

Praise for Game Physics Engine Development

“Game Physics Engine Development is the first game physics book to emphasize building an
actual engine. It focuses on the practical implementation details and addresses trade-offs that
must be made. Ian’s experience with commercial physics engines definitely shows. His book
fills a gap by demonstrating how you actually build a physics engine.”

— Dave Eberly, President, Geometric Tools

“Ian Millington has achieved the remarkable task of creating a self-contained text on game
physics programming. If you are charged with putting together a game physics engine, this
book will carry you through from beginning (with a math and physics primer) through the
process (with detailed attention to extendable software design) to the end (collision handling
and constrained dynamics). If you are asked to use a game physics engine, this text will help
you understand what is going on under the hood, and therefore make you a better user.

The text is practical enough to serve the industry practitioner (read this before starting
your project!), and the writing is solid enough to be used in an undergraduate course on
video game physics. Game Physics Engine Development comes bundled with working source
code closely matched to the text—a valuable service to the reader: the bundled implementa-
tion serves as a foundation for experimentation, a reference for comparison, and a guide to
modular software design. Millington’s writing maintains a steady pace and a friendly tone; the
narrative level will appeal to a broad audience of students and practitioners.”

— Professor Eitan Grinspun, Department of Computer
Science, Columbia University, New York

“A competent programmer with sufficient mathematical sophistication could build a physics
engine just from the text and equations—even without the accompanying source code. You
can’t say this about a lot of books!”

— Philip J. Schneider, Industrial Light + Magic

“Thorough content with an engaging style; the essential mathematics is presented clearly with
genuine and effective explanation and appropriate scope. The C++ code samples are a major
strength.”

— Dr. John Purdy, Department of Computer
Science, University of Hull, UK

The Morgan Kaufmann Series in Interactive 3D Technology

The game industry is a powerful and driving force in the evolution of computer technology. As
the capabilities of personal computers, peripheral hardware, and game consoles have grown, so
has the demand for quality information about the algorithms, tools, and descriptions needed
to take advantage of this new technology. To satisfy this demand and establish a new level
of professional reference for the game developer, we created the Morgan Kaufmann Series in
Interactive 3D Technology. Books in the series are written for developers by leading industry
professionals and academic researchers, and cover the state of the art in real-time 3D. The
series emphasizes practical, working solutions, and solid software-engineering principles. The
goal is for the developer to be able to implement real systems from the fundamental ideas,
whether it be for games or for other applications.

Game Physics Engine Development
Ian Millington

Artificial Intelligence for Games
Ian Millington

X3D: Extensible 3D Graphics
for Web Authors
Don Brutzman and Leonard Daly

3D Game Engine Design: A Practical
Approach to Real-Time Computer
Graphics, Second Edition
David H. Eberly

3D Game Engine Architecture:
Engineering Real-Time Applications
with Wild Magic
David H. Eberly

Game Physics
David H. Eberly

Better Game Characters by Design:
A Psychological Approach
Katherine Isbister

Real-Time Collision Detection
Christer Ericson

Visualizing Quaternions
Andrew J. Hanson

Physically Based Rendering: From
Theory to Implementation
Matt Pharr and Greg Humphreys

Collision Detection in Interactive 3D
Environments
Gino van den Bergen

Essential Mathematics for Games and
Interactive Applications: A Programmer’s
Guide
James M. Van Verth and Lars M. Bishop

Forthcoming
Real-Time Cameras
Mark Haigh-Hutchinson

GAME PHYSICS
ENGINE

DEVELOPMENT

IAN MILLINGTON

AMSTERDAM • BOSTON • HEIDELBERG
LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO
SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Publisher Denise E. M. Penrose
Publishing Services Manager George Morrison
Assistant Editor Michelle Ward
Project Manager Marilyn E. Rash
Cover Design Chen Design Associates
Composition VTeX
Illustrations Integra
Copyeditor Carol Leyba
Proofreader Dianne Wood
Indexer Keith Shostak
Interior printer The Maple Press Company
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission of the
publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:
phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete
your request on-line via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then
“Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Millington, Ian.
Game physics engine development / Ian Millington.

p. cm.
Includes bibliographical references and index.

ISBN-13: 978-0-12-369471-3 (alk. paper)
ISBN-10: 0-12-369471-X (alk. paper)
1. Computer games—Programming. 2. Physics—Data processing. I. Title.
QA76.76.C672M55 2006
794.8′1526–dc22 2006023852

For information on all Morgan Kaufmann publications, visit our
Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
07 08 09 10 11 5 4 3 2 1

To Melanie

ABOUT THE AUTHOR

Ian Millington is a partner at IPR Ventures, a consulting company involved in the
development of next-generation technologies for entertainment, modeling, and sim-
ulation. Previously, he founded Mindlathe Ltd, the largest specialist AI middleware
company in computer games, which worked on a huge range of game genres and
technologies. He has an extensive background in artificial intelligence (AI), including
PhD research in complexity theory and natural computing. Ian has published aca-
demic and professional papers and articles on topics ranging from paleontology to
hypertext and is the author of Artificial Intelligence for Games (Morgan Kaufmann,
2006).

CONTENTS

LIST OF FIGURES xvi

PREFACE xix

CHAPTER

1 INTRODUCTION 1

1.1 WHAT IS GAME PHYSICS? 2

1.2 WHAT IS A PHYSICS ENGINE? 2
1.2.1 Advantages of a Physics Engine 3
1.2.2 Weaknesses of a Physics Engine 4

1.3 APPROACHES TO PHYSICS ENGINES 5
1.3.1 Types of Object 5
1.3.2 Contact Resolution 5
1.3.3 Impulses and Forces 6
1.3.4 What We’re Building 7

1.4 THE MATHEMATICS OF PHYSICS ENGINES 7
1.4.1 The Math You Need to Know 8
1.4.2 The Math We’ll Review 9
1.4.3 The Math We’ll Introduce 10

1.5 THE SOURCE CODE IN THIS BOOK 10

1.6 HOW THIS BOOK IS STRUCTURED 11

PART I PARTICLE PHYSICS 13

CHAPTER

2 THE MATHEMATICS OF PARTICLES 15

2.1 VECTORS 15
2.1.1 The Handedness of Space 19

vii

viii Contents

2.1.2 Vectors and Directions 20
2.1.3 Scalar and Vector Multiplication 23
2.1.4 Vector Addition and Subtraction 24
2.1.5 Multiplying Vectors 27
2.1.6 The Component Product 28
2.1.7 The Scalar Product 29
2.1.8 The Vector Product 31
2.1.9 The Orthonormal Basis 35

2.2 CALCULUS 35
2.2.1 Differential Calculus 36
2.2.2 Integral Calculus 40

2.3 SUMMARY 42

CHAPTER

3 THE LAWS OF MOTION 43

3.1 A PARTICLE 43

3.2 THE FIRST TWO LAWS 44
3.2.1 The First Law 45
3.2.2 The Second Law 46
3.2.3 The Force Equations 46
3.2.4 Adding Mass to Particles 47
3.2.5 Momentum and Velocity 48
3.2.6 The Force of Gravity 48

3.3 THE INTEGRATOR 50
3.3.1 The Update Equations 51
3.3.2 The Complete Integrator 52

3.4 SUMMARY 54

CHAPTER

4 THE PARTICLE PHYSICS ENGINE 55

4.1 BALLISTICS 55
4.1.1 Setting Projectile Properties 56
4.1.2 Implementation 57

4.2 FIREWORKS 60
4.2.1 The Fireworks Data 60
4.2.2 The Fireworks Rules 61
4.2.3 The Implementation 63

4.3 SUMMARY 66

Physics Engine Design ix

PART II MASS-AGGREGATE PHYSICS 67

CHAPTER

5 ADDING GENERAL FORCES 69

5.1 D’ALEMBERT’S PRINCIPLE 69

5.2 FORCE GENERATORS 72
5.2.1 Interfaces and Polymorphism 73
5.2.2 Implementation 73
5.2.3 A Gravity Force Generator 76
5.2.4 A Drag Force Generator 77

5.3 BUILT-IN GRAVITY AND DAMPING 79

5.4 SUMMARY 79

CHAPTER

6 SPRINGS AND SPRINGLIKE THINGS 81

6.1 HOOK’S LAW 81
6.1.1 The Limit of Elasticity 83
6.1.2 Springlike Things 83

6.2 SPRINGLIKE FORCE GENERATORS 83
6.2.1 A Basic Spring Generator 84
6.2.2 An Anchored Spring Generator 86
6.2.3 An Elastic Bungee Generator 87
6.2.4 A Buoyancy Force Generator 89

6.3 STIFF SPRINGS 93
6.3.1 The Problem of Stiff Springs 93
6.3.2 Faking Stiff Springs 95

6.4 SUMMARY 101

CHAPTER

7 HARD CONSTRAINTS 103

7.1 SIMPLE COLLISION RESOLUTION 103
7.1.1 The Closing Velocity 104
7.1.2 The Coefficient of Restitution 105
7.1.3 The Collision Direction and the Contact Normal 105
7.1.4 Impulses 107

x Contents

7.2 COLLISION PROCESSING 108
7.2.1 Collision Detection 111
7.2.2 Resolving Interpenetration 112
7.2.3 Resting Contacts 116

7.3 THE CONTACT RESOLVER ALGORITHM 119
7.3.1 Resolution Order 120
7.3.2 Time-Division Engines 124

7.4 COLLISIONLIKE THINGS 125
7.4.1 Cables 126
7.4.2 Rods 128

7.5 SUMMARY 131

CHAPTER

8 THE MASS-AGGREGATE PHYSICS ENGINE 133

8.1 OVERVIEW OF THE ENGINE 133

8.2 USING THE PHYSICS ENGINE 139
8.2.1 Rope-Bridges and Cables 139
8.2.2 Friction 140
8.2.3 Blob Games 141

8.3 SUMMARY 142

PART III RIGID-BODY PHYSICS 143

CHAPTER

9 THE MATHEMATICS OF ROTATIONS 145

9.1 ROTATING OBJECTS IN TWO DIMENSIONS 145
9.1.1 The Mathematics of Angles 146
9.1.2 Angular Speed 148
9.1.3 The Origin and the Center of Mass 148

9.2 ORIENTATION IN THREE DIMENSIONS 152
9.2.1 Euler Angles 153
9.2.2 Axis–Angle 155
9.2.3 Rotation Matrices 156
9.2.4 Quaternions 157

9.3 ANGULAR VELOCITY AND ACCELERATION 159
9.3.1 The Velocity of a Point 160
9.3.2 Angular Acceleration 160

Physics Engine Design xi

9.4 IMPLEMENTING THE MATHEMATICS 161

9.4.1 The Matrix Classes 161

9.4.2 Matrix Multiplication 162

9.4.3 The Matrix Inverse and Transpose 171

9.4.4 Converting a Quaternion to a Matrix 178

9.4.5 Transforming Vectors 180

9.4.6 Changing the Basis of a Matrix 184

9.4.7 The Quaternion Class 186

9.4.8 Normalizing Quaternions 187

9.4.9 Combining Quaternions 188

9.4.10 Rotating 189

9.4.11 Updating by the Angular Velocity 190

9.5 SUMMARY 191

CHAPTER

10 LAWS OF MOTION FOR RIGID BODIES 193

10.1 THE RIGID BODY 193

10.2 NEWTON 2 FOR ROTATION 196

10.2.1 Torque 197

10.2.2 The Moment of Inertia 198

10.2.3 The Inertia Tensor in World Coordinates 202

10.3 D’ALEMBERT FOR ROTATION 205

10.3.1 Force Generators 208

10.4 THE RIGID-BODY INTEGRATION 210

10.5 SUMMARY 212

CHAPTER

11 THE RIGID-BODY PHYSICS ENGINE 213

11.1 OVERVIEW OF THE ENGINE 213

11.2 USING THE PHYSICS ENGINE 216

11.2.1 A Flight Simulator 216

11.2.2 A Sailing Simulator 222

11.3 SUMMARY 227

xii Contents

PART IV COLLISION DETECTION 229

CHAPTER

12 COLLISION DETECTION 231

12.1 COLLISION DETECTION PIPELINE 232

12.2 COARSE COLLISION DETECTION 232

12.3 BOUNDING VOLUMES 233
12.3.1 Hierarchies 235
12.3.2 Building the Hierarchy 241
12.3.3 Sub-Object Hierarchies 250

12.4 SPATIAL DATA STRUCTURES 251
12.4.1 Binary Space Partitioning 251
12.4.2 Oct-Trees and Quad-Trees 255
12.4.3 Grids 258
12.4.4 Multi-Resolution Maps 260

12.5 SUMMARY 261

CHAPTER

13 GENERATING CONTACTS 263

13.1 COLLISION GEOMETRY 264
13.1.1 Primitive Assemblies 264
13.1.2 Generating Collision Geometry 265

13.2 CONTACT GENERATION 265
13.2.1 Contact Data 267
13.2.2 Point–Face Contacts 269
13.2.3 Edge–Edge Contacts 269
13.2.4 Edge–Face Contacts 271
13.2.5 Face–Face Contacts 271
13.2.6 Early-Outs 272

13.3 PRIMITIVE COLLISION ALGORITHMS 273
13.3.1 Colliding Two Spheres 274
13.3.2 Colliding a Sphere and a Plane 276
13.3.3 Colliding a Box and a Plane 279
13.3.4 Colliding a Sphere and a Box 282
13.3.5 Colliding Two Boxes 287
13.3.6 Efficiency and General Polyhedra 297

13.4 SUMMARY 297

Physics Engine Design xiii

PART V CONTACT PHYSICS 299

CHAPTER

14 COLLISION RESOLUTION 301

14.1 IMPULSES AND IMPULSIVE TORQUES 301
14.1.1 Impulsive Torque 302
14.1.2 Rotating Collisions 304
14.1.3 Handling Rotating Collisions 305

14.2 COLLISION IMPULSES 306
14.2.1 Change to Contact Coordinates 306
14.2.2 Velocity Change by Impulse 313
14.2.3 Impulse Change by Velocity 317
14.2.4 Calculating the Desired Velocity Change 318
14.2.5 Calculating the Impulse 319
14.2.6 Applying the Impulse 320

14.3 RESOLVING INTERPENETRATION 321
14.3.1 Choosing a Resolution Method 321
14.3.2 Implementing Nonlinear Projection 325
14.3.3 Avoiding Excessive Rotation 328

14.4 THE COLLISION RESOLUTION PROCESS 330
14.4.1 The Collision Resolution Pipeline 331
14.4.2 Preparing Contact Data 333
14.4.3 Resolving Penetration 337
14.4.4 Resolving Velocity 344
14.4.5 Alternative Update Algorithms 346

14.5 SUMMARY 349

CHAPTER

15 RESTING CONTACTS AND FRICTION 351

15.1 RESTING FORCES 352
15.1.1 Force Calculations 353

15.2 MICRO-COLLISIONS 354
15.2.1 Removing Accelerated Velocity 356
15.2.2 Lowering the Restitution 357
15.2.3 The New Velocity Calculation 357

15.3 TYPES OF FRICTION 358
15.3.1 Static and Dynamic Friction 359
15.3.2 Isotropic and Anisotropic Friction 361

15.4 IMPLEMENTING FRICTION 362
15.4.1 Friction as Impulses 363

xiv Contents

15.4.2 Modifying the Velocity Resolution Algorithm 365
15.4.3 Putting It All Together 371

15.5 FRICTION AND SEQUENTIAL CONTACT RESOLUTION 373

15.6 SUMMARY 374

CHAPTER

16 STABILITY AND OPTIMIZATION 375

16.1 STABILITY 375
16.1.1 Quaternion Drift 376
16.1.2 Interpenetration on Slopes 377
16.1.3 Integration Stability 379
16.1.4 The Benefit of Pessimistic Collision Detection 380
16.1.5 Changing Mathematical Accuracy 381

16.2 OPTIMIZATIONS 383
16.2.1 Sleep 383
16.2.2 Margins of Error for Penetration and Velocity 390
16.2.3 Contact Grouping 393
16.2.4 Code Optimizations 394

16.3 SUMMARY 397

CHAPTER

17 PUTTING IT ALL TOGETHER 399

17.1 OVERVIEW OF THE ENGINE 399

17.2 USING THE PHYSICS ENGINE 401
17.2.1 Ragdolls 402
17.2.2 Fracture Physics 405
17.2.3 Explosive Physics 411

17.3 LIMITATIONS OF THE ENGINE 418
17.3.1 Stacks 418
17.3.2 Reaction Force Friction 419
17.3.3 Joint Assemblies 419
17.3.4 Stiff Springs 419

17.4 SUMMARY 419

PART VI WHAT COMES NEXT? 421

CHAPTER

18 OTHER TYPES OF PHYSICS 423

18.1 SIMULTANEOUS CONTACT RESOLUTION 423

Physics Engine Design xv

18.1.1 The Jacobian 424
18.1.2 The Linear Complementary Problem 425

18.2 REDUCED COORDINATE APPROACHES 428

18.3 SUMMARY 429

APPENDICES

A COMMON INERTIA TENSORS 431

A.1 DISCRETE MASSES 431

A.2 CONTINUOUS MASSES 432

A.3 COMMON SHAPES 432
A.3.1 Cuboid 432
A.3.2 Sphere 432
A.3.3 Cylinder 433
A.3.4 Cone 433

B USEFUL FRICTION COEFFICIENTS FOR GAMES 434

C OTHER PROGRAMMING LANGUAGES 435

C.1 C 435

C.2 JAVA 436

C.3 COMMON LANGUAGE RUNTIME (.NET) 436

C.4 LUA 436

D MATHEMATICS SUMMARY 438

D.1 VECTORS 438

D.2 QUATERNIONS 439

D.3 MATRICES 440

D.4 INTEGRATION 441

D.5 PHYSICS 442

D.6 OTHER FORMULAE 443

BIBLIOGRAPHY 445

INDEX 447

LIST OF FIGURES

1.1 Trigonometry and coordinate geometry 9

2.1 Three-dimensional coordinates 16
2.2 Left- and right-handed axes 20
2.3 A vector as a movement in space 21
2.4 The geometry of scalar–vector multiplication 25
2.5 The geometry of vector addition 25
2.6 Geometric interpretation of the scalar product 31
2.7 Geometric interpretation of the vector product 34
2.8 Same average velocity, different instantaneous velocity 37

4.1 Screenshot of the ballistic demo 57
4.2 Screenshot of the bigballistic demo 59
4.3 Screenshot of the fireworks demo 60

6.1 The game’s camera attached to a spring 83
6.2 A rope-bridge held up by springs 86
6.3 A buoyant block submerged and partially submerged 89
6.4 A non-stiff spring over time 93
6.5 A stiff spring over time 94
6.6 The rest length and the equilibrium position 99

7.1 Contact normal is different from the vector between objects in contact 107
7.2 Interpenetrating objects 112
7.3 Interpenetration and reality 113
7.4 Vibration on resting contact 116
7.5 Resolving one contact may resolve another automatically 121

8.1 Screenshot of the bridge demo 140
8.2 Screenshot of the platform demo 141

9.1 The angle that an object is facing 146
9.2 The circle of orientation vectors 147
9.3 The relative position of a car component 149

xvi

List of Figures xvii

9.4 The car is rotated 150
9.5 Aircraft rotation axes 153
9.6 A matrix has its basis changed 185

10.1 A force generating zero torque 198
10.2 The moment of inertia is local to an object 202

11.1 Screenshot of the flightsim demo 221
11.2 Different centers of buoyancy 223
11.3 Screenshot of the sailboat demo 227

12.1 A spherical bounding volume 234
12.2 A spherical bounding volume hierarchy 236
12.3 Bottom-up hierarchy building in action 242
12.4 Top-down hierarchy building in action 243
12.5 Insertion hierarchy building in action 244
12.6 Working out a parent bounding sphere 247
12.7 Removing an object from a hierarchy 248
12.8 A sub-object bounding volume hierarchy 250
12.9 A binary space partition tree 255
12.10 Identifying an object’s location in a quad-tree 256
12.11 A quad-tree forms a grid 258
12.12 An object may occupy up to four same-sized grid cells 261

13.1 An object approximated by an assembly of primitives 265
13.2 Collision detection and contact generation 266
13.3 Cases of contact 267
13.4 The relationship between the collision point, collision normal,

and penetration depth 268
13.5 The point–face contact data 270
13.6 The edge–edge contact data 270
13.7 The edge–face contact data 271
13.8 The face–face contact data 272
13.9 The difference in contact normal for a plane and a half-space 278
13.10 Contacts between a box and a plane 280
13.11 The half-sizes of a box 281
13.12 Contacts between a box and a sphere 282
13.13 Separating axes between a box and a sphere 284
13.14 Contact between two boxes 288
13.15 Replacing face–face and edge–face contacts between boxes 289
13.16 The projection of two boxes onto separating axes 290
13.17 Sequence of contacts over two frames 292
13.18 Projection of a point–face contact 294
13.19 Determining edge–edge contacts 296

xviii List of Figures

14.1 The rotational and linear components of a collision 303
14.2 Three objects with different bounce characteristics 305
14.3 The three sets of coordinates: world, local, and contact 307
14.4 Linear projection causes realism problems 322
14.5 Velocity-based resolution introduces apparent friction 323
14.6 Nonlinear projection is more believable 324
14.7 Nonlinear projection does not add friction 324
14.8 Angular motion cannot resolve the interpenetration 328
14.9 Angular resolution causes other problems 329
14.10 Data flow through the physics engine 331
14.11 Resolution order is significant 338
14.12 Repeating the same pair of resolutions 339
14.13 Resolving penetration can cause unexpected contact changes 341

15.1 A reaction force at a resting contact 352
15.2 The long-distance dependence of reaction forces 354
15.3 Micro-collisions replace reaction forces 355
15.4 A microscopic view of static and dynamic friction 361
15.5 Anisotropic friction 362
15.6 The problem with sequential contact resolution 373

16.1 Objects drift down angled planes 377
16.2 Collisions can be missed if they aren’t initially in contact 381
16.3 A chain of collisions is awakened 390
16.4 Iterative resolution makes microscopic changes 391
16.5 Sets of independent contacts 393

17.1 Data flow through the physics engine 401
17.2 Screenshot of the ragdoll demo 402
17.3 Closeup of a ragdoll joint 403
17.4 Pre-created fractures can look very strange for large objects 406
17.5 Screenshot of the fracture demo 407
17.6 The fractures of a concrete block 408
17.7 The cross section of force across a compression wave 415
17.8 Screenshot of the explosion demo 418

PREFACE

When I started writing games, in the 8-bit bedroom coding boom of the eighties, the
low budgets and short turnaround times for writing games encouraged innovation
and experimentation. This in turn led to some great games (and, it has to be said,
a whole heap of unplayable rubbish). Let no one tell you games were better back then!
I remember being particularly inspired by two games, both of which used realistic
physics as a core of their gameplay.

The first, written by Jeremy Smith and originally published for the United King-
dom’s BBC Micro range of home computers, was Thrust. Based on the arcade game
Gravitar, an ivy-leaf shaped ship navigates through underground caverns under the
influence of a two-dimensional (2D) physical simulation. The aim is to steal a heavy
fuel pod, which is then connected to the ship via a cable. The relatively simple iner-
tial model of the spaceship then becomes a wonderfully complex interaction of two
heavy objects. The gameplay was certainly challenging, but had that one-more-time
feel that denotes a classic game.

The second game, written by Peter Irvin and Jeremy Smith (again), was Exile.
This is perhaps the most innovative and impressive game I have ever seen; it features
techniques beyond physics, such as procedural content creation that is only now being
adopted on a large scale.

Exile’s physics extends to every object in the game. Ammunition follows ballistic
trajectories—you can throw grenades, which explode sending nearby objects flying;
you can carry a heavy object to weigh you down in a strong up-draft; and you can float
pleasantly in water. Exile’s content qualifies it as the first complete physics engine in a
game.

Although Exile was released in 1988, I feel like a relative newcomer to the physics
coding party. I started writing game physics in 1999 by creating an engine for mod-
eling cars in a driving game. What I thought was going to be a month-long project
turned into something of an albatross.

I ran headlong into every physics problem imaginable, from stiff-suspension
springs, which sent my car spiraling off to infinity; to wheels that wobbled at high
speed because friction moved objects around of their own accord; to hard surfaces
that looked like they were made of soft rubber. I tried a whole gamut of approaches,
from impulses to Jacobians, from reduced coordinates to faked physics. It was a learn-
ing curve unlike anything before or since in my game coding career.

xix

xx Preface

While I was merrily missing my deadlines (driving physics gave way to third-
person shooters) and my company examined every middleware physics system to be
found, I learned a lot about the pitfalls and benefits of different approaches. The
code I wrote, and often abandoned, proved to be useful over the intervening years as
it got dusted off and repurposed. I have built several physics engines based on that
experience, and have customized them for many applications, so now I think that I
have a good sense of how to get the best effects from the simplest approach.

Game development has entered a phase in which physics simulation is a com-
modity. Almost every game needs physics simulation, and every major development
company has an in-house library, or licenses one of the major middleware solutions.
Physics, despite being more common than ever before, is still somewhat of a black
box. Physics developers do their stuff, and the rest of the team relies on the results.

Most of the information and literature on game physics assumes a level of math-
ematical and physical sophistication that is uncommon. Some works give you all the
physical information, but no architecture for how to apply it. Others contain misin-
formation and advice that will sting you. Physics engines are complicated beasts, and
there are a universe of optimizations and refinements out there, most still waiting
to be explored. Before you can wrangle with implementing variations on the Lemke
pivot algorithm, however, you need to understand the basics and to have a working
body of code to experiment with.

This book was written as a culmination of the first few years of painful experi-
mentation I went through. I wanted it to be a starting point—to be the book I needed
seven years ago. The intent is to take you from zero to a working physics engine in
one logical and understandable story. It is just the first step on a much longer road,
but what’s in this book is a sure and dependable step to take—one that’s in the right
direction.

ABOUT THE CD-ROM

This book is accompanied by a CD-ROM that contains a library of source code to
implement the techniques and demonstrations in this book. The library there is de-
signed to be relatively easy to read, and it includes copious comments and demonstra-
tion programs. Support materials, such as updates, errata, and additional features,
are available on the companion site for this book at http://textbooks.elsevier.com/
012369471X.

ACKNOWLEDGEMENTS

My quest to create robust game physics, although difficult, would have been impossi-
ble without the contributions of a handful of skilled coders and mathematicians who
published papers and articles, gave SIGGRAPH presentations, and released source
code. Although there are many more, I am thinking particularly of Chris Hecker,

Preface xxi

Andrew Watkin, and David Barraf. Their early contributions were the lifeline that
those of us who followed along needed.

I would like to thank the hard work and diligence of the technical review team
on this book: Philip J. Schneider, Dr. Jonathan Purdy, and Eitan Grinspun: thank
you for your valuable contributions that helped improve its quality, readability, and
usefulness. I’d particularly like to thank Dave Eberly, whose accuracy and attention to
detail at several points saved me from embarrassing gaffs.

I am grateful to the efficiency and patience of the editorial team at Elsevier: Mar-
ilyn Rash and Michelle Ward who saw this book through to its conclusion, and Tim
Cox who set it out on the road. I am also particularly grateful to the copyeditor, Carol
Leyba, whose stylistic suggestions as well as her diligence dramatically improved the
book’s content.

Unlike my first book which was written during “gardening leave” after selling my
previous business, this text was written while working full-time to build the R&D
consultancy partnership I still work with. I therefore want to dedicate this book to
my wife, Mel, who suffered through my late-nights, evenings alone, and the long saga
of a “three-month project” that took nearly two years to complete.

This page intentionally left blank

1
INTRODUCTION

hysics is a hot topic in computer games. No self-respecting action game can get
P by without a good physics engine, and the trend is rapidly spreading to other
genres, including strategy games and puzzles. This growth has been largely fuelled by
middleware companies offering high-powered physics simulation. Many high-profile
games feature commercial physics engines.

But commercial packages come at a high price, and for a huge range of developers
building a custom physics solution can be cheaper, provide more control, and be
more flexible. Unfortunately physics is a topic shrouded in mystery, mathematics,
and horror stories.

When I came to build a general physics engine in 2000, I found there was almost
no good information available, almost no code to work from, and lots of contradic-
tory information. I struggled through and built a commercial engine, and learned a
huge amount in the process. Over the last five years I’ve applied my own engine and
other commercial physics systems to a range of real games. More than five years of
effort and experience are contained in this book.

There are other books, websites, and articles on game physics, but there is still
almost no reliable information on building a physics engine—that is, a complete sim-
ulation technology that can be used in game after game. This book aims to step you
through the creation of a physics engine. It goes through a sample physics engine
(provided on the CD) line by line, as well as giving you insight into the design deci-
sions that were made in its construction. You can use the engine as is, use it as a base
for further experimentation, or make different design decisions and create your own
system under the guidance that this book provides.

1

2 Chapter 1 Introduction

1.1 WHAT IS GAME PHYSICS?

Physics is a huge discipline, and academic physics has hundreds of subfields. Each
describes some aspect of the physical world, whether it is the way light works or the
nuclear reactions inside a star.

Some bits of physics might be useful in games. We could use optics, for exam-
ple, to simulate the way light travels and bounces and use it to make great-looking
graphics. This is the way ray-tracing works, and (although it is still very slow) it had
been used in several titles. This isn’t what we mean when we talk about game physics.
Although they are part of academic physics, they are not part of game physics, and I
won’t consider them in this book.

Other bits of physics have a more tenuous connection: I can’t think of a use for
nuclear physics simulation in a game, unless the nuclear reactions were the whole
point of the gameplay.

When we talk about physics in a game, we really mean classical mechanics: the
laws that govern how large objects move under the influence of gravity and other
forces. In academic physics these laws have largely been superseded by new theories:
relativity and quantum mechanics. In games they are used to give objects the feel of
being solid things, with mass, inertia, bounce, and buoyancy.

Game physics has been around almost since the first games were written. It was
first seen in the way particles move: sparks, fireworks, the ballistics of bullets, smoke,
and explosions. Physics simulation has also been used to create flight simulators for
nearly three decades. Next came car physics, with ever increasing sophistication of
tire, suspension, and engine models.

As processing power became available, we saw crates that could be moved around
or stacked, walls that could be destroyed and crumble into their constituent blocks.
This is rigid body physics, which rapidly expanded to include softer objects like
clothes, flags, and rope. Most recently we have seen the rise of the ragdoll: a physi-
cal simulation of the human skeleton that allows more realistic trips, falls, and death
throes.

In this book we’ll cover the full gamut of physics tasks. With a gradually more
comprehensive technology suite our physics engine will support particle effects, flight
simulation, car physics, crates, destructible objects, cloth and ragdolls, along with
many other effects.

1.2 WHAT IS A PHYSICS ENGINE?

Although physics in games is more than thirty years old, there has been a distinct
change in recent years in the way that physics is implemented. Originally each effect
was programmed for its own sake, creating a game with only the physics needed for
that title. If a game needed arrows to follow trajectories, then the equation of the
trajectory could be programmed into the game. It would be useless for simulating
anything but the trajectory of arrows, but it would be perfect for that.

1.2 What Is a Physics Engine? 3

This is fine for simple simulations, where the amount of code is small and the
scope of the physics is quite limited. As we’ll see, a basic particle system can be pro-
grammed in only a hundred or so lines of code. When the complexity increases, it
can be difficult to get straight to a believable physical effect. In the original Half-Life
game, for example, you can push crates around, but the physics code isn’t quite right,
and the way the crates move looks odd. The difficulty of getting physics to look good,
combined with the need for almost the same effects in game after game, encouraged
developers to look for general solutions that could be reused.

Reusable technology needs to be quite general: a ballistics simulator that will only
deal with arrows can have the behavior of arrows hard-coded into it. If the same
code needs to cope with bullets too, then the software needs to abstract away from
particular projectiles and simulate the general physics that they all have in common.
This is what we call a “physics engine”: a common piece of code that knows about
physics in general but isn’t programmed with the specifics of each game’s scenario.

There is an obvious hole here. If we had special code for simulating an arrow,
then we need nothing else to simulate an arrow. If we have a general physics engine
for simulating any projectile, and we want to simulate an arrow, we also need to tell
the engine the characteristics of the thing we are simulating. We need the physical
properties of arrows, or bullets, or crates, and so on.

This is an important distinction. The physics engine is basically a big calculator:
it does the mathematics needed to simulate physics. But it doesn’t know what needs
to be simulated. In addition to the engine we also need game-specific data that repre-
sents the game level.

Although we’ll look at the kind of data we need throughout this book, I won’t
focus on how the data gets into the game. In a commercial game there will likely
be some kind of level-editing tool that allows level designers to place crates, flags,
ragdolls, or airplanes: to set their weight, the way they move through the air, their
buoyancy, and so on.

The physics engine we’ll be developing throughout this book needs gradually
more and more data to drive it. I’ll cover in depth what kind of data this is, and
what reasonable values it can take, but for our purposes we will assume this data can
be provided to the engine. It is beyond the scope of the book to consider the toolchain
that developers use to author these properties for the specific objects in their game.

1.2.1 ADVANTAGES OF A PHYSICS ENGINE

There are two compelling advantages to using a physics engine in your games. First
there is the time saving. If you intend to use physics effects in more than one game
(and you’ll probably be using them in most of your games from now on), then putting
the effort into creating a physics engine now pays off when you can simply import it
into each new project. A lightweight, general-purpose physics system, of the kind
we develop in this book, doesn’t have to be difficult to program either. A couple of
thousand lines of code will set you up for most of the game effects you need.

4 Chapter 1 Introduction

The second reason is quality. You will most likely be including more and more
physical effects in your game as time goes on. You could implement each of these
as you need it: building a cloth simulator for capes and flags, and a water simulator
for floating boxes, and a separate particle engine. Each might work perfectly, but you
would have a very difficult time combining their effects. When the character with a
flowing cloak comes to stand in the water, how will his clothes behave? If the cloak
keeps blowing in the wind even when underwater, then the illusion is spoiled.

A physics engine provides you with the ability to have effects interact in believable
ways. Remember the movable crates in Half-Life 1? They formed the basis of only one
or two puzzles in the game. When it came to Half-Life 2, crate physics was replaced
by a full physics engine. This opens up all kinds of new opportunities. The pieces of a
shattered crate float on water; objects can be stacked, used as movable shields, and so
on.

It’s not easy to create a physics engine to cope with water, wind, and clothes, but
it’s much easier than trying to take three separate ad hoc chunks of code and make
them look good together in all situations.

1.2.2 WEAKNESSES OF A PHYSICS ENGINE

This isn’t to say that a physics engine is a panacea. There are reasons that you might
not want to use a full physics engine in your game.

The most common reason is one of speed. A general-purpose physics engine is
quite processor intensive. Because it has to be general, it can make no assumptions
about the kinds of objects it is simulating. When you are working with a very simple
game environment, this generality can mean wasted processing power. This isn’t an
issue on modern consoles or the PC, but on hand-held devices such as phones and
PDAs it can be significant. You could create a pool game using a full physics engine on
a PC, but the same game on a mobile phone would run faster with some specialized
pool physics.

The need to provide the engine with data can also be a serious issue. In a game
I worked on recently, we needed no physics other than flags waving in the wind. We
could have used a commercial physics engine (one was available to the developer),
but the developer would have had to calculate the properties of each flag, its mass,
springiness, and so on. This data would then need to be fed into the physics engine to
get it to simulate the flags.

There was no suitable level-design tool that could be easily extended to provide
this data, so instead we created a special bit of code just for flag simulation; the char-
acteristics of flags were hard-coded in the software, and the designer didn’t have to do
anything special to support it. We avoided using a physics engine because special-case
code was more convenient.

A final reason to avoid physics engines is scope. If you are a one-person hobbyist
working on your game in the evenings, then developing a complete physics solution
might take time from improving other aspects of your game: the graphics or game-
play, for example. On the other hand, even amateur games need to compete with

1.3 Approaches to Physics Engines 5

commercial titles for attention, and top-quality physics is a must for a top-quality
title of any kind.

1.3 APPROACHES TO PHYSICS ENGINES

There are several different approaches to building a physics engine, ranging from the
very simple (and wrong) to the cutting-edge physics engines of top middleware com-
panies. Creating a usable engine means balancing the complexity of the programming
task with the sophistication of the effects you need to simulate.

There are a few broad distinctions we can make to categorize different approaches,
as described in the following sections.

1.3.1 TYPES OF OBJECT

The first distinction is between engines that simulate full rigid bodies and so-called
mass-aggregate engines. Rigid-body engines treat objects as a whole and work out the
way they move and rotate. A crate is a single object and can be simulated as a whole.
Mass-aggregate engines treat objects as if they were made up of lots of little masses.
A box might be simulated as if it were made up of eight masses, one at each corner,
connected by rods.

Mass-aggregate engines are easier to program because they don’t need to under-
stand rotations. Each mass is located at a single point, and the equations of the motion
can be expressed purely in terms of linear motion. The whole object rotates naturally
as a result of the constrained linear motion of each component.

Because it is very difficult to make things truly rigid in a physics engine, it is
difficult to make really firm objects in a mass-aggregate system. Our eight-mass crate
will have a certain degree of flex in it. To make this invisible to the player, extra code
is needed to reconstruct the rigid box from the slightly springy set of masses. While
the basic mass-aggregate system is very simple to program, these extra checks and
corrections are more hit and miss, and I don’t feel that they are worth the effort.

Fortunately we can extend a mass-aggregate engine into a full rigid-body system
simply by adding rotations. In this book we will develop a mass-aggregate physics
engine on the way to a full rigid-body physics engine. Because we are heading for a
more robust engine, I won’t spend the time creating the correction code for springy
aggregates.

1.3.2 CONTACT RESOLUTION

The second distinction involves the way in which touching objects are processed. As
we’ll see in this book, a lot of the difficulty in writing a rigid-body physics engine
is simulating contacts: locations where two objects touch or are connected. This in-
cludes objects resting on the floor, objects connected together, and to some extent
collisions.

6 Chapter 1 Introduction

One approach is to handle these contacts one by one, making sure each works
well on its own. This is called the “iterative approach,” and it has the advantage of
speed. Each contact is fast to resolve, and with only a few tens of contacts the whole
set can be resolved quickly. It has the downside that one contact can affect another,
and sometimes these interactions can be significant. This is the easiest approach to
implement and can form the basis of more complex methods. It is the technique we
will use in the engine in this book.

A more physically realistic way is to calculate the exact interaction between differ-
ent contacts and calculate an overall set of effects to apply to all objects at the same
time. This is called a “Jacobian-based” approach, but it suffers from being very time
consuming: the mathematics involved is very complex, and solving the equations can
involve millions of calculations. Even worse, in some cases there is simply no valid an-
swer, and the developer needs to add special code to fall back on when the equations
can’t be solved. Several physics middleware packages use this approach, and each has
its own techniques for solving the equations and dealing with inconsistencies.

A third option is to calculate a new set of equations based on the contacts and
constraints between objects. Rather than use Newton’s laws of motion, we can cre-
ate our own set of laws for just the specific configuration of objects we are dealing
with. These equations will be different for every frame, and most of the effort for
the physics engine goes into creating them (even though solving them is no picnic
either). This is called a “reduced coordinate approach.” Some physics systems have
been created with this approach, and it is the most common one used in engineering
software to do really accurate simulation. Unfortunately, it is very slow and isn’t very
useful in games applications, where speed and believability are more important than
accuracy.

We’ll return to other approaches in chapter 18, after we’ve looked at the physics
involved in the first approach.

1.3.3 IMPULSES AND FORCES

The third distinction lies in how the engine actually resolves contacts. This takes a
little explaining, so bear with me.

When a book rests on a table, the table is pushing it upward with a force equal
to the gravity pulling it down. If there were no force from the table to the book, then
the book would sink into the table. This force is constantly pushing up on the book
as long as it is sitting there. The speed of the book doesn’t change.

Contrast this with the way a ball bounces on the ground. The ball collides with the
ground, the ground pushes back on the ball, accelerating it upward until it bounces
back off the floor with an upward velocity. This change in velocity is caused by a force,
but the force acts for such a small fraction of a second that it is easier to think of it as
simply a change in velocity. This is called an “impulse.”

Some physics engines use forces for resting contacts and impulses for collisions.
This is relatively rare because it involves treating forces and impulses differently. More

1.4 The Mathematics of Physics Engines 7

commonly physics engines treat everything as a force: impulses are simply forces act-
ing over a very small period of time. This is a force-based engine, and it works in
the way the real world does. Unfortunately the mathematics of forces is more difficult
than the mathematics of impulses. Those engines that are force based tend to be those
with a Jacobian or reduced coordinate approach. Several of the leading middleware
physics offerings are force based.

Other engines use impulses for everything: the book resting on the table is kept
there by lots of miniature collisions rather than a constant force. This is, not surpris-
ingly, called an “impulse-based” engine. In each frame of the game the book receives
a little collision that keeps it on the surface of the table until the next frame. If the
frame-rate slows down dramatically, things lying on surfaces can appear to vibrate.
Under most circumstances, however, it is indistinguishable from a force-based ap-
proach. This is the approach we will use in this book: it is easy to implement and has
the advantage of being very flexible and adaptable. It has been used in several middle-
ware packages, in the majority of the in-house physics systems I have seen developers
create, and it has proved itself in many commercial titles.

1.3.4 WHAT WE’RE BUILDING

In this book I will cover in depth the creation of a rigid-body, iterative, impulse-based
physics engine that I’ve called Cyclone. The engine has been written specifically for
the book, although it is based on a commercial physics engine I was involved with
writing a few years ago. I am confident that the impulse-based approach is best for
developing a simple, robust, and understandable engine for a wide range of different
game styles and for using as a basis for adding more complex and exotic features
later on.

As we move through the book, I will give pointers for different approaches, and
chapter 18 will give some background to techniques for extending the engine to take
advantage of more complex simulation algorithms. While we won’t cover other ap-
proaches in the same depth, the engine is an excellent starting point for any kind of
game physics. You will need to understand the content of this book to be able to create
a more exotic system.

1.4 THE MATHEMATICS OF PHYSICS ENGINES

Creating a physics engine involves a lot of mathematics. If you’re the kind of person
who is nervous about math, then you may find some of this material hard going. I’ve
tried throughout the book to step through the mathematical background slowly and
clearly.

If you have difficulty following the mathematics, don’t worry: you can still use the
accompanying source code for the corresponding bit. While it is better to understand
all of the engine in case you need to tweak or modify it you can still implement and
use it quite successfully without fully comprehending the math.

8 Chapter 1 Introduction

As a quick reference, the mathematical equations and formulae in the book are
also collected together in appendix D for easy location when programming a game.

If you are an experienced game developer, then the chances are you will know
a fair amount of three-dimensional (3D) mathematics: vectors, matrices, and linear
algebra. If you are relatively new to games, then these topics may be beyond your
comfort zone.

In this book I will assume you know some mathematics, and I will cover the rest.
If I assume you know something, but you aren’t confident in using it, then it would be
worth getting hold of a reference book or looking for a web tutorial before proceeding,
so you can easily follow the text.

1.4.1 THE MATH YOU NEED TO KNOW

I’m going to assume every potential physics developer knows some mathematics.
The most important thing to be comfortable with is algebraic notation. I will

introduce new concepts directly in notation, and if you flick through this book, you
will see many formulae written into the text.

I’ll assume you are happy to read an expression like

x = 4

t
sin θ2

and can understand that x, t, and θ are variables and how to combine them to get a
result.

I will also assume you know some basic algebra: you should be able to understand
that, if the preceding formula is correct, then

t = 4

x
sin θ2

These kinds of algebraic manipulations will pop up all through the book without
explanation.

Finally I’ll assume you are familiar with trigonometry and coordinate geometry:
sines, cosines, and tangents, and their relationship to right-angled triangles and to
two-dimensional geometry in general. In particular, you should know that if we have
the triangle shown in figure 1.1, then these formulae hold:

b = a sin θ

c = a cos θ

b = c tan θ

1.4 The Mathematics of Physics Engines 9

FIGURE 1.1 Trigonometry and coordinate geometry.

Especially when a is of length 1, we will use these results tens of times in the book
without further discussion.

1.4.2 THE MATH WE’LL REVIEW

Because the experience of developers varies so much, I will not assume that you are
familiar with three-dimensional mathematics to the same extent. This isn’t taught in
high schools and is often quite specialized to computer graphics. If you have been a
game developer for a long time, then you will no doubt be able to skip through these
reviews as they arise.

We will cover the way vectors work in the next chapter, including the way a three-
dimensional coordinate system relates to the two-dimensional mathematics of high
school geometry. I will review the way vectors can be combined, including the scalar
and vector product, and their relationship to positions and directions in three dimen-
sions.

We will also review matrices. Matrices are used to transform vectors: moving them
in space or changing their coordinate systems. We will also see matrices called “ten-
sors” at a couple of points, which have different uses but the same structure. We will
review the mathematics of matrices, including matrix multiplication, transformation
of vectors, matrix inversion, and basis changes.

These topics are fundamental to any kind of 3D programming and are used ex-
tensively in graphics development and in many AI algorithms too. Most of you will
be quite familiar with them, and there are comprehensive books available that cover
them in great depth.

Each of these topics is reviewed lightly once in this book, but afterward I’ll assume
that you are happy to see the results used directly. They are the bread-and-butter
topics for physics development, so it would be inconvenient to step through them
each time they arise.

If you find later sections difficult, it is worth flicking back in the book and reread-
ing the reviews, or finding a more comprehensive reference to linear algebra or com-
puter graphics and teaching yourself how they work.

10 Chapter 1 Introduction

1.4.3 THE MATH WE’LL INTRODUCE

Finally there is a good deal of mathematics that you may not have discovered unless
you have done some physics programming in the past. This is the content I’ll try not
to assume you know and will cover in some more depth.

At the most well-known end of the spectrum this includes the quaternions, a vec-
torlike structure that represents the orientation of an object in three-dimensional
space. We will take some time to understand why such a strange structure is needed
and how it can be manipulated: converted into a matrix, combined with other quater-
nions, and affected by rotations.

We will also need to cover vector calculus: the way vectors change with time and
through space. Most of the book requires only simple calculus—numerical integra-
tion and first-order differentiation. The more complex physics approaches of chapter
18 get considerably more exotic, including both partial differentials and differential
operators. Fortunately we will have completely built the physics engine by this point,
so the content is purely optional.

Finally we will cover some more advanced topics in matrix manipulation. In par-
ticular, a difficult chunk of the engine development involves working with changes-
of-basis for matrices. This kind of manipulation is rarely needed in graphics develop-
ment, so it will be covered in some depth in the relevant section.

1.5 THE SOURCE CODE IN THIS BOOK

Throughout the book the source code from the Cyclone physics engine is given in
the text. The complete engine is available on the accompanying CD, but repeating the
code in the text has allowed me to comment more fully on how it works.

The latest Cyclone source, including errata and new features, is available on its
own site—www.procyclone.com. Check the site from time to time for the latest release
of the package.

In each section of the book we will cover the mathematics or concepts needed and
then see them in practice in code. I encourage you to try to follow the equations or
algorithms in the code, and to find how they have been implemented.

I have used C++ throughout the code. This is by far the most common program-
ming language used for serious game development worldwide. Even those few studios
that use other languages for building the final game (including LISP, Lua, and Python)
have most of their core engines written in C++.

Some developers still swear by C and believe that using anything else for game de-
velopment is tantamount to heresy. C compilers have traditionally been more efficient
at producing fast-executing code, and the same overhead that makes C++ a more
powerful language (in the sense that it does more for you automatically) has the rep-
utation of slowing down the final program. In reality this is a dying mindset rooted
in dubious fact. With modern optimizing C++ compilers, and a programming style
that takes into consideration problems with the C++ libraries (avoiding some imple-
mentations of the hashtable, for example), the final result can be at least as fast and

1.6 How this Book Is Structured 11

sometimes faster than C. It is common to code the most speed-critical sections of
a game (typically the lowest-level matrix and vector mathematics) in assembly lan-
guage to take advantage of the architecture of the processor it will be running on.
This is well beyond the scope of this book and should only be attempted if you have a
decent code profiler telling you that a speed-up would be useful.

If you are developing in a language other than C++, then you will need to translate
the code. Appendix C gives some guidance for efficient ways to convert the code into
a selection of common languages—ways to ensure that the language features run at a
reasonable speed.

I have used an object-oriented design for the source code and have always tried to
err on the side of clarity. The code is contained within a cyclone namespace, and its
layout is designed to make naming clashes unlikely.

There are many parts of the engine that can be optimized, or rewritten to take ad-
vantage of mathematics hardware on consoles, graphics cards, and some PC proces-
sors. If you need to eke out every ounce of speed from the engine, you will find you
need to optimize some of the code to make it less clear and more efficient. Chances
are, however, it will be perfectly usable as is. It has a strong similarity to code I have
used in real game development projects, which has proved to be fast enough to cope
with reasonably complex physics tasks.

There are a number of demonstration programs in the source code, and I will
use them as case studies in the course of this book. The demonstrations were created
to show off physics rather than graphics, so I’ve tried to use the simplest practical
graphics layer. The source code is based on the GLUT toolkit, which wraps OpenGL
in a platform-independent way. The graphics tend to be as simple as possible, calling
GLUT’s built-in commands for drawing cubes, spheres, and other primitives. This se-
lection doesn’t betray any bias on my part (in fact I find OpenGL difficult to optimize
for large-scale engines), and you should be able to transfer the physics so that it works
with whatever rendering platform you are using.

The license for your use of the source code is liberal, and designed to allow it to
be used in your own projects, but it is not copyright-free. Please read through the
software license on the CD for more details.

It is my hope that, although the source code will provide a foundation, you’ll
implement your own physics system as we go (and it therefore will be owned entirely
by you). I make decisions throughout this book about the implementation, and the
chances are you’ll make different decisions at least some of the time. My aim has been
to give you enough information to understand the decision and to go a different route
if you want to.

1.6 HOW THIS BOOK IS STRUCTURED

We will build our physics engine in stages, starting with the simplest engine that is
useful and adding new functionality until we have a system capable of simulating
almost anything you see in a modern game.

12 Chapter 1 Introduction

This book is split into the following six parts.

� Particle Physics looks at building our initial physics engine, including the vec-
tor mathematics and the laws of motion that support it.

� Mass-Aggregate Physics turns the particle physics engine into one capable of
simulating any kind of object by connecting masses together with springs and
rods.

� Rigid-Body Physics introduces rotation and the added complexity of rotational
forces. Overall the physics engine we end up with is less powerful than the
mass-aggregate system we started with, but it is useful in its own right and as
a basis for the final stage.

� Collision Detection takes a detour from building engines to look at how the col-
lisions and contacts are generated. A basic collision detection library is built
that allows us to look at the general techniques.

� Contact Physics is the final stage of our engine, adding collision and resting
contacts to the engine and allowing us to apply the result to almost any game.

� What Comes Next looks beyond the engine we have. In chapter 18 we look
at how to extend the engine to take advantage of other approaches, without
providing the detailed step-by-step source code to do so.

As we develop each part, the content will be quite theoretical, and it can be dif-
ficult sometimes to immediately see the kinds of physical effects that the technology
supports. At the end of each part where we add to the engine, there is a chapter cov-
ering ways in which it may be used in a game. As we go through the book, we start
with engines controlling fireworks and bullets, and end up with ragdolls and cars.

PART I

Particle Physics

This page intentionally left blank

2
THE MATHEMATICS

OF PARTICLES

efore we look at simulating the physics of particles, this chapter reviews three-
B dimensional mathematics. In particular it looks at vector mathematics and
vector calculus—the fundamental building blocks on which all our physics code will
be built. I’ll avoid some of the harder topics we’ll only need later. Matrices and quater-
nions, for example, will not be needed until chapter 9, so I’ll postpone reviewing them
until that point.

2.1 VECTORS

Most of the mathematics we are taught at school deals with single number—numbers
to represent the number of apples we have or the time it takes for a train to make a
journey, or the numerical representation of a fraction. We can write algebraic equa-
tions that tell us the value of one number in terms of others. If x = y2 and y = 3, then
we know x = 9. This kind of single number on its own is called a “scalar value.”

Mathematically a vector is an element of a vector space: a structure that displays
certain mathematical properties for addition and multiplication. For our purposes
the only vector spaces we’re interested in are regular (called Euclidean) 2D and 3D
spaces. In this case the vector represents a position in those spaces.

Vectors are usually represented as an ordered list of numbers that can be treated
in a similar way to a single number in an algebraic equation. If y is a vector (let’s say
it contains the numbers 2 and 3), and if x = 2y, then x will also be a vector of two
numbers, in this case 4 and 6. Vectors can undergo the same mathematical operations

15

16 Chapter 2 The Mathematics of Particles

FIGURE 2.1 Three-dimensional coordinates.

as scalars, including multiplication, addition, and subtraction (although the way they
do these is slightly different from scalars, and the result isn’t always another vector;
we’ll return to this later).

Note that a vector in this sense, and throughout most of this book, refers only to
this mathematical structure. Many programming languages have a vector data struc-
ture which is some kind of growable array. The name comes from the same source
(a set of values rather than just one), but that’s where the similarities stop. In partic-
ular most languages do not have a built-in vector class to represent the kind of vector
we are interested in. On the few occasions in this book where I need to refer to a grow-
able array, I will call it that, to keep the name “vector” reserved for the mathematical
concept.

One convenient application of vectors is to represent coordinates in space. Fig-
ure 2.1 shows two locations in 3D space. The position can be represented by three
coordinate values, one for the distance from a fixed origin point along three axes at
right angles to one another. This is a Cartesian coordinate system, named for the
mathematician and philosopher Rene Descartes who invented it.

We group the three coordinates together into a vector, written as

a =
⎡
⎢⎣

x

y

z

⎤
⎥⎦

where x, y, and z are the coordinate values along the X, Y, and Z axes. Note the a
notation. This indicates that a is a vector: we will use this throughout the book to
make it easy to see what is a vector and what is just a plain number.

2.1 Vectors 17

Every vector specifies a unique position in space, and every position in space has
only one corresponding vector. We can and will use only vectors to represent positions
in space.

We can begin to implement a class to represent vectors. I have called this class Vec-
tor3 to clearly separate it from any other Vector class in your programming language
(seeing the name Vector on its own is particularly confusing for Java programmers).

Excerpt from include/cyclone/precision.h

namespace cyclone {

/**
* Defines a real number precision. Cyclone can be compiled in
* single- or double-precision versions. By default single precision
* is provided.
*/
typedef float real;

}

Excerpt from include/cyclone/core.h

namespace cyclone {

/**
* Holds a vector in 3 dimensions. Four data members are allocated
* to ensure alignment in an array.
*/
class Vector3
{
public:

/** Holds the value along the x axis. */
real x;

/** Holds the value along the y axis. */
real y;

/** Holds the value along the z axis. */
real z;

private:
/** Padding to ensure 4-word alignment. */
real pad;

public:
/** The default constructor creates a zero vector. */
Vector3() : x(0), y(0), z(0) {}

18 Chapter 2 The Mathematics of Particles

/**
* The explicit constructor creates a vector with the given
* components.
*/
Vector3(const real x, const real y, const real z)

: x(x), y(y), z(z) {}

/** Flips all the components of the vector. */
void invert()
{

x = -x;
y = -y;
x = -z;

}

};

}

There are a few things to note about this source code.

� All the code is contained within the cyclone namespace, as promised in the
introduction to the book. This makes it easier to organize code written in
C++, and in particular it ensures that names from several libraries will not
clash. Wrapping all the code samples in the namespace declaration is a waste
of time, however; so in the remaining excerpts in this book, I will not show
the namespace explicitly.

� Also to avoid clashing names, I have placed the header files in the directory
include/cyclone/, with the intention of having the include/ directory on the
include path for a compiler (see your compiler’s documentation for how to
achieve this). This means that to include a header we will use an include of
the format:

#include <cyclone/core.h>

or

#include "cyclone/core.h"

I find this to be a useful way of making sure the compiler knows which header
to bring in, especially with large projects that are using multiple libraries, sev-
eral of which may have the same name for some header files (I have at least
four math.h headers that I use regularly in different libraries—which is part of
my motivation for putting our mathematics code in a header called core.h).

2.1 Vectors 19

� The source code listings show the line numbers. As you can see, the line num-
bers are not continuous. They represent excerpts from the source code on the
CD. In the full source code there are additional comments, more functions,
and bits of code we’ve yet to meet. Each of the source code listings I give
should be a self-contained chunk of code. In the preceding code, for example,
you shouldn’t need any other code to make the listings work; in other excerpts
you can add the given code to any previous code for the same class (when we
come to add some additional functions to the Vector3 class, for example). I’ve
added the line numbers simply to allow you to locate where each element is
implemented on the CD.

� I have used real rather than float to reserve the storage for my vector compo-
nents. The real data type is a typedef, contained in its own file (precision.h).
I’ve done this to allow the engine to be rapidly compiled in different preci-
sions. In most of the work I’ve done, float precision is fine, but it can be a
huge pain to dig through all the code if you find you need to change to double
precision later. You may have to do this if you end up with numerical rounding
problems that won’t go away (they are particularly painful if you have objects
with a wide range of different masses in the simulation). By consistently using
the real data type, we can easily change the precision of the whole engine by
changing the type definition once. We will add to this file additional defini-
tions for functions (such as sqrt) that come in both float and double form.

� I’ve added an extra piece of data into the vector structure, called pad. This isn’t
part of the mathematics of vectors and is there purely for performance. On
many machines four floating-point values sit more cleanly in memory than
three (memory is optimized for sets of four words), so noticeable speed-ups
can be achieved by adding this padding.

Your physics engine shouldn’t rely on the existence of this extra value for any
of its functionality. If you are programming for a machine that you know is
highly memory limited, and doesn’t optimize in sets of four words, then you
can remove pad with impunity.

2.1.1 THE HANDEDNESS OF SPACE

If you are an experienced game developer, you will have spied a contentious assump-
tion in figure 2.1. The figure shows the three axes arranged in a right-handed coordi-
nate system. There are two different ways we can arrange three axes at right angles to
one another: in a left-handed way or a right-handed way,1 as shown in figure 2.2.

You can tell which is which by using your hands: make a gun shape with your
hand, thumb and extended forefinger at right angles to one another. Then, keeping
your ring finger and pinky curled up, extend your middle finger so it is at right angles

1. Strictly speaking this handedness is called “chirality,” and each alternative is an “enantiomorph,” al-
though those terms are rarely if ever used in game development.

20 Chapter 2 The Mathematics of Particles

FIGURE 2.2 Left- and right-handed axes.

to the first two. If you label your fingers in order with the axes (thumb is X, fore-
finger Y, and middle finger Z), then you have a complete set of axes, either right- or
left-handed. Some people prefer to think of this in terms of the direction that a screw
is turned, but I find making axes with my hands much simpler.

Different game engines, rendering toolkits, and modeling software use either left-
or right-handed axes. There is no dependable standard. DirectX favors a left-handed
coordinate system, while OpenGL favors a right-handed one, as does the Render-
ware middleware system. XBox and XBox 360, being DirectX based, are left-handed;
GameCube, being rather OpenGL-like, is right-handed; and PlayStation’s sample
code is right-handed, although most developers create their own rendering code. On
any platform you can actually use either with a bit more effort (this is how Ren-
derware uses a right-handed system even on the XBox, for example). For a detailed
explanation of different systems and converting between them see Eberly [2003].

There are relatively few places where it matters which system we use: it certainly
doesn’t change the physics code in any way. I have (fairly arbitrarily) chosen right-
handed coordinates throughout this book. Because the code on the CD is designed
to work with OpenGL, this makes the sample code slightly easier. In addition most
of the commercial engines I’ve worked with (both middleware and developers’ own)
have been right-handed.

If you are working on a DirectX-only project and are keen to stay with a left-
handed system, then you’ll need to make the occasional adjustment in the code. I’ll
try to indicate places where this is the case.

2.1.2 VECTORS AND DIRECTIONS

There is another interpretation of a vector. A vector can represent the change in po-
sition. Figure 2.3 shows an object that has moved in space from position a0 to a1.
We can write down the change in position as a vector where each component of the

2.1 Vectors 21

FIGURE 2.3 A vector as a movement in space.

vector is the change along each axis. So

a =
⎡
⎢⎣

�x

�y

�z

⎤
⎥⎦

where �x is the change in the position along the X axis from a0 to a1, given by

�x = x1 − x0

where x0 is the X coordinate of a0 and x1 is the X coordinate of a1. Similarly for �y
and �z.

Position and change in position are really two sides of the same coin. We can
think of any position as a change of position from the origin (written as 0, where
each component of the vector is zero) to the target location.

If we think in terms of the geometry of a vector being a movement from the ori-
gin to a point in space, then many of the mathematical operations we’ll meet in this
chapter have obvious and intuitive geometric interpretations. Vector addition and
subtraction, multiplication by a scalar, and different types of multiplication can all be
understood in terms of how these movements relate. When drawn as in figure 2.3, the
visual representation of an operation is often much more intuitive than the mathe-
matical explanation. We’ll consider this for each operation we meet.

22 Chapter 2 The Mathematics of Particles

A change in position, given as a vector, can be split into two elements:

a = dn [2.1]

where d is the straight-line distance of the change (called the “magnitude” of the
vector) and n is the direction of the change. The vector n represents a change, whose
straight-line distance is always 1, in the same direction as the vector a.

We can find d using the three-dimensional version of Pythagoras’s theorem,
which has the formula

d = |a| = √
x2 + y2 + z2

where x, y, and z are the three components of the vector and |a| is the magnitude of
a vector.

We can use equation 2.1 to find n:

â = n = 1

d
a [2.2]

where â is a common (but not universal) notation for the unit-length direction of a.
The equation is sometimes written as

â = a

|a|
The process of finding just the direction n from a vector is called “normalizing”;

the result is sometimes called the “normal” form of the vector (i.e., n is the normal
form of a in the preceding equations). It is a common requirement in several algo-
rithms.

We can add functions to find the magnitude of the vector and its direction and
perform a normalization:

Excerpt from include/cyclone/precision.h

/** Defines the precision of the square root operator. */
#define real_sqrt sqrtf

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/** Gets the magnitude of this vector. */
real magnitude() const
{

return real_sqrt(x*x+y*y+z*z);
}

2.1 Vectors 23

/** Gets the squared magnitude of this vector. */
real squareMagnitude() const
{

return x*x+y*y+z*z;
}

/** Turns a non-zero vector into a vector of unit length. */
void normalize()
{

real l = magnitude();
if (l > 0)
{

(*this)*=((real)1)/l;
}

}
};

Notice that I’ve also added a function to calculate the square of the magnitude of
a vector. This is a faster process because it avoids the call to sqrt, which can be slow
on some machines. There are many cases where we don’t need the exact magnitude
and where the square of the magnitude will do. For this reason it is common to see a
squared magnitude function in a vector implementation.

2.1.3 SCALAR AND VECTOR MULTIPLICATION

In the normalization equations I have assumed we can multiply a scalar (1/d) by a
vector. This is a simple process, given by the formula

ka = k

⎡
⎢⎣

x

y

z

⎤
⎥⎦ =

⎡
⎢⎣

kx

ky

kz

⎤
⎥⎦

In other words we multiply a vector by a scalar by multiplying all the components of
the vector by the scalar.

To divide a vector by a scalar, we make use of the fact that

a ÷ b = a × 1

b

so

a

k
= 1

k
a

which is how we arrived at the normalization equation 2.2 from equation 2.1.

24 Chapter 2 The Mathematics of Particles

This formula lets us define the additive inverse of a vector:

−a = −1 × a =
⎡
⎢⎣

−x

−y

−z

⎤
⎥⎦

We can overload the multiplication operator *= in C++ to support these operations,
with the following code in the Vector3 class.

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/** Multiplies this vector by the given scalar. */
void operator*=(const real value)
{

x *= value;
y *= value;
z *= value;

}

/** Returns a copy of this vector scaled to the given value. */
Vector3 operator*(const real value) const
{

return Vector3(x*value, y*value, z*value);
}

};

Geometrically this operation scales the vector, changing its length by the scalar. This
is shown in figure 2.4.

2.1.4 VECTOR ADDITION AND SUBTRACTION

Geometrically, adding two vectors together is equivalent to placing them end to end.
The result is the vector from the origin of the first to the end of the second, shown
in figure 2.5. Similarly, subtracting one vector from another places the vectors end to
end, but the vector being subtracted is placed so that its end touches the end of the
first. In other words, to subtract vector b from vector a we first go forward along a,
and then go backward along b.

2.1 Vectors 25

FIGURE 2.4 The geometry of scalar–vector multiplication.

FIGURE 2.5 The geometry of vector addition.

In code it is very easy to add vectors together or subtract them. For two vectors a
and b, their sum is given by

a + b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ +

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

ax + bx

ay + by

az + bz

⎤
⎥⎦

where ax, ay , and az are the x, y, and z components of the vector a: we will normally
use this notation rather than x, y, and z to avoid confusion when dealing with more
than one vector.

Vector addition is achieved by adding the components of the two vectors together.
This can be implemented for the + operator:

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/** Adds the given vector to this. */
void operator+=(const Vector3& v)

26 Chapter 2 The Mathematics of Particles

{
x += v.x;
y += v.y;
z += v.z;

}

/**
* Returns the value of the given vector added to this.
*/

Vector3 operator+(const Vector3& v) const
{

return Vector3(x+v.x, y+v.y, z+v.z);
}

};

In the same way vector subtraction is also performed by subtracting the compo-
nents of each vector:

a − b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ −

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

ax − bx

ay − by

az − bz

⎤
⎥⎦

which is implemented in the same way as addition:

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/** Subtracts the given vector from this. */
void operator-=(const Vector3& v)
{

x -= v.x;
y -= v.y;
z -= v.z;

}

/**
* Returns the value of the given vector subtracted from this.
*/

Vector3 operator-(const Vector3& v) const
{

return Vector3(x-v.x, y-v.y, z-v.z);

2.1 Vectors 27

}
};

A final, useful version of this is to update a vector by adding a scaled version of
another vector. This is simply a combination of vector addition and the multiplication
of a vector by a scalar:

a + cb =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ + c

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

ax + cbx

ay + cby

az + cbz

⎤
⎥⎦

We could do this in two steps with the preceding functions, but having it in one place
is convenient:

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/**
* Adds the given vector to this, scaled by the given amount.
*/
void addScaledVector(const Vector3& vector, real scale)
{

x += vector.x * scale;
y += vector.y * scale;
z += vector.z * scale;

}
};

2.1.5 MULTIPLYING VECTORS

Seeing how easy it is to add and subtract vectors may lull you into a false sense of
security. When we come to multiply two vectors together, life gets considerably more
complicated.

There are several ways of multiplying two vectors, and whenever we produce a
formula involving vector multiplication, we have to specify which type of multiplica-
tion to use. In algebra, for scalar values we can denote the product (multiplication)
of two values by writing them together with no intervening symbol (i.e., ab means
a × b). With vectors this usually denotes one type of multiplication that we need not
cover (the vector direct product—see a good mathematical encyclopedia for infor-
mation). I will not write ab but will show the kind of product to use with a unique
operator symbol.

28 Chapter 2 The Mathematics of Particles

2.1.6 THE COMPONENT PRODUCT

The most obvious product is the least useful: the component product, written in this
book as ◦ (it does not have a universal standard symbol the way the other products
do). It is used in several places in the physics engine, but despite being quite obvious,
it is rarely mentioned at all in books about vector mathematics.

This is because it doesn’t have a simple geometric interpretation: if the two vectors
being multiplied together represent positions, then it isn’t clear geometrically how
their component product is related to their locations. This isn’t true of the other types
of product.

The component product is formed in the same way as vector addition and
subtraction—by multiplying each component of the vector together:

a ◦ b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ ◦

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

axbx

ayby

azbz

⎤
⎥⎦

Note that the end result of the component product is another vector. This is exactly
the same as for vector addition and subtraction, and for multiplication by a scalar: all
end up with a vector as a result.

Because it is not commonly used, we will implement the component product as a
method rather than an overloaded operator. We will reserve overloading the * opera-
tor for the next type of product. The method implementation looks like this:

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/**
* Calculates and returns a component-wise product of this
* vector with the given vector.
*/

Vector3 componentProduct(const Vector3 &vector) const
{

return Vector3(x * vector.x, y * vector.y, z * vector.z);
}

/**
* Performs a component-wise product with the given vector and
* sets this vector to its result.
*/

void componentProductUpdate(const Vector3 &vector)
{

2.1 Vectors 29

x *= vector.x;
y *= vector.y;
z *= vector.z;

}
};

2.1.7 THE SCALAR PRODUCT

By far the most common product of two vectors is the “scalar product.” It is different
from any of our previous vector operations in that its result is not a vector but rather
a single scalar value (hence its name). It is written using a dot symbol: a · b, and so
is often called the “dot product.” For reasons beyond this book it is also called, more
mathematically, the “inner product”—a term I will not use again.

The dot product is calculated with the formula

a · b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ ·

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ = axbx + ayby + azbz [2.3]

In my vector class I have used the multiplication operator * to represent the dot prod-
uct (it looks quite like a dot, after all). We could overload the dot operator, but in most
C-based languages it controls access to data within an object, and so overloading it is
either illegal or a dangerous thing to do.

The scalar product methods have the following form:

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/**
* Calculates and returns the scalar product of this vector
* with the given vector.
*/
real scalarProduct(const Vector3 &vector) const
{

return x*vector.x + y*vector.y + z*vector.z;
}

/**
* Calculates and returns the scalar product of this vector
* with the given vector.
*/

30 Chapter 2 The Mathematics of Particles

real operator *(const Vector3 &vector) const
{

return x*vector.x + y*vector.y + z*vector.z;
}

};

Notice that there is no in-place version of the operator (because the result is a
scalar value, and in most languages an instance of a class can’t update itself to be an
instance of a different class: the vector can’t become a scalar). I have also added a
full method version, scalarProduct, in case you are more comfortable writing things
longhand rather than remembering the slightly odd behavior of the * operator.

The Trigonometry of the Scalar Product

There is an important result for scalar products, which is not obvious from equa-
tion 2.3. It relates the scalar product to the length of the two vectors and the angle
between them:

a · b = axbx + ayby + azbz = |a||b| cos θ [2.4]

where θ is the angle between the two vectors.
So, if we have two normalized vectors, â and b̂, then the angle between them is

given by equation 2.4 as

θ = cos−1
(

â · b̂
)

Note the normalized vectors here. If a and b are just regular vectors, then the angle
would be given by

θ = cos−1

(
â · b̂

|a||b|
)

If you so desire, you can easily convince yourself that equations 2.3 and 2.4 are
equivalent by using Pythagoras’s theorem and constructing a right-angled triangle
where each vector is the hypotenuse. I’ll leave this as an exercise for the skeptical.

The Geometry of the Scalar Product

The scalar product arises time and again in physics programming. In most cases it is
used because it allows us to calculate the magnitude of one vector in the direction of
another.

Figure 2.6 shows vectors in two dimensions (for simplicity—there is no difference
in three dimensions). Notice that vector â has unit length. Vector b is almost at right
angles to â, most of its length points away, and only a small component is in the direc-
tion of â. Its component is shown, and despite the fact that b is long, its component
in the direction of â is small.

2.1 Vectors 31

FIGURE 2.6 Geometric interpretation of the scalar product.

Vector c, however, is smaller in magnitude, but it is not pointing at right angles
to â. Notice that it is pointing in almost the opposite direction to â. In this case its
component in the direction of â is negative.

We can see this in the scalar products:

|̂a| ≡ 1

|b| = 2.0

|c| = 1.5

â · b = 0.3

â · b = −1.2

If one vector is not normalized, then the size of the scalar product is multiplied by
its length (from equation 2.4). In most cases, however, at least one vector, and often
both, will be normalized before performing a scalar product.

When you see the scalar product in the physics engines in this book, it will most
likely be as part of a calculation that needs to find how much one vector lies in the
direction of another.

2.1.8 THE VECTOR PRODUCT

Whereas the scalar product multiplies two vectors together to give a scalar value, the
vector product multiplies them to get another vector. In this way it is similar to the
component product but is considerably more common.

32 Chapter 2 The Mathematics of Particles

The vector product is indicated by a multiplication sign, a × b, and so is often
called the “cross product.” The vector product is calculated with the formula

a × b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ ×

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

aybz − azby

azbx − axbz

axby − aybx

⎤
⎥⎦ [2.5]

This is implemented in our vector class in this way:

Excerpt from include/cyclone/core.h

class Vector3
{

// ... Other Vector3 code as before ...

/**
* Calculates and returns the vector product of this vector
* with the given vector.
*/

Vector3 vectorProduct(const Vector3 &vector) const
{

return Vector3(y*vector.z-z*vector.y,
z*vector.x-x*vector.z,
x*vector.y-y*vector.x);

}

/**
* Updates this vector to be the vector product of its current
* value and the given vector.
*/

void operator %=(const Vector3 &vector)
{

*this = vectorProduct(vector);
}

/**
* Calculates and returns the vector product of this vector
* with the given vector.
*/

Vector3 operator%(const Vector3 &vector) const
{

return Vector3(y*vector.z-z*vector.y,
z*vector.x-x*vector.z,
x*vector.y-y*vector.x);

2.1 Vectors 33

}
};

To implement this product I have overloaded the % operator, simply because it
looks most like a cross. This operator is usually reserved for modulo division in most
languages, so purists may balk at reusing it for an unrelated mathematical operation.
If you are easily offended, you can use the longhand vectorProduct method instead.
Personally I find the convenience of being able to use operators outweighs any confu-
sion, especially as vectors have no sensible modulo division operation.

The Trigonometry of the Vector Product

Just like the scalar product, the vector product has a trigonometric correspondence.
This time the magnitude of the product is related to the magnitude of its arguments
and the angle between them, as follows:

|a × b| = |a||b| sin θ [2.6]

where θ is the angle between the vectors, as before.
This is the same as the scalar product, replacing the cosine with the sine. In fact

we can write

|a × b| = |a||b|
√

1 − (a · b)2

using the relationship between cosine and sine:

cos2 θ + sin2 θ = 1

We could use equation 2.6 to calculate the angle between two vectors, just as we
did using equation 2.4 for the scalar product. This would be wasteful, however: it is
much easier to calculate the scalar product than the vector product. So if we need to
find the angle (which we rarely do), then using the scalar product would be a faster
solution.

Commutativity of the Vector Product

You may have noticed in the derivation of the vector product that it is not commu-
tative. In other words, a × b �= b × a. This is different from each of the previous
products of two vectors: both a ◦ b = b ◦ a and a · b = b · a.

In fact, by comparing the components in equation 2.5, we can see that

a × b = −b × a

This equivalence will make more sense once we look at the geometrical interpretation
of the vector product.

34 Chapter 2 The Mathematics of Particles

FIGURE 2.7 Geometric interpretation of the vector product.

In practice the non-commutative nature of the vector product means that we need
to ensure that the orders of arguments are correct in equations. This is a common
error and can manifest itself in the game by objects being sucked into each other with
ever increasing velocity or bobbing in and out of surfaces at an ever faster rate.

The Geometry of the Vector Product

Once again using the scalar product as an example, we can interpret the magnitude of
the vector product of a vector and a normalized vector. For a pair of vectors, â and b,
the magnitude of the vector product represents the component of b that is not in
the direction of â. Again, having a vector a that is not normalized simply gives us a
magnitude that is scaled by the length of a. This can be used in some circumstances,
but in practice it is a relatively minor result.

Because it is easier to calculate the scalar product than the vector product, if we
need to know the component of a vector not in the direction of another vector, we
are better off performing the scalar product and then using Pythagoras’s theorem to
give the result

c =
√

1 − s2

where c is the component of b not in the direction of â and s is the scalar product
â · b.

In fact the vector product is very important geometrically, not for its magnitude
but for its direction. In three dimensions the vector product will point in a direction
that is at right angles (i.e., 90◦, also called “orthogonal”) to both of its operands. This
is illustrated in figure 2.7. There are several occasions in this book where it will be
convenient to generate a unit vector that is at right angles to other vectors. We can
accomplish this easily using the vector product:

r = ̂a × b

2.2 Calculus 35

Notice in particular that this is only defined in three dimensions. In two dimen-
sions there is no possible vector that is at right angles to two non-parallel vectors. In
higher dimensions (which I admit are not very useful for a games programmer), it is
also not defined in the same way.

2.1.9 THE ORTHONORMAL BASIS

In some cases we want to construct a triple of mutually orthogonal vectors, where
each vector is at right angles to the other two. Typically we want each of the three
vectors to be normalized.

Fortunately there is a simple algorithm using the vector product that we can fol-
low. This process starts with two non-parallel vectors. The first of these two will be in-
variant in direction; let’s call this a: we cannot change its direction during the process,
but if it is not normalized, we will change its magnitude. The other vector, b, may be
changed if it is not already at right angles to the first. The third vector in the triple is
not given at all.

1. Find vector c by performing the cross product c = a × b.

2. If vector c has a zero magnitude, then give up: this means that a and b are parallel.

3. Now we need to make sure a and b are at right angles. We can do this by recalcu-
lating b based on a, and c using the cross product: b = c × a (note the order).

4. Normalize each of the vectors to give the output: â, b̂, and ĉ.

This kind of triple of vectors is called an “orthonormal basis.” When we talk about
contact detection and contact resolution later in the book, we will need this algorithm
several times.

Note that this algorithm is one in which it matters a great deal whether you are
working in a left- or right-handed coordinate system. The algorithm is designed for
right-handed systems. If you need a left-handed coordinate system, then you can sim-
ply change the order of the operands for both the cross products. This will give you a
left-handed orthonormal basis.

2.2 CALCULUS

Calculus is a complex field with tendrils that reach into all areas of mathematics.
Strictly speaking calculus means any kind of formal mathematical system, but when
we talk about “the calculus,” we normally mean analysis: the study of the behavior of
functions. Real analysis is the most common topic of high school and undergraduate
calculus classes: the study of functions that operate on real numbers. We are interested
in vector analysis (usually widened to “matrix analysis,” of which vectors are just one
part). Even this subfield of a subfield is huge and contains many branches that have
filled countless books on their own.

Fortunately for our purposes we are only interested in a very limited part of the
whole picture. We are interested in the way something changes over time: it might

36 Chapter 2 The Mathematics of Particles

be the position of an object, or the force in a spring, or its rotational speed. The
quantities we are tracking in this way are mostly vectors (we’ll return to the non-
vectors later in the book).

There are two ways of understanding these changes: we describe the change itself,
and we describe the results of the change. If an object is changing position with time,
we need to be able to understand how it is changing position (i.e., its speed, the direc-
tion it is moving in, if it is accelerating or slowing) and the effects of the change (i.e.,
where it will be when we come to render it during the next frame of the game). These
two viewpoints are represented by differential and integral calculus, respectively. We
can look at each in turn.

No code will be provided for this section; it is intended as a review of the concepts
involved only. The corresponding code makes up most of the rest of this book, very
little of which will make sense unless you grasp the general idea of this section.

2.2.1 DIFFERENTIAL CALCULUS

For our purposes we can view the differential of a quantity as the rate at which it
is changing. In the majority of this book we are interested in the rate at which it is
changing with respect to time. This is sometimes informally called its “speed.”

When we come to look at vector calculus, however, speed has a different meaning.
It is more common in mathematics and almost ubiquitous in physics programming
to call it “velocity.”

Velocity

Think about the position of an object, for example. If this represents a moving object,
then in the next instance of time, the position of the object will be slightly different.
We can work out the velocity at which the object is moving by looking at the two
positions. We could simply wait for a short time to pass, find the position of the
object again, and use the formula

v = p′ − p

�t
= �p

�t

where v is the velocity of the object, p′ and p are its positions at the first and second
measurements (so �p is the change in position), and �t is the time that has passed
between the two. This would give us the average velocity over the time period. It
wouldn’t tell us the exact velocity of the object at any point in time, however.

Figure 2.8 shows the position of two objects at different times. Both objects start
at the same place and end at the same place at the same time. Object A travels at a
constant velocity, whereas object B stays near its start location for a while and then
zooms across the gap very quickly. Clearly they aren’t traveling at the same velocity.

If we want to calculate the exact velocity of an object, we could reduce the gap
between the first and second measurement. As the gap gets smaller, we get a more

2.2 Calculus 37

FIGURE 2.8 Same average velocity, different instantaneous velocity.

accurate picture of the velocity of the object at one instant in time. If we could make
this gap infinitely small, then we would have the exact answer.

In mathematical notation this is written using the “limit” notation

v = lim
�t→0

�p

�t

which simply means that the velocity would be accurately given by the distance trav-
eled divided by the time gap (�p/�t), if we could make the gap infinitely small
(limt→0). Rather than use the cumbersome limit notation, this is more commonly
written with a lowercase d in place of the �:

v = lim
�t→0

�p

�t
= dp

dt

Because it is so common in mechanics to be talking about the change with respect to
time, this is often simplified even further:

v = dp

dt
= ṗ

The dot over the p simply means that it is the velocity at which p is changing—its
differential with respect to time.

Acceleration

If p is the position of an object and v is its velocity (where v = ṗ), we can define its
acceleration too.

Acceleration is the rate at which velocity is changing. If an object is accelerat-
ing quickly, it is rapidly increasing in velocity. In normal English we use the word
slowing to mean the opposite of acceleration, or braking if we are talking about a
car. In physics acceleration it can mean any change in velocity, either increasing or
decreasing velocity. A positive value for acceleration represents speeding up, a zero

38 Chapter 2 The Mathematics of Particles

acceleration means no change in velocity at all, and a negative acceleration represents
slowing down.

Because acceleration represents the rate at which velocity is changing, following
the same process we arrive at

a = lim
�t→0

�v

�t
= dv

dt

where v in this formula is a velocity itself, also defined in terms of its own limit, as
we saw earlier in this section. We could write this as a = v̇ if we wanted to, but this
causes problems.

As long as I use v for velocity, it is fairly clear, but in general if I write

dm

dt

it would not be obvious whether m is a velocity (and therefore the whole expression
is an acceleration) or if it is a position (making the expression a velocity). To avoid
this confusion, it is typical to write accelerations in terms of the position only.

This is called the “second differential.” Velocity is the first differential of position,
and if we differentiate again, we get acceleration; so acceleration is the second differ-
ential. Mathematicians often write it in this way:

a = dv

dt
= d

dt

dp

dt
= d2p

dt2

which can be confusing if you’re not used to differential notation. Don’t worry about
how we end up with the strange set of squared things—it isn’t important for us; it
simply indicates a second differential. Fortunately we can completely ignore this for-
mat altogether and use the dotted form again—

a = d2p

dt2
= p̈

which is the format we’ll use in the remainder of the book.
We could carry on and find the rate at which the acceleration is changing (this is

called the “jerk” or sometimes the “jolt,” and it is particularly important in the de-
sign of roller coasters, among other things). We could go further and find the rate of
change of jerk, and so on. It turns out, however, that these quantities are not needed
to get a believable physics engine running. As we shall see in the next chapter, Newton
discovered that applying a force to an object changes its acceleration: to make believ-
able physics involving forces, all we need to keep track of are the position, velocity,
and acceleration.

So, in summary: ṗ, the velocity of p, is measured at one instant of time, not at an
average velocity; and p̈ is the acceleration of p, measured in exactly the same way, and
it can be negative to indicate slowing down.

2.2 Calculus 39

Vector Differential Calculus

So far we’ve looked at differentiation purely in terms of a single scalar quantity.
For full three-dimensional physics we need to deal with vector positions rather than
scalars.

Fortunately the simple calculus we’ve looked at so far works easily in three di-
mensions (although you must be careful: as a general rule, most of the equations for
one-dimensional calculus you find in mathematics reference books cannot be used in
three dimensions).

If the position of the object is given as a vector in three dimensions, then its rate
of change is also represented by a vector. Because a change in the position on one axis
doesn’t change the position on any other axes, we can treat each axis as if it were its
own scalar differential.

