown in Fig. 4.3. As is the case
with the dataset in the left panel of this figure, when the two classes of data are linearly
separable there are infinitely many distinct separating hyperplanes, and correspondingly
infinitely many distinct minima of g4. Thus on such a dataset initializing gradient de-
scent or Newton’s method with a random starting point means we may reach a different
solution at each run, along with a distinct separating hyperplane.

4.1.5 The accuracy of a learned classifier

From our discussion of the original perceptron in Section 4.1.1, note that given any
parameter pair (b, w) (learned by any of the cost functions described in this section) we
can determine whether a point xp is classified correctly or not via the following simple
evaluation:

sign
(
−yp

(
b+ xT

p w
))
=
{
+1 if xp incorrectly classified

−1 if xp correctly classified,
(4.23)

where sign (·) takes the mathematical sign of the input. Also note that by taking the
maximum of this value and 0,

max
(

0, sign
(
−yp

(
b+ xT

p w
)))
=
{
+1 if xp incorrectly classified

0 if xp correctly classified,
(4.24)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.006
http:/www.cambridge.org/core


4.1 The perceptron cost functions 83

we can count the precise number of misclassified points for a given set of parameters
(b, w) by summing (4.24) over all p. This observation naturally leads to a fundamental
counting cost function, which precisely counts the number of points from the training
data classified incorrectly as

g0 (b, w) =
P∑

p=1

max
(

0, sign
(
−yp

(
b+ xT

p w
)))

. (4.25)

By plugging in any learned weight pair (b�, w�), the value of this cost function provides a
metric for evaluating the performance of the associated linear classifier, i.e., the number
of misclassifications for the given weight pair. This can be used to define the accuracy
of a classifier with the weights (b�, w�) on the training data as

accuracy = 1− g0 (b�, w�)
P

. (4.26)

This metric ranges from 0 to 1, with an ideal classification corresponding to an ac-
curacy of 1 or 100%. If possible it is also a good idea to compute the accuracy of
a learned classifier on a set of new testing data, i.e., data that was not used to learn
the model itself, in order to provide some assurance that the learned model will per-
form well on future data points. This is explored further in Chapter 6 in the context of
cross-validation.

4.1.6 Predicting the value of new input data

As illustrated in Fig. 4.6, to predict the label ynew of a new point xnew we simply check
which side of the learned hyperplane it lies on as

ynew = sign
(
b� + xT

neww�
)

, (4.27)

where this hyperplane has parameters (b�, w�) learned over the current dataset via any
of the cost functions described in this section. In other words, if the new point lies above
the learned hyperplane (b� + xT

neww� > 0) it is given the label ynew = 1, and likewise if

Fig. 4.6 Once a hyperplane has been learned to the current dataset with optimal parameters
(
b�, w�

)
, the

label ynew of a new point xnew can be determined by simply checking which side of the
boundary it lies on. In the illustration shown here xnew lies below the learned hyperplane
(b� + xT

neww� < 0) and so is given the label ynew = sign
(
b� + xT

neww�
) = −1.
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the point lies below the boundary (b� + xT
neww� < 0) it receives the label ynew = −1. If

on the off chance the point lies on the boundary itself (i.e., b� + xT
neww� = 0) then xnew

may be assigned to either class.

4.1.7 Which cost function produces the best results?

In terms of accuracy, which (differentiable) cost function works the best in practice, the
softmax or squared margin perceptron? Nothing we have seen so far seems to indicate
one cost function’s superiority over the other. In fact, the various geometric derivations
given so far have shown how both are intimately related to the original perceptron cost
in (4.5). Therefore it should come as little surprise that while they can differ from dataset
to dataset in terms of their performance, in practice both differentiable costs typically
produce very similar results.

The softmax and squared margin costs perform similarly well in practice.

Thus one should feel comfortable using either one or, if resources allow, apply both and
keep the higher performer on a case by case basis. Figure 4.7 shows a visual comparison
of all classification cost functions we have discussed so far.

Fig. 4.7 Comparison of various classification cost functions. For visualization purposes we show here
only one summand of each cost function plotted versus t = b+ xT

p w with the label yp assumed
to be 1. The softmax cost (red) is a smooth approximation to the non-differentiable perceptron or
hinge cost (blue), which can be thought of itself as a continuous surrogate for the discontinuous
counting loss (black). The margin cost (yellow) is a shifted version of the basic perceptron, and
is non-differentiable at its corner point. The squared margin cost (green) resolves this issue by
taking its square (as does the softmax cost). Note that all the cost functions (except for the
counting cost) are convex.
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Fig. 4.8 A comparison of the softmax and margin costs on three real training datasets. Shown in each
panel is the number of misclassifications per iteration of Newton’s method (only ten iterations
were required for convergence in all instances) applied to minimizing the softmax cost (shown in
black) and squared margin cost (shown in magenta) over (left panel) breast cancer, (middle
panel) spam email, and (right panel) face detection datasets respectively. While the performance
of each cost function differs from case to case, generally they perform similarly well.

Example 4.3 Real dataset comparison of the softmax and squared margin costs

In Fig. 4.8 we illustrate the similar efficacy of the softmax and squared margin costs on
three real training datasets. For each dataset we show the number of misclassifications
resulting from the use of ten iterations of Newton’s method (as only ten iterations were
required for the method to converge in all cases), by evaluating the counting cost in
(4.25) at each iteration, to minimize both cost functions over the data.

The left, middle, and right panels of the figure display these results on breast can-
cer (consisting of P = 569), spam email (with P = 4601 points), and face detection
datasets (where P = 10 000) respectively. While their performance differs from case
to case the softmax and margin costs perform similarly well in these examples. For
more information about the datasets used here see Exercise 4.9, as well as Examples 4.9
and 4.10.

4.1.8 The connection between the perceptron and counting costs

Note that with the cost function defined in (4.25) as our true desired criterion for linear
classification, we could have begun our discussion by trying to minimize it formally as
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minimize
b, w

P∑
p=1

max
(

0, sign
(
−yp

(
b+ xT

p w
)))

. (4.28)

Unfortunately this problem is not only non-convex but is highly discontinuous due to
the presence of the “sign” function in each summand of the objective. Therefore it
is extremely difficult to attempt to minimize it directly. However, note that the orig-
inal perceptron cost derived in (4.5) can be thought of simply as a relaxation of this
fundamental counting cost, where we remove the discontinuous “sign” function from

each summand (or in other words, approximate sign
(
−yp

(
b+ xT

p w
))

linearly as

−yp

(
b+ xT

p w
)

). Thus while the original perceptron cost, as well as its relatives in-

cluding the softmax10 and margin costs, are intimately related to this counting cost they
are still approximations of the true criterion we wish to minimize.

In Fig. 4.9 we illustrate this point by showing both the number of misclassifications
and objective value of gradient descent applied to minimizing the softmax cost over the
toy datasets shown first in Fig. 4.3. Specifically, we show results from three runs of gra-
dient descent applied to both the linearly separable (top panels) and overlapping (bottom
panels) datasets. In the left panels of Fig. 4.9 we show the number of misclassifications
per iteration calculated by evaluating the counting cost in (4.25), while in the right pan-
els we show the corresponding softmax cost values from each run per iteration. In other
words, the left and right panels show the value of the counting cost function from (4.25)
and the softmax cost from (4.9) per iteration of gradient descent, respectively.

Comparing the left and right panels for each dataset note that, in both instances, the
per iteration counting and softmax values do not perfectly match. Further note how
with the second dataset, shown in the lower two panels, the counting cost value actually
fluctuates (by a small amount) as we increase the number of iterations while the corre-
sponding softmax cost value continues to fall. Both of these phenomena are caused by
the fact that we are directly minimizing an approximation of the counting cost, and not
the counting cost itself. While neither effect is ideal, they are examples of the tradeoff
we must accept for working with cost functions we can actually minimize properly in
practice.

4.2 The logistic regression perspective on the softmax cost

This section describes a common way of both deriving and thinking about the softmax
cost function first introduced in Section 4.1.2. Here we will see how the softmax cost
naturally arises as a direct approximation of the fundamental counting cost discussed in
Section 4.1.5. However the major benefit of this new perspective is in adding a useful
geometric viewpoint,11 that of regression/surface-fitting, to the classification framework
in general, and the softmax cost in particular.

10 We will also see in Section 4.2 how the softmax cost can be thought of as a direct approximation of the
counting cost.

11 Logistic regression can also be interpreted from a probabilistic perspective (see Exercise 4.12).
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Fig. 4.9 The number of misclassifications (left panels) and objective value (right panels) plotted versus
number of iterations of three runs of gradient descent applied to minimizing the softmax cost
over two toy datasets, one linearly separable (top panels) and the other overlapping (bottom
panels), both shown originally in Fig. 4.3.

4.2.1 Step functions and classification

Two class classification can be fruitfully considered as a particular instance of regression
or surface-fitting, wherein the output of a dataset of P points

{(
xp, yp

)}P
p=1 is no longer

continuous but takes on two fixed values, yp ∈ {−1, +1}, corresponding to the two
classes. As illustrated in Fig. 4.10, an ideal data generating function for classification
(i.e., a function that can be assumed to generate the data we receive) is a discontinuous
step function (shown in yellow). When the step function is viewed “from above”, as also
illustrated in this figure, we return to viewing classification from the “separator” point
of view described in the previous section, and the linear boundary separating the two
classes is defined exactly by the hyperplane where the step function transitions from its
lower to higher step, defined by

b+ xTw = 0. (4.29)
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Fig. 4.10 Classification from a regression/surface-fitting perspective for 1-dimensional (left panel) and
2-dimensional (right panel) toy datasets. This surface-fitting view is equivalent to the “separator”
perspective described in Section 4.1, where the separating hyperplane is precisely where the step
function (shown here in yellow) transitions from its lower to higher step. In the separator view
the actual y value (or label) is represented by coloring the points red or blue to denote their
respective classes.

With this, the equation for any step function taking values on {−1, +1} can be written
explicitly as

sign
(
b+ xTw

) = {+1 if b+ xTw > 0

−1 if b+ xTw < 0.
(4.30)

We ideally would like to find a set of parameters (b, w) for a hyperplane so that data
points having label yp = +1 lie on the top step, and those having label yp = −1 lie on
the bottom step. To say then that a particular parameter choice places a point xp on its

correct step means that sign
(

b+ xT
p w
)
= yp, and because yp ∈ {−1, +1} this can be

written equivalently as

sign
(

yp

(
b+ xT

p w
))
= 1. (4.31)

In what follows we will make a smooth approximation to the step function, in particular
deriving a smoothed equivalent of the criterion in (4.31) for the parameters of a desired
hyperplane. This will quickly lead us to the minimization of the softmax cost function
first described in Section 4.1.2 in order to properly fit a smoothed step function to our
labeled data.
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Fig. 4.11 (left panel) Plot of the tanh function defined as tanh (t) = 2σ (t)− 1. (right panel) By increasing
the weight w of the function tanh (wt) from w = 1 (red) to w = 2 (green) and finally to w = 10
(blue), it becomes an increasingly good approximator of a step function taking on values −1 and
+1.

4.2.2 Convex logistic regression

We have actually already seen an excellent smooth approximator of a step function, i.e.,
the sigmoid function

σ
(
b+ xTw

) = 1

1+ e−(b+xT w)
, (4.32)

introduced in Section 3.3.1 in its original context as a model for population growth.
As shown in Fig. 3.10, by adjusting the parameters (b, w) the sigmoid can be made
to approximate a step function taking on the values {0, 1}. By simply multiplying the
sigmoid by 2 and then subtracting 1 we can stretch it so that it approximates a step
function taking on the values {−1, +1}. This stretched sigmoid is referred to as the
“tanh” function

tanh
(
b+ xTw

) = 2σ
(
b+ xTw

)− 1. (4.33)

As shown in the left panel of Fig. 4.11, the tanh function retains the desired property of
the sigmoid by being a fine approximator to the step function, this time one that takes
on values {−1, +1}.

Thus we have for any pair (b, w) that any desired step function of the form given in
(4.30) may be roughly approximated as sign

(
b+ xTw

) ≈ tanh
(
b+ xTw

)
, or in other

words

tanh
(
b+ xTw

) ≈ {+1 if b+ xTw > 0

−1 if b+ xTw ≤ 0.
(4.34)

To make this approximation finer we can, as illustrated in the right panel of Fig. 4.11,
multiply the input argument of the tanh by a large positive constant.
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Now with tanh as a smooth approximation of the “sign” function, we can approximate
the criterion in (4.31) as

tanh
(

yp

(
b+ xT

p w
))
≈ 1, (4.35)

which can be written, using the definition of tanh in (4.33), as

1+ e
−yp

(
b+xT

p w
)
≈ 1. (4.36)

Taking the log of both sides12 then leads to

log

(
1+ e

−yp

(
b+xT

p w
))
≈ 0. (4.37)

Since we want a hyperplane that forces the condition in (4.37) to hold for all p =
1, . . . , P, a reasonable way of learning associated parameters is to simply minimize the
sum of these expressions over the entire dataset as

minimize
b, w

P∑
p=1

log

(
1+ e

−yp

(
b+xT

p w
))

. (4.38)

This is precisely the minimization of the softmax cost first introduced in Section 4.1.2 as
a smooth approximation to the original perceptron. Here, however, our interpretation has
changed: we think of the minimization of the softmax cost in the current section in the
context of logistic regression surface-fitting (where the output takes on only the values
±1), determining ideal parameters for a smoothed step function to fit to our labeled data.

Through the perspective of logistic regression, we can think of classification
simultaneously as:

1 finding a hyperplane that best separates the data; and

2 finding a step-like surface that best places the positive and negative classes on
its top and bottom steps, respectively.

In Fig. 4.12 we show an example of both the resulting linear separator and surface fit
corresponding to minimizing the softmax cost via Newton’s method as described in
Example 4.1 on a toy dataset first shown in the left panel of Fig. 4.3. The resulting

12 Without taking the log on both sides one can deduce instead a desired approximation e
−yp

(
b+xT

p w
)
≈ 0

to hold, leading to the analogous conclusion that we should minimize the cost function
P∑

p=1
e
−yp

(
b+xT

p w
)

.

This approximation, however, is less useful for classification as it is much more sensitive to the presence
of outliers in the data (see Exercise 4.11). Regardless, it is used for instance as the objective function in a
greedy classification method called boosting [34].
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Fig. 4.12 Minimizing the softmax cost in (4.38) gives an optimal weight pair
(
b�, w�

)
that define the linear

separator b� + xT w� = 0 shown in the left panel (in black), as well as the surface
y (x) = tanh

(
b� + xT w�

)
shown in the right panel (in gray).

parameters found (b�, w�) define both the linear separator b�+ xTw� = 0, as well as the
surface y (x) = tanh

(
b� + xTw�

)
.

4.3 The support vector machine perspective on the margin perceptron

In deriving the margin perceptron in Section 4.1.3 we introduced the concept of a margin
for a hyperplane as the width of the buffer zone it creates between two linearly separa-
ble classes. We now extend this idea to its natural conclusion, leading to the so-called
support vector machine (SVM) classifier. While an intriguing notion in the ideal case
where data is perfectly separable, we will see by the end of this section that practically
speaking the SVM classifier is a margin perceptron with the addition of an �2 regularizer
(�2 regularization was first introduced in Section 3.3.2).

4.3.1 A quest for the hyperplane with maximum margin

As discussed in Section 4.1.3, when two classes of data are linearly separable, infinitely
many hyperplanes could be drawn to separate the data. In Fig. 4.5 we displayed three
such hyperplanes for a given synthetic dataset, each derived by starting the gradient
descent procedure for minimizing the squared margin perceptron cost with a different
initialization. Given that all these three classifiers (as well as any other separating hyper-
plane derived from this procedure) would perfectly classify the data, is there one that we
can say is the “best” of all possible separating hyperplanes? One reasonable standard for
judging the quality of these hyperplanes is via their margin lengths, that is the distance
between the evenly spaced translates that just touch each class. The larger this distance
is, the intuitively better the associated hyperplane separates the entire space, given the
particular distribution of the data. This idea is illustrated in Fig. 4.13.
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Fig. 4.13 Of the infinitely many hyperplanes that exist between two classes of linearly separable data the
one with maximum margin does an intuitively better job than the rest at distinguishing between
classes because it more equitably partitions the entire space based on how the data is distributed.
In this illustration two separators are shown along with their respective margins. While both
perfectly distinguish between the two classes the green separator (with smaller margin) divides
up the space in a rather awkward fashion given how the data is distributed, and will therefore
tend to more easily misclassify future data points. On the other hand, the black separator (having
a larger margin) divides up the space more evenly with respect to the given data, and will tend to
classify future points more accurately.

To find the separating hyperplane with maximum margin, first recall from Sec-
tion 4.1.3 that the margin of a hyperplane b + xTw = 0 is the width of the buffer
zone confined between two symmetric translations of itself, written conveniently as
b + xTw = ±1, each just touching one of the two classes. As shown in Fig. 4.14,
the margin can be determined by calculating the distance between any two points (one
from each translated hyperplane) both lying on the normal vector w. Denoting by x1

and x2 the points on vector w belonging to the upper and lower translated hyperplanes,
respectively, the margin is computed simply as the length of the line segment connecting
x1 and x2, i.e., ‖x1 − x2‖2.

The margin can be written much more conveniently by taking the difference of the
two translates evaluated at x1 and x2 respectively, as(

b+ xT
1 w
)− (b+ xT

2 w
) = (x1 − x2)

T w = 2. (4.39)

Using the inner product rule (see Appendix A) and the fact that the two vectors x1 − x2

and w are parallel to each other, we can solve for the margin directly in terms of w, as

‖x1 − x2‖2 = 2

‖w‖2 . (4.40)

Therefore finding the separating hyperplane with maximum margin is equivalent to
finding the one with the smallest possible normal vector w.
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Fig. 4.14 The margin of a separating hyperplane can be calculated by measuring the distance between the
two points of intersection of the normal vector w and the two equidistant translations of the
hyperplane. This distance can be shown to have the value of 2

‖w‖2 (see text for further details).

4.3.2 The hard-margin SVM problem

In order to find a separating hyperplane for the data with minimum length normal vector
we can simply combine this with our desire to minimize ‖w‖22 subject to the constraint
that the hyperplane perfectly separates the data (given by the margin criterion in (4.14)).
This gives the so-called hard-margin SVM constrained optimization problem

minimize
b, w

‖w‖22
subject to max

(
0, 1− yp

(
b+ xT

p w
))
= 0, p = 1, . . . , P.

(4.41)

Unlike the minimization problems we have seen so far, here we have a set of con-
straints on the permissible values of (b, w) that guarantee that the hyperplane we recover
separates the data perfectly. Problems of this sort can be solved using a variety of
optimization techniques (see e.g., [23, 24, 50]) that we do not discuss here.

Figure 4.15 shows the SVM hyperplane learned for a toy dataset along with the buffer
zone confined between the separating hyperplane’s translates. The points from each
class lying on either boundary of the buffer zone are called support vectors, hence the
name “support vector machines,” and are highlighted in green.

4.3.3 The soft-margin SVM problem

Because a priori we can never be entirely sure in practice that our data is perfectly lin-
early separable, the hard-margin SVM problem in (4.41) is of mostly theoretical interest.
This is because if the data is not perfectly separable by a hyperplane, the hard-margin
problem in (4.41) is “ill-defined,” meaning that it has no solution (as the constraints
can never be satisfied). As a result the hard-margin SVM problem, which again was
designed on the assumption of perfect linear separability between the two classes, is not
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Fig. 4.15 A linearly separable toy dataset consisting of P = 150 points in total (75 per class) with the
SVM classifier (in black) learned by solving the hard-margin SVM problem. Also shown are the
buffer zone boundaries (dotted) and support vectors (highlighted in green).

commonly used in practice. Instead, its constraints are typically “relaxed” in order to
allow for possible violations of linear separability. To relax the constraints13 we make
them part of a single cost function, which includes the original objective ‖w‖22 as well, so
that they are not all forced to hold exactly. This gives the soft-margin SVM cost function

g (b, w) =
P∑

p=1

max
(

0, 1− yp

(
b+ xT

p w
))
+ λ ‖w‖22 , (4.42)

where the parameter λ ≥ 0 controls the trade-off between how well we satisfy the
original constraints in (4.41) while seeking a large margin classifier. The smaller we
set λ the more pressure we put on satisfying the constraints of the original problem,
and the less emphasis we put on the recovered hyperplane having a large margin (and
vice versa). While λ is often set to a small value in practice, we discuss methods for
automatically choosing the value of λ in Chapter 7. Formally, minimization of the soft-
margin SVM cost function is written as

minimize
b, w

P∑
p=1

max
(

0, 1− yp

(
b+ xT

p w
))
+ λ ‖w‖22 . (4.43)

13 Generally speaking any relaxed version of the SVM, which allows for violations of perfect linear
separability of the data, is referred to as a soft-margin SVM problem. While there is another popular
relaxation of the basic SVM problem used in practice (see e.g., [22, 23]) it has no theoretical or practical
advantage over the one presented here [21, 27].
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Looking closely at the soft-margin cost we can see that, practically speaking, it is just
the margin perceptron cost given in (4.16) with the addition of an �2 regularizer (as
described in Section 3.3.2).

Practically speaking, the soft-margin SVM cost is just an �2 regularized form of
the margin perceptron cost.

As with the original margin perceptron cost described in Section 4.1, differentiable ap-
proximations of the same sort we have seen before (e.g., squaring the “max” function
or using the softmax approximation) are typically used in place of the margin percep-
tron component of the soft-margin SVM cost function. For example, using the softmax
approximation (see Section 4.1.2) the soft-margin SVM cost may be written as

g (b, w) =
P∑

p=1

log

(
1+ e

−yp

(
b+xT

p w
))
+ λ ‖w‖22 . (4.44)

With this approximation the soft-margin SVM cost is sometimes referred to as log-loss
SVM (see e.g., [21]). However, note that, using the softmax approximation, we can also
think of log-loss SVM as an �2 regularized form of logistic regression. �2 regularization,
first described in Section 3.3 in the context of nonlinear regression, can be analogously
applied to classification cost functions as well.

4.3.4 Support vector machines and logistic regression

While the motives for formally deriving the SVM and logistic regression classifiers dif-
fer significantly, due to the fact that their cost functions are so similar (or the same if the
softmax cost is employed for SVM as in (4.44)) both perform similarly well in practice
(as first discussed in Section 4.1.7). Unsurprisingly, as we will see later in Chapters 5
through 7, both classifiers can be extended (using so-called “kernels” and “feed-foward
neural networks”) in precisely the same manner to perform nonlinear classification.

While the motives for formally deriving the SVM and logistic regression classi-
fiers differ, due to their similar cost functions (which in fact can be entirely similar
if the softmax cost is employed for SVM) both perform similarly well in practice.

4.4 Multiclass classification

In practice many classification problems have more than two classes we wish to distin-
guish, e.g., face recognition, hand gesture recognition, recognition of spoken phrases or
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Fig. 4.16 Various handwritten digits in a feature space. Handwritten digit recognition is a common
multiclass classification problem. The goal here is to determine regions in the feature space
where current (and future) instances of each type of handwritten digit are present.

words, etc. Such a multiclass dataset
{(

xp, yp
)}P

p=1 consists of C distinct classes of data,
where each label yp now takes on a value between 1 and C, i.e., yp ∈ {1, 2, . . . , C}. In
this section we discuss two popular generalizations of the two class framework, namely,
one-versus-all and multiclass softmax classification (sometimes referred to as softmax
regression). Each scheme learns C two class linear separators to deal with the multi-
class setting, differing only in how these linear separators are learned. Both methods are
commonly used and perform similarly in practice, as we discuss further in Section 4.4.4.

Example 4.4 Handwritten digit recognition

Recognizing handwritten digits is a popular multiclass classification problem commonly
built into the software of mobile banking applications, as well as more traditional au-
tomated teller machines, to give users e.g., the ability to automatically deposit paper
checks. Here each class of data consists of (images of) several handwritten versions of a
single digit in the range 0− 9, giving a total of ten classes. Using the methods discussed
in this section, as well as their nonlinear extensions described in Section 6.3, we aim
to learn a separator that distinguishes each of the ten classes from each other (as illus-
trated in Fig. 4.16). You can perform this task on a large dataset of handwritten digits by
completing Exercise 4.16.

4.4.1 One-versus-all multiclass classification

Because it has only two sides, a single linear separator is fundamentally insufficient as a
mechanism for differentiating between more than two classes of data. To overcome this
shortcoming when dealing with C > 2 classes we can instead learn C linear classifiers
(one per class), each distinguishing one class from the rest of the data. We illustrate this
idea for a particular toy dataset with C = 3 classes in Fig. 4.17. By properly fusing these
C learned linear separators, we can then form a classification rule for the entire dataset.
This approach is called one-versus-all (OvA) classification.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.006
http:/www.cambridge.org/core


4.4 Multiclass classification 97

Fig. 4.17 One-versus-all multiclass scheme applied to (top panel) a toy classification dataset with C = 3
classes consisting of P = 30 data points in total (10 per class). (middle panels) The three
classifiers learned to distinguish each class from the rest of the data. In each panel we have
temporarily colored all data points not in the primary class gray for visualization purposes.
(bottom panels) By properly fusing these C = 3 individual classifiers we determine a
classification rule for the entire space, allowing us to predict the label value of every point. These
predictions are illustrated as the colored regions shown from “the side” and “from above” in the
left and right panels respectively.

Beginning, we first learn C individual linear separators in the manner described in pre-
vious sections (using any desired cost function and minimization technique). In learning
the cth classifier we treat all points not in class c as a single “not-c” class by lumping
them all together. To learn a two class classifier we then assign temporarily labels to
the P training points: points in classes c and “not-c” are assigned temporary labels +1
and −1, respectively. With these temporary labels we can then learn a linear classifier
distinguishing the points in class c from all other classes. This is illustrated in the middle
panels of Fig. 4.17 for a C = 3 class dataset.

Having done this for all C classes we then have C linear separators of the form

bc + xTwc = 0, c = 1, . . . , C. (4.45)
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Fig. 4.18 (left panel) Linear separators from the middle panel of Fig. 4.17. (right panel) Regions of the
space are colored according to the set of rules in (4.46). White regions do not satisfy these
conditions, meaning that points in these areas cannot be assigned to any class/color. In the case
shown here those points lying in the three white regions between any two classes are positive
with respect to both classes’ hyperplanes, while the white triangular region in the middle is
negative with respect to all three classifiers.

In the ideal situation shown in Fig. 4.17 each classifier perfectly separates its class from
the remainder of the points. In other words, all data points from class c lie on the positive
side of its associated separator, while the points from other classes lie on its negative
side. Stating this formally, a known point xp belongs to class c if it satisfies the following
set of inequalities

bc + xT
p wc > 0

bj + xT
p wj < 0 j = 1, . . . , C, j �= c.

(4.46)

While this correctly describes the labels of the current set of points in an ideal scenario,
using this criterion more generally to assign labels to other points in the space would
be a very poor idea, as illustrated in Fig. 4.18 where we show the result of using the set
of rules in (4.46) to assign labels to all points x in the feature space of our toy dataset
from Fig. 4.17. As can be seen in the figure there are entire regions of the space for
which the inequalities in (4.46) do not simultaneously hold, meaning that points in these
regions cannot be assigned a class at all. These regions, left uncolored in the figure,
include those areas lying on the positive side of more than one classifier (the three white
regions lying between each pair of classes), and those lying on the negative side of all
the classifiers (the triangular region in the middle of all three).

However, by generalizing the criteria in (4.46) we can in fact produce a useful rule
that assigns labels to every point in the entire space. For a point x the rule is generalized
by determining not the classifier that provides a positive evaluation bc + xTwc > 0 (if
there even is one such classifier), but by assigning x the label according to whichever
classifier produces the largest evaluation (even if this evaluation is negative). In other
words, we generalize (4.46) by assigning the label y to a point x by taking

y = argmax
j=1,...,C

bj + xTwj. (4.47)
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This criterion, which we refer to as the fusion rule,14 was used to assign labels15 to the
entire space of the toy dataset shown in the bottom panel of Fig. 4.17. Although devised
in the context of an ideal scenario where the classes are not overlapping, the fusion rule
is effective in dealing with overlapping multiclass datasets as well (see Example 4.5).
As we will see in Section 4.4.2, the fusion rule is also the basis for the second multiclass
method described here, multiclass softmax classification.

To perform one-versus-all classification on a dataset with C classes:

1 Learn C individual classifiers using any approach (e.g., logistic regression,
support vector machines, etc.), each distinguishing one class from the remainder
of the data.

2 Combine the learned classifiers using the fusion rule in (4.47) to make final
assignments.

Example 4.5 OvA classification for overlapping data

In Fig. 4.19 we show the results of applying the OvA framework to a toy dataset with
C = 4 overlapping classes. In this example we use the logistic regression classifier (i.e.,
softmax cost) and Newton’s method for minimization, as described in Section 4.1.2.
After learning each of the four individual classifiers (shown in the middle panels) they
are fused using the rule in (4.47) to form the final partitioning of the space as shown in
the bottom panels of this figure.

4.4.2 Multiclass softmax classification

As we have just seen, in the OvA framework we learn C linear classifiers separately and
fuse them afterwards to create a final assignment rule for the entire space. A popular

14 One might smartly suggest that we should first normalize the learned hyperplanes by the length of their

respective normal vectors as
bj+xT wj∥∥wj

∥∥
2

prior to fusing them as in (4.47) in order to put all the classifiers

“on equal footing.” Or, in other words, so that no classifier is given an unwanted advantage or
disadvantage in fusing due to the size of its learned weight pair

(
bj, wj

)
, as this size is arbitrary (since the

hyperplane b+ xT w = 0 remains unchanged when multiplied by a positive scalar γ as
γ · (b+ xT w

) = γ · 0 = 0. While this is rarely done in practice it is certainly justified, and one should
feel free to normalize each hyperplane in practice prior to employing the fusion rule if desired.

15 Note that while the boundary resulting from the fusion rule is always piecewise-linear, as in the toy
examples shown here, the fusion rule itself does not explicitly define this boundary, i.e., it does not provide
us with a nice formula for it (although one may work out a somewhat convoluted formula describing
the boundary in general). This is perfectly fine since remember that our goal is not to find a formula
for some separating boundary, but rather a reliable rule for accurately predicting labels (which the fusion
rule provides). In fact the piecewise-linear boundaries shown in the figures of this section were drawn
implicitly by labeling (and appropriately coloring) every point in the region shown using the fusion rule.
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Fig. 4.19 One-versus-all multiclass scheme applied to (top panel) a toy classification dataset with C = 4
classes consisting of P = 40 data points in total (10 per class). (middle panels) The four
classifiers learned to distinguish each class from the rest of the data. (bottom panels) Having
determined proper linear separators for each class, we use the fusion rule in (4.47) to form the
final partitioning of the space. The left and right panels illustrate the predicted labels (shown as
colored regions) from both “the side” and “from above.” These regions implicitly define the
piecewise linear boundary shown in the right panel.

alternative, referred to as multiclass softmax classification, determines the C classifiers
jointly by learning all of their parameters together using a cost function based on the
fusion rule in (4.47). According to the fusion rule if we want a point xp belonging to
class c (i.e., yp = c) to be classified correctly we must have that

c = argmax
j=1,...,C

(
bj + xT

p wj

)
. (4.48)

This means that we must have that

bc + xT
p wc = max

j=1,...,C

(
bj + xT

p wj

)
, (4.49)

or equivalently

max
j=1,...,C

(
bj + xT

p wj

)
−
(

bc + xT
p wc

)
= 0. (4.50)

Indeed we would like to tune the weights so that (4.50) holds for all points in the dataset
(with their respective class label). Because the quantity on the left hand side of (4.50) is
always nonnegative, and is exactly zero if the point xp is classified correctly, it makes
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4.4 Multiclass classification 101

sense to form a cost function using this criterion that we then minimize in order to
determine proper weights. Summing the expression in (4.50) over all P points in the
dataset, denoting c the index set of points belonging to class c, we have a nonnegative
cost function

g (b1, . . . , bC, w1, . . . , wC) =
C∑

c=1

∑
p∈c

[
max

j=1,...,C

(
bj + xT

p wj

)
−
(

bc + xT
p wc

)]
.

(4.51)
Note that there are only P summands in this sum, one for each point in the dataset.
However, the problem here, which we also encountered when deriving the original per-
ceptron cost function for two class classification in Section 4.1, is that the max function
is continuous but not differentiable and that the trivial solution (bj = 0 and wj = 0N×1

for all j) successfully minimizes the cost. One useful work-around approach we saw
there for dealing with this issue, which we will employ here as well, is to approximate

max
j=1,...,C

(
bj + xT

p wj

)
using the smooth softmax function.

Recall from Section 4.1.2 that the softmax function of C scalar inputs s1, . . . , sC,
written as soft (s1, . . . , sC), is defined as

soft (s1, . . . , sC) = log

⎛⎝ C∑
j=1

esj

⎞⎠ , (4.52)

and provides a good approximation to max (s1, . . . , sC) for a wide range of input val-
ues. Substituting the softmax function in (4.51) we have a smooth approximation to the
original cost, given as

g (b1, . . . , bC, w1, . . . , wC) =
C∑

c=1

∑
p∈c

⎡⎣log

⎛⎝ C∑
j=1

ebj+xT
p wj

⎞⎠− (bc + xT
p wc

)⎤⎦ . (4.53)

Using the facts that s = log (es) and that log
( s

t

) = log (s)− log (t) and ea

eb = ea−b, the
above may be written equivalently as

g (b1, . . . , bC, w1, . . . , wC) =
C∑

c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e

(
bj−bc

)
+xT

p

(
wj−wc

)⎞⎟⎟⎠ . (4.54)

This is referred to as the multiclass softmax cost function, or because the softmax cost for
two class classification can be interpreted through the lens of surface fitting as logistic re-
gression (as we saw in Section 4.2), for similar reasons multiclass softmax classification
is often referred to as softmax regression.16 When C = 2 one can show that this cost

16 When thought about in this way the multiclass softmax cost is commonly written as

g (b1, . . . , bC , w1, . . . , wC) = −
C∑

c=1

∑
p∈c

log

⎛⎜⎜⎜⎜⎝ ebc+xT
p wc

C∑
j=1

e
bj+xT

p wj

⎞⎟⎟⎟⎟⎠ , (4.55)

which is also equivalent to (4.53).
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Fig. 4.20 (top left panel) Toy dataset from Fig. 4.17 with C = 3 classes. (top middle panel) Individual
linear classifiers learned by the multiclass softmax scheme. (top right panel) Final partitioning of
the feature space resulting from the application of the fusion rule in (4.47). (bottom left panel)
Toy dataset from Fig. 4.19 with C = 4 classes. (bottom middle panel) Individual linear classifiers
learned by the multiclass softmax scheme. (bottom right panel) Final partitioning of the feature
space.

function reduces to the two class softmax cost originally given in (4.9). Furthermore,
because the multiclass softmax cost function is convex17 we can apply either gradi-
ent descent or Newton’s method to minimize it and recover optimal weights for all C
classifiers simultaneously.

In the top and bottom panels of Fig. 4.20 we show multiclass softmax classification
applied to the toy datasets previously shown in the context of OvA in Fig. 4.17 and 4.19,
respectively. Note that unlike the OvA separators shown in the middle panel of Fig. 4.17,
the linear classifiers learned by the multiclass softmax scheme do not individually create
perfect separation between one class and the remainder of the data. However, when com-
bined according to the fusion rule in (4.47), they still perfectly partition the three classes
of data. Also note that similar to OvA, the multiclass softmax scheme still produces
a very good classification of the data even with overlapping classes. In both instances
shown in Fig. 4.20 we used gradient descent for minimization of the multiclass softmax
cost function, as detailed in Example 4.6.

Example 4.6 Optimization of the multiclass softmax cost

To calculate the gradient of the multiclass softmax cost in (4.54), we first rewrite it more
compactly as

17 This is perhaps most easily verified by noting that it is the composition of linear terms bj + xT
p xj with the

convex nondecreasing softmax function. Such a composition is always guaranteed to be convex [24].
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g
(
w̃1, . . . , w̃C

) = C∑
c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e
x̃T

p

(
w̃j−w̃c

)⎞⎟⎟⎠ , (4.56)

where we have used the compact notation w̃j =
[

bj

wj

]
and x̃p =

[
1
xp

]
for all

c = 1, . . . , C and p = 1, . . . , P. In this form, the gradient of g with respect to w̃c may be
computed18 as

∇w̃c g =
P∑

p=1

⎛⎜⎜⎜⎜⎜⎜⎝
1

1+
C∑

j=1
j�=c

e
x̃T

p

(
w̃j−w̃c

) − 1p∈c

⎞⎟⎟⎟⎟⎟⎟⎠ x̃p, (4.57)

for c = 1, . . . , C, where 1p∈c =
{

1 if p ∈ c

0 else
is an indicator function on the set c.

Concatenating all individual classifiers’ parameters into a single weight vector w̃all as

w̃all =

⎡⎢⎢⎢⎣
w̃1

w̃2
...

w̃C

⎤⎥⎥⎥⎦ , (4.58)

the gradient of g with respect to w̃all is formed by stacking block-wise gradients found
in (4.57) into

∇g =

⎡⎢⎢⎢⎣
∇w̃1 g
∇w̃2 g
...

∇w̃C g

⎤⎥⎥⎥⎦ . (4.59)

4.4.3 The accuracy of a learned multiclass classifier

To calculate the accuracy of both the OvA and multiclass softmax classifiers we use the

labeling mechanism in (4.47). That is, denoting
(

b�j , w�j
)

the learned parameters for the

jth boundary, we assign the predicted label ŷp to the pth point xp as

ŷp = argmax
j=1...C

b�j + xT
p w�j . (4.60)

18 Writing the gradient in this way helps avoid potential numerical problems posed by the “overflowing”
exponential problem described in footnote 6.
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We then compare each predicted label to its true label using an indicator function

I (yp, ŷp
) = {1 if yp �= ŷp

0 if yp = ŷp,
(4.61)

which we use towards computing the accuracy of the multiclass classifier on our training
set as

accuracy = 1− 1

P

P∑
p=1

I (yp, ŷp
)

. (4.62)

This quantity ranges between 1 when every point is classified correctly, and 0 when
no point is correctly classified. When possible it is also recommended to compute the
accuracy of the learned model on a new testing dataset (i.e., data not used to train the
model) in order to provide some assurance that the learned model will perform well
on future data points. This is explored further in Chapter 6 in the context of cross-
validation.

4.4.4 Which multiclass classification scheme works best?

As we have now seen, both OvA and multiclass softmax approaches are built using
the fusion rule given in Equation (4.47). While the multiclass softmax approach more
directly aims at optimizing this criterion, both OvA and softmax multiclass perform
similarly well in practice (see e.g., [70, 77] and references therein).

One-versus-all (OvA) and multiclass softmax classifiers perform similarly well in
practice, having both been built using the fusion rule in (4.47).

The two methods largely differ in how they are applied in practice as well as their
computational burden. In learning each of the C linear separators individually the
computation required for the OvA classifier is naturally parallelizable, as each linear
separator can be learned independently of the rest. On the other hand, while both OvA
and multiclass softmax may be naturally extended for use with nonlinear multiclass
classification (as we will discuss in Chapter 6), the multiclass softmax scheme provides
a more commonly used framework for performing nonlinear multiclass classification
using neural networks.

4.5 Knowledge-driven feature design for classification

Often with classification we observe not linear separability between classes but some
sort of nonlinear separability. As with regression (detailed in Section 3.2), here we for-
mulate feature transformations of the input data to capture this nonlinearity and use
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4.5 Knowledge-driven feature design for classification 105

Fig. 4.21 (top left panel) A toy classification dataset where the two classes are separable via an elliptical
boundary. (top middle panel) A proper learned boundary given as 1+ x2

1w�1 + x2
2w�2 = 0 can

perfectly separate the two classes. (top right panel) Finding this elliptical boundary in the
original feature space is equivalent to finding a line to separate the data in the transformed space

where both input features have undergone a feature transformation x = [ x1 x2
]T −→[

f1 (x) f2 (x)
]T = [ x2

1 x2
2

]T
. (bottom panels) The estimated data generating function (in

gray) corresponding to each learned boundary, which is a “step function” in the transformed
space.

these to construct an estimated data generating function (i.e., a function that appears to
generate the data at hand). In very rare instances, when the dimension of the input data
is low and the distribution of data is “nice,” we can visualize the data and determine fea-
tures by inspecting the data itself. We begin this brief section with such an example in
order to practice the concept of feature design in a simple setting, and conclude by mak-
ing some general points about feature design for classification. In the section following
this one we then give a high level overview of common features used for classification
problems involving high dimensional text, image, and audio data.

Example 4.7 Data separable by an ellipse

In the top left panel of Fig. 4.21 we show a toy dataset where, by visual inspection,
it appears that a nonlinear elliptical boundary can perfectly separate the two classes of
data. Recall that the equation of a standard ellipse (i.e., one aligned with the horizontal
and vertical axes and centered at the origin) can be written as 1 + x2

1w1 + x2
2w2 = 0,

where w1 and w2 determine how far the ellipse stretches in the x1 and x2 directions,
respectively.
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Here we would like to find weights w1 and w2 so that the red class (which have label
yp = +1) lie inside the ellipse, and the blue class (having label yp = −1) lie outside

it. In other words, if the pth point of the dataset is written as xp =
[

x1,p x2,p
]T

we

would like the weight vector w = [ w1 w2
]T

to satisfy

1+ x2
1,pw1 + x2

2,pw2 < 0 if yp = +1

1+ x2
1,pw1 + x2

2,pw2 > 0 if yp = −1,
(4.63)

for p = 1, . . . , P. Note that these equations are linear in their weights, and so we can
interpret the above as precisely a linear separation criterion for the original perceptron
(as in (4.2)) where the bias has been fixed at b = 1. In other words, denoting the feature
transformations f1 (x) = x2

1 and f2 (x) = x2
2, we can combine the above two conditions as

yp
(
1+ f1

(
xp
)

w1 + f2
(
xp
)

w2

)
< 0 or max

(
0, yp

(
1+ f1

(
xp
)

w1 + f2
(
xp
)

w2

)) = 0.
Replacing max (·) with a softmax (·) function and summing over p (as first described
in Section 4.1.2) we may tune the weights by minimizing the softmax cost over the
transformed data as

minimize
b,w

P∑
p=1

log
(

1+ eyp(1+f1(xp)w1+f2(xp)w2)
)

. (4.64)

This can be minimized precisely as shown in Section 4.1.2, i.e., by using gradient de-
scent or Newton’s method. Shown in the top middle and top right panels of Fig. 4.21 are
the corresponding learned boundary given by

1+ f1 (x)w�1 + f2 (x)w�2 = 0, (4.65)

whose weights were tuned by minimizing (4.64) via gradient descent, forming an ellipse
in the original feature space and a line in the transformed feature space.

Finally note, as displayed in the bottom panels of Fig. 4.21, that the data generating
function, that is a function determined by our chosen features as one which generates the
given dataset, is not a “step function” in the original feature space because the boundary
between the upper and lower sections is nonlinear. However, it is in fact a step func-
tion in the transformed feature space since the boundary there is linear. Since every
point above19 or below the learned linear boundary is declared to be of class +1 or −1
respectively, the estimated data generating function is given by simply taking the sign
of the boundary as

y (x) = sign
(
1+ f1 (x)w�1 + f2 (x)w�2

)
. (4.66)

4.5.1 General conclusions

As shown in the previous example, a general characteristic of well-designed feature
transformations is that they produce good nonlinear separation in the original feature

19 Note that the linear separator in this case has negative slope, and we refer to the half-space to its left as
the area “above” the separator.
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4.6 Histogram features for real data types 107

space while simultaneously producing good linear separation in the transformed feature
space.20

Properly designed features for linear classification provide good nonlinear sepa-
ration in the original feature space and, simultaneously, good linear separation in
the transformed feature space.

For any given dataset of arbitrary input dimension, N, if we determine a set of feature
transformations f1, . . . , fM so that the boundary given by

b+
M∑

m=1

fm (x)wm = 0 (4.67)

provides proper separation in the original space, it simultaneously splits the data equally
well as a hyperplane in the transformed feature space whose M coordinate axes are
given by f1 (x) , . . . , fM (x). This is in complete analogy to the case of regression where,
as we saw in Section 3.2, proper features produce a nonlinear fit in the original feature
space and a corresponding linear fit in the transformed feature space. The corresponding
estimated data generating function in general is then given by

y (x) = sign

(
b+

M∑
m=1

fm (x)wm

)
, (4.68)

which produces the sort of generalized step function we saw in the previous example.
Rarely, however, can we design perfect features using our knowledge of a dataset. In

many applications data is too high dimensional to visualize or to perfectly understand
through some scientific framework. Even in the instance where the data can be visual-
ized, as with the example dataset shown in Fig. 4.22, determining a precise functional
form for each feature transformation by visual inspection can be extremely difficult.
Later in Chapter 6 we describe a set of tools for the automatic design, or learning, of
feature transformations directly from the data which can ameliorate this problem.

4.6 Histogram features for real data types

Unlike the synthetic dataset described in Example 4.7, more often than not real instances
of classification data cannot be visualized due to the high dimensionality. Because of
this, knowledge can rarely be used to define features algebraically for real data, i.e.,
by proposing a specific functional form for a set of feature transformations (as was

20 Technically speaking there is one subtle yet important caveat to the use of the word “good” in this
statement, in that we do not want to “overfit” the data (an issue we discuss at length in Chapter 6).
However, for now this issue will not concern us.
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Fig. 4.22 A toy classification dataset where determining proper feature transformations by visual
inspection is challenging. The two ovoid boundaries in dashed black are the boundaries between
the top and bottom “steps” (i.e., the regions taking on values 1 and −1 respectively) of the data
generating function.

done with the toy dataset in Example 4.7). Instead, due to our weaker level of under-
standing of real data, feature transformations often consist of discrete processing steps
which aim at ensuring that instances within a single class are “similar” while those
from different classes are “dissimilar.” These processing steps are still feature transfor-
mations f1 (x) , . . . , fM (x) of the input data, but again they are not so easily expressed
algebraically.

Feature transformations for real data often consist of discrete processing steps
which aim at ensuring that instances within a single class are “similar” while
those from different classes are “dissimilar.” While they are not always easily ex-
pressed as closed form mathematical equations, these processing steps are, when
taken as a whole, still feature transformations f1(x), . . . , fM(x) of the input data.
Thus, properly designed instances will (as discussed in Section 4.5.1) produce
good nonlinear separation in the original space and equally good linear separation
in the transformed feature space.

In this section we briefly overview methods of knowledge-driven feature design for nat-
urally high dimensional text, image, and audio data types, all of which are based on the
same core concept for representing data: the histogram. A histogram is just a simple way
of summarizing/representing the contents of an array of numbers as a vector showing
how many times each number appears in the array. Although each of the aforementioned
data types differs substantially in nature, we will see how the notion of a histogram-
based feature makes sense in each context. While histogram features are not guaranteed
to produce perfect separation, their simplicity and all around solid performance make
them quite popular in practice.
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Lastly, note that the discussion in this section is only aimed at giving the reader a high
level, intuitive understanding of how common knowledge-driven feature design meth-
ods work. The interested reader is encouraged to consult specialized texts (referenced
throughout this section) on each subject for further study.

4.6.1 Histogram features for text data

Many popular uses of classification, including spam detection and sentiment analysis
(see Examples 4.8 and 4.9), are based on text data (e.g., online articles, emails, social-
media updates, etc.). However with text data, the initial input (i.e., the document itself)
requires a significant amount of preprocessing and transformation prior to further fea-
ture design and classification. The most basic yet widely used feature of a document
for regression/classification tasks is called a Bag of Words (BoW) histogram or feature
vector. Here we introduce the BoW histogram and discuss its strengths, weaknesses, and
common extensions.

A BoW feature vector of a document is a simple histogram count of the different
words it contains with respect to a single corpus or collection of documents (each count
of an individual word is a feature, and taken together gives a feature vector), minus those
nondistinctive words that do not characterize the document. To illustrate this idea let us
build a BoW representation for the following corpus of two documents each containing
a single sentence:

1) dogs are the best.
2) cats are the worst.

(4.69)

To make the BoW representation of these documents we begin by parsing them, creating
representative vectors (histograms) x1 and x2 which contain the number of times each
word appears in each document. For the two documents in (4.69) these vectors take the
form

x1 = 1√
2

⎡⎢⎢⎣
1
0
1
0

⎤⎥⎥⎦
⎛⎜⎜⎝

best
cat
dog

worst

⎞⎟⎟⎠ x2 = 1√
2

⎡⎢⎢⎣
0
1
0
1

⎤⎥⎥⎦
⎛⎜⎜⎝

best
cat
dog

worst

⎞⎟⎟⎠ . (4.70)

Note that uninformative words such as “are” and “the”, typically referred to as stop
words, are not included in the representation. Further note that we count the singular
“dog” and “cat” in place of their plural which appeared in the actual documents in
(4.69). This preprocessing step is commonly called stemming, where related words with
a common stem or root are reduced to and then represented by their common root.
For instance, the words “learn,” “learning,” “learned,” and “learner,” in the final BoW
feature vector are represented by and counted as “learn.” Additionally, each BoW vector
is normalized to have unit length.

Given that the BoW vector contains only non-negative entries and has unit length, the
correlation between two BoW vectors x1 and x2 always ranges between 0 ≤ xT

1 x2 ≤ 1.
When the correlation is zero (i.e., the vectors are perpendicular), as with the two vectors
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in (4.70), the two vectors are considered maximally different and will therefore (hope-
fully) belong to different classes. In the instances shown in (4.70) the fact that xT

1 x2 = 0
makes sense: the two documents are completely different, containing entirely differ-
ent words and polar opposite sentiment. On the other hand, the higher the correlation
between two vectors the more similar the documents are purported to be, with highly
correlated documents (hopefully) belonging to the same class. For example, the BoW
vector of the document “I love dogs” would have positive correlation with x1, the
document in (4.70) about dogs.

However, because the BoW vector is such a simple representation of a document,
completely ignoring word order, punctuation, etc., it can only provide a gross summary
of a document’s contents and is thus not always distinguishing. For example, the two
documents “dogs are better than cats” and “cats are better than dogs” would be consid-
ered the same document using BoW representation, even though they imply completely
opposite relations. Nonetheless, the gross summary provided by BoW can be distinc-
tive enough for many applications. Additionally, while more complex representations
of documents (capturing word order, parts of speech, etc.,) may be employed they can
often be unwieldy (see e.g., [54]).

Example 4.8 Sentiment analysis

Determining the aggregated feelings of a large base of customers, using text-based con-
tent like product reviews, tweets, and comments, is commonly referred to as sentiment
analysis (as first discussed in Example 1.5). Classification models are often used to per-
form sentiment analysis, learning to identify consumer data of either positive or negative
feelings.

For example, Fig. 4.23 shows BoW vector representations for two brief reviews of
a controversial comedy movie, one with a positive opinion and the other with a neg-
ative one. The BoW vectors are rotated sideways in this figure so that the horizontal
axis contains the common words between the two sentences (after stop word removal

Fig. 4.23 BoW representation of two movie review excerpts, with words (after the removal of stop words
and stemming) shared between the two reviews listed along the horizontal axis. The vastly
different opinion of each review is reflected very well by the BoW histograms, which have zero
correlation.
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and stemming), and the vertical axis represents the count for each word (before nor-
malization). The polar opposite sentiment of these two reviews is perfectly represented
in their BoW representations, which as one can see are orthogonal (i.e., they have zero
correlation).

Example 4.9 Spam detection

Spam detection is a standard text-based two class classification problem. Implemented
in most email systems, spam detection automatically identifies unwanted messages (e.g.,
advertisements), referred to as spam, as distinct from the emails users want to see. Once
trained, a spam detector can remove unwanted messages without user input, greatly
improving a user’s email experience. In many spam detectors the BoW feature vectors
are formed with respect to a specific list of spam words (or phrases) including “free,”
“guarantee,” “bargain,” “act now,” “all natural,” etc., that are frequently seen in spam
emails. Additionally features like the frequency of certain characters like ! and * are
appended to the BoW feature, as are other spam-targeted features like the total number
of capital letters in the email and the length of longest uninterrupted sequence of capital
letters, as these features can further distinguish the two classes.

In Fig. 4.24 we show classification results on a spam email dataset consisting of BoW,
character frequencies, and other spam-focused features (including those mentioned

BoW
BoW + char. freqs
BoW + char. freqs + spam features
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Fig. 4.24 Results of applying the softmax cost (using Newton’s method) to distinguish spam from real
email using BoW and additional features. The number of misclassifications per iteration of
Newton’s method is shown in the case of BoW features (in black), BoW and character
frequencies (in green), and BoW, character frequencies, as well as spam-focused features (in
magenta). In each case adding more distinguishing features (on top of the BoW vector) improves
classification. Data in this figure is taken from [47].
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previously) taken from 1813 spam and 2788 real email messages for a total of P = 4601
data points (this data is taken from [47]). Employing the softmax cost to learn the separa-
tor, the figure shows the number of misclassifications per iteration of Newton’s method
(using the counting cost in (4.25) at each iteration). More specifically these classifica-
tion results are shown for the same dataset using only BoW features (in black), BoW and
character frequencies (in green), and the BoW/character frequencies as well as spam-
targeted features (in magenta) (see Exercise 4.20 for further details). Unsurprisingly the
addition of character frequencies improves the classification, with the best performance
occurring when the spam-focused features are used as well.

4.6.2 Histogram features for image data

To perform classification tasks on image data, like object detection (see Example 1.4),
the raw input features are pixel values of an image itself. The pixel values of an 8-bit
grayscale image are each just a single integer in the range of 0 (black) to 255 (white),
as illustrated in Fig. 4.25. In other words, a grayscale image is just a matrix of integers
ranging from 0 to 255. A color image is then just a set of three such grayscale matrices:
one for each of the red, blue, and green channels.

Pixel values themselves are typically not discriminative enough to be useful for clas-
sification tasks. We illustrate why this is the case using a simple example in Fig. 4.26.
Consider the three simple images of shapes shown in the left column of this figure. The
first two are similar triangles while the third shape is a square, and we would like an ideal
set of features to reflect the similarity of the first two images as well as their distinctness
from the last image. However, due to the difference in their relative size, position in the
image, and the contrast of the image itself (the image with the smaller triangle is darker
toned overall), if we were to use raw pixel values to compare the images (by taking the
difference between each image pair21) we would find that the square and larger triangle

12

28 26

18 23 29 32 15 18 25

Fig. 4.25 An 8-bit grayscale image consists of pixels, each taking a value between 0 (black) and 255
(white). To visualize individual pixels, a small 8× 8 block from the original image is enlarged on
the right.

21 This is to say that if we denote by Xi the ith image then we would find that ‖X1 − X3‖F < ‖X1 − X2‖F .
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fig. 4.26 (left column) Three images of simple shapes. While the triangles in the top two images are
visually similar, this similarity is not reflected by comparing their raw pixel values. (middle
column) Edge-detected versions of the original images, here using eight edge orientations, retain
the distinguishing structural content while significantly reducing the amount of information in
each image. (right column) By taking normalized histograms of the edge content we have a
feature representation that captures the similarity of the two triangles quite well while
distinguishing both from the square.

in the top image are more similar than the two triangles themselves. This is because the
pixel values of the first and third image, due to their identical contrast and location of
the triangle/square, are indeed more similar than those of the two triangle images.

In the middle and right columns of Fig. 4.26 we illustrate a two step procedure that
generates the sort of discriminating feature transformation we are after. In the first part
we shift perspective from the pixels themselves to the edge content at each pixel. As
first detailed in Example 1.8, by taking edges instead of pixel values we significantly
reduce the amount of information we must deal with in an image without destroying
its identifying structures. In the middle column of the figure we show corresponding
edge-detected images, in particular highlighting eight equally (angularly) spaced edge
orientations, starting from 0 degrees (horizontal edges) with seven additional orienta-
tions at increments of 22.5 degrees, including 45 degrees (capturing the diagonal edges
of the triangles) and 90 degrees (vertical edges). Clearly the edges retain distinguish-
ing characteristics from each original image, while significantly reducing the amount of
total information in each case.

We then make a normalized histogram of each image’s edge content. That is, we
make a vector consisting of the amount of each edge orientation found in the image
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and normalize the resulting vector to have unit length. This is completely analogous to
the bag of words feature representation described for text data previously and is often
referred to as the bag of visual words or bag of features method [1, 2], with the counting
of edge orientations being the analog of counting “words” in the case of text data. Here
we also have a normalized histogram which represents an image grossly while ignoring
the location and ordering of its information. However, as shown in the right panel of
the figure, unlike raw pixel values these histogram feature vectors capture characteristic
information about each image, with the top two triangle images having very similar
histograms and both differing significantly from that of the third image of the square.

Example 4.10 Object detection

Generalizations of the previously described edge histogram concept are widely used
as feature transformations for visual object detection. As detailed in Example 1.4, the
task of object detection is a popular classification problem where objects of interest
(e.g., faces) are located in an example image. While the basic principles which led to
the consideration of an edge histogram still hold, example images for such a task are
significantly more complicated than the simple geometric shapes shown in Fig. 4.26.
In particular, preserving local information at smaller scales of an image is consider-
ably more important. Thus a natural way to extend the edge histogram feature is to
compute it not over the entire image, but by breaking the image into relatively small
patches and computing an edge histogram of each patch, then concatenating the results.
In Fig. 4.27 we show a diagram of a common variation of this technique often used in

edge content

Fig. 4.27 A representation of the sort of generalized edge histogram feature transformation commonly
used for object detection. An input image is broken down into small (here 9× 9) blocks, and an
edge histogram is computed on each of the smaller non-overlapping (here 3× 3) patches that
make up the block. The resulting histograms are then concatenated and normalized jointly,
producing a feature vector for the entire block. Concatenating such block features by scanning
the block window over the entire image gives the final feature vector.
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Fig. 4.28 Example images taken from a large face detection dataset of (left panel) 3000 facial and (right
panel) 7000 non-facial images (see text for further details). The facial images shown in this
figure are taken from [2].

practice where we normalize neighboring histograms jointly in larger blocks (for further
details see e.g., [3, 29, 65] and [4, 5] for extensions of this approach). Interestingly this
sort of feature transformation can in fact be written out algebraically as a set of quadratic
transformations of the input image [25].

To give a sense of just how much histogram-based features improve our ability to detect
visual objects we now show the results of a simple experiment on a large face detection
dataset. This data consists of 3000 cropped 28× 28 (or dimension N = 784) images of
faces (taken from [2]) and 7000 equal sized non-face images (taken from various images
not containing faces), a sample of which is shown in Fig. 4.28.

We then compare the classification accuracy of the softmax classifier on this large
training set of data using a) raw pixels and b) a popular histogram-based feature known
as the histogram of oriented gradients (HoG) [29]. HoG features were extracted using
the Vlfeat software library [67], providing a corresponding feature vector of each im-
age in the dataset (of length N = 496). In Fig. 4.29 we show the resulting number of
misclassifications per iteration of Newton’s method applied to the raw pixel (black) and
HoG feature (magenta) versions of data. While the raw images are not linearly separa-
ble, with over 300 misclassifications upon convergence of Newton’s method, the HoG
feature version of the data is perfectly separable by a hyperplane and presents zero
misclassifications upon convergence.

4.6.3 Histogram features for audio data

Like images, raw audio signals are not discriminative enough to be used for audio-
based classification tasks (e.g., speech recognition) and once again properly designed
histogram-based features are used. In the case of an audio signal it is the histogram
of its frequencies, otherwise known as its spectrum, that provides a robust summary
of its contents. As illustrated in Fig. 4.30, the spectrum of an audio signal counts up
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Fig. 4.29 An experiment comparing the classification efficacy of raw pixel versus histogram-based
features for a large training set of face detection data (see text for further details). Employing the
softmax classifier, the number of misclassifications per iteration of Newton’s method is shown
for both raw pixel data (in black) and histogram-based features (in magenta). While the raw data
itself has overlapping classes, with a large number of misclassifications upon convergence of
Newton’s method, the histogram-based feature representation of the data is perfectly linearly
separable with zero misclassifications upon convergence.
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Fig. 4.30 A representation of an audio signal and its representation as a frequency histogram or spectrum.
(left panel) A figurative audio signal can be decomposed as a linear combination of simple
sinusoids with varying frequencies (or oscillations). (right panel) The frequency histogram then
contains the strength of each sinusoid in the representation of the audio signal.
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Fig. 4.31 A representation of histogram-based features for audio data. The original speech signal (shown
on the left) is broken up into small (overlapping) windows whose frequency histograms are
computed and stacked vertically to produce a spectrogram (shown on the right). Classification
tasks like speech recognition are then performed using this feature representation, or a further
refinement of it (see text for further details).

(in histogram fashion) the strength of each level of its frequency or oscillation. This is
done by decomposing the speech signal over a basis of sine waves of ever increasing
frequency, with the weights on each sinusoid representing the amount of that frequency
in the original signal. Each oscillation level is analogous to an edge direction in the case
of an image, or an individual word in the case of a BoW text feature.

Example 4.11 Speech recognition

In Example 4.10 we discussed how edge histograms computed on overlapping blocks
of an image provide a useful feature transformation for object detection since they
preserve characteristic local information. Likewise computing frequency histograms
over overlapping windows of an audio signal (forming a “spectrogram” as illustrated
in Fig. 4.31) produces a feature vector that preserves important local information as
well, and is a common feature transformation used for speech recognition. Further pro-
cessing of the windowed histograms, in order to e.g., emphasize the frequencies of
sound best recognized by the human ear, are also commonly performed in practical
implementations of this sort of feature transformation [40, 67].

4.7 Summary

In Section 4.1 we first described the fundamental cost function associated with lin-
ear two class classification: the perceptron. We then saw how to derive two convex
and differentiable relatives of the basic perceptron, the softmax and squared margin
perceptron cost functions. These two costs are often used in practice and, given their
close resemblance, typically perform very similarly. We then saw in Sections 4.2 and
4.3 how these two cost functions can be derived classically, as logistic regression and
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soft-margin support vector machines respectively, with the logistic regression “surface-
fitting perspective” of the softmax perceptron being of particular value as it provides a
second way of thinking about classification. Next, in Section 4.4 we discussed two ap-
proaches to multiclass classification, the multiclass softmax and one-versus-all (OvA)
classifiers. Like the two commonly used two class cost functions, these two methods
perform similarly in practice as well.

We then discussed in Section 4.5 how the design of proper feature transformations
corresponds geometrically with finding features that produce a good nonlinear sepa-
rator in the original feature space and, simultaneously, a good linear separator in the
transformed feature space. In the final section we described common histogram-based
features for text, image, and audio data types and how understanding of each guides
both their representation as well as practical feature design for common classification
problems.

4.8 Exercises

Section 4.1 exercises

Exercises 4.1 The perceptron cost is convex

In this exercise you will show that the original perceptron cost given in Equation (4.5)
is convex using two steps.

a) Use the zeroth order definition of convexity (described in Appendix D) to show that

max
(

0, −yp

(
b+ xT

p w
))

is convex in both parameters (b, w).

b) Use the zeroth order definition of convexity to show that if both g (t) and h (t) are
convex, then so too is g (t) + h (t). Use this to conclude that the perceptron cost is
indeed convex.

Exercises 4.2 The softmax/logistic regression cost is convex

Show that the softmax/logistic regression cost function given in Equation (4.9) is convex
by verifying that it satisfies the second order definition of convexity. Hint: the Hes-
sian, already given in Equation (4.13), is a weighted outer product matrix like the one
described in Exercise 2.10.

Exercises 4.3 Code up gradient descent for the softmax cost/logistic regression on
a toy dataset

In this exercise you will code up gradient descent to minimize the softmax cost function
on a toy dataset, reproducing the left panel of Fig. 4.3 in Example 4.1.

a) Verify the gradient of the softmax cost shown in Equation (4.12).

b) (optional) This gradient can be written more efficiently for programming languages
like Python and MATLAB/OCTAVE that have especially good implementations of
matrix/vector operations by writing it in matrix-vector form as
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∇g (w̃) = X̃r, (4.71)

where X̃ is the (N + 1) × P matrix formed by stacking the P vectors x̃p column-wise,
and where r is a P×1 vector based on the form of the gradient shown in Equation (4.12).
Verify that this can be done and determine r.

c) Code up gradient descent to minimize the softmax cost, reproducing the left panel
of Fig. 4.3. This figure is generated via the wrapper softmax_grad_demo_hw using the
dataset imbalanced_2class.csv. You must complete a short gradient descent function
located within the wrapper which takes the form

w̃ = softmax_grad
(

X̃, y, w̃0, alpha
)

. (4.72)

Here w̃ is the optimal weights learned via gradient descent, X̃ is the input data matrix, y
the output values, and w̃0 the initial point.

Almost all of this function has already been constructed for you. For example, the
step length is given and fixed for all iterations, etc., and you must only enter the gradient
of the associated cost function. All of the additional code necessary to generate the
associated plot is already provided in the wrapper.

Exercises 4.4 Code up Newton’s method to learn a softmax/logistic regression
classifier on a toy dataset

In this exercise you will code up Newton’s method to minimize the softmax/logistic
regression cost function on a toy dataset, producing a plot similar to the right panel of
Fig. 4.3 in Example 4.1.

a) Verify that the Hessian of the softmax given in (4.13) is correct.

b) (optional) The gradient and Hessian can be written more efficiently for programming
languages like Python and MATLAB/OCTAVE that have especially good implemen-
tations of matrix/vector operations by writing them more compactly. In particular the
gradient can be written compactly as discussed in part b) of Exercise 4.3, and likewise
the Hessian can be written more compactly as

∇2g (w̃) = X̃diag (r) X̃
T

, (4.73)

where X̃ is the (N + 1) × P matrix formed by stacking P data vectors x̃p column-wise,
and where r is a P × 1 vector based on the form of the Hessian shown in Equation
(4.13). Verify that this can be done and determine r. Note that for large datasets you do
not want to explicitly form the matrix diag (r), but compute X̃diag (r) by broadcasting
the multiplication of each entry of r across the columns of X̃.

c) Using the wrapper softmax_Newton_demo_hw code up Newton’s method to minimize
the softmax cost with the dataset overlapping_2class.csv. You must complete a short
Newton’s method function located within the wrapper,

w̃ = softmax_newton
(

X̃, y, w̃0
)

. (4.74)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.006
http:/www.cambridge.org/core


120 Classification

Here w̃ is the optimal weights learned via Newton’s method, X̃ is the input data matrix,
y the output values, and w̃0 the initial point.

Almost all of this function has already been constructed for you and all you must do
is enter the form of the Newton step of the associated cost function. All of the additional
code necessary to generate the associated plot is already provided in the wrapper.

Exercises 4.5 The softmax cost and diverging weights with linearly separable
data

Suppose that a two class dataset of P points is linearly separable, and that the pair of
finite-valued parameters (b, w) defines a separating hyperplane for the data.

a) Show while multiplying these weights by a positive constant C > 1, that as
(C · b, C · w) does not alter the equation of the separating hyperplane, the scaled pa-
rameters reduce the value of the softmax cost as g (C · b, C · w) < g (b, w) where g is
the softmax cost in (4.9). Hint: remember from (4.3) that if the point xp is classified

correctly then −yp

(
b+ xT

p w
)
< 0.

b) Using part a) describe how, in minimizing the softmax cost over a linearly separable
dataset, it is possible for the parameters to grow infinitely large. Why do you think this
is a problem, practically speaking?

There are several simple ways to prevent this problem: one is to add a stopping condi-
tion that halts gradient descent/Newton’s method if the parameters (b, w) become larger
than a preset maximum value. A second option is to add an �2 regularizer (see Section
3.3.2) to the softmax cost with a small penalty parameter λ, since adding the regularizer
λ ‖w‖22 will stop w from growing too large (since otherwise the value of the regularized
softmax cost will grow to infinity).

Exercises 4.6 The margin cost function is convex

In this exercise you will show that the margin and squared margin cost functions are
convex using two steps.

a) Use the zeroth order definition of convexity (described in Appendix D) to show that

max
(

0, 1− yp

(
b+ xT

p w
))

is convex in both parameters (b, w). Do the same for the

squared margin max2
(

0, 1− yp

(
b+ xT

p w
))

.

b) Use the zeroth order definition of convexity to show that if both g (t) and h (t) are
convex, then so too is g (t) + h (t). Use this to conclude that the margin and squared
margin perceptron costs are indeed convex.

Exercises 4.7 Code up gradient descent to learn a squared margin classifier

In this exercise you will code up gradient descent for minimizing the squared margin
cost function discussed in Section 4.1.4.

a) Verify that the gradient of the squared margin cost is given as in Equation (4.21).
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b) (optional) This gradient can be written more efficiently for programming languages
like Python and MATLAB/OCTAVE that have especially good implementations of
matrix/vector operations by writing it in matrix-vector form as

∇g (w̃) = −2X̃diag (y)max
(

0P×1, 1P×1 − diag (y) X̃
T

w̃
)

, (4.75)

where max is the maximum function applied entrywise, X̃ is the (N + 1) × P matrix
formed by stacking P data vectors x̃p column-wise. Verify that this can be done. (Note
that for large datasets you do not want to explicitly form the matrix diag (y), but compute
X̃diag (y) by broadcasting the multiplication of each entry of y across the columns of X̃.)

c) Code up gradient descent to minimize the squared margin cost, reproducing the left
panel of Fig. 4.3. This figure is generated via the wrapper squared_margin_grad_demo_
hw using the dataset imbalanced_2class.csv. You must complete a short gradient descent
function located within the wrapper which takes the form

w̃ = squared_margin_grad
(

X̃, y, w̃0, alpha
)

. (4.76)

Here w̃ is the optimal weights learned via gradient descent, X̃ is the input data matrix, y
the output values, and w̃0 the initial point.

Almost all of this function has already been constructed for you. For example, the
step length is given and fixed for all iterations, etc., and you must only enter the gradient
of the associated cost function. All of the additional code necessary to generate the
associated plot is already provided in the wrapper.

Exercises 4.8 Code up Newton’s method to learn a squared margin classifier

In this exercise you will code up Newton’s method to minimize the squared margin
cost function on a toy dataset, producing a plot similar to the right panel of Fig. 4.5 in
Example 4.2.

a) Code up Newton’s method to minimize the squared margin cost. You may use the
wrapper squared_margin_Newton_demo_hw with the dataset overlapping_2class.csv.
You must complete a short Newton’s method function located within the wrapper, which
takes the form

w̃ = squared_margin_newton
(

X̃, y, w̃0
)

. (4.77)

Here w̃ is the optimal weights learned via Newton’s method, X̃ is the input data matrix,
y the output values, and w̃0 the initial point.

Almost all of this function has already been constructed for you and all you must do
is enter the form of the Newton step. All of the additional code necessary to generate
the associated plot is already provided in the wrapper.

Exercises 4.9 Perform classification on the breast cancer dataset

Compare the efficacy of the softmax and squared margin costs in distinguishing healthy
from cancerous tissue using the entire breast cancer dataset as training data, located in

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.006
http:/www.cambridge.org/core


122 Classification

breast_cancer_dataset.csv, first discussed in Example 4.3. This dataset consists of P =
699 data points, with each data point having nine medically valuable features (i.e., N =
9) which you may read about by reviewing the readme file breast_cancer_readme.txt.
Note that for simplicity we have removed the sixth feature from the original version of
this data, taken from [47], due to its absence from many of the data points.

To compare the two cost functions create a plot like the one shown in Fig. 4.8, which
compares the number of misclassifications per iteration of Newton’s method as applied
to minimize each cost function over the data (note: depending on your initialization
it could take between 10–20 iterations to achieve the results shown in this figure). As
mentioned in footnote 6, you need to be careful not to overflow the exponential function
used with the softmax cost here. In particular make sure to choose a small initial point
for your Newton’s method algorithm with the softmax cost.

Exercises 4.10 Perform classification on histogram-based features for face
detection

Compare the efficacy of the softmax and squared margin costs in distinguishing face
from non-face images using the histogram-based feature face detection training dataset,
located in feat_face_data.csv, first discussed in Example 4.3 and later in Example 4.10.
This set of training data consists of P = 10 000 feature data points from 3000 face im-
ages (taken from [2]) and 7000 non-face images like those shown in Fig. 4.28. Here
each data point is a histogram-based feature vector of length N = 496 taken from a
corresponding 28× 28 grayscale image.

To compare the two cost functions create a plot like the one shown in Fig. 4.8 which
compares the number of misclassifications per iteration of Newton’s method as applied
to minimize each cost function over the data. However, in this case use gradient de-
scent to minimize both cost functions. You may determine a fixed step size for each cost
function by trial and error, or by simply using the “conservatively optimal” fixed step
lengths shown in Table 8.1 (which are guaranteed to cause gradient descent to converge
to a minimum in each instance).

As mentioned in footnote 6, you need to be careful here not to overflow the exponen-
tial function used with the softmax cost, in particular make sure to choose a small initial
point. In calculating the value of the softmax cost at each iteration you may find it useful
to include a conditional statement that deals with the possibility of es overflowing for
large values of s, which will cause log (1+ es) to be returned as ∞ (as the computer
will see it as log (1+∞)), by simply returning s since for large values s ≈ log (1+ es).

Section 4.2 exercises

Exercises 4.11 Alternative form of logistic regression

In this section we saw how the desire for having the following approximation for the pth
data point

(
xp, yp

)
:

tanh
(

yp

(
b+ xT

p w
))
≈ 1, (4.78)
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led us to forming the softmax perceptron cost function h1 (b, w) =
P∑

p=1
log (1+

e
−yp

(
b+xT

p w
))

.

a) Following a similar set of steps, show that Equation (4.78) can be used to arrive at the

related cost function given by h2 (b, w) =
P∑

p=1
e
−yp

(
b+xT

p w
)
.

b) Code up gradient descent to minimize both cost functions using the two-dimensional
dataset shown in Fig. 4.32 (located in the data file exp_vs_log_data.csv). After perform-
ing gradient descent on each, the final separators provided by h1 and h2 are shown in
black and magenta respectively.

Using the wrapper exp_vs_log_demo_hw you must complete two short gradient
descent functions corresponding to h1 and h2 respectively:

w̃ = grad_descent_soft_cost
(

X̃, y, w̃0, alpha
)

(4.79)

and

w̃ = grad_descent_exp_cost
(

X̃, y, w̃0, alpha
)

. (4.80)

Here w̃ is the optimal weights, X̃ is the input data matrix, y the output values, and w̃0

the initial point.
Almost all of this function has already been constructed for you. For example, the

step length is fixed for all iterations, etc., and you must only enter the gradient of each
associated cost function. All of the additional code necessary to generate the associated
plot is already provided in the wrapper.

Fig. 4.32 A two-dimensional dataset used for Exercise 4.11. See text for details.
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124 Classification

c) Compare the two separating hyperplanes found in the previous part of this exercise.
Which cost function does a better job at separating the two classes of data? Why? Hint:
note the error contribution of the outlier to each cost function.

Exercises 4.12 Probabilistic perspective of logistic regression

In the previous chapter (in Section 3.3.1) we first introduced logistic regression in the
context of its original application: modeling population growth. We then followed this
geometric perspective to re-derive the softmax cost function in the instance of classifi-
cation.

In the classification setting, logistic regression may also be derived from a proba-
bilistic perspective.22 Doing so one comes to the following cost function for logistic
regression:

h (b, w) = −
P∑

p=1

ȳplog σ
(

b+ xT
p w
)
+ (1− ȳp)log

(
1− σ

(
b+ xT

p w
))

, (4.81)

where the modified labels ȳp are defined as

ȳp =
{

0 if yp = −1

1 if yp = +1.
(4.82)

Show that the cost function h (b, w), also referred to as the cross-entropy cost
for logistic regression, is equivalent to the softmax cost function g (b, w) =

P∑
p=1

log

(
1+ e

−yp

(
b+xT

p w
))

.

Hint: this can be done in cases, i.e., suppose yp = +1, show that the corresponding
summand of the softmax cost becomes that of the cross-entropy cost when substituting
ȳp = 1.

Section 4.3 exercises

Exercises 4.13 Code up gradient descent for the soft-margin SVM cost

Extend Exercise 4.7 by using the wrapper and dataset discussed there to test the per-
formance of the soft-margin SVM classifier using the squared margin perceptron as the
base cost function, i.e., an �2 regularized form of the squared margin cost function. How
does the gradient change due to the addition of the regularizer? Input those changes into
the gradient descent function described in that exercise and run the wrapper for values
of λ ∈ [10−2, 10−1, 1, 10

]
. Describe the consequences of choosing each in terms of the

final classification accuracy.

22 Using labels ȳp ∈ {0, 1} this is done by assuming a sigmoidal conditional probability for the point xp to

have label ȳp = 1 as p
(
xp
) = σ (b+ xT

p w
)
= 1

1+e
−
(

b+xT
p w
) . The cross-entropy cost in (4.81) is then

found by maximizing the so-called log likelihood function associated to this choice of model (see e.g.,
[52] for further details).
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Section 4.4 exercises

Exercises 4.14 One-versus-all classification

In this exercise you will reproduce the result of performing one-versus-all classification
on the C = 4 dataset shown in Fig. 4.19.

a) Use the Newton’s method subfunction produced in (4.83) to complete the one-
versus-all wrapper one_versus_all_demo_hw to classify the C = 4 class dataset
four_class_data.csv shown in Fig. 4.19. With your Newton’s method module you must
complete a short subfunction in this wrapper called

W̃ = learn_separators
(
X̃, y

)
, (4.83)

that enacts the OvA framework, outputting learned weights for all C separators (i.e.,
this should call your Newton’s method module C times, once for each individual two
class classifier). Here W̃ = [ w̃1 w̃2 · · · w̃C

]
is an (N + 1)×C matrix of weights,

where w̃c is the compact weight/bias vector associated with the cth classifier, X̃ is the in-
put data matrix, y the associated labels. All of the additional code necessary to generate
the associated plot is already provided in the wrapper.

Exercises 4.15 Code up gradient descent for the multiclass softmax classifier

In this exercise you will code up gradient descent to minimize the multiclass softmax
cost function on a toy dataset, reproducing the result shown in Fig. 4.20.

a) Confirm that the gradient of the multiclass softmax perceptron is given by Equation
(4.57) for each class c = 1, . . . , C.

b) Code up gradient descent to minimize the multiclass softmax perceptron, reproducing
the result shown for the C = 4 class dataset shown in Fig. 4.20. This figure is generated
via the wrapper softmax_multiclass_grad_hw and you must complete a short gradient
descent function located within which takes the form

W̃ = softmax_multiclass_grad
(

X̃, y, W̃
0
, alpha

)
. (4.84)

Here W̃ = [ w̃1 w̃2 · · · w̃C
]

is an (N+1)×C matrix of weights, where w̃c is the
compact bias/weight vector associated with the cth classifier, X̃ is the input data matrix,

y the associated labels, and W̃
0

the initialization for the weights. Almost all of this
function has already been constructed for you. For example, the step length is fixed for
all iterations, etc., and you must only enter the gradient of the associated cost function.
All of the additional code necessary to generate the associated plot is already provided
in the wrapper.

Exercises 4.16 Handwritten digit recognition

In this exercise you will perform C = 10 multiclass classification for handwritten digit
recognition, as described in Example 4.4 , employing the OvA multiclass classification
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framework. Employ the softmax cost with gradient descent or Newton’s method to solve
each of the two-class subproblems.

a) Train your classifier on the training set located in MNIST_training_data.csv, that
contains P = 60 000 examples of handwritten digits 0− 9 (all examples are vectorized
grayscale images of size 28× 28 pixels). Report the accuracy of your trained model on
this training set.

b) Using the weights learned from part a) report the accuracy of your model on a new
test dataset of handwritten digits located in MNIST_testing_data.csv. This contains P =
10 000 new examples of handwritten digits that were not used in the training of your
model.

Exercises 4.17 Show the multiclass softmax reduces to two-class softmax when
C = 2

Show that the multiclass softmax cost function given in (4.54) reduces to the two class
softmax cost in (4.9) when C = 2.

Exercises 4.18 Calculating the Hessian of the multiclass softmax cost

Show that the Hessian of the multiclass softmax cost function can be computed block-

wise as follows. For s �= c we have ∇w̃cw̃sg = −
P∑

p=1

ẽxT
p w̃c+̃xT

p w̃s(
C∑

d=1
ẽxT

p w̃d

)2 x̃p̃xT
p and the second

derivative block in w̃c is given as ∇w̃cw̃c g =
P∑

p=1

ẽxT
p w̃c

C∑
d=1

ẽxT
p w̃d

⎛⎜⎝1− ẽxT
p w̃c

C∑
d=1

ẽxT
p w̃d

⎞⎟⎠ x̃p̃xT
p .

Section 4.5 exercises

Exercises 4.19 Learn a quadratic separator

Shown in the left panel of Fig. 4.33 are P = 150 data points which, by visual inspection,
can be seen to be separable not by a line but by some quadratic boundary. In other words,
points from each class all lie either above or below a quadratic of the form f (x1, x2) =
b+ x2

1w1 + x2w2 = 0 in the original feature space, i.e.,

b+ x2
1,pw1 + x2,pw2 > 0 if yp = 1

b+ x2
1,pw1 + x2,pw2 < 0 if yp = −1.

(4.85)

As illustrated in the right panel of the figure, this quadratic boundary is simultaneously
a linear boundary in the feature space defined by the quadratic feature transformation
or mapping of (x1, x2) −→

(
x2

1, x2

)
.

Using any cost function and the dataset quadratic_classification.csv, reproduce the
result shown in the figure by learning the proper parameters b and w for the quadratic
boundary, and by plotting the data and its associated separator in both the original and
transformed feature spaces.
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Fig. 4.33 Data separable via a quadratic boundary. (left panel) A quadratic boundary given as
b+ x2

1w1 + x2w2 = 0 can perfectly separate the two classes. (right panel) Finding the weights
associated to this quadratic boundary in the original feature space is equivalent to finding a line
to separate the data in the transformed feature space where the input has undergone a quadratic

feature transformation (x1, x2) −→
(

x2
1, x2

)
.

Section 4.6 exercises

Exercises 4.20 Perform spam detection using BoW and spam-specific features

Compare the efficacy of using various combinations of features to perform spam detec-
tion on a real dataset of emails, as described in Example 4.9. Your job is to reproduce
as well as possible the final result (i.e., the final number of misclassifications) shown in
Fig. 4.24, using only the squared margin cost and gradient descent (instead of the soft-
max cost and Newton’s method as shown there). You may determine a fixed step size by
trial and error or by using the “conservatively optimal” fixed step length shown in Table
8.1 (which is guaranteed to cause gradient descent to converge to a minimum).

Use the entire dataset, taken from [47] and consisting of features taken from 1813
spam and 2788 real email messages (for a total of P = 4601 data points), as your
training data. The features for each data point include: 48 BoW features, six character
frequency features, and three spam-targeted features (further details on these features
can be found by reviewing the readme file spambase_data_readme.txt). This dataset
may be found in spambase_data.csv. Note that you may find it useful to rescale the final
two spam-targeted features by taking their natural log, as they are considerably larger
than the other features.

Exercises 4.21 Comparing pixels and histogram-based features for face detection

In this exercise you will reproduce as well as possible the result shown in Fig. 4.29, using
a cost function and descent algorithm of your choosing, which compares the classifica-
tion efficacy of raw pixel features versus a set of standard histogram-based features on a
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128 Classification

large training set of face detection data (described in Example 4.10 and Exercise 4.10).
Note that it may take between 10–20 Newton steps to achieve around the same number
of misclassifications as shown in this figure depending on your initialization. The raw
pixel features are located in raw_face_data.csv and the histogram-based features may
be found in feat_face_data.csv.
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Overview of Part II

In Sections 3.2 and 4.5 we have discussed how understanding of regression and clas-
sification datasets can be used to forge useful features in particular instances. With
regression we saw that by visualizing low-dimensional data we could form excellent
features for particular datasets like e.g., data from Galileo’s classic ramp experiment.
Later, when discussing classification, we also saw how basic features can be designed
for e.g., image data using our understanding of natural signals and the mammalian visual
processing system. Unfortunately, due to our general ignorance regarding most types of
phenomena in the universe, instances such as these are rare and we often have no knowl-
edge on which to construct reasonable features at all. However, we can, as described in
the next three chapters, automate the process of feature design itself by leveraging what
we know strong features should accomplish for regression/classification tasks.
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5 Automatic feature design for
regression

As discussed in the end of Section 3.2, rarely can we design perfect or even strongly
performing features for the general regression problem by completely relying on our
understanding of a given dataset. In this chapter we describe tools for automatically
designing proper features for the general regression problem, without the explicit incor-
poration of human knowledge gained from e.g., visualization of the data, philosophical
reflection, or domain expertise.

We begin by introducing the tools used to perform regression in the ideal but ex-
tremely unrealistic scenario where we have complete and noiseless access to all possible
input feature/output pairs of a regression phenomenon, i.e., a continuous function (as
first discussed in Section 3.2). Here we will see how, in the case where we have such
unfettered access to regression data, perfect features can be designed automatically by
combining elements from a set of basic feature transformations. We then see how this
process for building features translates, albeit imperfectly, to the general instance of
regression where we have access to only noisy samples of a regression relationship. Fol-
lowing this we describe cross-validation, a crucial procedure to employing automatic
feature design in practice. Finally we discuss several issues pertaining to the best choice
of primary features for automatic feature design in practice.

5.1 Automatic feature design for the ideal regression scenario

In Fig. 5.1 we illustrate a prototypical dataset on which we perform regression, where
our input feature and output have some sort of clear nonlinear relationship. Recall from
Section 3.2 that at the heart of feature design for regression is the tacit assumption that
the data we receive are in fact noisy samples of some underlying continuous function
(shown in dashed black in Fig. 5.1). Our goal in solving the general regression problem
is then, using the data at our disposal (which we may think of as noisy glimpses of the
underlying function), to approximate this data-generating function as well as we can.

In this section we will assume the impossible: that we have complete access to a clean
version of every input feature/output pair of a regression phenomenon, or in other words
that our data completely traces out a continuous function y (x). We do not assume that
we know a functional form for y (x), but in such an ideal scenario we will see how per-
fect features may be designed automatically to fit such data (regardless of the complexity
or ambient dimension of y (x)) by combining different elements from a basis of primary
features.
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132 Automatic feature design for regression

Fig. 5.1 A realistic dataset for regression made by taking noisy samples from the data generating function
y (x) = sin (2πx) (shown in dashed black) over the unit interval.

The entire mathematical framework for the automatic design of features in this perfect
regression scenario comes from the classic study of continuous function approximation,1

which has been developed by mathematicians, physical scientists, and engineers over the
past several centuries. Because of this we will use phrases like “function approximation”
and “automatic feature design” synonymously in the description that follows.

5.1.1 Vector approximation

Recall the linear algebra fact that any vector y in R
P, that is the set of all column vectors

of length P with real entries, can be represented perfectly over any given basis of P lin-
early independent vectors. In other words, given a set of P linearly independent vectors{
xp
}P

p=1 in R
P, we can always express y precisely (i.e., without any error) as a linear

combination of its elements,

P∑
p=1

xpwp = y. (5.1)

Now let us suppose that we only have access to a subset {xm}Mm=1 of the full basis{
xp
}P

p=1 in order to represent y, where M ≤ P. Although in this case there is no guaran-

tee that the vector y lies completely in the span of the partial basis {xm}Mm=1, we can still
approximate y via a linear combination of its elements,

M∑
m=1

xmwm ≈ y. (5.2)

1 Throughout the remainder of this section we will be fairly loose in our discussion of function
approximation, which is by nature a highly technical subject. The interested reader can see Section 5.7 for
a short discussion and a list of more technical treatments of the subject.
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5.1 Automatic feature design for the ideal regression scenario 133

Note that the approximation in (5.2) can be made to hold to any desired level of tolerance
by making M larger.

The ideal set of weights {wm}Mm=1 to make the partial basis approximation in (5.2)
hold as well as possible can then be determined by solving the related Least Squares
problem:

minimize
w1...wM

∥∥∥∥∥
M∑

m=1

xmwm − y

∥∥∥∥∥
2

2

, (5.3)

which has a closed form solution as detailed in Section 3.1.3.

5.1.2 From vectors to continuous functions

Any vector y in R
P can be viewed as a “discrete function” on the unit interval [0, 1]

after plotting its entries at equidistant points
{
xp = p/P

}P
p=1 on the x-axis, as pairs{(

xp, yp
)}P

p=1. We illustrate this idea in the top left panel of Fig. 5.2 using a P = 4

dimensional vector y defined entry-wise as yp = sin
(
2πxp

)
, where xp = p/P and

p = 1 . . .P. Also shown in the top row of this figure is the vector y, constructed in
precisely the same manner, only this time with P = 40 (middle panel) and P = 400
(right panel). As can be seen in this figure, for larger values of P the collection of points(
xp, yp

)
closely resembles the continuous function y (x) = sin (2πx) .

In other words, as P −→ ∞ the set of points
{(

xp, yp
) = (p/P , sin

(
2πxp

))}P
p=1 for

all intents and purposes, precisely describes the continuous function y (x) = sin (2πx).
Hence we can think of a continuous function (defined on the interval [0, 1]) as, roughly,
an infinite dimensional vector.

This same intuition applies to functions y (x) defined over an arbitrary interval [a, b]
as well, since we can make the same argument given above when a = 0 and b = 1
and approximate y as finely as desired using a discrete set of sampled points. Fur-
thermore, we can employ a natural extension of this argument to say the same thing
about general functions y (x) where x is an N-dimensional vector defined over a hyper-
rectangle, that is where each entry of x lies in some interval xn ∈ [an, bn]. We do this by
evaluating y over a finer and finer grid of evenly spaced points xp covering the hyper-
rectangle of its input domain (illustrated with a particular example for two dimensional
input in the bottom row of Fig. 5.2). Therefore in general we can roughly think about
any continuous function y (x), with bounded input x of length N, as an infinite length
vector.