The velocity and the acceleration of a vector depends only on the velocity and
acceleration of its components:

ȧ =
⎡
⎢⎣

ȧx

ȧy

ȧz

⎤
⎥⎦

and similarly

ä =
⎡
⎢⎣

äx

äy

äz

⎤
⎥⎦

As long as the formulae we meet do not involve the products of vectors, this
matches exactly with the way we defined vector addition and vector–scalar multi-
plication earlier in the chapter. The upshot of this is that for most formulae involving
the differentials of vectors, we can treat the vectors as if they were scalars. We’ll see an
example of this in the next section.

As soon as we have formulae that involve multiplying vectors together, or that
involve matrices, however, things are no longer as simple. Fortunately they are rare in
this book.

Velocity, Direction, and Speed

Although in regular English we often use speed and velocity as synonyms, they have
different meanings for physics development. The velocity of an object, as we’ve seen,
is a vector giving the rate at which its position is changing.

The speed of an object is the magnitude of this velocity vector, and the direction
that the object is moving in is given by the normalized velocity. So

ẋ = s d̂

40 Chapter 2 The Mathematics of Particles

where s is the speed of the object, and d̂ is its direction of movement. Using the equa-
tions for the magnitude and direction of any vector, the speed is given by

s = |ẋ|
and the direction by

d̂ = ẋ

|ẋ|
Both the speed and the direction can be calculated from a velocity vector using the
magnitude and normalize methods we developed earlier in the chapter; they do not
need additional code.

The speed of an object is rarely needed in physics development: it has an applica-
tion in calculating aerodynamic drag, but little else. Both the speed and the direction
of movement are often used by an animation engine to work out what animation to
play as a character moves. This is less common for physically controlled characters.

Mostly this is a terminology issue: it is worth getting into the habit of calling
velocity velocity, because speed has a different meaning.

2.2.2 INTEGRAL CALCULUS

In mathematics, integration is the opposite of differentiation. If we differentiate
something, and then integrate it, we get back to where we started.

In the same way that we got the velocity from the position using differentiation,
we go the other way in integration. If we know the velocity, then we can work out
the position at some point in the future. If we know the acceleration, we can find the
velocity at any point in time.

In physics engines, integration is used to update the position and velocity of each
object. The chunk of code that performs this operation is called the “integrator.”

Although integration in mathematics is an even more complex process than dif-
ferentiation, involving considerable algebraic manipulation, in game development it
is very simple. If we know that an object is moving with a constant velocity (i.e., no
acceleration), and we know this velocity along with how much time has passed, we
can update the position of the object using the formula

p′ = p + ṗt [2.7]

where ṗ is the constant velocity of the object over the whole time interval.
This is the integral of the velocity: an equation that gives us the position. In the

same way we could update the object’s velocity in terms of its acceleration using the
formula

ṗ′ = ṗ + p̈t [2.8]

Equation 2.7 only works for an object that is not accelerating. Rather than finding
the position by the first integral of the velocity, we could find it as the second integral

2.2 Calculus 41

of the acceleration (just as acceleration was the second derivative of the position).
This would give us an updated equation of

p′ = p + ṗt + p̈
t2

2
[2.9]

where ṗ is the velocity of the object at the start of the time interval, and p̈ is the
constant acceleration over the whole time.

It is beyond the scope of this book to describe how these equations are arrived
at: you can see any introduction to calculus for the basic algebraic rules for finding
equations for differentials and integrals. For our purposes in this book I will provide
the equations: they match those found in applied mathematics books for mechanics.

Just as equation 2.7 assumes a constant velocity, equation 2.9 assumes a constant
acceleration. We could generate further equations to cope with changing accelera-
tions. As we will see in the next chapter, however, even 2.9 isn’t needed when it comes
to updating the position; we can make do with the assumption that there is no accel-
eration.

In mathematics, when we talk about integrating, we mean to convert a formula
for velocity into a formula for position; or a formula for acceleration into one for
velocity—in other words, to do the opposite of a differentiation. In game develop-
ment the term is often used slightly differently: to integrate means to perform the
position or velocity updates. From this point on I will stick to the second use, since
we will have no need to do mathematical integration again.

Vector Integral Calculus

Just as we saw for differentiation, vectors can often take the place of scalars in the
update functions. Again this is not the case for mathematics in general, and most
of the formulae you find in mathematical textbooks on integration will not work
for vectors. In the case of the two integrals we will use in this book—equations 2.7
and 2.8—it just so happens that it does. So we can write

p′ = p + ṗt

and perform the calculation on a component-by-component basis:

p′ = p + ṗt =
⎡
⎢⎣

px + ṗxt

py + ṗyt

pz + ṗzt

⎤
⎥⎦

This could be converted into code as

position += velocity * t;

42 Chapter 2 The Mathematics of Particles

using the overloaded operator forms of + and * we defined earlier. In fact this is exactly
the purpose of our addScaledVector method, so we can write

position.addScaledVector(velocity, t);

and have it done in one operation, rather than taking the risk that our compiler will
decide to create and pass around extra vectors on the stack.

We now have almost all the mathematics we need for the particle engine imple-
mentation. We will implement the integration step in the next chapter, after we look
at the physics involved in simulating particles.

2.3 SUMMARY

Vectors form the basis of all the mathematics in this book. As we’ve seen, they are
easy to manipulate numerically and through simple routines in code. It is impor-
tant to remember, however, that vectors are geometrical: they represent positions and
movements in space. It is very often much simpler to understand the formulae in this
book in terms of their corresponding geometric properties rather than look at them
numerically.

Describing positions and movements in terms of vectors is fine, but to make a
physics engine we’ll need to begin to link the two. That is, we’ll have to encode into
our physics engine the laws of physics that say how position and movement and time
are connected. This is the subject of chapter 3.

3
THE LAWS

OF MOTION

hysics engines are based on Newton’s laws of motion. In later sections we will
P begin to use results that were added to Newton’s original work, but the funda-
mentals are his.

Newton created three laws of motion that describe with great accuracy how a
point mass behaves. A point mass is what we call a “particle,” but shouldn’t be con-
fused with particle physics, which studies tiny particles such as electrons or photons
that definitely do not conform to Newton’s laws. For this book we’ll use particle rather
than point mass.

Beyond particles we need the physics of rotating, which introduces additional
complications that were added to Newton’s laws. Even in these cases, however, the
point-mass laws still can be seen at work.

Before we look at the laws themselves, and how they are implemented, we need to
look at what a particle is within our engine and how it is built in code.

3.1 A PARTICLE

A particle has a position, but no orientation. In other words, we can’t tell in what
direction a particle is pointing: it either doesn’t matter or doesn’t make sense. In the
former category are bullets: in a game we don’t really care in what direction a bullet is
pointing; we just care in what direction it is traveling and whether it hits the target. In
the second category are pinpricks of light, from an explosion, for example: the light
is a dot of light, and it doesn’t make sense to ask in which direction a spot of light is
pointing.

43

44 Chapter 3 The Laws of Motion

For each particle we’ll need to keep track of various properties: we’ll need its cur-
rent position, its velocity, and its acceleration. We will add additional properties to
the particle as we go. The position, velocity, and acceleration are all vectors.

The particle can be implemented with the following structure:

Excerpt from include/cyclone/particle.h

/**
* A particle is the simplest object that can be simulated in the
* physics system.
*/
class Particle
{
public:

/**
* Holds the linear position of the particle in
* world space.
*/

Vector3 position;

/**
* Holds the linear velocity of the particle in
* world space.
*/

Vector3 velocity;

/**
* Holds the acceleration of the particle. This value
* can be used to set acceleration due to gravity (its primary
* use) or any other constant acceleration.
*/

Vector3 acceleration;

};

Using this structure we can apply some basic physics to create our first physics engine.

3.2 THE FIRST TWO LAWS

There are three law of motion posited by Newton, but for now we will need only the
first two. They deal with the way an object behaves in the presence and absence of
forces. The first two laws of motion are:

1. An object continues with a constant velocity unless a force acts upon it.

3.2 The First Two Laws 45

2. A force acting on an object produces acceleration that is proportional to the ob-
ject’s mass.

3.2.1 THE FIRST LAW

The first law (Newton 1) tells us what happens if there are no forces around. The
object will continue to move with a constant velocity. In other words, the velocity of
the particle will never change, and its position will keep on being updated based on
the velocity. This may not be intuitive: moving objects we see in the real world will
slow and come to a stop eventually if they aren’t being constantly forced along. In this
case the object is experiencing a force—the force of drag (or friction if it is sliding
along). In the real world we can’t get away from forces acting on a body; the nearest
we can imagine is the movement of objects in space. What Newton 1 tells us is that if
we could remove all forces, then objects would continue to move at the same speed
forever.

In our physics engine we could simply assume that there are no forces at work
and use Newton 1 directly. To simulate drag we could add special drag forces. This is
fine for the simple engine we are building in this part of the book, but it can cause
problems with more complex systems. The problem arises because the processor that
performs the physics calculations isn’t completely accurate. This inaccuracy can lead
to objects getting faster of their own accord.

A better solution is to incorporate a rough approximation of drag directly into
the engine. This allows us to make sure objects aren’t being accelerated by numerical
inaccuracy, and it can allow us to simulate some kinds of drag. If we need complicated
drag (such as aerodynamic drag in a flight simulator or racing game), we can still
do it the long way by creating a special drag force. We call the simple form of drag
“damping” to avoid confusion.

To support damping, we add another property to the particle class:

Excerpt from include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Holds the amount of damping applied to linear
* motion. Damping is required to remove energy added
* through numerical instability in the integrator.
*/
real damping;

};

When we come to perform the integration, we will remove a proportion of the
object’s velocity at each update. The damping parameter controls how velocity is left

46 Chapter 3 The Laws of Motion

after the update. If the damping is zero, then the velocity will be reduced to nothing:
this would mean that the object couldn’t sustain any motion without a force and
would look odd to the player. A value of 1 means that the object keeps all its velocity
(equivalent to no damping). If you don’t want the object to look like it is experiencing
drag, then values near but less than 1 are optimal—0.995, for example.

3.2.2 THE SECOND LAW

The second law (Newton 2) gives us the mechanism by which forces alter the motion
of an object. A force is something that changes the acceleration of an object (i.e., the
rate of change of velocity). An implication of this law is that we cannot do anything to
an object to directly change its position or velocity; we can only do that indirectly by
applying a force to change the acceleration and wait until the object reaches our target
position or velocity. We’ll see later in the book that physics engines need to abuse this
law to look good, but for now we’ll keep it intact.

Because of Newton 2, we will treat the acceleration of the particle different from
velocity and position. Both velocity and position keep track of a quantity from frame
to frame during the game. They change, but not directly, only by the influence of ac-
celerations. Acceleration, by contrast, can be different from one moment to another.
We can simply set the acceleration of an object as we see fit (although we’ll use the
force equations in Section 3.2.3), and the behavior of the object will look fine. If we
directly set the velocity or position, the particle will appear to jolt or jump. Because
of this the position and velocity properties will only be altered by the integrator and
should not be manually altered (other than setting up the initial position and velocity
for an object, of course). The acceleration property can be set at any time, and it will
be left alone by the integrator.

3.2.3 THE FORCE EQUATIONS

The second part of Newton 2 tells us how force is related to the acceleration. For
the same force, two objects will experience different accelerations depending on their
mass. The formula relating the force to the acceleration is the famous

f = ma = mp̈ [3.1]

Where we are trying to find the acceleration, we have

p̈ = 1

m
f [3.2]

where f is the force and m is the mass.
In a physics engine we typically find the forces applying to each object and then

use equation 3.2 to find the acceleration, which can then be applied to the object by
the integrator. For the engine we are creating in this part of the book, we can find

3.2 The First Two Laws 47

the acceleration in advance using this equation, without having to repeat it at every
update. In the remainder of the book, however, it will be a crucial step.

So far all the equations have been given in their mathematics textbook form, ap-
plied to scalar values. As we saw in the last chapter on calculus, we can convert them
easily to use vectors:

p̈ = 1

m
f

so the force is a vector, as well as acceleration.

3.2.4 ADDING MASS TO PARTICLES

Added to the position and velocity we have stored per particle, we need to store its
mass so that we can correctly calculate its response to forces. Many physics engines
simply add a scalar mass value for each object. There is a better way to get the same
effect, however.

First there is an important thing to notice about equation 3.2. If the mass of an
object is zero, then the acceleration will be infinite, as long as the force is not zero. This
is not a situation that should ever occur: no particle that we can simulate should ever
have zero mass. If we try to simulate a zero mass particle, it will cause divide-by-zero
errors in the code.

It is often useful, however, to simulate infinite masses. These are objects that no
force of any magnitude can move. They are very useful for immovable objects in a
game: the walls or floor, for example, cannot be moved during the game. If we feed
an infinite mass into equation 3.2, then the acceleration will be zero, as we expect.
Unfortunately we cannot represent a true infinity in most computer languages, and
the optimized mathematics instructions on all common game processors do not cope
well with infinities. We have to get slightly creative. Ideally we want a solution where
it is easy to get infinite masses but impossible to get zero masses.

Notice in equation 3.2 that we use 1 over the mass each time. Because we never
use the 3.1 form of the equation, we can speed up our calculations by not storing the
mass for each object, but 1 over the mass. We call this the “inverse mass.” This solves
our problem for representing objects of zero or infinite mass: infinite mass objects
have a zero inverse mass, which is easy to set. Objects of zero mass would have an
infinite inverse mass, which cannot be specified in most programming languages.

We update our particle class to include the inverse mass in this way:

Excerpt from include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Holds the inverse of the mass of the particle. It
* is more useful to hold the inverse mass because

48 Chapter 3 The Laws of Motion

* integration is simpler and because in real-time
* simulation it is more useful to have objects with
* infinite mass (immovable) than zero mass
* (completely unstable in numerical simulation).
*/

real inverseMass;
};

It is really important to remember that you are dealing with the inverse mass,
and not the mass. It is quite easy to set the mass of the particle directly, without
remembering, only to see it perform completely inappropriate behavior on screen—
barely movable barrels zooming off at the slightest tap, for example.

To help with this, I’ve made the inverseMass data field protected in the Particle
class on the CD. To set the inverse mass you need to use an accessor function. I have
provided functions for setInverseMass and setMass. Most of the time it is more con-
venient to use the latter, unless we are trying to set an infinite mass.

3.2.5 MOMENTUM AND VELOCITY

Although Newton 1 is often introduced in terms of velocity, that is a misrepresenta-
tion. It is not velocity that is constant in the absence of any forces, but momentum.

Momentum is the product of velocity and mass. Since mass is normally constant,
we can assume that velocity is therefore constant by Newton 1. In the event that a
traveling object were changing mass, then its velocity would also be changing, even
with no forces.

We don’t need to worry about this for our physics engine because we’ll not deal
with any situation where mass changes. It will be an important distinction when we
come to look at rotations later, however, because rotating objects can change the way
their mass is distributed. Under the rotational form of Newton 1, that means a change
in rotational speed, with no other forces acting.

3.2.6 THE FORCE OF GRAVITY

The force of gravity is the most important force in a physics engine. Gravity applies
between every pair of objects: attracting them together with a force depends on their
mass and their distance apart. It was Newton who also discovered this fact, and along
with the three laws of motion he used it to explain the motion of planets and moons
with a new level of accuracy.

The formula he gave us is the “law of universal gravitation”:

f = G
m1m2

r2
[3.3]

3.2 The First Two Laws 49

where m1 and m2 are the masses of the two objects, r is the distance between their cen-
ters, f is the resulting force, and G is the “universal gravitational constant”—a scaling
factor derived from observation of planetary motion.

The effects of gravity between two objects the size of a planet are significant; the
effects between (relatively) small objects such as a car, or even a building, are small.
On earth our experience of gravity is completely dominated by the earth itself. We
notice the pull of the moon in the way our tides work, but other than that we only
experience gravity pulling us down to the planet’s surface.

Because we are only interested in the pull of the earth, we can simplify equa-
tion 3.3. First we can assume that m1 is always constant. Second, and less obviously,
we can assume that r is also constant. This is due to the huge distances involved. The
distance from the surface of the earth to its center is so huge (6,400 km) that there is
almost no difference in gravity between standing at sea level and standing on the top
of a mountain. For the accuracy we need in a game, we can therefore assume the r
parameter is constant.

Equation 3.3 simplifies to

f = mg [3.4]

where m is the mass of the object we are simulating; f is the force, as before; and g is a
constant that includes the universal gravitational constant, the mass of the earth, and
its radius:

g = G
mearth

r2

The constant, g, is an acceleration, which we measure in meters per second per
second. On earth this g constant has a value of around 10 m/s2. (Scientists sometimes
use a value of 9.807 m/s2, although because of the variations in r and other effects,
this is a global average rather than a measured value.)

Notice that the force depends on the mass of the object. If we work out the accel-
eration using equation 3.2, then we get

p̈ = 1

m
mg = g

In other words, no matter what mass the object has, it will always accelerate at the
same rate due to gravity. As the legend goes, Galileo dropped heavy and light objects
from the Tower of Pisa and showed that they hit the ground at the same time.

What this means for our engine is that the most significant force we need to apply
can be applied directly as an acceleration. There is no point using equation 3.4 to
calculate a force and then using equation 3.2 to convert it back into an acceleration.
In this iteration of the engine we will introduce gravity as the sole force at work on
particles, and it will be applied directly as an acceleration.

50 Chapter 3 The Laws of Motion

The Value of g

It is worth noting that, although the acceleration due to gravity on earth is about
10 m/s2, this doesn’t look very convincing on screen. Games are intended to be more
exciting than the real world: things happen more quickly and at a higher intensity.

Creating simulations with a g value of 10 m/s2 can look dull and insipid. Most
developers use higher values, from around 15 m/s2 for shooters (to avoid projectiles
being accelerated into the ground too quickly) to 20 m/s2, which is typical of driving
games. Some developers go further and incorporate the facility to tune the g value on
an object-by-object basis. Our engine will include this facility.

Gravity typically acts in the down direction, unless you are going for a special
effect. In most games the Y axis represents up and down in the game world; and
almost exclusively the positive Y axis points up.

The acceleration due to gravity can therefore be represented as a vector with the
form

g =
⎡
⎢⎣

0

−g

0

⎤
⎥⎦

where g is the value we discussed before, and g is the acceleration vector we will use
to update the particle in the next section.

3.3 THE INTEGRATOR

We now have all the equations and background needed to finish the first implemen-
tation of the engine. At each frame, the engine needs to look at each object in turn,
work out its acceleration, and perform the integration step. The calculation of the
acceleration in this case will be trivial: we will use the acceleration due to gravity only.

The integrator consists of two parts: one to update the position of the object,
and the other to update its velocity. The position will depend on the velocity and
acceleration, while the velocity will depend only on the acceleration.

Integration requires a time interval over which to update the position and veloc-
ity: because we update every frame, we use the time interval between frames as the
update time. If your engine is running on a console that has a consistent frame rate,
then you can hard-code this value into your code (although it is wise not to because in
the same console different territories can have different frame rates). If you are run-
ning on a PC with a variable frame-rate, then you probably need to time the duration
of the frame.

Typically developers will time a frame and then use that value to update the next
frame. This can cause noticeable jolts if frame durations are dramatically inconsistent,
but the game is unlikely to feel smooth in this case anyway, so it is a common rule of
thumb.

In the code on the CD I use a central timing system that calculates the duration of
each frame. The physics code we will develop here simply takes in a time parameter
when it updates and doesn’t care how this value was calculated.

3.3 The Integrator 51

3.3.1 THE UPDATE EQUATIONS

We need to update both position and velocity; each is handled slightly differently.

Position Update

In chapter 2 we saw that integrating the acceleration twice gives us this equation for
the position update:

p′ = p + ṗt + 1

2
p̈t2

This is a well-known equation seen in high school and undergraduate textbooks on
applied mathematics.

We could use this equation to perform the position update in the engine, with
code something like

object.position += object.velocity * time +
object.acceleration * time * time * 0.5;

or

object.position.addScaledVector(object.velocity, time);
object.position.addScaledVector(object.acceleration, time * time * 0.5);

In fact, if we are running the update every frame, then the time interval will be
very small (typically 0.033 s for a 30-frames-per-second game). If we look at the ac-
celeration part of this equation, we are taking half of the squared time (which gives
0.0005). This is such a small value that it is unlikely the acceleration will have much
of an impact on the change in position of an object.

For this reason we typically ignore the acceleration entirely in the position update
and use the simpler form

p′ = p + ṗt

This is the equation we will use in the integrator throughout this book.
If your game regularly uses short bursts of huge accelerations, then you might

be better off using the longer form of the equation. If you do intend to use huge
accelerations, however, you are likely to get all sorts of other accuracy problems in
any case: all physics engines typically become unstable with very large accelerations.

Velocity Update

The velocity update has a similar basic form

ṗ′ = ṗ + p̈t

52 Chapter 3 The Laws of Motion

Earlier in the chapter, however, we introduced another factor to alter the velocity: the
damping parameter.

The damping parameter is used to remove a bit of velocity at each frame. This is
done by simply multiplying the velocity by the damping factor

ṗ′ = ṗd + p̈t [3.5]

where d is the damping for the object.
This form of the equation hides a problem, however. No matter whether we have

a long or a short time interval over which to update, the amount of velocity being
removed is the same. If our frame rate suddenly improves, then there will be more
updates per second and the object will suddenly appear to have more drag. A more
correct version of the equation solves this problem by incorporating the time into the
drag part of the equation:

ṗ′ = ṗdt + p̈t [3.6]

where the damping parameter d is now the proportion of the velocity retained each
second, rather than each frame.

Calculating one floating-point number to the power of another is a slow process
on most modern hardware. If you are simulating a huge number of objects, then it
is normally best to avoid this step. For a particle physics engine designed to simulate
thousands of sparks, for example, use equation 3.5, or even remove damping alto-
gether.

Because we are heading toward an engine designed for simulating a smaller num-
ber of rigid bodies, I will use the full form in this book, as given in equation 3.6.
A different approach favored by many engine developers is to use equation 3.5 with a
damping value very near to 1—so small that it will not be noticeable to the player but
big enough to be able to solve the numerical instability problem. In this case a varia-
tion in frame rate will not make any visual difference. Drag forces can then be created
and applied as explicit forces that will act on each object (as we’ll see in chapter 5).

Unfortunately, this simply moves the problem to another part of the code—the
part where we calculate the size of the drag force. For this reason I prefer to make the
damping parameter more flexible and allow it to be used to simulate visible levels of
drag.

3.3.2 THE COMPLETE INTEGRATOR

We can now implement our integrator unit. The code looks like this:

Excerpt from include/cyclone/precision.h

/** Defines the precision of the power operator. */
#define real_pow powf

3.3 The Integrator 53

Excerpt from include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Integrates the particle forward in time by the given amount.
* This function uses a Newton-Euler integration method, which is a
* linear approximation of the correct integral. For this reason it
* may be inaccurate in some cases.
*/
void integrate(real duration);

};

Excerpt from src/particle.cpp

#include <assert.h>
#include <cyclone/particle.h>

using namespace cyclone;

void Particle::integrate(real duration)
{

assert(duration > 0.0);

// Update linear position.
position.addScaledVector(velocity, duration);

// Work out the acceleration from the force.
Vector3 resultingAcc = acceleration;
resultingAcc.addScaledVector(forceAccum, inverseMass);

// Update linear velocity from the acceleration.
velocity.addScaledVector(resultingAcc, duration);

// Impose drag.
velocity *= real_pow(damping, duration);

}

I have added the integration method to the Particle class because it simply up-
dates the particles’ internal data. It takes just a time interval and updates the position
and velocity of the particle, returning no data.

54 Chapter 3 The Laws of Motion

3.4 SUMMARY

In two short chapters we’ve gone from coding vectors to a first complete physics en-
gine.

The laws of motion are elegant, simple, and incredibly powerful. The fundamen-
tal connections that Newton discovered drive all the physical simulations in this book.
Calculating forces, and integrating position and velocity based on force and integrat-
ing position and velocity based on force and time, are the fundamental steps of all
physics engines, complex or simple.

Although we now have a physics engine that can actually be used in games (and
is equivalent to the systems used in many hundreds of published games), it isn’t yet
suitable for a wide range of physical applications. In chapter 4 we’ll look at some of
the applications it can support and some of its limitations.

4
THE PARTICLE

PHYSICS ENGINE

e now have our first working physics engine capable of simulating the move-
W ment of particles under gravity.

Considering that it is such a simple piece of code, I’ve spent a long time talking
about the theory behind it. This will become important later in this book when we
repeat the same kind of logic for the rotation of objects.

At the moment our engine is fairly limited. It can only deal with isolated parti-
cles, and they cannot interact in any way with their environment. Although these are
serious limitations that will be addressed in the next part of the book, we can still do
some useful things with what we have.

In this chapter we will look at how to set up the engine to process ballistics: bullets,
shells, and the like. We will also use the engine to create a fireworks display. Both of
these applications are presented in skeleton form here, with no rendering code. They
can be found with full source code on the CD.

4.1 BALLISTICS

One of the most common applications of physics simulation in games is to model
ballistics. This has been the case for two decades, predating the current vogue for
physics engines.

In our ballistics simulation, each weapon fires a particle. Particles can represent
anything from bullets to artillery shells, from fireballs to laser-bolts. Regardless of the
object being fired, we will call this a “projectile.”

55

56 Chapter 4 The Particle Physics Engine

Each weapon has a characteristic muzzle velocity: the speed at which the projec-
tile is emitted from the weapon. This will be very fast for a laser-bolt and probably
considerably slower for a fireball. For each weapon the muzzle velocity used in the
game is unlikely to be the same as its real-world equivalent.

4.1.1 SETTING PROJECTILE PROPERTIES

The muzzle velocity for the slowest real-world guns is in the order of 250 m/s, whereas
tank rounds designed to penetrate armor plate by their sheer speed can move at
1,800 m/s. The muzzle velocity of an energy weapon, such as a laser, would be the
speed of light: 300,000,000 m/s. Even for relatively large game levels, any of these val-
ues is far too high. A level that represents a square kilometer is huge by the standard
of modern games: clearly a bullet that can cross this in half a second would be prac-
tically invisible to the player. If this is the aim, then it is better not to use a physics
simulation, but to simply cast a ray through the level the instant that the weapon is
shot and check to see whether it collides with the target.

Instead, if we want the projectile’s motion to be visible, we use muzzle velocities
that are in the region of 5 to 25 m/s for a human-scale game. (If your game represents
half a continent, and each unit is the size of a city, then it would be correspondingly
larger.) This causes two consequences that we have to cope with.

First, the mass of the particle should be larger than in real life, especially if you are
working with the full physics engine later in this book and you want impacts to look
impressive (being able to shoot a crate and topple it over, for example). The effect
that a projectile has when it impacts depends on both its mass and its velocity: if we
drop the velocity, we should increase the mass to compensate. The equation that links
energy, mass, and speed is

e = ms2

where e is the energy and s is the speed of the projectile (this equation doesn’t work
with vectors, so we can’t use velocity). If we want to keep the same energy, we can
work out the change in mass for a known change in speed:

�m = (�s)2

Real-world ammunition ranges from a gram in mass up to a few kilograms for
heavy shells and even more for other tactical weapons (bunker-busting shells used
during the second Gulf War were more than 1000 kg in weight). A typical 5 g bullet
that normally travels at 500 m/s might be slowed to 25 m/s. This is a �s of 20. To get
the same energy we need to give it 400 times the weight: 2 kg.

Second, we have to decrease the gravity on projectiles. Most projectiles shouldn’t
slow too much in flight, so the damping parameter should be near 1. Shells and mor-
tars may arch under gravity, but other types of projectiles should barely feel the effect.
If they were traveling at very high speed, then they wouldn’t have time to be pulled
down by gravity to a great extent, but since we’ve slowed them down, gravity will have

4.1 Ballistics 57

FIGURE 4.1 Screenshot of the ballistic demo.

longer to do its work. Likewise, if we are using a higher gravity coefficient in the game,
it will make the ballistic trajectory far too severe: well-aimed projectiles will hit the
ground only a few meters in front of the character. To avoid this we lower the gravity.
For a known change in speed we can work out a “realistic” gravity value using the
formula:

gbullet = 1

�s
gnormal

where gnormal is the gravity that you want to simulate. This would be 10 m/s2 for
most games (which is earth gravity, not the general gravity being used elsewhere in
the simulation, which is typically higher). For our bullet example we have a gbullet

of 0.5 m/s2.

4.1.2 IMPLEMENTATION

The ballistic demo on the CD (shown in figure 4.1) gives you the choice of four
weapons: a pistol, an artillery piece, a fireball, and a laser gun (indicated by name at
the bottom of the screen). When you click the mouse, a new round is fired. The code
that creates a new round and fires it looks like this:

Excerpt from src/demos/ballistic/ballistic.cpp

// Set the properties of the particle.
switch(currentShotType)
{
case PISTOL:

shot->particle.setMass(2.0f); // 2.0kg
shot->particle.setVelocity(0.0f, 0.0f, 35.0f); // 35m/s
shot->particle.setAcceleration(0.0f, -1.0f, 0.0f);
shot->particle.setDamping(0.99f);
break;

58 Chapter 4 The Particle Physics Engine

case ARTILLERY:
shot->particle.setMass(200.0f); // 200.0kg
shot->particle.setVelocity(0.0f, 30.0f, 40.0f); // 50m/s
shot->particle.setAcceleration(0.0f, -20.0f, 0.0f);
shot->particle.setDamping(0.99f);
break;

case FIREBALL:
shot->particle.setMass(1.0f); // 1.0kg - mostly blast damage
shot->particle.setVelocity(0.0f, 0.0f, 10.0f); // 5m/s
shot->particle.setAcceleration(0.0f, 0.6f, 0.0f); // Floats up
shot->particle.setDamping(0.9f);
break;

case LASER:
// Note that this is the kind of laser bolt seen in films,
// not a realistic laser beam!
shot->particle.setMass(0.1f); // 0.1kg - almost no weight
shot->particle.setVelocity(0.0f, 0.0f, 100.0f); // 100m/s
shot->particle.setAcceleration(0.0f, 0.0f, 0.0f); // No gravity
shot->particle.setDamping(0.99f);
break;

}

// Set the data common to all particle types.
shot->particle.setPosition(0.0f, 1.5f, 0.0f);
shot->startTime = TimingData::get().lastFrameTimestamp;
shot->type = currentShotType;

// Clear the force accumulators.
shot->particle.clearAccumulator();

Notice that each weapon configures the particle with a different set of values. The
surrounding code is skipped here for brevity: you can refer to the source code on the
CD to see how and where variables and data types are defined.

The physics update code looks like this:

Excerpt from src/demos/ballistic/ballistic.cpp

// Update the physics of each particle in turn.
for (AmmoRound *shot = ammo; shot < ammo+ammoRounds; shot++)
{

if (shot->type != UNUSED)
{

// Run the physics.

4.1 Ballistics 59

shot->particle.integrate(duration);

// Check if the particle is now invalid.
if (shot->particle.getPosition().y < 0.0f ||

shot->startTime+5000 < TimingData::get().lastFrameTimestamp ||
shot->particle.getPosition().z > 200.0f)

{
// We simply set the shot type to be unused, so the
// memory it occupies can be reused by another shot.
shot->type = UNUSED;

}
}

}

It simply calls the integrator on each particle in turn. After it has updated the particle,
it checks to see whether the particle is below 0 height, in which case it is removed. The
particle will also be removed if it is a long way from the firing point (100 m) or if it
has been in flight for more than 5 seconds.

In a real game you would use some kind of collision detection system to check on
whether the projectile had collided with anything. Additional game logic could then
be used to reduce the hit points of the target character or add a bullet-hole graphic to
a surface.

Because we have no detailed collision model at this stage, it is difficult to show
the effect of the energy in each projectile. When combined with the collisions and
contacts in later parts of this book, this is obvious. I’ve provided a version of the
demo (see screenshot in figure 4.2) called bigballistics that includes objects to shoot
at, which are simulated using the full physics engine. You can clearly see in this version
the realism of impacts with the different types of projectile.

FIGURE 4.2 Screenshot of the bigballistic demo.

60 Chapter 4 The Particle Physics Engine

FIGURE 4.3 Screenshot of the fireworks demo.

4.2 FIREWORKS

Our second example may appear less useful but demonstrates a common application
of particle physics used in the majority of games. Fireworks are just a very ostenta-
tious application of a particle system that could be used to display explosions, flowing
water, and even smoke and fire.

The fireworks demo on the CD allows you to create an interactive fireworks dis-
play. You can see a display in progress in figure 4.3.

4.2.1 THE FIREWORKS DATA

In our fireworks display we need to add extra data to the basic particle structure. First
we need to know what kind of particle it represents. Fireworks consist of a number
of payloads: the initial rocket may burst into several lightweight mini-fireworks that
explode again after a short delay. We represent the type of firework by an integer
value.

Second we need to know the age of the particle. Fireworks consist of a chain re-
action of pyrotechnics, with carefully timed fuses. A rocket will first ignite its rocket
motor; then, after a short time of flight, the motor will burn out as the explosion
stage detonates. This may scatter additional units, which all have a fuse of the same
length, allowing the final bursts to occur at roughly the same time (not exactly the
same time, however, as that would look odd). To support this we keep an age for each
particle and update it at each frame.

The Firework structure can be implemented in this way:

Excerpt from src/demos/fireworks/fireworks.cpp

/**
* Fireworks are particles, with additional data for rendering and
* evolution.
*/

4.2 Fireworks 61

class Firework : public cyclone::Particle
{
public:

/** Fireworks have an integer type, used for firework rules. */
unsigned type;

/**
* The age of a firework determines when it detonates. Age gradually
* decreases; when it passes zero the firework delivers its payload.
* Think of age as fuse-left.
*/
cyclone::real age;

};

I’ve used an object-oriented approach here and made the Firework structure a sub-
class of the particle structure. This allows me to add just the new data without chang-
ing the original particle definition.

4.2.2 THE FIREWORKS RULES

To define the effect of the whole fireworks display, we need to be able to specify how
one type of particle changes into another. We do this as a set of rules: for each firework
type we store an age and a set of data for additional fireworks that will be spawned
when the age is passed. This is held in a Rules data structure with this form:

Excerpt from src/demos/fireworks/fireworks.cpp

/**
* Firework rules control the length of a firework’s fuse and the
* particles it should evolve into.
*/
struct FireworkRule
{

/** The type of firework that is managed by this rule. */
unsigned type;

/** The minimum length of the fuse. */
cyclone::real minAge;

/** The maximum length of the fuse. */
cyclone::real maxAge;

/** The minimum relative velocity of this firework. */
cyclone::Vector3 minVelocity;

62 Chapter 4 The Particle Physics Engine

/** The maximum relative velocity of this firework. */
cyclone::Vector3 maxVelocity;

/** The damping of this firework type. */
cyclone::real damping;

/**
* The payload is the new firework type to create when this
* firework’s fuse is over.
*/

struct Payload
{

/** The type of the new particle to create. */
unsigned type;

/** The number of particles in this payload. */
unsigned count;

};

/** The number of payloads for this firework type. */
unsigned payloadCount;

/** The set of payloads. */
Payload *payloads;

};

Rules are provided in the code, and they are defined in one function that controls
the behavior of all possible fireworks. This is a sample of that function:

Excerpt from src/demos/fireworks/fireworks.cpp

void FireworksDemo::initFireworkRules()
{

// Go through the firework types and create their rules.
rules[0].setParameters(

1, // type
3, 5, // age range
cyclone::Vector3(-5, -5, -5), // min velocity
cyclone::Vector3(5, 5, 5), // max velocity
0.1 // damping
);

// ... and so on for other firework types ...
}

4.2 Fireworks 63

In a game development studio it is often the art staff who need to decide how the
particles in a game will behave. In this case it is inconvenient to have the rules defined
in code. Many developers incorporate some kind of text file format into their engine,
which can read in easy-to-edit particle rules created by level designers or artists. Some
developers have gone further to create specific tools where an artist can interactively
tweak the behavior of particles in a WYSIWYG environment. This tool then saves out
some file format that defines the rules, to be later read in by the engine.

4.2.3 THE IMPLEMENTATION

At each frame, each firework has its age updated and is checked against the rules. If its
age is past the threshold, then it will be removed and more fireworks will be created
in its place (the last stage of the chain reaction spawns no further fireworks).

Using the particle update function to perform the physics, the firework update
function now looks like this:

Excerpt from src/demos/fireworks/fireworks.cpp

/**
* Fireworks are particles, with additional data for rendering and
* evolution.
*/
class Firework : public cyclone::Particle
{
public:

/**
* Updates the firework by the given duration of time. Returns true
* if the firework has reached the end of its life and needs to be
* removed.
*/
bool update(cyclone::real duration)
{

// Update our physical state
integrate(duration);

// We work backward from our age to zero.
age -= duration;
return (age < 0);

}
};

Notice that if we don’t have any spare firework slots when a firework explodes
into its components, then not all the new fireworks will be calculated. In other words,
when resources are tight, older fireworks get priority.

64 Chapter 4 The Particle Physics Engine

This allows us to put a hard limit on the number of fireworks being processed,
which can avoid having the physics slow down when things get busy. Many developers
use a different strategy in their engines: they give priority to newly spawned particles
and remove old particles to make way. This gives a slightly less pleasing effect in the
fireworks demo, so I’ve avoided it.

The code that actually creates new fireworks looks like this:

Excerpt from src/demos/fireworks/fireworks.cpp

/**
* Firework rules control the length of a firework’s fuse and the
* particles it should evolve into.
*/
struct FireworkRule
{

/**
* Creates a new firework of this type and writes it into the given
* instance. The optional parent firework is used to base position
* and velocity on.
*/

void create(Firework *firework, const Firework *parent = NULL) const
{

cyclone::Random r;
firework->type = type;
firework->age = r.randomReal(minAge, maxAge);
if (parent) firework->setPosition(parent->getPosition());

// The velocity is the particle’s velocity.
cyclone::Vector3 vel = parent->getVelocity();
vel += r.randomVector(minVelocity, maxVelocity);
firework->setVelocity(vel);

// We use a mass of 1 in all cases (no point having fireworks
// with different masses, since they are only under the influence
// of gravity).
firework->setMass(1);

firework->setDamping(damping);

firework->setAcceleration(cyclone::Vector3::GRAVITY);

firework->clearAccumulator();
}

};

4.2 Fireworks 65

void FireworksDemo::create(unsigned type, const Firework *parent)
{

// Get the rule needed to create this firework.
FireworkRule *rule = rules + (type - 1);

// Create the firework.
rule->create(fireworks+nextFirework, parent);

// Increment the index for the next firework.
nextFirework = (nextFirework + 1) % maxFireworks;

}

As fireworks are spawned, they have their particle properties set, with velocities de-
termined with a random component.

Notice that I’ve used high damping values for several of the firework types. This
allows them to drift back down to the ground slowly, which is especially important
for fireworks that need to hang in the air before exploding.

At each frame, all of the currently active fireworks are updated. This is performed
by a simple loop that first checks to see whether the firework should be processed
(fireworks with a type of 0 are defined to be inactive).

Excerpt from src/demos/fireworks/fireworks.cpp

for (Firework *firework = fireworks;
firework < fireworks+maxFireworks;
firework++)

{
// Check if we need to process this firework.
if (firework->type > 0)
{

// Does it need removing?
if (firework->update(duration))
{

// Find the appropriate rule.
FireworkRule *rule = rules + (firework->type-1);

// Delete the current firework (this doesn’t affect its
// position and velocity for passing to the create function,
// just whether or not it is processed for rendering or
// physics.
firework->type = 0;

// Add the payload.
for (unsigned i = 0; i < rule->payloadCount; i++)
{

66 Chapter 4 The Particle Physics Engine

FireworkRule::Payload * payload = rule->payloads + i;
create(payload->type, payload->count, firework);

}
}

}
}

These code fragments are taken from the fireworks demo on the CD. You can
create your own fireworks display using the number keys to launch new fireworks
(there are nine basic firework types).

Exactly the same kind of particle system is used in many game engines. By setting
the gravity of particles to a very low value, or even having gravity pull some kinds
of particle upward, we can create smoke, fire, flowing water, explosions, sparks, rain,
and many, many other effects.

The difference between each type of particle is simply one of rendering. Particles
are normally drawn as a flat bitmap on screen rather than as a three-dimensional
model. This is the approach I’ve used in the demo.

Most production particle systems also allow particles to rotate. Not the full three-
dimensional rotation we will cover later in this book, but a screen rotation so that each
particle bitmap is not drawn with the same orientation on screen. It can be useful to
have this rotation change over time. I will not try to implement the technique in this
book. It is a relatively easy tweak to add a constant speed rotation to particles, and I’ll
leave it as an exercise for those who need it.

4.3 SUMMARY

The particle physics engine is primarily suitable for special effects—namely, the bal-
listics of projectile weapons and particle systems and the visual effects for explosions.

In this chapter we’ve used a particle system to render fireworks. There are tens of
other uses too. Most games have some kind of particle system at work (often com-
pletely separate from the main physics engine). By setting particles with different
properties for gravity, drag, and initial velocity, it is possible to simulate everything
from flowing water to smoke, from fireballs to fireworks.

Eventually, however, single particles won’t be enough. We’ll need full three-
dimensional objects. In part II of this book we’ll look at one way to simulate objects:
by building structures out of particles connected by springs, rods, and cables. To han-
dle these structures we’ll need to consider more forces than just gravity on particles.
Chapter 5 introduces this.

PART II

Mass-Aggregate Physics

This page intentionally left blank

5
ADDING GENERAL

FORCES

n part I we built a particle physics engine that included the force of gravity. We
I looked at the mathematics of forces in chapter 3, which let us simulate any force
we like by calculating the resulting acceleration.

In this chapter we will extend our physics engine so it can cope with multiple
different forces acting at the same time. We will assume that gravity is one force,
although this can be removed or set to zero if required. We will also look at force
generators: code that can calculate forces based on the current state of the game world.

5.1 D’ALEMBERT’S PRINCIPLE

Although we have equations for the behavior of an object when a force is acting on
it, we haven’t considered what happens when more than one force is acting. Clearly
the behavior is going to be different than if either force acts alone: one force could
be acting in the opposite direction to another, or reinforcing it in parallel. We need a
mechanism to work out the overall behavior as a result of all forces.

D’Alembert’s principle comes to the rescue here. The principle itself is more com-
plex and far-reaching than we’ll need to consider here. It relates quantities in a dif-
ferent formulation of the equations of motion. But it has two important implications
that we’ll make use of in this book. The first applies here; the second will arise in
chapter 10.

69

70 Chapter 5 Adding General Forces

For particles D’Alembert’s principle implies that, if we have a set of forces acting
on an object, we can replace all those forces with a single force, which is calculated by

f =
∑

i

f i

In other words, we simply add the forces together using vector addition, and we apply
the single force that results.

To make use of this result, we use a vector as a force accumulator. In each frame
we zero the vector and add each applied force in turn using vector addition. The final
value will be the resultant force to apply to the object. We add a method to the particle
that is called at the end of each integration step to clear the accumulator of the forces
that have just been applied:

Excerpt from include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Holds the accumulated force to be applied at the next
* simulation iteration only. This value is zeroed at each
* integration step.
*/

Vector3 forceAccum;

/**
* Clears the forces applied to the particle. This will be
* called automatically after each integration step.
*/

void clearAccumulator();
};

Excerpt from src/particle.cpp

void Particle::integrate(real duration)
{

assert(duration > 0.0);

// Update linear position.
position.addScaledVector(velocity, duration);

// Work out the acceleration from the force.
Vector3 resultingAcc = acceleration;
resultingAcc.addScaledVector(forceAccum, inverseMass);

5.1 D’Alembert’s Principle 71

// Update linear velocity from the acceleration.
velocity.addScaledVector(resultingAcc, duration);

// Impose drag.
velocity *= real_pow(damping, duration);

// Clear the forces.
clearAccumulator();

}

void Particle::clearAccumulator()
{

forceAccum.clear();
}

We then add a method that can be called to add a new force into the accumulator:

Excerpt from include/cyclone/particle.h

class Particle
{

// ... Other Particle code as before ...

/**
* Adds the given force to the particle, to be applied at the
* next iteration only.
*
* @param force The force to apply.
*/
void addForce(const Vector3 &force);

};

Excerpt from src/particle.cpp

void Particle::addForce(const Vector3 &force)
{

forceAccum += force;
}

This accumulation stage needs to be completed just before the particle is integrated.
All the forces that apply need to have the chance to add themselves to the accumulator.

We can do this by manually adding code to our frame update loop that adds the
appropriate forces. This is appropriate for forces that will only occur for a few frames.
Most forces will apply to an object over an extended period of time.

72 Chapter 5 Adding General Forces

We can make it easier to manage these long-term forces by creating a registry.
A force registers itself with a particle and then will be asked to provide a force at each
frame. I call these “force generators.”

5.2 FORCE GENERATORS

We have a mechanism for applying multiple forces to an object. We now need to work
out where these forces come from. The force of gravity is fairly intuitive: it is always
present for all objects in the game.

Some forces arise because of the behavior of an object—a dedicated drag force,
for example. Other forces are a consequence of the environment that an object finds
itself in: a buoyancy force for a floating object and the blast force from an explosion
are examples. Still other types of force are a result of the way objects are connected to-
gether; we will look at forces that behave like springs in the next chapter. Finally there
are forces that exist because the player (or an AI-controlled character) has requested
them: the acceleration force in a car or the thrust from a jetpack, for example.

Another complication is the dynamic nature of some forces. The force of gravity
is easy because it is always constant. We can calculate it once and leave it set for the
rest of the game. Most other forces are constantly changing. Some change as a result
of the position or velocity of an object: drag is stronger at higher speeds, and a spring’s
force is greater the more it is compressed. Others change because of external factors:
an explosion dissipates, or a player’s jetpack burst will come to a sudden end when he
releases the thrust button.

We need to be able to deal with a range of different forces with very different
mechanics for their calculation. Some might be constant, others might apply some
function to the current properties of the object (such as position and velocity), some
might require user input, and others might be time based.

If we simply programmed all these types of force into the physics engine, and set
parameters to mix and match them for each object, the code would rapidly become
unmanageable. Ideally we would like to be able to abstract away the details of how a
force is calculated and allow the physics engine to simply work with forces in general.
This would allow us to apply any number of forces to an object, without the object
knowing the details of how those forces are calculated.

I will do this through a structure called a “force generator.” There can be as many
different types of force generator as there are types of force, but each object doesn’t
need to know how a generator works. The object simply uses a consistent interface to
find the force associated with each generator: these forces can then be accumulated
and applied in the integration step. This allows us to apply any number of forces, of
any type we choose, to the object. It also allows us to create new types of force for
new games or levels, as we need to, without having to rewrite any code in the physics
engine.

Not every physics engine has the concept of force generators: many require hand-
written code to add forces or else limit the possible forces to a handful of common

5.2 Force Generators 73

options. Having a general solution is more flexible and allows us to experiment more
quickly.

To implement this we will use an object-oriented design pattern called an “inter-
face.” Some languages, such as Java, have this built in as part of the language; in others
it can be approximated with a regular class. Before we look at the force generator code,
I will briefly review the concept of an interface, and its relative, polymorphism.

5.2.1 INTERFACES AND POLYMORPHISM

In programming, an interface is a specification of how one software component in-
teracts with others. In an object-oriented language it normally refers to a class: an
interface is a specification of the methods, constants, data types, and exceptions (i.e.,
errors) that a class will expose. The interface itself is not a class; it is a specification
that any number of classes can fulfill. When a class fulfills the specification, it is said
that it implements the interface (in fact, Java uses the explicit implements keyword to
denote a class that implements an interface).

What is powerful about interfaces is their use in polymorphism. Polymorphism is
the ability of a language to use some software component on the basis that it fulfills
some specification. For our purposes the components are classes and the specification
is an interface. If we write some code that needs to use another part of the system,
we can define an interface for the interaction and make the calling code use only
the elements in the interface. We can later change what the code is interacting with,
and as long as it implements the same interface, the calling code will never know the
difference.

This replaceability is key for our needs: we have an interface for a force generator,
and through polymorphism we don’t need to know what kind of force the force gen-
erator represents, as long as it implements the interface we need to extract the relevant
information. This is a helpful way to avoid having different parts of the program ex-
tremely reliant on the way other parts are implemented: we create an interface, and
as long as a class implements it, the calling code need know nothing more about it.

In C++ there is no dedicated interface structure in the language. Instead we use a
base class, with a selection of pure virtual functions. This ensures that we can’t create
an instance of the base class. Each class that derives from the base class then has to
implement all its methods before it can be instantiated.

5.2.2 IMPLEMENTATION

The force generator interface needs to provide only a current force. This can then be
accumulated and applied to the object. The interface we will use looks like this:

Excerpt from include/cyclone/pfgen.h

/**
* A force generator can be asked to add a force to one or more
* particles.

74 Chapter 5 Adding General Forces

*/
class ParticleForceGenerator
{
public:

/**
* Overload this in implementations of the interface to calculate
* and update the force applied to the given particle.
*/

virtual void updateForce(Particle *particle, real duration) = 0;
};

The updateForce method is passed for the duration of the frame for which the
force is needed and a pointer to the particle requesting the force. The duration of the
frame is needed for some force generators (we will meet a spring-force generator that
depends critically on this value in chapter 6).

We pass the pointer of the object into the function so that a force generator does
not need to keep track of an object itself. This also allows us to create force generators
that can be attached to several objects at the same time. As long as the generator
instance does not contain any data that is specific to a particular object, it can simply
use the object passed in to calculate the force. Both of the example force generators
described in sections 5.2.3 and 5.2.4 have this property.

The force generator does not return any value. We could have it return a force to
add to the force accumulator, but then force generators would have to return some
force (even if it were zero), and that would remove the flexibility we’ll use later in the
book when we support wholly different kinds of force. Instead, if a force generator
wants to apply a force, it can call the addForce method to the object it is passed.

As well as the interface for force generators, we need to be able to register which
force generators affect which particles. We could add this into each particle, with a
data structure such as a linked list or a growable array of generators. This would be
a valid approach, but it has performance implications: either each particle needs to
have lots of wasted storage (using a growable array) or new registrations will cause
lots of memory operations (creating elements in linked lists). For performance and
modularity I think it is better to decouple the design and have a central registry of
particles and force generators. The one I have provided looks like this:

Excerpt from include/cyclone/pfgen.h

#include <vector>

namespace cyclone {
/**
* Holds all the force generators and the particles they apply to.
*/

class ParticleForceRegistry

5.2 Force Generators 75

{
protected:

/**
* Keeps track of one force generator and the particle it
* applies to.
*/
struct ParticleForceRegistration
{

Particle *particle;
ParticleForceGenerator *fg;

};

/**
* Holds the list of registrations.
*/
typedef std::vector<ParticleForceRegistration> Registry;
Registry registrations;

public:
/**
* Registers the given force generator to apply to the
* given particle.
*/
void add(Particle* particle, ParticleForceGenerator *fg);

/**
* Removes the given registered pair from the registry.
* If the pair is not registered, this method will have
* no effect.
*/
void remove(Particle* particle, ParticleForceGenerator *fg);

/**
* Clears all registrations from the registry. This will
* not delete the particles or the force generators
* themselves, just the records of their connection.
*/
void clear();

/**
* Calls all the force generators to update the forces of
* their corresponding particles.
*/

76 Chapter 5 Adding General Forces

void updateForces(real duration);
};

}

I have used the C++ standard template library’s growable array, vector. The imple-
mentations of the first three methods are simple wrappers around corresponding
methods in the vector data structure.

At each frame, before the update is performed, the force generators are all called.
They will be adding forces to the accumulator which can be used later to calculate
each particle’s acceleration:

Excerpt from src/pfgen.cpp

#include <cyclone/pfgen.h>

using namespace cyclone;

void ParticleForceRegistry::updateForces(real duration)
{

Registry::iterator i = registrations.begin();
for (; i != registrations.end(); i++)
{

i->fg->updateForce(i->particle, duration);
}

}

5.2.3 A GRAVITY FORCE GENERATOR

We can replace our previous implementation of gravity by a force generator. Rather
than apply a constant acceleration at each frame, gravity is represented as a force
generator attached to each particle. The implementation looks like this:

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that applies a gravitational force. One instance
* can be used for multiple particles.
*/
class ParticleGravity : public ParticleForceGenerator
{

/** Holds the acceleration due to gravity. */
Vector3 gravity;

public:

/** Creates the generator with the given acceleration. */

5.2 Force Generators 77

ParticleGravity(const Vector3 &gravity);

/** Applies the gravitational force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleGravity::updateForce(Particle* particle, real duration)
{

// Check that we do not have infinite mass.
if (!particle->hasFiniteMass()) return;

// Apply the mass-scaled force to the particle.
particle->addForce(gravity * particle->getMass());

}

Notice that the force is calculated based on the mass of the object passed into the
updateForce method. The only piece of data stored by the class is the acceleration due
to gravity. One instance of this class could be shared among any number of objects.

5.2.4 A DRAG FORCE GENERATOR

We could also implement a force generator for drag. Drag is a force that acts on a
body and depends on its velocity. A full model of drag involves more complex math-
ematics that we can easily perform in real time. Typically in game applications we use
a simplified model of drag where the drag acting on a body is given by

fdrag = −̂̇p(
k1 |̂ṗ| + k2 |̂ṗ|2

)
[5.1]

where k1 and k2 are two constants that characterize how strong the drag force is. They
are usually called the “drag coefficients,” and they depend on both the object and the
type of drag being simulated.

The formula looks complex but is simple in practice. It says that the force acts in

the opposite direction to the velocity of the object (this is the −̂̇p part of the equation:
̂̇p is the normalized velocity of the particle), with a strength that depends on both the
speed of the object and the square of the speed.

Drag that has a k2 value will grow faster at higher speeds. This is the case with
the aerodynamic drag that keeps a car from accelerating indefinitely. At slow speeds
the car feels almost no drag from the air, but for every doubling of the speed the drag
almost quadruples. The implementation for the drag generator looks like this:

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that applies a drag force. One instance

78 Chapter 5 Adding General Forces

* can be used for multiple particles.
*/
class ParticleDrag : public ParticleForceGenerator
{

/** Holds the velocity drag coefficient. */
real k1;

/** Holds the velocity squared drag coefficient. */
real k2;

public:

/** Creates the generator with the given coefficients. */
ParticleDrag(real k1, real k2);

/** Applies the drag force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleDrag::updateForce(Particle* particle, real duration)
{

Vector3 force;
particle->getVelocity(&force);

// Calculate the total drag coefficient.
real dragCoeff = force.magnitude();
dragCoeff = k1 * dragCoeff + k2 * dragCoeff * dragCoeff;

// Calculate the final force and apply it.
force.normalize();
force *= -dragCoeff;
particle->addForce(force);

}

Once again the force is calculated based only on the properties of the object it is
passed. The only pieces of data stored by the class are the values for the two constants.
As before, one instance of this class could be shared among any number of objects
that have the same drag coefficients.

This drag model is considerably more complex than the simple damping we used
in chapter 3. It can be used to model the kind of drag that a golf ball experiences
in flight, for example. For the aerodynamics needed in a flight simulator, however, it
may not be sufficient; we will return to flight simulator aerodynamics in chapter 11.

5.3 Built-in Gravity and Damping 79

5.3 BUILT-IN GRAVITY AND DAMPING

Using the generators discussed earlier we can replace both the damping and the accel-
eration due to gravity with force generators. This is a valid approach and one used by
many different engines. It allows us to remove the special code that processes damp-
ing, and it means we don’t need to store an acceleration due to gravity with the object;
it can be calculated among all the other forces during transient force accumulation.

Although it has some advantages in simplicity, this is not the approach I will use.
Directly applying the damping and acceleration due to gravity, in the way we did in
chapter 3, is fast. If we have to calculate forces for them each time, we waste extra time
performing calculations for which we already know the answer.

To avoid this I keep damping and acceleration unchanged. If we need more com-
plex drag, we can set a damping value nearer to 1 and add a drag force generator.
Similarly, if we need some exotic form of gravity (for an orbiting space ship, for ex-
ample), we could create a gravity force generator that provides the correct behavior
and set the acceleration due to gravity to be 0.

5.4 SUMMARY

Forces are easily combined by adding their vectors together, and the total acts as if it
were the only force applied to an object. This is D’Alembert’s principle, and it allows
us to support any number of general forces without having to know anything about
how the forces are generated.

Throughout this book we’ll see various kinds of force generators that simulate
some kind of physical property by calculating a force to apply to an object. The code
we’ve created in this chapter allows us to manage those forces, combining them and
applying them before integrating.

Drag and gravity are important force generators, but they only replicate the func-
tionality we had in our particle physics engine. To move toward a mass-aggregate
physics engine we need to start linking particles together. Chapter 6 introduces
springs, and other springlike connections, using the force generator structure we’ve
built in this chapter.

This page intentionally left blank

6
SPRINGS AND

SPRINGLIKE

THINGS

ne of the most useful forces we can create for our engine is a spring force.
O Although springs have an obvious use in driving games (for simulating the
suspension of a car), they come into their own in representing soft or deformable
objects of many kinds. Springs and particles alone can produce a whole range of im-
pressive effects such as ropes, flags, cloth garments, and water ripples. Along with the
hard constraints we’ll cover in the next chapter, they can represent almost any kind of
object.

To extend our engine to support springs, this chapter will first cover the theory of
springs and then look at how they can be created for our engine. Finally we’ll look at
a major problem in the simulation of springs.

6.1 HOOK’S LAW

Hook’s law gives us the mathematics of springs. Hook discovered that the force ex-
erted by a string depends only on the distance the spring is extended or compressed
from its rest position. A spring extended twice as far will exert twice the force. The
formula is therefore

f = −k�l

81

82 Chapter 6 Springs and Springlike Things

where �l is the distance the spring is extended or compressed, and k is the “spring
constant,” a value that gives the stiffness of the spring. The force given in this equa-
tion is felt at both ends of the spring. In other words, if two objects are connected
by a spring, then they will each be attracted together by the same force, given by the
preceding equation.

Notice that we have used �l in the equation. This is because, at rest, with no forces
acting to extend or compress the spring, it will have some natural length. This is also
called the “rest length” and has the symbol l0. If the spring is currently at length l,
then the force generated by the spring is

f = −k(l − l0)

So far we have considered Hook’s law only in terms of a one-dimensional spring.
When it comes to three dimensions, we need to generate a force vector rather than a
scalar. The corresponding formula for the force is

f = −k
(|d| − l0

)̂
d [6.1]

where d is the vector from the end of the spring attached to the object we’re generating
a force for, to the other end of the spring. It is given by

d = xA − xB [6.2]

where xA is the position of the end of the spring attached to the object under consid-
eration, and xB is the position of the other end of the spring.

Equation 6.1 states that the force should be in the direction of the other end of
the spring (the d̂ component), with a magnitude given by the spring coefficient multi-
plied by the amount of extension of the spring—the −k(|d|− l0) part. The |d| element
is the magnitude of the distance between the ends of the spring, which is simply the
length of the spring, making −k(|d| − l0) just a different way of writing −k(l − l0).

Because equation 6.1 is defined in terms of one end of the spring only (the end
attached to the object we are currently considering), we can use it unmodified for the
other end of the spring, when we come to process the object attached there. Alterna-
tively, because the two ends of the spring always pull toward each other with the same
magnitude of force, we know that if the force on one end is f , then the force on the
other will be −f .

In the force generator described in this chapter we will calculate the force sepa-
rately for each object, and do not make use of this fact. A more optimized approach
might use the same force generator for both objects involved, and cache the force cal-
culation from one to save time recalculating it for the other. A force generator of this
kind is provided in the source code on the CD.

6.2 Springlike Force Generators 83

FIGURE 6.1 The game’s camera attached to a spring.

6.1.1 THE LIMIT OF ELASTICITY

Real springs only behave this way within a range of lengths: this range is called their
“limit of elasticity.” If you continue to extend a metal spring, eventually you will ex-
ceed its elasticity and it will deform. Similarly, if you compress a spring too much, its
coils will touch and further compression is impossible.

We could encode these limits into our force generator to produce a realistic model
of a spring. In the vast majority of cases, however, we don’t need this sophistication.
Players will see a spring doing its most springlike thing; they are unlikely to notice
whether it behaves correctly at its limits of elasticity. One exception to this is the
case of springs that cannot compress beyond a certain limit. This is the case with car
suspensions: they hit their “stop.” After being compressed to this point, they no longer
act like springs but rather like a collision between two objects. We will cover this kind
of hard constraint in the next chapter: it can’t be easily modeled using a spring.

6.1.2 SPRINGLIKE THINGS

It’s not only a coiled metal spring that can be simulated using equation 6.1: Hook’s law
applies to a huge range of natural phenomena. Anything that has an elastic property
will usually have some limit of elasticity in which Hook’s law applies.

The applications are limitless. We can implement elastic bungees as springs. We
could simulate the buoyancy of water in the same way, connecting the submerged
object to the nearest point on the surface with an invisible spring. Some developers
even use springs to control the camera as it follows a game character, by applying a
spring from the camera to a point just behind the character (see figure 6.1).

6.2 SPRINGLIKE FORCE GENERATORS

We will implement four force generators based on spring forces. Although each has
a slightly different way of calculating the current length of the spring, they all use
Hook’s law to calculate the resulting force.

This section illustrates a feature of many physics systems. The core processing
engine remains generic, but it is surrounded by helper classes and functions (in this

84 Chapter 6 Springs and Springlike Things

case the different types of spring force generators) that are often quite similar to one
another. In the remainder of this book I will avoid going through similar variations
in detail; you can find several suites of similar classes in the source code on the CD.
This first time, however, it is worth looking at some variations in detail.

6.2.1 A BASIC SPRING GENERATOR

The basic spring generator simply calculates the length of the spring using equa-
tion 6.2, and then uses Hook’s law to calculate the force. It can be implemented like
this:

Excerpt from include/cyclone/precision.h

/** Defines the precision of the absolute magnitude operator. */
#define real_abs fabsf

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that applies a spring force.
*/
class ParticleSpring : public ParticleForceGenerator
{

/** The particle at the other end of the spring. */
Particle *other;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restLength;

public:

/** Creates a new spring with the given parameters. */
ParticleSpring(Particle *other,

real springConstant, real restLength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleSpring::updateForce(Particle* particle, real duration)
{

// Calculate the vector of the spring.
Vector3 force;

6.2 Springlike Force Generators 85

particle->getPosition(&force);
force -= other->getPosition();

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = real_abs(magnitude - restLength);
magnitude *= springConstant;

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
particle->addForce(force);

}

The generator is created with three parameters. The first is a pointer to the object
at the other end of the spring, the second is the spring constant, and the third is the
rest length of the spring. We can create and add the generator using this code:

Particle a, b;
ParticleForceRegistry registry;

ParticleSpring ps(&b, 1.0f, 2.0f);
registry.add(&a, ps);

Because it contains data that depends on the spring, one instance cannot be used for
multiple objects, in the way that the force generators from chapter 5 were. Instead we
need to create a new generator for each object.1

Notice also that the force generator (like the others we have met) creates a force
for only one object. If we want to link two objects with a spring, then we’ll need to
create and register a generator for each.

Particle a, b;
ParticleForceRegistry registry;

ParticleSpring psA(&b, 1.0f, 2.0f);
registry.add(&a, psA);

1. Strictly speaking, we can reuse the force generator. If we have a set of springs, all connected to the same
object and having the same values for rest length and spring constant, we can use one generator for all of
them. Rather than try to anticipate these situations in practice, it is simpler to assume that instances cannot
be reused.

86 Chapter 6 Springs and Springlike Things

FIGURE 6.2 A rope-bridge held up by springs.

ParticleSpring psB(&a, 1.0f, 2.0f);
registry.add(&b, psB);

6.2.2 AN ANCHORED SPRING GENERATOR

In many cases we don’t want to link two objects together with a spring; rather we
want one end of the spring to be at a fixed point in space. This might be the case for
the supporting cables on a springy rope-bridge, for example. One end of the spring is
attached to the bridge, the other is fixed in space; see figure 6.2 for an example of this.

In this case the form of the spring generator we created earlier will not work. We
can modify it so the generator expects a fixed location rather than an object to link
to. The force generator code is also modified to use the location directly rather than
looking it up in an object. The anchored force generator implementation looks like
this:

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that applies a spring force, where
* one end is attached to a fixed point in space.
*/
class ParticleAnchoredSpring : public ParticleForceGenerator
{

/** The location of the anchored end of the spring. */
Vector3 *anchor;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */

6.2 Springlike Force Generators 87

real restLength;

public:

/** Creates a new spring with the given parameters. */
ParticleAnchoredSpring(Vector3 *anchor,

real springConstant, real restLength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleAnchoredSpring::updateForce(Particle* particle,
real duration)

{
// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);
force -= *anchor;

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = real_abs(magnitude - restLength);
magnitude *= springConstant;

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
particle->addForce(force);

}

If we wanted to connect the game’s camera to the player’s character, this is an
approach we would use. Instead of an anchor point that never moves, however, we
would recalculate and reset the anchor point at each frame based on the position
of the character. The previous implementation needs no modification (other than a
setAnchor method to give the new value); we would just need to perform the update
of the anchor point somewhere in the game loop.

6.2.3 AN ELASTIC BUNGEE GENERATOR

An elastic bungee only produces pulling forces. You can scrunch it into a tight ball
and it will not push back out, but it behaves like any other spring when extended.
This is useful for keeping a pair of objects together: they will be pulled together if
they stray too far, but they can get as close as they like without being separated.

88 Chapter 6 Springs and Springlike Things

The generator can be implemented like this:

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that applies a spring force only
* when extended.
*/
class ParticleBungee : public ParticleForceGenerator
{

/** The particle at the other end of the spring. */
Particle *other;

/** Holds the spring constant. */
real springConstant;

/**
* Holds the length of the bungee at the point it begins to
* generate a force.
*/

real restLength;

public:

/** Creates a new bungee with the given parameters. */
ParticleBungee(Particle *other,

real springConstant, real restLength);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleBungee::updateForce(Particle* particle, real duration)
{

// Calculate the vector of the spring.
Vector3 force;
particle->getPosition(&force);
force -= other->getPosition();

// Check if the bungee is compressed.
real magnitude = force.magnitude();
if (magnitude <= restLength) return;

// Calculate the magnitude of the force.

6.2 Springlike Force Generators 89

magnitude = springConstant * (restLength - magnitude);

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
particle->addForce(force);

}

I have added a factory function to this class as well to allow us to easily connect two
objects with a bungee.

This implementation assumes that the elastic connects to two objects. In exactly
the same way as for the simple spring generator, we could create a version of the code
that connects an object to a fixed anchor point in space. The modifications we would
need are exactly the same as we saw earlier, so I will not write them out in longhand
again. There is a sample implementation of an anchored bungee generator on the CD.

6.2.4 A BUOYANCY FORCE GENERATOR

A buoyancy force is what keeps an object afloat. Archimedes first worked out that the
buoyancy force is equal to the weight of the water that an object displaces.

The first part of figure 6.3 shows a block submerged in the water. The block has a
mass of 0.5 kg. Pure water has a density of 1000 kg/m3; in other words, a cubic meter
of water has a mass of about one metric ton. The block in the figure has a volume of
0.001 m3, so it is displacing the same amount of water. The mass of this water would
therefore be 1 kg.

Weight isn’t the same as mass in physics. Mass is the property of an object that
makes it resist acceleration. The mass of an object will always be the same. Weight is
the force that gravity exerts on an object. As we have already seen, force is given by
the equation

f = mg

FIGURE 6.3 A buoyant block submerged and partially submerged.

90 Chapter 6 Springs and Springlike Things

where f is the weight, m is the mass, and g is the acceleration due to gravity. This
means that on different planets, the same object will have different weights (but the
same mass) because g changes.

On earth, we assume g = 10 m/s2, so an object with a weight of 1 kg will have a
weight of 1 × 10 = 10 kN. The kN unit is a unit of weight: kilograms, kg, are not a
unit of weight, despite what your bathroom scales might say! This causes scientists
who work on space prejects various problems: because g is different, they can no
longer convert English units such as pounds to kilograms using the conversion factors
found in science reference books. Pounds are a measure of weight, and kilograms are
a measure of mass.

So, back to buoyancy. Our block in the first part of figure 6.3 has a buoyancy force
of 10 kN. In the second part of the figure only half is submerged, so using the same
calculations, it has a buoyancy force of 5 kN.

Although we don’t need to use it for our force generator, it is instructive to look
at the weight of the object too. In both cases the weight of the block is the same:
5 kN (a mass of 0.5 kg multiplied by the same value of g). So in the first part of
the figure, the buoyancy force will push the block upward; in the second part of the
figure the weight is exactly the same as the buoyancy, so the object will stay at the
same position—floating.

Calculating the exact buoyancy force for an object involves knowing exactly how
it is shaped because the shape affects the volume of water displaced, which is used to
calculate the force. Unless you are designing a physics engine specifically to model the
behavior of different-shaped boat hulls, it is unlikely that you will need this level of
detail.

Instead we can use a springlike calculation as an approximation. When the object
is near to the surface, we use a spring force to give it buoyancy. The force is pro-
portional to the depth of the object, just as the spring force is proportional to the
extension or compression of the spring. As we saw in figure 6.3, this will be accurate
for a rectangular block that is not completely submerged. For any other object it will
be slightly inaccurate, but not enough to be noticeable.

When the block is completely submerged, it behaves in a slightly different way.
Pushing it deeper into the water will not displace any more water, so as long as we
assume water has the same density, the force will be the same. The point-masses we
are dealing with in this part of the book have no size, so we can’t tell how big they
are to determine whether they are fully submerged. We can simply use a fixed depth
instead: when we create the buoyancy force, we give a depth at which the object is
considered to be fully submerged. At this point the buoyancy force will not increase
for deeper submersion.

By contrast, when the object is lifted out of the water, some part of it will still be
submerged until it reaches its maximum submersion depth above the surface. At this
point the last part of the object will have left the water. In this case there will be no
buoyancy force at all, no matter how high we lift the object: it simply is displacing no
more water.

6.2 Springlike Force Generators 91

The formula for the force calculation is therefore

f =

⎧⎪⎨
⎪⎩

0 when d � 0

vρ when d � 1

dvρ otherwise

where s is the submersion depth (the depth at which the object is completely sub-
merged), ρ is the density of the liquid, v is the volume of the object, and d is the
amount of the object submerged, given as a proportion of its maximum submersion
depth (i.e., when it is fully submerged, d � 1, and when it is fully out of the water,
d � 0):

d = yo − yw − s

2s

where yo is the y coordinate of the object and yw is the y coordinate of the liquid plane
(assuming it is parallel to the XZ plane). This can be implemented like this:

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that applies a buoyancy force for a plane of
* liquid parallel to XZ plane.
*/
class ParticleBuoyancy : public ParticleForceGenerator
{

/**
* The maximum submersion depth of the object before
* it generates its maximum buoyancy force.
*/
real maxDepth;

/**
* The volume of the object.
*/
real volume;

/**
* The height of the water plane above y=0. The plane will be
* parallel to the XZ plane.
*/
real waterHeight;

/**
* The density of the liquid. Pure water has a density of
* 1000 kg per cubic meter.
*/

92 Chapter 6 Springs and Springlike Things

real liquidDensity;

public:

/** Creates a new buoyancy force with the given parameters. */
ParticleBuoyancy(real maxDepth, real volume, real waterHeight,

real liquidDensity = 1000.0f);

/** Applies the buoyancy force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleBuoyancy::updateForce(Particle* particle, real duration)
{

// Calculate the submersion depth.
real depth = particle->getPosition().y;

// Check if we’re out of the water.
if (depth >= waterHeight + maxDepth) return;
Vector3 force(0,0,0);

// Check if we’re at maximum depth.
if (depth <= waterHeight - maxDepth)
{

force.y = liquidDensity * volume;
particle->addForce(force);
return;

}

// Otherwise we are partly submerged.
force.y = liquidDensity * volume *

(depth - maxDepth - waterHeight) / 2 * maxDepth;
particle->addForce(force);

}

In this code I have assumed that the buoyancy is acting in the up direction. I have
used only the y component of the object’s position to calculate the length of the spring
for Hook’s law. The generator takes four parameters: the maximum depth parameter,
as discussed earlier; the volume of the object; the height of the surface of the water;
and the density of the liquid in which it is floating. If no density parameter is given,
then water, with a density of 1000 kg/m3, is assumed (ocean water has a density of
around 1020 to 1030 kg/m3 up to 1250 kg/m3 for the Dead Sea).

6.3 Stiff Springs 93

This generator applies to only one object because it contains the data for the ob-
ject’s size and volume. One instance could be given to multiple objects with the same
size and volume, floating in the same liquid, but it is probably best to create a new
instance per object to avoid confusion.

6.3 STIFF SPRINGS

In real life almost everything acts as a spring. If a rock falls onto the ground, the
ground gives a little, like a very stiff spring. With a model of spring behavior we could
simulate anything. Collisions between objects could be modeled in a similar way to
the buoyancy force: the objects would be allowed to pass into one another (called
“interpenetration”), and a spring force would push them back out again.

With the correct spring parameters for each object, this method would give us
perfect collisions. It is called the “penalty” method and has been used in many physics
simulators, including several used in games.

If life were so simple, however, this book could be two hundred pages shorter.
In fact, to avoid having everything in a game look really spongy as things bounce
around on soggy springs, we have to increase the spring constant so that it is very
high. If you try to do that, and run the engine, you will see everything go haywire:
objects will almost instantly disappear off to infinity, and your program may even
crash with numerical errors. This is the problem of stiff springs, and it makes penalty
methods almost useless for our needs.

6.3.1 THE PROBLEM OF STIFF SPRINGS

To understand why stiff springs cause problems we need to break down the behavior
of a spring into short time steps. Figure 6.4 shows a spring’s behavior over several time
steps. In the first step, the spring is extended, and we calculate the force at that point.

The force is applied to the end of the spring using the update function from chap-
ter 3:

ṗ′ = ṗ + p̈t

FIGURE 6.4 A non-stiff spring over time.

94 Chapter 6 Springs and Springlike Things

In other words, the force is converted into an acceleration: the acceleration of the end
of the spring at that instant of time. This acceleration is then applied to the object for
the whole time interval. This would be accurate if the object didn’t move—that is, if
the spring were held at a constant extension over the whole time period.

In the real world, as soon the spring has moved a bit, a tiny fraction of the time
interval later, the force will have decreased slightly. So applying the same force for the
whole time interval means we have applied too much force. In figure 6.4 we see that
this doesn’t matter very much. Even though the force is too great, the end doesn’t
move far before the next time frame, and then a lower force is applied for the next
time frame, and so on. The overall effect is that the spring behaves normally, but it is
slightly stiffer than the spring constant we specified.

Figure 6.5 shows the same problem but with a much stiffer spring. Now the force
in the first frame is enough to carry the end of the spring past the rest length and to
compress the spring. In reality the movement of the spring wouldn’t do this: it would
begin to move inward, having had a huge instantaneous force applied, but this force
would drop rapidly as the end moved in.

The figure shows the spring has compressed more than it was extended originally.
In the next time frame it moves in the opposite direction but has an even greater force
applied, so it overshoots and is extended even farther. In each time frame the spring
will oscillate with ever growing forces, until the end of the spring ends up at infinity.
Clearly this is not accurate.

The longer the time frame we use the more likely this is to happen. If your game
uses springs and variable frame-rates, you need to take care that your spring constants
aren’t too large when used on a very slow machine. If a player switches all the graphics
options on, and slows her machine down to ten frames per second (or slower), you
don’t want all your physics to explode!

FIGURE 6.5 A stiff spring over time.

6.3 Stiff Springs 95

We can solve this problem to some extent by forcing small time periods for the
update, or we could use several smaller updates for each frame we render. Neither
approach buys us much, however. The kinds of spring stiffness needed to simulate
realistic collisions just aren’t possible in the framework we have built so far.

Instead we will have to use alternative methods to simulate collisions and other
hard constraints.

6.3.2 FAKING STIFF SPRINGS

This section will implement a more advanced spring force generator which uses a
different method of calculating spring forces to help with stiff springs. It provides a
“cheat” for making stiff springs work. In the remaining chapters of this book we will
look at more robust techniques for simulating constraints, collisions, and contacts.

You can safely skip this section: the mathematics are not explored in detail; there
are restrictions on where we can use fake stiff springs, and the formulation is not
always guaranteed to work. In particular, while they can fake the effect reasonably on
their own, when more than one is combined, or when a series of objects is connected
to them, the physical inaccuracies in the calculation can interact nastily and cause
serious problems. In the right situation, however, they can be a useful addition to
your library of force generators.

We can solve this problem to some extent by predicting how the force will change
over the time interval, and use that to generate an average force. This is sometimes
called an “implicit spring,” and a physics engine that can deal with varying forces in
this way is implicit, or semi-implicit. For reasons we’ll see at the end of the chapter, we
can’t do anything more than fake the correct behavior, so I have called this approach
“fake implicit force generation.”

In order to work out the force equation, we need to understand how a spring will
act if left to its own devices.

Harmonic Motion

A spring that had no friction or drag would oscillate forever. If we stretched such
a spring to a particular extension and then released it, its ends would accelerate to-
gether. It would pass its natural length and begin to compress. When its ends were
compressed to exactly the same degree as they were extended initially, it would begin
to accelerate apart. This would continue forever. This kind of motion is well known
to physicists; it is called “simple harmonic motion.” The position of one end of the
spring obeys the equation

p̈ = −χ2p [6.3]

where k is the spring constant, m is the mass of the object, and χ is defined, for
convenience in the following equations, to be

χ =
√

k

m

96 Chapter 6 Springs and Springlike Things

This kind of equation is called a “differential equation.” It links the different dif-
ferentials together, sometimes with the original quantity: in this case the second dif-
ferential p̈ and the original p. Differential equations can sometimes be solved to give
an expression for just the original quantity. In our case the equation can be solved to
give us an expression that links the position with the current time.2 The expression is
solved to give

pt = p0 cos(χ t) + ṗ0

χ
sin(χ t) [6.4]

where p0 is the position of the end of the spring relative to the natural length at the
start of the prediction, and ṗ0 is the velocity at the same time.

We can substitute into equation 6.4 the time interval we are interested in (i.e., the
duration of the current frame), and work out where the spring would end up if it
were left to do its own thing. We can then create a force that is just big enough to get
it to the correct location over the duration of the frame. If the final location needs to
be pt , then the force to get it there would be

f = mp̈

and the acceleration p̈ is given by

p̈ = (pt − p0)
1

t2
− ṗ0 [6.5]

Note that, although this gets the particle to the correct place, it doesn’t get it there
with the correct speed. We’ll return to the problems caused by this failing at the end
of the section.

Damped Harmonic Motion

A real spring experiences drag as well as spring forces. The spring will not continue
to oscillate forever to the same point. Its maximum extension will get less each time,
until eventually it settles at the rest length. This gradual decrease is caused by the drag
that the spring experiences.

When we run our physics engine normally, the drag will be incorporated in the
damping parameter. When we predict the behavior of the spring using the previous
formula this does not happen.

2. Not all differential equations have a simple solution, although most simple equations of the preceding
kind do. Solving differential equations can involve applying a whole range of different techniques and is
beyond the scope of this book. When necessary I will provide the answers needed for the physics simulator.
If you want to understand more about how I get these answers, you can refer to any undergraduate-level
calculus text for more details.

6.3 Stiff Springs 97

We can include the damping in the equations to give a damped harmonic oscilla-
tor. The differential equation 6.3 becomes

p̈ = −kp − dṗ

where k is the spring constant (no need for χ in this case) and d is a drag coefficient
(it matches the k1 coefficient from equation 5.1 in the previous chapter). This equa-
tion doesn’t allow for drag that is proportional to the velocity squared—that is, the k2

value from equation 5.1. If we added this, the mathematics would become consider-
ably more complex for little visible improvement (remember, we’re faking this in any
case). So we stick with the simplest kind of drag.

Solving the differential equation gives an expression for the position at any time
in the future:

pt = [
p0 cos(γ t) + c sin(γ t)

]
e− 1

2 dt

where γ is a constant given by

γ = 1

2

√
4k − d2

and c is a constant given by

c = d

2γ
p0 + 1

γ
ṗ0

Substituting the time interval for t in these equations, as before, we can get a value
for pt , and calculate the acceleration required using equation 6.5, as we did for regular
harmonic motion.

Implementation

The code to implement a fake implicit spring force generator looks like this:

Excerpt from include/cyclone/precision.h

/** Defines the precision of the sine operator. */
#define real_sin sinf

/** Defines the precision of the cosine operator. */
#define real_cos cosf

/** Defines the precision of the exponent operator. */
#define real_exp expf

Excerpt from include/cyclone/pfgen.h

/**
* A force generator that fakes a stiff spring force, and where
* one end is attached to a fixed point in space.

98 Chapter 6 Springs and Springlike Things

*/
class ParticleFakeSpring : public ParticleForceGenerator
{

/** The location of the anchored end of the spring. */
Vector3 *anchor;

/** Holds the spring constant. */
real springConstant;

/** Holds the damping on the oscillation of the spring. */
real damping;

public:

/** Creates a new spring with the given parameters. */
ParticleFakeSpring(Vector3 *anchor, real springConstant,

real damping);

/** Applies the spring force to the given particle. */
virtual void updateForce(Particle *particle, real duration);

};

Excerpt from src/pfgen.cpp

void ParticleFakeSpring::updateForce(Particle* particle, real duration)
{

// Check that we do not have infinite mass.
if (!particle->hasFiniteMass()) return;

// Calculate the relative position of the particle to the anchor.
Vector3 position;
particle->getPosition(&position);
position -= *anchor;

// Calculate the constants and check whether they are in bounds.
real gamma = 0.5f * real_sqrt(4 * springConstant - damping*damping);
if (gamma == 0.0f) return;
Vector3 c = position * (damping / (2.0f * gamma)) +

particle->getVelocity() * (1.0f / gamma);

// Calculate the target position.
Vector3 target = position * real_cos(gamma * duration) +

c * real_sin(gamma * duration);
target *= real_exp(-0.5f * duration * damping);

6.3 Stiff Springs 99

// Calculate the resulting acceleration and therefore the force
Vector3 accel = (target - position) * (1.0f / duration*duration) -

particle->getVelocity() * duration;
particle->addForce(accel * particle->getMass());

}

The force generator looks like the anchored regular spring generator we created ear-
lier in the chapter, with one critical difference: it no longer has a natural spring length.
This, and the fact that we have used an anchored generator rather than a spring ca-
pable of attaching two objects, is a result of some of the mathematics used here. The
consequence is that we must always have a rest length of zero.

Zero Rest Lengths

If a spring has a zero rest length, then any displacement of one end of the spring results
in extension of the spring. If we fix one end of the spring, then there will always be a
force in the direction of the anchored end.

For a spring where both ends of the spring are allowed to move, the direction of
the force is much more difficult to determine. The previous formulae assume that the
force can be expressed in terms of the location of the object only. If we didn’t anchor
the spring, then we would have to include the motion of the other end of the spring
in the equation, which would make it insoluble.

A similar problem occurs if we anchor one end but use a non-zero rest length. In
one dimension a non-zero rest length is equivalent to moving the equilibrium point
along a bit, as shown in figure 6.6. The same is true in three dimensions, but because
the spring is allowed to swivel freely, this equilibrium point is now in motion with the
same problems as for a non-anchored spring.

So the equations only work well for keeping an object at a predetermined, fixed
location. Just as for the previous anchored springs, we can move this location manu-
ally from frame to frame, as long as we don’t expect the force generator to cope with
the motion in its prediction.

FIGURE 6.6 The rest length and the equilibrium position.

100 Chapter 6 Springs and Springlike Things

Velocity Mismatches

So far we have talked only about position. Equation 6.5 calculates the force needed
to get the object to its predicted position. Unfortunately it will not get there with
an accurate velocity (although it will often be close). Could this equation end up
increasing the velocity of the object each time, getting faster and faster and exploding
out to infinity?