This perspective on continuous functions is especially helpful in framing the notion
of function approximation, since the key concepts broadly follow the same shape as
(finite length) vector approximation described in Section 5.1.1. As we discuss next,
many of the defining ideas with vector approximation in R

P, e.g., the notions of bases
and Least Squares weight fitting, have direct analogs in the case of continuous function
approximation.
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134 Automatic feature design for regression

Fig. 5.2 (top row) The P-dimensional vector y with entries yp = sin
(
2πxp

)
where xp = p/P and

p = 1 . . .P, plotted as points
(
xp, yp

)
with (left) P = 4, (middle) P = 40, and (right) P = 400.

The vector y, as a discrete function, closely resembles the continuous function y (x) = sin (2πx),
especially for larger values of P. (bottom row) An analogous example in three dimensions using
the function y (x) = sin (2πx1) sin (2πx2) evaluated over a grid of (left) P = 16, (middle)
P = 1600, and (right) P = 160 000 evenly spaced points over the unit square. Note that the
number of samples P required to maintain a certain resolution of the function grows
exponentially with the input dimension. This unwanted phenomenon is often called “the curse of
dimensionality.”

5.1.3 Continuous function approximation

Like a discrete vector y in R
P, any continuous function y (x) with bounded

N-dimensional input x can be completely decomposed over a variety of bases. For clarity
and convenience we will suppose x lies in the N-dimensional unit hypercube [0, 1]N for
the remainder of this chapter, that is each entry xn ∈ [0, 1] (however the discussion here
holds for y with more general input as well). In any case, as with finite length vectors,
we may write such a function y (x) as a linear combination of basis elements which are
themselves continuous functions. In terms of regression, the elements of a basis are basic
features that we may combine in order to perfectly (or near-perfectly) approximate our
continuous function input/output data (x, y (x)), for which we have for all x ∈ [0, 1]N .

As can be intuited by the rough description given previously of such a continuous
function as an “infinite length vector,” we must correspondingly use an infinite number
of basis elements to represent any such desired function completely. Formally a basis in
this instance is a set of basic feature transformations {fm (x)}∞m=1 such that at all points
x in the unit hypercube we can express y (x) perfectly as

∞∑
m=0

fm (x)wm = y (x) . (5.4)
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5.1 Automatic feature design for the ideal regression scenario 135

Fig. 5.3 Partial basis approximation (in blue) of an example function y (x) (in dashed black), where (from
left to right) M = 2, 6, 10, and 20, respectively. As the number of basis features is increased the
approximation more closely resembles the underlying function.

Here for each m the weight wm must be tuned properly for a given y so that the above
equality will indeed hold. Take a moment to appreciate just how similar in both concept
and shape this is to the analogous vector formula given in (5.1) which describes the
decomposition of a (finite length) vector over a corresponding vector basis. Structurally,
the set of vectors R

P and the set of continuous functions defined on the N-dimensional
unit hypercube [0, 1]N , which we shall denote by CN , have much in common.

As with vectors, for large enough M we can approximate y over its input domain as

M∑
m=0

fm (x)wm ≈ y (x) . (5.5)

Again, this approximation can be made as finely as desired2 by increasing the number
of basis features M used and tuning the associated parameters appropriately (as detailed
in Section 5.1.5). In other words, by increasing M we can design automatically (near)
perfect features to represent y (x). This is illustrated with a particular example in Fig. 5.3,
where an increasing number of basis elements (in this instance polynomials) are used to
approximate a given function.3

5.1.4 Common bases for continuous function approximation

Bases for continuous function approximation, sometimes referred to as universal ap-
proximators, can be distinguished by those whose elements are functions of the input x
alone, and those whose elements are also functions of further internal parameters. The
former variety, referred to as fixed bases due to their fixed shape and sole dependence
on x, include the polynomial and sinusoidal feature bases. For N = 1 elements of the
polynomial basis consist of a constant term f0 (x) = 1 and the set of simple monomial
features of the form

2 Depending on both the function and the employed basis, the approximation in (5.5) may not improve at
each and every point x ∈ [0, 1]N as we increase the number of basis elements. However, this technicality
does not concern us as the approximation can be shown to generally improve over the entire domain of the
function by increasing M, which is sufficient for our purposes.

3 The function approximated here is defined as y (x) = e3x
sin
(

3π2(x−0.5)
)

3π2(x−0.5)
.
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Fig. 5.4 (top row, from left to right) The first four non-constant elements of the polynomial basis. (bottom
row, from left to right) The first four non-constant elements of the Fourier basis.

fm (x) = xm for all m ≥ 1. (5.6)

One often encounters the polynomial basis when learning calculus, where it is employed
in the form of a Taylor series approximation of a (many times) differentiable function
y (x).

Likewise for N = 1 the sinusoidal or Fourier basis, so named after its inventor Joseph
Fourier who first used these functions in the early 1800s to study heat diffusion, consists
of the constant term f0 (x) = 1 and the set of cosine and sine waves with ever increasing
frequency of the form4{

f2m−1 (x) = cos (2πmx) for all m ≥ 1

f2m (x) = sin (2πmx) for all m ≥ 1.
(5.7)

The first four non-constant elements of both the polynomial and Fourier bases for N = 1
are shown in Fig. 5.4. With slightly more cumbersome notation both the polynomial and
Fourier bases are likewise defined5 for general N-dimensional input x.

The second class of bases we refer to as adjustable, due to the fact that their elements
have tunable internal parameters, and are more straightforward to define for general N-
dimensional input. The simplest adjustable basis is what is commonly referred to as a
single hidden layer feed forward neural network, coined by neuroscientists in the late
1940s who first created this sort of basis as a way to roughly model how the human brain
processes information. With the exception of the constant term f0 (x) = 1, this basis uses

4 It is also common to write the Fourier basis approximation using classic complex exponential definitions of
both cosine and sine, i.e., cos (α) = 1

2

(
eiα + e−iα) and sin (α) = 1

2i

(
eiα − e−iα). With these complex

exponential definitions, one can show (see Exercise 5.5) that with a scalar input x, Fourier basis elements
can be written in complex exponential form fm (x) = e2π imx.

5 For a general N-dimensional input each polynomial feature takes the analogous form fm (x) = x
m1
1

x
m2
2 · · · x

mN
N . Likewise, using the complex exponential notation (see previous footnote) each

multidimensional Fourier basis element takes the form fm (x) = e2π im1x1 e2π im2x2 · · · e2π imN xN .
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Fig. 5.5 Unlike a fixed basis, elements of an adjustable basis are free to change form by adjusting internal
parameters. Here we show four instances of a single (top row) hyperbolic tangent and (bottom
row) hinge basis function, with each instance corresponding to a different setting of its internal
parameters.

a single type of parameterized function (often referred to as an activation function) for
each basis feature. Common examples include the hyperbolic tangent function

fm (x) = tanh
(
cm + xTvm

)
for all m ≥ 1, (5.8)

and the max or hinge function (also referred to as a “rectified linear unit” in this context)

fm (x) = max
(
0, cm + xTvm

)
for all m ≥ 1. (5.9)

Note that the scalar parameter cm as well as the N-dimensional vector parameter vm are
unique to each basis element fm and are adjustable, giving each basis element a range of
possible shapes to take depending on how the parameters are set.

For example, illustrated in Fig. 5.5 are four instances6 of basis features in Equations
(5.8) and (5.9) with scalar input (i.e., N = 1), where the tanh (·) and max (0, ·) elements
are shown in the top and bottom rows, respectively. For each type of basis the four panels
show the form taken by a single basis element with four different settings for cm and vm.

Generally speaking the flexibility of each basis feature, gained by introduction of
adjustable internal parameters, typically enables effective approximation using fewer
neural network basis elements than a standard fixed basis. For example, in Fig. 5.6 we
show the results of using a polynomial, Fourier, and single hidden layer neural network
with tanh (·) activation function respectively to approximate a particular function7 y (x)
over x ∈ [0, 1]. In each row from left to right we use M = 2 and M = 6 basis elements of
each type to approximate the function, and as expected the approximations improve for
all basis types as we increase M. However, comparing the evolution of approximations

6 Note that unlike the fixed basis functions shown in Fig. 5.4, which can be arranged and counted in a
sequence of low to high “degree” elements, there is no such ordering within a set of adjustable basis
functions.

7 The function approximated here is y (x) = excos (2πsin (πx)).
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Fig. 5.6 From left to right, approximation of a continuous function (shown by the dashed black curve)
over [0, 1], using M = 2 and M = 6 elements of (top row) polynomial, (middle row) Fourier,
and (bottom row) single hidden layer neural network bases, respectively. While all three bases
could approximate this function as finely as desired by increasing M, the neural network basis
(with its adjustable internal parameters) approximates the underlying function more closely
using the same number of basis elements compared to both fixed bases.

in each row one can see that the neural network basis (with the added flexibility of its
internal parameters) better approximates y than either fixed bases using the same number
of basis elements.

Even more flexible adjustable basis features are commonly constructed via summation
and composition of activation functions.8 For instance, to create a single basis element of
a feed forward neural network with two hidden layers we take a weighted sum of single
hidden layer basis features and pass the result through an activation function (of the
same kind as used in the single layer basis). Doing this with the tanh basis in Equation
(5.8) gives

fm (x) = tanh

⎛⎝c(1)m +
M2∑

m2=1

tanh
(
c(2)m2
+ xTv(2)m2

)
v(1)m2,m

⎞⎠ , (5.10)

for all m ≥ 1. Note that here for organizational purposes we have used superscripts on
each internal parameter to indicate the layer it belongs to. Likewise, we can compose
the hinge function with itself to create a two hidden layer basis function of the form

8 Although one could think of designing more flexible basis elements than those of a single layer neural
network in Equation (5.8) in a variety of ways, this is the most common approach (i.e., summation and
composition using a single type of activation function).
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Fig. 5.7 Four instances of a two layer neural network basis function made by composing (top row)
hyperbolic tangent and (bottom row) hinge functions. In each instance the internal parameters
are set randomly. Note how the two layer basis elements are far more diverse in shape than those
of a single layer basis shown in Fig. 5.5.

fm (x) = max

⎛⎝0, c(1)m +
M2∑

m2=1

max
(
0, c(2)m2

+ xTv(2)m2

)
v(1)m2,m

⎞⎠ , (5.11)

for all m ≥ 1. Note that with a two layer neural network basis, we have increased the
number of internal parameters which are nonlinearly related layer by layer. Specifically,
in addition to the first layer bias parameter c(1)m and M2 × 1 weight vector v(1)m , we also
have in the second layer M2 bias parameters and M2 weight vectors each of length N.

In Fig. 5.7 we show four instances for each of the two basis function types9 in
Equations (5.10) and (5.11), where N = 1 and M2 = 1000. Note that the two layer
basis functions in Fig. 5.7 are clearly more diverse in shape than the single layer basis
functions shown in Fig. 5.5.

To achieve even greater flexibility for individual basis features we can create a neural
network with three hidden layers (or more) by simply repeating the procedure used to
create the two layer basis from the single layer version. That is, we take a weighted sum
of two hidden layer basis features and pass the result through an activation function (of
the same kind as used in the two layer basis). For example, performing this procedure
for the two layer hinge basis function in Equation (5.11) gives a three layer network
basis function of the form

fm (x) = max

⎛⎝0, c(1)m +
M2∑

m2=1

max

⎛⎝0, c(2)m2
+

M3∑
m3=1

max
(
0, c(3)m3

+ xTv(3)m3

)
v(2)m3,m2

⎞⎠ v(1)m2,m

⎞⎠ ,

(5.12)

9 Although not a common choice, one can mix and match different activation functions for different layers,

as in fm (x) = tanh

(
c(1)m +

M2∑
m2=1

max
(

0, c(2)m2 + xT v(2)m2

)
v(1)m2,m

)
.
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for all m ≥ 1. This procedure can be repeated to produce a neural network basis with
an arbitrary number of hidden layers. Currently the convention is to refer to a neural
network basis with three or more hidden layers as a deep network [6–10].

5.1.5 Recovering weights

As with vector approximation, a common way to tune the weights {wm}Mm=0, as well as
the possible internal parameters of the basis features themselves when neural networks
are used, is to minimize a Least Squares cost function. In this instance we seek to mini-
mize the difference between y and its partial basis approximation in Equation (5.5), over
all points in the unit hypercube denoted by [0, 1]N . Stated formally, the minimization of
this Least Squares cost is written as

minimize
w0,...,wM ,�

ˆ

x∈[0, 1]N

(
M∑

m=0

fm (x )wm − y (x)

)2

dx, (5.13)

where the set� contains possible parameters of the basis elements themselves, which is
empty if a fixed basis is used. Note that Equations (5.3) and (5.13) are entirely analogous
Least Squares problems for learning the weights associated to a partial basis approxi-
mation, the former stated for vectors in R

P and the latter for continuous functions in
CN .

Unlike its vector counterpart, however, the Least Squares problem in (5.13) can-
not typically10 be solved in closed form due to intractability of the integrals involved.
Instead, one typically solves an approximate form of the problem where each function
is first discretized, as will be described in Section 5.2.1. This makes a tractable prob-
lem which, as we will soon see, naturally leads to a model for the general problem of
regression.

5.1.6 Graphical representation of a neural network

It is common to represent the weighted sum of M neural network basis features,

r = b+
M∑

m=1

fm (x)wm, (5.14)

graphically to visualize the compositional structure of each element. Here fm (x) can be
a general multilayer neural network feature as described previously.

As a simple example, in Fig. 5.8 we represent graphically the mathematical
expression a (x1v1 + x2v2 + x3v3) where a (·) is any activation function. This graphical
representation consists of: 1) weighted edges that represent the individual multiplica-
tions (i.e., of x1 by v1, x2 by v2, and x3 by v3); 2) a summation unit representing the sum
x1v1 + x2v2 + x3v3 (shown as a small hollow circle); and finally 3) an activation unit
representing the sum evaluated by the activation function (shown as a larger blue circle).
10 While finding weights associated to a fixed basis is simple in theory (see chapter exercises), discretization

is still usually required.
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Fig. 5.8 Representation of a single activation function with N = 3-dimensional input. Each input is
connected to the summation unit via a weighted edge. The summation unit (shown by a small
hollow circle) takes in the weighted inputs, and outputs their sum to the activation unit (shown
by a large blue circle). See text for further details.
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Fig. 5.9 A three hidden layer neural network. Note that for visualization purposes, we just show the edges
connecting the units in one layer to only one of the units in the previous layer. See text for further
details.

By cascading this manner of representing the input/output relationship of a single
activation function we may similarly represent sums of multilayer neural network basis
features. For example, in Fig. 5.9 we show a graphical representation of (5.14) with
M = M1 three hidden layer network basis features taking in general N dimensional input
(like the one shown in Equation (5.12)). As in Fig. 5.8, the input x is shown entry-wise
on the left and the output r on the right. In between are each of the three hidden layers,
from right to left each consisting of M1, M2, and M3 hidden units respectively. Some
texts number these hidden layers in ascending order from left to right. While this slightly
changes the notation we use in this book, all results and conclusions remain the same.

5.2 Automatic feature design for the real regression scenario

Here we describe how fixed and adjustable bases of features, introduced in the previous
section, are applied to the automatic design of features in the real regression scenario.
Although they lose their power as perfect feature design tools (which they had in the
case of the ideal regression scenario), strong features can often be built by combining
elements of bases for real instances of regression.
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142 Automatic feature design for regression

5.2.1 Approximation of discretized continuous functions

The Least Squares problem in Equation (5.13), for tuning the weights of a sum of basis
features in the ideal regression scenario discussed in Section 5.1 is highly intractable.
However, by finely discretizing all of the continuous functions involved we can employ
standard optimization tools to solve a discrete version of the problem. Recall from Sec-
tion 5.1.2 that given any function y defined over the unit hypercube, we may sample
with a finely spaced grid over unit hypercube [0, 1]N a potentially large (but finite) num-
ber of P points so that the collection of pairs

{(
xp, y

(
xp
))}P

p=1 resembles the function
y (x) as well as desired. Using such a discretization scheme we can closely approximate
the function y (x), as well as the constant basis term f0 (x) = 1 and any set of M non-
constant basis features fm (x) for m = 1 . . .M, so that a discretized form of Equation
(5.5) holds at each xp, as

M∑
m=0

fm
(
xp
)

wm ≈ y
(
xp
)

. (5.15)

Denoting by b = w0 the weight on the constant basis element, yp = y
(
xp
)
, as well

as the compact feature vector notation fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

and

weight vector w = [
w1 w2 · · · wM

]T
, we may write Equation (5.15) more

conveniently as

b+ fT
p w ≈ yp. (5.16)

In order for this approximation to hold we can then consider minimizing the squared
difference between both sides over all P, giving the associated Least Squares problem

minimize
b, w,�

P∑
p=1

(
b+ fT

p w− yp

)2
. (5.17)

Note that once again we denote by � the set of internal parameters of all basis features,
which is empty in the case of fixed bases. This is precisely a discretized form of the
continuous Least Squares problem shown originally in Equation (5.13). Also note that
this is only a slight generalization of the Least Squares problem for regression discussed
throughout Chapter 3.

We illustrate the idea of approximating a continuous function from a discretized
version of it, using a particular example in Fig. 5.10, where the continuous function
y (x) = sin (2πx) is shown in the left panel along with its discretized version in the
middle panel. Employing a polynomial basis, and using weights provided by solving
the Least Squares problem in Equation (5.17), we have an excellent approximation of
the true function in the right panel.

5.2.2 The real regression scenario

The approximation of a finely discretized continuous function provides an almost ideal
scenario for regression where the data, the sampled points, gives a clear (noiseless)

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.008
http:/www.cambridge.org/core
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Fig. 5.10 (left panel) The continuous function y (x) = sin (2πx) defined on the unit interval and (middle
panel) its discretized version made by evaluating y (x) over a sequence of P = 40 evenly spaced
points on the horizontal axis. (right panel) Fitting a degree M = 12 polynomial curve (in blue) to
the discretized function via solving (5.17) provides an excellent continuous approximation to the
original function.

picture of the underlying function over its entire domain. However, rarely in practice
do we have access to such large quantities of noiseless data which span the entire input
space of a phenomenon. Conversely, a dataset seen in practice may consist of only a
small number of samples, these samples may not be distributed evenly in space, and
they may be corrupted by measurement error or some other sort of “noise.” Indeed most
datasets for regression are akin to noisy samples of some unknown continuous function
making the machine learning task of regression, in general, a function approximation
problem based only on noisy samples of the underlying function.

The general instance of regression is a function approximation problem based on
noisy samples of the underlying function.

To illustrate this idea, in the right panel of Fig. 5.11 we show a simulated example of a
realistic regression dataset consisting of P = 21 data points

{(
xp, yp

)}P
p=1. This dataset

is made by taking samples of the function y (x) = sin (2πx), where each input xp is
chosen randomly on the interval [0, 1] and evaluated by the function with the addition of
noise εp as yp = y

(
xp
) + εp. Here this noise simulates common small errors made, for

instance, in the collection of regression data. Also shown in this figure for comparison
is the ideal dataset previously shown in the middle panel of Fig. 5.10.

With a realistic regression dataset, we use the same learning framework to find op-
timal parameters as we did with ideal discretized data, i.e., by solving the discrete
Least Squares problem in (5.17). Note again that depending on the basis type (fixed
or adjustable) used in (5.17), the design of the feature vector fp changes.

In Fig. 5.12 we show various fits to the toy sinusoidal dataset in the right panel of
Fig. 5.11, using a polynomial (where M = 3), Fourier (where M = 1), and single hidden
layer neural network basis with tanh (·) activation function (where M = 4). Details on
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Fig. 5.11 (left panel) An ideal dataset for regression made by finely and evenly sampling the continuous
function y (x) = sin (2πx) over the unit interval. (right panel) A more realistic simulated dataset
for regression made by evaluating the same function at a smaller number of random input points
and corrupting the result by adding noise to simulate e.g., errors made in data collection.

Fig. 5.12 A comparison of (left panel) polynomial, (middle panel) Fourier, and (right panel) single layer
neural network fits to the regression dataset shown in the right panel of Fig. 5.11. The optimal
weights in each case are found by minimizing the Least Squares cost function as described in
Examples 5.1 (for polynomial and Fourier features) and 5.2 (for neural network features). Two
solutions shown in the right panel correspond to the finding of poor (in green) and good (in
magenta) stationary points when minimizing the non-convex Least Squares cost in the case of
neural network features.

how these weights were learned in each instance are discussed in separate examples
following the figure.

Example 5.1 Regression with fixed bases of features

To perform regression using a fixed basis of features (e.g., polynomials or Fourier)
it is natural to choose a degree D and transform the input data using the associ-
ated basis functions. For example, employing a degree D polynomial or Fourier basis
for a scalar input, we transform each input xp to form an associated feature vector

fp =
[
xp x2

p · · · xD
p

]T
or fp =

[
cos

(
2πxp

)
sin
(
2πxp

) · · · cos
(
2πDxp

)
sin
(
2πDxp

)]T respectively. For higher dimensions of input N fixed basis features can be
similarly used; however, the sheer number of elements involved (the length of each fp)
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explodes11 for even moderate values of N and D (as we will see in Section 7.1, this
issue can be ameliorated via the notion of a “kernal,” however, this introduces a serious
numerical optimization problem as the size of the data-set grows).

In any case, once feature vectors fp have been constructed using the data we can then
determine proper weights b and w by minimizing the Least Squares cost function as

minimize
b, w

P∑
p=1

(
b+ fT

p w− yp

)2
. (5.18)

Using the compact notation w̃ =
[

b
w

]
and f̃p =

[
1
fp

]
for each p we may rewrite the

cost as g
(
w̃
) = P∑

p=1

(
f̃
T
p w̃− yp

)2
, and checking the first order condition then gives the

linear system of equations ⎛⎝ P∑
p=1

f̃p f̃
T
p

⎞⎠ w̃ =
P∑

p=1

f̃pyp, (5.19)

that when solved recovers an optimal set of parameters w̃.

Example 5.2 Regression with a basis of single hidden layer neural network features

The feature vector of the input xp made by using a basis of single hidden layer neural
network features takes the form

fp =
[

a
(

c1 + xT
p v1

)
a
(

c2 + xT
p v2

)
· · · a

(
cM + xT

p vM

) ]T
, (5.20)

where a (·) is any activation function as detailed in Section 5.1.4. However, unlike the
case with fixed feature bases, the corresponding Least Squares problem

minimize
b, w,�

P∑
p=1

(
b+ fT

p w− yp

)2
, (5.21)

cannot be solved in closed form due to the internal parameters (denoted all together
in the set �) that are related in a nonlinear fashion with the basis weights b and w.
Moreover, this problem is almost always non-convex, and so several runs of gradient
descent are typically made in order to ensure convergence to a good local minimum.

11 For a general N-dimensional input x, a degree D polynomial basis-feature transformation includes all
monomials of the form fm (x) = x

m1
1 x

m2
2 · · · x

mN
N where 0 ≤ m1 + m2 + · · · + mN ≤ D. Similarly, a

degree D Fourier expansion contains basis elements of the form fm (x) = e2π im1x1 e2π im2x2 · · · e2π imN xN

where −D ≤ m1, m2, · · · , mN ≤ D. Containing all non-constant terms, one can easily show that the

associated polynomial and Fourier feature vectors have length M = (N+D)!
N!D! − 1 and M = (2D+ 1)N − 1,

respectively. Note that in both cases the feature vector dimension grows extremely rapidly in N and D,
which can lead to serious practical problems even with moderate amounts of N and D.
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Calculating the full gradient of the cost g, we have a vector of length Q = M (N + 2)+1
containing the derivatives of the cost with respect to each variable,

∇g =
[

∂
∂b g ∂

∂w1
g · · · ∂

∂wM
g ∂

∂c1
g · · · ∂

∂cM
g ∇T

v1
g · · · ∇T

vM
g
]T

, (5.22)

where the derivatives are easily calculated using the chain rule (see Exercise 5.9).

Example 5.3 Regression with a basis of multiple hidden layer neural network features

As discussed in Section 5.1.4, by increasing the number of layers in a neural network
each basis function gains more flexibility. In their use with machine learning, this added
flexibility comes at the practical expense of making the corresponding cost function
more challenging to minimize. In terms of numerical optimization the primary challenge
with deep net features is that the associated cost function can become highly non-convex
(i.e., having many local minima and/or saddle points). Proper choice of activation func-
tion can help ameliorate this problem, e.g., the hinge or rectified linear function a (x) =
max (0, x) has been shown to work well for deep nets (see e.g., [36]). Furthermore, as
discussed in Section 3.3.2, regularization can also be used to improve this problem.

A practical implementation issue with using deep net features is that computing the
gradient, for use with gradient descent (often referred to in the machine learning com-
munity as the backpropagation algorithm) of associated cost functions becomes more
cumbersome as additional layers are added, requiring several applications of the chain
rule and careful book-keeping to ensure no errors are made. For the interested reader we
provide an organized derivation of the gradient for a cost function that employs deep net
features in Section 7.2. To avoid potential errors in computing the derivatives of a deep
net cost function by hand, computational techniques like automatic differentiation [59]
are often utilized when using deep nets in practice.

5.3 Cross-validation for regression

In the ideal instance of regression, where we look to approximate a continuous function
using a fixed or adjustable (neural network) basis of features, we saw in Section 5.1
that using more elements of a basis results in a better approximation (see e.g., Fig. 5.3).
In short, in the context of continuous function approximation more (basis elements) is
always better. Does the same principle apply in the real instance of regression, i.e., in
the case of a noisily sampled function approximation problem? Unfortunately, no.

Take for example the semi-ideal and realistic sinusoidal datasets shown in Fig. 5.13,
along with polynomial fits of degrees three (in blue) and ten (in purple). In the left panel
of this figure, which shows the discrete sinusoidal dataset with evenly spaced points, by
increasing the number of basis features M from 3 to 10 the corresponding polynomial
model fits the data and the underlying function better. Conversely, in the right panel
while the model fits the data better as we increase the number of polynomial features
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Fig. 5.13 Plots of (left panel) discretized and (right panel) noisy samples of the data-generating function
y (x) = sin (2πx), along with its degree three and degree ten polynomial approximations in blue
and purple, respectively. While the higher degree polynomial does a better job at modeling both
the discretized data and underlying function, it only fits the noisy sample data better, providing a
worse approximation of the underlying data-generating function than the lower degree
polynomial. Using cross-validation we can determine the more appropriate model, in this case
the degree three polynomial, for such a dataset.

from M = 3 to 10, the representation of the underlying data-generating function actually
gets worse. Since the underlying function is the object we truly wish to understand, this
is a problem.

The phenomenon illustrated through this simple example is in fact true more gener-
ally: by increasing the number M of any type of basis features (fixed or neural network)
we can indeed produce better fitting models of a dataset, but at the potential cost of
creating poorer representations of the data-generating function we care foremost about.
Stated formally, given any dataset we can drive the value of the Least Squares cost to
zero via solving the minimization problem

minimize
b, w,�

P∑
p=1

(
b+ fT

p w− yp

)2
, (5.23)

by increasing M where fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

. Therefore, choosing
M correctly is extremely important. Note in the language of machine learning, a model
corresponding to too large a choice of M is said to overfit the data. Likewise when
choosing M too small12 the model is said to underfit the data.

In this section we describe cross-validation, an effective framework for choosing
the proper value for M automatically and intelligently so as to prevent the problem of
underfitting/overfitting. For example, in the case of the data shown in the right panel of
Fig. 5.13 cross-validation will determine M = 3 the better model, as opposed to M = 12.
This discussion will culminate in the description of a specific procedure known as k-fold
cross-validation which is commonly used in practice.

12 For instance, using a degree M = 1 polynomial feature we can only find the best linear fit to the data in
Fig. 5.13, which would be not only a poor fit to the observed data but also a poor representation of the
underlying sinusoidal pattern.
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Fig. 5.14 Data from Galileo’s simple ramp experiment from Example 3.3, exploring the relationship
between time and the distance an object falls due to gravity. (left panel) Galileo fit a simple
quadratic to the data. (right panel) A linear model (shown in green) is not flexible enough and as
a result, underfits the data. A degree twelve polynomial (shown in magenta) overfits the data,
being too complicated and unnatural (between the start and 0.25 of the way down the ramp the
ball travels a negative distance!) to be a model of a simple natural phenomenon.

Example 5.4 Overfitting and underfitting Galileo’s ramp data

In the left panel of Fig. 5.14 we show the data from Galileo’s classic ramp experiment,
initially described in Example 1.7, performed in order to understand the relationship
between time and the acceleration of an object due to (the force we today know as)
gravity. Also shown in this figure is (left panel) the kind of quadratic fit Galileo used to
describe the underlying relationship traced out by the data, along with two other possible
model choices (right panel): a linear fit in green, as well as a degree 12 polynomial fit in
magenta. Of course the linear model is inappropriate, as with this data any line would
have large squared error (see e.g., Fig. 3.3) and would thus be a poor representation of
the data. On the other hand, while the degree 12 polynomial fits the data-set perfectly,
with corresponding squared error value of zero, the model itself just “looks wrong.”

Examining the right panel of this figure why, for example, when traveling between
the beginning and a quarter of the way down the ramp, does the distance the ball travels
become negative! This kind of behavior does not at all match our intuition or expectation
about how gravity should operate on an object. This is why Galileo chose a quadratic,
rather than a higher order degree polynomial, to fit such a data-set: because he expected
that the rules which govern our universe are explanatory yet simple.

This principle, that the rules we use to describe our universe should be flexible yet
simple, is often called Occam’s Razor and lies at the heart of essentially all scientific
inquiry past and present. Since machine learning can be thought of as a set of tools for
making sense of arbitrary kinds of data, i.e., not only data relating to a physical system or
law, we want the relationship learned in solving a regression (or classification) problem
to also satisfy this basic Occam’s Razor principle. In the context of machine learning,
Occam’s Razor manifests itself geometrically, i.e., we expect the model (or function) un-
derlying our data to be simple yet flexible enough to explain the data we have. The linear
model in Fig. 5.14, being too rigid and inflexible to establish the relationship between
time and the distance an object falls due to gravity, fits very poorly. As previously
mentioned, in machine learning such a model is said to underfit the data we have. On
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the other hand, the degree 12 polynomial model is needlessly complicated, resulting in
a very close fit to the data we have, but is far too oscillatory to be representative of the
underlying phenomenon and is said to overfit the data.

5.3.1 Diagnosing the problem of overfitting/underfitting

A reasonable diagnosis of the overfitting/underfitting problems is that both fail at repre-
senting new data, generated via the same process by which the current data was made,
that we can potentially receive in the future. For example, the overfitting degree ten
polynomial shown in the right panel of Fig. 5.13 would poorly model any future data
generated by the same process since it poorly represents the underlying data-generating
function (a sinusoid). This data-centric perspective provokes a practical criterion for de-
termining an ideal choice of M for a given dataset: the number M of basis features used
should be such that the corresponding model fits well to both the current dataset as well
as to new data we will receive in the future.

5.3.2 Hold out cross-validation

While we of course do not have access to any “new data we will receive in the future,”
we can simulate such a scenario by splitting our data into two subsets: a larger training
set of data we already have, and a smaller testing set of data that we “will receive in
the future.” Then, we can try a range of values for M by fitting each to the training set
of known data, and pick the one that performs the best on our testing set of unknown
data. By keeping a larger portion of the original data as the training set we can safely
assume that the learned model which best represents the testing data will also fit the
training set fairly well. In short, by employing this sort of procedure for comparing a set
of models, referred to as hold out cross-validation, we can determine a candidate that
approximately satisfies our criterion for an ideal well-fitting model.

What portion of our dataset should we save for testing? There is no hard rule, and
in practice typically between 1/10 to 1/3 of the data is assigned to the testing set. One
general rule of thumb is that the larger the dataset (given that it is relatively clean and
well distributed) the bigger the portion of the original data may be assigned to the test-
ing set (e.g., 1/3 may be placed in the testing set) since the data is plentiful enough for
the training data to still accurately represent the underlying phenomenon. Conversely,
in general with smaller or less rich (i.e., more noisy or poorly distributed) datasets we
should assign a smaller portion to the testing set (e.g., 1/10 may be placed in the test-
ing set) so that the relatively larger training set retains what little information of the
underlying phenomenon was captured by the original data.

In general the larger/smaller the original dataset the larger/smaller the portion of
the original data that should be assigned to the testing set.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.008
http:/www.cambridge.org/core


150 Automatic feature design for regression

Fig. 5.15 Hold out cross-validation. The original data (left panel) shown here as the entire circular mass is
split randomly (middle panel) into k non-overlapping sets (here k = 3). (right panel) One piece,
or 1/k of the original dataset, is then taken randomly as the testing set with the remaining pieces,
or k−1/k of the original data, taken as the training set.

As illustrated in Fig. 5.15, to form the training and testing sets we split the original data
randomly into k non-overlapping parts and assign 1 portion for testing (1/k of the original
data) and k − 1 portions to the training set (k−1/k of the original data).

Regardless of the value we choose for k, we train our model on the training set using
a range of different values of M. We then evaluate how well each model (or in other
words, each value of M) fits to both the training and testing sets, via measuring the
model’s training error and testing error, respectively. The best-fitting model is chosen
as the one providing the lowest testing error or the best fit to the “unseen” testing data.
Finally, in order to leverage the full power of our data we use the optimal number of
basis features M to train our model, this time using the entire data (both training and
testing sets).

Example 5.5 Hold out for regression using Fourier features

To solidify these details, in Fig. 5.16 we show an example of applying hold out cross-
validation using a dataset of P = 30 points generated via the function y (x) shown in
Fig. 5.3. To perform hold out cross-validation on this dataset we randomly partition it
into k = 3 equal-sized (ten points each) non-overlapping subsets, using two partitions
together as the training set and the final part as testing set, as illustrated in the left panel
of Fig. 5.16. The points in this panel are colored blue and yellow indicating that they
belong to the training and testing sets respectively. We then train our model on the train-
ing set (blue points) by solving several instances of the Least Squares problem in (5.18).
In particular we use a range of even values for M Fourier features M = 2, 4, 6, . . . , 16
(since Fourier elements naturally come in pairs of two as shown in Equation (5.7)) which
corresponds to the range of degrees D = 1, 2, 3, . . . , 8 (note that for clarity panels in the
figure are indexed by D).

Based on the models learned for each value of M (see the middle set of eight panels
of the figure) we plot training and testing errors (in the panel second from the right),
measuring how well each model fits the training and testing data respectively, over the
entire range of values. Note that unlike the testing error, the training error always de-
creases as we increase M (which occurs more generally regardless of the dataset/feature
basis used). The model that provides the smallest testing error (M� = 10 or equivalently

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.008
http:/www.cambridge.org/core


5.3 Cross-validation for regression 151

Fig. 5.16 An example of hold out cross-validation applied to a simple dataset using Fourier features. (left
panel) The original data split into training and testing sets, with the points belonging to each set
colored blue and yellow respectively. (middle eight panels) The fit resulting from each set of
degree D Fourier features in the range D = 1, 2, . . . , 8 is shown in blue in each panel. Note how
the lower degree fits underfit the data, while the higher degree fits overfit the data. (second from
right panel) The training and testing errors, in blue and yellow respectively, of each fit over the
range of degrees tested. From this we see that D� = 5 (or M� = 10) provides the best fit. Also
note how the training error always decreases as we increase the degree/number of basis elements,
which will always occur regardless of the dataset/feature basis type used. (right panel) The final
model using M� = 10 trained on the entire dataset (shown in red) fits the data well and closely
matches the underlying data generating function (shown in dashed black).

D� = 5) is then trained again on the entire dataset, giving the final regression model
shown in red in the rightmost panel of Fig. 5.16.

5.3.3 Hold out calculations

Here we give a complete set of hold out cross-validation calculations in a general setting.
We denote the collection of points belonging to the training and testing sets respectively
by their indices as

train =
{
p | (xp, yp

)
belongs to the training set

}
test =

{
p | (xp, yp

)
belongs to the testing set

}
.

(5.24)

We then choose a basis type (e.g., polynomial, Fourier, neural network) and choose
a range for the number of basis features over which we search for an ideal value for
M. To determine the training and testing error of each value of M tested we first form

the corresponding feature vector fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

and fit a
corresponding model to the training set by solving the corresponding13 Least Squares
problem

13 Once again, for a fixed basis this problem may be solved in closed form since � is empty, while for
neural networks it must be solved via gradient descent (see e.g., Example 5.2).
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minimize
b, w,�

∑
p∈train

(
b+ fT

p w− yp

)2
. (5.25)

Denoting a solution to the problem above as
(
b�M , w�M , ��M

)
we find the training and

testing errors for the current value of M by simply computing the mean squared error
using these parameters over the training and testing sets, respectively

Training error = 1
|train|

∑
p∈train

(
b�M + fT

p w�M − yp

)2

Testing error = 1
|test|

∑
p∈test

(
b�M + fT

p w�M − yp

)2
,

(5.26)

where the notation |train| and |test| denotes the cardinality or number of points in the
training and testing sets, respectively. Once we have performed these calculations for all
values of M we wish to test, we choose the one that provides the lowest testing error,
denoted by M�.

Finally we form the feature vector fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM�

(
xp
) ]T

for all
the points in the entire dataset, and solve the Least Squares problem over the entire
dataset to form the final model

minimize
b, w,�

P∑
p=1

(
b+ fT

p w− yp

)2
. (5.27)

5.3.4 k-fold cross-validation

While the hold out method previously described is an intuitive approach to determining
proper fitting models, it suffers from an obvious flaw: having been chosen at ran-
dom, the points assigned to the training set may not adequately describe the original
data. However, we can easily extend and robustify the hold out method as we now
describe.

As illustrated in Fig. 5.17 for k = 3, with k-fold cross-validation we once again
randomly split our data into k non-overlapping parts. By combining k− 1 parts we can,
as with the hold out method, create a large training set and use the remaining single
fold as a test set. With k-fold cross-validation we will repeat this procedure k times
(each instance being referred to as a fold), in each instance using a different single
portion of the split as testing set and the remaining k − 1 parts as the corresponding
training set, and computing the training and testing errors of all values of M as described
in the previous section. We then choose the value of M that has the lowest average
testing error, a more robust choice than the hold out method provides, that can average
out a scenario where one particular choice of training set inadequately describes the
original data.

Note, however, that this advantage comes at a cost: k-fold cross-validation is (ap-
proximately) k times more computationally costly than its hold out counterpart. In fact
performing k-fold cross-validation is often the most computationally expensive process
performed to solve a regression problem.
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Fig. 5.17 k-fold cross-validation for k = 3. The original data shown here as the entire circular mass (top
left) is split into k non-overlapping sets (top right) just as with the hold out method. However
with k-fold cross-validation we repeat the hold out calculations k times (bottom), once per “fold,”
in each instance, keeping a different portion of the split data as the testing set while merging the
remaining k − 1 pieces as the training set.

Performing k-fold cross-validation is often the most computationally expensive
component in solving a general regression problem.

There is again no universal rule for the number k of non-overlapping partitions (or the
number of folds) to break the original data into. However, the same intuition previously
described for choosing k with the hold out method also applies here, as well as the same
convention with popular values of k ranging from k = 3 . . . 10 in practice.

For convenience we provide a pseudo-code for applying k-fold cross-validation in
Algorithm 5.1.

Algorithm 5.1 k-fold cross-validation pseudo-code

Input: Data-set
{(

xp, yp
)}P

p=1, k (number of folds), a range of values for M to try, and a
type of basis feature
Split the data into k equal (as possible) sized folds
for s = 1 . . . k

for each M (in the range of values to try)
1) Train a model with M basis features on sth fold’s training set
2) Compute corresponding testing error on this fold

Return: value M� with lowest average testing error over all k folds

Example 5.6 k-fold cross-validation for regression using Fourier features

In Fig. 5.18 we illustrate the result of applying k-fold cross-validation to choose the
ideal number M of Fourier features for the dataset shown in Example 5.5, where it was
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originally used to illustrate the hold out method. As in the previous example, here we
set k = 3 and try M in the range M = 2, 4, 6, . . . , 16, which corresponds to the range of
degrees D = 1, 2, 3, . . . , 8 (note that for clarity, panels in the figure are indexed by D).

In the top three rows of Fig. 5.18 we show the result of applying hold out on each fold.
In each row we show a fold’s training and testing data colored blue and yellow respec-
tively in the left panel, the training/testing errors for each M on the fold (as computed in

Fig. 5.18 Result of performing k-fold cross-validation with k = 3 (see text for further details). The top
three rows display the result of performing the hold out method on each fold. The left, middle,
and right columns show each fold’s training/testing sets (colored blue and yellow respectively)
training and testing errors over the range of M tried, and the final model (fit to the entire dataset)
chosen by picking the value of M providing the lowest testing error. Due to the split of the data,
performing hold out on the first fold (top row) results in a poor underfitting model for the data.
However, as illustrated in the final row, by averaging the testing errors (bottom middle panel) and
choosing the model with minimum associated average test error, we average out this problem
(finding that D� = 5 or M� = 10) and determine an excellent model for the phenomenon (as
shown in the bottom right panel).

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.008
http:/www.cambridge.org/core


5.4 Which basis works best? 155

Equation (5.26)) in the middle panel, and the final model (learned to the entire dataset)
provided by the choice of M with lowest testing error. As can be seen in the top row, the
particular split of the first fold leads to too low a value of M being chosen, and thus an
underfitting model. In the middle panel of the final row we show the result of averaging
the training/testing errors over all k = 3 folds, and in the right panel the result of choos-
ing the overall best M� = 10 (or equivalently D� = 5) providing the lowest average
testing error. By taking this value we average out the poor choice determined on the first
fold, and end up with a model that fits both the data and underlying function quite well.

Example 5.7 Leave-one-out cross-validation for Galileo’s ramp data

In Fig. 5.19 we show how using k = P fold cross-validation (since we have only P =
6 data points, intuition suggests, see Section 5.3.2, that we use a large value for k),
sometimes referred to as leave-one-out cross-validation, allows us to recover precisely
the quadratic fit Galileo made by eye. Note that by choosing k = P this means that every
data point will take a turn being the testing set. Here we search over the polynomial basis
features of degree M = 1 . . . 6. While not all of the hold out models over the six folds
fit the data well, the average k-fold result is indeed the M� = 2 quadratic polynomial fit
originally proposed by Galileo!

5.4 Which basis works best?

While some guidance can be given in certain situations regarding the best basis
to employ, no general rule exists for which basis one should use in all instances

Fig. 5.19 (six panels on the left) Each fold of training/testing sets shown in blue/yellow respectively of a
k-fold run on the Galileo’s ramp data, along with their individual hold out model (shown in blue).
Only the model learned on the fourth fold overfits the data. By choosing the model with
minimum average testing error over the k = 6 folds we recover the desired quadratic M� = 2 fit
originally proposed by Galileo (shown in magenta in the right panel).
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of regression. Indeed for an arbitrary dataset it may very well be the case that no
basis/feature map is especially better than any other. However, in some instances un-
derstanding of the phenomenon underlying the data and practical considerations can
lead one to a particular choice of basis or at least eliminate potential candidates.

5.4.1 Understanding of the phenomenon underlying the data

Gathering some understanding of a phenomenon, while not always easy, is gener-
ally the most effective way of deducing the particular effectiveness of a specific
basis. For example, the gravitational phenomenon underlying Galileo’s ramp dataset,
shown in e.g., Fig. 5.19, is extremely well understood as quadratic in nature, im-
plying the appropriateness of a polynomial basis [58]. Fourier basis/feature map are
intuitively appropriate if dealing with data generated from a known periodic phe-
nomenon. Often referred to as “time series” data (due to the input variable being time),
periodic behavior arises in a variety of disciplines including speech processing and fi-
nancial modeling (see e.g., [37, 40, 67]). Fourier and neural network bases/features
are often employed with image and audio data, in the latter case due to a belief
in the correspondence of neural network bases and the way such data is processed
by the human brain or the compositional structure of certain problems (see e.g.,
[17, 19, 36] and references therein). Importantly, note that the information used to fa-
vor a particular basis need not come from a regression (or more broadly a machine
learning) problem itself but rather from scientific understanding of a phenomenon more
broadly.

5.4.2 Practical considerations

Practical considerations can also guide the choice of basis/feature type. For example
if, given the nature of a dataset’s input variable, it does not make sense to normalize
its values to lie in the range [0, 1], then polynomials can be a very poor choice of ba-
sis/features. This is due to the fact that polynomials grow rapidly for values outside
this range, e.g., x20 = 3 486 784 401 when x = 3, making the corresponding (closed
form) calculations for solving the Least Squares problem difficult if not impossible to
perform on a modern computer. The amount of engineering involved in effectively em-
ploying a kernelized form of a fixed basis (see Chapter 7 for further details) or a deep
neural network (e.g., the number of layers as well as the number of activation functions
within each layer, type of activation function, etc.) can also guide the choice of basis in
practice.

5.4.3 When the choice of basis is arbitrary

In the (rare) scenario where data is plentiful, relatively noise free, and nicely distributed
throughout the input space, the choice of basis/feature map is fairly arbitrary, since in
such a case the data carves out the entire underlying function fairly well (and so we
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Fig. 5.20 A comparison of the k-fold found best polynomial (left column), Fourier (middle column), and
single hidden layer neural network (right column) fit to two datasets (see text for further details).
Since the data generating function belongs to the Fourier basis itself, the Fourier cross-validated
model fits the underlying function better on the smaller dataset (top row). On the larger dataset
the choice of basis is less crucial to finding a good cross-validated model, as the relatively large
amount of data carves out the entire underlying function fairly well.

essentially “revert” to the problem of continuous function approximation described in
Section 5.1 where all bases are equally effective).

Example 5.8 A simulated dataset where one basis is more appropriate than others

In Fig. 5.20 we illustrate (using simulated datasets) the scenario where one basis is
more effective than others, as well as when the data is large/clean/well distributed
enough to make the choice of basis a moot point. In this figure we show two
datasets of P = 10 (top row) and P = 21 (bottom row) points generated using
the underlying function y (x) = sin (2πx), and the result of k-fold cross validated
polynomial (left column), Fourier (middle column), and single hidden layer neural
network with tanh (·) activation (right column) bases.14 Because the data generating
function itself belongs to the Fourier basis, the Fourier cross-validated model fits the
underlying model better than the other two bases on the smaller dataset. However, on
the larger dataset the choice is less important, with all three cross-validated models
performing well.

14 For each dataset the same training/testing sets were used in performing k-fold cross-validation for each
basis feature type. For the smaller dataset we have used k = 5, while for the larger dataset we set k = 3.
For all three basis types the range of degrees/number of hidden units was in the range M = 1, 2, 3, 4, 5.
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5.5 Summary

In this chapter we have described how features may be designed automatically for
the general problem of regression, by viewing it as a noisily sampled function
approximation problem. Beginning in Section 5.1.3 with the perfect but unrealistic sce-
nario where we have the data generating function itself, we introduced both fixed and
adjustable feed forward neural network bases of fundamental features whose elements
can be combined in order to automatically generate features to approximate any such
function.

The corresponding Least Squares problem, given in Equation (5.13), for learning
proper weights of these bases being intractable, we then saw in Section 5.2 how dis-
cretization of both the bases and desired function leads to a corresponding discretized
Least Squares problem that closely approximates the original and can be solved using
numerical optimization. In this same section we next saw how the realistic case of non-
linear regression (where the data is assumed to be noisy samples of some underlying
function) is described mathematically using the same discretized framework, and thus
how the same discretized Least Squares problem can be used for regression.

However, we saw in the third section that while increasing the number of basis fea-
tures creates a better fitting model for the data we currently have, this will overfit the data
giving a model that poorly represents data we might receive in the future/the underlying
data generating function. This motivated the technique of cross-validation, culminat-
ing in the highly useful but computationally costly k-fold cross-validation method, for
choosing the proper number of basis features in order to prevent this.

In the final section we discussed the proper choice of basis/feature map. While gen-
erally speaking we can say little about which basis will work best in all circumstances,
understanding of the phenomenon underlying the data as well as practical considera-
tions can be used to choose a proper basis (or at least narrow down potential candidates)
in many important instances.

5.6 Exercises

Section 5.1 exercises

Exercises 5.1 The convenience of orthogonality

A basis {xm}Mm=1 is often chosen to be orthogonal (typically to simplify calculations)
meaning that

xT
k xj =

{
S if k = j

0 else,
(5.28)

for some S > 0. For example, the “standard basis” defined for each m = 1 . . .M as

em,j =
{

1 if m = j

0 else.
(5.29)
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is clearly orthogonal. Another example is the Discrete Cosine Transform basis described
in Example 9.3. An orthogonal basis provides much more easily calculable weights for
representing a given vector y than otherwise, as you will show in this exercise.

Show in this instance that the ideal weights are given simply as wj = 1
S xT

j y for all j
by solving the Least Squares problem

minimize
w1...wM

∥∥∥∥∥
M∑

m=1

xmwm − y

∥∥∥∥∥
2

2

(5.30)

for the jth weight wj. Briefly describe how this compares to the Least Squares solution.

Exercises 5.2 Orthogonal basis functions

In analogy to orthogonal bases in the case of N-dimensional vectors, a set of basis
functions {fm}∞m=0, used in approximating a function y (x) over the interval [0, 1] is
orthogonal if

〈
fm, fj

〉 = ˆ 1

0
fm (x) fj (x) dx =

{
S if m = j

0 else
(5.31)

for some S > 0. The integral quantity above defines the continuous inner product be-
tween two functions, and is a generalization of the vector inner product.

Show, as in the finite dimensional case, that orthogonality provides an easily express-
ible set of weights of the form wj = 1

S

´ 1
0 fj (x) y (x) dx as solutions to the corresponding

Least Squares problem:

minimize
w0,w1,...

ˆ 1

0

( ∞∑
m=0

fm (x)wm − y (x)

)2

dx, (5.32)

for the optimal jth weight wj. Hint: you may pass each derivative ∂
∂wj

through both the
integral and sum.

Exercises 5.3 The Fourier basis is orthogonal

Using the fact that basis functions sin (2πkx) and cos (2π jx) are orthogonal func-
tions, i.e.,

ˆ 1

0
sin (2πkx) cos (2π jx) dx = 0 for all k, j

ˆ 1

0
sin (2πkx) sin (2π jx) dx =

{
1/2 if k = j

0 else
ˆ 1

0
cos (2πkx) cos (2π jx) dx =

{
1/2 if k = j

0 else
,

(5.33)

find the ideal Least Squares coefficients, that is the solution to
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minimize
w0,w1,...,w2K

ˆ 1

0

(
w0 +

K∑
k=1

(w2k−1sin (2πkx)+ w2kcos (2πkx))− y (x)

)2

dx. (5.34)

These weights will be expressed as simple integrals.

Exercises 5.4 Least Squares weights for polynomial approximation

The Least Squares weights for a degree D polynomial basis of a scalar input function
y (x) over [0, 1] (note there are M = D+ 1 terms in this case) are determined by solving
the Least Squares problem

minimize
w0,w1,...,wD

ˆ 1

0

(
D∑

m=0

xmwm − y (x)

)2

dx. (5.35)

Show that solving the above by setting the derivatives of the cost function in each wj

equal to zero results in a linear system of the form

Pw = d. (5.36)

In particular show that P (often referred to as a Hilbert matrix) takes the explicit form

P =

⎡⎢⎢⎢⎢⎢⎣
1 1/2 1/3 · · · 1/D+1

1/2 1/3 1/4 · · · 1/D+2

1/3 1/4 1/5 · · · 1/D+3

...
...

...
. . .

...

1/D+1 1/D+2 1/D+3 · · · 1/2D+1

⎤⎥⎥⎥⎥⎥⎦ . (5.37)

Hint:
´ 1

0 xjdx = 1
j+1 .

Exercises 5.5 Complex Fourier representation

Verify that using complex exponential definitions of cosine and sine functions, i.e.,
cos (α) = 1

2

(
eiα + e−iα

)
and sin (α) = 1

2i

(
eiα − e−iα

)
, we can write the partial Fourier

expansion

w0 +
M∑

m=1

cos (2πmx)w2m−1 + sin (2πmx)w2m (5.38)

equivalently as
M∑

m=−M

e2π imxw′m, (5.39)

where the complex weights
{
w′m
}M

m=−M are given in terms of the real weights {wm}2M
m=0

as

w′m =
⎧⎨⎩

1
2 (w2m−1 − iw2m) if m > 0

w0 if m = 0
1
2 (w1−2m + iw−2m) if m < 0.

(5.40)
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Exercises 5.6 Graphical representation of a neural network

a) Use Fig. 5.9 or Equation (5.12) to count the total number of parameters Q (including
both internal parameters and feature weights) in a three hidden layer neural network
basis approximation. Can you generalize this to find a formula for Q in a neural network
with L hidden layers? Hint: you may find it convenient to define M0 = 1, M1 = M, and
ML+1 = N.

b) Based on your answer in part a), how well does a neural network basis scale to large
datasets? More specifically, how does the input dimension N contribute to the number of
parameters Q (a.k.a. the dimension of the optimization problem)? How does the number
of parameters change with the number of data points P?

Section 5.2 exercises

Exercises 5.7 Polynomial basis feature regression for scalar valued input

In this exercise you will explore how various degree D polynomial basis features fit the
sinusoidal dataset shown in Fig. 5.12. You will need the wrapper poly_regression_hw
and the data located in noisy_sin_samples.csv.

a) Use the description of polynomial basis features given in Example 5.1 to transform
the input using a general degree D polynomial. Write this feature transformation in the
module

F = poly_features (x, D) (5.41)

located in the wrapper. Here x is the input data, D the degree of the polynomial features,
and F the corresponding degree D feature transformation of the input (note your code
should be able to transform the input to any degree D desired).

b) With your module complete you may run the wrapper. Two figures will be generated:
the first shows the data along with various degree D polynomial fits, and the second
shows the mean squared error (MSE) of each fit to the dataset. Discuss the results shown
in these two figures. In particular describe the relationship between a model’s MSE and
how well it seems to represent the phenomenon generating the data as D increases over
the range shown.

Exercises 5.8 Fourier basis feature regression for scalar valued input

In this exercise you will explore how various degree D Fourier basis features fit the
sinusoidal dataset shown in Fig. 5.12. For this exercise you will need the wrapper
fourier_regression_hw and the data located in noisy_sin_samples.csv.

a) Use the description of Fourier basis features given in Example 5.1 to transform the
input using a general degree D Fourier basis (remember that there are M = 2D basis
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elements in this case, a cos (2πmx) and sin (2πmx) pair for each m = 1, . . . , D). Write
this feature transformation in the module

F = fourier_features (x, D) (5.42)

located in the wrapper. Here x is the input data, D the degree of the Fourier features,
and F the corresponding degree D feature transformation of the input (note your code
should be able to transform the input to any degree D desired).

b) With your module complete you may run the wrapper. Two figures will be generated:
the first shows the data along with various degree D Fourier fits, and the second shows
the MSE of each fit to the data-set. Discuss the results shown in these two figures. In
particular describe the relationship between a model’s MSE and how well it seems to
represent the phenomenon generating the data as D increases over the range shown.

Exercises 5.9 Single hidden layer network regression with scalar valued input

In this exercise you will explore how various initializations affect the result of an
M = 4 neural network basis features fit to the sinusoidal dataset shown in Fig. 5.12.
For this exercise you will need the wrapper tanh_regression_hw and the data located in
noisy_sin_samples.csv.

a) Using the chain rule, verify that the gradient of the Least Squares problem shown in
Equation (5.21) with general activation function a (·) is given as

∂

∂b
g = 2

P∑
p=1

(
b+

M∑
m=1

a
(

cm + xT
p vm

)
wm − yp

)

∂

∂wn
g = 2

P∑
p=1

(
b+

M∑
m=1

a
(

cm + xT
p vm

)
wm − yp

)
a
(

cn + xT
p vn

)
∂

∂cn
g = 2

P∑
p=1

(
b+

M∑
m=1

a
(

cm + xT
p vm

)
wm − yp

)
a′
(

cn + xT
p vn

)
wn

∇vn g = 2
P∑

p=1

(
b+

M∑
m=1

a
(

cm + xT
p vm

)
wm − yp

)
a′
(

cn + xT
p vn

)
wnxp,

(5.43)

where a′ (·) is the derivative of the activation with respect to its input.

b) This gradient can be written more efficiently for programming languages like Python
and MATLAB/OCTAVE that have especially good implementations of matrix/vector
operations by writing it more compactly. Supposing that a = tanh (·) is the activation
function (meaning a′ = sech2 (·) is the hyperbolic secant function squared) verify that
the derivatives from part a) can be written more compactly for a scalar input as
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∂

∂b
g = 2 · 1T

P×1q

∂

∂wn
g = 2 · 1T

P×1 (q� tn)

∂

∂cn
g = 2 · 1T

P×1 (q� sn)wn

∂

∂vn
g = 2 · 1T

P×1 (q� x� sn)wn,

(5.44)

where qp =
(

b+
M∑

m=1
wmtanh

(
cm + xpvm

)− yp

)
, tnp = tanh

(
cn + xpvn

)
, and

snp = sech2 (cn + xpvn
)
, and q, tn, and sn are the P length vectors containing these

entries. Note that a� b denotes the entry-wise product of vectors a and b.

c) Plug in the form of the gradient from part b) into the gradient descent module called[
b, w, c, v, obj_val

] = tanh_grad_descent (x, y, i) (5.45)

located in the wrapper. Here x and y are the input and output data respectively, i is a
counter that will load an initialization for all variables, and b, w, c, and v are the optimal
variables learned via gradient descent. Use the maximum iteration stopping condition
with 15 000 iterations, and a fixed step length α = 10−3. Initializations are already
given in the wrapper.

With this module completed the wrapper will execute gradient descent three times
using three different initializations, displaying for each run the corresponding fit to the
data achieved at the last step of gradient descent, as well as the objective value calculated
at each iteration. Briefly discuss the results shown in this figure.

Section 5.3 exercises

Exercises 5.10 Four guys and four error plots

Eric, Stanley, Kyle, and Kenneth used hold out cross-validation to find the best de-
gree polynomial fit to their respective datasets. Based on the error plots they have made
(Fig. 5.21), what advice would you give to each of them as to what their next step
should be.
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Fig. 5.21 Hold out cross-validation error plots for four different datasets.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.008
http:/www.cambridge.org/core


164 Automatic feature design for regression

Exercises 5.11 Practice the hold out method

In this exercise you will perform hold out cross-validation on the dataset shown in
Fig. 5.16 as described in Example 5.5 of the text. Start by randomly splitting the dataset,
located in wavy_data.csv, into k = 3 equal sized folds (keeping 2 folds as training, and
1 fold as testing data). Use the Fourier basis features M in the range M = 2, 4, 6, . . . , 16
(or likewise D in the range D = 1, 2, . . . , 8) and produce a graph showing the training
and testing error for each D like the one shown in Fig. 5.16, as well as the best (i.e., the
lowest test error) model fit to the data.

Note: your results may appear slightly different than those of the figure given that
you will likely use a different random partition of the data. Note: you may find it very
useful here to re-use code from previous exercises e.g., functions that compute Fourier
features, plot curves, etc.

Exercises 5.12 Code up k-fold cross-validation

In this exercise you will perform k-fold cross-validation on the dataset shown in
Fig. 5.19 as described in Example 5.7 of the text. Start by randomly splitting the dataset
of P = 6 points, located in galileo_ramp_data.csv, into k = 6 equal sized folds (keeping
5 folds as training, and 1 fold as testing data during each round of cross-validation). The
value of k = P has been chosen in this instance due to the small size of the dataset (this
is sometimes called “leave one out” cross-validation since each training set consists of
all but one point from the original dataset).

Use the polynomial basis features and M in the range M = 1, 2, . . . , 6 and produce a
graph showing the average training and testing error for each M, as well as the best (i.e.,
the lowest average test error) model fit to the data.

Note: you may find it very useful here to re-use code from previous exercises, e.g.,
functions that split a dataset into k random parts, that compute training/testing errors,
polynomial features, plot curves, etc.

Section 5.4 exercises

Exercises 5.13 Comparing all bases

In this exercise you will reproduce the k-fold cross-validation result shown in Fig. 5.12
using the wrapper compare_maps_regression_hw and the corresponding datasets shown
in the figure. This wrapper performs k-fold cross-validation using the polynomial,
Fourier, and single hidden layer tanh feature maps and produces the figure. It is virtually
complete, i.e., the code necessary to generate the associated plot is already provided in
the wrapper, save four modules you will need to include. Insert the data splitting module
described in Exercise 5.11, as well as the polynomial, Fourier, and single hidden layer
tanh modules for solving their corresponding Least Squares problems described in Ex-
ercises 5.7, 5.8, and 5.9 respectively. With these modules installed you should be able
to run the wrapper.
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5.7 Notes on continuous function approximation 165

Note that some of your results should appear different than those of the figure given
that you will use a different random partition of the data in each instance.

5.7 Notes on continuous function approximation

Polynomials were the first provable universal approximators, this having been shown
in 1885 via the so-called (Stone–) Weierstrass approximation theorem (see e.g., [71]).
The Fourier basis (and its discrete derivatives) is an extremely popular function approx-
imation tool, used particularly in physics, signal processing, and engineering fields. The
convergence behavior of Fourier series has been studied for centuries, and much can be
said about its convergence on larger classes of functions beyond CN (see e.g., [61, 74] for
a sample of results). The universal approximation properties of popular adjustable bases
like the single-layer and multilayer neural networks were shown in the late 1980s and
early 1990s [28, 38, 63]. Interestingly, an evolutionary step between fixed and adjustable
bases, a random fixed basis where internal parameters of a given adjustable basis type
are randomized, leaving only the external linear weights to be learned, has been shown
to be a universal approximator more recently than deep architectures (see e.g., [69]).
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6 Automatic feature design for
classification

In Chapter 6 we mirror closely the exposition given in the previous chapter on regres-
sion, beginning with the approximation of the underlying data generating function itself
by bases of features, and going on to finally describing cross-validation in the context
of classification. In short we will see that all of the tools from the previous chapter can
be applied to the automatic design of features for the problem of classification as well.

6.1 Automatic feature design for the ideal classification scenario

In Fig. 6.1 we illustrate a prototypical dataset on which we perform the general task of
two class classification, where the two classes can be effectively separated using a non-
linear boundary. In contrast to those examples given in Section 4.5, where visualization
or scientific knowledge guided the fashioning of a feature transformation to capture this
nonlinearity, in this chapter we suppose that this cannot be done due to the complex-
ity and/or high dimensionality of the data. At the heart of the two class classification
framework is the tacit assumption that the data we receive are in fact noisy samples
of some underlying indicator function, a nonlinear generalization of the step function
briefly discussed in Section 4.5, like the one shown in the right panel of Fig. 6.1. Akin
to regression, our goal with classification is then to approximate this data-generating
indicator function as well as we can using the data at our disposal.

In this section we will assume the impossible: that we have clean and complete access
to every data point in the space of a two class classification environment, whose labels
take on values in {−1, 1}, and hence access to its associated indicator function y (x).
Although an indicator function is not continuous, the same bases of continuous features
discussed in the previous chapter can be used to represent it (near) perfectly.

6.1.1 Approximation of piecewise continuous functions

In Section 5.1 we saw how fixed and adjustable neural network bases of features can be
used to approximate continuous functions. These bases can also be used to effectively
approximate the broader class of piecewise continuous functions, composed of frag-
ments of continuous functions with gaps or jumps between the various pieces. Shown
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Fig. 6.1 (left panel) A realistic dataset for two class classification shown in the original space
from above and made by taking noisy samples from the data generating indicator function

y (x) =
{
+1 if 0 ≤ ‖x‖22 ≤ 0.5

−1 if 0.5 < ‖x‖22 ≤ 1,
over the unit circle. (right panel) View of the original

space from the side with the data-generating indicator function shown in gray.

in Fig. 6.2 are two example piecewise continuous functions1 (in black) along with their
polynomial, Fourier, and single hidden layer neural network basis approximations. For
each instance in the figure we have used as many of the respective basis elements as
needed to give a visually close approximation.

As with continuous functions, adding more basis elements generally produces a finer
approximation of any piecewise function defined over a bounded space (for convenience
we will take the domain of y to be the unit hypercube, again denoted as [0, 1]N , but any
bounded domain would also suffice, e.g., a hypersphere with finite radius). That is, by
increasing the number of basis elements M we generally have that the approximation

M∑
m=0

fm (x)wm ≈ y (x) (6.2)

improves overall.2 Note here that once again f0 (x) = 1 is the constant basis element,
with the remaining fm (x) basis elements of any type desired.

1 The piecewise continuous functions in the top and bottom panels are defined over the unit interval,
respectively as

y (x) =
{ +1 0.33 ≤ x ≤ 0.67
−1 else,

y (x) =

⎧⎪⎪⎨⎪⎪⎩
0.25

((
1− 10x2

)
cos(10πx)+ 1

)
0 ≤ x < 0.33

0.8 0.33 ≤ x ≤ 0.67

4
(

x2 − 0.75
)
+ 0.4 0.67 < x ≤ 1.

(6.1)

2 As with continuous function approximation, the details of this statement are quite technical, and we do not
dwell on them here. Our goal is to provide an intuitive high level understanding of this sort of function
approximation. See Section 5.7 for further information and reading.
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Fig. 6.2 Two piecewise continuous functions (in black). The first function is constant in each piece (top
panels) while the second is a more complicated function consisting of several different types of
continuous pieces (bottom panels). Also shown are polynomial (in blue), Fourier (in red), and
single hidden layer neural network (in purple) basis approximations of each function. Using
more basis features in each case will increase the quality of the approximation, just as with
continuous function approximation.

6.1.2 The formal definition of an indicator function

Formally speaking an indicator function, like the one shown in Fig. 6.1, is a simple
tool for identifying points x in a set S by assigning them some unique constant value
while assigning all other points that are not in S a different constant value.3 Using+1 to
indicate that a point is in a set S and −1 otherwise, we can define an indicator function
on S as

y (x) =
{
+1 if x ∈ S
−1 if x /∈ S.

(6.3)

For instance, the one-dimensional function plotted in the top panels of Fig. 6.2 is such
an indicator function on the interval S = [0.33, 0.67]. The two-dimensional function
shown at the beginning of the section in Fig. 6.1 is an indicator function on the set S ={
x | 0 ≤ ‖x‖22 ≤ 0.5

}
. Moreover the general step function discussed in Section 3.3.1 is

another example of such an indicator function on the set S = {x | b+ xTw > 0
}
, taking

the form

y (x) = sign
(
b+ xTw

) = {+1 if b+ xTw > 0

−1 if b+ xTw < 0.
(6.4)

3 Although S can take any arbitrary shape in general, in the context of classification we are only interested
in sets that, loosely speaking, have an interior to them. This excludes degenerate cases such as the union of
isolated points.
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Fig. 6.3 (top row) Four instances of the type of sets S that concern us in machine learning. Shown from
left to right a half space, a general region with nonlinear boundary, a circular region, and the unit
square with two ovoid shapes removed from it. For visualization purposes the points that are in
the set S are colored red in each instance, while the rest are colored blue. (second row) The
corresponding indicator functions shown in the data space. (third row) Respective polynomial
approximations to each indicator function where M = 30 in each instance. (bottom row) The
associated logistic approximations match the original indicator functions very closely.

We show four instances of such sets in the top row of Fig. 6.3 where the points that
are in the set S are colored red while the rest are colored blue in each instance. From a
classification perspective, the red and blue regions indicate the domain of class +1 and
class −1 in the input space, respectively. Plotted in the second row of this figure are the
corresponding indicator functions.

Since indicator functions are piecewise constant, a special subclass of piecewise con-
tinuous functions, they can be approximated effectively using any of the familiar bases
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previously discussed and large enough M. In particular we show in the third row of
Fig. 6.3 polynomial approximations to each respective indicator function, where the
number of basis features in each case is set to M = 30.

6.1.3 Indicator function approximation

Given the fact that an indicator function y (x) takes on values ±1 we can refine our
approximation by passing the basis sum in Equation (6.2) through the sign (·) function
giving

sign

(
M∑

m=0

fm (x)wm

)
≈ y (x) . (6.5)

Fundamental to the notion of logistic regression (and to two class classification more
broadly), as discussed in Section 4.2.2, is that the smooth logistic function tanh (αt)
can be made to approximate sign (t) as finely as desired by increasing α. By absorb-
ing a large constant α into each weight wm in Equation (6.5) we can write the logistic
approximation to the indicator function y (x) as

tanh

(
M∑

m=0

fm (x)wm

)
≈ y (x) . (6.6)

In the bottom row of Fig. 6.3 we show the result of learning weights so that Equation
(6.6) holds, again using a polynomial basis with M = 30 for each of the four indicator
functions. As can be seen, the logistic approximation provides a better resemblance
to the actual indicator compared to the direct polynomial approximation seen in the
third row.

6.1.4 Recovering weights

Since y (x) takes on values in {±1} at each x and the approximation in Equation (6.6) is
linear in the weights wm, using precisely the argument given in Section 4.2.2 (in deriving
the softmax cost function in the context of logistic regression) we may rewrite Equation
(6.6) equivalently as

log

⎛⎝1+ e
−y(x)

M∑
m=0

fm(x)wm

⎞⎠ ≈ 0. (6.7)

Therefore in order to properly tune the weights {wm}Mm=0, as well as any internal param-
eters � when employing a neural network basis, we can formally minimize the logistic
approximation in Equation (6.7) over all x in the unit hypercube as

minimize
w0...wM ,�

ˆ

x∈[0, 1]N

log

⎛⎝1+ e
−y(x)

M∑
m=0

fm(x)wm

⎞⎠ dx. (6.8)

As with the Least Squares problem with continuous function approximation previously
discussed in Section 5.1.5, this is typically not solvable in closed form due to the
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intractability of the integrals involved. Instead, once again by discretizing the func-
tions involved we will see how this problem reduces to a general problem for two
class classification, and how this framework is directly applicable to real classification
datasets.

6.2 Automatic feature design for the real classification scenario

In this section we discuss how fixed and neural network feature bases are applied to
the automatic design of features for real two-class classification datasets. Analogous to
their incorporation into the framework of regression discussed in Section 5.2, here we
will see that the concept of feature bases transfers quite easily from the ideal scenario
discussed in the previous section.

6.2.1 Approximation of discretized indicator functions

As with the discussion in Section 5.1.2 for continuous functions, discretizing an indica-
tor function y (x) finely over its domain gives a close facsimile of the true indicator. For
example, shown in Fig. 6.4 is the circular indicator previously shown in Fig. 6.1 and 6.3,
along with a closely matching discretized version made by sampling the function over a
fine grid of evenly spaced points in its input domain.

Formally, by taking a fine grid of P evenly spaced points
{(

xp, y
(
xp
))}P

p=1 over the
input domain of an indicator function y (x) we can then say for a given number M of
basis features that the condition in (6.7) essentially holds for each p as

log

⎛⎝1+ e
−y(xp)

M∑
m=0

fm(xp)wm

⎞⎠ ≈ 0. (6.9)

By denoting yp = y
(
xp
)
, using the feature vector notation fp =

[
f1
(
xp
)

f2
(
xp
)

· · · fM
(
xp
) ]T

, and reintroducing the bias notation b = w0 we may write Equation
(6.9) more conveniently as

1
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Fig. 6.4 (left panel) An indicator function y (x) defined over the unit circle, and (middle panel) a
discretized facsimile made by evaluating y over a fine grid of evenly spaced points. (right panel)
We can fit a smooth approximation to the discretized indicator via minimizing the softmax cost
function.
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log

(
1+ e

−yp

(
b+fT

p w
))
≈ 0. (6.10)

Similarly to the discussion of logistic regression in Section 4.2.2, by minimizing the
sum of these terms,

g (b, w,�) =
P∑

p=1

log

(
1+ e

−yp

(
b+fT

p w
))

, (6.11)

we can learn parameters (b, w,�) to make Equation (6.10) hold as well as possible
for all p. Note how this is precisely the logistic regression problem discussed in Sec-
tion 4.2.2, only here each original data point xp has been replaced with its feature
transformed version fp. Stating this minimization formally,

minimize
b, w,�

P∑
p=1

log

(
1+ e

−yp

(
b+fT

p w
))

, (6.12)

we can see that it is in fact a discrete form of the original learning problem in Equation
(6.8) for the ideal classification scenario. In addition, recall from Section 4.1 that there
are many highly related costs to the softmax function that recover similar weights when
properly minimized. Therefore we can use e.g., the squared margin cost in place of the
softmax, and instead solve

minimize
b, w,�

P∑
p=1

max2
(

0, 1− yp

(
b+ fT

p w
))

(6.13)

to determine optimal parameters. Regardless of the cost function and feature basis used,
the corresponding problem can be minimized via numerical techniques like gradient de-
scent (for details see the next section). Also note that regardless of the cost function
or feature basis used in producing a nonlinear boundary in the original feature space,
we are simultaneously determining a linear boundary in the transformed feature space
in the bias b and weight vector w, as we showed visually with the elliptical dataset in
Example 4.7.

6.2.2 The real classification scenario

Very rarely in practice can we acquire large quantities of noiseless data which span the
entire input space evenly like a finely discretized indicator function. On the contrary,
often we have access to a limited amount of data that is not so evenly distributed and,
due to errors in its acquisition, is noisy. In the case of classification, noisy means that
some data points have been assigned the wrong labels. For example, in the right column
of Fig. 6.5 we show three simulated realistic classification datasets each composed of
P noisy samples4

{(
xp, y

(
xp
))}P

p=1 of the three indicator functions shown discretized in
the figure’s left column.

4 In each instance we take P = 99 points randomly from the respective input domain, and evaluate each
input xp in its indicator function giving the associated label y

(
xp
)
. We then add noise to the first two

datasets by randomly switching the output (or label) y
(
xp
)

of 4 and 6 points respectively, that is, for these
points we replace y

(
xp
)

with −y
(
xp
)
, and then refer to the (potentially noisy) label of each xp as

simply yp.
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Fig. 6.5 (left column) Three ideal datasets for general two class classification shown in the original
feature space (bird’s-eye view). (right column) Examples of realistic datasets for two class
classification, as noisy samples of each respective indicator.
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With this in mind, generally speaking we can think about classification datasets
encountered in practice as noisy samples of some unknown indicator function. In
other words, analogous to regression (as discussed in Section 5.2.2), general two class
classification is an (indicator) function approximation problem based on noisy samples.

The general case of two class classification is an (indicator) function approxima-
tion problem based on noisy samples of the underlying function.

As with the data consisting of a discretized indicator function, for real classification
datasets we may also approximate the underlying indicator function/determine class
separating boundaries by leveraging fixed and neural network feature bases. For exam-
ple, in Fig. 6.6 we show the result of employing degree5 3, 2, and 5 polynomial basis
features to approximate the underlying indicator functions of the noisy datasets origi-
nally shown in the top, middle, and bottom right panels of Fig. 6.5. In each case we
learn proper parameters by minimizing the softmax cost function as in Equation (6.12),
the details of which we describe (for both fixed and neural network feature bases) fol-
lowing this discussion. As can be seen in the left and right columns of Fig. 6.6, this
procedure determines nonlinear boundaries and approximating indicator functions6 that
closely mimic those of the true indicators shown in Fig. 6.3.

Example 6.1 Classification with fixed bases of features

The minimization of the softmax or squared margin perceptron cost functions using
a fixed feature transformation follows closely the details first outlined in Examples
4.1 and 4.2 respectively. Foremost when employing M fixed basis features, the as-
sociated cost, being a function only of the bias b = w0 and weight vector w =[

w1 w2 . . . wM
]T

, is convex regardless of the cost function used. Hence both
gradient descent and Newton’s method can be readily applied. The form of the gradients
and Hessians are entirely the same, with the only cosmetic difference being the use of the
M-dimensional feature vector fp in place of the N-dimensional input xp (see Exercises

6.1 and 6.2). For example, using the compact notation f̃p =
[

1
fp

]
and w̃ =

[
b
w

]
,

the softmax cost in Equation (6.11) can be written as g
(
w̃
) = P∑

p=1
log

(
1+ e−yp f̃

T
p w̃
)

,

whose gradient is given by

∇w̃g
(
w̃
) = − P∑

p=1
σ
(
−yp f̃

T
p w̃
)

yp f̃p. (6.14)

5 Note that a set of degree D polynomial features for input of dimension N > 1 consists of all monomials of
the form fm (x) = x

m1
1 x

m2
2 · · · x

mN
N (see footnote 5 of Chapter 5 where this was first introduced) where

0 ≤ m1 + m2 + · · · + mN ≤ D. There are a total of M = (N+D)!
N!D! − 1 such terms excluding the constant

feature and hence this is the length of the corresponding feature vector.
6 The general equations defining both the learned boundaries and corresponding indicator functions shown

in the figures of this section are explicitly defined in Section 6.2.3.
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Fig. 6.6 Three datasets first shown in Fig. 6.5. Each dataset is shown in the original feature space from
above (left panels) where both the original boundaries (dashed black) and learned boundaries
(black) using polynomial basis features are shown, and from the side (right panels) where the
indicator functions corresponding to each learned boundary are shown (in gray). The general
equations defining both the learned boundaries and corresponding indicator functions are defined
in Section 6.2.3.

In Fig. 6.7 we show two additional datasets along with nonlinear separators formed
using fixed feature bases, in particular degree 2 polynomial and Fourier features7 respec-
tively, which in each case provides perfect classification. As was the case with regression
7 Note that a degree D Fourier set of basis features for input xp of dimension N > 1 consists of all

monomial features of the form f (x) = e2π im1x1 e2π im2x2 · · · e2π imN xN (see footnote 5 of Chapter 5)
where −D ≤ m1, m2, · · · , mN ≤ D. There are a total of M = (2D+ 1)N − 1 such terms excluding the
constant feature, and hence this is the length of the corresponding feature vector.
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Fig. 6.7 (left panel) A version of the so-called XOR dataset with learned nonlinear boundary using the
squared margin cost and degree 2 polynomial features. (right panel) Degree 2 Fourier features
used for classification of a dataset consisting of consecutive bands of differing class points. In
each case the data is perfectly separated.

in Example 5.1, the number of fixed bases for classification again grows combinatorially
with the dimension of the input. As we will see in Section 7.1, this problem can once
again be dealt with via the notion of a “kernel,” however, this again introduces a serious
numerical optimization problem as the size of the data-set grows.

Example 6.2 Classification with a basis of single hidden layer neural
network features

The feature vector of the input xp made by using a basis of single hidden layer neural
network features takes the form

fp =
[

a
(

c1 + xT
p v1

)
a
(

c2 + xT
p v2

)
· · · a

(
cM + xT

p vM

) ]T
, (6.15)

where a (·) is any activation function as detailed in Section 5.1.4. However, unlike the
case with fixed basis features, when using neural networks a cost like the softmax is
non-convex, and thus effectively solving e.g.,

minimize
b, w,�

P∑
p=1

log

(
1+ e

−yp

(
b+fT

p w
))

(6.16)

requires running gradient descent several times (using a different initialization in each
instance) in order to find a good local minimum (see Exercise 6.4).

This issue is illustrated in Fig. 6.8, where we have used a single hidden layer basis
with the tanh activation to classify the datasets originally shown in Fig. 6.7. In Fig. 6.8
we show the result of running gradient descent, with (top) M = 2 and (bottom) M = 4
basis features respectively, three times with three random initializations. Note that in
each case one of these initializations leads gradient descent to a bad stationary point
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Fig. 6.8 The single hidden layer feature basis with tanh activation applied to classifying “XOR” and
“stripe” datasets first shown in Fig. 6.7. For each dataset gradient descent is run three times with
a different random initialization in each instance. (top panels) The first two resulting learned
boundaries for the XOR dataset classify the data perfectly, while the third fails. (bottom panels)
The first and last run of gradient descent provide a perfect separating boundary for the dataset
consisting of consecutive class stripes, while the second does not.
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Fig. 6.9 The datasets first shown in Fig. 6.6 classified using a single hidden layer basis with (left panel)
M = 3, (middle panel) M = 4, and (right panel) M = 6 basis features. For each case the
boundaries of two successful runs of gradient descent, with random initializations, are shown in
black and gray. Also plotted in dashed black are the true boundaries.

resulting in a poor fit to the respective dataset. In Fig. 6.9 we show the result of applying
the same basis type with M = 3 (left panel), M = 4 (middle panel), and M = 6 (right
panel) basis features respectively to the three datasets shown in Fig. 6.6.
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Example 6.3 Classification with multilayer neural network features

To construct multilayer neural network bases we can sum and compose simple functions
as described in Section 5.1.4. Doing so creates the same practical tradeoff as with the
use of deep net basis features for regression, as discussed in Example 5.3. This trade-
off being that adding more hidden layers, while making each adjustable basis feature
more flexible, comes at the cost of making the corresponding minimization problem
more non-convex and thus more challenging to solve. However, the same ideas, i.e.,
regularization and the use of particularly helpful activation functions like the rectified
linear unit a (t) = max (0, t), can also be used to mitigate this non-convexity issue when
employing deep net basis features for classification.

Unfortunately, implementing gradient descent (often referred to in the machine learn-
ing community as the backpropagation algorithm) remains a tedious task due to the
careful book-keeping required to correctly compute the gradient of a cost function in-
corporating deep net features. Because of this we provide the interested reader with an
organized presentation of gradient computation for cost functions employing deep net
basis features in Section 7.2. To avoid potential errors in computing the derivatives of a
deep net cost function by hand, computational techniques like automatic differentiation
[59] are often utilized when using deep nets in practice.

6.2.3 Classifier accuracy and boundary definition

Regardless of the cost function used, once we have learned proper parameters
(b�, w�, ��) using a given set of basis features the accuracy of a learned classifier with
these parameters is defined almost precisely, as in Section 4.1.5, by replacing each input
xp with its corresponding feature representation fp. We first compute the counting cost

g0
(
b�, w�, ��

) = P∑
p=1

max
(

0, sign
(
−yp

(
b� + fT

p w�
)))

, (6.17)

which gives the number of misclassifications of the learned model, and this defines the
final accuracy of the classifier as

accuracy = 1− g0

P
. (6.18)

The learned nonlinear boundary (like those shown in each figure of this section) is then
defined by the set of x where

b� +
M∑

m=1

fm (x)w�m = 0. (6.19)

Likewise the final approximation of the true underlying indicator function (like those
shown in the right column of Fig. 6.6) is given as
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y (x) = sign

(
b� +

M∑
m=1

fm (x)w�m

)
, (6.20)

which is itself an indicator function.

6.3 Multiclass classification

In this section we briefly describe how feature bases may be used to automate the de-
sign of features for both popular methods of multiclass classification first introduced in
Section 4.4. Note that throughout this section we will suppose that we have a dataset{(

xp, yp
)}P

p=1 consisting of C distinct classes, where yp ∈ {1, 2, . . . , C}.

6.3.1 One-versus-all multiclass classification

Generalizing the one-versus-all (OvA) approach (introduced in Section 4.4.1) to mul-
ticlass classification is quite straightforward. Recall that with OvA we decompose the
multiclass problem into C individual two class subproblems, and having just discussed
how to incorporate feature bases into such problems in the previous section we can
immediately employ them with each OvA subproblem.

To learn the classifier distinguishing class c from all other classes we assign temporary
labels to all the points: points in classes c and “not-c” are assigned temporary labels +1
and −1, respectively. Choosing a type of feature basis we transform each xp into an
Mc length feature (note this length can be chosen independently for each subproblem)
vector f(c)p and solve the associated two class problem, as described in the previous
section, giving parameters (bc, wc,�c).

To determine the class of a point x we combine the resulting C individual classifiers
(via the fusion rule in (4.47) properly generalized) as

y = argmax
j=1...C

(
bj +

(
f(j)p

)T
wj

)
. (6.21)

Example 6.4 One-versus-all classification using fixed feature bases

In Fig. 6.10 we show the result of applying OvA to two multiclass datasets each
containing C = 3 classes. For the first dataset (shown in the top left panel) we
use a degree 4 polynomial for each subproblem, and likewise for the second dataset
(shown in the bottom left panel) we use a degree 2 for all subproblems. The following
three panels in each example show the resulting fit on each individual subprob-
lem, with the final panel displaying the final combined boundary using Equation
(6.21). Note in the second example especially that one of the subproblem classi-
fiers is quite poor, but nonetheless the combined classifier perfectly separates all
classes.
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Fig. 6.10 Result of applying the OvA framework to two C = 3 class problems (shown in the top and
bottom left panels respectively). In each case the following three panels show the result for the
red class versus all, blue class versus all, and green class versus all subproblems. A degree 4
(top) and 2 (bottom) polynomial was used respectively for each subproblem. The panels on the
extreme right show the combined boundary determined by Equation (6.21), which in both cases
perfectly separates the three classes (even though the blue versus all classifier in the second
example performs quite poorly).

6.3.2 Multiclass softmax classification

To apply the multiclass softmax framework discussed in Section 4.4 we transform all in-
put data via a single fixed or neural network feature basis, and denote by fp the resulting
M length feature map of the point xp. We then minimize the corresponding version of
the multiclass softmax cost function, first shown in Equation (4.53), on the transformed
data as

g (b1, . . . , bC, w1, . . . , wC, �) = −
C∑

c=1

∑
p∈c

⎡⎣(bc + fT
p wc

)
− log

⎛⎝ C∑
j=1

ebj+fT
p wj

⎞⎠⎤⎦ .

(6.22)
Note here that each wc now has length M, and that the parameter set � as always con-
tains internal parameters of a neural network basis feature if it is used (and is otherwise
empty if using a fixed feature map). When employing a fixed feature basis this can then
be minimized precisely as described for the original in Example 4.6, i.e., the gradient is
given precisely as in Equation (4.57) replacing each xp with fp. Computing the gradient
is more complicated when employing a neural network feature basis (requiring careful
bookkeeping and many uses of the chain rule) and additionally the corresponding cost
function above becomes non-convex (while it remains convex when using any fixed
feature basis).

6.4 Cross-validation for classification

In the previous chapter we saw how using more basis elements generally results in a
better approximation of a continuous function. However, as we saw with regression in
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Fig. 6.11 Discretized (left panel) and noisy samples (right) from a generating function with class boundary
shown (the circle of radius one-half) in dashed black, along with fits of degree 2 (in black) and
degree 5 (in green) polynomial features. Like regression, while increasing the number of basis
elements produces a better fit in the discretized case, for more realistic cases like the dataset on
the right this can lead to overfitting. In the right panel the lower degree polynomial produces a
classifier that matches the true boundary fairly well, while the higher degree polynomial leads to
a classifier that overfits the data encapsulating falsely labeled red points outside the true
boundary, thus leading to a poorer representation of the underlying generating function (see text
for further details).

Section 5.3, while it is true that our approximation of a dataset itself improves as we
add more basis features, this can substantially decrease our estimation of the underly-
ing data generating function (a phenomenon referred to as overfitting). Unfortunately,
the same overfitting problem presents itself in the case of classification as well. Sim-
ilarly to regression, in the ideal classification scenario discussed in Section 6.1 using
more basis elements generally improves our approximation. However, in general in-
stances of classification, analogous to what we saw with regression, adding more basis
features (increasing M) can result in fitting closely to the data we have while poorly to
the underlying function (a phenomenon once again referred to as overfitting).

We illustrate the overfitting issue with classification using a particular dataset in
Fig. 6.11, where we show the discretized indicator (left panel) along with the related
noisy dataset (right panel) originally shown together in Fig. 6.5. For each dataset we
show the resulting fit provided by both a degree 2 and a degree 5 polynomial (shown in
black and green respectively). While the degree 2 features produce a classifier in each
case that closely matches the true boundary, the higher degree 5 polynomial creates
an overfitting classifier which encapsulates mislabeled points outside of the half circle
boundary of the true function, leading to a poorer representation.

In this section we outline the use of cross-validation, culminating once again with
the k-fold cross-validation method, for the intelligent automatic choice of M for both
two class and multiclass classification problems. As with regression, here once again
the k-fold method8 provides a way of determining a proper value of M, however, once
again this comes at significant computational cost.

8 Readers particularly interested in using fixed bases with high dimensional input, deep network features, as
well as multiclass softmax classification using feature bases should also see Section 7.3, where a variation
of k-fold cross-validation is introduced that is more appropriate for these instances.
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6.4.1 Hold out cross-validation

Analogous to regression, in the case of classification ideally we would like to choose
a number M of basis features so that the corresponding learned representation matches
the true data generating indicator function as well as possible. Of course because we
only have access to this true function via (potentially) noisy samples, this goal must
be pursued based solely on the data. Therefore once again we aim to choose M such
that the corresponding model fits both the data we currently have, as well as the data
we might receive in the future. Because we do not have access to any future data
points this intuitively directs us to employ cross-validation, where we tune M, so that
the corresponding model fits well to an unseen portion of our original data (i.e., the
testing set).

Thus we can do precisely what was described for regression in Section 5.3 and per-
form k-fold cross-validation to determine M. In other words, we can simulate this desire
by splitting our original data into k evenly sized pieces and merge k − 1 of them into
a training set and use the remaining piece as a testing set. Furthermore the same intu-
ition for choosing k introduced for regression also holds here, with common values in
practice being in the range k = 3–10.

Example 6.5 Hold out for classification using polynomial features

For clarity we first show an example of the hold out method, followed by explicit
computations, which are then simply repeated on each fold (averaging the results) in
performing the k-fold method. In Fig. 6.12 we show the result of applying hold out
cross-validation to the dataset first shown in the bottom panels of Fig. 6.5. Here we use
k = 3, use the softmax cost, and M in the range M = 2, 5, 9, 14, 20, 27, 35, 44 which
corresponds (see footnote 5) to polynomial degrees D = 1, 2, . . . , 8 (note that for clarity
panels in the figure are indexed by D).

Based on the models learned for each value of M (see the middle set of eight pan-
els of the figure) we plot training and testing errors (in the panel second to the right),
measuring how well each model fits the training and testing data respectively, over the
entire range of values. Note that unlike the testing error, the training error always de-
creases as we increase M (which occurs more generally regardless of the dataset/feature
basis used). The model that provides the smallest testing error (M� = 14 or equivalently
D� = 4) is then trained again on the entire dataset, giving the final classification model
shown in black in the rightmost panel of the figure.