For damped harmonic motion, when the anchor point is not in motion, the veloc-
ity resulting from performing this kind of prediction will never mount up to achieve
this. The mathematics involved in demonstrating this is complex, so I’ll leave it as an
exercise for the skeptical.

Even though we won’t get exploding velocities, the mismatch between the result-
ing velocity and the correct velocity causes the spring to behave with an inconsistent
spring constant. Sometimes it will be stiffer than we specified, sometimes it will be
looser. In most cases it is not noticeable, but it is an inescapable consequence of fak-
ing the force in the way we have done.

Interacting with Other Forces

Another major limitation of the faked spring generator is the way it interacts with
other forces.

The previous equations assume that the object is moving freely, not under the
influence of any other forces. The spring force will decrease over the course of the
time interval, because the spring is moving toward its rest length. If we have another
force that is keeping the spring extended or compressed at a constant length, then the
force will be constant, and the original force generator will give a perfect result, no
matter what the spring constant is.

We could theoretically incorporate all the other forces into the prediction for the
spring generator, and then it would return exactly the correct force. Unfortunately, to
correctly work out the force, we’d need to know the behavior of all the objects being
simulated. Simulating the behavior of all the objects is, of course, the whole purpose
of the physics engine. So the only way we could get this to work is to put a full physics
engine in the force calculations. This is not practical (in fact, strictly speaking it is
impossible because in that engine we’d need another one, and so on ad infinitum).

For springs that are intended to be kept extended (such as the springs holding up
our rope-bridge earlier in the chapter), faked spring forces will be too small, often
considerably too small. In practice it is best to try to find a blend of techniques to get
the effect you want, using different spring force generators for different objects in the
game.

I have used this faked force generator successfully to model the spring in a char-
acter’s hair (and other wobbly body parts). The rest position is given by the original
position of a hair-vertex in the 3D model, and the spring force attracts the actual
drawn vertex to this rest position. As the character moves, her hair bobs naturally.
This method is ideally suited to the problem because the vertices don’t have any other
forces on them (a natural “flop” caused by gravity is incorporated by the artist in

6.4 Summary 101

the model design), and they need to have very high spring coefficients to avoid look-
ing too bouncy. The hairbounce demo on the CD gives a simple example of this in
action.

6.4 SUMMARY

A surprising number of physical effects can be modeled using Hook’s law. Some ef-
fects, such as buoyancy, have such similar properties to a spring that they are most
simply supported using the same code.

We’ve built a set of force generators that can be used alongside the remainder of
the book to model anything that should appear elastic or buoyant. But we’ve also seen
the start of a problem that motivates the whole of the rest of the book: springs with
high spring constants (i.e., those that have a fast and strong bounce) are difficult to
simulate on a frame-by-frame basis. When the action of the spring is faster than the
time between simulated frames, then the spring can get unruly and out of control.

If it weren’t for this problem, we could simulate almost anything using springlike
forces. All collisions, for example, could be easily handled. Even though we were able
to fake stiff springs in some cases, the solution wasn’t robust enough to cope with
stiff springs in the general case, so we need to find alternative approaches (involving
significantly more complex code) to handle the very fast bounce of a collision. Chap-
ter 7 looks at this: building a set of special-case code for handling collisions and hard
constraints such as rods and inelastic cables.

This page intentionally left blank

7
HARD CONSTRAINTS

n the last chapter we looked at springs both as a force generator and as one way of
I having multiple objects affect one another. This is the first time we’ve had objects
that move based on the motion of other objects.

While springs can be used to represent many situations, they can behave badly.
When we want objects to be tightly coupled together, the spring constant we need
is practically impossible to simulate. For situations where objects are linked by stiff
rods, or kept apart by hard surfaces, springs are not a viable option.

In this chapter I’ll talk about hard constraints. Initially we’ll look at the most com-
mon hard constraint—collisions and contact between objects. The same mathematics
can be used for other kinds of hard constraints, such as rods or unstretchable cables,
that can be used to connect objects together.

To cope with hard constraints in our physics engine we’ll need to leave the com-
fortable world of force generators. All the engines we’re building in this book treat
hard constraints different from force generators. At the end of the book, in chap-
ter 18, we’ll look briefly at alternative approaches that unify them all into one again.

7.1 SIMPLE COLLISION RESOLUTION

To cope with hard constraints we’ll add a collision resolution system to our engine.
For the sake of this part of the book, a “collision” refers to any situation in which
two objects are touching. In normal English we think about collisions being violent
processes where two objects meet with some significant closing velocity. For our pur-
poses this is also true, but two objects that just happen to be touching can be thought
of as being in a collision with no closing velocity. The same process we use to resolve

103

104 Chapter 7 Hard Constraints

high-speed collisions will be used to resolve resting contact. This is a significant as-
sumption that needs justifying, and I’ll return to it later in the chapter and at various
points further into the book. To avoid changing terminology later, I’ll use the terms
collision and contact interchangeably during this chapter.

When two objects collide, their movement after the collision can be calculated
from their movement before the collision: this is collision resolution. We resolve the
collision by making sure the two objects have the correct motion that would result
from the collision. Because collision happens in such a small instant of time (for most
objects we can’t see the process of collision happening; it appears to be instant), we
go in and directly manipulate the motion of each object.

7.1.1 THE CLOSING VELOCITY

The laws governing the motion of colliding bodies depend on their closing velocity.
The closing velocity is the total speed at which the two objects are moving together.

Note also that this is a closing velocity, rather than a speed, even though it is a
scalar quantity. Speeds have no direction; they can only have positive (or zero) values.
Velocities can have direction. If we have vectors as velocities, then the direction is the
direction of the vector; but if we have a scalar value, then the direction is given by
the sign of the value. Two objects that are moving apart from each other will have a
closing velocity that is less than zero, for example.

We calculate the closing velocity of two objects by finding the component of their
velocity in the direction from one object to another:

vc = ṗa · (p̂b − pa) + ṗb · (p̂a − pb)

where vc is the closing velocity (a scalar quantity), pa and pb are the positions of
objects a and b, the dot (˙) is the scalar product, and p̂ is the unit-length vector in the
same direction as p. This can be simplified to give

vc = −(ṗa − ṗb) · (p̂a − pb) [7.1]

Although it is just a convention, it is more common to change the sign of this
quantity. Rather than a closing velocity, we have a separating velocity. The closing
velocity is the velocity of one object relative to another, in the direction between the
two objects.

In this case two objects that are closing in on each other will have a negative rela-
tive velocity, and objects that are separating will have a positive velocity. Mathemati-
cally this is simply a matter of changing the sign of equation 7.1 to give

vs = (ṗa − ṗb) · (p̂a − pb) [7.2]

where vs is the separating velocity, which is the format we’ll use in the rest of this book.
You can stick with closing velocities if you like: it is simply a matter of preference,
although you’ll have to flip the sign of various quantities in the engine to compensate.

7.1 Simple Collision Resolution 105

7.1.2 THE COEFFICIENT OF RESTITUTION

As we saw in the last chapter, when two objects collide, they compress together, and
the springlike deformation of their surfaces causes forces to build up that bring the
objects apart. This all happens in a very short space of time (too fast for us to simulate
frame by frame, although long enough to be captured on very high-speed film). Even-
tually the two objects will no longer have any closing velocity. Although this behavior
is springlike, in reality there is more going on.

All kinds of things can be happening during this compression, and the peculiari-
ties of the materials involved can cause very complicated interactions to take place. In
reality the behavior does not conform to that of a damped spring, and we can’t hope
to capture the subtleties of the real process.

In particular the spring model assumes that momentum is conserved during the
collision:

maṗa + mbṗb = maṗ′
a + mbṗ′

b [7.3]

where ma is the mass of object a, ṗa is the velocity of object a before the collision, and
ṗ′

a is the velocity after the collision.
Fortunately the vast majority of collisions behave almost like the springlike ideal.

We can produce perfectly believable behavior by assuming the conservation of mo-
mentum, and we will use equation 7.3 to model our collisions.

Equation 7.3 tells us about the total velocity before and after the collision, but it
doesn’t tell us about the individual velocities of each object. The individual velocities
are linked together using the closing velocity, according to the equation

v′
s = −cvs

where v′
s is the separating velocity after the collision, vs is the separating velocity be-

fore the collision, and c is a constant called the “coefficient of restitution.”
The coefficient of restitution controls the speed at which the objects will separate

after colliding. It depends on the materials in collision. Different pairs of material
will have different coefficients. Some objects such as billiard balls or a tennis ball on a
racket bounce apart. Other objects stick together when they collide—a snowball and
someone’s face.

If the coefficient is 1, then the objects will bounce apart with the same speed
as when they were closing. If the coefficient is 0, then the objects will coalesce and
travel together (i.e., their separating velocity will be 0). Regardless of the coefficient
of restitution, equation 7.3 will still hold: the total momentum will be the same.

Using the two equations, we can get values for ṗ′
a and ṗ′

b.

7.1.3 THE COLLISION DIRECTION AND THE CONTACT NORMAL

So far we’ve talked in terms of collisions between two objects. Often we also want to
be able to support collisions between an object and something we’re not physically

106 Chapter 7 Hard Constraints

simulating. This might be the ground, the walls of a level, or any other immovable
object. We could represent these as objects of infinite mass, but it would be a waste of
time: by definition they never move.

If we have a collision between one object and some piece of immovable scenery,
then we can’t calculate the separating velocity in terms of the vector between the loca-
tion of each object: we only have one object. In other words we can’t use the (p̂a − pb)

term in equation 7.2; we need to replace it.
The (p̂a − pb) term gives us the direction in which the separating velocity is occur-

ring. The separating velocity is calculated by the dot product of the relative velocity
of the two objects and this term. If we don’t have two objects, we can ask that the
direction be given to us explicitly. It is the direction in which the two objects are col-
liding and is usually called the “collision normal” or “contact normal.” Because it is a
direction, the vector should always have a magnitude of 1.

In cases where we have two particles colliding, the contact normal will always be
given by

n̂ = (p̂a − pb)

By convention we always give the contact normal from object a’s perspective. In this
case, from a’s perspective, the contact is incoming from b, so we use pa − pb. To give
the direction of collision from b’s point of view we could simply multiply by −1. In
practice we don’t do this explicitly, but factor this inversion into the code used to
calculate the separating velocity for b. You’ll notice this in the code we implement
later in the chapter: a minus sign appears in b’s calculations.

When a particle is colliding with the ground, we only have an object a (the parti-
cle) and no object b. In this case from object a’s perspective, the contact normal will
be

n̂ =
⎡
⎢⎣

0

1

0

⎤
⎥⎦

assuming that the ground is level at the point of collision.
When we leave particles and begin to work with full rigid bodies, having an ex-

plicit contact normal becomes crucial even for inter-object collisions. Without pre-
empting later chapters, figure 7.1 gives a taste of the situation we might come across.
Here the two colliding objects, by virtue of their shapes, have a contact normal in
almost exactly the opposite direction from that we’d expect if we simply considered
their locations. The objects arch over each other, and the contact is acting to prevent
them from moving apart rather than keeping them together. At the end of this chap-
ter we’ll look at similar situations for particles, which can be used to represent rods
and other stiff connections.

With the correct contact normal, equation 7.2 becomes

vs = (ṗa − ṗb) · n̂ [7.4]

7.1 Simple Collision Resolution 107

FIGURE 7.1 Contact normal is different from the vector between objects in contact.

7.1.4 IMPULSES

The change we must make to resolve a collision is a change in velocity only. So far
in the physics engine we’ve only made changes to velocity using acceleration. If the
acceleration is applied for a long time, there will be a larger change in velocity. Here
the changes are instant: the velocities immediately take on new values.

Recall that applying a force changes the acceleration of an object. If we instantly
change the force, the acceleration instantly changes too. We can think of acting on
an object to change its velocity in a similar way. Rather than a force, this is called an
“impulse”: an instantaneous change in velocity. In the same way that we have

f = mp̈

for forces, we have

g = mṗ [7.5]

for impulses, g . Impulses are often written with the letter p; I will use g to avoid
confusion with the position of the object p.

There is a major difference, however, between force and impulse. An object has
no acceleration unless it is being acted on by a force: we can work out the total accel-
eration by combining all the forces using D’Alembert’s principle. On the other hand,
an object will continue to have a velocity even if no impulses (or forces) are acting on
it. The impulse therefore changes the velocity; it is not completely responsible for the
velocity. We can combine impulses using D’Alembert’s principle, but the result will

108 Chapter 7 Hard Constraints

be the total change in velocity, not the total velocity:

ṗ′ = ṗ + 1

m

∑
n

g i

where g1 . . . gn is the set of all impulses acting on the object. In practice we won’t
accumulate impulses in the way we did forces. We will apply impulses as they arise
during the collision resolution process. Each will be applied one at a time using the
equation

ṗ′ = ṗ + 1

m
g

The result of our collision resolution will be an impulse to apply to each object.
The impulse will be immediately applied and will instantly change the velocity of the
object.

7.2 COLLISION PROCESSING

To handle collisions we will create a new piece of code—the ContactResolver. It has
the job of taking a whole set of collisions and applying the relevant impulses to the
objects involved. Each collision is provided in a Contact data structure, which looks
like this:

Excerpt from include/cyclone/pcontacts.h

/**
* A contact represents two objects in contact (in this case
* ParticleContact representing two particles). Resolving a
* contact removes their interpenetration, and applies sufficient
* impulse to keep them apart. Colliding bodies may also rebound.
*
* The contact has no callable functions, it just holds the
* contact details. To resolve a set of contacts, use the particle
* contact resolver class.
*/
class ParticleContact
{
public:

/**
* Holds the particles that are involved in the contact. The
* second of these can be NULL, for contacts with the scenery.
*/

Particle* particle[2];

/**

7.2 Collision Processing 109

* Holds the normal restitution coefficient at the contact.
*/
real restitution;

/**
* Holds the direction of the contact in world coordinates.
*/
Vector3 contactNormal;

};

The structure holds a pointer to each object involved in the collision; a vector
representing the contact normal, from the first object’s perspective; and a data mem-
ber for the coefficient of restitution for the contact. If we are dealing with a collision
between an object and the scenery (i.e., there is only one object involved), then the
pointer for the second object will be NULL.

To resolve one contact we implement the collision equations from earlier in the
section to give

Excerpt from include/cyclone/pcontacts.h

class ParticleContact
{

// ... Other ParticleContact code as before ...

protected:
/**
* Resolves this contact, for both velocity and interpenetration.
*/
void resolve(real duration);

/**
* Calculates the separating velocity at this contact.
*/
real calculateSeparatingVelocity() const;

private:
/**
* Handles the impulse calculations for this collision.
*/
void resolveVelocity(real duration);

};

Excerpt from src/pcontacts.cpp

#include <cyclone/pcontacts.h>
void ParticleContact::resolve(real duration)

110 Chapter 7 Hard Constraints

{
resolveVelocity(duration);

}

real ParticleContact::calculateSeparatingVelocity() const
{

Vector3 relativeVelocity = particle[0]->getVelocity();
if (particle[1]) relativeVelocity -= particle[1]->getVelocity();
return relativeVelocity * contactNormal;

}

void ParticleContact::resolveVelocity(real duration)
{

// Find the velocity in the direction of the contact.
real separatingVelocity = calculateSeparatingVelocity();

// Check whether it needs to be resolved.
if (separatingVelocity > 0)
{

// The contact is either separating or stationary - there’s
// no impulse required.
return;

}

// Calculate the new separating velocity.
real newSepVelocity = -separatingVelocity * restitution;

real deltaVelocity = newSepVelocity - separatingVelocity;

// We apply the change in velocity to each object in proportion to
// its inverse mass (i.e., those with lower inverse mass [higher
// actual mass] get less change in velocity).
real totalInverseMass = particle[0]->getInverseMass();
if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then impulses have no effect.
if (totalInverseMass <= 0) return;

// Calculate the impulse to apply.
real impulse = deltaVelocity / totalInverseMass;

// Find the amount of impulse per unit of inverse mass.
Vector3 impulsePerIMass = contactNormal * impulse;

7.2 Collision Processing 111

// Apply impulses: they are applied in the direction of the contact,
// and are proportional to the inverse mass.
particle[0]->setVelocity(particle[0]->getVelocity() +

impulsePerIMass * particle[0]->getInverseMass()
);

if (particle[1])
{

// Particle 1 goes in the opposite direction.
particle[1]->setVelocity(particle[1]->getVelocity() +
impulsePerIMass * -particle[1]->getInverseMass()
);

}
}

This directly changes the velocities of each object to reflect the collision.

7.2.1 COLLISION DETECTION

The collision points will normally be found using a collision detector. A collision
detector is a chunk of code responsible for finding pairs of objects that are colliding
or single objects that are colliding with some piece of immovable scenery.

In our engine the end result of the collision detection algorithm is a set of Contact
data structures, filled with the appropriate information. Collision detection obviously
needs to take the geometries of the objects into account: their shape and size. So far
in the physics engine, we’ve assumed we are dealing with particles, which lets us avoid
taking geometry into account at all.

This is a distinction we’ll keep intact even with more complicated 3D objects:
the physics simulation system (that part of the engine that handles laws of motion,
collision resolution, and forces) will not need to know the details of the shape of the
objects it is dealing with. The collision detection system is responsible for calculating
any properties that are geometrical, such as when and where two objects are touching,
and the contact normal between them.

There is a whole range of algorithms used for working out contact points, and
we’ll implement a range of useful collision detection routines for full 3D objects in
chapter 12. For now we’ll assume this is a magic process hidden inside a black box.

There is one exception: I’ll cover the simplest possible collision detection for par-
ticles represented as small spheres in the next chapter. This will allow us to build
some useful physics systems with just the mass-aggregate engine we are constructing.
Other than that I’ll leave the details until after we’ve looked at full 3D rigid bodies in
chapter 10.

Some collision detection algorithms can take into account the way objects are
moving and try to predict likely collisions in the future. Most simply look through
the set of objects and check to see whether any two objects are interpenetrating.

112 Chapter 7 Hard Constraints

FIGURE 7.2 Interpenetrating objects.

Two objects are interpenetrating if they are partially embedded in each other, as
shown in figure 7.2. When we’re processing a collision between partially embedded
objects, it is not enough to only change their velocity. If the objects are colliding with
a small coefficient of restitution, their separation velocity might be almost zero. In
this case they will never move apart, and the player will see the objects stuck together
in an impossible way.

As part of resolving the collisions, we need to resolve the interpenetration.

7.2.2 RESOLVING INTERPENETRATION

When two objects are interpenetrating, we move them apart just enough to separate
them. We expect the collision detector to tell us how far the objects have interpen-
etrated, as part of the Contact data structure it creates. The calculation of the inter-
penetration depth depends on the geometries of the objects colliding, and as we saw
earlier, this is the domain of the collision detection system rather than the physics
simulator.

We add a data member to the Contact data structure to hold this information:

Excerpt from include/cyclone/pcontacts.h

class ParticleContact
{

// ... Other ParticleContact code as before ...

/**
* Holds the depth of penetration at the contact.
*/
real penetration;

};

7.2 Collision Processing 113

FIGURE 7.3 Interpenetration and reality.

Note that, just like the closing velocity, the penetration depth has both size and sign.
A negative depth represents two objects that have no interpenetration. A depth of
zero represents two objects that are merely touching.

To resolve the interpenetration we check the interpenetration depth. If it is already
zero or less, then we need take no action; otherwise, we can move the two objects apart
just far enough so that the penetration depth becomes zero. The penetration depth
should be given in the direction of the contact normal. If we move the objects in the
direction of the contact normal, by a distance equal to the penetration depth, then the
objects will no longer be in contact. The same occurs when we have just one object
involved in the contact (i.e., it is interpenetrating with the scenery of the game): the
penetration depth is in the direction of the contact normal.

So we know the total distance that the objects must be moved (i.e., the depth)
and the direction in which they will be moving; we need to work out how much each
individual object should be moved.

If we have only one object involved in the contact, then this is simple: the object
needs to move the entire distance. If we have two objects, then we have a whole range
of choices. We could simply move each object by the same amount: by half of the in-
terpenetration depth. This would work in some situations but can cause believability
problems. Imagine we are simulating a small box resting on a planet’s surface. If the
box is found slightly interpenetrating the surface, should we move the box and the
planet out of the way by the same amount?

We have to take into account how the interpenetration came to be in the first
place, and what would have happened in the same situation in reality. Figure 7.3
shows the box and planet, in penetration, as if real physics were in operation. We’d
like to get as near to the situation in part B of the figure as possible.

To do this we move two objects apart in inverse proportion to their mass. An
object with a large mass gets almost no change, and an object with a tiny mass gets
to move a lot. If one of the objects has infinite mass, then it will not move: the other
object gets moved the entire way.

The total motion of each object is equal to the depth of interpenetration:

�pa + �pb = d

114 Chapter 7 Hard Constraints

where �pa is the scalar distance that object a will be moved (we’ll return to the direc-
tion later). The two distances are related to each other according to the ratio of their
masses:

ma�pa = mb�pb

which combined gives us

�pa = mb

ma + mb
d

and

�pb = ma

ma + mb
d

Combining these with the direction from the contact normal, we get a total change
in the vector position of

�pa = mb

ma + mb
dn

and

�pb = − ma

ma + mb
dn

where n is the contact normal. (Note the minus sign in the second equation: this is
because the contact normal is given from object a’s perspective.)

We can implement the interpenetration resolution equations with this function:

Excerpt from include/cyclone/pcontacts.h

class ParticleContact
{

// ... Other ParticleContact code as before ...

/**
* Handles the interpenetration resolution for this contact.
*/
void resolveInterpenetration(real duration);

};

Excerpt from src/pcontacts.cpp

void ParticleContact::resolve(real duration)
{

resolveVelocity(duration);
resolveInterpenetration(duration);

}

void ParticleContact::resolveInterpenetration(real duration)
{

7.2 Collision Processing 115

// If we don’t have any penetration, skip this step.
if (penetration <= 0) return;

// The movement of each object is based on its inverse mass, so
// total that.

real totalInverseMass = particle[0]->getInverseMass();
if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then we do nothing.
if (totalInverseMass <= 0) return;

// Find the amount of penetration resolution per unit of inverse mass.
Vector3 movePerIMass = contactNormal *

(-penetration / totalInverseMass);

// Apply the penetration resolution.
particle[0]->setPosition(particle[0]->getPosition() +

movePerIMass * particle[0]->getInverseMass());
if (particle[1])
{

particle[1]->setPosition(particle[1]->getPosition() +
movePerIMass * particle[1]->getInverseMass());

}
}

We now have code to apply the change in velocity at a collision and to resolve objects
that are interpenetrating. If you implement and run the contact resolution system, it
will work well for medium-speed collisions, but objects resting (a particle resting on a
table, for example) may appear to vibrate and may even leap into the air occasionally.1

To have a complete and stable contact resolution system we need to reconsider
what happens when two objects are touching but have a very small or zero closing
velocity.

1. I said medium-speed here because very high-speed collisions are notoriously difficult to cope with.

The physics simulation we’ve provided will usually cope (except for insanely high speeds where a lack

of floating-point accuracy starts to cause problems), but collision detectors can start to provide strange

results: it is possible for two objects to pass right through each other before the collision detector realizes

they have even touched. If it does detect a collision, they may be at least halfway through each other and be

separating again, in which case they have a positive separating velocity and no impulse is generated. We’ll

return to these issues when we create our collision detection system later in this book, although we will not

be able to resolve them fully: they are a feature of very high-speed collision detection.

116 Chapter 7 Hard Constraints

7.2.3 RESTING CONTACTS

Consider the situation shown in figure 7.4. We have a particle resting on the ground.
It is experiencing only one force, gravity. In the first frame the particle accelerates
downward. Its velocity increases, but its position stays constant (it has no velocity at
the start of the frame). In the second frame the position is updated, and the velocity
increases again. Now it is moving downward and has begun to interpenetrate with
the ground. The collision detector picks up on the interpenetration and generates a
collision.

The contact resolver looks at the particle and sees that it has a penetrating velocity
of

ṗ = 2p̈t

Applying the collision response, the particle is given a velocity of

ṗ′ = cṗ = c2p̈t

and is moved out of interpenetration. In frame 3, therefore, it has an upward velocity,
which will carry it off the ground and into the air. The upward velocity will be small,
but it may be enough to be noticed. In particular, if frame 1 or 2 is abnormally long,
the velocity will have a chance to significantly build up and send the particle skyward.
If you implement this algorithm for a game with a variable frame-rate and then slow
down the frame-rate (by dragging a window around, for example, or having email
arrive in the background), any resting objects will suddenly jump.

To solve this problem we can do two things. First we need to detect the contact
earlier. In the example two frames have passed before we find out that there is a prob-
lem. If we set our collision detector so it returns contacts that are nearly, but not quite
interpenetrating, then we get a contact to work with after frame 1.

Second we need to recognize when an object has velocity that could only have
arisen from its forces acting for one frame. After frame 1, the velocity of the particle is
caused solely by the force of gravity acting on it for one frame. We can work out what
the velocity would be if only the force acted on it, by simply multiplying the force by
the frame duration. If the actual velocity of the object is less than or equal to this value
(or even slightly above it, if we acknowledge that rounding errors can creep in), we

FIGURE 7.4 Vibration on resting contact.

7.2 Collision Processing 117

know that the particle was stationary at the previous frame. In this case the contact
is likely to be a resting contact rather than a colliding contact. Instead of performing
the impulse calculation for a collision, we can apply the impulse that would result in
a zero separating velocity.

This is what would happen for a resting contact: no closing velocity would have
time to build up, so there would be no separating velocity after the contact. In our
case we see that the velocity we do have is likely to be only a by-product of the way we
split time into frames, and we can therefore treat the object as if it had a zero velocity
before the contact. The particle is given a zero velocity. This happens at every frame:
in effect the particle always remains at frame 1 in figure 7.4.

You could also look at this a different way. We are performing a collision with
a zero coefficient of restitution at each frame. These series of micro-collisions keep
the objects apart. For this reason an engine that handles resting contact in this way is
sometimes called a “micro-collision engine.”

Velocity and the Contact Normal

When we have two objects in resting contact, we are interested in their relative velocity
rather than the absolute velocity of either. The two objects might be in resting contact
with each other in one direction, but moving across each other in another direction.
A box might be resting on the ground even though it is skidding across the surface at
the same time. We want the vibrating contacts code to cope with pairs of objects that
are sliding across each other. This means we can’t use the absolute velocity of either
object.

To cope with this situation the velocity and acceleration calculations are all per-
formed in the direction of the contact normal only. We first find the velocity in this
direction and test to see whether it could have been solely caused by the component
of the acceleration in the same direction. If so, then the velocity is changed so there is
no separating or closing velocity in this direction. There still may be relative velocity
in any other direction, but it is ignored.

We can add special-case code to the collision processing function in this way:

Excerpt from src/pcontacts.cpp

void ParticleContact::resolveVelocity(real duration)
{

// Find the velocity in the direction of the contact.
real separatingVelocity = calculateSeparatingVelocity();

// Check whether it needs to be resolved.
if (separatingVelocity > 0)
{

// The contact is either separating or stationary - there’s
// no impulse required.
return;

}

118 Chapter 7 Hard Constraints

// Calculate the new separating velocity.
real newSepVelocity = -separatingVelocity * restitution;

// Check the velocity build-up due to acceleration only.
Vector3 accCausedVelocity = particle[0]->getAcceleration();
if (particle[1]) accCausedVelocity -= particle[1]->getAcceleration();
real accCausedSepVelocity = accCausedVelocity *

contactNormal * duration;

// If we’ve got a closing velocity due to acceleration build-up,
// remove it from the new separating velocity.
if (accCausedSepVelocity < 0)
{

newSepVelocity += restitution * accCausedSepVelocity;

// Make sure we haven’t removed more than was
// there to remove.
if (newSepVelocity < 0) newSepVelocity = 0;

}

real deltaVelocity = newSepVelocity - separatingVelocity;

// We apply the change in velocity to each object in proportion to
// its inverse mass (i.e., those with lower inverse mass [higher
// actual mass] get less change in velocity).
real totalInverseMass = particle[0]->getInverseMass();
if (particle[1]) totalInverseMass += particle[1]->getInverseMass();

// If all particles have infinite mass, then impulses have no effect.
if (totalInverseMass <= 0) return;

// Calculate the impulse to apply.
real impulse = deltaVelocity / totalInverseMass;

// Find the amount of impulse per unit of inverse mass.
Vector3 impulsePerIMass = contactNormal * impulse;

// Apply impulses: they are applied in the direction of the contact,
// and are proportional to the inverse mass.
particle[0]->setVelocity(particle[0]->getVelocity() +

impulsePerIMass * particle[0]->getInverseMass()
);

if (particle[1])

7.3 The Contact Resolver Algorithm 119

{
// Particle 1 goes in the opposite direction.
particle[1]->setVelocity(particle[1]->getVelocity() +
impulsePerIMass * -particle[1]->getInverseMass()

);
}

}

To keep two objects in resting contact we are applying a small change in velocity at
each frame. The change is just big enough to correct the increase in velocity that
would arise from their settling into each other over the course of one frame.

Other Approaches to Resting Contact

The micro-collision approach I described above is only one of many possibilities.
Resting contact is one of two key challenges to get right in a physics engine (the other
being friction: in fact the two often go together). There are many routes of attack as
well as countless variations and tweaks.

My solution is somewhat ad hoc. Effectively we second-guess the mistakes of a
rough implementation and then try to correct it after the event. This has the flavor of
a hack, and despite being easy to implement and suitable for adding in friction (which
we’ll do in chapter 15), it is frowned on by engineering purists.

A more physically realistic approach would be to recognize that in reality a force
would be applied on the particle from the ground. This reaction force pushes the
object back so that its total acceleration in the vertical direction becomes zero. No
matter how hard the particle pushes down, the ground will push up with the same
force. We can create a force generator that works in this way, making sure there can
be no acceleration into the ground.

This works okay for particles that can have only one contact with the ground.
For more complex rigid bodies the situation becomes considerably more complex.
We may have several points of contact between an object and the ground (or worse,
we might have a whole series of contacts between an object and immovable resting
points). It isn’t immediately clear how to calculate the reaction forces at each contact
so that the overall motion of the object is correct. We’ll return to reaction forces in
some depth in chapter 15, and to more complex resolution methods in chapter 18.

7.3 THE CONTACT RESOLVER ALGORITHM

The collision resolver receives a list of contacts from the collision detection system
and needs to update the objects being simulated to take account of the contacts. We
have three bits of code for performing this update:

1. The collision resolution function that applies impulses to objects to simulate their
bouncing apart.

120 Chapter 7 Hard Constraints

2. The interpenetration resolution function that moves objects apart so that they
aren’t partially embedded in one another.

3. The resting contact code that sits inside the collision resolution function and
keeps an eye out for contacts that might be resting rather than colliding.

Which of these functions needs calling for a contact depends on its separating
velocity and interpenetration depth. Interpenetration resolution only needs to occur
if the contact has a penetration depth greater than zero. Similarly we might need to
perform interpenetration resolution only, with no collision resolution, if the objects
are interpenetrated but separating.

Regardless of the combination of functions needed, each contact is resolved one
at a time. This is a simplification of the real world. In reality each contact would occur
at a slightly different instant of time, or be spaced out over a range of time. Some con-
tacts would apply their effects in series; others would combine and act simultaneously
on the objects they affect. Some physics engines will try to accurately replicate this,
treating sequential contacts in their correct order and resolving resting contacts all
at the same time. In section 7.3.2, we’ll look at an alternative resolution scheme that
honors sequential series. In chapter 18 we’ll look at systems to perform simultaneous
resolution of multiple contacts.

For our engine we’d like to keep things simple and do neither. We’d like to resolve
all the contacts one at a time at the end of a frame. We can still get very believable
results with this scheme, with a considerably less complex and error-prone imple-
mentation. To get the best results, however, we need to make sure the contacts are
resolved in the right order.

7.3.1 RESOLUTION ORDER

If an object has two simultaneous contacts, as shown in figure 7.5, then changing its
velocity to resolve one contact may change its separating velocity at the other contact.
In the figure, if we resolve the first contact, then the second contact stops being a
collision at all: it is now separating. If we resolve the second contact only, however, the
first contact still needs to be resolved: the change in velocity isn’t enough to save it.

To avoid doing unnecessary work in situations like this, we resolve the most severe
contact first: the contact with the lowest separating velocity (i.e., the most negative).
As well as convenient, this is also the most physically realistic thing we can do. In the
figure, if we compare the behavior of the full three-object situation with the behavior
we’d have if we removed one of the two lower blocks, we would find the final result
to be most similar to the case where we have block A but not block B. In other words,
the most severe collisions tend to dominate the behavior of the simulation. If we have
to prioritize which collisions to handle, it should be those that give the most realism.

Figure 7.5 illustrates a complication in our contact resolution algorithm. If we
handle one collision, then we might change the separating velocity for other contacts.
We can’t just sort the contacts by their separating velocity and then handle them in

7.3 The Contact Resolver Algorithm 121

FIGURE 7.5 Resolving one contact may resolve another automatically.

order. Once we have handled the first collision, the next contact may have a positive
separating velocity and not need any processing.

There is also another, more subtle problem that doesn’t tend to arise in many
particle situations. We could have a situation where we resolve one contact and then
another, but the resolution of the second puts the first contact back into collision, so
we need to re-resolve it. Fortunately it can be shown that for certain types of simu-
lation (particularly those with no friction, although some friction situations can also
work), this looping will eventually settle into a correct answer. We’ll not need to loop
around forever, and we’ll not end up with a situation where the corrections get bigger
and bigger until the whole simulation explodes. Unfortunately this could take a long
time to reach, and there is no accurate way to estimate how long it will take. To avoid
getting stuck we place a limit on the number of resolutions that can be performed at
each frame.

The contact resolver we will use follows this algorithm:

1. Calculate the separating velocity of each contact, keeping track of the contact with
the lowest (i.e., most negative) value.

2. If the lowest separating velocity is greater than or equal to zero, then we’re done:
exit the algorithm.

3. Process the collision response algorithm for the contact with the lowest separating
velocity.

4. If we have more iterations, then return to step 1.

The algorithm will automatically reexamine contacts that it has previously resolved,
and it will ignore contacts that are separating. It resolves the most severe collision at
each iteration.

The number of iterations should be at least the number of contacts (to give them
all a chance of getting seen to at least once) and can be greater. For simple particle

122 Chapter 7 Hard Constraints

simulations, having the same number of iterations as there are contacts can often
work fine. I tend to use double the number of contacts as a rule of thumb, but more is
needed for complex, interconnected sets of contacts. You could also give the algorithm
no iteration limit and see how it performs. This is a good approach to debugging when
difficult situations arise.

You may have noticed that I’ve ignored interpenetration so far. We could combine
interpenetration resolution with collision resolution. A better solution, in practice, is
to separate the two into distinct phases. First we resolve the collisions, in order, using
the previous algorithm. Second we resolve the interpenetrations.

Separating the two resolution steps allows us to use a different order for resolv-
ing interpenetration than for velocity. Once again we want to get the most realistic
results. We can do this by resolving the contacts in order of severity, as before. If we
combine the two stages, we’re tied to a suboptimal order for one or the other kind of
resolution.

The interpenetration resolution follows the same algorithm as for collision reso-
lution. As before, we need to recalculate all the interpenetration depths between each
iteration. Recall that interpenetration depths are provided by the collision detector.
We don’t want to perform collision detection again after each iteration, as it is far too
time consuming. To update the interpenetration depth we keep track of how much
we moved the two objects at the previous iteration. The objects in each contact are
then examined. If either object was moved in the last frame, then its interpenetration
depth is updated by finding the component of the move in the direction of the contact
normal.

Putting this all together we get the contact resolver function:

Excerpt from include/cyclone/pcontacts.h

/**
* The contact resolution routine for particle contacts. One
* resolver instance can be shared for the whole simulation.
*/
class ParticleContactResolver
{
protected:

/**
* Holds the number of iterations allowed.
*/

unsigned iterations;

/**
* This is a performance tracking value - we keep a record
* of the actual number of iterations used.
*/

unsigned iterationsUsed;

public:

7.3 The Contact Resolver Algorithm 123

/**
* Creates a new contact resolver.
*/
ParticleContactResolver(unsigned iterations);

/**
* Sets the number of iterations that can be used.
*/
void setIterations(unsigned iterations);

/**
* Resolves a set of particle contacts for both penetration
* and velocity.
*/
void resolveContacts(ParticleContact *contactArray,

unsigned numContacts,
real duration);

};

Excerpt from src/pcontacts.cpp

void
ParticleContactResolver::resolveContacts(ParticleContact *contactArray,

unsigned numContacts,
real duration)

{
iterationsUsed = 0;
while(iterationsUsed < iterations)
{

// Find the contact with the largest closing velocity;
real max = 0;
unsigned maxIndex = numContacts;
for (unsigned i = 0; i < numContacts; i++)
{

real sepVel = contactArray[i].calculateSeparatingVelocity();
if (sepVel < max)
{

max = sepVel;
maxIndex = i;

}
}

// Resolve this contact.
contactArray[maxIndex].resolve(duration);

124 Chapter 7 Hard Constraints

iterationsUsed++;
}

}

The number of iterations we use to resolve interpenetration might not necessarily be
the same as the number used in resolving collisions. We could implement the function
to use a different limit in each case.

In practice there is rarely any need to have different values: we can pass the same
for both. As a simulation gets more complex, with interacting objects, the number
of collision iterations needed will increase at roughly the same rate as the number of
interpenetration iterations. In the preceding function I’ve used one iteration limit for
both parts.

The recalculation of the closing velocity and interpenetration depth at each iter-
ation is the most time consuming part of this algorithm. For very large numbers of
contacts this can dominate the execution speed of the physics engine. In practice most
of the updates will have no effect: one contact may have no possible effect on another
contact. In chapter 16 we’ll return to this issue and optimize the way collisions are
resolved.

7.3.2 TIME-DIVISION ENGINES

There is another approach to creating a physics engine that avoids having to resolve
interpenetration or generate a sensible resolution order for the contacts. Rather than
have one single update of the physics engine per frame, we could have many updates,
punctuated by collisions.

The theory goes like this:

� When there are no collisions, objects are moving around freely, using just the
laws of motion and force generators we saw in the last chapter.

� When a collision occurs, it is at the exact point that two objects touch. At this
stage there is no interpenetration.

� If we can detect exactly when a collision occurs, we can use the normal laws
of motion up to this point, then stop, then perform the impulse calculations,
and then start up with the normal laws of motion again.

� If there are numerous collisions, we process them in order; and between each
collision, we update the world using the normal laws of motion.

In practice this kind of engine has this algorithm:

1. Let the start time be the current simulation time and the end time be the end of
the current update request.

2. Perform a complete update for the whole time interval.

3. Run the collision detector and collect a list of collisions.

4. If there are no collisions, we are done: exit the algorithm.

7.4 Collisionlike Things 125

5. For each collision work out the exact time of the first collision.

6. Choose the first collision to have occurred.

7. If the first collision occurs after the end time, then we’re done: exit the algorithm.

8. Remove the complete update from step 2, and perform an update from the start
time to the first collision time.

9. Process the collision, applying the appropriate impulses (no interpenetration res-
olution is needed, because at the instant of collision the objects are only just
touching).

10. Set the start time to be the first collision time, keep the end time unchanged, and
return to step 1.

This gives an accurate result and avoids the problems with interpenetration res-
olution. It is a commonly used algorithm in engineering physics applications where
accuracy is critical. Unfortunately it is very time consuming.

For each collision we run the collision detector again and rerun the regular physics
update each time. We still need to have special-case code to cope with resting contacts;
otherwise, the resting contacts will be returned as the first collision at every iteration.
Even without resting contacts, numerical errors in the collision detection calculations
can cause a never-ending cycle—a constant stream of collisions occurring at the same
time, which causes the algorithm to loop endlessly.

For almost all game projects this approach isn’t practical. A once-per-frame up-
date is a better solution, where all the contacts are resolved for velocity and interpen-
etration.

The “almost” case I am thinking of is pool, snooker, or billiards games. In these
cases the sequence of collisions and the position of balls when they collide is criti-
cal. A pool game using once-per-frame physics might be believable when two balls
collide, but strange effects can appear when the cue ball hits a tightly packed (but
not touching) bunch of balls. For a serious simulation it is almost essential to follow
the preceding algorithm, with the advantage that if you are writing from scratch, it is
easier to implement without the interpenetration code (not to mention the simplifi-
cations you can get because all the balls have the same mass).

You can see this in pool simulation games running on older PCs. When you break
off, there is a fraction of a second pause when the cue ball hits the pack, as the thou-
sands of internal collisions are detected and handled sequentially.

For a simple arcade pool game, if you already have a once-per-frame physics en-
gine available, it is worth a try: it may be good enough to do the job.

7.4 COLLISIONLIKE THINGS

Just as for springs, we will look at several types of connections that can be modeled
using the techniques in this chapter.

You can think of a collision as acting to keep two objects at least some minimum
distance apart. A contact is generated between two objects if they ever get too close.
By the same token, we can use contacts to keep objects together.

126 Chapter 7 Hard Constraints

7.4.1 CABLES

A cable is a constraint that forces two objects to be no more than its length apart. If
we have two objects connected by a light cable, they will feel no effects as long as they
are close together. When the cable is pulled taut, the objects cannot separate further.
Depending on the characteristics of the cable, the objects may appear to bounce off
this limit, in the same way that objects colliding might bounce apart. The cable has a
characteristic coefficient of restitution that controls this bounce effect.

We can model cables by generating contacts whenever the ends of the cable sep-
arate too far. The contact is very much like those used for collisions, except that its
contact normal is reversed: it pulls the objects together rather than bouncing them
apart. The interpenetration depth of the contact corresponds to how far the cable has
been stretched beyond its limit.

We can implement a contact generator for a cable in this way:

Excerpt from include/cyclone/plinks.h

/**
* Links connect two particles together, generating a contact if
* they violate the constraints of their link. It is used as a
* base class for cables and rods, and could be used as a base
* class for springs with a limit to their extension.
*/
class ParticleLink
{
public:

/**
* Holds the pair of particles that are connected by this link.
*/

Particle* particle[2];

protected:
/**
* Returns the current length of the cable.
*/

real currentLength() const;

public:
/**
* Fills the given contact structure with the contact needed
* to keep the link from violating its constraint. The contact
* pointer should point to the first available contact in a
* contact array, where limit is the maximum number of
* contacts in the array that can be written to. The method
* returns the number of contacts that have been written. This
* format is common to contact-generating functions, but this

7.4 Collisionlike Things 127

* class can only generate a single contact, so the
* pointer can be a pointer to a single element. The limit
* parameter is assumed to be at least one (zero isn’t valid),
* and the return value is either 0, if the cable wasn’t
* overextended, or one if a contact was needed.
*/
virtual unsigned fillContact(ParticleContact *contact,

unsigned limit) const = 0;
};

/**
* Cables link a pair of particles, generating a contact if they
* stray too far apart.
*/
class ParticleCable : public ParticleLink
{
public:

/**
* Holds the maximum length of the cable.
*/
real maxLength;

/**
* Holds the restitution (bounciness) of the cable.
*/
real restitution;

public:
/**
* Fills the given contact structure with the contact needed
* to keep the cable from overextending.
*/
virtual unsigned fillContact(ParticleContact *contact,

unsigned limit) const;
};

Excerpt from src/plinks.cpp

real ParticleLink::currentLength() const
{

Vector3 relativePos = particle[0]->getPosition() -
particle[1]->getPosition();

return relativePos.magnitude();
}

128 Chapter 7 Hard Constraints

unsigned ParticleCable::fillContact(ParticleContact *contact,
unsigned limit) const

{
// Find the length of the cable.
real length = currentLength();

// Check whether we’re overextended.
if (length < maxLength)
{

return 0;
}

// Otherwise return the contact.
contact->particle[0] = particle[0];
contact->particle[1] = particle[1];

// Calculate the normal.
Vector3 normal = particle[1]->getPosition() - particle[0]

->getPosition();
normal.normalize();
contact->contactNormal = normal;

contact->penetration = length-maxLength;
contact->restitution = restitution;

return 1;
}

This code acts as a collision detector: it examines the current state of the cable and can
return a contact if the cable has reached its limit. This contact should then be added to
all the others generated by the collision detector and processed in the normal contact
resolver algorithm.

7.4.2 RODS

Rods combine the behaviors of cables and collisions. Two objects linked by a rod can
neither separate nor get closer together. They are kept at a fixed distance apart.

We can implement this in the same way as the cable contact generator. At each
frame we look at the current state of the rod and generate either a contact to bring
the ends inward or a contact to keep them apart.

We need to make two modifications to what we’ve seen so far, however. First we
should always use a zero coefficient of restitution. It doesn’t make sense for the two
ends to bounce either together or apart. They should be kept at a constant distance
from each other, so their relative velocity along the line between them should be zero.

7.4 Collisionlike Things 129

Second, if we apply just one of the two contacts (to separate or to close) at each
frame, we will end up with a vibrating rod. On successive frames the rod is likely to
be too short, and then too long, and each contact will drag it backward and forward.
To avoid this we generate both contacts at every frame. If either of the contacts is
not needed (i.e., the separating velocity is greater than zero, or there is no interpen-
etration), then it will be ignored. Having the extra contact there helps to keep the
contact resolver algorithm from overcompensating, so the rod will be more stable.
The downside of this approach is that for complex assemblies of rods the number of
iterations needed to reach a really stable solution can rise dramatically. If you have a
low iteration limit, the vibration can return.

We can implement our contact generator in this way:

Excerpt from include/cyclone/plinks.h

/**
* Rods link a pair of particles, generating a contact if they
* stray too far apart or too close.
*/
class ParticleRod : public ParticleLink
{
public:

/**
* Holds the length of the rod.
*/
real length;

public:
/**
* Returns the current length of the cable.
*/
real currentLength() const;

/**
* Fills the given contact structure with the contact needed
* to keep the rod from extending or compressing.
*/
virtual unsigned fillContact(ParticleContact *contact,

unsigned limit) const;
};

Excerpt from src/plinks.cpp

unsigned ParticleRod::fillContact(ParticleContact *contact,
unsigned limit) const

{
// Find the length of the rod.
real currentLen = currentLength();

130 Chapter 7 Hard Constraints

// Check whether we’re overextended.
if (currentLen == length)
{

return 0;
}

// Otherwise return the contact.
contact->particle[0] = particle[0];
contact->particle[1] = particle[1];

// Calculate the normal.
Vector3 normal = particle[1]->getPosition() - particle[0]

->getPosition();
normal.normalize();

// The contact normal depends on whether we’re extending
// or compressing.
if (currentLen > length) {

contact->contactNormal = normal;
contact->penetration = currentLen - length;

} else {
contact->contactNormal = normal * -1;
contact->penetration = length - currentLen;

}

// Always use zero restitution (no bounciness).
contact->restitution = 0;

return 1;
}

The code always generates two contacts, which should be added to the list returned
by the collision detector and passed to the contact resolver.

7.5 SUMMARY

We’ve now built a set of physics code that can connect particles together using both
hard constraints, such as rods and cables, and elastic constraints, such as springs and
bungees.

Rods and cables behave similarly to collisions between separate objects. Cables
can cause the particles joined together to bounce toward one another, just in the same
way that particles bounce off one another when they collide. In the same way rods

7.5 Summary 131

cause connected particles to stay together, moving with a fixed separation distance.
This is equivalent to collisions with no bounce—when the particles stick together
and their closing velocity is reduced to zero.

Supporting both hard and elastic connections between particles allows us to build
interesting structures and simulate them in the game.

This forms our second complete physics engine: the mass-aggregate engine. Un-
like the particle engine we built first, the mass-aggregate engine is rare in published
games. It has been used to good effect in many two-dimensional platform games.
While it has largely been superseded by the more complex engines described later
in this book, it is still useful in some games in its own right. Chapter 8 looks at its
strengths and some applications.

This page intentionally left blank

8
THE

MASS-AGGREGATE

PHYSICS ENGINE

e’ve now built a mass-aggregate physics engine, capable of both particle sim-
W ulation and constructions made of many objects connected by rods, cables,
and springs. It is time to test the engine on some example scenarios.

The engine still has limits, however; in particular, it can’t describe the way objects
rotate. We’ll look at ways around this, faking the rotation of objects in terms of mass
aggregates. It is a useful technique for some applications and can eliminate the need
for more advanced physics.

8.1 OVERVIEW OF THE ENGINE

The mass-aggregate physics engine has three components:

1. The particles themselves keep track of their position, movement, and mass. To
set up a simulation we need to work out what particles are needed and set their
initial position velocity. We also need to set their inverse mass. The acceleration
of an object due to gravity is also held in the rigid body (this could be removed
and replaced by a force, if you so desire).

2. The force generators are used to keep track of forces that apply over several frames
of the game.

133

134 Chapter 8 The Mass-Aggregate Physics Engine

3. The collision system accumulates a set of contact objects and passes them to the
contact resolver. Any bit of code can generate new contacts. We have considered
two: a collision detector and rod or cable constraints.

At each frame we take each particle, calculate its internal data, call its force gen-
erators, and then call its integrator to update its position and velocity. We then accu-
mulate the contacts on the particle and pass all the contacts for all the particles into
the collision resolver.

To make this process easier we will construct a simple structure to hold any num-
ber of rigid bodies. We hold the rigid bodies in a linked list, exactly as we did for
force generators. This linked list is contained in a World class, representing the whole
physically simulated world:

Excerpt from include/cyclone/pworld.h

/**
* Keeps track of a set of particles, and provides the means to
* update them all.
*/
class ParticleWorld
{

/**
* Holds one particle in the linked list of particles.
*/
struct ParticleRegistration
{

Particle *particle;
ParticleRegistration *next;

};

/**
* Holds the list of registrations.
*/
ParticleRegistration* firstParticle;
public:

/**
* Creates a new particle simulator that can handle up to the
* given number of contacts per frame. You can also optionally
* give a number of contact-resolution iterations to use. If you
* don’t give a number of iterations, then twice the number of
* contacts will be used.
*/

8.1 Overview of the Engine 135

ParticleWorld(unsigned maxContacts, unsigned iterations=0);
};

At each frame the startFrame method is first called, which sets up each object
ready for the force accumulation:

Excerpt from include/cyclone/pworld.h

/**
* Keeps track of a set of particles, and provides the means to
* update them all.
*/

class ParticleWorld
{
/**
* Initializes the world for a simulation frame. This clears
* the force accumulators for particles in the world. After
* calling this, the particles can have their forces for this
* frame added.
*/

void startFrame();
};

Excerpt from src/pworld.cpp

void ParticleWorld::startFrame()
{

ParticleRegistration *reg = firstParticle;
while (reg)
{

// Remove all forces from the accumulator.
reg->particle->clearAccumulator();

// Get the next registration.
reg = reg->next;

}
}

Additional forces can be applied after calling this method.
We will also create another system to register contacts. Just as we saw for force

generators, we create a polymorphic interface for contact detectors.

Excerpt from include/cyclone/pcontacts.h

/**
* This is the basic polymorphic interface for contact generators
* applying to particles.

136 Chapter 8 The Mass-Aggregate Physics Engine

*/
class ParticleContactGenerator
{
public:

/**
* Fills the given contact structure with the generated
* contact. The contact pointer should point to the first
* available contact in a contact array, where limit is the
* maximum number of contacts in the array that can be written
* to. The method returns the number of contacts that have
* been written.
*/

virtual unsigned addContact(ParticleContact *contact,
unsigned limit) const = 0;

};

Each of these gets called in turn from the world and can contribute any contacts
it finds back to the world by calling its addContact method.

To execute the physics, the runPhysics method is called. This calls all the force
generators to apply their forces and then performs the integration of all objects, runs
the contact detectors, and resolves the resulting contact list:

Excerpt from include/cyclone/pworld.h

/**
* Keeps track of a set of particles, and provides the means to
* update them all.
*/
class ParticleWorld
{

/// ... previous ParticleWorld code as before ...

/**
* Holds the force generators for the particles in this world.
*/
ParticleForceRegistry registry;

/**
* Holds the resolver for contacts.
*/
ParticleContactResolver resolver;

/**
* Holds one registered contact generator.
*/

8.1 Overview of the Engine 137

struct ContactGenRegistration
{

ParticleContactGenerator *gen;
ContactGenRegistration *next;

};

/**
* Holds the list of contact generators.
*/

ContactGenRegistration *firstContactGen;

/**
* Holds the list of contacts.
*/

ParticleContact *contacts;

/**
* Holds the maximum number of contacts allowed (i.e., the
* size of the contacts array).
*/

unsigned maxContacts;

public:
/**
* Calls each of the registered contact generators to report
* their contacts. Returns the number of generated contacts.
*/

unsigned generateContacts();

/**
* Integrates all the particles in this world forward in time
* by the given duration.
*/

void integrate(real duration);

/**
* Processes all the physics for the particle world.
*/

void runPhysics(real duration);
};

Excerpt from src/pworld.cpp

unsigned ParticleWorld::generateContacts()
{

138 Chapter 8 The Mass-Aggregate Physics Engine

unsigned limit = maxContacts;
ParticleContact *nextContact = contacts;

ContactGenRegistration * reg = firstContactGen;
while (reg)
{

unsigned used = reg->gen->addContact(nextContact, limit);
limit -= used;
nextContact += used;

// We’ve run out of contacts to fill. This means we’re missing
// contacts.
if (limit <= 0) break;

reg = reg->next;
}

// Return the number of contacts used.
return maxContacts - limit;

}

void ParticleWorld::integrate(real duration)
{

ParticleRegistration *reg = firstParticle;
while (reg)
{

// Remove all forces from the accumulator.
reg->particle->integrate(duration);

// Get the next registration.
reg = reg->next;

}
}

void ParticleWorld::runPhysics(real duration)
{

// First apply the force generators.
registry.updateForces(duration);

// Then integrate the objects.
integrate(duration);

// Generate contacts.
unsigned usedContacts = generateContacts();

8.2 Using the Physics Engine 139

// And process them.
if (calculateIterations) resolver.setIterations(usedContacts * 2);
resolver.resolveContacts(contacts, usedContacts, duration);

}

We add a call to startFrame at the start of each frame of the game, and a call to
runPhysics wherever we want the physics to occur. A typical game loop might look
like this:

void loop()
{

while (1) {
// Prepare the objects for this frame.
world.startFrame();

// Calls to other parts of the game code.
runGraphicsUpdate();
updateCharacters();

// Update the physics.
world.runPhysics();

if (gameOver) break;
}

}

8.2 USING THE PHYSICS ENGINE

We will look at a useful application of the mass-aggregate engine: creating structures
out of particle masses and hard constraints. Using this technique we can create and
simulate many larger objects. The possibilities are endless: crates; mechanical devices;
even chains and vehicles; or, with the addition of springs, soft deformable blobs.

8.2.1 ROPE-BRIDGES AND CABLES

Sagging bridges, cables, and tilting platforms are all stalwarts of the platform game
genre, as well as having applications in other genres.

We can set up a bridge using pairs of particles suspended by cables. Figure 8.1
shows an arrangement that has this effect. Each pair of particles along the bridge is
linked with a rod constraint to keep them connected with their neighbors. Pairs of

140 Chapter 8 The Mass-Aggregate Physics Engine

FIGURE 8.1 Screenshot of the bridge demo.

particles are likewise linked together to give the bridge some strength. The cables are
cable constraints descending from a fixed point in space.

On the CD the bridge demo shows this setup in operation. You can move an ob-
ject (representing a character) over the bridge. The collision detector applies contacts
to the nearest particles when the object is above them. Notice the bridge stretch and
conform to the presence of the heavy object. In the demo the constraints are shown
as lines in the simulation.

The collision detector needs some explanation. Because we have only particles in
our simulation, but we want to give the impression of a bridge, it is not the collision
between particles that interests us but the collision between the character and the
planks of the bridge. We will return later in the book to a more robust way of doing
this. For the purpose of this chapter I have created a custom collision detector.

The detector treats the character as a sphere and checks to see whether it intersects
with any of the planks. A plank is a line segment between one pair of particles. If the
object does intersect, then a contact is generated between the character object and the
nearest of the plank particles. The contact normal is set based on the position of the
object and the line of the plank.

Tilting platforms can use the same theory. Figure 8.2 shows a suitable structure.
On the CD the platform demo shows this in operation: the platform will, by default,
tilt in one direction. A weight can be added to the opposite end, causing it to tilt. The
particles that make up the pivot of the platform have been set with infinite mass to
avoid their moving. If the platform were intended to be mobile, they could be set with
a mass similar to the other particles.

The simulation setup is similar to the bridge demo; you can see the full source
code for both on the CD.

8.2.2 FRICTION

One key limitation of this approach is the lack of friction in our contact model. It
was a deliberate choice to leave out friction at this stage: we’ll implement it as part of

8.2 Using the Physics Engine 141

FIGURE 8.2 Screenshot of the platform demo.

the engine in part V. If you create mass aggregates, they will appear to slide over the
ground as if skating on ice. Try replacing the infinite masses of the platform demo
and see the platform slide about.

If you are intending to implement only a mass-aggregate physics system, then it
is worth skipping forward to chapter 15. The discussion of friction there can be easily
adapted for particle contacts. In fact the mathematics is a little simpler: we can ignore
all the rotational components of the contact.

For anything but the simplest assemblies of particle masses, it may be worth im-
plementing the full physics engine in any case. You can create any object with a mass-
aggregate system, but as the number of constraints increases, so does the burden on
the collision response system and the tendency for stiff constraints to flex slightly as
groups of hard constraints compete to be resolved. A full rigid-body solution is the
most practical for general physics simulation. It’s time to bite the bullet and move
from particles to complete rotating, extended objects.

8.2.3 BLOB GAMES

Recently there have been a couple of games with soft-bodied characters simulated in
a way that is easy to replicate with our engine.

The independent Gish and the hit PSP game Loco Roco use 2D characters made
up of a set of particles (in the case of Loco Roco you get more particles as you play;
in the case of Gish there appear to be three or four at all times). These particles are
connected together using soft springs, so they can move a reasonable distance apart.
To avoid moving too far apart the springs have a limit of elasticity, beyond which they
act as rods and cannot be further extended (you could use this limit to split the blob
into smaller blobs).

The difficult part of using this setup is to then render the whole character as the
agglomeration of blobs. In 2D this can be done by superimposing a circle on each
particle, and making sure the springs don’t allow the circles to separate from one an-
other, giving the impression of a soft blob. In both 2D and 3D you could also use a

142 Chapter 8 The Mass-Aggregate Physics Engine

metaball implementation, seen in many 3D modeling packages. This is quite a com-
plex algorithm, but for a small number of masses it’s easily tractable. The metaball
algorithm isn’t simple, and I won’t cover it here; you can see any good textbook on
modeling for an explanation of how metaballs work.

The blob demo on the CD gives a simple implementation of a Loco Roco-style
blob game.

8.3 SUMMARY

While slightly cumbersome, a mass-aggregate physics engine is capable of simulating
some interesting and complex effects. Sets of relatively simple objects, joined by a
mixture of hard and elastic constraints, are particularly suited to this approach.

The first example we saw, rope-bridges, have been simulated with a mass-
aggregate approach for many years. The second example showed how to build large
objects out of a set of particles. While this can work successfully, it is prone to many
problems. Objects made up of lots of particles and lots of hard constraints can be
slightly unstable; they can appear to flex and bend when simulated, and in the worst
case there can be noticeable vibration in the particles as their constraints pull them in
different ways.

There is a better way to simulate a single large object. Rather than build it out
of particles, we can treat it as a whole. To do this we’ll need to change our physics
engine dramatically, however. As well as just simulating the position, velocity, and
acceleration of an object, we’ll need to take into account how it rotates as it moves.
This will introduce a large amount of complexity into our physics engine and will
take us the rest of this book to implement properly. Chapter 9 takes the first step,
introducing the mathematics of rotation.

PART III

Rigid-Body Physics

This page intentionally left blank

9
THE MATHEMATICS

OF ROTATIONS

o far we have covered almost all there is to know when creating a physics en-
S gine. We have built a sophisticated system capable of simulating particles, ei-
ther individually or connected into aggregates.

We are missing two things:

� A robust general-purpose collision detection system (currently we’re using
quite an ad hoc system of hard constraints).

� The ability of objects to rotate as well as move around.

The first of these problems is fairly easy to resolve and is the subject of part IV of this
book.

The second is more complex: it is the difference between a complete rigid-body
physics system and the mass-aggregate systems we’ve seen so far. To add rotations
we’ll need to go backward in the capability of our engine. We’ll need to remove a
good deal of functionality and rebuild it based on full rotating rigid bodies. This will
take this part and part V—almost the rest of the book.

This chapter looks at the properties of rotating bodies and the mathematical
structures needed to represent and manipulate them.

9.1 ROTATING OBJECTS IN TWO DIMENSIONS

Before we look at rotations in three dimensions, it is worth understanding them in
two. I will not implement any code from this section, but thinking about the two-
dimensional case is a good analogy for understanding three dimensions.

145

146 Chapter 9 The Mathematics of Rotations

FIGURE 9.1 The angle that an object is facing.

In two dimensions we can represent an object by its two-dimensional position
and an angle that shows how it is oriented. Just as the position is specified relative to
some fixed origin point, the angle is also given relative to a predetermined direction.
Figure 9.1 illustrates this.

If the object is rotating, its orientation will change over time. Just as velocity is
the first derivative of position (see chapter 2), angular velocity is the first derivative of
orientation.

I will use the word orientation throughout this book to refer to the direction in
which an object is facing. The word rotation has many meanings in different contexts,
and while most people feel they know what it means, it is one of those terms that can
be a chameleon, causing subtle confusion.

To be specific, I’ll try to use rotation only to mean a change in orientation (the
exception being that when everybody and their dog calls something “rotation,” I’ll
avoid the temptation to make up a new name). If something is rotated, it is natural to
mean that its orientation has changed.

If an object is spinning, however, I’ll use the term angular velocity to mean the
rate of change of orientation.

9.1.1 THE MATHEMATICS OF ANGLES

If we do any mathematics with orientations, we need to be careful: many different
orientation values can represent the same orientation. If we measure orientation in
radians (there are 2π radians in the 360◦ of a circle), then the orientation of 2π is the
same as 0. Developers normally set a fixed range of orientation values, say (−π,π]
(the square bracket indicates that π is included in the range, and the curved bracket
that −π is not). If an orientation falls outside this range, it is brought back into the
range. The mathematical routines that deal with this kind of orientation scalar can
look messy, with lots of adjustments and checks.

An alternative approach is to use vectors to represent orientation. We take a two-
element vector representing the direction in which the object is pointing. The vector
is related to the scalar value according to the equation

θ =
[

cos θ

sin θ

]
[9.1]

9.1 Rotating Objects in Two Dimensions 147

FIGURE 9.2 The circle of orientation vectors.

where θ is the angular representation of orientation and θ is the vector representation.
I have assumed that zero orientation would see the object facing along the positive
X axis, and that orientation increases in the counterclockwise direction. This is simply
a matter of convention.

The vector form of orientation makes many (but not all) mathematical operations
easier to perform, with less special-case code and bounds-checking.

In moving to a two-dimensional representation we have doubled the number of
values representing our orientation. We have only one degree of freedom when decid-
ing which direction an object should face, but the representation of a vector has two
degrees of freedom. A degree of freedom is some quantity that we could change inde-
pendent of others. A 3D position has three degrees of freedom, for example, because
we can move it in any of three directions without altering its position in the other two.
Calculating the number of degrees of freedom is an important tool for understanding
rotations in 3D.

Having this extra degree of freedom means that we could end up with a vector that
doesn’t represent an orientation. In fact most vectors will not match equation 9.1. To
guarantee that our vector represents an orientation, we need to remove some of its
freedom. We do this by forcing the vector to have a magnitude of 1. Any vector with
a magnitude of 1 will match equation 9.1, and we’ll be able to find its corresponding
angle.

There’s a geometric way of looking at this constraint. If we draw a point at the end
of all possible vectors with a magnitude of 1, we get a circle, as shown in figure 9.2. We
could say that a vector orientation correctly represents an orientation if it lies on this
circle. If we find a vector that is supposed to represent an orientation but is slightly
off (because of numerical errors in some calculation), we can fix it by bringing it onto

148 Chapter 9 The Mathematics of Rotations

the circle. Mathematically we do this by forcing its magnitude to be 1, by normalizing
the vector.

If we built a 2D game using vectors to represent orientations, we’d need to occa-
sionally make sure that the orientations still lie on the circle by normalizing them.

Let’s summarize these steps (not surprisingly we’ll see them again later). We
started with problems of bounds-checking, which led us to use a representation with
one more degree of freedom that needed an extra constraint; in turn this led us to
add in an extra step to enforce the constraint.

9.1.2 ANGULAR SPEED

When we look at the angular speed of an object (sometimes called its “rotation”), we
don’t have any of the problems we saw for orientation. An angular speed of 4π radians
per second is different from 2π radians per second. Every angular speed, expressed as
a single scalar value, is unique. The mathematics for angular speed is simple, so we
don’t need bounds-checking and special-case code. This in turn means we don’t need
to use a vector representation and we can stick with our scalar value.

9.1.3 THE ORIGIN AND THE CENTER OF MASS

Before we leave two dimensions, it is worth considering what our position and ori-
entation represent. When we were dealing with particles, the position represented the
location of the particle. Particles by definition exist only at a single point in space,
even though in this book we’ve stretched the definition slightly and treated them like
small spheres.

The Origin of an Object

If we have a larger object, what does the position represent? The object is at many
locations at the same time: it covers some extended area.

The position represents some preagreed location on the object that doesn’t
change. It is sometimes called the “origin” of the object. In a game we might choose
the root of the spine of a character or the center of the chassis of a car. The position
doesn’t need to be inside the object at all. Many developers represent the position of
a character as a location between the character’s heels resting on the ground.

As long as the location doesn’t move around the object, we can always determine
where every bit of the object will be from just its position and orientation. Locations
on the object are given relative to the origin of the object. If the origin of a car is in
the center of its chassis, as shown in figure 9.3, then its right headlight might be at a
position of

[
1.5

−0.75

]

9.1 Rotating Objects in Two Dimensions 149

FIGURE 9.3 The relative position of a car component.

relative to the origin. If the car is moved so that its origin is at

[
4

3.85

]

then its headlight will be at

[
1.5

−0.75

]
+

[
4

3.85

]
=

[
5.5

3.1

]

This movement is called a “translation”: we are translating the car from one position
to another.

Rotations

The same thing occurs if the object is facing in a different direction. In figure 9.4 the
car has had its position and orientation altered.

So how do we calculate the location of the headlamp now? First we need to turn
the headlamp around to represent the direction in which the car is facing. We do this
by using a third version of our orientation value.

This time the orientation is expressed in matrix form. If you are unsure about
matrices, I’ll return to their mathematics when we come to implementing matrix
classes for 3D in Section 9.2.3. You can skip the mathematics here unless you need a
refresher.

150 Chapter 9 The Mathematics of Rotations

FIGURE 9.4 The car is rotated.

The matrix form of orientation looks like this:

Θ =
[

cos θ − sin θ

sin θ cos θ

]

where θ is the orientation angle, as before. This matrix is usually called the “rotation
matrix”: it can be used to rotate a location. We can work out the new position of the
headlamp by multiplying the relative position of the headlamp by the rotation matrix

q′ =
[

cos θ − sin θ

sin θ cos θ

]
qb

where qb is the relative location of the headlamp. In our case, where θ = 3π/8, we get

q′ =
[

0.38 −0.92

0.92 0.38

][
1.5

−0.75

]
=

[
0.57 + 0.69

1.39 − 0.29

]
=

[
1.27

1.10

]

where all values are given to two decimal places.
After applying the orientation in this way we can then apply the change in position

as before. The total process looks like this:

q = Θqb + p [9.2]

9.1 Rotating Objects in Two Dimensions 151

where p is the position of the object. This equation works in both 2D and 3D, al-
though the definition of Θ is different, as we’ll see later in the chapter.

For our car example we get

q =
[

0.38 −0.92

0.92 0.38

][
1.5

−0.75

]
+

[
4

3.85

]
=

[
1.27

1.10

]
+

[
4

3.85

]
=

[
5.27

4.95

]

This calculation of the location of part of an object, based on the object’s position and
orientation and the relative position of the component, is called a “transformation
from local space” (also called “body space” and “object space”) to world space. We’ll
return to world space and local space in section 9.4.5.

The Composition of Rotations and Translations

One vital result to notice is that any sequence of translations and rotations can be
represented with a single position and orientation. In other words, no matter how
many times I move and turn the car, we can always give a single set of values for its
current position and orientation. This is equivalent to saying that any combination
of rotations and translations is equivalent to a single rotation followed by a single
translation.

Rigid Bodies

The fact that all the components of an object are fixed relative to its origin is the
reason why we talk about rigid bodies when it comes to physics engines. If our car is
a infant’s toy made of squashable rubber, then knowing the position and orientation
isn’t enough to tell us where the headlamp is: the headlamp might have been stretched
out into a very different position.

Some physics engines can deal with simple soft bodies, but usually they work by
assuming the body is rigid and then applying some after-effects to make it look soft.
In our engine, as well as in the vast majority of game physics engines, we will support
only rigid bodies.

Theoretically we could choose any point on the object to be its origin. For objects
that aren’t being physically simulated, this is often the approach developers take: they
choose a point that is convenient for the artist or artificial intelligence (AI) program-
mer to work with. It is possible to create physics code that works with an arbitrary
origin, but the code rapidly becomes fiendishly complicated. There is one position on
every object where the origin can be set that dramatically simplifies the mathematics:
the center of mass.

Center of Mass

The center of mass (often called the “center of gravity”) is the balance point of an
object. If you divide the object in two by cutting any straight line through this point,
you will end up with two objects that have exactly the same weight. If the object is a

152 Chapter 9 The Mathematics of Rotations

two-dimensional shape, you can balance it on your finger by placing your finger at
the center of mass.

If you think of an object as being made up of millions of tiny particles (atoms,
for example), you can think of the center of mass as being the average position of all
these little particles, where each particle contributes to the average depending on its
mass. In fact this is how we can calculate the center of mass. We split the object into
tiny particles and take the average position of all of them:

pcofm = 1

m

∑
n

mipi

where pcofm is the position of the center of mass, m is the total mass of the object, mi

is the mass, and pi is the position of particle i.
The center of mass of a sphere of uniform density will be located at the center

point of the sphere. Similarly with a cuboid, the center of mass will be at its geometric
center. The center of mass isn’t always contained within the object. A donut has its
center of mass in the hole, for example. Appendix A gives a breakdown of a range of
different geometries and where their center of mass is located.

The center of mass is important because if we watch the center of mass of a rigid
body, it will always behave like a particle. In other words, we can use exactly the same
formulae we have used so far in this book to perform the force calculations and update
the position and velocity for the center of mass. By selecting the center of mass as our
origin position we can completely separate the calculations for the linear motion of
the object (which is the same as for particles) and its angular motion (for which we’ll
need extra mathematics).

Any physical behavior of the object can be decomposed into the linear motion of
the center of mass and the angular motion around the same point. This is a profound
and crucial result, but one that takes some time to prove; if you want the background,
any good undergraduate textbook on mechanics will give details.

If we choose any other point as the origin, we can no longer separate the two
kinds of motion, so we’d need to take into account how the object was rotating in
order to work out where the origin is. Obviously this would make all our calculations
considerably more complicated.

Some authors and instructors work through code either way (although typically
only for a few results; when the mathematics gets really hard, they give up). Personally
I think it is a very bad idea to even consider having your origin anywhere else but at
the center of mass. I’ll assume this will always be the case for the rest of the book; if
you want your origin somewhere else, you’re on your own!

9.2 ORIENTATION IN THREE DIMENSIONS

In two dimensions we started out with a single angle for orientation. Problems with
keeping this value in bounds led us to look at alternative representations. In many

9.2 Orientation in Three Dimensions 153

two-dimensional games a vector representation is useful, but the mathematics for
angles alone isn’t so difficult that you couldn’t stick with the angle and adjust the
surrounding code to cope.

Not surprisingly there are similar problems in three dimensions, and we will end
up with a representation for orientation that is not a common bit of mathematics you
might learn in high school. In three dimensions, however, the obvious representation
is so fundamentally flawed that it is almost impossible to imagine providing the right
workarounds to get them running.

I don’t want to get bogged down in representations that don’t work, but it is worth
taking a brief look at the problems before we look at a range of improving solutions.

9.2.1 EULER ANGLES

In three dimensions an object has three degrees of freedom for rotation. By analogy
with the movement of aircraft we can call these yaw, pitch, and roll. Any rotation of
the aircraft can be made up of a combination of these three maneuvers. Figure 9.5
illustrates them.

For an aircraft these rotations are about the three axes: pitch is a rotation about
the X axis, yaw is about the Y axis, and roll is about the Z axis (assuming an aircraft is
looking down the Z axis, with the Y axis up).

Recall that a position is represented as a vector, where each component repre-
sents the distance from the origin in one direction. We could use a vector to represent
rotation, where each component represents the amount of rotation about the corre-
sponding axis. We have a similar situation to our two-dimensional rotation, but here
we have three angles, one for each axis. These three angles are called “Euler angles.”

This is the most obvious representation of orientation. It has been used in many
graphics applications. Several of the leading graphics modeling packages use Euler

FIGURE 9.5 Aircraft rotation axes.

154 Chapter 9 The Mathematics of Rotations

angles internally, and those that don’t still often represent orientations to the user as
Euler angles.

Unfortunately Euler angles are almost useless for our needs. We can see this
by looking at some of the implications of working with them. You can follow this
through by making a set of axes with your hand (as described in section 2.1.1), re-
membering that your imaginary object is facing in the same direction as your palm—
along the Z axis.

Imagine we first perform a pitch, by 30◦ or so. The object now has its nose up in
the air. Now perform a yaw by about the same amount. Notice that the yaw axis is no
longer pointing up: when we pitched the object, the yaw axis also moved. Remember
where the object is pointing. Now start again, but perform the yaw first, then the
pitch. The object will be in a slightly different position. What does this mean? If we
have a rotation vector like ⎡

⎢⎣
0.3

0.4

0.1

⎤
⎥⎦

in what order do we perform the rotations? The result may be different for each or-
der. What is more, because the order is crucial, we can’t simply use regular vector
mathematics to combine rotations. In particular,

r1 · r2 �= r2 · r1

where r1 and r2 are two rotations.
In case you think that the problem is caused by moving the rotation axes around

(i.e., keeping them welded to the object rather than fixed in the world), try it the
other way. Not only does the same problem still occur, but now we have another
issue—gimbal lock.

Gimbal lock occurs when we rotate an object such that what started as one axis
now aligns with another. For example, assume we’re applying the rotations in the
order X, then Y, then Z. If we yaw around by 90◦ (i.e., no X rotation, 90◦ Y rotation),
the front of the object is now pointing in the negative X direction. Say we wanted to
have the object roll slightly now (roll from its own point of view). We can’t do that: the
axis we need (the local Z axis) is now pointing in the X direction, and we’ve already
passed the point of applying X rotations.

So maybe we should have applied a little bit of X rotation first before rotating in
the Y direction. Try it: you can’t do it. For this particular problem we could perform
the rotations in a different order—ZYX, for example. This would solve the problem
for the previous example, but there’d be new orientations that this ordering couldn’t
represent. Once rotations of around 90◦ come into play, we can’t achieve all desired
orientations with a combination of Euler angles. This is called “gimbal lock.”

There are some ways to mitigate the problem, by using combinations of axes,
some of which move with the object and some of which are fixed in world space.
Alternatively we can repeat rotations around some axes. There are a lot of different

9.2 Orientation in Three Dimensions 155

schemes, and some of them are more useful than others. All are characterized by
very arbitrary mathematics, horrendous boundary conditions, and a tendency to find
difficult situations to crash on long after you think they’ve been debugged.

Gimbal lock was so significant that it featured in NASA’s Apollo moon program.
The mathematics we’ll end up with for orientations was not available, and Euler an-
gles were used in the flight-monitoring computers. To prevent the computers from
reaching gimbal lock and finding it impossible to represent the orientation of the
spacecraft, restrictions were placed on the way astronauts could exert control. If the
craft got too near gimbal lock, a warning would sound. There was no physical reason
why the craft couldn’t orient in that way; it was purely a precaution to avoid having
NASA’s computers fall over. Personally I take this as a salutary lesson. If the best minds
of NASA can’t write software to cope with gimbal lock, I am certainly not going to try.

Fortunately there are much better ways of representing orientation. They may not
be as intuitive to visualize, but their mathematics is a lot more reliable.

9.2.2 AXIS–ANGLE

Any rotation, or combination of rotations, in three dimensions can be represented as
a single rotation about a fixed axis. In other words, no matter what combination of
rotations takes place, we can always specify the orientation of an object as an axis and
an angle.

Although this isn’t immediately obvious, you can easily verify it for yourself with
a small ball. Regardless of how you orient the ball, you can get it into any other ori-
entation by one rotation about a single axis.

We could use this as a representation for orientation (called, not surprisingly, an
“axis–angle representation”). It is roughly equivalent to the angle representation we
used for two dimensions, and suffers some of the same problems: we need to perform
lots of bounds-checking to make sure that the angle is always in the correct range
(−π,π].

Having a vector (for the axis) and an angle gives us four degrees of freedom. The
rotation is only three degrees of freedom. The extra degree of freedom is removed
by requiring that the vector representing the axis is normalized. It represents only a
direction.

Another possible representation using axis and angle is the scaled axis representa-
tion. If the axis is normalized, then we can combine the axis and angle into one vector.
The direction of the vector gives the axis, and the magnitude of the vector gives the
angle. The angle is therefore in the range [0,π). We don’t need to represent negative
angles because they are equivalent to a positive rotation in the opposite direction.

The scaled axis representation is the most compact representation we have. It has
three values for three degrees of freedom, and it can represent any orientation. Al-
though it will be useful to us later in this chapter when we come to look at angular
velocity, it is almost never used to represent orientations.

This is for the same reasons we avoided a single angle representation for two-
dimensional rotations. The mathematics involved in manipulating a scaled axis rep-

156 Chapter 9 The Mathematics of Rotations

resentation of orientation isn’t simple. Unlike for the two-dimensional case, we have
more than just the bounds to worry about: it isn’t clear how to combine rotations
easily because the axis as well as the angle need to change.

Until a few years ago the most common way to represent orientations went to the
opposite extreme. Rather than use three values, a 3 × 3 matrix was used.

9.2.3 ROTATION MATRICES

If we were interested in the mathematics of combining rotations, then we could bor-
row from 3D geometry and represent orientations with a rotation matrix. In games
we regularly use matrices to represent rotations. In fact the chances are that whatever
representation we use, we’ll have to turn it into a rotation matrix and send it to the
rendering engine in order to draw the object. Why not save the effort and use the
rotation matrix from the start?

Using rotation matrices is a good solution; and we can represent any rotation with
a rotation matrix. The elements of the matrix are

Θ =
⎡
⎢⎣

tx2 + c txy + sz txz − sy

txy − sz ty2 + c tyz + sx

txz + sy tyz − sx tz2 + x

⎤
⎥⎦ [9.3]

where
⎡
⎢⎣

x

y

z

⎤
⎥⎦

is the axis; c = cos θ , s = sin θ , and t = 1 − cos θ ; and θ is the angle.
Because the elements are related to the sine and cosine of the angle rather than

to the angles themselves, we don’t have to do any bounds-checking. Combining two
rotations is simply a matter of multiplying the two matrices together.

The downside with using rotation matrices is their excess degrees of freedom.
We are representing a three-degree-of-freedom system with nine numbers. Floating-
point arithmetic in the computer isn’t totally accurate. So to make sure the matrix
represents a rotation (as opposed to some other kind of transformation such as a
skew or even a mirror image) after it has been manipulated in some way, we need
to adjust its values periodically. With so many degrees of freedom this adjustment
process needs to take place more often than we’d like, and it isn’t a trivial process as
normalizing a vector is.

Ideally we’d like a representation that has the advantages of matrices: a straightfor-
ward combination of rotations, no bounds-checking, and fewer degrees of freedom.

The solution, now almost ubiquitous, is to use a mathematical structure called a
“quaternion.”

9.2 Orientation in Three Dimensions 157

9.2.4 QUATERNIONS

The best and most widely used representation for orientations is the quaternion.
A quaternion represents an orientation with four values, related to the axis and angle
in the following way:

⎡
⎢⎢⎢⎢⎣

cos θ
2

x sin θ
2

y sin θ
2

z sin θ
2

⎤
⎥⎥⎥⎥⎦

[9.4]

where
⎡
⎢⎣

x

y

z

⎤
⎥⎦

is the axis and θ is the angle, as before.
Quaternions are not merely a four-element vector, however; the mathematics is

more exotic. If you are allergic to mathematics, then feel free to skip this explanation
and head for the next section.

You may remember in high school mathematics learning about the square root
of −1, the so-called imaginary number (in contrast to real numbers), often written
as i or j. So i2 = −1. A complex number is then made up of both a real number and
some multiple of i, in the form a + bi. If your mathematical memory is very good,
you might recall drawing complex numbers as coordinates in two dimensions and
deriving lots of their properties geometrically. Complex numbers have a very strong
connection with geometry and in particular with rotations in two dimensions. If you
don’t remember, not to worry—quaternions are a little more complex still.

A quaternion is a number of the form w + xi + yj + yk, where i, j, and k are all
imaginary numbers:

i2 = j2 = k2 = −1.

When all are multiplied together, we also get −1:

ijk = −1

Together these are the fundamental formulae of quaternion algebra.1 The second part
of this result means that any two of the three imaginary numbers, when multiplied

1. The formulae are reputed to have been scratched in the stone of the Bougham Bridge near Dublin
by the discoverer of quaternions, William Rowan Hamilton (the site is now marked by a plaque and the
original carving, if it existed, cannot be seen).

158 Chapter 9 The Mathematics of Rotations

together, give us the third. But beware: quaternion mathematics isn’t commutative.
In other words, ab �= ba, and in particular,

ij = −ji = k

jk = −kj = i

ki = −ik = j

by definition.
With these laws we can combine quaternions by multiplication:

(w1 + x1i + y1j + z1k) × (w2 + x2i + y2j + z2k)

= (w1w2 − x1x2 − y1y2 − z1z2) + (w1x2 + x1w2 − y1z2 − z1y2)i

+ (w1y2 − x1z2 + y1w2 − z1x2)j + (w1z2 + x1y2 − y1x2 + z1w2)k

and if the original two quaternions represent rotations according to equation 9.4,
then the resulting quaternion is equivalent to the two rotations combined. I will write
quaternions using the format θˆ and in a four-element vector format to show their
components:

θˆ =

⎡
⎢⎢⎢⎣

w

x

y

z

⎤
⎥⎥⎥⎦

Quaternions have four degrees of freedom to represent the three degrees of free-
dom of rotation. Clearly we have an extra degree of freedom that we need to constrain
away.

In fact, for all rotations equation 9.4 implies that the magnitude of the quaternion
is exactly 1. We calculate the magnitude of the quaternion in exactly the same way as
we did for a three-element vector, by using a four-component version of Pythagoras’s
theorem:

√
w2 + x2 + y2 + z2

To make sure that a quaternion always represents a rotation, we therefore need to
make sure that it has unit length:

√
w2 + x2 + y2 + z2 = 1

We do this using a procedure identical to normalizing a vector, but operating on
all four components of the quaternion rather than on the three values in a vector.

9.3 Angular Velocity and Acceleration 159

Just as for two-dimensional rotation, we have fixed the problem of messy bounds-
checking by adding an extra value to our representation, adding a constraint to re-
move the extra degree of freedom, and making sure we only get rotations.