6.4.2 Hold out calculations

Here we give a complete set of hold out cross-validation calculations in a general set-
ting, which closely mirrors the version given for regression in Section 5.3.3. We denote
the collection of points belonging to the training and testing sets respectively by their
indices as
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Fig. 6.12 An example of hold out cross-validation applied using polynomial features. (left panel) The
original data split into training and testing sets, with the points belonging to each set drawn as
smaller thick and larger thin points respectively. (middle eight panels) The fit resulting from each
set of degree D polynomial features in the range D = 1, 2, . . . , 8 shown in black in each panel.
Note how the lower degree fits underfit the data, while the higher degree fits overfit the data.
(second from right panel) The training and testing errors, in blue and yellow respectively, of each
fit over the range of degrees tested. From this we see that D� = 4 (or M� = 14) provides the best
fit. Also note how the training error always decreases as we increase the degree/number of basis
elements, which will always occur regardless of the dataset/feature basis type used. (right panel)
The final model using M� = 14, trained on the entire dataset (shown in black), fits the data well
and closely matches the boundary of the underlying data generating function (shown in dashed
black).

train =
{
p | (xp, yp

)
belongs to the training set

}
test =

{
p | (xp, yp

)
belongs to the testing set

} . (6.23)

We then choose a basis type (e.g., polynomial, Fourier, neural network) and choose
a range for the number of basis features over which we search for an ideal value for
M. To determine the training and testing error of each value of M tested we first form

the corresponding feature vector fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

and fit a
corresponding model to the training set by minimizing e.g., the softmax or squared
margin cost. For example employing the softmax we solve

minimize
b, w,�

∑
p∈train

log

(
1+ e

−yp

(
b+fT

p w
))

. (6.24)

Denoting a solution to the problem above as
(
b�M , w�M , ��M

)
we find the training and

testing errors for the current value of M using these parameters over the training and
testing sets using the counting cost (see Section 6.2.3), respectively:
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Training error = 1
|train|

∑
p∈train

max
(

0, sign
(
−yp

(
b� + fT

p w�
)))

Testing error = 1
|test|

∑
p∈test

max
(

0, sign
(
−yp

(
b� + fT

p w�
)))

,
(6.25)

where the notation |train| and |test| denotes the cardinality or number of points in the
training and testing sets, respectively. Once we have performed these calculations for all
values of M we wish to test, we choose the one that provides the lowest testing error,
denoted by M�.

Finally we form the feature vector fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM�

(
xp
) ]T

for all
the points in the entire dataset, and solve the following optimization problem over the
entire dataset to form the final model

minimize
b, w,�

P∑
p=1

log

(
1+ e

−yp

(
b+fT

p w
))

. (6.26)

6.4.3 k-fold cross-validation

As introduced in Section 5.3.4, k-fold cross-validation is a robust extension of the hold
out method whereby the procedure is repeated k times where in each instance (or fold)
we treat a different portion of the split as a testing set and the remaining k−1 portions as
the training set. The hold out calculations are then made, as detailed previously, on each
fold and the value of M with the lowest average testing error is chosen. This produces a
more robust choice of M, because potentially poor hold out choices on individual folds
can be averaged out, producing a stronger model.

Example 6.6 k-fold cross-validation for classification using polynomial features

In Fig. 6.13 we illustrate the result of applying k-fold cross-validation to choose the
ideal number M of polynomial features for the dataset shown in Example 6.5, where it
was originally used to illustrate the hold out method. As in the previous example, here
we set k = 3, use the softmax cost, and try M in the range M = 2, 5, 9, 14, 20, 27, 35, 44
which corresponds (see footnote 5) to polynomial degrees D = 1, 2, . . . , 8 (note that for
clarity panels in the figure are indexed by D).

In the top three rows of Fig. 6.13 we show the result of applying hold out on
each fold. In each row we show a fold’s training and testing data in the left panel,
the training/testing errors for each M on the fold (as computed in Equation (6.25))
in the middle panel, and the final model (learned to the entire dataset) provided by
the choice of M with lowest testing error. As can be seen, the particular split leads
to an overfitting result on the first two folds and an underfitting result on the third
fold. In the middle panel of the final row we show the result of averaging the train-
ing/testing errors over all k = 3 folds, and in the right panel the result of choosing
the overall best M� = 14 (or equivalently D� = 4) providing the lowest average
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6.4 Cross-validation for classification 185

Fig. 6.13 Result of performing k-fold cross-validation with k = 3 (see text for further details). The top
three rows display the result of performing the hold out method on each fold. The left, middle,
and right columns show each fold’s training/testing sets (drawn as thick and thin points
respectively), training and testing errors over the range of M tried, and the final model (fit to the
entire dataset) chosen by picking the value of M providing the lowest testing error. Due to the
split of the data, performing hold out on each fold results in a poor overfitting (first two folds) or
underfitting (final fold) model for the data. However, as illustrated in the final row, by averaging
the testing errors (bottom middle panel) and choosing the model with minimum associated
average test error we average out these problems (finding that D� = 4 or M� = 14) and
determine an excellent model for the phenomenon (as shown in the bottom right panel).

testing error. By taking this value we average out the poor choices determined on each
fold, and end up with a model that fits both the data and underlying function quite
well.

Example 6.7 Warning examples

When a k-fold determined set of features performs poorly this is almost always
indicative of a poorly structured dataset (i.e., there is little relationship between the
input/output data), like the one shown in the left panel of Fig. 6.14. However, there are
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Fig. 6.14 (left panel) A low accuracy k-fold fit to a dataset indicates that it has little structure (i.e., that
there is little to no relationship between the input and output). It is possible that a high accuracy
k-fold fit fails to capture the true nature of an underlying function, as when (middle panel) we
have too little data (the k-fold linear separator is shown in black, and the true nonlinear separator
is shown dashed) and (right panel) when we have poorly distributed data (again the k-fold
separator is shown in black, the original separator dashed). See text for further details.

also instances, when we have too little or too poorly distributed data, when a high per-
forming k-fold model can be misleading as to how well we understand a phenomenon.
In the middle and right panels of the figure we show two such instances that the reader
should keep in mind when using k-folds, where we either have too little (middle panel)
or poorly distributed data (right panel).

In the first instance we have generated a small sample of points based on the second
indicator function shown in Fig. 6.3, which has a nonlinear boundary in the original
feature space. However, the sample of data is so small that it is perfectly linearly sep-
arable, and thus applying e.g., k-fold cross-validation with polynomial basis features
will properly (due to the small selection of data) recover a line to distinguish between
the two classes. However, clearly data generated via the same underlying process in
the future will violate this linear boundary, and thus our model will perform poorly.
This sort of problem arises in applications such as automatic medical diagnosis (see
Example 1.6) where access to data is limited. Unless we can gather additional data
to fill out the space (making the nonlinear boundary more visible) this problem is
unavoidable.

In the second instance shown in the right panel of the figure, we have plenty of data
(generated using the indicator function originally shown in Fig. 6.4) but it is poorly
distributed. In particular, we have no samples from the blue class in the lower half of the
space. In this case the k-fold method (again here using polynomial features) properly
determines a separating boundary that perfectly distinguishes the two classes. However,
many of the blue class points we would receive in the future in the lower half of the
space will be misclassified given the learned k-fold model. This sort of issue can arise
in practice, e.g., when performing face detection (see Example 1.4), if we do not collect
a thorough dataset of blue (e.g., “non-face”) examples. Again, unless we can gather
further data to fill out the space this problem is unavoidable.
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Fig. 6.15 Result of performing k = 3 fold cross-validation on the C = 3 class dataset first shown in
Fig. 6.10 using OvA (see text for further details). The left three panels show the result for the red
class versus all, blue class versus all, and green class versus all subproblems. For the red/green
versus all problems the optimal degree found was D� = 2, while for the blue versus all D� = 4
(note how this produces a better fit than the D = 2 fit shown originally in Fig. 6.10). The right
panel shows the combined boundary determined by Equation (6.21), which perfectly separates
the three classes.

6.4.4 k-fold cross-validation for one-versus-all multiclass classification

Employing the one-versus-all (OvA) framework for multiclass classification, we can
immediately apply the k-fold method described previously. For a C class problem we
simply apply the k-fold method to each of the C two class classification problems, and
combine the resulting classifiers as shown in Equation (6.21). We show the result of
applying k = 3 fold cross-validation with OvA on two datasets with C = 3 and C = 5
classes respectively in Fig. 6.15 and 6.16, where we have used polynomial features with
M = 2, 5, 9, 14, 20, 27, 35, 44 or equivalently of degree D = 1, 2, . . . , 8 for each two
class subproblem. Displayed in each figure are the nonlinear boundaries determined
for each fold, as well as the combined result in the right panel of each figure. In both
instances the combined boundaries separate the different classes of data very well.

6.5 Which basis works best?

For an arbitrary classification dataset we cannot say whether a particular feature basis
will provide better results than others. However, as with the case of regression discussed
in Section 5.4, we can say something about the choice of bases in particular instances.
For example, in the instance where data is plentiful and well distributed throughout the
input space we can expect comparable performance among different feature bases (this
was illustrated for the case of regression in Fig. 5.20). Practical considerations can again
guide the choice of basis as well.

Due to the nature of classification problems it is less common (than with regres-
sion) that domain knowledge leads to a particular choice of basis. Rather, in practice
it is more common to employ knowledge in the design of a feature transformation
(like those discussed for text, image, or audio data in Section 4.6), and then deter-
mine possible nonlinear boundaries in this transformed data using feature bases as
described in this chapter. For certain data types such as image data one can incorporate
a parameterized transformation that outlines the sort of edge detection/histogramming
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Fig. 6.16 Result of performing k = 3 fold cross-validation on an overlapping C = 5 class classification
dataset (top panel) using OvA. The middle four panels show the result for the red, blue, green,
and yellow class versus all subproblems respectively. The bottom two panels show the (left)
purple class versus all and (right) the final combined boundary. For the red/purple versus all
problems the k-fold found degree was D� = 1, while for the remaining subproblems D� = 2.

operations outlined in Section 4.6.2 directly into basis elements themselves. Parame-
ters of this transformation are then learned simultaneously with those of the weighted
basis sum itself. A popular example of this sort of approach is the convolutional net-
work (see e.g., [42–44] and references therein), which incorporates such (parameterized)
knowledge-driven features into a standard feed forward neural network basis.

Regardless of how knowledge is integrated, having some understanding of a phe-
nomenon can significantly lessen the amount of data required to produce a k-fold
representation that properly traces out a data generating function. On the other hand,
broadly speaking if we have no understanding of a phenomenon we will typically require
a significant amount of data in order to ensure that the features we have designed through
the k-fold process are truly representative. What constitutes a “significant amount”?
There is no precise formula in general, but due to the curse of dimensionality (see
Fig. 5.2) we can say that the higher the dimension of the input the exponentially more
data we will need to properly understand the underlying function.

This data–knowledge tradeoff is illustrated symbolically in Fig. 6.17.

6.6 Summary

We have seen that, analogous to regression, the general problem of classification is one
of function approximation based on noisy samples. In the instance of classification,
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T
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PARTIAL UNDERSTANDING OF DATA
e.g., visual objective dedection

MATHEMATICAL MODEL OF DATA
e.g., logistic modeling of growth

LAWS OF NATURE
e.g., Newton’s second law

Fig. 6.17 A symbolic representation of the data–knowledge spectrum. The more knowledge we can
incorporate into the design of features the less data is required to determine a strong k-fold
cross-validated set of features. At the other end of the spectrum, if we know nothing regarding
the underlying phenomenon we are modeling we will need a significant amount of data in order
to forge strong cross-validated features.

however, the underlying data generating function is a piecewise continuous indicator
function. As in the previous chapter, we began in the first section by investigating how
to approximate such a data generating function itself, leading to both the familiar fixed
and adjustable neural network bases we have seen previously.

In the second and third sections we described how real instances of classification data-
sets can be thought of as noisy samples from a true underlying indicator. We then saw
how we can use a tractable minimization problem to learn the parameters of a weighted
sum of basis features to fit general classification datasets. This idea was also shown to be
easily integrated into both one-versus-all and multiclass softmax classification schemes,
leading to natural nonlinear extensions of both.

In Section 6.4 we saw (as with regression) how overfitting is a problem when using too
many features for classification. Cross-validation, culminating with the k-fold method,
was then reintroduced in the context of classification as a way of preventing overfit-
ting. Again, as with regression, it is (k-fold) cross-validation that often uses the bulk of
computational resources in practice when solving general classification problems.

6.7 Exercises

Section 6.1 exercises

Exercises 6.1 Softmax cost gradient/Hessian calculations with fixed basis features

a) Assuming a fixed feature basis verify, using the compact notation f̃p =
[

1
fp

]
and

w̃ =
[

b
w

]
, that the gradient of the softmax cost given in Equation (6.14) is correct.

Furthermore, verify that the Hessian of the softmax in this case is given by
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∇2
w̃g
(
w̃
) = P∑

p=1
σ
(
−yp f̃

T
p w̃
) (

1− σ
(
−yp f̃

T
p w̃
))

f̃p f̃
T
p . (6.27)

Both gradient and Hessian here are entirely similar to the originals given in Example
4.1, replacing each xp with its corresponding feature vector fp.

b) Show that the softmax cost using M elements of any fixed feature basis is still convex
by verifying that it satisfies the second order condition for convexity. Hint: the Hessian
is a weighted sum of outer product matrices like the one described in Exercise 2.10.

Exercises 6.2 Squared margin cost gradient/Hessian calculations with fixed
feature basis

a) Assuming a fixed feature basis verify, using the compact notation f̃p =
[

1
fp

]
and

w̃ =
[

b
w

]
, that the gradient and Hessian of the squared margin cost

g
(
w̃
) = P∑

p=1

max2
(

0, 1− yp f̃
T
p w̃
)

, (6.28)

are given as

∇w̃g
(
w̃
) = −2

P∑
p=1

yp f̃p max
(

0, 1− yp f̃
T
p w̃
)

∇2
w̃g
(
w̃
) = 2

∑
p∈w̃

f̃p f̃
T
p ,

(6.29)

where w̃ is the index set w̃ =
{

p| 1− yp f̃
T
p w̃ > 0

}
. These are entirely similar to the

calculations given in Example 4.2 except for using the feature map fp in place of the
input xp.

b) Show that the squared margin cost using M elements of any fixed feature basis is
convex. Hint: see Exercise 4.6.

Exercises 6.3 Polynomial basis features and the softmax cost

In this exercise you will explore how various degree D polynomial basis features fit
using the softmax cost and the dataset shown in the bottom panel of Fig. 6.6. For
this exercise you will need the wrapper poly_classification_hw and the data located in
2eggs_data.csv.

a) Use the description of the two-dimensional polynomial basis features given in foot-
note 5 to transform the input using a general degree D polynomial. Write this feature
transformation in the module

F = poly_features (X, D) (6.30)
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located in the wrapper. Here X is the input data, D the degree of the polynomial features,
and F the corresponding degree D feature transformation of the input (note your code
should be able to transform the input to any degree D desired).

b) With your module complete you may run the wrapper. Two figures will be generated:
the first shows the data along with various degree D polynomial fits, and the second
shows the average number of misclassifications of each fit to the data-set. Discuss the
results shown in these two figures. In particular, describe the relationship between a
model’s average number of misclassifications and how well it seems to represent the
phenomenon generating the data as D increases over the range shown.

Exercises 6.4 Calculate the gradient using a single hidden layer basis

When employing M single hidden layer basis features (using any activation a (·)) the
full gradient of a cost g (e.g., the softmax) is a vector of length Q = M (N + 2) + 1
containing the derivatives of the cost with respect to each variable,

∇g =
[

∂
∂b g ∂

∂w1
g · · · ∂

∂wM
g ∂

∂c1
g · · · ∂

∂cM
g ∇T

v1
g · · · ∇T

vM
g
]T

, (6.31)

where the derivatives are easily calculated using the chain rule.

a) Using the chain rule verify that the derivatives of this gradient (using the softmax
cost) are given by

∂
∂b g = −

P∑
p=1
σ

(
−yp

(
b+

M∑
m=1

wma
(

cm + xT
p vm

)))
yp

∂
∂wn

g = −
P∑

p=1
σ

(
−yp

(
b+

M∑
m=1

wma
(

cm + xT
p vm

)))
a
(

cn + xT
p vn

)
yp

∂
∂cn

g = −
P∑

p=1
σ

(
−yp

(
b+

M∑
m=1

wma
(

cm + xT
p vm

)))
a′
(

cn + xT
p vn

)
wnyp

∇vn g = −
P∑

p=1
σ

(
−yp

(
b+

M∑
m=1

wma
(

cm + xT
p vm

)))
a′
(

cn + xT
p vn

)
xpwnyp.

(6.32)

b) This gradient can be written more efficiently for programming languages like Python
and MATLAB/OCTAVE that have especially good implementations of matrix/vector
operations by writing it more compactly. Supposing that a = tanh (·) is the activation
function (meaning a′ = sech2 (·) is the hyperbolic secant function squared), verify that
the derivatives from part a) may be written more compactly as

∂
∂b g = −1T

P×1q� y
∂
∂wn

g = −1T
P×1 (q� tn � y)

∂
∂cn

g = −1T
P×1 (q� sn � y)wn

∇vn g = −X · q� sn � ywn,

(6.33)
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where � denotes the component-wise product and denoting qp = σ

(
−yp

(
b+

M∑
m=1

wmtanh
(

cm + xT
p vm

)))
, tnp = tanh

(
cn + xT

p vn

)
, snp = sech2

(
cn + xT

p vn

)
, and q, tn,

and sn the P length vectors containing these entries.

Exercises 6.5 Code up gradient descent using single hidden layer bases

In this exercise you will reproduce the classification result using a single hidden layer
feature basis with tanh activation shown in the middle panel of Fig. 6.9.

a) Plug the gradient from Exercise 6.4 into the gradient descent function

T = tanh_softmax (X, y, M) (6.34)

located in the wrapper single_layer_classification_hw and the dataset genreg_data.csv,
both of which may be downloaded from the book website. Here T is the set of optimal
weights learned via gradient descent, X is the input data matrix, y contains the associ-
ated labels, and M is the number of basis features to employ.

Almost all of this function has already been constructed for you, e.g., various initial-
izations, step length, etc., and you need only enter the gradient of the associated cost
function. All of the additional code necessary to generate the associated plot is already
provided in the wrapper. Due to the non-convexity of the associated cost function when
using neural network features, the wrapper will run gradient descent several times and
plot the result of each run.

b) Try adjusting the number of basis features M in the wrapper and run it several times.
Is there a value of M other than M = 4 that seems to produce a good fit to the underlying
function?

Exercises 6.6 Code up the k-nearest neighbors (k-NN) classifier

The k-nearest neighbors (k-NN) is a local classification scheme that, while differing
from the more global feature basis approach described in this chapter, can produce non-
linear boundaries in the original feature space as illustrated for some particular examples
in Fig. 6.18.

With the k-NN approach there is no training phase to the classification scheme. We
simply use the training data directly to classify any new point xnew by taking the aver-
age of the labels of its k-nearest neighbors. That is, we create the label ynew for a point
xnew by simply calculating

ynew = sign

(∑
i∈

yi

)
, (6.35)

where  is the set of indices of the k closest training points to xnew. To avoid tie votes
(i.e., a value of zero above) typically the number of neighbors k is chosen to be odd
(however, in practice the value of k is typically set via cross-validation).
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Fig. 6.18 The k-NN classifier applied to a two class dataset (the blue and red points) where (left panel)
k = 1, (middle panel) k = 5, and (right panel) k = 10. All points in the space have been colored
according to the rule given in Equation (6.35) where the red and blue classes have labels +1 and
−1 respectively.

Code up the k-NN algorithm and reproduce the results shown in Fig. 6.18 using the
dataset located in knn_data.csv.

Section 6.2 exercises

Exercises 6.7 One-versus-all using a polynomial basis

In this exercise you will reproduce the one-versus-all classification on the C = 3 class
dataset shown in the bottom panels of Fig. 6.10 using polynomial features. Note that for
this exercise you will need to have completed the poly_features module for polynomial
features described in Exercise 6.3.

a) Place the poly_features module in the wrapper ova_fixed_basis and use the dataset
bullseye_data.csv, both of which may be downloaded from the book website. After
installing the module try running the wrapper to reproduce the results shown in Fig. 6.10.

b) Try adjusting the degree D in the wrapper and run it several times. Is there a value of
D other than D = 2 that seems to produce a good fit to the data?

Section 6.3 exercises

Exercises 6.8 Code up hold out cross-validation

In this exercise you will perform hold out cross-validation on the dataset shown in
Fig. 6.12 as described in Example 6.5 of the text. Start by randomly splitting the dataset,
located in 2eggs_data.csv, into k = 3 equal sized folds (keeping 2 folds as training,
and 1 fold as testing data). Use the polynomial basis features with M in the range
M = 2, 5, 9, 14, 20, 27, 35, 44 (or likewise D in the range D = 1, 2, . . . , 8) and pro-
duce a graph showing the training and testing error for each D like the one shown in
Fig. 6.12, as well as the best (i.e., the lowest test error) model fit to the data.
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Note: your results may appear slightly different than those of the figure, given that you
will likely use a different random partition of the data. Note: you may find it very use-
ful here to re-use code from previous exercises e.g., functions that compute polynomial
features, plot curves, etc.

Exercises 6.9 Code up k-fold cross-validation

In this exercise you will perform k-fold cross-validation on the dataset shown in
Fig. 6.13 as described in Example 6.6 of the text. Start by randomly splitting the dataset,
located in 2eggs_data.csv, into k = 3 equal sized folds (keeping 2 folds as training,
and 1 fold as testing data). Use the polynomial basis features with M in the range
M = 2, 5, 9, 14, 20, 27, 35, 44 (or likewise D in the range D = 1, 2, . . . , 8) and pro-
duce a graph showing the training and testing error for each D like the one shown in
Fig. 6.13, as well as the best (i.e., the lowest average test error) model fit to the data.

Note: your results may appear slightly different than those of the figure given that you
will likely use a different random partition of the data. Note: you may find it very use-
ful here to re-use code from previous exercises e.g., functions that compute polynomial
features, plot curves, etc.
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7 Kernels, backpropagation, and
regularized cross-validation

This chapter is essentially an appendix of technical material critically relevant to the
ideas described in the previous two chapters, consisting of three sections each of which
may be read independently of the other two. The first describes fixed feature kernels,
which is a method of representing fixed basis features so that they scale more grace-
fully when applied to vector valued input. In the second we provide an organized set of
computations of the gradient for any cost function employing multilayer neural network
basis features for performing gradient descent, commonly referred to as the backprop-
agation algorithm when such deep network basis features are used. Finally, in Section
7.3 we describe a slight variation of the cross-validation technique discussed in previous
chapters, called regularized cross-validation, that is more appropriate for fixed feature
kernels, multilayer network features, as well as the softmax multiclass classification
(using either fixed or neural network basis features).

7.1 Fixed feature kernels

A serious practical issue presents itself when applying fixed basis features to vector val-
ued input: even with a moderate sized input dimension N, the corresponding dimension
M of the transformed features grows rapidly with N and quickly becomes prohibitively
large in terms of storage and computation. For example, the precise number M of non-
bias features/feature weights of a degree D polynomial of an input with dimension
N is M = (N+D

D

) − 1 = (N+D)!
D!N! − 1. Even if the input dimension is of reasonably

small size, for instance N = 100 or N = 500, then just the associated degree D = 5
polynomial feature map of these input dimensions has dimension M = 96560 645 and
M = 268 318 178 226 respectively! In the latter case we cannot even hold the feature
vectors in memory on a modern computer.1

This crucial issue, of not being able to effectively store high dimensional fixed
basis feature transformations, motivates the search for more efficient representations
of fixed bases. Here we introduce kernels or kernelized representations of fixed fea-
ture transformations, which are clever ways of constructing them that do not require
explicit construction of the fixed features themselves. Kernels allow us to avoid this

1 The corresponding number of transformed features with a Fourier basis/map is even more gargantuan: the
degree D Fourier feature map of arbitrary input dimension N has (2D+ 1)N associated/feature weights.
When D = 5 and N = 80 this is 1180, a number larger than current estimates of the number of atoms in
the visible universe (around 1080 atoms)!
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combinatorial storage problem and use fixed features with vector input (at the cost, as
we will see, of scaling poorly with the size of a data-set). Additionally they provide
a way of generating new fixed feature maps defined solely through such a kernelized
representation.

7.1.1 The fundamental theorem of linear algebra

Before discussing the concept of kernelization, it will be helpful to first recall a useful
fact, generally referred to as the fundamental theorem of linear algebra. This is a simple
statement about how to deconstruct an M length vector w ∈ R

M over the columns of a
given matrix.

Recall that a set of M-dimensional vectors
{
fp
}P

p=1 spans a subspace of dimension
P, where P ≤ M, and that any vector w in this subspace can be written as some linear
combination of the vectors as

w =
P∑

p=1

fpzp, (7.1)

where zp are weights associated with w. By stacking the vectors fp column-wise into an
M×P matrix F and the zp together into a P× 1 vector z this relationship can be written
more compactly as

w = Fz. (7.2)

As illustrated in Fig. 7.1, any vector w ∈ R
M can then be decomposed into two

pieces: the portion of w belonging to the subspace spanned by the columns of F and
an orthogonal component r. Formally this decomposition is written as

w = Fz+ r. (7.3)

Note that r being orthogonal to the span of F’s columns means formally that FTr =
0P×1.

As we will now see this simple statement is the key to representing fixed basis features
more effectively (when used to transform vector valued input for use) with every cost
function discussed in this book.

w

Fz

r

F

Fig. 7.1 An illustration of the fundamental theorem of linear algebra which states that any vector w in an
M-dimensional space can be decomposed as w = Fz+ r. Here the vector Fz belongs in the
subspace determined by the columns of the matrix F and r is orthogonal to this subspace.
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7.1.2 Kernelizing cost functions

Suppose that we have a dataset of P points
{(

xp, yp
)}P

p=1 where each input xp has di-
mension N. Recall from Section 5.2 that when employing any fixed feature basis we
learn proper parameters by minimizing the Least Squares regression cost,

g (b, w) =
P∑

p=1

(
b+ fT

p w− yp

)2
, (7.4)

where we have used the vector notation fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

to
denote the M fixed basis feature transformations of the input xp. Denote by F the M×P
matrix F formed by stacking the vectors fp column-wise. Now, employing the funda-
mental theorem of linear algebra discussed in the previous section we may write w here
as

w = Fz+ r, (7.5)

where r satisfies FTr = 0P×1. Plugging this representation of w back into the cost
function then gives

P∑
p=1

(
b+ fT

p (Fz+ r)− yp

)2 =
P∑

p=1

(
b+ fT

p Fz− yp

)2
. (7.6)

Finally, denoting the symmetric matrix H = FTF (and where hp = FT fp is the pth col-
umn of this matrix), referred to as a fixed basis kernel matrix, our original cost function
becomes equivalently

g (b, z) =
P∑

p=1

(
b+ hT

p z− yp

)2
. (7.7)

Note that we have changed the arguments of the cost function from g (b, w) to g (b, z)
due to our substitution of w. The original problem of minimizing the Least Squares cost
may now be written equivalently in this kernelized form as

minimize
b, z

P∑
p=1

(
b+ hT

p z− yp

)2
. (7.8)

Using precisely the same argument given here we may kernelize all of the cost func-
tions discussed in this book including: the softmax cost/logistic regression classifier,
the squared margin-perceptron/soft-margin SVMs, the multiclass softmax cost function,
as well as any �2 regularized version of these models. We show both the original and
kernelized forms of these formulae in Table 7.1 for easy reference.

7.1.3 The value of kernelization

The real value of kernelizing any cost function is that for many fixed feature maps,
including polynomials and Fourier features, the kernel matrix H may be constructed
without first building the matrix F, that is we need not construct it explicitly as H = FTF,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.010
http:/www.cambridge.org/core


198 Kernels, backpropagation, and regularized cross-validation

Table 7.1 Cost functions and their kernelized versions. Note that the �2 regularizer can be added to any
cost function in the middle column and the resulting kernelized form of the sum will be the sum of the
kernelized cost and the kernelized regularizer. For example, the kernelized form of the regularized Least

Squares problem
P∑

p=1

(
b + fTp w− yp

)2 + λ ‖w‖22 is
P∑

p=1

(
b + hT

p z− yp

)2 + λzT Hz.

Cost function Original version Kernelized version

Least Squares
P∑

p=1

(
b+ fT

p w− yp

)2 P∑
p=1

(
b+ hT

p z− yp

)2

Softmax
cost/logistic
regression

P∑
p=1

log

(
1+ e

−yp

(
b+fT

p w
))

P∑
p=1

log

(
1+ e

−yp

(
b+hT

p z
))

Squared margin/
soft-margin
SVMs

P∑
p=1

max2
(

0, 1− yp

(
b+ fT

p w
)) P∑

p=1
max2

(
0, 1− yp

(
b+ hT

p z
))

Multiclass
softmax

C∑
c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e

(
bj−bc

)
C∑

c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e

(
bj−bc

)

+fT
p

(
wj−wc

)⎞⎟⎟⎠ +hT
p

(
zj−zc

)⎞⎟⎟⎠
�2-regularizer λ ‖w‖22 λzT Hz

but this matrix may be constructed entry-wise via simple formulae. In fact, as we will
see, thinking about constructing kernel matrices in this way leads to the construction of
fixed feature bases by defining the kernel matrix first (that is, not by beginning with an
explicit feature transformation). As we see in the next section this can be done for both
degree D polynomial and Fourier feature bases, as well as many other fixed maps. This
is highly advantageous since recall, as discussed in the introduction to this section, that
even with moderate sized input dimension N the dimension of a fixed feature transfor-
mation M will likely be gargantuan, so large that we may not even be able to store the
matrix F let alone compute with it.

However, note that the non-bias optimization variable from the original to kernelized
form has changed from w, which had dimension M in Equation (7.4), to z, which has
dimension P in the kernelized version shown in Equation (7.7). This is precisely how the
dimension of the non-bias optimization variable changes with kernelized cost functions
as well, like those shown in Table 7.1.

While it is true that for large datasets (that is large values of P, e.g., in the thousands
or tens of thousands) the minimization of a kernelized cost function becomes more chal-
lenging, the main obstacle is storing the P×P kernel matrix itself, which for large values
of P is difficult or even impossible to do completely. For example, with P = 10 000 the
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7.1 Fixed feature kernels 199

corresponding kernel matrix will be of size 10 000 × 10 000, with 108 values to store,
far more than a modern computer can store all at once. Moreover, the amount of com-
putation required to perform, e.g. gradient descent, grows dramatically with the size of
a kernel matrix due to its explosive size.

Common ways of dealing with these issues for large datasets include: 1) using
advanced first order methods such as stochastic gradient descent, discussed in Chap-
ter 8, so that only a small number of the kernelized points are dealt with at a time
when optimizing; 2) reducing the dimension of data using techniques like those dis-
cussed in Chapter 9 and hence avoiding the need for kernelized versions of fixed bases;
3) using the explicit structure of certain problems (see e.g., [22, 49]); and 4) employing
the tools from function approximation to avoid explicit construction of the kernel matrix
[64, 68, 69].

7.1.4 Examples of kernels

Here we present a list of examples of kernels for popular fixed feature transformations
that may be built without first constructing the explicit feature transformation itself.
While these are the most commonly used kernels in practice, the reader can see e.g.,
[20, 51] for a more exhaustive list of kernels and their properties.

Example 7.1 The polynomial kernel

Consider the following second degree polynomial mapping from N = 2 to M = 5
dimensional space given by

f
([

x1

x2

])
= [ √2x1

√
2x2 x2

1

√
2x1x2 x2

2

]T
. (7.9)

This is entirely equivalent to a standard degree 2 polynomial, as the
√

2 attached to
several of the terms can be absorbed by their associated weights when taking the corre-

sponding weighted sum
5∑

m=1
fm (x)wm. Denoting briefly by u = xi and v = xj the ith and

jth input data points respectively, the (i, j)th element of the kernel matrix for a degree 2
polynomial H = FTF may be written as

Hij =
[ √

2u1
√

2u2 u2
1

√
2u1u2 u2

2

]
⎡⎢⎢⎢⎢⎢⎣

√
2v1√
2v2

v2
1√

2v1v2

v2
2

⎤⎥⎥⎥⎥⎥⎦
=
(

1+ 2u1v1 + 2u2v2 + u2
1v2

1 + 2u1u2v1v2 + u2
2v2

2

)
− 1

= (1+ u1v1 + u2v2)
2 − 1 = (1+ uTv

)2 − 1. (7.10)
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In short, the polynomial kernel matrix H may be built without first constructing the
explicit features in Equation (7.9), and may be simply defined entry-wise as

Hij =
(
1+ xT

i xj
)2 − 1. (7.11)

Again note that with the polynomial kernel defined above we only require access to the
original input data, not the explicit polynomial features themselves.

Although the kernel construction rule in (7.11) was derived specifically for N = 2
and a degree two polynomial, one can show that a polynomial kernel can be defined
entry-wise for general N and degree D analogously as

Hij =
(
1+ xT

i xj
)D − 1. (7.12)

Example 7.2 The Fourier kernel

Recall from Example 5.1 the degree D Fourier feature transformation from N = 1 to
M = 2D dimensional space, with corresponding transformed feature vector given as

fp =
[ √

2cos
(
2πxp

) √
2sin

(
2πxp

) · · · √2cos
(
2Dπxp

) √
2sin

(
2Dπxp

) ]T
.

(7.13)
For a dataset of P points the corresponding (i, j)th element of the corresponding kernel
matrix H can be written as

Hij = fT
i fj = 2

D∑
m=1

cos (2πmxi) cos
(
2πmxj

)+ sin (2πmxi) sin
(
2πmxj

)
. (7.14)

Using trigonometric identities one can show (see Section 7.5.2) that this may equiva-
lently be written as

Hij = sin
(
(2D+ 1) π

(
xi − xj

))
sin
(
π
(
xi − xj

)) − 1. (7.15)

Note that whenever xi−xj is integer valued the term
sin((2D+1)π(xi−xj))

sin(π(xi−xj))
is not technically

defined. In these cases it is simply replaced by its associated limit which, regardless of
the integer value xi − xj, is always equal to 2D+ 1 meaning that Hij = 2D.

Moreover, for general N-dimensional input the corresponding kernel can be written
similarly entry-wise as

Hij =
N∏

n=1

sin
(
(2D+ 1) π

(
xin − xjn

))
sin
(
π
(
xin − xjn

)) − 1. (7.16)

As with the 1-dimensional version, whenever xin − xjn is integer valued the associated

term
sin((2D+1)π(xin−xjn))

sin(π(xin−xjn))
in the product is replaced by its limit which, regardless of the

value of xin − xjn, is always equal to 2D+ 1. See Section 7.5.3 for further details.
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7.1 Fixed feature kernels 201

With this formula we can compute the degree D Fourier features for arbitrary
N-dimensional input vectors without calculating the enormous number (see footnote 1)
of basis features explicitly.

Example 7.3 Kernel representation of radial basis function (RBF) features

Another popular choice of kernel is the radial basis function (RBF) kernel which is
typically defined explicitly as a kernel matrix over the input data as

Hij = e−β‖xi−xj‖2
2 . (7.17)

Here the kernel parameter β is tuned to the data in practice via cross-validation.
While the RBF kernel is typically defined directly as above, it can be traced back to

an explicit fixed feature basis as with the polynomial and Fourier kernels, i.e., we have
that

Hij = fT
i fj, (7.18)

where fi is the fixed feature transformation of the input xi based on a fixed basis.
While the length of a feature transformation corresponding to a degree D polyno-
mial/Fourier kernel matrix can be extremely large (as discussed in the introduction
to this section), with the RBF kernel the associated feature transformation is always
infinite dimensional. For example, when N = 1 the feature vector fi takes the form

fi =
[

f1 (xi) f2 (xi) f3 (xi) · · ·
]T

, where the mth fixed basis feature is defined as

fm (xi) = e−βx2
i

√
(2β)m−1

(m− 1)!x
m−1
i for all m ≥ 1. (7.19)

When N > 1 the corresponding feature vector takes on an analogous form (and is also
infinite in length), but regardless of the input dimension it would be impossible to even
construct and store a single fi let alone such transformations of the entire dataset.

7.1.5 Kernels as similarity matrices

The polynomial, Fourier, and RBF kernel matrices introduced earlier are all similarity
matrices, essentially encoding how close or similar a collection of data points are to
one another, with points in proximity to one another receiving a high value and those
far apart receiving a low value. In this sense all three kernels discussed here, and hence
all three corresponding fixed feature bases, define some kind of similarity between data
points xi and xj from different geometric perspectives.

In Fig. 7.2 we compare these three kernels geometrically by fixing a point

xp =
[

0.5 0.5
]T

and plotting H
(
x, xp

)
over the range x ∈ [0, 1]2, producing a color-

coded surface showing how each kernel treats points near xp. Analyzing this figure we
can judge more generally how the three kernels define “similarity” between points.
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Fig. 7.2 Surfaces generated by polynomial, Fourier, and RBF kernels centered at xp =
[

0.5 0.5
]T

with the surfaces color-coded based on their similarity to xp. (left panel) A degree 2 polynomial
kernel, (middle panel) degree 3 Fourier kernel, and (right panel) RBF kernel with β = 10. See
text for further details.

Firstly, we can see that a polynomial kernel treats data points xi and xj similarly if
their inner product is high or, in other words, they highly correlate with each other.
Likewise the points are treated as dissimilar when they are orthogonal to one another.
On the other hand, the Fourier kernel treats points as similar if they lie close together,
but their similarity differs like a “sinc” function as their distance from each other grows.
Finally an RBF kernel provides a smooth similarity between points. If they are close
to each other in a Euclidean sense they are highly similar; however, once the distance
between them passes a certain threshold they are deemed rapidly dissimilar.

7.2 The backpropagation algorithm

In this section we provide details for applying gradient descent, commonly referred to
as the backpropagation algorithm, to any cost function employing a multilayer neural
network feature basis. The term “backpropagation” is often used because, as we will see,
there is a natural movement or propagation of computation in calculating the gradient of
such a cost function backward through a sum of neural network basis features. However,
one should not think of this as somehow a special version of gradient descent, it is just
the standard gradient descent procedure we have used throughout the text applied to a
more complicated (cost) function.

While computing the gradient of such a function only requires the use of careful
bookkeeping as well as repeated use of the chain rule, these calculations can easily be
incorrect because of human error due to their tedious nature. Because of this we provide
explicit calculations for general two and three layer hidden networks, and will write
them assuming arbitrary cost and activation functions. Since there is no useful compact
formula to express the derivatives associated with an arbitrary layered neural network,
the reader can extend the pattern for computing two and three layer networks shown
here if employing deeper networks.

Variations of gradient descent, including stochastic gradient descent as well as
gradient descent with momentum (see Sections 8.3 and 7.2.3 for further details), are
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7.2 The backpropagation algorithm 203

also commonly used to minimize a cost function employing neural network features as
they tend to speed up convergence in practice.

7.2.1 Computing the gradient of a two layer network cost function

Let g be any cost function for regression or classification described in this book. Note
that, over a dataset of P points

{(
xp, yp

)}P
p=1, each can be decomposed over the P

points as

g =
P∑

p=1

h
(

b+ xT
p w
)

; (7.20)

e.g., if g is the Least Squares cost for regression or the softmax cost for classification

then h
(

b+ xT
p w
)
=
(

b+ xT
p w− yp

)2
and h

(
b+ xT

p w
)
= log

(
1+ e

−yp

(
b+xT

p w
))

respectively. In what follows we will compute derivatives of h
(

b+ xT
p w
)

, which may

then be added up to give corresponding derivatives of g.
Substituting an M2 two-layer neural network feature fp map of xp, whose mth

coordinate takes the form

fm
(
xp
) = a

⎛⎝c(1)m +
M2∑

m2=1

a

(
c(2)m2
+

N∑
n=1

xp,nv(2)n,m2

)
v(1)m2,m

⎞⎠ , (7.21)

or more compactly all together we can write

fp = a
(

c(1) + V
T
(1)a
(

c(2) + V
T
(2)xp

))
, (7.22)

where we slightly abuse notation and say that the activation a (·) applies the function
to each coordinate of its input. With this network map, our cost summand is given as

h
(

b+ fT
p w
)

. Here we have stacked the parameters of the first layer into the M1 × 1

vector c(1) and M2×M1 matrix V(1), and those of the second layer into the M2×1 vector
c(2) and N ×M2 matrix V(2) respectively.

Because we will need to employ the chain rule many times, in order to more effec-
tively compute the gradient of this summand it will be helpful to introduce notation for
the argument or residual of each layer of the network, as well as the result of each layer
after passing through the activation function. Firstly, we will write the arguments at each
layer recursively as

r = b+ w
T
a
(
r(1)
)

r(1) = c(1) + V
T
(1)a
(
r(2)
)

r(2) = c(2) + V
T
(2)xp.

(7.23)

Note that the first argument r is a scalar, while the latter two r(1) and r(2) are M1

and M2 length vectors respectively. Correspondingly, we can write a(1) = a
(
r(1)
)

and
a(2) = a

(
r(2)
)
, the result of the first layer and second layer argument passed through the

activation function respectively (note these are also M1 and M2 length vectors).
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With this notation we have in particular h (r) = h
(

b+ fT
p w
)

, and we can write the

derivatives of the parameters (b, w) via the chain rule as

∂h

∂b
= ∂h

∂r

∂r

∂b

∇wh = ∂h

∂r
∇wr.

(7.24)

Each derivative on the right hand side above may be calculated in closed form, e.g.,
∂r(0)
∂b = 1 and ∇wr = a(1), and if h (t) = log

(
1+ e−t

)
is the softmax cost summand

then ∂h
∂r = h′ (r) = σ (−r). Computing derivatives of the first and second hidden layers’

parameters similarly yields, via applying the chain rule multiple times,

∂h

∂c(1)i

= ∂h

∂r

∂r

∂a(1)i

∂a(1)i

∂r(1)i

∂r(1)i

∂c(1)i

∇v(1)i
h = ∂h

∂r

∂r

∂a(1)i

∂a(1)i

∂r(1)i

∇v(1)i
r(1)i

∂h

∂c(2)i

= ∂h

∂r

⎛⎝ M1∑
n1=1

∂r

∂a(1)n1

∂a(1)n1

∂r(1)n1

∂r(1)n1

∂a(2)i

⎞⎠ ∂a(2)i

∂r(2)i

∂r(2)i

∂c(2)i

∇v(2)i
h = ∂h

∂r

⎛⎝ L1∑
n1=1

∂r

∂a(1)n1

∂a(1)n1

∂r(1)n1

∂r(1)n1

∂a(2)i

⎞⎠ ∂a(2)i

∂r(2)i

∇v(2)i
r(2)i

(7.25)

Note that due to the decision to denote the residuals in each layer, these derivatives
take a predictable form, consisting of repeating pairs of partial derivatives: “partial of
a function with respect to its residual” and “partial of the residual with respect to a
parameter or the following layer activation.” Again each individual derivative on the
right hand side of the equalities may be computed in closed form given a choice of cost
summand h and activation function a. As we have already seen, ∂h

∂r = h′ (r), and as
for the remainder of the derivatives we have

∂r

∂a(1)i

= wi
∂a(1)i

∂r(1)i

= a′
(
r(1)i

) ∂r(1)i

∂c(1)i

= 1 ∇v(1)i
r(1)i = a(2)

∂r(1)n1

∂a(2)i

= v(2)n1,i
∂a(2)i

∂r(2)i

= a′
(
r(2)i

) ∂r(2)i

∂c(2)i

= 1 ∇v(2)i
r(2)i = xp.

(7.26)

Note that due to the recursive nature of the arguments, as shown in Equation (7.23),
these are typically precomputed (that is, prior to computing derivatives) and, in particu-
lar, must be computed in a forward manner from inner (i.e., closer to the input) to outer
(i.e. farther from the input) layers of the network sequentially. Conversely, as we can see
above in Equation (7.25), the propagation of derivative calculations is performed back-
wards. In other words, first the outer layer derivatives in Equation (7.24) are computed,
then derivatives of layer one are constructed, and then finally layer two. This pattern, of
computing the residuals and derivatives in a forward and backward manner respectively,
holds more generally when employing an arbitrary number of layers in a neural network.
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As mentioned in the introduction, gradient descent is often referred to as backprop-
agation because the residuals having been computed in a forward fashion, we can
then compute the output residual r which is propagated backwards as we compute the
gradients layer by layer.