In the same way that normalizing our two-dimensional vector representation gave
us a point on a circle, normalizing a quaternion can be thought of as giving a point on
the surface of a four-dimensional sphere. In fact, lots of the mathematics of quater-
nions can be derived based on the surface geometry of a four-dimensional sphere.
While some developers like to think in these terms (or at least claim they do), per-
sonally I find four-dimensional geometry even more difficult to visualize than three-
dimensional rotations, so I tend to stick with the algebraic formulation I’ve given
here.

9.3 ANGULAR VELOCITY AND ACCELERATION

Representing the current orientation of rigid bodies is only one part of the problem.
We also need to be able to keep track of how fast and in what direction they are
rotating.

Recall that for two dimensions we could use a single value for the angular velocity
without the need to perform bounds-checking. The same is true of angular velocity
in three dimensions. We abandoned the scaled axis representation for orientations
because of the boundary problems. Once again, when we are concerned with the
speed at which an object is rotating, we have no bounds: the object can be rotating as
fast as it likes.

Our solution is to stick with the scaled axis representation for angular velocity.
It has exactly the right number of degrees of freedom, and without the problem of
keeping its angle in bounds, the mathematics is simple enough for efficient imple-
mentation.

The angular velocity is a three-element vector that can be decomposed into an
axis and rate of angular change:

θ̇ = r â

where â is the axis around which the object is turning and r is the rate at which it is
spinning, which (by convention) is measured in radians per second.

The mathematics of vectors matches well with the mathematics of angular veloc-
ity. In particular, if we have an object spinning at a certain rate, θ̇ , and we add to its
rotation a spin at some rate in a new direction, ω, then the new total angular velocity
will be given by

θ̇
′ = θ̇ + ω

In other words, we can add two angular velocities together using vector arithmetic
and get a new, and correct, angular velocity.

160 Chapter 9 The Mathematics of Rotations

It’s all very well combining angular velocities, but we’ll also need to update the
orientation by the angular velocity. For linear updates we use the formula

p′ = p + p̈t

We need some way to do the same for orientation and angular velocity: to up-
date a quaternion by a vector and a time. The equivalent formula is not much more
complex:

θˆ
′ = θˆ + �t

2
ωˆ θˆ

where

ωˆ =

⎡
⎢⎢⎢⎣

0

θ̇x

θ̇y

θ̇z

⎤
⎥⎥⎥⎦

which is a quaternion constructed with a zero w component and the remaining com-
ponents are taken directly from the three components of the angular velocity vector.
The constructed quaternion ωˆ doesn’t represent an orientation, so it shouldn’t be
normalized.

I hope you agree that this is really quite painless. We can benefit from the best of
both worlds: the ease of vectors for angular velocity and the mathematical properties
of quaternions for orientations.

9.3.1 THE VELOCITY OF A POINT

In section 9.1.3 we calculated the position of part of an object even when it had been
moved and rotated. To process collisions between objects, in chapter 14 we’ll also have
to calculate the velocity of any point of an object.

The velocity of a point on an object depends on both its linear and angular veloc-
ity:

q̇ = θ̇ × (q − p) + ṗ [9.5]

where q̇ is the velocity of the point, q is the position of the point in world coordinates,
p is the position of the origin of the object, and θ̇ is the angular velocity of the object.

If we want to calculate the velocity of a known point on the object (the mirror on
the side of the car, for example), we can calculate q from equation 9.2.

9.3.2 ANGULAR ACCELERATION

Because angular acceleration is simply the first derivative of angular velocity, we can
use the same vector representation in both acceleration and velocity. What is more,

9.4 Implementing the Mathematics 161

the relationships between them remain the same as for linear velocity and accelera-
tion. In particular we can update the angular velocity using the equation

θ̇
′ = θ̇ + θ̈ t

where θ̈ is the angular acceleration and θ̇ is the angular velocity, as before.

9.4 IMPLEMENTING THE MATHEMATICS

We’ve covered the theory. Now it’s time to implement functions and data structures
that are capable of performing the right mathematics. In chapter 2 we created a Vec-
tor3 class that encapsulated vector mathematics; we’ll now do the same thing for
matrices and quaternions. As part of this process I’ll introduce the mathematics of
many operations for each type.

If you are working with an existing rendering library, you may already have ma-
trix, vector, and quaternion classes implemented. There is nothing physics-specific in
the implementations I give here. You should be able to use your own implementations
without alteration. I’ve personally worked with the DirectX utility library implemen-
tations on many projects without having to make any changes to the rest of the physics
code.

9.4.1 THE MATRIX CLASSES

A matrix is a rectangular array of scalar values. They don’t have the same obvious
geometric interpretation as vectors do. We will use them in several different contexts,
but in each case they will be used to change (or “transform”) vectors.

Although matrices can be any size, with any number of rows and columns, we are
primarily interested in two kinds: 3 × 3 matrices and 3 × 4 matrices. To implement
matrices we could create a general matrix data structure capable of supporting any
number of rows and columns. We could implement matrix mathematics in the most
general way, and use the same code for both of our matrix types (and other types
of matrix we might need later). While this would be an acceptable strategy, having
the extra flexibility is difficult to optimize. It would be better to create specific data
structures for the types of matrix we need. This will be our approach.

We will create a data structure called Matrix3 for 3 × 3 matrices and one called
Matrix4 for 3 × 4 matrices.

The basic data structure for Matrix3 looks like this:
Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array

162 Chapter 9 The Mathematics of Rotations

* of a rigid body.
*/
class Matrix3
{
public:

/**
* Holds the tensor matrix data in array form.
*/

real data[9];
};

and for Matrix4 it looks like this:
Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.
*/
class Matrix4
{
public:

/**
* Holds the transform matrix data in array form.
*/

real data[12];
};

Clearly there is nothing taxing so far; we just have two arrays of numbers.
Just as we did for the Vector3 class in chapter 2, we can add methods to these

classes to implement their mathematics.

9.4.2 MATRIX MULTIPLICATION

Since I’ve said that matrices exist mainly to transform vectors, let’s look at this first.
We transform a vector by multiplying it by the matrix

v′ = Mv

which is often called “post-multiplication” because the vector occurs after the matrix
in the multiplication.

Matrix multiplication works in the same way whether we are multiplying two
matrices together or multiplying a matrix and a vector. In fact we can think of a
vector as simply a matrix with a single column—a 3 × 1 matrix.

9.4 Implementing the Mathematics 163

It is important to realize that matrix multiplication of all kinds is not commu-
tative; in general ab �= ba. In particular, to multiply two matrices the number of
columns in the first matrix needs to be the same as the number of rows in the second.
So if we wanted to do

vM

where M is a 3 × 3 matrix and v is a three-element vector, we would have a mis-
match. The vector has one column, and the matrix has three rows. We cannot perform
this multiplication: it is undefined. Some game engines do use a pre-multiplication
scheme, but they do so by treating vectors as having one row and three columns,

[x y z]

rather than the column form we have used. With a row vector we can perform
pre-multiplication, but not post-multiplication. Confusingly, I have also seen pre-
multiplication mathematics written with the vector after the matrix (i.e., a matrix
and then a row vector), so it’s worth taking care if you are working with existing code.
I will use post-multiplication and column vectors exclusively in this book. If you are
working with an engine that uses pre-multiplication, you will have to adapt the order
of your code accordingly.

The result of matrix multiplication is a new matrix with the same number of
rows as the first matrix in the multiplication, and the same number of columns as the
second. So, if we multiply a 3 × 3 matrix by a 3 × 1 vector, we get a matrix with three
rows and one column (i.e., another vector). If we multiply a 3 × 3 matrix by another
3 × 3 matrix, we end up with a 3 × 3 matrix.

If we are multiplying matrices A and B to give matrix C, each element in C is
found by the formula

C(i,j) =
∑

k

A(i,k)B(k,j)

where C(i,j) is the entry in matrix C at the ith row and the jth column, and where k
ranges up to the number of columns in the first matrix (i.e., the number of rows in
the second—this is why they need to be the same).

For a 3 × 3 matrix multiplied by a vector we get

⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

⎡
⎢⎣

x

y

z

⎤
⎥⎦ =

⎡
⎢⎣

ax + by + cz

dx + ey + fz

gx + hy + iz

⎤
⎥⎦

With this result we can implement multiplication of a vector by a matrix. I have over-
loaded the * operator for the matrix class to perform this.

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.

164 Chapter 9 The Mathematics of Rotations

* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array
* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

};

Matrices as Transformations

Earlier in this chapter I talked about using matrices to represent orientations. In fact
matrices can represent rotations, scaling, sheering, and any number of other trans-
formations.

The elements of the matrix control the transformation being performed, and it is
worth getting to know how they do it. We can think of the matrix

⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

as being made up of three vectors:

⎡
⎢⎣

a

d

g

⎤
⎥⎦ ,

⎡
⎢⎣

b

e

h

⎤
⎥⎦ , and

⎡
⎢⎣

c

f

i

⎤
⎥⎦

These three vectors represent where each of the three main axes—X, Y, and Z—will
end up pointing after the transformation. For example, if we have a vector pointing
along the positive X axis,

⎡
⎢⎣

1

0

0

⎤
⎥⎦

it will be transformed into the vector

⎡
⎢⎣

a

d

g

⎤
⎥⎦

9.4 Implementing the Mathematics 165

which we can verify with the matrix multiplication

⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

⎡
⎢⎣

1

0

0

⎤
⎥⎦ =

⎡
⎢⎣

a × 1 + b × 0 + c × 0

d × 1 + e × 0 + f × 0

g × 1 + h × 0 + i × 0

⎤
⎥⎦ =

⎡
⎢⎣

a

d

g

⎤
⎥⎦

and so on for the other two axes. When I introduced vectors, I mentioned that their
three components could be thought of as a position along three axes. The x compo-
nent is the distance along the X axis and so on. We could write the vector as

v =
⎡
⎢⎣

x

y

z

⎤
⎥⎦ = x

⎡
⎢⎣

1

0

0

⎤
⎥⎦ + y

⎡
⎢⎣

0

1

0

⎤
⎥⎦ + z

⎡
⎢⎣

0

0

1

⎤
⎥⎦

In other words, a vector is made up of some proportion of each basic axis.
If the three axes move under a transformation, then the new location of the vector

will be determined in the same way as before. The axes will have moved, but the new
vector will still combine them in the same proportions:

v′ = x

⎡
⎢⎣

a

d

g

⎤
⎥⎦ + y

⎡
⎢⎣

b

e

h

⎤
⎥⎦ + z

⎡
⎢⎣

c

f

i

⎤
⎥⎦ =

⎡
⎢⎣

ax + by + cz

dx + ey + fz

gx + hy + iz

⎤
⎥⎦

Thinking about matrix transformations as a change of axis is an important visualiza-
tion tool.

The set of axes is called a “basis.” We looked at orthonormal bases in chap-
ter 2, where the axes all have a length of 1 and are at right angles to one another.
A 3 × 3 matrix will transform a vector from one basis to another. This is sometimes,
not surprisingly, called a “change of basis.”

Thinking back to the rotation matrices in section 9.1.3, we saw how the position
of a headlamp on a car could be converted into a position in the game level. This is
a change of basis. We start with the local coordinates of the headlamp relative to the
origin of the car, and end up with the world coordinates of the headlamp in the game.

In the headlamp example we had two stages: first we rotated the object (using a
matrix multiplication—a change of basis), and then we translated it (by adding an
offset vector). If we extend our matrices a little, we can perform both steps in one go.
This is the purpose of the 3 × 4 matrix.

The 3 × 4 Matrices

If you have been thinking ahead, you may have noticed that, by the matrix multipli-
cation rules, we can’t multiply a 3 × 4 matrix by a 3 × 1 vector. In fact we will end up

166 Chapter 9 The Mathematics of Rotations

doing just this, but to understand why we need to look more closely at what the 3 × 4
matrix will be used for.

In the previous section we looked at transformation matrices. The transforma-
tions that can be represented as a 3 × 3 matrix all keep the origin at the same place.
To handle general combinations of movement and rotation in our game we need to
be able to move the origin around: there is no use modeling a car if it is stuck with its
origin at the origin of the game level. We could do this as a two-stage process: perform
a rotation matrix multiplication and then add an offset vector. A better alternative is
to extend our matrices and do it in one step.

First we extend our vector by one element, so we have four elements, where the
last element is always 1:

⎡
⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎦

The four values in the vector are called “homogeneous” coordinates, and they are
used in some graphics packages. You can think of them as a four-dimensional coor-
dinate if you like, although thinking in four dimensions may not help you visualize
what we’re doing with them (it doesn’t help me).

If we now take a 3 × 4 matrix,

⎡
⎢⎣

a b c d

e f g h

i j k l

⎤
⎥⎦

and multiply it in the normal way, by our four-element vector,

⎡
⎢⎣

a b c d

e f g h

i j k l

⎤
⎥⎦

⎡
⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

ax + by + cz + d

ex + fy + gz + h

ix + jy + kz + l

⎤
⎥⎦ [9.6]

we get a combination of two effects. It is as if we had first multiplied by the 3 × 3
matrix,

⎡
⎢⎣

a b c

e f g

i j k

⎤
⎥⎦

⎡
⎢⎣

x

y

z

⎤
⎥⎦ =

⎡
⎢⎣

ax + by + cz

ex + fy + gz

ix + jy + kz

⎤
⎥⎦

9.4 Implementing the Mathematics 167

and then added the vector

⎡
⎢⎣

ax + by + cz

ex + fy + gz

ix + jy + kz

⎤
⎥⎦ +

⎡
⎢⎣

d

h

i

⎤
⎥⎦ =

⎡
⎢⎣

ax + by + cz + d

ex + fy + gz + h

ix + jy + kz + l

⎤
⎥⎦

which is exactly the two-step, transform-then-move process we had before, but all in
one step. If the first three columns give the directions of the three axes in the new
basis, the fourth column gives us the new position of the origin.

We could also view this as multiplying a 4 × 4 matrix by the 1 × 4 vector:

⎡
⎢⎢⎢⎣

a b c d

e f g h

i j k l

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x

y

z

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ax + by + cz + d

ex + fy + gz + h

ix + jy + kz + l

1

⎤
⎥⎥⎥⎦

In other words, we start and end with a homogeneous coordinate. Because we are not
interested in four-dimensional coordinates, the bottom row of the matrix is always
[0 0 0 1] and the last value in the vector is always 1. We can therefore use just the
version of the equation given in equation 9.6 and make the fourth value in the mul-
tiplied vector (the 1) magically appear as it is needed. We don’t store the fourth value
in the Vector3 class.

The matrix-vector multiplication gets implemented in the Matrix4 class as

Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.
*/
class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Transform the given vector by this matrix.
*
* @param vector The vector to transform.
*/
Vector3 operator*(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] +

168 Chapter 9 The Mathematics of Rotations

vector.y * data[1] +
vector.z * data[2] + data[3],

vector.x * data[4] +
vector.y * data[5] +
vector.z * data[6] + data[7],

vector.x * data[8] +
vector.y * data[9] +
vector.z * data[10] + data[11]

);
}

};

Multiplying Two Matrices

We can use exactly the same process to multiply two matrices together. If we multiply
two 3×3 matrices together, we get another 3×3 matrix. This can be easily done with
this code:

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array
* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

/**
* Returns a matrix that is this matrix multiplied by the given
* other matrix.
*/

Matrix3 operator*(const Matrix3 &o) const
{

return Matrix3(
data[0]*o.data[0] + data[1]*o.data[3] + data[2]*o.data[6],
data[0]*o.data[1] + data[1]*o.data[4] + data[2]*o.data[7],
data[0]*o.data[2] + data[1]*o.data[5] + data[2]*o.data[8],

data[3]*o.data[0] + data[4]*o.data[3] + data[5]*o.data[6],
data[3]*o.data[1] + data[4]*o.data[4] + data[5]*o.data[7],
data[3]*o.data[2] + data[4]*o.data[5] + data[5]*o.data[8],

9.4 Implementing the Mathematics 169

data[6]*o.data[0] + data[7]*o.data[3] + data[8]*o.data[6],
data[6]*o.data[1] + data[7]*o.data[4] + data[8]*o.data[7],
data[6]*o.data[2] + data[7]*o.data[5] + data[8]*o.data[8]
);

}
};

Multiplying two matrices together in this way combines their effects. If matrices
A and B are two transformations, then the matrix AB will represent the combined
transformation. Order is crucial for both transformations and matrix multiplication:
the matrix AB is a transformation that would result from first doing B and then do-
ing A. In other words, the order of the transformations is the opposite of the order
of the matrices in the multiplication. This is a “gotcha” that catches even experienced
developers from time to time.

So much for 3 × 3 matrices; how about 3 × 4 matrices? From the rules of matrix
multiplication we can’t multiply two 3 × 4 matrices together: the columns of the first
matrix don’t match the rows of the second. To make progress we need to return to the
full form of our 4 × 4 matrix. Remember that the matrix we are storing as

⎡
⎢⎣

a b c d

e f g h

i j k l

⎤
⎥⎦

can be thought of as shorthand for

⎡
⎢⎢⎢⎣

a b c d

e f g h

i j k l

0 0 0 1

⎤
⎥⎥⎥⎦

We can certainly multiply two 4 × 4 matrices together. If we multiply two 4 × 4
matrices with [0 0 0 1] as their bottom line, we end up with another matrix whose
bottom line is [0 0 0 1] (try it to convince yourself).

So in our code, when we come to multiply two 3 × 4 matrices (to combine their
transformations), we magically make the extra values appear, without storing them,
exactly as we did for transforming vectors. The code looks like this:

Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.

170 Chapter 9 The Mathematics of Rotations

*/
class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Returns a matrix that is this matrix multiplied by the given
* other matrix.
*/

Matrix4 operator*(const Matrix4 &o) const
{

Matrix4 result;
result.data[0] = (o.data[0]*data[0]) + (o.data[4]*data[1]) +

(o.data[8]*data[2]);
result.data[4] = (o.data[0]*data[4]) + (o.data[4]*data[5]) +

(o.data[8]*data[6]);
result.data[8] = (o.data[0]*data[8]) + (o.data[4]*data[9]) +

(o.data[8]*data[10]);

result.data[1] = (o.data[1]*data[0]) + (o.data[5]*data[1]) +
(o.data[9]*data[2]);

result.data[5] = (o.data[1]*data[4]) + (o.data[5]*data[5]) +
(o.data[9]*data[6]);

result.data[9] = (o.data[1]*data[8]) + (o.data[5]*data[9]) +
(o.data[9]*data[10]);

result.data[2] = (o.data[2]*data[0]) + (o.data[6]*data[1]) +
(o.data[10]*data[2]);

result.data[6] = (o.data[2]*data[4]) + (o.data[6]*data[5]) +
(o.data[10]*data[6]);

result.data[10] = (o.data[2]*data[8]) + (o.data[6]*data[9]) +
(o.data[10]*data[10]);

result.data[3] = (o.data[3]*data[0]) + (o.data[7]*data[1]) +
(o.data[11]*data[2]) + data[3];

result.data[7] = (o.data[3]*data[4]) + (o.data[7]*data[5]) +
(o.data[11]*data[6]) + data[7];

result.data[11] = (o.data[3]*data[8]) + (o.data[7]*data[9]) +
(o.data[11]*data[10]) + data[11];

return result;
}

};

9.4 Implementing the Mathematics 171

Some graphics libraries use a full 16-element matrix for transforms; most of those
(but not all) will also use four-element vectors for position. They allow the program-
mer to work in four dimensions. There are some interesting graphical effects that are
made possible this way, including the perspective transformations needed to model a
camera. If you are relying on the mathematics libraries that these APIs provide, you
will not need to worry about the number of entries in the matrix: chances are you’ll
only be using the first 12 for your physics development. If you are implementing the
mathematics classes as I have been, then you have the choice of whether to use the
full or the 3 × 4 matrix.

Whereas we added an extra padding element to our vector class so that it sits
nicely on machines with 128-bit math processors and 16-byte alignment, we don’t
need to do the same for matrices because each row of the matrix is 128 bits long (as-
suming we’re using 32-bit floating-point numbers, although running this at double
precision will be much slower in any case).

The code will take less memory if you use 3 × 4 matrices and rely on the last,
unstored line of every matrix being [0 0 0 1]. But check to see whether the machine
you are developing has built-in hardware-level support for matrix transformation.
Implementing your own routines and ignoring these will result in worse performance
(and take more effort) in the long run.

9.4.3 THE MATRIX INVERSE AND TRANSPOSE

A matrix represents a transformation, and we often need to find out how to reverse
the transformation. If we have a matrix that changes from an object’s local coordi-
nates to world coordinates, it will be useful to be able to create a matrix that gets us
back again: converting world coordinates to local coordinates.

For example, if we determine that our car has collided with a barrier, we know
the position of the collision in world coordinates. We’d like to be able to turn this
position into local coordinates to see which bit of the car got hit.

If a matrix transforms vectors from one basis to another, then the inverse of the
matrix can convert them back. If we combine a matrix with its inverse, we get the
“identity matrix”: a matrix representing a transformation that has no effect. In other
words, if we transform a vector by a matrix and then by its inverse, we get back to
where we started:

M−1M = I

For a 3 × 3 matrix, the identity matrix is

I =
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Inverting large matrices is a challenging computer science problem (in fact, it is
the fundamental problem that the most complex game physics engines try to solve,

172 Chapter 9 The Mathematics of Rotations

as we’ll see in chapter 18). Techniques involve walking through the matrix and rear-
ranging its elements using a range of mathematical manipulations. Fortunately, for
3 × 3 and 4 × 4 matrices we can write the solutions directly. For a 3 × 3 matrix,

M =
⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

the inverse is

M−1 = 1

det M

⎡
⎢⎣

ei − fh ch − bi bf − ce

fg − di ai − cg cd − af

dh − eg bg − ah ae − bd

⎤
⎥⎦ [9.7]

where det M is the determinant of the matrix, which for a 3 × 3 matrix is

det M = aei + dhc + gbf − ahf − gec − dbi

Because we take 1 over the determinant in equation 9.7, the inverse only exists if the
determinant is non-zero.

You can verify for yourself that the inverse matrix, when multiplied by the original
matrix, does give the identity matrix. The reason the inverse has the form it does, and
what the meaning of the determinant is, are beyond the scope of this book.2 To un-
derstand why the preceding equations work, we’d have to cover various bits of matrix
mathematics that we otherwise wouldn’t need. If you are interested in the features
and mathematics of matrices, any undergraduate textbook on matrix analysis will
provide more details. For an even more exhaustive (if considerably tougher) treat-
ment, I’d recommend Horn and Johnson [1990] and [1994], two highly respected
references on the topic.

We can implement our 3 × 3 matrix inverse as follows:

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array

2. A good rule of thumb I use (which may offend mathematical purists) is to think of the determinant
as the “size” of the matrix. In fact, for a 2 × 2 dimensional matrix the determinant is the area of the
parallelogram formed from its column vectors, and for a 3 × 3 matrix it is the area of the parallelepiped
formed from its three columns.

The inverse formula of equation 9.7 can then be thought of as adjusting the elements and dividing
by the size of the matrix. Thinking this way can cause problems with more advanced matrix math, so
remember that it’s only a mnemonic.

9.4 Implementing the Mathematics 173

* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

/**
* Sets the matrix to be the inverse of the given matrix.
*
* @param m The matrix to invert and use to set this.
*/
void setInverse(const Matrix3 &m)
{

real t4 = m.data[0]*m.data[4];
real t6 = m.data[0]*m.data[5];
real t8 = m.data[1]*m.data[3];
real t10 = m.data[2]*m.data[3];
real t12 = m.data[1]*m.data[6];
real t14 = m.data[2]*m.data[6];

// Calculate the determinant.
real t16 = (t4*m.data[8] - t6*m.data[7] - t8*m.data[8] +

t10*m.data[7] + t12*m.data[5] - t14*m.data[4]);

// Make sure the determinant is non-zero.
if (t16 == (real)0.0f) return;
real t17 = 1/t16;

data[0] = (m.data[4]*m.data[8]-m.data[5]*m.data[7])*t17;
data[1] = -(m.data[1]*m.data[8]-m.data[2]*m.data[7])*t17;
data[2] = (m.data[1]*m.data[5]-m.data[2]*m.data[4])*t17;
data[3] = -(m.data[3]*m.data[8]-m.data[5]*m.data[6])*t17;
data[4] = (m.data[0]*m.data[8]-t14)*t17;
data[5] = -(t6-t10)*t17;
data[6] = (m.data[3]*m.data[7]-m.data[4]*m.data[6])*t17;
data[7] = -(m.data[0]*m.data[7]-t12)*t17;
data[8] = (t4-t8)*t17;

}

/** Returns a new matrix containing the inverse of this matrix. */
Matrix3 inverse() const
{

Matrix3 result;
result.setInverse(*this);
return result;

174 Chapter 9 The Mathematics of Rotations

}

/**
* Inverts the matrix.
*/

void invert()
{

setInverse(*this);
}

};

Only square matrices have an inverse. For a 3×4 matrix, we need to again remem-
ber that our matrix is shorthand for a 4 × 4 matrix. The 4 × 4 matrix has an inverse
that can be written in much the same way as the 3 × 3 matrix. And fortunately for
us the resulting matrix will have a bottom row of [0 0 0 1], so we can represent the
inverse as a 3 × 4 matrix.

Unfortunately the algebra is more complex still, and it would run to about a page
of equations. Assuming your aim is to implement the code, I’ll skip the long equations
and give the implementation:

Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.
*/
class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Returns the determinant of the matrix.
*/

real getDeterminant() const;

/**
* Sets the matrix to be the inverse of the given matrix.
*
* @param m The matrix to invert and use to set this.
*/

void setInverse(const Matrix4 &m);

/** Returns a new matrix containing the inverse of this matrix. */

9.4 Implementing the Mathematics 175

Matrix4 inverse() const
{

Matrix4 result;
result.setInverse(*this);
return result;

}

/**
* Inverts the matrix.
*/
void invert()
{

setInverse(*this);
}

};

Excerpt from src/core.cpp

real Matrix4::getDeterminant() const
{

return data[8]*data[5]*data[2]+
data[4]*data[9]*data[2]+
data[8]*data[1]*data[6]-
data[0]*data[9]*data[6]-
data[4]*data[1]*data[10]+
data[0]*data[5]*data[10];

}

void Matrix4::setInverse(const Matrix4 &m)
{

// Make sure the determinant is non-zero.
real det = getDeterminant();
if (det == 0) return;
det = ((real)1.0)/det;

data[0] = (-m.data[9]*m.data[6]+m.data[5]*m.data[10])*det;
data[4] = (m.data[8]*m.data[6]-m.data[4]*m.data[10])*det;
data[8] = (-m.data[8]*m.data[5]+m.data[4]*m.data[9]* m.data[15])*det;

data[1] = (m.data[9]*m.data[2]-m.data[1]*m.data[10])*det;
data[5] = (-m.data[8]*m.data[2]+m.data[0]*m.data[10])*det;
data[9] = (m.data[8]*m.data[1]-m.data[0]*m.data[9]* m.data[15])*det;

data[2] = (-m.data[5]*m.data[2]+m.data[1]*m.data[6]* m.data[15])*det;

176 Chapter 9 The Mathematics of Rotations

data[6] = (+m.data[4]*m.data[2]-m.data[0]*m.data[6]* m.data[15])*det;
data[10] = (-m.data[4]*m.data[1]+m.data[0]*m.data[5]* m.data[15])*det;

data[3] = (m.data[9]*m.data[6]*m.data[3]
-m.data[5]*m.data[10]*m.data[3]
-m.data[9]*m.data[2]*m.data[7]
+m.data[1]*m.data[10]*m.data[7]
+m.data[5]*m.data[2]*m.data[11]
-m.data[1]*m.data[6]*m.data[11])*det;

data[7] = (-m.data[8]*m.data[6]*m.data[3]
+m.data[4]*m.data[10]*m.data[3]
+m.data[8]*m.data[2]*m.data[7]
-m.data[0]*m.data[10]*m.data[7]
-m.data[4]*m.data[2]*m.data[11]
+m.data[0]*m.data[6]*m.data[11])*det;

data[11] =(m.data[8]*m.data[5]*m.data[3]
-m.data[4]*m.data[9]*m.data[3]
-m.data[8]*m.data[1]*m.data[7]
+m.data[0]*m.data[9]*m.data[7]
+m.data[4]*m.data[1]*m.data[11]
-m.data[0]*m.data[5]*m.data[11])*det;

}

You’ll notice from this code that the inverse again exists only when the determinant
of the matrix is non-zero.

The Matrix Transpose

Whenever the determinant is non-zero, we can always use the preceding equations to
find the inverse of a matrix. It is not the simplest process, however, and in some cases
we can do much better.

If we have a matrix that represents a rotation only, we can make use of the fact
that the inverse of the transformation is another rotation, about the same axis but
at the opposite angle. This is equivalent to inverting the axis and using the same an-
gle. We can create a matrix that rotates the same degree in the opposite direction by
transposing the original matrix.

The transpose of a matrix

M =
⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

9.4 Implementing the Mathematics 177

is made by swapping its rows and columns:

M� =
⎡
⎢⎣

a d g

b e h

c f i

⎤
⎥⎦

If M is a rotation matrix, then

M� = M−1

We can implement this for our 3 × 3 matrix in this way:

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array
* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

/**
* Sets the matrix to be the transpose of the given matrix.
*
* @param m The matrix to transpose and use to set this.
*/
void setTranspose(const Matrix3 &m)
{

data[0] = m.data[0];
data[1] = m.data[3];
data[2] = m.data[6];
data[3] = m.data[1];
data[4] = m.data[4];
data[5] = m.data[7];
data[6] = m.data[2];
data[7] = m.data[5];
data[8] = m.data[8];

}

/** Returns a new matrix containing the transpose of this matrix. */
Matrix3 transpose() const
{

Matrix3 result;

178 Chapter 9 The Mathematics of Rotations

result.setTranspose(*this);
return result;

}
};

It will be useful at several points in the engine to transpose rather than request a
full inverse when we know the matrix is a rotation matrix only.

There is no point implementing a transpose function for the 3 × 4 matrix. It
doesn’t have a geometric correlate: transposing a homogeneous matrix doesn’t make
sense geometrically. If there is any non-zero element in the fourth column, then it
will be transposed into the fourth row, which we don’t have in our matrix.

This makes sense: we will only use transposition to do cheap inverses on rotation
matrices. If the 3 × 4 were a pure rotation matrix with no translation, then it would
have zeros in its fourth column. If this were the case, we could represent it as a 3 × 3
matrix.

There are other reasons to transpose a matrix, outside of our needs. If you are
working with an existing matrix library with a full 4 × 4 matrix implementation, it is
likely to have a transpose function.

9.4.4 CONVERTING A QUATERNION TO A MATRIX

In addition to matrix manipulation, we’ll need an operation to convert a quaternion
to a matrix. Your graphics engine is likely to need transformations expressed as a
matrix. In order to draw an object we’ll need to convert from its position vector and
orientation quaternion into a transform matrix for rendering.

Sometimes we’ll want just the rotation matrix in its 3 × 3 form, and other times
we’ll want the full transformation matrix. In each case the conversion from a quater-
nion to a matrix uses the results we saw in sections 9.2.3 and 9.2.4, where both the
quaternion and the rotation matrix were expressed in terms of an axis and an angle.

We could reconstruct the axis and angle from the quaternion and then feed it
into equation 9.3. If we do this, we can simplify out the axes and angles and find an
expression for the matrix purely in terms of the coefficients of the quaternion

Θ =
⎡
⎢⎣

1 − (2y2 + 2z2) 2xy + 2zw 2xz − 2yw

2xy − 2zw 1 − (2x2 + 2z2) 2yz + 2xw

2xz + 2yw 2yz − 2xw 1 − (2x2 + 2y2)

⎤
⎥⎦

where w, x, y, and z are the components of the quaternion

θˆ =

⎡
⎢⎢⎢⎣

w

x

y

z

⎤
⎥⎥⎥⎦

9.4 Implementing the Mathematics 179

When implemented, the 3 × 3 version, including rotation, looks like this:

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array
* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

/**
* Sets this matrix to be the rotation matrix corresponding to
* the given quaternion.
*/
void setOrientation(const Quaternion &q)
{

data[0] = 1 - (2*q.j*q.j + 2*q.k*q.k);
data[1] = 2*q.i*q.j + 2*q.k*q.r;
data[2] = 2*q.i*q.k - 2*q.j*q.r;
data[3] = 2*q.i*q.j - 2*q.k*q.r;
data[4] = 1 - (2*q.i*q.i + 2*q.k*q.k);
data[5] = 2*q.j*q.k + 2*q.i*q.r;
data[6] = 2*q.i*q.k + 2*q.j*q.r;
data[7] = 2*q.j*q.k - 2*q.i*q.r;
data[8] = 1 - (2*q.i*q.i + 2*q.j*q.j);

}
};

The 3 × 4 version, adding position to the rotation, looks like this:

Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.
*/
class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Sets this matrix to be the rotation matrix corresponding to

180 Chapter 9 The Mathematics of Rotations

* the given quaternion.
*/

void setOrientationAndPos(const Quaternion &q, const Vector3 &pos)
{

data[0] = 1 - (2*q.j*q.j + 2*q.k*q.k);
data[1] = 2*q.i*q.j + 2*q.k*q.r;
data[2] = 2*q.i*q.k - 2*q.j*q.r;
data[3] = pos.x;

data[4] = 2*q.i*q.j - 2*q.k*q.r;
data[5] = 1 - (2*q.i*q.i + 2*q.k*q.k);
data[6] = 2*q.j*q.k + 2*q.i*q.r;
data[7] = pos.y;

data[8] = 2*q.i*q.k + 2*q.j*q.r;
data[9] = 2*q.j*q.k - 2*q.i*q.r;
data[10] = 1 - (2*q.i*q.i + 2*q.j*q.j);
data[11] = pos.z;

}
};

9.4.5 TRANSFORMING VECTORS

In section 9.1.3 we looked at finding the position of part of an object, even when the
object had been moved and rotated. This is a conversion between object coordinates
(i.e., the position of the part relative to the origin of the object and its axes) and world
coordinates (its position relative to the global origin and direction of axes).

This conversion can be performed by multiplying the local coordinates by the
object’s transform matrix. The transform matrix in turn can be generated from the
quaternion and position as we saw earlier. We end up with a 3 × 4 transform matrix.
Working out the world coordinates, given local coordinates and a transform matrix,
is a matter of simply multiplying the vector by the matrix:

Vector3 localToWorld(const Vector3 &local, const Matrix4 &transform)
{

return transform.transform(local);
}

The opposite transform, from world coordinates to local coordinates, involves
the same process but using the inverse of the transform matrix. The inverse does the
opposite of the original matrix: it converts world coordinates into local coordinates.

9.4 Implementing the Mathematics 181

Vector3 worldToLocal(const Vector3 &world, const Matrix4 &transform)
{

Matrix4 inverseTransform;
inverseTransform.setInverse(transform);

return inverseTransform.transform(world);
}

If the transform matrix is made up of only a rotation and a translation (as it
should be for our needs), we can do this in one step.

We split the 3 × 4 matrix into two components: the translation vector (i.e., the
fourth column of the matrix) and the 3 × 3 rotation matrix. First we perform the
inverse translation by simply subtracting the translation vector. Then we make use of
the fact that the inverse of a 3×3 rotation matrix is simply its transpose, and multiply
by the transpose.

This can be done in one method that looks like this:

Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.
*/
class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Transform the given vector by the transformational inverse
* of this matrix.
*/
Vector3 transformInverse(const Vector3 &vector) const
{

Vector3 tmp = vector;
tmp.x -= data[3];
tmp.y -= data[7];
tmp.z -= data[11];
return Vector3(

tmp.x * data[0] +
tmp.y * data[4] +
tmp.z * data[8],

tmp.x * data[1] +

182 Chapter 9 The Mathematics of Rotations

tmp.y * data[5] +
tmp.z * data[9],

tmp.x * data[2] +
tmp.y * data[6] +
tmp.z * data[10]

);
}

};

which is called like this:

Vector3 worldToLocal(const Vector3 &world, const Matrix4 &transform)
{

return transform.transformInverse(world);
}

Recall from chapter 2 that vectors can represent positions as well as directions.
This is a significant distinction when it comes to transforming vectors. So far we have
looked at vectors representing positions. In this case converting between local and
object coordinates is a matter of multiplying by the transform matrix, as we have
seen.

For direction vectors, however, the same is not true. If we start with a direction
vector in object space, for example, the Z-axis direction vector

⎡
⎢⎣

0

0

1

⎤
⎥⎦

and multiply it by a transformation matrix—for example, the translation only

⎡
⎢⎣

1 0 0 1

0 1 0 0

0 0 1 0

⎤
⎥⎦

we end up with a direction vector, that of

⎡
⎢⎣

1

0

1

⎤
⎥⎦

9.4 Implementing the Mathematics 183

Clearly converting the local Z-axis direction vector into world coordinates, for an
object that has no rotation, should give us the Z-axis direction vector. Directions
should not change magnitude, and if there is no rotation, they should not change at
all.

In other words, direction vectors should be immune to any translational compo-
nent of the transformation matrix. We can do this only by multiplying the vector by a
3 × 3 matrix, which ensures that there is no translational component. Unfortunately
this will be inconvenient at several points, because we will have gone to the trouble of
building a 3 × 4 transform matrix, and it would be a waste to create another matrix
just for transforming directions. To solve this we can add two specialized methods
to the Matrix4 class to deal specifically with transforming vectors. One performs the
normal transformation (from local to world coordinates), and the other performs the
inverse (from world to local coordinates).

Excerpt from include/cyclone/core.h

/**
* Holds a transform matrix, consisting of a rotation matrix and
* a position. The matrix has 12 elements; it is assumed that the
* remaining four are (0,0,0,1), producing a homogenous matrix.
*/
class Matrix4
{

// ... Other Matrix4 code as before ...

/**
* Transform the given direction vector by this matrix.
*/
Vector3 transformDirection(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] +
vector.y * data[1] +
vector.z * data[2],

vector.x * data[4] +
vector.y * data[5] +
vector.z * data[6],

vector.x * data[8] +
vector.y * data[9] +
vector.z * data[10]

);
}

184 Chapter 9 The Mathematics of Rotations

/**
* Transform the given direction vector by the
* transformational inverse of this matrix.
*/

Vector3 transformInverseDirection(const Vector3 &vector) const
{

return Vector3(
vector.x * data[0] +
vector.y * data[4] +
vector.z * data[8],

vector.x * data[1] +
vector.y * data[5] +
vector.z * data[9],

vector.x * data[2] +
vector.y * data[6] +
vector.z * data[10]

);
}

};

These can be called in the same way as before:

Vector3 localToWorldDirn(const Vector3 &local, const Matrix4 &transform)
{

return transform.transformDirection(local);
}

and

Vector3 worldToLocalDirn(const Vector3 &world, const Matrix4 &transform)
{

return transform.transformInverseDirection(world);
}

9.4.6 CHANGING THE BASIS OF A MATRIX

There is one final thing we’ll need to do with matrices that hasn’t been covered yet.
Recall that we can think of a transformation matrix as converting between one basis
and another, one set of axes and another. If the transformation is a 3 × 4 matrix,

9.4 Implementing the Mathematics 185

FIGURE 9.6 A matrix has its basis changed.

then the change can also involve a shift in the origin. We used this transformation to
convert a vector from one basis to another.

We will also meet a situation in which we need to transform a whole matrix from
one basis to another. This can be a little more difficult to visualize.

Let’s say we have a matrix Mt that performs some transformation, as shown in
the first part of figure 9.6. (The figure is in 2D for ease of illustration, but the same
principles apply in 3D.) It performs a small rotation around the origin; part A of the
figure shows an object being rotated.

Now let’s say we have a different basis, but we want exactly the same transforma-
tion. In our new basis we’d like to find a transformation that has the same effect (i.e.,
it leaves the object at the same final position), but works with the new coordinate
system. This is shown in part B of figure 9.6; now the origin has moved (we’re in a
different basis), but we’d like the effect of the transformation to be the same. Clearly,
if we applied Mt in the new basis, it would give a different end result.

Let’s assume we have a transformation Mb between our original basis B1 and our
new basis B2. Is there some way we can create a new transformation from Mt and Mb

that would replicate the behavior that Mt gave us in B1 but in the new B2?
The solution is to use Mb and M−1

b in a three-stage process:

1. We perform the transformation M−1
b , which takes us from B2 back into B1.

2. We then perform the original transform Mt , since we are now in the basis B1,
where it was originally correct.

3. We then need to get back into basis B2, so we apply transformation Mb.

186 Chapter 9 The Mathematics of Rotations

So we end up with

M′
t = MbMtM

−1
b

bearing in mind that multiplied matrices are equivalent to transformations carried
out in reverse order.

We will need to use this function whenever we have a matrix expressed in one
basis and we need it in another. We can do this using the multiplication and inverse
functions we have already implemented: there is no need for a specialized function.

In particular the technique will be indispensable in the next chapter when we
come to work with the inertia tensor of a rigid body. At that stage I will provide a
dedicated implementation that takes advantage of some other properties of the inertia
tensor that simplifies the mathematics.

9.4.7 THE QUATERNION CLASS

We’ve covered the basic mathematical operations for matrices and have a solid Matrix
and Vector class implemented. Before we can move on, we also need to create a data
structure to manipulate quaternions.

In this section we will build a Quaternion class. The basic data structure looks like
this:

Excerpt from include/cyclone/core.h

/**
* Holds a three degree of freedom orientation.
*/
class Quaternion
{
public:

union {
struct {

/**
* Holds the real component of the quaternion.
*/

real r;

/**
* Holds the first complex component of the quaternion.
*/

real i;

/**
* Holds the second complex component of the quaternion.
*/

real j;

9.4 Implementing the Mathematics 187

/**
* Holds the third complex component of the quaternion.
*/

real k;
};

/**
* Holds the quaternion data in array form.
*/
real data[4];

};
};

9.4.8 NORMALIZING QUATERNIONS

As we saw in the earlier discussion, quaternions only represent a rotation if they have a
magnitude of 1. All the operations we will be performing keep the magnitude at 1, but
numerical inaccuracies and rounding errors can cause this constraint to be violated
over time. Once in a while it is a good idea to renormalize the quaternion. We can
perform this with the following method:

Excerpt from include/cyclone/core.h

/**
* Holds a three degree of freedom orientation.
*/
class Quaternion
{

// ... other Quaternion code as before ...

/**
* Normalizes the quaternion to unit length, making it a valid
* orientation quaternion.
*/
void normalize()
{

real d = r*r+i*i+j*j+k*k;

// Check for zero length quaternion, and use the no-rotation
// quaternion in that case.
if (d == 0) {

r = 1;
return;

}

188 Chapter 9 The Mathematics of Rotations

d = ((real)1.0)/real_sqrt(d);
r *= d;
i *= d;
j *= d;
k *= d;

}
};

9.4.9 COMBINING QUATERNIONS

We combine two quaternions by multiplying them together. This is exactly the same
as for rotation (or any other transformation) matrix: the result of q

ˆ
p
ˆ

is a rotation that
is equivalent to performing rotation (p

ˆ
) first, then (q

ˆ
).

As we saw in section 9.2.4, the multiplication of two quaternions has the following
form:

⎡
⎢⎢⎢⎣

w1

x1

y1

z1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w2

x2

y2

z2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1w2 − x1x2 − y1y2 − z1z2

w1x2 + x1w2 − y1z2 − z1y2

w1y2 − x1z2 + y1w2 − z1x2

w1z2 + x1y2 − y1x2 + z1w2

⎤
⎥⎥⎥⎦

which is implemented as

Excerpt from include/cyclone/core.h

/**
* Holds a three degree of freedom orientation.
*/

class Quaternion
{

// ... other Quaternion code as before ...

/**
* Multiplies the quaternion by the given quaternion.
*
* @param multiplier The quaternion by which to multiply.
*/
void operator *=(const Quaternion &multiplier)
{

Quaternion q = *this;
r = q.r*multiplier.r - q.i*multiplier.i -

q.j*multiplier.j - q.k*multiplier.k;
i = q.r*multiplier.i + q.i*multiplier.r +

q.j*multiplier.k - q.k*multiplier.j;

9.4 Implementing the Mathematics 189

j = q.r*multiplier.j + q.j*multiplier.r +
q.k*multiplier.i - q.i*multiplier.k;

k = q.r*multiplier.k + q.k*multiplier.r +
q.i*multiplier.j - q.j*multiplier.i;

}
};

9.4.10 ROTATING

Occasionally we need to rotate a quaternion by some given amount. If a quaternion
represents the orientation of an object, and we need to alter that orientation by ro-
tating it, we can convert the orientation and the desired rotation into matrices and
multiply them. But there is a more direct way to do this.

The amount of rotation is most simply represented as a vector (since the rotation
amount isn’t bounded, just as we saw for angular velocity). We can then alter the
quaternion using the equation

θˆ
′ = θˆ + 1

2
�θˆ θˆ [9.8]

which is similar to the equation we saw in section 9.3, but replaces the velocity × time
with a single absolute angular change (θ).

Here, as in the case of angular velocity, the rotation is provided as a vector con-
verted into a non-normalized quaternion:

[�θx�θy�θz] → [0�θx�θy�θz]

This can be implemented as

Excerpt from include/cyclone/core.h

/**
* Holds a three degree of freedom orientation.
*/
class Quaternion
{

// ... other Quaternion code as before ...

void rotateByVector(constVector& vector)
{

Quaternion q(0, vector.x * scale, vector.y * scale,
vector.z * scale);

(*this) *= q;
}

};

190 Chapter 9 The Mathematics of Rotations

9.4.11 UPDATING BY THE ANGULAR VELOCITY

The final operation we need to do is to update the orientation quaternion by applying
the angular velocity for a specified duration of time. In section 9.3 we saw that this is
handled by the equation

θˆ
′ = θˆ + δt

2
ωˆ θˆ

where ωˆ is the quaternion form of the angular velocity and t is the duration to update
by. This can be implemented as

Excerpt from include/cyclone/core.h

/**
* Holds a three degree of freedom orientation.
*/

class Quaternion
{

// ... other Quaternion code as before ...

/**
* Adds the given vector to this, scaled by the given amount.
* This is used to update the orientation quaternion by a rotation
* and time.
*
* @param vector The vector to add.
*
* @param scale The amount of the vector to add.
*/
void addScaledVector(const Vector3& vector, real scale)
{

Quaternion q(0,
vector.x * scale,
vector.y * scale,
vector.z * scale);

q *= *this;
r += q.r * ((real)0.5);
i += q.i * ((real)0.5);
j += q.j * ((real)0.5);
k += q.k * ((real)0.5);

}
};

9.5 Summary 191

We now have a Quaternion class that contains all the functionality we need for the
rest of the engine. As with vectors and matrices, there are a lot of other operations
we could add—more conversions, other mathematical operators. If you are using an
existing quaternion library, it might have other functions defined, but since we will
not need them, I will avoid giving implementations that we won’t use.

9.5 SUMMARY

We have come a long way in this chapter, and if you weren’t familiar with matrices and
quaternions before, then this has been a big step. We’ve now met all the mathematics
we need to see us through to our final physics engine.

In this chapter I’ve hinted at the way some of this mathematics is used in the
engine. Chapter 10 starts to rebuild our engine to support full 3D rigid bodies, with
angular as well as linear motion.

This page intentionally left blank

10
LAWS OF MOTION

FOR RIGID BODIES

n this chapter we’re going to repeat the work we did in chapters 2, 3, and 5, this
I time working with rigid bodies rather than particles. We’ll do this by creating a
new class: RigidBody.

In section 9.1.3 I mentioned that if an object’s origin is placed at its center of mass,
then its linear motion will be just like that of a particle. We’ll make use of that fact
in this chapter. Almost all the code for the linear motion of our rigid body is lifted
directly from our particle class. To this we will add two things:

1. The laws of motion for rotating bodies, equivalent to the way we implemented
Newton’s second law of motion.

2. The mathematics of forces that have both a linear and a rotational effect. The
question is, for a given force applied, how much will the object rotate?

With the rigid body in place, and these two extensions implemented, we will have
a rigid-body physics engine equivalent to the particle engine from part I. Adding
collisions and hard constraints will then occupy us for the remainder of this book.

10.1 THE RIGID BODY

We can start by creating a RigidBody class, containing the same information we had
in the Particle class, and adding the extra data structures for rotation that we met in
the previous chapter. The code looks like the following.

193

194 Chapter 10 Laws of Motion for Rigid Bodies

Excerpt from include/cyclone/body.h

/**
* A rigid body is the basic simulation object in the physics core.
*/
class RigidBody
{
public:

/**
* Holds the inverse of the mass of the rigid body. It is more
* useful to hold the inverse mass because integration is simpler,
* and because in real time simulation it is more useful to have
* bodies with infinite mass (immovable) than zero mass (completely
* unstable in numerical simulation).
*/

real inverseMass;
/**
* Holds the linear position of the rigid body in world space.
*/

Vector3 position;

/**
* Holds the angular orientation of the rigid body in world space.
*/

Quaternion orientation;

/**
* Holds the linear velocity of the rigid body in world space.
*/

Vector3 velocity;

/**
* Holds the angular velocity, or rotation, or the rigid body
* in world space.
*/

Vector3 rotation;

/**
* Holds a transform matrix for converting body space into world
* space and vice versa. This can be achieved by calling the
* getPointIn*Space functions.

Matrix4 transformMatrix;

};

10.1 The Rigid Body 195

I have added a matrix to the class to hold the current transform matrix for the
object. This matrix is useful for rendering the object and will be useful at various
points in the physics too, so much so that it is worth the storage space to keep a copy
with the rigid body.

It should be derived from the orientation and position of the body once per frame
to make sure it is correct. We will not update the matrix within the physics or use it in
any way where it might get out of synch with the orientation and position. We’re not
trying to store the same information twice: the position and orientation are in charge;
the transform matrix member just acts as a cache to avoid repeatedly recalculating this
important quantity.

I call this “derived data,” and it is the first of a handful we’ll add to the rigid body.
If you are working on a highly memory-starved machine, you may want to remove
these data: they are only copies of existing information in a more convenient form.
You can simply calculate them as they are needed. The same is true for all the derived
data I will add to the rigid body.

Let’s add a function to the class to calculate the transform matrix and a function
to calculate all derived data. Initially calculateDerivedData will only calculate the
transform matrix:

Excerpt from include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Calculates internal data from state data. This should be called
* after the body’s state is altered directly (it is called
* automatically during integration). If you change the body’s
* state and then intend to integrate before querying any data
* (such as the transform matrix), then you can omit this step.
*/
void calculateDerivedData();

};

Excerpt from src/body.cpp

/**
* Inline function that creates a transform matrix from a position
* and orientation.
*/
static inline void _calculateTransformMatrix(Matrix4 &transformMatrix,

const Vector3 &position,
const Quaternion &orientation)

{
transformMatrix.data[0] = 1-2*orientation.j*orientation.j-

2*orientation.k*orientation.k;

196 Chapter 10 Laws of Motion for Rigid Bodies

transformMatrix.data[1] = 2*orientation.i*orientation.j -
2*orientation.r*orientation.k;

transformMatrix.data[2] = 2*orientation.i*orientation.k +
2*orientation.r*orientation.j;

transformMatrix.data[3] = position.x;

transformMatrix.data[4] = 2*orientation.i*orientation.j +
2*orientation.r*orientation.k;

transformMatrix.data[5] = 1-2*orientation.i*orientation.i-
2*orientation.k*orientation.k;

transformMatrix.data[6] = 2*orientation.j*orientation.k -
2*orientation.r*orientation.i;

transformMatrix.data[7] = position.y;

transformMatrix.data[8] = 2*orientation.i*orientation.k -
2*orientation.r*orientation.j;

transformMatrix.data[9] = 2*orientation.j*orientation.k +
2*orientation.r*orientation.i;

transformMatrix.data[10] = 1-2*orientation.i*orientation.i-
2*orientation.j*orientation.j;

transformMatrix.data[11] = position.z;
}
void RigidBody::calculateDerivedData()
{

// Calculate the transform matrix for the body.
_calculateTransformMatrix(transformMatrix, position, orientation);

}

Later we will add calls to additional calculations to this method.

10.2 NEWTON 2 FOR ROTATION

In Newton’s second law of motion, we saw that the change in velocity depends on a
force acting on the object and the object’s mass:

p̈ = m−1f

For rotation we have a very similar law. The change in angular velocity depends on
two things: we have torque τ rather than force, and the moment of inertia I rather
than mass:

θ̈ = I−1τ

Let’s look at these two in more depth.

10.2 Newton 2 for Rotation 197

10.2.1 TORQUE

Torque (also sometimes called “moments”) can be thought of as a twisting force.
You may be familiar with a car that has a lot of torque: it can apply a great deal of
turning force to the wheels. An engine that can generate a lot of torque will be better
at accelerating the spin of the wheels. If the car has poor tires, this will leave a big black
mark on the road and a lot of smoke in the air; with appropriate grip, this rotation
will be converted into forward acceleration. In either case the torque is spinning the
wheels, and the forward motion is a secondary effect caused by the tires gripping the
road.

In fact torque is slightly different from force. We can turn a force into a torque—
that is, a straight push or pull into a turning motion. Imagine turning a stiff nut with
a wrench: you turn the nut by pushing or pulling on the handle of the wrench. When
you turn up the volume knob on a stereo, you grip it by both sides and push up with
your thumb and down with your finger (if you’re right-handed). In either case you
are applying a force and getting angular motion as a result.

The angular acceleration depends on the size of the force you exert and how far
from the turning point you apply it. Take the wrench and nut example: you can undo
the nut if you exert more force onto the wrench or if you push farther along the handle
(or use a longer-handled wrench). When turning a force into a torque, the size of the
force is important, as is the distance from the axis of rotation.

The equation that links force and torque is

τ = pf × f [10.1]

where f is the force being applied, and pf is the point at which the force is being
applied, relative to the origin of the object (i.e., its center of mass, for our purposes).

Every force that applies to an object will generate a corresponding torque. When-
ever we apply a force to a rigid body, we need to use it in the way we have so far: to
perform a linear acceleration. We will additionally need to use it to generate a torque.
If you look at equation 10.1, you may notice that any force applied so that f and pf are
in the same direction will have zero torque. Geometrically this is equivalent to saying
that if the extended line of the force passes through the center of mass, then no torque
is generated. Figure 10.1 illustrates this. We’ll return to this property in section 10.3
when we combine all the forces and torques.

In three dimensions it is important to notice that a torque needs to have an axis.
We can apply a turning force about any axis we choose. So far we’ve considered cases
such as the volume knob or nut where the axis is fixed. For a freely rotating object,
however, the torque can act to turn the object about any axis. We give torques in a
scaled axis representation:

τ = a d̂

where a is the magnitude of the torque and d̂ is a unit-length vector in the axis around
which the torque applies. We always consider that torques act clockwise when looking

198 Chapter 10 Laws of Motion for Rigid Bodies

FIGURE 10.1 A force generating zero torque.

in the direction of their axis. To get a counterclockwise torque, we simply flip the sign
of the axis.

Equation 10.1 provides our torque in the correct format: the torque is the vector
product of the force (which includes its direction and magnitude) and the position of
its application.

10.2.2 THE MOMENT OF INERTIA

So we have torque—the rotational equivalent to force. Now we come to the moment
of inertia: roughly the rotational equivalent of mass.

The moment of inertia of an object is a measure of how difficult it is to change that
object’s rotation speed. Unlike mass, however, it depends on how you spin the object.

Take a long stick like a broom handle and twirl it. You have to put a reasonable
amount of effort into getting it twirling. Once it is twirling, you likewise have to apply
a noticeable braking force to stop it again. Now stand it on end on the ground and
you can get it spinning lengthwise quite easily with two fingers. And you can very
easily stop its motion.

For any axis on which you spin an object, it may have a different moment of iner-
tia. The moment of inertia depends on the mass of the object and the distance of that
mass from the axis of rotation. Imagine the stick being made up of lots of particles;
twirling the stick in the manner of a majorette involves accelerating particles that lie a
long way from the axis of rotation. In comparison to twirling the stick lengthwise, the
particles of the stick are a long way from the axis. The inertia will therefore be greater,
and the stick will be more difficult to rotate.

We can calculate the moment of inertia about an axis in terms of a set of particles
in the object:

Ia =
n∑

i=1

mid
2
pi→a

where n is the number of particles, dpi→a is the distance of particle i from the axis
of rotation a, and Ia is the moment of inertia about that axis. You may also see this

10.2 Newton 2 for Rotation 199

equation in terms of an infinite number of particles, using an integral. For almost
all applications, however, you can get away with splitting an object into particles and
using the sum. This is particularly useful when trying to calculate the moment of
inertia of an unusual-shape object. We’ll return to the moments of inertia of different
objects later in the section.

Clearly we can’t use a single value for the moment of inertia as we did for mass.
It depends completely on the axis we choose. About any particular axis, we have only
one moment of inertia, but there are any number of axes we could choose. Fortunately
the physics of rigid bodies means we don’t need to have an unlimited number of
different values either. We can compactly represent all the different values in a matrix
called the “inertia tensor.”

Before I describe the inertia tensor in more detail, it is worth getting some ter-
minology clear. The moments of inertia for an object are normally represented as an
inertia tensor. However, the two terms are somewhat synonymous in physics engine
development. The “tensor” bit also causes confusion. A tensor is simply a generalized
version of a matrix. Whereas vectors can be thought of as a one-dimensional array
of values and matrices as a two-dimensional array, tensors can have any number of
dimensions. Thus both a vector and a matrix are tensors.

Although the inertia tensor is called a tensor, for our purposes it is always two-
dimensional. In other words, it is always just a matrix. It is sometimes called the “mass
matrix,” and we could call it the “inertia matrix,” I suppose, but it’s not a term that I’ve
heard used. For most of this book I’ll just talk about the inertia tensor, meaning the
matrix representing all the moments of inertia of an object; this follows the normal
idiom of game development.

The inertia tensor in three dimensions is a 3 × 3 matrix that is characteristic of a
rigid body (in other words, we keep an inertia tensor for each body, just as each body
has its own mass). Along the leading diagonals the tensor has the moment of inertia
about each of its axes—X, Y, and Z:

⎡
⎢⎣

Ix

Iy

Iz

⎤
⎥⎦

where Ix is the moment of inertia of the object about its X axis through its center of
mass; similarly for Iy and Iz .

The remaining entries don’t hold moments of inertia. They are called “products
of inertia” and are defined in this way:

Iab =
n∑

i=1

miapi bpi

200 Chapter 10 Laws of Motion for Rigid Bodies

where api is the distance of particle i from the center of mass of the object, in the
direction of a. We use this to calculate Ixy , Ixz , and Iyz . In the case of Ixy, we get

Ixy =
n∑

i=1

mixpi ypi

where xpi is the distance of the particle from the center of mass in the X axis direction;
similarly for ypi in the Y axis direction. Using the scalar products of vectors we get

Ixy =
n∑

i=1

mi(pi · x)(pi · y)

Note that, unlike for the moment of inertia, each particle can contribute a negative
value to this sum. In the moment of inertia calculation, the distance was squared, so
its contribution is always positive. It is entirely possible to have a non-positive total
product of inertia. Zero values are particularly common for many different shaped
objects.

It is difficult to visualize what the product of inertia means either in geometrical
or mathematical terms. It represents the tendency of an object to rotate in a direction
different from the direction in which the torque is being applied. You may have seen
this in the behavior of a child’s top. You start by spinning it in one direction, but it
jumps upside down and spins on its head almost immediately.

For a freely rotating object, if you apply a torque, you will not always get rotation
about the same axis to which you applied the torque. This is the effect that gyroscopes
are based on: they resist falling over because they transfer any gravity-induced falling
rotation back into the opposite direction to stand up straight once more. The prod-
ucts of inertia control this process: the transfer of rotation from one axis to another.

We place the products of inertia into our inertia tensor to give the final structure:

I =
⎡
⎢⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤
⎥⎦ [10.2]

The mathematician Euler gave the rotational version of Newton’s second law of mo-
tion in terms of this structure:

τ = Iθ̈

which gives us the angular acceleration in terms of the torque applied:

θ̈ = I−1τ [10.3]

where I−1 is the inverse of the inertia tensor, performed using a regular matrix inver-
sion.

10.2 Newton 2 for Rotation 201

Note that because of the presence of the products of inertia, the direction of the
torque vector τ is not necessarily the same as the angular acceleration vector θ̈ . If the
products of inertia are all zero,

I =
⎡
⎢⎣

Ix 0 0

0 Iy 0

0 0 Iz

⎤
⎥⎦

and the torque vector is in one of the principal axis directions—X, Y, or Z—then the
acceleration will be in the direction of the torque.

Many shapes have easy formulae for calculating their inertia tensor. A rectangular
block, for example, of mass m and dimensions dx, dy , and dz aligned along the X, Y,
and Z axes, respectively, has an inertia tensor of

I =
⎡
⎢⎣

1
12 m(d2

y + d2
z) 0 0

0 1
12 m(d2

x + d2
z) 0

0 0 1
12 m(d2

x + d2
y)

⎤
⎥⎦

A list of some other inertia tensors for common shapes is provided in appendix A.

The Inverse Inertia Tensor

For exactly the same reasons as we saw for mass, we will store the inverse inertia tensor
rather than the raw inertia tensor. The rigid body has an additional member added,
a Matrix3 instance:

Excerpt from include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Holds the inverse of the body’s inertia tensor. The inertia
* tensor provided must not be degenerate (that would mean
* the body had zero inertia for spinning along one axis).
* As long as the tensor is finite, it will be invertible.
* The inverse tensor is used for similar reasons as those
* for the use of inverse mass.
*
* The inertia tensor, unlike the other variables that define
* a rigid body, is given in body space.
*
* @see inverseMass
*/

202 Chapter 10 Laws of Motion for Rigid Bodies

Matrix3 inverseInertiaTensor;
};

Having the inverse at hand allows us to calculate the angular acceleration directly
from equation 10.3 without performing the inverse operation each time. When set-
ting up a rigid body, we can start with a regular inertia tensor, then call the inverse
function of the matrix, and set the rigid body’s inverse inertia tensor to get the result:

Excerpt from src/body.cpp

void RigidBody::setInertiaTensor(const Matrix3 &inertiaTensor)
{

inverseInertiaTensor.setInverse(inertiaTensor);
_checkInverseInertiaTensor(inverseInertiaTensor);

}

10.2.3 THE INERTIA TENSOR IN WORLD COORDINATES

There is still one subtle complication to address before we can leave the inertia ten-
sor. Throughout the discussion of moments of inertia I have deliberately not dis-
tinguished between the object’s local coordinates and the game’s world coordinates.
Consider the example in figure 10.2. In the first example the object’s local axes are in
the same direction as the world’s axes. If we apply a torque about the X axis, then we
will get the same moment of inertia whether we work in local or world coordinates.

In the second part of the figure, the object has rotated. Now whose X axis do we
need to use? In fact the torque is expressed in world coordinates, so the rotation will
depend on the moment of inertia of the object about the world’s X axis. The inertia
tensor is defined in terms of the object’s axis, however. It is constant: we don’t change
the inertia tensor each time the object moves.

FIGURE 10.2 The moment of inertia is local to an object.

10.2 Newton 2 for Rotation 203

In fact, in the acceleration equation

θ̈ = I−1τ

the torque τ and the resulting angular acceleration θ̈ are both given relative to the
world axes. So the inertia tensor we need should also be given in world coordinates.

We don’t want to have to recalculate the inertia tensor by summing masses at
each frame, so we need a simpler way to get the inertia tensor in world coordinates.
We can achieve this by creating a new derived quantity: the inverse inertia tensor
in world coordinates. At each frame we can apply a change of basis transformation
to convert the constant inertia tensor in object coordinates into the corresponding
matrix in world coordinates.

As with the transform matrix we add an update to recalculate the derived quantity
at each frame. It gets put together in this way:

Excerpt from src/body.cpp

/**
* Internal function to do an inertia tensor transform by a quaternion.
* Note that the implementation of this function was created by an
* automated code generator and optimizer.
*/
static inline void _transformInertiaTensor(Matrix3 &iitWorld,

const Quaternion &q,
const Matrix3 &iitBody,
const Matrix4 &rotmat)

{
real t4 = rotmat.data[0]*iitBody.data[0]+

rotmat.data[1]*iitBody.data[3]+
rotmat.data[2]*iitBody.data[6];

real t9 = rotmat.data[0]*iitBody.data[1]+
rotmat.data[1]*iitBody.data[4]+
rotmat.data[2]*iitBody.data[7];

real t14 = rotmat.data[0]*iitBody.data[2]+
rotmat.data[1]*iitBody.data[5]+
rotmat.data[2]*iitBody.data[8];

real t28 = rotmat.data[4]*iitBody.data[0]+
rotmat.data[5]*iitBody.data[3]+
rotmat.data[6]*iitBody.data[6];

real t33 = rotmat.data[4]*iitBody.data[1]+
rotmat.data[5]*iitBody.data[4]+
rotmat.data[6]*iitBody.data[7];

real t38 = rotmat.data[4]*iitBody.data[2]+
rotmat.data[5]*iitBody.data[5]+
rotmat.data[6]*iitBody.data[8];

204 Chapter 10 Laws of Motion for Rigid Bodies

real t52 = rotmat.data[8]*iitBody.data[0]+
rotmat.data[9]*iitBody.data[3]+
rotmat.data[10]*iitBody.data[6];

real t57 = rotmat.data[8]*iitBody.data[1]+
rotmat.data[9]*iitBody.data[4]+
rotmat.data[10]*iitBody.data[7];

real t62 = rotmat.data[8]*iitBody.data[2]+
rotmat.data[9]*iitBody.data[5]+
rotmat.data[10]*iitBody.data[8];

iitWorld.data[0] = t4*rotmat.data[0]+
t9*rotmat.data[1]+
t14*rotmat.data[2];

iitWorld.data[1] = t4*rotmat.data[4]+
t9*rotmat.data[5]+
t14*rotmat.data[6];

iitWorld.data[2] = t4*rotmat.data[8]+
t9*rotmat.data[9]+
t14*rotmat.data[10];

iitWorld.data[3] = t28*rotmat.data[0]+
t33*rotmat.data[1]+
t38*rotmat.data[2];

iitWorld.data[4] = t28*rotmat.data[4]+
t33*rotmat.data[5]+
t38*rotmat.data[6];

iitWorld.data[5] = t28*rotmat.data[8]+
t33*rotmat.data[9]+
t38*rotmat.data[10];

iitWorld.data[6] = t52*rotmat.data[0]+
t57*rotmat.data[1]+
t62*rotmat.data[2];

iitWorld.data[7] = t52*rotmat.data[4]+
t57*rotmat.data[5]+
t62*rotmat.data[6];

iitWorld.data[8] = t52*rotmat.data[8]+
t57*rotmat.data[9]+
t62*rotmat.data[10];

}
void RigidBody::calculateDerivedData()
{

// Calculate the inertiaTensor in world space.
_transformInertiaTensor(inverseInertiaTensorWorld,

orientation,
inverseInertiaTensor,

10.3 D’Alembert for Rotation 205

transformMatrix);
}

Note particularly that the change of basis transform from section 9.4.6 is optimized
into one operation.

When we transform the inertia tensor, we are only interested in the rotational
component of the object’s transform. It doesn’t matter where the object is in space,
but only which direction it is oriented in. The code therefore treats the 4×3 transform
matrix as if it were a 3 × 3 matrix (i.e., a rotation matrix only). Together these two
optimizations make for considerably faster code.

So at each frame we calculate the transform matrix, transform the inverse inertia
tensor into world coordinates, and then perform the rigid-body integration with this
transformed version. Before we look at the code to perform the final integration, we
need to examine how a body reacts to a whole series of torques and forces (with their
corresponding torque components).

10.3 D’ALEMBERT FOR ROTATION

Just as we have an equivalent of Newton’s second law of motion, we can also find a
rotational version of D’Alembert’s principle. Recall that D’Alembert’s principle allows
us to accumulate a whole series of forces into one single force, and then apply just this
one force. The effect of the one accumulated force is identical to the effect of all its
component forces. We take advantage of this by simply adding together all the forces
applied to an object, and then only calculating its acceleration once, based on the
resulting total.

The same principle applies to torques: the effect of a whole series of torques is
equal to the effect of a single torque that combines them all. We have

τ =
∑

i

τi

where τi is the ith torque.
There is a complication, however. We saw earlier in the chapter that an off-center

force can be converted into torques. To get the correct set of forces and torques we
need to take into account this calculation.

Another consequence of D’Alembert’s principle is that we can accumulate the
torques caused by forces in exactly the same way as we accumulate any other torques.
Note that we cannot merely accumulate the forces and then take the torque equiva-
lent of the resulting force. We could have two forces (like the finger and thumb on
a volume dial) that cancel each other out as linear forces but combine to generate a
large torque.

So we have two accumulators: one for forces and another for torques. Each force
applied is added to both the force and torque accumulator, where its torque is calcu-
lated by

206 Chapter 10 Laws of Motion for Rigid Bodies

τ = pf × f

(i.e., equation 10.1, which we saw earlier). For each torque applied we accumulate just
the torque (torques have no corresponding force component).

Some forces, such as gravity, will always apply to the center of mass of an object.
In this case there is no point trying to work out their torque component because they
can never induce rotation. We allow this in our engine by providing a third route:
adding a force with no position of application. In this case we merely add the force to
the force accumulator and bypass torque accumulation. In code this looks like this:

Excerpt from include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Adds the given force to the center of mass of the rigid body.
* The force is expressed in world coordinates.
*
* @param force The force to apply.
*/
void addForce(const Vector3 &force);

};

Excerpt from src/body.cpp

void RigidBody::addForce(const Vector3 &force)
{

forceAccum += force;
}

In addition, when we perform our per-frame setup of the body, we zero the torque:

Excerpt from include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

};

Excerpt from src/body.cpp

void RigidBody::integrate(real duration)
{

// Clear accumulators.
clearAccumulators();

}

10.3 D’Alembert for Rotation 207

void RigidBody::clearAccumulators()
{

forceAccum.clear();
torqueAccum.clear();

}

An important caution here concerns the location of the application of a force.
It should be expressed in world coordinates. If you have a spring attached at a fixed
point on an object, you need to recalculate the position of the attachment point at
each frame. You can do this simply by transforming the object coordinates’ position
by the transform matrix, to get a position in world coordinates. Because this is such
a useful thing to be able to do, I provide an additional force-accumulation method to
support it:

Excerpt from include/cyclone/body.h

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Adds the given force to the given point on the rigid body.
* The direction of the force is given in world coordinates,
* but the application point is given in body space. This is
* useful for spring forces, or other forces fixed to the
* body.
*
* @param force The force to apply.
*
* @param point The location at which to apply the force, in
* body coordinates.
*/
void addForceAtBodyPoint(const Vector3 &force,

const Vector3 &point);
};

Excerpt from src/body.cpp

void RigidBody::addForceAtBodyPoint(const Vector3 &force,
const Vector3 &point)

{
// Convert to coordinates relative to the center of mass.
Vector3 pt = getPointInWorldSpace(point);
addForceAtPoint(force, pt);

}

208 Chapter 10 Laws of Motion for Rigid Bodies

Be careful: The direction of the force is expected in world coordinates, whereas the
application point is expected in object coordinates! This matches the way that these
calculations are normally performed, but you could create yet another version that
transforms both the force and the position into world coordinates. In this case, be
careful with the transformation of the force: it should be rotated only; it shouldn’t be
transformed by the full 4 × 3 matrix (which adds the offset position to the vector).

10.3.1 FORCE GENERATORS

We need to update the force generators we created for particles to work with rigid
bodies. In particular they may have to be able to apply a force at a specific point on
the rigid body. If this isn’t at the center of mass, we’ll be generating both a force and a
torque for our rigid body, as we saw in the previous section.

This is the logic of not having a force generator return just a single force vector: we
won’t know where the force is applied. Instead we allow the force generator to apply a
force in whatever way it wants. We can create force generators that call the method to
apply a force at a point other than the body’s center of mass, or they may just apply a
force to the center of mass.

This means that the gravity force generator is almost the same. It is changed only
to accept the rigid-body type rather than a particle:

Excerpt from include/cyclone/fgen.h

/**
* A force generator that applies a gravitational force. One instance
* can be used for multiple rigid bodies.
*/
class Gravity : public ForceGenerator
{

/** Holds the acceleration due to gravity. */
Vector3 gravity;

public:

/** Creates the generator with the given acceleration. */
Gravity(const Vector3 &gravity);

/** Applies the gravitational force to the given rigid body. */
virtual void updateForce(RigidBody *body, real duration);

};

Excerpt from src/fgen.cpp

void Gravity::updateForce(RigidBody* body, real duration)
{

// Check that we do not have infinite mass

10.3 D’Alembert for Rotation 209

if (!body->hasFiniteMass()) return;

// Apply the mass-scaled force to the body
body->addForce(gravity * body->getMass());

}

The spring force generator now needs to know where the spring is attached on
each object, and it should generate an appropriate force with its application point.

Excerpt from include/cyclone/fgen.h

/**
* A force generator that applies a Spring force.
*/
class Spring : public ForceGenerator
{

/** The point of connection of the spring, in local coordinates. */
Vector3 connectionPoint;

/**
* The point of connection of the spring to the other object,
* in that object’s local coordinates.
*/
Vector3 otherConnectionPoint;

/** The particle at the other end of the spring. */
RigidBody *other;

/** Holds the spring constant. */
real springConstant;

/** Holds the rest length of the spring. */
real restLength;

public:

/** Creates a new spring with the given parameters. */
Spring(const Vector3 &localConnectionPt,

RigidBody *other,
const Vector3 &otherConnectionPt,
real springConstant,
real restLength);

/** Applies the spring force to the given particle. */

210 Chapter 10 Laws of Motion for Rigid Bodies

virtual void updateForce(RigidBody *body, real duration);
};

Excerpt from src/fgen.cpp

void Spring::updateForce(RigidBody* body, real duration)
{

// Calculate the two ends in world space.
Vector3 lws = body->getPointInWorldSpace(connectionPoint);
Vector3 ows = other->getPointInWorldSpace(otherConnectionPoint);

// Calculate the vector of the spring.
Vector3 force = lws - ows;

// Calculate the magnitude of the force.
real magnitude = force.magnitude();
magnitude = real_abs(magnitude - restLength);
magnitude *= springConstant;

// Calculate the final force and apply it.
force.normalize();
force *= -magnitude;
body->addForceAtPoint(force, lws);

}

Torque Generators

We could follow the lead of the force generators and create a set of torque generators.
They fit into the same force generator structure we’ve used so far: calling the rigid
body’s addTorque method.

You can use this to constantly drive a rotating object, such as a set of fan blades or
the wheels of a car.

10.4 THE RIGID-BODY INTEGRATION

So, we’re finally in the position to write the integration routine that will update the
position and orientation of a rigid body based on its forces and torques. It will have
the same format as the integration for a particle, with the rotation components added.
To correspond with the linear case, we add an additional data member to the rigid
body to control angular velocity damping—the amount of angular velocity the body
loses each second:

Excerpt from include/cyclone/body.h

class RigidBody
{

10.4 The Rigid-Body Integration 211

// ... Other RigidBody code as before ...

/**
* Holds the amount of damping applied to angular
* motion. Damping is required to remove energy added
* through numerical instability in the integrator.
*/
real angularDamping;

};

Just as we saw with linear velocity, the angular velocity is updated with the equa-
tion

θ̇ ′ = θ̇ (da)
t + θ̈ t

where da is the angular damping coefficient. The complete integration routine now
looks like this:

Excerpt from src/body.cpp

void RigidBody::integrate(real duration)
{

// Calculate linear acceleration from force inputs.
lastFrameAcceleration = acceleration;
lastFrameAcceleration.addScaledVector(forceAccum, inverseMass);

// Calculate angular acceleration from torque inputs.
Vector3 angularAcceleration =

inverseInertiaTensorWorld.transform(torqueAccum);

// Adjust velocities
// Update linear velocity from both acceleration and impulse.
velocity.addScaledVector(lastFrameAcceleration, duration);

// Update angular velocity from both acceleration and impulse.
rotation.addScaledVector(angularAcceleration, duration);

// Impose drag.
velocity *= real_pow(linearDamping, duration);
rotation *= real_pow(angularDamping, duration);

// Adjust positions
// Update linear position.
position.addScaledVector(velocity, duration);

// Update angular position.

212 Chapter 10 Laws of Motion for Rigid Bodies

orientation.addScaledVector(rotation, duration);

// Impose drag.
velocity *= real_pow(linearDamping, duration);
rotation *= real_pow(angularDamping, duration);

// Normalize the orientation, and update the matrices with the new
// position and orientation.
calculateDerivedData();

// Clear accumulators.
clearAccumulators();

}

10.5 SUMMARY

The physics of angular motion is very similar to the physics of linear motion we met
in chapter 3. In the same way that force is related to acceleration via mass, we’ve seen
that torque is related to angular acceleration via moment of inertia. The physics is
similar, but in each case the mathematics is more complex and the implementation
longer. The vector position found its angular correspondence in the quaternion for
orientation, and the scalar-valued mass became an inertia tensor.

The last two chapters have therefore been considerably more difficult than those at
the start of the book. If you have followed through to get a rigid-body physics engine,
then you can be proud of yourself. There are significant limits to what we’ve built so
far (notably we haven’t brought collisions into the new engine) that we’ll spend the
rest of the book resolving, but there are also a lot of great things that you can do with
what we have. Chapter 11 introduces some applications for our current engine.

11
THE RIGID-BODY

PHYSICS ENGINE

ur physics engine is now capable of simulating full rigid bodies in full 3D. The
O spring forces and other force generators will work with this approach, but the
hard constraints we met in chapter 7 will not. We will look at collision detection in
the next part (part IV) of the book, and then return to full 3D constraints in part V.

Even without hard constraints, there is still a lot we can do. This chapter looks at
two applications of physics that don’t rely on hard constraints for their effects: boats
and aircraft. We’ll build a flight simulator and a boat model. Adding the aerodynamics
from the flight simulator allows us to build a sailing simulation.

11.1 OVERVIEW OF THE ENGINE

The rigid-body physics engine has two components:

1. The rigid bodies themselves keep track of their position, movement, and mass
characteristics. To set up a simulation we need to work out what rigid bodies are
needed and then set their initial position, orientation, and velocities (both linear
and angular). We also need to set their inverse mass and inverse inertia tensor.
The acceleration of an object due to gravity is also held in the rigid body. (This
could be removed and replaced by a force, if you so desire.)

2. The force generators are used to keep track of forces that apply over several frames
of the game.

We have removed the contact resolution system from the mass-aggregate system (it
will be reintroduced in parts IV and V).

213

214 Chapter 11 The Rigid-Body Physics Engine

We can use the system we introduced in chapter 8 to manage the objects to be
simulated. In this case, however, they are rigid bodies rather than particles. The World
structure is modified accordingly:

Excerpt from include/cyclone/world.h

/**
* The world represents an independent simulation of physics. It
* keeps track of a set of rigid bodies, and provides the means to
* update them all.
*/

class World
{

/**
* Holds a single rigid body in a linked list of bodies.
*/
struct BodyRegistration
{

RigidBody *body;
BodyRegistration * next;

};

/**
* Holds the head of the list of registered bodies.
*/
BodyRegistration *firstBody;

};

As before, at each frame the startFrame method is first called, which sets up each
object by zeroing its force and torque accumulators and calculating its derived quan-
tities:

Excerpt from include/cyclone/world.h

/**
* The world represents an independent simulation of physics. It
* keeps track of a set of rigid bodies, and provides the means to
* update them all.
*/
class World
{

// ... other World data as before ...
/**
* Initializes the world for a simulation frame. This clears
* the force and torque accumulators for bodies in the
* world. After calling this, the bodies can have their forces

11.1 Overview of the Engine 215

* and torques for this frame added.
*/
void startFrame();
};

Excerpt from src/world.cpp

void World::startFrame()
{

BodyRegistration *reg = firstBody;
while (reg)
{

// Remove all forces from the accumulator.
reg->body->clearAccumulators();
reg->body->calculateDerivedData();

// Get the next registration.
reg = reg->next;

}
}

Again, additional forces can be applied after calling this method.
To execute the physics, the runPhysics method is called. This calls all the force

generators to apply their forces and then performs the integration of all objects:

Excerpt from include/cyclone/world.h

/**
* The world represents an independent simulation of physics. It
* keeps track of a set of rigid bodies, and provides the means to
* update them all.
*/
class World
{

// ... other World data as before ...
/**
* Processes all the physics for the world.
*/
void runPhysics(real duration);
};

Excerpt from src/world.cpp

void World::runPhysics(real duration)
{

// First apply the force generators
//registry.updateForces(duration);

216 Chapter 11 The Rigid-Body Physics Engine

// Then integrate the objects
BodyRegistration *reg = firstBody;
while (reg)
{

// Remove all forces from the accumulator
reg->body->integrate(duration);

// Get the next registration
reg = reg->next;

}
}

It no longer calls the collision detection system.
The calls to startFrame and runPhysics can occur in the same place in the game

loop.
Notice that I’ve made an additional call to the updateTransform method of each

object. It may have moved during the update (and in later sections during collision
resolution), so its transform matrix needs updating before it is rendered. Each object
is then rendered in turn using the rigid body’s transform.

11.2 USING THE PHYSICS ENGINE

Both sample programs for this physics engine use aerodynamics. We will create a new
force generator that can fake some important features of flight aerodynamics, enough
to produce a basic flight simulator suitable for use in a flight action game. We will use
the same generator to drive a sail model for a sailing simulator.

11.2.1 A FLIGHT SIMULATOR

There is no need for contact physics in a flight simulator, except with the ground, of
course. Many flight simulators assume that if you hit something in an airplane, then
it’s all over: a crash animation plays and the player starts again. This makes it a perfect
exercise ground for our current engine.

The dynamics of an aircraft are generated by the way air flows over its surfaces.
(This includes the surfaces that don’t move relative to the center of mass, such as the
fuselage, and control surfaces that can be made to move or change shape, such as the
wings and rudder.) The flow of air causes forces to be generated. Some, like drag, act
in the same direction that the aircraft is moving in. The most important force, lift,
acts at right angles to the flow of air. As the aircraft’s surfaces move at different angles
through the air, the proportion of each kind of force can change dramatically. If the
wing is slicing through the air, it generates lift; but if it is moving vertically through

11.2 Using the Physics Engine 217

the air, then it generates no lift. We’d like to be able to capture this kind of behavior
in a force generator that can produce sensible aerodynamic forces.

The Aerodynamic Tensor

To model the aerodynamic forces properly is very complex. The behavior of a real
aircraft depends on the fluid dynamics of air movement. This is a horrendously com-
plex discipline involving mathematics well beyond the scope of this book. To create
a truly realistic flight simulator involves some specialized physics that I don’t want to
venture into.

To make our life easier I will use a simplification: the “aerodynamic tensor.” The
aerodynamic tensor is a way of calculating the total force that a surface of the airplane
is generating based only on the speed that the air is moving over it.

The tensor is a matrix: a 3 × 3 matrix, exactly as we used for the inertia tensor. We
start with a wind speed vector and transform it using the tensor to give a force vector:

f a = Avw

where f a is the resulting force, A is the aerodynamic tensor, and vw is the velocity of
the air. Just as with the inertia tensor, we have to be careful of coordinates here. The
velocity of the air and the resulting force are both expressed in world coordinates, but
the aerodynamic tensor is in object coordinates. Again we need to change the basis of
the tensor at each frame before applying this function.

To fly the plane we can implement control surfaces in one of two ways. The first,
and most accurate, is to have two tensors representing the aerodynamic characteristics
when the surface is at its two extremes. At each frame the current position of the
control surface is used to blend the two tensors to create a tensor for the current
surface position.

In practice three tensors are sometimes needed, to represent the two extremes
plus the “normal” position of the control surface (which often has a quite different,
and not intermediate, behavior). For example, a wing with its aileron (the control
surface on the back of each wing) in line with the wing produces lots of lift and only a
modest amount of drag. With the aileron out of this position, either up or down, the
drag increases dramatically, but the lift can be boosted or cut (depending on whether
it is up or down).

The second approach is to actually tilt the whole surface slightly. We can do this by
storing an orientation for the aerodynamic surface and allowing the player to directly
control some of this orientation. To simulate the aileron on the wing the player might
be effectively tilting the whole wing. As the wing changes orientation, the air flow over
it will change and its one aerodynamic tensor will generate correspondingly different
forces.

The Aerodynamic Surface

We can implement an aerodynamic force generator using this technique. The force
generator is created with an aerodynamic tensor, and it is attached to the rigid body

218 Chapter 11 The Rigid-Body Physics Engine

at a given point. This is the point at which all its force will be felt. We can attach as
many surfaces as we need. The force generator looks like this:

Excerpt from include/cyclone/fgen.h

/**
* A force generator that applies an aerodynamic force.
*/
class Aero : public ForceGenerator
{

/**
* Holds the aerodynamic tensor for the surface in body space.
*/

Matrix3 tensor;

/**
* Holds the relative position of the aerodynamic surface
* in body coordinates.
*/

Vector3 position;

/**
* Holds a pointer to a vector containing the wind speed of
* the environment. This is easier than managing a separate
* wind speed vector per generator and having to update
* it manually as the wind changes.
*/

const Vector3* windspeed;

public:
/**
* Creates a new aerodynamic force generator with the
* given properties.
*/

Aero(const Matrix3 &tensor, const Vector3 &position,
const Vector3 *windspeed);

/**
* Applies the force to the given rigid body.
*/

virtual void updateForce(RigidBody *body, real duration);
};

The air velocity is calculated based on two values—the prevailing wind and the
velocity of the rigid body. The prevailing wind is a vector containing both the direc-

11.2 Using the Physics Engine 219

tion and magnitude of the wind. If the rigid body were not moving, it would still feel
this wind. We could omit this value for a flight game that doesn’t need to complicate
the players’ task by adding wind. It will become very useful when we come to model
our sailing simulator in the next section, however.

This implementation uses a single tensor only. To implement control surfaces we
need to extend this in one of the ways we looked at earlier. I will choose the more
accurate approach, with three tensors to represent the characteristics of the surface at
the extremes of its operation:

Excerpt from include/cyclone/fgen.h

/**
* A force generator with a control aerodynamic surface. This
* requires three inertia tensors, for the two extremes and the ’resting’
* position of the control surface.
* The latter tensor is the one inherited from the base class;
* the two extremes are defined in this class.
*/
class AeroControl : public Aero
{

/**
* The aerodynamic tensor for the surface, when the control is at
* its maximum value.
*/
Matrix3 maxTensor;

/**
* The aerodynamic tensor for the surface, when the control is at
* its minimum value.
*/
Matrix3 minTensor;

/**
* The current position of the control for this surface. This
* should range between -1 (in which case the minTensor value is
* used) through 0 (where the base-class tensor value is used)
* to +1 (where the maxTensor value is used).
*/
real controlSetting;

private:
/**
* Calculates the final aerodynamic tensor for the current
* control setting.
*/

220 Chapter 11 The Rigid-Body Physics Engine

Matrix3 getTensor();

public:
/**
* Creates a new aerodynamic control surface with the given
* properties.
*/

AeroControl(const Matrix3 &base, const Matrix3 &min,
const Matrix3 &max, const Vector3 &position,
const Vector3 *windspeed);

/**
* Sets the control position of this control. This

* should range between -1 (in which case the minTensor value is
* used) through 0 (where the base-class tensor value is used)
* to +1 (where the maxTensor value is used). Values outside that
* range give undefined results.
*/
void setControl(real value);

/**
* Applies the force to the given rigid body.
*/

virtual void updateForce(RigidBody *body, real duration);
};

Each control surface has an input, wired to the player’s (or AI’s) control. It ranges
from −1 to +1, where 0 is considered the “normal” position. The three tensors match
these three positions. Two of the three tensors are blended together to form a current
aerodynamic tensor for the setting of the surface. This tensor is then converted into
world coordinates and used as before.

Putting It Together

On the CD the flightsim demo shows this force generator in operation. You control
a model aircraft (seen from the ground for a bit of added challenge). The only forces
applied to the aircraft are gravity (represented as an acceleration value) and the aero-
dynamic forces from surface and control surface force generators. Figure 11.1 shows
the aircraft in action.

I have used four control surfaces: two wings, a tailplane, and a rudder. The tail-
plane is a regular surface force generator, with no control inputs (in a real plane the
tailplane usually does have control surfaces, but we don’t need them). It has the aero-

11.2 Using the Physics Engine 221

FIGURE 11.1 Screenshot of the flightsim demo.

dynamic tensor

A =
⎡
⎢⎣

−0.1 0 0

1 −0.5 0

0 0 −0.1

⎤
⎥⎦

Each wing has an identical control surface force generator. I have used two so that
their control surfaces can be operated independently. They use the following aero-
dynamic tensors:

A−1 =
⎡
⎢⎣

−0.2 0 0

−0.2 −0.5 0

0 0 −0.1

⎤
⎥⎦

A0 =
⎡
⎢⎣

−0.1 0 0

1 −0.5 0

0 0 −0.1

⎤
⎥⎦

A1 =
⎡
⎢⎣

−0.2 0 0

1.4 −0.5 0

0 0 −0.1

⎤
⎥⎦

for each extreme of the control input. When the player banks the aircraft, both wing
controls work in the same direction. When the player rolls, the controls work in op-
position.

222 Chapter 11 The Rigid-Body Physics Engine

Finally I have added a rudder—a vertical control surface to regulate the yaw of the
aircraft. It has the following tensors:

A−1 =
⎡
⎢⎣

−0.1 0 −0.4

0 −0.1 0

0 0 −0.5

⎤
⎥⎦

A0 =
⎡
⎢⎣

−0.1 0 0

0 −0.1 0

0 0 −0.5

⎤
⎥⎦

A1 =
⎡
⎢⎣

−0.1 0 0.4

0 −0.1 0

0 0 −0.5

⎤
⎥⎦

The surfaces are added to the aircraft in a simple setup function, and the game
loop is exactly as we’ve seen it before. The user input notifies the software as it hap-
pens. (This is a function of the OpenGL system we are using to run the demos; in
some engines you may have to call a function to explicitly ask for input.) The input
directly controls the current values for each control surface.

The full code for the demo can be found on the CD.

11.2.2 A SAILING SIMULATOR

Boat racing is another genre that doesn’t require hard constraints, at least in its sim-
plest form. If we want close racing with bumping boats, then we may need to add
more complex collision support. For our purpose we’ll implement a simple sailing
simulator for a single player.

The aerodynamics of the sail is very similar to the aerodynamics we used for flight
simulation. We’ll come back to the sail-specific setup in a moment, after looking at
the floating behavior of the boat.

Buoyancy

What needs revisiting at this point is our buoyancy model. In section 6.2.4 we created
a buoyancy force generator to act on a particle. We need to extend this to cope with
rigid bodies.

Recall that a submerged shape has a buoyancy that depends on the mass of the
water it displaces. If that mass of water is greater than the mass of the object, then
the net force will be upward and the object will float. The buoyancy force depends
only on the volume of the object that is submerged. We approximated this by treating
buoyancy like a spring: as the object is gradually submerged more, the force increases
until the object is considered to be completely under water, whereupon the force is

11.2 Using the Physics Engine 223

FIGURE 11.2 Different centers of buoyancy.

at its maximum. It doesn’t increase with further depth. This is an approximation
because it doesn’t take into account the shape of the object being submerged.

Originally the force directly acted on the particle. This is fine for representing
balls or other regular objects. On a real boat, however, the buoyancy does two jobs: it
keeps the boat afloat, and it keeps the boat upright. In other words, if the boat begins
to lean over (say a gust of wind catches it), the buoyancy will act to right it.

This tendency to stay upright is a result of the torque component of the buoyancy
force. Its linear component keeps the boat afloat, and its torque keeps it vertical. It
does this because, unlike in our particle force generator, the buoyancy force doesn’t
act at the center of gravity.

A submerged part of the boat will have a center of buoyancy, as shown in fig-
ure 11.2. The center of buoyancy is the point at which the buoyancy force can be
thought to be acting. Like the buoyancy force itself, the center of buoyancy is related
to the displaced water. The center of mass of the displaced water is the same as the
center of buoyancy that it generates.

So, just as the volume of water displaced depends on the shape of the submerged
object, so does the center of buoyancy. The farther the center of buoyancy is from the
center of mass, the more torque will be generated and the better the boat will be at
righting itself. If the center of mass is above the center of buoyancy, then the torque
will apply in the opposite direction and the buoyancy will act to topple the boat.

So how do we simulate this in a game? We don’t want to get into the messy details
of the shape of the water being displaced and finding its center of mass. Instead we

224 Chapter 11 The Rigid-Body Physics Engine

can simply fix the center of buoyancy to the rigid body. In a real boat the center
of buoyancy will move around as the boat pitches and rolls and a different volume
of water is displaced. Most boats are designed so that this variation is minimized,
however. Fixing the center of buoyancy doesn’t look odd for most games. It shows
itself mostly with big waves, but can be easily remedied, as we’ll see later.

Our buoyancy force generator can be updated to take an attachment point;
otherwise it is as before:

Excerpt from include/cyclone/fgen.h

/**
* A force generator to apply a buoyant force to a rigid body.
*/
class Buoyancy : public ForceGenerator
{

/**
* The maximum submersion depth of the object before
* it generates its maximum buoyancy force.
*/

real maxDepth;

/**
* The volume of the object.
*/

real volume;

/**
* The height of the water plane above y=0. The plane will be
* parallel to the XZ plane.
*/

real waterHeight;

/**
* The density of the liquid. Pure water has a density of
* 1000 kg per cubic meter.
*/

real liquidDensity;

/**
* The center of buoyancy of the rigid body, in body coordinates.
*/

Vector3 centerOfBuoyancy;

public:

/** Creates a new buoyancy force with the given parameters. */

11.2 Using the Physics Engine 225

Buoyancy(const Vector3 &cOfB,
real maxDepth, real volume, real waterHeight,
real liquidDensity = 1000.0f);

/**
* Applies the force to the given rigid body.
*/
virtual void updateForce(RigidBody *body, real duration);

};

There is nothing to stop us from attaching multiple buoyancy force generators to
a boat, to represent different parts of the hull. This allows us to simulate some of the
shift in the center of buoyancy. If we have two buoyancy force generators, one at the
front (fore) and one at the rear (aft) of a boat, then as it pitches forward and back
(through waves, for example), the fore and aft generators will be at different depths
in the water and will therefore generate different forces. The highly submerged front
of the boat will pitch up rapidly and believably. Without multiple attachments, this
wouldn’t look nearly as believable and may be obviously inaccurate.

For our sailing simulator we will use a catamaran with two hulls and four buoy-
ancy force generators: one fore and one aft on each hull.

The Sail, Rudder, and Hydrofoils

We will use aerodynamics to provide both the sail and the rudder for our boat. The
rudder is like the rudder on the aircraft: it acts to keep the boat going straight (or to
turn under the command of the player). On many sailing boats there is both a rudder
and a dagger board. The dagger board is a large vertical fin that keeps the boat moving
in a straight line and keeps it from easily tipping over when the wind catches the sail.
The rudder is a smaller vertical fin that can be tilted for turning. For our needs we
can combine the two into one. In fact, in many high-performance sailing boats the
two are combined into one structure.

The sail is the main driving force of the boat, converting wind into forward mo-
tion. It acts very much like an aircraft wing, turning air flow into lift. In the case of
a sailing boat the lift is used to propel the boat forward. There is a misconception
that the sail simply “catches” the air and the air drags the boat forward. This can be
achieved, certainly, and downwind an extra sail (the spinnaker) is often deployed to
increase the aerodynamic drag of the boat and cause it to be pulled along relative to
the water. In most cases, however, the sail acts more like a wing than a parachute. In
fact, the fastest boats can achieve incredible lift from their sails and travel considerably
faster than the wind speed.

Both the rudder and the sail are control surfaces: they can be adjusted to get the
best performance. They are both rotated rather than having pop-up control surfaces
to modify their behavior (although the sail can have its tension adjusted on some
boats). We will therefore implement a force generator for control surfaces using the

226 Chapter 11 The Rigid-Body Physics Engine

second possible adjustment approach from section 11.2.1: rotating the control sur-
face. The force generator looks like this:

Excerpt from include/cyclone/fgen.h

/**
* A force generator with an aerodynamic surface that can be re-oriented
* relative to its rigid body. This derives the
*/
class AngledAero : public Aero
{

/**
* Holds the orientation of the aerodynamic surface relative
* to the rigid body to which it is attached.
*/

Quaternion orientation;

public:
/**
* Creates a new aerodynamic surface with the given properties.
*/

Aero(const Matrix3 &tensor, const Vector3 &position,
const Vector3 *windspeed);

/**
* Sets the relative orientation of the aerodynamic surface relative
* to the rigid body it is attached to. Note that this doesn’t affect
* the point of connection of the surface to the body.
*/

void setOrientation(const Quaternion &quat);

/**
* Applies the force to the given rigid body.
*/

virtual void updateForce(RigidBody *body, real duration);
};

Notice that the generator keeps an orientation for the surface and uses this, in
combination with the orientation of the rigid body, to create a final transformation
for the aerodynamic surface. There is only one tensor, but the matrix by which it is
transformed is now the combination of the rigid body’s orientation and the adjustable
orientation of the control surface.

Although I won’t add them to our example, we could also add wings to the boat:
hydrofoils to lift it out of the water. These act just like wings on an aircraft, producing
vertical lift. Typically on a hydrofoil boat they are positioned lower than any part of

11.3 Summary 227

FIGURE 11.3 Screenshot of the sailboat demo.

the hull. The lift raises the boat out of the water (whereupon there is no buoyancy
force, of course, but no drag from the hull either), and only the hydrofoils remain
submerged.

The hydrofoils can be easily implemented as modified surface force generators.
The modification needs to make sure that the boat doesn’t start flying: it generates no
lift once the foil has left the water. In practice a hydrofoil is often designed to produce
less lift the higher the boat is out of the water so that the boat rapidly reaches its
optimum cruising height. This behavior also wouldn’t be difficult to implement; it
requires only scaling back the tensor-generated force based on how near the hydrofoil
is to the surface of the water.

The Sailing Example

The sailboat demo on the CD puts all these bits together. You can control a catama-
ran on a calm ocean. The orientations of the sail and rudder are the only adjustments
you can make. The prevailing wind direction and strength are indicated, as you can
see from the screenshot in figure 11.3.

The boat is set up with four buoyancy force generators, a sail, and a rudder. The
wind direction changes slowly but randomly over time. It is updated at each frame
with a simple recency-weighted random function.

The update of the boat is exactly the same as for the aircraft demo, and user input
is also handled as before (see the code on the CD for a complete listing).

11.3 SUMMARY

In this chapter we’ve met a set of real game examples where our physics engine com-
bines with real-world physics knowledge to produce a believable simulation. In the

228 Chapter 11 The Rigid-Body Physics Engine

case of both sailing and flight we use a simplification of fluid dynamics to quickly and
simply generate believable behavior.

The aerodynamic tensor isn’t sufficiently accurate for games that intend to simu-
late flight or sailing accuracy, but is perfectly sufficient for games that are not intended
to be realistic.

The situations I chose for this chapter were selected carefully, however, not to
embarrass the physics engine. As it stands, our engine is less capable than the mass-
aggregate engine we built in part II of this book. To make it truly useful we need to add
collisions back in. Unfortunately, with rotations in place this becomes a significantly
more complex process than we saw in chapter 7. It is worth taking the time to get it
right.

In that spirit, before we consider the physics of collisions again, we’ll build the
code to detect and report collisions in our game. Part IV of the book does that.

PART IV

Collision Detection

This page intentionally left blank

12
COLLISION

DETECTION

n this chapter and the next we’ll take a break from building the physics simulation
I and look at collision detection.

In chapter 7 we added contacts and collisions to a particle engine, but we removed
them to introduce rotating rigid bodies. We’re now on the road to having them back
in the engine. We could simply introduce contacts and collisions into the engine mag-
ically, without worrying about where they came from, just as in chapter 7. If you are
working with an existing collision detection library, then you can take this approach
and skip to chapter 14. This chapter and the next give an overview of where the con-
tact and collision information comes from and how it is generated.

I will not attempt to produce a comprehensive collision detection system. There
are books longer than this one on this one subject alone, and there are many pitfalls
and complications that would need discussing.

If you are working with an existing game engine, it is likely to have a collision
detection system that you can use. It is still worth reading through the following two
chapters, however. Not all rendering engines provide collision detection routines that
are inefficient (many use the same geometry as will be drawn, which is a waste of
processing time) or don’t provide the kind of detailed contact data that the physics
system needs.

I will step through one particular approach to collision detection that is useful for
smaller games. It is also useful as a jumping-off point into a more complete system
and as a way to raise the kinds of issue that are common to all collision detectors.

If you need to build a complete and comprehensive collision detection system,
then I’d recommend Ericson [2005] in the same series as this book. It contains many

231

232 Chapter 12 Collision Detection

details on tradeoffs, architecture, and optimization that are invaluable for a robust
end product.

12.1 COLLISION DETECTION PIPELINE

Collision detection can be a very time-consuming process. Each object, in the game
may be colliding with any other object, and each such pair has to be checked. If there
are hundreds of objects in the game, hundreds of thousands of checks may be needed.
And to make things worse, each check has to understand the geometry of the two ob-
jects involved, which might consist of thousands of polygons. So to perform a com-
plete collision detection, we may need a huge number of time-consuming checks.
This is not possible in the fraction of time we have between frames.

Fortunately there is plenty of room for improvement. The two key problems—
having too many possible collisions and having expensive checks—have independent
solutions. To reduce the number of checks needed, we can use a two-step process.

1. First we try to find sets of objects that are likely to be in contact with one another,
but without being too concerned about whether they actually are. This is typically
quite a fast process that uses rules of thumb and specialized data structures to
eliminate the vast majority of possible collision checks. It is called “coarse collision
detection.”

2. Then a second chunk of code looks at the candidate collisions and does the check
to determine whether they actually are in contact. This is “fine collision detec-
tion.” Objects that are in contact are examined to determine exactly where the
contact is on each object (needed for rigid bodies), and the normal of collision
(which we saw in chapter 7). This is sometimes called “contact generation,” and
the results can form the input to the physics engine.

The first element is covered in this chapter; the second element will be covered in
chapter 13.

To reduce the time taken for each check the geometry is typically simplified.
A special geometry just for collision detection is often created, making contact tests
far simpler. Collision geometry is discussed in section 13.1.

12.2 COARSE COLLISION DETECTION

The first phase of collision detection is tasked with generating a list of full-detail
checks that need to be performed.1 It needs to have the following key features.

1. In fact, we will not create an explicit list as a data structure to pass between the two phases. It is more
convenient to have the coarse collision detector simply call the fine collision detector each time it comes
across a likely collision. The fine collision detector can then accumulate a real list of actual collisions to
pass through to the physics engine.

12.3 Bounding Volumes 233

� It should be conservative. In other words, all the collisions in the game should
be contained on the list of checks. The coarse collision detector is allowed
to generate checks that end up not being collisions (called “false positives”),
but it should not fail to generate checks that would be collisions (called “false
negatives”).

� It should generate as small a list as possible. In combination with the previ-
ous feature, this means that the smallest list it can return is the list of checks
that will lead to contacts. In that case the coarse collision detection will be
performing a fully accurate collision detection, and there will be no need for
further checks. In practice, however, the coarse collision detection usually re-
turns a set of possible checks that contains many false positives.

� It should be as fast as possible. It may be possible to generate close to the
optimum number of required checks, but it defeats the object of the coarse
collision detector if it takes a long time to do so.

Two broad approaches are used for coarse collision detection: bounding volume
hierarchies and spatial data structures. We’ll look at these in turn.

12.3 BOUNDING VOLUMES

A bounding volume is an area of space that is known to contain an object. To represent
the volume for coarse collision detection, a simple shape is used, typically a sphere or
a box. The shape is made large enough so that the whole object is guaranteed to be
inside the shape.

The shape can then be used to perform some simple collision tests. If two objects
have bounding volumes that don’t touch, then there is no way in which the objects
within them can be in contact. Figure 12.1 shows two objects with spherical bounding
volumes.

Ideally bounding volumes should be as close-fitting to their object as possible. If
two close-fitting bounding volumes touch, then their objects are likely to touch. If
most of the space inside the bounding volumes isn’t occupied, then touching bound-
ing volumes is unlikely to mean the objects are in contact.

Spheres are convenient because they are easy to represent. Storing the center of
the sphere and its radius is enough:

struct BoundingSphere
{

Vector3 center;
real radius;

};

234 Chapter 12 Collision Detection

FIGURE 12.1 A spherical bounding volume.

It is also very easy to check whether two spheres overlap (see chapter 13 for the code).
They overlap if the distance between their centers is less than the sum of their radii.
Spheres are a good shape for bounding volumes for most objects.

Cubic boxes are also often used. They can be represented as a central point and
a set of dimensions, one for each direction. These dimensions are often called “half-
sizes” or “half-widths” because they represent the distance from the central point to
the edge of the box, which is half the overall size of the box in the corresponding
direction.

struct BoundingBox
{

Vector3 center;
Vector3 halfSize;

};

There are two common ways to use boxes as bounding volumes: either aligned to
the world coordinates (called “axis-aligned bounding boxes,” or AABBs) or aligned
to the object’s coordinates (called “object bounding boxes,” or OBBs).2 Spheres have
no such distinction because they don’t change under rotation. For tall and thin ob-

2. OBBs commonly can be oriented in a different way to the object they are enclosing. They still rotate
with the object and are expressed in object space, but they have a constant offset orientation. This allows
an even tighter fit in some cases, but adds an extra orientation to their representation and some overhead
when working with them. The BoundingBox data structure would work for either axis-aligned bounding
boxes or object bounding boxes with the same orientation as the rigid body they contained. For a general
object bounding box we’d need to have a separate orientation quaternion in the bounding box structure.

12.3 Bounding Volumes 235

jects, a bounding box will fit much more tightly than a bounding sphere. But detect-
ing touching boxes is much more complex than detecting touching spheres, and so
spheres are often a good place to start.

There are other possible bounding volume representations, with their own
strengths and weaknesses. None are very widespread, however, so I will ignore them
for the purpose of this chapter. They are discussed at length in Ericson [2005].

In the rest of this chapter I will use only bounding spheres. Anything that can be
done with bounding spheres can also be done with bounding boxes. Typically the box
version has exactly the same algorithm but will take longer and will use more tricky
mathematics. In learning to use the algorithms, bounding spheres are simpler to work
with.

As a tradeoff, however, it’s important to remember that we’re using these volumes
as a first check to see whether objects are touching. If we had more accurate bound-
ing volumes, then the first check would be more accurate, so we’d have less follow-up
work to do. In many cases (particularly with lots of boxlike things in the game, such as
crates), bounding spheres will generate many more potential collisions than bound-
ing boxes. Then the time we save in doing the simpler sphere-collision tests will be
lost by having additional potential collisions to reject using the more complex colli-
sion detection routines in this chapter.

12.3.1 HIERARCHIES

With each object enclosed in a bounding volume we can perform a cheap test to see
whether objects are likely to be in contact. If the bounding volumes are touching,
then the check can be returned from the coarse collision detector for a more detailed
examination by the fine collision detector. This speeds up collision detection dramat-
ically, but it still involves checking every pair of objects. We can avoid doing most of
these checks by arranging bounding volumes in hierarchies.

A bounding volume hierarchy (BVH) has each object in its bounding volume at
the leaves of a tree data structure. The lowest level bounding volumes are connected to
parent nodes in the data structure, each of which has its own bounding volume. The
bounding volume for a parent node is big enough to enclose all the objects descended
from it.

We could calculate the bounding box at each level in the hierarchy so it best fits
the object contained within it. This would give us the best possible set of hierar-
chical volumes. Many times, however, we can take the simpler route of choosing a
bounding volume for a parent node that encompasses the bounding volumes of all its
descendents. This leads to larger high-level bounding volumes, but recalculation of
bounding volumes can be much faster. There is a tradeoff, therefore, between query
performance (determining potential collisions) and the speed of building the data
structure.

Figure 12.2 illustrates a hierarchy containing four objects and three layers. Note
that there are no objects attached to parent nodes in the figure. This isn’t an absolute

236 Chapter 12 Collision Detection

FIGURE 12.2 A spherical bounding volume hierarchy.

requirement: we could have objects higher in the tree, providing their bounding vol-
ume completely encompasses their descendents. In most implementations, however,
objects are only found at the bottom. It is also common practice to have only two
children for each node in the tree (i.e., a binary tree data structure). There are mathe-
matical reasons for doing this (in terms of the speed of execution of collision queries),
but the best reason to use a binary tree is ease of implementation: it makes the data
structure compact and simplifies several of the algorithms we will meet later.

We can use the hierarchy to speed up collision detection: if the bounding volumes
of two nodes in the tree do not touch, then none of the objects that descend from
those nodes can possibly be in contact. By testing two bounding volumes high in the
hierarchy we can exclude all their descendents immediately.

If the two high-level nodes do touch, then the children of each node need to be
considered. Only combinations of these children that touch can have descendents
that are in contact. The hierarchy is descended recursively; at each stage only those
combinations of volumes that are touching are considered further. The algorithm
finally generates a list of potential contacts between objects. This list is exactly the
same as would have been produced by considering each possible pair of bounding
volumes, but it is typically found many times faster.3

Assuming that the hierarchy encompasses all the objects in the game, the code to
get a list of potential collisions looks like the following:

3. I say typically because it is possible for the bounding hierarchy to be slower than checking all possible
combinations. If all the objects in the game are touching or nearly touching one another, then almost
every bounding volume check will come up positive. In this case the overhead of descending the hierarchy
adds time. Fortunately this situation occurs only rarely and when there are very few objects. With a larger
number of objects (more than ten, I would estimate; it depends on the shape of the objects), there are
checks that will fail, and the hierarchy becomes faster.

12.3 Bounding Volumes 237

Excerpt from include/cyclone/collide_coarse.h

/**
* Stores a potential contact to check later.
*/
struct PotentialContact
{

/**
* Holds the bodies that might be in contact.
*/
RigidBody* body[2];

};

/**
* A base class for nodes in a bounding volume hierarchy.
*
* This class uses a binary tree to store the bounding
* volumes.
*/
template<class BoundingVolumeClass>
class BVHNode
{

public:
/**
* Holds the child nodes of this node.
*/
BVHNode * children[2];

/**
* Holds a single bounding volume encompassing all the
* descendents of this node.
*/
BoundingVolumeClass volume;

/**
* Holds the rigid body at this node of the hierarchy.
* Only leaf nodes can have a rigid body defined (see isLeaf).
* Note that it is possible to rewrite the algorithms in this
* class to handle objects at all levels of the hierarchy,
* but the code provided ignores this vector unless firstChild
* is NULL.
*/
RigidBody * body;
/**

238 Chapter 12 Collision Detection

* Checks if this node is at the bottom of the hierarchy.
*/

bool isLeaf() const
{

return (body != NULL);
}

/**
* Checks the potential contacts from this node downward in
* the hierarchy, writing them to the given array (up to the
* given limit). Returns the number of potential contacts it
* found.
*/

unsigned getPotentialContacts(PotentialContact* contacts,
unsigned limit) const;

};

template<class BoundingVolumeClass>
bool BVHNode<BoundingVolumeClass>::overlaps(

const BVHNode<BoundingVolumeClass> * other
) const

{
return volume->overlaps(other->volume);

}
template<class BoundingVolumeClass>
unsigned BVHNode<BoundingVolumeClass>::getPotentialContacts(

PotentialContact* contacts, unsigned limit
) const

{
// Early out if we don’t have the room for contacts, or
// if we’re a leaf node.
if (isLeaf() || limit == 0) return 0;

// Get the potential contacts of one of our children with
// the other.
return children[0]->getPotentialContactsWith(

children[1], contacts, limit
);

}

template<class BoundingVolumeClass>
unsigned BVHNode<BoundingVolumeClass>::getPotentialContactsWith(

const BVHNode<BoundingVolumeClass> *other,
PotentialContact* contacts,

12.3 Bounding Volumes 239

unsigned limit
) const

{
// Early-out if we don’t overlap or if we have no room
// to report contacts.
if (!overlaps(other) || limit == 0) return 0;

// If we’re both at leaf nodes, then we have a potential contact.
if (isLeaf() && other->isLeaf())
{

contacts->body[0] = body;
contacts->body[1] = other->body;
return 1;

}

// Determine which node to descend into. If either is
// a leaf, then we descend the other. If both are branches,
// then we use the one with the largest size.
if (other->isLeaf() ||

(!isLeaf() && volume->getSize() >= other->volume->getSize()))
{

// Recurse into ourself.
unsigned count = children[0]->getPotentialContactsWith(

other, contacts, limit
);

// Check whether we have enough slots to do the other side too.
if (limit > count) {

return count + children[1]->getPotentialContactsWith(
other, contacts+count, limit-count
);

} else {
return count;

}
}
else
{

// Recurse into the other node.
unsigned count = getPotentialContactsWith(

other->children[0], contacts, limit
);

// Check whether we have enough slots to do the other side too.
if (limit > count) {

240 Chapter 12 Collision Detection

return count + getPotentialContactsWith(
other->children[1], contacts+count, limit-count
);

} else {
return count;

}
}

}

This code can work with any kind of bounding volume hierarchy as long as each node
implements the overlaps method to check to see whether two volumes overlap. The
bounding sphere hierarchy is implemented as

Excerpt from include/cyclone/collide_coarse.h

/**
* Represents a bounding sphere that can be tested for overlap.
*/
struct BoundingSphere
{

Vector3 center;
real radius;

public:
/**
* Creates a new bounding sphere at the given center and radius.
*/

BoundingSphere(const Vector3 ¢er, real radius);

/**
* Creates a bounding sphere to enclose the two given bounding
* spheres.
*/

BoundingSphere(const BoundingSphere &one, const BoundingSphere &two);

/**
* Checks if the bounding sphere overlaps with the other given
* bounding sphere.
*/

bool overlaps(const BoundingSphere *other) const;
};

Excerpt from src/collide_coarse.cpp

bool BoundingSphere::overlaps(const BoundingSphere *other) const
{

12.3 Bounding Volumes 241

real distanceSquared = (center - other->center).squareMagnitude();
return distanceSquared < (radius+other->radius)*

(radius+other->radius);
}

In a full collision detection system it is common to have a method to query the hi-
erarchy against a known object too. This is simpler still: the object’s bounding volume
is checked against the root of the hierarchy, and as long as it overlaps, each descendent
is checked recursively.

12.3.2 BUILDING THE HIERARCHY

An important question to ask at this stage is how the hierarchy gets constructed. It
may be that your graphics engine has a bounding volume hierarchy already in place.
Bounding volume hierarchies are used extensively to reduce the number of objects
that need to be drawn. The root node of the hierarchy has its volume tested against
the current camera. If any part of the bounding volume can be seen by the camera,
then its child nodes are checked recursively. If a node can’t be seen by the camera,
then none of its descendents need to be checked. This is the same algorithm we used
for collision detection: in fact it is effectively checking for collisions with the viewable
area of the game.

In cases where a graphics engine does not have an existing bounding volume hi-
erarchy to determine what objects can be seen, or if you are creating a game from
scratch, you’ll have to create your own. Ideally the hierarchy should have some key
properties:

� The volume of the bounding volumes should be as small as possible, at each
level of the tree. This is true when a parent node groups together two bound-
ing volumes that are close together.

� Child bounding volumes of any parent should overlap as little as possible. Of-
ten this clashes with the first requirement, and in general it is better to favor
smaller volumes over minimal overlaps. In fact, if you choose a minimal over-
lap at some low level of the tree, it is likely to cause greater overlaps higher up
the tree: so a tree with an overall low overlap is likely to fulfill both require-
ments.

� The tree should be as balanced as possible. You should avoid having some
branches of the tree that are very deep while others are very shallow. The
worst-case scenario is a tree with one long branch. In this case the advan-
tage of having a hierarchy is minimal. The biggest speed-up is gained when all
branches are roughly at the same length.

There are various ways to construct a hierarchy, and each is a compromise be-
tween speed and quality. For relatively static worlds, where objects don’t move much,
a hierarchy can be created offline (i.e., while the game is not running: either while the
level is loading or, more likely, while building the level before it ships). For very dy-

242 Chapter 12 Collision Detection

FIGURE 12.3 Bottom-up hierarchy building in action.

namic worlds where objects are constantly in motion (a space shooter, for example),
the hierarchy needs to be rebuilt during the game.

I will give an overview and flavor of how hierarchies can be constructed, but it
would take many chapters to go into complete detail. You can find more information
in Ericson [2005].

The following are the three approaches to building a BVH.

� Bottom-up The bottom-up approach (illustrated in figure 12.3) starts with a
list of bounding volumes corresponding to individual objects. Pairs of objects
are chosen based on the requirements of the hierarchy just discussed, and a
parent node is added for the pair. This parent node then replaces the objects
in the list. The process continues until there is only one node left in the list.

� Top-down The top-down approach (illustrated in figure 12.4) starts with the
same list as before. At each iteration of the algorithm the objects in the list
are separated into two groups so that members of each group are clustered

12.3 Bounding Volumes 243

FIGURE 12.4 Top-down hierarchy building in action.

together. The same algorithm then applies to each group, splitting it into two,
until there is only one object in each group. Each split represents a node in the
tree.

� Insertion The insertion approach (illustrated in figure 12.5) is the only one
suitable for use during the game. It can adjust the hierarchy without hav-
ing to rebuild it completely. The algorithm begins with an existing tree (it
can be an empty tree if we are starting from scratch). An object is added to
the tree by descending the tree recursively: at each node the child is selected
that would best accommodate the new object. Eventually an existing leaf is
reached, which is then replaced by a new parent for both the existing leaf and
the new object.

244 Chapter 12 Collision Detection

FIGURE 12.5 Insertion hierarchy building in action.

Each algorithm has many variations. In particular, the exact criteria used to group
nodes together has a large effect on the quality of the tree. The bottom-up approach
generally searches for nearby objects to group; the top-down approach can use any
number of clustering techniques to split the set; and the insertion approach needs to
select which child would be best to recurse into at each level of the tree. The specifics
of the tradeoffs involved are complex, and to get the optimum results they require a
good deal of fine-tuning and experimentation.

Fortunately even a simple implementation will give us a reasonable-quality tree
and a good speed-up for the coarse collision detector. For our implementation I have

12.3 Bounding Volumes 245

selected an insertion algorithm for the flexibility of being usable during the game.
Given the sphere hierarchy we created previously, we can implement the insertion
algorithm in this way:

Excerpt from include/cyclone/collide_coarse.h

/**
* A base class for nodes in a bounding volume hierarchy.
*
* This class uses a binary tree to store the bounding volumes.
*/
template<class BoundingVolumeClass>
class BVHNode
{
public:

// ... other BVHNode code as before ...
/**
* Inserts the given rigid body, with the given bounding volume,
* into the hierarchy. This may involve the creation of
* further bounding volume nodes.
*/
void insert(RigidBody* body, const BoundingVolumeClass &volume);

}

template<class BoundingVolumeClass>
void BVHNode<BoundingVolumeClass>::insert(

RigidBody* newBody, const BoundingVolumeClass &newVolume
)

{
// If we are a leaf, then the only option is to spawn two
// new children and place the new body in one.
if (isLeaf())
{

// Child one is a copy of us.
children[0] = new BVHNode<BoundingVolumeClass>(

this, volume, body
);

// Child two holds the new body
children[1] = new BVHNode<BoundingVolumeClass>(

this, newVolume, newBody
);

// And we now loosen the body (we’re no longer a leaf).
this->body = NULL;

246 Chapter 12 Collision Detection

// We need to recalculate our bounding volume.
recalculateBoundingVolume();

}

// Otherwise we need to work out which child gets to keep
// the inserted body. We give it to whoever would grow the
// least to incorporate it.
else
{

if (children[0]->volume.getGrowth(newVolume) <
children[1]->volume.getGrowth(newVolume))

{
children[0]->insert(newBody, newVolume);

}
else
{

children[1]->insert(newBody, newVolume);
}

}
}

At each node in the tree we choose the child whose bounding volume would be
least expanded by the addition of the new object. The new bounding volume is cal-
culated based on the current bounding volume and the new object. The line between
the centers of both spheres is found, as is the distance between the extremes of the
two spheres along that line. The center point is then placed on that line between the
two extremes, and the radius is half the calculated distance. Figure 12.6 illustrates this
process.

Note that the combined bounding sphere encompasses both child bounding
spheres: it is not normally the smallest sphere that encloses the child objects. We suf-
fer this extra wasted space for performance reasons. To calculate the bounding sphere
around two objects, we need to get down to the nitty-gritty of their geometries. This
makes the process too slow for in-game use.

We can perform a similar algorithm to remove an object. In this case it is useful to
be able to access the parent node of any node in the tree. Therefore we need to extend
the data structure holding the hierarchy, like this:

Excerpt from include/cyclone/collide_coarse.h

/**
* A base class for nodes in a bounding volume hierarchy.
*
* This class uses a binary tree to store the bounding volumes.
*/

12.3 Bounding Volumes 247

FIGURE 12.6 Working out a parent bounding sphere.

template<class BoundingVolumeClass>
class BVHNode
{
public:

// ... other BVHNode code as before ...

Removing an object from the hierarchy involves replacing its parent node with its
sibling and recalculating the bounding volumes farther up the hierarchy. Figure 12.7
illustrates this process. It can be implemented as

Excerpt from include/cyclone/collide_coarse.h

/**
* A base class for nodes in a bounding volume hierarchy.
*
* This class uses a binary tree to store the bounding volumes.
*/
template<class BoundingVolumeClass>
class BVHNode
{
public:

248 Chapter 12 Collision Detection

FIGURE 12.7 Removing an object from a hierarchy.

// ... other BVHNode code as before ...
/**
* Deletes this node, removing it first from the hierarchy, along
* with its associated rigid body and child nodes. This method
* deletes the node and all its children (but obviously not the
* rigid bodies). This also has the effect of deleting the sibling
* of this node, and changing the parent node so that it contains
* the data currently in that sibling. Finally it forces the
* hierarchy above the current node to reconsider its bounding
* volume.
*/

12.3 Bounding Volumes 249

~BVHNode();
}

template<class BoundingVolumeClass>
BVHNode<BoundingVolumeClass>::~BVHNode<BoundingVolumeClass>()
{

// If we don’t have a parent, then we ignore the sibling processing.
if (parent)
{

// Find our sibling.
BVHNode<BoundingVolumeClass> *sibling;
if (parent->children[0] == this) sibling = parent->children[1];
else sibling = parent->children[0];

// Write its data to our parent.
parent->volume = sibling->volume;
parent->body = sibling->body;
parent->children[0] = sibling->children[0];
parent->children[1] = sibling->children[1];

// Delete the sibling (we blank its parent and
// children to avoid processing/deleting them).
sibling->parent = NULL;
sibling->body = NULL;
sibling->children[0] = NULL;
sibling->children[1] = NULL;
delete sibling;

// Recalculate the parent’s bounding volume.
parent->recalculateBoundingVolume();

}

// Delete our children (again we remove their parent data so
// we don’t try to process their siblings as they are deleted).
if (children[0]) {

children[0]->parent = NULL;
delete children[0];

}
if (children[1]) {

children[1]->parent = NULL;
delete children[0];

}
}

250 Chapter 12 Collision Detection

12.3.3 SUB-OBJECT HIERARCHIES

Some objects you’ll need to simulate are large or have awkward shapes. It is difficult
to create any simple bounding volume that fits tightly around such objects. For any
particular bounding volume shape, there will be additional objects that simply don’t
suit that format. In each case the bounding volume is too large and the coarse collision
detector will return too many false positives.

To solve this problem it is possible to use multiple bounding volumes for one
object, arranged in a hierarchy. In figure 12.8 we have a long, thin object with a pro-
trusion. Neither the bounding box nor the sphere fits nicely around it. If we use a hi-
erarchy of bounding objects, we can provide a much closer fit. In this case the bound-
ing boxes provide a better fit, although using a hierarchy of lots of bounding spheres
arranged along its length would also work.

The algorithm for detecting collisions is the same as for the single-object hier-
archical bounding volume. Rather than stopping at the bounding volume for the
whole object, we can perform a finer-grained set of checks while still using the simple
bounding volume comparison.

The same process allows us to build a hierarchy for the game level itself. Clearly
most game levels are so large that their bounding volume is likely to encompass all
other objects (although outdoor levels represented as a box can exclude objects at a
high altitude).

To get a better fit we can decompose the level into a hierarchy of bounding
volumes. Because of the boxlike structure of most game levels (rectangular walls,
flat floors, and so on), a bounding box hierarchy is typically better than bounding
spheres.

While this is acceptable, provides good performance, and has been used in some
games, a more popular approach is to use a spatial data structure to work out colli-
sions with the game level.

FIGURE 12.8 A sub-object bounding volume hierarchy.

12.4 Spatial Data Structures 251

12.4 SPATIAL DATA STRUCTURES

Several different approaches to coarse collision detection fall under the banner of
“spatial data structures.” The distinction between spatial data structures and bound-
ing volumes is somewhat blurry.

A bounding volume hierarchy groups objects together based on their relative po-
sitions and sizes. If the objects move, then the hierarchy will move too. For different
sets of objects the hierarchy will have a very different structure.

A spatial data structure is locked to the world. If an object is found at some loca-
tion in the world, it will be mapped to one position in the data structure. A spatial data
structure doesn’t change its structure depending on what objects are placed within it.
This makes it much easier to build the data structure.

In reality the line between the two is blurred, and a combination of techniques
is sometimes used (hierarchies embedded in a spatial data structure, for example, or,
less commonly, a spatial data structure at one node in a hierarchy). It is also worth
noting that even when no bounding volume hierarchies are used, it is very common
to use bounding volumes around each object. In the remainder of this chapter, I will
assume objects are wrapped in a bounding volume: it makes many of the algorithms
far simpler.

This section looks at three common spatial data structures: binary space partition
(BSP) trees, quad- and oct-trees, and grids. In most games only one will be used.

12.4.1 BINARY SPACE PARTITIONING

A binary space partition tree behaves in a similar way to a bounding volume hierarchy.
It is a binary tree data structure, and a recursive algorithm starts at the top of the tree
and descends into child nodes only if they are capable of taking part in a collision.

Rather than use bounding volumes, however, each node in the BSP uses a plane
that divides all space into two. It has two child nodes, one for each side of the plane.
Objects lying on one side of the plane or the other will be found as a descendent of
the corresponding child. Objects that cross the plane are handled differently: they can
be directly attached to that node; placed in the child node that they are nearest to; or,
more commonly, placed in both child nodes.

The dividing planes at each level are different, allowing all space to be divided up
in any way. The figure later in this section shows a 2D version, but the same structure
works for three dimensions.

Each plane in the BSP is represented as a vector position and a vector direction:

struct Plane
{

Vector3 position;
Vector3 direction;

};

252 Chapter 12 Collision Detection

This is a very common way to represent a plane: the position is any location on the
plane, and the direction points out at right angles to the plane. The same plane can be
generated if we reverse the direction: it would still be at right angles to the plane but
facing in the opposite direction. The fact that the direction vector points out from one
side of the plane means that we can distinguish one side from the other. Any object is
either on the side where the direction is pointing or on the other side. This distinction
allows us to select the appropriate child node in the BSP.

To determine which side of the plane an object lies on, we make use of the geo-
metric interpretation of the scalar product given in chapter 2. Recall that the scalar
product allows us to find the component of one vector in the direction of another:

c = (po − pP) · dP

where po is the position of the object we are interested in (we normally use the po-
sition of the center of its bounding volume), pP is the position of any point on the
plane (i.e., the point we are using to store the plane), and dP is the direction in which
the plane is facing.

If c is positive, then the object lies on the side of the plane to which its direction
points. If it is negative, then the object lies on the opposite side. If c is zero, then it
lies exactly on the plane. The direction vector, dP , should be a normalized vector, in
which case |c| gives the distance of the object from the plane.

Assuming that the object has a spherical bounding volume, we can determine
whether it is completely on one side of the plane by checking if

|c| � ro

where ro is the radius of the bounding volume for the object.
We can build a BSP tree from nodes that contain a plane and two child nodes:

struct BSPNode
{

Plane plane;
BSPNode front;
BSPNode back;

};

In practice each child node (front and back) can hold either another node or a set
of objects. Unlike for bounding volume hierarchies, it is not normal to have only one
object at each leaf of the tree.

In the same way as we saw for the bounding sphere hierarchy, this could be im-
plemented in C++ as

typedef vector<Object*> BSPObjectSet;

12.4 Spatial Data Structures 253

enum BSPChildType
{

NODE,
OBJECTS

};

struct BSPChild
{

BSPChildType type;

union {
BSPNode *node;
BSPObjectSet *objects;

};
};

struct BSPNode
{

Plane plane;
BSPChild front;
BSPChild back;

};

Using polymorphism, inheritance, and C++’s runtime time inference (RTTI), the im-
plementation would look like this:

struct BSPElement
{
};

struct BSPObjectSet : public BSPElement
{

vector<Object*> objects;
};

struct BSPNode : public BSPElement
{

Plane plane;
BSPElement front;
BSPElement back;

};

254 Chapter 12 Collision Detection

For all spatial data structures, leaves will usually be capable of carrying any num-
ber of objects. This is where bounding volume hierarchies can be useful: the group of
objects at the leaf of the BSP can be represented as a BVH:

enum BSPChildType
{

NODE,
OBJECTS

};

struct BSPChild
{

BSPChildType type;

union {
BSPNode *node;
BoundingSphereHierarchy *objects;

};
};

struct BSPNode
{

Plane plane;
BSPChild front;
BSPChild back;

};

Let’s assume we have a BSP tree where objects that intersect a plane are placed in
both child nodes. In other words, one object can be at several locations in the tree.
The only collisions that can possibly occur are between objects at the same leaf in the
tree. We can simply consider each leaf of the tree in turn. If it has at least two objects
contained within it, then all pair combinations of those objects can be sent to the fine
collision detector for detailed checking.

If we place a bounding volume hierarchy at the leaves of the BSP tree, we can then
call the coarse collision detection algorithm for each hierarchy. In this case we have
two coarse collision detection steps.

If there are many objects, some large objects, or lots of partition planes, then
having an object in multiple branches of the tree can lead to huge data structures
and poor performance. The preceding algorithm can be modified to detect collisions
when overlapping objects are sent to only one child node or are held in a list with the
parent node. See Ericson [2005] for more comprehensive details.

BSP trees are common in rendering engines, and as with bounding volume hier-
archies, you may be able to use an existing implementation for your physics system.

12.4 Spatial Data Structures 255

FIGURE 12.9 A binary space partition tree.

They are also commonly used to detect collisions between the level geometry and the
game level. Figure 12.9 shows a small BSP for part of a game level.

The BSP doesn’t hold objects at its leaves, but rather is a boolean indication of
whether the object is colliding or not. An object is tested against each plane, re-
cursively. If it intersects the plane, both children are checked; otherwise, only one
is checked, as before. If the object reaches a leaf marked as a collision we know a
collision has occurred.

Because most collisions will occur between moving objects and the level geometry
(which typically cannot change or move in any way), the BSP approach is very useful.
Unfortunately a complex preprocessing stage is required to build the BSP from the
level geometry.

12.4.2 OCT-TREES AND QUAD-TREES

Oct-trees and quad-trees are spatial tree data structures with many similarities to
both BSPs and BVHs. Quad-trees are used for two dimensions (or three dimensions
where most objects will be stuck on the ground), and oct-trees for three dimensions.
In many 3D games a quad-tree is as useful as an oct-tree and takes less memory, so
I’ll focus on that first.

A quad-tree is made up of a set of nodes, each with four descendents. The node
splits space into four areas that intersect at a single point. It can be thought of as
three nodes of a BSP tree, although the directions that are split are always aligned
with the world axes. A node can be represented as a vector position and four chil-
dren:

256 Chapter 12 Collision Detection

FIGURE 12.10 Identifying an object’s location in a quad-tree.

struct QuadTreeNode
{

Vector3 position;
QuadTreeNode child[4];

};

Testing which of the four areas an object lies in is a simple matter of comparing
the corresponding components of their position vector. For an object at (1,4,5) and
a QuadTreeNode at (2,0,0), we know that it must be in the top left area, as shown in
figure 12.10, because the x coordinate of the object is less than the node’s coordinate
and the z coordinate is greater. We can calculate which child in the array to use with
the following simple algorithm:

struct QuadTreeNode
{

// ... Other code as before ...

unsigned int getChildIndex(const Vector3 &object)
{

unsigned int index;
if (object.x > position.x) index += 1;
if (object.z > position.z) index += 2;

12.4 Spatial Data Structures 257

return index;
}

}

where the indices for each area match those shown in figure 12.10.
An oct-tree works in exactly the same way, but has eight child nodes and performs

a comparison on each of the three vector components to determine where an object
is located:

struct OctTreeNode
{

Vector3 position;
OctTreeNode child[8];

unsigned int getChildIndex(const Vector3 &object)
{

unsigned int index;
if (object.x > position.x) index += 1;
if (object.y > position.y) index += 2;
if (object.z > position.z) index += 4;
return index;

}
}

Although in theory the position vector for each node can be set anywhere, it is
common to see quad- and oct-trees with each node dividing its parents in half. Start-
ing with an axis-aligned bounding box that covers all the objects in the game, the
top-level node is positioned at the center point of this box. This effectively creates
four boxes of the same size (for a quad-tree; eight for an oct-tree). Each of these boxes
is represented by a node, whose position is at the center point of that box, creating
four (or eight) more boxes of the same size. And so on down the hierarchy.

There are two advantages to using this halving. First, it is possible to get rid of
the position vector from the node data structure and calculate the point on the fly
during recursion down the tree. This saves memory.

Second, it means we don’t need to perform any calculations to find the best lo-
cation to place each node’s split point. This makes it much faster to build the initial
hierarchy.

Other than their method of recursion and the number of children at each node,
the quad- and oct-trees work in exactly the same way as the BSP tree. The algorithms
that work with a BSP tree for determining collisions are the same as for a quad- or
oct-tree, but the test is simpler and there are more possible children to recurse into.

Also as with the BSP tree, we have to decide where to put objects that overlap the
dividing lines. In the previous code examples I have assumed the object goes into the

258 Chapter 12 Collision Detection

child that contains its center. We could instead place the object into all the children
that it touches, as we did for the BSP tree, and have the same simple coarse collision
detection: only objects in the same leaf can possibly be in collision.

Quad-trees are particularly useful for outdoor scenes, where objects are placed on
a landscape. They are less useful than BSP trees for indoor games because they can’t
be used as easily for collision detection with the walls of the level. And, just like BSP
trees, they are often used for optimizing rendering and may be part of any existing
rendering engine you are using.

Because they are so similar to BSPs in practice, I will avoid repeating the code to
work with them. On the CD, there is a complete implementation for BSPs, quad-trees,
and oct-trees.

12.4.3 GRIDS

Our penultimate spatial data structure takes the idea of a quad-tree further. If we
draw the split pattern of a halving quad-tree that is several layers deep, we see that
it forms a grid (figure 12.11). Rather than use a tree structure to represent a regular
grid, we could simply use a regular grid.

A grid is an array of locations in which there may be any number of objects. It
is not a tree data structure because the location can be directly determined from the
position of the object. This makes it much faster to find where an object is located
than recursing down a tree.

FIGURE 12.11 A quad-tree forms a grid.

12.4 Spatial Data Structures 259

The grid has the structure

struct Grid
{

unsigned int xExtent;
unsigned int zExtent;
ObjectSet *locations; // An array of size (xExtent * zExtent)

Vector origin;
Vector oneOverCellSize;

};

where xExtent and zExtent store the number of cells in each direction of the grid;
the x and z components of the oneOverCellSize vector contain 1 divided by the size
of each cell (we use 1 over the value rather than the actual size to speed up the next
algorithm); the y component is normally set to 1; origin is the origin of the grid. The
grid should be large enough so that any object in the game is contained within it.

To determine the location in which the center of an object is contained, we use a
simple algorithm:

struct Grid
{

// ... Previous code as before ...

def getLocationIndex(const Vector& object)
{

Vector square = object.componentProduct(oneOverCellSize);
return (unsigned int)(square.x) + xExtent*(unsigned int)(square.z);
}

};

In this code snippet, we first find which square the object is in by dividing each com-
ponent by the size of the squares (we do the division by multiplying by 1 over the
value). This gives us a floating-point value for each component in the vector called
square. These floating-point values need to be converted into unsigned integers. The
integer values are then used to find the index in the grid array, which is returned.

Just as in the BSP and quad-tree cases we need to decide what to do with objects
that overlap the edge of a square. It is most common to simply place them into one cell
or the other, although it would be possible to place them into all the cells they overlap.
Just as before, the latter makes it faster to determine the set of possible collisions, but
can take up considerably more memory. I’ll look at this simpler case before returning
to the more complex case.

260 Chapter 12 Collision Detection

In a grid where each cell contains all the objects that overlap it, the set of collisions
can be generated very simply. Two objects can only be in collision if they occupy the
same location in the grid. We can simply look at each location containing more than
one object and check each pair for possible collisions.

Unlike tree-based representations, the only way we can tell if a location contains
two or more objects is to check it. Whereas for a tree we stored the number of objects
at each node and could completely miss branches that couldn’t generate collisions,
there is no such speed-up here.

To avoid searching thousands of locations for possible collisions (which for a
small number of objects may take longer than if we had not performed coarse col-
lision detection at all), we can create a set of locations in the grid data structure con-
taining more than one object. When we add an object to a cell, if the cell now contains
two objects, it should be added to the occupied list.

Likewise, when we remove an object from a cell, if the cell now contains just one
object, it should be removed from the list. Determining a complete set of collisions is
then just a matter of walking the occupied list and passing all pair-wise combinations
to the fine-grained collision detector.

If objects are larger than the size of a cell, they will need to occupy many cells in
the grid. This can lead to very large memory requirements with lots of wasted space.
For a reasonable-size game level running on a PC this might not be an issue, but for
large levels or memory-constrained consoles, it can be unacceptable.

If we place an object in just one grid cell (the cell in which its center is located,
normally), then the coarse collision detection routine needs to check for collisions
with objects in neighboring cells. For an object that is the same size as the cell, it needs
to check a maximum of three neighbors from a possible set of eight (see figure 12.12).
This rapidly increases, however. For an object four times the size of the cell, 15 from a
possible 24 neighbors need to be considered. It is possible to write code to check the
correct neighbors, but for very large objects it involves lots of wasted effort.

A hybrid data structure can be useful in this situation, using multiple grids of
different sizes. It is normally called a “multi-resolution map.”

12.4.4 MULTI-RESOLUTION MAPS

A multi-resolution map is a set of grids with increasing cell sizes. Objects are added
into one of the grids only, in the same way as for a single grid. The grid is selected
based on the size of the object: it will be the smallest grid whose cells are bigger than
the object.

Often the grids are selected so that each one has cells four times the size of the
previous one (i.e., twice the width and twice the length for each cell). This allows the
multi-resolution map to directly calculate which grid to add an object to.

During coarse collision detection the map uses a modified version of the single-
grid algorithm. For each grid it creates a potential collision between each object and
objects in the same or neighboring cells (there is a maximum of three neighbors to
check now because objects can’t be in a grid cell that is smaller than they are). In

12.5 Summary 261

FIGURE 12.12 An object may occupy up to four same-sized grid cells.

addition, the object is checked against all objects in all cells in larger-celled grids that
overlap. We don’t need to check against objects in smaller-celled grids because the
small objects are responsible for checking against larger objects.

For each grid in the map we can use the grid data structure with the same set
of occupied cells. However, we need to add a cell to the active list if it contains any
objects at all (because they may be in contact with neighbors).

12.5 SUMMARY

Collision detection is a complex and time-consuming process. To do it exhaustively
takes too long for real-time physics, so some optimization is needed.

We can split collision detection into two phases: a coarse phase that finds possible
contacts (some may turn out not to be collisions, but it should never miss a collision);
and a fine-grained phase that checks potential collisions in detail and works out the
contact properties.

Coarse collision detection works by wrapping objects in a simple bounding vol-
ume, such as a sphere or box, and performing checks on each collision volume. The
collision volumes can be arranged in a hierarchy, which allows whole branches to be
excluded, or in a spatial data structure, which allows nearby objects to be accessed
together.

262 Chapter 12 Collision Detection

There are tradeoffs between different methods and the potential to blend several
together in many cases. One of the most important factors to consider is how the
rendering engine manages objects to decide whether they should be drawn. If your
renderer has a system in place, it would be advisable to try to use or adapt it to save
memory.

The result of the coarse phase is a set of possible contacts that need to be checked
in more detail. We will look at the algorithms needed to perform these checks in the
next chapter.

13
GENERATING

CONTACTS

oarse collision detection is just the first stage of collision-generating contacts.
C The algorithms in the previous chapter produce a list of object pairs that then
needs to be checked in more detail to see whether the pairs do in fact collide.

Many collision detection systems perform this check for each pair and return a
single point of maximum interpenetration if the objects are in contact. That is not
what we need. We need contact generation. Two objects that are colliding can have
more than one point of contact between them. Representing the collision with just a
single contact works okay for some combinations of objects (such as a sphere and a
plane), but not for others (such as a car and a plane: which wheel do we choose?).

Contact generation is more complex than single-intersection collision detection
and takes more processor time to complete. Often we will have a two-stage process
of contact generation: a fine collision detection step to determine whether there are
contacts to generate and then a contact generation step to work out the contacts that
are present.

Just because we have performed a coarse filtering step, it doesn’t mean we can take
as much time as we like to perform fine collision detection and contact generation.
We need to make sure that fine collision detection runs as fast as possible. We can
dramatically improve the speed by performing collision detection against a simplified
geometry rather than the full-resolution rendering geometry.

The bulk of this chapter looks at generating the contacts between geometric prim-
itives that are useful as stand-in collision geometry. There are lots of combinations,
and this chapter tries to cover a representative selection.

263

264 Chapter 13 Generating Contacts

But this book isn’t about collision detection. There are other books in this series,
including van den Bergen [2003], Ericson [2005], and Eberly [2004], that contain
more material than I can cover here.

13.1 COLLISION GEOMETRY

The complex visual geometry in many games is too rich for speedy contact gener-
ation. Instead it is simplified into a chunky geometry created just for the physics.
If this chunky geometry consists of certain geometric primitives—namely, spheres,
boxes, planes, and capsules (a cylinder with hemispherical ends)—then the collision
detection algorithms can be simpler than for general-purpose meshes.

This collision geometry isn’t the same as the bounding volumes used in coarse
collision detection. In fact, depending on the complexity of the scenes you need to
deal with, you may have many different levels of simplified geometry.

The simplest shape on which to perform collision detection and contact gener-
ation on is the sphere; hence its use in coarse collision geometry. Despite being fast,
however, spheres aren’t always terribly useful. Boxes are also relatively quick to process
and can be used in more situations. Capsules are more difficult than spheres, but can
be useful in some situations. Other primitives, such as disks, cylinders, and trimmed
primitives, can also be useful.

A special case we need to consider is the collision of objects with the background-
level geometry. Most commonly this means collisions with the ground or some other
plane (walls can typically be represented as planes too). To support these, we’ll also
consider collisions between primitives and planes.

It is important to remember that the primitives your game needs will depend to
some extent on the game. We’ll only look in detail at spheres and boxes in this chapter;
otherwise the whole book would be about contact generation. The principles are the
same for any object, so with the help of the collision detection books in this series,
you should be able to generate contacts for a wide range of primitive pairs.

But primitives only get you so far. All primitives can only fit their objects roughly;
there are some objects that don’t lend themselves well to fitting with primitives. In
these cases it can be more efficient to use a general convex mesh (or set of such
meshes).

Each of the collision algorithms is described in detail in the text, but most of the
code is reserved for the CD. Some of the algorithms are very repetitive, and the code
would run to more than a hundred pages if printed.

13.1.1 PRIMITIVE ASSEMBLIES

The vast majority of objects can’t easily be approximated by a single primitive shape.
Some developers don’t even try: they use convex meshes to approximate all objects.
Another approach is to use assemblies of primitive objects as collision geometry.

Figure 13.1 shows an object approximated by an assembly of boxes and spheres.
To collide two assemblies we need to find all collisions between all pairs of primitives

13.2 Contact Generation 265

FIGURE 13.1 An object approximated by an assembly of primitives.

in each object (in this way the assembly acts something like the hierarchy of bounding
volumes we saw in chapter 12).

We can represent assemblies as a list of primitives, with a transform matrix that
offsets the primitive from the origin of the object.

13.1.2 GENERATING COLLISION GEOMETRY

Generating the collision geometry to approximate an object isn’t trivial. The easiest
method is to ask designers to create the collision geometry manually. This doesn’t
require any special algorithms, but increases the already large burden on modelers
and level designers. Given that most of the cost of developing a game goes into design,
this may not be the most economical solution. It is no coincidence that in many games
with great physics, objects under physics control tend to be simple, primitive shapes
(crates and barrels, for example).

Some developers I know have created tools for generating simplified convex
meshes to act as collision geometry. The algorithms they use involve some complex
geometry and mathematics beyond this book. I am not aware of tools that place as-
semblies of collision primitives.

13.2 CONTACT GENERATION

As we have already seen in this chapter, it is important to make a distinction between
collision detection and contact generation. Most books on collision detection will not

266 Chapter 13 Generating Contacts

tell you how to build a physics engine collision system. In fact, most commercial or
open source collision detection systems aren’t suitable for physics applications.

Collision detection determines whether two objects are touching or interpene-
trated, and normally provides data on the largest interpenetration point. Contact
generation produces the set of points on each object that are in contact (or pene-
trating).

The difference is crucial. In figure 13.2 one box is lying across another: in the left
part of the figure the result of a typical collision detection system is shown: the box is
slightly (microscopically) twisted, so one edge generates the contact. In the right part
of the figure the correct contact patch is generated.

The contact patch can be of any shape. This can make a challenging programming
task when it comes to resolving contacts. To make things easier we would like to deal
only with point contacts. The naive collision detection shown in figure 13.2 does this,
but doesn’t provide enough contacts to generate realistic physics. We need a reliable
way to simplify a contact patch into a set of point contacts.

To do that we deal with a set of contact situations as shown in figure 13.3. Al-
though the contact patch can be any shape, the simplifications in the figure generate
reasonable physical behavior. While there are many situations in which they aren’t
optimal, there are few in which the problem is noticeable when the physics is run-
ning. In figure 13.3 these cases are arranged in order of how useful they are. If we can
generate useful contacts higher in the list, we can ignore those lower down.

Of the illustrated cases, we ignore point–point contacts and point–edge contacts
altogether. These can be handled relatively easily, but they are rare and are normally
associated with other contact cases that can take the load. In the small number of
cases where the contact can only be represented in one of these two forms, we will
miss the contact. Experience shows that this isn’t significant enough to be noticed.

The only occasion that we need to deal with face–face collisions is when one or
the other face is curved. In all other cases the edge–edge and edge–face contacts will
give the correct physics. Similarly edge–face contacts can often be replaced by a pair of
edge–edge contacts (except when the edge is curved), and we will prefer to use these.

FIGURE 13.2 Collision detection and contact generation.

13.2 Contact Generation 267

FIGURE 13.3 Cases of contact.

In each of the primitive collision cases that follow we will be looking for point–
face contacts and edge–edge contacts first. Those primitives with curved sides will
also use the lower cases when necessary.

13.2.1 CONTACT DATA

As we will see later in the book, there are a number of bits of data we’ll need for each
contact generated, as follows.

� The collision point This is the point of contact between the objects. In prac-
tice objects will be interpenetrating somewhat, and there may be any number

268 Chapter 13 Generating Contacts

FIGURE 13.4 The relationship between the collision point, collision normal, and penetration
depth.

of possible points. The selection of a point from the many options is largely
arbitrary and doesn’t drastically affect the physics.

� The collision normal This is the direction in which an impact impulse will be
felt between the two objects. When we saw collisions for non-rotating objects
in chapter 7, this was the direction in which interpenetrating objects should
be moved apart. In some cases (such as point–face contacts) this is simple to
calculate; in other cases it isn’t clear which direction the normal should be
in. By convention, the contact normal points from the first object involved
toward the second. We will assume this convention throughout the contact
resolution code in this book.

� The penetration depth This is the amount that the two objects are interpen-
etrating. It is measured along the direction of the collision normal passing
through the collision point, as shown in figure 13.4.

These elements are stored in a contact data structure:

Excerpt from include/cyclone/contacts.h

/**
* A contact represents two bodies in contact. Resolving a
* contact removes their interpenetration, and applies sufficient
* impulse to keep them apart. Colliding bodies may also rebound.
* Contacts can be used to represent positional joints, by making
* the contact constraint keep the bodies in their correct
* orientation.
*/

13.2 Contact Generation 269

class Contact
{

/**
* Holds the position of the contact in world coordinates.
*/
Vector3 contactPoint;

/**
* Holds the direction of the contact in world coordinates.
*/
Vector3 contactNormal;

/**
* Holds the depth of penetration at the contact point. If both
* bodies are specified then the contact point should be midway
* between the inter-penetrating points.
*/
real penetration;

};

Before looking at the particulars of different primitive collisions, it’s worth look-
ing at each contact case in turn and how its parameters are determined.

13.2.2 POINT–FACE CONTACTS

Point–face contacts are the most common and important type of contact. Whether
the face is flat or curved, the contact properties are generated in the same way. This is
illustrated in figure 13.5.

The contact normal is given by the normal of the surface at the point of contact.
If the object point (i.e., the point that is in contact with the face) is penetrated into
the surface, then it is usually projected back onto the surface in order to determine
where the contact is measured from.

The contact point is given as the point involved in the contact. In some cases a
point is used that is midway between this object point and the projected point on the
face. Either case works well, but using the given point is often more efficient.

The penetration depth is calculated as the distance between the object point and
the projected point.

13.2.3 EDGE–EDGE CONTACTS

Edge–edge contacts are the second most important type of contact and are critical for
resting contacts between objects with flat or concave sides. The contact data is shown
in figure 13.6.

270 Chapter 13 Generating Contacts

FIGURE 13.5 The point–face contact data.

FIGURE 13.6 The edge–edge contact data.

The contact normal is at right angles to the tangents of both edges. The vector

product is used to calculate this.

The contact point is typically the closest point on one edge to the other. Some

developers use a point midway between the two edges, which takes longer to calculate

but is marginally more accurate. The penetration depth is the distance between the

two edges.

13.2 Contact Generation 271

FIGURE 13.7 The edge–face contact data.

13.2.4 EDGE–FACE CONTACTS

Edge–face contacts are only used with curved surfaces (the edge of a capsule, for ex-
ample, or the surface of a sphere). The contact data is generated in a very similar way
to point–face contacts, shown in figure 13.7.

The contact normal is given by the normal of the face, as before. The edge direc-
tion is ignored in this calculation.

The contact point is more difficult to calculate for the general case. In the more
general case we need to calculate the point of deepest penetration geometrically. For
some primitives there is a quick way to get this.

Because of the way the contact point is calculated, we normally have direct access
to the penetration depth. If not, then it needs to be calculated the long way, by work-
ing out the distance between the edge and the face along the direction of the normal
passing through the contact point.

13.2.5 FACE–FACE CONTACTS

Face–face contacts occur when a curved surface comes in contact with another face,
either curved or flat, such as a sphere on a plane. The contact data is somewhat more
arbitrary than for other cases. Figure 13.8 shows the properties in detail.

The contact normal is given by the normal of the first face. In theory the faces
should have opposite contact normals: two faces can’t touch except where their nor-
mals are in the opposite directions. In practice, however, this isn’t perfect, and the fact

272 Chapter 13 Generating Contacts

FIGURE 13.8 The face–face contact data.

that objects may interpenetrate means that the actual normals may be misaligned. It
is easier to use just one contact normal consistently as long as the two objects won’t
swap roles in future contact generations (i.e., in the next frame we should avoid hav-
ing a contact generation where objects A and B are swapped). It is unusual to find
such swapping, so it is safely ignored.

The contact point is again difficult to calculate in the general case. And once again,
using the primitives in this chapter, we can often get directly at the point of greatest
penetration. If not, then we need to select some point (pretty arbitrarily in the code
I’ve seen that does this) from the inside of the interpenetrating volume.

The contact point calculation will normally give us direct access to the penetration
depth. In the general case we’ll have to follow the full algorithm, as we saw in the last
section.

13.2.6 EARLY-OUTS

Some of the contact generation algorithms can be quite time consuming. The coarse
collision detection will generate candidate pairs of objects that may later be found
not to be in contact. We can make collision detection much more efficient by creating
algorithms that exit early if no contact is found.

There are numerous opportunities to do this as part of the contact generation
algorithms we will look at later and the code takes advantage of as many of these as
possible.

13.3 Primitive Collision Algorithms 273

Some of the primitive collisions have completely different algorithms that can
determine whether there is a contact without generating the contacts themselves. If
such an algorithm exists and it is fast enough, it can be useful to call it as a first stage:

if (inContact())
{

findContacts();
}

These are the collision detection algorithms often found in books on game graphics.
In many cases, however, the work that the quick check would have to do is the

same as required during contact generation. The speed-up of doing both would be
minimal for the number of times we’d get a no-contact in the test. In these cases the
contact generation algorithm can be used on its own.

13.3 PRIMITIVE COLLISION ALGORITHMS

Each of the collision algorithms in this chapter checks for contact and generates con-
tact data structures for different combinations of primitives. Some of the algorithms
are guaranteed to return only zero or one contact (the sphere–sphere collision, for
example). We could have these algorithms return the contacts directly.

Other algorithms can return zero, one, or several contacts. In this case we need a
more flexible way for the algorithm to return the contacts it generates. The simplest
way to do this is to start with an array or list of possible contacts. This array is then
passed into each contact generation routine. If the routine finds contacts, it can write
them into the array.

In the code on the CD I have encapsulated this process into a class:

Excerpt from include/cyclone/collide_fine.h

/**
* A helper structure that contains information for the detector to use
* in building its contact data.
*/
struct CollisionData
{

/** Holds the contact array to write into. */
Contact *contacts;

/** Holds the maximum number of contacts the array can take. */
unsigned contactsLeft;

};

Each contact generation routine has the same form:

274 Chapter 13 Generating Contacts

void detectContacts(const Primitive &firstPrimitive,
const Primitive &secondPrimitive,
CollisionData *data);

where the Primitive type holds the data for the collision geometry. The Primitive
class holds data that any contact generator will need to know, such as the rigid body
corresponding to the geometry and the offset of the primitive from the coordinate
origin of the rigid body.

class Primitive
{
public:
RigidBody *body;
Matrix4 offset;

};

Throughout this chapter I will assume that the offset matrix represents transla-
tion and rotation only: it has no scaling or skewing effect. We could make this much
simpler and assume that the primitive is aligned perfectly with the center of the rigid
body with no rotation (as would be the case if we had a cylinder representing a bar-
rel, for example). Unfortunately this would not work for assemblies of objects or for
rigid bodies with centers of mass that aren’t at their geometric center. For flexibility it
is best to allow primitives to be offset from their rigid bodies.

Each implemented contact generation function will use a subtype of Primitive
with some additional data (such as Sphere and Plane). I’ll introduce these types as we
go along.

13.3.1 COLLIDING TWO SPHERES

Colliding two spheres is as simple as it gets. Two spheres are in contact if the distance
between their centers is less than the sum of their radii.

If they are in contact, then there will be precisely one contact point: each sphere
consists of one surface, so it will be a face–face contact (see figure 13.8).

The point of deepest contact is located along the line between the sphere cen-
ters. This is exactly the same algorithm we saw in chapter 7 when looking at particle
collisions.

To implement this we need a data structure for a sphere. Spheres are completely
defined by their center point and radius:

class Sphere
{
public:

13.3 Primitive Collision Algorithms 275

Vector3 position;
real radius;

};

The center point of the sphere is given by the offset from the origin of the rigid body,
the data for which is contained in the Primitive. The sphere implementation we’ll
use looks like this:

class Sphere : public Primitive
{
public:

real radius;
};

The algorithm takes two spheres and may generate a contact in the contact data.
Because the algorithm to determine whether the two spheres collide is part of de-
termining the contact data, we don’t have a separate algorithm to provide an early
out:

Excerpt from src/collide_fine.cpp

unsigned CollisionDetector::sphereAndSphere(
const Sphere &one,
const Sphere &two,
CollisionData *data
)

{
// Make sure we have contacts.
if (data->contactsLeft <= 0) return 0;

// Cache the sphere positions.
Vector3 positionOne = one.getAxis(3);
Vector3 positionTwo = two.getAxis(3);

// Find the vector between the objects.
Vector3 midline = positionOne - positionTwo;
real size = midline.magnitude();

// See if it is large enough.
if (size <= 0.0f || size >= one.radius+two.radius)
{

return 0;
}

// We manually create the normal, because we have the

276 Chapter 13 Generating Contacts

// size to hand.
Vector3 normal = midline * (((real)1.0)/size);

Contact* contact = data->contacts;
contact->contactNormal = normal;
contact->contactPoint = positionOne + midline * (real)0.5;
contact->penetration = (one.radius+two.radius - size);

// Write the appropriate data.
contact->body[0] = one.body;
contact->body[1] = two.body;
contact->restitution = data->restitution;
contact->friction = data->friction;

return 1;
}

13.3.2 COLLIDING A SPHERE AND A PLANE

Colliding a sphere and a plane is just as simple as colliding two spheres. The sphere
collides with the plane if the distance of the center of the sphere is farther from the
plane than the sphere’s radius. The distance of a point from a plane is given by

d = p · l − l

where l is the normal vector of the plane and l is the offset of the plane. This is a
standard way to represent a plane in 3D geometry.

We can represent the plane in code as

class Plane : public Primitive
{
public:
Vector3 normal;
real offset;

};

Planes are almost always associated with immovable geometry rather than a rigid
body, so the rigid body pointer in the Primitive class will typically be NULL.

The algorithm takes a sphere and a plane and may add a contact to the contact
data. Again the algorithm is simple enough not to benefit from a separate early-out
algorithm.

13.3 Primitive Collision Algorithms 277

Excerpt from src/collide_fine.cpp

unsigned CollisionDetector::sphereAndHalfSpace(
const Sphere &sphere,
const Plane &plane,
CollisionData *data
)

{
// Make sure we have contacts.
if (data->contactsLeft <= 0) return 0;

// Cache the sphere position.
Vector3 position = sphere.getAxis(3);

// Find the distance from the plane.
real ballDistance =

plane.direction * position -
sphere.radius - plane.offset;

if (ballDistance >= 0) return 0;

// Create the contact - it has a normal in the plane direction.
Contact* contact = data->contacts;
contact->contactNormal = plane.direction;
contact->penetration = -ballDistance;
contact->contactPoint =

position - plane.direction * (ballDistance + sphere.radius);

// Write the appropriate data.
contact->body[0] = sphere.body;
contact->body[1] = NULL;
contact->restitution = data->restitution;
contact->friction = data->friction;

return 1;
}

Strictly speaking, this isn’t a sphere–plane collision but a sphere–half-space col-
lision. Figure 13.9 shows the difference. Planes are rarely needed in a game (because
they are infinitely big), but half-spaces are common. They are normally used in games
to represent the ground and walls as part of a BSP tree.

To modify the algorithm to perform true plane–sphere collisions we need to check
whether the distance is either greater than the radius of the sphere or less than the
negative of that radius.

278 Chapter 13 Generating Contacts

FIGURE 13.9 The difference in contact normal for a plane and a half-space.

Excerpt from src/collide_fine.cpp

unsigned CollisionDetector::sphereAndTruePlane(
const Sphere &sphere,
const Plane &plane,
CollisionData *data
)

{
// Make sure we have contacts.
if (data->contactsLeft <= 0) return 0;

// Cache the sphere position.
Vector3 position = sphere.getAxis(3);

// Find the distance from the plane.
real centerDistance = plane.direction * position - plane.offset;

// Check if we’re within radius.
if (centerDistance*centerDistance > sphere.radius*sphere.radius)
{

return 0;
}

// Check which side of the plane we’re on.
Vector3 normal = plane.direction;
real penetration = -centerDistance;
if (centerDistance < 0)
{

normal *= -1;
penetration = -penetration;

}

13.3 Primitive Collision Algorithms 279

penetration += sphere.radius;

// Create the contact - it has a normal in the plane direction.
Contact* contact = data->contacts;
contact->contactNormal = normal;
contact->penetration = penetration;
contact->contactPoint = position - plane.direction * centerDistance;

// Write the appropriate data.
contact->body[0] = sphere.body;
contact->body[1] = NULL;
contact->restitution = data->restitution;
contact->friction = data->friction;

return 1;
}

Both are implemented on the CD, but only the half-space is used in any of the demos.

13.3.3 COLLIDING A BOX AND A PLANE

The last of the very simple contact generation algorithms is between a box and a
plane (strictly a half-space). This is the first algorithm that can return more than one
contact.

Remember that we are trying to use contacts that are as simple to process as pos-
sible. We prefer to use point–face contacts if we can. In this case we can. Rather than
return the contact of the face of one box with the half-space, we return four contacts
for each corner point with the half-space. Similarly, if an edge is colliding with the
plane, we treat it as two point–face contacts for each end of that edge. Thus there can
be up to four contacts, and each is a point–face contact. Figure 13.10 illustrates this.

We can find the set of contacts by simply checking each vertex of the box one by
one and generating a contact if it lies below the plane.1

The check for each vertex looks just like the check we made with the sphere–plane
detector:

d = p · l − l

Because the vertices are only points, and have no radius, we simply need to check to
see whether the sign of d is positive or negative. A collision therefore occurs if

p · l < l

1. Generating contacts for a true plane, rather than a half-space, is somewhat more difficult because we
need to find the set of contacts on each side of the plane, determine which side the box is on, and generate
contacts for the opposite set. For a half-space we simply test whether vertices are through the plane.

280 Chapter 13 Generating Contacts

FIGURE 13.10 Contacts between a box and a plane.

For one vertex at p the code to generate a contact looks like this:

Excerpt from src/collide_fine.cpp

// Calculate the distance from the plane.
real vertexDistance = vertexPos * plane.direction;

// Compare this to the plane’s distance.
if (vertexDistance <= plane.offset + data->tolerance)
{

// Create the contact data.

// The contact point is halfway between the vertex and the
// plane - we multiply the direction by half the separation
// distance and add the vertex location.
contact->contactPoint = plane.direction;
contact->contactPoint *= (vertexDistance-plane.offset);
contact->contactPoint = vertexPos;
contact->contactNormal = plane.direction;
contact->penetration = plane.offset - vertexDistance;

}

The full algorithm runs this code for each vertex of the box. We can generate the set
of vertices from a box data structure that looks like this:

13.3 Primitive Collision Algorithms 281

class Box : public Primitive
{
public:

Vector3 halfSize;
};

where halfSize gives the extent of the box along each axis. The total size of the box
along each axis is twice this value, as shown in figure 13.11.

The vertices of the box are then given as follows:

Vector3 vertices[8] =
{

Vector3(-halfSize.x -halfSize.y -halfSize.z),
Vector3(-halfSize.x -halfSize.y +halfSize.z),
Vector3(-halfSize.x +halfSize.y -halfSize.z),
Vector3(-halfSize.x +halfSize.y +halfSize.z),
Vector3(+halfSize.x -halfSize.y -halfSize.z),
Vector3(+halfSize.x -halfSize.y +halfSize.z),
Vector3(+halfSize.x +halfSize.y -halfSize.z),
Vector3(+halfSize.x +halfSize.y +halfSize.z)

};

for (unsigned i = 0; i < 8; i++)
{

vertices[i] = offset * vertices[i];
}

where offset is the rotation and translation matrix from the Primitive class.
The overall algorithm simply generates each vertex in turn and tests it against the

plane, adding a contact if necessary. The full algorithm is quite repetitive, so I won’t
duplicate it here. You can find it on the CD.

FIGURE 13.11 The half-sizes of a box.

282 Chapter 13 Generating Contacts

Note that there are algorithms that avoid generating and testing all vertices. By
comparing the direction of each box axis against the plane normal, we can trim down
the number of vertices that need to be checked. You may find such algorithms in other
books or online.

Despite the marginal theoretical advantage of such an algorithm, I have found
them to have no efficiency gain in practice. Generating and testing a vertex is so fast
that additional checking has a marginal effect. If you are familiar with the technique,
you will also notice that this algorithm lends itself very easily to parallel implementa-
tion on SIMD hardware, which makes the alternatives even less attractive.

13.3.4 COLLIDING A SPHERE AND A BOX

A box complicates the calculations somewhat. When a sphere collides with a box, we
will have just one contact. But it may be a contact of any type: a face–face contact,
an edge–face contact, or a point–face contact. In each case the sphere (which has no
edges or vertices) contributes a face to the contact, but it may touch either a face,
edge, or point of the box. Figure 13.12 illustrates this.

Fortunately all three of these cases involve the same calculations for the normal
contact and penetration depth, as long as we assume that the sphere gets to decide the
contact normal in the case of a face–face contact. (Recall that, for face–face contacts,
one or other object has to work out the normal.)

Once again we can simplify this query to use a point rather than a sphere. In this
case we need to find the closest point in the box to the center of the sphere. This
closest point may be in a corner of the box, along an edge, or on a face. If the distance
between the closest point and the center of the sphere is less than the radius of the
sphere, then the two objects are touching.

Because we’ll deal with all three types of contact in the same way—allowing the
properties of the sphere to determine the contact data—we won’t need to keep track
of whether the closest point in the box is on a face, edge, or vertex.

FIGURE 13.12 Contacts between a box and a sphere.

13.3 Primitive Collision Algorithms 283

The first step of our process is to convert the center point of the sphere into the
object coordinates of the box. Remember that the box can be oriented in any direc-
tion. It will be easier to process if coordinates of the point we’re working with are
relative to the orientation of the box. We can do this simply by using the following
code.

Excerpt from src/collide_fine.cpp

// Transform the center of the sphere into box coordinates
Vector3 center = sphere.getAxis(3);
Vector3 relCenter = box.transform.transformInverse(center);

Note that we’ve taken into account both the orientation of the box and its center.
This then allows us to perform a quick early-out test to see whether the point will

be close enough to bother with. The contact generation will be reserved for points
that pass this early test. As we shall see, the contact generation algorithm is hardly
complex, and we don’t gain a huge amount by having the early-out test. Neverthe-
less it can be worth it in some cases (particularly if the coarse collision detection is
inefficient and generates lots of potential collisions).

The early-out test relies on the principle of separating axes.

Separating Axes

Separating axes is one of the most useful concepts in collision detection. It has many
nuances, which I can’t hope to cover here. See van den Bergen [2003] or Ericson
[2005] for a complete discussion and lots of helpful diagrams.

The basic idea is simple: if we can find any direction in space in which two (con-
vex) objects are not colliding, then the two objects are not colliding at all. In our case
we can simply test the three axes of the box and check if the point is too far away to
be colliding. If any of these axes shows that the point is too far away, then we know
there is no contact and we can exit earlier. Figure 13.13 illustrates this in 2D.

Note, however, that we can have a situation where the sphere and the box aren’t in
contact, but the separating axes test doesn’t detect this. A case is shown in the diagram
in figure 13.13.

In this case the algorithm will pass on to the more complete contact generation
step and will detect that there is no contact later on. We could improve the separating
axes test to check further axes in this case (the axis from the center of the box to the
center of the sphere in figure 13.13 would help). Remember, however, that this step
is designed to give us an early-out. We don’t want to waste processing time, and we
could spend just as much time trying to determine whether there is a contact in this
phase as we’d save by not performing the full contact generation in the next phase.