7.2.2 Three layer neural network gradient calculations

To reiterate the points made in computing two-layer derivatives as shown previously,
we briefly show mirrored results for a three-layer network so that the reader can be
more comfortable with the notation, as well as the pattern of partial derivatives. Again
to make the use of the chain rule more predictable, we define residuals at each layer of
the network (in complete similarity to Equation (7.23)) as

r = b+ w
T
a
(
r(1)
)

r(1) = c(1) + V
T
(1)a
(
r(2)
)

r(2) = c(2) + V
T
(2)a
(
r(3)
)

r(3) = c(3) + V
T
(3)xp

(7.27)

where again we slightly abuse notation and say that the activation a(·) applies the func-
tion to each coordinate of its input. The forms of the derivatives of the bias and feature
weights are given precisely as shown in Equation (7.24), and the first two layer-wise
derivatives precisely as shown in Equation (7.25). Just note that the form of the resid-
uals and of the total summand h have changed, since we now have three layers in the
network. Using the chain rule the third-layer derivatives can then be computed as

∂h
∂c(3)i

= ∂h
∂r

M1∑
n1=1

∂r

∂a(1)n1

∂a(1)n1

∂r(1)n1

(
M2∑

n2=1

∂r(1)n1

∂a(2)n2

∂a(2)n2

∂r(2)n2

∂r(2)n2

∂a(3)i

)
∂a(3)i

∂r(3)i

∂r(3)i

∂c(3)i

∇v(3)i
h = ∂h

∂r

L1∑
n1=1

∂r

∂a(1)n1

∂a(1)n1

∂r(1)n1

(
L2∑

n2=1

∂r(1)n1

∂a(2)n2

∂a(2)n2

∂r(2)n2

∂r(2)n2

∂a(3)i

)
∂a(3)i

∂r(3)i

∇v(3)i
r(3)i

(7.28)

where, as with the previous layers, all derivatives on the right hand side can be com-
puted in closed form. Also, as with the previous two-layer case, again the residuals are
computed first in a forward manner (from the inner to outer layer of the network), while
the derivatives are naturally computed in a backward manner given their structure.

Example 7.4 Comparison of different networks on a toy classification dataset

Here we give a simple example comparing neural network feature maps with one, two,
and three hidden layers on the toy classification dataset shown in the middle panel of
Fig. 6.9. In particular we use M1 = M2 = M3 = 10 units in each hidden layer of each
network respectively. In Fig. 7.3 we show the objective value per iteration of gradient
descent, for illustrative purposes showing iterations 10 through 50. In this figure we
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Fig. 7.3 Objective value resulting from the first 50 iterations of gradient descent applied to minimizing
the softmax cost employing one/two/three hidden layer neural network features for the dataset
shown in the middle panel of Fig. 6.9 (see text for further details). This plot simply reflects the
fact that as we increase the number of layers of a neural network each basis feature becomes
more flexible, allowing for faster fitting to nonlinearly separable data. However, as described in
the context of both regression and classification, overfitting becomes more of a potential problem
as we increase the flexibility of a feature map and thus cross-validation is absolutely required
when using deep net features.

can see that the deeper networks provide stronger fits faster to the dataset, with the three
layer network providing the best progress throughout the range of iterations shown. This
is true more generally since, as described in Section 5.1.4, as we increase the number
of layers in a network each basis feature becomes more flexible. However, as discussed
in Sections 5.3 and 6.4, such flexibility in representation can lead deeper networks to
overfit a dataset and therefore cross-validation must be employed with deep networks
(typically performed via the regularization approach detailed in Section 7.3).

7.2.3 Gradient descent with momentum

A practical problem that occurs in minimizing some cost functions g, especially in
higher dimensions, is that the gradient descent steps tend to zig-zag towards a solution
as illustrated in two dimensions in Fig. 7.4. In this hypothetical example we illustrate
the use of an adaptive step length rule (see Section 8.2) in order to exaggerate the real
problem in higher dimensions.

This problem motivates the concept of an old and simple heuristic known as the
momentum term, which is added to the standard gradient descent step applied to both
convex and non-convex functions. The momentum term is a simple weighted difference

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.010
http:/www.cambridge.org/core


7.2 The backpropagation algorithm 207

w0

w2

w1
w3

w4

Fig. 7.4 A figurative illustration of gradient steps toward the minimum of a function in two dimensions.
Note that the gradient step directions are perpendicular to the contours of the surface shown with
dashed ellipses.
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w3 w4

Fig. 7.5 A figurative illustration of momentum-adjusted gradient descent steps toward the minimum of
the same function shown in Fig. 7.4. The addition of the momentum term averages out the
zig-zagging inherent in standard gradient descent steps.

of the subsequent kth and (k − 1)th gradient steps, i.e., β
(
wk − wk−1

)
for some β > 0,

and is designed to even out the zig-zagging effect of the gradient descent iterates.
Hypothetical steps from a gradient descent scheme with momentum are illustrated in
Fig. 7.5.

Adding this term to the (k + 1)th gradient step gives the combined update of

wk+1 = wk − αk∇g
(

wk
)
+ β

(
wk − wk−1

)
, (7.29)

where β can be adjusted as well at each iteration if desired. When tuned properly the
adjusted gradient descent step with momentum is known empirically to significantly
improve the convergence of gradient descent (see e.g., [66]).
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Fig. 7.6 The cost function value of the first k = 10–50 iterations of standard and momentum gradient
descent procedures (shown in black and magenta respectively) on a classification dataset,
averaged over five runs. By tuning the momentum parameter we can create faster converging
gradient descent schemes. See text for further details.

Example 7.5 Multilayer neural network example

In this example we use the softmax cost with a three-layer neural network feature map,
using M1 = M2 = M3 = 10 hidden units in all three layers and the rectified linear unit
activation function, and the classification dataset first shown in the left panel of Fig. 4.3.
We compare standard gradient descent to the momentum version shown in Equation
(7.29) by averaging the results of five runs of each algorithm (using the same random
initialization for each run for both algorithms).

Shown in Fig. 7.6 is the average objective function value for the first 50 iterations
of both algorithms. β has been tuned2 such that the momentum gradient descent runs
converge significantly faster than do the standard runs.

7.3 Cross-validation via �2 regularization

In this section we describe the concept of cross-validation via �2 regularization, a varia-
tion of the direct comparison method for cross-validation described in previous chapters.
This method provides a much more useful framework for performing cross-validation
in a variety of important circumstances. These include:

• Fixed/kernelized feature bases of high dimensional input. The difference in
dimension M, or the number of basis elements, of fixed feature representations having

2 For both we used a constant fixed step size of α = 10−3 and a momentum weight of β = 0.5 for all runs.
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subsequent degrees D and D + 1 becomes extremely large as we increase the input
dimension N. Therefore comparison of fixed features of various degrees becomes far
too coarse: because there is an increasing number of possible feature configurations
between degrees D and D+ 1 we do not try.3 Furthermore, by kernelizing such fixed
features we lose direct access to individual elements of the original basis, making it
impossible to make comparisons at a finer scale. Moreover for fixed bases defined
explicitly at the level of a kernel (e.g., the RBF kernel in Example 7.3), regardless
of input dimension N, we cannot even practically compare different length feature
vectors, as they are all infinite in dimension.
• Multilayer neural networks. As the number of layers/activation units of a neural net-

work feature basis is increased each corresponding entry of the feature vector/basis
element used, having many layers of internal parameters, becomes increasingly flexi-
ble. This makes simply testing the effectiveness of M versus M+1 dimensional neural
network features increasingly coarse, meaning again that there is an increasing num-
ber of feature configurations we do not test, as the number of layers/activation units
employed is increased.
• Multiclass softmax classification. Both of the previously described problems are

exacerbated in the case of multiclass classification, particularly when using the
multiclass softmax classifier.

We begin by discussing regularized cross-validation with regression followed by a mir-
rored section for classification. Note that throughout the remainder of this section we
will work with P input/output pairs

{(
xp, yp

)}P
p=1, where the input xp is of dimension

N and yp are either continuous in the case of regression, or discrete in the case of clas-
sification. Further we will assume that either M-dimensional fixed or neural network
basis features with arbitrary number of layers have been taken of each input xp, denoted

as fp =
[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

, and � is the set of possible internal pa-
rameters of the feature basis elements, which is empty in the case of fixed/kernelized
features.

7.3.1 �2 regularization and cross-validation

Regularized approaches to cross-validation can be understood as following from the
same simple observation that motivated the original direct approach described in Sec-
tions 5.3 and 6.4. However, instead of trying to determine the proper number M of basis
features in order to avoid the pitfall of overfitting, the regularization approach first fixes
M at a reasonably high value and adds a second term (the regularizer) to the associated
cost function. This additional regularizer constrains the weights, prohibiting the cost
function itself from achieving too small values (i.e., creating an overfitting model) over
the entire dataset.

3 Recall that, for example, the number of non-constant basis elements in a degree D polynomial is given as

M = (N+D)!
D!N! − 1. This means, for example, that with N = 500 dimensional input there are 20 958 500

more basis features in a degree D = 3 than a degree D = 2 polynomial.
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While many choices of regularizer function are available, by far the most commonly
used in practice is the squared �2 norm of the weights, which we have seen previously
used to “convexify” non-convex functions (see Section 3.3.2) in order to aid in their
minimization, as well as a mathematical way of encoding the margin length in the soft-
margin SVM classifier (see Section 4.3.3).

7.3.2 Regularized k-fold cross-validation for regression

Formally to regularize the Least Squares cost function using the approach described
previously, we add to it a weighted version of the squared �2 norm of all the weights,
giving the �2 regularized Least Squares cost function

g (b, w,�) =
P∑

p=1

(
b+ fT

p w− yp

)2 + λ
(
‖w‖22 +

∑
θ∈�

θ2

)
. (7.30)

Note that since the definition of the squared �2 norm gives ‖a‖22 =
M∑

m=1
a2

m, the final term∑
θ∈�

θ2 is equivalent to first forming a single long column vector containing all internal

parameters in�, and then taking the squared �2 norm of the result. Also note that we do
not regularize the bias b since we are only concerned with mitigating the impact of the
features themselves on our final model. Finally note that when using a kernelized fixed
map, as described in Section 7.1.2, the parameter set is empty and the above is written as

g (b, z) =
P∑

p=1

(
b+ hT

p z− yp

)2 + λzTHz. (7.31)

In either case, the parameter λ ≥ 0 controls the strength of each term, the Least Squares
cost, and regularizer, in the final sum. For example, if λ = 0 we have our original cost
again, but if on the other hand λ is set very high then the regularizer drowns out the cost
function.

Now, the precise value of λ is determined by employing the cross-validation frame-
work described in Section 5.3, where instead of trying various values for M we
(having fixed the feature dimension at M) try a discrete set of values in some range
λ ∈ [λmin, λmax]. In other words, we split our dataset of P points into k non-overlapping
portions, for each fold by forming k − 1 portions of the data into a training set and
leaving a single (distinct for each fold) portion as a test set.

Fitting to a single fold training set for one choice of λ, we minimize (7.30) over the
training set by solving

minimize
b, w,�

∑
p∈train

(
b+ fT

p w− yp

)2 + λ
(
‖w‖22 +

∑
θ∈�

θ2

)
, (7.32)
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where we once again denote via index sets those points belonging to this fold’s training
and testing sets as

train =
{
p | (xp, yp

)
belongs to the training set

}
test =

{
p | (xp, yp

)
belongs to the testing set

}
.

(7.33)

Denoting an optimal solution to the above problem as
(
b�λ, w�λ,��λ

)
, we then compute

the training and testing errors on a single fold for one choice of λ as

Training error = 1
|train|

∑
p∈train

(
b�λ + fT

p w�λ − yp

)2

Testing error = 1
|test|

∑
p∈test

(
b�λ + fT

p w�λ − yp

)2
,

(7.34)

where the notation |train| and |test| denotes the cardinality or number of indices in the
training and testing sets respectively.

To perform k-fold cross-validation we then execute these calculations over all k folds
and average the results for each value of λ. We then pick the value λ� providing the
lowest average testing error, and fit the final model to the entire dataset by solving

minimize
b, w,�

P∑
p=1

(
b+ fT

p w− yp

)2 + λ�
(
‖w‖22 +

∑
θ∈�

θ2

)
(7.35)

7.3.3 Regularized cross-validation for classification

As with the case of regression, we may regularize any cost function like e.g., the softmax
cost with the �2 norm squared of all feature weights as

g (b, w,�) =
P∑

p=1

log

(
1+ e

−yp

(
b+fT

p w
))
+ λ

(
‖w‖22 +

∑
θ∈�

θ2

)
, (7.36)

where again if a kernelized fixed feature map is used we may write the above as

g (b, z) =
P∑

p=1

log

(
1+ e

−yp

(
b+hT

p z
))
+ λzTHz. (7.37)

Following the same format as with regression, to determine a proper value of λ ≥ 0 we
perform k-fold cross-validation for a discrete set of values in a range of λ ∈ [λmin, λmax]
and choose the value providing the lowest average testing error.

To determine the training/testing error for one value of λ on a single fold we first fit
to one fold’s training set, solving

minimize
b, w,�

∑
p∈train

log

(
1+ e

−yp

(
b+fT

p w
))
+ λ

(
‖w‖22 +

∑
θ∈�

θ2

)
, (7.38)
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and computing the training and testing errors on this fold:

Training error = 1
|train|

∑
p∈train

max
(

0, sign
(
−yp

(
b�λ + xT

p w�λ
)))

Testing error = 1
|test|

∑
p∈test

max
(

0, sign
(
−yp

(
b�λ + xT

p w�λ
))) (7.39)

where once again train and test denote the training and testing sets on this fold. Aver-
aging these values over all k folds we then pick the λ� with lowest average testing error,
and fit the corresponding model to the entire dataset as

minimize
b, w,�

P∑
p=1

log

(
1+ e

−yp

(
b+fT

p w
))
+ λ�

(
‖w‖22 +

∑
θ∈�

θ2

)
. (7.40)

7.4 Summary

In the first section of this chapter we described how kernel representations are used to
overcome the serious scaling issue of fixed feature bases with vector valued input. Fur-
thermore, we have seen how new kinds of fixed bases can be defined directly through a
kernelized representation. We have also showed how every machine learning cost func-
tion discussed in this book may be kernelized (permitting the use of any fixed basis
kernel).

In Section 7.2 we gave careful derivations of the gradient when using multilayer net-
work features. As we saw, this requires very careful bookkeeping, as well as repeated
use of the chain rule.

In the final section we detailed a variation of cross-validation based on the �2 regu-
larizer. This approach is founded on the same principles that led to the direct approach
described in previous chapters, but here k-fold cross-validation is used to determine the
proper value of the penalty parameter on the regularizer (instead of determining the best
number of basis features to use). This regularized approach to cross-validation is a much
more effective way of properly fitting regression/classification models employing either
kernelized fixed feature or deep net feature bases.

7.5 Further kernel calculations

7.5.1 Kernelizing various cost functions

Here we derive the kernelization of the three core classification models: softmax
cost/logistic regression, soft-margin SVMs, and the multiclass softmax classifier. Al-
though we will only describe how to kernelize the �2 regularizer along with the SVM
model, precisely the same argument can be made in combination with any other machine
learning model shown in Table 7.1. As with the derivation for Least Squares regression
shown in Section 7.1.2, here the main tool for kernelizing these models is again the
fundamental theorem of linear algebra described in Section 7.1.1.
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Throughout this section we will suppose that an arbitrary M-dimensional fixed feature
vector has been taken of the input of P points

{(
xp, yp

)}P
p=1 giving feature vectors fp =[

f1
(
xp
)

f2
(
xp
) · · · fM

(
xp
) ]T

for each xp.

Example 7.6 Kernelizing two-class softmax classification/logistic regression

Recall that the softmax perceptron cost function used with fixed feature mapped input
is given as

g (b, w) =
P∑

p=1

log

(
1+ e

−yp

(
b+fT

p w
))

. (7.41)

Using the fundamental theorem of linear algebra for any w we can then write w = Fz+r
where FTr = 0P×1. Making this substitution into the above and simplifying gives

g (b, z) =
P∑

p=1

log

(
1+ e

−yp

(
b+fT

p Fz
))

, (7.42)

and denoting the kernel matrix H = FTF (where hp = FT fp is the pth column of H) we
can then write the above in kernelized form as

g (b, z) =
P∑

p=1

log

(
1+ e

−yp

(
b+hT

p z
))

. (7.43)

This is the kernelized form of logistic regression shown in Table 7.1.

Example 7.7 Kernelizing soft-margin SVM/regularized margin-perceptron

Recall the soft-margin SVM cost/regularized margin-perceptron cost:

g (b, w) =
P∑

p=1

max2
(

0, 1− yp

(
b+ fT

p w
))
+ λ ‖w‖22 (7.44)

Applying the fundamental theorem of linear algebra we may then write w as w =
Fz + r where FTr = 0P×1. Substituting into the cost and noting that wTw =
(Fz+ r)T (Fz+ r) = zTFTFz+ rTr = zTHz+ ‖r‖22, denoting H = FTF as the kernel
matrix we may rewrite the above equivalently as

g (b, z, r) =
P∑

p=1

max2
(

0, 1− yp

(
b+ hT

p z
))
+ λzTHz+ λ ‖r‖22 . (7.45)

Note that since we are aiming to minimize the quantity above over (b, z, r), and since
the only term with r remaining is ‖r‖22, the optimal value of r is zero, for otherwise the
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value of the cost function would be larger than necessary. Therefore we can ignore r and
write the cost function above in kernelized form as

g (b, z) =
P∑

p=1

max2
(

0, 1− yp

(
b+ hT

p z
))
+ λzTHz, (7.46)

as originally shown in Table 7.1.

Example 7.8 Kernelizing the multiclass softmax loss

Recall that the multiclass softmax cost function is written as

g (b1, . . . , bC, w1, . . . , wC) =
C∑

c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e

(
bj−bc

)
+fT

p

(
wj−wc

)⎞⎟⎟⎠ . (7.47)

Rewriting each wj as wj = Fzj + rj, where FTrj = 0P×1 for all j, we can rewrite each

fT
p

(
wj − wc

)
term as fT

p

(
wj − wc

)
= fT

p

(
F
(
zj − zc

)+ (rj − rc
)) = fT

p F
(
zj − zc

)
.

And denoting H = FTF the kernel matrix we have that fT
p

(
wj − wc

)
= hT

p

(
zj − zc

)
and so the cost may be written equivalently (kernelized) as

g (b1, . . . , bC, z1, . . . , zC) =
C∑

c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e

(
bj−bc

)
+hT

p (zj−zc)

⎞⎟⎟⎠ , (7.48)

as shown in Table 7.1.

7.5.2 Fourier kernel calculations – scalar input

From Example 7.2 the (i, j)th element of the kernel matrix H is given as

Hij = 2
D∑

m=1
cos (2πmxi) cos

(
2πmxj

)+ sin (2πmxi) sin
(
2πmxj

)
. (7.49)

Writing this using the complex exponential notation (see Exercise 5.5), we have
equivalently

Hij =
D∑

m=−D
e2π im(xi−xj) − 1. (7.50)

If xi − xj is an integer then e2π im(xi−xj) = 1 and so clearly the above sums to 2D.
Supposing this is not the case, examining the summation alone we may write
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D∑
m=−D

e2π im(xi−xj) = e−2π iD(xi−xj)
2D∑

m=0

e2π im(xi−xj). (7.51)

Now the sum on the right hand side above is a geometric series, thus we have the above
is equal to

e−2π iD(xi−xj) 1− e2π i(xi−xj)(2D+1)

1− e2π i(xi−xj)
= sin

(
(2D+ 1) π

(
xi − xj

))
sin
(
π
(
xi − xj

)) , (7.52)

where final equality follows from the definition of the complex exponential. Because

in the limit as t approaches any integer value sin((2D+1)π t)
sin(π t)

= 2D + 1, which one can

show using L’Hospital’s rule from basic calculus, we may therefore generally write in
conclusion that

Hij = sin
(
(2D+ 1) π

(
xi − xj

))
sin
(
π
(
xi − xj

)) − 1, (7.53)

where at integer values of the input it is defined by the associated limit.

7.5.3 Fourier kernel calculations – vector input

Like the multidimensional polynomial basis element (see footnote 5 in the previous
chapter) with the complex exponential notation for a general N-dimensional input, each
Fourier basis element takes the form fm (x) = e2π im1x1 e2π im2x2 · · · e2π imN xN = e2π imT x

where m = [ m1 m2 · · · mN
]T

, a product of 1-dimensional basis elements. Fur-
ther a “degree D” sum contains all such basis elements where−D ≤ m1, m2, · · · , mN ≤
D, and one may deduce that there are M = (2D+ 1)N − 1 non-constant basis elements
in this sum.

The corresponding (i, j)th entry of the kernel matrix in this instance takes the form

Hij = fT
i fj =

⎛⎝ ∑
−D≤m1, m2, ··· , mN≤D

e2π imT(xi−xj)

⎞⎠− 1. (7.54)

Since ea+b = eaeb we may write each summand above as e2π imT(xi−xj) =
N∏

n=1
e2π imn(xin−xjn) and the entire summation as

∑
−D≤m1, m2, ··· , mN≤D

N∏
n=1

e2π imn(xin−xjn). (7.55)

Finally, one can show that the above can be written simply as
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∑
−D≤m1, m2, ··· , mN≤D

N∏
n=1

e2π imn(xin−xjn) =
N∏

n=1

(
D∑

m=−D

e2π im(xin−xjn)

)
. (7.56)

Since we already have that
D∑

m=−D
e2π im(xin−xjn) = sin((2D+1)π(xin−xjn))

sin(π(xin−xjn))
, the (i, j)th entry

of the kernel matrix can easily be calculated as

Hij =
N∏

n=1

sin
(
(2D+ 1) π

(
xin − xjn

))
sin
(
π
(
xin − xjn

)) − 1. (7.57)
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Overview of Part III

In the following two chapters we describe two general sets of tools for dealing with large
scale data. First, in Chapter 8, we introduce advanced gradient methods which extend
the standard gradient descent scheme first described in Chapter 2. These techniques help
us to deal with very large datasets directly by making use of more efficient algorithms. In
Chapter 9, on the other hand, we introduce general techniques for significantly reducing
the size of datasets prior to performing regression or classification.
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8 Advanced gradient schemes

In Chapter 2 we introduced two canonical approaches to unconstrained minimization,
namely, gradient descent and Newton’s method. In the current chapter we add to that
discussion by fully describing two popular step length rules, both of which provide
mathematically provable convergence to a stationary point for the gradient descent
algorithm. We then describe stochastic (or iterative) gradient descent, an important ex-
tension of the original gradient descent scheme that helps scale the algorithm to very
large datasets.

8.1 Fixed step length rules for gradient descent

In the following two sections we discuss two of the most popular ways of automatically
determining proper step lengths for each step of a gradient descent run, which we refer to
as step length rules. In particular we discuss two commonly used rules which guarantee,
mathematically speaking, convergence of the gradient descent algorithm to a station-
ary point: fixed and adaptive step length rules each of which has practical strengths
and weaknesses. While typically providing a conservative (i.e., small) step length that
is kept fixed for all iterations, the fixed step length rule discussed first provides both
a convenient choice for many of the cost functions described in this book, as well as
a benchmark by which to easily test larger fixed values. On the other hand, with the
adaptive rule discussed second we adaptively compute the step length at each gradi-
ent descent step by using local information from the part of the cost function near the
current step. This typically produces larger steps in practice than a fixed rule, meaning
fewer steps are necessary for convergence, but the determination of each step requires
computation.

8.1.1 Gradient descent and simple quadratic surrogates

Recall from Section 2.2.4 how the second order Taylor series expansion of a cost
function g centered at a point w0,

g
(

w0
)
+ ∇g

(
w0
)T (

w− w0
)
+ 1

2

(
w− w0

)T ∇2g
(

w0
) (

w− w0
)

, (8.1)

leads to a well-defined descent step known as Newton’s method. This is indeed the most
natural quadratic approximation to g at w0 that is available to us. However, as detailed
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w1 w1 w

g (w)

hα(w)hα(w)

w0

Fig. 8.1 Two quadratic functions approximating the function g around w0 given by (8.2). The value of α
is larger with the red quadratic than with the blue one.

in that section, there are potential difficulties in storing and even calculating the Hessian
matrix ∇2g

(
w0
)

for large scale problems. Still the idea of minimizing a function g by
“hopping down” the stationary points of quadratic approximations (also referred to as
surrogates), as opposed to the linear approximations/surrogates as employed by gradi-
ent descent, is a pleasing one with great intuitive appeal. So a natural question is: can
we replace the Hessian with a simpler quadratic term and produce an effective descent
algorithm?

For example, we may consider the following simple quadratic function:

hα (w) = g
(

w0
)
+∇g

(
w0
)T (

w− w0
)
+ 1

2α

∥∥∥w− w0
∥∥∥2

2
, (8.2)

where α > 0. This is just the second order Taylor series of g around w0 where we have
replaced the Hessian ∇2g

(
w0
)

with the simple diagonal matrix 1
α

IN×N . This kind of
quadratic is illustrated in Fig. 8.1 for two values of α. Note that the larger the α the
wider the associated quadratic becomes. Also, when w = w0 the last two terms on the
right hand side of (8.2) disappear and we have hα

(
w0
) = g

(
w0
)
.

Our simple quadratic surrogate hα has a unique global minimum which may be found
by checking the first order condition (see Section 2.1.2) by setting its gradient to zero,

∇hα (w) = ∇g
(

w0
)
+ 1

α

(
w− w0

)
= 0, (8.3)

and solving for w. Doing this we can compute the minimizer of hα , which we call w1, as

w1 = w0 − α∇g
(

w0
)

. (8.4)

Note the minimizer of the quadratic in Equation (8.2) is precisely a gradient descent step
at w0 with a step length of α. Therefore our attempt at replacing the Hessian with a very
simple quadratic, and locating the minimum of that quadratic, does not lead to a new
descent method but to the familiar gradient descent step. If we continue taking steps in
this manner the kth update is found as the minimum of the simple quadratic surrogate
associated with the previous update wk−1,

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.012
http:/www.cambridge.org/core


8.1 Fixed step length rules for gradient descent 221

w1 w2 w

g (w)

w0

Fig. 8.2 Gradient descent can be viewed simultaneously as using either linear or simple quadratic
surrogates to find a stationary point of g. At each step the associated step length defines both how
far along the linear surrogate we move before hopping back onto the function g, and at the same
time the width of the simple quadratic surrogate which we minimize to reach the same point on g.

hα (w) = g
(

wk−1
)
+∇g

(
wk−1

)T (
w− wk−1

)
+ 1

2α

∥∥∥w− wk−1
∥∥∥2

2
, (8.5)

where the minimum is given as the kth gradient descent step

wk = wk−1 − α∇g
(

wk−1
)

. (8.6)

Therefore, as illustrated in Fig. 8.2, we can interpret gradient descent as a method that
uses linear surrogates or simultaneously one that uses simple fixed curvature quadratic
surrogates to locate a stationary point of g. The chosen step length at the kth iteration
then determines how far along the linear surrogate we move, or equivalently the width
of the quadratic we minimize, in order to reach the next point on g.

Using the simple quadratic perspective of gradient descent we can naturally wonder if,
akin to the operation of Newton’s method (see e.g., Fig. 2.11), for a given cost function
g we can design a step length rule such that we can “hop down” the minima of the
associated quadratic surrogates to reach a stationary point of g. As we describe in the
remainder of this and the next section, we absolutely can.

8.1.2 Functions with bounded curvature and optimally conservative step length rules

What would happen if we chose a small enough step length α so that the curvature of the
associated quadratic surrogate, which would be fixed at each step of gradient descent,
matched the greatest curvature of the underlying cost function itself? As illustrated in
Fig. 8.3, this would force not only the minimum of each quadratic surrogate to lie above
the cost function, but the entire quadratic surrogate itself.1 While this is a conservative
choice of step length (and by conservative, we mean small) we refer to it as “optimally
conservative” because we can actually compute the maximum curvature of every cost

1 It is easy to show that the simple quadratic surrogate with α = 1
L , where L is defined as in Equation (8.50),

around wk−1 given by

h 1
L
(w) = g

(
wk−1

)
+∇g

(
wk−1

)T (
w− wk−1

)
+ L

2

∥∥∥w− wk−1
∥∥∥2

2
, (8.7)
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w1 w2 w

w

g (w)

g (w)

w0

w1 w2w0

Fig. 8.3 (top panel) Too conservative a fixed step length leads to smaller descent steps. (bottom panel)
Another conservative fixed step length where the curvature of its associated quadratic just
matches the greatest curvature of the hypothetical cost function while still lying entirely above
the function. Such a step length is referred to as “optimally conservative.” Note that while the
underlying cost here is drawn convex this applies to non-convex cost functions as well, whose
greatest curvature could be negative, i.e., on a concave part of the function.

function described in this book (or a reasonable approximation of it) analytically. There-
fore this choice of step length can be very convenient in practice and, moreover, using
this step length the gradient descent procedure is guaranteed (mathematically speaking)
to converge to a stationary point of g (see Section 8.4.1 for further details).

To define this step length formally, recall from Section 2.1.3 that the curvature of
a function g is encoded in its second derivative when g takes in scalar input w, and
more generally its matrix of second derivates or Hessian when g takes in vector valued
input w. More formally, if g has globally bounded curvature then there must exist an
L > 0 that bounds its second derivative above and below in the case of a scalar input
function

indeed lies completely above the function g at all points as shown in Fig. 8.3. Writing out the first order
Taylor’s formula for g centered at wk−1, we have

g (w) = g
(

wk−1
)
+∇g

(
wk−1

)T (
w− wk−1

)
+ 1

2

(
w− wk−1

)T ∇2g (c)
(

w− wk−1
)

, (8.8)

where c is a point on the line segment connecting w and wk−1. Since ∇2g � LIN×N we can bound the
right hand side of (8.8) by replacing ∇2g (c) with LIN×N , giving

g (w) ≤ g
(

wk−1
)
+ ∇g

(
wk−1

)T (
w− wk−1

)
+ L

2
‖w− wk−1‖22 = h 1

L
(w) , (8.9)

which indeed holds for all w.
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Table 8.1 Common cost functions and corresponding Lipschitz constants for each cost where the
optimally conservative fixed step length rule is given as α = 1

L . Note that the regularizer can be added to
any cost function in the middle column and the resulting Lipschitz constant is the sum of the two
Lipschitz constants listed here.

Cost function Form of cost function Lipschitz constant

Least Squares regression
P∑

p=1

(
x̃T

p w̃− yp

)2
L = 2

∥∥∥X̃
∥∥∥2

2

Softmax cost/logistic regression
P∑

p=1
log

(
1+ e−ypx̃T

p w̃
)

L = 1
4

∥∥∥X̃
∥∥∥2

2

Squared margin/soft-margin SVMs
P∑

p=1
max2

(
0, 1− ypx̃T

p w̃
)

L = 2
∥∥∥X̃
∥∥∥2

2

Multiclass softmax
C∑

c=1

∑
p∈c

log

⎛⎜⎜⎝1+
C∑

j=1
j�=c

e
x̃T

p

(
w̃j−w̃c

)⎞⎟⎟⎠ L = C
4

∥∥∥X̃
∥∥∥2

2

�2-regularizer λ ‖w‖22 L = 2λ

− L ≤ ∂2

∂w2
g (w) ≤ L, (8.10)

or bounds the eigenvalues of its Hessian in the general case of vector input

− LIN×N � ∇2g (w) � LIN×N . (8.11)

For square symmetric matrices A and B the notation A � B is shorthand for saying
that each eigenvalue of A is smaller than or equal to the corresponding eigenvalue of
B. When described in this mathematical way, functions satisfying the above for finite
values of L are said to have “bounded curvature” or equivalently to have a “Lipschitz
continuous gradient2” with Lipschitz constant L.

As mentioned, all of the cost functions discussed in this book have computable
maximum curvature (or some estimation of it) including the Least Squares costs, the
squared margin hinge and soft-margin SVM costs, as well as two-class and multiclass
soft-margin perceptrons. For convenience, in Table 8.1 we provide a complete list of Lip-
schitz constants for these cost functions (one can find associated calculations producing
these constants in Section 8.5). Note here3 that we write each cost function using the
compact vector notation commonly used throughout the book (see e.g., Examples 4.1

and 4.2). Also recall that the notation
∥∥∥X̃
∥∥∥2

2
refers to the so-called “spectral norm” of

2 In rare instances where g is only once differentiable but not twice (e.g., for the squared margin cost), it is

said to have a Lipschitz continuous gradient if ‖∇g(w)−∇g(v)‖2‖w−v‖2 ≤ L for any v and w in its domain.
3 Also note that the results shown here can be easily generalized to pair with fixed basis feature

transformations, but while cost functions paired with (deep) neural network features also typically have
bounded curvature, explicitly computing Lipschitz constants for them becomes very challenging as the
number of layers increases due to the difficulty in gradient/Hessian computations (as one can see by noting
the difficulty in simply computing the gradient in such instances, as in Section 7.2). Therefore the
Lipschitz constants reported here do not extend to the use of multilayer network basis features.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.012
http:/www.cambridge.org/core


224 Advanced gradient schemes

the matrix X̃ and denotes the largest eigenvalue of X̃X̃
T

(which is always the largest

eigenvalue of X̃
T

X̃ as well).

8.1.3 How to use the conservative fixed step length rule

The conservatively optimal Lipschitz constant step length rule will always work “right
out of the box” to produce a convergent gradient descent scheme, therefore it can be a
very convenient rule to use in practice. However, as its name implies and as described
previously, it is indeed a conservative rule by nature.4

Therefore in practice, if one has the resources, one should use the rule as a benchmark
to search for larger convergence-forcing fixed step length rules. In other words, with the
Lipschitz constant step length α = 1

L calculated one can easily test larger step lengths
of the form α = t · 1

L for any constant t > 1.

The conservatively optimal step length rule is convenient both because it works
“right out of the box,” and because it provides a benchmark for trying larger fixed
step length values in practice.

Depending on both the cost function and dataset, values of t ranging from 1 to large
values like 100 can work well in practice. For convenience we give the complete gradient
descent algorithm with this sort of fixed step length in Algorithm 8.1.

Algorithm 8.1 Gradient descent with fixed step length based on a conservatively optimal
fixed base.
Input: function g with Lipschitz continuous gradient, and initial point w0

k = 1
Find the smallest L such that −LI � ∇2g (w) � LI for all w in the domain of g
Choose a constant t ≥ 1
Set α = t · 1

L
Repeat until stopping condition is met:

wk = wk−1 − α∇g
(
wk−1

)
k← k + 1

Example 8.1 Conservative fixed rate base comparisons

In Fig. 8.4 we show the result of employing several fixed step length rules using the con-
servatively optimal Lipschitz base for minimizing the softmax cost/logistic regression,

4 Moreover, in many instances the Lipschitz constants shown in Table 8.1 are themselves conservative
estimates of the true maximum curvature of a cost function (that is, a larger than ideal estimate) due to
necessary mathematical inequalities involved in their derivation (see Section 8.5 for details).
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Fig. 8.4 The objective value resulting from the first 100 iterations of gradient descent applied to
minimizing the softmax cost over two simple two-class datasets (see text for further details).
Three constant step size rules were employed, with five runs for each (shown in lighter colors) as
well as their average (shown in darker versions of the matching color): the gradient Lipschitz
constant α = 1

L (guaranteed to force convergence, shown in black) was used as a base, along

with α = 10 · 1
L and α = 100 · 1

L (shown in magenta and green respectively). For the first dataset
(left panel) both of the larger step lengths produce faster convergence than the base, with the
largest providing extremely rapid convergence for this dataset. With the second dataset (right
panel) the medium step length produces the best result, with the largest step length producing a
divergent sequence of gradient steps.

employing both two-class datasets of P = 100 points each first shown in Fig. 4.3. In
particular, gradient descent was run using three fixed step length rules: the Lipschitz
step length α = 1

L (where L is as shown in Table 8.1), as well as α = 10 · 1
L and

α = 100 · 1
L . Shown in the figure (left panel) is the objective or cost function value for

the first 100 iterations of five runs with each step length (shown in light black, magenta,
and green respectively), as well as their average shown in bolder versions of the colors.

With the first dataset (left panel), both fixed step length rules larger than the Lipschitz
base produce more rapid convergence, with the step length 100 times that of the Lips-
chitz base producing extremely rapid convergence. Conversely, with the second dataset
(right panel), only the medium step length rule produces more rapid convergence than
the Lipschitz base, with the 100 times rate producing a divergent sequence of steps.

8.2 Adaptive step length rules for gradient descent

We have just seen how gradient descent can be thought of as a geometric minimization
technique that, akin to Newton’s method, works by hopping down the global minima of
simple quadratic surrogates towards a function’s minimum. In this section we continue
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226 Advanced gradient schemes

this geometric intuition in order to develop a commonly used adaptive step length rule
for gradient descent, which is a convenient and well-performing alternative to the fixed
step length rule previously described.

8.2.1 Adaptive step length rule via backtracking line search

Using the quadratic surrogate perspective of gradient descent, we can now construct a
very simple yet powerful and generally applicable method for adaptively determining
the appropriate step length for gradient descent at each iteration. Recall that in the pre-
vious section we saw how the kth gradient descent step is given as the global minimizer
of the simple quadratic surrogate hα given in Equation (8.5). Note that if α is chosen in
a way that the minimum of hα lies above g

(
wk
)

we have, using the definition of hα and
plugging in wk = wk−1 − α∇g

(
wk−1

)
for w,

g
(

wk
)
≤ g

(
wk−1

)
+ ∇g

(
wk−1

)T (
wk − wk−1

)
+ 1

2α

∥∥∥wk − wk−1
∥∥∥2

2
. (8.12)

Simplifying5 the right hand side gives

g
(

wk
)
≤ g

(
wk−1

)
− α

2

∥∥∥∇g
(

wk−1
)∥∥∥2

2
. (8.13)

Note that as long as we have not reached a minimum of g, the term α
2

∥∥∇g
(
wk−1

)∥∥2
2

is always positive and we have descent at each step g
(
wk
)
< g

(
wk−1

)
. While this

conclusion was based on our assumption that the global minimum of hα lay above g, we
can in fact conclude the converse as well. That is, if the inequality in (8.13) holds for
an α > 0 then the minimum of the associated quadratic hα lies above g, and the related
gradient descent step decreases the objective value, i.e., g

(
wk
)
< g

(
wk−1

)
.

Therefore the inequality in (8.13) can be used as a tool, referred to as backtracking
line search, for finding an appropriate step length α at each step in performing gradient
descent (which leads to a provably convergent sequence of gradient steps to a stationary
point of g, see Section 8.4.2 for further details). That is, we can test a range of decreasing
values for the learning rate until we find one that satisfies the inequality, or equivalently
a simple quadratic surrogate whose minimum lies above the corresponding point on g,
as illustrated in Fig. 8.5.

One common way of performing this search is to initialize a step length α > 0 and
check that the desired inequality,

g
(

wk−1 − α∇g
(

wk−1
))
≤ g

(
wk−1

)
− α

2

∥∥∥∇g
(

wk−1
)∥∥∥2

2
, (8.14)

holds. If it does not, then we multiply α by some number t ∈ (0, 1), set α ←− tα, and
try again until the inequality is satisfied. Note that the larger t is set the more fine grained

5 Making the substitution wk = wk−1 − α∇g
(

wk−1
)

the right hand side becomes g
(

wk−1
)

−α
∥∥∥∇g

(
wk−1

)∥∥∥2

2
+ α

2

∥∥∥∇g
(

wk−1
)∥∥∥2

2
= g

(
wk−1

)
− α

2

∥∥∥∇g
(

wk−1
)∥∥∥2

2
.
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w1 w

g (w)

w0

Fig. 8.5 A geometric illustration of backtracking line search. We begin with a relatively large initial guess
for the step length, which generates the larger red quadratic, whose minimum may not lie above
g. The guess is then adjusted downwards until the minimum of the associated quadratic (in blue)
lies above the function.

the search will be. Also the terms g
(
wk−1

)
and

∥∥∇g
(
wk−1

)∥∥2
2 in (8.14) need only be

computed a single time, making the procedure very efficient, and the same initial α and
t can be used at each gradient descent step.

Furthermore, this sequence can be shown to be mathematically convergent to a sta-
tionary point of g, as detailed in Section 8.4.2. For convenience the backtracking line
search rule is summarized in Algorithm 8.2.

Algorithm 8.2 Gradient descent with backtracking line search

Input: starting point w0, damping factor t ∈ (0, 1), and initial α > 0
k = 1
Repeat until stopping condition is met:

αk = α
While g

(
wk−1 − αk∇g

(
wk−1

))
> g

(
wk−1

)− αk
2

∥∥∇g
(
wk−1

)∥∥2
2

αk ←− tαk

End while
wk = wk−1 − αk∇g

(
wk−1

)
k← k + 1

8.2.2 How to use the adaptive step length rule

Like the optimally conservative fixed step length, backtracking line search is a conve-
nient rule for determining step lengths at each iteration of gradient descent that works
right out of the box. Furthermore, because each step length is determined using the lo-
cal curvature of g, the backtracking step length will typically be superior (i.e., larger)
than that of the conservative fixed step length described in Section 8.1. However each
gradient step using backtracking line search, compared to using the fixed step length
rule, typically includes higher computational cost due to the search for a proper step
length.
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The adaptive step length rule works right out of the box, and tends to produce
large step lengths at each iteration. However, each step length must be actively
computed.

Due to this tradeoff it is difficult to judge universally which rule (conservative or adap-
tive) works best in practice, and both are widely used. The choice of diminishing
parameter t ∈ (0, 1) in Algorithm 8.2 provides a tradeoff between computation and
step size with backtracking line search. The larger the diminishing parameter is set the
more careful is the search for each step length (leading to more computation) but the
larger will be the final step length chosen, while the converse holds for smaller values
of t.

Example 8.2 Simple comparison of adaptive and optimal conservative step length rules

In Fig. 8.6 we show the result of 100 iterations of gradient descent using the back-
tracking line search step size rule as well as the optimally conservative step length
rule discussed in Section 8.1. The dataset used here is a two-class dataset consisting
of P = 10 000 points (see Example 8.4 for further details), and the cost function used
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Fig. 8.6 The convergence of gradient descent using conservative fixed and backtracking line search rules
on a two class classification dataset (see text for further details). Shown here are the objective
values per iteration for each rule, with runs using the backtracking line search and fixed step
lengths shown in magenta and black respectively (lighter colored curves indicate values over a
single run of gradient descent, with the two darker colored curves showing the respective average
value over five runs). As expected the backtracking runs typically display greater decrease per
iteration than runs employing the fixed step length rule.
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was the softmax cost. Gradient descent was run five times with each step length rule,
and the objective value per iteration is shown in the figure (with the backtracking runs
in magenta and the runs with fixed step length in black). As expected the adaptive back-
tracking line search rule, due to its larger individual step lengths, leads to more rapid
decrease in the cost function value per iteration.

8.3 Stochastic gradient descent

As the size of a dataset grows, storing it in active memory in order to just compute
a gradient becomes challenging if not impossible, making the standard gradient de-
scent scheme particularly ineffective in practice for large datasets. In this section we
introduce an extension of gradient descent, known as stochastic (or iterative) gradi-
ent descent (see footnote 8), which not only completely overcomes the memory issue
but, for large datasets, is also significantly more effective computationally speaking in
practice than the standard gradient method. In particular, the stochastic gradient de-
scent provides one of the best ways of dealing with the large datasets often employed
in image/audio/text-based learning tasks when paired with both non-convex cost func-
tions (e.g., any regression/classification cost employing a neural network feature map),
as well as convex costs where storage is an issue or when the feature space of a dataset
is too large to employ Newton’s method.

Throughout the section we will discuss minimization of cost functions over a dataset
of P points

{(
xp, yp

)}P
p=1, where the yp are continuous in the case of regression, or

yp ∈ {−1, 1} in the case of two class classification (although the method described here
can also be applied to multiclass classification as well), and for simplicity we will make

use of the compact optimization notation x̃p =
[

1
xp

]
w̃ =

[
b
w

]
introduced in e.g.,

Examples 4.1 and 4.2.
Finally, note that in what follows one may replace each input data point with any

M-dimensional fixed or neural network feature vector (as in Chapters 5 and 6) with no
adjustment to the general ideas described here.

8.3.1 Decomposing the gradient

As we have seen, the cost function of a predictive model is written as a sum of individual
costs over each data point as

g
(
w̃
) = P∑

p=1

h
(
w̃, x̃p

)
. (8.15)

For example, the Least Squares regression and softmax perceptron costs each take this
form as

g
(
w̃
) = P∑

p=1

(
x̃T

p w̃− yp

)2
, g

(
w̃
) = P∑

p=1
log
(

1+ e−ypx̃T
p w̃
)

, (8.16)
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where h
(
w̃, x̃p

) = (
x̃T

p w̃− yp

)2
and h

(
w̃, x̃p

) = log
(

1+ e−ypx̃T
p w̃
)

respectively.