For each test axis we simply check if the half-width of the box plus the radius of
the sphere is greater than one component of the relative position of the sphere center
(i.e., the transformed position we found earlier). See the next block of code.

284 Chapter 13 Generating Contacts

Excerpt from src/collide_fine.cpp

// Early-out check to see if we can exclude the contact.
if (real_abs(relCenter.x) - sphere.radius > box.halfSize.x ||

real_abs(relCenter.y) - sphere.radius > box.halfSize.y ||
real_abs(relCenter.z) - sphere.radius > box.halfSize.z)

{
return 0;

}

FIGURE 13.13 Separating axes between a box and a sphere.

Contact Generation

The final phase of our algorithm is to find the closest point in the box to the target
point and generate the contact from it. We’ll do this first in the coordinates of the box.

This is a simple process. All we need to do is to clamp each component of the test
point to the half-size of the box in the same direction. With this new point we can
then work out the distance from the center of the sphere to the target point, and exit
if it is larger than the radius of the sphere. The code for this is simple:

Excerpt from src/collide_fine.cpp

Vector3 closestPt(0,0,0);
real dist;

// Clamp each coordinate to the box.

13.3 Primitive Collision Algorithms 285

dist = relCenter.x;
if (dist > box.halfSize.x) dist = box.halfSize.x;
if (dist < -box.halfSize.x) dist = -box.halfSize.x;
closestPt.x = dist;

dist = relCenter.y;
if (dist > box.halfSize.y) dist = box.halfSize.y;
if (dist < -box.halfSize.y) dist = -box.halfSize.y;
closestPt.y = dist;

dist = relCenter.z;
if (dist > box.halfSize.z) dist = box.halfSize.z;
if (dist < -box.halfSize.z) dist = -box.halfSize.z;
closestPt.z = dist;

// Check we’re in contact.
dist = (closestPt - relCenter).squareMagnitude();
if (dist > sphere.radius * sphere.radius) return 0;

The contact properties need to be given in world coordinates, so before we calcu-
late the contact normal, we need to find the closest point in world coordinates. This
simply means transforming the point we generated earlier:

Excerpt from src/collide_fine.cpp

// Compile the contact.
Vector3 closestPtWorld = box.transform.transform(closestPt);

We can then calculate the contact properties as before in the chapter. The final
code puts all this together to look like this:

Excerpt from src/collide_fine.cpp

unsigned CollisionDetector::boxAndSphere(
const Box &box,
const Sphere &sphere,

CollisionData *data
)

{
// Transform the center of the sphere into box coordinates.
Vector3 center = sphere.getAxis(3);
Vector3 relCenter = box.transform.transformInverse(center);

// Early-out check to see if we can exclude the contact.
if (real_abs(relCenter.x) - sphere.radius > box.halfSize.x ||

real_abs(relCenter.y) - sphere.radius > box.halfSize.y ||

286 Chapter 13 Generating Contacts

real_abs(relCenter.z) - sphere.radius > box.halfSize.z)
{

return 0;
}

Vector3 closestPt(0,0,0);
real dist;

// Clamp each coordinate to the box.
dist = relCenter.x;
if (dist > box.halfSize.x) dist = box.halfSize.x;
if (dist < -box.halfSize.x) dist = -box.halfSize.x;
closestPt.x = dist;

dist = relCenter.y;
if (dist > box.halfSize.y) dist = box.halfSize.y;
if (dist < -box.halfSize.y) dist = -box.halfSize.y;
closestPt.y = dist;

dist = relCenter.z;
if (dist > box.halfSize.z) dist = box.halfSize.z;
if (dist < -box.halfSize.z) dist = -box.halfSize.z;
closestPt.z = dist;

// Check we’re in contact.
dist = (closestPt - relCenter).squareMagnitude();
if (dist > sphere.radius * sphere.radius) return 0;

// Compile the contact.
Vector3 closestPtWorld = box.transform.transform(closestPt);

Contact* contact = data->contacts;
contact->contactNormal = (center - closestPtWorld);
contact->contactNormal.normalize();
contact->contactPoint = closestPtWorld;
contact->penetration = sphere.radius - real_sqrt(dist);

// Write the appropriate data.
contact->body[0] = box.body;
contact->body[1] = sphere.body;
contact->restitution = data->restitution;
contact->friction = data->friction;

13.3 Primitive Collision Algorithms 287

return 1;
}

13.3.5 COLLIDING TWO BOXES

The collision of two boxes is the most complex case we’ll consider in detail in this
chapter. Although we’re still dealing with a very basic shape, the techniques we need
to handle a pair of boxes are the ones that are used when the shapes to collide are more
complex. At the end of this section we’ll look at how the box–box collision algorithm
can be extended to any pair of concave shapes.

There are six possible types of contact between two boxes, as shown in fig-
ure 13.14.

We’re trying to avoid face–face and edge–face contacts because they are not stable.
A single contact point between two planes allows the planes to rotate; it is unlikely that
the contact normal will be generated so that it passes through both centers of gravity.
If we use three or four contacts instead, then the resulting contact resolution will give
a visibly more stable result.

We can always replace a face–face contact with up to four point–face or edge–edge
contacts, as shown in figure 13.15. Similarly we can replace face–edge contacts with
up to two point–face or edge–edge contacts.

The remaining two contacts, point–point and point–edge, cannot be replaced
with others. We could add the code to detect these, but neither of them has an obvious
way of calculating the collision normal (there are an infinite number of valid collision
normals for each). We’d need some extra hacked code to get a collision normal.

In systems I’ve built, I have never bothered to do this for two reasons. First, these
situations are highly unlikely to come up in practice unless deliberately contrived. The
chance of one box colliding with another box perfectly vertex to vertex is very slim
indeed: it’s a very small target (point–edge is more likely, but still incredibly rare). Sec-
ond, if we ignore these contacts, an instant later the boxes will interpenetrate slightly.
In this case one of the other contacts (normally a point–face contact) will be gener-
ated, which is handled normally by the physics. The result is physically believable, so
the extra work simply isn’t needed.

Ignoring these two types of contact means you can’t construct scenarios where
boxes are carefully balanced corner to corner or edge to corner. But since that’s hardly
likely to be a high priority in your game design, you can probably save yourself the
work and live with it.

The algorithm for generating contacts between boxes has the same format as that
for a sphere and a box, with one additional step:

1. We perform an early-out test using the principle of separating axes. In this case
the contact generation is complex enough that this is very likely to be worth the
effort.

2. We perform the full collision detection and contact resolution to get a single de-
tected contact between the two boxes.

288 Chapter 13 Generating Contacts

FIGURE 13.14 Contact between two boxes.

3. We combine the newly detected contact with previously detected contacts be-
tween the two boxes to form a complete set of contacts

I’ll return to the logic behind storing the detected contacts later. First let’s look at how
to perform a separating axis test on the two boxes.

13.3 Primitive Collision Algorithms 289

FIGURE 13.15 Replacing face–face and edge–face contacts between boxes.

Separating Axes

The separating axis theorem says that two objects cannot possibly be in contact as
long as there is some axis on which the objects can be projected where they are not in
contact.

As we saw for the sphere–box case, this check therefore has three parts: first we
choose an axis, second we project the objects onto the axis (this was trivial in the case
of a sphere, but will be more complex here), and third we check to see whether the
projections are overlapping. Figure 13.16 shows this.

If the projections are overlapping on this axis, it does not mean that the objects
are touching. But if they are not overlapping, then we know for sure that the objects
aren’t touching. This acts as an early-out.

This test can be implemented for boxes by projecting the half-size of the box onto
the separating axis in this way:

Excerpt from src/collide_fine.cpp

real transformToAxis(const Box &box,
const Vector3 &axis)

{
return

290 Chapter 13 Generating Contacts

box.halfSize.x * real_abs(axis * box.getAxis(0)) +
box.halfSize.y * real_abs(axis * box.getAxis(1)) +
box.halfSize.z * real_abs(axis * box.getAxis(2));

}

bool overlapOnAxis(
const Box &one,
const Box &two,
const Vector3 &axis
)

{
// Project the half-size of one onto axis.
real oneProject = transformToAxis(one, axis);
real twoProject = transformToAxis(two, axis);

// Find the vector between the two centers.
Vector3 toCenter = two.getAxis(3) - one.getAxis(3);

// Project this onto the axis.
real distance = real_abs(toCenter * axis);

// Check for overlap.
return (distance < oneProject + twoProject);

}

For convex objects we can go one stage farther: if the objects are not touching,
then there must be at least one axis that would show this. Objects that are concave in

FIGURE 13.16 The projection of two boxes onto separating axes.

13.3 Primitive Collision Algorithms 291

places can pass every separating axis test and still not be touching. For general objects
this isn’t particularly practical knowledge, of course, because we can’t hope to test
every, possible axis. That would defeat the purpose of using this test to provide an
early-out.

When colliding two boxes, things are easier for us. There are fifteen axes we can
test. If none of the fifteen shows the objects separately, then we know the objects
touch.

These axes include the three principal axes of each box; there are also another nine
axes to test that are perpendicular to each pair of principal axes from each box. We
generate these further nine axes by taking the cross product of each pair of principal
axes (since the direction of the cross product is perpendicular to both its vectors).

The full implementation simply calculates these axes in turn and sends them to
the separateAlongAxis function for checking. The whole test returns false when the
first such function call fails.

Coherence and Contact Generation

The most efficient algorithms for calculating the collision between two boxes (and any
pair of convex objects) use shortcuts and optimizations that terminate the algorithm
when the point of deepest interpenetration is found. This is a single contact.

To generate a complete set of contacts is more difficult. One contact can be inter-
preted in several ways. A point–face contact could be interpreted as another point–
face contact on a different face, with a different penetration depth. The situation is
even more complex with edge–edge contacts.

To get the contact set, we need to provide a whole set of reasonably complex code
that checks to see whether new potential contacts have already been found and, if so,
whether the new way of interpreting them is better. And in the worst-case scenario
reinterpreting one contact may mean that all the other contacts in the set need reinter-
preting. If there weren’t a simpler way, this might be worth the effort, but fortunately
we can avoid the whole issue.

At each frame we generate a single contact, based on the maximum penetration
of the two boxes. This is resolved in the normal way. Because we only have one con-
tact resolved, the boxes will likely reinterpenetrate in the next frame but often in a
different way. This new interpenetration is detected as a new contact, so now we have
two contacts. This continues a third time, when we have three contacts, sufficient to
keep the two boxes stacked in a stable manner. Figure 13.17 shows this in action for
two contacts in two dimensions.

The chances that an existing contact will be useful in the next frame are high when
the boxes are stable, but when they are moving, the contact may be completely wrong
at the following frame.

To avoid having to throw away the contacts when boxes are moving (which would
mean we’d be back to generating just a single contact at each frame), we don’t store
the complete contact but only the features that are touching.

We’ve met features throughout this chapter: point, edge, and face. A point–edge
contact is a contact between a certain vertex and a certain face. To take advantage

292 Chapter 13 Generating Contacts

FIGURE 13.17 Sequence of contacts over two frames.

of the coherence between contacts, we store the type of contact (in our case only
point–edge and edge–edge) and which particular feature was involved for each object.
Figure 13.17 shows this in action. We have a point–face contact, and in the next frame
we have the same contact (i.e., a contact between the same point and face) but with
different contact properties.

If the deepest-penetration algorithm returns a contact that we already have, then
we update the data for that contact. Otherwise the new contact is added to the con-
tacts we already have cached for those two objects, and the complete set is sent to the
collision resolver algorithm.

For each contact in our cache we need to update the values that change (i.e., the
contact normal and the interpenetration depth). If we find that the interpenetration
depth is larger than some fixed value, then the contact has moved apart by some
distance, and thus it makes no sense to consider it further. So we remove contacts
from the cache if, when updated, they have moved too far apart.

How far is too far? If we strictly use a value of zero, then we are doing too much
work. When a contact is resolved, its interpenetration is brought back to zero or less;
and we don’t want the contact resolution to cause us to remove contacts from the
cache because we’d be back to the one-contact-per-frame case. As we’ll see when we
look at contact resolution, it can be helpful to consider contacts that aren’t inter-
penetrating when trying to resolve a whole set of contacts on one object.

So we use a small negative value. Getting the right value is, unfortunately, a matter
of tweaking.

13.3 Primitive Collision Algorithms 293

Contact Generation

So we’ve reduced the complex task of generating a set of contacts between two boxes
to the problem of finding the point of deepest interpenetration. In addition, however,
we find that the point of deepest penetration has to be able to return the features on
which the contact takes place.

A range of algorithms can help us do this for both boxes and general convex ob-
jects. V-Clip is one of the best known, but the detection phase of Lin-Canny, and
Gilbert, Johnson, and Keerthi’s algorithm (GJK) are also useful. V-Clip is described
in detail in Ericson [2005], while GJK is more comprehensively described in van den
Bergen [2003], reflecting each author’s use of their favorite technique in their collision
detection libraries.

All these algorithms are distance algorithms: they can return the shortest distance
between two polyhedra. In our case this is useful when the distance returned is less
than zero: the objects are interpenetrating. Lin-Canny in particular has problems with
this case; it needs to be tweaked to catch the interpenetration case and avoid an infi-
nite loop.

Both V-Clip and GJK intelligently search the possible combinations of features
that can be in contact. They are sufficiently intelligent about this that there is little
speed advantage in performing a separating axis test as an early-out for boxes.

To build a robust and efficient collision detection system for general polyhedra,
you will eventually need to use something like these techniques. Be careful, however.
Various efficient collision detection algorithms, including V-Clip and some of its vari-
ants, are protected by patents. If you implement these algorithms in your code, you
may need to get a license agreement or pay a licensing fee.

To allow us to test out the physics without writing a full collision detection sys-
tem, we can build a naive algorithm that checks all possible interpenetrations. This
is workable for a box with six faces, eight vertices, and twelve edges but shouldn’t be
considered production-ready for anything more complex.

Our naive contact generator simply checks for both of the contact types we are
interested in: point–face contacts and edge–edge contacts. If it finds more than one
such contact, then the contact that has the greatest interpenetration is returned. Re-
member that we aren’t returning multiple contacts, because getting a self-consistent
set of such contacts can be difficult.

To exhaustively check for contacts we perform two kinds of check: a point–face
check of each vertex on each object against the other object, and an edge–edge check
of each edge on one object against the other.

Point–Face Contact

Point–face contacts are easy to detect: they use the same logic as for sphere–box col-
lisions but with a zero-radius sphere. We simply project each vertex from one box
into the principal axes of the other. If the vertex is inside the box, then a point–face
collision is required. If the vertex is inside the box on more than one axis, then the
axis with the shallowest penetration is used. Figure 13.18 shows this.

294 Chapter 13 Generating Contacts

FIGURE 13.18 Projection of a point–face contact.

The algorithm works in this way:

1. Consider each vertex of object A.

2. Calculate the interpenetration of that vertex with object B.

3. The deepest such interpenetration is retained.

4. Do the same with object B’s vertices against object A.

5. The deepest interpenetration overall is retained.

The point–face detection code therefore looks like this:

Excerpt from src/collide_fine.cpp

unsigned CollisionDetector::boxAndPoint(
const Box &box,
const Vector3 &point,
CollisionData *data
)

{
// Transform the point into box coordinates.
Vector3 relPt = box.transform.transformInverse(point);

Vector3 normal;

// Check each axis, looking for the axis on which the

13.3 Primitive Collision Algorithms 295

// penetration is least deep.
real min_depth = box.halfSize.x - real_abs(relPt.x);
if (min_depth < 0) return 0;
normal = box.getAxis(0) * ((relPt.x < 0)?-1:1);

real depth = box.halfSize.y - real_abs(relPt.y);
if (depth < 0) return 0;
else if (depth < min_depth)
{

min_depth = depth;
normal = box.getAxis(1) * ((relPt.y < 0)?-1:1);

}

depth = box.halfSize.z - real_abs(relPt.z);
if (depth < 0) return 0;
else if (depth < min_depth)
{

min_depth = depth;
normal = box.getAxis(2) * ((relPt.z < 0)?-1:1);

}

// Compile the contact.
Contact* contact = data->contacts;
contact->contactNormal = normal;
contact->contactPoint = point;
contact->penetration = min_depth;

// Write the appropriate data.
contact->body[0] = box.body;

// Note that we don’t know what rigid body the point
// belongs to, so we just use NULL. Where this is called
// this value can be left, or filled in.
contact->body[1] = NULL;

contact->restitution = data->restitution;
contact->friction = data->friction;

return 1;
}

Notice that we generate the contact data for the point–face collision exactly as we did
in the sphere–box test.

296 Chapter 13 Generating Contacts

Edge–Edge Contact Generation

Determining edge–edge contacts is not much more complex. We again take each edge
from one object in turn and check it against the other object. In this case we check it
against edges in the other object.

We can easily calculate the distance between the two edges, but the distance alone
doesn’t tell us whether the edges are separated by that distance or interpenetrating by
that distance. We need to add an extra check. The distance calculation also provides us
with the point on each edge that is closest to the other edge. If the edges are interpen-
etrating, then this point on object A will be closer to the center of object B than ob-
ject B’s edge point, and vice versa. Figure 13.19 illustrates this. We use this check to de-
termine the sign of the distance and to work out whether it is interpenetrating or not.

Just as we saw in figure 13.18 for point–face contacts, an edge–edge contact will
be detected for multiple edges. We only need to use the shallowest edge–edge contact.
The algorithm works in this way:

1. Consider each edge E of object A.

2. Work out its interpenetration with each edge of object B.

3. The shallowest such interpenetration is the interpenetration of E.

4. The edge from object A with the deepest such interpenetration is retained.

We don’t need to repeat the process from object B’s point of view because we are
checking edges against edges; we will have checked all edge combinations already.

FIGURE 13.19 Determining edge–edge contacts.

13.4 Summary 297

The Final Contact

Now we have a winner from the point–face calculations and a winner from the edge–
edge calculations. The contact that gets returned will be the deeper of these two op-
tions. This can then be fed into the caching algorithm described previously to gener-
ate a complete set of contacts over successive frames.

13.3.6 EFFICIENCY AND GENERAL POLYHEDRA

Obviously the naive contact generation algorithm described earlier is considerably
less efficient than V-Clip, GJK, or the handful of other variations used in comprehen-
sive collision detection libraries.

You’ll find this algorithm on the CD, along with a more efficient general-purpose
contact generation routine that you can simply copy and paste into your own code.

Neither the naive algorithm nor its more efficient cousins are limited to contact
generation between boxes. They are general-purpose algorithms that can generate
contacts between any convex 3D objects made up of flat surfaces. This is convenient
because most game assets are made up of polygons (although native curved surfaces
are becoming increasingly common).

As the number of faces increases, however, the algorithms slow down by an in-
creasingly large amount. The naive algorithm shows this particularly acutely; for any-
thing more than a simple box it performs very badly. But both V-Clip and GJK also
suffer from the same problem.

For this reason, even when using a very efficient collision detection algorithm
with a comprehensive coarse collision detection layer, it is not advisable to use the
same set of geometry for collision detection as you do for rendering. Even complex
3D assets can normally be represented to the collision detector as either an assembly
of primitives or an assembly of simply convex polyhedra. A general polyhedra contact
generator, combined with the caching system we’ve built, can then generate a set of
contacts that will lead to realistic physics in a reasonable amount of time.

13.4 SUMMARY

These collision detection cases only scratch the surface of what is possible (and what
may be needed) in a full game engine. Collision detection, and particularly contact
generation, is a large field in its own right, and although the physics engine relies on
it, it is a quite separate piece of software engineering.

You can use the collision detection system we’ve built in the last two chapters in
its own right, and extend it with the additional tests you need (the other books in this
series contain lots of collision detection tests). Or you can elect to bring in a third-
party collision detection system.

There are good open source collision detection and contact generation algorithms
available (such as SOLID and RAPID). You can use these alongside the physics you’re

298 Chapter 13 Generating Contacts

developing in this book, or take their algorithms as inspiration for creating your own
code.

Be warned though: There are so many cases, and so many optimizations possible,
that it will end up a bigger job to write a comprehensive collision detection system
than it will be to create your physics engine to process the contacts.

With a collision detection system running correctly, it’s time to return to our
physics engine and process the collisions that we’ve found. Chapter 14 continues to
cover the issue of impact collisions and shows how to build code to support collisions
for full rotating rigid bodies.

PART V

Contact Physics

This page intentionally left blank

14
COLLISION

RESOLUTION

t’s time to look at the final, and most complex, stage of our physics system. We
I have a set of contact data from the collision detector (from chapter 13), and we
have the rigid-body equations of motion, including torques and forces (from chap-
ter 10). We are now ready to combine the two and have rotating objects respond to
contacts.

Just as in chapter 7, we will first look in detail at the physics of collisions. We are
building a micro-collision physics engine, one in which resting contacts are handled
with numerous mini-collisions (plus a bit of extra special-purpose code). Before we
can get the micro-collisions of resting contacts working, we need to look in detail at
basic collision handling.

This chapter builds the first stage of our contact resolution system to handle colli-
sions. Chapter 15 goes on to incorporate the collision response into more general and
robust contact handling.

Because all contact handling in the engine is based on collisions, this chapter takes
up the largest part of finishing our engine, in terms of book pages, of mathematical
complexity, and of implementation difficulty. If you find this chapter hard going, then
try to persevere: it’s mostly downhill from here on.

14.1 IMPULSES AND IMPULSIVE TORQUES

Recall that when a collision occurs between two objects in the real world, the material
from which they are made compresses slightly. Whether it is a rubber ball or a stone,
the molecules near the point of collision are pushed together fractionally. As they
compress they exert a force to try to return to their original shape.

301

302 Chapter 14 Collision Resolution

Different objects have a different resistance to being deformed and a different
tendency to return to their original shape. Combined together the two tendencies
give an object its characteristic bounce. A rubber ball can be easily deformed but
has a high tendency to return to its original shape, so it bounces well. A stone has a
high tendency to return to its original shape but has a very high resistance to being
deformed: it will bounce, but not very much. A lump of clay will have a low resistance
to being deformed and no tendency to return to its original shape: it will not bounce
at all.

The force that resists the deformation causes the objects to stop colliding: their ve-
locities are reduced until they are no longer moving together. At this point the objects
are at their most compressed. If there is a tendency to return to their original shape,
then the force begins to accelerate them apart until they are no longer deformed. At
this point the objects are typically moving apart.

All this happens in the smallest fraction of a second, and for reasonably stiff ob-
jects (such as two pool balls) the compression distances are tiny fractions of a mil-
limeter. In almost all cases the deformation cannot be seen with the naked eye; it is
too small and over too quickly. From our perspective we simply see the two objects
collide and instantly bounce apart.

I have stressed what is happening at the minute level because it makes the math-
ematics more logical. It would be impractical for us to simulate the bounce in detail,
however. The compression forces are far too stiff, and as we’ve seen with stiff springs,
the results would be disastrous.

In chapter 7 we saw that two point objects will bounce apart at a velocity that is
a fixed multiple of their closing velocity immediately before the impact. To simulate
this we instantly change the velocity of each object in the collision. The change in
velocity is called an “impulse.”

14.1.1 IMPULSIVE TORQUE

Now that we are dealing with rotating rigid bodies, things are a little more difficult. If
you bounce an object that is spinning on the ground, you will notice that the object
not only starts to move back upward, but its angular velocity will normally change
too.

It is not enough to apply the collision equations from chapter 7 because they only
take into account linear motion. We need to understand how the collision affects both
linear and angular velocities.

Figure 14.1 shows a long rod being spun into the ground (we’ll come back to col-
lisions between two moving objects in a moment). Let’s look closely at what would
happen in the real world at the moment of collision. The second part of the figure
shows the deformation of the object at the point of collision. This causes a compres-
sion force to push in the direction shown.

Looking at D’Alembert’s principle in chapter 10 we saw that any force acting on
an object generates both linear and angular acceleration. The linear component is

14.1 Impulses and Impulsive Torques 303

FIGURE 14.1 The rotational and linear components of a collision.

given by

p̈ = 1

m
f

and the angular component by the torque

τ = pf × f

where the torque generates angular acceleration by

θ̈ = I−1τ

which is equation 10.3 from chapter 10.
In the case of the collision it stands to reason that the collision will generate a

linear change in velocity (the impulse) and an angular change in velocity. An instan-
taneous angular change in velocity is called an “impulsive torque” (also rarely called
“moment of impulse” or “impulsive moment,” which sounds more like a drunken
Vegas wedding to me).1

In the same way as we have

τ = Iθ̈

for torques we have

u = Iθ̇

1. Strictly speaking, what we’ve called impulse is “impulsive force.” We could also call it “linear and an-
gular impulse,” but I’ll continue to use just “impulse” to refer to the linear version.

304 Chapter 14 Collision Resolution

where u is the impulsive torque, I is the inertia tensor, and θ̇ is the angular velocity, as
before. This is the direct equivalent of equation 7.5, which dealt with linear impulses.
And correspondingly the change in angular velocity �θ̇ is

�θ̇ = I−1u [14.1]

In all these equations I should be in world coordinates, as discussed in section 10.2.3.
Impulses behave just like forces. In particular for a given impulse there will be

both a linear component and an angular component. Just as the amount of torque is
given by

τ = pf × f

so the impulsive torque generated by an impulse is given by

u = pf × g [14.2]

In our case, for collisions the point of application (pf) is given by the contact
point and the origin of the object:

pf = q − p

where q is the position of the contact in world coordinates and p is the position of
the origin of the object in world coordinates.

14.1.2 ROTATING COLLISIONS

The effect of the impulse at the collision is to have the points of each object in collision
bounce apart. The movement of the colliding objects at the collision point still follows
the same equations that we met in chapter 7. In other words, if we tracked the two
collision points (one from each object) around the time of the collision, we’d see that
their separating velocity is given by

v′
s = −cvs

where vs is the relative velocity of the objects immediately before the collision, v′
s

is the relative velocity after the collision, and c is the coefficient of restitution. In
other words, the separation velocity is always in the opposite direction to the closing
velocity, and is a constant proportion of its magnitude. The constant c depends on
the materials of both objects involved.

Depending on the characteristics of the objects involved, and the direction of the
contact normal, this separation velocity will be made up of a different degree of lin-
ear and rotational motion. Figure 14.2 shows different objects engaged in the same
collision (again illustrated with an unmoving ground for clarity). In each part of the

14.1 Impulses and Impulsive Torques 305

FIGURE 14.2 Three objects with different bounce characteristics.

figure the closing velocity and the coefficient of restitution at the point of contact are
the same, so the separating velocity is the same too.

The first object is lightweight and is colliding almost head on. For any force that
is generated during the collision the corresponding torque will be small, because f
is almost parallel to pf . Its bounce will be mostly linear, with only a small rotational
component.

The second object is heavier but has a very small moment of inertia about the Z
axis. It is colliding off center. Here the torque generated will be large, and because the
moment of inertia is very small, there will be a big rotational response. The rotational
response is so large, in fact, that the linear component isn’t large enough to bounce the
object upward. Although the point of contact bounces back up (at the same velocity
as the point of contact in each other case), it is the rotation of the object that is doing
most of the separating, so the linear motion continues downward at a slightly slower
rate. You can observe this if you drop a ruler on the ground in the configuration
shown in figure 14.2. The ruler will start spinning away from the point of contact
rapidly, but as a whole it will not leap back into the air. The rotation is taking the bulk
of the responsibility for separating the points of contact.

The third object in the figure collides in the same way as the second. In this case,
however, although the mass is the same, its moment of inertia is much greater. It
represents an object with more mass in its extreme parts. Here the compression force
causes a much lower amount of rotation. The linear impulse is greater and the impul-
sive torque is smaller. The object bounces linearly and the compression force reverses
the direction of rotation, but the resulting angular velocity is very small.

14.1.3 HANDLING ROTATING COLLISIONS

Just as for particle collisions, we need two parts to our collision response. First we
need to resolve the relative motion of the two objects by applying impulse and impul-
sive torque. When we process a collision for velocity, we need to calculate four values:
the impulse and impulsive torque for both objects in the collision. Calculating the
balance of linear and angular impulse to apply is a complex task and involves some
complicated mathematics, as we’ll see in the next section.

306 Chapter 14 Collision Resolution

Because we only check for collisions at the end of each frame, objects may have
already passed into one another. So, second, we need to resolve any interpenetration
that has occurred. The interpenetration can be handled in a very similar way to inter-
penetration for particles. But the impulse calculations we need to do anyway allow us
to derive a more physically realistic interpenetration resolution. We’ll return to this
process in section 14.3

14.2 COLLISION IMPULSES

To resolve the relative motion of the two objects we need to calculate four impulses:
linear and angular impulses for each object. If there is only one object involved in
the collision (if an object is colliding with an immovable object, such as the ground),
then we need only two values: the impulse and impulsive torque for the single object.

To calculate the impulse and impulsive force on each object we go through a series
of steps:

1. We work in a set of coordinates that are relative to the contact. This makes much
of the mathematics a lot simpler. We create a transform matrix to convert into
and out of this new set of coordinates.

2. We work out the change in velocity of the contact point on each object per unit
impulse. Because the impulse will cause linear and angular motion, this value
needs to take account of both components.

3. We will know the velocity change we want to see (in the next step), so we invert
the result of the last stage to find the impulse needed to generate any given velocity
change.

4. We work out what the separating velocity at the contact point should be, what
the closing velocity currently is, and the difference between the two. This is the
desired change in velocity.

5. From the desired change in velocity we can calculate the impulse that must be
generated.

6. We split the impulse into its linear and angular components and apply them to
each object.

Let’s look at each of these stages in turn.

14.2.1 CHANGE TO CONTACT COORDINATES

Our goal is to work out what impulse we need to apply as a result of the collision.
The impulse will generate a change in velocity, and we need to find the impulse that
generates the change in velocity we are looking for.

We are not interested in the linear and angular velocity of the whole object at this
stage. For the purpose of the collision we are only interested in the separating velocity

14.2 Collision Impulses 307

FIGURE 14.3 The three sets of coordinates: world, local, and contact.

of the contact points. As we saw in the previous section, we have an equation that
tells us what the final separating velocity needs to be, so we’d like to be able to apply
it simply.

The velocity of a point on an object is related to both its linear and angular veloc-
ity, according to equation 9.5:

q̇ = θ̇ × (q − p) + ṗ

Because we are only interested in the movement of the colliding points at this stage, we
can simplify the mathematics by doing calculations relative to the point of collision.

Recall from chapter 13 that each contact has an associated contact point and con-
tact normal. If we use this point as the origin, and the contact normal as one axis, we
can form an orthonormal basis around it: a set of three axes. Just as we have a set of
world coordinates and a set of local coordinates for each object, we will have a set of
contact coordinates for each contact.

Figure 14.3 shows the contact coordinates for one contact. Notice that we are ig-
noring interpenetration at this stage. As part of the contact generation, we calculated
a single representative point for each contact.

The Contact Coordinate Axes

The first step of converting to contact coordinates is to work out the direction of each
axis. We do this using the algorithm to calculate an orthonormal basis, as shown in

308 Chapter 14 Collision Resolution

section 2.1.9. The X axis we know already: it is the contact normal generated by the
collision detector. The Y axis and Z axis need to be calculated.2

Unfortunately there can be any number of different Y and Z axes generated from
one X axis. We’ll need to select just one. If we are working with anisotropic friction
(friction that is different in different directions), then there will be one set of basis
vectors that is most suitable. For the isotropic friction in this book, and for frictionless
simulations, any set is equally valid. Since we are ignoring friction for now, we create
an arbitrary set of axes by starting with the Y axis pointing down the world Y axis
(recall that the algorithm required the base axis, in our case the X axis, plus an initial
guess at a second axis, which may end up being altered):

/**
* Creates an orthonormal basis where the x-vector is given
* and the y-vector is suggested, but can be changed. Both
* y and z vectors are written to in this function. We assume
* that the vector x is normalized when this function is called.
*/
void makeOrthonormalBasis(const Vector &x, Vector *y, Vector *z)
{

// Calculate z from the vector product of x and y.
z = (*x) % (*y);

// Check for y and z in parallel
if (z->squaredMagnitude() == 0.0) return;

// Calculate y from the vector product of z and x.
(*y) = (*z) % x;

// Normalize the output vectors
y->normalize();
z->normalize();

}

This follows the algorithm given in section 2.1.9. The Y axis assumption is provided
when the function is called:

Vector y(0, 1.0, 0), z;
makeOrthonormalBasis(contactNormal, &y, &z);

2. This is just a convention adopted in this book. There is no reason why the X axis has to be the contact
normal. Some people prefer to think of the Y axis as the contact normal. If you are one of them, the rest of
this section can be adjusted accordingly.

14.2 Collision Impulses 309

This algorithm can’t cope when the x and y vectors are parallel. We can easily
modify the algorithm to do that, rather than returning when check for zero fails. We
could use a different y value (by inverting one or swapping two of its non-zero ele-
ments, for example) and recalculate z. We will return to this issue later, after making
some improvements to the calculation code itself.

We can improve the efficiency of this longhand form by manually performing the
vector products (rather than calling the vector product operator in the Vector3 class).
First notice that if the initial Y axis is pointing along the Y axis, then any value for
the resulting Z axis must be at right angles to the Y axis. This can only happen if the
resulting Z axis has a zero Y component.

Second, rather than normalizing the vectors at the end, we can ensure that they
are normalized as we go. We do this by making sure that the calculation of the Z axis
ends with a normalized vector. Because the vector product obeys the equation

|y| = |z × x| = |z||x| sin θ

and we know the X and Z axes are at right angles (sin θ = 1) and both are normalized
(|z| = |x| = 1) then the resulting Y axis must have a magnitude of 1: it is normalized.
The shorthand code looks like this:

// The output axes
Vector y, z;

// Scaling factor to ensure the results are normalized.
const real s = 1.0/real_sqrt(x.z*x.z + x.x*x.x);

// The new Z axis is at right angles to the world Y axis.
z.x = x.z*s;
z.y = 0;
z.z = -x.x*s;

// The new Y axis is at right angles to the new X and Z axes.
y.x = x.y*z.x;
y.y = x.z*z.x - x.x*z.z;
y.z = -x.y*z.x;

There is one further problem to address. If the contact normal passed in (as the X
axis) is already pointing in the direction of the world-space Y axis, then we will end
up with zero for all three components of the Z axis. In this case, using the world-space
Y axis is not a good guess; we need to use another. We can use either the world-space
X axis or Z axis. The code I’ve implemented uses the world-space X axis.

To make the algorithm as stable as possible we switch between using the world-
space Y axis and the X axis as a best guess, depending on which the contact normal

310 Chapter 14 Collision Resolution

is nearest to. We could just switch when the contact normal is exactly in the direction
of the Y axis, but if it were very close to being in that direction, we might end up with
numerical problems and an inaccurate result.

if (real_abs(x.x) > real_abs(x.y))
{
// We’re nearer the X axis, so use the Y axis as before.
// ...

}
else
{
// We’re nearer the Y axis, so use the X axis as a guess.
// ...

}

The Basis Matrix

Before we look at the complete code for calculating the basis, we need to review what
it needs to output. So far I’ve assumed we’ll end up with three vectors that make up
an orthonormal basis.

It is often more convenient to work with a matrix rather than a set of three vectors.
Recall from section 9.4.2 that a matrix can be thought of as a transformation from one
set of axes to another.

At several points in this section we will need to convert between the contact axes
(called “contact coordinates” or “contact space”) and world space. To do this we need
a matrix that performs the conversion.

We saw in section 9.4.2 that a transform matrix from local space into world space
can be constructed by placing the three local-space axes as columns in the matrix. So,
if we have an orthonormal basis consisting of the three vectors

x̂local =
⎡
⎢⎣

a

b

c

⎤
⎥⎦ , ŷlocal =

⎡
⎢⎣

d

e

f

⎤
⎥⎦ , and ẑlocal =

⎡
⎢⎣

g

h

i

⎤
⎥⎦

we can combine them into a transform matrix:

Mbasis =
⎡
⎢⎣

a d g

b e h

c f i

⎤
⎥⎦

If we have a set of coordinates expressed in local space, and we want the coordi-
nates of the same point in world space, we can simply multiply the transform matrix

14.2 Collision Impulses 311

by the coordinate vector:

Mplocal = pworld

In other words, the basis matrix converts local coordinates to world coordinates.
We can put this together into code. This function operates on the contact normal

to create a set of orthonormal axes and then generates a basis matrix representing the
contact coordinate scheme. The matrix can act as a transformation to convert contact
coordinates into world coordinates:

Excerpt from src/contacts.cpp

/**
* Constructs an arbitrary orthonormal basis for the contact.
* This is stored as a 3x3 matrix, where each vector is a column
* (in other words the matrix transforms contact space into world
* space). The x direction is generated from the contact normal,
* and the y and z directions are set so they are at right angles to
* it.
*/
void Contact::calculateContactBasis()
{

Vector3 contactTangent[2];

// Check whether the Z axis is nearer to the X or Y axis.
if(real_abs(contactNormal.x) > real_abs(contactNormal.y))
{

// Scaling factor to ensure the results are normalized.
const real s = (real)1.0f/

real_sqrt(contactNormal.z*contactNormal.z +
contactNormal.x*contactNormal.x);

// The new X axis is at right angles to the world Y axis.
contactTangent[0].x = contactNormal.z*s;
contactTangent[0].y = 0;
contactTangent[0].z = -contactNormal.x*s;

// The new Y axis is at right angles to the new X and Z axes.
contactTangent[1].x = contactNormal.y*contactTangent[0].x;
contactTangent[1].y = contactNormal.z*contactTangent[0].x -

contactNormal.x*contactTangent[0].z;
contactTangent[1].z = -contactNormal.y*contactTangent[0].x;

}
else
{

// Scaling factor to ensure the results are normalized.
const real s = (real)1.0/

312 Chapter 14 Collision Resolution

real_sqrt(contactNormal.z*contactNormal.z +
contactNormal.y*contactNormal.y);

// The new X axis is at right angles to the world X axis.
contactTangent[0].x = 0;
contactTangent[0].y = -contactNormal.z*s;
contactTangent[0].z = contactNormal.y*s;

// The new Y axis is at right angles to the new X and Z axes.
contactTangent[1].x = contactNormal.y*contactTangent[0].z -

contactNormal.z*contactTangent[0].y;
contactTangent[1].y = -contactNormal.x*contactTangent[0].z;
contactTangent[1].z = contactNormal.x*contactTangent[0].y;

}

// Make a matrix from the three vectors.
contactToWorld.setComponents(

contactNormal,
contactTangent[0],
contactTangent[1]);

}

where the setComponents method of the Matrix3 class sets the columns in the matrix.
It is implemented as

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array
* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

/**
* Sets the matrix values from the given three vector components.
* These are arranged as the three columns of the vector.
*/

void setComponents(const Vector3 &compOne, const Vector3 &compTwo,
const Vector3 &compThree)

{
data[0] = compOne.x;

14.2 Collision Impulses 313

data[1] = compTwo.x;
data[2] = compThree.x;
data[3] = compOne.y;
data[4] = compTwo.y;
data[5] = compThree.y;
data[6] = compOne.z;
data[7] = compTwo.z;
data[8] = compThree.z;

}
};

The Inverse Transformation

It is worth recapping the result we saw in section 9.4.3 here—namely, that the inverse
of a rotation matrix is the same as its transpose. Why are we interested in the inverse?
Because, in addition to converting from contact coordinates to world coordinates, we
may have to go the other way as well.

To convert world coordinates into contact coordinates we use the inverse of the
basis matrix created in the previous code. Inverting a matrix in general, as we have
seen, is complex. Fortunately the basis matrix as we’ve defined it here represents a
rotation only: it is a 3 × 3 matrix, so it can’t have a translational component; and
because both the contact axes and the world axes are orthonormal, there is no skewing
or scaling involved.

This means that we can perform the transformation from world coordinates into
contact coordinates by using the transpose of the basis matrix:

M�
basis =

⎡
⎢⎣

a d g

b e h

c f i

⎤
⎥⎦

�

=
⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

This important result allows us to convert at will between contact coordinates and
world coordinates.

Whenever some calculation is easier in one than another, we can simply convert
between them. We’ll use this important result in the next section, and a great deal
more in the next chapter.

14.2.2 VELOCITY CHANGE BY IMPULSE

Remember that the change in motion of both objects in a collision is caused by the
forces generated at the collision point by compression and deformation. Because we
are representing the whole collision event as a single moment in time, we use impulses
rather than forces. Impulses cause a change in velocity (both angular and linear, ac-
cording to D’Alembert’s principle, just like forces).

314 Chapter 14 Collision Resolution

So, if our goal is to calculate the impulse at the collision, we need to understand
what effect an impulse will have on each object. We want to end up with a mathemat-
ical structure that tells us what the change in velocity of each object will be for any
given impulse.

For the frictionless contacts we’re considering in this chapter, the only impulses
generated at the contact are applied along the contact normal. We’d like to end up
with a simple number, then, that tells us the change in velocity at the contact, in
the direction of the contact normal, for each unit of impulse applied in the same
direction.

As we have seen, the velocity change per unit impulse has two components: a lin-
ear component and an angular component. We can deal with these separately and
combine them at the end.

It is also worth noting that the value depends on both bodies. We’ll need to find
the linear and angular velocity change for each object involved in the collision.

The Linear Component

The linear component is very simple. The linear change in velocity for a unit impulse
will be in the direction of the impulse, with a magnitude given by the inverse mass:

�ṗd = m−1

For collisions involving two objects, the linear component is simply the sum of
the two inverse masses:

�ṗd = m−1
a + m−1

b

Remember that this equation holds only for the linear component of velocity—they
are not the complete picture yet!

The Angular Component

The angular component is more complex. We’ll need to bring together three equa-
tions we have met at various points in the book. For convenience we’ll use qrel for the
position of the contact relative to the origin of an object:

qrel = q − p

First, equation 14.2 tells us the amount of impulsive torque generated from a unit
of impulse:

u = qrel × d̂

where d is the direction of the impulse (in our case the contact normal).
Second, equation 14.1 tells us the change in angular velocity for a unit of impul-

sive torque:

�θ̇ = I−1u

14.2 Collision Impulses 315

And finally, equation 9.5 tells us the total velocity of a point. If we remove the
linear component, we get the equation for the linear velocity of a point due only to
its rotation:

q̇ = θ̇ × qrel

The rotation-induced velocity of a point (q̇) depends on its position relative to the
origin of the object (q − p) and on the object’s angular velocity (θ̇).

So we now have a set of equations that can get us from a unit of impulse, via the
impulsive torque it generates and the angular velocity that the torque causes, through
to the linear velocity that results.

Converting these three equations into code, we get

Vector3 torquePerUnitImpulse =
relativeContactPosition % contactNormal;

Vector3 rotationPerUnitImpulse =
inverseInertiaTensor.transform(torquePerUnitImpulse);

Vector3 velocityPerUnitImpulse =
rotationPerUnitImpulse % relativeContactPosition;

The result will be the velocity caused by rotation per unit impulse. As it stands, the
result is a vector: it is a velocity in world space. We are only interested in the velocity
along the contact normal.

We need to transform this vector into contact coordinates using the transpose
basis matrix we saw earlier. This would give us a vector of velocities that a unit impulse
would cause. We are only interested at this stage in the velocity in the direction of
the contact normal. In contact coordinates this is the X axis, so our value is the x
component of the resulting vector:

Vector3 velocityPerUnitImpulseContact =
contactToWorld.transformTranspose(velocityPerUnitImpulse);

real angularComponent = velocityPerUnitImpulseContact.x;

where the transformTranspose method is a convenience method that combines the
effect of transforming a vector by the transpose of a matrix.3

3. It works by performing a regular matrix transformation, but it selects the components of the matrix by
row rather than column order. See the code on the CD for its implementation.

316 Chapter 14 Collision Resolution

Although we could implement it in this way, there is a faster way of doing it. If we
have a matrix multiplication

⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

⎡
⎢⎣

x

y

z

⎤
⎥⎦

then the x component of the result is xa + yb + zc. This is equivalent to the scalar
product

⎡
⎢⎣

a

b

c

⎤
⎥⎦ ·

⎡
⎢⎣

x

y

z

⎤
⎥⎦

where the vector ⎡
⎢⎣

a

b

c

⎤
⎥⎦

is the contact normal, as we saw when creating the basis matrix. So we can replace the
full matrix transformation with code of the form

real angularComponent =
velocityPerUnitImpulse * contactNormal;

There is another way to think of this final step. The velocityPerUnitImpulse is
given in world coordinates. Performing the scalar product is equivalent to finding the
component of this value in the direction of the contact normal, where the contact
normal as a vector is also given in world coordinates.

It is better, in my opinion, to think in terms of the change of coordinates, because
as we introduce friction in the next chapter, the simple scalar product trick can no
longer be used. It is important to realize that we are going through the same process in
the non-friction case: finishing with a conversion from world to contact coordinates.

Putting It Together

So for each object in the collision we can now find the change in velocity of the contact
point per unit impulse.

For contacts with two objects involved we have four values: the velocity caused by
linear motion and by angular motion for each object. For contacts where only one
rigid body is involved (i.e., contacts with immovable fixtures such as the ground), we
have just two values.

In both cases we add the resulting values together to get an overall change in
velocity per unit impulse value. The whole process can be implemented in this way:

14.2 Collision Impulses 317

Excerpt from src/contacts.cpp

// Build a vector that shows the change in velocity in
// world space for a unit impulse in the direction of the contact
// normal.
Vector3 deltaVelWorld = relativeContactPosition[0] % contactNormal;
deltaVelWorld = inverseInertiaTensor[0].transform(deltaVelWorld);
deltaVelWorld = deltaVelWorld % relativeContactPosition[0];

// Work out the change in velocity in contact coordinates.
real deltaVelocity = deltaVelWorld * contactNormal;

// Add the linear component of velocity change.
deltaVelocity += body[0]->getInverseMass();

// Check whether we need to consider the second body’s data.
if (body[1])
{

// Find the inertia tensor for this body.
body[1]->getInverseInertiaTensorWorld(&inverseInertiaTensor[1]);

// Go through the same transformation sequence again.
Vector3 deltaVelWorld = relativeContactPosition[1] % contactNormal;
deltaVelWorld = inverseInertiaTensor[1].transform(deltaVelWorld);
deltaVelWorld = deltaVelWorld % relativeContactPosition[1];

// Add the change in velocity due to rotation.
deltaVelocity += deltaVelWorld * contactNormal;

// Add the change in velocity due to linear motion.
deltaVelocity += body[1]->getInverseMass();

}

In this code the first body is considered. Its rotational component of velocity change
is calculated and placed in the deltaVelocity component, followed by its linear com-
ponent. If a second body is present in the contact, then the same process is repeated,
and the deltaVelocity is incremented with the two components for body 2. At the
end of the process deltaVelocity contains the total velocity change per unit impulse.

14.2.3 IMPULSE CHANGE BY VELOCITY

For frictionless collisions this step is incredibly simple. If we have a single value for
the velocity change per unit impulse (call it d), then the impulse needed to achieve

318 Chapter 14 Collision Resolution

a given velocity change is

g = v

d
[14.3]

where v is the desired change in velocity and g is the impulse required.

14.2.4 CALCULATING THE DESIRED VELOCITY CHANGE

This stage of the algorithm has two parts. First we need to calculate the current closing
velocity at the contact point. Second we need to calculate the exact change in velocity
we are looking for.

Calculating the Closing Velocity

Before we can calculate the velocity change we need, we have to know what the current
velocity at the contact is.

As we saw earlier, velocity has both a linear and an angular component. To calcu-
late the total velocity of one object at the contact point we need both. We calculate its
linear velocity and the linear velocity of the contact point due to rotation alone.

We can retrieve the linear velocity from an object directly; it is stored in the rigid
body. To retrieve the velocity due to rotation we need to use equation 9.5 again. The
total velocity of the contact point for one object is given by

Vector3 velocity = body->getRotation() % relativeContactPosition;
velocity += body->getVelocity();

If there are two bodies involved in the collision, then the second body’s values can be
added to the velocity vector.

This gives us a total closing velocity in world coordinates. We need the value in
contact coordinates because we need to understand how much of this velocity is in
the direction of the contact normal and how much is at a tangent to this. The com-
ponents of the velocity that are not in the direction of the contact normal represent
how fast the objects are sliding past one another: they will become important when
we consider friction.

The conversion uses the basis matrix in the now familiar way:

contactVelocity = contactToWorld.transformTranspose(velocity);

For frictionless collisions we will only use the component of this vector that lies in
the direction of the contact normal. Because the vector is in contact coordinates, this
value is simply the x component of the vector.

14.2 Collision Impulses 319

Calculating the Desired Velocity Change

As I mentioned at the start of the chapter, the velocity change we are looking for is
given by the same equation we used for particles:

v′
s = −cvs ⇒ �vs = −vs − cvs = −(1 + c)vs

In other words, we need to remove all the existing closing velocity at the contact, and
keep going so that the final velocity is c times its original value but in the opposite
direction. In code this is simply

real deltaVelocity = -contactVelocity.x * (1 + restitution);

If the coefficient of restitution, c, is zero, then the change in velocity will be suf-
ficient to remove all the existing closing velocity but no more. In other words, the
objects will end up not separating. If the coefficient is near 1, the objects will separate
at almost the same speed at which they were closing.

The value of the coefficient depends on the materials involved in the collision.
Values around 0.4 look visibly very bouncy, like a rubber ball on a hard floor. Values
above this can start to look unrealistic.

14.2.5 CALCULATING THE IMPULSE

With the desired velocity change in hand, the impulse is given by equation 14.3.
Because we are not concerned with friction, we are only concerned with the im-

pulse in the direction of the contact normal. In contact coordinates the contact nor-
mal is the X axis, so the final impulse vector is

gcontact =
⎡
⎢⎣

g

0

0

⎤
⎥⎦

where g is the impulse, as earlier. This is implemented as

Excerpt from src/contacts.cpp

// Calculate the required size of the impulse.
impulseContact.x = desiredDeltaVelocity / deltaVelocity;
impulseContact.y = 0;
impulseContact.z = 0;

At this stage it is convenient to convert out of contact coordinates into world
coordinates. This makes applying the impulse in the final stage simpler. We can do
this using our basis matrix to change coordinates:

gworld = Mgcontact

320 Chapter 14 Collision Resolution

which is implemented as

Excerpt from src/contacts.cpp

// Convert impulse to world coordinates.
Vector3 impulse = contactToWorld.transform(impulseContact);

With the impulse calculated in world coordinates we can go ahead and apply it to
the objects in the collision.

14.2.6 APPLYING THE IMPULSE

To apply the impulse, we use equations 7.5 and 14.1. The first tells us that linear
impulses change the linear velocity of the object according to the formula

ṗ = g

m

So the velocity change for the first object in the collision will be

Vector3 velocityChange = impulse * body[0]->getInverseMass();

The rotation change is given by equation 14.1 as

�θ̇ = I−1u

We first need to calculate the impulsive torque, u, using equation 14.2 again:

u = qrel × g

In code this looks like

Vector3 impulsiveTorque = impulse % relativeContactPosition;
Vector3 rotationChange =

inverseInertiaTensor.transform(impulsiveTorque);

These calculations work for the first object in the collision but not for the second,
if there is one. To apply the impulse to the second object, we first need to make an
observation. We have calculated a single value for the impulse, but there may be two
objects involved in the collision.

Just as in chapter 7, both objects involved in a collision will receive the same sized
impulse, but in opposite directions. And as we saw in chapter 2, changing the direc-
tion of a vector to its opposite is equivalent to changing the sign of all its components.

We have worked so far using the contact normal as it was generated by the colli-
sion detector. By convention the collision detector generates a contact normal from

14.3 Resolving Interpenetration 321

the first body’s point of view. So the calculated impulse will be correct for the first
body. The second body should receive the impulse in the opposite direction.

We can use the same code we used for the second body, but first we need to change
the sign of the impulse.

// Calculate velocity and rotation change for object one.
// ...

impulse *= -1;

// Calculate velocity and rotation change for object two.
// ...

Finally, the velocity and rotation changes calculated for each object can be directly
applied to the velocity and angular velocity of the rigid body. For example:

body->velocity += velocityChange;
body->rotation += rotationChange;

14.3 RESOLVING INTERPENETRATION

We have covered the procedure for representing the change in velocity when a colli-
sion happens. If the objects in our simulation were truly solid, this would be all that
is needed.

Unfortunately the objects can pass into one another before we detect that a colli-
sion has occurred. The simulation proceeds in time steps, during which no checking
takes place. By the end of a time step when collision detection occurs, two objects can
have touched and passed into one another. We need to resolve this interpenetration
in some way; otherwise objects in the game will not appear solid.

This is the same set of requirements we saw in the mass-aggregate engine. In that
case, when two objects were interpenetrating, it was quite easy to move them apart.
We moved each object back along the line of the contact normal to the first point
where they no longer intersected.

14.3.1 CHOOSING A RESOLUTION METHOD

For rotating rigid bodies the situation is a little more complex. There are several
strategies we could employ to resolve interpenetration.

322 Chapter 14 Collision Resolution

FIGURE 14.4 Linear projection causes realism problems.

Linear Projection

We could use the same algorithm as before: changing the position of each object so
that it is moved apart in the direction of the contact normal. The amount of move-
ment should be the smallest possible such that the objects no longer touch.

For collisions involving two objects the amount each one moves is proportional
to its inverse mass. Therefore a light object has to take on more of the movement than
a heavy object.

This approach works and is very simple to implement (in fact it uses the same
code as for the mass-aggregate engine). Unfortunately it isn’t very realistic. Figure 14.4
shows a block that has been knocked into the ground by another collision. If we use
the linear projection interpenetration resolution method, the situation after the colli-
sion is resolved will be as shown. This is in contrast to the third part of the figure that
shows how a real box would behave.

Using linear projection makes objects appear to twitch strangely. If you only have
to deal with spherical objects, it is useful and very fast. For any other object we need
something more sophisticated.

Velocity-Based Resolution

Another strategy used in some physics engines is to take into account the linear and
angular velocities of the objects in the collision.

At some point in their motion the two objects will have just touched. After that
time they will continue interpenetrating to the end of the time step. To resolve the
interpenetration we could move them back to the point of first collision.

In practice, calculating this point of first collision is difficult and not worth wor-
rying about. We can approximate it by considering only the contact point on each ob-
ject as generated by the collision detector. We can move these two points back along
the paths they followed until they no longer overlap in the direction of the contact
normal.4

4. This isn’t the same as finding the first collision point, because it is often not the contact points generated
by the collision detector that are the first to touch: in fact it can be completely different parts of the objects
that touch first.

14.3 Resolving Interpenetration 323

FIGURE 14.5 Velocity-based resolution introduces apparent friction.

To move the objects back we need to keep track of the velocity and rotation of
each object before any collision resolution began. We can then use these values to
work out an equation for the path each contact point takes, and work out when they
first crossed over (i.e., when interpenetration began).

While this is a sensible strategy and can give good results, it has the effect of intro-
ducing additional friction into the simulation. Figure 14.5 shows an example of this.
The object penetrates the ground while moving sideways at high speed. The velocity-
based resolution method would move it back along its path as shown. To the user it
would appear that the object hits the ground and sticks, even if no friction was set for
the collision.

Nonlinear Projection

A third option, and the one I will employ in this chapter, is based on the linear projec-
tion method. Rather than just moving the objects back linearly, we use a combination
of linear and angular movement to resolve the penetration.

The theory is the same: we move both objects in the direction of the contact nor-
mal until they are no longer interpenetrating. The movement, rather than being ex-
clusively linear, can also have an angular component.

For each object in the collision we need to calculate the amount of linear motion
and the amount of angular motion so the total effect is exactly enough to resolve
the interpenetration. Just as for linear projection, the amount of motion each object
makes will depend on the inverse mass of each object. Unlike linear projection, the
balance between linear and angular velocity will depend on the inverse inertia tensor
of each object.

An object with a high moment of inertia tensor at the contact point will be less
likely to rotate, so will take more of its motion as linear motion. If the object rotates
easily, however, then angular motion will take more of the burden.

Figure 14.6 shows nonlinear projection applied to the same situation we saw in
figures 14.4 and 14.5. The result is still not exactly as it would be in reality, but the
result is more believable and usually doesn’t look odd. Figure 14.7 shows the shallow

324 Chapter 14 Collision Resolution

FIGURE 14.6 Nonlinear projection is more believable.

FIGURE 14.7 Nonlinear projection does not add friction.

impact situation: the nonlinear projection method doesn’t introduce any additional
friction. In fact it slightly diminishes the friction by allowing the object to slide farther
than it otherwise would. I don’t know why, but in practice this is far less noticeable
than extra friction.

I will return to the details of implementing this algorithm later in the section.

Relaxation

Relaxation isn’t, strictly speaking, a new resolution method. Relaxation resolves only
a proportion of the interpenetration at one go, and can be used in combination with
any other method. It is most commonly used with nonlinear projection, however.

Relaxation is useful when there are lots of contacts on one object. As each contact
is considered and resolved, it may move the object in such a way that other objects
are now interpenetrated. For a brick in a wall, any movement in any direction will
cause it to interpenetrate with another brick. This can cause problems with the order
in which interpenetration resolution is carried out, and can leave the simulation with
contacts that still have noticeable penetration.

By performing more interpenetration resolution steps, but having each one only
resolve a proportion of the interpenetration, a set of contacts can have a more
equitable say over where an object ends up. Each gets to resolve a little, and then the
others take their turns. This typically is repeated several times. In situations where

14.3 Resolving Interpenetration 325

previously there would have been one or two contacts with obvious interpenetration,
this method shares the interpenetration among all the conflicting contacts, which
may be less noticeable.

Unfortunately relaxation also makes it more likely that interpenetration is notice-
able at the end of an update when there are few collisions. It is beneficial to have all
contacts share a small degree of interpenetration when the alternative is having one
very bad contact, but in most cases it is undesirable and a full-strength resolution step
is more visually pleasing.

It is relatively simple to add relaxation to your engine (you just multiply the pen-
etration to resolve by a fixed proportion before performing the normal resolution
algorithm). I’d advise you to build the basic system without relaxation, and then add
it only if you find that you need to.

14.3.2 IMPLEMENTING NONLINEAR PROJECTION

Let’s look in more detail at the nonlinear projection method and get it working in our
code. We start knowing the penetration depth of the contact: this is the total amount
of movement we’ll need to resolve the interpenetration. Our goal is to find the pro-
portion of this movement that will be contributed by linear and angular motion for
each object.

We first make an assumption: we imagine the objects we are simulating were
pushed together so that they deformed. Rather than the amount of interpenetration,
we treat the penetration depth of the contact as if it were the amount of deforma-
tion in both bodies. As we saw in the section on resolving velocities, this deformation
causes a force that pushes the objects apart. This force, according to D’Alembert’s
principle, has both linear and angular effects. The amount of each depends on the
inverse mass and the inverse inertia tensor of each object.

Treating interpenetration in this way allows us to use the same mathematics we
saw in section 14.2. We are effectively modeling how the two objects would be pushed
apart by the deformation forces: we are using a physically realistic method to find the
linear and angular components we need.

Calculating the Components

For velocity we were interested in the amount of velocity change caused by the rota-
tion change from a single unit of impulse. This quantity is a measure of how resistant
the object is to being rotated when an impulse or force is applied at the contact point.
To resolve penetration we use exactly the same sequence of equations. We find the
resistance of the object to being moved in both a linear and angular way.

Recall that the resistance of an object to being moved is called its “inertia.” So
we are interested in finding the inertia of each object in the direction of the contact
normal. This inertia will have a linear component and a rotational component.

The linear component of inertia is, as before, simply the inverse mass. The an-
gular component is calculated using the same sequence of operations that we used
previously. Together the code looks like this:

326 Chapter 14 Collision Resolution

Excerpt from src/contacts.cpp

// We need to work out the inertia of each object in the direction
// of the contact normal, due to angular inertia only.
for (unsigned i = 0; i < 2; i++) {

if (body[i]) {
Matrix3 inverseInertiaTensor;
body[i]->getInverseInertiaTensorWorld(&inverseInertiaTensor);

// Use the same procedure as for calculating frictionless
// velocity change to work out the angular inertia.
Vector3 angularInertiaWorld =

relativeContactPosition[i] % contactNormal;
angularInertiaWorld =

inverseInertiaTensor.transform(angularInertiaWorld);
angularInertiaWorld =

angularInertiaWorld % relativeContactPosition[i];
angularInertia[i] = angularInertiaWorld * contactNormal;

// The linear component is simply the inverse mass.
linearInertia[i] = body[i]->getInverseMass();

// Keep track of the total inertia from all components.
totalInertia += linearInertia[i] + angularInertia[i];

}
}

At the end of this loop we have the four values (two for single-body collisions)
that tell us the proportion of the penetration to be resolved by each component of
each rigid body. The actual amount each object needs to move is found by

real inverseInertia = 1 / totalInertia;
linearMove[0] = penetration * linearInertia[0] * inverseInertia;
linearMove[1] = -penetration * linearInertia[1] * inverseInertia;
angularMove[0] = penetration * angularInertia[0] * inverseInertia;
angularMove[1] = -penetration * angularInertia[1] * inverseInertia;

The penetration value is negative for the second object in the collision for the same
reason we changed the sign of the impulse for velocity resolution: the movement is
given from the first object’s point of view.

Applying the Movement

Applying the linear motion is simple. The linear move value gives the amount of
motion required, and the contact normal tells us the direction in which the movement
should take place:

14.3 Resolving Interpenetration 327

body[i]->position += contactNormal * linearMove[i];

The angular motion is a little more difficult. We know the amount of linear move-
ment we are looking for; we need to calculate the change in the orientation quaternion
that will give it to us.

We do this in three stages. First we calculate the rotation needed to move the con-
tact point by one unit. Second, we multiply this by the number of units needed (i.e.,
the angularMove value). Finally we apply the rotation to the orientation quaternion.

We can calculate the direction in which the object needs to rotate, using the same
assumption that the rotation is caused by some kind of impulse (even though velocity
does not change, only position and orientation). If an impulse were exerted at the
contact point, the change in rotation would be

�θ̇ = I−1u = I−1(qrel × g)

where qrel is the relative position of the contact point, u is the impulsive torque gen-
erated by the impulse, and g is the impulse in the direction of the contact normal, as
before. In code, this is

Vector3 inverseInertiaTensor;
body->getInverseInertiaTensorWorld(&inverseInertiaTensor);

Vector3 impulsiveTorque = relativeContactPosition % contactNormal;
Vector3 impulsePerMove =

inverseInertiaTensor.transform(impulsiveTorque);

This tells us the impulsive torque needed to get one unit of motion. We are not
really interested in impulses, however. (Because we already know the total distance
that needs to be moved, and we can directly change the object, we don’t need to worry
about how forces get translated into motion.)

To find the rotation needed to get one unit of movement we simply multiply
through by the inertia:

Vector3 rotationPerMove = impulsePerMove * 1/angularInertia;

The rotationPerMove vector now tells us the rotation we need to get one unit of move-
ment. And we know the total movement we want is angularMove, so we know the total
rotation to apply is

Vector3 rotation = rotationPerMove * angularMove;

328 Chapter 14 Collision Resolution

To apply this rotation we use equation 9.8, via the quaternion function updateByVec-
tor that we defined earlier.

14.3.3 AVOIDING EXCESSIVE ROTATION

There are two issues to address with the algorithm presented so far. The first is an
assumption that slipped in without being commented on, and the second is a poten-
tial problem that can cause instability and odd-looking behavior. Both are related to
objects being rotated too much as they are moved out of penetration.

Figure 14.8 shows an object that has been severely interpenetrated. If the moment
of inertia of the object is small but its mass is large, then most of the extraction will
be down to angular movement. Clearly, no matter how much angular movement is
imposed, the contact point will never get out of the object. The example is extreme,
of course, but the problem is very real.

The instant an object begins rotating from an impulsive torque, the contact point
will also begin to move. We have assumed that we can take the instantaneous change
in position of the contact point (i.e., its velocity) and use that to work out how much
rotation is needed. Making this assumption means that there will always be a solution
for how much rotation to apply, even in cases where no solution really exists (such as
in figure 14.8).

In effect we have assumed that the contact point would continue to move in its
initial direction forever at the same rate. Clearly this is a wrong assumption: the con-
tact point would change its direction of motion as it rotates around the center of mass.
For small rotations the assumption is quite good. And we hope that most interpene-
trations aren’t too large.

For large rotations we have another problem, however. We have the possibility
that we might rotate the object so far that the contact point will start to get closer

FIGURE 14.8 Angular motion cannot resolve the interpenetration.

14.3 Resolving Interpenetration 329

FIGURE 14.9 Angular resolution causes other problems.

again, or that another part of the object will come into penetration. Figure 14.9 shows
this case. Even a modest rotation of the object can cause another penetration to occur.

For both issues we need to limit the amount of rotation that can be part of our
penetration resolution. Keeping this value small means that our small-rotation as-
sumption is valid, and that we minimize the chance of causing other interpenetra-
tions while resolving one.

The amount of linear and angular motion we want is calculated and stored in four
variables (two for single-body collisions):

linearMove[0]
linearMove[1]
angularMove[0]
angularMove[1]

We can simply check that the values of angularMove are not too great. If they are,
we can transfer some of the burden from them onto the corresponding linearMove
component.

But what is “too great”? This is where we descend into the black art of tuning the
physics engine. I haven’t come across a sensible logical argument for choosing any
particular strategy.

Some developers use a fixed amount: not allowing the angular move value to be
greater than 0.5, for example. This works well as long as the objects in the simulation
are all roughly the same size. If some objects are very large, then a suitable limit for
them may be unsuitable for smaller objects, and vice versa.

It is also possible to express the limit in terms of a fraction of a revolution that the
object can make. We could limit the rotation so that the object never turns through
more than 45◦, for example. This accounts for differences in size, but it is more com-
plex to work out the equivalent angular move for a specific angle of rotation.

A simple alternative is to scale the angular move by the size of the object (where
the size of the object can be approximated by the magnitude of the relative contact

330 Chapter 14 Collision Resolution

position vector). Therefore larger objects can have more angular movement. This is
the approach I have used in the code on the CD.

real limit = angularLimitConstant *
relativeContactPosition.magnitude();

// Check the angular move is within limits.
if (real_abs(angularMove) > limit)
{

real totalMove = linearMove + angularMove;

// Set the new angular move, with the same sign as before.
if (angularMove >= 0) {

angularMove = limit;
} else {

angularMove = -limit;
}

// Make the linear move take the extra slack.
linearMove = totalMove - angularMove;

}

The value for angularLimitConstant needs to be determined by playing with your
particular simulation. I have found that values around 0.2 give good results, although
lower values are better when very bouncy collisions are needed.

14.4 THE COLLISION RESOLUTION PROCESS

So far we have looked at resolving particular collisions for both velocity and interpen-
etration. Handling one collision on its own isn’t very useful.

The collision detector generates any number of contacts, and all these need to
be processed. We need to build a framework in which any number of collisions can
be processed at once. This final section of the chapter ties the previous algorithms
together to that end. We will end up with a complete collision resolution system that
can be used for simulations that don’t need friction. In the next two chapters we will
extend the engine to handle friction, to improve speed, and to increase stability for
objects resting on one another.

I mentioned in the introduction to the book that the choice of how to resolve a
series of collisions is at the heart of how a physics system is engineered. Most of the
commercial physics middleware packages process all the collisions at the same time
(or at least batch them into groups to be processed simultaneously). This allows them
to make sure that the adjustments made to one contact don’t disturb others.

14.4 The Collision Resolution Process 331

We will steer a slightly different course. Our resolution system will look at each
collision in turn, and correct it. It will process collisions in order of severity (fast
collisions are handled first). It may be that resolving one collision in this way will
cause others to be made worse. We will have to structure the code so that it can take
account of this problem.

In chapter 18 I will look at the simultaneous resolution approaches. There is a
good chance that your physics needs will not require their sophistication, however.
While they are more stable and accurate than the methods in this part of the book,
they are very much more complex and can be considerably slower.

14.4.1 THE COLLISION RESOLUTION PIPELINE

Figure 14.10 shows a schematic of the collision resolution process. Collisions are gen-
erated by the collision detector based on the collision geometry of the objects in-
volved. These collisions are passed into a collision resolution routine, along with the
rigid-body data for the objects involved.

The collision resolution routine has two components: a velocity resolution system
and a penetration resolution system. These correspond to the two algorithms that
have made up the majority of this chapter.

These two steps are independent of each other. Changing the velocity of the ob-
jects doesn’t affect how deeply they are interpenetrating, and vice versa.5 Physics en-

FIGURE 14.10 Data flow through the physics engine.

5. Actually this is not strictly true: changing the position of objects can change the relative position of
their contacts, which can affect the velocity calculations we’ve used in our algorithm. The effect is usually
tiny, however, and for practical purposes we can ignore the interdependence.

332 Chapter 14 Collision Resolution

gines that do very sophisticated velocity resolution, with all collisions handled at the
same time, often have a separate penetration resolver that uses the algorithms we im-
plemented earlier.

The collision resolver we implement in this chapter is set in a class: CollisionRe-
solver. It has a method, resolveContacts, that takes the whole set of collisions and
the duration of the frame, and it performs the resolution in three steps: first it cal-
culates internal data for each contact; then it passes the contacts to the penetration
resolver; and then they go to the velocity resolver:

Excerpt from include/cyclone/contacts.h

/**
* The contact resolution routine. One resolver instance
* can be shared for the whole simulation, as long as you need
* roughly the same parameters each time (which is normal).
*/
class ContactResolver
{
public:

/**
* Resolves a set of contacts for both penetration and velocity.

void resolveContacts(Contact *contactArray,
unsigned numContacts,
real duration);

};

Excerpt from src/contacts.cpp

#include <cyclone/contacts.h>
void ContactResolver::resolveContacts(Contact *contacts,

unsigned numContacts,
real duration)

{
// Make sure we have something to do.
if (numContacts == 0) return;

// Prepare the contacts for processing
prepareContacts(contacts, numContacts, duration);

// Resolve the interpenetration problems with the contacts.
adjustPositions(contacts, numContacts, duration);

// Resolve the velocity problems with the contacts.
adjustVelocities(contacts, numContacts, duration);

}

14.4 The Collision Resolution Process 333

We also add a friend declaration to the contact data structure to allow the resolver
to have direct access to its internals:

Excerpt from include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

/**
* The contact resolver object needs access into the contacts to
* set and effect the contact.
*/
friend ContactResolver;

};

14.4.2 PREPARING CONTACT DATA

Because we may be performing a penetration resolution step as well as a velocity
resolution step for each contact, it is useful to calculate information that both steps
need in one central location. In addition, extra information required to work out the
correct order of resolution must be calculated.

In the first category are two bits of data:

� The basis matrix for the contact point, calculated in the calculateContact-
Basis method, is called contactToWorld.

� The position of the contact is relative to each object. I called this relative-
ContactPosition in the previous code.

The relative velocity at the contact point falls into the second category. We need this
to resolve velocity, so we can just calculate it in the appropriate method. If we’re go-
ing to resolve collisions in order of severity (the fastest first), we’ll need this value to
determine which collision to consider first. So it benefits from being calculated once
and reused when needed.

We can store these data in the Contact data structure:

Excerpt from include/cyclone/contacts.h

class Contact
{

// ... Other data as before ...

protected:

/**
* A transform matrix that converts coordinates in the contact’s
* frame of reference to world coordinates. The columns of this
* matrix form an orthonormal set of vectors.

334 Chapter 14 Collision Resolution

*/
Matrix3 contactToWorld;

/**
* Holds the closing velocity at the point of contact. This is
* set when the calculateInternals function is run.
*/
Vector3 contactVelocity;

/**
* Holds the required change in velocity for this contact to be
* resolved.
*/
real desiredDeltaVelocity;

/**
* Holds the world space position of the contact point
* relative to the center of each body. This is set when
* the calculateInternals function is run.
*/
Vector3 relativeContactPosition[2];

};

The preparation routine only needs to call each contact in turn and ask it to calculate
the appropriate data:

Excerpt from include/cyclone/contacts.h

/**
* The contact resolution routine. One resolver instance
* can be shared for the whole simulation, as long as you need
* roughly the same parameters each time (which is normal).
*/
class ContactResolver
{
protected:

/**
* Sets up contacts ready for processing. This makes sure their
* internal data is configured correctly and the correct set of
* bodies is made alive.
*/

void prepareContacts(Contact *contactArray, unsigned numContacts,
real duration);

};

14.4 The Collision Resolution Process 335

Excerpt from include/cyclone/contacts.h

#include <cyclone/contacts.h>
void ContactResolver::prepareContacts(Contact* contacts,

unsigned numContacts,
real duration)

{
// Generate contact velocity and axis information.
Contact* lastContact = contacts + numContacts;
for(Contact* contact=contacts; contact < lastContact; contact++)
{

// Calculate the internal contact data (inertia, basis, etc).
contact->calculateInternals(duration);

}
}

In the calculateInternals method of the contact we need to calculate each of the
three bits of data: the contact basis, the relative position, and the relative velocity:

Excerpt from src/contacts.cpp

void Contact::calculateInternals(real duration)
{

// Check if the first object is NULL, and swap if it is.
if (!body[0]) swapBodies();
assert(body[0]);

// Calculate a set of axes at the contact point.
calculateContactBasis();

// Store the relative position of the contact relative to each body.
relativeContactPosition[0] = contactPoint - body[0]->getPosition();
if (body[1]) {

relativeContactPosition[1] =
contactPoint - body[1]->getPosition();

}

// Find the relative velocity of the bodies at the contact point.
contactVelocity = calculateLocalVelocity(0, duration);
if (body[1]) {

contactVelocity -= calculateLocalVelocity(1, duration);
}

// Calculate the desired change in velocity for resolution.
calculateDesiredDeltaVelocity(duration);

}

336 Chapter 14 Collision Resolution

The contact basis method was described in section 14.2.1. The relative posi-
tion calculation should be rather straightforward. The remaining two components—
swapping bodies and calculating relative velocity—deserve some comment.

Swapping Bodies

The first two lines make sure that, if there is only one object in the collision, it is in the
zero position of the array. So far we have assumed that this is true. If your collision
detector is guaranteed to only return single-object collisions in this way, then you can
ignore this code.

To swap the bodies we need to move the two body references and also reverse the
direction of the contact normal. The contact normal is always given from the first
object’s point of view. If the bodies are swapped, then this needs to be flipped:

Excerpt from src/contacts.cpp

/**
* Swaps the bodies in the current contact, so body 0 is at body 1 and
* vice versa. This also changes the direction of the contact normal, but
* doesn’t update any calculated internal data. If you are calling this
* method manually, then call calculateInternals afterward to make sure
* the internal data is up to date.
*/
void Contact::swapBodies()
{

contactNormal *= -1;

RigidBody *temp = body[0];
body[0] = body[1];
body[1] = temp;

}

Calculating Relative Velocity

The relative velocity we are interested in is the total closing velocity of both objects
at the contact point. This will be used to work out the desired final velocity after the
objects bounce.

The velocity needs to be given in contact coordinates. Its x value will give the
velocity in the direction of the contact normal, and its y and z values will give the
amount of sliding that is taking place at the contact. We’ll use these two values in the
next chapter when we meet friction.

Velocity at a point, as we have seen, is made up of both linear and angular com-
ponents:

q̇rel = θ̇ × qrel + ṗ

14.4 The Collision Resolution Process 337

where qrel is the position of the point we are interested in, relative to the object’s center
of mass; p is the position of the object’s center of mass (i.e., ṗ is the linear velocity of
the whole object); and θ̇ is the object’s angular velocity.

To calculate the velocity in contact coordinates we use this equation and then
transform the result by the transpose of the contact basis matrix:

Excerpt from src/contacts.cpp

Vector3 Contact::calculateLocalVelocity(unsigned bodyIndex, real duration)
{

RigidBody *thisBody = body[bodyIndex];

// Work out the velocity of the contact point.
Vector3 velocity =

thisBody->getRotation() % relativeContactPosition[bodyIndex];
velocity += thisBody->getVelocity();

// Turn the velocity into contact coordinates
Vector3 contactVelocity = contactToWorld.transformTranspose(velocity);

// And return it.
return contactVelocity;

}

The calculateInternals method finds the overall closing velocity at the contact
point, by subtracting the second body’s closing velocity from the first:

// Find the relative velocity of the bodies at the contact point.
contactVelocity = calculateLocalVelocity(0, duration);
if (body[1]) {

contactVelocity -= calculateLocalVelocity(1, duration);
}

Because this algorithm uses both the contact basis matrix and the relative contact
positions, it must be done last.

14.4.3 RESOLVING PENETRATION

We have visited each contact and calculated the data we’ll need for both resolution
steps. We now turn our attention to resolving the interpenetration for all contacts.
We will do this by taking each contact in turn and calling a method (applyPosition-
Change) that contains the algorithm in section 14.3 for resolving a single contact.

We could simply do this in the same way as for prepareContacts:

338 Chapter 14 Collision Resolution

FIGURE 14.11 Resolution order is significant.

Contact* lastContact = contacts + numContacts;
for(Contact* contact=contacts; contact < lastContact; contact++)
{

contact->applyPositionChange();
}

This will work but isn’t optimal.
Figure 14.11 shows three interpenetrating contacts in a row. The middle part of

the figure shows what happens when the contacts are resolved in order: a large in-
terpenetration remains. The final part of the figure shows the same set of contacts
after resolving in reverse order. There is still some interpenetration visible, but it is
drastically reduced.

Rather than go through the contacts in order and resolve their interpenetration,
we can resolve the collisions in penetration order. At each iteration we search through
to find the collision with the deepest penetration value. This is handled through its
applyPositionChange method in the normal way. The process is then repeated up to
some maximum number of iterations (or until there are no more interpenetrations
to resolve, whichever comes first).

This algorithm can revisit the same contacts several times. Figure 14.12 shows a
box resting on a flat plane. Each corner is penetrating the surface. Moving the first
corner up will cause the second to descend farther. Moving the second will cause

14.4 The Collision Resolution Process 339

FIGURE 14.12 Repeating the same pair of resolutions.

the first to penetrate again, and so on. Given enough iterations, this situation will be
resolved so neither corner is penetrating. It is more likely that the iteration limit will
be reached, however. If you check the number of iterations actually used, you will find
this kind of situation is common and will consume all available iterations.

The same issue can also mean that a contact with a small penetration never gets
resolved: the resolution algorithm runs out of iterations before considering the con-
tact. To avoid this situation, and to guarantee that all contacts get considered, we can
run a single pass through all the contacts and then move on to the best-first iterative
algorithm. In practice, however, this is rarely necessary, and a best-first resolution
system works well on its own. Problems may arise, though, for fast-moving, tightly
packed objects; for simulations with longer time steps; or when there are very small
limits on the number of iterations.

Typically objects that gradually sink into surfaces and then suddenly jump out a
short way are symptomatic of penetration resolution not getting to shallow contacts
(i.e., the contacts are ignored until they get too deep, whereupon they are suddenly
resolved). If this happens, you can add a pass through all contacts before the iterative
algorithm.

Iterative Algorithm Implemented

To find the contact with the greatest penetration we can simply look through each
contact in the list. The contact found can then be resolved:

340 Chapter 14 Collision Resolution

Contact* lastContact = contacts + numContacts;
for (unsigned i = 0; i < positionIterations; i++)
{

Contact* worstContact = NULL;
real worstPenetration = 0;
for(Contact* contact = contacts; contact < lastContact; contact++)
{

if (contact->penetration > worstPenetration)
{

worstContact = contact;
worstPenetration = contact->penetration;

}
}
if (worstContact) worstContact->applyPositionChange();
else break;

}

This method looks through the whole list of contacts at each iteration. If this were
all we needed, then we could do better by sorting the list of contacts first, and then
simply work through them in turn.

Unfortunately the preceding algorithm doesn’t take into account the fact that
one adjustment may change the penetration of other contacts. The penetration data
member of the contact is set during collision detection. Movement of the objects
during resolution can change the penetration depth of other contacts, as we saw in
figures 14.9 and 14.12.

To take this into account we need to add an update to the end of the algorithm:

for (unsigned i = 0; i < positionIterations; i++)
{

// Find worstContact (as before) ...

if (!worstContact) break;

worstContact->applyPositionChange();

updatePenetrations();
}

where updatePenetrations recalculates the penetrations for each contact. To imple-
ment this method accurately we’d need to go back to the collision detector and work
out all the contacts again. Moving an object out of penetration may cause another

14.4 The Collision Resolution Process 341

FIGURE 14.13 Resolving penetration can cause unexpected contact changes.

contact to disappear altogether, or bring new contacts that weren’t expected before.
Figure 14.3 shows this in action.

Unfortunately collision detection is far too complex to be run for each iteration
of the resolution algorithm. We need a faster way.

Updating Penetration Depths

Fortunately there is an approximation we can use that gives good results. When the
penetration for a collision is resolved, only one or two objects can be moved: the one
or two objects involved in the collision. At the point where we move these objects
(in the applyPositionChange method), we know how much they are moving both
linearly and angularly.

After resolving the penetration, we keep track of the linear and angular motion
we applied to each object. Then we check through all contacts and find those that also
apply to either object. Only these contacts are updated based on the stored linear and
angular movements.

The update for one contact involves the assumption we’ve used several times in
this chapter: that the only point involved in the contact is the point designated as
the contact point. To calculate the new penetration value we calculate the new po-
sition of the relative contact point for each object, based on the linear and angular
movements we applied. The penetration value is adjusted based on the new position
of these two points: if they have moved apart (along the line of the contact normal),
then the penetration will be less; if they have overlapped, then the penetration will be
increased.

If the first object in a contact has changed, then the update of the position will be

cp = rotationChange[0].vectorProduct(
c[i].relativeContactPosition[0])
;

cp += velocityChange[0];

342 Chapter 14 Collision Resolution

c[i].penetration -= rotationAmount[0]*cp.scalarProduct(
c[i].contactNormal
);

If the second object has changed, the code is similar, but the value is added at the end:

cp = rotationChange[1].vectorProduct(
c[i].relativeContactPosition[1]);

cp += velocityChange[1];

c[i].penetration += rotationAmount[1]*cp.scalarProduct(
c[i].contactNormal
);

Finally we need some mechanism for storing the adjustments made in the
applyPositionChange method for use in this update. The easiest method is to add
data members to the ContactResolver class.

The complete code puts these stages together: finding the worst penetration, re-
solving it, and then updating the remaining contacts. The full code looks like this:

Excerpt from src/contacts.cpp

void ContactResolver::adjustPositions(Contact *c,
unsigned numContacts,
real duration)

{
unsigned i,index;
Vector3 velocityChange[2], rotationChange[2];
real rotationAmount[2];
real max;
Vector3 cp;

// Iteratively resolve interpenetration in order of severity.
positionIterationsUsed = 0;
while(positionIterationsUsed < positionIterations)
{

// Find biggest penetration.
max = positionEpsilon;
index = numContacts;
for(i=0;i<numContacts;i++) {

if(c[i].penetration > max)
{

max=c[i].penetration;

14.4 The Collision Resolution Process 343

index=i;
}

}
if (index == numContacts) break;

// Match the awake state at the contact.
//c[index].matchAwakeState();

// Resolve the penetration.
c[index].applyPositionChange(velocityChange,

rotationChange,
rotationAmount,
max);//-positionEpsilon);

// Again this action may have changed the penetration of other
// bodies, so we update contacts.
for(i=0; i<numContacts; i++)
{

if(c[i].body[0])
{

if(c[i].body[0]==c[index].body[0])
{

cp = rotationChange[0].vectorProduct(c[i].
relativeContactPosition[0]);

cp += velocityChange[0];

c[i].penetration -=
rotationAmount[0]*cp.scalarProduct(c[i].
contactNormal);

}
else if(c[i].body[0]==c[index].body[1])
{

cp = rotationChange[1].vectorProduct(c[i].
relativeContactPosition[0]);

cp += velocityChange[1];

c[i].penetration -=
rotationAmount[1]*cp.scalarProduct(c[i].
contactNormal);

}
}
if(c[i].body[1])

344 Chapter 14 Collision Resolution

{
if(c[i].body[1]==c[index].body[0])
{

cp = rotationChange[0].vectorProduct(c[i].
relativeContactPosition[1]);

cp += velocityChange[0];

c[i].penetration +=
rotationAmount[0]*cp.scalarProduct(c[i].
contactNormal);

}
else if(c[i].body[1]==c[index].body[1])
{

cp = rotationChange[1].vectorProduct(c[i].
relativeContactPosition[1]);

cp += velocityChange[1];

c[i].penetration +=
rotationAmount[1]*cp.scalarProduct(c[i].
contactNormal);

}
}

}
positionIterationsUsed++;

}
}

14.4.4 RESOLVING VELOCITY

With penetration resolved we can turn our attention to velocity. This is where differ-
ent physics engines vary the most, with several different but excellent strategies for
resolving velocity. We’ll return to some of them in chapter 18.

For this chapter I have aimed for the simplest end of the spectrum: a velocity reso-
lution system that works and is stable, is as fast as possible, but avoids the complexity
of simultaneously resolving multiple collisions. The algorithm is almost identical to
the one for penetration resolution.

The algorithm runs in iterations. At each iteration it finds the collision with the
greatest closing velocity. If there is no collision with a closing velocity, then the al-
gorithm can terminate. If there is a collision, then it is resolved in isolation, using
the method we saw in the first three sections of the chapter. Other contacts are then

14.4 The Collision Resolution Process 345

updated based on the changes that were made. If there are more velocity iterations
available, then the algorithm repeats.

Updating Velocities

The largest change from the penetration version of this algorithm lies in the equations
for updating velocities. As before we search through to find only those contacts with
an object that has just been altered.

If the first object in the contact has changed, the update of the velocity looks like
this:

cp = rotationChange[0].vectorProduct(
c[i].relativeContactPosition[0]
);

cp += velocityChange[0];

c[i].contactVelocity += c[i].contactToWorld.transformTranspose(cp);
c[i].calculateDesiredDeltaVelocity(duration);

The corresponding code for the second object looks like this:

cp = rotationChange[0].vectorProduct(
c[i].relativeContactPosition[1]
);

cp += velocityChange[0];

c[i].contactVelocity -= c[i].contactToWorld.transformTranspose(cp);
c[i].calculateDesiredDeltaVelocity(duration);

The calculateDesiredDeltaVelocity function is implemented as

Excerpt from src/contacts.cpp

// Calculate the acceleration-induced velocity accumulated this frame.
real velocityFromAcc =

body[0]->getLastFrameAcceleration() * duration * contactNormal;

if (body[1])
{

velocityFromAcc -=
body[1]->getLastFrameAcceleration() * duration * contactNormal;

}

346 Chapter 14 Collision Resolution

// If the velocity is very slow, limit the restitution.
real thisRestitution = restitution;
if (real_abs(contactVelocity.x) < velocityLimit)
{

thisRestitution = (real)0.0f;
}

// Combine the bounce velocity with the removed
// acceleration velocity.
desiredDeltaVelocity =

-contactVelocity.x
-thisRestitution * (contactVelocity.x - velocityFromAcc);

Once again, both cases must be able to take their adjustment from either the first
or second object of the contact that has been adjusted.

The complete code listing is very similar to that shown for penetration, so I won’t
include it here. You can find it in the src/contacts.cpp file on the CD.

14.4.5 ALTERNATIVE UPDATE ALGORITHMS

I must confess I have a natural distaste for algorithms that repeatedly loop over arrays
finding maxima, or that search through an array finding matching objects to adjust.
Over years of programming I’ve learned to suspect that there is probably a much
better way. Both these red flags crop up in the penetration and velocity resolution
algorithms.

I spent a good deal of time preparing this book, implementing alternatives and
variations that would improve the theoretical speed of the algorithm. One such alter-
native that provides good performance is to keep a sorted list of the contacts. By way
of illustration I’ll describe it here.

The list of contacts is built as a doubly linked list, by adding two pointers in the
contact data structure: pointing to the next and previous contacts in the list.

Taking the penetration resolution algorithm as an example (although exactly the
same thing happens for velocity resolution), we initially sort all the contacts into the
doubly linked list in order of decreasing penetration.

At each iteration of the algorithm, the first contact in the list is chosen and re-
solved (it will have the greatest penetration). Now we need to update the penetrations
of contacts that might have been affected. To do this I use another pair of linked lists
in the contact data structure. These linked lists contain all the contacts that involve
one particular object. There must be two such lists because each contact has up to two
objects involved. To hold the start of these lists, I add a pointer in the RigidBody class.

This means that, if we know which rigid bodies were adjusted, we can simply walk
through their list of contacts to perform the update. In (highly abbreviated) code it
looks something like this:

14.4 The Collision Resolution Process 347

class Contact
{

// Holds the doubly linked list pointers for the ordered list.
Contact * nextInOrder;
Contact * previousInOrder;

// Holds pointers to the next contact that involves each rigid body.
Contact * nextObject[2];

// ... Other data as before ...
}

class RigidBody.
{

// Holds the list of contacts that involve this body.
Contact * contacts;

// ... Other data as before ...
}

At this point we have a set of contacts whose penetration values have changed.
One contact has changed because it has been resolved, and possibly a whole set of
other contacts have been changed as a consequence of that resolution. All of these
may now be in the wrong position in the ordered list. The final stage of this algorithm
is to adjust their positions.

The easiest way to do this is to extract them from the main ordered list. Sort them
as a new sublist, and then walk through the main list, inserting them in order at the
correct point. In abbreviated code, this looks like:

Contact *adjustedList;
Contact *orderedList;

orderedList = sort(contacts);

for (unsigned i = 0; i < positionIterations; i++)
{

// Make sure the worst contact is bad.
if (orderedList->penetration < 0) break;

// Adjust its position.
orderedList->applyPositionChange();

348 Chapter 14 Collision Resolution

// Move it to the adjusted list.
moveToAdjusted(orderedList);

// Loop through the contacts for the first body.
Contact *bodyContact = orderedList->body[0].contacts;
while (bodyContact)
{

// Update the contact.
bodyContact->updatePenetration(positionChange, orientationChange);

// Schedule it for adjustment.
moveToAdjusted(bodyContact);

// Find out which linked list to move along on, then follow
// it to get the next contact for this body.
unsigned index = 0;
if (bodyContact->body[0] != orderedList->body[0]) index = 1;
bodyContact = bodyContact->nextObject[index];

}

if (orderedList->body[1])
{

// Do the same thing for the second body
// (omitted for brevity).

}

// Now sort the adjusted set
sortInPlace(adjustedList);

// And insert them at the correct place.
Contact *orderedListEntry = orderedList;
while (orderedListEntry)
{

if (adjustedList->penetration > orderedListEntry->penetration)
{

Contact *contactToInsert = adjustedList;
adjustedList = adjustedList->nextInOrder;
insertIntoList(contactToInsert, orderedListEntry);

}
}

}

14.5 Summary 349

I’ve assumed that standard sorting and list manipulation routines are available,
along with some extra methods I’ve used to hide the actual updates for the sake of
brevity (we saw the code for these earlier).

Performance

There are tens of variations of this kind of ordering system and lots of different ways
to sort, keep lists, and perform updates. I implemented six different methods while
experimenting for this book.

The best performance gain was achieved using the method just described. Un-
fortunately it was very minor. For frames with few contacts, and using some of the
more general optimization techniques described in chapter 16, the performance of
the linked list version is considerably worse than the naïve approach. With many tens
of contacts, among a set of tightly packed objects,6 it becomes more efficient. For sev-
eral hundred contacts among tightly packed objects, it becomes significantly faster.

For the simulations I come across in the games I’m involved with, it simply isn’t
worth the extra development effort. I’d rather not have the extra pointers hanging
around in the contact and rigid-body data structures. You may come across situ-
ations where the scale of the physics you are working with makes it essential. For
anything in game development it is essential to profile your code before trying to
optimize it.

14.5 SUMMARY

Collision resolution involves some of the most complex mathematics we’ve met so
far. For a single contact we do it in two steps: resolving the interpenetration between
objects and turning their closing velocity into rebounding velocity.

The velocity resolution algorithm involves working out the effect of applying an
impulse to the contact point. This can then be used to work out the impulse that will
generate the desired effect. The result is a single impulse value that modifies both the
linear and angular velocity of each object involved.

Unlike the velocity resolution algorithm, penetration resolution does not corre-
spond to a physical process (since rigid objects cannot interpenetrate in reality). Be-
cause of this, there are lots of different approaches to get visibly believable behavior.
In this chapter we implemented an approach derived from the same compression and
impulse mathematics used for velocity resolution.

Resolving one contact alone isn’t much use. To resolve the complete set of con-
tacts, we used two similar algorithms: one to resolve all penetrations and the second
to resolve all velocities. Each algorithm considered collisions in order of their severity
(i.e., penetration depth or closing velocity). The worst collision was resolved in isola-

6. The significance of tightly packed objects will become apparent in chapter 16: if objects are not tightly
packed, then it is possible to consider contacts in smaller batches, which is much more efficient.

350 Chapter 14 Collision Resolution

tion, and then other collisions that would be affected were updated. Each algorithm
continued up to a fixed maximum number of iterations.

The resulting physics system is quite usable, and if you are following along writing
your own code, I recommend that you have a go at creating a demonstration program
and see the results. The simulation has no friction, so objects slide across one another.
For simple sets of objects it is likely to work fine. For more complex scenarios you may
notice problems with vibrating objects or slow performance.

We will address these three limitations in the next two chapters. Chapter 15 looks
at the difference between the collisions we have been dealing with so far and with rest-
ing contacts (this is part of the vibration problem). It also introduces friction. Once
friction is introduced, more stability problems become visible. Chapter 16 addresses
vibration and friction stability, and looks at some simple techniques for dramatically
improving the performance of the engine.

15
RESTING CONTACTS

AND FRICTION

o far I’ve used the terms contacts and collisions interchangeably. The collision
S detector finds pairs of objects that are touching (i.e., in contact) or interpen-
etrating. The collision resolution algorithm manipulates these objects in physically
believable ways.

From this point on I will make a distinction between the two terms: a contact is
any location in which objects are touching or interpenetrating; a collision is a type of
contact, one in which the objects are moving together at speed (this is also called an
“impact” in some physics systems). This chapter introduces another type of contact:
the resting contact. This is a contact where the objects involved are moving neither
apart nor together.

For the sake of completeness there is a third type of contact, the separating con-
tact, where the objects involved are already moving apart. There is no need to perform
any kind of velocity resolution on a separating contact, so it is often ignored.

The collisions we’ve seen up to this point are relatively easy to handle: the two
objects collide briefly and then go on their own way again. At the point of contact we
calculate an impulse that causes the contact to turn from a collision into a separating
contact (if the coefficient of restitution is greater than zero) or a resting contact (if it
is exactly zero).

When two objects are in contact for a longer period of time (i.e., longer than a
single physics update), they are said to have resting contact. In this case they need to
be kept apart while making sure each object behaves normally.

351

352 Chapter 15 Resting Contacts and Friction

15.1 RESTING FORCES

When an object is resting on another, Newton’s third and final law of motion comes
into play. Newton 3 states: “For every action there is an equal and opposite reaction.”
We already used this law in chapter 14 for collisions involving two objects. When we
calculated the impulse on one object, we applied the same impulse in the opposite
direction to the second object. Collisions between objects and the immovable envi-
ronment used the assumption that any movement of the environment would be so
small that it could be safely ignored. In reality, when an object bounces on the ground,
the whole earth is also bouncing: the same impulse is being applied to the earth. Of
course the earth is so heavy that if we tried to work out the amount of motion that
the earth undergoes, it would be vanishingly small, so we ignore it.

When we come to resting contacts, a similar process happens. If an object is rest-
ing on the ground, then the force of gravity is trying to pull it through the ground.
We feel this force as weight: the force that gravity is applying on a heavy object is
great. What isn’t as obvious is that there is an equal and opposite force keeping the
object on the ground. This is called the “reaction force,” and Newton 3 tells us that it
is exactly the same as its weight. If this reaction force were not there, then the object
would accelerate down through the ground. Figure 15.1 shows the reaction force.

Whenever two objects are in resting contact and not accelerating, there will be
a balance of forces at the point of contact. Any force that one object applies to the
other will be met with an equal reaction force back. If this balance of forces isn’t
present, then both objects will be accelerating. We can work out the acceleration using
Newton’s second law of motion, after working out the total force (including reaction
forces) on each object.

There is something of a circular process here, and it gives a taste of some issues to
come. If reaction forces can be as large as necessary (we’re assuming rigid bodies will
never crumble or compress), and acceleration depends on the total forces applied,
how do we calculate how big the reaction forces actually are at any time? For simple
situations like that in figure 15.1, this isn’t a problem, and in most high school and

FIGURE 15.1 A reaction force at a resting contact.

15.1 Resting Forces 353

undergraduate mathematics the problem is never mentioned. For complex scenarios
with lots of interacting objects and especially friction, it is significant, as we will see.

Notice that the reaction force between the ground and an object is a real force.
It isn’t an impulse: there is no change in velocity. So far in our collision resolution
system we’ve only applied impulses. This reaction force cannot be represented in the
same way. We need to consider it more fully.

15.1.1 FORCE CALCULATIONS

The most obvious approach to resting contacts is to calculate the reaction forces.
That way we can add the forces into the equations of motion of our rigid bodies
(using D’Alembert’s principle, as in section 10.3). With the reaction forces working
alongside the regular forces we apply, the body will behave correctly.

Many physics systems do exactly this. Given a set of contacts, they try to generate
a set of reaction forces that will keep the objects from accelerating together. For collid-
ing contacts they use one of two methods: they use either the same impulse method
we saw in chapter 14; or they use the fact that an impulse is simply a force applied
over a small moment of time—if we know the time (i.e., the duration of the physics
update), then the impulse can be turned into a one-off force and resolved in the same
way as other forces.

This approach is okay if you can accurately calculate the reaction forces every
time. For simple situations, such as an object resting on the ground, this is very easy.
But it rapidly gets more complex. Figure 15.2 shows a stack of objects. There are
many internal reaction forces in this stack. The reaction forces at the bottom of the
stack depend on the reaction forces at the top of the stack. The forces that need to be
applied at a contact may depend heavily on contacts at a completely different location
in the simulation, with no common objects between them.

To calculate reaction forces we cannot use an iterative algorithm like those in the
last chapter. We have to take a more global view, representing all the force interactions
in one mathematical structure and creating a one-for-all solution. In most cases this
can be done, and it is the mathematical core of most commercial physics middleware
packages. We’ll look at the techniques used when we get to chapter 18.

In some cases, especially when there is friction at resting contacts, there is no so-
lution. The combination of reaction forces cannot be solved. This often occurs when
the simulation drifts (through numerical calculation errors or because of stepping
through time and missing the exact time of contact) into a state that could not occur
in reality. The computer is trying to solve a problem that is literally impossible.

The same problem can also occur because we are assuming perfectly rigid bodies,
where in reality all objects can be compressed to some degree. And finally it can occur
when what appears to be a resting contact would in reality be a collision. If you slide
an object along a rough surface, for example, you may be able to get it to suddenly
leap into the air. This occurs because a contact that appears to be a resting contact
with the ground may in reality be a collision against a patch of high friction.

354 Chapter 15 Resting Contacts and Friction

FIGURE 15.2 The long-distance dependence of reaction forces.

Each of these situations leads to problems in solving the mathematics to get a set
of reaction forces. Special-case code or tailored solving algorithms are needed to de-
tect impossibilities and react differently to them (typically by introducing an impulse
of some kind).

If this sounds complex, it’s because it is. Fortunately there is a much simpler
(though slightly less accurate) solution. Rather than resolving all contacts using forces
(i.e., converting collision impulses into forces), we can do the opposite and treat rest-
ing contacts as if they were collisions.

15.2 MICRO-COLLISIONS

Micro-collisions replace reaction forces by a series of impulses: one per update. In the
same way that an impulse can be thought of as a force applied in a single moment of
time, a force can be thought of as a whole series of impulses. Applying a force of 10f N
to an object over 10 updates is equivalent to applying impulses of f Ns at each update.

Rather than calculate a set of reaction forces at each time step, we allow our im-
pulse resolution system to apply impulses. Figure 15.3 shows this in practice. The
block should be resting on the ground. At each frame (ignoring interpenetration for

15.2 Micro-collisions 355

FIGURE 15.3 Micro-collisions replace reaction forces.

a while), the block accelerates so it has a velocity into the ground. The velocity reso-
lution system calculates the impulse needed to remove that velocity.

These little impulses are sometimes called “micro-collisions.” Their use is a well-
known technique for generating reaction forces, but suffers from an undeserved rep-
utation for producing unstable simulations.

If you run the physics engine from chapter 14, you will see that objects don’t sink
into one another, even though there is no reaction force at work. Micro-collisions
are already at work: at each update objects are building up velocity, only to have the
velocity resolution algorithm treat contacts as collisions and remove the velocity.

There are two significant problems with treating resting contacts as collisions.
The first has to do with the way collisions bounce. Recall that the separation speed
at a contact point is calculated as a fixed ratio of the closing speed, in the opposite
direction. This ratio is the coefficient of restitution.

If we have a contact such as that shown in figure 15.3, after the rigid-body update,
the velocity into the ground will have built up. During the velocity resolution process
this velocity will be removed. The desired final velocity will be

v′
s = −cvs

where vs is the velocity before the collision is processed, v′
s is the same velocity after

processing, and c is the coefficient of restitution.
So whatever velocity built up over the course of the interval between updates will

cause a little “bounce” to occur. If our sphere on the ground had a high c value, the
downward velocity would generate an upward velocity.

But in reality the downward velocity never gets a chance to build up. The sphere
can’t really accelerate into the ground. The velocity it accumulates is physically im-
possible. This has the effect of making resting contacts appear to vibrate. The objects
accelerate together, building up velocity that then causes the collision algorithm to
give them a separating velocity. The sphere on the ground bounces up until gravity
brings it back down, whereupon it bounces again. It will never settle to rest, but will
appear to vibrate.

Setting a lower coefficient of restitution will help but limits the kinds of situations
that can be modeled. A more useful solution involves making two changes:

356 Chapter 15 Resting Contacts and Friction

� We remove any velocity that has been built up from acceleration in the previ-
ous rigid-body update.

� We artificially decrease the coefficient of restitution for collisions involving
very low speeds.

Independently each of these can solve the vibration problem for some simulations
but will still show problems in others. Together they are about as good as we can get.

15.2.1 REMOVING ACCELERATED VELOCITY

To remove the velocity due to the previous frame’s acceleration, we need to keep track
of the acceleration at each rigid-body update. We can do this with a new data member
for the rigid body, accelerationAtUpdate, which stores the calculated linear accelera-
tion. The rigid-body update routine is then modified to keep a record in this variable
of the acceleration generated by all forces and gravity:

Excerpt from src/body.cpp

// Calculate linear acceleration from force inputs.
lastFrameAcceleration = acceleration;
lastFrameAcceleration.addScaledVector(forceAccum, inverseMass);

We could extend this to keep a record of both linear and angular acceleration.
This would make it more accurate, but since most reaction forces are generated by
the gravity (which is always linear), the extra calculations don’t normally give any vis-
ible benefit. In fact some developers choose to ignore any force except gravity when
calculating the velocity added in the last frame. This makes the calculation simpler
still, as we can read the acceleration due to gravity from the acceleration data mem-
ber directly.

When we calculate the desired change in velocity for a contact, we subtract the
acceleration-induced velocity, in the direction of the contact normal:

�v = −vacc − (1 + c)(vs − vacc)

The desired change in velocity is modified from

deltaVelocity = -(1+restitution) * contactVelocity;

to

real velocityFromAcc = body[0]->accelerationAtUpdate * contactNormal;

if (body[1])
{

velocityFromAcc -= body[1]->accelerationAtUpdate * contactNormal;

15.2 Micro-collisions 357

}

real deltaVelocity = -contactVelocity.x -
restitution *
(contactVelocity.x - velocityFromAcc);

Making this simple adjustment reduces the amount of visual vibration for objects
resting on the ground. When objects are in tight groups, such as stacks, the vibra-
tion can return. To solve that problem we’ll perform the second step—reducing the
coefficient of restitution.

We’ll return to the velocity caused by acceleration later in this chapter. We will
need another calculation of this kind to solve a problem with friction at resting con-
tacts.

15.2.2 LOWERING THE RESTITUTION

The change we made in the previous section effectively reduces the restitution at con-
tacts. Before reducing the velocity we have collisions with greater separating velocity
than closing velocity: the objects are pushed apart even when they begin resting. This
occurs when there is a coefficient of restitution above 1. The smaller the coefficient,
the less bounce there will be.

When the acceleration compensation alone doesn’t work, we can manually lower
the coefficient of restitution to discourage vibration. This can be done in a very simple
way:

real appliedRestitution = restitution;
if (contactVelocity.magnitude() < velocityLimit)
{

appliedRestitution = (real)0.0f;
}

We could use a more sophisticated method, where the restitution is scaled so that
it is smaller for smaller velocities, but the version here works quite well in practice.
If you see visible transitions between bouncing and sticking as objects slow down,
try reducing the velocity limit (I use a value of around 0.1 in my engine). If this
introduces vibration, then the scaling approach may be useful to you.

15.2.3 THE NEW VELOCITY CALCULATION

Combining both techniques for resting contacts, we end up with the following code
in our adjustVelocities method:

358 Chapter 15 Resting Contacts and Friction

Excerpt from src/contacts.cpp

// Calculate the acceleration-induced velocity accumulated this frame.
real velocityFromAcc = body[0]->getLastFrameAcceleration() *

duration * contactNormal;

if (body[1])
{

velocityFromAcc -= body[1]->getLastFrameAcceleration() *
duration * contactNormal;

}

// If the velocity is very slow, limit the restitution.
real thisRestitution = restitution;
if (real_abs(contactVelocity.x) < velocityLimit)
{

thisRestitution = (real)0.0f;
}

// Combine the bounce velocity with the removed
// acceleration velocity.
desiredDeltaVelocity =

-contactVelocity.x -
thisRestitution * (contactVelocity.x - velocityFromAcc);

I have placed this series of operations in its own method, calculateDesired-
DeltaVelocity, which is called as part of the calculateInternals method. This is
preferable to having the calculations performed each time the velocity resolver tries
to find the most severe collision.

This approach removes almost all the visible vibrations in the cyclone physics
engine. One of the optimization techniques we’ll meet in the next chapter removes
the rest.

15.3 TYPES OF FRICTION

I’ve mentioned friction several times throughout the book, and now it’s time to tackle
it head on.

Friction is the force generated when one object moves or tries to move in con-
tact with another. No matter how smooth two objects look, microscopically they are
rough, and these small protrusions catch one another, causing a decrease in the rela-
tive motion or a resistance to motion beginning.

Friction is also responsible for a small part of drag, when air molecules try to
move across the surface of an object. (Drag has a number of different factors, such as
turbulence, induced pressure, and collisions between the object and air molecules.)

15.3 Types of Friction 359

There are two forms of friction: static and dynamic. They behave in slightly dif-
ferent ways.

15.3.1 STATIC AND DYNAMIC FRICTION

Static friction is a force that stops an object from moving when it is stationary. Con-
sider a block that is resting on the ground. If the block is given some force, friction
between the block and the ground will resist this force. This is a kind of reaction
force: the more you push, the more friction pushes back. At some point, however, the
pushing force is too much for friction, and the object begins to move.

Because static friction keeps objects from moving, it is sometimes called “stic-
tion.” The static friction force depends on the materials at the point of contact and
the reaction force:

|f static| � μstatic|r|,
where r is the reaction force in the direction of the contact normal, f static is the friction
force generated, and μstatic is the coefficient of static friction.

The coefficient of friction encapsulates all the material properties at the contact
in a single number. The value depends on both objects; it cannot be generated simply
by adding a coefficient for one object to one for another. In fact it is an empirical
quantity: it is discovered by experiment and cannot be reliably calculated.

In physics reference books you will often find tables of the coefficient of friction
for different pairs of materials. In a game development setting the coefficient for a
particular contact is more often the result of guesswork or trial and error. I have in-
cluded a table of friction coefficients that I find useful in appendix B.

Notice that the preceding formula is an inequality: it uses the � symbol. This
means that the magnitude of the friction force can be anything up to and including
μ|r|. In fact, up to this limit it will be exactly the same as the force exerted on the
object. So the overall expression for the static friction force is

f static =
{

−f planar

f̂ planar − μstatic |r| whichever is smaller in magnitude,

where f planar is the total force on the object in the plane of the contact only, because
the resulting force in the direction of the contact normal is generating the reaction
force. The reaction force and the planar force can be calculated from the total force
applied:

r = −f · d̂

where d̂ is the contact normal and f is the total force exerted, and

f planar = f + r

360 Chapter 15 Resting Contacts and Friction

In other words, the resulting planar force is the total force with the component
in the direction of the contact normal removed. In the equation this component is
removed by adding the reaction force, which is equal and opposite to the force in the
direction of the contact and therefore cancels it out.

The dependence of static friction on the normal reaction force is an important
result. It allows rock climbers to walk up a (more than) vertical slope by pushing
against another wall at their back—the increase in reaction force means increased
friction. Push hard enough and there’ll be enough friction to overcome your weight
and keep you from falling.

Another important feature of the previous equations is that friction doesn’t de-
pend on the area that is in contact with the ground. A rock climber with bigger feet
doesn’t stick better. Despite being slightly counterintuitive (for me at least), this is
fortunate because nowhere in our engine have we considered the size of the contact
area. Contact area does become important in some cases where the objects can de-
form at the point of contact (tire models spring immediately to mind), but they are
very complex and well beyond the scope of this book, so we’ll stick with the basic
formula.

Returning to our block on the ground: as we exert more force, friction pushes
back until we reach μstatic|r|, the limit of static friction. If we increase the force input
by a fraction, the friction force drops suddenly and we enter the world of dynamic
friction.

Dynamic Friction

Dynamic friction, also called “kinetic friction,” behaves in a similar way to static fric-
tion but has a different coefficient of friction.

When objects at the contact are moving relative to one another, they are typically
leaving contact at the microscopic level. Figure 15.4 shows static and dynamic friction
magnified many times. Once the object is in motion, the roughness on each object
isn’t meshing as closely, so dynamic friction is a less powerful force.

Dynamic friction always obeys the equation

f dynamic = −v̂planar μdynamic|r|
where μdynamic is the coefficient of dynamic friction. Notice that the direction of fric-
tion has changed. Rather than acting in the opposite direction to the planar force (as
it did for static friction), it now acts in the opposite direction to the velocity of the
object. This is significant: if you stop exerting a force on a stationary object, then the
friction force will instantly stop too. If you stop exerting a force on a moving object,
friction will not stop: the object will be slowed to a halt by dynamic friction.

Just like static friction, dynamic friction coefficients can be found in some physics
reference books for different combinations of materials.

It is rare in game physics engines to distinguish in practice between static and dy-
namic friction. They tend to be rolled together into a generic friction value. When the
object is stationary, the friction acts as static friction, acting against any force exerted.

15.3 Types of Friction 361

FIGURE 15.4 A microscopic view of static and dynamic friction.

When the object is moving, the friction acts as dynamic friction, acting against the
direction of motion.

The friction model we’ll develop in this chapter will follow this model and com-
bine both types of friction into one value. In what follows I will point out where we
are using static friction and where it is dynamic, so you can replace the single value
with two values if you need to.

Rolling Friction

There is one further type of friction that is important in dynamic simulation. Rolling
friction occurs when one object is rolling along another. It is most commonly used for
high-quality tire models for racing simulations (in the sense of simulations performed
by motor-racing teams rather than in racing games).

I have not come across physics engines for games with a comprehensive tire model
that includes rolling friction. I have worked with one non-game physics engine that
included it, however. Because we are focusing on game applications, I will ignore
rolling friction for the rest of the book.

15.3.2 ISOTROPIC AND ANISOTROPIC FRICTION

There is one additional distinction between types of friction that we need to recog-
nize: friction can be either isotropic or anisotropic. Isotropic friction has the same

362 Chapter 15 Resting Contacts and Friction

FIGURE 15.5 Anisotropic friction.

coefficient in all directions. Anisotropic friction can have different coefficients in dif-
ferent directions.

Figure 15.5 shows a block on the ground from above. If it is pushed in the first
direction, then the friction force will have a coefficient of μa; if it is pushed in the
second direction, then the friction force will have a coefficient of μb. If μa = μb, then
the friction is isotropic; otherwise it is anisotropic.

The vast majority of game simulations only need to cope with isotropic friction.
In fact most engines I’ve used either are purely isotropic or make the programmer
jump through extra hoops to get anisotropic friction. Even then, the anisotropic fric-
tion model is highly simplified. We’ll stick with isotropic friction in this book.

15.4 IMPLEMENTING FRICTION

Introducing friction into a physics simulation depends on how the existing physics is
implemented. In our case we have an impulse-based engine with micro-collisions for
resting contacts. This means we have no calculated normal reaction forces at resting
contacts. In addition, we introduce impulses rather than forces at contacts to generate
believable behavior.

This makes it difficult to directly carry across the friction equations we have seen
so far: we have no calculation of the reaction force, and we have no easy way of apply-
ing forces at the contact point (remember that in our engine the forces for the current
physics update are applied before collision detection begins).

15.4 Implementing Friction 363

If you are working with a force-based engine, especially one that calculates the
reaction forces for all contacts, then friction can become another force in the calcu-
lation, and the equations we have seen can be applied directly. Although this sounds
simpler, there are consequences that make it even more difficult to calculate the re-
quired forces. I’ll return to friction-specific force calculation in chapter 17. At this
stage it is simply worth noting that, despite the modifications we’ll have to make to
convert friction into impulses, if we had gone through the force-only route initially,
it wouldn’t have made friction any easier.

15.4.1 FRICTION AS IMPULSES

To handle friction in our simulation we must first understand what friction is doing
in terms of impulses and velocity.

Static friction stops a body from moving when a force is applied to it. It acts to
keep the velocity of the object at zero in the contact plane.

In our simulation we allow velocity to build up, and then we remove it with a
micro-collision. We can simulate static friction by removing sliding velocity along
with collision velocity. We already adjust the velocity of the object in the direction of
the contact normal. We could do something similar in the other two contact direc-
tions (i.e., the directions that are in the plane of the contact). If we went through the
same process for each direction as we did for the contact normal, we could ensure that
the velocity in these directions was zero. This would give the effect of static friction.

Rather than having a single value for the change in velocity, we now have a vector,
expressed in contact coordinates:

real deltaVelocity; // ... Calculate this as before ...

Vector3 deltaVelocityVector(deltaVelocity,
-contactVelocity.y,
-contactVelocity.z);

I’ll come back later to the changes needed in the resolution algorithm to cope with
this.

This approach would remove all sliding. But static friction has a limit: it can only
prevent objects from sliding up to a maximum force. When dealing with the collision,
we don’t have any forces, only velocities. How do we decide the maximum amount of
velocity that can be removed?

Recall that velocity is related to impulse:

�ṗ = m−1g

where g is impulse, m is mass, and ṗ is velocity. So, if we know the amount of velocity
we need to remove, we can calculate the impulse required to remove it.

364 Chapter 15 Resting Contacts and Friction

In the same way, impulse is a force exerted over a short period of time:

g = f t

where f is force and t is time. Given the impulse required to remove the velocity and
the duration of the update, we can calculate the force required to remove the velocity.

The equation still requires a normal reaction force. This can be calculated in the
same way, but looking at the contact normal. The normal reaction force can be ap-
proximately calculated from the amount of velocity removed in the direction of the
contact normal.

If the desired change in velocity at the contact normal is v, then the reaction force
can be approximated as

f = �vmt

The velocity resolution algorithm we already have involves calculating the im-
pulse needed to achieve the desired change in velocity. This impulse is initially found
in contact coordinates. Since we will be working in impulses, we can combine the
preceding equations with the friction equations, to end up with

gmax = �gnormal μ

where �gnormal is the impulse in the direction of the contact normal (i.e., the im-
pulse we are currently calculating in our velocity resolution algorithm). Notice that
these impulse values are scalar. This tells us the total impulse we can apply with static
friction. In code this looks like

Vector3 impulseContact;

// ... Find the impulse required to remove all three components of
// velocity (we’ll return to this algorithm later) ...

real planarImpulse = real_sqrt(impulseContact.y*impulseContact.y +
impulseContact.z*impulseContact.z);

// Check whether we’re within the limit of static friction.
if (planarImpulse > impulseContact.x * friction)
{

// Handle as dynamic friction.
}

Dynamic friction can be handled by scaling the y and z components of the im-
pulse so that their combined size is exactly μ times the size of the x impulse:

15.4 Implementing Friction 365

impulseContact.y /= planarImpulse;
impulseContact.z /= planarImpulse;

impulseContact.y *= friction * impulseContact.x;
impulseContact.z *= friction * impulseContact.x;

Dividing by planarImpulse scales the y and z components so that they have a unit
size; this is done to preserve their direction while removing their size. Their size is
given by the friction equation—friction * impulseContact.x. Multiplying the di-
rection by the size gives the new values for each component.

15.4.2 MODIFYING THE VELOCITY RESOLUTION ALGORITHM

In the previous section I glossed over how we might calculate the impulses needed to
remove velocity in the plane of the contact. We already have code that does this for
the contact normal, and we could simply duplicate this for the other directions.

Unfortunately, along with being very long-winded, this wouldn’t work very well.
An impulse in one direction can cause an object to spin, and its contact point can
begin moving in a completely different direction. As long as we were only interested
in velocity in the direction of the contact normal, this didn’t matter. Now we need to
handle all three directions at the same time, and we need to take into account the fact
that an impulse in one direction can increase the velocity of the contact in a differ-
ent direction. To resolve the three velocities we need to work through the resolution
algorithm for each simultaneously.

The resolution algorithm has the following steps, as before:

1. We work in a set of coordinates that are relative to the contact: this makes much
of the mathematics a lot simpler. We create a transform matrix to convert into
and out of this new set of coordinates.

2. We work out the change in velocity of the contact point on each object per unit
impulse. Because the impulse will cause linear and angular motion, this value
needs to take account of both components.

3. We will know the velocity change we want to see (in the next step), so we invert
the result of the last stage to find the impulse needed to generate any given velocity
change.

4. We work out what the separating velocity at the contact point should be, what
the closing velocity currently is, and the difference between the two. This is the
desired change in velocity.

5. From the change in velocity we can calculate the impulse that must be generated.

6. We split the impulse into its linear and angular components and apply them to
each object.

366 Chapter 15 Resting Contacts and Friction

We have inserted a new step between 5 and 6, checking whether the impulse respects
the static friction equation and using dynamic friction if it doesn’t.

Step 2 requires modification. Currently it works out the change in velocity given a
unit impulse in the direction of the contact normal. We are now dealing with all three
contact directions. We need to calculate the change in velocity given any combination
of impulses in the three contact directions. The impulse can be expressed as a vector
in contact coordinates:

Vector3 contactImpulse;

The x component represents the impulse in the direction of the contact normal, and
the y and z components represent the impulse in the plane of the contact.

The result of step 2 will be a matrix: it will transform a vector (the impulse) into
another vector (the resulting velocity). With this matrix the rest of the algorithm is
simple. In step 3 we will find the inverse of the matrix (i.e., the matrix that transforms
the desired change in velocity into a required impulse), and in step 5 we will transform
the desired velocity vector to get the contactImpulse vector.

So how do we calculate the matrix? We follow through the same steps we saw in
section 14.2.2. We calculate the velocity change as a result of angular motion, and the
velocity change as a result of linear motion.

Velocity from Angular Motion

In section 14.2.2 we saw the algorithm for calculating rotation-derived velocity from
impulse:

Vector3 torquePerUnitImpulse =
relativeContactPosition % contactNormal;

Vector3 rotationPerUnitImpulse =
inverseInertiaTensor.transform(torquePerUnitImpulse);

Vector3 velocityPerUnitImpulse =
rotationPerUnitImpulse % relativeContactPosition;

Vector3 velocityPerUnitImpulseContact =
contactToWorld.transformTranspose(velocityPerUnitImpulse);

The first stage calculates the amount of torque for a unit impulse in the direction
of the contact normal. The second stage converts this torque into a velocity using
the inertia tensor. The third stage calculates the linear velocity of the contact point
from the resulting rotation. And the final stage converts the velocity back into contact
coordinates.

15.4 Implementing Friction 367

Rather than use the contact normal in the first stage, we need to use all three
directions of the contact: the basis matrix. But if the contact normal is replaced by a
matrix, how do we perform the cross product?

The answer lies in an alternative formation of the cross product. Remember that
transforming a vector by a matrix gives a vector. The cross product of a vector also
gives a vector. It turns out that we can create a matrix form of the vector product.

For a vector

v =
⎡
⎢⎣

a

b

c

⎤
⎥⎦

the vector product

v × x

is equivalent to the matrix-by-vector multiplication:

⎡
⎢⎣

0 −c b

c 0 −a

−b a 0

⎤
⎥⎦ x

This matrix is called a “skew-symmetric” matrix, and an important result about cross
products is that the cross product is equivalent to multiplication by the corresponding
skew-symmetric matrix.

Because, as we have seen, v × x = −x × v; and if we already have the skew-
symmetric version of v, we can calculate x × v without building the matrix form
of x. It is simply

x × v = −
⎡
⎢⎣

0 −c b

c 0 −a

−b a 0

⎤
⎥⎦ x

In fact we can think of the cross product in the first stage of our algorithm as
turning an impulse into a torque. We know from equation 10.1 that a force vector can
be turned into a torque vector by taking its cross product with the point of contact:

τ = pf × f

(which is just equation 10.1 again).
The skew-symmetric matrix can be thought of as this transformation, turning

force into torque.
It is useful to have the ability to set a matrix’s components from a vector, so we

add a convenience function to the Matrix3 class:

368 Chapter 15 Resting Contacts and Friction

Excerpt from include/cyclone/core.h

/**
* Holds an inertia tensor, consisting of a 3x3 row-major matrix.
* This matrix is not padding to produce an aligned structure, since
* it is most commonly used with a mass (single real) and two
* damping coefficients to make the 12-element characteristics array
* of a rigid body.
*/
class Matrix3

// ... Other Matrix3 code as before ...

/**
* Sets the matrix to be a skew-symmetric matrix based on
* the given vector. The skew-symmetric matrix is the equivalent
* of the vector product. So if a,b are vectors, a x b = A_s b
* where A_s is the skew-symmetric form of a.
*/

void setSkewSymmetric(const Vector3 vector)
{

data[0] = data[4] = data[8] = 0;
data[1] = -vector.z;
data[2] = vector.y;
data[3] = vector.z;
data[5] = -vector.x;
data[6] = -vector.y;
data[7] = vector.x;

}
};

Now we can work the whole basis matrix through the same series of steps:

// Create the skew-symmetric form of the cross product.
Matrix3 impulseToTorque;
impulseToTorque.setSkewSymmetric(relativeContactPosition);

// This was a cross product.
Matrix3 torquePerUnitImpulse = impulseToTorque * contactToWorld;

// This was a vector transformed by the tensor matrix - now it’s
// just plain matrix multiplication.
Matrix3 rotationPerUnitImpulse =

inverseInertiaTensor * torquePerUnitImpulse;

// This was the reverse cross product, so we’ll need to multiply the

15.4 Implementing Friction 369

// result by -1.
Matrix3 velocityPerUnitImpulse =

rotationPerUnitImpulse * impulseToTorque;
velocityPerUnitImpulse *= -1;

// Finally convert the result into contact coordinates.
Matrix3 velocityPerUnitImpulseContact =

contactToWorld.transpose() * velocityPerUnitImpulse;

The resulting matrix, velocityPerUnitImpulseContact, can be used to transform
an impulse in contact coordinates into a velocity in contact coordinates. This is ex-
actly what we need for this stage of the algorithm.

In practice there may be two objects involved in the contact. We can follow the
same process through each time and combine the results. The most efficient way to
do this is to notice that only the impulseToTorque and inverseInertiaTensor matrices
will change for each body. The contactToWorld matrices are the same in each case. We
can therefore separate them out and multiply them after the two objects have been
processed independently. The code looks like this:

Excerpt from src/contacts.cpp

// The equivalent of a cross product in matrices is multiplication
// by a skew symmetric matrix - we build the matrix for converting
// between linear and angular quantities.
Matrix3 impulseToTorque;
impulseToTorque.setSkewSymmetric(relativeContactPosition[0]);

// Build the matrix to convert contact impulse to change in velocity
// in world coordinates.
Matrix3 deltaVelWorld = impulseToTorque;
deltaVelWorld *= inverseInertiaTensor[0];
deltaVelWorld *= impulseToTorque;
deltaVelWorld *= -1;

// Check if we need to add body two’s data
if (body[1])
{

// Find the inertia tensor for this body.
body[1]->getInverseInertiaTensorWorld(&inverseInertiaTensor[1]);

// Set the cross product matrix.
impulseToTorque.setSkewSymmetric(relativeContactPosition[1]);

// Calculate the velocity change matrix.
Matrix3 deltaVelWorld2 = impulseToTorque;

370 Chapter 15 Resting Contacts and Friction

deltaVelWorld2 *= inverseInertiaTensor[1];
deltaVelWorld2 *= impulseToTorque;
deltaVelWorld2 *= -1;

// Add to the total delta velocity.
deltaVelWorld += deltaVelWorld2;

}

// Do a change of basis to convert into contact coordinates.
Matrix3 deltaVelocity = contactToWorld.transpose();
deltaVelocity *= deltaVelWorld;
deltaVelocity *= contactToWorld;

where the same matrix is reused for intermediate stages of the calculation, as in chap-
ter 14.

What we are effectively doing here is performing all the calculations in world
coordinates (i.e., we end up with a matrix that transforms impulse into velocity, both
in world coordinates) for each body. Then we add the two results together, and then
change the basis of this matrix so that it transforms impulse into velocity in contact
coordinates. Recall from section 9.4.6 that we change the basis of a matrix by

BMB−1

where B is the basis matrix and M is the matrix being transformed. This is equivalent
to BMB� when B is a rotation matrix only (as it is for the contactToWorld matrix).
Hence the last three lines of the code snippet.

Velocity from Linear Motion

So far we only have the change in velocity caused by rotation. We also need to include
the change in linear velocity from the impulse. As before, this is simply given by the
inverse mass:

�ṗ = m−1g

This again is a transformation from a vector (impulse) into another vector (veloc-
ity). Because we are trying to end up with one matrix combining linear and angular
components of velocity, it would be useful to express inverse mass as a matrix so that
it can be added to the angular matrix we already have.

This can be done simply. Multiplying a vector by a scalar quantity k is equivalent
to transforming it by the matrix

⎡
⎢⎣

k 0 0

0 k 0

0 0 k

⎤
⎥⎦

You can manually check this by trying a vector multiplication.

15.4 Implementing Friction 371

To combine the linear motion with the angular motion we already have, we need
only add the inverse mass to the diagonal entries of the matrix:

deltaVelocity.data[0] += inverseMass;
deltaVelocity.data[4] += inverseMass;
deltaVelocity.data[8] += inverseMass;

15.4.3 PUTTING IT ALL TOGETHER

We are now ready to put together all the modifications we need to support isotropic
friction. These modifications are only made to the applyVelocityChange method of
the contact: they are all handled as a micro-collision. The final code looks like this:

Excerpt from src/contacts.cpp

real inverseMass = body[0]->getInverseMass();

// The equivalent of a cross product in matrices is multiplication
// by a skew-symmetric matrix - we build the matrix for converting
// between linear and angular quantities.
Matrix3 impulseToTorque;
impulseToTorque.setSkewSymmetric(relativeContactPosition[0]);

// Build the matrix to convert contact impulse to change in velocity
// in world coordinates.
Matrix3 deltaVelWorld = impulseToTorque;
deltaVelWorld *= inverseInertiaTensor[0];
deltaVelWorld *= impulseToTorque;
deltaVelWorld *= -1;

// Check whether we need to add body 2’s data.
if (body[1])
{

// Find the inertia tensor for this body.
body[1]->getInverseInertiaTensorWorld(&inverseInertiaTensor[1]);

// Set the cross product matrix.
impulseToTorque.setSkewSymmetric(relativeContactPosition[1]);

// Calculate the velocity change matrix.
Matrix3 deltaVelWorld2 = impulseToTorque;
deltaVelWorld2 *= inverseInertiaTensor[1];
deltaVelWorld2 *= impulseToTorque;
deltaVelWorld2 *= -1;

372 Chapter 15 Resting Contacts and Friction

// Add to the total delta velocity.
deltaVelWorld += deltaVelWorld2;

// Add to the inverse mass.
inverseMass += body[1]->getInverseMass();

}

// Do a change of basis to convert into contact coordinates.
Matrix3 deltaVelocity = contactToWorld.transpose();
deltaVelocity *= deltaVelWorld;
deltaVelocity *= contactToWorld;

// Add in the linear velocity change.
deltaVelocity.data[0] += inverseMass;
deltaVelocity.data[4] += inverseMass;
deltaVelocity.data[8] += inverseMass;

// Invert to get the impulse needed per unit velocity.
Matrix3 impulseMatrix = deltaVelocity.inverse();

// Find the target velocities to kill.
Vector3 velKill(desiredDeltaVelocity,

-contactVelocity.y,
-contactVelocity.z);

// Find the impulse to kill target velocities.
impulseContact = impulseMatrix.transform(velKill);

// Check for exceeding friction.
real planarImpulse = real_sqrt(impulseContact.y*impulseContact.y +

impulseContact.z*impulseContact.z);
if (planarImpulse > impulseContact.x * friction)
{

// We need to use dynamic friction.
impulseContact.y /= planarImpulse;
impulseContact.z /= planarImpulse;

impulseContact.x = deltaVelocity.data[0] +
deltaVelocity.data[1] * friction * impulseContact.y +
deltaVelocity.data[2] * friction * impulseContact.z;

impulseContact.x = desiredDeltaVelocity / impulseContact.x;
impulseContact.y *= friction * impulseContact.x;

15.5 Friction and Sequential Contact Resolution 373

impulseContact.z *= friction * impulseContact.x;
}

The impulse is then applied in exactly the same way as for the non-friction case.

15.5 FRICTION AND SEQUENTIAL CONTACT

RESOLUTION

With the modifications in this chapter our physics engine has taken a huge leap
forward. It is now capable of modeling rigid bodies with all kinds of contacts and
isotropic friction.

There are still some lingering stability issues that we can look at and a huge in-
crease in performance we can expect. We’ll examine both of these in the next chapter.

At this stage we can also see the main unavoidable limitation of the micro-
collision approach to physics. And no amount of tweaking will make this go away
completely.

Figure 15.6 shows a typical situation in which two boxes are in contact with each
other. Neither of the boxes is moving, and all contacts have very high friction (let’s
say it is infinite: the static friction can never be overcome).

FIGURE 15.6 The problem with sequential contact resolution.

374 Chapter 15 Resting Contacts and Friction

In the first part of the sequence the boxes are in resting contact; in the second part
they have interpenetrated slightly as the result of gravity. In the third part they have
had their interpenetration resolved, with both linear and angular components to the
resolution. In the fourth part of the sequence the contact resolution is complete. The
first three parts of the second line of the sequence show another iteration of the same
process: interpenetration, penetration resolution, and contact resolution.

Over time it is clear that the boxes are moving apart. They are sliding apart, even
though they have infinite friction. By the time we reach the final part of the sequence,
the top box in the figure has moved so far it can no longer be supported by the lower
box and has begun to fall.

This is caused by the sequential contact resolution scheme. While the resolution
algorithm is considering contact A, it cannot also be considering contact B. But when
we have friction, the coefficient of friction at B has an effect on how contact A should
be resolved. No amount of minor adjustment will solve this problem: to get around
it we would need to process contacts simultaneously or create a good deal of special-
case code to perform contact-sensitive penetration resolution.

In practice this isn’t a major problem unless you are building stacks of blocks.
Even in this case the sleeping system we will build in the next chapter ensures that
the sliding will occur only after the player disturbs the stack. If you need to build
large stacks of objects that are stable to slight knocks, you can either use one of the
simultaneous resolution approaches in chapter 18 or use fracture physics, which is
described in chapter 17.

15.6 SUMMARY

Resting contacts can be dealt with as if they were tiny little bouncing contacts: the
contact interpenetration is resolved, and the closing velocity is killed by applying a
small impulse.

By reducing the resting forces over the whole duration of one simulation frame
into just an instant of impulse, we were able to simply add friction to the engine. The
effects of friction modify the impulse before it is applied to the objects in contact. This
is a simple and powerful approach to friction, but it isn’t without its problems. It is
much more difficult to show the difference between static and dynamic friction using
micro-collisions (in fact we’ve avoided the problem by combining the coefficients into
one value).

Another problem with contacts simulated using micro-collisions is that they can
appear to vibrate slightly. This is one of a set of stability problems that our current
engine implementation faces. In chapter 16 we’ll look at stability as a whole, and
improve our engine’s realism. Then we’ll look at how to improve its performance by
optimizing the code to do less unnecessary work.

16
STABILITY AND

OPTIMIZATION

he physics engine we’ve built so far is perfectly usable. As it stands, however,
T there are two criticisms that can be leveled:

� Occasionally strange effects are visible—for example, objects may appear
squashed or skewed, objects may slide down hills despite gravity, or fast-
moving objects may not behave believably.

� For very large numbers of objects, the simulation can be slow.

We can address these problems to arrive at our final physics engine implementa-
tion, one that is powerful and robust enough to be used in a wide range of games. The
remaining chapters in the book look at ways of applying or extending the engine, but
in this chapter we’ll aim to polish our implementation into a stable and fast system.

16.1 STABILITY

Stability problems in our engine, as in all game software, arise from several directions:

� Unpleasant interactions among different bits of the software that individually
behave reasonably.

� Inaccuracies of the equations used or adverse effects of assumptions we’ve
made.

� The inherent inaccuracy of the mathematics performed by the computer.

These stability problems can become evident through visually odd behavior, algo-
rithms occasionally not working, or even sudden crashes.

375

376 Chapter 16 Stability and Optimization

For physics engines in particular, there are a couple of common bugbears that
you are almost guaranteed to see during development: sudden, unexpected motion—
when an object leaps of the ground, for example—and objects disappearing. The code
on the CD shouldn’t display either of these critical problems, but chances are you’ll
see both before long if you make changes and tweaks.

The stability problems we are left with should be more minor, but their causes fall
into all three categories. By carefully testing the engine I identified five problems that
have relatively easy stability fixes.

� Transform matrices can be malformed and perform skews in addition to ro-
tations and translations.

� Fast-moving objects can sometimes respond oddly to collisions. (This is inde-
pendent of whether the collisions are actually detected: a fast-moving object
can pass right through another object without a collision being detected.)

� Objects resting on an inclined plane (or resting on another object with a slop-
ing surface) tend to slowly slide down.

� Objects experiencing a pair of high-speed collisions in rapid succession can
suddenly interpenetrate the ground.

� The simulation can look unrealistic when large and small quantities are
mixed: large and small masses, large and small velocities, large and small ro-
tations, and so on.

Fixes for these stability problems solved the odd behaviors my tests generated. Of
course no test is ever going to be exhaustive. I have used physics systems for years
before noticing some new issue or error.

As with all software maintenance, you never know when some change will need to
be made. And by the same token it is a good idea to keep a copy of the test scenarios
you run on your engine, so you can go back and check that your new enhancement
hasn’t broken anything else.

16.1.1 QUATERNION DRIFT

Transform matrices are generated from the position vector and orientation quater-
nion of rigid bodies. Both position and orientation (in fact all values that take part in
mathematical manipulation) suffer numerical errors while being processed.

Errors in the position vector put an object in the wrong place. This is usually such
a small error that it isn’t noticeable in any short period of time. If the position changes
slowly enough, the viewer will not notice any errors.

The same is true of the orientation vector to some extent. But there is an ex-
tra problem: we have an additional degree of freedom in the quaternion. If the four
quaternion components get out of sync (i.e., if the quaternion is no longer normal-
ized), then it may not correspond to any valid orientation. None of the code in our
engine is particularly sensitive to this, but left for long enough it can cause objects to
become visibly squashed. The solution, as we saw in chapter 9, is to renormalize the

16.1 Stability 377

quaternion. We don’t want to do this if we don’t have to (such as after every quater-
nion operation) because that’s just a waste of time.

I have added a quaternion normalization step in the rigid-body update routine
just after the quaternion is updated by the velocity and before the transform matrix
is created. This ensures that the transform matrix has a valid rotation component.

I admit that this stability fix is a bit contrived. It seemed obvious to me when I
first wrote the integration routine that it was a good spot for the quaternion normal-
ization, and so I added it.

I have included it here more by way of illustration. The normal size of the quater-
nion is an assumption we made early on in the development of the engine. It is easily
forgotten and has returned to cause strange effects only after we have a completed
engine running for long periods of time. Problems may show up only during QA
(quality assurance) testing, and they can be very subtle. Checking and enforcing your
assumptions in a way that doesn’t massacre performance is key to stabilizing and op-
timizing the engine.

16.1.2 INTERPENETRATION ON SLOPES

The next issue is more significant. Figure 16.1 shows a block resting on a slope. The
slope could be an angled plane or the surface of another object. Gravity is acting in a
downward direction.

FIGURE 16.1 Objects drift down angled planes.

378 Chapter 16 Stability and Optimization

After one update of the rigid bodies and before collision resolution is performed,
the object drops into the plane slightly. This is shown in the second part of the figure.
Because the plane contact is in a different direction from the movement of the object,
the interpenetration resolution moves the block out to the position as shown in the
third part of the figure. Over time, and despite high friction, the block will slowly drift
down the slope.

This is a similar problem to the one we saw at the end of chapter 15. In that
case the drifting was caused by the interaction between different contacts. In this case
there is no interaction: the same thing occurs for objects with only one contact. It is
therefore much easier to resolve.

The solution lies in the calculation of the relative velocity of the contact. We’d like
to remove any velocity that has built up due to forces in the contact plane. This would
allow the object to move into the slope in the direction of the contact normal, but not
along it.

To accomplish this we add a calculation of the velocity due to acceleration to the
calculateLocalVelocity method:

Excerpt from include/cyclone/precision.h

Vector3 Contact::calculateLocalVelocity(unsigned bodyIndex, real duration)
{

RigidBody *thisBody = body[bodyIndex];

// Work out the velocity of the contact point.
Vector3 velocity =

thisBody->getRotation() % relativeContactPosition[bodyIndex];
velocity += thisBody->getVelocity();

// Turn the velocity into contact coordinates.
Vector3 contactVelocity = contactToWorld.transformTranspose(velocity);

// Calculate the amount of velocity that is due to forces without
// reactions.
Vector3 accVelocity = thisBody->getLastFrameAcceleration() * duration;

// Calculate the velocity in contact coordinates.
accVelocity = contactToWorld.transformTranspose(accVelocity);

// We ignore any component of acceleration in the contact normal
// direction; we are only interested in planar acceleration.
accVelocity.x = 0;

// Add the planar velocities - if there’s enough friction they will
// be removed during velocity resolution
contactVelocity += accVelocity;

16.1 Stability 379

// And return it.
return contactVelocity;

}

The code finds the acceleration and multiplies it by the duration to find the ve-
locity introduced at the rigid-body integration step. It converts this into contact co-
ordinates, and removes the component in the direction of the contact normal. The
resulting velocity is added to the contact velocity, to be removed in the velocity res-
olution step, as long as there is sufficient friction to do so. If there isn’t sufficient
friction, then the object will slide down the slope exactly as it should.

16.1.3 INTEGRATION STABILITY

This enhancement needs some background explanation, so we’ll return to the inte-
gration algorithm from chapters 3 and 10.

For both particles and rigid bodies I have used a similar integration algorithm.
It calculates the linear and angular acceleration and applies these to the velocity and
rotation, which are in turn applied to the position and orientation. This integration
algorithm is called Newton–Euler. Newton refers to the linear component (which is
based on Newton’s laws of motion), and Euler refers to the angular component (Euler
was a mathematician who was instrumental in our understanding of rotation).

Our integrator uses the equations

ṗ′ = ṗ + p̈t

and

p′ = p + ṗt

(along with their rotational equivalents), each of which only depends on one level of
differentiation. They are therefore termed “first-order.” The overall method is more
fully called “first-order Newton–Euler,” or Newton–Euler 1.

Newton–Euler 2

As we saw in chapter 3, Newton–Euler 2 is an approximation. In high school physics
the equation

p′ = p + ṗt + 1

2
p̈t2

is taught. This depends on two levels of differentiation. With the equivalent equation
for angular updates we have a second-order Newton–Euler integrator.

Newton–Euler 2 is more accurate than Newton–Euler 1. It takes into account ac-
celeration when determining the updated position. As we saw in chapter 3, the t2

term is so small for high frame-rates that we may as well ignore the acceleration term

380 Chapter 16 Stability and Optimization

altogether. This is not the case when acceleration is very large, however. In this case
the term may be significant, and moving to Newton–Euler 2 can be beneficial.

Runga–Kutta 4

Both Newton–Euler integrators assume that acceleration will remain constant dur-
ing the entire update. As we saw in chapter 6 when we looked at springs, the way
acceleration changes over the course of an update can be very significant. In fact, by
assuming that acceleration does not change, we can run into dramatic instabilities
and the complete breakdown of the simulation.

Springs aren’t the only thing that can change acceleration quickly. Some patterns
of resting contacts (particularly when a simultaneous velocity resolution algorithm is
used) can have similar effects, leading to vibration or a dramatic explosion of object
stacks.

For both problems a partial solution lies in working out the accelerations needed
in mid-step. The fourth-order Runga–Kutta algorithm1 (or simply RK4) does just
this.

If you read around on physics engines, you’ll see mention of Runga–Kutta integra-
tion. I know some developers have used it quite successfully. Personally I have never
had the need. It is much slower than Newton–Euler, and the benefits are marginal. It
is most useful when dealing with very stiff springs, but as we saw in chapter 6, there
are simpler ways to fake the same behavior.

The biggest problem with RK4, however, is that it requires a full set of forces
midway through the step. When combined with a collision resolution system this can
get very messy. In our case we do not directly determine the forces due to contacts,
and we do not want to run a full collision detection routine in mid-step, so RK4 is
of limited use. Even for force-based engines the extra overhead of calculating mid-
update forces gives a huge performance hit.

I have seen developers use RK4 for the rigid-body update and then a separate
collision resolution step at the end. This could be easily implemented in our engine by
replacing the integrate function of the rigid body. Unfortunately, with the collision
resolution not taking part, RK4 loses most of its power, and I feel that the result is
only useful if you have stubborn spring problems.

16.1.4 THE BENEFIT OF PESSIMISTIC COLLISION DETECTION

Our algorithm for collision resolution sometimes misses collisions altogether. Fig-
ure 16.2 shows a situation with one collision. The object shown has a low moment of
inertia, so the resolution of this collision will leave the object as shown. Since there
was only one collision detected, this new interpenetration cannot be resolved at this
time step. The player will see the object interpenetrated until the following frame,

1. Unlike Newton–Euler, it is fourth-order because it takes four samples, not because it uses four levels of
differentiation.

16.1 Stability 381

FIGURE 16.2 Collisions can be missed if they aren’t initially in contact.

when it can be resolved. Single-frame interpenetration isn’t normally visible, but if
two or more contacts end up in a cycle, then the object can appear to be vibrating
into the surface.

The only way to deal with this situation is to make collision detection more pes-
simistic. In other words, collision detection should return contacts that are close but
not actually touching. This can be achieved by expanding the collision geometry
around an object and then using an offset for the penetration value. If the collision
geometry is one unit larger than the visual representation of the object, then 1 is sub-
tracted from the penetration value of detected collisions.

In practice it is rare to see any effects of this. The times that I have needed this
kind of modification (which crops up in all physics systems, regardless of the method
of collision resolution), it has been most noticeable in collisions between long, light
objects (such as poles) and the ground. It is a trivial change to move the ground
slightly higher for collision detection and subtract a small amount from generated
ground collisions.

16.1.5 CHANGING MATHEMATICAL ACCURACY

All the mathematics in our engine is being performed with limited mathematical pre-
cision. Floating-point numbers are stored in two parts: a series of significant digits
(called the “mantissa”) and an exponent. This means that numbers with very differ-
ent scales have very different accuracies.

For regular floating-point numbers (i.e., 32-bit on a 32-bit machine), adding
0.00001 to 1 will probably give you the correct answer; but adding 0.0001 to
10,000,000,000 will not. When you have calculations that involve numbers of very
different scales, the effects can be very poor. For example, if you move an object a

382 Chapter 16 Stability and Optimization

small distance and it is close to the origin (i.e., its coordinates are close to zero), the
object will be moved correctly. If you move the same object the same distance, but it
is far away from the origin, then you may end up with no movement or too large a
movement, depending on the order of your mathematical operations.

When you are using the physics engine with a broad range of masses, velocities,
or positions, this can be a problem. Visually it can range from objects sinking into the
ground or collisions having no effect, to suddenly disappearing bodies and collisions
occurring in completely the wrong direction. It is a common problem in collision
detection algorithms too, where objects can be reported as touching when they are
separate, or vice versa.

There is no definitive solution to this problem, but you can increase the accuracy
of the mathematics being performed. In C++ you can switch from floats to doubles,
which take up twice the amount of memory, take a little less than twice the amount
of time to process, but have millions of times the accuracy.

I have placed all the code on the CD that deals with the accuracy of the engine into
the include/cyclone/precision.h file. This defines the real data type, which is used
for all floating-point numbers. The real data type can be defined as a float or as a
double. As well as the data type, I have given aliases for some mathematical functions
in the standard C library. These need to be reset to call the correct precision version.

The single-precision code has been quoted so far. When compiling in double-
precision mode these definitions become

Excerpt from include/cyclone/body.h

#define DOUBLE_PRECISION
typedef double real;
#define REAL_MAX DBL_MAX
#define real_sqrt sqrt
#define real_abs fabs
#define real_sin sin
#define real_cos cos
#define real_exp exp
#define real_pow pow
#define R_PI 3.14159265358979

You can see this code in the precision header, along with an ifdef to select the defin-
itions you need.

I tend to compile with double precision by default. On a PC the performance hit
is relatively minor. On some consoles that are very strongly 32-bit, the 64-bit mathe-
matics is very slow (they perform the mathematics in software rather than hardware,
and so are much more than twice as slow in most cases), so single precision is crucial.
For objects with similar masses, low velocities, and positions near the origin, single
precision is perfectly fine to use. The demonstration programs on the CD work well
in either precision.

16.2 Optimizations 383

16.2 OPTIMIZATIONS

Having stabilized the major problems out of our engine, we can turn our attention
to optimization. There is a wise programming adage: Always avoid premature opti-
mization. Nowhere is this more important than in games.

As game developers we have a pressing need for fast and efficient code, and this
can spur you into optimizing code as you write. This is important to some extent, but
I’ve seen many cases where it consumes vast quantities of programming time and ends
up making negligible difference to code performance. With all code optimization it
is crucial to have a profiler and check what is slow and why. Then you can focus on
issues that will improve performance, rather than burning time.

The engine presented in this book has many opportunities for optimization.
There are quantities that are calculated several times, data storage that is wasteful,
and extraneous calculations that can be abbreviated and optimized. The version of
the engine built for this book is meant to be as clear and concise as possible rather
than fully optimized for performance.

At the end of this section I will look briefly at some of the areas that could be
improved for speed or memory layout. I will not work through the details of the
more complex ones, but will leave them as an exercise if your profiler is telling you
that it would help.

There is one key optimization we can make first that has such a dramatic effect
on the overall performance that it is worth looking at in detail. This isn’t a code opti-
mization (in the sense that it doesn’t do the same thing in a more efficient way) but is
a global optimization that reduces the physics engine’s workload.

16.2.1 SLEEP

There is a saying in graphics engine programming that the fastest polygons are those
you don’t draw. Quickly determining which objects the user can see, and then ren-
dering only those, is a key part of rendering technology. There are dozens of common
techniques used to this end (including some we’ve seen in this book, such as BSP trees
and quad-trees).

We can’t do exactly the same thing in physics: otherwise, if the player looked away
and looked back, objects would be exactly as they were when last seen, even if that
was mid-collapse. The equivalent optimization for physics engines is to avoid simu-
lating objects that are stable and not moving. In fact this encompasses the majority of
objects in a typical simulation. Objects will tend to settle into a stable configuration:
resting on the ground or with their springs at an equilibrium point. Because of drag,
only systems that have a consistent input of force will fail to settle down (the force
may be gravity, however—a ball rolling down an infinitely long slope will never stop,
for example).

Stopping the simulation of objects at rest is called putting them to “sleep.” A pow-
erful sleep system can improve the performance of a physics simulation by many hun-
dreds of times, for an average game level.

384 Chapter 16 Stability and Optimization

There are two components to the sleep system: one algorithm to put objects to
sleep and another to wake them up again. We will look at both, after putting in place
some basic structure to support them.

Adding Sleep State

To support sleep we need to add three data members to the RigidBody class:

� isAwake is a boolean variable that tells us whether the body is currently asleep,
and therefore whether it needs processing.

� canSleep is a boolean variable that tells us if the object is capable of being
put to sleep. Objects that are under the constant control of the user (i.e., the
user can add forces to them at any time) should probably be prevented from
sleeping, for visual rather than performance reasons.

� motion will keep track of the current movement speed (both linear and angu-
lar) of the object. This will be crucial for deciding if the object should be put
to sleep.

In the RigidBody class this is implemented as

Excerpt from src/body.cpp

class RigidBody
{

// ... Other RigidBody code as before ...

/**
* Holds the amount of motion of the body. This is a recency-
* weighted mean that can be used to put a body to sleep.
*/
real motion;

/**
* A body can be put to sleep to avoid it being updated
* by the integration functions or affected by collisions
* with the world.
*/
bool isAwake;

/**
* Some bodies may never be allowed to fall asleep.
* User-controlled bodies, for example, should be
* always awake.
*/
bool canSleep;

};

16.2 Optimizations 385

When we come to perform the rigid-body update, we check the body and return
without processing if it is asleep:

void RigidBody::integrate(real duration)
{

if (!isAwake) return;

// ... Remainder of the integration as before ...
}

The collision detector should still return contacts between objects that are asleep, as
we’ll see later in this section. These dormant collisions are important when one object
in a stack receives a knock from an awake body.

Despite collisions being generated, when two objects are asleep, they have no ve-
locity or rotation, so their contact velocity will be zero and they will be omitted from
the velocity resolution algorithm. The same thing happens with interpenetration.
This provides the speed-up in the collision response system.

We need to add a method to the RigidBody class that can change the current state
of an object’s isAwake member. The method looks like this:

Excerpt from src/contacts.cpp

void RigidBody::setAwake(const bool awake)
{

if (awake) {
isAwake= true;

// Add a bit of motion to avoid it falling asleep immediately.
motion = sleepEpsilon*2.0f;

} else {
isAwake = false;
velocity.clear();
rotation.clear();

}
}

This code toggles the current value of isAwake. If the body is being put to sleep, it
makes sure it has no motion: both linear and angular velocity are set to zero. This
makes sure collisions (as we saw before) have no closing velocity, which improves
performance for sleeping bodies in contact.

If the body is being awakened, then the motion variable is given a value. As we’ll
see in the next section, an object is put to sleep when the value of this motion drops
below a certain threshold. If the value of this variable is below the threshold, and the

386 Chapter 16 Stability and Optimization

object is awakened, it will fall asleep again immediately. Giving it a value of twice
the threshold prevents this and makes sure the object is awake long enough to do
something interesting (presumably the setAwake method is being called so the object
can be awakened to do something interesting, not to fall right back asleep).

Finally, we add functions to check whether an object is asleep and to set and check
the value of canSleep. These are implemented on the CD, and none of them are com-
plex enough to require analysis here.

Putting Objects to Sleep

The algorithm for putting objects to sleep is simple. At each frame we monitor their
motion. When their motion stabilizes over several frames, and their velocity is near
zero, we put them to sleep.

The “near zero” is controlled by a parameter called sleepEpsilon.2 When the
value of the motion data member drops below this threshold, the body is put to sleep:

if (motion < sleepEpsilon)
{

setAwake(false);
}

In the code on the CD the sleep epsilon value is shared for the whole simulation. It
is a global variable accessed through a pair of functions: setSleepEpsilon and get-
SleepEpsilon. You can fine-tune the value by using body-specific thresholds if you
like.

Setting sleep epsilon is a trial-and-error process. The collision-handling system
introduces motion into objects at each frame. If you set sleep epsilon too low, ob-
jects may never fall asleep. Even if you use a resolution system that doesn’t have these
problems, too low a value may take a long time to reach. If you set the value too high,
then objects that are obviously in motion can be sent to sleep, and that can look odd.
I tend to set my sleep threshold as high as possible before strange mid-motion freezes
become apparent.

The algorithm is simple, but it relies on calculating the value of motion. The mo-
tion value needs to encapsulate the linear and angular velocity of the object in a single
scalar. To do this we use the total kinetic energy of the object. In chapter 3 we saw that
the kinetic energy of a particle is given by

Ek = 1

2
m|ṗ|2

2. The Greek letter epsilon is used in engineering to mean a very small quantity of any kind.

16.2 Optimizations 387

where m is the body’s mass and ṗ is its linear velocity. A similar expression holds for
the kinetic energy of a rotating rigid body:

Ek = 1

2

(
m|ṗ|2 + im|θ̇ |2

)

where im is the moment of inertia about the axis of rotation of the body (i.e., it is a
scalar quantity) and θ̇ is its angular velocity.

We could use the kinetic energy as the value for motion, but that would create
a problem with different masses: two identical objects would fall asleep at different
times depending on their mass. To avoid this we remove the masses from the expres-
sion to get

motion = |ṗ|2 + |θ̇ |2

In code this looks like

currentMotion = velocity.scalarProduct(velocity) +
rotation.scalarProduct(rotation);

because the scalar product of two vectors is equivalent to their lengths multiplied
together and multiplied by the cosine of the angle between them. If we take the scalar
product of a vector with itself, the cosine is 1, and the result is just the square of the
vector’s length.

Some developers use variations on this: they either add the two components to-
gether without squaring them or calculate the full kinetic energy and then divide by
the mass.

In either case this gives us a value for the motion of the object. The final stage
is to check whether this value is stable. We do this by keeping a record of the cur-
rent motion over several frames and seeing how much it changes. This can be neatly
tracked by a recency-weighted average (RWA), one of the most useful tools in my
programming repertoire.

A recency-weighted average is updated by

rwa = bias*rwa + (1-bias)*newValue;

It keeps an average of the last few values, with more recent values being more signifi-
cant. The bias parameter controls how much significance is given to previous values.
A bias of zero makes the RWA equal to the new value each time it is updated (i.e.,
there is no averaging at all). A bias of 1 ignores the new value altogether.

The RWA is an excellent device for smoothing input or for checking that an input
has stabilized. In our case we have

motion = bias*motion + (1-bias)*currentMotion;

388 Chapter 16 Stability and Optimization

If currentMotion drops below the sleep epsilon value, but in the previous few frames
the object has been moving a great deal, then the overall motion value will still be
high. Only when an object has spent a while not moving will the recency-weighted
average drop below the epsilon value.

Because objects can move at very high speeds (and because we are working with
the square of these speeds), a brief burst of speed can send the RWA sky high, and
it will take a long time to get back down to reasonable levels. To prevent this, and to
allow objects to fall asleep faster, I have added code to limit the value of the RWA:

if (motion > 10*sleepEpsilon) motion = 10*sleepEpsilon;

The bias of the RWA should be dependent on the duration of the frame. Longer
frames should allow the current value to affect the RWA more than short frames.
Otherwise objects will fall asleep faster at faster frame-rates.

We can accomplish this in the same way we did for damping:

real bias = real_pow(baseBias, duration);

where baseBias is the bias we’d expect for one-second frames. I’ve typically used val-
ues around 0.5 to 0.8 here, but again some experimentation is needed.

Waking Objects Up

We have already seen that objects can be awakened manually. We also need to wake
objects up when they must respond to new collisions. Collisions between sleeping
objects, as we have seen, are generated and automatically ignored by the collision
resolution system.

When a new object (the player, for example, or a projectile) comes along and
collides with a sleeping object, we want all objects that could be affected by the col-
lision to wake up. For any particular collision this means that if one body involved is
asleep and the other is awake, then the sleeping body needs to be awakened. We add
a method to the Contact class to accomplish this:

Excerpt from src/contacts.cpp

void Contact::matchAwakeState()
{

// Collisions with the world never cause a body to wake up.
if (!body[1]) return;

bool body0awake = body[0]->getAwake();
bool body1awake = body[1]->getAwake();

// Wake up only the sleeping one.
if (body0awake ^ body1awake) {

16.2 Optimizations 389

if (body0awake) body[1]->setAwake();
else body[0]->setAwake();

}
}

This method is called whenever we are about to resolve a collision. Collisions
that occur between a sleeping object and an awake object but are not being consid-
ered (because they don’t have any velocity or penetration to resolve) don’t require the
sleeping object to be awakened. If the contact isn’t severe enough to need resolving,
we can assume it isn’t severe enough to wake the sleeping object.

If we have a series of collisions in a chain, as shown in figure 16.3, the first colli-
sion will be handled by waking up object B. Then the velocity update algorithm will
determine that the second contact needs resolving, waking up object C, and so on.
Eventually all the objects that need a velocity or position change will be awakened, as
required.

The adjustPositions and adjustVelocities methods of the contact resolver have
the call added just before they perform the resolution on a single contact. Here is the
abbreviated code for penetration resolution:

for (unsigned i = 0; i < positionIterations; i++)
{

// Find worstContact (as before) ...

if (!worstContact) break;

worstContact->matchAwakeState();
worstContact->applyPositionChange();

updatePenetrations();
}

There is a second situation in which we need to wake up a rigid body. That is
when a force is applied to it (excluding forces that are always present, such as gravity).
This can be done manually, adding a setAwake call each time a force is applied. This
is difficult to remember, however, so I have elected to wake the object automatically
whenever a force or torque is applied. Each of the addForce, addForceAtPoint, and
addTorque functions in the RigidBody class on the CD automatically calls setAwake.

We now have a fully functional sleep system, capable of dramatically improving
the performance of the engine.

Typically, when the game level is loaded, all rigid bodies are placed so that they
are in their rest position. They can then all be set to sleep when the game begins.
This makes the physics simulation code very fast indeed. Objects will require physical

390 Chapter 16 Stability and Optimization

FIGURE 16.3 A chain of collisions is awakened.

simulation only once they have been collided with. Even then, so we hope, they will
reach another equilibrium position and be sent back to sleep quickly.

16.2.2 MARGINS OF ERROR FOR PENETRATION AND VELOCITY

Another optimization worth making is one that speeds up the penetration and ve-
locity resolution algorithms dramatically. Figure 16.4 shows our now familiar block-

16.2 Optimizations 391

FIGURE 16.4 Iterative resolution makes microscopic changes.

on-a-plane situation. If we run this simulation and look at the resolutions being per-
formed, we see that the two contacts (four in a 3D simulation) are repeatedly consid-
ered. Taking just penetration, if we look at the penetration depths at each iteration, we
see (as shown in the figure) that the first penetration resolutions get us almost there
and then subsequent resolutions make such tiny adjustments that they can never be
seen by a player. This kind of sub-visual adjustment is a pure waste of time.

To avoid this situation we can add a tolerance limit to both velocity and penetra-
tion collisions. Only collisions that are more severe than this limit will be considered.
That way the first time a contact is resolved, it should be brought within the limit and
then never reconsidered unless the resolution of another contact disturbs it greatly.

This limit can be simply implemented when we search for the most severe contact
to consider. Rather than starting with a worstPenetration value of zero

Contact* lastContact = contacts + numContacts;
for (unsigned i = 0; i < positionIterations; i++)
{

Contact* worstContact = NULL;
real worstPenetration = 0;
for(Contact* contact = contacts; contact < lastContact; contact++)
{

if (contact->penetration > worstPenetration)

392 Chapter 16 Stability and Optimization

{
worstContact = contact;
worstPenetration = contact->penetration;

}
}
if (worstContact) worstContact->applyPositionChange();
else break;

}

(which is the code from chapter 14), we start with a value equal to the tolerance we
are allowing:

Contact* lastContact = contacts + numContacts;
for (unsigned i = 0; i < positionIterations; i++)
{

Contact* worstContact = NULL;
real worstPenetration = penetrationEpsilon;
for(Contact* contact = contacts; contact < lastContact; contact++)
{

if (contact->penetration > worstPenetration)
{

worstContact = contact;
worstPenetration = contact->penetration;

}
}
if (worstContact) worstContact->applyPositionChange();
else break;

}

The situation is similar for the velocity. Now no contact will be selected that has
a penetration below this epsilon value. This value should be small enough so that the
contact is not easily noticed by the player. The first time the contact is resolved, the
resolution should bring the contact’s penetration below this limit, so it will not be
considered again. Tuning is, again, a necessity. For the demos on the CD I have used
values around 0.01 for each. If your objects are larger or faster, then higher values
should be used. If they are smaller or slower, then use lower values.

Both the velocityEpsilon and penetrationEpsilon values are properties of the
collision resolver class. In the code on the CD I have included methods to set and
get their current value.

When I added this simple change to the engine, I gained a fivefold speed-up im-
mediately. For complex stacks of objects the improvement was even more significant.

Between the sleep system and this pair of tolerances, we have a physics simulation
that is fast enough for real production work. Further optimization can be achieved in

16.2 Optimizations 393

the physics core by code manipulation and trading off memory against speed. I’ll say
a few things briefly about that at the end of the section.

There remains a significant performance problem with the way contacts and col-
lisions are detected and handled, however.

16.2.3 CONTACT GROUPING

In chapter 14 I mentioned that performance could be improved by batching together
groups of contacts. For our engine this provides a useful speed-up. For engines that
do simultaneous resolution the speed-up can be critical.

Figure 16.5 shows a simple scene. There are several contacts in the scene, gener-
ated by the collision detector. In the collision resolution system, contacts A, B, and
C can all affect one another: resolving contact A can cause problems with contact B,
and resolving B can affect both A and C. Contacts D and E are likewise related. But
notice that A, B, and C cannot affect D, E, or F; D and E cannot affect A, B, C, or F;
and F cannot affect any of the others.

In fact two contacts can only affect each other if they are connected through a
series of rigid bodies and other contacts. So contact A and C can affect each other
because they are connected through bodies 2 and 3 and contact B.

Our resolution algorithm checks all possible contacts to see whether they have
been affected by a previous resolution. It also checks through all contacts to find the
current, most severe contact to resolve. Both these operations take longer for longer
lists of contacts.

FIGURE 16.5 Sets of independent contacts.

394 Chapter 16 Stability and Optimization

A better solution would be to resolve the contacts in groups. Contacts A, B, and
C can be sent to the resolver first; then D and E and then F. Used in this way the
contact resolver would have no way of altering contacts D and E based on the results
of resolving A, B, and C. But this is okay, since we know those contacts can’t possibly
interact.

This batching is typically done in one of two places. It can be the job of the colli-
sion detector to return groups of contacts. Or the whole list of contacts can be sepa-
rated by the collision resolution system and processed in batches.

The first approach is the best, if it can be implemented. Typically the collision
detector can determine if objects are a long way from one another and batch them.
If it is using a coarse collision detection system, for example, it can produce contact
batches for each distinct area of the game level. For sets of nearby objects that aren’t
touching, however, the collision detector will typically return batches that are too
large (i.e., batches that contain contacts that can’t affect one another). If the game
level has many such situations, it can improve performance further to add a batching
processor to the resolver as well as the collision detection batching.

A batching processor separates the whole list of contacts into batches. It does this
by starting at one contact and following the combination of contacts and rigid bod-
ies to find all contacts in one batch. This is then sent for processing. It then finds
another contact that has not yet been placed in a batch and follows the contacts to
build another batch. This repeats for as long as there are contacts that have not been
processed.

Implementing a batching processor involves being able to quickly find the rigid
bodies involved in each contact (we have that data already, since the contact data
structure stores the rigid bodies involved) and being able to find the contacts on each
rigid body. This is difficult with the current state of the engine, since rigid bodies don’t
keep track of the contacts that affect them. Searching through all possible contacts to
find those belonging to a rigid body would take too long and defeat the object of the
optimization.3

In chapter 14 we looked at a set of modifications to contact processing that
allowed a sorted list of contacts to be retained so they didn’t need to be sorted
each time. In the update part of this algorithm the effect of one resolution step is
propagated through the contacts. This uses the same data structure we would need
to efficiently implement batching: a linked list of contacts belonging to each rigid
body.

16.2.4 CODE OPTIMIZATIONS

The final optimization phase I want to consider is code optimization. Code optimiza-
tions are tweaks that don’t change the algorithm but make processing it more efficient.

3. In fact, while this is true of our engine, it is not necessarily true of engines with much more complex
resolution algorithms. In either case, however, there is a better way.

16.2 Optimizations 395

There is a whole range of code optimizations that can be applied to the source code
on the CD. I have deliberately avoided making the code more complex by trying to
wring additional performance from it.

This section is intended to give some general pointers. The advice is based on the
commercial engine I developed and on which cyclone is based. Before you embark
on any optimization effort, I would strongly advise you to get a good profiler (I use
Intel’s VTune for PC work) and only optimize areas of the software that you can prove
are causing performance problems.

Caching Contact Data

A relatively simple optimization is to retain the calculations performed during contact
resolution as data in the contact class. When resolving one contact several times, we
currently recalculate its deltaVelocity and other values. These can instead be stored
in the contact data structure and only calculated when first needed.

This is a tradeoff of memory against speed. If you have a large number of contacts
that are only likely to be considered once, then it may be better to leave the algorithm
as is.

Vectorizing Mathematics

The next optimization takes advantage of the mathematical hardware on PCs and
most consoles. This hardware is capable of processing more than one floating-point
number at the same time. Rather than performing all our vector and matrix manip-
ulation as a series of floating-point operations, we can have it process a whole vector
at a time.

For single-precision builds of the engine (things get considerably more complex
for double precision, so we’ll ignore that) on a 32-bit PC, we can fit a whole vector
into one of the SSE registers. Using SSE mathematics we can perform a matrix trans-
form of a vector in only four operations. Vector cross products, additions, and other
manipulations are equally accelerated. Most consoles (older hand-helds being the ex-
ception) provide the same facilities. On the Sony PlayStation 2, for example, there is
a dedicated vector mathematics unit you can use for the same effect.

I’m not going to dive into detail about vectorizing mathematics. There is rea-
sonable documentation available with Visual Studio for the Windows PC and many
excellent introductions to the subject online. For serious PC development I would
recommend Intel’s Software Optimization Cookbook [Gerber, 2002] (whether or not
you are targeting Intel processors).

Twizzling Rigid-Body Data

The vector mathematics hardware on PCs is optimized to run the same program on
multiple bits of data at the same time. Rather than go through one algorithm per rigid
body, it would be better to run the same algorithm for a group of bodies at the same
time.

396 Chapter 16 Stability and Optimization

The rigid-body integration algorithm is a particular candidate for this. We can
speed things up by having it process four objects at the same time. To do this, however,
we would need to rearrange how data is held for each rigid body.

For the sake of an object-oriented programming style, we’ve used a class contain-
ing all the data for one rigid body. To take advantage of simultaneous processing we
need to “twizzle” the data, so it is grouped together: the position for each object in an
array, followed by all the velocities, and so on. This can be achieved by using a new
data structure that holds four rigid bodies at a time.

Personally I have never implemented this in any physics engine I have built. Some
of the AI engine development I’ve been involved with, however, has used this struc-
ture, with four characters being updated at once.

Grouping Data for Areas of the Level

Memory management is a crucial part of optimizing game technologies. There is
plenty of memory available on most games machines for physics, but its organiza-
tion can cause slow-downs.