Because of this, when we minimize a predictive modeling cost via gradient descent, the
gradient itself is a summation of the gradients of each of the P summands. For example,
the gradient of the softmax cost may be written as

∇g
(
w̃
) = P∑

p=1

∇h
(
w̃, x̃p

) = − P∑
p=1

σ
(
−ypx̃T

p w̃
)

ypx̃p, (8.17)

where in this instance ∇h
(
w̃, x̃p

) = −σ (−ypx̃T
p w̃
)

ypx̃p with σ (·) being the logistic

sigmoid function (as first defined in Section 3.3.1). When minimizing any predictive
modeling cost via gradient descent we can therefore think about the kth gradient descent
step in terms of these individual gradients as

w̃k = w̃k−1 − αk∇g
(

w̃k−1
)
= w̃k−1 − αk

P∑
p=1

∇h
(

w̃k−1, x̃p

)
, (8.18)

where αk is an appropriately chosen step length such as those discussed in the previ-
ous sections. As described in the introduction to this section, for large datasets/values
of P this gradient can be difficult or even impossible to produce given memory
limitations.

Given this memory issue and the fact that the gradient decomposes over each data
point, it is natural to ask if, in place of a single gradient step over the entire dataset,
whether or not we can instead take a sequence of P shorter gradient steps in each data
point individually. In other words, instead of taking a single full gradient step as in
Equation (8.18), at the kth iteration of the procedure, will taking P smaller gradient
steps in each data point similarly lead to a properly convergent method (that is, a method
convergent to a stationary point of the cost function g

(
w̃
)
)? If this were the case then

we could resolve the memory problem discussed in the introduction to this section, as
data would need only to be loaded into active memory a single point at a time.

Indeed with the appropriate choice of step length this procedure, called stochastic
gradient descent, is provably convergent (for a formal proof see Section 8.4.3).

8.3.2 The stochastic gradient descent iteration

More formally, the analog of the kth iteration of the full gradient scheme shown in
Equation (8.18) consists of P sequential point-wise gradient steps written as

w̃k,p = w̃k,p−1 − αk∇h
(

w̃k,p−1, x̃p

)
p = 1 . . .P . (8.19)

In analogy with the kth full gradient step, here we have used the double superscript
w̃k,p which reads “the pth individual gradient step of the kth stochastic gradient descent
iteration.” In this notation the initial point of the kth iteration is written as w̃k,0, the

corresponding sequence of P individual gradient steps as
{

w̃k,1, w̃k,2 . . . , w̃k,P
}

, and the

final output of the kth iteration (i.e., the Pth stochastic step) as w̃k,P = w̃k+1,0. After
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completing the kth iteration we perform the (k + 1)th iteration by cycling through the
data in precisely the same order, taking individual gradient steps for p = 1 . . .P.

To reaffirm the vocabulary being used here, with the standard gradient descent we use
“step” and “iteration” interchangeably, i.e., each iteration consists of one full gradient
step in all P data points simultaneously as shown in Equation (8.18). Conversely, with
the stochastic method we refer to a single “iteration” as consisting of all P individual
gradient steps, one in each data point, executed sequentially for p = 1 . . .P as shown in
Equation (8.19).

Example 8.3 Comparing stochastic and standard gradient descent on a simulated
dataset

As an example, in Fig. 8.7 we show the result of applying 25 iterations of the standard
gradient descent method with a fixed conservative step length (discussed in Section 8.1)
shown in black, and an adaptively chosen one at each iteration (discussed in Section 8.2)
shown in magenta, as well as the stochastic gradient descent method shown in green (we
discuss the choice of step length for the iterative gradient method in the next section).

Fig. 8.7 The objective value of the first 25 iterations of stochastic gradient descent (shown in green),
compared with standard gradient descent with conservative fixed step length (black) and
adaptively chosen step length (magenta) (all three algorithms used the same initialization). Each
iteration of the stochastic gradient method consists of P sequential gradient steps, one in each of
the data points, as shown in Equation (8.19). Note how the stochastic method converges rapidly
in the first few iterations, outperforming both standard gradient runs, when far from a point of
convergence. See text for further details.
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The softmax cost function is minimized here in order to perform logistic regression on
the dataset6 of P = 100 points first shown in the left panel of Fig. 4.3.

In Fig. 8.7 we show the objective value at all iterations of the algorithm. For the
stochastic gradient method in each case we show these values for each step of the algo-
rithm over all 25 of its iterations, for a total of 2500 individual steps (since P = 100 and
25 iterations were performed). Interestingly, we can see that while the stochastic gradi-
ent method has roughly the same computational cost as the standard gradient method, it
actually outperforms the fixed step length run and, at least for the first 12 iterations, the
adaptive run as well.

8.3.3 The value of stochastic gradient descent

The result of the previous example is indicative of a major computational advantage
of stochastic gradient descent: when far from a point of convergence the stochas-
tic method tends in practice to progress much faster towards a solution compared
to standard gradient descent schemes. Because moderately accurate solutions (pro-
vided by a moderate amount of minimization of a cost function) tend to perform
reasonably well in machine learning applications, and because with large datasets
a random initialization will tend to lie far from a convergent point, substantial
empirical evidence (see e.g., [18, 21] and references therein) suggests that stochas-
tic gradient descent is often far more effective in practice (than standard gradient
descent) for dealing with large datasets.7 In many such instances even a single iter-
ation (i.e., one gradient step through each point of the dataset) can provide a good
solution.

Stochastic gradient descent tends to work extremely well with large datasets.

Example 8.4 Stochastic gradient descent performed on a large dataset

In Fig. 8.8 we show the result of 100 iterations of gradient descent on a P = 10 000
two class classification dataset on which the softmax cost was used to perform logistic
regression. This data was generated for the task of face detection (see Example 1.4)

6 When applying stochastic gradient descent it is common practice to first randomize the order of the data
prior to running the algorithm. In practice this has been found to improve convergence of the method, and
is done with the data in this example.

7 Note that due to the manner in which MATLAB/Octave currently performs loops an implementation of
stochastic gradient descent can run slowly. However, in other programming languages like C++ or Python
this is not a problem.
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Fig. 8.8 The objective value of the first 100 iterations of stochastic gradient descent (shown in green),
compared with standard gradient descent with conservatively optimal fixed step length (black)
and adaptively chosen step length (magenta). In this instance a real two class classification
dataset is used consisting of P = 10 000 points (see text for further details). 15 runs of each
method are shown as the lighter colored curves, with their averages shown in bold. Here the
stochastic gradient descent scheme is massively superior to both standard gradient methods in
terms of the rapidity of its convergence.

and consists of 3000 facial images, the remainder consisting of examples of non-face
images.

Shown in the figure is the objective or cost function value of two runs of the standard
gradient descent scheme, the first using the conservatively optimal fixed step length and
the second using the adaptive rule, along with the corresponding cost function value of
the stochastic gradient procedure. Here the results of 15 runs of each method are shown
in lighter colors, where in each instance a shared random initialization is used by all
three methods, and the average over all runs of each method is highlighted as a darker
curve. We can see that the stochastic gradient descent scheme is massively superior
on this large dataset in terms of the rapidity of its convergence when compared to the
standard gradient method.

8.3.4 Step length rules for stochastic gradient descent

By slightly extending the convergence-forcing mechanism used in determining a step
size rule for standard gradient descent one can conclude that a diminishing step size can
similarly guarantee mathematically the convergence of the stochastic gradient method
(see Section 8.4.3 for a formal derivation). More precisely, a step size rule satisfying
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the following two requirements is guaranteed to cause the stochastic gradient descent
procedure to converge to a stationary point:

1 The step size must diminish as the number of iterations increases:
αk −→ 0 as k −→∞.

2 The sum of the step sizes is not finite: i.e.,
∞∑

k=1
αk = ∞.

Common choices of step size in practice with the iterative gradient method include
αk = 1

k and αk = 1√
k
, or variations of these (see e.g., [21] for further information about

how to choose particular variations of these step lengths in practice). The former of these
rules, αk = 1

k , was used in both examples shown in Fig. 8.7 and 8.8.

8.3.5 How to use the stochastic gradient method in practice

Even though a diminishing step length mathematically ensures convergence, like the
optimal conservative fixed step length rules discussed for standard gradient descent in
Section 8.1, the diminishing step length rule for the stochastic gradient method is con-
servative in nature. Again as with the standard gradient this does not reduce the utility
of the diminishing step length rule, it is indeed very useful as it can always be counted
on to work right out of the box in practice, and it is therefore commonly used.

However, be aware that in practice one may successfully use other step length rules
such as fixed step lengths that, while they do not ensure convergence theoretically, work
very well in practice. For example, fixed step lengths (tuned properly on a given dataset)
are also commonly used in practice with the stochastic gradient method.

Example 8.5 Comparison of diminishing versus (tuned) fixed step lengths on a large
dataset

In Fig. 8.9 we show several runs of the stochastic gradient method to minimize the soft-
max cost for the dataset of P = 10 000 two-class data points first described in Example
8.4. In particular, we compare the result of k = 100 total iterations using three distinct
step-size rules: two diminishing step sizes, αk = 1

k and αk = 1√
k
, and the constant step

size of αk = 1
3 for all k. We run stochastic gradient descent with each step size rule five

times each, in each instance providing the same random initialization to each version of
the algorithm. As can be seen in the figure, where we show the objective value at each
iteration of the stochastic method for runs of all three step length choices, the run with
αk = 1√

k
provides better performance than αk = 1

k , but the constant step size αk = 1
3

runs outperform both diminishing rules overall.
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Fig. 8.9 The objective value of the first k = 1–100 iterations of three versions of stochastic gradient
descent with diminishing step-size rules, αk = 1

k and αk = 1√
k

, and a constant step size αk = 1
3

for all k (shown in light black, magenta, and green respectively, with the average of the
runs shown in bold of each color). The two-class classification dataset used here consists
of P = 10 000 data points (see text for further details). In this instance the constant step
size-runs tend to outperform those governed by the provably convergent diminishing step-size
rules.

8.4 Convergence proofs for gradient descent schemes

To set the stage for the material of this section, it will be helpful to briefly point out the
specific set of mild conditions satisfied by all of the cost functions we aim to minimize
in this book, as these conditions are relied upon explicitly in the upcoming convergence
proofs. These three basic conditions are listed below:

1 They have piecewise-differentiable first derivative.

2 They are bounded from below, i.e., they never take on values at −∞.

3 They have bounded curvature.

While the first condition is specific to the set of cost functions we discuss, in particular
so that we include the squared margin perceptron which is not smooth and indeed has
piecewise differentiable first derivative while the other costs are completely smooth, the
latter two conditions are very common assumptions made in the study of mathematical
optimization more generally.
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8.4.1 Convergence of gradient descent with Lipschitz constant fixed step length

With the gradient of g being Lipschitz continuous with constant L, from Section 8.1
we know that at the kth iteration of gradient descent we have a corresponding quadratic
upper bound on g of the form

g (w) ≤ g
(

wk−1
)
+ ∇g

(
wk−1

)T (
w− wk−1

)
+ L

2
‖w− wk−1‖22, (8.20)

where indeed this inequality holds for all w in the domain of g. Now plugging the form
of the gradient step wk = wk−1 − 1

L∇g
(
wk−1

)
into the above and simplifying gives

g
(

wk
)
≤ g

(
wk−1

)
− 1

2L
‖∇g

(
wk−1

)
‖22, (8.21)

which, since ‖∇g
(
wk−1

) ‖22 ≥ 0, indeed shows that the sequence of gradient steps with
conservative fixed step length is decreasing. To show that it converges to a stationary
point where the gradient vanishes we subtract off g

(
wk−1

)
from both sides of the above,

and sum the result over k = 1 . . .K giving

K∑
k=1

g
(

wk
)
− g

(
wk−1

)
= g

(
wK)− g

(
w0
)
≤ − 1

2L

K∑
k=1

∥∥∥∇g
(

wk−1
)∥∥∥2

2
. (8.22)

Note importantly here that since g is bounded below so too is g
(
wK
)

for all K, and this
implies that, taking K −→∞, we must have that

∞∑
k=1

∥∥∥∇g
(

wk−1
)∥∥∥2

2
<∞. (8.23)

If this were not the case then we would contradict the assumption that g has a finite
lower bound, since Equation (8.22) would say that g

(
wK
)

would be negative infinity!
Hence the fact that the infinite sum above must be finite implies that as k −→ ∞ we
have that ∥∥∥∇g

(
wk−1

)∥∥∥2

2
−→ 0, (8.24)

or that the sequence of gradient descent steps with step length determined by the Lip-
schitz constant of the gradient of g produces a vanishing gradient. Or, in other words,
that this sequence indeed converges to a stationary point of g.

Note that we could have made the same argument above using any fixed step length
smaller than 1

L as well.

8.4.2 Convergence of gradient descent with backtracking line search

With the assumption that g has bounded curvature, stated formally in Section 8.1.2 that
g has a Lipschitz continuous gradient with some constant L (even if we cannot calculate
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L explicitly), it follows that with a fixed choice of initial step length α > 0 and t ∈ (0, 1)
for all gradient descent steps, we can always find an integer n0 such that

tn0α ≤ 1

L
. (8.25)

Thus we always have the lower bound on an adaptively chosen step length t̂ = tn0α,
meaning formally that the backtracking found step length at the kth gradient descent
step will always be larger than this lower bound, i.e.,

αk ≥ t̂ > 0. (8.26)

Now, recall from Section 8.2 that by running the backtracking procedure at the kth
gradient step we produce a step length αk that ensures the associated quadratic upper
bound

g (w) ≤ g
(

wk−1
)
+ ∇g

(
wk−1

)T (
w− wk−1

)
+ 1

2αk
‖w− wk−1‖22 (8.27)

holds for all w in the domain of g. Plugging the gradient step wk = wk−1−αk∇g
(
wk−1

)
into the above and simplifying we have equivalently that

g
(

wk
)
≤ g

(
wk−1

)
− αk

2

∥∥∥∇g
(

wk−1
)∥∥∥2

2
, (8.28)

which indeed shows that that step produces decrease in the cost function. To show that
the sequence of gradient steps converges to a stationary point of g we first subtract off
g
(
wk−1

)
and sum the above over k = 1 . . .K which gives

K∑
k=1

g
(

wk
)
− g

(
wk−1

)
= g

(
wK)− g

(
w0
)
≤ −1

2

K∑
k=1

αk

∥∥∥∇g
(

wk−1
)∥∥∥2

2
. (8.29)

Since g is bounded below so too is g
(
wK
)

for all K, and therefore taking K −→∞ the
above says that we must have

∞∑
k=1

αk

∥∥∥∇g
(

wk−1
)∥∥∥2

2
<∞. (8.30)

Now, we know from Equation (8.26) that since each αk ≥ t̂ > 0 for all k, this implies
that we must have that

∞∑
k=1

αk = ∞. (8.31)

And this is just fine, because in order for Equation (8.30) to hold under this condition
we must have that ∥∥∥∇g

(
wk−1

)∥∥∥2

2
−→ 0, (8.32)

as k −→ ∞, for otherwise Equation (8.30) could not be true. This shows that the
sequence of gradient steps determined by backtracking line search converges to a
stationary point of g.
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8.4.3 Convergence of the stochastic gradient method

To understand what kind of step length rule we will need to mathematically force the
stochastic gradient method to converge we first relate the kth iteration of stochastic gra-
dient descent to a full standard gradient step. This is accomplished by unraveling the
definition of the gradient iteration given in Equation (8.19), and writing out the kth
iteration (note here that we ignore the bias term for ease of exposition) as

wk,0 = wk−1,P = wk−1,P−1 − αk∇h
(
wk−1,P−1, xP

)
= . . . = wk−1,0 − αk

P∑
p=1
∇h
(
wk−1,p−1, xp

)
.

(8.33)

Next, by adding and subtracting the full gradient at wk−1,0, that is ∇g
(
wk−1,0

) =
P∑

p=1
∇h
(
wk−1,0, xp

)
, weighted by the step length αk, and by referring to

εk =
P∑

p=2

(
∇h
(

wk−1,p−1, xp

)
−∇h

(
wk−1,0, xp

))
, (8.34)

the gradient iteration can be rewritten equivalently as

wk,0 = wk−1,0 − αk
(∇g

(
wk−1,0

)+ εk
)

. (8.35)

In other words, the above expresses the kth gradient iteration as a standard gradient
step, with the additional “error” term εk. Since we have expressed the kth iteration of
the stochastic gradient method in this manner, to simplify notation from here on we
remove the redundant second superscript, writing the above more simply as

wk = wk−1 − αk
(∇g

(
wk−1

)+ εk
)

. (8.36)

This can be thought of as a “noisy” gradient step.8 As we have seen previously, a prop-
erly designed step size αk that forces the gradient ∇g

(
wk−1

)
to vanish for large k is that

∞∑
k=1
αk = ∞, where each αk ≤ 1

L . However, in order for the stochastic gradient method

to converge to a stationary point of g we will also need the error εk to vanish.
By analyzing εk one can show9 that the norm of the kth error term ‖εk‖2 is in fact

bounded by a constant proportional to the corresponding step length αk, i.e.,

‖εk‖2 ≤ αkS (8.41)

8 The mathematical form of Equation (8.36), as a noisy gradient step, arises more generally in the case
where the gradient of a function cannot be effectively computed (i.e., the only gradient calculation
available is polluted by noise). In this more general instance, εk is typically modeled using a random
variable, in which case the step defined in Equation (8.36) is referred to as a stochastic gradient descent.
Because of this similarity in mathematical form the iterative gradient method is also often referred
to as stochastic gradient descent, although the error εk is not random but given explicitly by
Equation (8.34).

9 Using the definition of the error, the triangle inequality, and the fact that each h has Lipschitz continuous
gradient with constant Lh, we have that

‖εk‖2 ≤
P∑

p=2

∥∥∥(∇h
(

wk−1,p−1, xp

)
−∇h

(
wk−1,0, xp

))∥∥∥
2
≤ Lh

P∑
p=2

∥∥∥wk−1,p−1 − wk−1,0
∥∥∥

2
. (8.37)
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for some constant S. Therefore, by adding the condition to the step size scheme that
αk −→ 0 as k −→ ∞ we can force the error term ‖εk‖ −→ 0 as well. Altogether
then our conditions on the step size for convergence of the stochastic gradient method

include that
∞∑

k=1
αk = ∞ (which forces the gradient to vanish) and αk −→ 0 as k grows

large (which forces the error to vanish). Any diminishing sequence like e.g., αk = 1
k or

αk = 1√
k

etc., satisfies such requirements. However, these two kinds of step-size rules
are commonly used in practice as they balance our desire to cause both the gradient and
error term to vanish (while slower or faster diminishing step size favors one term over
the other practically speaking).

8.4.4 Convergence rate of gradient descent for convex functions with fixed step length

Suppose, in addition to g having bounded curvature with Lipschitz constant L, that g is
also convex. As illustrated in Fig. 8.10, this implies that for any w, g (w) is majorized by
(or lies underneath) a quadratic and minorized by (or lies over) a linear function. With
convexity we can, in addition to assuring convergence of gradient descent, more easily
calculate a convergence rate of gradient descent.

Now that we know the sequence is decreasing, all that is left is to make sure that
the sequence converges to a global minimum of g, say w�. We would like to show that
g
(
wk
)

converges to g (w�) > −∞ as k increases. Looking at the quadratic upper bound
on g

(
wi
)

centered at wi−1, as in (8.21), we have

g
(

wk
)
≤ g

(
wk−1

)
− 1

2L
‖∇g

(
wk−1

)
‖22. (8.42)

By using the definition of the stochastic gradient step we can roll back each wk−1,p−1 to wk−1,0 by

expanding first wk−1,p−1 = wk−1,p−2 − αk∇h
(

wk−1,p−2, xp−1

)
and then doing the same to wk−1,p−2,

etc., giving

wk−1,p−1 − wk−1,0 = −αk

p−1∑
t=1

∇h
(

wk−1,t−1, xt

)
. (8.38)

Substituting this into the right hand side of Equation (8.37) for each p = 1 . . .P then gives the bound

‖εk‖2 ≤ Lh

P∑
p=1

∥∥∥∥∥∥αk

p∑
t=1

∇h
(

wk−1,t−1, xt

)∥∥∥∥∥∥
2

≤ Lhαk

P∑
p=1

p∑
t=1

∥∥∥∇h
(

wk−1,t−1, xt

)∥∥∥
2

, (8.39)

where the right hand side follows by the triangle inequality and the definition of the norm ‖αz‖2 = α ‖z‖2
when α ≥ 0. Finally, because we have chosen αk such that the gradient ∇g

(
wk−1

)
will vanish, or in other

words that
{

wk−1
}∞

k=1
converges, and because each set of points

{
wk−1,t−1

}P

t=1
lies in a neighborhood

of wk−1 for each k, we can say that the individual gradients
∥∥∥∇h

(
wk−1,t−1, xt

)∥∥∥
2

are bounded. Hence

we can say that there is some fixed constant S such that Lh

P∑
p=1

p∑
t=1

∥∥∥∇h
(

wk−1,t−1, xt

)∥∥∥
2
≤ S and

therefore conclude that

‖εk‖2 ≤ αkS. (8.40)
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wv

g (w)

Fig. 8.10 The conservatively optimal quadratic form (in blue) majorizes the convex function g at v, which
(since it is convex) is also minorized by a linear function (in green) at each v.

The first order definition of convexity at w�gives the inequality

g (w)+ ∇g (w)
(
w� − w

) ≤ g
(
w�
)

. (8.43)

Plugging in w = wi−1 into the right side and rearranging gives

g
(

wk−1
)
≤ g

(
w�
)+∇g

(
wk−1

)T (
wk−1 − w�

)
. (8.44)

Now we use this upper bound for g
(
wi−1

)
on the right hand side of (8.42) to obtain

g
(

wk
)
≤ g

(
w�
)+∇g

(
wk−1

)T (
wk−1 − w�

)
− 1

2L
‖∇g

(
wk−1

)
‖22. (8.45)

Bringing g (w�) to the left hand side, and using the fact that wk = wk−1 − 1
L∇g

(
wk−1

)
implies that ∇g

(
wk−1

) = L
(
wk−1 − wk

)
, simple rearrangement gives that the above is

equivalent to

g
(

wk
)
− g

(
w�
) ≤ L

2

(
‖wk−1 − w�‖22 − ‖wk − w�‖22

)
. (8.46)

Now averaging both sides over the first k steps gives the corresponding inequality

1

k

k∑
i=1

(
g
(
wi)− g

(
w�
)) ≤ L

2k

(
‖w0 − w�‖22 − ‖wk − w�‖22

)
. (8.47)

Note that because
{
g
(
wi
)}k

i=1 is decreasing, the left hand side itself has lower bound
given by g

(
wk
) − g (w�), and the right side has upper bound given by L

2k‖w0 − w�‖22.
Therefore we have

g
(

wk
)
− g

(
w�
) ≤ L

2k
‖w0 − w�‖22. (8.48)

The right hand side goes to zero as k −→ ∞ with the rate of 1
k . In other words, to get

within 1
k of the global optimum takes in the order of k steps.
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8.5 Calculation of computable Lipschitz constants

Here we provide the calculations associated with several of the Lipschitz constants re-
ported in Table 8.1. In particular instances it will be convenient to express curvature in
terms of the curvature function, which for a general cost function g taking input w is
given as

ψ (z) = zT
(
∇2g (w)

)
z. (8.49)

As was the case with convexity (see Exercise 2.11), the greatest curvature given by the
Lipschitz constant L can be defined in terms of the eigenvalues of ∇2g (w) in Equation
(8.11) or the curvature function above. In particular, the greatest curvature of g is equiv-
alently given by the minimum and maximum values taken on by its associated curvature
function on the unit sphere where ‖z‖2 = 1. Formally this is the smallest nonnegative L
such that

− L ≤ ψ (z) ≤ L for any z where ‖z‖2 = 1 (8.50)

holds over the domain of g. Here L is precisely the Lipschitz constant defined in Equa-
tion (8.11). One can show fairly easily that the two definitions of Lipschitz constant are
indeed equivalent (see Exercise 2.11).

Example 8.6 Least Squares for linear regression

The Least Squares cost function for linear regression g
(
w̃
) = ‖X̃T

w̃−y‖22 has an easily

calculable gradient and Hessian, given respectively by ∇g
(
w̃
) = 2X̃

(
X̃

T
w̃− y

)
and

∇2g
(
w̃
) = 2X̃X̃

T
. Because the Least Squares cost is convex we know that its Hessian

is positive semidefinite, so we have that

0N+1×N+1 � ∇2g
(
w̃
) � 2

∥∥∥X̃
∥∥∥2

2
IN+1×N+1, (8.51)

using the definition of greatest curvature given in Equation (8.50). Therefore the
Lipschitz constant is given by the largest eigenvalue of this matrix,

L = 2
∥∥∥X̃
∥∥∥2

2
. (8.52)

Example 8.7 Two class softmax cost

As we saw in Exercise 4.4, the Hessian of the softmax perceptron/convex logistic
regression cost function is convex with Hessian given as

∇2g
(
w̃
) = X̃diag (r) X̃

T
, (8.53)

where r = [r1 . . . rP]T is defined entry-wise as rp = σ
(
−ypx̃T

p w̃
) (

1− σ
(
−ypx̃T

p w̃
))

.
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Using the fact that 0 < rn ≤ 1
4 and the curvature definition in Equation (8.50) we can

say that the following holds for each z on the unit sphere:

zT
(

X̃diag (r) X̃
T
)

z ≤ 1

4
zT X̃X̃

T
z. (8.54)

Now, because the right hand side is maximized when z is the eigenvector of the matrix

X̃X̃
T

associated to its largest eigenvalue, the maximum value attainable by the right

hand side above is 1
4

∥∥∥X̃
∥∥∥2

2
(see exercises). Therefore, altogether we have that

0N×N � ∇2g
(
w̃
) � 1

4

∥∥∥X̃
∥∥∥2

2
, (8.55)

and therefore we may take as a Lipschitz constant

L = 1

4

∥∥∥X̃
∥∥∥2

2
. (8.56)

Example 8.8 Squared margin hinge

The Hessian of the squared margin hinge function g
(
w̃
) = P∑

p=1
max2

(
0, 1− ypx̃T

p w̃
)

can be written as

∇2g
(
w̃
) = 2X̃sX̃

T
s . (8.57)

Because the maximum eigenvalue of X̃sX̃
T
s is bounded above by that of the matrix X̃ X̃

T

(see Exercise 8.5), a bound on the maximum eigenvalue of this matrix/the curvature of
the cost g is given by

L = 2
∥∥∥X̃
∥∥∥2

2
. (8.58)

Example 8.9 Multiclass softmax

Since the multiclass softmax cost is convex we know that its Hessian, described block-
wise in Exercise 4.18, must have all nonnegative eigenalues. Note that the maximum

eigenvalue of its cth diagonal block ∇w̃cw̃c g =
P∑

p=1

ẽxT
p w̃c

C∑
d=1

ẽxT
p w̃d

⎛⎜⎝1− ẽxT
p w̃c

C∑
d=1

ẽxT
p w̃d

⎞⎟⎠ xpxT
p is,

in the same manner as the two class softmax cost in Example 8.7, given by 1
4

∥∥∥X̃
∥∥∥2

2
.

Because the maximum eigenvalue of a symmetric block matrix with nonnegative eigen-
values is bounded above by the sum of the maximum eigenvalues of its diagonal blocks
[28], an upper bound on the maximum eigenvalue of the Hessian is given by

L = C

4

∥∥∥X̃
∥∥∥2

2
. (8.59)
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8.6 Summary

In the first two sections of this chapter we described two rigorous ways for determin-
ing step lengths for gradient descent. First in Section 8.1 we introduced the optimally
conservative fixed step length rule (based on the notion of the maximum curvature of a
cost function). This can be used to produce a fixed step length that, while conservative
in nature, will guarantee convergence of gradient descent when applied to every cost
function detailed in this book (see Table 8.1).

Next, in Section 8.2 we introduced an adaptive step length rule for gradient descent,
another rule that works right out of the box for any cost function. As discussed in
Section 8.2.2, the adaptive step length rule requires more computation at each step of
gradient descent but typically takes considerably longer steps than a conservative fixed
counterpart.

Finally, in Section 8.3 we introduced the stochastic gradient descent method. A nat-
ural extension of the standard gradient descent scheme, stochastic gradient descent is
especially useful when dealing with large datasets (where, for example, loading the full
dataset into memory is challenging or impossible). On large datasets the stochastic gra-
dient method can converge extremely rapidly to a reasonable solution of a problem, even
after only a single pass through the dataset.

8.7 Exercises

Section 8.1 exercises

Exercises 8.1 Code up backtracking line search for the squared margin cost

Code up an adaptive step length sub-function for the minimization of the squared margin
perceptron and install it into the wrapper detailed in Exercise 4.7, replacing the fixed
step length given there. Test your code by running the wrapper, and produce a plot of
the objective value decrease at each iteration.

Exercises 8.2 Code up stochastic gradient descent

Reproduce a part of the experiment shown in Example 8.4 by comparing standard and
stochastic gradient descent methods on a large two class classification dataset of P =
10 000 points. Employ any cost function (e.g., softmax) to fit to this data and plot the
cost value at each iteration from runs of each method, along with the average value of
these runs (as in Fig. 8.8).

Exercises 8.3 Code up backtracking line search for the multiclass softmax cost

Code up an adaptive step length sub-function for the minimization of the multiclass
softmax perceptron and install it into the wrapper detailed in Exercise 4.15, replacing
the fixed step length given there. Test your code by running the wrapper, and produce a
plot of the objective value decrease at each iteration.
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Exercises 8.4 Alternative formal definition of Lipschitz gradient

An alternative to defining the Lipschitz constant by Equation (8.11) for functions f with
Lipschitz continuous gradient is given by

‖∇f (x)−∇f (y)‖2 ≤ L ‖x− y‖2 , (8.60)

which follows from the limit definition of a derivative (in defining the Hessian of f ). This
definition is especially helpful to employ when f has only a single continuous derivative.

Suppose f has Lipschitz continuous gradient with constant J, and g is Lipschitz
continuous with constant K, i.e.,

‖g (x)− g (y)‖2 ≤ K ‖x− y‖2 (8.61)

for all x, y in the domain of g. Using this definition of Lipschitz continuous gradient
show that the composition f (g) also has Lipschitz continuous gradient. What is the
corresponding Lipschitz constant?

Exercises 8.5 Verifying Lipschitz constants

Let a and b be two N × 1 column vectors.

a) Show that the maximum eigenvalue of aaT is less than or equal to the that of aaT +
bbT .

b) Use the result of part a) to verify the bound reported in Example 8.8 on the maximum
eigenvalue of the soft-margin SVM’s Hessian.

c) Use the result of part a) to verify the bound on the maximum eigenvalue of the Hessian
of the logistic regression function reported in Example 8.7.
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9 Dimension reduction techniques

Large datasets, as well as data consisting of a large number of features, present compu-
tational problems in the training of predictive models. In this chapter we discuss several
useful techniques for reducing the dimension of a given dataset, that is reducing the
number of data points or number of features, often employed in order to make predic-
tive learning methods scale to larger datasets. More specifically, we discuss widely used
methods for reducing the data dimension, that is the number of data points, of a dataset
including random subsampling and K-means clustering. We then detail a common way
of reducing the feature dimension, or number features, of a dataset as explained in Fig.
9.1. A classical approach for feature dimension reduction, principal component analysis
(PCA), while often used for general data analysis is a relatively poor tool for reducing
the feature dimension of predictive modeling data. However, PCA presents a fundamen-
tal mathematical archetype, the matrix factorization, that provides a very useful way
of organizing our thinking about a wide array of important learning models (including
linear regression, K-means, recommender systems – introduced after detailing PCA in
this chapter), all of which may be thought of as variations of the simple theme of matrix
factorization.

9.1 Techniques for data dimension reduction

In this section we detail two common ways of reducing the data dimension of a dataset:
random subsampling and K-means clustering.

9.1.1 Random subsampling

Random subsampling is a simple and intuitive way of reducing the data dimension
of a dataset, and is often the first approach employed when performing regres-
sion/classification on datasets too large for available computational resources. Given
a set of P points we keep a random subsample of S < P of the entire set. Clearly the
smaller we choose S the larger the chance we may loose an important structural charac-
teristic of the underlying dataset (for example the geometry of the separating boundary
between two classes of data). While there is no formula or hard rule for how large S
should be, a simple guideline used in practice is to choose S as large as possible given
the computational resources available so as to minimize this risk.
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Fig. 9.1 Comparison of feature selection, PCA, and clustering as dimension reduction schemes on an
arbitrary data matrix, like those we have discussed in previous chapters for predictive modeling,
whose rows contain features and columns individual data points. The former two methods reduce
the dimension of the feature space, or in other words the number of rows in a data matrix.
However, the two methods work differently: while feature selection literally selects rows from
the original matrix to keep, PCA uses the geometry of the feature space to produce a new data
matrix based on a lower feature dimensional version of the data. K-means, on the other hand,
reduces the dimension of the data/number of data points, or equivalently the number of columns
in the input data matrix. It does so by finding a small number of new averaged representatives or
“centroids” of the input data, forming a new data matrix whose fewer columns (which are not
present in the original data matrix) are precisely these centroids.

9.1.2 K -means clustering

With K-means clustering we reduce the data dimension by finding suitable representa-
tives or centroids for clusters, or groups, of data points. All members of each cluster are
then represented by their cluster’s respective centroid. Hence the problem of clustering
is that of partitioning data into clusters of points with similar characteristics, and with
K-means specifically this characteristic is geometric closeness in the feature space.1

Figure 9.2 illustrates K-means clustering performed on a 2-D toy dataset with P = 10
data points, where in the right panel data points are clustered into K = 3 clusters.

With K-means we look to partition P data points, each of dimension N, into K clusters
and find a representative centroid denoted for each cluster. For the moment we will
assume that we know the location of these K cluster centroids, as illustrated figuratively
in the toy example in the right panel of Fig. 9.2, in order to derive formally the desired
relationship between the data and centroids. Once this is expressed clearly we will use
it in order to form a learning problem for the accurate recovery of cluster centroids,
dropping the unrealistic notion that we have pre-conceived knowledge of their location.

Denoting by ck the centroid of the kth cluster and Sk the set of indices of the subset
of those P data points, denoted x1 . . . xP, belonging to this cluster, the desire that points
in the kth cluster should lie close to its centroid may be written mathematically as

1 Although it is possible to adopt a variety of different ways to define similarity between data points in the
feature space (e.g., spectral clustering and subspace clustering), proximity in the Euclidean sense is the
most popular measure for clustering data.
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Fig. 9.2 (left) A 2-dimensional toy dataset with P = 10 data points. (right) Original data clustered into
K = 3 clusters where each cluster centroid is marked by a × symbol. Points that are
geometrically close to one another belong to the same cluster.

ck ≈ xp for all p ∈ Sk, (9.1)

for all k = 1 . . .K. These desired relations can be written more conveniently by first
stacking the centroids column-wise into the centroid matrix C = [ c1 c2 · · · cK

]
.

Then denoting by ek the kth standard basis vector (that is a K × 1 vector with a 1 in
the kth slot and zeros elsewhere), we may write Cek = ck, and hence the relations in
Equation (9.1) may be written equivalently for each k as

Cek ≈ xp for all p ∈ Sk. (9.2)

Next, to write these equations even more conveniently we stack the data column-wise
into the data matrix X = [ x1 x2 · · · xP

]
and form a K × P assignment matrix

W. The pth column of this matrix, denoted as wp, is the standard basis vector associated
with the cluster to which the pth point belongs: i.e., wp = ek if p ∈ Sk. With this wp

notation we may write each equation in (9.2) as Cwp ≈ xp for all p ∈ Sk, or using
matrix notation all K such relations simultaneously as

CW ≈ X. (9.3)

Figure 9.3 illustrates the compactly written desired K-means relationship in (9.3) for the
dataset shown in Fig. 9.2. Note that the location of the only nonzero entry in each column
of the assignment matrix W determines the cluster membership of its corresponding data
point in X.

We now drop the assumption that we know the locations of cluster centroids and
have knowledge of which points are assigned to them, i.e., the exact description of the
centroid matrix C and assignment matrix W. We want to learn the right values for these
two matrices. Specifically, we know that the ideal C and W satisfy the compact relations
described in Equation (9.3), i.e., that CW ≈ X or in other words that ‖CW− X‖2F
is small, while W consists of properly chosen standard basis vectors relating the data
points to their respective centroids. Thus we phrase a K-means optimization problem
whose solution precisely satisfies these requirements as

minimize
C,W

‖CW− X‖2F
subject to wp ∈ {ek}Kk=1 p = 1, . . . , P.

(9.4)
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1 1 1 1 1 0 0 0 0 0
1 1 0 0 00 0 0 0 0

1 1 10 00 0 0 0 0

XC W

≈

Fig. 9.3 K-means clustering relations described in a compact matrix form. Cluster centroids in C lie close
to their corresponding cluster points in X. The pth column of the assignment matrix W contains
the standard basis vector corresponding to the data point’s cluster centroid.

Note that the objective here is non-convex, and because we cannot minimize over both
C and W simultaneously, it is solved via alternating minimization, that is by alternately
minimizing the objective function in (9.4) over one of the variables (C or W), while
keeping the other variable fixed. We derive the steps corresponding to this procedure in
the following section, and for convenience summarize the resulting simple procedure
(often called the K-means algorithm) in Algorithm 9.1.

Algorithm 9.1 The K-means algorithm
Input(s): Data matrix X, centroid matrix C initialized (e.g., randomly),

and assignment matrix W initialized at zero
Output(s): Optimal centroid matrix C� and assignment matrix W�

Repeat until convergence: (e.g., until C does not change)
(1) Update W (assign each data point to its closest centroid)
for p = 1 . . .P

Set wp = ek� where k� = argmin
k=1...K

∥∥ck − xp
∥∥2

2

(2) Update C (assign each centroid the average of its current points)
for k = 1 . . .K

Denote Sk the index set of points xp currently assigned to the kth cluster
Set ck = 1

|Sk|
∑

p∈Sk

xp

Before showing alternating minimization derivation, note that because the objective in
(9.4) is non-convex it is possible for the procedure to find non-global minima of the
objective function. As with all non-convex problems, this depends on the initializations
of our optimization variables (or in this instance just the C matrix initialization since
the procedure begins by updating it independently of W). The result of the algorithm
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Fig. 9.4 Success or failure of K-means depends on the centroids’ initialization. (top) (i) two centroids are
initialized, (ii) cluster assignment is updated, (iii) centroid locations are updated, (iv) no change
in the cluster assignment of the data points leads to stopping of the algorithm. (below) (i) two
centroids are initialized with the red one being initialized differently, (ii) cluster assignment is
updated, (iii) centroid locations are updated, (iv) cluster assignment is updated, (v) centroid
locations are updated, (vi) no change in the cluster assignment of the data points leads to
stopping of the algorithm.

reaching poor minima can have significant impact on the quality of the clusters learned.
For example, in Fig. 9.4 we use a 2-D toy dataset with K = 2 clusters. With the initial
centroid positions shown in the top panel, the K-means algorithm gets stuck in a local
minimum and consequently fails to cluster the data properly. A different initialization
for one of the centroids, however, leads to a successful clustering of the data, as shown
in the lower panel of Fig. 9.4. To overcome the issue of non-convexity of K-means
in practice we usually run the algorithm multiple times with different initializations,
seeking out the lowest possible minimum of the objective, and the solution resulting in
the smallest value of the objective function is selected as the final solution.

9.1.3 Optimization of the K -means problem

Over W the problem in Equation (9.4) reduces to

minimize
W

‖CW− X‖2F
subject to wp ∈ {ek}Kk=1 p = 1, . . . , P.

(9.5)
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Noting that the objective in (9.5) can be equivalently written as
P∑

p=1

∥∥Cwp − xp
∥∥2

2 (again

C is fixed) and that each wp appears in only one summand, we can recover each column
wp independently by solving

minimize
wp

∥∥Cwp − xp
∥∥2

2

subject to wp ∈ {ek}Kk=1 ,
(9.6)

for each p = 1, . . . , P. Note that this is precisely the problem of assigning a data point
xp to its closest centroid, i.e., finding k such that

∥∥ck − xp
∥∥2

2 is smallest! We can see
that this is precisely the problem above by unravelling our compact notation: given the
constraint on wp, we have Cwp = ck whenever wp = ek and so the objective may be

written as
∥∥Cwp − xp

∥∥2
2 =

∥∥ck − xp
∥∥2

2. Hence the problem of finding wp, or finding the
closest centroid to xp, may be written as

minimize
k=1...K

∥∥ck − xp
∥∥2

2 , (9.7)

which can be solved by simply computing the objective for each k and finding the
smallest value. Then for whichever k� minimizes the above we may set wp = ek� .

Now minimizing (9.4) over C, we have no constraints (they being applied only to W)
and have the problem

minimize
C

‖CW− X‖2F . (9.8)

Here we may use the first order condition: setting the derivative of g (C) = ‖CW− X‖2F
to zero gives the linear system

CWWT = XWT , (9.9)

for the optimal C denoted as C�. It is easy to show (see exercises) that WWT is a K×K
diagonal matrix whose kth diagonal entry is equal to the number of data points assigned
to the kth cluster, and that the kth column of XWT is the sum of all data points in the kth
cluster. Hence each column of C� can therefore be calculated independently as

c�k =
1

|Sk|
∑
p∈Sk

xp ∀k. (9.10)

In other words, c�k is the average of all data points in the kth cluster.
Finally, we repeat these alternating updates until neither matrix changes too much

from iteration to iteration. We present the resulting simple column-wise updates for C
and W in Algorithm 9.1.

9.2 Principal component analysis

As shown abstractly in Fig. 9.1, feature selection is a reasonable and general approach
to lowering the dimension of the feature space when working on predictive modeling
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Fig. 9.5 The general PCA dimension reduction scheme visualized in 3D. We begin with
three-dimensional data points (black circles) and locate a fitting set of vectors c1 and c2 that span
a proper lower dimensional subspace for the data. We then project the data onto the subspace (in
blue Xs).

problems. For less crucial tasks such as general data exploration where only input values
are known (i.e., there is no associated output/labels), other techniques are used to reduce
feature space dimension (if it is cumbersomely large). Principal component analysis
(PCA), discussed in this section, is one such common technique. PCA works by simply
projecting the data onto a suitable lower dimensional feature subspace, that is one which
hopefully preserves the essential geometry of the original data. This subspace is found
by determining one of its spanning sets (e.g., a basis) of vectors which spans it. The
basic setup is illustrated in Fig. 9.5.

More formally, suppose that we have P data points x1 . . . xP, each of dimension N.
The goal with PCA is, for some user chosen dimension K < N, to find a set of K vectors
c1 . . . cK that represent the data fairly well. Put formally, we want for each p = 1 . . .P

K∑
k=1

ckwk,p ≈ xp. (9.11)

Note how this is analogous to the motivation for K-means discussed in Section 9.1.2,
only here we wish to determine a small set of basis vectors which together explain the
dataset. Stacking the desired spanning vectors column-wise into the N × K matrix C
as C = [c1|c2| · · · |cK] and denoting wp =

[
w1,p w2,p · · · wK,p

]T
this can be

written equivalently for each p as

Cwp ≈ xp. (9.12)

Note: once C and wp are learned the new K-dimensional feature representation of xp

is then the vector wp (i.e., the weights over which xp is represented over the spanning
set). By denoting W = [w1|w2| · · · |wP] the K × P matrix of weights to learn, and
X = [x1|x2| · · · |xP] the N × P data matrix, all P of these (and equivalently Equation
(9.11)) can be written compactly as

CW ≈ X. (9.13)
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Table 9.1 Common matrix factorization problems (i.e., variants of PCA) subject to possible constraints
on C and W including: linear regression (discussed in Chapter 3), K -means (discussed in Subsection
9.1.2), Recommender Systems (discussed in Section 9.3), nonnegative matrix factorization (often used
for dimension reduction with images and text where the data is naturally nonnegative, see e.g., [45]),
and sparse coding (commonly used as a model for low-level image processing in the mammalian visual
cortex, see e.g., [60]).

Problem Constraints

PCA/SVD None
Linear regression C fixed
K-means wi a standard basis vector for all i
Recommender systems Entries in index set  are known i.e., (CW) = (X)
Nonnegative matrix factorization Both C and W nonnegative
Sparse coding k permissible nonzero entries in each wi and columns of

C have unit length

The goal of PCA, compactly stated in Equation (9.13), naturally leads to determining C
and W by minimizing ‖CW− X‖2F i.e., by solving

minimize
C,W

‖CW− X‖2F . (9.14)

Note that this is a simpler version of the K-means problem in Equation (9.4). Note also
the similarities between the PCA matrix factorization problem in Equation (9.14), and
the Least Squares cost function for linear regression, K-means, recommender systems,
and more: each of these problems may be thought of as variations of the basic matrix
factorization problem in Equation (9.14) (see Table 9.1). Before discussing optimization
procedures for the PCA problem we look at several examples.

Example 9.1 PCA on simulated data

In Fig. 9.6 we show the result of applying PCA on two simple 2-dimensional datasets
using the solution to (9.14) shown in Equation (9.17). In the top panel dimension re-
duction via PCA retains much of the structure of the original data. Conversely, the more
structured square dataset loses much of its original characteristic after projection onto
the PCA subspace.