Processors don’t have equal access to all parts of the memory. They load data in
chunks from the main memory and keep it in high-speed caches. Accessing data from
the cache is fast. If the data needed isn’t in the cache, then it has to be fetched from
main memory, which can be very time consuming. Different machines have different
cache sizes, and some have several levels of cache.

To avoid constantly fetching new data into the cache, data should be grouped
together. For small game levels all the physics data can be easily kept together. For
medium-size game levels care must be taken that the physics data isn’t simply added
into another data structure. For example:

class MyObject
{

AIData ai;
Geometry geometry;
Material material;
Texture textures[4];
RigidBody physics;
CollisionGeometry collisionGeom;

};

MyObject objects[256];

This can easily make the rigid-body data for consecutive objects a long distance
apart in memory. When resolving collisions among many objects, data can quite eas-
ily need to be fetched to the cache on most resolution steps, causing disastrous per-
formance problems.

16.3 Summary 397

A better solution is to keep all the sets of data together in a separate array:

AIData ai[256];
Geometry geometry[256];
Material material[256];
Texture textures[4][256];
RigidBody physics[256];
CollisionGeometry collisionGeom[256];

For large game levels this still won’t be enough. In this case it is worth ordering the set
of rigid bodies such that objects in different areas of the game level are kept together.
That way, when contacts are processed, the bodies involved are likely to appear in the
cache together. Contacts will not be generated between objects across the level from
each other, so they can be separated in the array.

Cache misses are notoriously difficult to diagnose, and their prevalence tends to
change dramatically when you add debugging code or make seemingly unrelated ad-
justments. A good profiler is essential.

16.3 SUMMARY

By simply adding sleeping objects and tolerance for near-collisions you will have a
reasonably efficient physics engine. It’s time now to look at how it can be used in some
real game applications. If you are creating your own engine as you follow through
this book, it’s time to put it through its paces. If your profiler detects performance
problems, you can return to this chapter and try some of the other optimizations.

Chapter 17 reviews what we have and looks at how the key physics effects seen in
many recent games are achieved.

This page intentionally left blank

17
PUTTING IT ALL

TOGETHER

e have built a complete physics engine that can simulate any kind of rigid
W body, detect collisions between objects, and realistically resolve those colli-
sions. It is capable of running the physics for a huge range of games. Now it’s time to
put it through some paces.

Before we work through the demonstration applications, it is worth taking stock
of where we have come from and looking at the physics engine as a whole.

17.1 OVERVIEW OF THE ENGINE

The physics engine we have built has four distinct parts:

� The force generators (and torque generators) examine the current state of the
game and calculate what forces need to be applied to which objects.

� The rigid-body simulator processes the movement of rigid bodies in response
to those forces.

� The collision detector rapidly identifies collisions and other contacts both be-
tween objects and between an object and the immovable parts of the level. The
collision detector creates a set of contacts to be used by the collision resolver.

� The collision resolver processes a set of contacts and adjusts the motion of rigid
bodies to accurately depict their effects.

Each of these components has its own internal details and complexities, but we can
broadly treat them as separate units. Notice that there are two kinds of internal data
used in the preceding components:

399

400 Chapter 17 Putting It All Together

� The forces and torques generated are never represented in an explicit data struc-
ture. They are applied directly to the appropriate rigid body as soon as they
are calculated.

� Contacts are generated by the collision detector and stored together, before
being sent as a group to the collision resolver.

To represent objects in the game we need three kinds of data:

� Rendering geometry and materials are used to display the object on screen.
This is normally not used at all by the physics engine, although it can take the
place of the collision geometry for very simple objects.

� Collision geometry is a simplified set of shapes that represents an object. It is
used to speed up collision detection. In some engines the collision geometry
is made up of a polygonal mesh, just like the rendering geometry. In other
engines objects are made up of sets of primitive shapes such as ellipsoids and
boxes. In both cases a comprehensive collision detection system will typically
need more than one level of collision geometry: the lowest level will be en-
closed in one or more bounding volumes.

� Rigid-body data contains information about the physical characteristics of the
object. It includes things like mass and inertia tensor, as well as position and
velocity. In our engine most of this is encapsulated in the rigid body class. In
addition we need to have access to contact data such as the friction between
pairs of surfaces and their restitution.

These three kinds of data, along with the four parts of the engine and the two internal
lines of communication, work together to provide the physics simulation. Figure 17.1
shows how the data passes through the system.

This is the basic design of most physics engines, although there are some varia-
tions. In particular it is possible to add additional components to the pipeline, such as
a batch processing algorithm to divide the set of contacts into unconnected batches.
Some engines also have another stage of rigid-body update at the end of the pipeline,
especially if the result of the collision resolution system is a set of forces to apply.

The whole physics pipeline is typically contained within a single call in the game
loop. We could easily create a black-box physics system that keeps track of everything
needed to run the physics simulation. In this book, as well as in real game develop-
ment, I avoid doing this. In real game development physics isn’t happening for its
own sake; it is just part of the whole game, and the data that the physics system needs
overlaps with data needed elsewhere. A black-box system can easily duplicate work
and cause a nightmare trying, for example, to make sure that all copies of an object’s
position are synchronized.

In a real game different objects will also need different additional data. Some
objects may be active and so require data for the AI. Other objects may be player-
controlled and require network data for synchronization. Any objects can require
game-specific data such as hit points or value. Such complexities can make it difficult
to ensure that the physics data is correctly initialized and represents realistic objects
(the inertia tensor is notoriously easy to get wrong).

17.2 Using the Physics Engine 401

FIGURE 17.1 Data flow through the physics engine.

Setting up new objects with the correct physics can be a challenge. In my experi-
ence it is invaluable to have a simple environment set up as part of the level-design
process where the physics of objects can be tested interactively. That way, as you de-
velop you can be sure that the object feels right in its environment and that no crucial
data is being left uninitialized.

17.2 USING THE PHYSICS ENGINE

We can now do almost anything we want with our physics engine. In this chapter I’ll
give you a taste of some of the most popular applications for physics: ragdolls, break-
able objects, and movie-style explosions. On the way we’ll look at some additional
techniques, force generators, and ways to configure the engine.

There is one important caveat to these applications, however. If you are building
your engine for a single purpose (to run off-road trucks or as part of a procedural
animation system, for example), then there may be faster ways to get there directly.

I am going to focus on using our generic engine to power these effects. If all you
need is a single-purpose physics system, there may be things we have put in our code
that aren’t needed. For example, for high-spec racing cars that don’t normally leave
the ground, you can omit all the rigid-body physics and build special-case spring code
to model how their suspension flexes and how it handles.

Our approach is to build a physical approximation of the object and simulate
it. Sometimes a better approach is to work out the desired behavior and program
that in explicitly. Having said that, the general-purpose versus special-case dilemma
is becoming increasingly moot. Modern games typically need several effects at once:

402 Chapter 17 Putting It All Together

a driving game will model cones and fences, allowing them to break and be scattered
realistically, for example. In situations where different kinds of physical behavior need
to interact, there is little to substitute for a complete physics engine.

17.2.1 RAGDOLLS

Ragdolls are the hot physics application of the moment: characters that can be thrown
around and generate their own realistic animation using physics. They are part of
a wider move toward procedural animation: animation that doesn’t need an artist
creating keyframes.

A ragdoll is made up of a series of linked rigid bodies (see figure 17.2). These
rigid bodies are called “bones” (they roughly correspond to the bones used in skeletal
animation, although there can be a different number of ragdoll bones and rendering
bones). At their most complex, ragdolls can contain dozens of bones, essential for
getting a flexible spine or tail.

The bones are connected together with joints: constraints very much like those
we saw in chapter 7. Finally, in some games force generators are added to the joints to
simulate the way characters would move in flight: shielding their faces and trying to
brace their hands against the fall.

On the CD the ragdoll demo omits the force generators1 but includes the joints
to keep the bones together.

The constraints are implemented as contacts. In addition to the regular contact
generator, a list of joints is considered and contacts are generated to keep them to-

FIGURE 17.2 Screenshot of the ragdoll demo.

1. I left these out because there are some important complications in their implementation. These com-
plications arise from the way people move: it is a problem of AI rather than of physics.

17.2 Using the Physics Engine 403

FIGURE 17.3 Closeup of a ragdoll joint.

gether. Figure 17.3 shows a detail of one such joint. Note that the contact is keeping
two points together. The contact will always be between these two points, making sure
they align.

To prevent the contact from slipping further out of alignment, the friction at the
joint should be effectively infinite. To prevent the joint from bouncing out of align-
ment, the restitution should be zero.

In the code we have the following structure that holds information on one joint:

Excerpt from include/cyclone/joints.h

/**
* Joints link together two rigid bodies and make sure they do not
* separate. In a general physics engine there may be many
* different types of joint, which reduce the number of relative
* degrees of freedom between two objects. This joint is a common
* position joint: each object has a location (given in
* body coordinates) that will be kept at the same point in the
* simulation.
*/
class Joint : public ContactGenerator
{
public:

/**
* Holds the two rigid bodies that are connected by this joint.
*/
RigidBody* body[2];

/**
* Holds the relative location of the connection for each
* body, given in local coordinates.
*/
Vector3 position[2];

404 Chapter 17 Putting It All Together

/**
* Holds the maximum displacement at the joint before the
* joint is considered to be violated. This is normally a
* small, epsilon value. It can be larger, however, in which
* case the joint will behave as if an inelastic cable joined
* the bodies at their joint locations.
*/

real error;

/**
* Generates the contacts required to restore the joint if it
* has been violated.
*/

unsigned addContact(Contact *contact, unsigned limit) const;
};

Within this class there is a checkJoint method that generates contacts based on the
current configuration of the joint. In this way it acts very much like a collision detec-
tor: looking at the state of rigid bodies and generating contacts accordingly.

In the demo the joints are considered in order during the physics update:

Excerpt from src/demos/ragdoll/ragdoll.cpp

void RagdollDemo::generateContacts()
{

// Create the ground plane data.
cyclone::CollisionPlane plane;
plane.direction = cyclone::Vector3(0,1,0);
plane.offset = 0;

// Perform exhaustive collision detection on the ground plane.
cyclone::Matrix4 transform, otherTransform;
cyclone::Vector3 position, otherPosition;
for (Bone *bone = bones; bone < bones+NUM_BONES; bone++)
{

// Check for collisions with the ground plane.
if (!cData.hasMoreContacts()) return;

cyclone::CollisionDetector::boxAndHalfSpace(*bone, plane, &cData);
}

// Check for joint violation.
for (cyclone::Joint *joint = joints;

joint < joints+NUM_JOINTS; joint++)
{

if (!cData.hasMoreContacts()) return;

17.2 Using the Physics Engine 405

unsigned added =
joint->addContact(cData.contacts, cData.contactsLeft);

cData.addContacts(added);
}

}

When run, this is a fast and effective ragdoll model. It isn’t the most stable method,
however. For very large ragdolls a lot of interpenetration resolution iterations are
needed to keep the extremities from wandering too far from their correct place.

More Complex Joints

The approach of the ragdoll demo is about as simple as possible to get useful joints.
Joints are a common feature of physics engines, and they can be considerably more
complex. In particular joints are used to remove the freedom of one object to move
relative to another.

The joints we have used (called “ball-joints”) take away the freedom of one object
to move linearly with respect to another. There are also joints that restrict movement
even more: hinges that restrict the ability of one object to rotate with respect to an-
other and piston joints that allow relative movement in one direction only.

Implementing these more flexible joints in the engine we have built is, quite
frankly, inconvenient. What I have done here, trying to represent joints in terms of
contacts, works for ball-joints but becomes very difficult for other kinds of joints.

In creating joints for this kind of engine I have followed approximately the same
algorithm as that used for contacts (which are effectively joints that limit the motion
of two objects from overlapping), but used different sets of tests to determine the
adjustments needed. A hinge joint, for example, needs to check how twisted the two
objects are and implement interpenetration-like resolution to bring them back into
alignment.

Force-based engines with simultaneous resolution of contacts normally use a
mathematical structure that makes it very easy to create a huge range of joints with
minimal additional implementation effort. In the next chapter we’ll look at the al-
gorithms that support this. If you are going to make a lot of use of joints and need
something more comprehensive than the simple contact-based joints in this section,
it may be worth biting the bullet and upgrading your contact resolution scheme. For
the sake of efficiency, ease of implementation, and programmer sanity, however, it is
worth giving the simple approach a try.

17.2.2 FRACTURE PHYSICS

If ragdoll physics is the current hot physics application, then fracture physics isn’t far
behind. Particularly in shooters, players want to see objects destroyed in a realistic
way: wood should splinter, glass should shatter, and falling crates should crack to
reveal their contents.

406 Chapter 17 Putting It All Together

FIGURE 17.4 Pre-created fractures can look very strange for large objects.

Fracture physics can be as simple or as complex as you want it to be. Early im-
plementations used two sets of rigid bodies: one for the whole object and another
for its components. The whole rigid body has a breaking strain value: the maximum
impulse it can suffer before being destroyed. During the velocity phase of the reso-
lution algorithm the impulse applied to the object is compared against its breaking
strain. If the impulse is too great, the whole rigid body is replaced by its component
objects.

This is a very quick, efficient, and easy-to-implement fracture physics. Unfortu-
nately two identical objects will always be destroyed in exactly the same way, and the
pattern of destruction will not bear any relationship to the location of the impulse.
Figure 17.4 illustrates this problem on a glass window.

This can be mitigated to some extent by using several possible decompositions for
an object and determining which to use when the fracture is initiated. Players are good
at spotting patterns, however, and most developers want a more flexible approach.

More complex fracture physics uses the same basic principle of breaking strains,
but adds two, more complex algorithms. The first is a geometric algorithm to con-
struct the components of the fractured object on-the-fly. The decomposition method
depends on the type of material.

Decomposing wood needs long, splintered components; glass cracks into panes;
safety glass shatters into smalls nuts; and so on. Typically this is achieved either by
decomposing the object into different-sized tetrahedrons and keeping groups of these
together, or by using a set of fracture patterns, and 3D boolean operations to separate
components. The specifics of this decomposition are highly geometric and depend
on algorithms beyond the scope of this book. The Schneider and Eberly [2002] book,
in the same series as this, has a comprehensive set of algorithms for manipulating
geometry.

17.2 Using the Physics Engine 407

FIGURE 17.5 Screenshot of the fracture demo.

The second, more complex algorithm is for assigning correct physical character-
istics to the component objects. In particular, assigning a correct inertia tensor for
a general fractured shape is a nontrivial process. Appendix A gives formulae and al-
gorithms for calculating the inertia tensor of various regular objects. For a general
shape, however, these are complex and can be inefficient. Most developers opt for a
simplification and approximate shattered pieces with geometry that has easy inertia
tensors: boxes are a firm favorite.

Figure 17.5 shows the fracture demo on the CD. It contains a single large block,
made of a relatively dense, brittle material, such as concrete. You can move to aim and
fire a ball at the block. The block will shatter on impact, depending on where the ball
strikes. The decomposition scheme splits the block into eight components, dividing
it in each direction. The collision point is used as the center of two collisions, and the
other direction is split in half, as shown in figure 17.6. To make the results look more
realistic the splits are angled randomly.

The geometric division algorithm looks like this:

Excerpt from src/demos/fracture/fracture.cpp

/**
* Performs the division of the given block into four, writing the
* eight new blocks into the given blocks array. The blocks array can be
* a pointer to the same location as the target pointer: since the
* original block is always deleted, this effectively reuses its storage.
* The algorithm is structured to allow this reuse.
*/
void divideBlock(const cyclone::Contact& contact,

Block* target, Block* blocks)
{

408 Chapter 17 Putting It All Together

FIGURE 17.6 The fractures of a concrete block.

// Find out if we’re block one or two in the contact structure, and
// therefore what the contact normal is.
cyclone::Vector3 normal = contact.contactNormal;
cyclone::RigidBody *body = contact.body[0];
if (body != target->body)
{

normal.invert();
body = contact.body[1];

}

// Work out where on the body (in body coordinates) the contact is
// and its direction.
cyclone::Vector3 point =

body->getPointInLocalSpace(contact.contactPoint);
normal = body->getDirectionInLocalSpace(normal);

// Work out the center of the split: this is the point coordinates
// for each of the axes perpendicular to the normal, and 0 for the
// axis along the normal.
point = point - normal * (point * normal);

// Take a copy of the half size, so we can create the new blocks.
cyclone::Vector3 size = target->halfSize;

// Take a copy also of the body’s other data.

17.2 Using the Physics Engine 409

cyclone::RigidBody tempBody;
tempBody.setPosition(body->getPosition());
tempBody.setOrientation(body->getOrientation());
tempBody.setVelocity(body->getVelocity());
tempBody.setRotation(body->getRotation());
tempBody.setLinearDamping(body->getLinearDamping());
tempBody.setAngularDamping(body->getAngularDamping());
tempBody.setInverseInertiaTensor(body->getInverseInertiaTensor());
tempBody.calculateDerivedData();

// Remove the old block.
target->exists = false;

// Work out the inverse density of the old block.
cyclone::real invDensity =

halfSize.magnitude()*8 * body->getInverseMass();

// Now split the block into eight.
for (unsigned i = 0; i < 8; i++)
{

// Find the minimum and maximum extents of the new block
// in old-block coordinates.
cyclone::Vector3 min, max;
if ((i & 1) == 0) {

min.x = -size.x;
max.x = point.x;

} else {
min.x = point.x;
max.x = size.x;

}
if ((i & 2) == 0) {

min.y = -size.y;
max.y = point.y;

} else {
min.y = point.y;
max.y = size.y;

}
if ((i & 4) == 0) {

min.z = -size.z;
max.z = point.z;

} else {
min.z = point.z;
max.z = size.z;

}

410 Chapter 17 Putting It All Together

// Get the origin and half size of the block, in old-body
// local coordinates.
cyclone::Vector3 halfSize = (max - min) * 0.5f;
cyclone::Vector3 newPos = halfSize + min;

// Convert the origin to world coordinates.
newPos = tempBody.getPointInWorldSpace(newPos);

// Set the body’s properties (we assume the block has a body
// already that we’re going to overwrite).
blocks[i].body->setPosition(newPos);
blocks[i].body->setVelocity(tempBody.getVelocity());
blocks[i].body->setOrientation(tempBody.getOrientation());
blocks[i].body->setRotation(tempBody.getRotation());
blocks[i].body->setLinearDamping(tempBody.getLinearDamping());
blocks[i].body->setAngularDamping(tempBody.getAngularDamping());
blocks[i].offset = cyclone::Matrix4();
blocks[i].exists = true;

// Finally calculate the mass and inertia tensor of the new block.
blocks[i].calculateMassProperties(invDensity);

}
}

This assumes that the collision will occur on the YZ plane of the block (which it
must in our demo). More complete code would have similar algorithms for the other
possible collision planes.

Because the resulting pieces are roughly rectangular, they are treated like rectan-
gular blocks for calculating their inertia tensors. This is done simply as

Excerpt from src/demos/fracture/fracture.cpp

/**
* Calculates and sets the mass and inertia tensor of this block,
* assuming it has the given constant density.
*/
void calculateMassProperties(cyclone::real invDensity)
{

// Check for infinite mass.
if (invDensity <= 0)
{

// Just set zeros for both mass and inertia tensor.
body->setInverseMass(0);
body->setInverseInertiaTensor(cyclone::Matrix3());

17.2 Using the Physics Engine 411

}
else
{

// Otherwise we need to calculate the mass.
cyclone::real volume = halfSize.magnitude() * 2.0;
cyclone::real mass = volume / invDensity;

body->setMass(mass);

// And calculate the inertia tensor from the mass and size.
mass *= 0.333f;
cyclone::Matrix3 tensor;
tensor.setInertiaTensorCoeffs(

mass * halfSize.y*halfSize.y + halfSize.z*halfSize.z,
mass * halfSize.y*halfSize.x + halfSize.z*halfSize.z,
mass * halfSize.y*halfSize.x + halfSize.z*halfSize.y
);

body->setInertiaTensor(tensor);
}

}

Creating a general-purpose fracture physics system involves more geometric
processing than physics knowledge. Some developers have gone this route, and there
are a couple of middleware vendors with similar technologies. But to trap all useful
scenarios is a moderately long task—certainly as long as the contact resolution or
rigid-body algorithms we have created.

17.2.3 EXPLOSIVE PHYSICS

Explosions have been around from the earliest days of gaming and were the appli-
cation of the first physics engines: particle engines creating smoke and debris. Explo-
sions are a whole lot more fun with proper physics; there’s something gratifying about
watching debris scattered around the level.

Explosions are easy to create with a custom force generator. We could create a
force generator that simply imparts a force to objects near the blast point. This would
send objects cascading, but ultimately would be dull to look at. It has two problems.
First, the explosion effect is quite monotonous: objects just fly out. Second, applying
forces alone doesn’t cause objects to spin.

A movie-quality explosion effect has three components: an initial implosion, an
all-around explosion, with an expanding concussion wave, and a convection chimney.
Each of these components has a slightly different behavior.

412 Chapter 17 Putting It All Together

Implosion

When the explosion first occurs, the heat in the explosion consumes the oxygen in a
ball around the explosion point and can ionize the air (this is what causes the flash).
A sudden, dramatic drop in pressure results, and nearby air rushes into the gap. This
is the implosion stage, and it is the same process that occurs in a lightning strike.

There is a military technology called “thermobaric weapons” that does its dam-
age in this way, using very high temperatures to cause a huge pressure change and
a powerful compression wave (see the next section) that can destroy buildings and
devastate life.

In a real explosion of modest size this effect is barely noticeable, and can even
be completely lost in the concussion phase. For games and movies, however, it looks
good and gives the explosion an added sense of power. A longer concussion, particu-
larly when associated with a geometry-stretching graphical effect, can add tension to
the explosion and even suggest some kind of alien technology.

The implosion stage of the force generator applies a force to all objects within
some threshold radius, in the direction of the point of explosion. We’ll put all three
stages of the explosion into one force generator. So far it looks like this:

Excerpt from src/demos/fracture/fracture.cpp

/**
* A force generator showing a three-component explosion effect.
* This force generator is intended to represent a single
* explosion effect for multiple rigid bodies. The force generator
* can also act as a particle force generator.
*/

class Explosion : public ForceGenerator,
public ParticleForceGenerator

{
/**
* Tracks how long the explosion has been in operation, used
* for time-sensitive effects.
*/
real timePassed;

public:
// Properties of the explosion: these are public because
// there are so many and providing a suitable constructor
// would be cumbersome.

/**
* The location of the detonation of the weapon.
*/
Vector3 detonation;

17.2 Using the Physics Engine 413

/**
* The radius up to which objects implode in the first stage
* of the explosion.
*/
real implosionMaxRadius;

/**
* The radius within which objects don’t feel the implosion
* force. Objects near to the detonation aren’t sucked in by
* the air implosion.
*/
real implosionMinRadius;

/**
* The length of time that objects spend imploding before the
* concussion phase kicks in.
*/
real implosionDuration;

/**
* The maximal force that the implosion can apply. This should
* be relatively small to avoid the implosion pulling objects
* through the detonation point and out the other side before
* the concussion wave kicks in.
*/
real implosionForce;

public:
/**
* Creates a new explosion with sensible default values.
*/
Explosion();

/**
* Calculates and applies the force that the explosion
* has on the given rigid body.
*/
virtual void updateForce(RigidBody * body, real duration);

/**
* Calculates and applies the force that the explosion has
* on the given particle.
*/

414 Chapter 17 Putting It All Together

virtual void updateForce(Particle *particle, real duration) = 0;

};

The implosion can only impose a linear force. Because it is so short, we don’t need to
set objects spinning.

Concussion Wave

The concussion wave (also called the “shockwave”) is initiated by the initial implo-
sion: air rushes into the vacuum, creating an expanding wavefront. This may be com-
bined, near the explosion site, with shrapnel and munition fuel expanding from the
weapon. For very high-temperature devices the wavefront may comprise burning air,
known as a “fireball” (characteristic in atomic and nuclear devices).

The concussion wave throws objects outward from the explosion. In movies and
games it is responsible for cars flying through the air and characters being knocked
off their feet.

The characteristic of a concussion wave is its propagation. It spreads out from the
point of explosion, getting weaker as it goes. Like a surfer always on the outside edge
of a water wave, light objects can ride the outside edge of the concussion wave and
accelerate to very high speeds. But like a surfer who doesn’t catch the wave, most ob-
jects will receive an initial boost at the wave boundary, and then will behave normally
when inside the wavefront.

We can implement this in our force generator by applying forces to objects within
an expanding interval from the blast point. The interval should be wide enough so
that no objects are missed. Its width depends on the frame-rate and the speed of the
wavefront, according to the formula

w � s

fps

where s is the speed of the wavefront, w is the width of the interval, and fps is the
number of frames per second. In other words, w is the distance the wave travels in
one frame. In practice, objects on either side of this peak should also get some force,
but to a lesser extent. The force equation

fa =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fb(1 − (st − d)/kw) when st − kw � d < st

fb when st � d < st + w

fb(d − st − w)/kw when st + w � d < st + (k + 1)w

0 otherwise

has proved useful for me. In it st is the position of the back of the wavefront (i.e., the
speed times the time), k is the width of the tail-off on either side of the wave, d is the

17.2 Using the Physics Engine 415

FIGURE 17.7 The cross section of force across a compression wave.

distance of an object from the center of the blast, fa is the applied force, and fb is the
peak blast force, which we’ll calculate in a moment. The equation simply provides a
linear fall-off of force on either side of the wave. The force cross section is shown in
figure 17.7. Note that the force is always acting outward from the center of the blast.

We need to calculate the peak force for this equation. The force applied to an ob-
ject depends on both its aerodynamic drag (since the compression wave is primarily a
moving-air effect) and its current velocity. We could do this by simply using the aero-
dynamic effects from chapter 11, but if you aren’t using that already, it is probably
overkill.

We can approximate the force effect by applying a force that depends on the dif-
ference between the object’s velocity and the wavefront. To get exploding objects to
spin as they are moved, we apply the force off-center. This can be as simple as select-
ing a random, off-center point for each object when the force generator is created.
The same point should be used from frame to frame to prevent objects from looking
like they are jiggling in mid-air. It also means that once the point is pushed so it is
in line with the force vector, the object stops rotating. Otherwise objects could rotate
faster and faster under the influence of the explosion, and that looks odd.

With the concussion wave implemented the explosion force generator looks like
this:

Excerpt from include/cyclone/fgen.h

/**
* A force generator showing a three-component explosion effect.
* This force generator is intended to represent a single
* explosion effect for multiple rigid bodies. The force generator
* can also act as a particle force generator.
*/

416 Chapter 17 Putting It All Together

class Explosion : public ForceGenerator,
public ParticleForceGenerator

{
/**
* Tracks how long the explosion has been in operation, used
* for time-sensitive effects.
*/
real timePassed;

public:
// ... Other Explosion code as before ...

};

Convection Chimney

The final part of the explosion is another Hollywood exaggeration of a real explosion.
As well as the pressure effects from the initial explosion, the heat generated will set
up a convection current above the blast point. In most conventional weapons this
is a minor effect and isn’t very noticeable. It is significant and iconic in atomic and
nuclear weapons, however; the mushroom cloud has become a potent indicator of
explosive violence. While it should be used sparingly (big mushroom clouds after a
grenade goes off look peculiar), it can be a great way to indicate a superior weapon.

Convection chimneys provide a very small amount of upward force for a long
time after the explosion. It is not enough to lift anything but the lightest objects off
the ground. Because light objects are unlikely to be around the blast point after the
concussion wave, developers typically introduce extra particles that only respond to
the convection. These particles are light enough to be carried upward.

The convection chimney has an equation similar to that of the concussion wave,
but it doesn’t move outward. The linear fall-off works fine:

fa =
{

fbdxz/w when dxz < w and dy < h

0 otherwise

where w is the width of the chimney, h is the maximum height of the chimney, dxz

is the distance of the object from the blast center, in the XZ plane only (because we
want the chimney to be a cylinder shape), and dy is the height of the object above the
blast point.

The force should again be applied in a line from the blast center. If we apply the
force in just the up direction, then objects will rise up the chimney and bob at the
top. If the force is angled out, the characteristic mushroom cloud shape is formed.
The peak force is calculated in the same way as for the concussion wave: it is another
moving-air phenomenon. The code to produce this effect looks like this:

17.2 Using the Physics Engine 417

Excerpt from include/cyclone/fgen.h

/**
* A force generator showing a three-component explosion effect.
* This force generator is intended to represent a single
* explosion effect for multiple rigid bodies. The force generator
* can also act as a particle force generator.
*/
class Explosion : public ForceGenerator,

public ParticleForceGenerator
{

/**
* Tracks how long the explosion has been in operation, used
* for time-sensitive effects.
*/
real timePassed;

public:
// ... Other Explosion code as before ...

/**
* This is the peak force for stationary objects in
* the center of the convection chimney. Force calculations
* for this value are the same as for peakConcussionForce.
*/

real peakConvectionForce;

/**
* The radius of the chimney cylinder in the xz plane.
*/

real chimneyRadius;

/**
* The maximum height of the chimney.
*/

real chimneyHeight;

/**
* The length of time the convection chimney is active. Typically
* this is the longest effect to be in operation, as the heat
* from the explosion outlives the shockwave and implosion
* itself.
*/

real convectionDuration;
};

418 Chapter 17 Putting It All Together

FIGURE 17.8 Screenshot of the explosion demo.

All together the explosion looks quite good. The explosion demo on the CD
shows the three components in action (see figure 17.8). There are no lighting or fire
particle effects, which would normally be used in a real game explosion (neither of
which is typically driven by the physics of the explosion). For a huge explosion a neat
effect is to set fire to (i.e., add fire particles to the surface of) objects as they first come
into the range of the concussion wave. This gives the effect of a consuming fireball.

17.3 LIMITATIONS OF THE ENGINE

We have built a usable physics engine and had some fun putting it through its paces
in different game situations. This is about as far as we’ll be going in detailed code. The
rest of the book looks in a more general way at other issues and approaches.

As I’ve said from the beginning, the approach we’ve taken is a sound one, with
a good blend of implementation ease and simulation power. Ultimately, however,
any approach has limitations. While I have tried to be clear about the limitations as
we have gone along, before looking at the benefits of other approaches, it is worth
recapping those issues that our engine finds difficult to handle.

17.3.1 STACKS

Large stacks of objects may not be too stable in our engine. Of course we can set the
stack up and put it to sleep, and have it fall when knocked, but a slight touch is likely
to set it jiggling. At its worst it can cause blocks at the top of the stack to move visibly
and vibrate their way off the edge.

This is caused by the iterative penetration resolution algorithm. The algorithm
doesn’t perfectly position objects after resolving the resolution. For one object (or

17.4 Summary 419

even a small number of stacked objects) this isn’t a problem. For large stacks the
errors can mount until at the top they are very noticeable.

Judicious use of putting objects to sleep means that stacks can be made to appear
stable. If you need a brick wall to be blown apart, this is a good strategy and won’t
show the engine’s limits.

17.3.2 REACTION FORCE FRICTION

As we saw in the last chapter, reaction force friction is honored when a contact is
being resolved, but not when a contact is moved as a side effect of another resolution.
This makes it difficult for one movable object leaning against another to stay in place.
The objects will appear to slide off each other, regardless of the frictions imposed. The
best that can be hoped for is that the sleep system kicks in to stop them from sliding
apart.

This is another side effect of the interpenetration resolution algorithm: it doesn’t
honor the friction of one contact when considering the penetration resolution of an-
other.

17.3.3 JOINT ASSEMBLIES

The same cumulative errors that cause stacks to become unstable can also lead to no-
ticeable artifacts when long strings of rigid bodies are connected by joints. In addition
to making a full range of joints a burden to program, our engine considers each joint
in series. Joints at one end of a chain can be dramatically affected by adjustments at
the other end.

This can be as mild as a slight stretching of some of the joints, through a slow-
down in the processing (where all the available iterations are used up), to vibration,
and at the most extreme, catastrophic failure.

Iterative resolution isn’t the best option for highly constrained assemblies of rigid
bodies (although it can cope with modest groupings like our ragdoll): if this is your
primary application, then it’s best to go for a simultaneous solver.

17.3.4 STIFF SPRINGS

Finally we get to the bugbear from the second part of the book. Stiff springs are as
much a problem for our full rigid-body engine as they were for the particle engine,
and for exactly the same reason. While it is possible to use faked force generators, as
we did in chapter 6, the problem can’t be entirely solved.

17.4 SUMMARY

Almost anything that can be done with a game physics engine can be done with the
physics engine we’ve built in this book. As we’ve seen in this chapter, it can be used to
run all the “hot” applications for physics in games.

420 Chapter 17 Putting It All Together

But no physics engine is perfect. We’ve built a system that is very fast indeed,
but we’ve sacrificed some accuracy, particularly when it comes to how contacts are
resolved.

In the final chapter of this book we’ll look at other ways to approach building
a physics engine. You can use these either as inspiration for building your second
physics engine, or to extend the engine we’ve built with some extra features.

PART VI

What Comes Next?

This page intentionally left blank

18
OTHER TYPES

OF PHYSICS

e’ve developed our physics engine as far as we’re going to. There are things
W you can add to it: more force generators, joints, and so on. You can use it in
a wide variety of game genres as long as you understand its limitations and are willing
to work around them.

I’ve referred to this chapter more than any other in this book. As we’ve built the
engine up, I’ve made decisions about approximations, assumptions, and implemen-
tation options that I would use. In each case there were other alternatives. The engine
I’ve built is good and useful, but there are a couple of other approaches that would
have been equally good and would have had a different set of limitations.

This chapter looks at the main differences between our physics engine and those
other approaches. It will not give a step-by-step guide to building those engines or any
detailed implementation advice. Because building an engine involves a whole series
of interdependent decisions, this chapter would be twice the length of the book if we
worked through each approach. Instead I hope it will give you enough information
to understand the alternatives and to get you started if you want to go that way too.

18.1 SIMULTANEOUS CONTACT RESOLUTION

In our engine we resolve contacts one at a time. This is fast, but as we’ve seen it has
limitations. In particular we have no way of knowing whether the action we take
to resolve one contact might cause other contacts to move in an unrealistic way. In
our engine this is seen when a set of connected contacts with friction appear to slide
against one another.

423

424 Chapter 18 Other Types of Physics

The alternative is to resolve a set of contacts at the same time. Rather than calcu-
lating the impulse of each in turn, we need to find the impulses of all simultaneously.

Most physics engines that perform this simultaneous calculation are based on
force calculations rather than impulses. In other words, two objects in resting contact
are kept apart by a constant force, not by a series of single-frame impulses as we have
done. So the resolution calculation tries to find the forces and impulses to apply at
each contact, taking the interaction of all contacts into account.

The most common approach to doing this is called the “linear-complementary
problem.” It involves building a mathematical structure called a Jacobian, which en-
codes the interactions between different contacts. This can then (usually) be turned
into a single set of forces to apply.

Because this is such a common and important approach, we’ll look at it from a
high level in this chapter. I won’t go into the finer points of implementation, however,
because getting the algorithms to work in a stable way involves numerous special-case
problems and unusual complications.

18.1.1 THE JACOBIAN

The Jacobian is a mathematical construct that says how one contact affects another. It
is used to determine the right balance of adjustments to make with the full knowledge
of the side effects of any tweak. The Jacobian is a matrix and may be of any size.

All the forces and torques for all objects are combined into one very long vector.
There will be three force entries and three torque entries for each rigid body, so the
vector will have 6n entries, where n is the number of rigid bodies. In the same way
all the accelerations (linear and angular) for all objects are treated as one long vector
(again having 6n entries).

The entries in the Jacobian matrix relate the two together. The value of row a,
column b in the matrix tells us the amount of acceleration of component a that a unit
of force or torque in direction b would cause. Some of the entries in the matrix are
very simple: they are the equations we’ve used throughout the book to determine the
movement of an object. For example, a force in the X direction causes an acceleration
of magnitude m−1 (from F = ma); so in the Jacobian the value that relates X-direction
force to X-direction acceleration will be m−1.

While many of the values in the Jacobian are based on the simple laws of motion,
some are due to the interaction of objects at contact points. Each value in the matrix
gives the change that will occur in the row’s component given a unit change in the
column’s component.

Calculating the entries in the Jacobian involves working out the forces at each
contact given a unit force at each other contact. The process is similar to what we
used in our engine to calculate the effects of one contact resolution on others.

Entries in the Jacobian don’t only exist because one contact affects another. It is
also possible for one axis of one contact to affect another. For a contact with friction,
the friction force generated will depend on the normal reaction force. As the reac-

18.1 Simultaneous Contact Resolution 425

tion force increases in one direction, the friction force will also increase. There will
therefore be an entry in the Jacobian to represent this connection.

The flexibility of the Jacobian to represent interactions between objects, as well as
the basic motion of the object itself, allows it to be used to create a much wider range
of joints. In our engine joints are explicitly specified and handled with their own code.
The Jacobian provides a mechanism to link the movement of any two objects in the
simulation. In fact it can link different elements of each object, so for example the
motion of one object along one axis can be fixed (i.e., any force that tries to break
this joint is resisted by an equal and opposite reaction force). In addition motors can
be implemented by adding elements to the Jacobian that generate forces regardless
of anything else going on. If you look at a physics engine such as ODE (and several
commercial middleware packages), they allow very flexible joints and motors to be
created by adding entries directly into the Jacobian.

Most force components will not directly interact with one another at all, so the
Jacobian will have zeros at the corresponding locations. In fact most of the matrix will
be filled with zeros. The Jacobian is sometimes called a “sparse matrix” for this rea-
son. The mathematics of sparse matrices can be dramatically simpler than for regular
matrices, but the algorithms are often more complex.

You may come across books or papers on game physics that talk about Lagrange
multipliers, the Lagrange method, or Featherstone’s algorithm. Each of these is related
to the method shown here. The Lagrange method works with a more complex equa-
tion than ours, where the Jacobian is decomposed into several parts, one of which
specifies the connections between objects and another (the so-called Lagrange mul-
tipliers) specifies the amount of interaction.1 Most game physics engines use the raw
Jacobian as shown, but you may find it useful to read up on the Lagrange method.
A lot of textbooks on the mathematics of physics were not written with games in
mind, so they use the Lagrange formulation extensively. It can be useful to under-
stand how it works.

18.1.2 THE LINEAR COMPLEMENTARY PROBLEM

Armed with the Jacobian we can formulate the mathematical problem of resolving all
contacts at the same time. It has the basic form of

Jf = p̈

where f is a vector of force and torque components for all rigid bodies and p̈ is the
resulting accelerations. But f is made up of two components,

f = f contacts + f known

1. Note that the Lagrange formulation isn’t just an expanded Jacobian. With all the bits extracted, it can
be used in other ways and with variations on the equation I have introduced in this chapter. But all this is
well beyond the scope of this book, and I’ve never needed it and have never invested the time to understand
it in depth. It is also not for the mathematically faint-hearted.

426 Chapter 18 Other Types of Physics

where f known is the set of forces and torques we know we are applying (forces due
to gravity or due to other force generators) and f contacts is the set of forces that are
generated in the contacts, which is what we’re trying to find out.

Most often you see the equation written as

Jf contacts + p̈known = p̈ [18.1]

(although it is often given with different symbols such as Jf + b = a). In other words,
the Jacobian is multiplied by the known force vector to get a known acceleration. This
relies on a fact of matrix multiplication that I haven’t explicitly stated before—namely,
it is distributive. For any valid matrix multiplication, A × (B + C) = A × B + A × C.

Calculating p̈known is a step before contact resolution, because this value will not
change as we try to work out the contact forces.

On its own, equation 18.1 could be solved by working out the inverse of the Ja-
cobian (a time-consuming problem and one often without a solution). But to make
things worse we have an additional constraint:

0 � f contacts � r

where r is a vector of limits on how big the forces can be. Normal reaction forces can
be as large as they need to be, but friction forces are limited. A particular entry in the
force vector may represent a friction force and will therefore need to be limited.

The final calculation, finding f so that it fulfills both equations, is called the “lin-
ear complementary problem” (or LCP for short). An alternative approach tries to find
the smallest possible values for the components in f contacts. This becomes an op-
timization problem called “quadratic programming” (or QP). Some physics systems
build and solve the QP, but it is more common to work with the LCP.

A commonly used algorithm for solving the LCP is called the “pivot algorithm.”
It works by making guesses for components in f and checking the results. The errors
from one set of guesses can be used to modify components one at a time and converge
at a solution. Under some assumptions that are commonly met in rigid body simu-
lations, the guesses will always converge toward the solution. The pivot algorithm
(based on an algorithm called the “Lemke pivot”) was popularized in rigid-body sim-
ulation by David Baraff: see Baraff and Witkin [1997] for a step-by-step introduction
to the approach.

Complications arise because of numerical instability and the approximation of
fixed-length time steps. It is possible (and not uncommon) for a rigid-body simu-
lation to end up in a physically impossible situation where there is no solution to
the LCP. In this case the pivot algorithm can loop endlessly. A robust implementation
needs to take account of these kinds of problems and provide alternatives. A common
alternative is to impose impulses when there is no valid force solution. But getting it
right while remaining efficient can be very difficult. In my experience (I have cre-
ated two pivot-based engines, one of some significant complexity) it is easy to get
something working, but it takes months to end up with a general and robust engine.

18.1 Simultaneous Contact Resolution 427

How It Is Used

The force-based pivot algorithm works in a different way from the engine we’ve been
building in this book. In our engine, forces are accumulated and applied, and then
collision detection and response occurs.

The Jacobian includes the calculations for applying forces, however, so everything
is done in one go: contact forces are calculated and applied along with the rest of the
forces.

There are three problems this raises, however: When do we do collision detection?
How do we handle interpenetration? What about non-resting contacts?

The architecture of different physics engines handles these steps in different ways.
The second two problems are often approached in much the same way as we have
them in our engine (but removing micro-collisions: if two objects are determined to
be in resting contact, then they are handled by the force system). Separate collision
and interpenetration steps are taken after the forces have been applied.

In some engines the collision response is performed first, and its results are em-
bedded in the known force vector and incorporated into the force calculations dis-
cussed before. This relies on the fact that if we know the length of time for one update
frame t, then we can convert an impulse g into a force f using the formula

f = gt

allowing us to represent the calculated collision impulse as if it were just another force
applied to the rigid body.

The first problem is more sticky: when do we perform collision detection? If we
perform collision detection at the start of the frame, before the force calculations,
then the result of applying the forces may cause new collisions that will still be visible
when the objects are next drawn.

If we perform collision detection after the force calculation, then we can remove
all interpenetration before the user sees the frame. But how do we determine the
contacts we need to fill in the Jacobian at the start of the frame?

We could do both, but that would be very time consuming. In effect the second
solution is what is normally used.

The collision detection is performed before interpenetration is resolved, and the
user sees non-interpenetrating bodies. The same collision data is then stored until
the next update, and it is used to fill the Jacobian. This affords a good compromise
between efficiency (extra data is stored between frames) and removing visible inter-
penetration (which is typically very obvious to the viewer).

As I mentioned in chapter 12, commercial systems often improve efficiency fur-
ther by using frame coherence: keeping track of the last frame’s collisions to speed
up collision checks at this frame. If the collision detector does this, then the data is
already being stored and can be made available to the physics engine.

428 Chapter 18 Other Types of Physics

18.2 REDUCED COORDINATE APPROACHES

Another technique often mentioned in game development circles (although very
rarely implemented) is the reduced coordinate approach.

In our physics engine we’ve given each rigid body twelve degrees of freedom: three
each for position, orientation, velocity, and rotation. The orientation uses four values
but has only three degrees of freedom: the fourth value can always be determined
from the other three (because the size of the quaternion must be 1).

When objects are in contact, or have joints between them, they are constrained.
They can no longer have any value for each of the twelve degrees of freedom. For
example, if an unliftable block is placed on the flat ground, it can only be pushed in
two directions and can only be oriented along one axis. It has only six actual degrees of
freedom (two for position, one for orientation, two for velocity, and one for rotation).

The physics system we’ve built in this book allows all objects to move with twelve
degrees of freedom; then it uses impulses and non-penetration code to make sure they
behave properly. An alternative is to work out exactly how many degrees of freedom
the object has and allow only those to change.

For the block on the ground this is simple, and an example is fully worked through
in Eberly [2004], the other physics book in this series.

It involves working out the equations of motion, using Newton’s laws of motion,
in terms of the degrees of freedom that are left. For anything beyond a block on a
plane this can become quite involved. When the constraints represent joints, then
degrees of freedom can be a combination of rotation and position. Finding the equa-
tions of motion can be very difficult indeed. Once the equations of motion are calcu-
lated, they can often be solved very rapidly. It is therefore a useful approach when the
degrees of freedom don’t change, and the equations can be hard-coded beforehand
and solved quickly (as is the case for the example in Eberly [2004]).

For some assemblies of bodies connected by joints (such as a ragdoll where there
is a branching tree of bones and joints with no loops) there are well-known methods
for calculating the degrees of freedom and the corresponding equations of motion.
There have been a couple of single-purpose ragdoll simulators that I’ve seen using this
approach, but they have been in technical demos rather than in production games.
For general sets of joints the procedure is tougher, and to all intents and purposes
impractical, especially since in a game the constraints may appear and disappear at
different times (particularly the case with contact constraints).

This technique is also more difficult when it comes to introducing general force
generators. Having the ragdoll float on water or be buffeted by wind, for example,
introduces major complications into calculating the equations of motion for each
degree of freedom.

For this reason I’m not aware of any general-purpose game physics engines that
are based on reduced coordinate approaches. You may like to look at reduced coordi-
nate approaches to get specific effects, but they are unlikely to be a general solution.

18.3 Summary 429

18.3 SUMMARY

The purpose of this whirlwind tour of other approaches is to give you a basic vocabu-
lary and understanding. When looking through the bewildering array of physics and
simulation resources available on the Internet, you should now be able to understand
how they fit into the whole picture and how our engine relates to them.

There are a couple of open source physics systems on the Net that you can com-
pare with the one we’ve built. ODE (the Open Dynamics Engine) in particular is
widely used in hobby projects. It is a solid implementation, but finding your way
around how the code works can be difficult. Like our engine, it is not primarily built
for speed.

For a more comprehensive mathematical survey of different physics techniques
that are useful in games, I’d recommend Eberly [2004]. David assumes more mathe-
matical knowledge than I have here, but if you’ve followed this book through, you’re
probably ready to get started. The Eberly book doesn’t cover how to build a complete
general-purpose engine but looks at a massive range of techniques and tricks that can
be used on their own or incorporated into our engine.

David Baraff has done more than anyone in disseminating information on
Jacobian-based approaches to physics. His work is on the desk of many physics devel-
opers I know. A good introduction to his work is Baraff and Witkin [1997].

This page intentionally left blank

A P P E N D I X A
COMMON INERTIA

TENSORS

his appendix provides formulae for calculating the inertia tensor of a range of
T physical primitives. This can be used to generate an inertia tensor for almost
any game object.

Inertia tensors are discussed in chapter 10.

A.1 DISCRETE MASSES

The inertia tensor of any set of masses, connected together to form a rigid body, is

I =
⎡
⎢⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤
⎥⎦ [A.1]

where

Ia =
n∑

i=1

mia
2
pi

and

Iab =
n∑

i=1

miapi bpi

431

432 Appendix A Common Inertia Tensors

In each case api is the distance of particle i from the center of mass of the whole
structure, in the direction of axis a; mi is the mass of particle i; and there are n particles
in the set.

A.2 CONTINUOUS MASSES

We can do the same for a general rigid body by splitting it into infinitesimal masses.
This requires an integral over the whole body, which is considerably more difficult
than the rest of the mathematics in this book. The formula is included here for com-
pleteness.

I =
⎡
⎢⎣

Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

⎤
⎥⎦ [A.2]

as before, where

Ia =
∫

m
a2

pi
dm

and

Iab =
∫

m
api bpi dm

The components of both are as before. The integrals are definite integrals over the
whole mass of the rigid body.

A.3 COMMON SHAPES

This section gives some inertia tensors of common objects.

A.3.1 CUBOID

This includes any rectangular six-sided object, where the object has constant density:

I =
⎡
⎢⎣

1
12 m(d2

y + d2
z) 0 0

0 1
12 m(d2

x + d2
z) 0

0 0 1
12 m(d2

x + d2
y)

⎤
⎥⎦

where m is the mass and dx, dy, and dz are the extents of the cuboid along each axis.

A.3.2 SPHERE

This inertia tensor corresponds to a sphere with constant density:

A.3 Common Shapes 433

I =
⎡
⎢⎣

2
5 mr2 0 0

0 2
5 mr2 0

0 0 2
5 mr2

⎤
⎥⎦

where m is the mass and r is the radius of the sphere.
The same sphere that is just a shell (i.e., has all its mass around the surface of the

sphere) has the following inertia tensor:

I =
⎡
⎢⎣

2
3 mr2 0 0

0 2
3 mr2 0

0 0 2
3 mr2

⎤
⎥⎦

A.3.3 CYLINDER

A cylinder, of uniform density, whose principal axis is along the Z axis, has an inertia
tensor of

I =
⎡
⎢⎣

1
12 mh2 + 1

4 mr2 0 0

0 1
12 mh2 + 1

4 mr2 0

0 0 1
2 mr2

⎤
⎥⎦

where m is the mass, r is the radius of the cylinder, and h is its height.

A.3.4 CONE

A cone, of uniform density, whose principal axis is along the Z axis, has an inertia
tensor of

I =
⎡
⎢⎣

3
80 mh2 + 3

20 mr2 0 0

0 3
80 mh2 + 3

20 mr2 0

0 0 3
10 mr2

⎤
⎥⎦

where m is the mass, r is the radius of the cone, and h is its height. Unlike the other
shapes, the cone’s center of mass isn’t through its geometric center. Assuming the
center of the base of the cone is at the origin, the center of mass is at

⎡
⎢⎣

0

0
1
4 h

⎤
⎥⎦

where h is the height of the cone, as before.

A P P E N D I X B
USEFUL FRICTION

COEFFICIENTS

FOR GAMES

his appendix provides a table of useful static and dynamic friction values for
Tmaterials used in games. Both static and dynamic values are given for com-
pleteness. If you are using only one friction coefficient, then you can average these, or
use the dynamic value for both.

Friction is discussed in chapter 15.

Static Dynamic

Materials Friction Friction

Wooden crate on concrete 0.5 0.4

Wooden crate on ice 0.2 0.1

Glass on ice 0.1 0.03

Glass on glass 0.95 0.4

Metal on metal 0.6 0.4

Lubricated metal on metal 0.1 0.05

Rubber on concrete 1.0 0.8

Wet rubber on concrete 0.7 0.5

Performance tire on concrete c.1.5 1.0

Velcro on velcro 6.0 4.0

434

A P P E N D I X C
OTHER

PROGRAMMING

LANGUAGES

his appendix gives notes on converting the engine source code into other pro-
T gramming languages.

C.1 C

Most of the source code can be translated into C fairly easily. All methods in classes
are replaced by functions, and the overloaded operators used to represent vector and
matrix operations are replaced by the regular function version.

The tricky part about using C is the force generators. Polymorphism used in this
book is a convenient way to create force generators without having to understand
their properties.

You can do a similar thing in C, however, by using a fixed function signature of
the form:

(void)(*forceGenerator)(void* inData,
RigidBody* inOutBody);

where RigidBody is a typedef of a structure.

435

436 Appendix C Other Programming Languages

The additional data parameter is used to pass data to the force generator function
(in C++ this isn’t needed because the implicit this pointer contains the generator’s
data).

C.2 JAVA

Although Java has dramatically improved in terms of its just-in-time compilation
efficiency, it is still usually better to implement highly localized, time-critical parts of
the code in C++.

If you decide to go ahead with implementing the engine in Java, then the key thing
to be aware of is the overhead of objects. If you have each vector in your simulation
as a separate instance, then on some Java platforms this can cause a huge bloat in the
amount of memory required.

It is often considerably faster, therefore, to expand some of the references to vec-
tors and quaternions into their constituent fields. This has the downside of making
the mathematics much less modular and the whole physics engine more complex.

In Java it doesn’t make sense to have force and torque generators as classes.
They should be interfaces, and classes such as GravityForceGenerator can implement
them. This also allows a single class to be both a force and torque generator, if re-
quired.

C.3 COMMON LANGUAGE RUNTIME (.NET)

The .NET languages (and other languages that target the common language runtime)
have many of the same properties as Java. As with Java, an ideal solution would be to
use a C++-coded physics engine as a service, calling it from a DLL, for example.

Even if your chosen .NET language is C++, then it is more efficient to have the
engine running in unmanaged code and call it from your managed code.

If you implement using a .NET language, then be aware of similar just-in-time
overheads as for Java.

C.4 LUA

Lua makes an excellent language for implementing game logic and anything beyond
the low-level routines used to run the game.

At the risk of sounding like a stuck record, the physics can be one of these low-
level routines implemented in C++ and called when needed from Lua.

Another option I’ve used, however, is to mix Lua into the physics engine. It is
relatively easy to expose Lua code as a force or torque generator in the physics en-
gine (this is particularly useful in my experience to create controllers for player-
characters).

C.4 Lua 437

To set this up, create a LuaForceGenerator in C++ that can call Lua code. The
RigidBody class will needs its addForce and addTorque methods exposed via a table to
Lua so the code can then affect the rigid body when it has completed its calculation.

Lua is remarkably quick, easily fast enough to be called a few times each frame in
this way.

A P P E N D I X D
MATHEMATICS

SUMMARY

his appendix summarizes the mathematics used in the book. It serves as a quick
T look-up for the appropriate formulae and equations needed when implement-
ing physics.

D.1 VECTORS

A vector a multiplied by a scalar k:

ka = k

⎡
⎢⎣

x

y

z

⎤
⎥⎦ =

⎡
⎢⎣

kx

ky

kz

⎤
⎥⎦

Vector addition:

a + b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ +

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

ax + bx

ay + by

az + bz

⎤
⎥⎦

and subtraction:

a − b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ −

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

ax − bx

ay − by

az − bz

⎤
⎥⎦

438

D.2 Quaternions 439

Vectors can be multiplied in several ways. The component product has no geo-
metric correlate:

a ◦ b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ ◦

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

axbx

ayby

azbz

⎤
⎥⎦

and the symbol shown is a personal convention.
The scalar product

a · b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ ·

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ = axbx + ayby + azbz

has the trigonometric form

a · b = axbx + ayby + azbz = |a||b| cos θ

where θ is the angle between the two vectors.
The vector product

a × b =
⎡
⎢⎣

ax

ay

az

⎤
⎥⎦ ×

⎡
⎢⎣

bx

by

bz

⎤
⎥⎦ =

⎡
⎢⎣

aybz − azby

azbx − axbz

axby − aybx

⎤
⎥⎦

has the trigonometric form

|a × b| = |a||b| sin θ

and is non-commutative:

a × b = −b × a

D.2 QUATERNIONS

A quaternion

⎡
⎢⎢⎢⎣

cos θ
2

x sin θ
2

y sin θ
2

z sin θ
2

⎤
⎥⎥⎥⎦

440 Appendix D Mathematics Summary

represents an orientation of θ about the axis:

⎡
⎢⎣

x

y

z

⎤
⎥⎦

Two quaternions can be multiplied together:

⎡
⎢⎢⎢⎣

w1

x1

y1

z1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w2

x2

y2

z2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1w2 − x1x2 − y1y2 − z1z2

w1x2 + x1w2 − y1z2 − z1y2

w1y2 − x1z2 + y1w2 − z1x2

w1z2 + x1y2 − y1x2 + z1w2

⎤
⎥⎥⎥⎦

A quaternion representing orientation can be adjusted by a vector representing
amount of rotation according to

θˆ
′ = θˆ + 1

2
�θˆ θˆ

where the rotation is converted into a quaternion according to

[�θx�θy�θz] → [0�θx�θy�θz]

D.3 MATRICES

An n × m matrix has n rows and m columns.
Matrices can be post-multiplied (we don’t use pre-multiplication in this book) by

vectors with the same number of elements as the matrix has columns:

⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

⎡
⎢⎣

x

y

z

⎤
⎥⎦ =

⎡
⎢⎣

ax + by + cz

dx + ey + fz

gx + hy + iz

⎤
⎥⎦

Matrices can be multiplied together, providing that the number of columns in the
first matrix is the same as the number of rows in the second:

C(i,j) =
∑

k

A(i,k)B(k,j)

where C(i,j) is the entry in matrix C at the ith row and jth column; and where k ranges
up to the number of columns in the first matrix.

D.4 Integration 441

A 3 × 3 matrix

M =
⎡
⎢⎣

a b c

d e f

g h i

⎤
⎥⎦

has its inverse given by

M−1 = 1

det M

⎡
⎢⎣

ei − fh ch − bi bf − ce

fg − di ai − cg cd − af

dh − eg bg − ah ae − bd

⎤
⎥⎦

where det M is the determinant of the matrix:

det M = aei + dhc + gbf − ahf − gec − dbi

A quaternion

θˆ =

⎡
⎢⎢⎢⎣

w

x

y

z

⎤
⎥⎥⎥⎦

represents the same rotation as the matrix

Θ =
⎡
⎢⎣

1 − (2y2 + 2z2) 2xy + 2zw 2xz − 2yw

2xy − 2zw 1 − (2x2 + 2z2) 2yz + 2xw

2xz + 2yw 2yz − 2xw 1 − (2x2 + 2y2)

⎤
⎥⎦

A transformation matrix Mt can be changed into a new coordinate system, using
a transform Mb to the new coordinate system according to

M′
t = MbMtM

−1
b

D.4 INTEGRATION

To update an object’s position

p′ = p + ṗt + 1

2
p̈ t2

is normally replaced by the less accurate

p′ = p + ṗt

442 Appendix D Mathematics Summary

Velocity is updated with

ṗ′ = ṗ + p̈t

Orientation is updated with

θˆ
′ = θˆ + δt

2
ωˆ θˆ

where ωˆ is the quaternion form of the angular velocity and t is the duration to up-
date by.

Angular velocity is updated exactly the same as linear velocity:

θ̇ ′ = θ̇ + θ̈ t

D.5 PHYSICS

Newton’s second law of motion gives us

f = ma = mp̈

where m is the mass and p is the position of an object. Or

p̈ = m−1f

in terms of position.
Euler’s equivalent for rotation is

θ̈ = I−1τ

where I is the inertia tensor and τ is the torque.
The force of gravity is

f = mg

where g is around 10 m/s2 on earth, but is often replaced by 20 m/s2 for added speed
in games.

Forces through an object’s center of mass can be combined using D’Alembert’s
principle:

f =
∑

i

f i

Forces not through the center of mass also have a torque component:

τ = pf × f

where pf is the position of application of the force, relative to the center of mass.

D.6 Other Formulae 443

D’Alembert’s principle also applies to rotations:

τ =
∑

i

τi

which include the torques generated from off-center forces.
The separating velocity of two colliding objects vs is related to their velocity im-

mediately before the collision vc by

vs = −cvc

where c is the coefficient of restitution.

D.6 OTHER FORMULAE

Hook’s law relates the force of a spring f to its length:

f = −k
(|d| − l0

)̂
d

where d is the vector from one end of the spring to another.
Simple fluid flow can be modeled with an aerodynamic tensor:

f a = Avw

where fa is the resulting force, A is the aerodynamic tensor, and vw is the velocity of
the air.

This page intentionally left blank

BIBLIOGRAPHY

David Baraff and Andrew Witkin [1997]. Physically Based Modeling: Principles and
Practice. SIGGRAPH.

David Eberly [2003]. Conversion of Left-Handed Coordinates to Right-Handed Co-
ordinates. Available www.geometrictools.com/Documentation.

David Eberly [2004]. Physics for Games. San Francisco: Morgan Kaufmann.

Christer Ericson [2005]. Real-Time Collision Detection. San Francisco: Morgan Kauf-
mann.

Richard Gerber [2002]. The Software Optimization Cookbook. Santa Clara, CA: Intel
Press.

Roger A. Horn and Charles R. Johnson [1990]. Matrix Analysis. Cambridge: Cam-
bridge University Press.

Roger A. Horn and Charles R. Johnson [1994]. Topics in Matrix Analysis. Cambridge:
Cambridge University Press.

Philip Schneider and David H. Eberly [2002]. Geometric Tools for Computer Graphics.
San Francisco: Morgan Kaufmann.

Gino van den Bergen [2003]. Collision Detection in Interactive 3D Environments. San
Francisco: Morgan Kaufmann.

445

This page intentionally left blank

INDEX

A
Angular acceleration, angular velocity

relationship and updating,
160–161

Angular speed, rotation, 148
Angular velocity

equations, 159
orientation updates, 160
point of an object, 160
quaternion updating, 190–191
summation, 159
updating by integration, 442

Axis–angle representation, three-
dimensional rotation,
155–156

B
Ballistics

fireworks display
data, 60–61
implementation, 63–66
rules, 61–63

implementation, 57–60
projectile property setting, 56–57

Baraff, David, 429
Basis, matrix, 184–186
Binary space partitioning (BSP)

bounding volume hierarchy placement
at leaves, 254

plane, 251–252
trees, 252–255

Blob games, mass-aggregate engines,
141–142

Bounding sphere hierarchy,
implementation, 240–241

Bounding volume hierarchy
bottom-up approach for building,

242
bounding sphere hierarchy

implementation, 240–241
code listing potential collisions,

236–240
insertion approach for building,

243–246
object removal from hierarchy,

246–250
overview, 235
placement at binary space partition

tree leaves, 254
properties, 241–242
top-down approach for building,

242–243
Bridge. See Rope bridge
BSP. See Binary space partitioning
Bullets. See Ballistics
Buoyancy

force generator, 89–93, 224
sailing simulator, 222–225

BVH. See Bounding volume hierarchy

C
C

force generator creation, 436
game development popularity,

10–11
C++, game development popularity,

10–11

447

448 Index

Cable, contact generator, 126–128
Calculus

differential calculus
acceleration, 37–38
direction, 40
speed, 39–40
vector differential calculus, 39
velocity, 36–37, 39

integral calculus
updating position or velocity, 40–41
vector integral calculus, 41–42

overview, 35–36
Center of mass, two-dimensional rotation,

151–152
Closing velocity, collision resolution, 104
Collision, definition, 351
Collision detection

coarse collision detection
bounding volumes

boxes, 234–235
definition, 233
spheres, 233–234

check features, 232–233
fine collision detection comparison,

261–262
hierarchies

bottom-up approach for
building, 242

bounding sphere hierarchy
implementation, 240–241

bounding volume hierarchy, 235
code listing potential collisions,

236–240
insertion approach for building,

243–246
object removal from hierarchy,

246–250
properties, 241–242
sub-object hierarchies, 250
top-down approach for building,

242–243
contact generation. See Contact

generation
implementation in mass-aggregate

engine, 111–112, 135–136

pessimistic collision detection
advantages, 380–381

pipeline, 232
spatial data structures

binary space partitioning
bounding volume hierarchy

placement at leaves, 254
plane, 251–252
trees, 252–255

grids, 258–260
multi-resolution maps, 260–261
oct-tree, 255, 257
overview, 251
quad-tree, 255–258

Collision resolution
algorithm

components, 119–120
resolution order, 120–124

cable modeling, 126–128
closing velocity, 104
coefficient of restitution, 105
contact data preparation. See Contact

generation
contact generation. See Contact

generation
detection of collision. See Collision

detection
direction and contact normal,

105–106
impulse

applying, 320–321
calculation

implementation, 319–320
steps, 306

contact coordinates
axes, 307–310
basis matrix, 310–313
inverse transformation, 313
velocity of point on object,

306–307
friction as impulses, 363–365
impulse change by velocity

closing velocity calculation, 318
overview, 317–318
velocity change calculation, 319

overview, 107–108, 301–302

Index 449

velocity change by impulse
angular component, 314–316
D’Alembert’s principle, 313
implementation, 316–317
linear component, 314

impulsive torque, 302–304
interpenetration resolution. See

Interpenetration resolution
micro-collisions. See Micro-collisions
overview, 5–6
pipeline, 331–333
processing implementation, 108–111
resting contacts

solution approaches, 119
velocity and contact normal,

117–119
vibration on resting contacts,

116–117
rod modeling, 128–130
rotating collisions, 304–306
simultaneous contact resolution

implementation, 427
Jacobian, 424–425
linear-complementary problem,

424–426
rationale, 423–424

time-division engines, 124–125
update algorithm alternatives

implementation, 347–349
performance, 349
rationale, 346

velocity resolution and updating,
344–346

Component product, vectors, 28–29
Concussive wave

explosion demo, 418
force equations, 414–415
force generator, 415–416
propagation, 414
speed, 414

Cone, inertia tensor, 433
Contact

coordinates. See Collision resolution
definition, 351
detection. See Collision detection
grouping in optimization, 393–394

resolution. See Collision resolution
resting contacts. See Resting forces
types, 351

Contact generation
collision detection comparison,

265–266
collision geometry

generation, 265
primitive assemblies, 264–265

contact data
caching, 395
collision normal, 268
collision point, 268
penetration depth, 268
preparation

calling and calculations, 334–336
data structure, 333–334
relative velocity calculation,

336–337
swapping bodies, 336

contact types
edge–edge contacts, 269–270
edge–face contacts, 271
face–face contacts, 271–272
overview, 266–267
point–face contacts, 269

early-outs, 272–273
overview, 263–264
primitive collision algorithms

colliding box and plane, 279–282
colliding sphere and box

axes separation, 283–284
contact generation, 284–287
difficulty, 282

colliding sphere and plane,
276–279

colliding two boxes
algorithms, 293
axes separation, 289–291
complexity, 287–288
contact types, 287
edge–edge contact generation,

296
point–face contact generation,

293–295
sequence of contacts, 291–292

450 Index

Contact generation (continued)
colliding two spheres, 274–276
efficiency, 297
general polyhedra contact generator,

297
overview, 273–274

Convection chimney
explosion demo, 418
force equation, 416
force generator, 416–418

Cube
bounding volumes, 234–235
inertia tensor, 432
primitive collision algorithms

colliding box and plane, 279–282
colliding sphere and box

axes separation, 283–284
contact generation, 284–286
difficulty, 282

colliding two boxes
algorithms, 293
axes separation, 289–291
complexity, 287–288
contact types, 287
edge–edge contact generation,

296
point–face contact generation,

293–295
sequence of contacts, 291–292

Cyclone
components, 399
data flow, 400–401
data types, 399–400
limitations

joint assemblies, 419
reaction force friction, 419
stacks, 418–419
stiff springs, 419

origins, 7
source code, 10–11
vector structure, 17–19

Cylinder, inertia tensor, 433

D
D’Alembert’s principle

particle forces, 70

rotation
force generators, 207–210
torque accumulation, 204–207

vector as force accumulator, 70–71
velocity change by impulse, 313

Damping, force generator, 79
Degree of freedom

definition, 147
three-dimensional rotation, 153

Direction, differential calculus, 40
DirectX, handedness of coordinate

system, 20
Drag

components, 358
force generator, 77–78

E
Eberly, David, 428–429
Edge–edge contact

contact generation between two boxes,
296

features, 269–270
Edge–face contact, features, 271
Elasticity, springs, 83
Energy, projectile properties, 56
Euler angles, three-dimensional rotation,

153–155
Explosion physics. See Concussive wave;

Convection chimney;
Implosion

F
Face–face contact, features, 271–272
Fireworks display

data, 60–61
rules, 61–63
implementation, 63–66

Flight simulator, rigid-body engine
aerodynamic surface, 217–220
aerodynamic tensors, 217, 221
overview, 216–217
yaw tensors, 222

Fluid flow, modeling, 444
Force

concussive wave equations, 414–415

Index 451

equation, 46–47, 89
resting contacts. See Resting forces
torque relationship, 196

Force generator
built-in gravity and damping, 79
concussive wave, 415–416
convection chimney, 416–418
drag, 77–78
gravity, 76–77
implementation, 73–76
implosion, 412–414
interface, 73
polymorphism, 73
rigid-body engine, 207–210
sailing simulator, 225–227
spring forces

anchored spring generator, 86–87
basic spring generator, 84–86
buoyancy force generator, 89–93
elastic bungee generator, 87–89
stiff spring, 97–98

types of forces, 72
Fracture physics

demo, 407–411
game applications, 405
patterning, 406
wood, 406

Friction
anisotropic friction, 361–362
coefficients for game materials, 435
definition, 358
dynamic friction, 360–351
implementation

code, 370–372
friction as impulses, 363–365
overview, 362–363
velocity resolution algorithm

modification
steps, 365–366
velocity from angular motion,

366–370
velocity from linear motion,

369–370
isotropic friction, 361–362
modeling with mass-aggregate engine,

140–141

rolling friction, 361
sequential contact resolution problems,

372–373
static friction, 359–360

G
Game physics

definition, 2
resources, 1

Gilbert, Johnson, and Keerthi’s (GJK)
algorithm, contact generation
between two boxes, 293, 297

Gimbal lock, definition, 154–155
Gish, mass-aggregate engine modeling,

141
Gravity

force generator, 76–77, 79
g value in games, 50
law of universal gravitation, 48–49
projectile properties, 57
simulation, 48–50

Grids, collision detection, 258–260

H
Half-Life, physics engine improvements,

4
Hierarchies. See Collision detection
Hook’s law, 81–83, 444

I
Implosion

explosion demo, 418
force generator, 412–414

Impulse-based engine, overview of
features, 6–7

Impulses. See Collision resolution
Impulsive torque, collision resolution,

302–304
Inertia tensor

formulas
cones, 433
continuous masses, 432
cubes, 432
cylinders, 433
discrete masses, 431
spheres, 432–433

452 Index

Inertia tensor (continued)
inverse inertia tensor, 200–201
matrix representation, 198–199
moment of inertia expression, 198
products of inertia, 199–200
world coordinates in game, 201–204

Instability. See Stability problems
Integrator

angular velocity update, 442
functional overview, 50
implementation, 52–54
integration stability, 379–380
orientation update, 443
position update, 51, 442
velocity update, 51–52, 442

Interface, definition, 73
Interpenetration resolution

approaches
linear projection, 322
nonlinear projection

calculation of components,
325–326

implementation, 325–328
motion application, 326–328
principles, 323–324

relaxation, 324–325
velocity-based resolution,

322–323
overview, 112–115, 321
penetration margin of error in

optimization, 390–393
resolving for all contacts

approaches, 338
iterative algorithm, 339–341
order of contacts, 338
penetration depth updating,

341–344
rotation excess avoidance,

328–330

J
Jacobian, simultaneous contact

resolution, 424–425
Java, game physics engine

implementation, 436

L
Laws of motion

particles
first law, 45–46
force equation, 46–47
overview, 44–45
second law, 46

rigid bodies and second law for
rotation

inertia tensor in world coordinates,
201–204

inverse inertia tensor, 200–201
moment of inertia, 197–200
torque, 196–197

resting contacts and third law, 352
Linear-complementary problem,

simultaneous contact
resolution, 424–426

Loco Roco, mass-aggregate engine
modeling, 141

Lua, game physics engine
implementation, 436

M
Mass

definition, 89
projectile properties, 56
simulation, 47–48

Mass-aggregate engine
blob games, 141–142
collision resolution. See Collision

resolution
components, 133–134
contact detection, 135–136
friction modeling, 140–141
implementation, 136–139
overview of features, 5
rigid-body linked list, 134–135
rope-bridge modeling, 139–140

Mathematics, knowledge requirements in
game physics engine
development, 7–10

Matrices. See Rotation
Micro-collisions

accelerated velocity removal,
356–357

Index 453

replacement of reaction forces,
354–355

restitution lowering, 357
sequential contact resolution

problems, 372–373
velocity calculation, 358

Moment of inertia
calculation, 198
definition, 197
inertia tensor expression, 198

Momentum, velocity relationship, 48
Multi-resolution maps, collision

detection, 260–261

N
.NET languages, game physics engine

implementation, 436
Newton–Euler algorithms, integration

stability, 379–380
Newton’s laws of motion. See Laws of

motion
Nonlinear projection. See

Interpenetration resolution

O
Oct-tree, collision detection, 255, 257
Open Dynamics Engine (ODE), features,

429
OpenGL, handedness of coordinate

system, 20
Optimization

code optimization
contact data caching, 395
data grouping in game level,

396–397
twizzling rigid-body data, 395–396
vectorizing mathematics, 395

contact grouping, 393–394
penetration margin of error, 390–393
premature optimization dangers, 383
stable object sleep

implementation, 386–388
overview, 383–384
sleep state addition, 384–386

velocity margin of error, 390–393

Origin
definition, 148–149
rotation, 149–151
translation, 149, 151

P
Particle

D’Alembert’s principle and particle
forces, 70

definition, 43
implementation, 43–44
laws of motion, overview, 44–45

first law, 45–46
force equation, 46–47
second law, 46

mass simulation, 47–48
projectiles. See Ballistics

Physics engine, 2–3
advantages, 3–4
approaches

contact resolution, 5–6
impulses and forces, 6–7
object types, 5

weaknesses, 4–5
Pitch, aircraft rotation, 153
Point–face contact

contact generation between two boxes,
293–295

features, 269
Point mass, definition, 43
Polymorphism, definition, 73
Position

integral calculus, 40–42
integrator in updating, 51

Projectiles. See Ballistics

Q
Quad-tree, collision detection, 255–258
Quaternion

mathematics for rigid-body engine
class implementation, 186–187
combining, 188–189
conversion to matrix, 178–180
mathematics, 440–441
normalization, 187–188
rotation, 189–190

454 Index

Quaternion (continued)
updating by angular velocity,

190–191
matrix conversion, 178–180
orientation representation, 157–159

R
Ragdoll

bones, 402
demo, 402–405
joints

ball, 402, 405
hinge, 405

Reduced coordinate approaches, game
physics applications, 428

Relaxation. See Interpenetration
resolution

Resting contact. See Collision resolution
Resting forces

calculations, 353–354
third law of motion, 352

Rigid-body engine. See also Cyclone
components, 213
flight simulator

aerodynamic surface, 217–220
aerodynamic tensor, 217, 221
overview, 216–217
yaw tensors, 222

force generators, 207–210
implementation, 214–216
overview of features, 5
rigid-body class implementation,

193–195
sailing simulator

buoyancy, 222–225
hydrofoils, 226–227
rudder, 225–226
sail, 225

twizzling rigid-body data in code
optimization, 395–396

Rod, contact generator, 128–130
Roll, aircraft rotation, 153
Rope bridge, modeling with mass-

aggregate engine, 139–140
Rotation

collisions, 304–306

D’Alembert’s principle
force generators, 207–210
torque accumulation, 204–207

excess avoidance in interpenetration
resolution, 328–330

implementation
matrices

basis changing, 184–186
classes, 161–162
inverse matrix, 171–176, 442
multiplication, 162–164,

168–171, 440
3 by 4 matrices, 165–168
transformations, 164–165, 442
transpose of matrix, 176–178

quaternions
class implementation, 186–187
combining, 188–189
conversion to matrix, 178–180
normalization, 187–188
rotation, 189–190
updating by angular velocity,

190–191
vector transformation with

transform matrix, 180–184
second law of motion for rotation

inertia tensor in world coordinates,
201–204

inverse inertia tensor, 200–201
moment of inertia, 197–200
torque, 196–197

three-dimensional rotation
aircraft axes, 153
axis–angle representation, 155–156
Euler angles, 153–155
quaternion representation, 157–159
rotation matrices, 156

two-dimensional rotation
angle mathematics, 146–148
angular speed, 148
center of mass, 151–152
origin of object

definition, 148–149
rotation, 149–151
translation, 149, 151

overview, 145–146

Index 455

Runga–Kutta algorithms, integration
stability, 380

S
Sailing simulator, rigid-body engine

buoyancy, 222–225
hydrofoils, 226–227
rudder, 225–226
sail, 225

Scalar, multiplication by vector, 23–24
Scalar product

code, 29–30
geometry, 30–31
trigonometry, 30

Shockwave. See Concussive wave
Sleep, stable objects

implementation, 386–388
overview, 383–384
sleep state addition, 384–386

Speed
angular speed, 148
differential calculus, 39–40
projectile properties, 56

Sphere
bounding volumes, 233–234
inertia tensor, 432–433
primitive collision algorithms

colliding sphere and box
axes separation, 283–284
contact generation, 284–287
difficulty, 282

colliding sphere and plane, 276–279
colliding two spheres, 274–276

Springs
force generators

anchored spring generator, 86–87
basic spring generator, 84–86
buoyancy force generator, 89–93
elastic bungee generator, 87–89
stiff spring, 97–98

Hook’s law, 81–82
limit of elasticity, 83
springlike things, 83
stiff springs

behavior over time, 93–95
faking

damped harmonic motion,
96–97

harmonic motion, 95–96
implementation, 97–99
interaction with other forces,

100–101
velocity mismatches, 100
zero rest lengths, 99

rigid-body engine limits, 419
Stability problems

classification, 376
integration stability, 379–380
interpenetration on slopes, 377–379
mathematical precision, 381–382
origins, 375
pessimistic collision detection

advantages, 380–381
quaternion drift, 376–377
testing, 376

Stacks, handling, 418–419
Stiff spring. See Springs

T
Time-division engine, collision

resolution, 124–125
Torque

characteristics, 196
D’Alembert’s principle and torque

accumulation, 204–207
generators, 210
rigid-body integration, 210–211
scaled axis representation, 197

Twizzling, rigid-body data, 395–396

V
V-Clip algorithm, contact generation

between two boxes, 293, 297
Vectors

addition, 24–26, 439
Cartesian coordinates, 16
change in position, 20–23
class implementation, 17–19
component product, 28–29
differential calculus, 39
integral calculus, 41–42

456 Index

Vectors (continued)
mathematics vectorization in code

optimization, 395
multiplication by scalar, 23–24, 438
multiplication by vector, 27, 439
orthonormal basis, 35
representation, 16
scalar product

code, 29–30
geometry, 30–31
trigonometry, 30

space
Euclidean space, 15
handedness, 19–20

squared magnitude function, 23
subtraction, 26–27, 438
transformation with transform matrix,

180–184
vector product

code, 31–33
commutativity, 33–34
geometry, 34–35
trigonometry, 33

Velocity
angular. See Angular velocity
closing velocity, 104
collision resolution and impulse

calculation
contact coordinates and velocity of

point on object, 306–307

impulse change by velocity
closing velocity calculation, 318
overview, 317–318
velocity change calculation, 319

velocity change by impulse
angular component, 314–316
D’Alembert’s principle, 313
implementation, 316–317
linear component, 314

differential calculus, 39
integral calculus, 40–42
integrator in updating, 51–52
margin of error in optimization,

390–393
micro-collisions. See Micro-collisions
mismatches in stiff spring faking,

100
momentum relationship, 48
resolution and updating in collision

resolution, 344–346

W
Weight, definition, 89

Y
Yaw

aircraft rotation, 153
flight simulator, 222

SOFTWARE LICENSE

IMPORTANT: PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY. BY COPYING, IN-
STALLING OR OTHERWISE USING THIS SOURCE CODE, YOU ARE DEEMED TO HAVE AGREED
TO THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT.

1. This LICENSE AGREEMENT is between the IPR VENTURES, having an office at 2(B) King Ed-
ward Road, Bromsgrove, B61 8SR, United Kingdom (“IPRV”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using the accompanying software (“CYCLONE”) in source or binary
form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, IPRV hereby grants Licensee a non-
exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use CYCLONE alone or in any derivative version,
provided, however, that IPRVs License Agreement is retained in CYCLONE, alone or in any derivative
version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates CYCLONE or any part
thereof, and wants to make the derivative work available to the public as provided herein, then Licensee
hereby agrees to indicate in any such work the nature of the modifications made to CYCLONE.

4. IPRV is making CYCLONE available to Licensee on an “AS IS” basis. IPRV MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, IPRV MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF CYCLONE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. IPRV SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING CYCLONE, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED
OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and condi-
tions.

7. This License Agreement shall be governed by and interpreted in all respects by the law of England,
excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between IPRV and Licensee. This License Agreement
does not grant permission to use IPRV trademarks or trade name in a trademark sense to endorse or
promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using CYCLONE, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

ELSEVIER CD-ROM LICENSE AGREEMENT

Please read the following agreement carefully before using this CD-ROM product. This CD-ROM prod-
uct is licensed under the terms contained in this CD-ROM license agreement (“Agreement”). By using
this CD-ROM product, you, an individual or entity including employees, agents and representatives
(“you” or “your”), acknowledge that you have read this agreement, that you understand it, and that you
agree to be bound by the terms and conditions of this agreement. Elsevier Inc. (“Elsevier”) expressly
does not agree to license this CD-ROM product to you unless you assent to this agreement. If you do not
agree with any of the following terms, you may, within thirty (30) days after your receipt of this CD-ROM
product return the unused CD-ROM product, the book, and a copy of the sales receipt to the customer
service department at Elsevier for a full refund.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

NEITHER ELSEVIER NOR ITS LICENSORS REPRESENT OR WARRANT THAT THE CD-ROM
PRODUCT WILL MEET YOUR REQUIREMENTS OR THAT ITS OPERATION WILL BE UNIN-
TERRUPTED OR ERROR-FREE. WE EXCLUDE AND EXPRESSLY DISCLAIM ALL EXPRESS AND
IMPLIED WARRANTIES NOT STATED HEREIN, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN ADDITION, NEITHER
ELSEVIER NOR ITS LICENSORS MAKE ANY REPRESENTATIONS OR WARRANTIES, EITHER EX-
PRESS OR IMPLIED, REGARDING THE PERFORMANCE OF YOUR NETWORK OR COMPUTER
SYSTEM WHEN USED IN CONJUNCTION WITH THE CD-ROM PRODUCT. WE SHALL NOT BE
LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND ARISING OUT OF OR RESULTING FROM
YOUR POSSESSION OR USE OF THE SOFTWARE PRODUCT CAUSED BY ERRORS OR OMIS-
SIONS, DATA LOSS OR CORRUPTION, ERRORS OR OMISSIONS IN THE PROPRIETARY MATE-
RIAL, REGARDLESS OF WHETHER SUCH LIABILITY IS BASED IN TORT, CONTRACT OR OTH-
ERWISE AND INCLUDING, BUT NOT LIMITED TO, ACTUAL, SPECIAL, INDIRECT, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES. IF THE FOREGOING LIMITATION IS HELD TO BE UNEN-
FORCEABLE, OUR MAXIMUM LIABILITY TO YOU SHALL NOT EXCEED THE AMOUNT OF THE
PURCHASE PRICE PAID BY YOU FOR THE SOFTWARE PRODUCT. THE REMEDIES AVAILABLE
TO YOU AGAINST US AND THE LICENSORS OF MATERIALS INCLUDED IN THE SOFTWARE
PRODUCT ARE EXCLUSIVE.

If this CD-ROM product is defective, Elsevier will replace it at no charge if the defective CD-ROM prod-
uct is returned to Elsevier within sixty (60) days (or the greatest period allowable by applicable law) from
the date of shipment.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITED ABOVE,
ELSEVIER, ITS AFFILIATES, LICENSORS, SUPPLIERS AND AGENTS, MAKE NO WARRANTIES, EX-
PRESSED OR IMPLIED, WITH RESPECT TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT
LIMITATION THE PROPRIETARY MATERIAL, AND SPECIFICALLY DISCLAIM ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT WILL ELSEVIER, ITS AFFILIATES, LICENSORS, SUPPLIERS OR AGENTS, BE LIABLE
TO YOU FOR ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, LOST
SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR
USE OR INABILITY TO USE THE CD-ROM PRODUCT REGARDLESS OF WHETHER SUCH DAM-
AGES ARE FORESEEABLE OR WHETHER SUCH DAMAGES ARE DEEMED TO RESULT FROM THE
FAILURE OR INADEQUACY OF ANY EXCLUSIVE OR OTHER REMEDY.