Example 9.2 PCA and classification data

While PCA can technically be used for preprocessing data in a predictive modeling sce-
nario, it can cause severe problems in the case of classification. In Fig. 9.7 we illustrate
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Fig. 9.6 (top panels) A simple 2-D data set (left, in blue) where dimension reduction via PCA retains
much of the structure of the original data. The ideal subspace found via solving (9.14) is shown
in black in the left panel, and the data projected onto this subspace is shown in blue on the right.
(bottom panels) Conversely, the more structured square data-set loses much of its original
structure after projection onto the PCA subspace.

Fig. 9.7 (left) A toy classification dataset consisting of two linearly separable classes. The ideal subspace
produced via PCA is shown in black. (right) Projecting the data onto this subspace (in other
words reducing the feature space dimension via PCA) destroys completely the original
separability of the data.

feature space dimension reduction via PCA on a simulated two-class dataset where the
two classes are linearly separable. Because the ideal one-dimensional subspace in this
instance runs parallel to the longer length of each class, projecting the complete dataset
onto it completely destroys the separability.
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Fig. 9.8 In a prototypical image compression scheme the input image is cut into 8× 8 blocks. Each block
is then vectorized to make a 64× 1 column vector y which will be input to the compression
algorithm.

Example 9.3 Role of efficient bases in digital image compression

Digital image compression aims at reducing the size of digital images without adversely
affecting their quality. Without compression a natural photo2 taken by a digital camera
would require one to two orders of magnitude more storage space. As shown in Fig. 9.8,
in a typical image compression scheme an input image is first cut up into small square
(typically 8 × 8 pixel) blocks. The values of pixels in each block (which are integers
between 0 and 255 for an 8-bit grayscale image) are stacked into a column vector y, and
compression is then performed on these individual vectorized blocks.

The primary idea behind many digital image compression algorithms is that with
the use of specific bases, we only need very few of their elements to very closely
approximate any natural image. One such basis, the 8 × 8 discrete cosine transform
(DCT) which is the backbone of the popular JPEG compression scheme, consists of
two-dimensional cosine waves of varying frequencies, and is shown in Fig. 9.9 along
with its analogue standard basis. Most natural image blocks can be well approximated
using only a few elements of the DCT basis. The reason is, as opposed to bases with
more locally defined elements (e.g., the standard basis), each DCT basis element rep-
resents a fluctuation commonly seen across the entirety of a natural image block.
Therefore with just a few of these elements, properly weighted, we can approximate
a wide range of image blocks. In other words, instead of seeking out a basis (as with
PCA), here we have a fixed basis over which image data can be very efficiently repre-
sented (the same holds, in fact, for other natural signals as well like audio data, see e.g.,
Section 4.6.3).

To perform compression, DCT basis patches in Fig. 9.9 are vectorized into a sequence
of P = 64 fixed basis vectors

{
cp
}P

p=1 in the same manner as the input image blocks.
Concatenating these patches column-wise into a matrix C and supposing there are K

2 Pictures of natural subjects such as cities, meadows, people, and animals, etc., as opposed to synthetic
images.
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9.2 Principal component analysis 255

Fig. 9.9 (left) The set of 64 DCT basis elements used for compression of 8× 8 image blocks. For
visualization purposes pixel values in each basis patch are gray-coded so that white and black
colors correspond to the minimum and maximum value in that patch, respectively. (right) The set
of 64 standard basis elements, each having only one nonzero entry. Pixel values are gray-coded
so that white and black colors correspond to entry values of 1 and 0, respectively. Most natural
image blocks can be approximated as a linear combination of just a few DCT basis elements
while the same cannot be said of the standard basis.

Fig. 9.10 From left to right, the original 256× 256 input image along with its three compressed versions
where we keep only the largest 20%, 5%, and 1% of the DCT coefficients to represent the image,
resulting in compression by a factor of 5, 20, and 100, respectively. Although, as expected, the
visual quality deteriorates as the compression factor increases, the 1% image still captures a
considerable amount of information. This example is a testament to the efficiency of DCT basis
in representing natural image data.

blocks in the input image, denoting by xk its kth vectorized block, to represent the entire
image over the basis we solve K linear systems of equations of the form

Cwk = xk. (9.15)

Each vector wk in (9.15) stores the DCT coefficients (or weights) corresponding to the
image block xk. Most of the weights in the coefficient vectors {wk}Kk=1 are typically quite
small. Therefore, as illustrated by an example image in Fig. 9.10, setting even 80% of
the smallest weights to zero gives an approximation that is essentially indistinguish-
able from the original image. Even setting 99% of the smallest weights to zero gives
an approximation to the original data wherein we can still identify the objects in the
original image. To compress the image, instead of storing each pixel value, only these
few remaining nonzero coefficients are kept.
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9.2.1 Optimization of the PCA problem

Because problem (9.14) is convex in each variable C and W individually (but non-
convex in both simultaneously) a natural approach to solving this problem is to
alternately minimize (9.14) over C and W independently.3 However, while it is not
obvious at first sight, there is in fact a closed-form solution to Equation (9.14) based
on the singular value decomposition (SVD) of the matrix X. Denoting the SVD of X as
X = USVT , this solution is given as

C� = UKSK,K

W� = VT
K ,

(9.17)

where UK and VK denote the matrices formed by the first K columns of the left and right
singular matrices U and V respectively, and SK,K denotes the upper K ×K submatrix of
the singular value matrix S. Note that since UK is an orthogonal matrix, the recovered
basis (for the low dimensional subspace) is indeed orthogonal.

Further, it can be shown that these particular basis elements span the so-called or-
thogonal directions of variance (or spread) of the original dataset (see Exercise 9.3).
While this characteristic is not particularly useful when using PCA as a preprocessing
technique (since all we care about is reducing the dimension of the feature space, and so
any basis spanning a proper subspace will suffice), it is often used in exploratory data
analysis in fields like statistics and the social sciences (see e.g., factor analysis).

9.3 Recommender systems

Recommender systems are heavily used in e-commerce today, providing customers with
personalized recommendations for products and services by using a consumer’s previ-
ous purchasing and rating history, along with those of similar customers. For instance,
a movie provider like Netflix with millions of users and tens of thousands of movies,
records users’ reviews and ratings (typically in the form of a number on a scale of 1–5
with 5 being the most favorable rating) in a large matrix such as the one illustrated in
Fig. 9.11. These matrices are very sparsely populated, since an individual consumer has
likely rated only a few of the movies available. With this data available, online movie
providers can use machine learning techniques to make personalized recommendations

3 Beginning at an initial value for both
(

C(0), W(0)
)

this produces a sequence of iterates
(

C(k), W(k)
)

where

C(k) =argmin
C

∥∥∥CW(k−1) − X
∥∥∥2

F

W(k) =argmin
W

∥∥∥C(k)W− X
∥∥∥2

F
,

(9.16)

and where each may be expressed in closed form. Setting the gradient in each case to zero and solving

gives C(k) = X
(

W(k−1)
)T
(

W(k−1)
(

W(k−1)
)T
)†

and W(k) =
((

C(k)
)T

C(k)
)† (

C(k)
)T

X

respectively, where (·)† denotes the pseudo-inverse. The procedure is stopped when the subsequent
iterations do not change significantly (see exercises).
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Fig. 9.11 A prototypical movie rating matrix is very sparsely populated, with each user having rated only a
very small number of films. In this diagram movies are listed along rows while users are listed
across the columns of the rating matrix.

to customers regarding what they might like to watch next. Producing these personalized
recommendations requires completing the movie rating matrix, or in other words filling
in the many missing entries with smart guesses of how much users would like films they
have not yet seen.

In completing the movie rating matrix a helpful modeling tool often used is based on
the assumption that only a few factors contribute to a user’s taste or interest. For instance,
users typically fall into a few categories when it comes to their movie preferences. Some
only like horror movies and some are only interested in action films, yet there are those
who enjoy both. There are users who passionately follow documentaries, and others
who completely despise romantic comedies, and so on. The relatively small number
of such categories or user types compared to the total number of users or movies in
a rating matrix, provides a framework to fill in the missing values. Once the matrix
is completed, those movies with the highest estimated ratings are recommended to the
respective users. This same concept is used broadly by digital retailers like Amazon and
eBay to recommend products of all kinds to their customers.

9.3.1 Matrix completion setup

In a simple model for a recommender system we can imagine an e-vendor who sells N
goods and/or services to P users. The vendor collects and stores individual user-ratings
on a 1 (= bad) to R (= great) integer-valued scale for each product purchased by each
customer. If a customer has not reviewed a product the entry is set to 0. Looking at the
entire customer–product database as an N × P matrix X, we assume that there are just a
few, say K, fundamental factors that each customer’s behavior can be explained by.

Imagine for a moment that X were completely filled in. Then the assumption of K
fundamental factors explaining X translates, in linear algebra terms, to the assumption
that X can be factorized as
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CW ≈ X, (9.18)

where C and W are N × K and K × P matrices, respectively. The K columns of C act
as a fundamental spanning set for X and are interpretable in this instance as the basic
factors that represent customers’ preferences.

Now in the realistic case where X is incomplete we know only a fraction of the entries
of X. Denoting by  = {

(i, j) | xij �= 0
}

the set of index pairs (i, j) of rated products,
where the jth customer has rated the ith product, in the database X our desire is to
recover a factorization for X given only the known (rated) entries in the set . That is,
for each rating with index (i, j) ∈ ,

CW| ≈ X|, (9.19)

which for a single (i, j) ∈  can be written as

ciwj ≈ xij, (9.20)

where ci is the ith row of C. We then aim to learn C and W which minimize
(
ciwj − xij

)2
over all index pairs in , i.e., by solving the optimization problem

minimize
C,W

∑
(i,j)∈

(
ciwj − xij

)2
. (9.21)

9.3.2 Optimization of the matrix completion model

The matrix completion problem in (9.21) can be solved following an alternating min-
imization approach, in a similar sense as with K-means. The gradient of the objective
function g (C, W) = ∑

(i,j)∈
(
ciwj − xij

)2
with respect to the pth column of W is given by

∇wp g = 2
∑
(i,p)∈

(
ciwp − xip

) (
ci)T . (9.22)

Setting the gradient to zero, we can recover the optimal wp by solving the following
linear system of equations:⎛⎝ ∑

(i,p)∈
ci (ci)T⎞⎠wp =

∑
(i,p)∈

xip
(
ci)T . (9.23)

Similarly, the optimal cn can be found as a solution to

cn

⎛⎝ ∑
(n,j)∈

wjwT
j

⎞⎠ = ∑
(n,j)∈

xnjwT
j . (9.24)

By alternately solving these linear system until the values of C and W do not change
very much we can solve (9.21).
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Fig. 9.12 (left panel) Simulated matrix X with integer-valued entries between 1 and 20. (middle panel)
Matrix X after 95% of entries are removed. (right panel) Recovered matrix X� resembles the
original matrix X and matches the original very well.

Example 9.4 Matrix completion of simulated dataset

Here we show an experiment with a simulated data matrix X with N = 100 rows (or
products) and P = 200 columns (or users). Each entry in X is an integer-valued rating
between 1 and 20, and the complete matrix X has a rank of K = 5, or in other words
a matrix rightly approximated using N × K matrix C and K × P matrix W. In the left
panel of Fig. 9.12 we show the original matrix X with each entry color-coded depending
on its value. The middle panel shows the matrix X after 95% of its entries have been
randomly removed. Applying matrix completion to this corrupted version of X, by using
alternating minimization, we can recover the original matrix (with a small root mean
square error of 0.05), as illustrated in the right panel of Fig. 9.12.

9.4 Summary

In this chapter we have described several methods for dimension reduction, beginning
in Section 9.1 describing commonly used data dimension reduction techniques (or ways
of properly reducing the size of a dataset). Random subsampling, described first, is the
most commonly used method for slimming down a regression/classification dataset that
simply involves keeping a random selection of points from an original dataset. Here
one typically keeps as much of the original data as computational resources permit.
A popular alternative to random subsampling, also used for various “data analysis”
tasks beyond predictive modeling, is the K-means clustering method. This approach
involves the computation of cluster “centroids” of a dataset that best describe its overall
structure.

In Section 9.2 we described a classic technique for feature dimension reduction (that
is shrinking the dimension of each data point) referred to as principal component anal-
ysis (PCA). While not particularly useful for predictive modeling (see Example 9.2 for
how it can in fact be destructive when applied to classification data), PCA is the fun-
damental matrix factorization problem which can help frame our understanding of a
wide array of models/problems including: Least Squares for linear regression, K-means,
and more. For example in the final section of the chapter we detailed a common ma-
trix factorization approach to recommender systems, or algorithms that recommend
products/services to a common base of users.
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9.5 Exercises

Section 9.1 exercises

Exercises 9.1 Code up K-means

In this exercise you will reproduce the results shown in Fig. 9.4 by coding up the
K-means algorithm (shown in Algorithm 9.1).

a) Place your K-means code in the function

[C, W] = your_K_means (X, K) , (9.25)

located inside the wrapper kmeans_demo (this wrapper together with the assocated
dataset kmeans_demo_data.csv may be downloaded from the book website). All of
the additional code necessary to generate the associated plots is already provided
in the wrapper. Here C and W are the centroid and assignment matrices output by
the algorithm, while X and K are the data matrix and number of desired centroids,
respectively.

b) Run the wrapper with K = 2 centroids using the initialization C =
[

0 0
−0.5 0.5

]
.

This should reproduce the successful run of K-means shown in the bottom panels of the
figure.

c) Run the wrapper with K = 2 centroids using the initialization C =
[

0 0
0 0.5

]
. This

should reproduce the unsuccessful run of K-means shown in the top panels of the figure.

Section 9.2 exercises

Exercises 9.2 Code up PCA

In this exercise you will reproduce the results shown in Fig. 9.6 by coding up PCA.

a) Implement a singular value decomposition approach to PCA described in Section
9.2.1, placing the resulting code in the function

[C, W] = your_PCA (X, K) , (9.26)

located inside the wrapper PCA_demo (this wrapper together with the assocated dataset
PCA_demo_data.csv may be downloaded from the book website). Here C and W are
the spanning set and weight matrices output by the algorithm, while X and K are the
data matrix and number of desired basis elements, respectively.
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All of the additional code necessary to generate the associated plots is already
provided in the wrapper. Run the wrapper to ensure that you have coded up PCA
correctly.

b) Using the wrapper and data from part a) implement the alternating directions solu-
tion to PCA described in footnote 3, once again placing this code inside the function
your_PCA described previously.

Exercises 9.3 Deriving principal components as orthogonal directions of variance

In this exercise you will show how to derive principal component analysis as the orthog-
onal directions of largest variance of a dataset. Given P points

{
xp
}P

p=1 of dimension N
we may calculate the variance in a unit direction d (i.e., how much the dataset spreads
out in the direction d) with respect to the data as the average squared inner product of
the data against d,

1

P

P∑
p=1

〈
xp, d

〉2 . (9.27)

This can be written more compactly as

1

P
‖XTd‖22 =

1

P
dTXXTd. (9.28)

Note that the outer product XXT is a symmetric positive semi-definite matrix.

a) Compute the largest direction of variance of the data, i.e., the unit vector d that
maximizes the value dTXXTd. Hint: use the eigen-decomposition of XXT .

b) Compute the second largest direction of variance of the matrix XXT , i.e., the unit
vector d that maximizes the value of dTXXTd but where d is also orthogonal to the first
largest direction of variance. Hint: use the eigen-decomposition of XXT .

c) Conclude from part a) and b) that the orthogonal directions of variance of the data are
precisely the singular value solution given in Equation (9.17).

Section 9.3 exercises

Exercises 9.4 Code up the matrix completion recommender system

In this exercise you will reproduce the matrix completion recommender system results
shown in Fig. 9.12.

Code up the alternating minimization algorithm described in Section 9.3.2, placing
the resulting code in the function

[C, W] = matrix_complete (X, K) , (9.29)

located inside the wrapper recommender_demo (this wrapper and the assocated dataset
recommender_demo_data.csv may be downloaded from the book website). Here C and
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262 Dimension reduction techniques

W are the spanning set and weight matrices output by the algorithm, while X and K are
the data matrix and number of desired basis elements, respectively.

All of the additional code necessary to generate the associated plots is already pro-
vided in the wrapper. Run the wrapper to ensure that you have coded up the matrix
completion algorithm correctly.
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A: Basic vector and matrix operations

A.1 Vector operations

Vector addition: The addition of two N-dimensional vectors

aN×1 =

⎡⎢⎢⎢⎣
a1

a2
...

aN

⎤⎥⎥⎥⎦ and bN×1 =

⎡⎢⎢⎢⎣
b1

b2
...

bN

⎤⎥⎥⎥⎦ , (A.1)

is defined as the entry-wise sum of a and b, resulting in a vector of the same dimension
denoted by

a+ b =

⎡⎢⎢⎢⎣
a1 + b1

a2 + b2
...

aN + bN

⎤⎥⎥⎥⎦ . (A.2)

Subtraction of two vectors is defined in a similar fashion.

Vector multiplication by a scalar: Multiplying a vector a by a scalar γ returns a vector
of the same dimension whose every element is multiplied by γ

γ a =

⎡⎢⎢⎢⎣
γ a1

γ a2
...

γ aN

⎤⎥⎥⎥⎦ . (A.3)

Vector transpose: The transpose of a column vector a (with vertically stored elements)
is a row vector with the same elements which are now stored horizontally, denoted by

aT = [ a1 a2 · · · aN
]

. (A.4)

Similarly the transpose of a row vector is a column vector, and we have in general that(
aT
)T = a.
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Inner product of two vectors: The inner product (or dot product) of two vectors a and b
(of the same dimensions) is simply the sum of their component-wise product, written as

aTb =
N∑

n=1

anbn. (A.5)

The inner product of a and b is also often written as 〈a, b〉.
Inner product rule and correlation: The inner product rule between two vectors
provides a measurement of

aTb = ‖a‖2 ‖b‖2 cos (θ) , (A.6)

where θ is the angle between the vectors a and b. Dividing both vectors by their length
gives the correlation between the two vectors

aTb
‖a‖2 ‖b‖2 = cos (θ) , (A.7)

which ranges between −1 and 1 (when the vectors point in completely opposite or
parallel directions respectively).

Outer product of two vectors: The outer product of two vectors aN×1 and bM×1 is an
N ×M matrix C defined as

C =

⎡⎢⎢⎢⎣
a1b1 a1b2 · · · a1bM

a2b1 a2b2 · · · a2bM
...

...
. . .

...

aNb1 aNb2 · · · aNbM

⎤⎥⎥⎥⎦ . (A.8)

The outer product of a and b is also written as abT . Unlike the inner product, the outer
product does not hold the commutative property meaning that the outer product of a and
b does not necessarily equal the outer product of b and a.

A.2 Matrix operations

Matrix addition: The addition of two N ×M matrices

AN×M =

⎡⎢⎢⎢⎣
a1,1 a1,2 · · · a1,M

a2,1 a2,2 · · · a2.M
...

...
. . .

...

aN,1 aN,2 · · · aN,M

⎤⎥⎥⎥⎦ and BN×M =

⎡⎢⎢⎢⎣
b1,1 b1,2 · · · b1,M

b2,1 b2,2 · · · b2.M
...

...
. . .

...

bN,1 bN,2 · · · bN,M

⎤⎥⎥⎥⎦ ,

(A.9)
is defined again as the entry-wise sum of A and B, given as

A+ B =

⎡⎢⎢⎢⎣
a1,1 + b1,1 a1,2 + b1,2 · · · a1,M + b1,M

a2,1 + b2,1 a2,2 + b2,2 · · · a2.M + b2,M
...

...
. . .

...

aN,1 + bN,1 aN,2 + bN,2 · · · aN,M + bN,M

⎤⎥⎥⎥⎦ . (A.10)

Subtraction of two matrices is defined in a similar fashion.
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Matrix multiplication by a scalar: Multiplying a matrix A by a scalar γ returns a
matrix of the same dimension whose every element is multiplied by γ

γA =

⎡⎢⎢⎢⎣
γ a1,1 γ a1,2 · · · γ a1,M

γ a2,1 γ a2,2 · · · γ a2.M
...

...
. . .

...

γ aN,1 γ aN,2 · · · γ aN,M

⎤⎥⎥⎥⎦ . (A.11)

Matrix transpose: The transpose of an N ×M matrix A is formed by putting the trans-
pose of each column of A into the corresponding row of AT , giving the M×N transpose
matrix as

AT =

⎡⎢⎢⎢⎣
a1,1 a2,1 · · · aN,1

a1,2 a2,2 · · · aN,2
...

...
. . .

...

a1,M a2,M · · · aM,N

⎤⎥⎥⎥⎦ . (A.12)

Again, we have
(
AT)T = A.

Matrix multiplication: The product of two matrices AN×M and BM×P is an N × P
matrix defined via the sum of M outer product matrices, as

C = AB =
M∑

m=1

ambm, (A.13)

where am and bm respectively denote the mth column of A and the mth row of B.
The pth column of C can be found via multiplying A by the pth column of B,

cp = Abp =
M∑

m=1

ambm,p. (A.14)

The nth row of C can be found via multiplying the nth row of A by B,

cn = anB =
M∑

m=1

an,mbm. (A.15)

The (n, p) th entry of C is found by multiplying the nth row of A by the pth column
of B,

cn,p = anbp. (A.16)

Note that vector inner and outer products are special cases of matrix multiplication.

Entry-wise product: The entry-wise product (or Hadamard product) of two matrices
AN×M and BN×M is defined as

A ◦ B =

⎡⎢⎢⎢⎣
a1,1b1,1 a1,2b1,2 · · · a1,Mb1,M

a2,1b2,1 a2,2b2,2 · · · a2.Mb2,M
...

...
. . .

...

aN,1bN,1 aN,2bN,2 · · · aN,MbN,M

⎤⎥⎥⎥⎦ . (A.17)

In other words, the (n, m) th entry of A ◦ B is simply the product of the (n, m) th entry
of A and the (n, m) th entry of B.

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316402276.014
http:/www.cambridge.org/core


B: Basics of vector calculus

B.1 Basic definitions

Throughout this section suppose that g (w) is a scalar valued function of the N×1 vector

w = [ w1 w2 · · · wN
]T

.
A partial derivative is the derivative of a multivariable function with respect to one

of its variables. For instance, the partial derivative of g with respect to wi is written as

∂

∂wi
g (w) . (B.1)

The gradient of g is then the vector of all partial derivatives denoted as

∇g (w) =

⎡⎢⎢⎢⎢⎣
∂
∂w1

g (w)
∂
∂w2

g (w)
...

∂
∂wN

g (w)

⎤⎥⎥⎥⎥⎦ . (B.2)

For example, the gradient for the linear function g1 (w) = wTb and quadratic func-
tion g2 (w) = wTAw can be computed as ∇g1 (w) = b and ∇g2 (w) =

(
A+ AT)w,

respectively.
The second order partial derivative of g with respect to variables wi and wj is written

as
∂2

∂wi∂wj
g (w) , (B.3)

or equivalently as

∂2

∂wj∂wi
g (w) . (B.4)

The Hessian of g is then the square symmetric matrix of all second order partial
derivatives of g, denoted as

∇2g (w) =

⎡⎢⎢⎢⎢⎢⎣
∂2

∂w1∂w1
g (w) ∂2

∂w1∂w2
g (w) · · · ∂2

∂w1∂wN
g (w)

∂2

∂w2∂w1
g (w) ∂2

∂w2∂w2
g (w) · · · ∂2

∂w2∂wN
g (w)

...
...

. . .
...

∂2

∂wN∂w1
g (w) ∂2

∂wN∂w2
g (w) · · · ∂2

∂wN∂wN
g (w)

⎤⎥⎥⎥⎥⎥⎦ . (B.5)
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Basics of vector calculus 269

B.2 Commonly used rules for computing derivatives

Here we give five rules commonly used when making gradient and Hessian calculations.

1. The derivative of a sum is the sum of derivatives

If g (w) is a sum of P functions g (w) =
P∑

p=1
hp (w), then d

dw g (w) =
P∑

p=1

d
dw hp (w).

2. The chain rule
If g is a composition of functions of the form g (w) = h (r (w)), then the derivative
d

dw g (w) = d
dt h (t)

d
dw r (w) where t is evaluated at t = r(w).

3. The product rule
If g is a product of functions of the form g (w) = h (w) r (w), then the derivative
d

dw g (w) =
(

d
dw h (w)

)
r (w)+ h (w)

(
d

dw r (w)
)

.

4. Various derivative formulae
For example, if g (w) = wc then d

dw g (w) = cwc−1, or if g (w) = sin (w) then
d

dw g (w) = cos (w), or if g (w) = c where c is some constant then d
dw g (w) = 0, etc.

5. The sizes/shapes of gradients and Hessians
Remember: if w is an N× 1 column vector then ∇g (w) is also an N× 1 column vector,
and ∇2g (w) is an N × N symmetric matrix.

B.3 Examples of gradient and Hessian calculations

Here we show detailed calculations for the gradient and Hessian of various functions
employing the definitions and common rules previously stated. We begin by show-
ing several first and second derivative calculations for scalar input functions, and then
show the gradient/Hessian calculations for the analogous vector input versions of these
functions.

Example B.1 Practice derivative calculations: scalar input functions

Below we compute the first and second derivatives of three scalar input functions g (w)
where w is a scalar input. Note that throughout we will use two notations for a scalar
derivative, d

dw g (w) and g′ (w) interchangeably.

a) g (w) = 1
2 qw2 + rw+ d where q, r, and d are constants

Using derivative formulae and the fact that the derivative of a sum is the sum of
derivatives, we have

g′ (w) = qw+ r (B.6)
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and

g′′ (w) = q. (B.7)

b) g (w) = −cos
(
2πw2

)+ w2

Using the chain rule on the cos (·) part, the fact that the derivative of a sum is the sum
of derivatives, and derivative formulae, we have

g′ (w) = sin
(

2πw2
)

4πw+ 2w. (B.8)

Likewise taking the second derivative we differentiate the above (additionally using the
product rules) as

g′′ (w) = cos
(

2πw2
)
(4πw)2 + sin

(
2πw2

)
4π + 2. (B.9)

c) g (w) =
P∑

p=1
log
(
1+ e−apw

)
where a1 . . . aP are constants

Call the pth summand hp (w) = log
(
1+ e−apw

)
. Then using the chain rule since

d
dt log (t) = 1

t and d
dw

(
1+ e−apw

) = −ape−apw together, we have d
dw hp (w) =

1
1+e−apw

(−ape−apw
) = − ape−apw

1+e−apw = − ap

eapw+eapwe−apw = − ap
1+eapw . Now using this result,

and since the derivative of a sum is the sum of the derivatives, and g (w) =
P∑

p=1
hp (w),

we have d
dw g (w) =

P∑
p=1

d
dw hp (w) and so

g′ (w) = −
P∑

p=1

ap

1+ eapw . (B.10)

To compute the second derivative let us again do so by first differentiating the above
summand-by-summand. Denote the pth summand above as hp (w) = ap

1+eapw . To com-
pute its derivative we must apply the product and chain rules once again, we have
h′p (w) = − ap

(1+eapw)
2 apeapw = − eapw

(1+eapw)
2 a2

p. We can then compute the full second

derivative as g′′ (w) = −
P∑

p=1
h′p (w), or likewise

g′′ (w) =
P∑

p=1

eapw

(1+ eapw)2
a2

p. (B.11)

Example B.2 Practice derivative calculations: vector input functions

Below we compute the gradients and Hessians of three vector input functions g (w)
where w is an N × 1 dimensional input vector. The functions discussed here are
analogous to the scalar functions discussed in the first example.
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a) g (w) = 1
2 wTQw + rTw + d, here Q is an N × N symmetric matrix, r is an N × 1

vector, and d is a scalar.
Note that g (w) here is the vector version of the function shown in a) of the first

example. We should therefore expect the final shape of the gradient and Hessian to
generally match the first and second derivatives we found there.

Writing out g in terms of the individual entries of w we have g (w) =
1
2

N∑
n=1

N∑
m=1

wnQnmwm +
N∑

n=1
rnwn + d, then taking the jth partial derivative we have, since

the derivative of a sum is the sum of derivatives, ∂
∂wj

g (w) = 1
2

N∑
n=1

N∑
m=1

∂
∂wj

(wnQnmwm)+
N∑

n=1

∂
∂wj

(rnwn), where d vanishes since it is a constant and ∂
∂wj

d = 0. Now evaluating

each derivative we apply the product rule to each wnQnmwm (and remembering that all
other terms in wk where k �= j are constant and thus vanish when taking the wj partial
derivative), and we have

∂

∂wj
g (w) = 1

2

(
N∑

n=1

wnQnj +
N∑

m=1

Qjmwm

)
+ rj. (B.12)

All together the gradient can then be written compactly as

∇g (w) = 1

2

(
Q+QT)w+ r, (B.13)

and because Q is symmetric this is equivalently

∇g (w) = Qw+ r. (B.14)

Note how the gradient here takes precisely the same shape as the corresponding scalar
derivative shown in (B.6).

To compute the Hessian we compute mixed partial derivatives of the form
∂2

∂wi∂wj
g (w). To do this efficiently we can take the partial ∂

∂wi
of Equation (B.12), since

∂2

∂wi∂wj
g (w) = ∂

∂wi

(
∂
∂wj

g (w)
)

, which gives

∂2

∂wi∂wj
g (w) = 1

2

(
Qij + Qji

)
. (B.15)

All together we then have that the full Hessian matrix is

∇2g (w) = 1

2

(
Q+QT) , (B.16)

and because Q is symmetric this is equivalently

∇2g (w) = Q. (B.17)

Note how this is exactly the vector form of the second derivative given in (B.7).
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b) g (w) = −cos
(
2πwTw

)+ wTw
First, note that this is the vector input version of b) from the first example, therefore we
should expect the final shape of the gradient and Hessian to generally match the first and
second derivatives we found there.

Writing out g in terms of individual entries of w we have g (w) = −cos

(
2π

N∑
n=1

w2
n

)
+

N∑
n=1

w2
n, now taking the jth partial we have

∂

∂wj
g (w) = sin

(
2π

N∑
n=1

w2
n

)
4πwj + 2wj. (B.18)

From this we can see that the full gradient then takes the form

∇g (w) = sin
(
2πwTw

)
4πw+ 2w. (B.19)

This is precisely the analog of the first derivative of the scalar version of this function
shown in Equation (B.8) of the previous example.

To compute the second derivatives we can take the partial ∂
∂wi

of Equation (B.18),
which gives

∂2

∂wi∂wj
g (w) =

⎧⎪⎪⎨⎪⎪⎩
cos

(
2π

N∑
n=1

w2
n

)
(4π)2 wiwj + sin

(
2π

N∑
n=1

w2
n

)
4π + 2 if i = j

cos

(
2π

N∑
n=1

w2
n

)
(4π)2 wiwj else.

(B.20)
All together then, denoting IN×N the N × N identity matrix, we may write the Hessian
as

∇2g (w) = cos
(
2πwTw

)
(4π)2 wwT + (2+ sin

(
2πwTw

)
4π
)

IN×N . (B.21)

Note that this is analogous to the second derivative, shown in Equation (B.9), of the
scalar version of the function.

c) g (w) =
P∑

p=1
log
(

1+ e−aT
p w
)

where a1 . . . aP are N × 1 vectors

This is the vector-input version of c) from the first example, so we should expect similar
patterns to emerge when computing derivatives here.

Denote by hp (w) = log
(

1+ e−aT
p w
)
= log

⎛⎝1+ e
−

N∑
n=1

apnwn

⎞⎠ one of the summands

of g. Then using the chain rule, twice the jth partial can be written as

∂

∂wj
hp (w) = 1

1+ e−aT
p w

e−aT
p w (−apj

)
. (B.22)

Since 1

1+e−aT
p w

e−aT
p w = 1

eaT
p w+eaT

p we−aT
p w
= 1

1+eaT
p w

, we can rewrite the above more

compactly as
∂

∂wj
hp (w) = − apj

1+ eaT
p w

(B.23)
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and summing over p gives

∂

∂wj
g (w) = −

P∑
p=1

apj

1+ eaT
p w

. (B.24)

The full gradient of g is then given by

∇g (w) = −
P∑

p=1

ap

1+ eaT
p w

. (B.25)

Note the similar shape of this gradient compared to the derivative of the scalar form of
the function, as shown in Equation (B.10).

Computing the second partial derivatives from equation (B.24), we have

∂2

∂wi∂wj
g (w) =

P∑
p=1

eaT
p w(

1+ eaT
p w
)2

apiapj, (B.26)

and so we may write the full Hessian compactly as

∇2g (w) =
P∑

p=1

eaT
p w(

1+ eaT
p w
)2

apaT
p . (B.27)

Note how this is the analog of the second derivative of the scalar version of the function
shown in Equation (B.11).
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C: Fundamental matrix factorizations and
the pseudo-inverse

C.1 Fundamental matrix factorizations

In this section we discuss the fundamental matrix factorizations known as the singular
value decomposition and the eigenvalue decomposition of square symmetric matri-
ces, and end by describing the so-called pseudo-inverse of a matrix. Mathematical
proofs showing the existence of these factorizations can be found in any linear algebra
textbook.

C.1.1 The singular value decomposition

The singular value decomposition (SVD) is a fundamental factorization of matrices that
arises in a variety of contexts: from calculating the inverse of a matrix and the solution
to the Least Squares problem, to a natural encoding of matrix rank. In this section we
review the SVD, focusing especially on the motivation for its existence. This motivation
for the SVD is to understand, in the simplest possible terms, how a given M ×N matrix
A acts on N-dimensional vectors w via the multiplication Aw. We refer to this as par-
simonious representation or, in other words, the drive to represent Aw in the simplest
way possible. For ease of exposition we will assume that the matrix A has at least as
many rows as it has columns, i.e., N ≤ M, but what follows generalizes easily to the
case when N > M.

Through the product Aw = y the matrix A sends the vector w ∈ R
N to y ∈ R

M .
Using any two sets of linearly independent vectors which span R

N and R
M , denoted as

V = {v1, v2, . . . , vN} and U = {u1, u2, . . . , uM} respectively, we can decompose an
arbitrary w over V as

w =
N∑

n=1

αnvn, (C.1)

for some coefficients αn for n = 1 . . .N. Further, since for each n the product Avn is
some vector in R

M , each product itself can be decomposed over U as

Avn =
M∑

m=1

βn,mum, (C.2)

for some coefficients βn,m for m = 1 . . .M. Together these two facts allow us to decom-
pose the action of A on an arbitrary vector w in terms of how A acts on the individual
vns as
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Aw = A

(
N∑

n=1

αnvn

)
=

N∑
n=1

αnAvn =
N∑

n=1

M∑
m=1

αnβn,mum. (C.3)

This representation would be much simpler if U and V were such that A acted on each
vn via direct proportion, sending it to a weighted version of one of the ums. In other
words, if U and V existed such that

Avn = snun for all n, (C.4)

this would considerably simplify the expression for Aw in (C.3), giving instead

Aw =
N∑

n=1

αnsnun. (C.5)

If such a pair of bases for A indeed exists, (C.4) can be written equivalently in matrix
form as

AV = US, (C.6)

where V and U are N × N and M ×M matrices formed by concatenating the respective
basis vectors column-wise, and S is an M × N matrix with the si values on its diagonal
(and zero elsewhere). That is,

A

⎡⎣ | | |
v1 v2 · · · vN

| | |

⎤⎦ =
⎡⎣ | | |

u1 u2 · · · uM

| | |

⎤⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2
. . .

sN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C.7)

If, in addition, the basis matrices were orthogonal,1 we can rearrange (C.6) for A alone
giving the factorization

A = USVT . (C.8)

This ideal factorization can in fact be shown to hold rigorously (see e.g., [81]) and is
referred to as the singular value decomposition of A. The matrices U and V each have
orthonormal columns (meaning the columns of U all have unit length and are orthogonal
to each other, and likewise for V) and are typically referred to as left and right singular
matrices of A, with the real nonnegative values along the diagonal of S referred to as
singular values.

Any matrix A may be factorized as A = USVT where U and V have orthonormal
columns and S is a diagonal matrix containing the (real and nonnegative) singular
values of A along its diagonal.

1 A square matrix Q is called orthogonal if QT Q = QQT = I.
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The SVD can also be written equivalently as a weighted sum of outer product matrices

A =
min(N,M)∑

i=1

uisiv
T
i . (C.9)

Note that we can (and do) assume that the singular values are placed in descending order
along the diagonal of S.

C.1.2 Eigenvalue decomposition

When A is square and symmetric, i.e., when N = M and A = AT , there is an additional
factorization given by

A = EDET , (C.10)

where E is an N×N matrix with orthonormal columns referred to as eigenvectors, and D
is a diagonal matrix whose diagonal elements are always real numbers and are referred
to as eigenvalues.

A square symmetric matrix A may be factorized as A = EDET where E is an
orthogonal matrix of eigenvectors and D a diagonal matrix of all real eigenvalues.

We may also write this spectral decomposition equivalently as a sum of N weighted
outer product matrices:

A =
N∑

i=1

dieie
T
i . (C.11)

This factorization can be motivated analogously to the SVD in the case of square sym-
metric A, and is therefore highly related to A’s SVD (for a proof of this fact, commonly
referred to as the spectral theorem of symmetric matrices, see e.g., [81]). Specifically,
when A is additionally positive (semi) definite one can show that this factorization is
precisely the SVD of A.

Note also that a symmetric matrix is invertible if and only if it has all nonzero eigen-
values. In this case the inverse of A, denoted as A−1, can be written as A−1 = ETD−1E
where D−1 is a diagonal matrix containing the reciprocal of the eigenvalues in D along
its diagonal.

A square symmetric matrix A is invertible if and only if it has all nonzero
eigenvalues.
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C.1.3 The pseudo-inverse

Here we describe the so-called pseudo-inverse solution to the linear system of equations

Aw = b, (C.12)

where w is an N × 1 vector, A is an M × N, and b an M × 1 vector, and where we
assume the system has at least one solution. By taking the SVD of A as A = USVT ,
and removing all columns of U and V associated to any zero singular values, we may
then write a solution to this system using the fact that the columns of U and V are
orthonormal,

w = VS−1UTb. (C.13)

Note that since S is a diagonal matrix the matrix S−1 is also diagonal, containing the
reciprocal of the nonzero singular values along its diagonal. The matrix A† = VS−1UT

is referred to as the pseudo-inverse of the matrix A, and we generally write the solution
above as

w = A†b. (C.14)

When A is square and invertible the pseudo-inverse equals the matrix inverse itself, i.e.,
A† = A−1. Otherwise, if there are infinitely many solutions to the system Aw = b then
the pseudo-inverse solution provides the smallest solution to this system.

The smallest solution to the system Aw = b is given by w = A†b where A† is the
pseudo-inverse of A.
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D: Convex geometry

D.1 Definitions of convexity

In this section we describe two further definitions of convexity (beyond the second order
definition described in Section 2.1.3) that can be used for verifying convexity of a given
scalar valued function g : R

N → R. Additional care must be taken when the domain of
g is not the entire R

N but a subset D of it. Specifically, the domain of a convex function g
must be a convex set itself. A set D is convex if for any w1 and w2 in it, D also contains
the line segment connecting w1 and w2. This line segment can be expressed via

λw1 + (1− λ)w2, (D.1)

where each value for λ in the unit interval [0, 1] uniquely corresponds to one point on
the line segment. Examples of a convex and a non-convex set are illustrated in Fig. D.1.

D.1.1 Zeroth order definition of a convex function

A function g is convex if and only if any line segment connecting two points on the graph
of g lies above its graph. Figure D.2 illustrates this definition of a convex function.

Stating this geometric fact algebraically, g is convex if and only if for all w1 and w2

in the domain of g and all λ ∈ [0, 1], we have

g (λw1 + (1− λ)w2) ≤ λg (w1)+ (1− λ) g (w2) . (D.2)

Fig. D.1 (left) A convex set contains the line segment connecting any two points inside it. (right) A
non-convex set does not satisfy this property.
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Fig. D.2 The line segment (shown in orange) connecting two points on the graph of a convex function.

Fig. D.3 A differentiable convex function is one whose tangent plane at any point v lies below its graph.

D.1.2 First order definition of a convex function

A differentiable function g is convex if and only if at each point v in its domain the
tangent plane (generated by its first order Taylor approximation) lies below the graph of
g. This definition is shown in Fig. D.3.

Algebraically, it says that a differentiable g is convex if and only if for all w and v in
its domain, we have

g (w) ≥ g (v)+ ∇g (v)T (w− v) . (D.3)

Note that this definition of convexity only applies for differentiable functions.
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accuracy, 82, 103, 178
activation function, 137, 140, 146, 178, 202
adjustable basis, see basis
automated medical diagnosis, 11, 186
automatic feature design, see feature

back-propagation, 146, 178, 202
backtracking line search, 226, 236
bag of words (BoW), 109
basis

adjustable basis, 136, 141
discrete cosine transform basis, 254
fixed basis, 135, 141, 174
Fourier basis, 136
neural network basis, 136, 140, 202
orthogonal basis, 158
polynomial basis, 135

bounded curvature, see curvature
buffer zone, see margin perceptron

chain rule, 202, 269
classification

classification accuracy, see accuracy
classification boundary, 178
ideal classification scenario, 166
linear classification, 73
multiclass classification, 95, 179
nonlinear classification, 166
real classification scenario, 171

clustering, see K-means
convex function, 24
convolutional neural network, 188
cost function, 15
cross-validation

hold out cross-validation, 149, 182
k-fold cross-validation, 152, 184
leave-one-out cross-validation, 155
l2 regularized cross-validation, 209

counting cost, 83
curse of dimensionality, 134
curvature, 22, 241

data types
audio data, 115

image data, 112
text data, 109

data generating function, 53, 107, 131, 166
dimension reduction techniques, 245
discrete cosine transform (DCT), see basis

edge detection, 14, 113
eigenvalue, 25, 276

face detection, 10, 186
features

knowledge-driven feature design, 51, 104
automatic feature design/learning, 131, 166
feature transformation/map, 51, 104
histogram features, 107

first order condition for optimality, 22
fixed basis, see basis
Fourier basis, see basis
function approximation

continuous function approximation, 134
discrete function approximation, 133
indicator function approximation, 170
piecewise continuous function approximation,

166
universal approximator, 165

fusion rule, 99, 179

Galileo’s ramp experiment, 12, 53, 155
genome-wide association (GWA), 8
gradient descent

gradient descent with adaptive step length, 226
gradient descent with fixed step length, 29, 219
gradient descent with momentum, 206
stochastic gradient descent, 229

gross domestic product (GDP), 47

handwritten digit recognition, 96
Hessian matrix, 22, 268
Hilbert matrix, 160
hinge cost, 75
histogram of oriented gradients (HoG), 115
hold out cross-validation, see cross-validation
hyperbolic tangent function, 137

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316402276
https:/www.cambridge.org/core


286 Index

image compression, 254
indicator function, 168

k-fold cross-validation, see cross-validation
K-means clustering, 246
K-nearest neighbors, 192
Kepler’s law, 67
kernel

kernelization cost functions, 197
polynomial kernel, 199
Fourier kernel, 200
radial basis function (RBF) kernel, 201

Kleiber’s law, 62

�2 norm, 59
learning rate, see step length
least squares, 47
leave-one-out, see cross-validation
linear classification, see classification
linear regression, see regression
Lipschitz constant, 223, 241
logistic regression, 56, 86
logistic sigmoid function, 56
loss, see cost function

matrix completion, 257
matrix factorization, 245, 274
mean squared error (MSE), 50
minimum

global minimum, 24
local minimum, 24

Moore’s law, 65
multiclass classification, see classification
multiclass softmax classifier, 99

neural network, see basis
Newton’s method, 33
nonlinear classification, see classification
nonlinear regression, see regression
numerical optimization, see optimization

object detection, 10, 114
Occam’s razor, 148
Ohm’s law, 66
one-versus-all (OvA) classifier, 96, 179
optimization, 15, 21, 219
outliers, 90
overfitting, 147, 149, 181, 209

principal component analysis (PCA), 250
perceptron

basic perceptron, 73
margin perceptron, 78

squared margin perceptron, 81
polynomial basis, see basis
population growth modeling, 56
positive (semi)-definite matrix, 25

radial basis function, see kernel
recommender system, 256
rectified linear unit, 137
regression

ideal regression scenario, 131
linear regression, 45
nonlinear regression, 56, 131
real regression scenario, 141

regularization
�2 regularization, 56, 95, 208

revenue forecasting, 8

saddle point, 26
second order definition of convexity, 25
sentiment analysis, 11, 110
similarity matrix, 201
singular value decomposition (SVD), 274
spam detection, 111
speech recognition, 117
softmax cost, 76, 101
softmax function, 75
spectrogram, 117
step function, 87
step length

fixed step length rule, 219
adaptive step length rule, 226
step length for stochastic gradient, 233

steepest descent, see gradient descent
stochastic gradient descent, see gradient descent
stopping condition, 27
student loan debt, 7, 49
stationary point, 23
support vector machine (SVM)

hard-margin SVM, 93
log-loss SVM, 95
soft-margin SVM, 93

Taylor series approximation, 21
testing phase

testing error, 152
testing set, 4, 151

training phase
training error, 152
training set, 1, 151

transformed feature space, 52, 55, 107

underfitting, 147, 149, 184
universal approximator, see function approximation
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